1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns true if all of the instructions in \p VL are in the same block or 119 /// false otherwise. 120 static bool allSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return false; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return false; 129 130 if (BB != I->getParent()) 131 return false; 132 } 133 return true; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<Instruction>(I)) { 215 if (auto *Intersection = dyn_cast<Instruction>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns true if all of the values in \p VL have the same type or false 228 /// otherwise. 229 static bool allSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return false; 234 235 return true; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 308 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 309 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 310 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 311 const DataLayout *DL) 312 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 313 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 314 DL(DL), Builder(Se->getContext()) { 315 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 316 // Use the vector register size specified by the target unless overridden 317 // by a command-line option. 318 // TODO: It would be better to limit the vectorization factor based on 319 // data type rather than just register size. For example, x86 AVX has 320 // 256-bit registers, but it does not support integer operations 321 // at that width (that requires AVX2). 322 if (MaxVectorRegSizeOption.getNumOccurrences()) 323 MaxVecRegSize = MaxVectorRegSizeOption; 324 else 325 MaxVecRegSize = TTI->getRegisterBitWidth(true); 326 327 MinVecRegSize = MinVectorRegSizeOption; 328 } 329 330 /// \brief Vectorize the tree that starts with the elements in \p VL. 331 /// Returns the vectorized root. 332 Value *vectorizeTree(); 333 334 /// \returns the cost incurred by unwanted spills and fills, caused by 335 /// holding live values over call sites. 336 int getSpillCost(); 337 338 /// \returns the vectorization cost of the subtree that starts at \p VL. 339 /// A negative number means that this is profitable. 340 int getTreeCost(); 341 342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 344 void buildTree(ArrayRef<Value *> Roots, 345 ArrayRef<Value *> UserIgnoreLst = None); 346 347 /// Clear the internal data structures that are created by 'buildTree'. 348 void deleteTree() { 349 VectorizableTree.clear(); 350 ScalarToTreeEntry.clear(); 351 MustGather.clear(); 352 ExternalUses.clear(); 353 NumLoadsWantToKeepOrder = 0; 354 NumLoadsWantToChangeOrder = 0; 355 for (auto &Iter : BlocksSchedules) { 356 BlockScheduling *BS = Iter.second.get(); 357 BS->clear(); 358 } 359 MinBWs.clear(); 360 } 361 362 /// \brief Perform LICM and CSE on the newly generated gather sequences. 363 void optimizeGatherSequence(); 364 365 /// \returns true if it is beneficial to reverse the vector order. 366 bool shouldReorder() const { 367 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 368 } 369 370 /// \return The vector element size in bits to use when vectorizing the 371 /// expression tree ending at \p V. If V is a store, the size is the width of 372 /// the stored value. Otherwise, the size is the width of the largest loaded 373 /// value reaching V. This method is used by the vectorizer to calculate 374 /// vectorization factors. 375 unsigned getVectorElementSize(Value *V); 376 377 /// Compute the minimum type sizes required to represent the entries in a 378 /// vectorizable tree. 379 void computeMinimumValueSizes(); 380 381 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 382 unsigned getMaxVecRegSize() const { 383 return MaxVecRegSize; 384 } 385 386 // \returns minimum vector register size as set by cl::opt. 387 unsigned getMinVecRegSize() const { 388 return MinVecRegSize; 389 } 390 391 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 392 /// 393 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 394 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 395 396 /// \returns True if the VectorizableTree is both tiny and not fully 397 /// vectorizable. We do not vectorize such trees. 398 bool isTreeTinyAndNotFullyVectorizable(); 399 400 private: 401 struct TreeEntry; 402 403 /// \returns the cost of the vectorizable entry. 404 int getEntryCost(TreeEntry *E); 405 406 /// This is the recursive part of buildTree. 407 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 408 409 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 410 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 411 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 412 413 /// Vectorize a single entry in the tree. VL icontains all isomorphic scalars 414 /// in order of its usage in a user program, for example ADD1, ADD2 and so on 415 /// or LOAD1 , LOAD2 etc. 416 Value *vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E); 417 418 /// Vectorize a single entry in the tree, starting in \p VL. 419 Value *vectorizeTree(ArrayRef<Value *> VL); 420 421 /// \returns the pointer to the vectorized value if \p VL is already 422 /// vectorized, or NULL. They may happen in cycles. 423 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 424 425 /// \returns the scalarization cost for this type. Scalarization in this 426 /// context means the creation of vectors from a group of scalars. 427 int getGatherCost(Type *Ty); 428 429 /// \returns the scalarization cost for this list of values. Assuming that 430 /// this subtree gets vectorized, we may need to extract the values from the 431 /// roots. This method calculates the cost of extracting the values. 432 int getGatherCost(ArrayRef<Value *> VL); 433 434 /// \brief Set the Builder insert point to one after the last instruction in 435 /// the bundle 436 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 437 438 /// \returns a vector from a collection of scalars in \p VL. 439 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 440 441 /// \returns whether the VectorizableTree is fully vectorizable and will 442 /// be beneficial even the tree height is tiny. 443 bool isFullyVectorizableTinyTree(); 444 445 /// \reorder commutative operands in alt shuffle if they result in 446 /// vectorized code. 447 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 448 SmallVectorImpl<Value *> &Left, 449 SmallVectorImpl<Value *> &Right); 450 /// \reorder commutative operands to get better probability of 451 /// generating vectorized code. 452 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 453 SmallVectorImpl<Value *> &Left, 454 SmallVectorImpl<Value *> &Right); 455 struct TreeEntry { 456 TreeEntry() : Scalars(), VectorizedValue(nullptr), 457 NeedToGather(0), NeedToShuffle(0) {} 458 459 /// \returns true if the scalars in VL are equal to this entry. 460 bool isSame(ArrayRef<Value *> VL) const { 461 assert(VL.size() == Scalars.size() && "Invalid size"); 462 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 463 } 464 465 /// \returns true if the scalars in VL are found in this tree entry. 466 bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL, 467 ScalarEvolution &SE) const { 468 assert(VL.size() == Scalars.size() && "Invalid size"); 469 SmallVector<Value *, 8> List; 470 sortMemAccesses(VL, DL, SE, List); 471 return std::equal(List.begin(), List.end(), Scalars.begin()); 472 } 473 474 /// A vector of scalars. 475 ValueList Scalars; 476 477 /// The Scalars are vectorized into this value. It is initialized to Null. 478 Value *VectorizedValue; 479 480 /// Do we need to gather this sequence ? 481 bool NeedToGather; 482 483 /// Do we need to shuffle the load ? 484 bool NeedToShuffle; 485 }; 486 487 /// Create a new VectorizableTree entry. 488 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 489 bool NeedToShuffle) { 490 VectorizableTree.emplace_back(); 491 int idx = VectorizableTree.size() - 1; 492 TreeEntry *Last = &VectorizableTree[idx]; 493 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 494 Last->NeedToGather = !Vectorized; 495 Last->NeedToShuffle = NeedToShuffle; 496 if (Vectorized) { 497 for (int i = 0, e = VL.size(); i != e; ++i) { 498 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 499 ScalarToTreeEntry[VL[i]] = idx; 500 } 501 } else { 502 MustGather.insert(VL.begin(), VL.end()); 503 } 504 return Last; 505 } 506 507 /// -- Vectorization State -- 508 /// Holds all of the tree entries. 509 std::vector<TreeEntry> VectorizableTree; 510 511 /// Maps a specific scalar to its tree entry. 512 SmallDenseMap<Value*, int> ScalarToTreeEntry; 513 514 /// A list of scalars that we found that we need to keep as scalars. 515 ValueSet MustGather; 516 517 /// This POD struct describes one external user in the vectorized tree. 518 struct ExternalUser { 519 ExternalUser (Value *S, llvm::User *U, int L) : 520 Scalar(S), User(U), Lane(L){} 521 // Which scalar in our function. 522 Value *Scalar; 523 // Which user that uses the scalar. 524 llvm::User *User; 525 // Which lane does the scalar belong to. 526 int Lane; 527 }; 528 typedef SmallVector<ExternalUser, 16> UserList; 529 530 /// Checks if two instructions may access the same memory. 531 /// 532 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 533 /// is invariant in the calling loop. 534 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 535 Instruction *Inst2) { 536 537 // First check if the result is already in the cache. 538 AliasCacheKey key = std::make_pair(Inst1, Inst2); 539 Optional<bool> &result = AliasCache[key]; 540 if (result.hasValue()) { 541 return result.getValue(); 542 } 543 MemoryLocation Loc2 = getLocation(Inst2, AA); 544 bool aliased = true; 545 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 546 // Do the alias check. 547 aliased = AA->alias(Loc1, Loc2); 548 } 549 // Store the result in the cache. 550 result = aliased; 551 return aliased; 552 } 553 554 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 555 556 /// Cache for alias results. 557 /// TODO: consider moving this to the AliasAnalysis itself. 558 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 559 560 /// Removes an instruction from its block and eventually deletes it. 561 /// It's like Instruction::eraseFromParent() except that the actual deletion 562 /// is delayed until BoUpSLP is destructed. 563 /// This is required to ensure that there are no incorrect collisions in the 564 /// AliasCache, which can happen if a new instruction is allocated at the 565 /// same address as a previously deleted instruction. 566 void eraseInstruction(Instruction *I) { 567 I->removeFromParent(); 568 I->dropAllReferences(); 569 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 570 } 571 572 /// Temporary store for deleted instructions. Instructions will be deleted 573 /// eventually when the BoUpSLP is destructed. 574 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 575 576 /// A list of values that need to extracted out of the tree. 577 /// This list holds pairs of (Internal Scalar : External User). 578 UserList ExternalUses; 579 580 /// Values used only by @llvm.assume calls. 581 SmallPtrSet<const Value *, 32> EphValues; 582 583 /// Holds all of the instructions that we gathered. 584 SetVector<Instruction *> GatherSeq; 585 /// A list of blocks that we are going to CSE. 586 SetVector<BasicBlock *> CSEBlocks; 587 588 /// Contains all scheduling relevant data for an instruction. 589 /// A ScheduleData either represents a single instruction or a member of an 590 /// instruction bundle (= a group of instructions which is combined into a 591 /// vector instruction). 592 struct ScheduleData { 593 594 // The initial value for the dependency counters. It means that the 595 // dependencies are not calculated yet. 596 enum { InvalidDeps = -1 }; 597 598 ScheduleData() 599 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 600 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 601 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 602 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 603 604 void init(int BlockSchedulingRegionID) { 605 FirstInBundle = this; 606 NextInBundle = nullptr; 607 NextLoadStore = nullptr; 608 IsScheduled = false; 609 SchedulingRegionID = BlockSchedulingRegionID; 610 UnscheduledDepsInBundle = UnscheduledDeps; 611 clearDependencies(); 612 } 613 614 /// Returns true if the dependency information has been calculated. 615 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 616 617 /// Returns true for single instructions and for bundle representatives 618 /// (= the head of a bundle). 619 bool isSchedulingEntity() const { return FirstInBundle == this; } 620 621 /// Returns true if it represents an instruction bundle and not only a 622 /// single instruction. 623 bool isPartOfBundle() const { 624 return NextInBundle != nullptr || FirstInBundle != this; 625 } 626 627 /// Returns true if it is ready for scheduling, i.e. it has no more 628 /// unscheduled depending instructions/bundles. 629 bool isReady() const { 630 assert(isSchedulingEntity() && 631 "can't consider non-scheduling entity for ready list"); 632 return UnscheduledDepsInBundle == 0 && !IsScheduled; 633 } 634 635 /// Modifies the number of unscheduled dependencies, also updating it for 636 /// the whole bundle. 637 int incrementUnscheduledDeps(int Incr) { 638 UnscheduledDeps += Incr; 639 return FirstInBundle->UnscheduledDepsInBundle += Incr; 640 } 641 642 /// Sets the number of unscheduled dependencies to the number of 643 /// dependencies. 644 void resetUnscheduledDeps() { 645 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 646 } 647 648 /// Clears all dependency information. 649 void clearDependencies() { 650 Dependencies = InvalidDeps; 651 resetUnscheduledDeps(); 652 MemoryDependencies.clear(); 653 } 654 655 void dump(raw_ostream &os) const { 656 if (!isSchedulingEntity()) { 657 os << "/ " << *Inst; 658 } else if (NextInBundle) { 659 os << '[' << *Inst; 660 ScheduleData *SD = NextInBundle; 661 while (SD) { 662 os << ';' << *SD->Inst; 663 SD = SD->NextInBundle; 664 } 665 os << ']'; 666 } else { 667 os << *Inst; 668 } 669 } 670 671 Instruction *Inst; 672 673 /// Points to the head in an instruction bundle (and always to this for 674 /// single instructions). 675 ScheduleData *FirstInBundle; 676 677 /// Single linked list of all instructions in a bundle. Null if it is a 678 /// single instruction. 679 ScheduleData *NextInBundle; 680 681 /// Single linked list of all memory instructions (e.g. load, store, call) 682 /// in the block - until the end of the scheduling region. 683 ScheduleData *NextLoadStore; 684 685 /// The dependent memory instructions. 686 /// This list is derived on demand in calculateDependencies(). 687 SmallVector<ScheduleData *, 4> MemoryDependencies; 688 689 /// This ScheduleData is in the current scheduling region if this matches 690 /// the current SchedulingRegionID of BlockScheduling. 691 int SchedulingRegionID; 692 693 /// Used for getting a "good" final ordering of instructions. 694 int SchedulingPriority; 695 696 /// The number of dependencies. Constitutes of the number of users of the 697 /// instruction plus the number of dependent memory instructions (if any). 698 /// This value is calculated on demand. 699 /// If InvalidDeps, the number of dependencies is not calculated yet. 700 /// 701 int Dependencies; 702 703 /// The number of dependencies minus the number of dependencies of scheduled 704 /// instructions. As soon as this is zero, the instruction/bundle gets ready 705 /// for scheduling. 706 /// Note that this is negative as long as Dependencies is not calculated. 707 int UnscheduledDeps; 708 709 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 710 /// single instructions. 711 int UnscheduledDepsInBundle; 712 713 /// True if this instruction is scheduled (or considered as scheduled in the 714 /// dry-run). 715 bool IsScheduled; 716 }; 717 718 #ifndef NDEBUG 719 friend inline raw_ostream &operator<<(raw_ostream &os, 720 const BoUpSLP::ScheduleData &SD) { 721 SD.dump(os); 722 return os; 723 } 724 #endif 725 726 /// Contains all scheduling data for a basic block. 727 /// 728 struct BlockScheduling { 729 730 BlockScheduling(BasicBlock *BB) 731 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 732 ScheduleStart(nullptr), ScheduleEnd(nullptr), 733 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 734 ScheduleRegionSize(0), 735 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 736 // Make sure that the initial SchedulingRegionID is greater than the 737 // initial SchedulingRegionID in ScheduleData (which is 0). 738 SchedulingRegionID(1) {} 739 740 void clear() { 741 ReadyInsts.clear(); 742 ScheduleStart = nullptr; 743 ScheduleEnd = nullptr; 744 FirstLoadStoreInRegion = nullptr; 745 LastLoadStoreInRegion = nullptr; 746 747 // Reduce the maximum schedule region size by the size of the 748 // previous scheduling run. 749 ScheduleRegionSizeLimit -= ScheduleRegionSize; 750 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 751 ScheduleRegionSizeLimit = MinScheduleRegionSize; 752 ScheduleRegionSize = 0; 753 754 // Make a new scheduling region, i.e. all existing ScheduleData is not 755 // in the new region yet. 756 ++SchedulingRegionID; 757 } 758 759 ScheduleData *getScheduleData(Value *V) { 760 ScheduleData *SD = ScheduleDataMap[V]; 761 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 762 return SD; 763 return nullptr; 764 } 765 766 bool isInSchedulingRegion(ScheduleData *SD) { 767 return SD->SchedulingRegionID == SchedulingRegionID; 768 } 769 770 /// Marks an instruction as scheduled and puts all dependent ready 771 /// instructions into the ready-list. 772 template <typename ReadyListType> 773 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 774 SD->IsScheduled = true; 775 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 776 777 ScheduleData *BundleMember = SD; 778 while (BundleMember) { 779 // Handle the def-use chain dependencies. 780 for (Use &U : BundleMember->Inst->operands()) { 781 ScheduleData *OpDef = getScheduleData(U.get()); 782 if (OpDef && OpDef->hasValidDependencies() && 783 OpDef->incrementUnscheduledDeps(-1) == 0) { 784 // There are no more unscheduled dependencies after decrementing, 785 // so we can put the dependent instruction into the ready list. 786 ScheduleData *DepBundle = OpDef->FirstInBundle; 787 assert(!DepBundle->IsScheduled && 788 "already scheduled bundle gets ready"); 789 ReadyList.insert(DepBundle); 790 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 791 } 792 } 793 // Handle the memory dependencies. 794 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 795 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 796 // There are no more unscheduled dependencies after decrementing, 797 // so we can put the dependent instruction into the ready list. 798 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 799 assert(!DepBundle->IsScheduled && 800 "already scheduled bundle gets ready"); 801 ReadyList.insert(DepBundle); 802 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 803 } 804 } 805 BundleMember = BundleMember->NextInBundle; 806 } 807 } 808 809 /// Put all instructions into the ReadyList which are ready for scheduling. 810 template <typename ReadyListType> 811 void initialFillReadyList(ReadyListType &ReadyList) { 812 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 813 ScheduleData *SD = getScheduleData(I); 814 if (SD->isSchedulingEntity() && SD->isReady()) { 815 ReadyList.insert(SD); 816 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 817 } 818 } 819 } 820 821 /// Checks if a bundle of instructions can be scheduled, i.e. has no 822 /// cyclic dependencies. This is only a dry-run, no instructions are 823 /// actually moved at this stage. 824 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 825 826 /// Un-bundles a group of instructions. 827 void cancelScheduling(ArrayRef<Value *> VL); 828 829 /// Extends the scheduling region so that V is inside the region. 830 /// \returns true if the region size is within the limit. 831 bool extendSchedulingRegion(Value *V); 832 833 /// Initialize the ScheduleData structures for new instructions in the 834 /// scheduling region. 835 void initScheduleData(Instruction *FromI, Instruction *ToI, 836 ScheduleData *PrevLoadStore, 837 ScheduleData *NextLoadStore); 838 839 /// Updates the dependency information of a bundle and of all instructions/ 840 /// bundles which depend on the original bundle. 841 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 842 BoUpSLP *SLP); 843 844 /// Sets all instruction in the scheduling region to un-scheduled. 845 void resetSchedule(); 846 847 BasicBlock *BB; 848 849 /// Simple memory allocation for ScheduleData. 850 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 851 852 /// The size of a ScheduleData array in ScheduleDataChunks. 853 int ChunkSize; 854 855 /// The allocator position in the current chunk, which is the last entry 856 /// of ScheduleDataChunks. 857 int ChunkPos; 858 859 /// Attaches ScheduleData to Instruction. 860 /// Note that the mapping survives during all vectorization iterations, i.e. 861 /// ScheduleData structures are recycled. 862 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 863 864 struct ReadyList : SmallVector<ScheduleData *, 8> { 865 void insert(ScheduleData *SD) { push_back(SD); } 866 }; 867 868 /// The ready-list for scheduling (only used for the dry-run). 869 ReadyList ReadyInsts; 870 871 /// The first instruction of the scheduling region. 872 Instruction *ScheduleStart; 873 874 /// The first instruction _after_ the scheduling region. 875 Instruction *ScheduleEnd; 876 877 /// The first memory accessing instruction in the scheduling region 878 /// (can be null). 879 ScheduleData *FirstLoadStoreInRegion; 880 881 /// The last memory accessing instruction in the scheduling region 882 /// (can be null). 883 ScheduleData *LastLoadStoreInRegion; 884 885 /// The current size of the scheduling region. 886 int ScheduleRegionSize; 887 888 /// The maximum size allowed for the scheduling region. 889 int ScheduleRegionSizeLimit; 890 891 /// The ID of the scheduling region. For a new vectorization iteration this 892 /// is incremented which "removes" all ScheduleData from the region. 893 int SchedulingRegionID; 894 }; 895 896 /// Attaches the BlockScheduling structures to basic blocks. 897 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 898 899 /// Performs the "real" scheduling. Done before vectorization is actually 900 /// performed in a basic block. 901 void scheduleBlock(BlockScheduling *BS); 902 903 /// List of users to ignore during scheduling and that don't need extracting. 904 ArrayRef<Value *> UserIgnoreList; 905 906 // Number of load bundles that contain consecutive loads. 907 int NumLoadsWantToKeepOrder; 908 909 // Number of load bundles that contain consecutive loads in reversed order. 910 int NumLoadsWantToChangeOrder; 911 912 // Analysis and block reference. 913 Function *F; 914 ScalarEvolution *SE; 915 TargetTransformInfo *TTI; 916 TargetLibraryInfo *TLI; 917 AliasAnalysis *AA; 918 LoopInfo *LI; 919 DominatorTree *DT; 920 AssumptionCache *AC; 921 DemandedBits *DB; 922 const DataLayout *DL; 923 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 924 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 925 /// Instruction builder to construct the vectorized tree. 926 IRBuilder<> Builder; 927 928 /// A map of scalar integer values to the smallest bit width with which they 929 /// can legally be represented. The values map to (width, signed) pairs, 930 /// where "width" indicates the minimum bit width and "signed" is True if the 931 /// value must be signed-extended, rather than zero-extended, back to its 932 /// original width. 933 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 934 }; 935 936 } // end namespace llvm 937 } // end namespace slpvectorizer 938 939 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 940 ArrayRef<Value *> UserIgnoreLst) { 941 deleteTree(); 942 UserIgnoreList = UserIgnoreLst; 943 if (!allSameType(Roots)) 944 return; 945 buildTree_rec(Roots, 0); 946 947 // Collect the values that we need to extract from the tree. 948 for (TreeEntry &EIdx : VectorizableTree) { 949 TreeEntry *Entry = &EIdx; 950 951 // For each lane: 952 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 953 Value *Scalar = Entry->Scalars[Lane]; 954 955 // No need to handle users of gathered values. 956 if (Entry->NeedToGather) 957 continue; 958 959 for (User *U : Scalar->users()) { 960 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 961 962 Instruction *UserInst = dyn_cast<Instruction>(U); 963 if (!UserInst) 964 continue; 965 966 // Skip in-tree scalars that become vectors 967 if (ScalarToTreeEntry.count(U)) { 968 int Idx = ScalarToTreeEntry[U]; 969 TreeEntry *UseEntry = &VectorizableTree[Idx]; 970 Value *UseScalar = UseEntry->Scalars[0]; 971 // Some in-tree scalars will remain as scalar in vectorized 972 // instructions. If that is the case, the one in Lane 0 will 973 // be used. 974 if (UseScalar != U || 975 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 976 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 977 << ".\n"); 978 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 979 continue; 980 } 981 } 982 983 // Ignore users in the user ignore list. 984 if (is_contained(UserIgnoreList, UserInst)) 985 continue; 986 987 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 988 Lane << " from " << *Scalar << ".\n"); 989 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 990 } 991 } 992 } 993 } 994 995 996 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 997 bool isAltShuffle = false; 998 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 999 1000 if (Depth == RecursionMaxDepth) { 1001 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1002 newTreeEntry(VL, false, false); 1003 return; 1004 } 1005 1006 // Don't handle vectors. 1007 if (VL[0]->getType()->isVectorTy()) { 1008 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1009 newTreeEntry(VL, false, false); 1010 return; 1011 } 1012 1013 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1014 if (SI->getValueOperand()->getType()->isVectorTy()) { 1015 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1016 newTreeEntry(VL, false, false); 1017 return; 1018 } 1019 unsigned Opcode = getSameOpcode(VL); 1020 1021 // Check that this shuffle vector refers to the alternate 1022 // sequence of opcodes. 1023 if (Opcode == Instruction::ShuffleVector) { 1024 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1025 unsigned Op = I0->getOpcode(); 1026 if (Op != Instruction::ShuffleVector) 1027 isAltShuffle = true; 1028 } 1029 1030 // If all of the operands are identical or constant we have a simple solution. 1031 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1032 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1033 newTreeEntry(VL, false, false); 1034 return; 1035 } 1036 1037 // We now know that this is a vector of instructions of the same type from 1038 // the same block. 1039 1040 // Don't vectorize ephemeral values. 1041 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1042 if (EphValues.count(VL[i])) { 1043 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1044 ") is ephemeral.\n"); 1045 newTreeEntry(VL, false, false); 1046 return; 1047 } 1048 } 1049 1050 // Check if this is a duplicate of another entry. 1051 if (ScalarToTreeEntry.count(VL[0])) { 1052 int Idx = ScalarToTreeEntry[VL[0]]; 1053 TreeEntry *E = &VectorizableTree[Idx]; 1054 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1055 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1056 if (E->Scalars[i] != VL[i]) { 1057 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1058 newTreeEntry(VL, false, false); 1059 return; 1060 } 1061 } 1062 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1063 return; 1064 } 1065 1066 // Check that none of the instructions in the bundle are already in the tree. 1067 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1068 if (ScalarToTreeEntry.count(VL[i])) { 1069 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1070 ") is already in tree.\n"); 1071 newTreeEntry(VL, false, false); 1072 return; 1073 } 1074 } 1075 1076 // If any of the scalars is marked as a value that needs to stay scalar then 1077 // we need to gather the scalars. 1078 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1079 if (MustGather.count(VL[i])) { 1080 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1081 newTreeEntry(VL, false, false); 1082 return; 1083 } 1084 } 1085 1086 // Check that all of the users of the scalars that we want to vectorize are 1087 // schedulable. 1088 Instruction *VL0 = cast<Instruction>(VL[0]); 1089 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1090 1091 if (!DT->isReachableFromEntry(BB)) { 1092 // Don't go into unreachable blocks. They may contain instructions with 1093 // dependency cycles which confuse the final scheduling. 1094 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1095 newTreeEntry(VL, false, false); 1096 return; 1097 } 1098 1099 // Check that every instructions appears once in this bundle. 1100 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1101 for (unsigned j = i+1; j < e; ++j) 1102 if (VL[i] == VL[j]) { 1103 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1104 newTreeEntry(VL, false, false); 1105 return; 1106 } 1107 1108 auto &BSRef = BlocksSchedules[BB]; 1109 if (!BSRef) { 1110 BSRef = llvm::make_unique<BlockScheduling>(BB); 1111 } 1112 BlockScheduling &BS = *BSRef.get(); 1113 1114 if (!BS.tryScheduleBundle(VL, this)) { 1115 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1116 assert((!BS.getScheduleData(VL[0]) || 1117 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1118 "tryScheduleBundle should cancelScheduling on failure"); 1119 newTreeEntry(VL, false, false); 1120 return; 1121 } 1122 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1123 1124 switch (Opcode) { 1125 case Instruction::PHI: { 1126 PHINode *PH = dyn_cast<PHINode>(VL0); 1127 1128 // Check for terminator values (e.g. invoke). 1129 for (unsigned j = 0; j < VL.size(); ++j) 1130 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1131 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1132 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1133 if (Term) { 1134 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1135 BS.cancelScheduling(VL); 1136 newTreeEntry(VL, false, false); 1137 return; 1138 } 1139 } 1140 1141 newTreeEntry(VL, true, false); 1142 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1143 1144 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1145 ValueList Operands; 1146 // Prepare the operand vector. 1147 for (Value *j : VL) 1148 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1149 PH->getIncomingBlock(i))); 1150 1151 buildTree_rec(Operands, Depth + 1); 1152 } 1153 return; 1154 } 1155 case Instruction::ExtractValue: 1156 case Instruction::ExtractElement: { 1157 bool Reuse = canReuseExtract(VL, Opcode); 1158 if (Reuse) { 1159 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1160 } else { 1161 BS.cancelScheduling(VL); 1162 } 1163 newTreeEntry(VL, Reuse, false); 1164 return; 1165 } 1166 case Instruction::Load: { 1167 // Check that a vectorized load would load the same memory as a scalar 1168 // load. 1169 // For example we don't want vectorize loads that are smaller than 8 bit. 1170 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1171 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1172 // such a struct we read/write packed bits disagreeing with the 1173 // unvectorized version. 1174 Type *ScalarTy = VL[0]->getType(); 1175 1176 if (DL->getTypeSizeInBits(ScalarTy) != 1177 DL->getTypeAllocSizeInBits(ScalarTy)) { 1178 BS.cancelScheduling(VL); 1179 newTreeEntry(VL, false, false); 1180 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1181 return; 1182 } 1183 1184 // Make sure all loads in the bundle are simple - we can't vectorize 1185 // atomic or volatile loads. 1186 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1187 LoadInst *L = cast<LoadInst>(VL[i]); 1188 if (!L->isSimple()) { 1189 BS.cancelScheduling(VL); 1190 newTreeEntry(VL, false, false); 1191 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1192 return; 1193 } 1194 } 1195 1196 // Check if the loads are consecutive, reversed, or neither. 1197 bool Consecutive = true; 1198 bool ReverseConsecutive = true; 1199 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1200 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1201 Consecutive = false; 1202 break; 1203 } else { 1204 ReverseConsecutive = false; 1205 } 1206 } 1207 1208 if (Consecutive) { 1209 ++NumLoadsWantToKeepOrder; 1210 newTreeEntry(VL, true, false); 1211 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1212 return; 1213 } 1214 1215 // If none of the load pairs were consecutive when checked in order, 1216 // check the reverse order. 1217 if (ReverseConsecutive) 1218 for (unsigned i = VL.size() - 1; i > 0; --i) 1219 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1220 ReverseConsecutive = false; 1221 break; 1222 } 1223 1224 if (VL.size() > 2 && !ReverseConsecutive) { 1225 bool ShuffledLoads = true; 1226 SmallVector<Value *, 8> List; 1227 sortMemAccesses(VL, *DL, *SE, List); 1228 auto NewVL = makeArrayRef(List.begin(), List.end()); 1229 for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) { 1230 if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) { 1231 ShuffledLoads = false; 1232 break; 1233 } 1234 } 1235 if (ShuffledLoads) { 1236 newTreeEntry(NewVL, true, true); 1237 return; 1238 } 1239 } 1240 1241 BS.cancelScheduling(VL); 1242 newTreeEntry(VL, false, false); 1243 1244 if (ReverseConsecutive) { 1245 ++NumLoadsWantToChangeOrder; 1246 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1247 } else { 1248 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1249 } 1250 return; 1251 } 1252 case Instruction::ZExt: 1253 case Instruction::SExt: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::FPExt: 1257 case Instruction::PtrToInt: 1258 case Instruction::IntToPtr: 1259 case Instruction::SIToFP: 1260 case Instruction::UIToFP: 1261 case Instruction::Trunc: 1262 case Instruction::FPTrunc: 1263 case Instruction::BitCast: { 1264 Type *SrcTy = VL0->getOperand(0)->getType(); 1265 for (Value *Val : VL) { 1266 Type *Ty = cast<Instruction>(Val)->getOperand(0)->getType(); 1267 if (Ty != SrcTy || !isValidElementType(Ty)) { 1268 BS.cancelScheduling(VL); 1269 newTreeEntry(VL, false, false); 1270 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1271 return; 1272 } 1273 } 1274 newTreeEntry(VL, true, false); 1275 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1276 1277 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1278 ValueList Operands; 1279 // Prepare the operand vector. 1280 for (Value *j : VL) 1281 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1282 1283 buildTree_rec(Operands, Depth+1); 1284 } 1285 return; 1286 } 1287 case Instruction::ICmp: 1288 case Instruction::FCmp: { 1289 // Check that all of the compares have the same predicate. 1290 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1291 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1292 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1293 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1294 if (Cmp->getPredicate() != P0 || 1295 Cmp->getOperand(0)->getType() != ComparedTy) { 1296 BS.cancelScheduling(VL); 1297 newTreeEntry(VL, false, false); 1298 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1299 return; 1300 } 1301 } 1302 1303 newTreeEntry(VL, true, false); 1304 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1305 1306 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1307 ValueList Operands; 1308 // Prepare the operand vector. 1309 for (Value *j : VL) 1310 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1311 1312 buildTree_rec(Operands, Depth+1); 1313 } 1314 return; 1315 } 1316 case Instruction::Select: 1317 case Instruction::Add: 1318 case Instruction::FAdd: 1319 case Instruction::Sub: 1320 case Instruction::FSub: 1321 case Instruction::Mul: 1322 case Instruction::FMul: 1323 case Instruction::UDiv: 1324 case Instruction::SDiv: 1325 case Instruction::FDiv: 1326 case Instruction::URem: 1327 case Instruction::SRem: 1328 case Instruction::FRem: 1329 case Instruction::Shl: 1330 case Instruction::LShr: 1331 case Instruction::AShr: 1332 case Instruction::And: 1333 case Instruction::Or: 1334 case Instruction::Xor: { 1335 newTreeEntry(VL, true, false); 1336 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1337 1338 // Sort operands of the instructions so that each side is more likely to 1339 // have the same opcode. 1340 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1341 ValueList Left, Right; 1342 reorderInputsAccordingToOpcode(VL, Left, Right); 1343 buildTree_rec(Left, Depth + 1); 1344 buildTree_rec(Right, Depth + 1); 1345 return; 1346 } 1347 1348 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1349 ValueList Operands; 1350 // Prepare the operand vector. 1351 for (Value *j : VL) 1352 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1353 1354 buildTree_rec(Operands, Depth+1); 1355 } 1356 return; 1357 } 1358 case Instruction::GetElementPtr: { 1359 // We don't combine GEPs with complicated (nested) indexing. 1360 for (Value *Val : VL) { 1361 if (cast<Instruction>(Val)->getNumOperands() != 2) { 1362 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1363 BS.cancelScheduling(VL); 1364 newTreeEntry(VL, false, false); 1365 return; 1366 } 1367 } 1368 1369 // We can't combine several GEPs into one vector if they operate on 1370 // different types. 1371 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1372 for (Value *Val : VL) { 1373 Type *CurTy = cast<Instruction>(Val)->getOperand(0)->getType(); 1374 if (Ty0 != CurTy) { 1375 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1376 BS.cancelScheduling(VL); 1377 newTreeEntry(VL, false, false); 1378 return; 1379 } 1380 } 1381 1382 // We don't combine GEPs with non-constant indexes. 1383 for (Value *Val : VL) { 1384 auto Op = cast<Instruction>(Val)->getOperand(1); 1385 if (!isa<ConstantInt>(Op)) { 1386 DEBUG( 1387 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1388 BS.cancelScheduling(VL); 1389 newTreeEntry(VL, false, false); 1390 return; 1391 } 1392 } 1393 1394 newTreeEntry(VL, true, false); 1395 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1396 for (unsigned i = 0, e = 2; i < e; ++i) { 1397 ValueList Operands; 1398 // Prepare the operand vector. 1399 for (Value *j : VL) 1400 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1401 1402 buildTree_rec(Operands, Depth + 1); 1403 } 1404 return; 1405 } 1406 case Instruction::Store: { 1407 // Check if the stores are consecutive or of we need to swizzle them. 1408 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1409 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1410 BS.cancelScheduling(VL); 1411 newTreeEntry(VL, false, false); 1412 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1413 return; 1414 } 1415 1416 newTreeEntry(VL, true, false); 1417 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1418 1419 ValueList Operands; 1420 for (Value *j : VL) 1421 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1422 1423 buildTree_rec(Operands, Depth + 1); 1424 return; 1425 } 1426 case Instruction::Call: { 1427 // Check if the calls are all to the same vectorizable intrinsic. 1428 CallInst *CI = cast<CallInst>(VL[0]); 1429 // Check if this is an Intrinsic call or something that can be 1430 // represented by an intrinsic call 1431 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1432 if (!isTriviallyVectorizable(ID)) { 1433 BS.cancelScheduling(VL); 1434 newTreeEntry(VL, false, false); 1435 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1436 return; 1437 } 1438 Function *Int = CI->getCalledFunction(); 1439 Value *A1I = nullptr; 1440 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1441 A1I = CI->getArgOperand(1); 1442 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1443 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1444 if (!CI2 || CI2->getCalledFunction() != Int || 1445 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1446 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1447 BS.cancelScheduling(VL); 1448 newTreeEntry(VL, false, false); 1449 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1450 << "\n"); 1451 return; 1452 } 1453 // ctlz,cttz and powi are special intrinsics whose second argument 1454 // should be same in order for them to be vectorized. 1455 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1456 Value *A1J = CI2->getArgOperand(1); 1457 if (A1I != A1J) { 1458 BS.cancelScheduling(VL); 1459 newTreeEntry(VL, false, false); 1460 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1461 << " argument "<< A1I<<"!=" << A1J 1462 << "\n"); 1463 return; 1464 } 1465 } 1466 // Verify that the bundle operands are identical between the two calls. 1467 if (CI->hasOperandBundles() && 1468 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1469 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1470 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1471 BS.cancelScheduling(VL); 1472 newTreeEntry(VL, false, false); 1473 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1474 << *VL[i] << '\n'); 1475 return; 1476 } 1477 } 1478 1479 newTreeEntry(VL, true, false); 1480 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1481 ValueList Operands; 1482 // Prepare the operand vector. 1483 for (Value *j : VL) { 1484 CallInst *CI2 = dyn_cast<CallInst>(j); 1485 Operands.push_back(CI2->getArgOperand(i)); 1486 } 1487 buildTree_rec(Operands, Depth + 1); 1488 } 1489 return; 1490 } 1491 case Instruction::ShuffleVector: { 1492 // If this is not an alternate sequence of opcode like add-sub 1493 // then do not vectorize this instruction. 1494 if (!isAltShuffle) { 1495 BS.cancelScheduling(VL); 1496 newTreeEntry(VL, false, false); 1497 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1498 return; 1499 } 1500 newTreeEntry(VL, true, false); 1501 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1502 1503 // Reorder operands if reordering would enable vectorization. 1504 if (isa<BinaryOperator>(VL0)) { 1505 ValueList Left, Right; 1506 reorderAltShuffleOperands(VL, Left, Right); 1507 buildTree_rec(Left, Depth + 1); 1508 buildTree_rec(Right, Depth + 1); 1509 return; 1510 } 1511 1512 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1513 ValueList Operands; 1514 // Prepare the operand vector. 1515 for (Value *j : VL) 1516 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1517 1518 buildTree_rec(Operands, Depth + 1); 1519 } 1520 return; 1521 } 1522 default: 1523 BS.cancelScheduling(VL); 1524 newTreeEntry(VL, false, false); 1525 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1526 return; 1527 } 1528 } 1529 1530 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1531 unsigned N; 1532 Type *EltTy; 1533 auto *ST = dyn_cast<StructType>(T); 1534 if (ST) { 1535 N = ST->getNumElements(); 1536 EltTy = *ST->element_begin(); 1537 } else { 1538 N = cast<ArrayType>(T)->getNumElements(); 1539 EltTy = cast<ArrayType>(T)->getElementType(); 1540 } 1541 if (!isValidElementType(EltTy)) 1542 return 0; 1543 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1544 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1545 return 0; 1546 if (ST) { 1547 // Check that struct is homogeneous. 1548 for (const auto *Ty : ST->elements()) 1549 if (Ty != EltTy) 1550 return 0; 1551 } 1552 return N; 1553 } 1554 1555 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1556 assert(Opcode == Instruction::ExtractElement || 1557 Opcode == Instruction::ExtractValue); 1558 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1559 // Check if all of the extracts come from the same vector and from the 1560 // correct offset. 1561 Value *VL0 = VL[0]; 1562 Instruction *E0 = cast<Instruction>(VL0); 1563 Value *Vec = E0->getOperand(0); 1564 1565 // We have to extract from a vector/aggregate with the same number of elements. 1566 unsigned NElts; 1567 if (Opcode == Instruction::ExtractValue) { 1568 const DataLayout &DL = E0->getModule()->getDataLayout(); 1569 NElts = canMapToVector(Vec->getType(), DL); 1570 if (!NElts) 1571 return false; 1572 // Check if load can be rewritten as load of vector. 1573 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1574 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1575 return false; 1576 } else { 1577 NElts = Vec->getType()->getVectorNumElements(); 1578 } 1579 1580 if (NElts != VL.size()) 1581 return false; 1582 1583 // Check that all of the indices extract from the correct offset. 1584 if (!matchExtractIndex(E0, 0, Opcode)) 1585 return false; 1586 1587 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1588 Instruction *E = cast<Instruction>(VL[i]); 1589 if (!matchExtractIndex(E, i, Opcode)) 1590 return false; 1591 if (E->getOperand(0) != Vec) 1592 return false; 1593 } 1594 1595 return true; 1596 } 1597 1598 int BoUpSLP::getEntryCost(TreeEntry *E) { 1599 ArrayRef<Value*> VL = E->Scalars; 1600 1601 Type *ScalarTy = VL[0]->getType(); 1602 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1603 ScalarTy = SI->getValueOperand()->getType(); 1604 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1605 1606 // If we have computed a smaller type for the expression, update VecTy so 1607 // that the costs will be accurate. 1608 if (MinBWs.count(VL[0])) 1609 VecTy = VectorType::get( 1610 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1611 1612 if (E->NeedToGather) { 1613 if (allConstant(VL)) 1614 return 0; 1615 if (isSplat(VL)) { 1616 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1617 } 1618 return getGatherCost(E->Scalars); 1619 } 1620 unsigned Opcode = getSameOpcode(VL); 1621 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1622 Instruction *VL0 = cast<Instruction>(VL[0]); 1623 switch (Opcode) { 1624 case Instruction::PHI: { 1625 return 0; 1626 } 1627 case Instruction::ExtractValue: 1628 case Instruction::ExtractElement: { 1629 if (canReuseExtract(VL, Opcode)) { 1630 int DeadCost = 0; 1631 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1632 Instruction *E = cast<Instruction>(VL[i]); 1633 if (E->hasOneUse()) 1634 // Take credit for instruction that will become dead. 1635 DeadCost += 1636 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1637 } 1638 return -DeadCost; 1639 } 1640 return getGatherCost(VecTy); 1641 } 1642 case Instruction::ZExt: 1643 case Instruction::SExt: 1644 case Instruction::FPToUI: 1645 case Instruction::FPToSI: 1646 case Instruction::FPExt: 1647 case Instruction::PtrToInt: 1648 case Instruction::IntToPtr: 1649 case Instruction::SIToFP: 1650 case Instruction::UIToFP: 1651 case Instruction::Trunc: 1652 case Instruction::FPTrunc: 1653 case Instruction::BitCast: { 1654 Type *SrcTy = VL0->getOperand(0)->getType(); 1655 1656 // Calculate the cost of this instruction. 1657 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1658 VL0->getType(), SrcTy); 1659 1660 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1661 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1662 return VecCost - ScalarCost; 1663 } 1664 case Instruction::FCmp: 1665 case Instruction::ICmp: 1666 case Instruction::Select: { 1667 // Calculate the cost of this instruction. 1668 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1669 int ScalarCost = VecTy->getNumElements() * 1670 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1671 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1672 return VecCost - ScalarCost; 1673 } 1674 case Instruction::Add: 1675 case Instruction::FAdd: 1676 case Instruction::Sub: 1677 case Instruction::FSub: 1678 case Instruction::Mul: 1679 case Instruction::FMul: 1680 case Instruction::UDiv: 1681 case Instruction::SDiv: 1682 case Instruction::FDiv: 1683 case Instruction::URem: 1684 case Instruction::SRem: 1685 case Instruction::FRem: 1686 case Instruction::Shl: 1687 case Instruction::LShr: 1688 case Instruction::AShr: 1689 case Instruction::And: 1690 case Instruction::Or: 1691 case Instruction::Xor: { 1692 // Certain instructions can be cheaper to vectorize if they have a 1693 // constant second vector operand. 1694 TargetTransformInfo::OperandValueKind Op1VK = 1695 TargetTransformInfo::OK_AnyValue; 1696 TargetTransformInfo::OperandValueKind Op2VK = 1697 TargetTransformInfo::OK_UniformConstantValue; 1698 TargetTransformInfo::OperandValueProperties Op1VP = 1699 TargetTransformInfo::OP_None; 1700 TargetTransformInfo::OperandValueProperties Op2VP = 1701 TargetTransformInfo::OP_None; 1702 1703 // If all operands are exactly the same ConstantInt then set the 1704 // operand kind to OK_UniformConstantValue. 1705 // If instead not all operands are constants, then set the operand kind 1706 // to OK_AnyValue. If all operands are constants but not the same, 1707 // then set the operand kind to OK_NonUniformConstantValue. 1708 ConstantInt *CInt = nullptr; 1709 for (unsigned i = 0; i < VL.size(); ++i) { 1710 const Instruction *I = cast<Instruction>(VL[i]); 1711 if (!isa<ConstantInt>(I->getOperand(1))) { 1712 Op2VK = TargetTransformInfo::OK_AnyValue; 1713 break; 1714 } 1715 if (i == 0) { 1716 CInt = cast<ConstantInt>(I->getOperand(1)); 1717 continue; 1718 } 1719 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1720 CInt != cast<ConstantInt>(I->getOperand(1))) 1721 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1722 } 1723 // FIXME: Currently cost of model modification for division by power of 1724 // 2 is handled for X86 and AArch64. Add support for other targets. 1725 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1726 CInt->getValue().isPowerOf2()) 1727 Op2VP = TargetTransformInfo::OP_PowerOf2; 1728 1729 int ScalarCost = VecTy->getNumElements() * 1730 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1731 Op2VK, Op1VP, Op2VP); 1732 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1733 Op1VP, Op2VP); 1734 return VecCost - ScalarCost; 1735 } 1736 case Instruction::GetElementPtr: { 1737 TargetTransformInfo::OperandValueKind Op1VK = 1738 TargetTransformInfo::OK_AnyValue; 1739 TargetTransformInfo::OperandValueKind Op2VK = 1740 TargetTransformInfo::OK_UniformConstantValue; 1741 1742 int ScalarCost = 1743 VecTy->getNumElements() * 1744 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1745 int VecCost = 1746 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1747 1748 return VecCost - ScalarCost; 1749 } 1750 case Instruction::Load: { 1751 // Cost of wide load - cost of scalar loads. 1752 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1753 int ScalarLdCost = VecTy->getNumElements() * 1754 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1755 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1756 VecTy, alignment, 0); 1757 if (E->NeedToShuffle) { 1758 VecLdCost += TTI->getShuffleCost( 1759 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 0); 1760 } 1761 return VecLdCost - ScalarLdCost; 1762 } 1763 case Instruction::Store: { 1764 // We know that we can merge the stores. Calculate the cost. 1765 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1766 int ScalarStCost = VecTy->getNumElements() * 1767 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1768 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1769 VecTy, alignment, 0); 1770 return VecStCost - ScalarStCost; 1771 } 1772 case Instruction::Call: { 1773 CallInst *CI = cast<CallInst>(VL0); 1774 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1775 1776 // Calculate the cost of the scalar and vector calls. 1777 SmallVector<Type*, 4> ScalarTys, VecTys; 1778 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1779 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1780 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1781 VecTy->getNumElements())); 1782 } 1783 1784 FastMathFlags FMF; 1785 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1786 FMF = FPMO->getFastMathFlags(); 1787 1788 int ScalarCallCost = VecTy->getNumElements() * 1789 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1790 1791 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1792 1793 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1794 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1795 << " for " << *CI << "\n"); 1796 1797 return VecCallCost - ScalarCallCost; 1798 } 1799 case Instruction::ShuffleVector: { 1800 TargetTransformInfo::OperandValueKind Op1VK = 1801 TargetTransformInfo::OK_AnyValue; 1802 TargetTransformInfo::OperandValueKind Op2VK = 1803 TargetTransformInfo::OK_AnyValue; 1804 int ScalarCost = 0; 1805 int VecCost = 0; 1806 for (Value *i : VL) { 1807 Instruction *I = cast<Instruction>(i); 1808 if (!I) 1809 break; 1810 ScalarCost += 1811 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1812 } 1813 // VecCost is equal to sum of the cost of creating 2 vectors 1814 // and the cost of creating shuffle. 1815 Instruction *I0 = cast<Instruction>(VL[0]); 1816 VecCost = 1817 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1818 Instruction *I1 = cast<Instruction>(VL[1]); 1819 VecCost += 1820 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1821 VecCost += 1822 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1823 return VecCost - ScalarCost; 1824 } 1825 default: 1826 llvm_unreachable("Unknown instruction"); 1827 } 1828 } 1829 1830 bool BoUpSLP::isFullyVectorizableTinyTree() { 1831 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1832 VectorizableTree.size() << " is fully vectorizable .\n"); 1833 1834 // We only handle trees of heights 1 and 2. 1835 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1836 return true; 1837 1838 if (VectorizableTree.size() != 2) 1839 return false; 1840 1841 // Handle splat and all-constants stores. 1842 if (!VectorizableTree[0].NeedToGather && 1843 (allConstant(VectorizableTree[1].Scalars) || 1844 isSplat(VectorizableTree[1].Scalars))) 1845 return true; 1846 1847 // Gathering cost would be too much for tiny trees. 1848 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1849 return false; 1850 1851 return true; 1852 } 1853 1854 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1855 1856 // We can vectorize the tree if its size is greater than or equal to the 1857 // minimum size specified by the MinTreeSize command line option. 1858 if (VectorizableTree.size() >= MinTreeSize) 1859 return false; 1860 1861 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1862 // can vectorize it if we can prove it fully vectorizable. 1863 if (isFullyVectorizableTinyTree()) 1864 return false; 1865 1866 assert(VectorizableTree.empty() 1867 ? ExternalUses.empty() 1868 : true && "We shouldn't have any external users"); 1869 1870 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1871 // vectorizable. 1872 return true; 1873 } 1874 1875 int BoUpSLP::getSpillCost() { 1876 // Walk from the bottom of the tree to the top, tracking which values are 1877 // live. When we see a call instruction that is not part of our tree, 1878 // query TTI to see if there is a cost to keeping values live over it 1879 // (for example, if spills and fills are required). 1880 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1881 int Cost = 0; 1882 1883 SmallPtrSet<Instruction*, 4> LiveValues; 1884 Instruction *PrevInst = nullptr; 1885 1886 for (const auto &N : VectorizableTree) { 1887 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1888 if (!Inst) 1889 continue; 1890 1891 if (!PrevInst) { 1892 PrevInst = Inst; 1893 continue; 1894 } 1895 1896 // Update LiveValues. 1897 LiveValues.erase(PrevInst); 1898 for (auto &J : PrevInst->operands()) { 1899 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1900 LiveValues.insert(cast<Instruction>(&*J)); 1901 } 1902 1903 DEBUG( 1904 dbgs() << "SLP: #LV: " << LiveValues.size(); 1905 for (auto *X : LiveValues) 1906 dbgs() << " " << X->getName(); 1907 dbgs() << ", Looking at "; 1908 Inst->dump(); 1909 ); 1910 1911 // Now find the sequence of instructions between PrevInst and Inst. 1912 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 1913 PrevInstIt = 1914 PrevInst->getIterator().getReverse(); 1915 while (InstIt != PrevInstIt) { 1916 if (PrevInstIt == PrevInst->getParent()->rend()) { 1917 PrevInstIt = Inst->getParent()->rbegin(); 1918 continue; 1919 } 1920 1921 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1922 SmallVector<Type*, 4> V; 1923 for (auto *II : LiveValues) 1924 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1925 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1926 } 1927 1928 ++PrevInstIt; 1929 } 1930 1931 PrevInst = Inst; 1932 } 1933 1934 return Cost; 1935 } 1936 1937 int BoUpSLP::getTreeCost() { 1938 int Cost = 0; 1939 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1940 VectorizableTree.size() << ".\n"); 1941 1942 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1943 1944 for (TreeEntry &TE : VectorizableTree) { 1945 int C = getEntryCost(&TE); 1946 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1947 << *TE.Scalars[0] << ".\n"); 1948 Cost += C; 1949 } 1950 1951 SmallSet<Value *, 16> ExtractCostCalculated; 1952 int ExtractCost = 0; 1953 for (ExternalUser &EU : ExternalUses) { 1954 // We only add extract cost once for the same scalar. 1955 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1956 continue; 1957 1958 // Uses by ephemeral values are free (because the ephemeral value will be 1959 // removed prior to code generation, and so the extraction will be 1960 // removed as well). 1961 if (EphValues.count(EU.User)) 1962 continue; 1963 1964 // If we plan to rewrite the tree in a smaller type, we will need to sign 1965 // extend the extracted value back to the original type. Here, we account 1966 // for the extract and the added cost of the sign extend if needed. 1967 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1968 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1969 if (MinBWs.count(ScalarRoot)) { 1970 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 1971 auto Extend = 1972 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 1973 VecTy = VectorType::get(MinTy, BundleWidth); 1974 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 1975 VecTy, EU.Lane); 1976 } else { 1977 ExtractCost += 1978 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1979 } 1980 } 1981 1982 int SpillCost = getSpillCost(); 1983 Cost += SpillCost + ExtractCost; 1984 1985 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1986 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1987 << "SLP: Total Cost = " << Cost << ".\n"); 1988 return Cost; 1989 } 1990 1991 int BoUpSLP::getGatherCost(Type *Ty) { 1992 int Cost = 0; 1993 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1994 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1995 return Cost; 1996 } 1997 1998 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1999 // Find the type of the operands in VL. 2000 Type *ScalarTy = VL[0]->getType(); 2001 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2002 ScalarTy = SI->getValueOperand()->getType(); 2003 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2004 // Find the cost of inserting/extracting values from the vector. 2005 return getGatherCost(VecTy); 2006 } 2007 2008 // Reorder commutative operations in alternate shuffle if the resulting vectors 2009 // are consecutive loads. This would allow us to vectorize the tree. 2010 // If we have something like- 2011 // load a[0] - load b[0] 2012 // load b[1] + load a[1] 2013 // load a[2] - load b[2] 2014 // load a[3] + load b[3] 2015 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2016 // code. 2017 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2018 SmallVectorImpl<Value *> &Left, 2019 SmallVectorImpl<Value *> &Right) { 2020 // Push left and right operands of binary operation into Left and Right 2021 for (Value *i : VL) { 2022 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2023 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2024 } 2025 2026 // Reorder if we have a commutative operation and consecutive access 2027 // are on either side of the alternate instructions. 2028 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2029 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2030 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2031 Instruction *VL1 = cast<Instruction>(VL[j]); 2032 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2033 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2034 std::swap(Left[j], Right[j]); 2035 continue; 2036 } else if (VL2->isCommutative() && 2037 isConsecutiveAccess(L, L1, *DL, *SE)) { 2038 std::swap(Left[j + 1], Right[j + 1]); 2039 continue; 2040 } 2041 // else unchanged 2042 } 2043 } 2044 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2045 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2046 Instruction *VL1 = cast<Instruction>(VL[j]); 2047 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2048 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2049 std::swap(Left[j], Right[j]); 2050 continue; 2051 } else if (VL2->isCommutative() && 2052 isConsecutiveAccess(L, L1, *DL, *SE)) { 2053 std::swap(Left[j + 1], Right[j + 1]); 2054 continue; 2055 } 2056 // else unchanged 2057 } 2058 } 2059 } 2060 } 2061 2062 // Return true if I should be commuted before adding it's left and right 2063 // operands to the arrays Left and Right. 2064 // 2065 // The vectorizer is trying to either have all elements one side being 2066 // instruction with the same opcode to enable further vectorization, or having 2067 // a splat to lower the vectorizing cost. 2068 static bool shouldReorderOperands(int i, Instruction &I, 2069 SmallVectorImpl<Value *> &Left, 2070 SmallVectorImpl<Value *> &Right, 2071 bool AllSameOpcodeLeft, 2072 bool AllSameOpcodeRight, bool SplatLeft, 2073 bool SplatRight) { 2074 Value *VLeft = I.getOperand(0); 2075 Value *VRight = I.getOperand(1); 2076 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2077 if (SplatRight) { 2078 if (VRight == Right[i - 1]) 2079 // Preserve SplatRight 2080 return false; 2081 if (VLeft == Right[i - 1]) { 2082 // Commuting would preserve SplatRight, but we don't want to break 2083 // SplatLeft either, i.e. preserve the original order if possible. 2084 // (FIXME: why do we care?) 2085 if (SplatLeft && VLeft == Left[i - 1]) 2086 return false; 2087 return true; 2088 } 2089 } 2090 // Symmetrically handle Right side. 2091 if (SplatLeft) { 2092 if (VLeft == Left[i - 1]) 2093 // Preserve SplatLeft 2094 return false; 2095 if (VRight == Left[i - 1]) 2096 return true; 2097 } 2098 2099 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2100 Instruction *IRight = dyn_cast<Instruction>(VRight); 2101 2102 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2103 // it and not the right, in this case we want to commute. 2104 if (AllSameOpcodeRight) { 2105 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2106 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2107 // Do not commute, a match on the right preserves AllSameOpcodeRight 2108 return false; 2109 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2110 // We have a match and may want to commute, but first check if there is 2111 // not also a match on the existing operands on the Left to preserve 2112 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2113 // (FIXME: why do we care?) 2114 if (AllSameOpcodeLeft && ILeft && 2115 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2116 return false; 2117 return true; 2118 } 2119 } 2120 // Symmetrically handle Left side. 2121 if (AllSameOpcodeLeft) { 2122 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2123 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2124 return false; 2125 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2126 return true; 2127 } 2128 return false; 2129 } 2130 2131 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2132 SmallVectorImpl<Value *> &Left, 2133 SmallVectorImpl<Value *> &Right) { 2134 2135 if (VL.size()) { 2136 // Peel the first iteration out of the loop since there's nothing 2137 // interesting to do anyway and it simplifies the checks in the loop. 2138 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2139 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2140 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2141 // Favor having instruction to the right. FIXME: why? 2142 std::swap(VLeft, VRight); 2143 Left.push_back(VLeft); 2144 Right.push_back(VRight); 2145 } 2146 2147 // Keep track if we have instructions with all the same opcode on one side. 2148 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2149 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2150 // Keep track if we have one side with all the same value (broadcast). 2151 bool SplatLeft = true; 2152 bool SplatRight = true; 2153 2154 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2155 Instruction *I = cast<Instruction>(VL[i]); 2156 assert(I->isCommutative() && "Can only process commutative instruction"); 2157 // Commute to favor either a splat or maximizing having the same opcodes on 2158 // one side. 2159 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2160 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2161 Left.push_back(I->getOperand(1)); 2162 Right.push_back(I->getOperand(0)); 2163 } else { 2164 Left.push_back(I->getOperand(0)); 2165 Right.push_back(I->getOperand(1)); 2166 } 2167 // Update Splat* and AllSameOpcode* after the insertion. 2168 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2169 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2170 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2171 (cast<Instruction>(Left[i - 1])->getOpcode() == 2172 cast<Instruction>(Left[i])->getOpcode()); 2173 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2174 (cast<Instruction>(Right[i - 1])->getOpcode() == 2175 cast<Instruction>(Right[i])->getOpcode()); 2176 } 2177 2178 // If one operand end up being broadcast, return this operand order. 2179 if (SplatRight || SplatLeft) 2180 return; 2181 2182 // Finally check if we can get longer vectorizable chain by reordering 2183 // without breaking the good operand order detected above. 2184 // E.g. If we have something like- 2185 // load a[0] load b[0] 2186 // load b[1] load a[1] 2187 // load a[2] load b[2] 2188 // load a[3] load b[3] 2189 // Reordering the second load b[1] load a[1] would allow us to vectorize 2190 // this code and we still retain AllSameOpcode property. 2191 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2192 // such as- 2193 // add a[0],c[0] load b[0] 2194 // add a[1],c[2] load b[1] 2195 // b[2] load b[2] 2196 // add a[3],c[3] load b[3] 2197 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2198 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2199 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2200 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2201 std::swap(Left[j + 1], Right[j + 1]); 2202 continue; 2203 } 2204 } 2205 } 2206 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2207 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2208 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2209 std::swap(Left[j + 1], Right[j + 1]); 2210 continue; 2211 } 2212 } 2213 } 2214 // else unchanged 2215 } 2216 } 2217 2218 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2219 2220 // Get the basic block this bundle is in. All instructions in the bundle 2221 // should be in this block. 2222 auto *Front = cast<Instruction>(VL.front()); 2223 auto *BB = Front->getParent(); 2224 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2225 return cast<Instruction>(V)->getParent() == BB; 2226 })); 2227 2228 // The last instruction in the bundle in program order. 2229 Instruction *LastInst = nullptr; 2230 2231 // Find the last instruction. The common case should be that BB has been 2232 // scheduled, and the last instruction is VL.back(). So we start with 2233 // VL.back() and iterate over schedule data until we reach the end of the 2234 // bundle. The end of the bundle is marked by null ScheduleData. 2235 if (BlocksSchedules.count(BB)) { 2236 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2237 if (Bundle && Bundle->isPartOfBundle()) 2238 for (; Bundle; Bundle = Bundle->NextInBundle) 2239 LastInst = Bundle->Inst; 2240 } 2241 2242 // LastInst can still be null at this point if there's either not an entry 2243 // for BB in BlocksSchedules or there's no ScheduleData available for 2244 // VL.back(). This can be the case if buildTree_rec aborts for various 2245 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2246 // size is reached, etc.). ScheduleData is initialized in the scheduling 2247 // "dry-run". 2248 // 2249 // If this happens, we can still find the last instruction by brute force. We 2250 // iterate forwards from Front (inclusive) until we either see all 2251 // instructions in the bundle or reach the end of the block. If Front is the 2252 // last instruction in program order, LastInst will be set to Front, and we 2253 // will visit all the remaining instructions in the block. 2254 // 2255 // One of the reasons we exit early from buildTree_rec is to place an upper 2256 // bound on compile-time. Thus, taking an additional compile-time hit here is 2257 // not ideal. However, this should be exceedingly rare since it requires that 2258 // we both exit early from buildTree_rec and that the bundle be out-of-order 2259 // (causing us to iterate all the way to the end of the block). 2260 if (!LastInst) { 2261 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2262 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2263 if (Bundle.erase(&I)) 2264 LastInst = &I; 2265 if (Bundle.empty()) 2266 break; 2267 } 2268 } 2269 2270 // Set the insertion point after the last instruction in the bundle. Set the 2271 // debug location to Front. 2272 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2273 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2274 } 2275 2276 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2277 Value *Vec = UndefValue::get(Ty); 2278 // Generate the 'InsertElement' instruction. 2279 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2280 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2281 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2282 GatherSeq.insert(Insrt); 2283 CSEBlocks.insert(Insrt->getParent()); 2284 2285 // Add to our 'need-to-extract' list. 2286 if (ScalarToTreeEntry.count(VL[i])) { 2287 int Idx = ScalarToTreeEntry[VL[i]]; 2288 TreeEntry *E = &VectorizableTree[Idx]; 2289 // Find which lane we need to extract. 2290 int FoundLane = -1; 2291 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2292 // Is this the lane of the scalar that we are looking for ? 2293 if (E->Scalars[Lane] == VL[i]) { 2294 FoundLane = Lane; 2295 break; 2296 } 2297 } 2298 assert(FoundLane >= 0 && "Could not find the correct lane"); 2299 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2300 } 2301 } 2302 } 2303 2304 return Vec; 2305 } 2306 2307 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2308 SmallDenseMap<Value*, int>::const_iterator Entry 2309 = ScalarToTreeEntry.find(VL[0]); 2310 if (Entry != ScalarToTreeEntry.end()) { 2311 int Idx = Entry->second; 2312 const TreeEntry *En = &VectorizableTree[Idx]; 2313 if (En->isSame(VL) && En->VectorizedValue) 2314 return En->VectorizedValue; 2315 } 2316 return nullptr; 2317 } 2318 2319 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2320 if (ScalarToTreeEntry.count(VL[0])) { 2321 int Idx = ScalarToTreeEntry[VL[0]]; 2322 TreeEntry *E = &VectorizableTree[Idx]; 2323 if (E->isSame(VL) || (E->NeedToShuffle && E->isFoundJumbled(VL, *DL, *SE))) 2324 return vectorizeTree(VL, E); 2325 } 2326 2327 Type *ScalarTy = VL[0]->getType(); 2328 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2329 ScalarTy = SI->getValueOperand()->getType(); 2330 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2331 2332 return Gather(VL, VecTy); 2333 } 2334 2335 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E) { 2336 IRBuilder<>::InsertPointGuard Guard(Builder); 2337 2338 if (E->VectorizedValue && !E->NeedToShuffle) { 2339 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2340 return E->VectorizedValue; 2341 } 2342 2343 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2344 Type *ScalarTy = VL0->getType(); 2345 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2346 ScalarTy = SI->getValueOperand()->getType(); 2347 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2348 2349 if (E->NeedToGather) { 2350 setInsertPointAfterBundle(E->Scalars); 2351 auto *V = Gather(E->Scalars, VecTy); 2352 E->VectorizedValue = V; 2353 return V; 2354 } 2355 2356 unsigned Opcode = getSameOpcode(E->Scalars); 2357 2358 switch (Opcode) { 2359 case Instruction::PHI: { 2360 PHINode *PH = dyn_cast<PHINode>(VL0); 2361 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2362 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2363 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2364 E->VectorizedValue = NewPhi; 2365 2366 // PHINodes may have multiple entries from the same block. We want to 2367 // visit every block once. 2368 SmallSet<BasicBlock*, 4> VisitedBBs; 2369 2370 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2371 ValueList Operands; 2372 BasicBlock *IBB = PH->getIncomingBlock(i); 2373 2374 if (!VisitedBBs.insert(IBB).second) { 2375 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2376 continue; 2377 } 2378 2379 // Prepare the operand vector. 2380 for (Value *V : E->Scalars) 2381 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2382 2383 Builder.SetInsertPoint(IBB->getTerminator()); 2384 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2385 Value *Vec = vectorizeTree(Operands); 2386 NewPhi->addIncoming(Vec, IBB); 2387 } 2388 2389 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2390 "Invalid number of incoming values"); 2391 return NewPhi; 2392 } 2393 2394 case Instruction::ExtractElement: { 2395 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2396 Value *V = VL0->getOperand(0); 2397 E->VectorizedValue = V; 2398 return V; 2399 } 2400 setInsertPointAfterBundle(E->Scalars); 2401 auto *V = Gather(E->Scalars, VecTy); 2402 E->VectorizedValue = V; 2403 return V; 2404 } 2405 case Instruction::ExtractValue: { 2406 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2407 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2408 Builder.SetInsertPoint(LI); 2409 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2410 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2411 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2412 E->VectorizedValue = V; 2413 return propagateMetadata(V, E->Scalars); 2414 } 2415 setInsertPointAfterBundle(E->Scalars); 2416 auto *V = Gather(E->Scalars, VecTy); 2417 E->VectorizedValue = V; 2418 return V; 2419 } 2420 case Instruction::ZExt: 2421 case Instruction::SExt: 2422 case Instruction::FPToUI: 2423 case Instruction::FPToSI: 2424 case Instruction::FPExt: 2425 case Instruction::PtrToInt: 2426 case Instruction::IntToPtr: 2427 case Instruction::SIToFP: 2428 case Instruction::UIToFP: 2429 case Instruction::Trunc: 2430 case Instruction::FPTrunc: 2431 case Instruction::BitCast: { 2432 ValueList INVL; 2433 for (Value *V : E->Scalars) 2434 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2435 2436 setInsertPointAfterBundle(E->Scalars); 2437 2438 Value *InVec = vectorizeTree(INVL); 2439 2440 if (Value *V = alreadyVectorized(E->Scalars)) 2441 return V; 2442 2443 CastInst *CI = dyn_cast<CastInst>(VL0); 2444 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2445 E->VectorizedValue = V; 2446 ++NumVectorInstructions; 2447 return V; 2448 } 2449 case Instruction::FCmp: 2450 case Instruction::ICmp: { 2451 ValueList LHSV, RHSV; 2452 for (Value *V : E->Scalars) { 2453 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2454 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2455 } 2456 2457 setInsertPointAfterBundle(E->Scalars); 2458 2459 Value *L = vectorizeTree(LHSV); 2460 Value *R = vectorizeTree(RHSV); 2461 2462 if (Value *V = alreadyVectorized(E->Scalars)) 2463 return V; 2464 2465 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2466 Value *V; 2467 if (Opcode == Instruction::FCmp) 2468 V = Builder.CreateFCmp(P0, L, R); 2469 else 2470 V = Builder.CreateICmp(P0, L, R); 2471 2472 E->VectorizedValue = V; 2473 propagateIRFlags(E->VectorizedValue, E->Scalars); 2474 ++NumVectorInstructions; 2475 return V; 2476 } 2477 case Instruction::Select: { 2478 ValueList TrueVec, FalseVec, CondVec; 2479 for (Value *V : E->Scalars) { 2480 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2481 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2482 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2483 } 2484 2485 setInsertPointAfterBundle(E->Scalars); 2486 2487 Value *Cond = vectorizeTree(CondVec); 2488 Value *True = vectorizeTree(TrueVec); 2489 Value *False = vectorizeTree(FalseVec); 2490 2491 if (Value *V = alreadyVectorized(E->Scalars)) 2492 return V; 2493 2494 Value *V = Builder.CreateSelect(Cond, True, False); 2495 E->VectorizedValue = V; 2496 ++NumVectorInstructions; 2497 return V; 2498 } 2499 case Instruction::Add: 2500 case Instruction::FAdd: 2501 case Instruction::Sub: 2502 case Instruction::FSub: 2503 case Instruction::Mul: 2504 case Instruction::FMul: 2505 case Instruction::UDiv: 2506 case Instruction::SDiv: 2507 case Instruction::FDiv: 2508 case Instruction::URem: 2509 case Instruction::SRem: 2510 case Instruction::FRem: 2511 case Instruction::Shl: 2512 case Instruction::LShr: 2513 case Instruction::AShr: 2514 case Instruction::And: 2515 case Instruction::Or: 2516 case Instruction::Xor: { 2517 ValueList LHSVL, RHSVL; 2518 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2519 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2520 else 2521 for (Value *V : E->Scalars) { 2522 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2523 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2524 } 2525 2526 setInsertPointAfterBundle(E->Scalars); 2527 2528 Value *LHS = vectorizeTree(LHSVL); 2529 Value *RHS = vectorizeTree(RHSVL); 2530 2531 if (Value *V = alreadyVectorized(E->Scalars)) 2532 return V; 2533 2534 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2535 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2536 E->VectorizedValue = V; 2537 propagateIRFlags(E->VectorizedValue, E->Scalars); 2538 ++NumVectorInstructions; 2539 2540 if (Instruction *I = dyn_cast<Instruction>(V)) 2541 return propagateMetadata(I, E->Scalars); 2542 2543 return V; 2544 } 2545 case Instruction::Load: { 2546 // Loads are inserted at the head of the tree because we don't want to 2547 // sink them all the way down past store instructions. 2548 setInsertPointAfterBundle(E->Scalars); 2549 2550 LoadInst *LI = cast<LoadInst>(VL0); 2551 Type *ScalarLoadTy = LI->getType(); 2552 unsigned AS = LI->getPointerAddressSpace(); 2553 2554 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2555 VecTy->getPointerTo(AS)); 2556 2557 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2558 // ExternalUses list to make sure that an extract will be generated in the 2559 // future. 2560 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2561 ExternalUses.push_back( 2562 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2563 2564 unsigned Alignment = LI->getAlignment(); 2565 LI = Builder.CreateLoad(VecPtr); 2566 if (!Alignment) { 2567 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2568 } 2569 LI->setAlignment(Alignment); 2570 E->VectorizedValue = LI; 2571 ++NumVectorInstructions; 2572 propagateMetadata(LI, E->Scalars); 2573 2574 // As program order of scalar loads are jumbled, the vectorized 'load' 2575 // must be followed by a 'shuffle' with the required jumbled mask. 2576 if (!VL.empty() && (E->NeedToShuffle)) { 2577 assert(VL.size() == E->Scalars.size() && 2578 "Equal number of scalars expected"); 2579 SmallVector<Constant *, 8> Mask; 2580 for (Value *Val : VL) { 2581 if (ScalarToTreeEntry.count(Val)) { 2582 int Idx = ScalarToTreeEntry[Val]; 2583 TreeEntry *E = &VectorizableTree[Idx]; 2584 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2585 if (E->Scalars[Lane] == Val) { 2586 Mask.push_back(Builder.getInt32(Lane)); 2587 break; 2588 } 2589 } 2590 } 2591 } 2592 2593 // Generate shuffle for jumbled memory access 2594 Value *Undef = UndefValue::get(VecTy); 2595 Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef, 2596 ConstantVector::get(Mask)); 2597 return Shuf; 2598 } 2599 2600 return LI; 2601 } 2602 case Instruction::Store: { 2603 StoreInst *SI = cast<StoreInst>(VL0); 2604 unsigned Alignment = SI->getAlignment(); 2605 unsigned AS = SI->getPointerAddressSpace(); 2606 2607 ValueList ValueOp; 2608 for (Value *V : E->Scalars) 2609 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2610 2611 setInsertPointAfterBundle(E->Scalars); 2612 2613 Value *VecValue = vectorizeTree(ValueOp); 2614 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2615 VecTy->getPointerTo(AS)); 2616 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2617 2618 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2619 // ExternalUses list to make sure that an extract will be generated in the 2620 // future. 2621 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2622 ExternalUses.push_back( 2623 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2624 2625 if (!Alignment) { 2626 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2627 } 2628 S->setAlignment(Alignment); 2629 E->VectorizedValue = S; 2630 ++NumVectorInstructions; 2631 return propagateMetadata(S, E->Scalars); 2632 } 2633 case Instruction::GetElementPtr: { 2634 setInsertPointAfterBundle(E->Scalars); 2635 2636 ValueList Op0VL; 2637 for (Value *V : E->Scalars) 2638 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2639 2640 Value *Op0 = vectorizeTree(Op0VL); 2641 2642 std::vector<Value *> OpVecs; 2643 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2644 ++j) { 2645 ValueList OpVL; 2646 for (Value *V : E->Scalars) 2647 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2648 2649 Value *OpVec = vectorizeTree(OpVL); 2650 OpVecs.push_back(OpVec); 2651 } 2652 2653 Value *V = Builder.CreateGEP( 2654 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2655 E->VectorizedValue = V; 2656 ++NumVectorInstructions; 2657 2658 if (Instruction *I = dyn_cast<Instruction>(V)) 2659 return propagateMetadata(I, E->Scalars); 2660 2661 return V; 2662 } 2663 case Instruction::Call: { 2664 CallInst *CI = cast<CallInst>(VL0); 2665 setInsertPointAfterBundle(E->Scalars); 2666 Function *FI; 2667 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2668 Value *ScalarArg = nullptr; 2669 if (CI && (FI = CI->getCalledFunction())) { 2670 IID = FI->getIntrinsicID(); 2671 } 2672 std::vector<Value *> OpVecs; 2673 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2674 ValueList OpVL; 2675 // ctlz,cttz and powi are special intrinsics whose second argument is 2676 // a scalar. This argument should not be vectorized. 2677 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2678 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2679 ScalarArg = CEI->getArgOperand(j); 2680 OpVecs.push_back(CEI->getArgOperand(j)); 2681 continue; 2682 } 2683 for (Value *V : E->Scalars) { 2684 CallInst *CEI = cast<CallInst>(V); 2685 OpVL.push_back(CEI->getArgOperand(j)); 2686 } 2687 2688 Value *OpVec = vectorizeTree(OpVL); 2689 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2690 OpVecs.push_back(OpVec); 2691 } 2692 2693 Module *M = F->getParent(); 2694 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2695 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2696 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2697 SmallVector<OperandBundleDef, 1> OpBundles; 2698 CI->getOperandBundlesAsDefs(OpBundles); 2699 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2700 2701 // The scalar argument uses an in-tree scalar so we add the new vectorized 2702 // call to ExternalUses list to make sure that an extract will be 2703 // generated in the future. 2704 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2705 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2706 2707 E->VectorizedValue = V; 2708 propagateIRFlags(E->VectorizedValue, E->Scalars); 2709 ++NumVectorInstructions; 2710 return V; 2711 } 2712 case Instruction::ShuffleVector: { 2713 ValueList LHSVL, RHSVL; 2714 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2715 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2716 setInsertPointAfterBundle(E->Scalars); 2717 2718 Value *LHS = vectorizeTree(LHSVL); 2719 Value *RHS = vectorizeTree(RHSVL); 2720 2721 if (Value *V = alreadyVectorized(E->Scalars)) 2722 return V; 2723 2724 // Create a vector of LHS op1 RHS 2725 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2726 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2727 2728 // Create a vector of LHS op2 RHS 2729 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2730 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2731 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2732 2733 // Create shuffle to take alternate operations from the vector. 2734 // Also, gather up odd and even scalar ops to propagate IR flags to 2735 // each vector operation. 2736 ValueList OddScalars, EvenScalars; 2737 unsigned e = E->Scalars.size(); 2738 SmallVector<Constant *, 8> Mask(e); 2739 for (unsigned i = 0; i < e; ++i) { 2740 if (i & 1) { 2741 Mask[i] = Builder.getInt32(e + i); 2742 OddScalars.push_back(E->Scalars[i]); 2743 } else { 2744 Mask[i] = Builder.getInt32(i); 2745 EvenScalars.push_back(E->Scalars[i]); 2746 } 2747 } 2748 2749 Value *ShuffleMask = ConstantVector::get(Mask); 2750 propagateIRFlags(V0, EvenScalars); 2751 propagateIRFlags(V1, OddScalars); 2752 2753 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2754 E->VectorizedValue = V; 2755 ++NumVectorInstructions; 2756 if (Instruction *I = dyn_cast<Instruction>(V)) 2757 return propagateMetadata(I, E->Scalars); 2758 2759 return V; 2760 } 2761 default: 2762 llvm_unreachable("unknown inst"); 2763 } 2764 return nullptr; 2765 } 2766 2767 Value *BoUpSLP::vectorizeTree() { 2768 2769 // All blocks must be scheduled before any instructions are inserted. 2770 for (auto &BSIter : BlocksSchedules) { 2771 scheduleBlock(BSIter.second.get()); 2772 } 2773 2774 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2775 auto *VectorRoot = vectorizeTree(ArrayRef<Value *>(), &VectorizableTree[0]); 2776 2777 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2778 // vectorized root. InstCombine will then rewrite the entire expression. We 2779 // sign extend the extracted values below. 2780 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2781 if (MinBWs.count(ScalarRoot)) { 2782 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2783 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2784 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2785 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2786 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2787 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2788 VectorizableTree[0].VectorizedValue = Trunc; 2789 } 2790 2791 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2792 2793 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2794 // specified by ScalarType. 2795 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2796 if (!MinBWs.count(ScalarRoot)) 2797 return Ex; 2798 if (MinBWs[ScalarRoot].second) 2799 return Builder.CreateSExt(Ex, ScalarType); 2800 return Builder.CreateZExt(Ex, ScalarType); 2801 }; 2802 2803 // Extract all of the elements with the external uses. 2804 for (const auto &ExternalUse : ExternalUses) { 2805 Value *Scalar = ExternalUse.Scalar; 2806 llvm::User *User = ExternalUse.User; 2807 2808 // Skip users that we already RAUW. This happens when one instruction 2809 // has multiple uses of the same value. 2810 if (!is_contained(Scalar->users(), User)) 2811 continue; 2812 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2813 2814 int Idx = ScalarToTreeEntry[Scalar]; 2815 TreeEntry *E = &VectorizableTree[Idx]; 2816 assert(!E->NeedToGather && "Extracting from a gather list"); 2817 2818 Value *Vec = E->VectorizedValue; 2819 assert(Vec && "Can't find vectorizable value"); 2820 2821 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2822 // Generate extracts for out-of-tree users. 2823 // Find the insertion point for the extractelement lane. 2824 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2825 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2826 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2827 if (PH->getIncomingValue(i) == Scalar) { 2828 TerminatorInst *IncomingTerminator = 2829 PH->getIncomingBlock(i)->getTerminator(); 2830 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2831 Builder.SetInsertPoint(VecI->getParent(), 2832 std::next(VecI->getIterator())); 2833 } else { 2834 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2835 } 2836 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2837 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2838 CSEBlocks.insert(PH->getIncomingBlock(i)); 2839 PH->setOperand(i, Ex); 2840 } 2841 } 2842 } else { 2843 Builder.SetInsertPoint(cast<Instruction>(User)); 2844 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2845 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2846 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2847 User->replaceUsesOfWith(Scalar, Ex); 2848 } 2849 } else { 2850 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2851 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2852 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2853 CSEBlocks.insert(&F->getEntryBlock()); 2854 User->replaceUsesOfWith(Scalar, Ex); 2855 } 2856 2857 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2858 } 2859 2860 // For each vectorized value: 2861 for (TreeEntry &EIdx : VectorizableTree) { 2862 TreeEntry *Entry = &EIdx; 2863 2864 // For each lane: 2865 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2866 Value *Scalar = Entry->Scalars[Lane]; 2867 // No need to handle users of gathered values. 2868 if (Entry->NeedToGather) 2869 continue; 2870 2871 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2872 2873 Type *Ty = Scalar->getType(); 2874 if (!Ty->isVoidTy()) { 2875 #ifndef NDEBUG 2876 for (User *U : Scalar->users()) { 2877 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2878 2879 assert((ScalarToTreeEntry.count(U) || 2880 // It is legal to replace users in the ignorelist by undef. 2881 is_contained(UserIgnoreList, U)) && 2882 "Replacing out-of-tree value with undef"); 2883 } 2884 #endif 2885 Value *Undef = UndefValue::get(Ty); 2886 Scalar->replaceAllUsesWith(Undef); 2887 } 2888 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2889 eraseInstruction(cast<Instruction>(Scalar)); 2890 } 2891 } 2892 2893 Builder.ClearInsertionPoint(); 2894 2895 return VectorizableTree[0].VectorizedValue; 2896 } 2897 2898 void BoUpSLP::optimizeGatherSequence() { 2899 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2900 << " gather sequences instructions.\n"); 2901 // LICM InsertElementInst sequences. 2902 for (Instruction *it : GatherSeq) { 2903 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2904 2905 if (!Insert) 2906 continue; 2907 2908 // Check if this block is inside a loop. 2909 Loop *L = LI->getLoopFor(Insert->getParent()); 2910 if (!L) 2911 continue; 2912 2913 // Check if it has a preheader. 2914 BasicBlock *PreHeader = L->getLoopPreheader(); 2915 if (!PreHeader) 2916 continue; 2917 2918 // If the vector or the element that we insert into it are 2919 // instructions that are defined in this basic block then we can't 2920 // hoist this instruction. 2921 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2922 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2923 if (CurrVec && L->contains(CurrVec)) 2924 continue; 2925 if (NewElem && L->contains(NewElem)) 2926 continue; 2927 2928 // We can hoist this instruction. Move it to the pre-header. 2929 Insert->moveBefore(PreHeader->getTerminator()); 2930 } 2931 2932 // Make a list of all reachable blocks in our CSE queue. 2933 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2934 CSEWorkList.reserve(CSEBlocks.size()); 2935 for (BasicBlock *BB : CSEBlocks) 2936 if (DomTreeNode *N = DT->getNode(BB)) { 2937 assert(DT->isReachableFromEntry(N)); 2938 CSEWorkList.push_back(N); 2939 } 2940 2941 // Sort blocks by domination. This ensures we visit a block after all blocks 2942 // dominating it are visited. 2943 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2944 [this](const DomTreeNode *A, const DomTreeNode *B) { 2945 return DT->properlyDominates(A, B); 2946 }); 2947 2948 // Perform O(N^2) search over the gather sequences and merge identical 2949 // instructions. TODO: We can further optimize this scan if we split the 2950 // instructions into different buckets based on the insert lane. 2951 SmallVector<Instruction *, 16> Visited; 2952 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2953 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2954 "Worklist not sorted properly!"); 2955 BasicBlock *BB = (*I)->getBlock(); 2956 // For all instructions in blocks containing gather sequences: 2957 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2958 Instruction *In = &*it++; 2959 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2960 continue; 2961 2962 // Check if we can replace this instruction with any of the 2963 // visited instructions. 2964 for (Instruction *v : Visited) { 2965 if (In->isIdenticalTo(v) && 2966 DT->dominates(v->getParent(), In->getParent())) { 2967 In->replaceAllUsesWith(v); 2968 eraseInstruction(In); 2969 In = nullptr; 2970 break; 2971 } 2972 } 2973 if (In) { 2974 assert(!is_contained(Visited, In)); 2975 Visited.push_back(In); 2976 } 2977 } 2978 } 2979 CSEBlocks.clear(); 2980 GatherSeq.clear(); 2981 } 2982 2983 // Groups the instructions to a bundle (which is then a single scheduling entity) 2984 // and schedules instructions until the bundle gets ready. 2985 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2986 BoUpSLP *SLP) { 2987 if (isa<PHINode>(VL[0])) 2988 return true; 2989 2990 // Initialize the instruction bundle. 2991 Instruction *OldScheduleEnd = ScheduleEnd; 2992 ScheduleData *PrevInBundle = nullptr; 2993 ScheduleData *Bundle = nullptr; 2994 bool ReSchedule = false; 2995 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2996 2997 // Make sure that the scheduling region contains all 2998 // instructions of the bundle. 2999 for (Value *V : VL) { 3000 if (!extendSchedulingRegion(V)) 3001 return false; 3002 } 3003 3004 for (Value *V : VL) { 3005 ScheduleData *BundleMember = getScheduleData(V); 3006 assert(BundleMember && 3007 "no ScheduleData for bundle member (maybe not in same basic block)"); 3008 if (BundleMember->IsScheduled) { 3009 // A bundle member was scheduled as single instruction before and now 3010 // needs to be scheduled as part of the bundle. We just get rid of the 3011 // existing schedule. 3012 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3013 << " was already scheduled\n"); 3014 ReSchedule = true; 3015 } 3016 assert(BundleMember->isSchedulingEntity() && 3017 "bundle member already part of other bundle"); 3018 if (PrevInBundle) { 3019 PrevInBundle->NextInBundle = BundleMember; 3020 } else { 3021 Bundle = BundleMember; 3022 } 3023 BundleMember->UnscheduledDepsInBundle = 0; 3024 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3025 3026 // Group the instructions to a bundle. 3027 BundleMember->FirstInBundle = Bundle; 3028 PrevInBundle = BundleMember; 3029 } 3030 if (ScheduleEnd != OldScheduleEnd) { 3031 // The scheduling region got new instructions at the lower end (or it is a 3032 // new region for the first bundle). This makes it necessary to 3033 // recalculate all dependencies. 3034 // It is seldom that this needs to be done a second time after adding the 3035 // initial bundle to the region. 3036 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3037 ScheduleData *SD = getScheduleData(I); 3038 SD->clearDependencies(); 3039 } 3040 ReSchedule = true; 3041 } 3042 if (ReSchedule) { 3043 resetSchedule(); 3044 initialFillReadyList(ReadyInsts); 3045 } 3046 3047 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3048 << BB->getName() << "\n"); 3049 3050 calculateDependencies(Bundle, true, SLP); 3051 3052 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3053 // means that there are no cyclic dependencies and we can schedule it. 3054 // Note that's important that we don't "schedule" the bundle yet (see 3055 // cancelScheduling). 3056 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3057 3058 ScheduleData *pickedSD = ReadyInsts.back(); 3059 ReadyInsts.pop_back(); 3060 3061 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3062 schedule(pickedSD, ReadyInsts); 3063 } 3064 } 3065 if (!Bundle->isReady()) { 3066 cancelScheduling(VL); 3067 return false; 3068 } 3069 return true; 3070 } 3071 3072 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3073 if (isa<PHINode>(VL[0])) 3074 return; 3075 3076 ScheduleData *Bundle = getScheduleData(VL[0]); 3077 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3078 assert(!Bundle->IsScheduled && 3079 "Can't cancel bundle which is already scheduled"); 3080 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3081 "tried to unbundle something which is not a bundle"); 3082 3083 // Un-bundle: make single instructions out of the bundle. 3084 ScheduleData *BundleMember = Bundle; 3085 while (BundleMember) { 3086 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3087 BundleMember->FirstInBundle = BundleMember; 3088 ScheduleData *Next = BundleMember->NextInBundle; 3089 BundleMember->NextInBundle = nullptr; 3090 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3091 if (BundleMember->UnscheduledDepsInBundle == 0) { 3092 ReadyInsts.insert(BundleMember); 3093 } 3094 BundleMember = Next; 3095 } 3096 } 3097 3098 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3099 if (getScheduleData(V)) 3100 return true; 3101 Instruction *I = dyn_cast<Instruction>(V); 3102 assert(I && "bundle member must be an instruction"); 3103 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3104 if (!ScheduleStart) { 3105 // It's the first instruction in the new region. 3106 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3107 ScheduleStart = I; 3108 ScheduleEnd = I->getNextNode(); 3109 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3110 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3111 return true; 3112 } 3113 // Search up and down at the same time, because we don't know if the new 3114 // instruction is above or below the existing scheduling region. 3115 BasicBlock::reverse_iterator UpIter = 3116 ++ScheduleStart->getIterator().getReverse(); 3117 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3118 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3119 BasicBlock::iterator LowerEnd = BB->end(); 3120 for (;;) { 3121 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3122 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3123 return false; 3124 } 3125 3126 if (UpIter != UpperEnd) { 3127 if (&*UpIter == I) { 3128 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3129 ScheduleStart = I; 3130 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3131 return true; 3132 } 3133 UpIter++; 3134 } 3135 if (DownIter != LowerEnd) { 3136 if (&*DownIter == I) { 3137 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3138 nullptr); 3139 ScheduleEnd = I->getNextNode(); 3140 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3141 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3142 return true; 3143 } 3144 DownIter++; 3145 } 3146 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3147 "instruction not found in block"); 3148 } 3149 return true; 3150 } 3151 3152 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3153 Instruction *ToI, 3154 ScheduleData *PrevLoadStore, 3155 ScheduleData *NextLoadStore) { 3156 ScheduleData *CurrentLoadStore = PrevLoadStore; 3157 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3158 ScheduleData *SD = ScheduleDataMap[I]; 3159 if (!SD) { 3160 // Allocate a new ScheduleData for the instruction. 3161 if (ChunkPos >= ChunkSize) { 3162 ScheduleDataChunks.push_back( 3163 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3164 ChunkPos = 0; 3165 } 3166 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3167 ScheduleDataMap[I] = SD; 3168 SD->Inst = I; 3169 } 3170 assert(!isInSchedulingRegion(SD) && 3171 "new ScheduleData already in scheduling region"); 3172 SD->init(SchedulingRegionID); 3173 3174 if (I->mayReadOrWriteMemory()) { 3175 // Update the linked list of memory accessing instructions. 3176 if (CurrentLoadStore) { 3177 CurrentLoadStore->NextLoadStore = SD; 3178 } else { 3179 FirstLoadStoreInRegion = SD; 3180 } 3181 CurrentLoadStore = SD; 3182 } 3183 } 3184 if (NextLoadStore) { 3185 if (CurrentLoadStore) 3186 CurrentLoadStore->NextLoadStore = NextLoadStore; 3187 } else { 3188 LastLoadStoreInRegion = CurrentLoadStore; 3189 } 3190 } 3191 3192 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3193 bool InsertInReadyList, 3194 BoUpSLP *SLP) { 3195 assert(SD->isSchedulingEntity()); 3196 3197 SmallVector<ScheduleData *, 10> WorkList; 3198 WorkList.push_back(SD); 3199 3200 while (!WorkList.empty()) { 3201 ScheduleData *SD = WorkList.back(); 3202 WorkList.pop_back(); 3203 3204 ScheduleData *BundleMember = SD; 3205 while (BundleMember) { 3206 assert(isInSchedulingRegion(BundleMember)); 3207 if (!BundleMember->hasValidDependencies()) { 3208 3209 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3210 BundleMember->Dependencies = 0; 3211 BundleMember->resetUnscheduledDeps(); 3212 3213 // Handle def-use chain dependencies. 3214 for (User *U : BundleMember->Inst->users()) { 3215 if (isa<Instruction>(U)) { 3216 ScheduleData *UseSD = getScheduleData(U); 3217 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3218 BundleMember->Dependencies++; 3219 ScheduleData *DestBundle = UseSD->FirstInBundle; 3220 if (!DestBundle->IsScheduled) { 3221 BundleMember->incrementUnscheduledDeps(1); 3222 } 3223 if (!DestBundle->hasValidDependencies()) { 3224 WorkList.push_back(DestBundle); 3225 } 3226 } 3227 } else { 3228 // I'm not sure if this can ever happen. But we need to be safe. 3229 // This lets the instruction/bundle never be scheduled and 3230 // eventually disable vectorization. 3231 BundleMember->Dependencies++; 3232 BundleMember->incrementUnscheduledDeps(1); 3233 } 3234 } 3235 3236 // Handle the memory dependencies. 3237 ScheduleData *DepDest = BundleMember->NextLoadStore; 3238 if (DepDest) { 3239 Instruction *SrcInst = BundleMember->Inst; 3240 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3241 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3242 unsigned numAliased = 0; 3243 unsigned DistToSrc = 1; 3244 3245 while (DepDest) { 3246 assert(isInSchedulingRegion(DepDest)); 3247 3248 // We have two limits to reduce the complexity: 3249 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3250 // SLP->isAliased (which is the expensive part in this loop). 3251 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3252 // the whole loop (even if the loop is fast, it's quadratic). 3253 // It's important for the loop break condition (see below) to 3254 // check this limit even between two read-only instructions. 3255 if (DistToSrc >= MaxMemDepDistance || 3256 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3257 (numAliased >= AliasedCheckLimit || 3258 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3259 3260 // We increment the counter only if the locations are aliased 3261 // (instead of counting all alias checks). This gives a better 3262 // balance between reduced runtime and accurate dependencies. 3263 numAliased++; 3264 3265 DepDest->MemoryDependencies.push_back(BundleMember); 3266 BundleMember->Dependencies++; 3267 ScheduleData *DestBundle = DepDest->FirstInBundle; 3268 if (!DestBundle->IsScheduled) { 3269 BundleMember->incrementUnscheduledDeps(1); 3270 } 3271 if (!DestBundle->hasValidDependencies()) { 3272 WorkList.push_back(DestBundle); 3273 } 3274 } 3275 DepDest = DepDest->NextLoadStore; 3276 3277 // Example, explaining the loop break condition: Let's assume our 3278 // starting instruction is i0 and MaxMemDepDistance = 3. 3279 // 3280 // +--------v--v--v 3281 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3282 // +--------^--^--^ 3283 // 3284 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3285 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3286 // Previously we already added dependencies from i3 to i6,i7,i8 3287 // (because of MaxMemDepDistance). As we added a dependency from 3288 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3289 // and we can abort this loop at i6. 3290 if (DistToSrc >= 2 * MaxMemDepDistance) 3291 break; 3292 DistToSrc++; 3293 } 3294 } 3295 } 3296 BundleMember = BundleMember->NextInBundle; 3297 } 3298 if (InsertInReadyList && SD->isReady()) { 3299 ReadyInsts.push_back(SD); 3300 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3301 } 3302 } 3303 } 3304 3305 void BoUpSLP::BlockScheduling::resetSchedule() { 3306 assert(ScheduleStart && 3307 "tried to reset schedule on block which has not been scheduled"); 3308 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3309 ScheduleData *SD = getScheduleData(I); 3310 assert(isInSchedulingRegion(SD)); 3311 SD->IsScheduled = false; 3312 SD->resetUnscheduledDeps(); 3313 } 3314 ReadyInsts.clear(); 3315 } 3316 3317 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3318 3319 if (!BS->ScheduleStart) 3320 return; 3321 3322 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3323 3324 BS->resetSchedule(); 3325 3326 // For the real scheduling we use a more sophisticated ready-list: it is 3327 // sorted by the original instruction location. This lets the final schedule 3328 // be as close as possible to the original instruction order. 3329 struct ScheduleDataCompare { 3330 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3331 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3332 } 3333 }; 3334 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3335 3336 // Ensure that all dependency data is updated and fill the ready-list with 3337 // initial instructions. 3338 int Idx = 0; 3339 int NumToSchedule = 0; 3340 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3341 I = I->getNextNode()) { 3342 ScheduleData *SD = BS->getScheduleData(I); 3343 assert( 3344 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3345 "scheduler and vectorizer have different opinion on what is a bundle"); 3346 SD->FirstInBundle->SchedulingPriority = Idx++; 3347 if (SD->isSchedulingEntity()) { 3348 BS->calculateDependencies(SD, false, this); 3349 NumToSchedule++; 3350 } 3351 } 3352 BS->initialFillReadyList(ReadyInsts); 3353 3354 Instruction *LastScheduledInst = BS->ScheduleEnd; 3355 3356 // Do the "real" scheduling. 3357 while (!ReadyInsts.empty()) { 3358 ScheduleData *picked = *ReadyInsts.begin(); 3359 ReadyInsts.erase(ReadyInsts.begin()); 3360 3361 // Move the scheduled instruction(s) to their dedicated places, if not 3362 // there yet. 3363 ScheduleData *BundleMember = picked; 3364 while (BundleMember) { 3365 Instruction *pickedInst = BundleMember->Inst; 3366 if (LastScheduledInst->getNextNode() != pickedInst) { 3367 BS->BB->getInstList().remove(pickedInst); 3368 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3369 pickedInst); 3370 } 3371 LastScheduledInst = pickedInst; 3372 BundleMember = BundleMember->NextInBundle; 3373 } 3374 3375 BS->schedule(picked, ReadyInsts); 3376 NumToSchedule--; 3377 } 3378 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3379 3380 // Avoid duplicate scheduling of the block. 3381 BS->ScheduleStart = nullptr; 3382 } 3383 3384 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3385 // If V is a store, just return the width of the stored value without 3386 // traversing the expression tree. This is the common case. 3387 if (auto *Store = dyn_cast<StoreInst>(V)) 3388 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3389 3390 // If V is not a store, we can traverse the expression tree to find loads 3391 // that feed it. The type of the loaded value may indicate a more suitable 3392 // width than V's type. We want to base the vector element size on the width 3393 // of memory operations where possible. 3394 SmallVector<Instruction *, 16> Worklist; 3395 SmallPtrSet<Instruction *, 16> Visited; 3396 if (auto *I = dyn_cast<Instruction>(V)) 3397 Worklist.push_back(I); 3398 3399 // Traverse the expression tree in bottom-up order looking for loads. If we 3400 // encounter an instruciton we don't yet handle, we give up. 3401 auto MaxWidth = 0u; 3402 auto FoundUnknownInst = false; 3403 while (!Worklist.empty() && !FoundUnknownInst) { 3404 auto *I = Worklist.pop_back_val(); 3405 Visited.insert(I); 3406 3407 // We should only be looking at scalar instructions here. If the current 3408 // instruction has a vector type, give up. 3409 auto *Ty = I->getType(); 3410 if (isa<VectorType>(Ty)) 3411 FoundUnknownInst = true; 3412 3413 // If the current instruction is a load, update MaxWidth to reflect the 3414 // width of the loaded value. 3415 else if (isa<LoadInst>(I)) 3416 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3417 3418 // Otherwise, we need to visit the operands of the instruction. We only 3419 // handle the interesting cases from buildTree here. If an operand is an 3420 // instruction we haven't yet visited, we add it to the worklist. 3421 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3422 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3423 for (Use &U : I->operands()) 3424 if (auto *J = dyn_cast<Instruction>(U.get())) 3425 if (!Visited.count(J)) 3426 Worklist.push_back(J); 3427 } 3428 3429 // If we don't yet handle the instruction, give up. 3430 else 3431 FoundUnknownInst = true; 3432 } 3433 3434 // If we didn't encounter a memory access in the expression tree, or if we 3435 // gave up for some reason, just return the width of V. 3436 if (!MaxWidth || FoundUnknownInst) 3437 return DL->getTypeSizeInBits(V->getType()); 3438 3439 // Otherwise, return the maximum width we found. 3440 return MaxWidth; 3441 } 3442 3443 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3444 // smaller type with a truncation. We collect the values that will be demoted 3445 // in ToDemote and additional roots that require investigating in Roots. 3446 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3447 SmallVectorImpl<Value *> &ToDemote, 3448 SmallVectorImpl<Value *> &Roots) { 3449 3450 // We can always demote constants. 3451 if (isa<Constant>(V)) { 3452 ToDemote.push_back(V); 3453 return true; 3454 } 3455 3456 // If the value is not an instruction in the expression with only one use, it 3457 // cannot be demoted. 3458 auto *I = dyn_cast<Instruction>(V); 3459 if (!I || !I->hasOneUse() || !Expr.count(I)) 3460 return false; 3461 3462 switch (I->getOpcode()) { 3463 3464 // We can always demote truncations and extensions. Since truncations can 3465 // seed additional demotion, we save the truncated value. 3466 case Instruction::Trunc: 3467 Roots.push_back(I->getOperand(0)); 3468 case Instruction::ZExt: 3469 case Instruction::SExt: 3470 break; 3471 3472 // We can demote certain binary operations if we can demote both of their 3473 // operands. 3474 case Instruction::Add: 3475 case Instruction::Sub: 3476 case Instruction::Mul: 3477 case Instruction::And: 3478 case Instruction::Or: 3479 case Instruction::Xor: 3480 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3481 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3482 return false; 3483 break; 3484 3485 // We can demote selects if we can demote their true and false values. 3486 case Instruction::Select: { 3487 SelectInst *SI = cast<SelectInst>(I); 3488 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3489 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3490 return false; 3491 break; 3492 } 3493 3494 // We can demote phis if we can demote all their incoming operands. Note that 3495 // we don't need to worry about cycles since we ensure single use above. 3496 case Instruction::PHI: { 3497 PHINode *PN = cast<PHINode>(I); 3498 for (Value *IncValue : PN->incoming_values()) 3499 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3500 return false; 3501 break; 3502 } 3503 3504 // Otherwise, conservatively give up. 3505 default: 3506 return false; 3507 } 3508 3509 // Record the value that we can demote. 3510 ToDemote.push_back(V); 3511 return true; 3512 } 3513 3514 void BoUpSLP::computeMinimumValueSizes() { 3515 // If there are no external uses, the expression tree must be rooted by a 3516 // store. We can't demote in-memory values, so there is nothing to do here. 3517 if (ExternalUses.empty()) 3518 return; 3519 3520 // We only attempt to truncate integer expressions. 3521 auto &TreeRoot = VectorizableTree[0].Scalars; 3522 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3523 if (!TreeRootIT) 3524 return; 3525 3526 // If the expression is not rooted by a store, these roots should have 3527 // external uses. We will rely on InstCombine to rewrite the expression in 3528 // the narrower type. However, InstCombine only rewrites single-use values. 3529 // This means that if a tree entry other than a root is used externally, it 3530 // must have multiple uses and InstCombine will not rewrite it. The code 3531 // below ensures that only the roots are used externally. 3532 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3533 for (auto &EU : ExternalUses) 3534 if (!Expr.erase(EU.Scalar)) 3535 return; 3536 if (!Expr.empty()) 3537 return; 3538 3539 // Collect the scalar values of the vectorizable expression. We will use this 3540 // context to determine which values can be demoted. If we see a truncation, 3541 // we mark it as seeding another demotion. 3542 for (auto &Entry : VectorizableTree) 3543 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3544 3545 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3546 // have a single external user that is not in the vectorizable tree. 3547 for (auto *Root : TreeRoot) 3548 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3549 return; 3550 3551 // Conservatively determine if we can actually truncate the roots of the 3552 // expression. Collect the values that can be demoted in ToDemote and 3553 // additional roots that require investigating in Roots. 3554 SmallVector<Value *, 32> ToDemote; 3555 SmallVector<Value *, 4> Roots; 3556 for (auto *Root : TreeRoot) 3557 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3558 return; 3559 3560 // The maximum bit width required to represent all the values that can be 3561 // demoted without loss of precision. It would be safe to truncate the roots 3562 // of the expression to this width. 3563 auto MaxBitWidth = 8u; 3564 3565 // We first check if all the bits of the roots are demanded. If they're not, 3566 // we can truncate the roots to this narrower type. 3567 for (auto *Root : TreeRoot) { 3568 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3569 MaxBitWidth = std::max<unsigned>( 3570 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3571 } 3572 3573 // True if the roots can be zero-extended back to their original type, rather 3574 // than sign-extended. We know that if the leading bits are not demanded, we 3575 // can safely zero-extend. So we initialize IsKnownPositive to True. 3576 bool IsKnownPositive = true; 3577 3578 // If all the bits of the roots are demanded, we can try a little harder to 3579 // compute a narrower type. This can happen, for example, if the roots are 3580 // getelementptr indices. InstCombine promotes these indices to the pointer 3581 // width. Thus, all their bits are technically demanded even though the 3582 // address computation might be vectorized in a smaller type. 3583 // 3584 // We start by looking at each entry that can be demoted. We compute the 3585 // maximum bit width required to store the scalar by using ValueTracking to 3586 // compute the number of high-order bits we can truncate. 3587 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3588 MaxBitWidth = 8u; 3589 3590 // Determine if the sign bit of all the roots is known to be zero. If not, 3591 // IsKnownPositive is set to False. 3592 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3593 bool KnownZero = false; 3594 bool KnownOne = false; 3595 ComputeSignBit(R, KnownZero, KnownOne, *DL); 3596 return KnownZero; 3597 }); 3598 3599 // Determine the maximum number of bits required to store the scalar 3600 // values. 3601 for (auto *Scalar : ToDemote) { 3602 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3603 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3604 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3605 } 3606 3607 // If we can't prove that the sign bit is zero, we must add one to the 3608 // maximum bit width to account for the unknown sign bit. This preserves 3609 // the existing sign bit so we can safely sign-extend the root back to the 3610 // original type. Otherwise, if we know the sign bit is zero, we will 3611 // zero-extend the root instead. 3612 // 3613 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3614 // one to the maximum bit width will yield a larger-than-necessary 3615 // type. In general, we need to add an extra bit only if we can't 3616 // prove that the upper bit of the original type is equal to the 3617 // upper bit of the proposed smaller type. If these two bits are the 3618 // same (either zero or one) we know that sign-extending from the 3619 // smaller type will result in the same value. Here, since we can't 3620 // yet prove this, we are just making the proposed smaller type 3621 // larger to ensure correctness. 3622 if (!IsKnownPositive) 3623 ++MaxBitWidth; 3624 } 3625 3626 // Round MaxBitWidth up to the next power-of-two. 3627 if (!isPowerOf2_64(MaxBitWidth)) 3628 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3629 3630 // If the maximum bit width we compute is less than the with of the roots' 3631 // type, we can proceed with the narrowing. Otherwise, do nothing. 3632 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3633 return; 3634 3635 // If we can truncate the root, we must collect additional values that might 3636 // be demoted as a result. That is, those seeded by truncations we will 3637 // modify. 3638 while (!Roots.empty()) 3639 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3640 3641 // Finally, map the values we can demote to the maximum bit with we computed. 3642 for (auto *Scalar : ToDemote) 3643 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3644 } 3645 3646 namespace { 3647 /// The SLPVectorizer Pass. 3648 struct SLPVectorizer : public FunctionPass { 3649 SLPVectorizerPass Impl; 3650 3651 /// Pass identification, replacement for typeid 3652 static char ID; 3653 3654 explicit SLPVectorizer() : FunctionPass(ID) { 3655 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3656 } 3657 3658 3659 bool doInitialization(Module &M) override { 3660 return false; 3661 } 3662 3663 bool runOnFunction(Function &F) override { 3664 if (skipFunction(F)) 3665 return false; 3666 3667 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3668 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3669 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3670 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3671 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3672 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3673 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3674 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3675 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3676 3677 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3678 } 3679 3680 void getAnalysisUsage(AnalysisUsage &AU) const override { 3681 FunctionPass::getAnalysisUsage(AU); 3682 AU.addRequired<AssumptionCacheTracker>(); 3683 AU.addRequired<ScalarEvolutionWrapperPass>(); 3684 AU.addRequired<AAResultsWrapperPass>(); 3685 AU.addRequired<TargetTransformInfoWrapperPass>(); 3686 AU.addRequired<LoopInfoWrapperPass>(); 3687 AU.addRequired<DominatorTreeWrapperPass>(); 3688 AU.addRequired<DemandedBitsWrapperPass>(); 3689 AU.addPreserved<LoopInfoWrapperPass>(); 3690 AU.addPreserved<DominatorTreeWrapperPass>(); 3691 AU.addPreserved<AAResultsWrapperPass>(); 3692 AU.addPreserved<GlobalsAAWrapperPass>(); 3693 AU.setPreservesCFG(); 3694 } 3695 }; 3696 } // end anonymous namespace 3697 3698 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3699 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3700 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3701 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3702 auto *AA = &AM.getResult<AAManager>(F); 3703 auto *LI = &AM.getResult<LoopAnalysis>(F); 3704 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3705 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3706 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3707 3708 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3709 if (!Changed) 3710 return PreservedAnalyses::all(); 3711 3712 PreservedAnalyses PA; 3713 PA.preserveSet<CFGAnalyses>(); 3714 PA.preserve<AAManager>(); 3715 PA.preserve<GlobalsAA>(); 3716 return PA; 3717 } 3718 3719 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3720 TargetTransformInfo *TTI_, 3721 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3722 LoopInfo *LI_, DominatorTree *DT_, 3723 AssumptionCache *AC_, DemandedBits *DB_) { 3724 SE = SE_; 3725 TTI = TTI_; 3726 TLI = TLI_; 3727 AA = AA_; 3728 LI = LI_; 3729 DT = DT_; 3730 AC = AC_; 3731 DB = DB_; 3732 DL = &F.getParent()->getDataLayout(); 3733 3734 Stores.clear(); 3735 GEPs.clear(); 3736 bool Changed = false; 3737 3738 // If the target claims to have no vector registers don't attempt 3739 // vectorization. 3740 if (!TTI->getNumberOfRegisters(true)) 3741 return false; 3742 3743 // Don't vectorize when the attribute NoImplicitFloat is used. 3744 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3745 return false; 3746 3747 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3748 3749 // Use the bottom up slp vectorizer to construct chains that start with 3750 // store instructions. 3751 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3752 3753 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3754 // delete instructions. 3755 3756 // Scan the blocks in the function in post order. 3757 for (auto BB : post_order(&F.getEntryBlock())) { 3758 collectSeedInstructions(BB); 3759 3760 // Vectorize trees that end at stores. 3761 if (!Stores.empty()) { 3762 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3763 << " underlying objects.\n"); 3764 Changed |= vectorizeStoreChains(R); 3765 } 3766 3767 // Vectorize trees that end at reductions. 3768 Changed |= vectorizeChainsInBlock(BB, R); 3769 3770 // Vectorize the index computations of getelementptr instructions. This 3771 // is primarily intended to catch gather-like idioms ending at 3772 // non-consecutive loads. 3773 if (!GEPs.empty()) { 3774 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3775 << " underlying objects.\n"); 3776 Changed |= vectorizeGEPIndices(BB, R); 3777 } 3778 } 3779 3780 if (Changed) { 3781 R.optimizeGatherSequence(); 3782 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3783 DEBUG(verifyFunction(F)); 3784 } 3785 return Changed; 3786 } 3787 3788 /// \brief Check that the Values in the slice in VL array are still existent in 3789 /// the WeakVH array. 3790 /// Vectorization of part of the VL array may cause later values in the VL array 3791 /// to become invalid. We track when this has happened in the WeakVH array. 3792 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3793 unsigned SliceBegin, unsigned SliceSize) { 3794 VL = VL.slice(SliceBegin, SliceSize); 3795 VH = VH.slice(SliceBegin, SliceSize); 3796 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3797 } 3798 3799 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3800 unsigned VecRegSize) { 3801 unsigned ChainLen = Chain.size(); 3802 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3803 << "\n"); 3804 unsigned Sz = R.getVectorElementSize(Chain[0]); 3805 unsigned VF = VecRegSize / Sz; 3806 3807 if (!isPowerOf2_32(Sz) || VF < 2) 3808 return false; 3809 3810 // Keep track of values that were deleted by vectorizing in the loop below. 3811 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3812 3813 bool Changed = false; 3814 // Look for profitable vectorizable trees at all offsets, starting at zero. 3815 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3816 if (i + VF > e) 3817 break; 3818 3819 // Check that a previous iteration of this loop did not delete the Value. 3820 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3821 continue; 3822 3823 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3824 << "\n"); 3825 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3826 3827 R.buildTree(Operands); 3828 if (R.isTreeTinyAndNotFullyVectorizable()) 3829 continue; 3830 3831 R.computeMinimumValueSizes(); 3832 3833 int Cost = R.getTreeCost(); 3834 3835 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3836 if (Cost < -SLPCostThreshold) { 3837 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3838 R.vectorizeTree(); 3839 3840 // Move to the next bundle. 3841 i += VF - 1; 3842 Changed = true; 3843 } 3844 } 3845 3846 return Changed; 3847 } 3848 3849 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3850 BoUpSLP &R) { 3851 SetVector<StoreInst *> Heads, Tails; 3852 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3853 3854 // We may run into multiple chains that merge into a single chain. We mark the 3855 // stores that we vectorized so that we don't visit the same store twice. 3856 BoUpSLP::ValueSet VectorizedStores; 3857 bool Changed = false; 3858 3859 // Do a quadratic search on all of the given stores and find 3860 // all of the pairs of stores that follow each other. 3861 SmallVector<unsigned, 16> IndexQueue; 3862 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3863 IndexQueue.clear(); 3864 // If a store has multiple consecutive store candidates, search Stores 3865 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3866 // This is because usually pairing with immediate succeeding or preceding 3867 // candidate create the best chance to find slp vectorization opportunity. 3868 unsigned j = 0; 3869 for (j = i + 1; j < e; ++j) 3870 IndexQueue.push_back(j); 3871 for (j = i; j > 0; --j) 3872 IndexQueue.push_back(j - 1); 3873 3874 for (auto &k : IndexQueue) { 3875 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3876 Tails.insert(Stores[k]); 3877 Heads.insert(Stores[i]); 3878 ConsecutiveChain[Stores[i]] = Stores[k]; 3879 break; 3880 } 3881 } 3882 } 3883 3884 // For stores that start but don't end a link in the chain: 3885 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3886 it != e; ++it) { 3887 if (Tails.count(*it)) 3888 continue; 3889 3890 // We found a store instr that starts a chain. Now follow the chain and try 3891 // to vectorize it. 3892 BoUpSLP::ValueList Operands; 3893 StoreInst *I = *it; 3894 // Collect the chain into a list. 3895 while (Tails.count(I) || Heads.count(I)) { 3896 if (VectorizedStores.count(I)) 3897 break; 3898 Operands.push_back(I); 3899 // Move to the next value in the chain. 3900 I = ConsecutiveChain[I]; 3901 } 3902 3903 // FIXME: Is division-by-2 the correct step? Should we assert that the 3904 // register size is a power-of-2? 3905 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 3906 Size /= 2) { 3907 if (vectorizeStoreChain(Operands, R, Size)) { 3908 // Mark the vectorized stores so that we don't vectorize them again. 3909 VectorizedStores.insert(Operands.begin(), Operands.end()); 3910 Changed = true; 3911 break; 3912 } 3913 } 3914 } 3915 3916 return Changed; 3917 } 3918 3919 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3920 3921 // Initialize the collections. We will make a single pass over the block. 3922 Stores.clear(); 3923 GEPs.clear(); 3924 3925 // Visit the store and getelementptr instructions in BB and organize them in 3926 // Stores and GEPs according to the underlying objects of their pointer 3927 // operands. 3928 for (Instruction &I : *BB) { 3929 3930 // Ignore store instructions that are volatile or have a pointer operand 3931 // that doesn't point to a scalar type. 3932 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3933 if (!SI->isSimple()) 3934 continue; 3935 if (!isValidElementType(SI->getValueOperand()->getType())) 3936 continue; 3937 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3938 } 3939 3940 // Ignore getelementptr instructions that have more than one index, a 3941 // constant index, or a pointer operand that doesn't point to a scalar 3942 // type. 3943 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3944 auto Idx = GEP->idx_begin()->get(); 3945 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3946 continue; 3947 if (!isValidElementType(Idx->getType())) 3948 continue; 3949 if (GEP->getType()->isVectorTy()) 3950 continue; 3951 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3952 } 3953 } 3954 } 3955 3956 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3957 if (!A || !B) 3958 return false; 3959 Value *VL[] = { A, B }; 3960 return tryToVectorizeList(VL, R, None, true); 3961 } 3962 3963 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3964 ArrayRef<Value *> BuildVector, 3965 bool AllowReorder) { 3966 if (VL.size() < 2) 3967 return false; 3968 3969 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 3970 << ".\n"); 3971 3972 // Check that all of the parts are scalar instructions of the same type. 3973 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3974 if (!I0) 3975 return false; 3976 3977 unsigned Opcode0 = I0->getOpcode(); 3978 3979 unsigned Sz = R.getVectorElementSize(I0); 3980 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 3981 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 3982 if (MaxVF < 2) 3983 return false; 3984 3985 for (Value *V : VL) { 3986 Type *Ty = V->getType(); 3987 if (!isValidElementType(Ty)) 3988 return false; 3989 Instruction *Inst = dyn_cast<Instruction>(V); 3990 if (!Inst || Inst->getOpcode() != Opcode0) 3991 return false; 3992 } 3993 3994 bool Changed = false; 3995 3996 // Keep track of values that were deleted by vectorizing in the loop below. 3997 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3998 3999 unsigned NextInst = 0, MaxInst = VL.size(); 4000 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4001 VF /= 2) { 4002 // No actual vectorization should happen, if number of parts is the same as 4003 // provided vectorization factor (i.e. the scalar type is used for vector 4004 // code during codegen). 4005 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4006 if (TTI->getNumberOfParts(VecTy) == VF) 4007 continue; 4008 for (unsigned I = NextInst; I < MaxInst; ++I) { 4009 unsigned OpsWidth = 0; 4010 4011 if (I + VF > MaxInst) 4012 OpsWidth = MaxInst - I; 4013 else 4014 OpsWidth = VF; 4015 4016 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4017 break; 4018 4019 // Check that a previous iteration of this loop did not delete the Value. 4020 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4021 continue; 4022 4023 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4024 << "\n"); 4025 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4026 4027 ArrayRef<Value *> BuildVectorSlice; 4028 if (!BuildVector.empty()) 4029 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4030 4031 R.buildTree(Ops, BuildVectorSlice); 4032 // TODO: check if we can allow reordering for more cases. 4033 if (AllowReorder && R.shouldReorder()) { 4034 // Conceptually, there is nothing actually preventing us from trying to 4035 // reorder a larger list. In fact, we do exactly this when vectorizing 4036 // reductions. However, at this point, we only expect to get here from 4037 // tryToVectorizePair(). 4038 assert(Ops.size() == 2); 4039 assert(BuildVectorSlice.empty()); 4040 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4041 R.buildTree(ReorderedOps, None); 4042 } 4043 if (R.isTreeTinyAndNotFullyVectorizable()) 4044 continue; 4045 4046 R.computeMinimumValueSizes(); 4047 int Cost = R.getTreeCost(); 4048 4049 if (Cost < -SLPCostThreshold) { 4050 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4051 Value *VectorizedRoot = R.vectorizeTree(); 4052 4053 // Reconstruct the build vector by extracting the vectorized root. This 4054 // way we handle the case where some elements of the vector are 4055 // undefined. 4056 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4057 if (!BuildVectorSlice.empty()) { 4058 // The insert point is the last build vector instruction. The 4059 // vectorized root will precede it. This guarantees that we get an 4060 // instruction. The vectorized tree could have been constant folded. 4061 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4062 unsigned VecIdx = 0; 4063 for (auto &V : BuildVectorSlice) { 4064 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4065 ++BasicBlock::iterator(InsertAfter)); 4066 Instruction *I = cast<Instruction>(V); 4067 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4068 Instruction *Extract = 4069 cast<Instruction>(Builder.CreateExtractElement( 4070 VectorizedRoot, Builder.getInt32(VecIdx++))); 4071 I->setOperand(1, Extract); 4072 I->removeFromParent(); 4073 I->insertAfter(Extract); 4074 InsertAfter = I; 4075 } 4076 } 4077 // Move to the next bundle. 4078 I += VF - 1; 4079 NextInst = I + 1; 4080 Changed = true; 4081 } 4082 } 4083 } 4084 4085 return Changed; 4086 } 4087 4088 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4089 if (!V) 4090 return false; 4091 4092 Value *P = V->getParent(); 4093 4094 // Vectorize in current basic block only. 4095 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4096 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4097 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4098 return false; 4099 4100 // Try to vectorize V. 4101 if (tryToVectorizePair(Op0, Op1, R)) 4102 return true; 4103 4104 auto *A = dyn_cast<BinaryOperator>(Op0); 4105 auto *B = dyn_cast<BinaryOperator>(Op1); 4106 // Try to skip B. 4107 if (B && B->hasOneUse()) { 4108 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4109 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4110 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4111 return true; 4112 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4113 return true; 4114 } 4115 4116 // Try to skip A. 4117 if (A && A->hasOneUse()) { 4118 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4119 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4120 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4121 return true; 4122 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4123 return true; 4124 } 4125 return false; 4126 } 4127 4128 /// \brief Generate a shuffle mask to be used in a reduction tree. 4129 /// 4130 /// \param VecLen The length of the vector to be reduced. 4131 /// \param NumEltsToRdx The number of elements that should be reduced in the 4132 /// vector. 4133 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4134 /// reduction. A pairwise reduction will generate a mask of 4135 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4136 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4137 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4138 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4139 bool IsPairwise, bool IsLeft, 4140 IRBuilder<> &Builder) { 4141 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4142 4143 SmallVector<Constant *, 32> ShuffleMask( 4144 VecLen, UndefValue::get(Builder.getInt32Ty())); 4145 4146 if (IsPairwise) 4147 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4148 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4149 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4150 else 4151 // Move the upper half of the vector to the lower half. 4152 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4153 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4154 4155 return ConstantVector::get(ShuffleMask); 4156 } 4157 4158 namespace { 4159 /// Model horizontal reductions. 4160 /// 4161 /// A horizontal reduction is a tree of reduction operations (currently add and 4162 /// fadd) that has operations that can be put into a vector as its leaf. 4163 /// For example, this tree: 4164 /// 4165 /// mul mul mul mul 4166 /// \ / \ / 4167 /// + + 4168 /// \ / 4169 /// + 4170 /// This tree has "mul" as its reduced values and "+" as its reduction 4171 /// operations. A reduction might be feeding into a store or a binary operation 4172 /// feeding a phi. 4173 /// ... 4174 /// \ / 4175 /// + 4176 /// | 4177 /// phi += 4178 /// 4179 /// Or: 4180 /// ... 4181 /// \ / 4182 /// + 4183 /// | 4184 /// *p = 4185 /// 4186 class HorizontalReduction { 4187 SmallVector<Value *, 16> ReductionOps; 4188 SmallVector<Value *, 32> ReducedVals; 4189 4190 BinaryOperator *ReductionRoot = nullptr; 4191 // After successfull horizontal reduction vectorization attempt for PHI node 4192 // vectorizer tries to update root binary op by combining vectorized tree and 4193 // the ReductionPHI node. But during vectorization this ReductionPHI can be 4194 // vectorized itself and replaced by the undef value, while the instruction 4195 // itself is marked for deletion. This 'marked for deletion' PHI node then can 4196 // be used in new binary operation, causing "Use still stuck around after Def 4197 // is destroyed" crash upon PHI node deletion. 4198 WeakVH ReductionPHI; 4199 4200 /// The opcode of the reduction. 4201 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd; 4202 /// The opcode of the values we perform a reduction on. 4203 unsigned ReducedValueOpcode = 0; 4204 /// Should we model this reduction as a pairwise reduction tree or a tree that 4205 /// splits the vector in halves and adds those halves. 4206 bool IsPairwiseReduction = false; 4207 4208 public: 4209 HorizontalReduction() = default; 4210 4211 /// \brief Try to find a reduction tree. 4212 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4213 assert((!Phi || is_contained(Phi->operands(), B)) && 4214 "Thi phi needs to use the binary operator"); 4215 4216 // We could have a initial reductions that is not an add. 4217 // r *= v1 + v2 + v3 + v4 4218 // In such a case start looking for a tree rooted in the first '+'. 4219 if (Phi) { 4220 if (B->getOperand(0) == Phi) { 4221 Phi = nullptr; 4222 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4223 } else if (B->getOperand(1) == Phi) { 4224 Phi = nullptr; 4225 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4226 } 4227 } 4228 4229 if (!B) 4230 return false; 4231 4232 Type *Ty = B->getType(); 4233 if (!isValidElementType(Ty)) 4234 return false; 4235 4236 ReductionOpcode = B->getOpcode(); 4237 ReducedValueOpcode = 0; 4238 ReductionRoot = B; 4239 ReductionPHI = Phi; 4240 4241 // We currently only support adds. 4242 if ((ReductionOpcode != Instruction::Add && 4243 ReductionOpcode != Instruction::FAdd) || 4244 !B->isAssociative()) 4245 return false; 4246 4247 // Post order traverse the reduction tree starting at B. We only handle true 4248 // trees containing only binary operators or selects. 4249 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4250 Stack.push_back(std::make_pair(B, 0)); 4251 while (!Stack.empty()) { 4252 Instruction *TreeN = Stack.back().first; 4253 unsigned EdgeToVist = Stack.back().second++; 4254 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4255 4256 // Postorder vist. 4257 if (EdgeToVist == 2 || IsReducedValue) { 4258 if (IsReducedValue) 4259 ReducedVals.push_back(TreeN); 4260 else 4261 ReductionOps.push_back(TreeN); 4262 // Retract. 4263 Stack.pop_back(); 4264 continue; 4265 } 4266 4267 // Visit left or right. 4268 Value *NextV = TreeN->getOperand(EdgeToVist); 4269 if (NextV != Phi) { 4270 auto *I = dyn_cast<Instruction>(NextV); 4271 // Continue analysis if the next operand is a reduction operation or 4272 // (possibly) a reduced value. If the reduced value opcode is not set, 4273 // the first met operation != reduction operation is considered as the 4274 // reduced value class. 4275 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4276 I->getOpcode() == ReductionOpcode)) { 4277 // Only handle trees in the current basic block. 4278 if (I->getParent() != B->getParent()) 4279 return false; 4280 4281 // Each tree node needs to have one user except for the ultimate 4282 // reduction. 4283 if (!I->hasOneUse() && I != B) 4284 return false; 4285 4286 if (I->getOpcode() == ReductionOpcode) { 4287 // We need to be able to reassociate the reduction operations. 4288 if (!I->isAssociative()) 4289 return false; 4290 } else if (ReducedValueOpcode && 4291 ReducedValueOpcode != I->getOpcode()) { 4292 // Make sure that the opcodes of the operations that we are going to 4293 // reduce match. 4294 return false; 4295 } else if (!ReducedValueOpcode) 4296 ReducedValueOpcode = I->getOpcode(); 4297 4298 Stack.push_back(std::make_pair(I, 0)); 4299 continue; 4300 } 4301 return false; 4302 } 4303 } 4304 return true; 4305 } 4306 4307 /// \brief Attempt to vectorize the tree found by 4308 /// matchAssociativeReduction. 4309 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4310 if (ReducedVals.empty()) 4311 return false; 4312 4313 // If there is a sufficient number of reduction values, reduce 4314 // to a nearby power-of-2. Can safely generate oversized 4315 // vectors and rely on the backend to split them to legal sizes. 4316 unsigned NumReducedVals = ReducedVals.size(); 4317 if (NumReducedVals < 4) 4318 return false; 4319 4320 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4321 4322 Value *VectorizedTree = nullptr; 4323 IRBuilder<> Builder(ReductionRoot); 4324 FastMathFlags Unsafe; 4325 Unsafe.setUnsafeAlgebra(); 4326 Builder.setFastMathFlags(Unsafe); 4327 unsigned i = 0; 4328 4329 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4330 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4331 V.buildTree(VL, ReductionOps); 4332 if (V.shouldReorder()) { 4333 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4334 V.buildTree(Reversed, ReductionOps); 4335 } 4336 if (V.isTreeTinyAndNotFullyVectorizable()) 4337 break; 4338 4339 V.computeMinimumValueSizes(); 4340 4341 // Estimate cost. 4342 int Cost = 4343 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4344 if (Cost >= -SLPCostThreshold) 4345 break; 4346 4347 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4348 << ". (HorRdx)\n"); 4349 4350 // Vectorize a tree. 4351 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4352 Value *VectorizedRoot = V.vectorizeTree(); 4353 4354 // Emit a reduction. 4355 Value *ReducedSubTree = 4356 emitReduction(VectorizedRoot, Builder, ReduxWidth); 4357 if (VectorizedTree) { 4358 Builder.SetCurrentDebugLocation(Loc); 4359 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4360 ReducedSubTree, "bin.rdx"); 4361 } else 4362 VectorizedTree = ReducedSubTree; 4363 i += ReduxWidth; 4364 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4365 } 4366 4367 if (VectorizedTree) { 4368 // Finish the reduction. 4369 for (; i < NumReducedVals; ++i) { 4370 Builder.SetCurrentDebugLocation( 4371 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4372 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4373 ReducedVals[i]); 4374 } 4375 // Update users. 4376 if (ReductionPHI && !isa<UndefValue>(ReductionPHI)) { 4377 assert(ReductionRoot && "Need a reduction operation"); 4378 ReductionRoot->setOperand(0, VectorizedTree); 4379 ReductionRoot->setOperand(1, ReductionPHI); 4380 } else 4381 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4382 } 4383 return VectorizedTree != nullptr; 4384 } 4385 4386 unsigned numReductionValues() const { 4387 return ReducedVals.size(); 4388 } 4389 4390 private: 4391 /// \brief Calculate the cost of a reduction. 4392 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4393 unsigned ReduxWidth) { 4394 Type *ScalarTy = FirstReducedVal->getType(); 4395 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4396 4397 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4398 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4399 4400 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4401 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4402 4403 int ScalarReduxCost = 4404 (ReduxWidth - 1) * 4405 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4406 4407 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4408 << " for reduction that starts with " << *FirstReducedVal 4409 << " (It is a " 4410 << (IsPairwiseReduction ? "pairwise" : "splitting") 4411 << " reduction)\n"); 4412 4413 return VecReduxCost - ScalarReduxCost; 4414 } 4415 4416 /// \brief Emit a horizontal reduction of the vectorized value. 4417 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4418 unsigned ReduxWidth) { 4419 assert(VectorizedValue && "Need to have a vectorized tree node"); 4420 assert(isPowerOf2_32(ReduxWidth) && 4421 "We only handle power-of-two reductions for now"); 4422 4423 Value *TmpVec = VectorizedValue; 4424 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4425 if (IsPairwiseReduction) { 4426 Value *LeftMask = 4427 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4428 Value *RightMask = 4429 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4430 4431 Value *LeftShuf = Builder.CreateShuffleVector( 4432 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4433 Value *RightShuf = Builder.CreateShuffleVector( 4434 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4435 "rdx.shuf.r"); 4436 TmpVec = Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, 4437 "bin.rdx"); 4438 } else { 4439 Value *UpperHalf = 4440 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4441 Value *Shuf = Builder.CreateShuffleVector( 4442 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4443 TmpVec = Builder.CreateBinOp(ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4444 } 4445 } 4446 4447 // The result is in the first element of the vector. 4448 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4449 } 4450 }; 4451 } // end anonymous namespace 4452 4453 /// \brief Recognize construction of vectors like 4454 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4455 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4456 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4457 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4458 /// 4459 /// Returns true if it matches 4460 /// 4461 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4462 SmallVectorImpl<Value *> &BuildVector, 4463 SmallVectorImpl<Value *> &BuildVectorOpds) { 4464 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4465 return false; 4466 4467 InsertElementInst *IE = FirstInsertElem; 4468 while (true) { 4469 BuildVector.push_back(IE); 4470 BuildVectorOpds.push_back(IE->getOperand(1)); 4471 4472 if (IE->use_empty()) 4473 return false; 4474 4475 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4476 if (!NextUse) 4477 return true; 4478 4479 // If this isn't the final use, make sure the next insertelement is the only 4480 // use. It's OK if the final constructed vector is used multiple times 4481 if (!IE->hasOneUse()) 4482 return false; 4483 4484 IE = NextUse; 4485 } 4486 4487 return false; 4488 } 4489 4490 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4491 /// 4492 /// \return true if it matches. 4493 static bool findBuildAggregate(InsertValueInst *IV, 4494 SmallVectorImpl<Value *> &BuildVector, 4495 SmallVectorImpl<Value *> &BuildVectorOpds) { 4496 if (!IV->hasOneUse()) 4497 return false; 4498 Value *V = IV->getAggregateOperand(); 4499 if (!isa<UndefValue>(V)) { 4500 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4501 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4502 return false; 4503 } 4504 BuildVector.push_back(IV); 4505 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4506 return true; 4507 } 4508 4509 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4510 return V->getType() < V2->getType(); 4511 } 4512 4513 /// \brief Try and get a reduction value from a phi node. 4514 /// 4515 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4516 /// if they come from either \p ParentBB or a containing loop latch. 4517 /// 4518 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4519 /// if not possible. 4520 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4521 BasicBlock *ParentBB, LoopInfo *LI) { 4522 // There are situations where the reduction value is not dominated by the 4523 // reduction phi. Vectorizing such cases has been reported to cause 4524 // miscompiles. See PR25787. 4525 auto DominatedReduxValue = [&](Value *R) { 4526 return ( 4527 dyn_cast<Instruction>(R) && 4528 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4529 }; 4530 4531 Value *Rdx = nullptr; 4532 4533 // Return the incoming value if it comes from the same BB as the phi node. 4534 if (P->getIncomingBlock(0) == ParentBB) { 4535 Rdx = P->getIncomingValue(0); 4536 } else if (P->getIncomingBlock(1) == ParentBB) { 4537 Rdx = P->getIncomingValue(1); 4538 } 4539 4540 if (Rdx && DominatedReduxValue(Rdx)) 4541 return Rdx; 4542 4543 // Otherwise, check whether we have a loop latch to look at. 4544 Loop *BBL = LI->getLoopFor(ParentBB); 4545 if (!BBL) 4546 return nullptr; 4547 BasicBlock *BBLatch = BBL->getLoopLatch(); 4548 if (!BBLatch) 4549 return nullptr; 4550 4551 // There is a loop latch, return the incoming value if it comes from 4552 // that. This reduction pattern occasionally turns up. 4553 if (P->getIncomingBlock(0) == BBLatch) { 4554 Rdx = P->getIncomingValue(0); 4555 } else if (P->getIncomingBlock(1) == BBLatch) { 4556 Rdx = P->getIncomingValue(1); 4557 } 4558 4559 if (Rdx && DominatedReduxValue(Rdx)) 4560 return Rdx; 4561 4562 return nullptr; 4563 } 4564 4565 namespace { 4566 /// Tracks instructons and its children. 4567 class WeakVHWithLevel final : public CallbackVH { 4568 /// Operand index of the instruction currently beeing analized. 4569 unsigned Level = 0; 4570 /// Is this the instruction that should be vectorized, or are we now 4571 /// processing children (i.e. operands of this instruction) for potential 4572 /// vectorization? 4573 bool IsInitial = true; 4574 4575 public: 4576 explicit WeakVHWithLevel() = default; 4577 WeakVHWithLevel(Value *V) : CallbackVH(V){}; 4578 /// Restart children analysis each time it is repaced by the new instruction. 4579 void allUsesReplacedWith(Value *New) override { 4580 setValPtr(New); 4581 Level = 0; 4582 IsInitial = true; 4583 } 4584 /// Check if the instruction was not deleted during vectorization. 4585 bool isValid() const { return !getValPtr(); } 4586 /// Is the istruction itself must be vectorized? 4587 bool isInitial() const { return IsInitial; } 4588 /// Try to vectorize children. 4589 void clearInitial() { IsInitial = false; } 4590 /// Are all children processed already? 4591 bool isFinal() const { 4592 assert(getValPtr() && 4593 (isa<Instruction>(getValPtr()) && 4594 cast<Instruction>(getValPtr())->getNumOperands() >= Level)); 4595 return getValPtr() && 4596 cast<Instruction>(getValPtr())->getNumOperands() == Level; 4597 } 4598 /// Get next child operation. 4599 Value *nextOperand() { 4600 assert(getValPtr() && isa<Instruction>(getValPtr()) && 4601 cast<Instruction>(getValPtr())->getNumOperands() > Level); 4602 return cast<Instruction>(getValPtr())->getOperand(Level++); 4603 } 4604 virtual ~WeakVHWithLevel() = default; 4605 }; 4606 } // namespace 4607 4608 /// \brief Attempt to reduce a horizontal reduction. 4609 /// If it is legal to match a horizontal reduction feeding 4610 /// the phi node P with reduction operators Root in a basic block BB, then check 4611 /// if it can be done. 4612 /// \returns true if a horizontal reduction was matched and reduced. 4613 /// \returns false if a horizontal reduction was not matched. 4614 static bool canBeVectorized( 4615 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4616 TargetTransformInfo *TTI, 4617 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4618 if (!ShouldVectorizeHor) 4619 return false; 4620 4621 if (!Root) 4622 return false; 4623 4624 if (Root->getParent() != BB) 4625 return false; 4626 SmallVector<WeakVHWithLevel, 8> Stack(1, Root); 4627 SmallSet<Value *, 8> VisitedInstrs; 4628 bool Res = false; 4629 while (!Stack.empty()) { 4630 Value *V = Stack.back(); 4631 if (!V) { 4632 Stack.pop_back(); 4633 continue; 4634 } 4635 auto *Inst = dyn_cast<Instruction>(V); 4636 if (!Inst || isa<PHINode>(Inst)) { 4637 Stack.pop_back(); 4638 continue; 4639 } 4640 if (Stack.back().isInitial()) { 4641 Stack.back().clearInitial(); 4642 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4643 HorizontalReduction HorRdx; 4644 if (HorRdx.matchAssociativeReduction(P, BI)) { 4645 if (HorRdx.tryToReduce(R, TTI)) { 4646 Res = true; 4647 P = nullptr; 4648 continue; 4649 } 4650 } 4651 if (P) { 4652 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4653 if (Inst == P) 4654 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4655 if (!Inst) { 4656 P = nullptr; 4657 continue; 4658 } 4659 } 4660 } 4661 P = nullptr; 4662 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4663 Res = true; 4664 continue; 4665 } 4666 } 4667 if (Stack.back().isFinal()) { 4668 Stack.pop_back(); 4669 continue; 4670 } 4671 4672 if (auto *NextV = dyn_cast<Instruction>(Stack.back().nextOperand())) 4673 if (NextV->getParent() == BB && VisitedInstrs.insert(NextV).second && 4674 Stack.size() < RecursionMaxDepth) 4675 Stack.push_back(NextV); 4676 } 4677 return Res; 4678 } 4679 4680 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4681 BasicBlock *BB, BoUpSLP &R, 4682 TargetTransformInfo *TTI) { 4683 if (!V) 4684 return false; 4685 auto *I = dyn_cast<Instruction>(V); 4686 if (!I) 4687 return false; 4688 4689 if (!isa<BinaryOperator>(I)) 4690 P = nullptr; 4691 // Try to match and vectorize a horizontal reduction. 4692 return canBeVectorized(P, I, BB, R, TTI, 4693 [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4694 return tryToVectorize(BI, R); 4695 }); 4696 } 4697 4698 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4699 bool Changed = false; 4700 SmallVector<Value *, 4> Incoming; 4701 SmallSet<Value *, 16> VisitedInstrs; 4702 4703 bool HaveVectorizedPhiNodes = true; 4704 while (HaveVectorizedPhiNodes) { 4705 HaveVectorizedPhiNodes = false; 4706 4707 // Collect the incoming values from the PHIs. 4708 Incoming.clear(); 4709 for (Instruction &I : *BB) { 4710 PHINode *P = dyn_cast<PHINode>(&I); 4711 if (!P) 4712 break; 4713 4714 if (!VisitedInstrs.count(P)) 4715 Incoming.push_back(P); 4716 } 4717 4718 // Sort by type. 4719 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4720 4721 // Try to vectorize elements base on their type. 4722 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4723 E = Incoming.end(); 4724 IncIt != E;) { 4725 4726 // Look for the next elements with the same type. 4727 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4728 while (SameTypeIt != E && 4729 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4730 VisitedInstrs.insert(*SameTypeIt); 4731 ++SameTypeIt; 4732 } 4733 4734 // Try to vectorize them. 4735 unsigned NumElts = (SameTypeIt - IncIt); 4736 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4737 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4738 // Success start over because instructions might have been changed. 4739 HaveVectorizedPhiNodes = true; 4740 Changed = true; 4741 break; 4742 } 4743 4744 // Start over at the next instruction of a different type (or the end). 4745 IncIt = SameTypeIt; 4746 } 4747 } 4748 4749 VisitedInstrs.clear(); 4750 4751 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4752 // We may go through BB multiple times so skip the one we have checked. 4753 if (!VisitedInstrs.insert(&*it).second) 4754 continue; 4755 4756 if (isa<DbgInfoIntrinsic>(it)) 4757 continue; 4758 4759 // Try to vectorize reductions that use PHINodes. 4760 if (PHINode *P = dyn_cast<PHINode>(it)) { 4761 // Check that the PHI is a reduction PHI. 4762 if (P->getNumIncomingValues() != 2) 4763 return Changed; 4764 4765 // Try to match and vectorize a horizontal reduction. 4766 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4767 TTI)) { 4768 Changed = true; 4769 it = BB->begin(); 4770 e = BB->end(); 4771 continue; 4772 } 4773 continue; 4774 } 4775 4776 if (ShouldStartVectorizeHorAtStore) { 4777 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4778 // Try to match and vectorize a horizontal reduction. 4779 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4780 TTI)) { 4781 Changed = true; 4782 it = BB->begin(); 4783 e = BB->end(); 4784 continue; 4785 } 4786 } 4787 } 4788 4789 // Try to vectorize horizontal reductions feeding into a return. 4790 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4791 if (RI->getNumOperands() != 0) { 4792 // Try to match and vectorize a horizontal reduction. 4793 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4794 Changed = true; 4795 it = BB->begin(); 4796 e = BB->end(); 4797 continue; 4798 } 4799 } 4800 } 4801 4802 // Try to vectorize trees that start at compare instructions. 4803 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4804 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4805 Changed = true; 4806 // We would like to start over since some instructions are deleted 4807 // and the iterator may become invalid value. 4808 it = BB->begin(); 4809 e = BB->end(); 4810 continue; 4811 } 4812 4813 for (int I = 0; I < 2; ++I) { 4814 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 4815 Changed = true; 4816 // We would like to start over since some instructions are deleted 4817 // and the iterator may become invalid value. 4818 it = BB->begin(); 4819 e = BB->end(); 4820 break; 4821 } 4822 } 4823 continue; 4824 } 4825 4826 // Try to vectorize trees that start at insertelement instructions. 4827 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4828 SmallVector<Value *, 16> BuildVector; 4829 SmallVector<Value *, 16> BuildVectorOpds; 4830 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4831 continue; 4832 4833 // Vectorize starting with the build vector operands ignoring the 4834 // BuildVector instructions for the purpose of scheduling and user 4835 // extraction. 4836 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4837 Changed = true; 4838 it = BB->begin(); 4839 e = BB->end(); 4840 } 4841 4842 continue; 4843 } 4844 4845 // Try to vectorize trees that start at insertvalue instructions feeding into 4846 // a store. 4847 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4848 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4849 const DataLayout &DL = BB->getModule()->getDataLayout(); 4850 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4851 SmallVector<Value *, 16> BuildVector; 4852 SmallVector<Value *, 16> BuildVectorOpds; 4853 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4854 continue; 4855 4856 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4857 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4858 Changed = true; 4859 it = BB->begin(); 4860 e = BB->end(); 4861 } 4862 continue; 4863 } 4864 } 4865 } 4866 } 4867 4868 return Changed; 4869 } 4870 4871 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4872 auto Changed = false; 4873 for (auto &Entry : GEPs) { 4874 4875 // If the getelementptr list has fewer than two elements, there's nothing 4876 // to do. 4877 if (Entry.second.size() < 2) 4878 continue; 4879 4880 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4881 << Entry.second.size() << ".\n"); 4882 4883 // We process the getelementptr list in chunks of 16 (like we do for 4884 // stores) to minimize compile-time. 4885 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4886 auto Len = std::min<unsigned>(BE - BI, 16); 4887 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4888 4889 // Initialize a set a candidate getelementptrs. Note that we use a 4890 // SetVector here to preserve program order. If the index computations 4891 // are vectorizable and begin with loads, we want to minimize the chance 4892 // of having to reorder them later. 4893 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4894 4895 // Some of the candidates may have already been vectorized after we 4896 // initially collected them. If so, the WeakVHs will have nullified the 4897 // values, so remove them from the set of candidates. 4898 Candidates.remove(nullptr); 4899 4900 // Remove from the set of candidates all pairs of getelementptrs with 4901 // constant differences. Such getelementptrs are likely not good 4902 // candidates for vectorization in a bottom-up phase since one can be 4903 // computed from the other. We also ensure all candidate getelementptr 4904 // indices are unique. 4905 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4906 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4907 if (!Candidates.count(GEPI)) 4908 continue; 4909 auto *SCEVI = SE->getSCEV(GEPList[I]); 4910 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4911 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4912 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4913 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4914 Candidates.remove(GEPList[I]); 4915 Candidates.remove(GEPList[J]); 4916 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4917 Candidates.remove(GEPList[J]); 4918 } 4919 } 4920 } 4921 4922 // We break out of the above computation as soon as we know there are 4923 // fewer than two candidates remaining. 4924 if (Candidates.size() < 2) 4925 continue; 4926 4927 // Add the single, non-constant index of each candidate to the bundle. We 4928 // ensured the indices met these constraints when we originally collected 4929 // the getelementptrs. 4930 SmallVector<Value *, 16> Bundle(Candidates.size()); 4931 auto BundleIndex = 0u; 4932 for (auto *V : Candidates) { 4933 auto *GEP = cast<GetElementPtrInst>(V); 4934 auto *GEPIdx = GEP->idx_begin()->get(); 4935 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4936 Bundle[BundleIndex++] = GEPIdx; 4937 } 4938 4939 // Try and vectorize the indices. We are currently only interested in 4940 // gather-like cases of the form: 4941 // 4942 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4943 // 4944 // where the loads of "a", the loads of "b", and the subtractions can be 4945 // performed in parallel. It's likely that detecting this pattern in a 4946 // bottom-up phase will be simpler and less costly than building a 4947 // full-blown top-down phase beginning at the consecutive loads. 4948 Changed |= tryToVectorizeList(Bundle, R); 4949 } 4950 } 4951 return Changed; 4952 } 4953 4954 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4955 bool Changed = false; 4956 // Attempt to sort and vectorize each of the store-groups. 4957 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4958 ++it) { 4959 if (it->second.size() < 2) 4960 continue; 4961 4962 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4963 << it->second.size() << ".\n"); 4964 4965 // Process the stores in chunks of 16. 4966 // TODO: The limit of 16 inhibits greater vectorization factors. 4967 // For example, AVX2 supports v32i8. Increasing this limit, however, 4968 // may cause a significant compile-time increase. 4969 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4970 unsigned Len = std::min<unsigned>(CE - CI, 16); 4971 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 4972 } 4973 } 4974 return Changed; 4975 } 4976 4977 char SLPVectorizer::ID = 0; 4978 static const char lv_name[] = "SLP Vectorizer"; 4979 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4980 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4981 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4982 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4983 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4984 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4985 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4986 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4987 4988 namespace llvm { 4989 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4990 } 4991