1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// TODO: Can we split off and reuse the shuffle mask detection from 291 /// TargetTransformInfo::getInstructionThroughput? 292 static Optional<TargetTransformInfo::ShuffleKind> 293 isShuffle(ArrayRef<Value *> VL) { 294 auto *EI0 = cast<ExtractElementInst>(VL[0]); 295 unsigned Size = 296 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 297 Value *Vec1 = nullptr; 298 Value *Vec2 = nullptr; 299 enum ShuffleMode { Unknown, Select, Permute }; 300 ShuffleMode CommonShuffleMode = Unknown; 301 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 302 auto *EI = cast<ExtractElementInst>(VL[I]); 303 auto *Vec = EI->getVectorOperand(); 304 // All vector operands must have the same number of vector elements. 305 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 306 return None; 307 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 308 if (!Idx) 309 return None; 310 // Undefined behavior if Idx is negative or >= Size. 311 if (Idx->getValue().uge(Size)) 312 continue; 313 unsigned IntIdx = Idx->getValue().getZExtValue(); 314 // We can extractelement from undef or poison vector. 315 if (isa<UndefValue>(Vec)) 316 continue; 317 // For correct shuffling we have to have at most 2 different vector operands 318 // in all extractelement instructions. 319 if (!Vec1 || Vec1 == Vec) 320 Vec1 = Vec; 321 else if (!Vec2 || Vec2 == Vec) 322 Vec2 = Vec; 323 else 324 return None; 325 if (CommonShuffleMode == Permute) 326 continue; 327 // If the extract index is not the same as the operation number, it is a 328 // permutation. 329 if (IntIdx != I) { 330 CommonShuffleMode = Permute; 331 continue; 332 } 333 CommonShuffleMode = Select; 334 } 335 // If we're not crossing lanes in different vectors, consider it as blending. 336 if (CommonShuffleMode == Select && Vec2) 337 return TargetTransformInfo::SK_Select; 338 // If Vec2 was never used, we have a permutation of a single vector, otherwise 339 // we have permutation of 2 vectors. 340 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 341 : TargetTransformInfo::SK_PermuteSingleSrc; 342 } 343 344 namespace { 345 346 /// Main data required for vectorization of instructions. 347 struct InstructionsState { 348 /// The very first instruction in the list with the main opcode. 349 Value *OpValue = nullptr; 350 351 /// The main/alternate instruction. 352 Instruction *MainOp = nullptr; 353 Instruction *AltOp = nullptr; 354 355 /// The main/alternate opcodes for the list of instructions. 356 unsigned getOpcode() const { 357 return MainOp ? MainOp->getOpcode() : 0; 358 } 359 360 unsigned getAltOpcode() const { 361 return AltOp ? AltOp->getOpcode() : 0; 362 } 363 364 /// Some of the instructions in the list have alternate opcodes. 365 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 366 367 bool isOpcodeOrAlt(Instruction *I) const { 368 unsigned CheckedOpcode = I->getOpcode(); 369 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 370 } 371 372 InstructionsState() = delete; 373 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 374 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 375 }; 376 377 } // end anonymous namespace 378 379 /// Chooses the correct key for scheduling data. If \p Op has the same (or 380 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 381 /// OpValue. 382 static Value *isOneOf(const InstructionsState &S, Value *Op) { 383 auto *I = dyn_cast<Instruction>(Op); 384 if (I && S.isOpcodeOrAlt(I)) 385 return Op; 386 return S.OpValue; 387 } 388 389 /// \returns true if \p Opcode is allowed as part of of the main/alternate 390 /// instruction for SLP vectorization. 391 /// 392 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 393 /// "shuffled out" lane would result in division by zero. 394 static bool isValidForAlternation(unsigned Opcode) { 395 if (Instruction::isIntDivRem(Opcode)) 396 return false; 397 398 return true; 399 } 400 401 /// \returns analysis of the Instructions in \p VL described in 402 /// InstructionsState, the Opcode that we suppose the whole list 403 /// could be vectorized even if its structure is diverse. 404 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 405 unsigned BaseIndex = 0) { 406 // Make sure these are all Instructions. 407 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 408 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 409 410 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 411 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 412 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 413 unsigned AltOpcode = Opcode; 414 unsigned AltIndex = BaseIndex; 415 416 // Check for one alternate opcode from another BinaryOperator. 417 // TODO - generalize to support all operators (types, calls etc.). 418 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 419 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 420 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 421 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 422 continue; 423 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 424 isValidForAlternation(Opcode)) { 425 AltOpcode = InstOpcode; 426 AltIndex = Cnt; 427 continue; 428 } 429 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 430 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 431 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 432 if (Ty0 == Ty1) { 433 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 434 continue; 435 if (Opcode == AltOpcode) { 436 assert(isValidForAlternation(Opcode) && 437 isValidForAlternation(InstOpcode) && 438 "Cast isn't safe for alternation, logic needs to be updated!"); 439 AltOpcode = InstOpcode; 440 AltIndex = Cnt; 441 continue; 442 } 443 } 444 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 445 continue; 446 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 447 } 448 449 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 450 cast<Instruction>(VL[AltIndex])); 451 } 452 453 /// \returns true if all of the values in \p VL have the same type or false 454 /// otherwise. 455 static bool allSameType(ArrayRef<Value *> VL) { 456 Type *Ty = VL[0]->getType(); 457 for (int i = 1, e = VL.size(); i < e; i++) 458 if (VL[i]->getType() != Ty) 459 return false; 460 461 return true; 462 } 463 464 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 465 static Optional<unsigned> getExtractIndex(Instruction *E) { 466 unsigned Opcode = E->getOpcode(); 467 assert((Opcode == Instruction::ExtractElement || 468 Opcode == Instruction::ExtractValue) && 469 "Expected extractelement or extractvalue instruction."); 470 if (Opcode == Instruction::ExtractElement) { 471 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 472 if (!CI) 473 return None; 474 return CI->getZExtValue(); 475 } 476 ExtractValueInst *EI = cast<ExtractValueInst>(E); 477 if (EI->getNumIndices() != 1) 478 return None; 479 return *EI->idx_begin(); 480 } 481 482 /// \returns True if in-tree use also needs extract. This refers to 483 /// possible scalar operand in vectorized instruction. 484 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 485 TargetLibraryInfo *TLI) { 486 unsigned Opcode = UserInst->getOpcode(); 487 switch (Opcode) { 488 case Instruction::Load: { 489 LoadInst *LI = cast<LoadInst>(UserInst); 490 return (LI->getPointerOperand() == Scalar); 491 } 492 case Instruction::Store: { 493 StoreInst *SI = cast<StoreInst>(UserInst); 494 return (SI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Call: { 497 CallInst *CI = cast<CallInst>(UserInst); 498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 499 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 500 if (hasVectorInstrinsicScalarOpd(ID, i)) 501 return (CI->getArgOperand(i) == Scalar); 502 } 503 LLVM_FALLTHROUGH; 504 } 505 default: 506 return false; 507 } 508 } 509 510 /// \returns the AA location that is being access by the instruction. 511 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return MemoryLocation::get(SI); 514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 515 return MemoryLocation::get(LI); 516 return MemoryLocation(); 517 } 518 519 /// \returns True if the instruction is not a volatile or atomic load/store. 520 static bool isSimple(Instruction *I) { 521 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 522 return LI->isSimple(); 523 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 524 return SI->isSimple(); 525 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 526 return !MI->isVolatile(); 527 return true; 528 } 529 530 namespace llvm { 531 532 static void inversePermutation(ArrayRef<unsigned> Indices, 533 SmallVectorImpl<int> &Mask) { 534 Mask.clear(); 535 const unsigned E = Indices.size(); 536 Mask.resize(E, E + 1); 537 for (unsigned I = 0; I < E; ++I) 538 Mask[Indices[I]] = I; 539 } 540 541 namespace slpvectorizer { 542 543 /// Bottom Up SLP Vectorizer. 544 class BoUpSLP { 545 struct TreeEntry; 546 struct ScheduleData; 547 548 public: 549 using ValueList = SmallVector<Value *, 8>; 550 using InstrList = SmallVector<Instruction *, 16>; 551 using ValueSet = SmallPtrSet<Value *, 16>; 552 using StoreList = SmallVector<StoreInst *, 8>; 553 using ExtraValueToDebugLocsMap = 554 MapVector<Value *, SmallVector<Instruction *, 2>>; 555 using OrdersType = SmallVector<unsigned, 4>; 556 557 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 558 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 559 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 560 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 561 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 562 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 563 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 564 // Use the vector register size specified by the target unless overridden 565 // by a command-line option. 566 // TODO: It would be better to limit the vectorization factor based on 567 // data type rather than just register size. For example, x86 AVX has 568 // 256-bit registers, but it does not support integer operations 569 // at that width (that requires AVX2). 570 if (MaxVectorRegSizeOption.getNumOccurrences()) 571 MaxVecRegSize = MaxVectorRegSizeOption; 572 else 573 MaxVecRegSize = TTI->getRegisterBitWidth(true); 574 575 if (MinVectorRegSizeOption.getNumOccurrences()) 576 MinVecRegSize = MinVectorRegSizeOption; 577 else 578 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 579 } 580 581 /// Vectorize the tree that starts with the elements in \p VL. 582 /// Returns the vectorized root. 583 Value *vectorizeTree(); 584 585 /// Vectorize the tree but with the list of externally used values \p 586 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 587 /// generated extractvalue instructions. 588 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 589 590 /// \returns the cost incurred by unwanted spills and fills, caused by 591 /// holding live values over call sites. 592 InstructionCost getSpillCost() const; 593 594 /// \returns the vectorization cost of the subtree that starts at \p VL. 595 /// A negative number means that this is profitable. 596 InstructionCost getTreeCost(); 597 598 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 599 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 600 void buildTree(ArrayRef<Value *> Roots, 601 ArrayRef<Value *> UserIgnoreLst = None); 602 603 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 604 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 605 /// into account (and updating it, if required) list of externally used 606 /// values stored in \p ExternallyUsedValues. 607 void buildTree(ArrayRef<Value *> Roots, 608 ExtraValueToDebugLocsMap &ExternallyUsedValues, 609 ArrayRef<Value *> UserIgnoreLst = None); 610 611 /// Clear the internal data structures that are created by 'buildTree'. 612 void deleteTree() { 613 VectorizableTree.clear(); 614 ScalarToTreeEntry.clear(); 615 MustGather.clear(); 616 ExternalUses.clear(); 617 NumOpsWantToKeepOrder.clear(); 618 NumOpsWantToKeepOriginalOrder = 0; 619 for (auto &Iter : BlocksSchedules) { 620 BlockScheduling *BS = Iter.second.get(); 621 BS->clear(); 622 } 623 MinBWs.clear(); 624 } 625 626 unsigned getTreeSize() const { return VectorizableTree.size(); } 627 628 /// Perform LICM and CSE on the newly generated gather sequences. 629 void optimizeGatherSequence(); 630 631 /// \returns The best order of instructions for vectorization. 632 Optional<ArrayRef<unsigned>> bestOrder() const { 633 assert(llvm::all_of( 634 NumOpsWantToKeepOrder, 635 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 636 return D.getFirst().size() == 637 VectorizableTree[0]->Scalars.size(); 638 }) && 639 "All orders must have the same size as number of instructions in " 640 "tree node."); 641 auto I = std::max_element( 642 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 643 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 644 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 645 return D1.second < D2.second; 646 }); 647 if (I == NumOpsWantToKeepOrder.end() || 648 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 649 return None; 650 651 return makeArrayRef(I->getFirst()); 652 } 653 654 /// Builds the correct order for root instructions. 655 /// If some leaves have the same instructions to be vectorized, we may 656 /// incorrectly evaluate the best order for the root node (it is built for the 657 /// vector of instructions without repeated instructions and, thus, has less 658 /// elements than the root node). This function builds the correct order for 659 /// the root node. 660 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 661 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 662 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 663 /// be reordered, the best order will be \<1, 0\>. We need to extend this 664 /// order for the root node. For the root node this order should look like 665 /// \<3, 0, 1, 2\>. This function extends the order for the reused 666 /// instructions. 667 void findRootOrder(OrdersType &Order) { 668 // If the leaf has the same number of instructions to vectorize as the root 669 // - order must be set already. 670 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 671 if (Order.size() == RootSize) 672 return; 673 SmallVector<unsigned, 4> RealOrder(Order.size()); 674 std::swap(Order, RealOrder); 675 SmallVector<int, 4> Mask; 676 inversePermutation(RealOrder, Mask); 677 Order.assign(Mask.begin(), Mask.end()); 678 // The leaf has less number of instructions - need to find the true order of 679 // the root. 680 // Scan the nodes starting from the leaf back to the root. 681 const TreeEntry *PNode = VectorizableTree.back().get(); 682 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 683 SmallPtrSet<const TreeEntry *, 4> Visited; 684 while (!Nodes.empty() && Order.size() != RootSize) { 685 const TreeEntry *PNode = Nodes.pop_back_val(); 686 if (!Visited.insert(PNode).second) 687 continue; 688 const TreeEntry &Node = *PNode; 689 for (const EdgeInfo &EI : Node.UserTreeIndices) 690 if (EI.UserTE) 691 Nodes.push_back(EI.UserTE); 692 if (Node.ReuseShuffleIndices.empty()) 693 continue; 694 // Build the order for the parent node. 695 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 696 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 697 // The algorithm of the order extension is: 698 // 1. Calculate the number of the same instructions for the order. 699 // 2. Calculate the index of the new order: total number of instructions 700 // with order less than the order of the current instruction + reuse 701 // number of the current instruction. 702 // 3. The new order is just the index of the instruction in the original 703 // vector of the instructions. 704 for (unsigned I : Node.ReuseShuffleIndices) 705 ++OrderCounter[Order[I]]; 706 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 707 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 708 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 709 unsigned OrderIdx = Order[ReusedIdx]; 710 unsigned NewIdx = 0; 711 for (unsigned J = 0; J < OrderIdx; ++J) 712 NewIdx += OrderCounter[J]; 713 NewIdx += CurrentCounter[OrderIdx]; 714 ++CurrentCounter[OrderIdx]; 715 assert(NewOrder[NewIdx] == RootSize && 716 "The order index should not be written already."); 717 NewOrder[NewIdx] = I; 718 } 719 std::swap(Order, NewOrder); 720 } 721 assert(Order.size() == RootSize && 722 "Root node is expected or the size of the order must be the same as " 723 "the number of elements in the root node."); 724 assert(llvm::all_of(Order, 725 [RootSize](unsigned Val) { return Val != RootSize; }) && 726 "All indices must be initialized"); 727 } 728 729 /// \return The vector element size in bits to use when vectorizing the 730 /// expression tree ending at \p V. If V is a store, the size is the width of 731 /// the stored value. Otherwise, the size is the width of the largest loaded 732 /// value reaching V. This method is used by the vectorizer to calculate 733 /// vectorization factors. 734 unsigned getVectorElementSize(Value *V); 735 736 /// Compute the minimum type sizes required to represent the entries in a 737 /// vectorizable tree. 738 void computeMinimumValueSizes(); 739 740 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 741 unsigned getMaxVecRegSize() const { 742 return MaxVecRegSize; 743 } 744 745 // \returns minimum vector register size as set by cl::opt. 746 unsigned getMinVecRegSize() const { 747 return MinVecRegSize; 748 } 749 750 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 751 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 752 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 753 return MaxVF ? MaxVF : UINT_MAX; 754 } 755 756 /// Check if homogeneous aggregate is isomorphic to some VectorType. 757 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 758 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 759 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 760 /// 761 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 762 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 763 764 /// \returns True if the VectorizableTree is both tiny and not fully 765 /// vectorizable. We do not vectorize such trees. 766 bool isTreeTinyAndNotFullyVectorizable() const; 767 768 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 769 /// can be load combined in the backend. Load combining may not be allowed in 770 /// the IR optimizer, so we do not want to alter the pattern. For example, 771 /// partially transforming a scalar bswap() pattern into vector code is 772 /// effectively impossible for the backend to undo. 773 /// TODO: If load combining is allowed in the IR optimizer, this analysis 774 /// may not be necessary. 775 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 776 777 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 778 /// can be load combined in the backend. Load combining may not be allowed in 779 /// the IR optimizer, so we do not want to alter the pattern. For example, 780 /// partially transforming a scalar bswap() pattern into vector code is 781 /// effectively impossible for the backend to undo. 782 /// TODO: If load combining is allowed in the IR optimizer, this analysis 783 /// may not be necessary. 784 bool isLoadCombineCandidate() const; 785 786 OptimizationRemarkEmitter *getORE() { return ORE; } 787 788 /// This structure holds any data we need about the edges being traversed 789 /// during buildTree_rec(). We keep track of: 790 /// (i) the user TreeEntry index, and 791 /// (ii) the index of the edge. 792 struct EdgeInfo { 793 EdgeInfo() = default; 794 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 795 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 796 /// The user TreeEntry. 797 TreeEntry *UserTE = nullptr; 798 /// The operand index of the use. 799 unsigned EdgeIdx = UINT_MAX; 800 #ifndef NDEBUG 801 friend inline raw_ostream &operator<<(raw_ostream &OS, 802 const BoUpSLP::EdgeInfo &EI) { 803 EI.dump(OS); 804 return OS; 805 } 806 /// Debug print. 807 void dump(raw_ostream &OS) const { 808 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 809 << " EdgeIdx:" << EdgeIdx << "}"; 810 } 811 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 812 #endif 813 }; 814 815 /// A helper data structure to hold the operands of a vector of instructions. 816 /// This supports a fixed vector length for all operand vectors. 817 class VLOperands { 818 /// For each operand we need (i) the value, and (ii) the opcode that it 819 /// would be attached to if the expression was in a left-linearized form. 820 /// This is required to avoid illegal operand reordering. 821 /// For example: 822 /// \verbatim 823 /// 0 Op1 824 /// |/ 825 /// Op1 Op2 Linearized + Op2 826 /// \ / ----------> |/ 827 /// - - 828 /// 829 /// Op1 - Op2 (0 + Op1) - Op2 830 /// \endverbatim 831 /// 832 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 833 /// 834 /// Another way to think of this is to track all the operations across the 835 /// path from the operand all the way to the root of the tree and to 836 /// calculate the operation that corresponds to this path. For example, the 837 /// path from Op2 to the root crosses the RHS of the '-', therefore the 838 /// corresponding operation is a '-' (which matches the one in the 839 /// linearized tree, as shown above). 840 /// 841 /// For lack of a better term, we refer to this operation as Accumulated 842 /// Path Operation (APO). 843 struct OperandData { 844 OperandData() = default; 845 OperandData(Value *V, bool APO, bool IsUsed) 846 : V(V), APO(APO), IsUsed(IsUsed) {} 847 /// The operand value. 848 Value *V = nullptr; 849 /// TreeEntries only allow a single opcode, or an alternate sequence of 850 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 851 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 852 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 853 /// (e.g., Add/Mul) 854 bool APO = false; 855 /// Helper data for the reordering function. 856 bool IsUsed = false; 857 }; 858 859 /// During operand reordering, we are trying to select the operand at lane 860 /// that matches best with the operand at the neighboring lane. Our 861 /// selection is based on the type of value we are looking for. For example, 862 /// if the neighboring lane has a load, we need to look for a load that is 863 /// accessing a consecutive address. These strategies are summarized in the 864 /// 'ReorderingMode' enumerator. 865 enum class ReorderingMode { 866 Load, ///< Matching loads to consecutive memory addresses 867 Opcode, ///< Matching instructions based on opcode (same or alternate) 868 Constant, ///< Matching constants 869 Splat, ///< Matching the same instruction multiple times (broadcast) 870 Failed, ///< We failed to create a vectorizable group 871 }; 872 873 using OperandDataVec = SmallVector<OperandData, 2>; 874 875 /// A vector of operand vectors. 876 SmallVector<OperandDataVec, 4> OpsVec; 877 878 const DataLayout &DL; 879 ScalarEvolution &SE; 880 const BoUpSLP &R; 881 882 /// \returns the operand data at \p OpIdx and \p Lane. 883 OperandData &getData(unsigned OpIdx, unsigned Lane) { 884 return OpsVec[OpIdx][Lane]; 885 } 886 887 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 888 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 889 return OpsVec[OpIdx][Lane]; 890 } 891 892 /// Clears the used flag for all entries. 893 void clearUsed() { 894 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 895 OpIdx != NumOperands; ++OpIdx) 896 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 897 ++Lane) 898 OpsVec[OpIdx][Lane].IsUsed = false; 899 } 900 901 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 902 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 903 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 904 } 905 906 // The hard-coded scores listed here are not very important. When computing 907 // the scores of matching one sub-tree with another, we are basically 908 // counting the number of values that are matching. So even if all scores 909 // are set to 1, we would still get a decent matching result. 910 // However, sometimes we have to break ties. For example we may have to 911 // choose between matching loads vs matching opcodes. This is what these 912 // scores are helping us with: they provide the order of preference. 913 914 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 915 static const int ScoreConsecutiveLoads = 3; 916 /// ExtractElementInst from same vector and consecutive indexes. 917 static const int ScoreConsecutiveExtracts = 3; 918 /// Constants. 919 static const int ScoreConstants = 2; 920 /// Instructions with the same opcode. 921 static const int ScoreSameOpcode = 2; 922 /// Instructions with alt opcodes (e.g, add + sub). 923 static const int ScoreAltOpcodes = 1; 924 /// Identical instructions (a.k.a. splat or broadcast). 925 static const int ScoreSplat = 1; 926 /// Matching with an undef is preferable to failing. 927 static const int ScoreUndef = 1; 928 /// Score for failing to find a decent match. 929 static const int ScoreFail = 0; 930 /// User exteranl to the vectorized code. 931 static const int ExternalUseCost = 1; 932 /// The user is internal but in a different lane. 933 static const int UserInDiffLaneCost = ExternalUseCost; 934 935 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 936 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 937 ScalarEvolution &SE) { 938 auto *LI1 = dyn_cast<LoadInst>(V1); 939 auto *LI2 = dyn_cast<LoadInst>(V2); 940 if (LI1 && LI2) 941 return isConsecutiveAccess(LI1, LI2, DL, SE) 942 ? VLOperands::ScoreConsecutiveLoads 943 : VLOperands::ScoreFail; 944 945 auto *C1 = dyn_cast<Constant>(V1); 946 auto *C2 = dyn_cast<Constant>(V2); 947 if (C1 && C2) 948 return VLOperands::ScoreConstants; 949 950 // Extracts from consecutive indexes of the same vector better score as 951 // the extracts could be optimized away. 952 Value *EV; 953 ConstantInt *Ex1Idx, *Ex2Idx; 954 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 955 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 956 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 957 return VLOperands::ScoreConsecutiveExtracts; 958 959 auto *I1 = dyn_cast<Instruction>(V1); 960 auto *I2 = dyn_cast<Instruction>(V2); 961 if (I1 && I2) { 962 if (I1 == I2) 963 return VLOperands::ScoreSplat; 964 InstructionsState S = getSameOpcode({I1, I2}); 965 // Note: Only consider instructions with <= 2 operands to avoid 966 // complexity explosion. 967 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 968 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 969 : VLOperands::ScoreSameOpcode; 970 } 971 972 if (isa<UndefValue>(V2)) 973 return VLOperands::ScoreUndef; 974 975 return VLOperands::ScoreFail; 976 } 977 978 /// Holds the values and their lane that are taking part in the look-ahead 979 /// score calculation. This is used in the external uses cost calculation. 980 SmallDenseMap<Value *, int> InLookAheadValues; 981 982 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 983 /// either external to the vectorized code, or require shuffling. 984 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 985 const std::pair<Value *, int> &RHS) { 986 int Cost = 0; 987 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 988 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 989 Value *V = Values[Idx].first; 990 // Calculate the absolute lane, using the minimum relative lane of LHS 991 // and RHS as base and Idx as the offset. 992 int Ln = std::min(LHS.second, RHS.second) + Idx; 993 assert(Ln >= 0 && "Bad lane calculation"); 994 unsigned UsersBudget = LookAheadUsersBudget; 995 for (User *U : V->users()) { 996 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 997 // The user is in the VectorizableTree. Check if we need to insert. 998 auto It = llvm::find(UserTE->Scalars, U); 999 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1000 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1001 assert(UserLn >= 0 && "Bad lane"); 1002 if (UserLn != Ln) 1003 Cost += UserInDiffLaneCost; 1004 } else { 1005 // Check if the user is in the look-ahead code. 1006 auto It2 = InLookAheadValues.find(U); 1007 if (It2 != InLookAheadValues.end()) { 1008 // The user is in the look-ahead code. Check the lane. 1009 if (It2->second != Ln) 1010 Cost += UserInDiffLaneCost; 1011 } else { 1012 // The user is neither in SLP tree nor in the look-ahead code. 1013 Cost += ExternalUseCost; 1014 } 1015 } 1016 // Limit the number of visited uses to cap compilation time. 1017 if (--UsersBudget == 0) 1018 break; 1019 } 1020 } 1021 return Cost; 1022 } 1023 1024 /// Go through the operands of \p LHS and \p RHS recursively until \p 1025 /// MaxLevel, and return the cummulative score. For example: 1026 /// \verbatim 1027 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1028 /// \ / \ / \ / \ / 1029 /// + + + + 1030 /// G1 G2 G3 G4 1031 /// \endverbatim 1032 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1033 /// each level recursively, accumulating the score. It starts from matching 1034 /// the additions at level 0, then moves on to the loads (level 1). The 1035 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1036 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1037 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1038 /// Please note that the order of the operands does not matter, as we 1039 /// evaluate the score of all profitable combinations of operands. In 1040 /// other words the score of G1 and G4 is the same as G1 and G2. This 1041 /// heuristic is based on ideas described in: 1042 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1043 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1044 /// Luís F. W. Góes 1045 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1046 const std::pair<Value *, int> &RHS, int CurrLevel, 1047 int MaxLevel) { 1048 1049 Value *V1 = LHS.first; 1050 Value *V2 = RHS.first; 1051 // Get the shallow score of V1 and V2. 1052 int ShallowScoreAtThisLevel = 1053 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1054 getExternalUsesCost(LHS, RHS)); 1055 int Lane1 = LHS.second; 1056 int Lane2 = RHS.second; 1057 1058 // If reached MaxLevel, 1059 // or if V1 and V2 are not instructions, 1060 // or if they are SPLAT, 1061 // or if they are not consecutive, early return the current cost. 1062 auto *I1 = dyn_cast<Instruction>(V1); 1063 auto *I2 = dyn_cast<Instruction>(V2); 1064 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1065 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1066 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1067 return ShallowScoreAtThisLevel; 1068 assert(I1 && I2 && "Should have early exited."); 1069 1070 // Keep track of in-tree values for determining the external-use cost. 1071 InLookAheadValues[V1] = Lane1; 1072 InLookAheadValues[V2] = Lane2; 1073 1074 // Contains the I2 operand indexes that got matched with I1 operands. 1075 SmallSet<unsigned, 4> Op2Used; 1076 1077 // Recursion towards the operands of I1 and I2. We are trying all possbile 1078 // operand pairs, and keeping track of the best score. 1079 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1080 OpIdx1 != NumOperands1; ++OpIdx1) { 1081 // Try to pair op1I with the best operand of I2. 1082 int MaxTmpScore = 0; 1083 unsigned MaxOpIdx2 = 0; 1084 bool FoundBest = false; 1085 // If I2 is commutative try all combinations. 1086 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1087 unsigned ToIdx = isCommutative(I2) 1088 ? I2->getNumOperands() 1089 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1090 assert(FromIdx <= ToIdx && "Bad index"); 1091 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1092 // Skip operands already paired with OpIdx1. 1093 if (Op2Used.count(OpIdx2)) 1094 continue; 1095 // Recursively calculate the cost at each level 1096 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1097 {I2->getOperand(OpIdx2), Lane2}, 1098 CurrLevel + 1, MaxLevel); 1099 // Look for the best score. 1100 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1101 MaxTmpScore = TmpScore; 1102 MaxOpIdx2 = OpIdx2; 1103 FoundBest = true; 1104 } 1105 } 1106 if (FoundBest) { 1107 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1108 Op2Used.insert(MaxOpIdx2); 1109 ShallowScoreAtThisLevel += MaxTmpScore; 1110 } 1111 } 1112 return ShallowScoreAtThisLevel; 1113 } 1114 1115 /// \Returns the look-ahead score, which tells us how much the sub-trees 1116 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1117 /// score. This helps break ties in an informed way when we cannot decide on 1118 /// the order of the operands by just considering the immediate 1119 /// predecessors. 1120 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1121 const std::pair<Value *, int> &RHS) { 1122 InLookAheadValues.clear(); 1123 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1124 } 1125 1126 // Search all operands in Ops[*][Lane] for the one that matches best 1127 // Ops[OpIdx][LastLane] and return its opreand index. 1128 // If no good match can be found, return None. 1129 Optional<unsigned> 1130 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1131 ArrayRef<ReorderingMode> ReorderingModes) { 1132 unsigned NumOperands = getNumOperands(); 1133 1134 // The operand of the previous lane at OpIdx. 1135 Value *OpLastLane = getData(OpIdx, LastLane).V; 1136 1137 // Our strategy mode for OpIdx. 1138 ReorderingMode RMode = ReorderingModes[OpIdx]; 1139 1140 // The linearized opcode of the operand at OpIdx, Lane. 1141 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1142 1143 // The best operand index and its score. 1144 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1145 // are using the score to differentiate between the two. 1146 struct BestOpData { 1147 Optional<unsigned> Idx = None; 1148 unsigned Score = 0; 1149 } BestOp; 1150 1151 // Iterate through all unused operands and look for the best. 1152 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1153 // Get the operand at Idx and Lane. 1154 OperandData &OpData = getData(Idx, Lane); 1155 Value *Op = OpData.V; 1156 bool OpAPO = OpData.APO; 1157 1158 // Skip already selected operands. 1159 if (OpData.IsUsed) 1160 continue; 1161 1162 // Skip if we are trying to move the operand to a position with a 1163 // different opcode in the linearized tree form. This would break the 1164 // semantics. 1165 if (OpAPO != OpIdxAPO) 1166 continue; 1167 1168 // Look for an operand that matches the current mode. 1169 switch (RMode) { 1170 case ReorderingMode::Load: 1171 case ReorderingMode::Constant: 1172 case ReorderingMode::Opcode: { 1173 bool LeftToRight = Lane > LastLane; 1174 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1175 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1176 unsigned Score = 1177 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1178 if (Score > BestOp.Score) { 1179 BestOp.Idx = Idx; 1180 BestOp.Score = Score; 1181 } 1182 break; 1183 } 1184 case ReorderingMode::Splat: 1185 if (Op == OpLastLane) 1186 BestOp.Idx = Idx; 1187 break; 1188 case ReorderingMode::Failed: 1189 return None; 1190 } 1191 } 1192 1193 if (BestOp.Idx) { 1194 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1195 return BestOp.Idx; 1196 } 1197 // If we could not find a good match return None. 1198 return None; 1199 } 1200 1201 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1202 /// reordering from. This is the one which has the least number of operands 1203 /// that can freely move about. 1204 unsigned getBestLaneToStartReordering() const { 1205 unsigned BestLane = 0; 1206 unsigned Min = UINT_MAX; 1207 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1208 ++Lane) { 1209 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1210 if (NumFreeOps < Min) { 1211 Min = NumFreeOps; 1212 BestLane = Lane; 1213 } 1214 } 1215 return BestLane; 1216 } 1217 1218 /// \Returns the maximum number of operands that are allowed to be reordered 1219 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1220 /// start operand reordering. 1221 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1222 unsigned CntTrue = 0; 1223 unsigned NumOperands = getNumOperands(); 1224 // Operands with the same APO can be reordered. We therefore need to count 1225 // how many of them we have for each APO, like this: Cnt[APO] = x. 1226 // Since we only have two APOs, namely true and false, we can avoid using 1227 // a map. Instead we can simply count the number of operands that 1228 // correspond to one of them (in this case the 'true' APO), and calculate 1229 // the other by subtracting it from the total number of operands. 1230 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1231 if (getData(OpIdx, Lane).APO) 1232 ++CntTrue; 1233 unsigned CntFalse = NumOperands - CntTrue; 1234 return std::max(CntTrue, CntFalse); 1235 } 1236 1237 /// Go through the instructions in VL and append their operands. 1238 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1239 assert(!VL.empty() && "Bad VL"); 1240 assert((empty() || VL.size() == getNumLanes()) && 1241 "Expected same number of lanes"); 1242 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1243 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1244 OpsVec.resize(NumOperands); 1245 unsigned NumLanes = VL.size(); 1246 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1247 OpsVec[OpIdx].resize(NumLanes); 1248 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1249 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1250 // Our tree has just 3 nodes: the root and two operands. 1251 // It is therefore trivial to get the APO. We only need to check the 1252 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1253 // RHS operand. The LHS operand of both add and sub is never attached 1254 // to an inversese operation in the linearized form, therefore its APO 1255 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1256 1257 // Since operand reordering is performed on groups of commutative 1258 // operations or alternating sequences (e.g., +, -), we can safely 1259 // tell the inverse operations by checking commutativity. 1260 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1261 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1262 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1263 APO, false}; 1264 } 1265 } 1266 } 1267 1268 /// \returns the number of operands. 1269 unsigned getNumOperands() const { return OpsVec.size(); } 1270 1271 /// \returns the number of lanes. 1272 unsigned getNumLanes() const { return OpsVec[0].size(); } 1273 1274 /// \returns the operand value at \p OpIdx and \p Lane. 1275 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1276 return getData(OpIdx, Lane).V; 1277 } 1278 1279 /// \returns true if the data structure is empty. 1280 bool empty() const { return OpsVec.empty(); } 1281 1282 /// Clears the data. 1283 void clear() { OpsVec.clear(); } 1284 1285 /// \Returns true if there are enough operands identical to \p Op to fill 1286 /// the whole vector. 1287 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1288 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1289 bool OpAPO = getData(OpIdx, Lane).APO; 1290 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1291 if (Ln == Lane) 1292 continue; 1293 // This is set to true if we found a candidate for broadcast at Lane. 1294 bool FoundCandidate = false; 1295 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1296 OperandData &Data = getData(OpI, Ln); 1297 if (Data.APO != OpAPO || Data.IsUsed) 1298 continue; 1299 if (Data.V == Op) { 1300 FoundCandidate = true; 1301 Data.IsUsed = true; 1302 break; 1303 } 1304 } 1305 if (!FoundCandidate) 1306 return false; 1307 } 1308 return true; 1309 } 1310 1311 public: 1312 /// Initialize with all the operands of the instruction vector \p RootVL. 1313 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1314 ScalarEvolution &SE, const BoUpSLP &R) 1315 : DL(DL), SE(SE), R(R) { 1316 // Append all the operands of RootVL. 1317 appendOperandsOfVL(RootVL); 1318 } 1319 1320 /// \Returns a value vector with the operands across all lanes for the 1321 /// opearnd at \p OpIdx. 1322 ValueList getVL(unsigned OpIdx) const { 1323 ValueList OpVL(OpsVec[OpIdx].size()); 1324 assert(OpsVec[OpIdx].size() == getNumLanes() && 1325 "Expected same num of lanes across all operands"); 1326 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1327 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1328 return OpVL; 1329 } 1330 1331 // Performs operand reordering for 2 or more operands. 1332 // The original operands are in OrigOps[OpIdx][Lane]. 1333 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1334 void reorder() { 1335 unsigned NumOperands = getNumOperands(); 1336 unsigned NumLanes = getNumLanes(); 1337 // Each operand has its own mode. We are using this mode to help us select 1338 // the instructions for each lane, so that they match best with the ones 1339 // we have selected so far. 1340 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1341 1342 // This is a greedy single-pass algorithm. We are going over each lane 1343 // once and deciding on the best order right away with no back-tracking. 1344 // However, in order to increase its effectiveness, we start with the lane 1345 // that has operands that can move the least. For example, given the 1346 // following lanes: 1347 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1348 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1349 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1350 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1351 // we will start at Lane 1, since the operands of the subtraction cannot 1352 // be reordered. Then we will visit the rest of the lanes in a circular 1353 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1354 1355 // Find the first lane that we will start our search from. 1356 unsigned FirstLane = getBestLaneToStartReordering(); 1357 1358 // Initialize the modes. 1359 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1360 Value *OpLane0 = getValue(OpIdx, FirstLane); 1361 // Keep track if we have instructions with all the same opcode on one 1362 // side. 1363 if (isa<LoadInst>(OpLane0)) 1364 ReorderingModes[OpIdx] = ReorderingMode::Load; 1365 else if (isa<Instruction>(OpLane0)) { 1366 // Check if OpLane0 should be broadcast. 1367 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1368 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1369 else 1370 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1371 } 1372 else if (isa<Constant>(OpLane0)) 1373 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1374 else if (isa<Argument>(OpLane0)) 1375 // Our best hope is a Splat. It may save some cost in some cases. 1376 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1377 else 1378 // NOTE: This should be unreachable. 1379 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1380 } 1381 1382 // If the initial strategy fails for any of the operand indexes, then we 1383 // perform reordering again in a second pass. This helps avoid assigning 1384 // high priority to the failed strategy, and should improve reordering for 1385 // the non-failed operand indexes. 1386 for (int Pass = 0; Pass != 2; ++Pass) { 1387 // Skip the second pass if the first pass did not fail. 1388 bool StrategyFailed = false; 1389 // Mark all operand data as free to use. 1390 clearUsed(); 1391 // We keep the original operand order for the FirstLane, so reorder the 1392 // rest of the lanes. We are visiting the nodes in a circular fashion, 1393 // using FirstLane as the center point and increasing the radius 1394 // distance. 1395 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1396 // Visit the lane on the right and then the lane on the left. 1397 for (int Direction : {+1, -1}) { 1398 int Lane = FirstLane + Direction * Distance; 1399 if (Lane < 0 || Lane >= (int)NumLanes) 1400 continue; 1401 int LastLane = Lane - Direction; 1402 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1403 "Out of bounds"); 1404 // Look for a good match for each operand. 1405 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1406 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1407 Optional<unsigned> BestIdx = 1408 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1409 // By not selecting a value, we allow the operands that follow to 1410 // select a better matching value. We will get a non-null value in 1411 // the next run of getBestOperand(). 1412 if (BestIdx) { 1413 // Swap the current operand with the one returned by 1414 // getBestOperand(). 1415 swap(OpIdx, BestIdx.getValue(), Lane); 1416 } else { 1417 // We failed to find a best operand, set mode to 'Failed'. 1418 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1419 // Enable the second pass. 1420 StrategyFailed = true; 1421 } 1422 } 1423 } 1424 } 1425 // Skip second pass if the strategy did not fail. 1426 if (!StrategyFailed) 1427 break; 1428 } 1429 } 1430 1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1432 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1433 switch (RMode) { 1434 case ReorderingMode::Load: 1435 return "Load"; 1436 case ReorderingMode::Opcode: 1437 return "Opcode"; 1438 case ReorderingMode::Constant: 1439 return "Constant"; 1440 case ReorderingMode::Splat: 1441 return "Splat"; 1442 case ReorderingMode::Failed: 1443 return "Failed"; 1444 } 1445 llvm_unreachable("Unimplemented Reordering Type"); 1446 } 1447 1448 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1449 raw_ostream &OS) { 1450 return OS << getModeStr(RMode); 1451 } 1452 1453 /// Debug print. 1454 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1455 printMode(RMode, dbgs()); 1456 } 1457 1458 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1459 return printMode(RMode, OS); 1460 } 1461 1462 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1463 const unsigned Indent = 2; 1464 unsigned Cnt = 0; 1465 for (const OperandDataVec &OpDataVec : OpsVec) { 1466 OS << "Operand " << Cnt++ << "\n"; 1467 for (const OperandData &OpData : OpDataVec) { 1468 OS.indent(Indent) << "{"; 1469 if (Value *V = OpData.V) 1470 OS << *V; 1471 else 1472 OS << "null"; 1473 OS << ", APO:" << OpData.APO << "}\n"; 1474 } 1475 OS << "\n"; 1476 } 1477 return OS; 1478 } 1479 1480 /// Debug print. 1481 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1482 #endif 1483 }; 1484 1485 /// Checks if the instruction is marked for deletion. 1486 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1487 1488 /// Marks values operands for later deletion by replacing them with Undefs. 1489 void eraseInstructions(ArrayRef<Value *> AV); 1490 1491 ~BoUpSLP(); 1492 1493 private: 1494 /// Checks if all users of \p I are the part of the vectorization tree. 1495 bool areAllUsersVectorized(Instruction *I) const; 1496 1497 /// \returns the cost of the vectorizable entry. 1498 InstructionCost getEntryCost(TreeEntry *E); 1499 1500 /// This is the recursive part of buildTree. 1501 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1502 const EdgeInfo &EI); 1503 1504 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1505 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1506 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1507 /// returns false, setting \p CurrentOrder to either an empty vector or a 1508 /// non-identity permutation that allows to reuse extract instructions. 1509 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1510 SmallVectorImpl<unsigned> &CurrentOrder) const; 1511 1512 /// Vectorize a single entry in the tree. 1513 Value *vectorizeTree(TreeEntry *E); 1514 1515 /// Vectorize a single entry in the tree, starting in \p VL. 1516 Value *vectorizeTree(ArrayRef<Value *> VL); 1517 1518 /// \returns the scalarization cost for this type. Scalarization in this 1519 /// context means the creation of vectors from a group of scalars. 1520 InstructionCost 1521 getGatherCost(FixedVectorType *Ty, 1522 const DenseSet<unsigned> &ShuffledIndices) const; 1523 1524 /// \returns the scalarization cost for this list of values. Assuming that 1525 /// this subtree gets vectorized, we may need to extract the values from the 1526 /// roots. This method calculates the cost of extracting the values. 1527 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1528 1529 /// Set the Builder insert point to one after the last instruction in 1530 /// the bundle 1531 void setInsertPointAfterBundle(TreeEntry *E); 1532 1533 /// \returns a vector from a collection of scalars in \p VL. 1534 Value *gather(ArrayRef<Value *> VL); 1535 1536 /// \returns whether the VectorizableTree is fully vectorizable and will 1537 /// be beneficial even the tree height is tiny. 1538 bool isFullyVectorizableTinyTree() const; 1539 1540 /// Reorder commutative or alt operands to get better probability of 1541 /// generating vectorized code. 1542 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1543 SmallVectorImpl<Value *> &Left, 1544 SmallVectorImpl<Value *> &Right, 1545 const DataLayout &DL, 1546 ScalarEvolution &SE, 1547 const BoUpSLP &R); 1548 struct TreeEntry { 1549 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1550 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1551 1552 /// \returns true if the scalars in VL are equal to this entry. 1553 bool isSame(ArrayRef<Value *> VL) const { 1554 if (VL.size() == Scalars.size()) 1555 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1556 return VL.size() == ReuseShuffleIndices.size() && 1557 std::equal( 1558 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1559 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1560 } 1561 1562 /// A vector of scalars. 1563 ValueList Scalars; 1564 1565 /// The Scalars are vectorized into this value. It is initialized to Null. 1566 Value *VectorizedValue = nullptr; 1567 1568 /// Do we need to gather this sequence or vectorize it 1569 /// (either with vector instruction or with scatter/gather 1570 /// intrinsics for store/load)? 1571 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1572 EntryState State; 1573 1574 /// Does this sequence require some shuffling? 1575 SmallVector<int, 4> ReuseShuffleIndices; 1576 1577 /// Does this entry require reordering? 1578 SmallVector<unsigned, 4> ReorderIndices; 1579 1580 /// Points back to the VectorizableTree. 1581 /// 1582 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1583 /// to be a pointer and needs to be able to initialize the child iterator. 1584 /// Thus we need a reference back to the container to translate the indices 1585 /// to entries. 1586 VecTreeTy &Container; 1587 1588 /// The TreeEntry index containing the user of this entry. We can actually 1589 /// have multiple users so the data structure is not truly a tree. 1590 SmallVector<EdgeInfo, 1> UserTreeIndices; 1591 1592 /// The index of this treeEntry in VectorizableTree. 1593 int Idx = -1; 1594 1595 private: 1596 /// The operands of each instruction in each lane Operands[op_index][lane]. 1597 /// Note: This helps avoid the replication of the code that performs the 1598 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1599 SmallVector<ValueList, 2> Operands; 1600 1601 /// The main/alternate instruction. 1602 Instruction *MainOp = nullptr; 1603 Instruction *AltOp = nullptr; 1604 1605 public: 1606 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1607 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1608 if (Operands.size() < OpIdx + 1) 1609 Operands.resize(OpIdx + 1); 1610 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1611 Operands[OpIdx].resize(Scalars.size()); 1612 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1613 Operands[OpIdx][Lane] = OpVL[Lane]; 1614 } 1615 1616 /// Set the operands of this bundle in their original order. 1617 void setOperandsInOrder() { 1618 assert(Operands.empty() && "Already initialized?"); 1619 auto *I0 = cast<Instruction>(Scalars[0]); 1620 Operands.resize(I0->getNumOperands()); 1621 unsigned NumLanes = Scalars.size(); 1622 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1623 OpIdx != NumOperands; ++OpIdx) { 1624 Operands[OpIdx].resize(NumLanes); 1625 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1626 auto *I = cast<Instruction>(Scalars[Lane]); 1627 assert(I->getNumOperands() == NumOperands && 1628 "Expected same number of operands"); 1629 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1630 } 1631 } 1632 } 1633 1634 /// \returns the \p OpIdx operand of this TreeEntry. 1635 ValueList &getOperand(unsigned OpIdx) { 1636 assert(OpIdx < Operands.size() && "Off bounds"); 1637 return Operands[OpIdx]; 1638 } 1639 1640 /// \returns the number of operands. 1641 unsigned getNumOperands() const { return Operands.size(); } 1642 1643 /// \return the single \p OpIdx operand. 1644 Value *getSingleOperand(unsigned OpIdx) const { 1645 assert(OpIdx < Operands.size() && "Off bounds"); 1646 assert(!Operands[OpIdx].empty() && "No operand available"); 1647 return Operands[OpIdx][0]; 1648 } 1649 1650 /// Some of the instructions in the list have alternate opcodes. 1651 bool isAltShuffle() const { 1652 return getOpcode() != getAltOpcode(); 1653 } 1654 1655 bool isOpcodeOrAlt(Instruction *I) const { 1656 unsigned CheckedOpcode = I->getOpcode(); 1657 return (getOpcode() == CheckedOpcode || 1658 getAltOpcode() == CheckedOpcode); 1659 } 1660 1661 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1662 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1663 /// \p OpValue. 1664 Value *isOneOf(Value *Op) const { 1665 auto *I = dyn_cast<Instruction>(Op); 1666 if (I && isOpcodeOrAlt(I)) 1667 return Op; 1668 return MainOp; 1669 } 1670 1671 void setOperations(const InstructionsState &S) { 1672 MainOp = S.MainOp; 1673 AltOp = S.AltOp; 1674 } 1675 1676 Instruction *getMainOp() const { 1677 return MainOp; 1678 } 1679 1680 Instruction *getAltOp() const { 1681 return AltOp; 1682 } 1683 1684 /// The main/alternate opcodes for the list of instructions. 1685 unsigned getOpcode() const { 1686 return MainOp ? MainOp->getOpcode() : 0; 1687 } 1688 1689 unsigned getAltOpcode() const { 1690 return AltOp ? AltOp->getOpcode() : 0; 1691 } 1692 1693 /// Update operations state of this entry if reorder occurred. 1694 bool updateStateIfReorder() { 1695 if (ReorderIndices.empty()) 1696 return false; 1697 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1698 setOperations(S); 1699 return true; 1700 } 1701 1702 #ifndef NDEBUG 1703 /// Debug printer. 1704 LLVM_DUMP_METHOD void dump() const { 1705 dbgs() << Idx << ".\n"; 1706 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1707 dbgs() << "Operand " << OpI << ":\n"; 1708 for (const Value *V : Operands[OpI]) 1709 dbgs().indent(2) << *V << "\n"; 1710 } 1711 dbgs() << "Scalars: \n"; 1712 for (Value *V : Scalars) 1713 dbgs().indent(2) << *V << "\n"; 1714 dbgs() << "State: "; 1715 switch (State) { 1716 case Vectorize: 1717 dbgs() << "Vectorize\n"; 1718 break; 1719 case ScatterVectorize: 1720 dbgs() << "ScatterVectorize\n"; 1721 break; 1722 case NeedToGather: 1723 dbgs() << "NeedToGather\n"; 1724 break; 1725 } 1726 dbgs() << "MainOp: "; 1727 if (MainOp) 1728 dbgs() << *MainOp << "\n"; 1729 else 1730 dbgs() << "NULL\n"; 1731 dbgs() << "AltOp: "; 1732 if (AltOp) 1733 dbgs() << *AltOp << "\n"; 1734 else 1735 dbgs() << "NULL\n"; 1736 dbgs() << "VectorizedValue: "; 1737 if (VectorizedValue) 1738 dbgs() << *VectorizedValue << "\n"; 1739 else 1740 dbgs() << "NULL\n"; 1741 dbgs() << "ReuseShuffleIndices: "; 1742 if (ReuseShuffleIndices.empty()) 1743 dbgs() << "Empty"; 1744 else 1745 for (unsigned ReuseIdx : ReuseShuffleIndices) 1746 dbgs() << ReuseIdx << ", "; 1747 dbgs() << "\n"; 1748 dbgs() << "ReorderIndices: "; 1749 for (unsigned ReorderIdx : ReorderIndices) 1750 dbgs() << ReorderIdx << ", "; 1751 dbgs() << "\n"; 1752 dbgs() << "UserTreeIndices: "; 1753 for (const auto &EInfo : UserTreeIndices) 1754 dbgs() << EInfo << ", "; 1755 dbgs() << "\n"; 1756 } 1757 #endif 1758 }; 1759 1760 #ifndef NDEBUG 1761 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1762 InstructionCost VecCost, 1763 InstructionCost ScalarCost) const { 1764 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1765 dbgs() << "SLP: Costs:\n"; 1766 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1767 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1768 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1769 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1770 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1771 } 1772 #endif 1773 1774 /// Create a new VectorizableTree entry. 1775 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1776 const InstructionsState &S, 1777 const EdgeInfo &UserTreeIdx, 1778 ArrayRef<unsigned> ReuseShuffleIndices = None, 1779 ArrayRef<unsigned> ReorderIndices = None) { 1780 TreeEntry::EntryState EntryState = 1781 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1782 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1783 ReuseShuffleIndices, ReorderIndices); 1784 } 1785 1786 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1787 TreeEntry::EntryState EntryState, 1788 Optional<ScheduleData *> Bundle, 1789 const InstructionsState &S, 1790 const EdgeInfo &UserTreeIdx, 1791 ArrayRef<unsigned> ReuseShuffleIndices = None, 1792 ArrayRef<unsigned> ReorderIndices = None) { 1793 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1794 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1795 "Need to vectorize gather entry?"); 1796 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1797 TreeEntry *Last = VectorizableTree.back().get(); 1798 Last->Idx = VectorizableTree.size() - 1; 1799 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1800 Last->State = EntryState; 1801 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1802 ReuseShuffleIndices.end()); 1803 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1804 Last->setOperations(S); 1805 if (Last->State != TreeEntry::NeedToGather) { 1806 for (Value *V : VL) { 1807 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1808 ScalarToTreeEntry[V] = Last; 1809 } 1810 // Update the scheduler bundle to point to this TreeEntry. 1811 unsigned Lane = 0; 1812 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1813 BundleMember = BundleMember->NextInBundle) { 1814 BundleMember->TE = Last; 1815 BundleMember->Lane = Lane; 1816 ++Lane; 1817 } 1818 assert((!Bundle.getValue() || Lane == VL.size()) && 1819 "Bundle and VL out of sync"); 1820 } else { 1821 MustGather.insert(VL.begin(), VL.end()); 1822 } 1823 1824 if (UserTreeIdx.UserTE) 1825 Last->UserTreeIndices.push_back(UserTreeIdx); 1826 1827 return Last; 1828 } 1829 1830 /// -- Vectorization State -- 1831 /// Holds all of the tree entries. 1832 TreeEntry::VecTreeTy VectorizableTree; 1833 1834 #ifndef NDEBUG 1835 /// Debug printer. 1836 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1837 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1838 VectorizableTree[Id]->dump(); 1839 dbgs() << "\n"; 1840 } 1841 } 1842 #endif 1843 1844 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1845 1846 const TreeEntry *getTreeEntry(Value *V) const { 1847 return ScalarToTreeEntry.lookup(V); 1848 } 1849 1850 /// Maps a specific scalar to its tree entry. 1851 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1852 1853 /// Maps a value to the proposed vectorizable size. 1854 SmallDenseMap<Value *, unsigned> InstrElementSize; 1855 1856 /// A list of scalars that we found that we need to keep as scalars. 1857 ValueSet MustGather; 1858 1859 /// This POD struct describes one external user in the vectorized tree. 1860 struct ExternalUser { 1861 ExternalUser(Value *S, llvm::User *U, int L) 1862 : Scalar(S), User(U), Lane(L) {} 1863 1864 // Which scalar in our function. 1865 Value *Scalar; 1866 1867 // Which user that uses the scalar. 1868 llvm::User *User; 1869 1870 // Which lane does the scalar belong to. 1871 int Lane; 1872 }; 1873 using UserList = SmallVector<ExternalUser, 16>; 1874 1875 /// Checks if two instructions may access the same memory. 1876 /// 1877 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1878 /// is invariant in the calling loop. 1879 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1880 Instruction *Inst2) { 1881 // First check if the result is already in the cache. 1882 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1883 Optional<bool> &result = AliasCache[key]; 1884 if (result.hasValue()) { 1885 return result.getValue(); 1886 } 1887 MemoryLocation Loc2 = getLocation(Inst2, AA); 1888 bool aliased = true; 1889 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1890 // Do the alias check. 1891 aliased = AA->alias(Loc1, Loc2); 1892 } 1893 // Store the result in the cache. 1894 result = aliased; 1895 return aliased; 1896 } 1897 1898 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1899 1900 /// Cache for alias results. 1901 /// TODO: consider moving this to the AliasAnalysis itself. 1902 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1903 1904 /// Removes an instruction from its block and eventually deletes it. 1905 /// It's like Instruction::eraseFromParent() except that the actual deletion 1906 /// is delayed until BoUpSLP is destructed. 1907 /// This is required to ensure that there are no incorrect collisions in the 1908 /// AliasCache, which can happen if a new instruction is allocated at the 1909 /// same address as a previously deleted instruction. 1910 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1911 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1912 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1913 } 1914 1915 /// Temporary store for deleted instructions. Instructions will be deleted 1916 /// eventually when the BoUpSLP is destructed. 1917 DenseMap<Instruction *, bool> DeletedInstructions; 1918 1919 /// A list of values that need to extracted out of the tree. 1920 /// This list holds pairs of (Internal Scalar : External User). External User 1921 /// can be nullptr, it means that this Internal Scalar will be used later, 1922 /// after vectorization. 1923 UserList ExternalUses; 1924 1925 /// Values used only by @llvm.assume calls. 1926 SmallPtrSet<const Value *, 32> EphValues; 1927 1928 /// Holds all of the instructions that we gathered. 1929 SetVector<Instruction *> GatherSeq; 1930 1931 /// A list of blocks that we are going to CSE. 1932 SetVector<BasicBlock *> CSEBlocks; 1933 1934 /// Contains all scheduling relevant data for an instruction. 1935 /// A ScheduleData either represents a single instruction or a member of an 1936 /// instruction bundle (= a group of instructions which is combined into a 1937 /// vector instruction). 1938 struct ScheduleData { 1939 // The initial value for the dependency counters. It means that the 1940 // dependencies are not calculated yet. 1941 enum { InvalidDeps = -1 }; 1942 1943 ScheduleData() = default; 1944 1945 void init(int BlockSchedulingRegionID, Value *OpVal) { 1946 FirstInBundle = this; 1947 NextInBundle = nullptr; 1948 NextLoadStore = nullptr; 1949 IsScheduled = false; 1950 SchedulingRegionID = BlockSchedulingRegionID; 1951 UnscheduledDepsInBundle = UnscheduledDeps; 1952 clearDependencies(); 1953 OpValue = OpVal; 1954 TE = nullptr; 1955 Lane = -1; 1956 } 1957 1958 /// Returns true if the dependency information has been calculated. 1959 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1960 1961 /// Returns true for single instructions and for bundle representatives 1962 /// (= the head of a bundle). 1963 bool isSchedulingEntity() const { return FirstInBundle == this; } 1964 1965 /// Returns true if it represents an instruction bundle and not only a 1966 /// single instruction. 1967 bool isPartOfBundle() const { 1968 return NextInBundle != nullptr || FirstInBundle != this; 1969 } 1970 1971 /// Returns true if it is ready for scheduling, i.e. it has no more 1972 /// unscheduled depending instructions/bundles. 1973 bool isReady() const { 1974 assert(isSchedulingEntity() && 1975 "can't consider non-scheduling entity for ready list"); 1976 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1977 } 1978 1979 /// Modifies the number of unscheduled dependencies, also updating it for 1980 /// the whole bundle. 1981 int incrementUnscheduledDeps(int Incr) { 1982 UnscheduledDeps += Incr; 1983 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1984 } 1985 1986 /// Sets the number of unscheduled dependencies to the number of 1987 /// dependencies. 1988 void resetUnscheduledDeps() { 1989 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1990 } 1991 1992 /// Clears all dependency information. 1993 void clearDependencies() { 1994 Dependencies = InvalidDeps; 1995 resetUnscheduledDeps(); 1996 MemoryDependencies.clear(); 1997 } 1998 1999 void dump(raw_ostream &os) const { 2000 if (!isSchedulingEntity()) { 2001 os << "/ " << *Inst; 2002 } else if (NextInBundle) { 2003 os << '[' << *Inst; 2004 ScheduleData *SD = NextInBundle; 2005 while (SD) { 2006 os << ';' << *SD->Inst; 2007 SD = SD->NextInBundle; 2008 } 2009 os << ']'; 2010 } else { 2011 os << *Inst; 2012 } 2013 } 2014 2015 Instruction *Inst = nullptr; 2016 2017 /// Points to the head in an instruction bundle (and always to this for 2018 /// single instructions). 2019 ScheduleData *FirstInBundle = nullptr; 2020 2021 /// Single linked list of all instructions in a bundle. Null if it is a 2022 /// single instruction. 2023 ScheduleData *NextInBundle = nullptr; 2024 2025 /// Single linked list of all memory instructions (e.g. load, store, call) 2026 /// in the block - until the end of the scheduling region. 2027 ScheduleData *NextLoadStore = nullptr; 2028 2029 /// The dependent memory instructions. 2030 /// This list is derived on demand in calculateDependencies(). 2031 SmallVector<ScheduleData *, 4> MemoryDependencies; 2032 2033 /// This ScheduleData is in the current scheduling region if this matches 2034 /// the current SchedulingRegionID of BlockScheduling. 2035 int SchedulingRegionID = 0; 2036 2037 /// Used for getting a "good" final ordering of instructions. 2038 int SchedulingPriority = 0; 2039 2040 /// The number of dependencies. Constitutes of the number of users of the 2041 /// instruction plus the number of dependent memory instructions (if any). 2042 /// This value is calculated on demand. 2043 /// If InvalidDeps, the number of dependencies is not calculated yet. 2044 int Dependencies = InvalidDeps; 2045 2046 /// The number of dependencies minus the number of dependencies of scheduled 2047 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2048 /// for scheduling. 2049 /// Note that this is negative as long as Dependencies is not calculated. 2050 int UnscheduledDeps = InvalidDeps; 2051 2052 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2053 /// single instructions. 2054 int UnscheduledDepsInBundle = InvalidDeps; 2055 2056 /// True if this instruction is scheduled (or considered as scheduled in the 2057 /// dry-run). 2058 bool IsScheduled = false; 2059 2060 /// Opcode of the current instruction in the schedule data. 2061 Value *OpValue = nullptr; 2062 2063 /// The TreeEntry that this instruction corresponds to. 2064 TreeEntry *TE = nullptr; 2065 2066 /// The lane of this node in the TreeEntry. 2067 int Lane = -1; 2068 }; 2069 2070 #ifndef NDEBUG 2071 friend inline raw_ostream &operator<<(raw_ostream &os, 2072 const BoUpSLP::ScheduleData &SD) { 2073 SD.dump(os); 2074 return os; 2075 } 2076 #endif 2077 2078 friend struct GraphTraits<BoUpSLP *>; 2079 friend struct DOTGraphTraits<BoUpSLP *>; 2080 2081 /// Contains all scheduling data for a basic block. 2082 struct BlockScheduling { 2083 BlockScheduling(BasicBlock *BB) 2084 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2085 2086 void clear() { 2087 ReadyInsts.clear(); 2088 ScheduleStart = nullptr; 2089 ScheduleEnd = nullptr; 2090 FirstLoadStoreInRegion = nullptr; 2091 LastLoadStoreInRegion = nullptr; 2092 2093 // Reduce the maximum schedule region size by the size of the 2094 // previous scheduling run. 2095 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2096 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2097 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2098 ScheduleRegionSize = 0; 2099 2100 // Make a new scheduling region, i.e. all existing ScheduleData is not 2101 // in the new region yet. 2102 ++SchedulingRegionID; 2103 } 2104 2105 ScheduleData *getScheduleData(Value *V) { 2106 ScheduleData *SD = ScheduleDataMap[V]; 2107 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2108 return SD; 2109 return nullptr; 2110 } 2111 2112 ScheduleData *getScheduleData(Value *V, Value *Key) { 2113 if (V == Key) 2114 return getScheduleData(V); 2115 auto I = ExtraScheduleDataMap.find(V); 2116 if (I != ExtraScheduleDataMap.end()) { 2117 ScheduleData *SD = I->second[Key]; 2118 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2119 return SD; 2120 } 2121 return nullptr; 2122 } 2123 2124 bool isInSchedulingRegion(ScheduleData *SD) const { 2125 return SD->SchedulingRegionID == SchedulingRegionID; 2126 } 2127 2128 /// Marks an instruction as scheduled and puts all dependent ready 2129 /// instructions into the ready-list. 2130 template <typename ReadyListType> 2131 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2132 SD->IsScheduled = true; 2133 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2134 2135 ScheduleData *BundleMember = SD; 2136 while (BundleMember) { 2137 if (BundleMember->Inst != BundleMember->OpValue) { 2138 BundleMember = BundleMember->NextInBundle; 2139 continue; 2140 } 2141 // Handle the def-use chain dependencies. 2142 2143 // Decrement the unscheduled counter and insert to ready list if ready. 2144 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2145 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2146 if (OpDef && OpDef->hasValidDependencies() && 2147 OpDef->incrementUnscheduledDeps(-1) == 0) { 2148 // There are no more unscheduled dependencies after 2149 // decrementing, so we can put the dependent instruction 2150 // into the ready list. 2151 ScheduleData *DepBundle = OpDef->FirstInBundle; 2152 assert(!DepBundle->IsScheduled && 2153 "already scheduled bundle gets ready"); 2154 ReadyList.insert(DepBundle); 2155 LLVM_DEBUG(dbgs() 2156 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2157 } 2158 }); 2159 }; 2160 2161 // If BundleMember is a vector bundle, its operands may have been 2162 // reordered duiring buildTree(). We therefore need to get its operands 2163 // through the TreeEntry. 2164 if (TreeEntry *TE = BundleMember->TE) { 2165 int Lane = BundleMember->Lane; 2166 assert(Lane >= 0 && "Lane not set"); 2167 2168 // Since vectorization tree is being built recursively this assertion 2169 // ensures that the tree entry has all operands set before reaching 2170 // this code. Couple of exceptions known at the moment are extracts 2171 // where their second (immediate) operand is not added. Since 2172 // immediates do not affect scheduler behavior this is considered 2173 // okay. 2174 auto *In = TE->getMainOp(); 2175 assert(In && 2176 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2177 In->getNumOperands() == TE->getNumOperands()) && 2178 "Missed TreeEntry operands?"); 2179 (void)In; // fake use to avoid build failure when assertions disabled 2180 2181 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2182 OpIdx != NumOperands; ++OpIdx) 2183 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2184 DecrUnsched(I); 2185 } else { 2186 // If BundleMember is a stand-alone instruction, no operand reordering 2187 // has taken place, so we directly access its operands. 2188 for (Use &U : BundleMember->Inst->operands()) 2189 if (auto *I = dyn_cast<Instruction>(U.get())) 2190 DecrUnsched(I); 2191 } 2192 // Handle the memory dependencies. 2193 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2194 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2195 // There are no more unscheduled dependencies after decrementing, 2196 // so we can put the dependent instruction into the ready list. 2197 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2198 assert(!DepBundle->IsScheduled && 2199 "already scheduled bundle gets ready"); 2200 ReadyList.insert(DepBundle); 2201 LLVM_DEBUG(dbgs() 2202 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2203 } 2204 } 2205 BundleMember = BundleMember->NextInBundle; 2206 } 2207 } 2208 2209 void doForAllOpcodes(Value *V, 2210 function_ref<void(ScheduleData *SD)> Action) { 2211 if (ScheduleData *SD = getScheduleData(V)) 2212 Action(SD); 2213 auto I = ExtraScheduleDataMap.find(V); 2214 if (I != ExtraScheduleDataMap.end()) 2215 for (auto &P : I->second) 2216 if (P.second->SchedulingRegionID == SchedulingRegionID) 2217 Action(P.second); 2218 } 2219 2220 /// Put all instructions into the ReadyList which are ready for scheduling. 2221 template <typename ReadyListType> 2222 void initialFillReadyList(ReadyListType &ReadyList) { 2223 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2224 doForAllOpcodes(I, [&](ScheduleData *SD) { 2225 if (SD->isSchedulingEntity() && SD->isReady()) { 2226 ReadyList.insert(SD); 2227 LLVM_DEBUG(dbgs() 2228 << "SLP: initially in ready list: " << *I << "\n"); 2229 } 2230 }); 2231 } 2232 } 2233 2234 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2235 /// cyclic dependencies. This is only a dry-run, no instructions are 2236 /// actually moved at this stage. 2237 /// \returns the scheduling bundle. The returned Optional value is non-None 2238 /// if \p VL is allowed to be scheduled. 2239 Optional<ScheduleData *> 2240 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2241 const InstructionsState &S); 2242 2243 /// Un-bundles a group of instructions. 2244 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2245 2246 /// Allocates schedule data chunk. 2247 ScheduleData *allocateScheduleDataChunks(); 2248 2249 /// Extends the scheduling region so that V is inside the region. 2250 /// \returns true if the region size is within the limit. 2251 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2252 2253 /// Initialize the ScheduleData structures for new instructions in the 2254 /// scheduling region. 2255 void initScheduleData(Instruction *FromI, Instruction *ToI, 2256 ScheduleData *PrevLoadStore, 2257 ScheduleData *NextLoadStore); 2258 2259 /// Updates the dependency information of a bundle and of all instructions/ 2260 /// bundles which depend on the original bundle. 2261 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2262 BoUpSLP *SLP); 2263 2264 /// Sets all instruction in the scheduling region to un-scheduled. 2265 void resetSchedule(); 2266 2267 BasicBlock *BB; 2268 2269 /// Simple memory allocation for ScheduleData. 2270 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2271 2272 /// The size of a ScheduleData array in ScheduleDataChunks. 2273 int ChunkSize; 2274 2275 /// The allocator position in the current chunk, which is the last entry 2276 /// of ScheduleDataChunks. 2277 int ChunkPos; 2278 2279 /// Attaches ScheduleData to Instruction. 2280 /// Note that the mapping survives during all vectorization iterations, i.e. 2281 /// ScheduleData structures are recycled. 2282 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2283 2284 /// Attaches ScheduleData to Instruction with the leading key. 2285 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2286 ExtraScheduleDataMap; 2287 2288 struct ReadyList : SmallVector<ScheduleData *, 8> { 2289 void insert(ScheduleData *SD) { push_back(SD); } 2290 }; 2291 2292 /// The ready-list for scheduling (only used for the dry-run). 2293 ReadyList ReadyInsts; 2294 2295 /// The first instruction of the scheduling region. 2296 Instruction *ScheduleStart = nullptr; 2297 2298 /// The first instruction _after_ the scheduling region. 2299 Instruction *ScheduleEnd = nullptr; 2300 2301 /// The first memory accessing instruction in the scheduling region 2302 /// (can be null). 2303 ScheduleData *FirstLoadStoreInRegion = nullptr; 2304 2305 /// The last memory accessing instruction in the scheduling region 2306 /// (can be null). 2307 ScheduleData *LastLoadStoreInRegion = nullptr; 2308 2309 /// The current size of the scheduling region. 2310 int ScheduleRegionSize = 0; 2311 2312 /// The maximum size allowed for the scheduling region. 2313 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2314 2315 /// The ID of the scheduling region. For a new vectorization iteration this 2316 /// is incremented which "removes" all ScheduleData from the region. 2317 // Make sure that the initial SchedulingRegionID is greater than the 2318 // initial SchedulingRegionID in ScheduleData (which is 0). 2319 int SchedulingRegionID = 1; 2320 }; 2321 2322 /// Attaches the BlockScheduling structures to basic blocks. 2323 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2324 2325 /// Performs the "real" scheduling. Done before vectorization is actually 2326 /// performed in a basic block. 2327 void scheduleBlock(BlockScheduling *BS); 2328 2329 /// List of users to ignore during scheduling and that don't need extracting. 2330 ArrayRef<Value *> UserIgnoreList; 2331 2332 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2333 /// sorted SmallVectors of unsigned. 2334 struct OrdersTypeDenseMapInfo { 2335 static OrdersType getEmptyKey() { 2336 OrdersType V; 2337 V.push_back(~1U); 2338 return V; 2339 } 2340 2341 static OrdersType getTombstoneKey() { 2342 OrdersType V; 2343 V.push_back(~2U); 2344 return V; 2345 } 2346 2347 static unsigned getHashValue(const OrdersType &V) { 2348 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2349 } 2350 2351 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2352 return LHS == RHS; 2353 } 2354 }; 2355 2356 /// Contains orders of operations along with the number of bundles that have 2357 /// operations in this order. It stores only those orders that require 2358 /// reordering, if reordering is not required it is counted using \a 2359 /// NumOpsWantToKeepOriginalOrder. 2360 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2361 /// Number of bundles that do not require reordering. 2362 unsigned NumOpsWantToKeepOriginalOrder = 0; 2363 2364 // Analysis and block reference. 2365 Function *F; 2366 ScalarEvolution *SE; 2367 TargetTransformInfo *TTI; 2368 TargetLibraryInfo *TLI; 2369 AAResults *AA; 2370 LoopInfo *LI; 2371 DominatorTree *DT; 2372 AssumptionCache *AC; 2373 DemandedBits *DB; 2374 const DataLayout *DL; 2375 OptimizationRemarkEmitter *ORE; 2376 2377 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2378 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2379 2380 /// Instruction builder to construct the vectorized tree. 2381 IRBuilder<> Builder; 2382 2383 /// A map of scalar integer values to the smallest bit width with which they 2384 /// can legally be represented. The values map to (width, signed) pairs, 2385 /// where "width" indicates the minimum bit width and "signed" is True if the 2386 /// value must be signed-extended, rather than zero-extended, back to its 2387 /// original width. 2388 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2389 }; 2390 2391 } // end namespace slpvectorizer 2392 2393 template <> struct GraphTraits<BoUpSLP *> { 2394 using TreeEntry = BoUpSLP::TreeEntry; 2395 2396 /// NodeRef has to be a pointer per the GraphWriter. 2397 using NodeRef = TreeEntry *; 2398 2399 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2400 2401 /// Add the VectorizableTree to the index iterator to be able to return 2402 /// TreeEntry pointers. 2403 struct ChildIteratorType 2404 : public iterator_adaptor_base< 2405 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2406 ContainerTy &VectorizableTree; 2407 2408 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2409 ContainerTy &VT) 2410 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2411 2412 NodeRef operator*() { return I->UserTE; } 2413 }; 2414 2415 static NodeRef getEntryNode(BoUpSLP &R) { 2416 return R.VectorizableTree[0].get(); 2417 } 2418 2419 static ChildIteratorType child_begin(NodeRef N) { 2420 return {N->UserTreeIndices.begin(), N->Container}; 2421 } 2422 2423 static ChildIteratorType child_end(NodeRef N) { 2424 return {N->UserTreeIndices.end(), N->Container}; 2425 } 2426 2427 /// For the node iterator we just need to turn the TreeEntry iterator into a 2428 /// TreeEntry* iterator so that it dereferences to NodeRef. 2429 class nodes_iterator { 2430 using ItTy = ContainerTy::iterator; 2431 ItTy It; 2432 2433 public: 2434 nodes_iterator(const ItTy &It2) : It(It2) {} 2435 NodeRef operator*() { return It->get(); } 2436 nodes_iterator operator++() { 2437 ++It; 2438 return *this; 2439 } 2440 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2441 }; 2442 2443 static nodes_iterator nodes_begin(BoUpSLP *R) { 2444 return nodes_iterator(R->VectorizableTree.begin()); 2445 } 2446 2447 static nodes_iterator nodes_end(BoUpSLP *R) { 2448 return nodes_iterator(R->VectorizableTree.end()); 2449 } 2450 2451 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2452 }; 2453 2454 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2455 using TreeEntry = BoUpSLP::TreeEntry; 2456 2457 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2458 2459 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2460 std::string Str; 2461 raw_string_ostream OS(Str); 2462 if (isSplat(Entry->Scalars)) { 2463 OS << "<splat> " << *Entry->Scalars[0]; 2464 return Str; 2465 } 2466 for (auto V : Entry->Scalars) { 2467 OS << *V; 2468 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2469 return EU.Scalar == V; 2470 })) 2471 OS << " <extract>"; 2472 OS << "\n"; 2473 } 2474 return Str; 2475 } 2476 2477 static std::string getNodeAttributes(const TreeEntry *Entry, 2478 const BoUpSLP *) { 2479 if (Entry->State == TreeEntry::NeedToGather) 2480 return "color=red"; 2481 return ""; 2482 } 2483 }; 2484 2485 } // end namespace llvm 2486 2487 BoUpSLP::~BoUpSLP() { 2488 for (const auto &Pair : DeletedInstructions) { 2489 // Replace operands of ignored instructions with Undefs in case if they were 2490 // marked for deletion. 2491 if (Pair.getSecond()) { 2492 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2493 Pair.getFirst()->replaceAllUsesWith(Undef); 2494 } 2495 Pair.getFirst()->dropAllReferences(); 2496 } 2497 for (const auto &Pair : DeletedInstructions) { 2498 assert(Pair.getFirst()->use_empty() && 2499 "trying to erase instruction with users."); 2500 Pair.getFirst()->eraseFromParent(); 2501 } 2502 LLVM_DEBUG(verifyFunction(*F)); 2503 } 2504 2505 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2506 for (auto *V : AV) { 2507 if (auto *I = dyn_cast<Instruction>(V)) 2508 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2509 }; 2510 } 2511 2512 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2513 ArrayRef<Value *> UserIgnoreLst) { 2514 ExtraValueToDebugLocsMap ExternallyUsedValues; 2515 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2516 } 2517 2518 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2519 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2520 ArrayRef<Value *> UserIgnoreLst) { 2521 deleteTree(); 2522 UserIgnoreList = UserIgnoreLst; 2523 if (!allSameType(Roots)) 2524 return; 2525 buildTree_rec(Roots, 0, EdgeInfo()); 2526 2527 // Collect the values that we need to extract from the tree. 2528 for (auto &TEPtr : VectorizableTree) { 2529 TreeEntry *Entry = TEPtr.get(); 2530 2531 // No need to handle users of gathered values. 2532 if (Entry->State == TreeEntry::NeedToGather) 2533 continue; 2534 2535 // For each lane: 2536 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2537 Value *Scalar = Entry->Scalars[Lane]; 2538 int FoundLane = Lane; 2539 if (!Entry->ReuseShuffleIndices.empty()) { 2540 FoundLane = 2541 std::distance(Entry->ReuseShuffleIndices.begin(), 2542 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2543 } 2544 2545 // Check if the scalar is externally used as an extra arg. 2546 auto ExtI = ExternallyUsedValues.find(Scalar); 2547 if (ExtI != ExternallyUsedValues.end()) { 2548 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2549 << Lane << " from " << *Scalar << ".\n"); 2550 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2551 } 2552 for (User *U : Scalar->users()) { 2553 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2554 2555 Instruction *UserInst = dyn_cast<Instruction>(U); 2556 if (!UserInst) 2557 continue; 2558 2559 // Skip in-tree scalars that become vectors 2560 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2561 Value *UseScalar = UseEntry->Scalars[0]; 2562 // Some in-tree scalars will remain as scalar in vectorized 2563 // instructions. If that is the case, the one in Lane 0 will 2564 // be used. 2565 if (UseScalar != U || 2566 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2567 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2568 << ".\n"); 2569 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2570 continue; 2571 } 2572 } 2573 2574 // Ignore users in the user ignore list. 2575 if (is_contained(UserIgnoreList, UserInst)) 2576 continue; 2577 2578 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2579 << Lane << " from " << *Scalar << ".\n"); 2580 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2581 } 2582 } 2583 } 2584 } 2585 2586 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2587 const EdgeInfo &UserTreeIdx) { 2588 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2589 2590 InstructionsState S = getSameOpcode(VL); 2591 if (Depth == RecursionMaxDepth) { 2592 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2593 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2594 return; 2595 } 2596 2597 // Don't handle vectors. 2598 if (S.OpValue->getType()->isVectorTy()) { 2599 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2600 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2601 return; 2602 } 2603 2604 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2605 if (SI->getValueOperand()->getType()->isVectorTy()) { 2606 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2608 return; 2609 } 2610 2611 // If all of the operands are identical or constant we have a simple solution. 2612 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2613 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2614 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2615 return; 2616 } 2617 2618 // We now know that this is a vector of instructions of the same type from 2619 // the same block. 2620 2621 // Don't vectorize ephemeral values. 2622 for (Value *V : VL) { 2623 if (EphValues.count(V)) { 2624 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2625 << ") is ephemeral.\n"); 2626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2627 return; 2628 } 2629 } 2630 2631 // Check if this is a duplicate of another entry. 2632 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2633 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2634 if (!E->isSame(VL)) { 2635 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2636 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2637 return; 2638 } 2639 // Record the reuse of the tree node. FIXME, currently this is only used to 2640 // properly draw the graph rather than for the actual vectorization. 2641 E->UserTreeIndices.push_back(UserTreeIdx); 2642 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2643 << ".\n"); 2644 return; 2645 } 2646 2647 // Check that none of the instructions in the bundle are already in the tree. 2648 for (Value *V : VL) { 2649 auto *I = dyn_cast<Instruction>(V); 2650 if (!I) 2651 continue; 2652 if (getTreeEntry(I)) { 2653 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2654 << ") is already in tree.\n"); 2655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2656 return; 2657 } 2658 } 2659 2660 // If any of the scalars is marked as a value that needs to stay scalar, then 2661 // we need to gather the scalars. 2662 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2663 for (Value *V : VL) { 2664 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2665 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2666 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2667 return; 2668 } 2669 } 2670 2671 // Check that all of the users of the scalars that we want to vectorize are 2672 // schedulable. 2673 auto *VL0 = cast<Instruction>(S.OpValue); 2674 BasicBlock *BB = VL0->getParent(); 2675 2676 if (!DT->isReachableFromEntry(BB)) { 2677 // Don't go into unreachable blocks. They may contain instructions with 2678 // dependency cycles which confuse the final scheduling. 2679 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2680 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2681 return; 2682 } 2683 2684 // Check that every instruction appears once in this bundle. 2685 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2686 SmallVector<Value *, 4> UniqueValues; 2687 DenseMap<Value *, unsigned> UniquePositions; 2688 for (Value *V : VL) { 2689 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2690 ReuseShuffleIndicies.emplace_back(Res.first->second); 2691 if (Res.second) 2692 UniqueValues.emplace_back(V); 2693 } 2694 size_t NumUniqueScalarValues = UniqueValues.size(); 2695 if (NumUniqueScalarValues == VL.size()) { 2696 ReuseShuffleIndicies.clear(); 2697 } else { 2698 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2699 if (NumUniqueScalarValues <= 1 || 2700 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2701 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2702 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2703 return; 2704 } 2705 VL = UniqueValues; 2706 } 2707 2708 auto &BSRef = BlocksSchedules[BB]; 2709 if (!BSRef) 2710 BSRef = std::make_unique<BlockScheduling>(BB); 2711 2712 BlockScheduling &BS = *BSRef.get(); 2713 2714 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2715 if (!Bundle) { 2716 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2717 assert((!BS.getScheduleData(VL0) || 2718 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2719 "tryScheduleBundle should cancelScheduling on failure"); 2720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2721 ReuseShuffleIndicies); 2722 return; 2723 } 2724 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2725 2726 unsigned ShuffleOrOp = S.isAltShuffle() ? 2727 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2728 switch (ShuffleOrOp) { 2729 case Instruction::PHI: { 2730 auto *PH = cast<PHINode>(VL0); 2731 2732 // Check for terminator values (e.g. invoke). 2733 for (Value *V : VL) 2734 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2735 Instruction *Term = dyn_cast<Instruction>( 2736 cast<PHINode>(V)->getIncomingValueForBlock( 2737 PH->getIncomingBlock(I))); 2738 if (Term && Term->isTerminator()) { 2739 LLVM_DEBUG(dbgs() 2740 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2741 BS.cancelScheduling(VL, VL0); 2742 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2743 ReuseShuffleIndicies); 2744 return; 2745 } 2746 } 2747 2748 TreeEntry *TE = 2749 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2750 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2751 2752 // Keeps the reordered operands to avoid code duplication. 2753 SmallVector<ValueList, 2> OperandsVec; 2754 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2755 ValueList Operands; 2756 // Prepare the operand vector. 2757 for (Value *V : VL) 2758 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2759 PH->getIncomingBlock(I))); 2760 TE->setOperand(I, Operands); 2761 OperandsVec.push_back(Operands); 2762 } 2763 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2764 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2765 return; 2766 } 2767 case Instruction::ExtractValue: 2768 case Instruction::ExtractElement: { 2769 OrdersType CurrentOrder; 2770 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2771 if (Reuse) { 2772 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2773 ++NumOpsWantToKeepOriginalOrder; 2774 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2775 ReuseShuffleIndicies); 2776 // This is a special case, as it does not gather, but at the same time 2777 // we are not extending buildTree_rec() towards the operands. 2778 ValueList Op0; 2779 Op0.assign(VL.size(), VL0->getOperand(0)); 2780 VectorizableTree.back()->setOperand(0, Op0); 2781 return; 2782 } 2783 if (!CurrentOrder.empty()) { 2784 LLVM_DEBUG({ 2785 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2786 "with order"; 2787 for (unsigned Idx : CurrentOrder) 2788 dbgs() << " " << Idx; 2789 dbgs() << "\n"; 2790 }); 2791 // Insert new order with initial value 0, if it does not exist, 2792 // otherwise return the iterator to the existing one. 2793 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2794 ReuseShuffleIndicies, CurrentOrder); 2795 findRootOrder(CurrentOrder); 2796 ++NumOpsWantToKeepOrder[CurrentOrder]; 2797 // This is a special case, as it does not gather, but at the same time 2798 // we are not extending buildTree_rec() towards the operands. 2799 ValueList Op0; 2800 Op0.assign(VL.size(), VL0->getOperand(0)); 2801 VectorizableTree.back()->setOperand(0, Op0); 2802 return; 2803 } 2804 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2805 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2806 ReuseShuffleIndicies); 2807 BS.cancelScheduling(VL, VL0); 2808 return; 2809 } 2810 case Instruction::Load: { 2811 // Check that a vectorized load would load the same memory as a scalar 2812 // load. For example, we don't want to vectorize loads that are smaller 2813 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2814 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2815 // from such a struct, we read/write packed bits disagreeing with the 2816 // unvectorized version. 2817 Type *ScalarTy = VL0->getType(); 2818 2819 if (DL->getTypeSizeInBits(ScalarTy) != 2820 DL->getTypeAllocSizeInBits(ScalarTy)) { 2821 BS.cancelScheduling(VL, VL0); 2822 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2823 ReuseShuffleIndicies); 2824 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2825 return; 2826 } 2827 2828 // Make sure all loads in the bundle are simple - we can't vectorize 2829 // atomic or volatile loads. 2830 SmallVector<Value *, 4> PointerOps(VL.size()); 2831 auto POIter = PointerOps.begin(); 2832 for (Value *V : VL) { 2833 auto *L = cast<LoadInst>(V); 2834 if (!L->isSimple()) { 2835 BS.cancelScheduling(VL, VL0); 2836 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2837 ReuseShuffleIndicies); 2838 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2839 return; 2840 } 2841 *POIter = L->getPointerOperand(); 2842 ++POIter; 2843 } 2844 2845 OrdersType CurrentOrder; 2846 // Check the order of pointer operands. 2847 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2848 Value *Ptr0; 2849 Value *PtrN; 2850 if (CurrentOrder.empty()) { 2851 Ptr0 = PointerOps.front(); 2852 PtrN = PointerOps.back(); 2853 } else { 2854 Ptr0 = PointerOps[CurrentOrder.front()]; 2855 PtrN = PointerOps[CurrentOrder.back()]; 2856 } 2857 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2858 const SCEV *ScevN = SE->getSCEV(PtrN); 2859 const auto *Diff = 2860 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2861 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2862 // Check that the sorted loads are consecutive. 2863 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2864 if (CurrentOrder.empty()) { 2865 // Original loads are consecutive and does not require reordering. 2866 ++NumOpsWantToKeepOriginalOrder; 2867 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2868 UserTreeIdx, ReuseShuffleIndicies); 2869 TE->setOperandsInOrder(); 2870 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2871 } else { 2872 // Need to reorder. 2873 TreeEntry *TE = 2874 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2875 ReuseShuffleIndicies, CurrentOrder); 2876 TE->setOperandsInOrder(); 2877 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2878 findRootOrder(CurrentOrder); 2879 ++NumOpsWantToKeepOrder[CurrentOrder]; 2880 } 2881 return; 2882 } 2883 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2884 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2885 UserTreeIdx, ReuseShuffleIndicies); 2886 TE->setOperandsInOrder(); 2887 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2888 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2889 return; 2890 } 2891 2892 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2893 BS.cancelScheduling(VL, VL0); 2894 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2895 ReuseShuffleIndicies); 2896 return; 2897 } 2898 case Instruction::ZExt: 2899 case Instruction::SExt: 2900 case Instruction::FPToUI: 2901 case Instruction::FPToSI: 2902 case Instruction::FPExt: 2903 case Instruction::PtrToInt: 2904 case Instruction::IntToPtr: 2905 case Instruction::SIToFP: 2906 case Instruction::UIToFP: 2907 case Instruction::Trunc: 2908 case Instruction::FPTrunc: 2909 case Instruction::BitCast: { 2910 Type *SrcTy = VL0->getOperand(0)->getType(); 2911 for (Value *V : VL) { 2912 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2913 if (Ty != SrcTy || !isValidElementType(Ty)) { 2914 BS.cancelScheduling(VL, VL0); 2915 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2916 ReuseShuffleIndicies); 2917 LLVM_DEBUG(dbgs() 2918 << "SLP: Gathering casts with different src types.\n"); 2919 return; 2920 } 2921 } 2922 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2923 ReuseShuffleIndicies); 2924 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2925 2926 TE->setOperandsInOrder(); 2927 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2928 ValueList Operands; 2929 // Prepare the operand vector. 2930 for (Value *V : VL) 2931 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2932 2933 buildTree_rec(Operands, Depth + 1, {TE, i}); 2934 } 2935 return; 2936 } 2937 case Instruction::ICmp: 2938 case Instruction::FCmp: { 2939 // Check that all of the compares have the same predicate. 2940 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2941 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2942 Type *ComparedTy = VL0->getOperand(0)->getType(); 2943 for (Value *V : VL) { 2944 CmpInst *Cmp = cast<CmpInst>(V); 2945 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2946 Cmp->getOperand(0)->getType() != ComparedTy) { 2947 BS.cancelScheduling(VL, VL0); 2948 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2949 ReuseShuffleIndicies); 2950 LLVM_DEBUG(dbgs() 2951 << "SLP: Gathering cmp with different predicate.\n"); 2952 return; 2953 } 2954 } 2955 2956 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2957 ReuseShuffleIndicies); 2958 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2959 2960 ValueList Left, Right; 2961 if (cast<CmpInst>(VL0)->isCommutative()) { 2962 // Commutative predicate - collect + sort operands of the instructions 2963 // so that each side is more likely to have the same opcode. 2964 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2965 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2966 } else { 2967 // Collect operands - commute if it uses the swapped predicate. 2968 for (Value *V : VL) { 2969 auto *Cmp = cast<CmpInst>(V); 2970 Value *LHS = Cmp->getOperand(0); 2971 Value *RHS = Cmp->getOperand(1); 2972 if (Cmp->getPredicate() != P0) 2973 std::swap(LHS, RHS); 2974 Left.push_back(LHS); 2975 Right.push_back(RHS); 2976 } 2977 } 2978 TE->setOperand(0, Left); 2979 TE->setOperand(1, Right); 2980 buildTree_rec(Left, Depth + 1, {TE, 0}); 2981 buildTree_rec(Right, Depth + 1, {TE, 1}); 2982 return; 2983 } 2984 case Instruction::Select: 2985 case Instruction::FNeg: 2986 case Instruction::Add: 2987 case Instruction::FAdd: 2988 case Instruction::Sub: 2989 case Instruction::FSub: 2990 case Instruction::Mul: 2991 case Instruction::FMul: 2992 case Instruction::UDiv: 2993 case Instruction::SDiv: 2994 case Instruction::FDiv: 2995 case Instruction::URem: 2996 case Instruction::SRem: 2997 case Instruction::FRem: 2998 case Instruction::Shl: 2999 case Instruction::LShr: 3000 case Instruction::AShr: 3001 case Instruction::And: 3002 case Instruction::Or: 3003 case Instruction::Xor: { 3004 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3005 ReuseShuffleIndicies); 3006 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3007 3008 // Sort operands of the instructions so that each side is more likely to 3009 // have the same opcode. 3010 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3011 ValueList Left, Right; 3012 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3013 TE->setOperand(0, Left); 3014 TE->setOperand(1, Right); 3015 buildTree_rec(Left, Depth + 1, {TE, 0}); 3016 buildTree_rec(Right, Depth + 1, {TE, 1}); 3017 return; 3018 } 3019 3020 TE->setOperandsInOrder(); 3021 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3022 ValueList Operands; 3023 // Prepare the operand vector. 3024 for (Value *V : VL) 3025 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3026 3027 buildTree_rec(Operands, Depth + 1, {TE, i}); 3028 } 3029 return; 3030 } 3031 case Instruction::GetElementPtr: { 3032 // We don't combine GEPs with complicated (nested) indexing. 3033 for (Value *V : VL) { 3034 if (cast<Instruction>(V)->getNumOperands() != 2) { 3035 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3036 BS.cancelScheduling(VL, VL0); 3037 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3038 ReuseShuffleIndicies); 3039 return; 3040 } 3041 } 3042 3043 // We can't combine several GEPs into one vector if they operate on 3044 // different types. 3045 Type *Ty0 = VL0->getOperand(0)->getType(); 3046 for (Value *V : VL) { 3047 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3048 if (Ty0 != CurTy) { 3049 LLVM_DEBUG(dbgs() 3050 << "SLP: not-vectorizable GEP (different types).\n"); 3051 BS.cancelScheduling(VL, VL0); 3052 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3053 ReuseShuffleIndicies); 3054 return; 3055 } 3056 } 3057 3058 // We don't combine GEPs with non-constant indexes. 3059 Type *Ty1 = VL0->getOperand(1)->getType(); 3060 for (Value *V : VL) { 3061 auto Op = cast<Instruction>(V)->getOperand(1); 3062 if (!isa<ConstantInt>(Op) || 3063 (Op->getType() != Ty1 && 3064 Op->getType()->getScalarSizeInBits() > 3065 DL->getIndexSizeInBits( 3066 V->getType()->getPointerAddressSpace()))) { 3067 LLVM_DEBUG(dbgs() 3068 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3069 BS.cancelScheduling(VL, VL0); 3070 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3071 ReuseShuffleIndicies); 3072 return; 3073 } 3074 } 3075 3076 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3077 ReuseShuffleIndicies); 3078 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3079 TE->setOperandsInOrder(); 3080 for (unsigned i = 0, e = 2; i < e; ++i) { 3081 ValueList Operands; 3082 // Prepare the operand vector. 3083 for (Value *V : VL) 3084 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3085 3086 buildTree_rec(Operands, Depth + 1, {TE, i}); 3087 } 3088 return; 3089 } 3090 case Instruction::Store: { 3091 // Check if the stores are consecutive or if we need to swizzle them. 3092 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3093 // Make sure all stores in the bundle are simple - we can't vectorize 3094 // atomic or volatile stores. 3095 SmallVector<Value *, 4> PointerOps(VL.size()); 3096 ValueList Operands(VL.size()); 3097 auto POIter = PointerOps.begin(); 3098 auto OIter = Operands.begin(); 3099 for (Value *V : VL) { 3100 auto *SI = cast<StoreInst>(V); 3101 if (!SI->isSimple()) { 3102 BS.cancelScheduling(VL, VL0); 3103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3104 ReuseShuffleIndicies); 3105 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3106 return; 3107 } 3108 *POIter = SI->getPointerOperand(); 3109 *OIter = SI->getValueOperand(); 3110 ++POIter; 3111 ++OIter; 3112 } 3113 3114 OrdersType CurrentOrder; 3115 // Check the order of pointer operands. 3116 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3117 Value *Ptr0; 3118 Value *PtrN; 3119 if (CurrentOrder.empty()) { 3120 Ptr0 = PointerOps.front(); 3121 PtrN = PointerOps.back(); 3122 } else { 3123 Ptr0 = PointerOps[CurrentOrder.front()]; 3124 PtrN = PointerOps[CurrentOrder.back()]; 3125 } 3126 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3127 const SCEV *ScevN = SE->getSCEV(PtrN); 3128 const auto *Diff = 3129 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3130 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3131 // Check that the sorted pointer operands are consecutive. 3132 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3133 if (CurrentOrder.empty()) { 3134 // Original stores are consecutive and does not require reordering. 3135 ++NumOpsWantToKeepOriginalOrder; 3136 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3137 UserTreeIdx, ReuseShuffleIndicies); 3138 TE->setOperandsInOrder(); 3139 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3140 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3141 } else { 3142 TreeEntry *TE = 3143 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3144 ReuseShuffleIndicies, CurrentOrder); 3145 TE->setOperandsInOrder(); 3146 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3147 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3148 findRootOrder(CurrentOrder); 3149 ++NumOpsWantToKeepOrder[CurrentOrder]; 3150 } 3151 return; 3152 } 3153 } 3154 3155 BS.cancelScheduling(VL, VL0); 3156 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3157 ReuseShuffleIndicies); 3158 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3159 return; 3160 } 3161 case Instruction::Call: { 3162 // Check if the calls are all to the same vectorizable intrinsic or 3163 // library function. 3164 CallInst *CI = cast<CallInst>(VL0); 3165 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3166 3167 VFShape Shape = VFShape::get( 3168 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3169 false /*HasGlobalPred*/); 3170 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3171 3172 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3173 BS.cancelScheduling(VL, VL0); 3174 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3175 ReuseShuffleIndicies); 3176 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3177 return; 3178 } 3179 Function *F = CI->getCalledFunction(); 3180 unsigned NumArgs = CI->getNumArgOperands(); 3181 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3182 for (unsigned j = 0; j != NumArgs; ++j) 3183 if (hasVectorInstrinsicScalarOpd(ID, j)) 3184 ScalarArgs[j] = CI->getArgOperand(j); 3185 for (Value *V : VL) { 3186 CallInst *CI2 = dyn_cast<CallInst>(V); 3187 if (!CI2 || CI2->getCalledFunction() != F || 3188 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3189 (VecFunc && 3190 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3191 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3192 BS.cancelScheduling(VL, VL0); 3193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3194 ReuseShuffleIndicies); 3195 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3196 << "\n"); 3197 return; 3198 } 3199 // Some intrinsics have scalar arguments and should be same in order for 3200 // them to be vectorized. 3201 for (unsigned j = 0; j != NumArgs; ++j) { 3202 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3203 Value *A1J = CI2->getArgOperand(j); 3204 if (ScalarArgs[j] != A1J) { 3205 BS.cancelScheduling(VL, VL0); 3206 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3207 ReuseShuffleIndicies); 3208 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3209 << " argument " << ScalarArgs[j] << "!=" << A1J 3210 << "\n"); 3211 return; 3212 } 3213 } 3214 } 3215 // Verify that the bundle operands are identical between the two calls. 3216 if (CI->hasOperandBundles() && 3217 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3218 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3219 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3220 BS.cancelScheduling(VL, VL0); 3221 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3222 ReuseShuffleIndicies); 3223 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3224 << *CI << "!=" << *V << '\n'); 3225 return; 3226 } 3227 } 3228 3229 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3230 ReuseShuffleIndicies); 3231 TE->setOperandsInOrder(); 3232 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3233 ValueList Operands; 3234 // Prepare the operand vector. 3235 for (Value *V : VL) { 3236 auto *CI2 = cast<CallInst>(V); 3237 Operands.push_back(CI2->getArgOperand(i)); 3238 } 3239 buildTree_rec(Operands, Depth + 1, {TE, i}); 3240 } 3241 return; 3242 } 3243 case Instruction::ShuffleVector: { 3244 // If this is not an alternate sequence of opcode like add-sub 3245 // then do not vectorize this instruction. 3246 if (!S.isAltShuffle()) { 3247 BS.cancelScheduling(VL, VL0); 3248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3249 ReuseShuffleIndicies); 3250 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3251 return; 3252 } 3253 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3254 ReuseShuffleIndicies); 3255 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3256 3257 // Reorder operands if reordering would enable vectorization. 3258 if (isa<BinaryOperator>(VL0)) { 3259 ValueList Left, Right; 3260 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3261 TE->setOperand(0, Left); 3262 TE->setOperand(1, Right); 3263 buildTree_rec(Left, Depth + 1, {TE, 0}); 3264 buildTree_rec(Right, Depth + 1, {TE, 1}); 3265 return; 3266 } 3267 3268 TE->setOperandsInOrder(); 3269 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3270 ValueList Operands; 3271 // Prepare the operand vector. 3272 for (Value *V : VL) 3273 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3274 3275 buildTree_rec(Operands, Depth + 1, {TE, i}); 3276 } 3277 return; 3278 } 3279 default: 3280 BS.cancelScheduling(VL, VL0); 3281 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3282 ReuseShuffleIndicies); 3283 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3284 return; 3285 } 3286 } 3287 3288 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3289 unsigned N = 1; 3290 Type *EltTy = T; 3291 3292 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3293 isa<VectorType>(EltTy)) { 3294 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3295 // Check that struct is homogeneous. 3296 for (const auto *Ty : ST->elements()) 3297 if (Ty != *ST->element_begin()) 3298 return 0; 3299 N *= ST->getNumElements(); 3300 EltTy = *ST->element_begin(); 3301 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3302 N *= AT->getNumElements(); 3303 EltTy = AT->getElementType(); 3304 } else { 3305 auto *VT = cast<FixedVectorType>(EltTy); 3306 N *= VT->getNumElements(); 3307 EltTy = VT->getElementType(); 3308 } 3309 } 3310 3311 if (!isValidElementType(EltTy)) 3312 return 0; 3313 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3314 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3315 return 0; 3316 return N; 3317 } 3318 3319 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3320 SmallVectorImpl<unsigned> &CurrentOrder) const { 3321 Instruction *E0 = cast<Instruction>(OpValue); 3322 assert(E0->getOpcode() == Instruction::ExtractElement || 3323 E0->getOpcode() == Instruction::ExtractValue); 3324 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3325 // Check if all of the extracts come from the same vector and from the 3326 // correct offset. 3327 Value *Vec = E0->getOperand(0); 3328 3329 CurrentOrder.clear(); 3330 3331 // We have to extract from a vector/aggregate with the same number of elements. 3332 unsigned NElts; 3333 if (E0->getOpcode() == Instruction::ExtractValue) { 3334 const DataLayout &DL = E0->getModule()->getDataLayout(); 3335 NElts = canMapToVector(Vec->getType(), DL); 3336 if (!NElts) 3337 return false; 3338 // Check if load can be rewritten as load of vector. 3339 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3340 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3341 return false; 3342 } else { 3343 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3344 } 3345 3346 if (NElts != VL.size()) 3347 return false; 3348 3349 // Check that all of the indices extract from the correct offset. 3350 bool ShouldKeepOrder = true; 3351 unsigned E = VL.size(); 3352 // Assign to all items the initial value E + 1 so we can check if the extract 3353 // instruction index was used already. 3354 // Also, later we can check that all the indices are used and we have a 3355 // consecutive access in the extract instructions, by checking that no 3356 // element of CurrentOrder still has value E + 1. 3357 CurrentOrder.assign(E, E + 1); 3358 unsigned I = 0; 3359 for (; I < E; ++I) { 3360 auto *Inst = cast<Instruction>(VL[I]); 3361 if (Inst->getOperand(0) != Vec) 3362 break; 3363 Optional<unsigned> Idx = getExtractIndex(Inst); 3364 if (!Idx) 3365 break; 3366 const unsigned ExtIdx = *Idx; 3367 if (ExtIdx != I) { 3368 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3369 break; 3370 ShouldKeepOrder = false; 3371 CurrentOrder[ExtIdx] = I; 3372 } else { 3373 if (CurrentOrder[I] != E + 1) 3374 break; 3375 CurrentOrder[I] = I; 3376 } 3377 } 3378 if (I < E) { 3379 CurrentOrder.clear(); 3380 return false; 3381 } 3382 3383 return ShouldKeepOrder; 3384 } 3385 3386 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3387 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3388 return ScalarToTreeEntry.count(U) > 0; 3389 }); 3390 } 3391 3392 static std::pair<unsigned, unsigned> 3393 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3394 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3395 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3396 3397 // Calculate the cost of the scalar and vector calls. 3398 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3399 int IntrinsicCost = 3400 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3401 3402 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3403 VecTy->getNumElements())), 3404 false /*HasGlobalPred*/); 3405 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3406 int LibCost = IntrinsicCost; 3407 if (!CI->isNoBuiltin() && VecFunc) { 3408 // Calculate the cost of the vector library call. 3409 SmallVector<Type *, 4> VecTys; 3410 for (Use &Arg : CI->args()) 3411 VecTys.push_back( 3412 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3413 3414 // If the corresponding vector call is cheaper, return its cost. 3415 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3416 TTI::TCK_RecipThroughput); 3417 } 3418 return {IntrinsicCost, LibCost}; 3419 } 3420 3421 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3422 ArrayRef<Value*> VL = E->Scalars; 3423 3424 Type *ScalarTy = VL[0]->getType(); 3425 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3426 ScalarTy = SI->getValueOperand()->getType(); 3427 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3428 ScalarTy = CI->getOperand(0)->getType(); 3429 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3430 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3431 3432 // If we have computed a smaller type for the expression, update VecTy so 3433 // that the costs will be accurate. 3434 if (MinBWs.count(VL[0])) 3435 VecTy = FixedVectorType::get( 3436 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3437 3438 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3439 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3440 InstructionCost ReuseShuffleCost = 0; 3441 if (NeedToShuffleReuses) { 3442 ReuseShuffleCost = 3443 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3444 } 3445 if (E->State == TreeEntry::NeedToGather) { 3446 if (allConstant(VL)) 3447 return 0; 3448 if (isSplat(VL)) { 3449 return ReuseShuffleCost + 3450 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3451 } 3452 if (E->getOpcode() == Instruction::ExtractElement && 3453 allSameType(VL) && allSameBlock(VL)) { 3454 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3455 if (ShuffleKind.hasValue()) { 3456 InstructionCost Cost = 3457 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3458 for (auto *V : VL) { 3459 // If all users of instruction are going to be vectorized and this 3460 // instruction itself is not going to be vectorized, consider this 3461 // instruction as dead and remove its cost from the final cost of the 3462 // vectorized tree. 3463 if (areAllUsersVectorized(cast<Instruction>(V)) && 3464 !ScalarToTreeEntry.count(V)) { 3465 auto *IO = cast<ConstantInt>( 3466 cast<ExtractElementInst>(V)->getIndexOperand()); 3467 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3468 IO->getZExtValue()); 3469 } 3470 } 3471 return ReuseShuffleCost + Cost; 3472 } 3473 } 3474 return ReuseShuffleCost + getGatherCost(VL); 3475 } 3476 assert((E->State == TreeEntry::Vectorize || 3477 E->State == TreeEntry::ScatterVectorize) && 3478 "Unhandled state"); 3479 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3480 Instruction *VL0 = E->getMainOp(); 3481 unsigned ShuffleOrOp = 3482 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3483 switch (ShuffleOrOp) { 3484 case Instruction::PHI: 3485 return 0; 3486 3487 case Instruction::ExtractValue: 3488 case Instruction::ExtractElement: { 3489 InstructionCost DeadCost = 0; 3490 if (NeedToShuffleReuses) { 3491 unsigned Idx = 0; 3492 for (unsigned I : E->ReuseShuffleIndices) { 3493 if (ShuffleOrOp == Instruction::ExtractElement) { 3494 auto *IO = cast<ConstantInt>( 3495 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3496 Idx = IO->getZExtValue(); 3497 ReuseShuffleCost -= TTI->getVectorInstrCost( 3498 Instruction::ExtractElement, VecTy, Idx); 3499 } else { 3500 ReuseShuffleCost -= TTI->getVectorInstrCost( 3501 Instruction::ExtractElement, VecTy, Idx); 3502 ++Idx; 3503 } 3504 } 3505 Idx = ReuseShuffleNumbers; 3506 for (Value *V : VL) { 3507 if (ShuffleOrOp == Instruction::ExtractElement) { 3508 auto *IO = cast<ConstantInt>( 3509 cast<ExtractElementInst>(V)->getIndexOperand()); 3510 Idx = IO->getZExtValue(); 3511 } else { 3512 --Idx; 3513 } 3514 ReuseShuffleCost += 3515 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3516 } 3517 DeadCost = ReuseShuffleCost; 3518 } else if (!E->ReorderIndices.empty()) { 3519 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3520 VecTy); 3521 } 3522 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3523 Instruction *EI = cast<Instruction>(VL[I]); 3524 // If all users are going to be vectorized, instruction can be 3525 // considered as dead. 3526 // The same, if have only one user, it will be vectorized for sure. 3527 if (areAllUsersVectorized(EI)) { 3528 // Take credit for instruction that will become dead. 3529 if (EI->hasOneUse()) { 3530 Instruction *Ext = EI->user_back(); 3531 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3532 all_of(Ext->users(), 3533 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3534 // Use getExtractWithExtendCost() to calculate the cost of 3535 // extractelement/ext pair. 3536 DeadCost -= TTI->getExtractWithExtendCost( 3537 Ext->getOpcode(), Ext->getType(), VecTy, I); 3538 // Add back the cost of s|zext which is subtracted separately. 3539 DeadCost += TTI->getCastInstrCost( 3540 Ext->getOpcode(), Ext->getType(), EI->getType(), 3541 TTI::getCastContextHint(Ext), CostKind, Ext); 3542 continue; 3543 } 3544 } 3545 DeadCost -= 3546 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3547 } 3548 } 3549 return DeadCost; 3550 } 3551 case Instruction::ZExt: 3552 case Instruction::SExt: 3553 case Instruction::FPToUI: 3554 case Instruction::FPToSI: 3555 case Instruction::FPExt: 3556 case Instruction::PtrToInt: 3557 case Instruction::IntToPtr: 3558 case Instruction::SIToFP: 3559 case Instruction::UIToFP: 3560 case Instruction::Trunc: 3561 case Instruction::FPTrunc: 3562 case Instruction::BitCast: { 3563 Type *SrcTy = VL0->getOperand(0)->getType(); 3564 InstructionCost ScalarEltCost = 3565 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3566 TTI::getCastContextHint(VL0), CostKind, VL0); 3567 if (NeedToShuffleReuses) { 3568 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3569 } 3570 3571 // Calculate the cost of this instruction. 3572 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3573 3574 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3575 InstructionCost VecCost = 0; 3576 // Check if the values are candidates to demote. 3577 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3578 VecCost = 3579 ReuseShuffleCost + 3580 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3581 TTI::getCastContextHint(VL0), CostKind, VL0); 3582 } 3583 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3584 return VecCost - ScalarCost; 3585 } 3586 case Instruction::FCmp: 3587 case Instruction::ICmp: 3588 case Instruction::Select: { 3589 // Calculate the cost of this instruction. 3590 InstructionCost ScalarEltCost = 3591 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3592 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3593 if (NeedToShuffleReuses) { 3594 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3595 } 3596 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3597 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3598 3599 // Check if all entries in VL are either compares or selects with compares 3600 // as condition that have the same predicates. 3601 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3602 bool First = true; 3603 for (auto *V : VL) { 3604 CmpInst::Predicate CurrentPred; 3605 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3606 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3607 !match(V, MatchCmp)) || 3608 (!First && VecPred != CurrentPred)) { 3609 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3610 break; 3611 } 3612 First = false; 3613 VecPred = CurrentPred; 3614 } 3615 3616 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3617 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3618 // Check if it is possible and profitable to use min/max for selects in 3619 // VL. 3620 // 3621 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3622 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3623 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3624 {VecTy, VecTy}); 3625 InstructionCost IntrinsicCost = 3626 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3627 // If the selects are the only uses of the compares, they will be dead 3628 // and we can adjust the cost by removing their cost. 3629 if (IntrinsicAndUse.second) 3630 IntrinsicCost -= 3631 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3632 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3633 VecCost = std::min(VecCost, IntrinsicCost); 3634 } 3635 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3636 return ReuseShuffleCost + VecCost - ScalarCost; 3637 } 3638 case Instruction::FNeg: 3639 case Instruction::Add: 3640 case Instruction::FAdd: 3641 case Instruction::Sub: 3642 case Instruction::FSub: 3643 case Instruction::Mul: 3644 case Instruction::FMul: 3645 case Instruction::UDiv: 3646 case Instruction::SDiv: 3647 case Instruction::FDiv: 3648 case Instruction::URem: 3649 case Instruction::SRem: 3650 case Instruction::FRem: 3651 case Instruction::Shl: 3652 case Instruction::LShr: 3653 case Instruction::AShr: 3654 case Instruction::And: 3655 case Instruction::Or: 3656 case Instruction::Xor: { 3657 // Certain instructions can be cheaper to vectorize if they have a 3658 // constant second vector operand. 3659 TargetTransformInfo::OperandValueKind Op1VK = 3660 TargetTransformInfo::OK_AnyValue; 3661 TargetTransformInfo::OperandValueKind Op2VK = 3662 TargetTransformInfo::OK_UniformConstantValue; 3663 TargetTransformInfo::OperandValueProperties Op1VP = 3664 TargetTransformInfo::OP_None; 3665 TargetTransformInfo::OperandValueProperties Op2VP = 3666 TargetTransformInfo::OP_PowerOf2; 3667 3668 // If all operands are exactly the same ConstantInt then set the 3669 // operand kind to OK_UniformConstantValue. 3670 // If instead not all operands are constants, then set the operand kind 3671 // to OK_AnyValue. If all operands are constants but not the same, 3672 // then set the operand kind to OK_NonUniformConstantValue. 3673 ConstantInt *CInt0 = nullptr; 3674 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3675 const Instruction *I = cast<Instruction>(VL[i]); 3676 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3677 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3678 if (!CInt) { 3679 Op2VK = TargetTransformInfo::OK_AnyValue; 3680 Op2VP = TargetTransformInfo::OP_None; 3681 break; 3682 } 3683 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3684 !CInt->getValue().isPowerOf2()) 3685 Op2VP = TargetTransformInfo::OP_None; 3686 if (i == 0) { 3687 CInt0 = CInt; 3688 continue; 3689 } 3690 if (CInt0 != CInt) 3691 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3692 } 3693 3694 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3695 InstructionCost ScalarEltCost = 3696 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3697 Op2VK, Op1VP, Op2VP, Operands, VL0); 3698 if (NeedToShuffleReuses) { 3699 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3700 } 3701 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3702 InstructionCost VecCost = 3703 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3704 Op2VK, Op1VP, Op2VP, Operands, VL0); 3705 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3706 return ReuseShuffleCost + VecCost - ScalarCost; 3707 } 3708 case Instruction::GetElementPtr: { 3709 TargetTransformInfo::OperandValueKind Op1VK = 3710 TargetTransformInfo::OK_AnyValue; 3711 TargetTransformInfo::OperandValueKind Op2VK = 3712 TargetTransformInfo::OK_UniformConstantValue; 3713 3714 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3715 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3716 if (NeedToShuffleReuses) { 3717 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3718 } 3719 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3720 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3721 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3722 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3723 return ReuseShuffleCost + VecCost - ScalarCost; 3724 } 3725 case Instruction::Load: { 3726 // Cost of wide load - cost of scalar loads. 3727 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3728 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3729 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3730 if (NeedToShuffleReuses) { 3731 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3732 } 3733 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3734 InstructionCost VecLdCost; 3735 if (E->State == TreeEntry::Vectorize) { 3736 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3737 CostKind, VL0); 3738 } else { 3739 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3740 VecLdCost = TTI->getGatherScatterOpCost( 3741 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3742 /*VariableMask=*/false, alignment, CostKind, VL0); 3743 } 3744 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3745 VecLdCost += TTI->getShuffleCost( 3746 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3747 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3748 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3749 } 3750 case Instruction::Store: { 3751 // We know that we can merge the stores. Calculate the cost. 3752 bool IsReorder = !E->ReorderIndices.empty(); 3753 auto *SI = 3754 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3755 Align Alignment = SI->getAlign(); 3756 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3757 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3758 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3759 InstructionCost VecStCost = TTI->getMemoryOpCost( 3760 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3761 if (IsReorder) 3762 VecStCost += TTI->getShuffleCost( 3763 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3764 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3765 return VecStCost - ScalarStCost; 3766 } 3767 case Instruction::Call: { 3768 CallInst *CI = cast<CallInst>(VL0); 3769 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3770 3771 // Calculate the cost of the scalar and vector calls. 3772 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3773 InstructionCost ScalarEltCost = 3774 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3775 if (NeedToShuffleReuses) { 3776 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3777 } 3778 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3779 3780 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3781 InstructionCost VecCallCost = 3782 std::min(VecCallCosts.first, VecCallCosts.second); 3783 3784 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3785 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3786 << " for " << *CI << "\n"); 3787 3788 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3789 } 3790 case Instruction::ShuffleVector: { 3791 assert(E->isAltShuffle() && 3792 ((Instruction::isBinaryOp(E->getOpcode()) && 3793 Instruction::isBinaryOp(E->getAltOpcode())) || 3794 (Instruction::isCast(E->getOpcode()) && 3795 Instruction::isCast(E->getAltOpcode()))) && 3796 "Invalid Shuffle Vector Operand"); 3797 InstructionCost ScalarCost = 0; 3798 if (NeedToShuffleReuses) { 3799 for (unsigned Idx : E->ReuseShuffleIndices) { 3800 Instruction *I = cast<Instruction>(VL[Idx]); 3801 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3802 } 3803 for (Value *V : VL) { 3804 Instruction *I = cast<Instruction>(V); 3805 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3806 } 3807 } 3808 for (Value *V : VL) { 3809 Instruction *I = cast<Instruction>(V); 3810 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3811 ScalarCost += TTI->getInstructionCost(I, CostKind); 3812 } 3813 // VecCost is equal to sum of the cost of creating 2 vectors 3814 // and the cost of creating shuffle. 3815 InstructionCost VecCost = 0; 3816 if (Instruction::isBinaryOp(E->getOpcode())) { 3817 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3818 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3819 CostKind); 3820 } else { 3821 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3822 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3823 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3824 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3825 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3826 TTI::CastContextHint::None, CostKind); 3827 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3828 TTI::CastContextHint::None, CostKind); 3829 } 3830 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3831 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3832 return ReuseShuffleCost + VecCost - ScalarCost; 3833 } 3834 default: 3835 llvm_unreachable("Unknown instruction"); 3836 } 3837 } 3838 3839 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3840 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3841 << VectorizableTree.size() << " is fully vectorizable .\n"); 3842 3843 // We only handle trees of heights 1 and 2. 3844 if (VectorizableTree.size() == 1 && 3845 VectorizableTree[0]->State == TreeEntry::Vectorize) 3846 return true; 3847 3848 if (VectorizableTree.size() != 2) 3849 return false; 3850 3851 // Handle splat and all-constants stores. 3852 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3853 (allConstant(VectorizableTree[1]->Scalars) || 3854 isSplat(VectorizableTree[1]->Scalars))) 3855 return true; 3856 3857 // Gathering cost would be too much for tiny trees. 3858 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3859 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3860 return false; 3861 3862 return true; 3863 } 3864 3865 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3866 TargetTransformInfo *TTI) { 3867 // Look past the root to find a source value. Arbitrarily follow the 3868 // path through operand 0 of any 'or'. Also, peek through optional 3869 // shift-left-by-multiple-of-8-bits. 3870 Value *ZextLoad = Root; 3871 const APInt *ShAmtC; 3872 while (!isa<ConstantExpr>(ZextLoad) && 3873 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3874 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3875 ShAmtC->urem(8) == 0))) 3876 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3877 3878 // Check if the input is an extended load of the required or/shift expression. 3879 Value *LoadPtr; 3880 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3881 return false; 3882 3883 // Require that the total load bit width is a legal integer type. 3884 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3885 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3886 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3887 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3888 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3889 return false; 3890 3891 // Everything matched - assume that we can fold the whole sequence using 3892 // load combining. 3893 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3894 << *(cast<Instruction>(Root)) << "\n"); 3895 3896 return true; 3897 } 3898 3899 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 3900 if (RdxKind != RecurKind::Or) 3901 return false; 3902 3903 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3904 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3905 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3906 } 3907 3908 bool BoUpSLP::isLoadCombineCandidate() const { 3909 // Peek through a final sequence of stores and check if all operations are 3910 // likely to be load-combined. 3911 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3912 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3913 Value *X; 3914 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3915 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3916 return false; 3917 } 3918 return true; 3919 } 3920 3921 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3922 // We can vectorize the tree if its size is greater than or equal to the 3923 // minimum size specified by the MinTreeSize command line option. 3924 if (VectorizableTree.size() >= MinTreeSize) 3925 return false; 3926 3927 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3928 // can vectorize it if we can prove it fully vectorizable. 3929 if (isFullyVectorizableTinyTree()) 3930 return false; 3931 3932 assert(VectorizableTree.empty() 3933 ? ExternalUses.empty() 3934 : true && "We shouldn't have any external users"); 3935 3936 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3937 // vectorizable. 3938 return true; 3939 } 3940 3941 InstructionCost BoUpSLP::getSpillCost() const { 3942 // Walk from the bottom of the tree to the top, tracking which values are 3943 // live. When we see a call instruction that is not part of our tree, 3944 // query TTI to see if there is a cost to keeping values live over it 3945 // (for example, if spills and fills are required). 3946 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3947 InstructionCost Cost = 0; 3948 3949 SmallPtrSet<Instruction*, 4> LiveValues; 3950 Instruction *PrevInst = nullptr; 3951 3952 // The entries in VectorizableTree are not necessarily ordered by their 3953 // position in basic blocks. Collect them and order them by dominance so later 3954 // instructions are guaranteed to be visited first. For instructions in 3955 // different basic blocks, we only scan to the beginning of the block, so 3956 // their order does not matter, as long as all instructions in a basic block 3957 // are grouped together. Using dominance ensures a deterministic order. 3958 SmallVector<Instruction *, 16> OrderedScalars; 3959 for (const auto &TEPtr : VectorizableTree) { 3960 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3961 if (!Inst) 3962 continue; 3963 OrderedScalars.push_back(Inst); 3964 } 3965 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3966 return DT->dominates(B, A); 3967 }); 3968 3969 for (Instruction *Inst : OrderedScalars) { 3970 if (!PrevInst) { 3971 PrevInst = Inst; 3972 continue; 3973 } 3974 3975 // Update LiveValues. 3976 LiveValues.erase(PrevInst); 3977 for (auto &J : PrevInst->operands()) { 3978 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3979 LiveValues.insert(cast<Instruction>(&*J)); 3980 } 3981 3982 LLVM_DEBUG({ 3983 dbgs() << "SLP: #LV: " << LiveValues.size(); 3984 for (auto *X : LiveValues) 3985 dbgs() << " " << X->getName(); 3986 dbgs() << ", Looking at "; 3987 Inst->dump(); 3988 }); 3989 3990 // Now find the sequence of instructions between PrevInst and Inst. 3991 unsigned NumCalls = 0; 3992 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3993 PrevInstIt = 3994 PrevInst->getIterator().getReverse(); 3995 while (InstIt != PrevInstIt) { 3996 if (PrevInstIt == PrevInst->getParent()->rend()) { 3997 PrevInstIt = Inst->getParent()->rbegin(); 3998 continue; 3999 } 4000 4001 // Debug information does not impact spill cost. 4002 if ((isa<CallInst>(&*PrevInstIt) && 4003 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4004 &*PrevInstIt != PrevInst) 4005 NumCalls++; 4006 4007 ++PrevInstIt; 4008 } 4009 4010 if (NumCalls) { 4011 SmallVector<Type*, 4> V; 4012 for (auto *II : LiveValues) 4013 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4014 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4015 } 4016 4017 PrevInst = Inst; 4018 } 4019 4020 return Cost; 4021 } 4022 4023 InstructionCost BoUpSLP::getTreeCost() { 4024 InstructionCost Cost = 0; 4025 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4026 << VectorizableTree.size() << ".\n"); 4027 4028 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4029 4030 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4031 TreeEntry &TE = *VectorizableTree[I].get(); 4032 4033 // We create duplicate tree entries for gather sequences that have multiple 4034 // uses. However, we should not compute the cost of duplicate sequences. 4035 // For example, if we have a build vector (i.e., insertelement sequence) 4036 // that is used by more than one vector instruction, we only need to 4037 // compute the cost of the insertelement instructions once. The redundant 4038 // instructions will be eliminated by CSE. 4039 // 4040 // We should consider not creating duplicate tree entries for gather 4041 // sequences, and instead add additional edges to the tree representing 4042 // their uses. Since such an approach results in fewer total entries, 4043 // existing heuristics based on tree size may yield different results. 4044 // 4045 if (TE.State == TreeEntry::NeedToGather && 4046 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4047 VectorizableTree.end(), 4048 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4049 return EntryPtr->State == TreeEntry::NeedToGather && 4050 EntryPtr->isSame(TE.Scalars); 4051 })) 4052 continue; 4053 4054 InstructionCost C = getEntryCost(&TE); 4055 Cost += C; 4056 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4057 << " for bundle that starts with " << *TE.Scalars[0] 4058 << ".\n" 4059 << "SLP: Current total cost = " << Cost << "\n"); 4060 } 4061 4062 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4063 InstructionCost ExtractCost = 0; 4064 for (ExternalUser &EU : ExternalUses) { 4065 // We only add extract cost once for the same scalar. 4066 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4067 continue; 4068 4069 // Uses by ephemeral values are free (because the ephemeral value will be 4070 // removed prior to code generation, and so the extraction will be 4071 // removed as well). 4072 if (EphValues.count(EU.User)) 4073 continue; 4074 4075 // If we plan to rewrite the tree in a smaller type, we will need to sign 4076 // extend the extracted value back to the original type. Here, we account 4077 // for the extract and the added cost of the sign extend if needed. 4078 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4079 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4080 if (MinBWs.count(ScalarRoot)) { 4081 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4082 auto Extend = 4083 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4084 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4085 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4086 VecTy, EU.Lane); 4087 } else { 4088 ExtractCost += 4089 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4090 } 4091 } 4092 4093 InstructionCost SpillCost = getSpillCost(); 4094 Cost += SpillCost + ExtractCost; 4095 4096 #ifndef NDEBUG 4097 SmallString<256> Str; 4098 { 4099 raw_svector_ostream OS(Str); 4100 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4101 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4102 << "SLP: Total Cost = " << Cost << ".\n"; 4103 } 4104 LLVM_DEBUG(dbgs() << Str); 4105 if (ViewSLPTree) 4106 ViewGraph(this, "SLP" + F->getName(), false, Str); 4107 #endif 4108 4109 return Cost; 4110 } 4111 4112 InstructionCost 4113 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4114 const DenseSet<unsigned> &ShuffledIndices) const { 4115 unsigned NumElts = Ty->getNumElements(); 4116 APInt DemandedElts = APInt::getNullValue(NumElts); 4117 for (unsigned I = 0; I < NumElts; ++I) 4118 if (!ShuffledIndices.count(I)) 4119 DemandedElts.setBit(I); 4120 InstructionCost Cost = 4121 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4122 /*Extract*/ false); 4123 if (!ShuffledIndices.empty()) 4124 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4125 return Cost; 4126 } 4127 4128 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4129 // Find the type of the operands in VL. 4130 Type *ScalarTy = VL[0]->getType(); 4131 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4132 ScalarTy = SI->getValueOperand()->getType(); 4133 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4134 // Find the cost of inserting/extracting values from the vector. 4135 // Check if the same elements are inserted several times and count them as 4136 // shuffle candidates. 4137 DenseSet<unsigned> ShuffledElements; 4138 DenseSet<Value *> UniqueElements; 4139 // Iterate in reverse order to consider insert elements with the high cost. 4140 for (unsigned I = VL.size(); I > 0; --I) { 4141 unsigned Idx = I - 1; 4142 if (!UniqueElements.insert(VL[Idx]).second) 4143 ShuffledElements.insert(Idx); 4144 } 4145 return getGatherCost(VecTy, ShuffledElements); 4146 } 4147 4148 // Perform operand reordering on the instructions in VL and return the reordered 4149 // operands in Left and Right. 4150 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4151 SmallVectorImpl<Value *> &Left, 4152 SmallVectorImpl<Value *> &Right, 4153 const DataLayout &DL, 4154 ScalarEvolution &SE, 4155 const BoUpSLP &R) { 4156 if (VL.empty()) 4157 return; 4158 VLOperands Ops(VL, DL, SE, R); 4159 // Reorder the operands in place. 4160 Ops.reorder(); 4161 Left = Ops.getVL(0); 4162 Right = Ops.getVL(1); 4163 } 4164 4165 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4166 // Get the basic block this bundle is in. All instructions in the bundle 4167 // should be in this block. 4168 auto *Front = E->getMainOp(); 4169 auto *BB = Front->getParent(); 4170 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4171 auto *I = cast<Instruction>(V); 4172 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4173 })); 4174 4175 // The last instruction in the bundle in program order. 4176 Instruction *LastInst = nullptr; 4177 4178 // Find the last instruction. The common case should be that BB has been 4179 // scheduled, and the last instruction is VL.back(). So we start with 4180 // VL.back() and iterate over schedule data until we reach the end of the 4181 // bundle. The end of the bundle is marked by null ScheduleData. 4182 if (BlocksSchedules.count(BB)) { 4183 auto *Bundle = 4184 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4185 if (Bundle && Bundle->isPartOfBundle()) 4186 for (; Bundle; Bundle = Bundle->NextInBundle) 4187 if (Bundle->OpValue == Bundle->Inst) 4188 LastInst = Bundle->Inst; 4189 } 4190 4191 // LastInst can still be null at this point if there's either not an entry 4192 // for BB in BlocksSchedules or there's no ScheduleData available for 4193 // VL.back(). This can be the case if buildTree_rec aborts for various 4194 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4195 // size is reached, etc.). ScheduleData is initialized in the scheduling 4196 // "dry-run". 4197 // 4198 // If this happens, we can still find the last instruction by brute force. We 4199 // iterate forwards from Front (inclusive) until we either see all 4200 // instructions in the bundle or reach the end of the block. If Front is the 4201 // last instruction in program order, LastInst will be set to Front, and we 4202 // will visit all the remaining instructions in the block. 4203 // 4204 // One of the reasons we exit early from buildTree_rec is to place an upper 4205 // bound on compile-time. Thus, taking an additional compile-time hit here is 4206 // not ideal. However, this should be exceedingly rare since it requires that 4207 // we both exit early from buildTree_rec and that the bundle be out-of-order 4208 // (causing us to iterate all the way to the end of the block). 4209 if (!LastInst) { 4210 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4211 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4212 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4213 LastInst = &I; 4214 if (Bundle.empty()) 4215 break; 4216 } 4217 } 4218 assert(LastInst && "Failed to find last instruction in bundle"); 4219 4220 // Set the insertion point after the last instruction in the bundle. Set the 4221 // debug location to Front. 4222 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4223 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4224 } 4225 4226 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4227 Value *Val0 = 4228 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4229 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4230 Value *Vec = PoisonValue::get(VecTy); 4231 unsigned InsIndex = 0; 4232 for (Value *Val : VL) { 4233 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4234 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4235 if (!InsElt) 4236 continue; 4237 GatherSeq.insert(InsElt); 4238 CSEBlocks.insert(InsElt->getParent()); 4239 // Add to our 'need-to-extract' list. 4240 if (TreeEntry *Entry = getTreeEntry(Val)) { 4241 // Find which lane we need to extract. 4242 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4243 find(Entry->Scalars, Val)); 4244 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4245 if (!Entry->ReuseShuffleIndices.empty()) { 4246 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4247 find(Entry->ReuseShuffleIndices, FoundLane)); 4248 } 4249 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4250 } 4251 } 4252 4253 return Vec; 4254 } 4255 4256 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4257 InstructionsState S = getSameOpcode(VL); 4258 if (S.getOpcode()) { 4259 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4260 if (E->isSame(VL)) { 4261 Value *V = vectorizeTree(E); 4262 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4263 // We need to get the vectorized value but without shuffle. 4264 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4265 V = SV->getOperand(0); 4266 } else { 4267 // Reshuffle to get only unique values. 4268 SmallVector<int, 4> UniqueIdxs; 4269 SmallSet<int, 4> UsedIdxs; 4270 for (int Idx : E->ReuseShuffleIndices) 4271 if (UsedIdxs.insert(Idx).second) 4272 UniqueIdxs.emplace_back(Idx); 4273 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4274 } 4275 } 4276 return V; 4277 } 4278 } 4279 } 4280 4281 // Check that every instruction appears once in this bundle. 4282 SmallVector<int, 4> ReuseShuffleIndicies; 4283 SmallVector<Value *, 4> UniqueValues; 4284 if (VL.size() > 2) { 4285 DenseMap<Value *, unsigned> UniquePositions; 4286 for (Value *V : VL) { 4287 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4288 ReuseShuffleIndicies.emplace_back(Res.first->second); 4289 if (Res.second || isa<Constant>(V)) 4290 UniqueValues.emplace_back(V); 4291 } 4292 // Do not shuffle single element or if number of unique values is not power 4293 // of 2. 4294 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4295 !llvm::isPowerOf2_32(UniqueValues.size())) 4296 ReuseShuffleIndicies.clear(); 4297 else 4298 VL = UniqueValues; 4299 } 4300 4301 Value *Vec = gather(VL); 4302 if (!ReuseShuffleIndicies.empty()) { 4303 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4304 if (auto *I = dyn_cast<Instruction>(Vec)) { 4305 GatherSeq.insert(I); 4306 CSEBlocks.insert(I->getParent()); 4307 } 4308 } 4309 return Vec; 4310 } 4311 4312 namespace { 4313 /// Merges shuffle masks and emits final shuffle instruction, if required. 4314 class ShuffleInstructionBuilder { 4315 IRBuilderBase &Builder; 4316 bool IsFinalized = false; 4317 SmallVector<int, 4> Mask; 4318 4319 public: 4320 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4321 4322 /// Adds a mask, inverting it before applying. 4323 void addInversedMask(ArrayRef<unsigned> SubMask) { 4324 if (SubMask.empty()) 4325 return; 4326 SmallVector<int, 4> NewMask; 4327 inversePermutation(SubMask, NewMask); 4328 addMask(NewMask); 4329 } 4330 4331 /// Functions adds masks, merging them into single one. 4332 void addMask(ArrayRef<unsigned> SubMask) { 4333 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4334 addMask(NewMask); 4335 } 4336 4337 void addMask(ArrayRef<int> SubMask) { 4338 if (SubMask.empty()) 4339 return; 4340 if (Mask.empty()) { 4341 Mask.append(SubMask.begin(), SubMask.end()); 4342 return; 4343 } 4344 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4345 int TermValue = std::min(Mask.size(), SubMask.size()); 4346 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4347 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4348 NewMask[I] = E; 4349 continue; 4350 } 4351 NewMask[I] = Mask[SubMask[I]]; 4352 } 4353 Mask.swap(NewMask); 4354 } 4355 4356 Value *finalize(Value *V) { 4357 IsFinalized = true; 4358 if (Mask.empty()) 4359 return V; 4360 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4361 } 4362 4363 ~ShuffleInstructionBuilder() { 4364 assert((IsFinalized || Mask.empty()) && 4365 "Must be finalized construction of the shuffles."); 4366 } 4367 }; 4368 } // namespace 4369 4370 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4371 IRBuilder<>::InsertPointGuard Guard(Builder); 4372 4373 if (E->VectorizedValue) { 4374 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4375 return E->VectorizedValue; 4376 } 4377 4378 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4379 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4380 if (E->State == TreeEntry::NeedToGather) { 4381 setInsertPointAfterBundle(E); 4382 Value *Vec = gather(E->Scalars); 4383 if (NeedToShuffleReuses) { 4384 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4385 Vec = ShuffleBuilder.finalize(Vec); 4386 if (auto *I = dyn_cast<Instruction>(Vec)) { 4387 GatherSeq.insert(I); 4388 CSEBlocks.insert(I->getParent()); 4389 } 4390 } 4391 E->VectorizedValue = Vec; 4392 return Vec; 4393 } 4394 4395 assert((E->State == TreeEntry::Vectorize || 4396 E->State == TreeEntry::ScatterVectorize) && 4397 "Unhandled state"); 4398 unsigned ShuffleOrOp = 4399 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4400 Instruction *VL0 = E->getMainOp(); 4401 Type *ScalarTy = VL0->getType(); 4402 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4403 ScalarTy = Store->getValueOperand()->getType(); 4404 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4405 switch (ShuffleOrOp) { 4406 case Instruction::PHI: { 4407 auto *PH = cast<PHINode>(VL0); 4408 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4409 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4410 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4411 Value *V = NewPhi; 4412 if (NeedToShuffleReuses) 4413 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4414 4415 E->VectorizedValue = V; 4416 4417 // PHINodes may have multiple entries from the same block. We want to 4418 // visit every block once. 4419 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4420 4421 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4422 ValueList Operands; 4423 BasicBlock *IBB = PH->getIncomingBlock(i); 4424 4425 if (!VisitedBBs.insert(IBB).second) { 4426 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4427 continue; 4428 } 4429 4430 Builder.SetInsertPoint(IBB->getTerminator()); 4431 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4432 Value *Vec = vectorizeTree(E->getOperand(i)); 4433 NewPhi->addIncoming(Vec, IBB); 4434 } 4435 4436 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4437 "Invalid number of incoming values"); 4438 return V; 4439 } 4440 4441 case Instruction::ExtractElement: { 4442 Value *V = E->getSingleOperand(0); 4443 Builder.SetInsertPoint(VL0); 4444 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4445 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4446 V = ShuffleBuilder.finalize(V); 4447 E->VectorizedValue = V; 4448 return V; 4449 } 4450 case Instruction::ExtractValue: { 4451 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4452 Builder.SetInsertPoint(LI); 4453 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4454 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4455 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4456 Value *NewV = propagateMetadata(V, E->Scalars); 4457 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4458 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4459 NewV = ShuffleBuilder.finalize(NewV); 4460 E->VectorizedValue = NewV; 4461 return NewV; 4462 } 4463 case Instruction::ZExt: 4464 case Instruction::SExt: 4465 case Instruction::FPToUI: 4466 case Instruction::FPToSI: 4467 case Instruction::FPExt: 4468 case Instruction::PtrToInt: 4469 case Instruction::IntToPtr: 4470 case Instruction::SIToFP: 4471 case Instruction::UIToFP: 4472 case Instruction::Trunc: 4473 case Instruction::FPTrunc: 4474 case Instruction::BitCast: { 4475 setInsertPointAfterBundle(E); 4476 4477 Value *InVec = vectorizeTree(E->getOperand(0)); 4478 4479 if (E->VectorizedValue) { 4480 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4481 return E->VectorizedValue; 4482 } 4483 4484 auto *CI = cast<CastInst>(VL0); 4485 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4486 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4487 V = ShuffleBuilder.finalize(V); 4488 4489 E->VectorizedValue = V; 4490 ++NumVectorInstructions; 4491 return V; 4492 } 4493 case Instruction::FCmp: 4494 case Instruction::ICmp: { 4495 setInsertPointAfterBundle(E); 4496 4497 Value *L = vectorizeTree(E->getOperand(0)); 4498 Value *R = vectorizeTree(E->getOperand(1)); 4499 4500 if (E->VectorizedValue) { 4501 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4502 return E->VectorizedValue; 4503 } 4504 4505 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4506 Value *V = Builder.CreateCmp(P0, L, R); 4507 propagateIRFlags(V, E->Scalars, VL0); 4508 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4509 V = ShuffleBuilder.finalize(V); 4510 4511 E->VectorizedValue = V; 4512 ++NumVectorInstructions; 4513 return V; 4514 } 4515 case Instruction::Select: { 4516 setInsertPointAfterBundle(E); 4517 4518 Value *Cond = vectorizeTree(E->getOperand(0)); 4519 Value *True = vectorizeTree(E->getOperand(1)); 4520 Value *False = vectorizeTree(E->getOperand(2)); 4521 4522 if (E->VectorizedValue) { 4523 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4524 return E->VectorizedValue; 4525 } 4526 4527 Value *V = Builder.CreateSelect(Cond, True, False); 4528 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4529 V = ShuffleBuilder.finalize(V); 4530 4531 E->VectorizedValue = V; 4532 ++NumVectorInstructions; 4533 return V; 4534 } 4535 case Instruction::FNeg: { 4536 setInsertPointAfterBundle(E); 4537 4538 Value *Op = vectorizeTree(E->getOperand(0)); 4539 4540 if (E->VectorizedValue) { 4541 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4542 return E->VectorizedValue; 4543 } 4544 4545 Value *V = Builder.CreateUnOp( 4546 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4547 propagateIRFlags(V, E->Scalars, VL0); 4548 if (auto *I = dyn_cast<Instruction>(V)) 4549 V = propagateMetadata(I, E->Scalars); 4550 4551 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4552 V = ShuffleBuilder.finalize(V); 4553 4554 E->VectorizedValue = V; 4555 ++NumVectorInstructions; 4556 4557 return V; 4558 } 4559 case Instruction::Add: 4560 case Instruction::FAdd: 4561 case Instruction::Sub: 4562 case Instruction::FSub: 4563 case Instruction::Mul: 4564 case Instruction::FMul: 4565 case Instruction::UDiv: 4566 case Instruction::SDiv: 4567 case Instruction::FDiv: 4568 case Instruction::URem: 4569 case Instruction::SRem: 4570 case Instruction::FRem: 4571 case Instruction::Shl: 4572 case Instruction::LShr: 4573 case Instruction::AShr: 4574 case Instruction::And: 4575 case Instruction::Or: 4576 case Instruction::Xor: { 4577 setInsertPointAfterBundle(E); 4578 4579 Value *LHS = vectorizeTree(E->getOperand(0)); 4580 Value *RHS = vectorizeTree(E->getOperand(1)); 4581 4582 if (E->VectorizedValue) { 4583 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4584 return E->VectorizedValue; 4585 } 4586 4587 Value *V = Builder.CreateBinOp( 4588 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4589 RHS); 4590 propagateIRFlags(V, E->Scalars, VL0); 4591 if (auto *I = dyn_cast<Instruction>(V)) 4592 V = propagateMetadata(I, E->Scalars); 4593 4594 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4595 V = ShuffleBuilder.finalize(V); 4596 4597 E->VectorizedValue = V; 4598 ++NumVectorInstructions; 4599 4600 return V; 4601 } 4602 case Instruction::Load: { 4603 // Loads are inserted at the head of the tree because we don't want to 4604 // sink them all the way down past store instructions. 4605 bool IsReorder = E->updateStateIfReorder(); 4606 if (IsReorder) 4607 VL0 = E->getMainOp(); 4608 setInsertPointAfterBundle(E); 4609 4610 LoadInst *LI = cast<LoadInst>(VL0); 4611 Instruction *NewLI; 4612 unsigned AS = LI->getPointerAddressSpace(); 4613 Value *PO = LI->getPointerOperand(); 4614 if (E->State == TreeEntry::Vectorize) { 4615 4616 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4617 4618 // The pointer operand uses an in-tree scalar so we add the new BitCast 4619 // to ExternalUses list to make sure that an extract will be generated 4620 // in the future. 4621 if (getTreeEntry(PO)) 4622 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4623 4624 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4625 } else { 4626 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4627 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4628 // Use the minimum alignment of the gathered loads. 4629 Align CommonAlignment = LI->getAlign(); 4630 for (Value *V : E->Scalars) 4631 CommonAlignment = 4632 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4633 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4634 } 4635 Value *V = propagateMetadata(NewLI, E->Scalars); 4636 4637 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4638 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4639 V = ShuffleBuilder.finalize(V); 4640 E->VectorizedValue = V; 4641 ++NumVectorInstructions; 4642 return V; 4643 } 4644 case Instruction::Store: { 4645 bool IsReorder = !E->ReorderIndices.empty(); 4646 auto *SI = cast<StoreInst>( 4647 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4648 unsigned AS = SI->getPointerAddressSpace(); 4649 4650 setInsertPointAfterBundle(E); 4651 4652 Value *VecValue = vectorizeTree(E->getOperand(0)); 4653 ShuffleBuilder.addMask(E->ReorderIndices); 4654 VecValue = ShuffleBuilder.finalize(VecValue); 4655 4656 Value *ScalarPtr = SI->getPointerOperand(); 4657 Value *VecPtr = Builder.CreateBitCast( 4658 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4659 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4660 SI->getAlign()); 4661 4662 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4663 // ExternalUses to make sure that an extract will be generated in the 4664 // future. 4665 if (getTreeEntry(ScalarPtr)) 4666 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4667 4668 Value *V = propagateMetadata(ST, E->Scalars); 4669 4670 E->VectorizedValue = V; 4671 ++NumVectorInstructions; 4672 return V; 4673 } 4674 case Instruction::GetElementPtr: { 4675 setInsertPointAfterBundle(E); 4676 4677 Value *Op0 = vectorizeTree(E->getOperand(0)); 4678 4679 std::vector<Value *> OpVecs; 4680 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4681 ++j) { 4682 ValueList &VL = E->getOperand(j); 4683 // Need to cast all elements to the same type before vectorization to 4684 // avoid crash. 4685 Type *VL0Ty = VL0->getOperand(j)->getType(); 4686 Type *Ty = llvm::all_of( 4687 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4688 ? VL0Ty 4689 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4690 ->getPointerOperandType() 4691 ->getScalarType()); 4692 for (Value *&V : VL) { 4693 auto *CI = cast<ConstantInt>(V); 4694 V = ConstantExpr::getIntegerCast(CI, Ty, 4695 CI->getValue().isSignBitSet()); 4696 } 4697 Value *OpVec = vectorizeTree(VL); 4698 OpVecs.push_back(OpVec); 4699 } 4700 4701 Value *V = Builder.CreateGEP( 4702 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4703 if (Instruction *I = dyn_cast<Instruction>(V)) 4704 V = propagateMetadata(I, E->Scalars); 4705 4706 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4707 V = ShuffleBuilder.finalize(V); 4708 4709 E->VectorizedValue = V; 4710 ++NumVectorInstructions; 4711 4712 return V; 4713 } 4714 case Instruction::Call: { 4715 CallInst *CI = cast<CallInst>(VL0); 4716 setInsertPointAfterBundle(E); 4717 4718 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4719 if (Function *FI = CI->getCalledFunction()) 4720 IID = FI->getIntrinsicID(); 4721 4722 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4723 4724 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4725 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4726 VecCallCosts.first <= VecCallCosts.second; 4727 4728 Value *ScalarArg = nullptr; 4729 std::vector<Value *> OpVecs; 4730 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4731 ValueList OpVL; 4732 // Some intrinsics have scalar arguments. This argument should not be 4733 // vectorized. 4734 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4735 CallInst *CEI = cast<CallInst>(VL0); 4736 ScalarArg = CEI->getArgOperand(j); 4737 OpVecs.push_back(CEI->getArgOperand(j)); 4738 continue; 4739 } 4740 4741 Value *OpVec = vectorizeTree(E->getOperand(j)); 4742 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4743 OpVecs.push_back(OpVec); 4744 } 4745 4746 Function *CF; 4747 if (!UseIntrinsic) { 4748 VFShape Shape = 4749 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4750 VecTy->getNumElements())), 4751 false /*HasGlobalPred*/); 4752 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4753 } else { 4754 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4755 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4756 } 4757 4758 SmallVector<OperandBundleDef, 1> OpBundles; 4759 CI->getOperandBundlesAsDefs(OpBundles); 4760 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4761 4762 // The scalar argument uses an in-tree scalar so we add the new vectorized 4763 // call to ExternalUses list to make sure that an extract will be 4764 // generated in the future. 4765 if (ScalarArg && getTreeEntry(ScalarArg)) 4766 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4767 4768 propagateIRFlags(V, E->Scalars, VL0); 4769 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4770 V = ShuffleBuilder.finalize(V); 4771 4772 E->VectorizedValue = V; 4773 ++NumVectorInstructions; 4774 return V; 4775 } 4776 case Instruction::ShuffleVector: { 4777 assert(E->isAltShuffle() && 4778 ((Instruction::isBinaryOp(E->getOpcode()) && 4779 Instruction::isBinaryOp(E->getAltOpcode())) || 4780 (Instruction::isCast(E->getOpcode()) && 4781 Instruction::isCast(E->getAltOpcode()))) && 4782 "Invalid Shuffle Vector Operand"); 4783 4784 Value *LHS = nullptr, *RHS = nullptr; 4785 if (Instruction::isBinaryOp(E->getOpcode())) { 4786 setInsertPointAfterBundle(E); 4787 LHS = vectorizeTree(E->getOperand(0)); 4788 RHS = vectorizeTree(E->getOperand(1)); 4789 } else { 4790 setInsertPointAfterBundle(E); 4791 LHS = vectorizeTree(E->getOperand(0)); 4792 } 4793 4794 if (E->VectorizedValue) { 4795 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4796 return E->VectorizedValue; 4797 } 4798 4799 Value *V0, *V1; 4800 if (Instruction::isBinaryOp(E->getOpcode())) { 4801 V0 = Builder.CreateBinOp( 4802 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4803 V1 = Builder.CreateBinOp( 4804 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4805 } else { 4806 V0 = Builder.CreateCast( 4807 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4808 V1 = Builder.CreateCast( 4809 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4810 } 4811 4812 // Create shuffle to take alternate operations from the vector. 4813 // Also, gather up main and alt scalar ops to propagate IR flags to 4814 // each vector operation. 4815 ValueList OpScalars, AltScalars; 4816 unsigned e = E->Scalars.size(); 4817 SmallVector<int, 8> Mask(e); 4818 for (unsigned i = 0; i < e; ++i) { 4819 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4820 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4821 if (OpInst->getOpcode() == E->getAltOpcode()) { 4822 Mask[i] = e + i; 4823 AltScalars.push_back(E->Scalars[i]); 4824 } else { 4825 Mask[i] = i; 4826 OpScalars.push_back(E->Scalars[i]); 4827 } 4828 } 4829 4830 propagateIRFlags(V0, OpScalars); 4831 propagateIRFlags(V1, AltScalars); 4832 4833 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4834 if (Instruction *I = dyn_cast<Instruction>(V)) 4835 V = propagateMetadata(I, E->Scalars); 4836 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4837 V = ShuffleBuilder.finalize(V); 4838 4839 E->VectorizedValue = V; 4840 ++NumVectorInstructions; 4841 4842 return V; 4843 } 4844 default: 4845 llvm_unreachable("unknown inst"); 4846 } 4847 return nullptr; 4848 } 4849 4850 Value *BoUpSLP::vectorizeTree() { 4851 ExtraValueToDebugLocsMap ExternallyUsedValues; 4852 return vectorizeTree(ExternallyUsedValues); 4853 } 4854 4855 Value * 4856 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4857 // All blocks must be scheduled before any instructions are inserted. 4858 for (auto &BSIter : BlocksSchedules) { 4859 scheduleBlock(BSIter.second.get()); 4860 } 4861 4862 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4863 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4864 4865 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4866 // vectorized root. InstCombine will then rewrite the entire expression. We 4867 // sign extend the extracted values below. 4868 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4869 if (MinBWs.count(ScalarRoot)) { 4870 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4871 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4872 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4873 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4874 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4875 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4876 VectorizableTree[0]->VectorizedValue = Trunc; 4877 } 4878 4879 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4880 << " values .\n"); 4881 4882 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4883 // specified by ScalarType. 4884 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4885 if (!MinBWs.count(ScalarRoot)) 4886 return Ex; 4887 if (MinBWs[ScalarRoot].second) 4888 return Builder.CreateSExt(Ex, ScalarType); 4889 return Builder.CreateZExt(Ex, ScalarType); 4890 }; 4891 4892 // Extract all of the elements with the external uses. 4893 for (const auto &ExternalUse : ExternalUses) { 4894 Value *Scalar = ExternalUse.Scalar; 4895 llvm::User *User = ExternalUse.User; 4896 4897 // Skip users that we already RAUW. This happens when one instruction 4898 // has multiple uses of the same value. 4899 if (User && !is_contained(Scalar->users(), User)) 4900 continue; 4901 TreeEntry *E = getTreeEntry(Scalar); 4902 assert(E && "Invalid scalar"); 4903 assert(E->State != TreeEntry::NeedToGather && 4904 "Extracting from a gather list"); 4905 4906 Value *Vec = E->VectorizedValue; 4907 assert(Vec && "Can't find vectorizable value"); 4908 4909 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4910 // If User == nullptr, the Scalar is used as extra arg. Generate 4911 // ExtractElement instruction and update the record for this scalar in 4912 // ExternallyUsedValues. 4913 if (!User) { 4914 assert(ExternallyUsedValues.count(Scalar) && 4915 "Scalar with nullptr as an external user must be registered in " 4916 "ExternallyUsedValues map"); 4917 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4918 Builder.SetInsertPoint(VecI->getParent(), 4919 std::next(VecI->getIterator())); 4920 } else { 4921 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4922 } 4923 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4924 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4925 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4926 auto &Locs = ExternallyUsedValues[Scalar]; 4927 ExternallyUsedValues.insert({Ex, Locs}); 4928 ExternallyUsedValues.erase(Scalar); 4929 // Required to update internally referenced instructions. 4930 Scalar->replaceAllUsesWith(Ex); 4931 continue; 4932 } 4933 4934 // Generate extracts for out-of-tree users. 4935 // Find the insertion point for the extractelement lane. 4936 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4937 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4938 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4939 if (PH->getIncomingValue(i) == Scalar) { 4940 Instruction *IncomingTerminator = 4941 PH->getIncomingBlock(i)->getTerminator(); 4942 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4943 Builder.SetInsertPoint(VecI->getParent(), 4944 std::next(VecI->getIterator())); 4945 } else { 4946 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4947 } 4948 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4949 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4950 CSEBlocks.insert(PH->getIncomingBlock(i)); 4951 PH->setOperand(i, Ex); 4952 } 4953 } 4954 } else { 4955 Builder.SetInsertPoint(cast<Instruction>(User)); 4956 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4957 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4958 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4959 User->replaceUsesOfWith(Scalar, Ex); 4960 } 4961 } else { 4962 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4963 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4964 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4965 CSEBlocks.insert(&F->getEntryBlock()); 4966 User->replaceUsesOfWith(Scalar, Ex); 4967 } 4968 4969 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4970 } 4971 4972 // For each vectorized value: 4973 for (auto &TEPtr : VectorizableTree) { 4974 TreeEntry *Entry = TEPtr.get(); 4975 4976 // No need to handle users of gathered values. 4977 if (Entry->State == TreeEntry::NeedToGather) 4978 continue; 4979 4980 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4981 4982 // For each lane: 4983 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4984 Value *Scalar = Entry->Scalars[Lane]; 4985 4986 #ifndef NDEBUG 4987 Type *Ty = Scalar->getType(); 4988 if (!Ty->isVoidTy()) { 4989 for (User *U : Scalar->users()) { 4990 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4991 4992 // It is legal to delete users in the ignorelist. 4993 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4994 "Deleting out-of-tree value"); 4995 } 4996 } 4997 #endif 4998 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4999 eraseInstruction(cast<Instruction>(Scalar)); 5000 } 5001 } 5002 5003 Builder.ClearInsertionPoint(); 5004 InstrElementSize.clear(); 5005 5006 return VectorizableTree[0]->VectorizedValue; 5007 } 5008 5009 void BoUpSLP::optimizeGatherSequence() { 5010 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5011 << " gather sequences instructions.\n"); 5012 // LICM InsertElementInst sequences. 5013 for (Instruction *I : GatherSeq) { 5014 if (isDeleted(I)) 5015 continue; 5016 5017 // Check if this block is inside a loop. 5018 Loop *L = LI->getLoopFor(I->getParent()); 5019 if (!L) 5020 continue; 5021 5022 // Check if it has a preheader. 5023 BasicBlock *PreHeader = L->getLoopPreheader(); 5024 if (!PreHeader) 5025 continue; 5026 5027 // If the vector or the element that we insert into it are 5028 // instructions that are defined in this basic block then we can't 5029 // hoist this instruction. 5030 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5031 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5032 if (Op0 && L->contains(Op0)) 5033 continue; 5034 if (Op1 && L->contains(Op1)) 5035 continue; 5036 5037 // We can hoist this instruction. Move it to the pre-header. 5038 I->moveBefore(PreHeader->getTerminator()); 5039 } 5040 5041 // Make a list of all reachable blocks in our CSE queue. 5042 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5043 CSEWorkList.reserve(CSEBlocks.size()); 5044 for (BasicBlock *BB : CSEBlocks) 5045 if (DomTreeNode *N = DT->getNode(BB)) { 5046 assert(DT->isReachableFromEntry(N)); 5047 CSEWorkList.push_back(N); 5048 } 5049 5050 // Sort blocks by domination. This ensures we visit a block after all blocks 5051 // dominating it are visited. 5052 llvm::stable_sort(CSEWorkList, 5053 [this](const DomTreeNode *A, const DomTreeNode *B) { 5054 return DT->properlyDominates(A, B); 5055 }); 5056 5057 // Perform O(N^2) search over the gather sequences and merge identical 5058 // instructions. TODO: We can further optimize this scan if we split the 5059 // instructions into different buckets based on the insert lane. 5060 SmallVector<Instruction *, 16> Visited; 5061 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5062 assert(*I && 5063 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5064 "Worklist not sorted properly!"); 5065 BasicBlock *BB = (*I)->getBlock(); 5066 // For all instructions in blocks containing gather sequences: 5067 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5068 Instruction *In = &*it++; 5069 if (isDeleted(In)) 5070 continue; 5071 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5072 continue; 5073 5074 // Check if we can replace this instruction with any of the 5075 // visited instructions. 5076 for (Instruction *v : Visited) { 5077 if (In->isIdenticalTo(v) && 5078 DT->dominates(v->getParent(), In->getParent())) { 5079 In->replaceAllUsesWith(v); 5080 eraseInstruction(In); 5081 In = nullptr; 5082 break; 5083 } 5084 } 5085 if (In) { 5086 assert(!is_contained(Visited, In)); 5087 Visited.push_back(In); 5088 } 5089 } 5090 } 5091 CSEBlocks.clear(); 5092 GatherSeq.clear(); 5093 } 5094 5095 // Groups the instructions to a bundle (which is then a single scheduling entity) 5096 // and schedules instructions until the bundle gets ready. 5097 Optional<BoUpSLP::ScheduleData *> 5098 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5099 const InstructionsState &S) { 5100 if (isa<PHINode>(S.OpValue)) 5101 return nullptr; 5102 5103 // Initialize the instruction bundle. 5104 Instruction *OldScheduleEnd = ScheduleEnd; 5105 ScheduleData *PrevInBundle = nullptr; 5106 ScheduleData *Bundle = nullptr; 5107 bool ReSchedule = false; 5108 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5109 5110 // Make sure that the scheduling region contains all 5111 // instructions of the bundle. 5112 for (Value *V : VL) { 5113 if (!extendSchedulingRegion(V, S)) 5114 return None; 5115 } 5116 5117 for (Value *V : VL) { 5118 ScheduleData *BundleMember = getScheduleData(V); 5119 assert(BundleMember && 5120 "no ScheduleData for bundle member (maybe not in same basic block)"); 5121 if (BundleMember->IsScheduled) { 5122 // A bundle member was scheduled as single instruction before and now 5123 // needs to be scheduled as part of the bundle. We just get rid of the 5124 // existing schedule. 5125 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5126 << " was already scheduled\n"); 5127 ReSchedule = true; 5128 } 5129 assert(BundleMember->isSchedulingEntity() && 5130 "bundle member already part of other bundle"); 5131 if (PrevInBundle) { 5132 PrevInBundle->NextInBundle = BundleMember; 5133 } else { 5134 Bundle = BundleMember; 5135 } 5136 BundleMember->UnscheduledDepsInBundle = 0; 5137 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5138 5139 // Group the instructions to a bundle. 5140 BundleMember->FirstInBundle = Bundle; 5141 PrevInBundle = BundleMember; 5142 } 5143 if (ScheduleEnd != OldScheduleEnd) { 5144 // The scheduling region got new instructions at the lower end (or it is a 5145 // new region for the first bundle). This makes it necessary to 5146 // recalculate all dependencies. 5147 // It is seldom that this needs to be done a second time after adding the 5148 // initial bundle to the region. 5149 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5150 doForAllOpcodes(I, [](ScheduleData *SD) { 5151 SD->clearDependencies(); 5152 }); 5153 } 5154 ReSchedule = true; 5155 } 5156 if (ReSchedule) { 5157 resetSchedule(); 5158 initialFillReadyList(ReadyInsts); 5159 } 5160 assert(Bundle && "Failed to find schedule bundle"); 5161 5162 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5163 << BB->getName() << "\n"); 5164 5165 calculateDependencies(Bundle, true, SLP); 5166 5167 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5168 // means that there are no cyclic dependencies and we can schedule it. 5169 // Note that's important that we don't "schedule" the bundle yet (see 5170 // cancelScheduling). 5171 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5172 5173 ScheduleData *pickedSD = ReadyInsts.back(); 5174 ReadyInsts.pop_back(); 5175 5176 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5177 schedule(pickedSD, ReadyInsts); 5178 } 5179 } 5180 if (!Bundle->isReady()) { 5181 cancelScheduling(VL, S.OpValue); 5182 return None; 5183 } 5184 return Bundle; 5185 } 5186 5187 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5188 Value *OpValue) { 5189 if (isa<PHINode>(OpValue)) 5190 return; 5191 5192 ScheduleData *Bundle = getScheduleData(OpValue); 5193 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5194 assert(!Bundle->IsScheduled && 5195 "Can't cancel bundle which is already scheduled"); 5196 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5197 "tried to unbundle something which is not a bundle"); 5198 5199 // Un-bundle: make single instructions out of the bundle. 5200 ScheduleData *BundleMember = Bundle; 5201 while (BundleMember) { 5202 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5203 BundleMember->FirstInBundle = BundleMember; 5204 ScheduleData *Next = BundleMember->NextInBundle; 5205 BundleMember->NextInBundle = nullptr; 5206 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5207 if (BundleMember->UnscheduledDepsInBundle == 0) { 5208 ReadyInsts.insert(BundleMember); 5209 } 5210 BundleMember = Next; 5211 } 5212 } 5213 5214 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5215 // Allocate a new ScheduleData for the instruction. 5216 if (ChunkPos >= ChunkSize) { 5217 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5218 ChunkPos = 0; 5219 } 5220 return &(ScheduleDataChunks.back()[ChunkPos++]); 5221 } 5222 5223 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5224 const InstructionsState &S) { 5225 if (getScheduleData(V, isOneOf(S, V))) 5226 return true; 5227 Instruction *I = dyn_cast<Instruction>(V); 5228 assert(I && "bundle member must be an instruction"); 5229 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5230 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5231 ScheduleData *ISD = getScheduleData(I); 5232 if (!ISD) 5233 return false; 5234 assert(isInSchedulingRegion(ISD) && 5235 "ScheduleData not in scheduling region"); 5236 ScheduleData *SD = allocateScheduleDataChunks(); 5237 SD->Inst = I; 5238 SD->init(SchedulingRegionID, S.OpValue); 5239 ExtraScheduleDataMap[I][S.OpValue] = SD; 5240 return true; 5241 }; 5242 if (CheckSheduleForI(I)) 5243 return true; 5244 if (!ScheduleStart) { 5245 // It's the first instruction in the new region. 5246 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5247 ScheduleStart = I; 5248 ScheduleEnd = I->getNextNode(); 5249 if (isOneOf(S, I) != I) 5250 CheckSheduleForI(I); 5251 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5252 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5253 return true; 5254 } 5255 // Search up and down at the same time, because we don't know if the new 5256 // instruction is above or below the existing scheduling region. 5257 BasicBlock::reverse_iterator UpIter = 5258 ++ScheduleStart->getIterator().getReverse(); 5259 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5260 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5261 BasicBlock::iterator LowerEnd = BB->end(); 5262 while (true) { 5263 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5264 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5265 return false; 5266 } 5267 5268 if (UpIter != UpperEnd) { 5269 if (&*UpIter == I) { 5270 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5271 ScheduleStart = I; 5272 if (isOneOf(S, I) != I) 5273 CheckSheduleForI(I); 5274 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5275 << "\n"); 5276 return true; 5277 } 5278 ++UpIter; 5279 } 5280 if (DownIter != LowerEnd) { 5281 if (&*DownIter == I) { 5282 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5283 nullptr); 5284 ScheduleEnd = I->getNextNode(); 5285 if (isOneOf(S, I) != I) 5286 CheckSheduleForI(I); 5287 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5288 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5289 << "\n"); 5290 return true; 5291 } 5292 ++DownIter; 5293 } 5294 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5295 "instruction not found in block"); 5296 } 5297 return true; 5298 } 5299 5300 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5301 Instruction *ToI, 5302 ScheduleData *PrevLoadStore, 5303 ScheduleData *NextLoadStore) { 5304 ScheduleData *CurrentLoadStore = PrevLoadStore; 5305 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5306 ScheduleData *SD = ScheduleDataMap[I]; 5307 if (!SD) { 5308 SD = allocateScheduleDataChunks(); 5309 ScheduleDataMap[I] = SD; 5310 SD->Inst = I; 5311 } 5312 assert(!isInSchedulingRegion(SD) && 5313 "new ScheduleData already in scheduling region"); 5314 SD->init(SchedulingRegionID, I); 5315 5316 if (I->mayReadOrWriteMemory() && 5317 (!isa<IntrinsicInst>(I) || 5318 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5319 cast<IntrinsicInst>(I)->getIntrinsicID() != 5320 Intrinsic::pseudoprobe))) { 5321 // Update the linked list of memory accessing instructions. 5322 if (CurrentLoadStore) { 5323 CurrentLoadStore->NextLoadStore = SD; 5324 } else { 5325 FirstLoadStoreInRegion = SD; 5326 } 5327 CurrentLoadStore = SD; 5328 } 5329 } 5330 if (NextLoadStore) { 5331 if (CurrentLoadStore) 5332 CurrentLoadStore->NextLoadStore = NextLoadStore; 5333 } else { 5334 LastLoadStoreInRegion = CurrentLoadStore; 5335 } 5336 } 5337 5338 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5339 bool InsertInReadyList, 5340 BoUpSLP *SLP) { 5341 assert(SD->isSchedulingEntity()); 5342 5343 SmallVector<ScheduleData *, 10> WorkList; 5344 WorkList.push_back(SD); 5345 5346 while (!WorkList.empty()) { 5347 ScheduleData *SD = WorkList.back(); 5348 WorkList.pop_back(); 5349 5350 ScheduleData *BundleMember = SD; 5351 while (BundleMember) { 5352 assert(isInSchedulingRegion(BundleMember)); 5353 if (!BundleMember->hasValidDependencies()) { 5354 5355 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5356 << "\n"); 5357 BundleMember->Dependencies = 0; 5358 BundleMember->resetUnscheduledDeps(); 5359 5360 // Handle def-use chain dependencies. 5361 if (BundleMember->OpValue != BundleMember->Inst) { 5362 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5363 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5364 BundleMember->Dependencies++; 5365 ScheduleData *DestBundle = UseSD->FirstInBundle; 5366 if (!DestBundle->IsScheduled) 5367 BundleMember->incrementUnscheduledDeps(1); 5368 if (!DestBundle->hasValidDependencies()) 5369 WorkList.push_back(DestBundle); 5370 } 5371 } else { 5372 for (User *U : BundleMember->Inst->users()) { 5373 if (isa<Instruction>(U)) { 5374 ScheduleData *UseSD = getScheduleData(U); 5375 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5376 BundleMember->Dependencies++; 5377 ScheduleData *DestBundle = UseSD->FirstInBundle; 5378 if (!DestBundle->IsScheduled) 5379 BundleMember->incrementUnscheduledDeps(1); 5380 if (!DestBundle->hasValidDependencies()) 5381 WorkList.push_back(DestBundle); 5382 } 5383 } else { 5384 // I'm not sure if this can ever happen. But we need to be safe. 5385 // This lets the instruction/bundle never be scheduled and 5386 // eventually disable vectorization. 5387 BundleMember->Dependencies++; 5388 BundleMember->incrementUnscheduledDeps(1); 5389 } 5390 } 5391 } 5392 5393 // Handle the memory dependencies. 5394 ScheduleData *DepDest = BundleMember->NextLoadStore; 5395 if (DepDest) { 5396 Instruction *SrcInst = BundleMember->Inst; 5397 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5398 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5399 unsigned numAliased = 0; 5400 unsigned DistToSrc = 1; 5401 5402 while (DepDest) { 5403 assert(isInSchedulingRegion(DepDest)); 5404 5405 // We have two limits to reduce the complexity: 5406 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5407 // SLP->isAliased (which is the expensive part in this loop). 5408 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5409 // the whole loop (even if the loop is fast, it's quadratic). 5410 // It's important for the loop break condition (see below) to 5411 // check this limit even between two read-only instructions. 5412 if (DistToSrc >= MaxMemDepDistance || 5413 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5414 (numAliased >= AliasedCheckLimit || 5415 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5416 5417 // We increment the counter only if the locations are aliased 5418 // (instead of counting all alias checks). This gives a better 5419 // balance between reduced runtime and accurate dependencies. 5420 numAliased++; 5421 5422 DepDest->MemoryDependencies.push_back(BundleMember); 5423 BundleMember->Dependencies++; 5424 ScheduleData *DestBundle = DepDest->FirstInBundle; 5425 if (!DestBundle->IsScheduled) { 5426 BundleMember->incrementUnscheduledDeps(1); 5427 } 5428 if (!DestBundle->hasValidDependencies()) { 5429 WorkList.push_back(DestBundle); 5430 } 5431 } 5432 DepDest = DepDest->NextLoadStore; 5433 5434 // Example, explaining the loop break condition: Let's assume our 5435 // starting instruction is i0 and MaxMemDepDistance = 3. 5436 // 5437 // +--------v--v--v 5438 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5439 // +--------^--^--^ 5440 // 5441 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5442 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5443 // Previously we already added dependencies from i3 to i6,i7,i8 5444 // (because of MaxMemDepDistance). As we added a dependency from 5445 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5446 // and we can abort this loop at i6. 5447 if (DistToSrc >= 2 * MaxMemDepDistance) 5448 break; 5449 DistToSrc++; 5450 } 5451 } 5452 } 5453 BundleMember = BundleMember->NextInBundle; 5454 } 5455 if (InsertInReadyList && SD->isReady()) { 5456 ReadyInsts.push_back(SD); 5457 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5458 << "\n"); 5459 } 5460 } 5461 } 5462 5463 void BoUpSLP::BlockScheduling::resetSchedule() { 5464 assert(ScheduleStart && 5465 "tried to reset schedule on block which has not been scheduled"); 5466 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5467 doForAllOpcodes(I, [&](ScheduleData *SD) { 5468 assert(isInSchedulingRegion(SD) && 5469 "ScheduleData not in scheduling region"); 5470 SD->IsScheduled = false; 5471 SD->resetUnscheduledDeps(); 5472 }); 5473 } 5474 ReadyInsts.clear(); 5475 } 5476 5477 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5478 if (!BS->ScheduleStart) 5479 return; 5480 5481 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5482 5483 BS->resetSchedule(); 5484 5485 // For the real scheduling we use a more sophisticated ready-list: it is 5486 // sorted by the original instruction location. This lets the final schedule 5487 // be as close as possible to the original instruction order. 5488 struct ScheduleDataCompare { 5489 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5490 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5491 } 5492 }; 5493 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5494 5495 // Ensure that all dependency data is updated and fill the ready-list with 5496 // initial instructions. 5497 int Idx = 0; 5498 int NumToSchedule = 0; 5499 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5500 I = I->getNextNode()) { 5501 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5502 assert(SD->isPartOfBundle() == 5503 (getTreeEntry(SD->Inst) != nullptr) && 5504 "scheduler and vectorizer bundle mismatch"); 5505 SD->FirstInBundle->SchedulingPriority = Idx++; 5506 if (SD->isSchedulingEntity()) { 5507 BS->calculateDependencies(SD, false, this); 5508 NumToSchedule++; 5509 } 5510 }); 5511 } 5512 BS->initialFillReadyList(ReadyInsts); 5513 5514 Instruction *LastScheduledInst = BS->ScheduleEnd; 5515 5516 // Do the "real" scheduling. 5517 while (!ReadyInsts.empty()) { 5518 ScheduleData *picked = *ReadyInsts.begin(); 5519 ReadyInsts.erase(ReadyInsts.begin()); 5520 5521 // Move the scheduled instruction(s) to their dedicated places, if not 5522 // there yet. 5523 ScheduleData *BundleMember = picked; 5524 while (BundleMember) { 5525 Instruction *pickedInst = BundleMember->Inst; 5526 if (LastScheduledInst->getNextNode() != pickedInst) { 5527 BS->BB->getInstList().remove(pickedInst); 5528 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5529 pickedInst); 5530 } 5531 LastScheduledInst = pickedInst; 5532 BundleMember = BundleMember->NextInBundle; 5533 } 5534 5535 BS->schedule(picked, ReadyInsts); 5536 NumToSchedule--; 5537 } 5538 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5539 5540 // Avoid duplicate scheduling of the block. 5541 BS->ScheduleStart = nullptr; 5542 } 5543 5544 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5545 // If V is a store, just return the width of the stored value (or value 5546 // truncated just before storing) without traversing the expression tree. 5547 // This is the common case. 5548 if (auto *Store = dyn_cast<StoreInst>(V)) { 5549 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5550 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5551 else 5552 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5553 } 5554 5555 auto E = InstrElementSize.find(V); 5556 if (E != InstrElementSize.end()) 5557 return E->second; 5558 5559 // If V is not a store, we can traverse the expression tree to find loads 5560 // that feed it. The type of the loaded value may indicate a more suitable 5561 // width than V's type. We want to base the vector element size on the width 5562 // of memory operations where possible. 5563 SmallVector<Instruction *, 16> Worklist; 5564 SmallPtrSet<Instruction *, 16> Visited; 5565 if (auto *I = dyn_cast<Instruction>(V)) { 5566 Worklist.push_back(I); 5567 Visited.insert(I); 5568 } 5569 5570 // Traverse the expression tree in bottom-up order looking for loads. If we 5571 // encounter an instruction we don't yet handle, we give up. 5572 auto MaxWidth = 0u; 5573 auto FoundUnknownInst = false; 5574 while (!Worklist.empty() && !FoundUnknownInst) { 5575 auto *I = Worklist.pop_back_val(); 5576 5577 // We should only be looking at scalar instructions here. If the current 5578 // instruction has a vector type, give up. 5579 auto *Ty = I->getType(); 5580 if (isa<VectorType>(Ty)) 5581 FoundUnknownInst = true; 5582 5583 // If the current instruction is a load, update MaxWidth to reflect the 5584 // width of the loaded value. 5585 else if (isa<LoadInst>(I)) 5586 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5587 5588 // Otherwise, we need to visit the operands of the instruction. We only 5589 // handle the interesting cases from buildTree here. If an operand is an 5590 // instruction we haven't yet visited, we add it to the worklist. 5591 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5592 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5593 for (Use &U : I->operands()) 5594 if (auto *J = dyn_cast<Instruction>(U.get())) 5595 if (Visited.insert(J).second) 5596 Worklist.push_back(J); 5597 } 5598 5599 // If we don't yet handle the instruction, give up. 5600 else 5601 FoundUnknownInst = true; 5602 } 5603 5604 int Width = MaxWidth; 5605 // If we didn't encounter a memory access in the expression tree, or if we 5606 // gave up for some reason, just return the width of V. Otherwise, return the 5607 // maximum width we found. 5608 if (!MaxWidth || FoundUnknownInst) 5609 Width = DL->getTypeSizeInBits(V->getType()); 5610 5611 for (Instruction *I : Visited) 5612 InstrElementSize[I] = Width; 5613 5614 return Width; 5615 } 5616 5617 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5618 // smaller type with a truncation. We collect the values that will be demoted 5619 // in ToDemote and additional roots that require investigating in Roots. 5620 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5621 SmallVectorImpl<Value *> &ToDemote, 5622 SmallVectorImpl<Value *> &Roots) { 5623 // We can always demote constants. 5624 if (isa<Constant>(V)) { 5625 ToDemote.push_back(V); 5626 return true; 5627 } 5628 5629 // If the value is not an instruction in the expression with only one use, it 5630 // cannot be demoted. 5631 auto *I = dyn_cast<Instruction>(V); 5632 if (!I || !I->hasOneUse() || !Expr.count(I)) 5633 return false; 5634 5635 switch (I->getOpcode()) { 5636 5637 // We can always demote truncations and extensions. Since truncations can 5638 // seed additional demotion, we save the truncated value. 5639 case Instruction::Trunc: 5640 Roots.push_back(I->getOperand(0)); 5641 break; 5642 case Instruction::ZExt: 5643 case Instruction::SExt: 5644 break; 5645 5646 // We can demote certain binary operations if we can demote both of their 5647 // operands. 5648 case Instruction::Add: 5649 case Instruction::Sub: 5650 case Instruction::Mul: 5651 case Instruction::And: 5652 case Instruction::Or: 5653 case Instruction::Xor: 5654 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5655 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5656 return false; 5657 break; 5658 5659 // We can demote selects if we can demote their true and false values. 5660 case Instruction::Select: { 5661 SelectInst *SI = cast<SelectInst>(I); 5662 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5663 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5664 return false; 5665 break; 5666 } 5667 5668 // We can demote phis if we can demote all their incoming operands. Note that 5669 // we don't need to worry about cycles since we ensure single use above. 5670 case Instruction::PHI: { 5671 PHINode *PN = cast<PHINode>(I); 5672 for (Value *IncValue : PN->incoming_values()) 5673 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5674 return false; 5675 break; 5676 } 5677 5678 // Otherwise, conservatively give up. 5679 default: 5680 return false; 5681 } 5682 5683 // Record the value that we can demote. 5684 ToDemote.push_back(V); 5685 return true; 5686 } 5687 5688 void BoUpSLP::computeMinimumValueSizes() { 5689 // If there are no external uses, the expression tree must be rooted by a 5690 // store. We can't demote in-memory values, so there is nothing to do here. 5691 if (ExternalUses.empty()) 5692 return; 5693 5694 // We only attempt to truncate integer expressions. 5695 auto &TreeRoot = VectorizableTree[0]->Scalars; 5696 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5697 if (!TreeRootIT) 5698 return; 5699 5700 // If the expression is not rooted by a store, these roots should have 5701 // external uses. We will rely on InstCombine to rewrite the expression in 5702 // the narrower type. However, InstCombine only rewrites single-use values. 5703 // This means that if a tree entry other than a root is used externally, it 5704 // must have multiple uses and InstCombine will not rewrite it. The code 5705 // below ensures that only the roots are used externally. 5706 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5707 for (auto &EU : ExternalUses) 5708 if (!Expr.erase(EU.Scalar)) 5709 return; 5710 if (!Expr.empty()) 5711 return; 5712 5713 // Collect the scalar values of the vectorizable expression. We will use this 5714 // context to determine which values can be demoted. If we see a truncation, 5715 // we mark it as seeding another demotion. 5716 for (auto &EntryPtr : VectorizableTree) 5717 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5718 5719 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5720 // have a single external user that is not in the vectorizable tree. 5721 for (auto *Root : TreeRoot) 5722 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5723 return; 5724 5725 // Conservatively determine if we can actually truncate the roots of the 5726 // expression. Collect the values that can be demoted in ToDemote and 5727 // additional roots that require investigating in Roots. 5728 SmallVector<Value *, 32> ToDemote; 5729 SmallVector<Value *, 4> Roots; 5730 for (auto *Root : TreeRoot) 5731 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5732 return; 5733 5734 // The maximum bit width required to represent all the values that can be 5735 // demoted without loss of precision. It would be safe to truncate the roots 5736 // of the expression to this width. 5737 auto MaxBitWidth = 8u; 5738 5739 // We first check if all the bits of the roots are demanded. If they're not, 5740 // we can truncate the roots to this narrower type. 5741 for (auto *Root : TreeRoot) { 5742 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5743 MaxBitWidth = std::max<unsigned>( 5744 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5745 } 5746 5747 // True if the roots can be zero-extended back to their original type, rather 5748 // than sign-extended. We know that if the leading bits are not demanded, we 5749 // can safely zero-extend. So we initialize IsKnownPositive to True. 5750 bool IsKnownPositive = true; 5751 5752 // If all the bits of the roots are demanded, we can try a little harder to 5753 // compute a narrower type. This can happen, for example, if the roots are 5754 // getelementptr indices. InstCombine promotes these indices to the pointer 5755 // width. Thus, all their bits are technically demanded even though the 5756 // address computation might be vectorized in a smaller type. 5757 // 5758 // We start by looking at each entry that can be demoted. We compute the 5759 // maximum bit width required to store the scalar by using ValueTracking to 5760 // compute the number of high-order bits we can truncate. 5761 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5762 llvm::all_of(TreeRoot, [](Value *R) { 5763 assert(R->hasOneUse() && "Root should have only one use!"); 5764 return isa<GetElementPtrInst>(R->user_back()); 5765 })) { 5766 MaxBitWidth = 8u; 5767 5768 // Determine if the sign bit of all the roots is known to be zero. If not, 5769 // IsKnownPositive is set to False. 5770 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5771 KnownBits Known = computeKnownBits(R, *DL); 5772 return Known.isNonNegative(); 5773 }); 5774 5775 // Determine the maximum number of bits required to store the scalar 5776 // values. 5777 for (auto *Scalar : ToDemote) { 5778 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5779 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5780 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5781 } 5782 5783 // If we can't prove that the sign bit is zero, we must add one to the 5784 // maximum bit width to account for the unknown sign bit. This preserves 5785 // the existing sign bit so we can safely sign-extend the root back to the 5786 // original type. Otherwise, if we know the sign bit is zero, we will 5787 // zero-extend the root instead. 5788 // 5789 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5790 // one to the maximum bit width will yield a larger-than-necessary 5791 // type. In general, we need to add an extra bit only if we can't 5792 // prove that the upper bit of the original type is equal to the 5793 // upper bit of the proposed smaller type. If these two bits are the 5794 // same (either zero or one) we know that sign-extending from the 5795 // smaller type will result in the same value. Here, since we can't 5796 // yet prove this, we are just making the proposed smaller type 5797 // larger to ensure correctness. 5798 if (!IsKnownPositive) 5799 ++MaxBitWidth; 5800 } 5801 5802 // Round MaxBitWidth up to the next power-of-two. 5803 if (!isPowerOf2_64(MaxBitWidth)) 5804 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5805 5806 // If the maximum bit width we compute is less than the with of the roots' 5807 // type, we can proceed with the narrowing. Otherwise, do nothing. 5808 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5809 return; 5810 5811 // If we can truncate the root, we must collect additional values that might 5812 // be demoted as a result. That is, those seeded by truncations we will 5813 // modify. 5814 while (!Roots.empty()) 5815 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5816 5817 // Finally, map the values we can demote to the maximum bit with we computed. 5818 for (auto *Scalar : ToDemote) 5819 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5820 } 5821 5822 namespace { 5823 5824 /// The SLPVectorizer Pass. 5825 struct SLPVectorizer : public FunctionPass { 5826 SLPVectorizerPass Impl; 5827 5828 /// Pass identification, replacement for typeid 5829 static char ID; 5830 5831 explicit SLPVectorizer() : FunctionPass(ID) { 5832 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5833 } 5834 5835 bool doInitialization(Module &M) override { 5836 return false; 5837 } 5838 5839 bool runOnFunction(Function &F) override { 5840 if (skipFunction(F)) 5841 return false; 5842 5843 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5844 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5845 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5846 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5847 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5848 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5849 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5850 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5851 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5852 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5853 5854 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5855 } 5856 5857 void getAnalysisUsage(AnalysisUsage &AU) const override { 5858 FunctionPass::getAnalysisUsage(AU); 5859 AU.addRequired<AssumptionCacheTracker>(); 5860 AU.addRequired<ScalarEvolutionWrapperPass>(); 5861 AU.addRequired<AAResultsWrapperPass>(); 5862 AU.addRequired<TargetTransformInfoWrapperPass>(); 5863 AU.addRequired<LoopInfoWrapperPass>(); 5864 AU.addRequired<DominatorTreeWrapperPass>(); 5865 AU.addRequired<DemandedBitsWrapperPass>(); 5866 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5867 AU.addRequired<InjectTLIMappingsLegacy>(); 5868 AU.addPreserved<LoopInfoWrapperPass>(); 5869 AU.addPreserved<DominatorTreeWrapperPass>(); 5870 AU.addPreserved<AAResultsWrapperPass>(); 5871 AU.addPreserved<GlobalsAAWrapperPass>(); 5872 AU.setPreservesCFG(); 5873 } 5874 }; 5875 5876 } // end anonymous namespace 5877 5878 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5879 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5880 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5881 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5882 auto *AA = &AM.getResult<AAManager>(F); 5883 auto *LI = &AM.getResult<LoopAnalysis>(F); 5884 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5885 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5886 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5887 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5888 5889 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5890 if (!Changed) 5891 return PreservedAnalyses::all(); 5892 5893 PreservedAnalyses PA; 5894 PA.preserveSet<CFGAnalyses>(); 5895 PA.preserve<AAManager>(); 5896 PA.preserve<GlobalsAA>(); 5897 return PA; 5898 } 5899 5900 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5901 TargetTransformInfo *TTI_, 5902 TargetLibraryInfo *TLI_, AAResults *AA_, 5903 LoopInfo *LI_, DominatorTree *DT_, 5904 AssumptionCache *AC_, DemandedBits *DB_, 5905 OptimizationRemarkEmitter *ORE_) { 5906 if (!RunSLPVectorization) 5907 return false; 5908 SE = SE_; 5909 TTI = TTI_; 5910 TLI = TLI_; 5911 AA = AA_; 5912 LI = LI_; 5913 DT = DT_; 5914 AC = AC_; 5915 DB = DB_; 5916 DL = &F.getParent()->getDataLayout(); 5917 5918 Stores.clear(); 5919 GEPs.clear(); 5920 bool Changed = false; 5921 5922 // If the target claims to have no vector registers don't attempt 5923 // vectorization. 5924 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5925 return false; 5926 5927 // Don't vectorize when the attribute NoImplicitFloat is used. 5928 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5929 return false; 5930 5931 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5932 5933 // Use the bottom up slp vectorizer to construct chains that start with 5934 // store instructions. 5935 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5936 5937 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5938 // delete instructions. 5939 5940 // Scan the blocks in the function in post order. 5941 for (auto BB : post_order(&F.getEntryBlock())) { 5942 collectSeedInstructions(BB); 5943 5944 // Vectorize trees that end at stores. 5945 if (!Stores.empty()) { 5946 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5947 << " underlying objects.\n"); 5948 Changed |= vectorizeStoreChains(R); 5949 } 5950 5951 // Vectorize trees that end at reductions. 5952 Changed |= vectorizeChainsInBlock(BB, R); 5953 5954 // Vectorize the index computations of getelementptr instructions. This 5955 // is primarily intended to catch gather-like idioms ending at 5956 // non-consecutive loads. 5957 if (!GEPs.empty()) { 5958 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5959 << " underlying objects.\n"); 5960 Changed |= vectorizeGEPIndices(BB, R); 5961 } 5962 } 5963 5964 if (Changed) { 5965 R.optimizeGatherSequence(); 5966 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5967 } 5968 return Changed; 5969 } 5970 5971 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5972 unsigned Idx) { 5973 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5974 << "\n"); 5975 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5976 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5977 unsigned VF = Chain.size(); 5978 5979 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5980 return false; 5981 5982 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5983 << "\n"); 5984 5985 R.buildTree(Chain); 5986 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5987 // TODO: Handle orders of size less than number of elements in the vector. 5988 if (Order && Order->size() == Chain.size()) { 5989 // TODO: reorder tree nodes without tree rebuilding. 5990 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5991 llvm::transform(*Order, ReorderedOps.begin(), 5992 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5993 R.buildTree(ReorderedOps); 5994 } 5995 if (R.isTreeTinyAndNotFullyVectorizable()) 5996 return false; 5997 if (R.isLoadCombineCandidate()) 5998 return false; 5999 6000 R.computeMinimumValueSizes(); 6001 6002 InstructionCost Cost = R.getTreeCost(); 6003 6004 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6005 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6006 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6007 6008 using namespace ore; 6009 6010 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6011 cast<StoreInst>(Chain[0])) 6012 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6013 << " and with tree size " 6014 << NV("TreeSize", R.getTreeSize())); 6015 6016 R.vectorizeTree(); 6017 return true; 6018 } 6019 6020 return false; 6021 } 6022 6023 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6024 BoUpSLP &R) { 6025 // We may run into multiple chains that merge into a single chain. We mark the 6026 // stores that we vectorized so that we don't visit the same store twice. 6027 BoUpSLP::ValueSet VectorizedStores; 6028 bool Changed = false; 6029 6030 int E = Stores.size(); 6031 SmallBitVector Tails(E, false); 6032 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6033 int MaxIter = MaxStoreLookup.getValue(); 6034 int IterCnt; 6035 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6036 &ConsecutiveChain](int K, int Idx) { 6037 if (IterCnt >= MaxIter) 6038 return true; 6039 ++IterCnt; 6040 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6041 return false; 6042 6043 Tails.set(Idx); 6044 ConsecutiveChain[K] = Idx; 6045 return true; 6046 }; 6047 // Do a quadratic search on all of the given stores in reverse order and find 6048 // all of the pairs of stores that follow each other. 6049 for (int Idx = E - 1; Idx >= 0; --Idx) { 6050 // If a store has multiple consecutive store candidates, search according 6051 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6052 // This is because usually pairing with immediate succeeding or preceding 6053 // candidate create the best chance to find slp vectorization opportunity. 6054 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6055 IterCnt = 0; 6056 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6057 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6058 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6059 break; 6060 } 6061 6062 // For stores that start but don't end a link in the chain: 6063 for (int Cnt = E; Cnt > 0; --Cnt) { 6064 int I = Cnt - 1; 6065 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6066 continue; 6067 // We found a store instr that starts a chain. Now follow the chain and try 6068 // to vectorize it. 6069 BoUpSLP::ValueList Operands; 6070 // Collect the chain into a list. 6071 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6072 Operands.push_back(Stores[I]); 6073 // Move to the next value in the chain. 6074 I = ConsecutiveChain[I]; 6075 } 6076 6077 // If a vector register can't hold 1 element, we are done. 6078 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6079 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6080 if (MaxVecRegSize % EltSize != 0) 6081 continue; 6082 6083 unsigned MaxElts = MaxVecRegSize / EltSize; 6084 // FIXME: Is division-by-2 the correct step? Should we assert that the 6085 // register size is a power-of-2? 6086 unsigned StartIdx = 0; 6087 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6088 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6089 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6090 if (!VectorizedStores.count(Slice.front()) && 6091 !VectorizedStores.count(Slice.back()) && 6092 vectorizeStoreChain(Slice, R, Cnt)) { 6093 // Mark the vectorized stores so that we don't vectorize them again. 6094 VectorizedStores.insert(Slice.begin(), Slice.end()); 6095 Changed = true; 6096 // If we vectorized initial block, no need to try to vectorize it 6097 // again. 6098 if (Cnt == StartIdx) 6099 StartIdx += Size; 6100 Cnt += Size; 6101 continue; 6102 } 6103 ++Cnt; 6104 } 6105 // Check if the whole array was vectorized already - exit. 6106 if (StartIdx >= Operands.size()) 6107 break; 6108 } 6109 } 6110 6111 return Changed; 6112 } 6113 6114 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6115 // Initialize the collections. We will make a single pass over the block. 6116 Stores.clear(); 6117 GEPs.clear(); 6118 6119 // Visit the store and getelementptr instructions in BB and organize them in 6120 // Stores and GEPs according to the underlying objects of their pointer 6121 // operands. 6122 for (Instruction &I : *BB) { 6123 // Ignore store instructions that are volatile or have a pointer operand 6124 // that doesn't point to a scalar type. 6125 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6126 if (!SI->isSimple()) 6127 continue; 6128 if (!isValidElementType(SI->getValueOperand()->getType())) 6129 continue; 6130 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6131 } 6132 6133 // Ignore getelementptr instructions that have more than one index, a 6134 // constant index, or a pointer operand that doesn't point to a scalar 6135 // type. 6136 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6137 auto Idx = GEP->idx_begin()->get(); 6138 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6139 continue; 6140 if (!isValidElementType(Idx->getType())) 6141 continue; 6142 if (GEP->getType()->isVectorTy()) 6143 continue; 6144 GEPs[GEP->getPointerOperand()].push_back(GEP); 6145 } 6146 } 6147 } 6148 6149 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6150 if (!A || !B) 6151 return false; 6152 Value *VL[] = {A, B}; 6153 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6154 } 6155 6156 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6157 bool AllowReorder, 6158 ArrayRef<Value *> InsertUses) { 6159 if (VL.size() < 2) 6160 return false; 6161 6162 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6163 << VL.size() << ".\n"); 6164 6165 // Check that all of the parts are instructions of the same type, 6166 // we permit an alternate opcode via InstructionsState. 6167 InstructionsState S = getSameOpcode(VL); 6168 if (!S.getOpcode()) 6169 return false; 6170 6171 Instruction *I0 = cast<Instruction>(S.OpValue); 6172 // Make sure invalid types (including vector type) are rejected before 6173 // determining vectorization factor for scalar instructions. 6174 for (Value *V : VL) { 6175 Type *Ty = V->getType(); 6176 if (!isValidElementType(Ty)) { 6177 // NOTE: the following will give user internal llvm type name, which may 6178 // not be useful. 6179 R.getORE()->emit([&]() { 6180 std::string type_str; 6181 llvm::raw_string_ostream rso(type_str); 6182 Ty->print(rso); 6183 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6184 << "Cannot SLP vectorize list: type " 6185 << rso.str() + " is unsupported by vectorizer"; 6186 }); 6187 return false; 6188 } 6189 } 6190 6191 unsigned Sz = R.getVectorElementSize(I0); 6192 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6193 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6194 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6195 if (MaxVF < 2) { 6196 R.getORE()->emit([&]() { 6197 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6198 << "Cannot SLP vectorize list: vectorization factor " 6199 << "less than 2 is not supported"; 6200 }); 6201 return false; 6202 } 6203 6204 bool Changed = false; 6205 bool CandidateFound = false; 6206 InstructionCost MinCost = SLPCostThreshold.getValue(); 6207 6208 bool CompensateUseCost = 6209 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6210 return V && isa<InsertElementInst>(V); 6211 }); 6212 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6213 "Each scalar expected to have an associated InsertElement user."); 6214 6215 unsigned NextInst = 0, MaxInst = VL.size(); 6216 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6217 // No actual vectorization should happen, if number of parts is the same as 6218 // provided vectorization factor (i.e. the scalar type is used for vector 6219 // code during codegen). 6220 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6221 if (TTI->getNumberOfParts(VecTy) == VF) 6222 continue; 6223 for (unsigned I = NextInst; I < MaxInst; ++I) { 6224 unsigned OpsWidth = 0; 6225 6226 if (I + VF > MaxInst) 6227 OpsWidth = MaxInst - I; 6228 else 6229 OpsWidth = VF; 6230 6231 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6232 break; 6233 6234 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6235 // Check that a previous iteration of this loop did not delete the Value. 6236 if (llvm::any_of(Ops, [&R](Value *V) { 6237 auto *I = dyn_cast<Instruction>(V); 6238 return I && R.isDeleted(I); 6239 })) 6240 continue; 6241 6242 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6243 << "\n"); 6244 6245 R.buildTree(Ops); 6246 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6247 // TODO: check if we can allow reordering for more cases. 6248 if (AllowReorder && Order) { 6249 // TODO: reorder tree nodes without tree rebuilding. 6250 // Conceptually, there is nothing actually preventing us from trying to 6251 // reorder a larger list. In fact, we do exactly this when vectorizing 6252 // reductions. However, at this point, we only expect to get here when 6253 // there are exactly two operations. 6254 assert(Ops.size() == 2); 6255 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6256 R.buildTree(ReorderedOps, None); 6257 } 6258 if (R.isTreeTinyAndNotFullyVectorizable()) 6259 continue; 6260 6261 R.computeMinimumValueSizes(); 6262 InstructionCost Cost = R.getTreeCost(); 6263 CandidateFound = true; 6264 if (CompensateUseCost) { 6265 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6266 // rather than sum of single inserts as the latter may overestimate 6267 // cost. This work should imply improving cost estimation for extracts 6268 // that added in for external (for vectorization tree) users,i.e. that 6269 // part should also switch to same interface. 6270 // For example, the following case is projected code after SLP: 6271 // %4 = extractelement <4 x i64> %3, i32 0 6272 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6273 // %5 = extractelement <4 x i64> %3, i32 1 6274 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6275 // %6 = extractelement <4 x i64> %3, i32 2 6276 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6277 // %7 = extractelement <4 x i64> %3, i32 3 6278 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6279 // 6280 // Extracts here added by SLP in order to feed users (the inserts) of 6281 // original scalars and contribute to "ExtractCost" at cost evaluation. 6282 // The inserts in turn form sequence to build an aggregate that 6283 // detected by findBuildAggregate routine. 6284 // SLP makes an assumption that such sequence will be optimized away 6285 // later (instcombine) so it tries to compensate ExctractCost with 6286 // cost of insert sequence. 6287 // Current per element cost calculation approach is not quite accurate 6288 // and tends to create bias toward favoring vectorization. 6289 // Switching to the TTI interface might help a bit. 6290 // Alternative solution could be pattern-match to detect a no-op or 6291 // shuffle. 6292 InstructionCost UserCost = 0; 6293 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6294 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6295 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6296 UserCost += TTI->getVectorInstrCost( 6297 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6298 } 6299 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6300 << ".\n"); 6301 Cost -= UserCost; 6302 } 6303 6304 MinCost = InstructionCost::min(MinCost, Cost); 6305 6306 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6307 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6308 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6309 cast<Instruction>(Ops[0])) 6310 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6311 << " and with tree size " 6312 << ore::NV("TreeSize", R.getTreeSize())); 6313 6314 R.vectorizeTree(); 6315 // Move to the next bundle. 6316 I += VF - 1; 6317 NextInst = I + 1; 6318 Changed = true; 6319 } 6320 } 6321 } 6322 6323 if (!Changed && CandidateFound) { 6324 R.getORE()->emit([&]() { 6325 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6326 << "List vectorization was possible but not beneficial with cost " 6327 << ore::NV("Cost", MinCost) << " >= " 6328 << ore::NV("Treshold", -SLPCostThreshold); 6329 }); 6330 } else if (!Changed) { 6331 R.getORE()->emit([&]() { 6332 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6333 << "Cannot SLP vectorize list: vectorization was impossible" 6334 << " with available vectorization factors"; 6335 }); 6336 } 6337 return Changed; 6338 } 6339 6340 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6341 if (!I) 6342 return false; 6343 6344 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6345 return false; 6346 6347 Value *P = I->getParent(); 6348 6349 // Vectorize in current basic block only. 6350 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6351 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6352 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6353 return false; 6354 6355 // Try to vectorize V. 6356 if (tryToVectorizePair(Op0, Op1, R)) 6357 return true; 6358 6359 auto *A = dyn_cast<BinaryOperator>(Op0); 6360 auto *B = dyn_cast<BinaryOperator>(Op1); 6361 // Try to skip B. 6362 if (B && B->hasOneUse()) { 6363 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6364 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6365 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6366 return true; 6367 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6368 return true; 6369 } 6370 6371 // Try to skip A. 6372 if (A && A->hasOneUse()) { 6373 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6374 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6375 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6376 return true; 6377 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6378 return true; 6379 } 6380 return false; 6381 } 6382 6383 namespace { 6384 6385 /// Model horizontal reductions. 6386 /// 6387 /// A horizontal reduction is a tree of reduction instructions that has values 6388 /// that can be put into a vector as its leaves. For example: 6389 /// 6390 /// mul mul mul mul 6391 /// \ / \ / 6392 /// + + 6393 /// \ / 6394 /// + 6395 /// This tree has "mul" as its leaf values and "+" as its reduction 6396 /// instructions. A reduction can feed into a store or a binary operation 6397 /// feeding a phi. 6398 /// ... 6399 /// \ / 6400 /// + 6401 /// | 6402 /// phi += 6403 /// 6404 /// Or: 6405 /// ... 6406 /// \ / 6407 /// + 6408 /// | 6409 /// *p = 6410 /// 6411 class HorizontalReduction { 6412 using ReductionOpsType = SmallVector<Value *, 16>; 6413 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6414 ReductionOpsListType ReductionOps; 6415 SmallVector<Value *, 32> ReducedVals; 6416 // Use map vector to make stable output. 6417 MapVector<Instruction *, Value *> ExtraArgs; 6418 6419 /// Contains info about operation, like its opcode, left and right operands. 6420 class OperationData { 6421 /// Opcode of the instruction. 6422 unsigned Opcode = 0; 6423 6424 /// Kind of the reduction operation. 6425 RecurKind Kind = RecurKind::None; 6426 6427 /// Checks if the reduction operation can be vectorized. 6428 bool isVectorizable() const { 6429 switch (Kind) { 6430 case RecurKind::Add: 6431 return Opcode == Instruction::Add; 6432 case RecurKind::Mul: 6433 return Opcode == Instruction::Mul; 6434 case RecurKind::Or: 6435 return Opcode == Instruction::Or; 6436 case RecurKind::And: 6437 return Opcode == Instruction::And; 6438 case RecurKind::Xor: 6439 return Opcode == Instruction::Xor; 6440 case RecurKind::FAdd: 6441 return Opcode == Instruction::FAdd; 6442 case RecurKind::FMul: 6443 return Opcode == Instruction::FMul; 6444 case RecurKind::SMax: 6445 case RecurKind::SMin: 6446 case RecurKind::UMax: 6447 case RecurKind::UMin: 6448 return Opcode == Instruction::ICmp; 6449 default: 6450 return false; 6451 } 6452 } 6453 6454 /// Creates reduction operation with the current opcode. 6455 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6456 const Twine &Name) const { 6457 assert(isVectorizable() && "Unhandled reduction operation."); 6458 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6459 switch (Kind) { 6460 case RecurKind::Add: 6461 case RecurKind::Mul: 6462 case RecurKind::Or: 6463 case RecurKind::And: 6464 case RecurKind::Xor: 6465 case RecurKind::FAdd: 6466 case RecurKind::FMul: 6467 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6468 Name); 6469 6470 case RecurKind::SMax: { 6471 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6472 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6473 } 6474 case RecurKind::SMin: { 6475 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6476 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6477 } 6478 case RecurKind::UMax: { 6479 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6480 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6481 } 6482 case RecurKind::UMin: { 6483 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6484 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6485 } 6486 default: 6487 llvm_unreachable("Unknown reduction operation."); 6488 } 6489 } 6490 6491 public: 6492 explicit OperationData() = default; 6493 6494 /// Construction for reduced values. They are identified by opcode only and 6495 /// don't have associated LHS/RHS values. 6496 explicit OperationData(Instruction &I) { 6497 Opcode = I.getOpcode(); 6498 } 6499 6500 /// Constructor for reduction operations with opcode and type. 6501 OperationData(unsigned Opcode, RecurKind RdxKind) 6502 : Opcode(Opcode), Kind(RdxKind) { 6503 assert(Kind != RecurKind::None && "Expected reduction operation."); 6504 } 6505 6506 explicit operator bool() const { return Opcode; } 6507 6508 /// Return true if this operation is any kind of minimum or maximum. 6509 bool isMinMax() const { 6510 assert(Kind != RecurKind::None && "Expected reduction operation."); 6511 return RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind); 6512 } 6513 6514 /// Get the index of the first operand. 6515 unsigned getFirstOperandIndex() const { 6516 assert(!!*this && "The opcode is not set."); 6517 // We allow calling this before 'Kind' is set, so handle that specially. 6518 if (Kind == RecurKind::None) 6519 return 0; 6520 return isMinMax() ? 1 : 0; 6521 } 6522 6523 /// Total number of operands in the reduction operation. 6524 unsigned getNumberOfOperands() const { 6525 assert(Kind != RecurKind::None && !!*this && 6526 "Expected reduction operation."); 6527 return isMinMax() ? 3 : 2; 6528 } 6529 6530 /// Checks if the instruction is in basic block \p BB. 6531 /// For a min/max reduction check that both compare and select are in \p BB. 6532 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6533 assert(Kind != RecurKind::None && !!*this && 6534 "Expected reduction operation."); 6535 if (IsRedOp && isMinMax()) { 6536 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6537 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6538 } 6539 return I->getParent() == BB; 6540 } 6541 6542 /// Expected number of uses for reduction operations/reduced values. 6543 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6544 assert(Kind != RecurKind::None && !!*this && 6545 "Expected reduction operation."); 6546 // SelectInst must be used twice while the condition op must have single 6547 // use only. 6548 if (isMinMax()) 6549 return I->hasNUses(2) && 6550 (!IsReductionOp || 6551 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6552 6553 // Arithmetic reduction operation must be used once only. 6554 return I->hasOneUse(); 6555 } 6556 6557 /// Initializes the list of reduction operations. 6558 void initReductionOps(ReductionOpsListType &ReductionOps) { 6559 assert(Kind != RecurKind::None && !!*this && 6560 "Expected reduction operation."); 6561 if (isMinMax()) 6562 ReductionOps.assign(2, ReductionOpsType()); 6563 else 6564 ReductionOps.assign(1, ReductionOpsType()); 6565 } 6566 6567 /// Add all reduction operations for the reduction instruction \p I. 6568 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6569 assert(Kind != RecurKind::None && !!*this && 6570 "Expected reduction operation."); 6571 if (isMinMax()) { 6572 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6573 ReductionOps[1].emplace_back(I); 6574 } else { 6575 ReductionOps[0].emplace_back(I); 6576 } 6577 } 6578 6579 /// Checks if instruction is associative and can be vectorized. 6580 bool isAssociative(Instruction *I) const { 6581 assert(Kind != RecurKind::None && *this && 6582 "Expected reduction operation."); 6583 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) { 6584 assert(Opcode == Instruction::ICmp && 6585 "Only integer compare operation is expected."); 6586 return true; 6587 } 6588 return I->isAssociative(); 6589 } 6590 6591 /// Checks if the reduction operation can be vectorized. 6592 bool isVectorizable(Instruction *I) const { 6593 return isVectorizable() && isAssociative(I); 6594 } 6595 6596 /// Checks if two operation data are both a reduction op or both a reduced 6597 /// value. 6598 bool operator==(const OperationData &OD) const { 6599 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6600 "One of the comparing operations is incorrect."); 6601 return Kind == OD.Kind && Opcode == OD.Opcode; 6602 } 6603 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6604 void clear() { 6605 Opcode = 0; 6606 Kind = RecurKind::None; 6607 } 6608 6609 /// Get the opcode of the reduction operation. 6610 unsigned getOpcode() const { 6611 assert(isVectorizable() && "Expected vectorizable operation."); 6612 return Opcode; 6613 } 6614 6615 /// Get kind of reduction data. 6616 RecurKind getKind() const { return Kind; } 6617 Value *getLHS(Instruction *I) const { 6618 if (Kind == RecurKind::None) 6619 return nullptr; 6620 return I->getOperand(getFirstOperandIndex()); 6621 } 6622 Value *getRHS(Instruction *I) const { 6623 if (Kind == RecurKind::None) 6624 return nullptr; 6625 return I->getOperand(getFirstOperandIndex() + 1); 6626 } 6627 6628 /// Creates reduction operation with the current opcode with the IR flags 6629 /// from \p ReductionOps. 6630 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6631 const Twine &Name, 6632 const ReductionOpsListType &ReductionOps) const { 6633 assert(isVectorizable() && 6634 "Expected add|fadd or min/max reduction operation."); 6635 Value *Op = createOp(Builder, LHS, RHS, Name); 6636 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) { 6637 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6638 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6639 propagateIRFlags(Op, ReductionOps[1]); 6640 return Op; 6641 } 6642 propagateIRFlags(Op, ReductionOps[0]); 6643 return Op; 6644 } 6645 /// Creates reduction operation with the current opcode with the IR flags 6646 /// from \p I. 6647 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6648 const Twine &Name, Instruction *I) const { 6649 assert(isVectorizable() && 6650 "Expected add|fadd or min/max reduction operation."); 6651 Value *Op = createOp(Builder, LHS, RHS, Name); 6652 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) { 6653 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6654 propagateIRFlags(Sel->getCondition(), 6655 cast<SelectInst>(I)->getCondition()); 6656 } 6657 } 6658 propagateIRFlags(Op, I); 6659 return Op; 6660 } 6661 }; 6662 6663 WeakTrackingVH ReductionRoot; 6664 6665 /// The operation data of the reduction operation. 6666 OperationData RdxTreeInst; 6667 6668 /// The operation data for the leaf values that we perform a reduction on. 6669 OperationData RdxLeafVal; 6670 6671 /// Checks if the ParentStackElem.first should be marked as a reduction 6672 /// operation with an extra argument or as extra argument itself. 6673 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6674 Value *ExtraArg) { 6675 if (ExtraArgs.count(ParentStackElem.first)) { 6676 ExtraArgs[ParentStackElem.first] = nullptr; 6677 // We ran into something like: 6678 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6679 // The whole ParentStackElem.first should be considered as an extra value 6680 // in this case. 6681 // Do not perform analysis of remaining operands of ParentStackElem.first 6682 // instruction, this whole instruction is an extra argument. 6683 OperationData OpData = getOperationData(ParentStackElem.first); 6684 ParentStackElem.second = OpData.getNumberOfOperands(); 6685 } else { 6686 // We ran into something like: 6687 // ParentStackElem.first += ... + ExtraArg + ... 6688 ExtraArgs[ParentStackElem.first] = ExtraArg; 6689 } 6690 } 6691 6692 static OperationData getOperationData(Instruction *I) { 6693 if (!I) 6694 return OperationData(); 6695 6696 TargetTransformInfo::ReductionFlags RdxFlags; 6697 if (match(I, m_Add(m_Value(), m_Value()))) 6698 return OperationData(I->getOpcode(), RecurKind::Add); 6699 if (match(I, m_Mul(m_Value(), m_Value()))) 6700 return OperationData(I->getOpcode(), RecurKind::Mul); 6701 if (match(I, m_And(m_Value(), m_Value()))) 6702 return OperationData(I->getOpcode(), RecurKind::And); 6703 if (match(I, m_Or(m_Value(), m_Value()))) 6704 return OperationData(I->getOpcode(), RecurKind::Or); 6705 if (match(I, m_Xor(m_Value(), m_Value()))) 6706 return OperationData(I->getOpcode(), RecurKind::Xor); 6707 if (match(I, m_FAdd(m_Value(), m_Value()))) 6708 return OperationData(I->getOpcode(), RecurKind::FAdd); 6709 if (match(I, m_FMul(m_Value(), m_Value()))) 6710 return OperationData(I->getOpcode(), RecurKind::FMul); 6711 6712 if (match(I, m_SMax(m_Value(), m_Value()))) 6713 return OperationData(Instruction::ICmp, RecurKind::SMax); 6714 if (match(I, m_SMin(m_Value(), m_Value()))) 6715 return OperationData(Instruction::ICmp, RecurKind::SMin); 6716 if (match(I, m_UMax(m_Value(), m_Value()))) 6717 return OperationData(Instruction::ICmp, RecurKind::UMax); 6718 if (match(I, m_UMin(m_Value(), m_Value()))) 6719 return OperationData(Instruction::ICmp, RecurKind::UMin); 6720 6721 if (auto *Select = dyn_cast<SelectInst>(I)) { 6722 // Try harder: look for min/max pattern based on instructions producing 6723 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6724 // During the intermediate stages of SLP, it's very common to have 6725 // pattern like this (since optimizeGatherSequence is run only once 6726 // at the end): 6727 // %1 = extractelement <2 x i32> %a, i32 0 6728 // %2 = extractelement <2 x i32> %a, i32 1 6729 // %cond = icmp sgt i32 %1, %2 6730 // %3 = extractelement <2 x i32> %a, i32 0 6731 // %4 = extractelement <2 x i32> %a, i32 1 6732 // %select = select i1 %cond, i32 %3, i32 %4 6733 CmpInst::Predicate Pred; 6734 Instruction *L1; 6735 Instruction *L2; 6736 6737 Value *LHS = Select->getTrueValue(); 6738 Value *RHS = Select->getFalseValue(); 6739 Value *Cond = Select->getCondition(); 6740 6741 // TODO: Support inverse predicates. 6742 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6743 if (!isa<ExtractElementInst>(RHS) || 6744 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6745 return OperationData(*I); 6746 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6747 if (!isa<ExtractElementInst>(LHS) || 6748 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6749 return OperationData(*I); 6750 } else { 6751 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6752 return OperationData(*I); 6753 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6754 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6755 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6756 return OperationData(*I); 6757 } 6758 6759 TargetTransformInfo::ReductionFlags RdxFlags; 6760 switch (Pred) { 6761 default: 6762 return OperationData(*I); 6763 case CmpInst::ICMP_SGT: 6764 case CmpInst::ICMP_SGE: 6765 return OperationData(Instruction::ICmp, RecurKind::SMax); 6766 case CmpInst::ICMP_SLT: 6767 case CmpInst::ICMP_SLE: 6768 return OperationData(Instruction::ICmp, RecurKind::SMin); 6769 case CmpInst::ICMP_UGT: 6770 case CmpInst::ICMP_UGE: 6771 return OperationData(Instruction::ICmp, RecurKind::UMax); 6772 case CmpInst::ICMP_ULT: 6773 case CmpInst::ICMP_ULE: 6774 return OperationData(Instruction::ICmp, RecurKind::UMin); 6775 } 6776 } 6777 return OperationData(*I); 6778 } 6779 6780 public: 6781 HorizontalReduction() = default; 6782 6783 /// Try to find a reduction tree. 6784 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6785 assert((!Phi || is_contained(Phi->operands(), B)) && 6786 "Thi phi needs to use the binary operator"); 6787 6788 RdxTreeInst = getOperationData(B); 6789 6790 // We could have a initial reductions that is not an add. 6791 // r *= v1 + v2 + v3 + v4 6792 // In such a case start looking for a tree rooted in the first '+'. 6793 if (Phi) { 6794 if (RdxTreeInst.getLHS(B) == Phi) { 6795 Phi = nullptr; 6796 B = dyn_cast<Instruction>(RdxTreeInst.getRHS(B)); 6797 RdxTreeInst = getOperationData(B); 6798 } else if (RdxTreeInst.getRHS(B) == Phi) { 6799 Phi = nullptr; 6800 B = dyn_cast<Instruction>(RdxTreeInst.getLHS(B)); 6801 RdxTreeInst = getOperationData(B); 6802 } 6803 } 6804 6805 if (!RdxTreeInst.isVectorizable(B)) 6806 return false; 6807 6808 Type *Ty = B->getType(); 6809 if (!isValidElementType(Ty)) 6810 return false; 6811 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6812 return false; 6813 6814 RdxLeafVal.clear(); 6815 ReductionRoot = B; 6816 6817 // Post order traverse the reduction tree starting at B. We only handle true 6818 // trees containing only binary operators. 6819 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6820 Stack.push_back(std::make_pair(B, RdxTreeInst.getFirstOperandIndex())); 6821 RdxTreeInst.initReductionOps(ReductionOps); 6822 while (!Stack.empty()) { 6823 Instruction *TreeN = Stack.back().first; 6824 unsigned EdgeToVisit = Stack.back().second++; 6825 OperationData OpData = getOperationData(TreeN); 6826 bool IsReducedValue = OpData != RdxTreeInst; 6827 6828 // Postorder vist. 6829 if (IsReducedValue || EdgeToVisit == OpData.getNumberOfOperands()) { 6830 if (IsReducedValue) 6831 ReducedVals.push_back(TreeN); 6832 else { 6833 auto I = ExtraArgs.find(TreeN); 6834 if (I != ExtraArgs.end() && !I->second) { 6835 // Check if TreeN is an extra argument of its parent operation. 6836 if (Stack.size() <= 1) { 6837 // TreeN can't be an extra argument as it is a root reduction 6838 // operation. 6839 return false; 6840 } 6841 // Yes, TreeN is an extra argument, do not add it to a list of 6842 // reduction operations. 6843 // Stack[Stack.size() - 2] always points to the parent operation. 6844 markExtraArg(Stack[Stack.size() - 2], TreeN); 6845 ExtraArgs.erase(TreeN); 6846 } else 6847 RdxTreeInst.addReductionOps(TreeN, ReductionOps); 6848 } 6849 // Retract. 6850 Stack.pop_back(); 6851 continue; 6852 } 6853 6854 // Visit left or right. 6855 Value *NextV = TreeN->getOperand(EdgeToVisit); 6856 if (NextV != Phi) { 6857 auto *I = dyn_cast<Instruction>(NextV); 6858 OpData = getOperationData(I); 6859 // Continue analysis if the next operand is a reduction operation or 6860 // (possibly) a reduced value. If the reduced value opcode is not set, 6861 // the first met operation != reduction operation is considered as the 6862 // reduced value class. 6863 const bool IsRdxInst = OpData == RdxTreeInst; 6864 if (I && (!RdxLeafVal || OpData == RdxLeafVal || IsRdxInst)) { 6865 // Only handle trees in the current basic block. 6866 if (!RdxTreeInst.hasSameParent(I, B->getParent(), IsRdxInst)) { 6867 // I is an extra argument for TreeN (its parent operation). 6868 markExtraArg(Stack.back(), I); 6869 continue; 6870 } 6871 6872 // Each tree node needs to have minimal number of users except for the 6873 // ultimate reduction. 6874 if (!RdxTreeInst.hasRequiredNumberOfUses(I, IsRdxInst) && I != B) { 6875 // I is an extra argument for TreeN (its parent operation). 6876 markExtraArg(Stack.back(), I); 6877 continue; 6878 } 6879 6880 if (IsRdxInst) { 6881 // We need to be able to reassociate the reduction operations. 6882 if (!OpData.isAssociative(I)) { 6883 // I is an extra argument for TreeN (its parent operation). 6884 markExtraArg(Stack.back(), I); 6885 continue; 6886 } 6887 } else if (RdxLeafVal && RdxLeafVal != OpData) { 6888 // Make sure that the opcodes of the operations that we are going to 6889 // reduce match. 6890 // I is an extra argument for TreeN (its parent operation). 6891 markExtraArg(Stack.back(), I); 6892 continue; 6893 } else if (!RdxLeafVal) { 6894 RdxLeafVal = OpData; 6895 } 6896 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6897 continue; 6898 } 6899 } 6900 // NextV is an extra argument for TreeN (its parent operation). 6901 markExtraArg(Stack.back(), NextV); 6902 } 6903 return true; 6904 } 6905 6906 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6907 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6908 // If there are a sufficient number of reduction values, reduce 6909 // to a nearby power-of-2. We can safely generate oversized 6910 // vectors and rely on the backend to split them to legal sizes. 6911 unsigned NumReducedVals = ReducedVals.size(); 6912 if (NumReducedVals < 4) 6913 return false; 6914 6915 // FIXME: Fast-math-flags should be set based on the instructions in the 6916 // reduction (not all of 'fast' are required). 6917 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6918 FastMathFlags Unsafe; 6919 Unsafe.setFast(); 6920 Builder.setFastMathFlags(Unsafe); 6921 6922 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6923 // The same extra argument may be used several times, so log each attempt 6924 // to use it. 6925 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6926 assert(Pair.first && "DebugLoc must be set."); 6927 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6928 } 6929 6930 // The compare instruction of a min/max is the insertion point for new 6931 // instructions and may be replaced with a new compare instruction. 6932 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6933 assert(isa<SelectInst>(RdxRootInst) && 6934 "Expected min/max reduction to have select root instruction"); 6935 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6936 assert(isa<Instruction>(ScalarCond) && 6937 "Expected min/max reduction to have compare condition"); 6938 return cast<Instruction>(ScalarCond); 6939 }; 6940 6941 // The reduction root is used as the insertion point for new instructions, 6942 // so set it as externally used to prevent it from being deleted. 6943 ExternallyUsedValues[ReductionRoot]; 6944 SmallVector<Value *, 16> IgnoreList; 6945 for (ReductionOpsType &RdxOp : ReductionOps) 6946 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6947 6948 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6949 if (NumReducedVals > ReduxWidth) { 6950 // In the loop below, we are building a tree based on a window of 6951 // 'ReduxWidth' values. 6952 // If the operands of those values have common traits (compare predicate, 6953 // constant operand, etc), then we want to group those together to 6954 // minimize the cost of the reduction. 6955 6956 // TODO: This should be extended to count common operands for 6957 // compares and binops. 6958 6959 // Step 1: Count the number of times each compare predicate occurs. 6960 SmallDenseMap<unsigned, unsigned> PredCountMap; 6961 for (Value *RdxVal : ReducedVals) { 6962 CmpInst::Predicate Pred; 6963 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6964 ++PredCountMap[Pred]; 6965 } 6966 // Step 2: Sort the values so the most common predicates come first. 6967 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6968 CmpInst::Predicate PredA, PredB; 6969 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6970 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6971 return PredCountMap[PredA] > PredCountMap[PredB]; 6972 } 6973 return false; 6974 }); 6975 } 6976 6977 Value *VectorizedTree = nullptr; 6978 unsigned i = 0; 6979 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6980 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6981 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6982 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6983 if (Order) { 6984 assert(Order->size() == VL.size() && 6985 "Order size must be the same as number of vectorized " 6986 "instructions."); 6987 // TODO: reorder tree nodes without tree rebuilding. 6988 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6989 llvm::transform(*Order, ReorderedOps.begin(), 6990 [VL](const unsigned Idx) { return VL[Idx]; }); 6991 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6992 } 6993 if (V.isTreeTinyAndNotFullyVectorizable()) 6994 break; 6995 if (V.isLoadCombineReductionCandidate(RdxTreeInst.getKind())) 6996 break; 6997 6998 V.computeMinimumValueSizes(); 6999 7000 // Estimate cost. 7001 InstructionCost TreeCost = V.getTreeCost(); 7002 InstructionCost ReductionCost = 7003 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7004 InstructionCost Cost = TreeCost + ReductionCost; 7005 if (!Cost.isValid()) { 7006 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7007 return false; 7008 } 7009 if (Cost >= -SLPCostThreshold) { 7010 V.getORE()->emit([&]() { 7011 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7012 cast<Instruction>(VL[0])) 7013 << "Vectorizing horizontal reduction is possible" 7014 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7015 << " and threshold " 7016 << ore::NV("Threshold", -SLPCostThreshold); 7017 }); 7018 break; 7019 } 7020 7021 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7022 << Cost << ". (HorRdx)\n"); 7023 V.getORE()->emit([&]() { 7024 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7025 cast<Instruction>(VL[0])) 7026 << "Vectorized horizontal reduction with cost " 7027 << ore::NV("Cost", Cost) << " and with tree size " 7028 << ore::NV("TreeSize", V.getTreeSize()); 7029 }); 7030 7031 // Vectorize a tree. 7032 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7033 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7034 7035 // Emit a reduction. For min/max, the root is a select, but the insertion 7036 // point is the compare condition of that select. 7037 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7038 if (RdxTreeInst.isMinMax()) 7039 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7040 else 7041 Builder.SetInsertPoint(RdxRootInst); 7042 7043 Value *ReducedSubTree = 7044 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7045 7046 if (!VectorizedTree) { 7047 // Initialize the final value in the reduction. 7048 VectorizedTree = ReducedSubTree; 7049 } else { 7050 // Update the final value in the reduction. 7051 Builder.SetCurrentDebugLocation(Loc); 7052 VectorizedTree = RdxTreeInst.createOp( 7053 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7054 } 7055 i += ReduxWidth; 7056 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7057 } 7058 7059 if (VectorizedTree) { 7060 // Finish the reduction. 7061 for (; i < NumReducedVals; ++i) { 7062 auto *I = cast<Instruction>(ReducedVals[i]); 7063 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7064 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, I, "", 7065 ReductionOps); 7066 } 7067 for (auto &Pair : ExternallyUsedValues) { 7068 // Add each externally used value to the final reduction. 7069 for (auto *I : Pair.second) { 7070 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7071 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, 7072 Pair.first, "op.extra", I); 7073 } 7074 } 7075 7076 // Update users. For a min/max reduction that ends with a compare and 7077 // select, we also have to RAUW for the compare instruction feeding the 7078 // reduction root. That's because the original compare may have extra uses 7079 // besides the final select of the reduction. 7080 if (RdxTreeInst.isMinMax()) { 7081 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7082 Instruction *ScalarCmp = 7083 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7084 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7085 } 7086 } 7087 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7088 7089 // Mark all scalar reduction ops for deletion, they are replaced by the 7090 // vector reductions. 7091 V.eraseInstructions(IgnoreList); 7092 } 7093 return VectorizedTree != nullptr; 7094 } 7095 7096 unsigned numReductionValues() const { 7097 return ReducedVals.size(); 7098 } 7099 7100 private: 7101 /// Calculate the cost of a reduction. 7102 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7103 unsigned ReduxWidth) { 7104 Type *ScalarTy = FirstReducedVal->getType(); 7105 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7106 7107 RecurKind Kind = RdxTreeInst.getKind(); 7108 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7109 int SplittingRdxCost; 7110 int ScalarReduxCost; 7111 switch (Kind) { 7112 case RecurKind::Add: 7113 case RecurKind::Mul: 7114 case RecurKind::Or: 7115 case RecurKind::And: 7116 case RecurKind::Xor: 7117 case RecurKind::FAdd: 7118 case RecurKind::FMul: 7119 SplittingRdxCost = TTI->getArithmeticReductionCost( 7120 RdxOpcode, VecTy, /*IsPairwiseForm=*/false); 7121 ScalarReduxCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7122 break; 7123 case RecurKind::SMax: 7124 case RecurKind::SMin: 7125 case RecurKind::UMax: 7126 case RecurKind::UMin: { 7127 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7128 bool IsUnsigned = Kind == RecurKind::UMax || Kind == RecurKind::UMin; 7129 SplittingRdxCost = 7130 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7131 /*IsPairwiseForm=*/false, IsUnsigned); 7132 ScalarReduxCost = 7133 TTI->getCmpSelInstrCost(RdxOpcode, ScalarTy) + 7134 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7135 CmpInst::makeCmpResultType(ScalarTy)); 7136 break; 7137 } 7138 default: 7139 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7140 } 7141 7142 ScalarReduxCost *= (ReduxWidth - 1); 7143 LLVM_DEBUG(dbgs() << "SLP: Adding cost " 7144 << SplittingRdxCost - ScalarReduxCost 7145 << " for reduction that starts with " << *FirstReducedVal 7146 << " (It is a splitting reduction)\n"); 7147 return SplittingRdxCost - ScalarReduxCost; 7148 } 7149 7150 /// Emit a horizontal reduction of the vectorized value. 7151 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7152 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7153 assert(VectorizedValue && "Need to have a vectorized tree node"); 7154 assert(isPowerOf2_32(ReduxWidth) && 7155 "We only handle power-of-two reductions for now"); 7156 7157 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7158 // to 'fast'. 7159 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7160 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, 7161 RdxTreeInst.getKind(), 7162 ReductionOps.back()); 7163 } 7164 }; 7165 7166 } // end anonymous namespace 7167 7168 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7169 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7170 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7171 7172 unsigned AggregateSize = 1; 7173 auto *IV = cast<InsertValueInst>(InsertInst); 7174 Type *CurrentType = IV->getType(); 7175 do { 7176 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7177 for (auto *Elt : ST->elements()) 7178 if (Elt != ST->getElementType(0)) // check homogeneity 7179 return None; 7180 AggregateSize *= ST->getNumElements(); 7181 CurrentType = ST->getElementType(0); 7182 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7183 AggregateSize *= AT->getNumElements(); 7184 CurrentType = AT->getElementType(); 7185 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7186 AggregateSize *= VT->getNumElements(); 7187 return AggregateSize; 7188 } else if (CurrentType->isSingleValueType()) { 7189 return AggregateSize; 7190 } else { 7191 return None; 7192 } 7193 } while (true); 7194 } 7195 7196 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7197 unsigned OperandOffset) { 7198 unsigned OperandIndex = OperandOffset; 7199 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7200 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7201 auto *VT = cast<FixedVectorType>(IE->getType()); 7202 OperandIndex *= VT->getNumElements(); 7203 OperandIndex += CI->getZExtValue(); 7204 return OperandIndex; 7205 } 7206 return None; 7207 } 7208 7209 auto *IV = cast<InsertValueInst>(InsertInst); 7210 Type *CurrentType = IV->getType(); 7211 for (unsigned int Index : IV->indices()) { 7212 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7213 OperandIndex *= ST->getNumElements(); 7214 CurrentType = ST->getElementType(Index); 7215 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7216 OperandIndex *= AT->getNumElements(); 7217 CurrentType = AT->getElementType(); 7218 } else { 7219 return None; 7220 } 7221 OperandIndex += Index; 7222 } 7223 return OperandIndex; 7224 } 7225 7226 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7227 TargetTransformInfo *TTI, 7228 SmallVectorImpl<Value *> &BuildVectorOpds, 7229 SmallVectorImpl<Value *> &InsertElts, 7230 unsigned OperandOffset) { 7231 do { 7232 Value *InsertedOperand = LastInsertInst->getOperand(1); 7233 Optional<unsigned> OperandIndex = 7234 getOperandIndex(LastInsertInst, OperandOffset); 7235 if (!OperandIndex) 7236 return false; 7237 if (isa<InsertElementInst>(InsertedOperand) || 7238 isa<InsertValueInst>(InsertedOperand)) { 7239 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7240 BuildVectorOpds, InsertElts, *OperandIndex)) 7241 return false; 7242 } else { 7243 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7244 InsertElts[*OperandIndex] = LastInsertInst; 7245 } 7246 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7247 return true; 7248 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7249 } while (LastInsertInst != nullptr && 7250 (isa<InsertValueInst>(LastInsertInst) || 7251 isa<InsertElementInst>(LastInsertInst)) && 7252 LastInsertInst->hasOneUse()); 7253 return false; 7254 } 7255 7256 /// Recognize construction of vectors like 7257 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7258 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7259 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7260 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7261 /// starting from the last insertelement or insertvalue instruction. 7262 /// 7263 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7264 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7265 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7266 /// 7267 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7268 /// 7269 /// \return true if it matches. 7270 static bool findBuildAggregate(Instruction *LastInsertInst, 7271 TargetTransformInfo *TTI, 7272 SmallVectorImpl<Value *> &BuildVectorOpds, 7273 SmallVectorImpl<Value *> &InsertElts) { 7274 7275 assert((isa<InsertElementInst>(LastInsertInst) || 7276 isa<InsertValueInst>(LastInsertInst)) && 7277 "Expected insertelement or insertvalue instruction!"); 7278 7279 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7280 "Expected empty result vectors!"); 7281 7282 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7283 if (!AggregateSize) 7284 return false; 7285 BuildVectorOpds.resize(*AggregateSize); 7286 InsertElts.resize(*AggregateSize); 7287 7288 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7289 0)) { 7290 llvm::erase_value(BuildVectorOpds, nullptr); 7291 llvm::erase_value(InsertElts, nullptr); 7292 if (BuildVectorOpds.size() >= 2) 7293 return true; 7294 } 7295 7296 return false; 7297 } 7298 7299 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7300 return V->getType() < V2->getType(); 7301 } 7302 7303 /// Try and get a reduction value from a phi node. 7304 /// 7305 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7306 /// if they come from either \p ParentBB or a containing loop latch. 7307 /// 7308 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7309 /// if not possible. 7310 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7311 BasicBlock *ParentBB, LoopInfo *LI) { 7312 // There are situations where the reduction value is not dominated by the 7313 // reduction phi. Vectorizing such cases has been reported to cause 7314 // miscompiles. See PR25787. 7315 auto DominatedReduxValue = [&](Value *R) { 7316 return isa<Instruction>(R) && 7317 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7318 }; 7319 7320 Value *Rdx = nullptr; 7321 7322 // Return the incoming value if it comes from the same BB as the phi node. 7323 if (P->getIncomingBlock(0) == ParentBB) { 7324 Rdx = P->getIncomingValue(0); 7325 } else if (P->getIncomingBlock(1) == ParentBB) { 7326 Rdx = P->getIncomingValue(1); 7327 } 7328 7329 if (Rdx && DominatedReduxValue(Rdx)) 7330 return Rdx; 7331 7332 // Otherwise, check whether we have a loop latch to look at. 7333 Loop *BBL = LI->getLoopFor(ParentBB); 7334 if (!BBL) 7335 return nullptr; 7336 BasicBlock *BBLatch = BBL->getLoopLatch(); 7337 if (!BBLatch) 7338 return nullptr; 7339 7340 // There is a loop latch, return the incoming value if it comes from 7341 // that. This reduction pattern occasionally turns up. 7342 if (P->getIncomingBlock(0) == BBLatch) { 7343 Rdx = P->getIncomingValue(0); 7344 } else if (P->getIncomingBlock(1) == BBLatch) { 7345 Rdx = P->getIncomingValue(1); 7346 } 7347 7348 if (Rdx && DominatedReduxValue(Rdx)) 7349 return Rdx; 7350 7351 return nullptr; 7352 } 7353 7354 /// Attempt to reduce a horizontal reduction. 7355 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7356 /// with reduction operators \a Root (or one of its operands) in a basic block 7357 /// \a BB, then check if it can be done. If horizontal reduction is not found 7358 /// and root instruction is a binary operation, vectorization of the operands is 7359 /// attempted. 7360 /// \returns true if a horizontal reduction was matched and reduced or operands 7361 /// of one of the binary instruction were vectorized. 7362 /// \returns false if a horizontal reduction was not matched (or not possible) 7363 /// or no vectorization of any binary operation feeding \a Root instruction was 7364 /// performed. 7365 static bool tryToVectorizeHorReductionOrInstOperands( 7366 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7367 TargetTransformInfo *TTI, 7368 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7369 if (!ShouldVectorizeHor) 7370 return false; 7371 7372 if (!Root) 7373 return false; 7374 7375 if (Root->getParent() != BB || isa<PHINode>(Root)) 7376 return false; 7377 // Start analysis starting from Root instruction. If horizontal reduction is 7378 // found, try to vectorize it. If it is not a horizontal reduction or 7379 // vectorization is not possible or not effective, and currently analyzed 7380 // instruction is a binary operation, try to vectorize the operands, using 7381 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7382 // the same procedure considering each operand as a possible root of the 7383 // horizontal reduction. 7384 // Interrupt the process if the Root instruction itself was vectorized or all 7385 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7386 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7387 SmallPtrSet<Value *, 8> VisitedInstrs; 7388 bool Res = false; 7389 while (!Stack.empty()) { 7390 Instruction *Inst; 7391 unsigned Level; 7392 std::tie(Inst, Level) = Stack.pop_back_val(); 7393 Value *B0, *B1; 7394 bool IsBinop = match(Inst, m_BinOp(m_Value(B0), m_Value(B1))); 7395 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7396 if (IsBinop || IsSelect) { 7397 HorizontalReduction HorRdx; 7398 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7399 if (HorRdx.tryToReduce(R, TTI)) { 7400 Res = true; 7401 // Set P to nullptr to avoid re-analysis of phi node in 7402 // matchAssociativeReduction function unless this is the root node. 7403 P = nullptr; 7404 continue; 7405 } 7406 } 7407 if (P && IsBinop) { 7408 Inst = dyn_cast<Instruction>(B0); 7409 if (Inst == P) 7410 Inst = dyn_cast<Instruction>(B1); 7411 if (!Inst) { 7412 // Set P to nullptr to avoid re-analysis of phi node in 7413 // matchAssociativeReduction function unless this is the root node. 7414 P = nullptr; 7415 continue; 7416 } 7417 } 7418 } 7419 // Set P to nullptr to avoid re-analysis of phi node in 7420 // matchAssociativeReduction function unless this is the root node. 7421 P = nullptr; 7422 if (Vectorize(Inst, R)) { 7423 Res = true; 7424 continue; 7425 } 7426 7427 // Try to vectorize operands. 7428 // Continue analysis for the instruction from the same basic block only to 7429 // save compile time. 7430 if (++Level < RecursionMaxDepth) 7431 for (auto *Op : Inst->operand_values()) 7432 if (VisitedInstrs.insert(Op).second) 7433 if (auto *I = dyn_cast<Instruction>(Op)) 7434 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7435 Stack.emplace_back(I, Level); 7436 } 7437 return Res; 7438 } 7439 7440 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7441 BasicBlock *BB, BoUpSLP &R, 7442 TargetTransformInfo *TTI) { 7443 auto *I = dyn_cast_or_null<Instruction>(V); 7444 if (!I) 7445 return false; 7446 7447 if (!isa<BinaryOperator>(I)) 7448 P = nullptr; 7449 // Try to match and vectorize a horizontal reduction. 7450 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7451 return tryToVectorize(I, R); 7452 }; 7453 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7454 ExtraVectorization); 7455 } 7456 7457 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7458 BasicBlock *BB, BoUpSLP &R) { 7459 const DataLayout &DL = BB->getModule()->getDataLayout(); 7460 if (!R.canMapToVector(IVI->getType(), DL)) 7461 return false; 7462 7463 SmallVector<Value *, 16> BuildVectorOpds; 7464 SmallVector<Value *, 16> BuildVectorInsts; 7465 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7466 return false; 7467 7468 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7469 // Aggregate value is unlikely to be processed in vector register, we need to 7470 // extract scalars into scalar registers, so NeedExtraction is set true. 7471 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7472 BuildVectorInsts); 7473 } 7474 7475 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7476 BasicBlock *BB, BoUpSLP &R) { 7477 SmallVector<Value *, 16> BuildVectorInsts; 7478 SmallVector<Value *, 16> BuildVectorOpds; 7479 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7480 (llvm::all_of(BuildVectorOpds, 7481 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7482 isShuffle(BuildVectorOpds))) 7483 return false; 7484 7485 // Vectorize starting with the build vector operands ignoring the BuildVector 7486 // instructions for the purpose of scheduling and user extraction. 7487 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7488 BuildVectorInsts); 7489 } 7490 7491 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7492 BoUpSLP &R) { 7493 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7494 return true; 7495 7496 bool OpsChanged = false; 7497 for (int Idx = 0; Idx < 2; ++Idx) { 7498 OpsChanged |= 7499 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7500 } 7501 return OpsChanged; 7502 } 7503 7504 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7505 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7506 bool OpsChanged = false; 7507 for (auto *I : reverse(Instructions)) { 7508 if (R.isDeleted(I)) 7509 continue; 7510 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7511 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7512 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7513 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7514 else if (auto *CI = dyn_cast<CmpInst>(I)) 7515 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7516 } 7517 Instructions.clear(); 7518 return OpsChanged; 7519 } 7520 7521 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7522 bool Changed = false; 7523 SmallVector<Value *, 4> Incoming; 7524 SmallPtrSet<Value *, 16> VisitedInstrs; 7525 7526 bool HaveVectorizedPhiNodes = true; 7527 while (HaveVectorizedPhiNodes) { 7528 HaveVectorizedPhiNodes = false; 7529 7530 // Collect the incoming values from the PHIs. 7531 Incoming.clear(); 7532 for (Instruction &I : *BB) { 7533 PHINode *P = dyn_cast<PHINode>(&I); 7534 if (!P) 7535 break; 7536 7537 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7538 Incoming.push_back(P); 7539 } 7540 7541 // Sort by type. 7542 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7543 7544 // Try to vectorize elements base on their type. 7545 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7546 E = Incoming.end(); 7547 IncIt != E;) { 7548 7549 // Look for the next elements with the same type. 7550 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7551 while (SameTypeIt != E && 7552 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7553 VisitedInstrs.insert(*SameTypeIt); 7554 ++SameTypeIt; 7555 } 7556 7557 // Try to vectorize them. 7558 unsigned NumElts = (SameTypeIt - IncIt); 7559 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7560 << NumElts << ")\n"); 7561 // The order in which the phi nodes appear in the program does not matter. 7562 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7563 // is done when there are exactly two elements since tryToVectorizeList 7564 // asserts that there are only two values when AllowReorder is true. 7565 bool AllowReorder = NumElts == 2; 7566 if (NumElts > 1 && 7567 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7568 // Success start over because instructions might have been changed. 7569 HaveVectorizedPhiNodes = true; 7570 Changed = true; 7571 break; 7572 } 7573 7574 // Start over at the next instruction of a different type (or the end). 7575 IncIt = SameTypeIt; 7576 } 7577 } 7578 7579 VisitedInstrs.clear(); 7580 7581 SmallVector<Instruction *, 8> PostProcessInstructions; 7582 SmallDenseSet<Instruction *, 4> KeyNodes; 7583 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7584 // Skip instructions with scalable type. The num of elements is unknown at 7585 // compile-time for scalable type. 7586 if (isa<ScalableVectorType>(it->getType())) 7587 continue; 7588 7589 // Skip instructions marked for the deletion. 7590 if (R.isDeleted(&*it)) 7591 continue; 7592 // We may go through BB multiple times so skip the one we have checked. 7593 if (!VisitedInstrs.insert(&*it).second) { 7594 if (it->use_empty() && KeyNodes.contains(&*it) && 7595 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7596 // We would like to start over since some instructions are deleted 7597 // and the iterator may become invalid value. 7598 Changed = true; 7599 it = BB->begin(); 7600 e = BB->end(); 7601 } 7602 continue; 7603 } 7604 7605 if (isa<DbgInfoIntrinsic>(it)) 7606 continue; 7607 7608 // Try to vectorize reductions that use PHINodes. 7609 if (PHINode *P = dyn_cast<PHINode>(it)) { 7610 // Check that the PHI is a reduction PHI. 7611 if (P->getNumIncomingValues() == 2) { 7612 // Try to match and vectorize a horizontal reduction. 7613 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7614 TTI)) { 7615 Changed = true; 7616 it = BB->begin(); 7617 e = BB->end(); 7618 continue; 7619 } 7620 } 7621 // Try to vectorize the incoming values of the PHI, to catch reductions 7622 // that feed into PHIs. 7623 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7624 // Skip if the incoming block is the current BB for now. Also, bypass 7625 // unreachable IR for efficiency and to avoid crashing. 7626 // TODO: Collect the skipped incoming values and try to vectorize them 7627 // after processing BB. 7628 if (BB == P->getIncomingBlock(I) || 7629 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7630 continue; 7631 7632 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7633 P->getIncomingBlock(I), R, TTI); 7634 } 7635 continue; 7636 } 7637 7638 // Ran into an instruction without users, like terminator, or function call 7639 // with ignored return value, store. Ignore unused instructions (basing on 7640 // instruction type, except for CallInst and InvokeInst). 7641 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7642 isa<InvokeInst>(it))) { 7643 KeyNodes.insert(&*it); 7644 bool OpsChanged = false; 7645 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7646 for (auto *V : it->operand_values()) { 7647 // Try to match and vectorize a horizontal reduction. 7648 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7649 } 7650 } 7651 // Start vectorization of post-process list of instructions from the 7652 // top-tree instructions to try to vectorize as many instructions as 7653 // possible. 7654 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7655 if (OpsChanged) { 7656 // We would like to start over since some instructions are deleted 7657 // and the iterator may become invalid value. 7658 Changed = true; 7659 it = BB->begin(); 7660 e = BB->end(); 7661 continue; 7662 } 7663 } 7664 7665 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7666 isa<InsertValueInst>(it)) 7667 PostProcessInstructions.push_back(&*it); 7668 } 7669 7670 return Changed; 7671 } 7672 7673 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7674 auto Changed = false; 7675 for (auto &Entry : GEPs) { 7676 // If the getelementptr list has fewer than two elements, there's nothing 7677 // to do. 7678 if (Entry.second.size() < 2) 7679 continue; 7680 7681 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7682 << Entry.second.size() << ".\n"); 7683 7684 // Process the GEP list in chunks suitable for the target's supported 7685 // vector size. If a vector register can't hold 1 element, we are done. We 7686 // are trying to vectorize the index computations, so the maximum number of 7687 // elements is based on the size of the index expression, rather than the 7688 // size of the GEP itself (the target's pointer size). 7689 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7690 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7691 if (MaxVecRegSize < EltSize) 7692 continue; 7693 7694 unsigned MaxElts = MaxVecRegSize / EltSize; 7695 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7696 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7697 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7698 7699 // Initialize a set a candidate getelementptrs. Note that we use a 7700 // SetVector here to preserve program order. If the index computations 7701 // are vectorizable and begin with loads, we want to minimize the chance 7702 // of having to reorder them later. 7703 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7704 7705 // Some of the candidates may have already been vectorized after we 7706 // initially collected them. If so, they are marked as deleted, so remove 7707 // them from the set of candidates. 7708 Candidates.remove_if( 7709 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7710 7711 // Remove from the set of candidates all pairs of getelementptrs with 7712 // constant differences. Such getelementptrs are likely not good 7713 // candidates for vectorization in a bottom-up phase since one can be 7714 // computed from the other. We also ensure all candidate getelementptr 7715 // indices are unique. 7716 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7717 auto *GEPI = GEPList[I]; 7718 if (!Candidates.count(GEPI)) 7719 continue; 7720 auto *SCEVI = SE->getSCEV(GEPList[I]); 7721 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7722 auto *GEPJ = GEPList[J]; 7723 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7724 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7725 Candidates.remove(GEPI); 7726 Candidates.remove(GEPJ); 7727 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7728 Candidates.remove(GEPJ); 7729 } 7730 } 7731 } 7732 7733 // We break out of the above computation as soon as we know there are 7734 // fewer than two candidates remaining. 7735 if (Candidates.size() < 2) 7736 continue; 7737 7738 // Add the single, non-constant index of each candidate to the bundle. We 7739 // ensured the indices met these constraints when we originally collected 7740 // the getelementptrs. 7741 SmallVector<Value *, 16> Bundle(Candidates.size()); 7742 auto BundleIndex = 0u; 7743 for (auto *V : Candidates) { 7744 auto *GEP = cast<GetElementPtrInst>(V); 7745 auto *GEPIdx = GEP->idx_begin()->get(); 7746 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7747 Bundle[BundleIndex++] = GEPIdx; 7748 } 7749 7750 // Try and vectorize the indices. We are currently only interested in 7751 // gather-like cases of the form: 7752 // 7753 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7754 // 7755 // where the loads of "a", the loads of "b", and the subtractions can be 7756 // performed in parallel. It's likely that detecting this pattern in a 7757 // bottom-up phase will be simpler and less costly than building a 7758 // full-blown top-down phase beginning at the consecutive loads. 7759 Changed |= tryToVectorizeList(Bundle, R); 7760 } 7761 } 7762 return Changed; 7763 } 7764 7765 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7766 bool Changed = false; 7767 // Attempt to sort and vectorize each of the store-groups. 7768 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7769 ++it) { 7770 if (it->second.size() < 2) 7771 continue; 7772 7773 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7774 << it->second.size() << ".\n"); 7775 7776 Changed |= vectorizeStores(it->second, R); 7777 } 7778 return Changed; 7779 } 7780 7781 char SLPVectorizer::ID = 0; 7782 7783 static const char lv_name[] = "SLP Vectorizer"; 7784 7785 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7786 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7787 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7788 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7789 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7790 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7791 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7792 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7793 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7794 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7795 7796 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7797