1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<unsigned> 130 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 131 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 132 133 static cl::opt<int> 134 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 135 cl::desc("Maximum depth of the lookup for consecutive stores.")); 136 137 /// Limits the size of scheduling regions in a block. 138 /// It avoid long compile times for _very_ large blocks where vector 139 /// instructions are spread over a wide range. 140 /// This limit is way higher than needed by real-world functions. 141 static cl::opt<int> 142 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 143 cl::desc("Limit the size of the SLP scheduling region per block")); 144 145 static cl::opt<int> MinVectorRegSizeOption( 146 "slp-min-reg-size", cl::init(128), cl::Hidden, 147 cl::desc("Attempt to vectorize for this register size in bits")); 148 149 static cl::opt<unsigned> RecursionMaxDepth( 150 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 151 cl::desc("Limit the recursion depth when building a vectorizable tree")); 152 153 static cl::opt<unsigned> MinTreeSize( 154 "slp-min-tree-size", cl::init(3), cl::Hidden, 155 cl::desc("Only vectorize small trees if they are fully vectorizable")); 156 157 // The maximum depth that the look-ahead score heuristic will explore. 158 // The higher this value, the higher the compilation time overhead. 159 static cl::opt<int> LookAheadMaxDepth( 160 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 161 cl::desc("The maximum look-ahead depth for operand reordering scores")); 162 163 // The Look-ahead heuristic goes through the users of the bundle to calculate 164 // the users cost in getExternalUsesCost(). To avoid compilation time increase 165 // we limit the number of users visited to this value. 166 static cl::opt<unsigned> LookAheadUsersBudget( 167 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 168 cl::desc("The maximum number of users to visit while visiting the " 169 "predecessors. This prevents compilation time increase.")); 170 171 static cl::opt<bool> 172 ViewSLPTree("view-slp-tree", cl::Hidden, 173 cl::desc("Display the SLP trees with Graphviz")); 174 175 // Limit the number of alias checks. The limit is chosen so that 176 // it has no negative effect on the llvm benchmarks. 177 static const unsigned AliasedCheckLimit = 10; 178 179 // Another limit for the alias checks: The maximum distance between load/store 180 // instructions where alias checks are done. 181 // This limit is useful for very large basic blocks. 182 static const unsigned MaxMemDepDistance = 160; 183 184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 185 /// regions to be handled. 186 static const int MinScheduleRegionSize = 16; 187 188 /// Predicate for the element types that the SLP vectorizer supports. 189 /// 190 /// The most important thing to filter here are types which are invalid in LLVM 191 /// vectors. We also filter target specific types which have absolutely no 192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 193 /// avoids spending time checking the cost model and realizing that they will 194 /// be inevitably scalarized. 195 static bool isValidElementType(Type *Ty) { 196 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 197 !Ty->isPPC_FP128Ty(); 198 } 199 200 /// \returns true if all of the instructions in \p VL are in the same block or 201 /// false otherwise. 202 static bool allSameBlock(ArrayRef<Value *> VL) { 203 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 204 if (!I0) 205 return false; 206 BasicBlock *BB = I0->getParent(); 207 for (int I = 1, E = VL.size(); I < E; I++) { 208 auto *II = dyn_cast<Instruction>(VL[I]); 209 if (!II) 210 return false; 211 212 if (BB != II->getParent()) 213 return false; 214 } 215 return true; 216 } 217 218 /// \returns True if all of the values in \p VL are constants (but not 219 /// globals/constant expressions). 220 static bool allConstant(ArrayRef<Value *> VL) { 221 // Constant expressions and globals can't be vectorized like normal integer/FP 222 // constants. 223 for (Value *i : VL) 224 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 225 return false; 226 return true; 227 } 228 229 /// \returns True if all of the values in \p VL are identical. 230 static bool isSplat(ArrayRef<Value *> VL) { 231 for (unsigned i = 1, e = VL.size(); i < e; ++i) 232 if (VL[i] != VL[0]) 233 return false; 234 return true; 235 } 236 237 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 238 static bool isCommutative(Instruction *I) { 239 if (auto *Cmp = dyn_cast<CmpInst>(I)) 240 return Cmp->isCommutative(); 241 if (auto *BO = dyn_cast<BinaryOperator>(I)) 242 return BO->isCommutative(); 243 // TODO: This should check for generic Instruction::isCommutative(), but 244 // we need to confirm that the caller code correctly handles Intrinsics 245 // for example (does not have 2 operands). 246 return false; 247 } 248 249 /// Checks if the vector of instructions can be represented as a shuffle, like: 250 /// %x0 = extractelement <4 x i8> %x, i32 0 251 /// %x3 = extractelement <4 x i8> %x, i32 3 252 /// %y1 = extractelement <4 x i8> %y, i32 1 253 /// %y2 = extractelement <4 x i8> %y, i32 2 254 /// %x0x0 = mul i8 %x0, %x0 255 /// %x3x3 = mul i8 %x3, %x3 256 /// %y1y1 = mul i8 %y1, %y1 257 /// %y2y2 = mul i8 %y2, %y2 258 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 259 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 260 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 261 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 262 /// ret <4 x i8> %ins4 263 /// can be transformed into: 264 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 265 /// i32 6> 266 /// %2 = mul <4 x i8> %1, %1 267 /// ret <4 x i8> %2 268 /// We convert this initially to something like: 269 /// %x0 = extractelement <4 x i8> %x, i32 0 270 /// %x3 = extractelement <4 x i8> %x, i32 3 271 /// %y1 = extractelement <4 x i8> %y, i32 1 272 /// %y2 = extractelement <4 x i8> %y, i32 2 273 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 274 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 275 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 276 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 277 /// %5 = mul <4 x i8> %4, %4 278 /// %6 = extractelement <4 x i8> %5, i32 0 279 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 280 /// %7 = extractelement <4 x i8> %5, i32 1 281 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 282 /// %8 = extractelement <4 x i8> %5, i32 2 283 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 284 /// %9 = extractelement <4 x i8> %5, i32 3 285 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 286 /// ret <4 x i8> %ins4 287 /// InstCombiner transforms this into a shuffle and vector mul 288 /// TODO: Can we split off and reuse the shuffle mask detection from 289 /// TargetTransformInfo::getInstructionThroughput? 290 static Optional<TargetTransformInfo::ShuffleKind> 291 isShuffle(ArrayRef<Value *> VL) { 292 auto *EI0 = cast<ExtractElementInst>(VL[0]); 293 unsigned Size = 294 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 295 Value *Vec1 = nullptr; 296 Value *Vec2 = nullptr; 297 enum ShuffleMode { Unknown, Select, Permute }; 298 ShuffleMode CommonShuffleMode = Unknown; 299 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 300 auto *EI = cast<ExtractElementInst>(VL[I]); 301 auto *Vec = EI->getVectorOperand(); 302 // All vector operands must have the same number of vector elements. 303 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 304 return None; 305 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 306 if (!Idx) 307 return None; 308 // Undefined behavior if Idx is negative or >= Size. 309 if (Idx->getValue().uge(Size)) 310 continue; 311 unsigned IntIdx = Idx->getValue().getZExtValue(); 312 // We can extractelement from undef vector. 313 if (isa<UndefValue>(Vec)) 314 continue; 315 // For correct shuffling we have to have at most 2 different vector operands 316 // in all extractelement instructions. 317 if (!Vec1 || Vec1 == Vec) 318 Vec1 = Vec; 319 else if (!Vec2 || Vec2 == Vec) 320 Vec2 = Vec; 321 else 322 return None; 323 if (CommonShuffleMode == Permute) 324 continue; 325 // If the extract index is not the same as the operation number, it is a 326 // permutation. 327 if (IntIdx != I) { 328 CommonShuffleMode = Permute; 329 continue; 330 } 331 CommonShuffleMode = Select; 332 } 333 // If we're not crossing lanes in different vectors, consider it as blending. 334 if (CommonShuffleMode == Select && Vec2) 335 return TargetTransformInfo::SK_Select; 336 // If Vec2 was never used, we have a permutation of a single vector, otherwise 337 // we have permutation of 2 vectors. 338 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 339 : TargetTransformInfo::SK_PermuteSingleSrc; 340 } 341 342 namespace { 343 344 /// Main data required for vectorization of instructions. 345 struct InstructionsState { 346 /// The very first instruction in the list with the main opcode. 347 Value *OpValue = nullptr; 348 349 /// The main/alternate instruction. 350 Instruction *MainOp = nullptr; 351 Instruction *AltOp = nullptr; 352 353 /// The main/alternate opcodes for the list of instructions. 354 unsigned getOpcode() const { 355 return MainOp ? MainOp->getOpcode() : 0; 356 } 357 358 unsigned getAltOpcode() const { 359 return AltOp ? AltOp->getOpcode() : 0; 360 } 361 362 /// Some of the instructions in the list have alternate opcodes. 363 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 364 365 bool isOpcodeOrAlt(Instruction *I) const { 366 unsigned CheckedOpcode = I->getOpcode(); 367 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 368 } 369 370 InstructionsState() = delete; 371 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 372 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 373 }; 374 375 } // end anonymous namespace 376 377 /// Chooses the correct key for scheduling data. If \p Op has the same (or 378 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 379 /// OpValue. 380 static Value *isOneOf(const InstructionsState &S, Value *Op) { 381 auto *I = dyn_cast<Instruction>(Op); 382 if (I && S.isOpcodeOrAlt(I)) 383 return Op; 384 return S.OpValue; 385 } 386 387 /// \returns true if \p Opcode is allowed as part of of the main/alternate 388 /// instruction for SLP vectorization. 389 /// 390 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 391 /// "shuffled out" lane would result in division by zero. 392 static bool isValidForAlternation(unsigned Opcode) { 393 if (Instruction::isIntDivRem(Opcode)) 394 return false; 395 396 return true; 397 } 398 399 /// \returns analysis of the Instructions in \p VL described in 400 /// InstructionsState, the Opcode that we suppose the whole list 401 /// could be vectorized even if its structure is diverse. 402 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 403 unsigned BaseIndex = 0) { 404 // Make sure these are all Instructions. 405 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 406 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 407 408 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 409 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 410 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 411 unsigned AltOpcode = Opcode; 412 unsigned AltIndex = BaseIndex; 413 414 // Check for one alternate opcode from another BinaryOperator. 415 // TODO - generalize to support all operators (types, calls etc.). 416 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 417 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 418 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 419 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 420 continue; 421 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 422 isValidForAlternation(Opcode)) { 423 AltOpcode = InstOpcode; 424 AltIndex = Cnt; 425 continue; 426 } 427 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 428 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 429 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 430 if (Ty0 == Ty1) { 431 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 432 continue; 433 if (Opcode == AltOpcode) { 434 assert(isValidForAlternation(Opcode) && 435 isValidForAlternation(InstOpcode) && 436 "Cast isn't safe for alternation, logic needs to be updated!"); 437 AltOpcode = InstOpcode; 438 AltIndex = Cnt; 439 continue; 440 } 441 } 442 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 443 continue; 444 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 445 } 446 447 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 448 cast<Instruction>(VL[AltIndex])); 449 } 450 451 /// \returns true if all of the values in \p VL have the same type or false 452 /// otherwise. 453 static bool allSameType(ArrayRef<Value *> VL) { 454 Type *Ty = VL[0]->getType(); 455 for (int i = 1, e = VL.size(); i < e; i++) 456 if (VL[i]->getType() != Ty) 457 return false; 458 459 return true; 460 } 461 462 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 463 static Optional<unsigned> getExtractIndex(Instruction *E) { 464 unsigned Opcode = E->getOpcode(); 465 assert((Opcode == Instruction::ExtractElement || 466 Opcode == Instruction::ExtractValue) && 467 "Expected extractelement or extractvalue instruction."); 468 if (Opcode == Instruction::ExtractElement) { 469 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 470 if (!CI) 471 return None; 472 return CI->getZExtValue(); 473 } 474 ExtractValueInst *EI = cast<ExtractValueInst>(E); 475 if (EI->getNumIndices() != 1) 476 return None; 477 return *EI->idx_begin(); 478 } 479 480 /// \returns True if in-tree use also needs extract. This refers to 481 /// possible scalar operand in vectorized instruction. 482 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 483 TargetLibraryInfo *TLI) { 484 unsigned Opcode = UserInst->getOpcode(); 485 switch (Opcode) { 486 case Instruction::Load: { 487 LoadInst *LI = cast<LoadInst>(UserInst); 488 return (LI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Store: { 491 StoreInst *SI = cast<StoreInst>(UserInst); 492 return (SI->getPointerOperand() == Scalar); 493 } 494 case Instruction::Call: { 495 CallInst *CI = cast<CallInst>(UserInst); 496 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 497 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 498 if (hasVectorInstrinsicScalarOpd(ID, i)) 499 return (CI->getArgOperand(i) == Scalar); 500 } 501 LLVM_FALLTHROUGH; 502 } 503 default: 504 return false; 505 } 506 } 507 508 /// \returns the AA location that is being access by the instruction. 509 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 510 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 511 return MemoryLocation::get(SI); 512 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 513 return MemoryLocation::get(LI); 514 return MemoryLocation(); 515 } 516 517 /// \returns True if the instruction is not a volatile or atomic load/store. 518 static bool isSimple(Instruction *I) { 519 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 520 return LI->isSimple(); 521 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 522 return SI->isSimple(); 523 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 524 return !MI->isVolatile(); 525 return true; 526 } 527 528 namespace llvm { 529 530 static void inversePermutation(ArrayRef<unsigned> Indices, 531 SmallVectorImpl<int> &Mask) { 532 Mask.clear(); 533 const unsigned E = Indices.size(); 534 Mask.resize(E, E + 1); 535 for (unsigned I = 0; I < E; ++I) 536 Mask[Indices[I]] = I; 537 } 538 539 namespace slpvectorizer { 540 541 /// Bottom Up SLP Vectorizer. 542 class BoUpSLP { 543 struct TreeEntry; 544 struct ScheduleData; 545 546 public: 547 using ValueList = SmallVector<Value *, 8>; 548 using InstrList = SmallVector<Instruction *, 16>; 549 using ValueSet = SmallPtrSet<Value *, 16>; 550 using StoreList = SmallVector<StoreInst *, 8>; 551 using ExtraValueToDebugLocsMap = 552 MapVector<Value *, SmallVector<Instruction *, 2>>; 553 using OrdersType = SmallVector<unsigned, 4>; 554 555 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 556 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 557 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 558 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 559 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 560 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 561 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 562 // Use the vector register size specified by the target unless overridden 563 // by a command-line option. 564 // TODO: It would be better to limit the vectorization factor based on 565 // data type rather than just register size. For example, x86 AVX has 566 // 256-bit registers, but it does not support integer operations 567 // at that width (that requires AVX2). 568 if (MaxVectorRegSizeOption.getNumOccurrences()) 569 MaxVecRegSize = MaxVectorRegSizeOption; 570 else 571 MaxVecRegSize = TTI->getRegisterBitWidth(true); 572 573 if (MinVectorRegSizeOption.getNumOccurrences()) 574 MinVecRegSize = MinVectorRegSizeOption; 575 else 576 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 577 } 578 579 /// Vectorize the tree that starts with the elements in \p VL. 580 /// Returns the vectorized root. 581 Value *vectorizeTree(); 582 583 /// Vectorize the tree but with the list of externally used values \p 584 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 585 /// generated extractvalue instructions. 586 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 587 588 /// \returns the cost incurred by unwanted spills and fills, caused by 589 /// holding live values over call sites. 590 int getSpillCost() const; 591 592 /// \returns the vectorization cost of the subtree that starts at \p VL. 593 /// A negative number means that this is profitable. 594 int getTreeCost(); 595 596 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 597 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 598 void buildTree(ArrayRef<Value *> Roots, 599 ArrayRef<Value *> UserIgnoreLst = None); 600 601 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 602 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 603 /// into account (and updating it, if required) list of externally used 604 /// values stored in \p ExternallyUsedValues. 605 void buildTree(ArrayRef<Value *> Roots, 606 ExtraValueToDebugLocsMap &ExternallyUsedValues, 607 ArrayRef<Value *> UserIgnoreLst = None); 608 609 /// Clear the internal data structures that are created by 'buildTree'. 610 void deleteTree() { 611 VectorizableTree.clear(); 612 ScalarToTreeEntry.clear(); 613 MustGather.clear(); 614 ExternalUses.clear(); 615 NumOpsWantToKeepOrder.clear(); 616 NumOpsWantToKeepOriginalOrder = 0; 617 for (auto &Iter : BlocksSchedules) { 618 BlockScheduling *BS = Iter.second.get(); 619 BS->clear(); 620 } 621 MinBWs.clear(); 622 } 623 624 unsigned getTreeSize() const { return VectorizableTree.size(); } 625 626 /// Perform LICM and CSE on the newly generated gather sequences. 627 void optimizeGatherSequence(); 628 629 /// \returns The best order of instructions for vectorization. 630 Optional<ArrayRef<unsigned>> bestOrder() const { 631 assert(llvm::all_of( 632 NumOpsWantToKeepOrder, 633 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 634 return D.getFirst().size() == 635 VectorizableTree[0]->Scalars.size(); 636 }) && 637 "All orders must have the same size as number of instructions in " 638 "tree node."); 639 auto I = std::max_element( 640 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 641 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 642 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 643 return D1.second < D2.second; 644 }); 645 if (I == NumOpsWantToKeepOrder.end() || 646 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 647 return None; 648 649 return makeArrayRef(I->getFirst()); 650 } 651 652 /// Builds the correct order for root instructions. 653 /// If some leaves have the same instructions to be vectorized, we may 654 /// incorrectly evaluate the best order for the root node (it is built for the 655 /// vector of instructions without repeated instructions and, thus, has less 656 /// elements than the root node). This function builds the correct order for 657 /// the root node. 658 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 659 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 660 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 661 /// be reordered, the best order will be \<1, 0\>. We need to extend this 662 /// order for the root node. For the root node this order should look like 663 /// \<3, 0, 1, 2\>. This function extends the order for the reused 664 /// instructions. 665 void findRootOrder(OrdersType &Order) { 666 // If the leaf has the same number of instructions to vectorize as the root 667 // - order must be set already. 668 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 669 if (Order.size() == RootSize) 670 return; 671 SmallVector<unsigned, 4> RealOrder(Order.size()); 672 std::swap(Order, RealOrder); 673 SmallVector<int, 4> Mask; 674 inversePermutation(RealOrder, Mask); 675 Order.assign(Mask.begin(), Mask.end()); 676 // The leaf has less number of instructions - need to find the true order of 677 // the root. 678 // Scan the nodes starting from the leaf back to the root. 679 const TreeEntry *PNode = VectorizableTree.back().get(); 680 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 681 SmallPtrSet<const TreeEntry *, 4> Visited; 682 while (!Nodes.empty() && Order.size() != RootSize) { 683 const TreeEntry *PNode = Nodes.pop_back_val(); 684 if (!Visited.insert(PNode).second) 685 continue; 686 const TreeEntry &Node = *PNode; 687 for (const EdgeInfo &EI : Node.UserTreeIndices) 688 if (EI.UserTE) 689 Nodes.push_back(EI.UserTE); 690 if (Node.ReuseShuffleIndices.empty()) 691 continue; 692 // Build the order for the parent node. 693 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 694 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 695 // The algorithm of the order extension is: 696 // 1. Calculate the number of the same instructions for the order. 697 // 2. Calculate the index of the new order: total number of instructions 698 // with order less than the order of the current instruction + reuse 699 // number of the current instruction. 700 // 3. The new order is just the index of the instruction in the original 701 // vector of the instructions. 702 for (unsigned I : Node.ReuseShuffleIndices) 703 ++OrderCounter[Order[I]]; 704 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 705 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 706 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 707 unsigned OrderIdx = Order[ReusedIdx]; 708 unsigned NewIdx = 0; 709 for (unsigned J = 0; J < OrderIdx; ++J) 710 NewIdx += OrderCounter[J]; 711 NewIdx += CurrentCounter[OrderIdx]; 712 ++CurrentCounter[OrderIdx]; 713 assert(NewOrder[NewIdx] == RootSize && 714 "The order index should not be written already."); 715 NewOrder[NewIdx] = I; 716 } 717 std::swap(Order, NewOrder); 718 } 719 assert(Order.size() == RootSize && 720 "Root node is expected or the size of the order must be the same as " 721 "the number of elements in the root node."); 722 assert(llvm::all_of(Order, 723 [RootSize](unsigned Val) { return Val != RootSize; }) && 724 "All indices must be initialized"); 725 } 726 727 /// \return The vector element size in bits to use when vectorizing the 728 /// expression tree ending at \p V. If V is a store, the size is the width of 729 /// the stored value. Otherwise, the size is the width of the largest loaded 730 /// value reaching V. This method is used by the vectorizer to calculate 731 /// vectorization factors. 732 unsigned getVectorElementSize(Value *V); 733 734 /// Compute the minimum type sizes required to represent the entries in a 735 /// vectorizable tree. 736 void computeMinimumValueSizes(); 737 738 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 739 unsigned getMaxVecRegSize() const { 740 return MaxVecRegSize; 741 } 742 743 // \returns minimum vector register size as set by cl::opt. 744 unsigned getMinVecRegSize() const { 745 return MinVecRegSize; 746 } 747 748 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 749 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 750 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 751 return MaxVF ? MaxVF : UINT_MAX; 752 } 753 754 /// Check if homogeneous aggregate is isomorphic to some VectorType. 755 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 756 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 757 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 758 /// 759 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 760 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 761 762 /// \returns True if the VectorizableTree is both tiny and not fully 763 /// vectorizable. We do not vectorize such trees. 764 bool isTreeTinyAndNotFullyVectorizable() const; 765 766 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 767 /// can be load combined in the backend. Load combining may not be allowed in 768 /// the IR optimizer, so we do not want to alter the pattern. For example, 769 /// partially transforming a scalar bswap() pattern into vector code is 770 /// effectively impossible for the backend to undo. 771 /// TODO: If load combining is allowed in the IR optimizer, this analysis 772 /// may not be necessary. 773 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 774 775 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 776 /// can be load combined in the backend. Load combining may not be allowed in 777 /// the IR optimizer, so we do not want to alter the pattern. For example, 778 /// partially transforming a scalar bswap() pattern into vector code is 779 /// effectively impossible for the backend to undo. 780 /// TODO: If load combining is allowed in the IR optimizer, this analysis 781 /// may not be necessary. 782 bool isLoadCombineCandidate() const; 783 784 OptimizationRemarkEmitter *getORE() { return ORE; } 785 786 /// This structure holds any data we need about the edges being traversed 787 /// during buildTree_rec(). We keep track of: 788 /// (i) the user TreeEntry index, and 789 /// (ii) the index of the edge. 790 struct EdgeInfo { 791 EdgeInfo() = default; 792 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 793 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 794 /// The user TreeEntry. 795 TreeEntry *UserTE = nullptr; 796 /// The operand index of the use. 797 unsigned EdgeIdx = UINT_MAX; 798 #ifndef NDEBUG 799 friend inline raw_ostream &operator<<(raw_ostream &OS, 800 const BoUpSLP::EdgeInfo &EI) { 801 EI.dump(OS); 802 return OS; 803 } 804 /// Debug print. 805 void dump(raw_ostream &OS) const { 806 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 807 << " EdgeIdx:" << EdgeIdx << "}"; 808 } 809 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 810 #endif 811 }; 812 813 /// A helper data structure to hold the operands of a vector of instructions. 814 /// This supports a fixed vector length for all operand vectors. 815 class VLOperands { 816 /// For each operand we need (i) the value, and (ii) the opcode that it 817 /// would be attached to if the expression was in a left-linearized form. 818 /// This is required to avoid illegal operand reordering. 819 /// For example: 820 /// \verbatim 821 /// 0 Op1 822 /// |/ 823 /// Op1 Op2 Linearized + Op2 824 /// \ / ----------> |/ 825 /// - - 826 /// 827 /// Op1 - Op2 (0 + Op1) - Op2 828 /// \endverbatim 829 /// 830 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 831 /// 832 /// Another way to think of this is to track all the operations across the 833 /// path from the operand all the way to the root of the tree and to 834 /// calculate the operation that corresponds to this path. For example, the 835 /// path from Op2 to the root crosses the RHS of the '-', therefore the 836 /// corresponding operation is a '-' (which matches the one in the 837 /// linearized tree, as shown above). 838 /// 839 /// For lack of a better term, we refer to this operation as Accumulated 840 /// Path Operation (APO). 841 struct OperandData { 842 OperandData() = default; 843 OperandData(Value *V, bool APO, bool IsUsed) 844 : V(V), APO(APO), IsUsed(IsUsed) {} 845 /// The operand value. 846 Value *V = nullptr; 847 /// TreeEntries only allow a single opcode, or an alternate sequence of 848 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 849 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 850 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 851 /// (e.g., Add/Mul) 852 bool APO = false; 853 /// Helper data for the reordering function. 854 bool IsUsed = false; 855 }; 856 857 /// During operand reordering, we are trying to select the operand at lane 858 /// that matches best with the operand at the neighboring lane. Our 859 /// selection is based on the type of value we are looking for. For example, 860 /// if the neighboring lane has a load, we need to look for a load that is 861 /// accessing a consecutive address. These strategies are summarized in the 862 /// 'ReorderingMode' enumerator. 863 enum class ReorderingMode { 864 Load, ///< Matching loads to consecutive memory addresses 865 Opcode, ///< Matching instructions based on opcode (same or alternate) 866 Constant, ///< Matching constants 867 Splat, ///< Matching the same instruction multiple times (broadcast) 868 Failed, ///< We failed to create a vectorizable group 869 }; 870 871 using OperandDataVec = SmallVector<OperandData, 2>; 872 873 /// A vector of operand vectors. 874 SmallVector<OperandDataVec, 4> OpsVec; 875 876 const DataLayout &DL; 877 ScalarEvolution &SE; 878 const BoUpSLP &R; 879 880 /// \returns the operand data at \p OpIdx and \p Lane. 881 OperandData &getData(unsigned OpIdx, unsigned Lane) { 882 return OpsVec[OpIdx][Lane]; 883 } 884 885 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 886 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 887 return OpsVec[OpIdx][Lane]; 888 } 889 890 /// Clears the used flag for all entries. 891 void clearUsed() { 892 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 893 OpIdx != NumOperands; ++OpIdx) 894 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 895 ++Lane) 896 OpsVec[OpIdx][Lane].IsUsed = false; 897 } 898 899 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 900 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 901 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 902 } 903 904 // The hard-coded scores listed here are not very important. When computing 905 // the scores of matching one sub-tree with another, we are basically 906 // counting the number of values that are matching. So even if all scores 907 // are set to 1, we would still get a decent matching result. 908 // However, sometimes we have to break ties. For example we may have to 909 // choose between matching loads vs matching opcodes. This is what these 910 // scores are helping us with: they provide the order of preference. 911 912 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 913 static const int ScoreConsecutiveLoads = 3; 914 /// ExtractElementInst from same vector and consecutive indexes. 915 static const int ScoreConsecutiveExtracts = 3; 916 /// Constants. 917 static const int ScoreConstants = 2; 918 /// Instructions with the same opcode. 919 static const int ScoreSameOpcode = 2; 920 /// Instructions with alt opcodes (e.g, add + sub). 921 static const int ScoreAltOpcodes = 1; 922 /// Identical instructions (a.k.a. splat or broadcast). 923 static const int ScoreSplat = 1; 924 /// Matching with an undef is preferable to failing. 925 static const int ScoreUndef = 1; 926 /// Score for failing to find a decent match. 927 static const int ScoreFail = 0; 928 /// User exteranl to the vectorized code. 929 static const int ExternalUseCost = 1; 930 /// The user is internal but in a different lane. 931 static const int UserInDiffLaneCost = ExternalUseCost; 932 933 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 934 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 935 ScalarEvolution &SE) { 936 auto *LI1 = dyn_cast<LoadInst>(V1); 937 auto *LI2 = dyn_cast<LoadInst>(V2); 938 if (LI1 && LI2) 939 return isConsecutiveAccess(LI1, LI2, DL, SE) 940 ? VLOperands::ScoreConsecutiveLoads 941 : VLOperands::ScoreFail; 942 943 auto *C1 = dyn_cast<Constant>(V1); 944 auto *C2 = dyn_cast<Constant>(V2); 945 if (C1 && C2) 946 return VLOperands::ScoreConstants; 947 948 // Extracts from consecutive indexes of the same vector better score as 949 // the extracts could be optimized away. 950 Value *EV; 951 ConstantInt *Ex1Idx, *Ex2Idx; 952 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 953 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 954 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 955 return VLOperands::ScoreConsecutiveExtracts; 956 957 auto *I1 = dyn_cast<Instruction>(V1); 958 auto *I2 = dyn_cast<Instruction>(V2); 959 if (I1 && I2) { 960 if (I1 == I2) 961 return VLOperands::ScoreSplat; 962 InstructionsState S = getSameOpcode({I1, I2}); 963 // Note: Only consider instructions with <= 2 operands to avoid 964 // complexity explosion. 965 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 966 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 967 : VLOperands::ScoreSameOpcode; 968 } 969 970 if (isa<UndefValue>(V2)) 971 return VLOperands::ScoreUndef; 972 973 return VLOperands::ScoreFail; 974 } 975 976 /// Holds the values and their lane that are taking part in the look-ahead 977 /// score calculation. This is used in the external uses cost calculation. 978 SmallDenseMap<Value *, int> InLookAheadValues; 979 980 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 981 /// either external to the vectorized code, or require shuffling. 982 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 983 const std::pair<Value *, int> &RHS) { 984 int Cost = 0; 985 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 986 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 987 Value *V = Values[Idx].first; 988 // Calculate the absolute lane, using the minimum relative lane of LHS 989 // and RHS as base and Idx as the offset. 990 int Ln = std::min(LHS.second, RHS.second) + Idx; 991 assert(Ln >= 0 && "Bad lane calculation"); 992 unsigned UsersBudget = LookAheadUsersBudget; 993 for (User *U : V->users()) { 994 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 995 // The user is in the VectorizableTree. Check if we need to insert. 996 auto It = llvm::find(UserTE->Scalars, U); 997 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 998 int UserLn = std::distance(UserTE->Scalars.begin(), It); 999 assert(UserLn >= 0 && "Bad lane"); 1000 if (UserLn != Ln) 1001 Cost += UserInDiffLaneCost; 1002 } else { 1003 // Check if the user is in the look-ahead code. 1004 auto It2 = InLookAheadValues.find(U); 1005 if (It2 != InLookAheadValues.end()) { 1006 // The user is in the look-ahead code. Check the lane. 1007 if (It2->second != Ln) 1008 Cost += UserInDiffLaneCost; 1009 } else { 1010 // The user is neither in SLP tree nor in the look-ahead code. 1011 Cost += ExternalUseCost; 1012 } 1013 } 1014 // Limit the number of visited uses to cap compilation time. 1015 if (--UsersBudget == 0) 1016 break; 1017 } 1018 } 1019 return Cost; 1020 } 1021 1022 /// Go through the operands of \p LHS and \p RHS recursively until \p 1023 /// MaxLevel, and return the cummulative score. For example: 1024 /// \verbatim 1025 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1026 /// \ / \ / \ / \ / 1027 /// + + + + 1028 /// G1 G2 G3 G4 1029 /// \endverbatim 1030 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1031 /// each level recursively, accumulating the score. It starts from matching 1032 /// the additions at level 0, then moves on to the loads (level 1). The 1033 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1034 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1035 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1036 /// Please note that the order of the operands does not matter, as we 1037 /// evaluate the score of all profitable combinations of operands. In 1038 /// other words the score of G1 and G4 is the same as G1 and G2. This 1039 /// heuristic is based on ideas described in: 1040 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1041 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1042 /// Luís F. W. Góes 1043 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1044 const std::pair<Value *, int> &RHS, int CurrLevel, 1045 int MaxLevel) { 1046 1047 Value *V1 = LHS.first; 1048 Value *V2 = RHS.first; 1049 // Get the shallow score of V1 and V2. 1050 int ShallowScoreAtThisLevel = 1051 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1052 getExternalUsesCost(LHS, RHS)); 1053 int Lane1 = LHS.second; 1054 int Lane2 = RHS.second; 1055 1056 // If reached MaxLevel, 1057 // or if V1 and V2 are not instructions, 1058 // or if they are SPLAT, 1059 // or if they are not consecutive, early return the current cost. 1060 auto *I1 = dyn_cast<Instruction>(V1); 1061 auto *I2 = dyn_cast<Instruction>(V2); 1062 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1063 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1064 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1065 return ShallowScoreAtThisLevel; 1066 assert(I1 && I2 && "Should have early exited."); 1067 1068 // Keep track of in-tree values for determining the external-use cost. 1069 InLookAheadValues[V1] = Lane1; 1070 InLookAheadValues[V2] = Lane2; 1071 1072 // Contains the I2 operand indexes that got matched with I1 operands. 1073 SmallSet<unsigned, 4> Op2Used; 1074 1075 // Recursion towards the operands of I1 and I2. We are trying all possbile 1076 // operand pairs, and keeping track of the best score. 1077 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1078 OpIdx1 != NumOperands1; ++OpIdx1) { 1079 // Try to pair op1I with the best operand of I2. 1080 int MaxTmpScore = 0; 1081 unsigned MaxOpIdx2 = 0; 1082 bool FoundBest = false; 1083 // If I2 is commutative try all combinations. 1084 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1085 unsigned ToIdx = isCommutative(I2) 1086 ? I2->getNumOperands() 1087 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1088 assert(FromIdx <= ToIdx && "Bad index"); 1089 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1090 // Skip operands already paired with OpIdx1. 1091 if (Op2Used.count(OpIdx2)) 1092 continue; 1093 // Recursively calculate the cost at each level 1094 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1095 {I2->getOperand(OpIdx2), Lane2}, 1096 CurrLevel + 1, MaxLevel); 1097 // Look for the best score. 1098 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1099 MaxTmpScore = TmpScore; 1100 MaxOpIdx2 = OpIdx2; 1101 FoundBest = true; 1102 } 1103 } 1104 if (FoundBest) { 1105 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1106 Op2Used.insert(MaxOpIdx2); 1107 ShallowScoreAtThisLevel += MaxTmpScore; 1108 } 1109 } 1110 return ShallowScoreAtThisLevel; 1111 } 1112 1113 /// \Returns the look-ahead score, which tells us how much the sub-trees 1114 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1115 /// score. This helps break ties in an informed way when we cannot decide on 1116 /// the order of the operands by just considering the immediate 1117 /// predecessors. 1118 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1119 const std::pair<Value *, int> &RHS) { 1120 InLookAheadValues.clear(); 1121 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1122 } 1123 1124 // Search all operands in Ops[*][Lane] for the one that matches best 1125 // Ops[OpIdx][LastLane] and return its opreand index. 1126 // If no good match can be found, return None. 1127 Optional<unsigned> 1128 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1129 ArrayRef<ReorderingMode> ReorderingModes) { 1130 unsigned NumOperands = getNumOperands(); 1131 1132 // The operand of the previous lane at OpIdx. 1133 Value *OpLastLane = getData(OpIdx, LastLane).V; 1134 1135 // Our strategy mode for OpIdx. 1136 ReorderingMode RMode = ReorderingModes[OpIdx]; 1137 1138 // The linearized opcode of the operand at OpIdx, Lane. 1139 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1140 1141 // The best operand index and its score. 1142 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1143 // are using the score to differentiate between the two. 1144 struct BestOpData { 1145 Optional<unsigned> Idx = None; 1146 unsigned Score = 0; 1147 } BestOp; 1148 1149 // Iterate through all unused operands and look for the best. 1150 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1151 // Get the operand at Idx and Lane. 1152 OperandData &OpData = getData(Idx, Lane); 1153 Value *Op = OpData.V; 1154 bool OpAPO = OpData.APO; 1155 1156 // Skip already selected operands. 1157 if (OpData.IsUsed) 1158 continue; 1159 1160 // Skip if we are trying to move the operand to a position with a 1161 // different opcode in the linearized tree form. This would break the 1162 // semantics. 1163 if (OpAPO != OpIdxAPO) 1164 continue; 1165 1166 // Look for an operand that matches the current mode. 1167 switch (RMode) { 1168 case ReorderingMode::Load: 1169 case ReorderingMode::Constant: 1170 case ReorderingMode::Opcode: { 1171 bool LeftToRight = Lane > LastLane; 1172 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1173 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1174 unsigned Score = 1175 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1176 if (Score > BestOp.Score) { 1177 BestOp.Idx = Idx; 1178 BestOp.Score = Score; 1179 } 1180 break; 1181 } 1182 case ReorderingMode::Splat: 1183 if (Op == OpLastLane) 1184 BestOp.Idx = Idx; 1185 break; 1186 case ReorderingMode::Failed: 1187 return None; 1188 } 1189 } 1190 1191 if (BestOp.Idx) { 1192 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1193 return BestOp.Idx; 1194 } 1195 // If we could not find a good match return None. 1196 return None; 1197 } 1198 1199 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1200 /// reordering from. This is the one which has the least number of operands 1201 /// that can freely move about. 1202 unsigned getBestLaneToStartReordering() const { 1203 unsigned BestLane = 0; 1204 unsigned Min = UINT_MAX; 1205 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1206 ++Lane) { 1207 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1208 if (NumFreeOps < Min) { 1209 Min = NumFreeOps; 1210 BestLane = Lane; 1211 } 1212 } 1213 return BestLane; 1214 } 1215 1216 /// \Returns the maximum number of operands that are allowed to be reordered 1217 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1218 /// start operand reordering. 1219 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1220 unsigned CntTrue = 0; 1221 unsigned NumOperands = getNumOperands(); 1222 // Operands with the same APO can be reordered. We therefore need to count 1223 // how many of them we have for each APO, like this: Cnt[APO] = x. 1224 // Since we only have two APOs, namely true and false, we can avoid using 1225 // a map. Instead we can simply count the number of operands that 1226 // correspond to one of them (in this case the 'true' APO), and calculate 1227 // the other by subtracting it from the total number of operands. 1228 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1229 if (getData(OpIdx, Lane).APO) 1230 ++CntTrue; 1231 unsigned CntFalse = NumOperands - CntTrue; 1232 return std::max(CntTrue, CntFalse); 1233 } 1234 1235 /// Go through the instructions in VL and append their operands. 1236 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1237 assert(!VL.empty() && "Bad VL"); 1238 assert((empty() || VL.size() == getNumLanes()) && 1239 "Expected same number of lanes"); 1240 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1241 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1242 OpsVec.resize(NumOperands); 1243 unsigned NumLanes = VL.size(); 1244 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1245 OpsVec[OpIdx].resize(NumLanes); 1246 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1247 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1248 // Our tree has just 3 nodes: the root and two operands. 1249 // It is therefore trivial to get the APO. We only need to check the 1250 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1251 // RHS operand. The LHS operand of both add and sub is never attached 1252 // to an inversese operation in the linearized form, therefore its APO 1253 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1254 1255 // Since operand reordering is performed on groups of commutative 1256 // operations or alternating sequences (e.g., +, -), we can safely 1257 // tell the inverse operations by checking commutativity. 1258 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1259 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1260 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1261 APO, false}; 1262 } 1263 } 1264 } 1265 1266 /// \returns the number of operands. 1267 unsigned getNumOperands() const { return OpsVec.size(); } 1268 1269 /// \returns the number of lanes. 1270 unsigned getNumLanes() const { return OpsVec[0].size(); } 1271 1272 /// \returns the operand value at \p OpIdx and \p Lane. 1273 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1274 return getData(OpIdx, Lane).V; 1275 } 1276 1277 /// \returns true if the data structure is empty. 1278 bool empty() const { return OpsVec.empty(); } 1279 1280 /// Clears the data. 1281 void clear() { OpsVec.clear(); } 1282 1283 /// \Returns true if there are enough operands identical to \p Op to fill 1284 /// the whole vector. 1285 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1286 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1287 bool OpAPO = getData(OpIdx, Lane).APO; 1288 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1289 if (Ln == Lane) 1290 continue; 1291 // This is set to true if we found a candidate for broadcast at Lane. 1292 bool FoundCandidate = false; 1293 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1294 OperandData &Data = getData(OpI, Ln); 1295 if (Data.APO != OpAPO || Data.IsUsed) 1296 continue; 1297 if (Data.V == Op) { 1298 FoundCandidate = true; 1299 Data.IsUsed = true; 1300 break; 1301 } 1302 } 1303 if (!FoundCandidate) 1304 return false; 1305 } 1306 return true; 1307 } 1308 1309 public: 1310 /// Initialize with all the operands of the instruction vector \p RootVL. 1311 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1312 ScalarEvolution &SE, const BoUpSLP &R) 1313 : DL(DL), SE(SE), R(R) { 1314 // Append all the operands of RootVL. 1315 appendOperandsOfVL(RootVL); 1316 } 1317 1318 /// \Returns a value vector with the operands across all lanes for the 1319 /// opearnd at \p OpIdx. 1320 ValueList getVL(unsigned OpIdx) const { 1321 ValueList OpVL(OpsVec[OpIdx].size()); 1322 assert(OpsVec[OpIdx].size() == getNumLanes() && 1323 "Expected same num of lanes across all operands"); 1324 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1325 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1326 return OpVL; 1327 } 1328 1329 // Performs operand reordering for 2 or more operands. 1330 // The original operands are in OrigOps[OpIdx][Lane]. 1331 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1332 void reorder() { 1333 unsigned NumOperands = getNumOperands(); 1334 unsigned NumLanes = getNumLanes(); 1335 // Each operand has its own mode. We are using this mode to help us select 1336 // the instructions for each lane, so that they match best with the ones 1337 // we have selected so far. 1338 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1339 1340 // This is a greedy single-pass algorithm. We are going over each lane 1341 // once and deciding on the best order right away with no back-tracking. 1342 // However, in order to increase its effectiveness, we start with the lane 1343 // that has operands that can move the least. For example, given the 1344 // following lanes: 1345 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1346 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1347 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1348 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1349 // we will start at Lane 1, since the operands of the subtraction cannot 1350 // be reordered. Then we will visit the rest of the lanes in a circular 1351 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1352 1353 // Find the first lane that we will start our search from. 1354 unsigned FirstLane = getBestLaneToStartReordering(); 1355 1356 // Initialize the modes. 1357 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1358 Value *OpLane0 = getValue(OpIdx, FirstLane); 1359 // Keep track if we have instructions with all the same opcode on one 1360 // side. 1361 if (isa<LoadInst>(OpLane0)) 1362 ReorderingModes[OpIdx] = ReorderingMode::Load; 1363 else if (isa<Instruction>(OpLane0)) { 1364 // Check if OpLane0 should be broadcast. 1365 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1366 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1367 else 1368 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1369 } 1370 else if (isa<Constant>(OpLane0)) 1371 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1372 else if (isa<Argument>(OpLane0)) 1373 // Our best hope is a Splat. It may save some cost in some cases. 1374 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1375 else 1376 // NOTE: This should be unreachable. 1377 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1378 } 1379 1380 // If the initial strategy fails for any of the operand indexes, then we 1381 // perform reordering again in a second pass. This helps avoid assigning 1382 // high priority to the failed strategy, and should improve reordering for 1383 // the non-failed operand indexes. 1384 for (int Pass = 0; Pass != 2; ++Pass) { 1385 // Skip the second pass if the first pass did not fail. 1386 bool StrategyFailed = false; 1387 // Mark all operand data as free to use. 1388 clearUsed(); 1389 // We keep the original operand order for the FirstLane, so reorder the 1390 // rest of the lanes. We are visiting the nodes in a circular fashion, 1391 // using FirstLane as the center point and increasing the radius 1392 // distance. 1393 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1394 // Visit the lane on the right and then the lane on the left. 1395 for (int Direction : {+1, -1}) { 1396 int Lane = FirstLane + Direction * Distance; 1397 if (Lane < 0 || Lane >= (int)NumLanes) 1398 continue; 1399 int LastLane = Lane - Direction; 1400 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1401 "Out of bounds"); 1402 // Look for a good match for each operand. 1403 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1404 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1405 Optional<unsigned> BestIdx = 1406 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1407 // By not selecting a value, we allow the operands that follow to 1408 // select a better matching value. We will get a non-null value in 1409 // the next run of getBestOperand(). 1410 if (BestIdx) { 1411 // Swap the current operand with the one returned by 1412 // getBestOperand(). 1413 swap(OpIdx, BestIdx.getValue(), Lane); 1414 } else { 1415 // We failed to find a best operand, set mode to 'Failed'. 1416 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1417 // Enable the second pass. 1418 StrategyFailed = true; 1419 } 1420 } 1421 } 1422 } 1423 // Skip second pass if the strategy did not fail. 1424 if (!StrategyFailed) 1425 break; 1426 } 1427 } 1428 1429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1430 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1431 switch (RMode) { 1432 case ReorderingMode::Load: 1433 return "Load"; 1434 case ReorderingMode::Opcode: 1435 return "Opcode"; 1436 case ReorderingMode::Constant: 1437 return "Constant"; 1438 case ReorderingMode::Splat: 1439 return "Splat"; 1440 case ReorderingMode::Failed: 1441 return "Failed"; 1442 } 1443 llvm_unreachable("Unimplemented Reordering Type"); 1444 } 1445 1446 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1447 raw_ostream &OS) { 1448 return OS << getModeStr(RMode); 1449 } 1450 1451 /// Debug print. 1452 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1453 printMode(RMode, dbgs()); 1454 } 1455 1456 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1457 return printMode(RMode, OS); 1458 } 1459 1460 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1461 const unsigned Indent = 2; 1462 unsigned Cnt = 0; 1463 for (const OperandDataVec &OpDataVec : OpsVec) { 1464 OS << "Operand " << Cnt++ << "\n"; 1465 for (const OperandData &OpData : OpDataVec) { 1466 OS.indent(Indent) << "{"; 1467 if (Value *V = OpData.V) 1468 OS << *V; 1469 else 1470 OS << "null"; 1471 OS << ", APO:" << OpData.APO << "}\n"; 1472 } 1473 OS << "\n"; 1474 } 1475 return OS; 1476 } 1477 1478 /// Debug print. 1479 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1480 #endif 1481 }; 1482 1483 /// Checks if the instruction is marked for deletion. 1484 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1485 1486 /// Marks values operands for later deletion by replacing them with Undefs. 1487 void eraseInstructions(ArrayRef<Value *> AV); 1488 1489 ~BoUpSLP(); 1490 1491 private: 1492 /// Checks if all users of \p I are the part of the vectorization tree. 1493 bool areAllUsersVectorized(Instruction *I) const; 1494 1495 /// \returns the cost of the vectorizable entry. 1496 int getEntryCost(TreeEntry *E); 1497 1498 /// This is the recursive part of buildTree. 1499 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1500 const EdgeInfo &EI); 1501 1502 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1503 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1504 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1505 /// returns false, setting \p CurrentOrder to either an empty vector or a 1506 /// non-identity permutation that allows to reuse extract instructions. 1507 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1508 SmallVectorImpl<unsigned> &CurrentOrder) const; 1509 1510 /// Vectorize a single entry in the tree. 1511 Value *vectorizeTree(TreeEntry *E); 1512 1513 /// Vectorize a single entry in the tree, starting in \p VL. 1514 Value *vectorizeTree(ArrayRef<Value *> VL); 1515 1516 /// \returns the scalarization cost for this type. Scalarization in this 1517 /// context means the creation of vectors from a group of scalars. 1518 int getGatherCost(FixedVectorType *Ty, 1519 const DenseSet<unsigned> &ShuffledIndices) const; 1520 1521 /// \returns the scalarization cost for this list of values. Assuming that 1522 /// this subtree gets vectorized, we may need to extract the values from the 1523 /// roots. This method calculates the cost of extracting the values. 1524 int getGatherCost(ArrayRef<Value *> VL) const; 1525 1526 /// Set the Builder insert point to one after the last instruction in 1527 /// the bundle 1528 void setInsertPointAfterBundle(TreeEntry *E); 1529 1530 /// \returns a vector from a collection of scalars in \p VL. 1531 Value *gather(ArrayRef<Value *> VL); 1532 1533 /// \returns whether the VectorizableTree is fully vectorizable and will 1534 /// be beneficial even the tree height is tiny. 1535 bool isFullyVectorizableTinyTree() const; 1536 1537 /// Reorder commutative or alt operands to get better probability of 1538 /// generating vectorized code. 1539 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1540 SmallVectorImpl<Value *> &Left, 1541 SmallVectorImpl<Value *> &Right, 1542 const DataLayout &DL, 1543 ScalarEvolution &SE, 1544 const BoUpSLP &R); 1545 struct TreeEntry { 1546 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1547 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1548 1549 /// \returns true if the scalars in VL are equal to this entry. 1550 bool isSame(ArrayRef<Value *> VL) const { 1551 if (VL.size() == Scalars.size()) 1552 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1553 return VL.size() == ReuseShuffleIndices.size() && 1554 std::equal( 1555 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1556 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1557 } 1558 1559 /// A vector of scalars. 1560 ValueList Scalars; 1561 1562 /// The Scalars are vectorized into this value. It is initialized to Null. 1563 Value *VectorizedValue = nullptr; 1564 1565 /// Do we need to gather this sequence or vectorize it 1566 /// (either with vector instruction or with scatter/gather 1567 /// intrinsics for store/load)? 1568 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1569 EntryState State; 1570 1571 /// Does this sequence require some shuffling? 1572 SmallVector<int, 4> ReuseShuffleIndices; 1573 1574 /// Does this entry require reordering? 1575 SmallVector<unsigned, 4> ReorderIndices; 1576 1577 /// Points back to the VectorizableTree. 1578 /// 1579 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1580 /// to be a pointer and needs to be able to initialize the child iterator. 1581 /// Thus we need a reference back to the container to translate the indices 1582 /// to entries. 1583 VecTreeTy &Container; 1584 1585 /// The TreeEntry index containing the user of this entry. We can actually 1586 /// have multiple users so the data structure is not truly a tree. 1587 SmallVector<EdgeInfo, 1> UserTreeIndices; 1588 1589 /// The index of this treeEntry in VectorizableTree. 1590 int Idx = -1; 1591 1592 private: 1593 /// The operands of each instruction in each lane Operands[op_index][lane]. 1594 /// Note: This helps avoid the replication of the code that performs the 1595 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1596 SmallVector<ValueList, 2> Operands; 1597 1598 /// The main/alternate instruction. 1599 Instruction *MainOp = nullptr; 1600 Instruction *AltOp = nullptr; 1601 1602 public: 1603 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1604 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1605 if (Operands.size() < OpIdx + 1) 1606 Operands.resize(OpIdx + 1); 1607 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1608 Operands[OpIdx].resize(Scalars.size()); 1609 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1610 Operands[OpIdx][Lane] = OpVL[Lane]; 1611 } 1612 1613 /// Set the operands of this bundle in their original order. 1614 void setOperandsInOrder() { 1615 assert(Operands.empty() && "Already initialized?"); 1616 auto *I0 = cast<Instruction>(Scalars[0]); 1617 Operands.resize(I0->getNumOperands()); 1618 unsigned NumLanes = Scalars.size(); 1619 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1620 OpIdx != NumOperands; ++OpIdx) { 1621 Operands[OpIdx].resize(NumLanes); 1622 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1623 auto *I = cast<Instruction>(Scalars[Lane]); 1624 assert(I->getNumOperands() == NumOperands && 1625 "Expected same number of operands"); 1626 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1627 } 1628 } 1629 } 1630 1631 /// \returns the \p OpIdx operand of this TreeEntry. 1632 ValueList &getOperand(unsigned OpIdx) { 1633 assert(OpIdx < Operands.size() && "Off bounds"); 1634 return Operands[OpIdx]; 1635 } 1636 1637 /// \returns the number of operands. 1638 unsigned getNumOperands() const { return Operands.size(); } 1639 1640 /// \return the single \p OpIdx operand. 1641 Value *getSingleOperand(unsigned OpIdx) const { 1642 assert(OpIdx < Operands.size() && "Off bounds"); 1643 assert(!Operands[OpIdx].empty() && "No operand available"); 1644 return Operands[OpIdx][0]; 1645 } 1646 1647 /// Some of the instructions in the list have alternate opcodes. 1648 bool isAltShuffle() const { 1649 return getOpcode() != getAltOpcode(); 1650 } 1651 1652 bool isOpcodeOrAlt(Instruction *I) const { 1653 unsigned CheckedOpcode = I->getOpcode(); 1654 return (getOpcode() == CheckedOpcode || 1655 getAltOpcode() == CheckedOpcode); 1656 } 1657 1658 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1659 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1660 /// \p OpValue. 1661 Value *isOneOf(Value *Op) const { 1662 auto *I = dyn_cast<Instruction>(Op); 1663 if (I && isOpcodeOrAlt(I)) 1664 return Op; 1665 return MainOp; 1666 } 1667 1668 void setOperations(const InstructionsState &S) { 1669 MainOp = S.MainOp; 1670 AltOp = S.AltOp; 1671 } 1672 1673 Instruction *getMainOp() const { 1674 return MainOp; 1675 } 1676 1677 Instruction *getAltOp() const { 1678 return AltOp; 1679 } 1680 1681 /// The main/alternate opcodes for the list of instructions. 1682 unsigned getOpcode() const { 1683 return MainOp ? MainOp->getOpcode() : 0; 1684 } 1685 1686 unsigned getAltOpcode() const { 1687 return AltOp ? AltOp->getOpcode() : 0; 1688 } 1689 1690 /// Update operations state of this entry if reorder occurred. 1691 bool updateStateIfReorder() { 1692 if (ReorderIndices.empty()) 1693 return false; 1694 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1695 setOperations(S); 1696 return true; 1697 } 1698 1699 #ifndef NDEBUG 1700 /// Debug printer. 1701 LLVM_DUMP_METHOD void dump() const { 1702 dbgs() << Idx << ".\n"; 1703 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1704 dbgs() << "Operand " << OpI << ":\n"; 1705 for (const Value *V : Operands[OpI]) 1706 dbgs().indent(2) << *V << "\n"; 1707 } 1708 dbgs() << "Scalars: \n"; 1709 for (Value *V : Scalars) 1710 dbgs().indent(2) << *V << "\n"; 1711 dbgs() << "State: "; 1712 switch (State) { 1713 case Vectorize: 1714 dbgs() << "Vectorize\n"; 1715 break; 1716 case ScatterVectorize: 1717 dbgs() << "ScatterVectorize\n"; 1718 break; 1719 case NeedToGather: 1720 dbgs() << "NeedToGather\n"; 1721 break; 1722 } 1723 dbgs() << "MainOp: "; 1724 if (MainOp) 1725 dbgs() << *MainOp << "\n"; 1726 else 1727 dbgs() << "NULL\n"; 1728 dbgs() << "AltOp: "; 1729 if (AltOp) 1730 dbgs() << *AltOp << "\n"; 1731 else 1732 dbgs() << "NULL\n"; 1733 dbgs() << "VectorizedValue: "; 1734 if (VectorizedValue) 1735 dbgs() << *VectorizedValue << "\n"; 1736 else 1737 dbgs() << "NULL\n"; 1738 dbgs() << "ReuseShuffleIndices: "; 1739 if (ReuseShuffleIndices.empty()) 1740 dbgs() << "Empty"; 1741 else 1742 for (unsigned ReuseIdx : ReuseShuffleIndices) 1743 dbgs() << ReuseIdx << ", "; 1744 dbgs() << "\n"; 1745 dbgs() << "ReorderIndices: "; 1746 for (unsigned ReorderIdx : ReorderIndices) 1747 dbgs() << ReorderIdx << ", "; 1748 dbgs() << "\n"; 1749 dbgs() << "UserTreeIndices: "; 1750 for (const auto &EInfo : UserTreeIndices) 1751 dbgs() << EInfo << ", "; 1752 dbgs() << "\n"; 1753 } 1754 #endif 1755 }; 1756 1757 #ifndef NDEBUG 1758 void dumpTreeCosts(TreeEntry *E, int ReuseShuffleCost, int VecCost, 1759 int ScalarCost) const { 1760 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1761 dbgs() << "SLP: Costs:\n"; 1762 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1763 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1764 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1765 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1766 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1767 } 1768 #endif 1769 1770 /// Create a new VectorizableTree entry. 1771 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1772 const InstructionsState &S, 1773 const EdgeInfo &UserTreeIdx, 1774 ArrayRef<unsigned> ReuseShuffleIndices = None, 1775 ArrayRef<unsigned> ReorderIndices = None) { 1776 TreeEntry::EntryState EntryState = 1777 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1778 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1779 ReuseShuffleIndices, ReorderIndices); 1780 } 1781 1782 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1783 TreeEntry::EntryState EntryState, 1784 Optional<ScheduleData *> Bundle, 1785 const InstructionsState &S, 1786 const EdgeInfo &UserTreeIdx, 1787 ArrayRef<unsigned> ReuseShuffleIndices = None, 1788 ArrayRef<unsigned> ReorderIndices = None) { 1789 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1790 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1791 "Need to vectorize gather entry?"); 1792 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1793 TreeEntry *Last = VectorizableTree.back().get(); 1794 Last->Idx = VectorizableTree.size() - 1; 1795 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1796 Last->State = EntryState; 1797 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1798 ReuseShuffleIndices.end()); 1799 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1800 Last->setOperations(S); 1801 if (Last->State != TreeEntry::NeedToGather) { 1802 for (Value *V : VL) { 1803 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1804 ScalarToTreeEntry[V] = Last; 1805 } 1806 // Update the scheduler bundle to point to this TreeEntry. 1807 unsigned Lane = 0; 1808 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1809 BundleMember = BundleMember->NextInBundle) { 1810 BundleMember->TE = Last; 1811 BundleMember->Lane = Lane; 1812 ++Lane; 1813 } 1814 assert((!Bundle.getValue() || Lane == VL.size()) && 1815 "Bundle and VL out of sync"); 1816 } else { 1817 MustGather.insert(VL.begin(), VL.end()); 1818 } 1819 1820 if (UserTreeIdx.UserTE) 1821 Last->UserTreeIndices.push_back(UserTreeIdx); 1822 1823 return Last; 1824 } 1825 1826 /// -- Vectorization State -- 1827 /// Holds all of the tree entries. 1828 TreeEntry::VecTreeTy VectorizableTree; 1829 1830 #ifndef NDEBUG 1831 /// Debug printer. 1832 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1833 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1834 VectorizableTree[Id]->dump(); 1835 dbgs() << "\n"; 1836 } 1837 } 1838 #endif 1839 1840 TreeEntry *getTreeEntry(Value *V) { 1841 auto I = ScalarToTreeEntry.find(V); 1842 if (I != ScalarToTreeEntry.end()) 1843 return I->second; 1844 return nullptr; 1845 } 1846 1847 const TreeEntry *getTreeEntry(Value *V) const { 1848 auto I = ScalarToTreeEntry.find(V); 1849 if (I != ScalarToTreeEntry.end()) 1850 return I->second; 1851 return nullptr; 1852 } 1853 1854 /// Maps a specific scalar to its tree entry. 1855 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1856 1857 /// Maps a value to the proposed vectorizable size. 1858 SmallDenseMap<Value *, unsigned> InstrElementSize; 1859 1860 /// A list of scalars that we found that we need to keep as scalars. 1861 ValueSet MustGather; 1862 1863 /// This POD struct describes one external user in the vectorized tree. 1864 struct ExternalUser { 1865 ExternalUser(Value *S, llvm::User *U, int L) 1866 : Scalar(S), User(U), Lane(L) {} 1867 1868 // Which scalar in our function. 1869 Value *Scalar; 1870 1871 // Which user that uses the scalar. 1872 llvm::User *User; 1873 1874 // Which lane does the scalar belong to. 1875 int Lane; 1876 }; 1877 using UserList = SmallVector<ExternalUser, 16>; 1878 1879 /// Checks if two instructions may access the same memory. 1880 /// 1881 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1882 /// is invariant in the calling loop. 1883 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1884 Instruction *Inst2) { 1885 // First check if the result is already in the cache. 1886 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1887 Optional<bool> &result = AliasCache[key]; 1888 if (result.hasValue()) { 1889 return result.getValue(); 1890 } 1891 MemoryLocation Loc2 = getLocation(Inst2, AA); 1892 bool aliased = true; 1893 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1894 // Do the alias check. 1895 aliased = AA->alias(Loc1, Loc2); 1896 } 1897 // Store the result in the cache. 1898 result = aliased; 1899 return aliased; 1900 } 1901 1902 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1903 1904 /// Cache for alias results. 1905 /// TODO: consider moving this to the AliasAnalysis itself. 1906 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1907 1908 /// Removes an instruction from its block and eventually deletes it. 1909 /// It's like Instruction::eraseFromParent() except that the actual deletion 1910 /// is delayed until BoUpSLP is destructed. 1911 /// This is required to ensure that there are no incorrect collisions in the 1912 /// AliasCache, which can happen if a new instruction is allocated at the 1913 /// same address as a previously deleted instruction. 1914 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1915 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1916 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1917 } 1918 1919 /// Temporary store for deleted instructions. Instructions will be deleted 1920 /// eventually when the BoUpSLP is destructed. 1921 DenseMap<Instruction *, bool> DeletedInstructions; 1922 1923 /// A list of values that need to extracted out of the tree. 1924 /// This list holds pairs of (Internal Scalar : External User). External User 1925 /// can be nullptr, it means that this Internal Scalar will be used later, 1926 /// after vectorization. 1927 UserList ExternalUses; 1928 1929 /// Values used only by @llvm.assume calls. 1930 SmallPtrSet<const Value *, 32> EphValues; 1931 1932 /// Holds all of the instructions that we gathered. 1933 SetVector<Instruction *> GatherSeq; 1934 1935 /// A list of blocks that we are going to CSE. 1936 SetVector<BasicBlock *> CSEBlocks; 1937 1938 /// Contains all scheduling relevant data for an instruction. 1939 /// A ScheduleData either represents a single instruction or a member of an 1940 /// instruction bundle (= a group of instructions which is combined into a 1941 /// vector instruction). 1942 struct ScheduleData { 1943 // The initial value for the dependency counters. It means that the 1944 // dependencies are not calculated yet. 1945 enum { InvalidDeps = -1 }; 1946 1947 ScheduleData() = default; 1948 1949 void init(int BlockSchedulingRegionID, Value *OpVal) { 1950 FirstInBundle = this; 1951 NextInBundle = nullptr; 1952 NextLoadStore = nullptr; 1953 IsScheduled = false; 1954 SchedulingRegionID = BlockSchedulingRegionID; 1955 UnscheduledDepsInBundle = UnscheduledDeps; 1956 clearDependencies(); 1957 OpValue = OpVal; 1958 TE = nullptr; 1959 Lane = -1; 1960 } 1961 1962 /// Returns true if the dependency information has been calculated. 1963 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1964 1965 /// Returns true for single instructions and for bundle representatives 1966 /// (= the head of a bundle). 1967 bool isSchedulingEntity() const { return FirstInBundle == this; } 1968 1969 /// Returns true if it represents an instruction bundle and not only a 1970 /// single instruction. 1971 bool isPartOfBundle() const { 1972 return NextInBundle != nullptr || FirstInBundle != this; 1973 } 1974 1975 /// Returns true if it is ready for scheduling, i.e. it has no more 1976 /// unscheduled depending instructions/bundles. 1977 bool isReady() const { 1978 assert(isSchedulingEntity() && 1979 "can't consider non-scheduling entity for ready list"); 1980 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1981 } 1982 1983 /// Modifies the number of unscheduled dependencies, also updating it for 1984 /// the whole bundle. 1985 int incrementUnscheduledDeps(int Incr) { 1986 UnscheduledDeps += Incr; 1987 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1988 } 1989 1990 /// Sets the number of unscheduled dependencies to the number of 1991 /// dependencies. 1992 void resetUnscheduledDeps() { 1993 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1994 } 1995 1996 /// Clears all dependency information. 1997 void clearDependencies() { 1998 Dependencies = InvalidDeps; 1999 resetUnscheduledDeps(); 2000 MemoryDependencies.clear(); 2001 } 2002 2003 void dump(raw_ostream &os) const { 2004 if (!isSchedulingEntity()) { 2005 os << "/ " << *Inst; 2006 } else if (NextInBundle) { 2007 os << '[' << *Inst; 2008 ScheduleData *SD = NextInBundle; 2009 while (SD) { 2010 os << ';' << *SD->Inst; 2011 SD = SD->NextInBundle; 2012 } 2013 os << ']'; 2014 } else { 2015 os << *Inst; 2016 } 2017 } 2018 2019 Instruction *Inst = nullptr; 2020 2021 /// Points to the head in an instruction bundle (and always to this for 2022 /// single instructions). 2023 ScheduleData *FirstInBundle = nullptr; 2024 2025 /// Single linked list of all instructions in a bundle. Null if it is a 2026 /// single instruction. 2027 ScheduleData *NextInBundle = nullptr; 2028 2029 /// Single linked list of all memory instructions (e.g. load, store, call) 2030 /// in the block - until the end of the scheduling region. 2031 ScheduleData *NextLoadStore = nullptr; 2032 2033 /// The dependent memory instructions. 2034 /// This list is derived on demand in calculateDependencies(). 2035 SmallVector<ScheduleData *, 4> MemoryDependencies; 2036 2037 /// This ScheduleData is in the current scheduling region if this matches 2038 /// the current SchedulingRegionID of BlockScheduling. 2039 int SchedulingRegionID = 0; 2040 2041 /// Used for getting a "good" final ordering of instructions. 2042 int SchedulingPriority = 0; 2043 2044 /// The number of dependencies. Constitutes of the number of users of the 2045 /// instruction plus the number of dependent memory instructions (if any). 2046 /// This value is calculated on demand. 2047 /// If InvalidDeps, the number of dependencies is not calculated yet. 2048 int Dependencies = InvalidDeps; 2049 2050 /// The number of dependencies minus the number of dependencies of scheduled 2051 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2052 /// for scheduling. 2053 /// Note that this is negative as long as Dependencies is not calculated. 2054 int UnscheduledDeps = InvalidDeps; 2055 2056 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2057 /// single instructions. 2058 int UnscheduledDepsInBundle = InvalidDeps; 2059 2060 /// True if this instruction is scheduled (or considered as scheduled in the 2061 /// dry-run). 2062 bool IsScheduled = false; 2063 2064 /// Opcode of the current instruction in the schedule data. 2065 Value *OpValue = nullptr; 2066 2067 /// The TreeEntry that this instruction corresponds to. 2068 TreeEntry *TE = nullptr; 2069 2070 /// The lane of this node in the TreeEntry. 2071 int Lane = -1; 2072 }; 2073 2074 #ifndef NDEBUG 2075 friend inline raw_ostream &operator<<(raw_ostream &os, 2076 const BoUpSLP::ScheduleData &SD) { 2077 SD.dump(os); 2078 return os; 2079 } 2080 #endif 2081 2082 friend struct GraphTraits<BoUpSLP *>; 2083 friend struct DOTGraphTraits<BoUpSLP *>; 2084 2085 /// Contains all scheduling data for a basic block. 2086 struct BlockScheduling { 2087 BlockScheduling(BasicBlock *BB) 2088 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2089 2090 void clear() { 2091 ReadyInsts.clear(); 2092 ScheduleStart = nullptr; 2093 ScheduleEnd = nullptr; 2094 FirstLoadStoreInRegion = nullptr; 2095 LastLoadStoreInRegion = nullptr; 2096 2097 // Reduce the maximum schedule region size by the size of the 2098 // previous scheduling run. 2099 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2100 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2101 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2102 ScheduleRegionSize = 0; 2103 2104 // Make a new scheduling region, i.e. all existing ScheduleData is not 2105 // in the new region yet. 2106 ++SchedulingRegionID; 2107 } 2108 2109 ScheduleData *getScheduleData(Value *V) { 2110 ScheduleData *SD = ScheduleDataMap[V]; 2111 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2112 return SD; 2113 return nullptr; 2114 } 2115 2116 ScheduleData *getScheduleData(Value *V, Value *Key) { 2117 if (V == Key) 2118 return getScheduleData(V); 2119 auto I = ExtraScheduleDataMap.find(V); 2120 if (I != ExtraScheduleDataMap.end()) { 2121 ScheduleData *SD = I->second[Key]; 2122 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2123 return SD; 2124 } 2125 return nullptr; 2126 } 2127 2128 bool isInSchedulingRegion(ScheduleData *SD) const { 2129 return SD->SchedulingRegionID == SchedulingRegionID; 2130 } 2131 2132 /// Marks an instruction as scheduled and puts all dependent ready 2133 /// instructions into the ready-list. 2134 template <typename ReadyListType> 2135 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2136 SD->IsScheduled = true; 2137 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2138 2139 ScheduleData *BundleMember = SD; 2140 while (BundleMember) { 2141 if (BundleMember->Inst != BundleMember->OpValue) { 2142 BundleMember = BundleMember->NextInBundle; 2143 continue; 2144 } 2145 // Handle the def-use chain dependencies. 2146 2147 // Decrement the unscheduled counter and insert to ready list if ready. 2148 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2149 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2150 if (OpDef && OpDef->hasValidDependencies() && 2151 OpDef->incrementUnscheduledDeps(-1) == 0) { 2152 // There are no more unscheduled dependencies after 2153 // decrementing, so we can put the dependent instruction 2154 // into the ready list. 2155 ScheduleData *DepBundle = OpDef->FirstInBundle; 2156 assert(!DepBundle->IsScheduled && 2157 "already scheduled bundle gets ready"); 2158 ReadyList.insert(DepBundle); 2159 LLVM_DEBUG(dbgs() 2160 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2161 } 2162 }); 2163 }; 2164 2165 // If BundleMember is a vector bundle, its operands may have been 2166 // reordered duiring buildTree(). We therefore need to get its operands 2167 // through the TreeEntry. 2168 if (TreeEntry *TE = BundleMember->TE) { 2169 int Lane = BundleMember->Lane; 2170 assert(Lane >= 0 && "Lane not set"); 2171 2172 // Since vectorization tree is being built recursively this assertion 2173 // ensures that the tree entry has all operands set before reaching 2174 // this code. Couple of exceptions known at the moment are extracts 2175 // where their second (immediate) operand is not added. Since 2176 // immediates do not affect scheduler behavior this is considered 2177 // okay. 2178 auto *In = TE->getMainOp(); 2179 assert(In && 2180 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2181 In->getNumOperands() == TE->getNumOperands()) && 2182 "Missed TreeEntry operands?"); 2183 (void)In; // fake use to avoid build failure when assertions disabled 2184 2185 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2186 OpIdx != NumOperands; ++OpIdx) 2187 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2188 DecrUnsched(I); 2189 } else { 2190 // If BundleMember is a stand-alone instruction, no operand reordering 2191 // has taken place, so we directly access its operands. 2192 for (Use &U : BundleMember->Inst->operands()) 2193 if (auto *I = dyn_cast<Instruction>(U.get())) 2194 DecrUnsched(I); 2195 } 2196 // Handle the memory dependencies. 2197 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2198 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2199 // There are no more unscheduled dependencies after decrementing, 2200 // so we can put the dependent instruction into the ready list. 2201 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2202 assert(!DepBundle->IsScheduled && 2203 "already scheduled bundle gets ready"); 2204 ReadyList.insert(DepBundle); 2205 LLVM_DEBUG(dbgs() 2206 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2207 } 2208 } 2209 BundleMember = BundleMember->NextInBundle; 2210 } 2211 } 2212 2213 void doForAllOpcodes(Value *V, 2214 function_ref<void(ScheduleData *SD)> Action) { 2215 if (ScheduleData *SD = getScheduleData(V)) 2216 Action(SD); 2217 auto I = ExtraScheduleDataMap.find(V); 2218 if (I != ExtraScheduleDataMap.end()) 2219 for (auto &P : I->second) 2220 if (P.second->SchedulingRegionID == SchedulingRegionID) 2221 Action(P.second); 2222 } 2223 2224 /// Put all instructions into the ReadyList which are ready for scheduling. 2225 template <typename ReadyListType> 2226 void initialFillReadyList(ReadyListType &ReadyList) { 2227 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2228 doForAllOpcodes(I, [&](ScheduleData *SD) { 2229 if (SD->isSchedulingEntity() && SD->isReady()) { 2230 ReadyList.insert(SD); 2231 LLVM_DEBUG(dbgs() 2232 << "SLP: initially in ready list: " << *I << "\n"); 2233 } 2234 }); 2235 } 2236 } 2237 2238 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2239 /// cyclic dependencies. This is only a dry-run, no instructions are 2240 /// actually moved at this stage. 2241 /// \returns the scheduling bundle. The returned Optional value is non-None 2242 /// if \p VL is allowed to be scheduled. 2243 Optional<ScheduleData *> 2244 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2245 const InstructionsState &S); 2246 2247 /// Un-bundles a group of instructions. 2248 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2249 2250 /// Allocates schedule data chunk. 2251 ScheduleData *allocateScheduleDataChunks(); 2252 2253 /// Extends the scheduling region so that V is inside the region. 2254 /// \returns true if the region size is within the limit. 2255 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2256 2257 /// Initialize the ScheduleData structures for new instructions in the 2258 /// scheduling region. 2259 void initScheduleData(Instruction *FromI, Instruction *ToI, 2260 ScheduleData *PrevLoadStore, 2261 ScheduleData *NextLoadStore); 2262 2263 /// Updates the dependency information of a bundle and of all instructions/ 2264 /// bundles which depend on the original bundle. 2265 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2266 BoUpSLP *SLP); 2267 2268 /// Sets all instruction in the scheduling region to un-scheduled. 2269 void resetSchedule(); 2270 2271 BasicBlock *BB; 2272 2273 /// Simple memory allocation for ScheduleData. 2274 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2275 2276 /// The size of a ScheduleData array in ScheduleDataChunks. 2277 int ChunkSize; 2278 2279 /// The allocator position in the current chunk, which is the last entry 2280 /// of ScheduleDataChunks. 2281 int ChunkPos; 2282 2283 /// Attaches ScheduleData to Instruction. 2284 /// Note that the mapping survives during all vectorization iterations, i.e. 2285 /// ScheduleData structures are recycled. 2286 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2287 2288 /// Attaches ScheduleData to Instruction with the leading key. 2289 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2290 ExtraScheduleDataMap; 2291 2292 struct ReadyList : SmallVector<ScheduleData *, 8> { 2293 void insert(ScheduleData *SD) { push_back(SD); } 2294 }; 2295 2296 /// The ready-list for scheduling (only used for the dry-run). 2297 ReadyList ReadyInsts; 2298 2299 /// The first instruction of the scheduling region. 2300 Instruction *ScheduleStart = nullptr; 2301 2302 /// The first instruction _after_ the scheduling region. 2303 Instruction *ScheduleEnd = nullptr; 2304 2305 /// The first memory accessing instruction in the scheduling region 2306 /// (can be null). 2307 ScheduleData *FirstLoadStoreInRegion = nullptr; 2308 2309 /// The last memory accessing instruction in the scheduling region 2310 /// (can be null). 2311 ScheduleData *LastLoadStoreInRegion = nullptr; 2312 2313 /// The current size of the scheduling region. 2314 int ScheduleRegionSize = 0; 2315 2316 /// The maximum size allowed for the scheduling region. 2317 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2318 2319 /// The ID of the scheduling region. For a new vectorization iteration this 2320 /// is incremented which "removes" all ScheduleData from the region. 2321 // Make sure that the initial SchedulingRegionID is greater than the 2322 // initial SchedulingRegionID in ScheduleData (which is 0). 2323 int SchedulingRegionID = 1; 2324 }; 2325 2326 /// Attaches the BlockScheduling structures to basic blocks. 2327 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2328 2329 /// Performs the "real" scheduling. Done before vectorization is actually 2330 /// performed in a basic block. 2331 void scheduleBlock(BlockScheduling *BS); 2332 2333 /// List of users to ignore during scheduling and that don't need extracting. 2334 ArrayRef<Value *> UserIgnoreList; 2335 2336 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2337 /// sorted SmallVectors of unsigned. 2338 struct OrdersTypeDenseMapInfo { 2339 static OrdersType getEmptyKey() { 2340 OrdersType V; 2341 V.push_back(~1U); 2342 return V; 2343 } 2344 2345 static OrdersType getTombstoneKey() { 2346 OrdersType V; 2347 V.push_back(~2U); 2348 return V; 2349 } 2350 2351 static unsigned getHashValue(const OrdersType &V) { 2352 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2353 } 2354 2355 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2356 return LHS == RHS; 2357 } 2358 }; 2359 2360 /// Contains orders of operations along with the number of bundles that have 2361 /// operations in this order. It stores only those orders that require 2362 /// reordering, if reordering is not required it is counted using \a 2363 /// NumOpsWantToKeepOriginalOrder. 2364 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2365 /// Number of bundles that do not require reordering. 2366 unsigned NumOpsWantToKeepOriginalOrder = 0; 2367 2368 // Analysis and block reference. 2369 Function *F; 2370 ScalarEvolution *SE; 2371 TargetTransformInfo *TTI; 2372 TargetLibraryInfo *TLI; 2373 AAResults *AA; 2374 LoopInfo *LI; 2375 DominatorTree *DT; 2376 AssumptionCache *AC; 2377 DemandedBits *DB; 2378 const DataLayout *DL; 2379 OptimizationRemarkEmitter *ORE; 2380 2381 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2382 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2383 2384 /// Instruction builder to construct the vectorized tree. 2385 IRBuilder<> Builder; 2386 2387 /// A map of scalar integer values to the smallest bit width with which they 2388 /// can legally be represented. The values map to (width, signed) pairs, 2389 /// where "width" indicates the minimum bit width and "signed" is True if the 2390 /// value must be signed-extended, rather than zero-extended, back to its 2391 /// original width. 2392 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2393 }; 2394 2395 } // end namespace slpvectorizer 2396 2397 template <> struct GraphTraits<BoUpSLP *> { 2398 using TreeEntry = BoUpSLP::TreeEntry; 2399 2400 /// NodeRef has to be a pointer per the GraphWriter. 2401 using NodeRef = TreeEntry *; 2402 2403 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2404 2405 /// Add the VectorizableTree to the index iterator to be able to return 2406 /// TreeEntry pointers. 2407 struct ChildIteratorType 2408 : public iterator_adaptor_base< 2409 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2410 ContainerTy &VectorizableTree; 2411 2412 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2413 ContainerTy &VT) 2414 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2415 2416 NodeRef operator*() { return I->UserTE; } 2417 }; 2418 2419 static NodeRef getEntryNode(BoUpSLP &R) { 2420 return R.VectorizableTree[0].get(); 2421 } 2422 2423 static ChildIteratorType child_begin(NodeRef N) { 2424 return {N->UserTreeIndices.begin(), N->Container}; 2425 } 2426 2427 static ChildIteratorType child_end(NodeRef N) { 2428 return {N->UserTreeIndices.end(), N->Container}; 2429 } 2430 2431 /// For the node iterator we just need to turn the TreeEntry iterator into a 2432 /// TreeEntry* iterator so that it dereferences to NodeRef. 2433 class nodes_iterator { 2434 using ItTy = ContainerTy::iterator; 2435 ItTy It; 2436 2437 public: 2438 nodes_iterator(const ItTy &It2) : It(It2) {} 2439 NodeRef operator*() { return It->get(); } 2440 nodes_iterator operator++() { 2441 ++It; 2442 return *this; 2443 } 2444 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2445 }; 2446 2447 static nodes_iterator nodes_begin(BoUpSLP *R) { 2448 return nodes_iterator(R->VectorizableTree.begin()); 2449 } 2450 2451 static nodes_iterator nodes_end(BoUpSLP *R) { 2452 return nodes_iterator(R->VectorizableTree.end()); 2453 } 2454 2455 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2456 }; 2457 2458 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2459 using TreeEntry = BoUpSLP::TreeEntry; 2460 2461 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2462 2463 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2464 std::string Str; 2465 raw_string_ostream OS(Str); 2466 if (isSplat(Entry->Scalars)) { 2467 OS << "<splat> " << *Entry->Scalars[0]; 2468 return Str; 2469 } 2470 for (auto V : Entry->Scalars) { 2471 OS << *V; 2472 if (std::any_of( 2473 R->ExternalUses.begin(), R->ExternalUses.end(), 2474 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2475 OS << " <extract>"; 2476 OS << "\n"; 2477 } 2478 return Str; 2479 } 2480 2481 static std::string getNodeAttributes(const TreeEntry *Entry, 2482 const BoUpSLP *) { 2483 if (Entry->State == TreeEntry::NeedToGather) 2484 return "color=red"; 2485 return ""; 2486 } 2487 }; 2488 2489 } // end namespace llvm 2490 2491 BoUpSLP::~BoUpSLP() { 2492 for (const auto &Pair : DeletedInstructions) { 2493 // Replace operands of ignored instructions with Undefs in case if they were 2494 // marked for deletion. 2495 if (Pair.getSecond()) { 2496 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2497 Pair.getFirst()->replaceAllUsesWith(Undef); 2498 } 2499 Pair.getFirst()->dropAllReferences(); 2500 } 2501 for (const auto &Pair : DeletedInstructions) { 2502 assert(Pair.getFirst()->use_empty() && 2503 "trying to erase instruction with users."); 2504 Pair.getFirst()->eraseFromParent(); 2505 } 2506 assert(!verifyFunction(*F, &dbgs())); 2507 } 2508 2509 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2510 for (auto *V : AV) { 2511 if (auto *I = dyn_cast<Instruction>(V)) 2512 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2513 }; 2514 } 2515 2516 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2517 ArrayRef<Value *> UserIgnoreLst) { 2518 ExtraValueToDebugLocsMap ExternallyUsedValues; 2519 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2520 } 2521 2522 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2523 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2524 ArrayRef<Value *> UserIgnoreLst) { 2525 deleteTree(); 2526 UserIgnoreList = UserIgnoreLst; 2527 if (!allSameType(Roots)) 2528 return; 2529 buildTree_rec(Roots, 0, EdgeInfo()); 2530 2531 // Collect the values that we need to extract from the tree. 2532 for (auto &TEPtr : VectorizableTree) { 2533 TreeEntry *Entry = TEPtr.get(); 2534 2535 // No need to handle users of gathered values. 2536 if (Entry->State == TreeEntry::NeedToGather) 2537 continue; 2538 2539 // For each lane: 2540 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2541 Value *Scalar = Entry->Scalars[Lane]; 2542 int FoundLane = Lane; 2543 if (!Entry->ReuseShuffleIndices.empty()) { 2544 FoundLane = 2545 std::distance(Entry->ReuseShuffleIndices.begin(), 2546 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2547 } 2548 2549 // Check if the scalar is externally used as an extra arg. 2550 auto ExtI = ExternallyUsedValues.find(Scalar); 2551 if (ExtI != ExternallyUsedValues.end()) { 2552 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2553 << Lane << " from " << *Scalar << ".\n"); 2554 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2555 } 2556 for (User *U : Scalar->users()) { 2557 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2558 2559 Instruction *UserInst = dyn_cast<Instruction>(U); 2560 if (!UserInst) 2561 continue; 2562 2563 // Skip in-tree scalars that become vectors 2564 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2565 Value *UseScalar = UseEntry->Scalars[0]; 2566 // Some in-tree scalars will remain as scalar in vectorized 2567 // instructions. If that is the case, the one in Lane 0 will 2568 // be used. 2569 if (UseScalar != U || 2570 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2571 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2572 << ".\n"); 2573 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2574 continue; 2575 } 2576 } 2577 2578 // Ignore users in the user ignore list. 2579 if (is_contained(UserIgnoreList, UserInst)) 2580 continue; 2581 2582 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2583 << Lane << " from " << *Scalar << ".\n"); 2584 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2585 } 2586 } 2587 } 2588 } 2589 2590 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2591 const EdgeInfo &UserTreeIdx) { 2592 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2593 2594 InstructionsState S = getSameOpcode(VL); 2595 if (Depth == RecursionMaxDepth) { 2596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2598 return; 2599 } 2600 2601 // Don't handle vectors. 2602 if (S.OpValue->getType()->isVectorTy()) { 2603 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2604 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2605 return; 2606 } 2607 2608 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2609 if (SI->getValueOperand()->getType()->isVectorTy()) { 2610 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2611 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2612 return; 2613 } 2614 2615 // If all of the operands are identical or constant we have a simple solution. 2616 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2617 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2619 return; 2620 } 2621 2622 // We now know that this is a vector of instructions of the same type from 2623 // the same block. 2624 2625 // Don't vectorize ephemeral values. 2626 for (Value *V : VL) { 2627 if (EphValues.count(V)) { 2628 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2629 << ") is ephemeral.\n"); 2630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2631 return; 2632 } 2633 } 2634 2635 // Check if this is a duplicate of another entry. 2636 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2637 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2638 if (!E->isSame(VL)) { 2639 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2640 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2641 return; 2642 } 2643 // Record the reuse of the tree node. FIXME, currently this is only used to 2644 // properly draw the graph rather than for the actual vectorization. 2645 E->UserTreeIndices.push_back(UserTreeIdx); 2646 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2647 << ".\n"); 2648 return; 2649 } 2650 2651 // Check that none of the instructions in the bundle are already in the tree. 2652 for (Value *V : VL) { 2653 auto *I = dyn_cast<Instruction>(V); 2654 if (!I) 2655 continue; 2656 if (getTreeEntry(I)) { 2657 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2658 << ") is already in tree.\n"); 2659 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2660 return; 2661 } 2662 } 2663 2664 // If any of the scalars is marked as a value that needs to stay scalar, then 2665 // we need to gather the scalars. 2666 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2667 for (Value *V : VL) { 2668 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2669 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2671 return; 2672 } 2673 } 2674 2675 // Check that all of the users of the scalars that we want to vectorize are 2676 // schedulable. 2677 auto *VL0 = cast<Instruction>(S.OpValue); 2678 BasicBlock *BB = VL0->getParent(); 2679 2680 if (!DT->isReachableFromEntry(BB)) { 2681 // Don't go into unreachable blocks. They may contain instructions with 2682 // dependency cycles which confuse the final scheduling. 2683 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2685 return; 2686 } 2687 2688 // Check that every instruction appears once in this bundle. 2689 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2690 SmallVector<Value *, 4> UniqueValues; 2691 DenseMap<Value *, unsigned> UniquePositions; 2692 for (Value *V : VL) { 2693 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2694 ReuseShuffleIndicies.emplace_back(Res.first->second); 2695 if (Res.second) 2696 UniqueValues.emplace_back(V); 2697 } 2698 size_t NumUniqueScalarValues = UniqueValues.size(); 2699 if (NumUniqueScalarValues == VL.size()) { 2700 ReuseShuffleIndicies.clear(); 2701 } else { 2702 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2703 if (NumUniqueScalarValues <= 1 || 2704 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2705 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2707 return; 2708 } 2709 VL = UniqueValues; 2710 } 2711 2712 auto &BSRef = BlocksSchedules[BB]; 2713 if (!BSRef) 2714 BSRef = std::make_unique<BlockScheduling>(BB); 2715 2716 BlockScheduling &BS = *BSRef.get(); 2717 2718 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2719 if (!Bundle) { 2720 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2721 assert((!BS.getScheduleData(VL0) || 2722 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2723 "tryScheduleBundle should cancelScheduling on failure"); 2724 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2725 ReuseShuffleIndicies); 2726 return; 2727 } 2728 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2729 2730 unsigned ShuffleOrOp = S.isAltShuffle() ? 2731 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2732 switch (ShuffleOrOp) { 2733 case Instruction::PHI: { 2734 auto *PH = cast<PHINode>(VL0); 2735 2736 // Check for terminator values (e.g. invoke). 2737 for (Value *V : VL) 2738 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2739 Instruction *Term = dyn_cast<Instruction>( 2740 cast<PHINode>(V)->getIncomingValueForBlock( 2741 PH->getIncomingBlock(I))); 2742 if (Term && Term->isTerminator()) { 2743 LLVM_DEBUG(dbgs() 2744 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2745 BS.cancelScheduling(VL, VL0); 2746 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2747 ReuseShuffleIndicies); 2748 return; 2749 } 2750 } 2751 2752 TreeEntry *TE = 2753 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2754 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2755 2756 // Keeps the reordered operands to avoid code duplication. 2757 SmallVector<ValueList, 2> OperandsVec; 2758 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2759 ValueList Operands; 2760 // Prepare the operand vector. 2761 for (Value *V : VL) 2762 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2763 PH->getIncomingBlock(I))); 2764 TE->setOperand(I, Operands); 2765 OperandsVec.push_back(Operands); 2766 } 2767 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2768 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2769 return; 2770 } 2771 case Instruction::ExtractValue: 2772 case Instruction::ExtractElement: { 2773 OrdersType CurrentOrder; 2774 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2775 if (Reuse) { 2776 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2777 ++NumOpsWantToKeepOriginalOrder; 2778 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2779 ReuseShuffleIndicies); 2780 // This is a special case, as it does not gather, but at the same time 2781 // we are not extending buildTree_rec() towards the operands. 2782 ValueList Op0; 2783 Op0.assign(VL.size(), VL0->getOperand(0)); 2784 VectorizableTree.back()->setOperand(0, Op0); 2785 return; 2786 } 2787 if (!CurrentOrder.empty()) { 2788 LLVM_DEBUG({ 2789 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2790 "with order"; 2791 for (unsigned Idx : CurrentOrder) 2792 dbgs() << " " << Idx; 2793 dbgs() << "\n"; 2794 }); 2795 // Insert new order with initial value 0, if it does not exist, 2796 // otherwise return the iterator to the existing one. 2797 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2798 ReuseShuffleIndicies, CurrentOrder); 2799 findRootOrder(CurrentOrder); 2800 ++NumOpsWantToKeepOrder[CurrentOrder]; 2801 // This is a special case, as it does not gather, but at the same time 2802 // we are not extending buildTree_rec() towards the operands. 2803 ValueList Op0; 2804 Op0.assign(VL.size(), VL0->getOperand(0)); 2805 VectorizableTree.back()->setOperand(0, Op0); 2806 return; 2807 } 2808 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2809 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2810 ReuseShuffleIndicies); 2811 BS.cancelScheduling(VL, VL0); 2812 return; 2813 } 2814 case Instruction::Load: { 2815 // Check that a vectorized load would load the same memory as a scalar 2816 // load. For example, we don't want to vectorize loads that are smaller 2817 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2818 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2819 // from such a struct, we read/write packed bits disagreeing with the 2820 // unvectorized version. 2821 Type *ScalarTy = VL0->getType(); 2822 2823 if (DL->getTypeSizeInBits(ScalarTy) != 2824 DL->getTypeAllocSizeInBits(ScalarTy)) { 2825 BS.cancelScheduling(VL, VL0); 2826 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2827 ReuseShuffleIndicies); 2828 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2829 return; 2830 } 2831 2832 // Make sure all loads in the bundle are simple - we can't vectorize 2833 // atomic or volatile loads. 2834 SmallVector<Value *, 4> PointerOps(VL.size()); 2835 auto POIter = PointerOps.begin(); 2836 for (Value *V : VL) { 2837 auto *L = cast<LoadInst>(V); 2838 if (!L->isSimple()) { 2839 BS.cancelScheduling(VL, VL0); 2840 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2841 ReuseShuffleIndicies); 2842 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2843 return; 2844 } 2845 *POIter = L->getPointerOperand(); 2846 ++POIter; 2847 } 2848 2849 OrdersType CurrentOrder; 2850 // Check the order of pointer operands. 2851 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2852 Value *Ptr0; 2853 Value *PtrN; 2854 if (CurrentOrder.empty()) { 2855 Ptr0 = PointerOps.front(); 2856 PtrN = PointerOps.back(); 2857 } else { 2858 Ptr0 = PointerOps[CurrentOrder.front()]; 2859 PtrN = PointerOps[CurrentOrder.back()]; 2860 } 2861 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2862 const SCEV *ScevN = SE->getSCEV(PtrN); 2863 const auto *Diff = 2864 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2865 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2866 // Check that the sorted loads are consecutive. 2867 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2868 if (CurrentOrder.empty()) { 2869 // Original loads are consecutive and does not require reordering. 2870 ++NumOpsWantToKeepOriginalOrder; 2871 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2872 UserTreeIdx, ReuseShuffleIndicies); 2873 TE->setOperandsInOrder(); 2874 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2875 } else { 2876 // Need to reorder. 2877 TreeEntry *TE = 2878 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2879 ReuseShuffleIndicies, CurrentOrder); 2880 TE->setOperandsInOrder(); 2881 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2882 findRootOrder(CurrentOrder); 2883 ++NumOpsWantToKeepOrder[CurrentOrder]; 2884 } 2885 return; 2886 } 2887 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2888 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2889 UserTreeIdx, ReuseShuffleIndicies); 2890 TE->setOperandsInOrder(); 2891 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2892 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2893 return; 2894 } 2895 2896 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2897 BS.cancelScheduling(VL, VL0); 2898 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2899 ReuseShuffleIndicies); 2900 return; 2901 } 2902 case Instruction::ZExt: 2903 case Instruction::SExt: 2904 case Instruction::FPToUI: 2905 case Instruction::FPToSI: 2906 case Instruction::FPExt: 2907 case Instruction::PtrToInt: 2908 case Instruction::IntToPtr: 2909 case Instruction::SIToFP: 2910 case Instruction::UIToFP: 2911 case Instruction::Trunc: 2912 case Instruction::FPTrunc: 2913 case Instruction::BitCast: { 2914 Type *SrcTy = VL0->getOperand(0)->getType(); 2915 for (Value *V : VL) { 2916 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2917 if (Ty != SrcTy || !isValidElementType(Ty)) { 2918 BS.cancelScheduling(VL, VL0); 2919 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2920 ReuseShuffleIndicies); 2921 LLVM_DEBUG(dbgs() 2922 << "SLP: Gathering casts with different src types.\n"); 2923 return; 2924 } 2925 } 2926 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2927 ReuseShuffleIndicies); 2928 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2929 2930 TE->setOperandsInOrder(); 2931 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2932 ValueList Operands; 2933 // Prepare the operand vector. 2934 for (Value *V : VL) 2935 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2936 2937 buildTree_rec(Operands, Depth + 1, {TE, i}); 2938 } 2939 return; 2940 } 2941 case Instruction::ICmp: 2942 case Instruction::FCmp: { 2943 // Check that all of the compares have the same predicate. 2944 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2945 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2946 Type *ComparedTy = VL0->getOperand(0)->getType(); 2947 for (Value *V : VL) { 2948 CmpInst *Cmp = cast<CmpInst>(V); 2949 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2950 Cmp->getOperand(0)->getType() != ComparedTy) { 2951 BS.cancelScheduling(VL, VL0); 2952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2953 ReuseShuffleIndicies); 2954 LLVM_DEBUG(dbgs() 2955 << "SLP: Gathering cmp with different predicate.\n"); 2956 return; 2957 } 2958 } 2959 2960 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2961 ReuseShuffleIndicies); 2962 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2963 2964 ValueList Left, Right; 2965 if (cast<CmpInst>(VL0)->isCommutative()) { 2966 // Commutative predicate - collect + sort operands of the instructions 2967 // so that each side is more likely to have the same opcode. 2968 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2969 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2970 } else { 2971 // Collect operands - commute if it uses the swapped predicate. 2972 for (Value *V : VL) { 2973 auto *Cmp = cast<CmpInst>(V); 2974 Value *LHS = Cmp->getOperand(0); 2975 Value *RHS = Cmp->getOperand(1); 2976 if (Cmp->getPredicate() != P0) 2977 std::swap(LHS, RHS); 2978 Left.push_back(LHS); 2979 Right.push_back(RHS); 2980 } 2981 } 2982 TE->setOperand(0, Left); 2983 TE->setOperand(1, Right); 2984 buildTree_rec(Left, Depth + 1, {TE, 0}); 2985 buildTree_rec(Right, Depth + 1, {TE, 1}); 2986 return; 2987 } 2988 case Instruction::Select: 2989 case Instruction::FNeg: 2990 case Instruction::Add: 2991 case Instruction::FAdd: 2992 case Instruction::Sub: 2993 case Instruction::FSub: 2994 case Instruction::Mul: 2995 case Instruction::FMul: 2996 case Instruction::UDiv: 2997 case Instruction::SDiv: 2998 case Instruction::FDiv: 2999 case Instruction::URem: 3000 case Instruction::SRem: 3001 case Instruction::FRem: 3002 case Instruction::Shl: 3003 case Instruction::LShr: 3004 case Instruction::AShr: 3005 case Instruction::And: 3006 case Instruction::Or: 3007 case Instruction::Xor: { 3008 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3009 ReuseShuffleIndicies); 3010 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3011 3012 // Sort operands of the instructions so that each side is more likely to 3013 // have the same opcode. 3014 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3015 ValueList Left, Right; 3016 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3017 TE->setOperand(0, Left); 3018 TE->setOperand(1, Right); 3019 buildTree_rec(Left, Depth + 1, {TE, 0}); 3020 buildTree_rec(Right, Depth + 1, {TE, 1}); 3021 return; 3022 } 3023 3024 TE->setOperandsInOrder(); 3025 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3026 ValueList Operands; 3027 // Prepare the operand vector. 3028 for (Value *V : VL) 3029 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3030 3031 buildTree_rec(Operands, Depth + 1, {TE, i}); 3032 } 3033 return; 3034 } 3035 case Instruction::GetElementPtr: { 3036 // We don't combine GEPs with complicated (nested) indexing. 3037 for (Value *V : VL) { 3038 if (cast<Instruction>(V)->getNumOperands() != 2) { 3039 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3040 BS.cancelScheduling(VL, VL0); 3041 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3042 ReuseShuffleIndicies); 3043 return; 3044 } 3045 } 3046 3047 // We can't combine several GEPs into one vector if they operate on 3048 // different types. 3049 Type *Ty0 = VL0->getOperand(0)->getType(); 3050 for (Value *V : VL) { 3051 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3052 if (Ty0 != CurTy) { 3053 LLVM_DEBUG(dbgs() 3054 << "SLP: not-vectorizable GEP (different types).\n"); 3055 BS.cancelScheduling(VL, VL0); 3056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3057 ReuseShuffleIndicies); 3058 return; 3059 } 3060 } 3061 3062 // We don't combine GEPs with non-constant indexes. 3063 Type *Ty1 = VL0->getOperand(1)->getType(); 3064 for (Value *V : VL) { 3065 auto Op = cast<Instruction>(V)->getOperand(1); 3066 if (!isa<ConstantInt>(Op) || 3067 (Op->getType() != Ty1 && 3068 Op->getType()->getScalarSizeInBits() > 3069 DL->getIndexSizeInBits( 3070 V->getType()->getPointerAddressSpace()))) { 3071 LLVM_DEBUG(dbgs() 3072 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3073 BS.cancelScheduling(VL, VL0); 3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3075 ReuseShuffleIndicies); 3076 return; 3077 } 3078 } 3079 3080 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3081 ReuseShuffleIndicies); 3082 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3083 TE->setOperandsInOrder(); 3084 for (unsigned i = 0, e = 2; i < e; ++i) { 3085 ValueList Operands; 3086 // Prepare the operand vector. 3087 for (Value *V : VL) 3088 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3089 3090 buildTree_rec(Operands, Depth + 1, {TE, i}); 3091 } 3092 return; 3093 } 3094 case Instruction::Store: { 3095 // Check if the stores are consecutive or if we need to swizzle them. 3096 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3097 // Make sure all stores in the bundle are simple - we can't vectorize 3098 // atomic or volatile stores. 3099 SmallVector<Value *, 4> PointerOps(VL.size()); 3100 ValueList Operands(VL.size()); 3101 auto POIter = PointerOps.begin(); 3102 auto OIter = Operands.begin(); 3103 for (Value *V : VL) { 3104 auto *SI = cast<StoreInst>(V); 3105 if (!SI->isSimple()) { 3106 BS.cancelScheduling(VL, VL0); 3107 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3108 ReuseShuffleIndicies); 3109 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3110 return; 3111 } 3112 *POIter = SI->getPointerOperand(); 3113 *OIter = SI->getValueOperand(); 3114 ++POIter; 3115 ++OIter; 3116 } 3117 3118 OrdersType CurrentOrder; 3119 // Check the order of pointer operands. 3120 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3121 Value *Ptr0; 3122 Value *PtrN; 3123 if (CurrentOrder.empty()) { 3124 Ptr0 = PointerOps.front(); 3125 PtrN = PointerOps.back(); 3126 } else { 3127 Ptr0 = PointerOps[CurrentOrder.front()]; 3128 PtrN = PointerOps[CurrentOrder.back()]; 3129 } 3130 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3131 const SCEV *ScevN = SE->getSCEV(PtrN); 3132 const auto *Diff = 3133 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3134 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3135 // Check that the sorted pointer operands are consecutive. 3136 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3137 if (CurrentOrder.empty()) { 3138 // Original stores are consecutive and does not require reordering. 3139 ++NumOpsWantToKeepOriginalOrder; 3140 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3141 UserTreeIdx, ReuseShuffleIndicies); 3142 TE->setOperandsInOrder(); 3143 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3144 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3145 } else { 3146 TreeEntry *TE = 3147 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3148 ReuseShuffleIndicies, CurrentOrder); 3149 TE->setOperandsInOrder(); 3150 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3151 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3152 findRootOrder(CurrentOrder); 3153 ++NumOpsWantToKeepOrder[CurrentOrder]; 3154 } 3155 return; 3156 } 3157 } 3158 3159 BS.cancelScheduling(VL, VL0); 3160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3161 ReuseShuffleIndicies); 3162 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3163 return; 3164 } 3165 case Instruction::Call: { 3166 // Check if the calls are all to the same vectorizable intrinsic or 3167 // library function. 3168 CallInst *CI = cast<CallInst>(VL0); 3169 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3170 3171 VFShape Shape = VFShape::get( 3172 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3173 false /*HasGlobalPred*/); 3174 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3175 3176 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3177 BS.cancelScheduling(VL, VL0); 3178 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3179 ReuseShuffleIndicies); 3180 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3181 return; 3182 } 3183 Function *F = CI->getCalledFunction(); 3184 unsigned NumArgs = CI->getNumArgOperands(); 3185 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3186 for (unsigned j = 0; j != NumArgs; ++j) 3187 if (hasVectorInstrinsicScalarOpd(ID, j)) 3188 ScalarArgs[j] = CI->getArgOperand(j); 3189 for (Value *V : VL) { 3190 CallInst *CI2 = dyn_cast<CallInst>(V); 3191 if (!CI2 || CI2->getCalledFunction() != F || 3192 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3193 (VecFunc && 3194 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3195 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3196 BS.cancelScheduling(VL, VL0); 3197 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3198 ReuseShuffleIndicies); 3199 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3200 << "\n"); 3201 return; 3202 } 3203 // Some intrinsics have scalar arguments and should be same in order for 3204 // them to be vectorized. 3205 for (unsigned j = 0; j != NumArgs; ++j) { 3206 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3207 Value *A1J = CI2->getArgOperand(j); 3208 if (ScalarArgs[j] != A1J) { 3209 BS.cancelScheduling(VL, VL0); 3210 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3211 ReuseShuffleIndicies); 3212 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3213 << " argument " << ScalarArgs[j] << "!=" << A1J 3214 << "\n"); 3215 return; 3216 } 3217 } 3218 } 3219 // Verify that the bundle operands are identical between the two calls. 3220 if (CI->hasOperandBundles() && 3221 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3222 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3223 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3224 BS.cancelScheduling(VL, VL0); 3225 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3226 ReuseShuffleIndicies); 3227 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3228 << *CI << "!=" << *V << '\n'); 3229 return; 3230 } 3231 } 3232 3233 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3234 ReuseShuffleIndicies); 3235 TE->setOperandsInOrder(); 3236 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3237 ValueList Operands; 3238 // Prepare the operand vector. 3239 for (Value *V : VL) { 3240 auto *CI2 = cast<CallInst>(V); 3241 Operands.push_back(CI2->getArgOperand(i)); 3242 } 3243 buildTree_rec(Operands, Depth + 1, {TE, i}); 3244 } 3245 return; 3246 } 3247 case Instruction::ShuffleVector: { 3248 // If this is not an alternate sequence of opcode like add-sub 3249 // then do not vectorize this instruction. 3250 if (!S.isAltShuffle()) { 3251 BS.cancelScheduling(VL, VL0); 3252 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3253 ReuseShuffleIndicies); 3254 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3255 return; 3256 } 3257 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3258 ReuseShuffleIndicies); 3259 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3260 3261 // Reorder operands if reordering would enable vectorization. 3262 if (isa<BinaryOperator>(VL0)) { 3263 ValueList Left, Right; 3264 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3265 TE->setOperand(0, Left); 3266 TE->setOperand(1, Right); 3267 buildTree_rec(Left, Depth + 1, {TE, 0}); 3268 buildTree_rec(Right, Depth + 1, {TE, 1}); 3269 return; 3270 } 3271 3272 TE->setOperandsInOrder(); 3273 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3274 ValueList Operands; 3275 // Prepare the operand vector. 3276 for (Value *V : VL) 3277 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3278 3279 buildTree_rec(Operands, Depth + 1, {TE, i}); 3280 } 3281 return; 3282 } 3283 default: 3284 BS.cancelScheduling(VL, VL0); 3285 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3286 ReuseShuffleIndicies); 3287 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3288 return; 3289 } 3290 } 3291 3292 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3293 unsigned N = 1; 3294 Type *EltTy = T; 3295 3296 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3297 isa<VectorType>(EltTy)) { 3298 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3299 // Check that struct is homogeneous. 3300 for (const auto *Ty : ST->elements()) 3301 if (Ty != *ST->element_begin()) 3302 return 0; 3303 N *= ST->getNumElements(); 3304 EltTy = *ST->element_begin(); 3305 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3306 N *= AT->getNumElements(); 3307 EltTy = AT->getElementType(); 3308 } else { 3309 auto *VT = cast<FixedVectorType>(EltTy); 3310 N *= VT->getNumElements(); 3311 EltTy = VT->getElementType(); 3312 } 3313 } 3314 3315 if (!isValidElementType(EltTy)) 3316 return 0; 3317 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3318 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3319 return 0; 3320 return N; 3321 } 3322 3323 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3324 SmallVectorImpl<unsigned> &CurrentOrder) const { 3325 Instruction *E0 = cast<Instruction>(OpValue); 3326 assert(E0->getOpcode() == Instruction::ExtractElement || 3327 E0->getOpcode() == Instruction::ExtractValue); 3328 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3329 // Check if all of the extracts come from the same vector and from the 3330 // correct offset. 3331 Value *Vec = E0->getOperand(0); 3332 3333 CurrentOrder.clear(); 3334 3335 // We have to extract from a vector/aggregate with the same number of elements. 3336 unsigned NElts; 3337 if (E0->getOpcode() == Instruction::ExtractValue) { 3338 const DataLayout &DL = E0->getModule()->getDataLayout(); 3339 NElts = canMapToVector(Vec->getType(), DL); 3340 if (!NElts) 3341 return false; 3342 // Check if load can be rewritten as load of vector. 3343 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3344 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3345 return false; 3346 } else { 3347 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3348 } 3349 3350 if (NElts != VL.size()) 3351 return false; 3352 3353 // Check that all of the indices extract from the correct offset. 3354 bool ShouldKeepOrder = true; 3355 unsigned E = VL.size(); 3356 // Assign to all items the initial value E + 1 so we can check if the extract 3357 // instruction index was used already. 3358 // Also, later we can check that all the indices are used and we have a 3359 // consecutive access in the extract instructions, by checking that no 3360 // element of CurrentOrder still has value E + 1. 3361 CurrentOrder.assign(E, E + 1); 3362 unsigned I = 0; 3363 for (; I < E; ++I) { 3364 auto *Inst = cast<Instruction>(VL[I]); 3365 if (Inst->getOperand(0) != Vec) 3366 break; 3367 Optional<unsigned> Idx = getExtractIndex(Inst); 3368 if (!Idx) 3369 break; 3370 const unsigned ExtIdx = *Idx; 3371 if (ExtIdx != I) { 3372 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3373 break; 3374 ShouldKeepOrder = false; 3375 CurrentOrder[ExtIdx] = I; 3376 } else { 3377 if (CurrentOrder[I] != E + 1) 3378 break; 3379 CurrentOrder[I] = I; 3380 } 3381 } 3382 if (I < E) { 3383 CurrentOrder.clear(); 3384 return false; 3385 } 3386 3387 return ShouldKeepOrder; 3388 } 3389 3390 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3391 return I->hasOneUse() || 3392 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3393 return ScalarToTreeEntry.count(U) > 0; 3394 }); 3395 } 3396 3397 static std::pair<unsigned, unsigned> 3398 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3399 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3400 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3401 3402 // Calculate the cost of the scalar and vector calls. 3403 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3404 int IntrinsicCost = 3405 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3406 3407 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3408 VecTy->getNumElements())), 3409 false /*HasGlobalPred*/); 3410 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3411 int LibCost = IntrinsicCost; 3412 if (!CI->isNoBuiltin() && VecFunc) { 3413 // Calculate the cost of the vector library call. 3414 SmallVector<Type *, 4> VecTys; 3415 for (Use &Arg : CI->args()) 3416 VecTys.push_back( 3417 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3418 3419 // If the corresponding vector call is cheaper, return its cost. 3420 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3421 TTI::TCK_RecipThroughput); 3422 } 3423 return {IntrinsicCost, LibCost}; 3424 } 3425 3426 int BoUpSLP::getEntryCost(TreeEntry *E) { 3427 ArrayRef<Value*> VL = E->Scalars; 3428 3429 Type *ScalarTy = VL[0]->getType(); 3430 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3431 ScalarTy = SI->getValueOperand()->getType(); 3432 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3433 ScalarTy = CI->getOperand(0)->getType(); 3434 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3435 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3436 3437 // If we have computed a smaller type for the expression, update VecTy so 3438 // that the costs will be accurate. 3439 if (MinBWs.count(VL[0])) 3440 VecTy = FixedVectorType::get( 3441 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3442 3443 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3444 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3445 int ReuseShuffleCost = 0; 3446 if (NeedToShuffleReuses) { 3447 ReuseShuffleCost = 3448 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3449 } 3450 if (E->State == TreeEntry::NeedToGather) { 3451 if (allConstant(VL)) 3452 return 0; 3453 if (isSplat(VL)) { 3454 return ReuseShuffleCost + 3455 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3456 } 3457 if (E->getOpcode() == Instruction::ExtractElement && 3458 allSameType(VL) && allSameBlock(VL)) { 3459 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3460 if (ShuffleKind.hasValue()) { 3461 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3462 for (auto *V : VL) { 3463 // If all users of instruction are going to be vectorized and this 3464 // instruction itself is not going to be vectorized, consider this 3465 // instruction as dead and remove its cost from the final cost of the 3466 // vectorized tree. 3467 if (areAllUsersVectorized(cast<Instruction>(V)) && 3468 !ScalarToTreeEntry.count(V)) { 3469 auto *IO = cast<ConstantInt>( 3470 cast<ExtractElementInst>(V)->getIndexOperand()); 3471 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3472 IO->getZExtValue()); 3473 } 3474 } 3475 return ReuseShuffleCost + Cost; 3476 } 3477 } 3478 return ReuseShuffleCost + getGatherCost(VL); 3479 } 3480 assert((E->State == TreeEntry::Vectorize || 3481 E->State == TreeEntry::ScatterVectorize) && 3482 "Unhandled state"); 3483 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3484 Instruction *VL0 = E->getMainOp(); 3485 unsigned ShuffleOrOp = 3486 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3487 switch (ShuffleOrOp) { 3488 case Instruction::PHI: 3489 return 0; 3490 3491 case Instruction::ExtractValue: 3492 case Instruction::ExtractElement: { 3493 int DeadCost = 0; 3494 if (NeedToShuffleReuses) { 3495 unsigned Idx = 0; 3496 for (unsigned I : E->ReuseShuffleIndices) { 3497 if (ShuffleOrOp == Instruction::ExtractElement) { 3498 auto *IO = cast<ConstantInt>( 3499 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3500 Idx = IO->getZExtValue(); 3501 ReuseShuffleCost -= TTI->getVectorInstrCost( 3502 Instruction::ExtractElement, VecTy, Idx); 3503 } else { 3504 ReuseShuffleCost -= TTI->getVectorInstrCost( 3505 Instruction::ExtractElement, VecTy, Idx); 3506 ++Idx; 3507 } 3508 } 3509 Idx = ReuseShuffleNumbers; 3510 for (Value *V : VL) { 3511 if (ShuffleOrOp == Instruction::ExtractElement) { 3512 auto *IO = cast<ConstantInt>( 3513 cast<ExtractElementInst>(V)->getIndexOperand()); 3514 Idx = IO->getZExtValue(); 3515 } else { 3516 --Idx; 3517 } 3518 ReuseShuffleCost += 3519 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3520 } 3521 DeadCost = ReuseShuffleCost; 3522 } else if (!E->ReorderIndices.empty()) { 3523 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3524 VecTy); 3525 } 3526 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3527 Instruction *EI = cast<Instruction>(VL[I]); 3528 // If all users are going to be vectorized, instruction can be 3529 // considered as dead. 3530 // The same, if have only one user, it will be vectorized for sure. 3531 if (areAllUsersVectorized(EI)) { 3532 // Take credit for instruction that will become dead. 3533 if (EI->hasOneUse()) { 3534 Instruction *Ext = EI->user_back(); 3535 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3536 all_of(Ext->users(), 3537 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3538 // Use getExtractWithExtendCost() to calculate the cost of 3539 // extractelement/ext pair. 3540 DeadCost -= TTI->getExtractWithExtendCost( 3541 Ext->getOpcode(), Ext->getType(), VecTy, I); 3542 // Add back the cost of s|zext which is subtracted separately. 3543 DeadCost += TTI->getCastInstrCost( 3544 Ext->getOpcode(), Ext->getType(), EI->getType(), 3545 TTI::getCastContextHint(Ext), CostKind, Ext); 3546 continue; 3547 } 3548 } 3549 DeadCost -= 3550 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3551 } 3552 } 3553 return DeadCost; 3554 } 3555 case Instruction::ZExt: 3556 case Instruction::SExt: 3557 case Instruction::FPToUI: 3558 case Instruction::FPToSI: 3559 case Instruction::FPExt: 3560 case Instruction::PtrToInt: 3561 case Instruction::IntToPtr: 3562 case Instruction::SIToFP: 3563 case Instruction::UIToFP: 3564 case Instruction::Trunc: 3565 case Instruction::FPTrunc: 3566 case Instruction::BitCast: { 3567 Type *SrcTy = VL0->getOperand(0)->getType(); 3568 int ScalarEltCost = 3569 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3570 TTI::getCastContextHint(VL0), CostKind, VL0); 3571 if (NeedToShuffleReuses) { 3572 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3573 } 3574 3575 // Calculate the cost of this instruction. 3576 int ScalarCost = VL.size() * ScalarEltCost; 3577 3578 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3579 int VecCost = 0; 3580 // Check if the values are candidates to demote. 3581 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3582 VecCost = 3583 ReuseShuffleCost + 3584 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3585 TTI::getCastContextHint(VL0), CostKind, VL0); 3586 } 3587 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3588 return VecCost - ScalarCost; 3589 } 3590 case Instruction::FCmp: 3591 case Instruction::ICmp: 3592 case Instruction::Select: { 3593 // Calculate the cost of this instruction. 3594 int ScalarEltCost = 3595 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3596 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3597 if (NeedToShuffleReuses) { 3598 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3599 } 3600 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3601 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3602 3603 // Check if all entries in VL are either compares or selects with compares 3604 // as condition that have the same predicates. 3605 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3606 bool First = true; 3607 for (auto *V : VL) { 3608 CmpInst::Predicate CurrentPred; 3609 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3610 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3611 !match(V, MatchCmp)) || 3612 (!First && VecPred != CurrentPred)) { 3613 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3614 break; 3615 } 3616 First = false; 3617 VecPred = CurrentPred; 3618 } 3619 3620 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3621 VecPred, CostKind, VL0); 3622 // Check if it is possible and profitable to use min/max for selects in 3623 // VL. 3624 // 3625 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3626 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3627 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3628 {VecTy, VecTy}); 3629 int IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3630 // If the selects are the only uses of the compares, they will be dead 3631 // and we can adjust the cost by removing their cost. 3632 if (IntrinsicAndUse.second) 3633 IntrinsicCost -= 3634 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3635 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3636 VecCost = std::min(VecCost, IntrinsicCost); 3637 } 3638 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3639 return ReuseShuffleCost + VecCost - ScalarCost; 3640 } 3641 case Instruction::FNeg: 3642 case Instruction::Add: 3643 case Instruction::FAdd: 3644 case Instruction::Sub: 3645 case Instruction::FSub: 3646 case Instruction::Mul: 3647 case Instruction::FMul: 3648 case Instruction::UDiv: 3649 case Instruction::SDiv: 3650 case Instruction::FDiv: 3651 case Instruction::URem: 3652 case Instruction::SRem: 3653 case Instruction::FRem: 3654 case Instruction::Shl: 3655 case Instruction::LShr: 3656 case Instruction::AShr: 3657 case Instruction::And: 3658 case Instruction::Or: 3659 case Instruction::Xor: { 3660 // Certain instructions can be cheaper to vectorize if they have a 3661 // constant second vector operand. 3662 TargetTransformInfo::OperandValueKind Op1VK = 3663 TargetTransformInfo::OK_AnyValue; 3664 TargetTransformInfo::OperandValueKind Op2VK = 3665 TargetTransformInfo::OK_UniformConstantValue; 3666 TargetTransformInfo::OperandValueProperties Op1VP = 3667 TargetTransformInfo::OP_None; 3668 TargetTransformInfo::OperandValueProperties Op2VP = 3669 TargetTransformInfo::OP_PowerOf2; 3670 3671 // If all operands are exactly the same ConstantInt then set the 3672 // operand kind to OK_UniformConstantValue. 3673 // If instead not all operands are constants, then set the operand kind 3674 // to OK_AnyValue. If all operands are constants but not the same, 3675 // then set the operand kind to OK_NonUniformConstantValue. 3676 ConstantInt *CInt0 = nullptr; 3677 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3678 const Instruction *I = cast<Instruction>(VL[i]); 3679 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3680 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3681 if (!CInt) { 3682 Op2VK = TargetTransformInfo::OK_AnyValue; 3683 Op2VP = TargetTransformInfo::OP_None; 3684 break; 3685 } 3686 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3687 !CInt->getValue().isPowerOf2()) 3688 Op2VP = TargetTransformInfo::OP_None; 3689 if (i == 0) { 3690 CInt0 = CInt; 3691 continue; 3692 } 3693 if (CInt0 != CInt) 3694 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3695 } 3696 3697 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3698 int ScalarEltCost = TTI->getArithmeticInstrCost( 3699 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3700 Operands, VL0); 3701 if (NeedToShuffleReuses) { 3702 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3703 } 3704 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3705 int VecCost = TTI->getArithmeticInstrCost( 3706 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3707 Operands, VL0); 3708 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3709 return ReuseShuffleCost + VecCost - ScalarCost; 3710 } 3711 case Instruction::GetElementPtr: { 3712 TargetTransformInfo::OperandValueKind Op1VK = 3713 TargetTransformInfo::OK_AnyValue; 3714 TargetTransformInfo::OperandValueKind Op2VK = 3715 TargetTransformInfo::OK_UniformConstantValue; 3716 3717 int ScalarEltCost = 3718 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3719 Op1VK, Op2VK); 3720 if (NeedToShuffleReuses) { 3721 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3722 } 3723 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3724 int VecCost = 3725 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3726 Op1VK, Op2VK); 3727 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3728 return ReuseShuffleCost + VecCost - ScalarCost; 3729 } 3730 case Instruction::Load: { 3731 // Cost of wide load - cost of scalar loads. 3732 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3733 int ScalarEltCost = 3734 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3735 CostKind, VL0); 3736 if (NeedToShuffleReuses) { 3737 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3738 } 3739 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3740 int VecLdCost; 3741 if (E->State == TreeEntry::Vectorize) { 3742 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3743 CostKind, VL0); 3744 } else { 3745 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3746 VecLdCost = TTI->getGatherScatterOpCost( 3747 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3748 /*VariableMask=*/false, alignment, CostKind, VL0); 3749 } 3750 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3751 VecLdCost += TTI->getShuffleCost( 3752 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3753 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3754 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3755 } 3756 case Instruction::Store: { 3757 // We know that we can merge the stores. Calculate the cost. 3758 bool IsReorder = !E->ReorderIndices.empty(); 3759 auto *SI = 3760 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3761 Align Alignment = SI->getAlign(); 3762 int ScalarEltCost = 3763 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3764 CostKind, VL0); 3765 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3766 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3767 VecTy, Alignment, 0, CostKind, VL0); 3768 if (IsReorder) 3769 VecStCost += TTI->getShuffleCost( 3770 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3771 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3772 return VecStCost - ScalarStCost; 3773 } 3774 case Instruction::Call: { 3775 CallInst *CI = cast<CallInst>(VL0); 3776 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3777 3778 // Calculate the cost of the scalar and vector calls. 3779 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3780 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3781 if (NeedToShuffleReuses) { 3782 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3783 } 3784 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3785 3786 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3787 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3788 3789 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3790 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3791 << " for " << *CI << "\n"); 3792 3793 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3794 } 3795 case Instruction::ShuffleVector: { 3796 assert(E->isAltShuffle() && 3797 ((Instruction::isBinaryOp(E->getOpcode()) && 3798 Instruction::isBinaryOp(E->getAltOpcode())) || 3799 (Instruction::isCast(E->getOpcode()) && 3800 Instruction::isCast(E->getAltOpcode()))) && 3801 "Invalid Shuffle Vector Operand"); 3802 int ScalarCost = 0; 3803 if (NeedToShuffleReuses) { 3804 for (unsigned Idx : E->ReuseShuffleIndices) { 3805 Instruction *I = cast<Instruction>(VL[Idx]); 3806 InstructionCost Cost = TTI->getInstructionCost(I, CostKind); 3807 assert(Cost.isValid() && "Invalid instruction cost"); 3808 ReuseShuffleCost -= *(Cost.getValue()); 3809 } 3810 for (Value *V : VL) { 3811 Instruction *I = cast<Instruction>(V); 3812 InstructionCost Cost = TTI->getInstructionCost(I, CostKind); 3813 assert(Cost.isValid() && "Invalid instruction cost"); 3814 ReuseShuffleCost += *(Cost.getValue()); 3815 } 3816 } 3817 for (Value *V : VL) { 3818 Instruction *I = cast<Instruction>(V); 3819 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3820 InstructionCost Cost = TTI->getInstructionCost(I, CostKind); 3821 assert(Cost.isValid() && "Invalid instruction cost"); 3822 ScalarCost += *(Cost.getValue()); 3823 } 3824 // VecCost is equal to sum of the cost of creating 2 vectors 3825 // and the cost of creating shuffle. 3826 int VecCost = 0; 3827 if (Instruction::isBinaryOp(E->getOpcode())) { 3828 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3829 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3830 CostKind); 3831 } else { 3832 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3833 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3834 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3835 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3836 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3837 TTI::CastContextHint::None, CostKind); 3838 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3839 TTI::CastContextHint::None, CostKind); 3840 } 3841 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3842 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3843 return ReuseShuffleCost + VecCost - ScalarCost; 3844 } 3845 default: 3846 llvm_unreachable("Unknown instruction"); 3847 } 3848 } 3849 3850 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3851 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3852 << VectorizableTree.size() << " is fully vectorizable .\n"); 3853 3854 // We only handle trees of heights 1 and 2. 3855 if (VectorizableTree.size() == 1 && 3856 VectorizableTree[0]->State == TreeEntry::Vectorize) 3857 return true; 3858 3859 if (VectorizableTree.size() != 2) 3860 return false; 3861 3862 // Handle splat and all-constants stores. 3863 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3864 (allConstant(VectorizableTree[1]->Scalars) || 3865 isSplat(VectorizableTree[1]->Scalars))) 3866 return true; 3867 3868 // Gathering cost would be too much for tiny trees. 3869 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3870 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3871 return false; 3872 3873 return true; 3874 } 3875 3876 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3877 TargetTransformInfo *TTI) { 3878 // Look past the root to find a source value. Arbitrarily follow the 3879 // path through operand 0 of any 'or'. Also, peek through optional 3880 // shift-left-by-multiple-of-8-bits. 3881 Value *ZextLoad = Root; 3882 const APInt *ShAmtC; 3883 while (!isa<ConstantExpr>(ZextLoad) && 3884 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3885 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3886 ShAmtC->urem(8) == 0))) 3887 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3888 3889 // Check if the input is an extended load of the required or/shift expression. 3890 Value *LoadPtr; 3891 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3892 return false; 3893 3894 // Require that the total load bit width is a legal integer type. 3895 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3896 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3897 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3898 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3899 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3900 return false; 3901 3902 // Everything matched - assume that we can fold the whole sequence using 3903 // load combining. 3904 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3905 << *(cast<Instruction>(Root)) << "\n"); 3906 3907 return true; 3908 } 3909 3910 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3911 if (RdxOpcode != Instruction::Or) 3912 return false; 3913 3914 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3915 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3916 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3917 } 3918 3919 bool BoUpSLP::isLoadCombineCandidate() const { 3920 // Peek through a final sequence of stores and check if all operations are 3921 // likely to be load-combined. 3922 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3923 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3924 Value *X; 3925 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3926 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3927 return false; 3928 } 3929 return true; 3930 } 3931 3932 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3933 // We can vectorize the tree if its size is greater than or equal to the 3934 // minimum size specified by the MinTreeSize command line option. 3935 if (VectorizableTree.size() >= MinTreeSize) 3936 return false; 3937 3938 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3939 // can vectorize it if we can prove it fully vectorizable. 3940 if (isFullyVectorizableTinyTree()) 3941 return false; 3942 3943 assert(VectorizableTree.empty() 3944 ? ExternalUses.empty() 3945 : true && "We shouldn't have any external users"); 3946 3947 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3948 // vectorizable. 3949 return true; 3950 } 3951 3952 int BoUpSLP::getSpillCost() const { 3953 // Walk from the bottom of the tree to the top, tracking which values are 3954 // live. When we see a call instruction that is not part of our tree, 3955 // query TTI to see if there is a cost to keeping values live over it 3956 // (for example, if spills and fills are required). 3957 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3958 int Cost = 0; 3959 3960 SmallPtrSet<Instruction*, 4> LiveValues; 3961 Instruction *PrevInst = nullptr; 3962 3963 // The entries in VectorizableTree are not necessarily ordered by their 3964 // position in basic blocks. Collect them and order them by dominance so later 3965 // instructions are guaranteed to be visited first. For instructions in 3966 // different basic blocks, we only scan to the beginning of the block, so 3967 // their order does not matter, as long as all instructions in a basic block 3968 // are grouped together. Using dominance ensures a deterministic order. 3969 SmallVector<Instruction *, 16> OrderedScalars; 3970 for (const auto &TEPtr : VectorizableTree) { 3971 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3972 if (!Inst) 3973 continue; 3974 OrderedScalars.push_back(Inst); 3975 } 3976 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3977 return DT->dominates(B, A); 3978 }); 3979 3980 for (Instruction *Inst : OrderedScalars) { 3981 if (!PrevInst) { 3982 PrevInst = Inst; 3983 continue; 3984 } 3985 3986 // Update LiveValues. 3987 LiveValues.erase(PrevInst); 3988 for (auto &J : PrevInst->operands()) { 3989 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3990 LiveValues.insert(cast<Instruction>(&*J)); 3991 } 3992 3993 LLVM_DEBUG({ 3994 dbgs() << "SLP: #LV: " << LiveValues.size(); 3995 for (auto *X : LiveValues) 3996 dbgs() << " " << X->getName(); 3997 dbgs() << ", Looking at "; 3998 Inst->dump(); 3999 }); 4000 4001 // Now find the sequence of instructions between PrevInst and Inst. 4002 unsigned NumCalls = 0; 4003 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4004 PrevInstIt = 4005 PrevInst->getIterator().getReverse(); 4006 while (InstIt != PrevInstIt) { 4007 if (PrevInstIt == PrevInst->getParent()->rend()) { 4008 PrevInstIt = Inst->getParent()->rbegin(); 4009 continue; 4010 } 4011 4012 // Debug information does not impact spill cost. 4013 if ((isa<CallInst>(&*PrevInstIt) && 4014 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4015 &*PrevInstIt != PrevInst) 4016 NumCalls++; 4017 4018 ++PrevInstIt; 4019 } 4020 4021 if (NumCalls) { 4022 SmallVector<Type*, 4> V; 4023 for (auto *II : LiveValues) 4024 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4025 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4026 } 4027 4028 PrevInst = Inst; 4029 } 4030 4031 return Cost; 4032 } 4033 4034 int BoUpSLP::getTreeCost() { 4035 int Cost = 0; 4036 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4037 << VectorizableTree.size() << ".\n"); 4038 4039 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4040 4041 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4042 TreeEntry &TE = *VectorizableTree[I].get(); 4043 4044 // We create duplicate tree entries for gather sequences that have multiple 4045 // uses. However, we should not compute the cost of duplicate sequences. 4046 // For example, if we have a build vector (i.e., insertelement sequence) 4047 // that is used by more than one vector instruction, we only need to 4048 // compute the cost of the insertelement instructions once. The redundant 4049 // instructions will be eliminated by CSE. 4050 // 4051 // We should consider not creating duplicate tree entries for gather 4052 // sequences, and instead add additional edges to the tree representing 4053 // their uses. Since such an approach results in fewer total entries, 4054 // existing heuristics based on tree size may yield different results. 4055 // 4056 if (TE.State == TreeEntry::NeedToGather && 4057 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4058 VectorizableTree.end(), 4059 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4060 return EntryPtr->State == TreeEntry::NeedToGather && 4061 EntryPtr->isSame(TE.Scalars); 4062 })) 4063 continue; 4064 4065 int C = getEntryCost(&TE); 4066 Cost += C; 4067 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4068 << " for bundle that starts with " << *TE.Scalars[0] 4069 << ".\n" 4070 << "SLP: Current total cost = " << Cost << "\n"); 4071 } 4072 4073 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4074 int ExtractCost = 0; 4075 for (ExternalUser &EU : ExternalUses) { 4076 // We only add extract cost once for the same scalar. 4077 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4078 continue; 4079 4080 // Uses by ephemeral values are free (because the ephemeral value will be 4081 // removed prior to code generation, and so the extraction will be 4082 // removed as well). 4083 if (EphValues.count(EU.User)) 4084 continue; 4085 4086 // If we plan to rewrite the tree in a smaller type, we will need to sign 4087 // extend the extracted value back to the original type. Here, we account 4088 // for the extract and the added cost of the sign extend if needed. 4089 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4090 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4091 if (MinBWs.count(ScalarRoot)) { 4092 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4093 auto Extend = 4094 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4095 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4096 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4097 VecTy, EU.Lane); 4098 } else { 4099 ExtractCost += 4100 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4101 } 4102 } 4103 4104 int SpillCost = getSpillCost(); 4105 Cost += SpillCost + ExtractCost; 4106 4107 #ifndef NDEBUG 4108 SmallString<256> Str; 4109 { 4110 raw_svector_ostream OS(Str); 4111 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4112 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4113 << "SLP: Total Cost = " << Cost << ".\n"; 4114 } 4115 LLVM_DEBUG(dbgs() << Str); 4116 if (ViewSLPTree) 4117 ViewGraph(this, "SLP" + F->getName(), false, Str); 4118 #endif 4119 4120 return Cost; 4121 } 4122 4123 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 4124 const DenseSet<unsigned> &ShuffledIndices) const { 4125 unsigned NumElts = Ty->getNumElements(); 4126 APInt DemandedElts = APInt::getNullValue(NumElts); 4127 for (unsigned I = 0; I < NumElts; ++I) 4128 if (!ShuffledIndices.count(I)) 4129 DemandedElts.setBit(I); 4130 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4131 /*Extract*/ false); 4132 if (!ShuffledIndices.empty()) 4133 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4134 return Cost; 4135 } 4136 4137 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4138 // Find the type of the operands in VL. 4139 Type *ScalarTy = VL[0]->getType(); 4140 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4141 ScalarTy = SI->getValueOperand()->getType(); 4142 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4143 // Find the cost of inserting/extracting values from the vector. 4144 // Check if the same elements are inserted several times and count them as 4145 // shuffle candidates. 4146 DenseSet<unsigned> ShuffledElements; 4147 DenseSet<Value *> UniqueElements; 4148 // Iterate in reverse order to consider insert elements with the high cost. 4149 for (unsigned I = VL.size(); I > 0; --I) { 4150 unsigned Idx = I - 1; 4151 if (!UniqueElements.insert(VL[Idx]).second) 4152 ShuffledElements.insert(Idx); 4153 } 4154 return getGatherCost(VecTy, ShuffledElements); 4155 } 4156 4157 // Perform operand reordering on the instructions in VL and return the reordered 4158 // operands in Left and Right. 4159 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4160 SmallVectorImpl<Value *> &Left, 4161 SmallVectorImpl<Value *> &Right, 4162 const DataLayout &DL, 4163 ScalarEvolution &SE, 4164 const BoUpSLP &R) { 4165 if (VL.empty()) 4166 return; 4167 VLOperands Ops(VL, DL, SE, R); 4168 // Reorder the operands in place. 4169 Ops.reorder(); 4170 Left = Ops.getVL(0); 4171 Right = Ops.getVL(1); 4172 } 4173 4174 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4175 // Get the basic block this bundle is in. All instructions in the bundle 4176 // should be in this block. 4177 auto *Front = E->getMainOp(); 4178 auto *BB = Front->getParent(); 4179 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4180 [=](Value *V) -> bool { 4181 auto *I = cast<Instruction>(V); 4182 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4183 })); 4184 4185 // The last instruction in the bundle in program order. 4186 Instruction *LastInst = nullptr; 4187 4188 // Find the last instruction. The common case should be that BB has been 4189 // scheduled, and the last instruction is VL.back(). So we start with 4190 // VL.back() and iterate over schedule data until we reach the end of the 4191 // bundle. The end of the bundle is marked by null ScheduleData. 4192 if (BlocksSchedules.count(BB)) { 4193 auto *Bundle = 4194 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4195 if (Bundle && Bundle->isPartOfBundle()) 4196 for (; Bundle; Bundle = Bundle->NextInBundle) 4197 if (Bundle->OpValue == Bundle->Inst) 4198 LastInst = Bundle->Inst; 4199 } 4200 4201 // LastInst can still be null at this point if there's either not an entry 4202 // for BB in BlocksSchedules or there's no ScheduleData available for 4203 // VL.back(). This can be the case if buildTree_rec aborts for various 4204 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4205 // size is reached, etc.). ScheduleData is initialized in the scheduling 4206 // "dry-run". 4207 // 4208 // If this happens, we can still find the last instruction by brute force. We 4209 // iterate forwards from Front (inclusive) until we either see all 4210 // instructions in the bundle or reach the end of the block. If Front is the 4211 // last instruction in program order, LastInst will be set to Front, and we 4212 // will visit all the remaining instructions in the block. 4213 // 4214 // One of the reasons we exit early from buildTree_rec is to place an upper 4215 // bound on compile-time. Thus, taking an additional compile-time hit here is 4216 // not ideal. However, this should be exceedingly rare since it requires that 4217 // we both exit early from buildTree_rec and that the bundle be out-of-order 4218 // (causing us to iterate all the way to the end of the block). 4219 if (!LastInst) { 4220 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4221 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4222 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4223 LastInst = &I; 4224 if (Bundle.empty()) 4225 break; 4226 } 4227 } 4228 assert(LastInst && "Failed to find last instruction in bundle"); 4229 4230 // Set the insertion point after the last instruction in the bundle. Set the 4231 // debug location to Front. 4232 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4233 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4234 } 4235 4236 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4237 Value *Val0 = 4238 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4239 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4240 Value *Vec = UndefValue::get(VecTy); 4241 unsigned InsIndex = 0; 4242 for (Value *Val : VL) { 4243 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4244 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4245 if (!InsElt) 4246 continue; 4247 GatherSeq.insert(InsElt); 4248 CSEBlocks.insert(InsElt->getParent()); 4249 // Add to our 'need-to-extract' list. 4250 if (TreeEntry *Entry = getTreeEntry(Val)) { 4251 // Find which lane we need to extract. 4252 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4253 find(Entry->Scalars, Val)); 4254 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4255 if (!Entry->ReuseShuffleIndices.empty()) { 4256 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4257 find(Entry->ReuseShuffleIndices, FoundLane)); 4258 } 4259 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4260 } 4261 } 4262 4263 return Vec; 4264 } 4265 4266 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4267 InstructionsState S = getSameOpcode(VL); 4268 if (S.getOpcode()) { 4269 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4270 if (E->isSame(VL)) { 4271 Value *V = vectorizeTree(E); 4272 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4273 // We need to get the vectorized value but without shuffle. 4274 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4275 V = SV->getOperand(0); 4276 } else { 4277 // Reshuffle to get only unique values. 4278 SmallVector<int, 4> UniqueIdxs; 4279 SmallSet<int, 4> UsedIdxs; 4280 for (int Idx : E->ReuseShuffleIndices) 4281 if (UsedIdxs.insert(Idx).second) 4282 UniqueIdxs.emplace_back(Idx); 4283 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4284 } 4285 } 4286 return V; 4287 } 4288 } 4289 } 4290 4291 // Check that every instruction appears once in this bundle. 4292 SmallVector<int, 4> ReuseShuffleIndicies; 4293 SmallVector<Value *, 4> UniqueValues; 4294 if (VL.size() > 2) { 4295 DenseMap<Value *, unsigned> UniquePositions; 4296 for (Value *V : VL) { 4297 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4298 ReuseShuffleIndicies.emplace_back(Res.first->second); 4299 if (Res.second || isa<Constant>(V)) 4300 UniqueValues.emplace_back(V); 4301 } 4302 // Do not shuffle single element or if number of unique values is not power 4303 // of 2. 4304 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4305 !llvm::isPowerOf2_32(UniqueValues.size())) 4306 ReuseShuffleIndicies.clear(); 4307 else 4308 VL = UniqueValues; 4309 } 4310 4311 Value *Vec = gather(VL); 4312 if (!ReuseShuffleIndicies.empty()) { 4313 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4314 if (auto *I = dyn_cast<Instruction>(Vec)) { 4315 GatherSeq.insert(I); 4316 CSEBlocks.insert(I->getParent()); 4317 } 4318 } 4319 return Vec; 4320 } 4321 4322 namespace { 4323 /// Merges shuffle masks and emits final shuffle instruction, if required. 4324 class ShuffleInstructionBuilder { 4325 IRBuilderBase &Builder; 4326 bool IsFinalized = false; 4327 SmallVector<int, 4> Mask; 4328 4329 public: 4330 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4331 4332 /// Adds a mask, inverting it before applying. 4333 void addInversedMask(ArrayRef<unsigned> SubMask) { 4334 if (SubMask.empty()) 4335 return; 4336 SmallVector<int, 4> NewMask; 4337 inversePermutation(SubMask, NewMask); 4338 addMask(NewMask); 4339 } 4340 4341 /// Functions adds masks, merging them into single one. 4342 void addMask(ArrayRef<unsigned> SubMask) { 4343 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4344 addMask(NewMask); 4345 } 4346 4347 void addMask(ArrayRef<int> SubMask) { 4348 if (SubMask.empty()) 4349 return; 4350 if (Mask.empty()) { 4351 Mask.append(SubMask.begin(), SubMask.end()); 4352 return; 4353 } 4354 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4355 int TermValue = std::min(Mask.size(), SubMask.size()); 4356 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4357 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4358 NewMask[I] = E; 4359 continue; 4360 } 4361 NewMask[I] = Mask[SubMask[I]]; 4362 } 4363 Mask.swap(NewMask); 4364 } 4365 4366 Value *finalize(Value *V) { 4367 IsFinalized = true; 4368 if (Mask.empty()) 4369 return V; 4370 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4371 } 4372 4373 ~ShuffleInstructionBuilder() { 4374 assert((IsFinalized || Mask.empty()) && 4375 "Must be finalized construction of the shuffles."); 4376 } 4377 }; 4378 } // namespace 4379 4380 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4381 IRBuilder<>::InsertPointGuard Guard(Builder); 4382 4383 if (E->VectorizedValue) { 4384 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4385 return E->VectorizedValue; 4386 } 4387 4388 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4389 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4390 if (E->State == TreeEntry::NeedToGather) { 4391 setInsertPointAfterBundle(E); 4392 Value *Vec = gather(E->Scalars); 4393 if (NeedToShuffleReuses) { 4394 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4395 Vec = ShuffleBuilder.finalize(Vec); 4396 if (auto *I = dyn_cast<Instruction>(Vec)) { 4397 GatherSeq.insert(I); 4398 CSEBlocks.insert(I->getParent()); 4399 } 4400 } 4401 E->VectorizedValue = Vec; 4402 return Vec; 4403 } 4404 4405 assert((E->State == TreeEntry::Vectorize || 4406 E->State == TreeEntry::ScatterVectorize) && 4407 "Unhandled state"); 4408 unsigned ShuffleOrOp = 4409 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4410 Instruction *VL0 = E->getMainOp(); 4411 Type *ScalarTy = VL0->getType(); 4412 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4413 ScalarTy = Store->getValueOperand()->getType(); 4414 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4415 switch (ShuffleOrOp) { 4416 case Instruction::PHI: { 4417 auto *PH = cast<PHINode>(VL0); 4418 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4419 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4420 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4421 Value *V = NewPhi; 4422 if (NeedToShuffleReuses) 4423 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4424 4425 E->VectorizedValue = V; 4426 4427 // PHINodes may have multiple entries from the same block. We want to 4428 // visit every block once. 4429 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4430 4431 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4432 ValueList Operands; 4433 BasicBlock *IBB = PH->getIncomingBlock(i); 4434 4435 if (!VisitedBBs.insert(IBB).second) { 4436 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4437 continue; 4438 } 4439 4440 Builder.SetInsertPoint(IBB->getTerminator()); 4441 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4442 Value *Vec = vectorizeTree(E->getOperand(i)); 4443 NewPhi->addIncoming(Vec, IBB); 4444 } 4445 4446 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4447 "Invalid number of incoming values"); 4448 return V; 4449 } 4450 4451 case Instruction::ExtractElement: { 4452 Value *V = E->getSingleOperand(0); 4453 Builder.SetInsertPoint(VL0); 4454 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4455 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4456 V = ShuffleBuilder.finalize(V); 4457 E->VectorizedValue = V; 4458 return V; 4459 } 4460 case Instruction::ExtractValue: { 4461 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4462 Builder.SetInsertPoint(LI); 4463 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4464 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4465 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4466 Value *NewV = propagateMetadata(V, E->Scalars); 4467 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4468 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4469 NewV = ShuffleBuilder.finalize(NewV); 4470 E->VectorizedValue = NewV; 4471 return NewV; 4472 } 4473 case Instruction::ZExt: 4474 case Instruction::SExt: 4475 case Instruction::FPToUI: 4476 case Instruction::FPToSI: 4477 case Instruction::FPExt: 4478 case Instruction::PtrToInt: 4479 case Instruction::IntToPtr: 4480 case Instruction::SIToFP: 4481 case Instruction::UIToFP: 4482 case Instruction::Trunc: 4483 case Instruction::FPTrunc: 4484 case Instruction::BitCast: { 4485 setInsertPointAfterBundle(E); 4486 4487 Value *InVec = vectorizeTree(E->getOperand(0)); 4488 4489 if (E->VectorizedValue) { 4490 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4491 return E->VectorizedValue; 4492 } 4493 4494 auto *CI = cast<CastInst>(VL0); 4495 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4496 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4497 V = ShuffleBuilder.finalize(V); 4498 4499 E->VectorizedValue = V; 4500 ++NumVectorInstructions; 4501 return V; 4502 } 4503 case Instruction::FCmp: 4504 case Instruction::ICmp: { 4505 setInsertPointAfterBundle(E); 4506 4507 Value *L = vectorizeTree(E->getOperand(0)); 4508 Value *R = vectorizeTree(E->getOperand(1)); 4509 4510 if (E->VectorizedValue) { 4511 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4512 return E->VectorizedValue; 4513 } 4514 4515 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4516 Value *V = Builder.CreateCmp(P0, L, R); 4517 propagateIRFlags(V, E->Scalars, VL0); 4518 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4519 V = ShuffleBuilder.finalize(V); 4520 4521 E->VectorizedValue = V; 4522 ++NumVectorInstructions; 4523 return V; 4524 } 4525 case Instruction::Select: { 4526 setInsertPointAfterBundle(E); 4527 4528 Value *Cond = vectorizeTree(E->getOperand(0)); 4529 Value *True = vectorizeTree(E->getOperand(1)); 4530 Value *False = vectorizeTree(E->getOperand(2)); 4531 4532 if (E->VectorizedValue) { 4533 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4534 return E->VectorizedValue; 4535 } 4536 4537 Value *V = Builder.CreateSelect(Cond, True, False); 4538 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4539 V = ShuffleBuilder.finalize(V); 4540 4541 E->VectorizedValue = V; 4542 ++NumVectorInstructions; 4543 return V; 4544 } 4545 case Instruction::FNeg: { 4546 setInsertPointAfterBundle(E); 4547 4548 Value *Op = vectorizeTree(E->getOperand(0)); 4549 4550 if (E->VectorizedValue) { 4551 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4552 return E->VectorizedValue; 4553 } 4554 4555 Value *V = Builder.CreateUnOp( 4556 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4557 propagateIRFlags(V, E->Scalars, VL0); 4558 if (auto *I = dyn_cast<Instruction>(V)) 4559 V = propagateMetadata(I, E->Scalars); 4560 4561 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4562 V = ShuffleBuilder.finalize(V); 4563 4564 E->VectorizedValue = V; 4565 ++NumVectorInstructions; 4566 4567 return V; 4568 } 4569 case Instruction::Add: 4570 case Instruction::FAdd: 4571 case Instruction::Sub: 4572 case Instruction::FSub: 4573 case Instruction::Mul: 4574 case Instruction::FMul: 4575 case Instruction::UDiv: 4576 case Instruction::SDiv: 4577 case Instruction::FDiv: 4578 case Instruction::URem: 4579 case Instruction::SRem: 4580 case Instruction::FRem: 4581 case Instruction::Shl: 4582 case Instruction::LShr: 4583 case Instruction::AShr: 4584 case Instruction::And: 4585 case Instruction::Or: 4586 case Instruction::Xor: { 4587 setInsertPointAfterBundle(E); 4588 4589 Value *LHS = vectorizeTree(E->getOperand(0)); 4590 Value *RHS = vectorizeTree(E->getOperand(1)); 4591 4592 if (E->VectorizedValue) { 4593 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4594 return E->VectorizedValue; 4595 } 4596 4597 Value *V = Builder.CreateBinOp( 4598 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4599 RHS); 4600 propagateIRFlags(V, E->Scalars, VL0); 4601 if (auto *I = dyn_cast<Instruction>(V)) 4602 V = propagateMetadata(I, E->Scalars); 4603 4604 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4605 V = ShuffleBuilder.finalize(V); 4606 4607 E->VectorizedValue = V; 4608 ++NumVectorInstructions; 4609 4610 return V; 4611 } 4612 case Instruction::Load: { 4613 // Loads are inserted at the head of the tree because we don't want to 4614 // sink them all the way down past store instructions. 4615 bool IsReorder = E->updateStateIfReorder(); 4616 if (IsReorder) 4617 VL0 = E->getMainOp(); 4618 setInsertPointAfterBundle(E); 4619 4620 LoadInst *LI = cast<LoadInst>(VL0); 4621 Instruction *NewLI; 4622 unsigned AS = LI->getPointerAddressSpace(); 4623 Value *PO = LI->getPointerOperand(); 4624 if (E->State == TreeEntry::Vectorize) { 4625 4626 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4627 4628 // The pointer operand uses an in-tree scalar so we add the new BitCast 4629 // to ExternalUses list to make sure that an extract will be generated 4630 // in the future. 4631 if (getTreeEntry(PO)) 4632 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4633 4634 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4635 } else { 4636 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4637 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4638 // Use the minimum alignment of the gathered loads. 4639 Align CommonAlignment = LI->getAlign(); 4640 for (Value *V : E->Scalars) 4641 CommonAlignment = 4642 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4643 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4644 } 4645 Value *V = propagateMetadata(NewLI, E->Scalars); 4646 4647 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4648 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4649 V = ShuffleBuilder.finalize(V); 4650 E->VectorizedValue = V; 4651 ++NumVectorInstructions; 4652 return V; 4653 } 4654 case Instruction::Store: { 4655 bool IsReorder = !E->ReorderIndices.empty(); 4656 auto *SI = cast<StoreInst>( 4657 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4658 unsigned AS = SI->getPointerAddressSpace(); 4659 4660 setInsertPointAfterBundle(E); 4661 4662 Value *VecValue = vectorizeTree(E->getOperand(0)); 4663 ShuffleBuilder.addMask(E->ReorderIndices); 4664 VecValue = ShuffleBuilder.finalize(VecValue); 4665 4666 Value *ScalarPtr = SI->getPointerOperand(); 4667 Value *VecPtr = Builder.CreateBitCast( 4668 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4669 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4670 SI->getAlign()); 4671 4672 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4673 // ExternalUses to make sure that an extract will be generated in the 4674 // future. 4675 if (getTreeEntry(ScalarPtr)) 4676 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4677 4678 Value *V = propagateMetadata(ST, E->Scalars); 4679 4680 E->VectorizedValue = V; 4681 ++NumVectorInstructions; 4682 return V; 4683 } 4684 case Instruction::GetElementPtr: { 4685 setInsertPointAfterBundle(E); 4686 4687 Value *Op0 = vectorizeTree(E->getOperand(0)); 4688 4689 std::vector<Value *> OpVecs; 4690 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4691 ++j) { 4692 ValueList &VL = E->getOperand(j); 4693 // Need to cast all elements to the same type before vectorization to 4694 // avoid crash. 4695 Type *VL0Ty = VL0->getOperand(j)->getType(); 4696 Type *Ty = llvm::all_of( 4697 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4698 ? VL0Ty 4699 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4700 ->getPointerOperandType() 4701 ->getScalarType()); 4702 for (Value *&V : VL) { 4703 auto *CI = cast<ConstantInt>(V); 4704 V = ConstantExpr::getIntegerCast(CI, Ty, 4705 CI->getValue().isSignBitSet()); 4706 } 4707 Value *OpVec = vectorizeTree(VL); 4708 OpVecs.push_back(OpVec); 4709 } 4710 4711 Value *V = Builder.CreateGEP( 4712 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4713 if (Instruction *I = dyn_cast<Instruction>(V)) 4714 V = propagateMetadata(I, E->Scalars); 4715 4716 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4717 V = ShuffleBuilder.finalize(V); 4718 4719 E->VectorizedValue = V; 4720 ++NumVectorInstructions; 4721 4722 return V; 4723 } 4724 case Instruction::Call: { 4725 CallInst *CI = cast<CallInst>(VL0); 4726 setInsertPointAfterBundle(E); 4727 4728 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4729 if (Function *FI = CI->getCalledFunction()) 4730 IID = FI->getIntrinsicID(); 4731 4732 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4733 4734 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4735 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4736 VecCallCosts.first <= VecCallCosts.second; 4737 4738 Value *ScalarArg = nullptr; 4739 std::vector<Value *> OpVecs; 4740 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4741 ValueList OpVL; 4742 // Some intrinsics have scalar arguments. This argument should not be 4743 // vectorized. 4744 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4745 CallInst *CEI = cast<CallInst>(VL0); 4746 ScalarArg = CEI->getArgOperand(j); 4747 OpVecs.push_back(CEI->getArgOperand(j)); 4748 continue; 4749 } 4750 4751 Value *OpVec = vectorizeTree(E->getOperand(j)); 4752 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4753 OpVecs.push_back(OpVec); 4754 } 4755 4756 Function *CF; 4757 if (!UseIntrinsic) { 4758 VFShape Shape = 4759 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4760 VecTy->getNumElements())), 4761 false /*HasGlobalPred*/); 4762 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4763 } else { 4764 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4765 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4766 } 4767 4768 SmallVector<OperandBundleDef, 1> OpBundles; 4769 CI->getOperandBundlesAsDefs(OpBundles); 4770 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4771 4772 // The scalar argument uses an in-tree scalar so we add the new vectorized 4773 // call to ExternalUses list to make sure that an extract will be 4774 // generated in the future. 4775 if (ScalarArg && getTreeEntry(ScalarArg)) 4776 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4777 4778 propagateIRFlags(V, E->Scalars, VL0); 4779 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4780 V = ShuffleBuilder.finalize(V); 4781 4782 E->VectorizedValue = V; 4783 ++NumVectorInstructions; 4784 return V; 4785 } 4786 case Instruction::ShuffleVector: { 4787 assert(E->isAltShuffle() && 4788 ((Instruction::isBinaryOp(E->getOpcode()) && 4789 Instruction::isBinaryOp(E->getAltOpcode())) || 4790 (Instruction::isCast(E->getOpcode()) && 4791 Instruction::isCast(E->getAltOpcode()))) && 4792 "Invalid Shuffle Vector Operand"); 4793 4794 Value *LHS = nullptr, *RHS = nullptr; 4795 if (Instruction::isBinaryOp(E->getOpcode())) { 4796 setInsertPointAfterBundle(E); 4797 LHS = vectorizeTree(E->getOperand(0)); 4798 RHS = vectorizeTree(E->getOperand(1)); 4799 } else { 4800 setInsertPointAfterBundle(E); 4801 LHS = vectorizeTree(E->getOperand(0)); 4802 } 4803 4804 if (E->VectorizedValue) { 4805 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4806 return E->VectorizedValue; 4807 } 4808 4809 Value *V0, *V1; 4810 if (Instruction::isBinaryOp(E->getOpcode())) { 4811 V0 = Builder.CreateBinOp( 4812 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4813 V1 = Builder.CreateBinOp( 4814 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4815 } else { 4816 V0 = Builder.CreateCast( 4817 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4818 V1 = Builder.CreateCast( 4819 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4820 } 4821 4822 // Create shuffle to take alternate operations from the vector. 4823 // Also, gather up main and alt scalar ops to propagate IR flags to 4824 // each vector operation. 4825 ValueList OpScalars, AltScalars; 4826 unsigned e = E->Scalars.size(); 4827 SmallVector<int, 8> Mask(e); 4828 for (unsigned i = 0; i < e; ++i) { 4829 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4830 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4831 if (OpInst->getOpcode() == E->getAltOpcode()) { 4832 Mask[i] = e + i; 4833 AltScalars.push_back(E->Scalars[i]); 4834 } else { 4835 Mask[i] = i; 4836 OpScalars.push_back(E->Scalars[i]); 4837 } 4838 } 4839 4840 propagateIRFlags(V0, OpScalars); 4841 propagateIRFlags(V1, AltScalars); 4842 4843 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4844 if (Instruction *I = dyn_cast<Instruction>(V)) 4845 V = propagateMetadata(I, E->Scalars); 4846 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4847 V = ShuffleBuilder.finalize(V); 4848 4849 E->VectorizedValue = V; 4850 ++NumVectorInstructions; 4851 4852 return V; 4853 } 4854 default: 4855 llvm_unreachable("unknown inst"); 4856 } 4857 return nullptr; 4858 } 4859 4860 Value *BoUpSLP::vectorizeTree() { 4861 ExtraValueToDebugLocsMap ExternallyUsedValues; 4862 return vectorizeTree(ExternallyUsedValues); 4863 } 4864 4865 Value * 4866 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4867 // All blocks must be scheduled before any instructions are inserted. 4868 for (auto &BSIter : BlocksSchedules) { 4869 scheduleBlock(BSIter.second.get()); 4870 } 4871 4872 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4873 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4874 4875 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4876 // vectorized root. InstCombine will then rewrite the entire expression. We 4877 // sign extend the extracted values below. 4878 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4879 if (MinBWs.count(ScalarRoot)) { 4880 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4881 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4882 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4883 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4884 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4885 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4886 VectorizableTree[0]->VectorizedValue = Trunc; 4887 } 4888 4889 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4890 << " values .\n"); 4891 4892 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4893 // specified by ScalarType. 4894 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4895 if (!MinBWs.count(ScalarRoot)) 4896 return Ex; 4897 if (MinBWs[ScalarRoot].second) 4898 return Builder.CreateSExt(Ex, ScalarType); 4899 return Builder.CreateZExt(Ex, ScalarType); 4900 }; 4901 4902 // Extract all of the elements with the external uses. 4903 for (const auto &ExternalUse : ExternalUses) { 4904 Value *Scalar = ExternalUse.Scalar; 4905 llvm::User *User = ExternalUse.User; 4906 4907 // Skip users that we already RAUW. This happens when one instruction 4908 // has multiple uses of the same value. 4909 if (User && !is_contained(Scalar->users(), User)) 4910 continue; 4911 TreeEntry *E = getTreeEntry(Scalar); 4912 assert(E && "Invalid scalar"); 4913 assert(E->State != TreeEntry::NeedToGather && 4914 "Extracting from a gather list"); 4915 4916 Value *Vec = E->VectorizedValue; 4917 assert(Vec && "Can't find vectorizable value"); 4918 4919 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4920 // If User == nullptr, the Scalar is used as extra arg. Generate 4921 // ExtractElement instruction and update the record for this scalar in 4922 // ExternallyUsedValues. 4923 if (!User) { 4924 assert(ExternallyUsedValues.count(Scalar) && 4925 "Scalar with nullptr as an external user must be registered in " 4926 "ExternallyUsedValues map"); 4927 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4928 Builder.SetInsertPoint(VecI->getParent(), 4929 std::next(VecI->getIterator())); 4930 } else { 4931 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4932 } 4933 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4934 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4935 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4936 auto &Locs = ExternallyUsedValues[Scalar]; 4937 ExternallyUsedValues.insert({Ex, Locs}); 4938 ExternallyUsedValues.erase(Scalar); 4939 // Required to update internally referenced instructions. 4940 Scalar->replaceAllUsesWith(Ex); 4941 continue; 4942 } 4943 4944 // Generate extracts for out-of-tree users. 4945 // Find the insertion point for the extractelement lane. 4946 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4947 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4948 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4949 if (PH->getIncomingValue(i) == Scalar) { 4950 Instruction *IncomingTerminator = 4951 PH->getIncomingBlock(i)->getTerminator(); 4952 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4953 Builder.SetInsertPoint(VecI->getParent(), 4954 std::next(VecI->getIterator())); 4955 } else { 4956 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4957 } 4958 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4959 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4960 CSEBlocks.insert(PH->getIncomingBlock(i)); 4961 PH->setOperand(i, Ex); 4962 } 4963 } 4964 } else { 4965 Builder.SetInsertPoint(cast<Instruction>(User)); 4966 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4967 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4968 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4969 User->replaceUsesOfWith(Scalar, Ex); 4970 } 4971 } else { 4972 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4973 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4974 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4975 CSEBlocks.insert(&F->getEntryBlock()); 4976 User->replaceUsesOfWith(Scalar, Ex); 4977 } 4978 4979 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4980 } 4981 4982 // For each vectorized value: 4983 for (auto &TEPtr : VectorizableTree) { 4984 TreeEntry *Entry = TEPtr.get(); 4985 4986 // No need to handle users of gathered values. 4987 if (Entry->State == TreeEntry::NeedToGather) 4988 continue; 4989 4990 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4991 4992 // For each lane: 4993 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4994 Value *Scalar = Entry->Scalars[Lane]; 4995 4996 #ifndef NDEBUG 4997 Type *Ty = Scalar->getType(); 4998 if (!Ty->isVoidTy()) { 4999 for (User *U : Scalar->users()) { 5000 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5001 5002 // It is legal to delete users in the ignorelist. 5003 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5004 "Deleting out-of-tree value"); 5005 } 5006 } 5007 #endif 5008 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5009 eraseInstruction(cast<Instruction>(Scalar)); 5010 } 5011 } 5012 5013 Builder.ClearInsertionPoint(); 5014 InstrElementSize.clear(); 5015 5016 return VectorizableTree[0]->VectorizedValue; 5017 } 5018 5019 void BoUpSLP::optimizeGatherSequence() { 5020 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5021 << " gather sequences instructions.\n"); 5022 // LICM InsertElementInst sequences. 5023 for (Instruction *I : GatherSeq) { 5024 if (isDeleted(I)) 5025 continue; 5026 5027 // Check if this block is inside a loop. 5028 Loop *L = LI->getLoopFor(I->getParent()); 5029 if (!L) 5030 continue; 5031 5032 // Check if it has a preheader. 5033 BasicBlock *PreHeader = L->getLoopPreheader(); 5034 if (!PreHeader) 5035 continue; 5036 5037 // If the vector or the element that we insert into it are 5038 // instructions that are defined in this basic block then we can't 5039 // hoist this instruction. 5040 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5041 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5042 if (Op0 && L->contains(Op0)) 5043 continue; 5044 if (Op1 && L->contains(Op1)) 5045 continue; 5046 5047 // We can hoist this instruction. Move it to the pre-header. 5048 I->moveBefore(PreHeader->getTerminator()); 5049 } 5050 5051 // Make a list of all reachable blocks in our CSE queue. 5052 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5053 CSEWorkList.reserve(CSEBlocks.size()); 5054 for (BasicBlock *BB : CSEBlocks) 5055 if (DomTreeNode *N = DT->getNode(BB)) { 5056 assert(DT->isReachableFromEntry(N)); 5057 CSEWorkList.push_back(N); 5058 } 5059 5060 // Sort blocks by domination. This ensures we visit a block after all blocks 5061 // dominating it are visited. 5062 llvm::stable_sort(CSEWorkList, 5063 [this](const DomTreeNode *A, const DomTreeNode *B) { 5064 return DT->properlyDominates(A, B); 5065 }); 5066 5067 // Perform O(N^2) search over the gather sequences and merge identical 5068 // instructions. TODO: We can further optimize this scan if we split the 5069 // instructions into different buckets based on the insert lane. 5070 SmallVector<Instruction *, 16> Visited; 5071 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5072 assert(*I && 5073 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5074 "Worklist not sorted properly!"); 5075 BasicBlock *BB = (*I)->getBlock(); 5076 // For all instructions in blocks containing gather sequences: 5077 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5078 Instruction *In = &*it++; 5079 if (isDeleted(In)) 5080 continue; 5081 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5082 continue; 5083 5084 // Check if we can replace this instruction with any of the 5085 // visited instructions. 5086 for (Instruction *v : Visited) { 5087 if (In->isIdenticalTo(v) && 5088 DT->dominates(v->getParent(), In->getParent())) { 5089 In->replaceAllUsesWith(v); 5090 eraseInstruction(In); 5091 In = nullptr; 5092 break; 5093 } 5094 } 5095 if (In) { 5096 assert(!is_contained(Visited, In)); 5097 Visited.push_back(In); 5098 } 5099 } 5100 } 5101 CSEBlocks.clear(); 5102 GatherSeq.clear(); 5103 } 5104 5105 // Groups the instructions to a bundle (which is then a single scheduling entity) 5106 // and schedules instructions until the bundle gets ready. 5107 Optional<BoUpSLP::ScheduleData *> 5108 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5109 const InstructionsState &S) { 5110 if (isa<PHINode>(S.OpValue)) 5111 return nullptr; 5112 5113 // Initialize the instruction bundle. 5114 Instruction *OldScheduleEnd = ScheduleEnd; 5115 ScheduleData *PrevInBundle = nullptr; 5116 ScheduleData *Bundle = nullptr; 5117 bool ReSchedule = false; 5118 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5119 5120 // Make sure that the scheduling region contains all 5121 // instructions of the bundle. 5122 for (Value *V : VL) { 5123 if (!extendSchedulingRegion(V, S)) 5124 return None; 5125 } 5126 5127 for (Value *V : VL) { 5128 ScheduleData *BundleMember = getScheduleData(V); 5129 assert(BundleMember && 5130 "no ScheduleData for bundle member (maybe not in same basic block)"); 5131 if (BundleMember->IsScheduled) { 5132 // A bundle member was scheduled as single instruction before and now 5133 // needs to be scheduled as part of the bundle. We just get rid of the 5134 // existing schedule. 5135 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5136 << " was already scheduled\n"); 5137 ReSchedule = true; 5138 } 5139 assert(BundleMember->isSchedulingEntity() && 5140 "bundle member already part of other bundle"); 5141 if (PrevInBundle) { 5142 PrevInBundle->NextInBundle = BundleMember; 5143 } else { 5144 Bundle = BundleMember; 5145 } 5146 BundleMember->UnscheduledDepsInBundle = 0; 5147 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5148 5149 // Group the instructions to a bundle. 5150 BundleMember->FirstInBundle = Bundle; 5151 PrevInBundle = BundleMember; 5152 } 5153 if (ScheduleEnd != OldScheduleEnd) { 5154 // The scheduling region got new instructions at the lower end (or it is a 5155 // new region for the first bundle). This makes it necessary to 5156 // recalculate all dependencies. 5157 // It is seldom that this needs to be done a second time after adding the 5158 // initial bundle to the region. 5159 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5160 doForAllOpcodes(I, [](ScheduleData *SD) { 5161 SD->clearDependencies(); 5162 }); 5163 } 5164 ReSchedule = true; 5165 } 5166 if (ReSchedule) { 5167 resetSchedule(); 5168 initialFillReadyList(ReadyInsts); 5169 } 5170 assert(Bundle && "Failed to find schedule bundle"); 5171 5172 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5173 << BB->getName() << "\n"); 5174 5175 calculateDependencies(Bundle, true, SLP); 5176 5177 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5178 // means that there are no cyclic dependencies and we can schedule it. 5179 // Note that's important that we don't "schedule" the bundle yet (see 5180 // cancelScheduling). 5181 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5182 5183 ScheduleData *pickedSD = ReadyInsts.back(); 5184 ReadyInsts.pop_back(); 5185 5186 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5187 schedule(pickedSD, ReadyInsts); 5188 } 5189 } 5190 if (!Bundle->isReady()) { 5191 cancelScheduling(VL, S.OpValue); 5192 return None; 5193 } 5194 return Bundle; 5195 } 5196 5197 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5198 Value *OpValue) { 5199 if (isa<PHINode>(OpValue)) 5200 return; 5201 5202 ScheduleData *Bundle = getScheduleData(OpValue); 5203 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5204 assert(!Bundle->IsScheduled && 5205 "Can't cancel bundle which is already scheduled"); 5206 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5207 "tried to unbundle something which is not a bundle"); 5208 5209 // Un-bundle: make single instructions out of the bundle. 5210 ScheduleData *BundleMember = Bundle; 5211 while (BundleMember) { 5212 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5213 BundleMember->FirstInBundle = BundleMember; 5214 ScheduleData *Next = BundleMember->NextInBundle; 5215 BundleMember->NextInBundle = nullptr; 5216 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5217 if (BundleMember->UnscheduledDepsInBundle == 0) { 5218 ReadyInsts.insert(BundleMember); 5219 } 5220 BundleMember = Next; 5221 } 5222 } 5223 5224 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5225 // Allocate a new ScheduleData for the instruction. 5226 if (ChunkPos >= ChunkSize) { 5227 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5228 ChunkPos = 0; 5229 } 5230 return &(ScheduleDataChunks.back()[ChunkPos++]); 5231 } 5232 5233 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5234 const InstructionsState &S) { 5235 if (getScheduleData(V, isOneOf(S, V))) 5236 return true; 5237 Instruction *I = dyn_cast<Instruction>(V); 5238 assert(I && "bundle member must be an instruction"); 5239 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5240 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5241 ScheduleData *ISD = getScheduleData(I); 5242 if (!ISD) 5243 return false; 5244 assert(isInSchedulingRegion(ISD) && 5245 "ScheduleData not in scheduling region"); 5246 ScheduleData *SD = allocateScheduleDataChunks(); 5247 SD->Inst = I; 5248 SD->init(SchedulingRegionID, S.OpValue); 5249 ExtraScheduleDataMap[I][S.OpValue] = SD; 5250 return true; 5251 }; 5252 if (CheckSheduleForI(I)) 5253 return true; 5254 if (!ScheduleStart) { 5255 // It's the first instruction in the new region. 5256 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5257 ScheduleStart = I; 5258 ScheduleEnd = I->getNextNode(); 5259 if (isOneOf(S, I) != I) 5260 CheckSheduleForI(I); 5261 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5262 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5263 return true; 5264 } 5265 // Search up and down at the same time, because we don't know if the new 5266 // instruction is above or below the existing scheduling region. 5267 BasicBlock::reverse_iterator UpIter = 5268 ++ScheduleStart->getIterator().getReverse(); 5269 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5270 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5271 BasicBlock::iterator LowerEnd = BB->end(); 5272 while (true) { 5273 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5274 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5275 return false; 5276 } 5277 5278 if (UpIter != UpperEnd) { 5279 if (&*UpIter == I) { 5280 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5281 ScheduleStart = I; 5282 if (isOneOf(S, I) != I) 5283 CheckSheduleForI(I); 5284 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5285 << "\n"); 5286 return true; 5287 } 5288 ++UpIter; 5289 } 5290 if (DownIter != LowerEnd) { 5291 if (&*DownIter == I) { 5292 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5293 nullptr); 5294 ScheduleEnd = I->getNextNode(); 5295 if (isOneOf(S, I) != I) 5296 CheckSheduleForI(I); 5297 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5298 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5299 << "\n"); 5300 return true; 5301 } 5302 ++DownIter; 5303 } 5304 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5305 "instruction not found in block"); 5306 } 5307 return true; 5308 } 5309 5310 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5311 Instruction *ToI, 5312 ScheduleData *PrevLoadStore, 5313 ScheduleData *NextLoadStore) { 5314 ScheduleData *CurrentLoadStore = PrevLoadStore; 5315 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5316 ScheduleData *SD = ScheduleDataMap[I]; 5317 if (!SD) { 5318 SD = allocateScheduleDataChunks(); 5319 ScheduleDataMap[I] = SD; 5320 SD->Inst = I; 5321 } 5322 assert(!isInSchedulingRegion(SD) && 5323 "new ScheduleData already in scheduling region"); 5324 SD->init(SchedulingRegionID, I); 5325 5326 if (I->mayReadOrWriteMemory() && 5327 (!isa<IntrinsicInst>(I) || 5328 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5329 cast<IntrinsicInst>(I)->getIntrinsicID() != 5330 Intrinsic::pseudoprobe))) { 5331 // Update the linked list of memory accessing instructions. 5332 if (CurrentLoadStore) { 5333 CurrentLoadStore->NextLoadStore = SD; 5334 } else { 5335 FirstLoadStoreInRegion = SD; 5336 } 5337 CurrentLoadStore = SD; 5338 } 5339 } 5340 if (NextLoadStore) { 5341 if (CurrentLoadStore) 5342 CurrentLoadStore->NextLoadStore = NextLoadStore; 5343 } else { 5344 LastLoadStoreInRegion = CurrentLoadStore; 5345 } 5346 } 5347 5348 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5349 bool InsertInReadyList, 5350 BoUpSLP *SLP) { 5351 assert(SD->isSchedulingEntity()); 5352 5353 SmallVector<ScheduleData *, 10> WorkList; 5354 WorkList.push_back(SD); 5355 5356 while (!WorkList.empty()) { 5357 ScheduleData *SD = WorkList.back(); 5358 WorkList.pop_back(); 5359 5360 ScheduleData *BundleMember = SD; 5361 while (BundleMember) { 5362 assert(isInSchedulingRegion(BundleMember)); 5363 if (!BundleMember->hasValidDependencies()) { 5364 5365 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5366 << "\n"); 5367 BundleMember->Dependencies = 0; 5368 BundleMember->resetUnscheduledDeps(); 5369 5370 // Handle def-use chain dependencies. 5371 if (BundleMember->OpValue != BundleMember->Inst) { 5372 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5373 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5374 BundleMember->Dependencies++; 5375 ScheduleData *DestBundle = UseSD->FirstInBundle; 5376 if (!DestBundle->IsScheduled) 5377 BundleMember->incrementUnscheduledDeps(1); 5378 if (!DestBundle->hasValidDependencies()) 5379 WorkList.push_back(DestBundle); 5380 } 5381 } else { 5382 for (User *U : BundleMember->Inst->users()) { 5383 if (isa<Instruction>(U)) { 5384 ScheduleData *UseSD = getScheduleData(U); 5385 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5386 BundleMember->Dependencies++; 5387 ScheduleData *DestBundle = UseSD->FirstInBundle; 5388 if (!DestBundle->IsScheduled) 5389 BundleMember->incrementUnscheduledDeps(1); 5390 if (!DestBundle->hasValidDependencies()) 5391 WorkList.push_back(DestBundle); 5392 } 5393 } else { 5394 // I'm not sure if this can ever happen. But we need to be safe. 5395 // This lets the instruction/bundle never be scheduled and 5396 // eventually disable vectorization. 5397 BundleMember->Dependencies++; 5398 BundleMember->incrementUnscheduledDeps(1); 5399 } 5400 } 5401 } 5402 5403 // Handle the memory dependencies. 5404 ScheduleData *DepDest = BundleMember->NextLoadStore; 5405 if (DepDest) { 5406 Instruction *SrcInst = BundleMember->Inst; 5407 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5408 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5409 unsigned numAliased = 0; 5410 unsigned DistToSrc = 1; 5411 5412 while (DepDest) { 5413 assert(isInSchedulingRegion(DepDest)); 5414 5415 // We have two limits to reduce the complexity: 5416 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5417 // SLP->isAliased (which is the expensive part in this loop). 5418 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5419 // the whole loop (even if the loop is fast, it's quadratic). 5420 // It's important for the loop break condition (see below) to 5421 // check this limit even between two read-only instructions. 5422 if (DistToSrc >= MaxMemDepDistance || 5423 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5424 (numAliased >= AliasedCheckLimit || 5425 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5426 5427 // We increment the counter only if the locations are aliased 5428 // (instead of counting all alias checks). This gives a better 5429 // balance between reduced runtime and accurate dependencies. 5430 numAliased++; 5431 5432 DepDest->MemoryDependencies.push_back(BundleMember); 5433 BundleMember->Dependencies++; 5434 ScheduleData *DestBundle = DepDest->FirstInBundle; 5435 if (!DestBundle->IsScheduled) { 5436 BundleMember->incrementUnscheduledDeps(1); 5437 } 5438 if (!DestBundle->hasValidDependencies()) { 5439 WorkList.push_back(DestBundle); 5440 } 5441 } 5442 DepDest = DepDest->NextLoadStore; 5443 5444 // Example, explaining the loop break condition: Let's assume our 5445 // starting instruction is i0 and MaxMemDepDistance = 3. 5446 // 5447 // +--------v--v--v 5448 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5449 // +--------^--^--^ 5450 // 5451 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5452 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5453 // Previously we already added dependencies from i3 to i6,i7,i8 5454 // (because of MaxMemDepDistance). As we added a dependency from 5455 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5456 // and we can abort this loop at i6. 5457 if (DistToSrc >= 2 * MaxMemDepDistance) 5458 break; 5459 DistToSrc++; 5460 } 5461 } 5462 } 5463 BundleMember = BundleMember->NextInBundle; 5464 } 5465 if (InsertInReadyList && SD->isReady()) { 5466 ReadyInsts.push_back(SD); 5467 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5468 << "\n"); 5469 } 5470 } 5471 } 5472 5473 void BoUpSLP::BlockScheduling::resetSchedule() { 5474 assert(ScheduleStart && 5475 "tried to reset schedule on block which has not been scheduled"); 5476 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5477 doForAllOpcodes(I, [&](ScheduleData *SD) { 5478 assert(isInSchedulingRegion(SD) && 5479 "ScheduleData not in scheduling region"); 5480 SD->IsScheduled = false; 5481 SD->resetUnscheduledDeps(); 5482 }); 5483 } 5484 ReadyInsts.clear(); 5485 } 5486 5487 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5488 if (!BS->ScheduleStart) 5489 return; 5490 5491 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5492 5493 BS->resetSchedule(); 5494 5495 // For the real scheduling we use a more sophisticated ready-list: it is 5496 // sorted by the original instruction location. This lets the final schedule 5497 // be as close as possible to the original instruction order. 5498 struct ScheduleDataCompare { 5499 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5500 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5501 } 5502 }; 5503 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5504 5505 // Ensure that all dependency data is updated and fill the ready-list with 5506 // initial instructions. 5507 int Idx = 0; 5508 int NumToSchedule = 0; 5509 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5510 I = I->getNextNode()) { 5511 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5512 assert(SD->isPartOfBundle() == 5513 (getTreeEntry(SD->Inst) != nullptr) && 5514 "scheduler and vectorizer bundle mismatch"); 5515 SD->FirstInBundle->SchedulingPriority = Idx++; 5516 if (SD->isSchedulingEntity()) { 5517 BS->calculateDependencies(SD, false, this); 5518 NumToSchedule++; 5519 } 5520 }); 5521 } 5522 BS->initialFillReadyList(ReadyInsts); 5523 5524 Instruction *LastScheduledInst = BS->ScheduleEnd; 5525 5526 // Do the "real" scheduling. 5527 while (!ReadyInsts.empty()) { 5528 ScheduleData *picked = *ReadyInsts.begin(); 5529 ReadyInsts.erase(ReadyInsts.begin()); 5530 5531 // Move the scheduled instruction(s) to their dedicated places, if not 5532 // there yet. 5533 ScheduleData *BundleMember = picked; 5534 while (BundleMember) { 5535 Instruction *pickedInst = BundleMember->Inst; 5536 if (LastScheduledInst->getNextNode() != pickedInst) { 5537 BS->BB->getInstList().remove(pickedInst); 5538 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5539 pickedInst); 5540 } 5541 LastScheduledInst = pickedInst; 5542 BundleMember = BundleMember->NextInBundle; 5543 } 5544 5545 BS->schedule(picked, ReadyInsts); 5546 NumToSchedule--; 5547 } 5548 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5549 5550 // Avoid duplicate scheduling of the block. 5551 BS->ScheduleStart = nullptr; 5552 } 5553 5554 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5555 // If V is a store, just return the width of the stored value (or value 5556 // truncated just before storing) without traversing the expression tree. 5557 // This is the common case. 5558 if (auto *Store = dyn_cast<StoreInst>(V)) { 5559 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5560 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5561 else 5562 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5563 } 5564 5565 auto E = InstrElementSize.find(V); 5566 if (E != InstrElementSize.end()) 5567 return E->second; 5568 5569 // If V is not a store, we can traverse the expression tree to find loads 5570 // that feed it. The type of the loaded value may indicate a more suitable 5571 // width than V's type. We want to base the vector element size on the width 5572 // of memory operations where possible. 5573 SmallVector<Instruction *, 16> Worklist; 5574 SmallPtrSet<Instruction *, 16> Visited; 5575 if (auto *I = dyn_cast<Instruction>(V)) { 5576 Worklist.push_back(I); 5577 Visited.insert(I); 5578 } 5579 5580 // Traverse the expression tree in bottom-up order looking for loads. If we 5581 // encounter an instruction we don't yet handle, we give up. 5582 auto MaxWidth = 0u; 5583 auto FoundUnknownInst = false; 5584 while (!Worklist.empty() && !FoundUnknownInst) { 5585 auto *I = Worklist.pop_back_val(); 5586 5587 // We should only be looking at scalar instructions here. If the current 5588 // instruction has a vector type, give up. 5589 auto *Ty = I->getType(); 5590 if (isa<VectorType>(Ty)) 5591 FoundUnknownInst = true; 5592 5593 // If the current instruction is a load, update MaxWidth to reflect the 5594 // width of the loaded value. 5595 else if (isa<LoadInst>(I)) 5596 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5597 5598 // Otherwise, we need to visit the operands of the instruction. We only 5599 // handle the interesting cases from buildTree here. If an operand is an 5600 // instruction we haven't yet visited, we add it to the worklist. 5601 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5602 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5603 for (Use &U : I->operands()) 5604 if (auto *J = dyn_cast<Instruction>(U.get())) 5605 if (Visited.insert(J).second) 5606 Worklist.push_back(J); 5607 } 5608 5609 // If we don't yet handle the instruction, give up. 5610 else 5611 FoundUnknownInst = true; 5612 } 5613 5614 int Width = MaxWidth; 5615 // If we didn't encounter a memory access in the expression tree, or if we 5616 // gave up for some reason, just return the width of V. Otherwise, return the 5617 // maximum width we found. 5618 if (!MaxWidth || FoundUnknownInst) 5619 Width = DL->getTypeSizeInBits(V->getType()); 5620 5621 for (Instruction *I : Visited) 5622 InstrElementSize[I] = Width; 5623 5624 return Width; 5625 } 5626 5627 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5628 // smaller type with a truncation. We collect the values that will be demoted 5629 // in ToDemote and additional roots that require investigating in Roots. 5630 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5631 SmallVectorImpl<Value *> &ToDemote, 5632 SmallVectorImpl<Value *> &Roots) { 5633 // We can always demote constants. 5634 if (isa<Constant>(V)) { 5635 ToDemote.push_back(V); 5636 return true; 5637 } 5638 5639 // If the value is not an instruction in the expression with only one use, it 5640 // cannot be demoted. 5641 auto *I = dyn_cast<Instruction>(V); 5642 if (!I || !I->hasOneUse() || !Expr.count(I)) 5643 return false; 5644 5645 switch (I->getOpcode()) { 5646 5647 // We can always demote truncations and extensions. Since truncations can 5648 // seed additional demotion, we save the truncated value. 5649 case Instruction::Trunc: 5650 Roots.push_back(I->getOperand(0)); 5651 break; 5652 case Instruction::ZExt: 5653 case Instruction::SExt: 5654 break; 5655 5656 // We can demote certain binary operations if we can demote both of their 5657 // operands. 5658 case Instruction::Add: 5659 case Instruction::Sub: 5660 case Instruction::Mul: 5661 case Instruction::And: 5662 case Instruction::Or: 5663 case Instruction::Xor: 5664 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5665 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5666 return false; 5667 break; 5668 5669 // We can demote selects if we can demote their true and false values. 5670 case Instruction::Select: { 5671 SelectInst *SI = cast<SelectInst>(I); 5672 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5673 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5674 return false; 5675 break; 5676 } 5677 5678 // We can demote phis if we can demote all their incoming operands. Note that 5679 // we don't need to worry about cycles since we ensure single use above. 5680 case Instruction::PHI: { 5681 PHINode *PN = cast<PHINode>(I); 5682 for (Value *IncValue : PN->incoming_values()) 5683 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5684 return false; 5685 break; 5686 } 5687 5688 // Otherwise, conservatively give up. 5689 default: 5690 return false; 5691 } 5692 5693 // Record the value that we can demote. 5694 ToDemote.push_back(V); 5695 return true; 5696 } 5697 5698 void BoUpSLP::computeMinimumValueSizes() { 5699 // If there are no external uses, the expression tree must be rooted by a 5700 // store. We can't demote in-memory values, so there is nothing to do here. 5701 if (ExternalUses.empty()) 5702 return; 5703 5704 // We only attempt to truncate integer expressions. 5705 auto &TreeRoot = VectorizableTree[0]->Scalars; 5706 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5707 if (!TreeRootIT) 5708 return; 5709 5710 // If the expression is not rooted by a store, these roots should have 5711 // external uses. We will rely on InstCombine to rewrite the expression in 5712 // the narrower type. However, InstCombine only rewrites single-use values. 5713 // This means that if a tree entry other than a root is used externally, it 5714 // must have multiple uses and InstCombine will not rewrite it. The code 5715 // below ensures that only the roots are used externally. 5716 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5717 for (auto &EU : ExternalUses) 5718 if (!Expr.erase(EU.Scalar)) 5719 return; 5720 if (!Expr.empty()) 5721 return; 5722 5723 // Collect the scalar values of the vectorizable expression. We will use this 5724 // context to determine which values can be demoted. If we see a truncation, 5725 // we mark it as seeding another demotion. 5726 for (auto &EntryPtr : VectorizableTree) 5727 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5728 5729 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5730 // have a single external user that is not in the vectorizable tree. 5731 for (auto *Root : TreeRoot) 5732 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5733 return; 5734 5735 // Conservatively determine if we can actually truncate the roots of the 5736 // expression. Collect the values that can be demoted in ToDemote and 5737 // additional roots that require investigating in Roots. 5738 SmallVector<Value *, 32> ToDemote; 5739 SmallVector<Value *, 4> Roots; 5740 for (auto *Root : TreeRoot) 5741 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5742 return; 5743 5744 // The maximum bit width required to represent all the values that can be 5745 // demoted without loss of precision. It would be safe to truncate the roots 5746 // of the expression to this width. 5747 auto MaxBitWidth = 8u; 5748 5749 // We first check if all the bits of the roots are demanded. If they're not, 5750 // we can truncate the roots to this narrower type. 5751 for (auto *Root : TreeRoot) { 5752 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5753 MaxBitWidth = std::max<unsigned>( 5754 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5755 } 5756 5757 // True if the roots can be zero-extended back to their original type, rather 5758 // than sign-extended. We know that if the leading bits are not demanded, we 5759 // can safely zero-extend. So we initialize IsKnownPositive to True. 5760 bool IsKnownPositive = true; 5761 5762 // If all the bits of the roots are demanded, we can try a little harder to 5763 // compute a narrower type. This can happen, for example, if the roots are 5764 // getelementptr indices. InstCombine promotes these indices to the pointer 5765 // width. Thus, all their bits are technically demanded even though the 5766 // address computation might be vectorized in a smaller type. 5767 // 5768 // We start by looking at each entry that can be demoted. We compute the 5769 // maximum bit width required to store the scalar by using ValueTracking to 5770 // compute the number of high-order bits we can truncate. 5771 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5772 llvm::all_of(TreeRoot, [](Value *R) { 5773 assert(R->hasOneUse() && "Root should have only one use!"); 5774 return isa<GetElementPtrInst>(R->user_back()); 5775 })) { 5776 MaxBitWidth = 8u; 5777 5778 // Determine if the sign bit of all the roots is known to be zero. If not, 5779 // IsKnownPositive is set to False. 5780 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5781 KnownBits Known = computeKnownBits(R, *DL); 5782 return Known.isNonNegative(); 5783 }); 5784 5785 // Determine the maximum number of bits required to store the scalar 5786 // values. 5787 for (auto *Scalar : ToDemote) { 5788 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5789 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5790 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5791 } 5792 5793 // If we can't prove that the sign bit is zero, we must add one to the 5794 // maximum bit width to account for the unknown sign bit. This preserves 5795 // the existing sign bit so we can safely sign-extend the root back to the 5796 // original type. Otherwise, if we know the sign bit is zero, we will 5797 // zero-extend the root instead. 5798 // 5799 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5800 // one to the maximum bit width will yield a larger-than-necessary 5801 // type. In general, we need to add an extra bit only if we can't 5802 // prove that the upper bit of the original type is equal to the 5803 // upper bit of the proposed smaller type. If these two bits are the 5804 // same (either zero or one) we know that sign-extending from the 5805 // smaller type will result in the same value. Here, since we can't 5806 // yet prove this, we are just making the proposed smaller type 5807 // larger to ensure correctness. 5808 if (!IsKnownPositive) 5809 ++MaxBitWidth; 5810 } 5811 5812 // Round MaxBitWidth up to the next power-of-two. 5813 if (!isPowerOf2_64(MaxBitWidth)) 5814 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5815 5816 // If the maximum bit width we compute is less than the with of the roots' 5817 // type, we can proceed with the narrowing. Otherwise, do nothing. 5818 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5819 return; 5820 5821 // If we can truncate the root, we must collect additional values that might 5822 // be demoted as a result. That is, those seeded by truncations we will 5823 // modify. 5824 while (!Roots.empty()) 5825 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5826 5827 // Finally, map the values we can demote to the maximum bit with we computed. 5828 for (auto *Scalar : ToDemote) 5829 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5830 } 5831 5832 namespace { 5833 5834 /// The SLPVectorizer Pass. 5835 struct SLPVectorizer : public FunctionPass { 5836 SLPVectorizerPass Impl; 5837 5838 /// Pass identification, replacement for typeid 5839 static char ID; 5840 5841 explicit SLPVectorizer() : FunctionPass(ID) { 5842 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5843 } 5844 5845 bool doInitialization(Module &M) override { 5846 return false; 5847 } 5848 5849 bool runOnFunction(Function &F) override { 5850 if (skipFunction(F)) 5851 return false; 5852 5853 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5854 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5855 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5856 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5857 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5858 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5859 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5860 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5861 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5862 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5863 5864 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5865 } 5866 5867 void getAnalysisUsage(AnalysisUsage &AU) const override { 5868 FunctionPass::getAnalysisUsage(AU); 5869 AU.addRequired<AssumptionCacheTracker>(); 5870 AU.addRequired<ScalarEvolutionWrapperPass>(); 5871 AU.addRequired<AAResultsWrapperPass>(); 5872 AU.addRequired<TargetTransformInfoWrapperPass>(); 5873 AU.addRequired<LoopInfoWrapperPass>(); 5874 AU.addRequired<DominatorTreeWrapperPass>(); 5875 AU.addRequired<DemandedBitsWrapperPass>(); 5876 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5877 AU.addRequired<InjectTLIMappingsLegacy>(); 5878 AU.addPreserved<LoopInfoWrapperPass>(); 5879 AU.addPreserved<DominatorTreeWrapperPass>(); 5880 AU.addPreserved<AAResultsWrapperPass>(); 5881 AU.addPreserved<GlobalsAAWrapperPass>(); 5882 AU.setPreservesCFG(); 5883 } 5884 }; 5885 5886 } // end anonymous namespace 5887 5888 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5889 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5890 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5891 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5892 auto *AA = &AM.getResult<AAManager>(F); 5893 auto *LI = &AM.getResult<LoopAnalysis>(F); 5894 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5895 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5896 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5897 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5898 5899 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5900 if (!Changed) 5901 return PreservedAnalyses::all(); 5902 5903 PreservedAnalyses PA; 5904 PA.preserveSet<CFGAnalyses>(); 5905 PA.preserve<AAManager>(); 5906 PA.preserve<GlobalsAA>(); 5907 return PA; 5908 } 5909 5910 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5911 TargetTransformInfo *TTI_, 5912 TargetLibraryInfo *TLI_, AAResults *AA_, 5913 LoopInfo *LI_, DominatorTree *DT_, 5914 AssumptionCache *AC_, DemandedBits *DB_, 5915 OptimizationRemarkEmitter *ORE_) { 5916 if (!RunSLPVectorization) 5917 return false; 5918 SE = SE_; 5919 TTI = TTI_; 5920 TLI = TLI_; 5921 AA = AA_; 5922 LI = LI_; 5923 DT = DT_; 5924 AC = AC_; 5925 DB = DB_; 5926 DL = &F.getParent()->getDataLayout(); 5927 5928 Stores.clear(); 5929 GEPs.clear(); 5930 bool Changed = false; 5931 5932 // If the target claims to have no vector registers don't attempt 5933 // vectorization. 5934 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5935 return false; 5936 5937 // Don't vectorize when the attribute NoImplicitFloat is used. 5938 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5939 return false; 5940 5941 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5942 5943 // Use the bottom up slp vectorizer to construct chains that start with 5944 // store instructions. 5945 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5946 5947 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5948 // delete instructions. 5949 5950 // Scan the blocks in the function in post order. 5951 for (auto BB : post_order(&F.getEntryBlock())) { 5952 collectSeedInstructions(BB); 5953 5954 // Vectorize trees that end at stores. 5955 if (!Stores.empty()) { 5956 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5957 << " underlying objects.\n"); 5958 Changed |= vectorizeStoreChains(R); 5959 } 5960 5961 // Vectorize trees that end at reductions. 5962 Changed |= vectorizeChainsInBlock(BB, R); 5963 5964 // Vectorize the index computations of getelementptr instructions. This 5965 // is primarily intended to catch gather-like idioms ending at 5966 // non-consecutive loads. 5967 if (!GEPs.empty()) { 5968 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5969 << " underlying objects.\n"); 5970 Changed |= vectorizeGEPIndices(BB, R); 5971 } 5972 } 5973 5974 if (Changed) { 5975 R.optimizeGatherSequence(); 5976 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5977 } 5978 return Changed; 5979 } 5980 5981 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5982 unsigned Idx) { 5983 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5984 << "\n"); 5985 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5986 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5987 unsigned VF = Chain.size(); 5988 5989 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5990 return false; 5991 5992 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5993 << "\n"); 5994 5995 R.buildTree(Chain); 5996 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5997 // TODO: Handle orders of size less than number of elements in the vector. 5998 if (Order && Order->size() == Chain.size()) { 5999 // TODO: reorder tree nodes without tree rebuilding. 6000 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6001 llvm::transform(*Order, ReorderedOps.begin(), 6002 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6003 R.buildTree(ReorderedOps); 6004 } 6005 if (R.isTreeTinyAndNotFullyVectorizable()) 6006 return false; 6007 if (R.isLoadCombineCandidate()) 6008 return false; 6009 6010 R.computeMinimumValueSizes(); 6011 6012 int Cost = R.getTreeCost(); 6013 6014 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6015 if (Cost < -SLPCostThreshold) { 6016 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6017 6018 using namespace ore; 6019 6020 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6021 cast<StoreInst>(Chain[0])) 6022 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6023 << " and with tree size " 6024 << NV("TreeSize", R.getTreeSize())); 6025 6026 R.vectorizeTree(); 6027 return true; 6028 } 6029 6030 return false; 6031 } 6032 6033 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6034 BoUpSLP &R) { 6035 // We may run into multiple chains that merge into a single chain. We mark the 6036 // stores that we vectorized so that we don't visit the same store twice. 6037 BoUpSLP::ValueSet VectorizedStores; 6038 bool Changed = false; 6039 6040 int E = Stores.size(); 6041 SmallBitVector Tails(E, false); 6042 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6043 int MaxIter = MaxStoreLookup.getValue(); 6044 int IterCnt; 6045 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6046 &ConsecutiveChain](int K, int Idx) { 6047 if (IterCnt >= MaxIter) 6048 return true; 6049 ++IterCnt; 6050 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6051 return false; 6052 6053 Tails.set(Idx); 6054 ConsecutiveChain[K] = Idx; 6055 return true; 6056 }; 6057 // Do a quadratic search on all of the given stores in reverse order and find 6058 // all of the pairs of stores that follow each other. 6059 for (int Idx = E - 1; Idx >= 0; --Idx) { 6060 // If a store has multiple consecutive store candidates, search according 6061 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6062 // This is because usually pairing with immediate succeeding or preceding 6063 // candidate create the best chance to find slp vectorization opportunity. 6064 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6065 IterCnt = 0; 6066 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6067 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6068 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6069 break; 6070 } 6071 6072 // For stores that start but don't end a link in the chain: 6073 for (int Cnt = E; Cnt > 0; --Cnt) { 6074 int I = Cnt - 1; 6075 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6076 continue; 6077 // We found a store instr that starts a chain. Now follow the chain and try 6078 // to vectorize it. 6079 BoUpSLP::ValueList Operands; 6080 // Collect the chain into a list. 6081 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6082 Operands.push_back(Stores[I]); 6083 // Move to the next value in the chain. 6084 I = ConsecutiveChain[I]; 6085 } 6086 6087 // If a vector register can't hold 1 element, we are done. 6088 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6089 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6090 if (MaxVecRegSize % EltSize != 0) 6091 continue; 6092 6093 unsigned MaxElts = MaxVecRegSize / EltSize; 6094 // FIXME: Is division-by-2 the correct step? Should we assert that the 6095 // register size is a power-of-2? 6096 unsigned StartIdx = 0; 6097 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6098 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6099 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6100 if (!VectorizedStores.count(Slice.front()) && 6101 !VectorizedStores.count(Slice.back()) && 6102 vectorizeStoreChain(Slice, R, Cnt)) { 6103 // Mark the vectorized stores so that we don't vectorize them again. 6104 VectorizedStores.insert(Slice.begin(), Slice.end()); 6105 Changed = true; 6106 // If we vectorized initial block, no need to try to vectorize it 6107 // again. 6108 if (Cnt == StartIdx) 6109 StartIdx += Size; 6110 Cnt += Size; 6111 continue; 6112 } 6113 ++Cnt; 6114 } 6115 // Check if the whole array was vectorized already - exit. 6116 if (StartIdx >= Operands.size()) 6117 break; 6118 } 6119 } 6120 6121 return Changed; 6122 } 6123 6124 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6125 // Initialize the collections. We will make a single pass over the block. 6126 Stores.clear(); 6127 GEPs.clear(); 6128 6129 // Visit the store and getelementptr instructions in BB and organize them in 6130 // Stores and GEPs according to the underlying objects of their pointer 6131 // operands. 6132 for (Instruction &I : *BB) { 6133 // Ignore store instructions that are volatile or have a pointer operand 6134 // that doesn't point to a scalar type. 6135 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6136 if (!SI->isSimple()) 6137 continue; 6138 if (!isValidElementType(SI->getValueOperand()->getType())) 6139 continue; 6140 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6141 } 6142 6143 // Ignore getelementptr instructions that have more than one index, a 6144 // constant index, or a pointer operand that doesn't point to a scalar 6145 // type. 6146 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6147 auto Idx = GEP->idx_begin()->get(); 6148 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6149 continue; 6150 if (!isValidElementType(Idx->getType())) 6151 continue; 6152 if (GEP->getType()->isVectorTy()) 6153 continue; 6154 GEPs[GEP->getPointerOperand()].push_back(GEP); 6155 } 6156 } 6157 } 6158 6159 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6160 if (!A || !B) 6161 return false; 6162 Value *VL[] = {A, B}; 6163 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6164 } 6165 6166 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6167 bool AllowReorder, 6168 ArrayRef<Value *> InsertUses) { 6169 if (VL.size() < 2) 6170 return false; 6171 6172 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6173 << VL.size() << ".\n"); 6174 6175 // Check that all of the parts are instructions of the same type, 6176 // we permit an alternate opcode via InstructionsState. 6177 InstructionsState S = getSameOpcode(VL); 6178 if (!S.getOpcode()) 6179 return false; 6180 6181 Instruction *I0 = cast<Instruction>(S.OpValue); 6182 // Make sure invalid types (including vector type) are rejected before 6183 // determining vectorization factor for scalar instructions. 6184 for (Value *V : VL) { 6185 Type *Ty = V->getType(); 6186 if (!isValidElementType(Ty)) { 6187 // NOTE: the following will give user internal llvm type name, which may 6188 // not be useful. 6189 R.getORE()->emit([&]() { 6190 std::string type_str; 6191 llvm::raw_string_ostream rso(type_str); 6192 Ty->print(rso); 6193 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6194 << "Cannot SLP vectorize list: type " 6195 << rso.str() + " is unsupported by vectorizer"; 6196 }); 6197 return false; 6198 } 6199 } 6200 6201 unsigned Sz = R.getVectorElementSize(I0); 6202 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6203 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6204 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6205 if (MaxVF < 2) { 6206 R.getORE()->emit([&]() { 6207 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6208 << "Cannot SLP vectorize list: vectorization factor " 6209 << "less than 2 is not supported"; 6210 }); 6211 return false; 6212 } 6213 6214 bool Changed = false; 6215 bool CandidateFound = false; 6216 int MinCost = SLPCostThreshold; 6217 6218 bool CompensateUseCost = 6219 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6220 return V && isa<InsertElementInst>(V); 6221 }); 6222 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6223 "Each scalar expected to have an associated InsertElement user."); 6224 6225 unsigned NextInst = 0, MaxInst = VL.size(); 6226 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6227 // No actual vectorization should happen, if number of parts is the same as 6228 // provided vectorization factor (i.e. the scalar type is used for vector 6229 // code during codegen). 6230 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6231 if (TTI->getNumberOfParts(VecTy) == VF) 6232 continue; 6233 for (unsigned I = NextInst; I < MaxInst; ++I) { 6234 unsigned OpsWidth = 0; 6235 6236 if (I + VF > MaxInst) 6237 OpsWidth = MaxInst - I; 6238 else 6239 OpsWidth = VF; 6240 6241 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6242 break; 6243 6244 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6245 // Check that a previous iteration of this loop did not delete the Value. 6246 if (llvm::any_of(Ops, [&R](Value *V) { 6247 auto *I = dyn_cast<Instruction>(V); 6248 return I && R.isDeleted(I); 6249 })) 6250 continue; 6251 6252 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6253 << "\n"); 6254 6255 R.buildTree(Ops); 6256 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6257 // TODO: check if we can allow reordering for more cases. 6258 if (AllowReorder && Order) { 6259 // TODO: reorder tree nodes without tree rebuilding. 6260 // Conceptually, there is nothing actually preventing us from trying to 6261 // reorder a larger list. In fact, we do exactly this when vectorizing 6262 // reductions. However, at this point, we only expect to get here when 6263 // there are exactly two operations. 6264 assert(Ops.size() == 2); 6265 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6266 R.buildTree(ReorderedOps, None); 6267 } 6268 if (R.isTreeTinyAndNotFullyVectorizable()) 6269 continue; 6270 6271 R.computeMinimumValueSizes(); 6272 int Cost = R.getTreeCost(); 6273 CandidateFound = true; 6274 if (CompensateUseCost) { 6275 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6276 // rather than sum of single inserts as the latter may overestimate 6277 // cost. This work should imply improving cost estimation for extracts 6278 // that added in for external (for vectorization tree) users,i.e. that 6279 // part should also switch to same interface. 6280 // For example, the following case is projected code after SLP: 6281 // %4 = extractelement <4 x i64> %3, i32 0 6282 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6283 // %5 = extractelement <4 x i64> %3, i32 1 6284 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6285 // %6 = extractelement <4 x i64> %3, i32 2 6286 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6287 // %7 = extractelement <4 x i64> %3, i32 3 6288 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6289 // 6290 // Extracts here added by SLP in order to feed users (the inserts) of 6291 // original scalars and contribute to "ExtractCost" at cost evaluation. 6292 // The inserts in turn form sequence to build an aggregate that 6293 // detected by findBuildAggregate routine. 6294 // SLP makes an assumption that such sequence will be optimized away 6295 // later (instcombine) so it tries to compensate ExctractCost with 6296 // cost of insert sequence. 6297 // Current per element cost calculation approach is not quite accurate 6298 // and tends to create bias toward favoring vectorization. 6299 // Switching to the TTI interface might help a bit. 6300 // Alternative solution could be pattern-match to detect a no-op or 6301 // shuffle. 6302 unsigned UserCost = 0; 6303 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6304 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6305 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6306 UserCost += TTI->getVectorInstrCost( 6307 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6308 } 6309 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6310 << ".\n"); 6311 Cost -= UserCost; 6312 } 6313 6314 MinCost = std::min(MinCost, Cost); 6315 6316 if (Cost < -SLPCostThreshold) { 6317 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6318 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6319 cast<Instruction>(Ops[0])) 6320 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6321 << " and with tree size " 6322 << ore::NV("TreeSize", R.getTreeSize())); 6323 6324 R.vectorizeTree(); 6325 // Move to the next bundle. 6326 I += VF - 1; 6327 NextInst = I + 1; 6328 Changed = true; 6329 } 6330 } 6331 } 6332 6333 if (!Changed && CandidateFound) { 6334 R.getORE()->emit([&]() { 6335 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6336 << "List vectorization was possible but not beneficial with cost " 6337 << ore::NV("Cost", MinCost) << " >= " 6338 << ore::NV("Treshold", -SLPCostThreshold); 6339 }); 6340 } else if (!Changed) { 6341 R.getORE()->emit([&]() { 6342 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6343 << "Cannot SLP vectorize list: vectorization was impossible" 6344 << " with available vectorization factors"; 6345 }); 6346 } 6347 return Changed; 6348 } 6349 6350 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6351 if (!I) 6352 return false; 6353 6354 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6355 return false; 6356 6357 Value *P = I->getParent(); 6358 6359 // Vectorize in current basic block only. 6360 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6361 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6362 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6363 return false; 6364 6365 // Try to vectorize V. 6366 if (tryToVectorizePair(Op0, Op1, R)) 6367 return true; 6368 6369 auto *A = dyn_cast<BinaryOperator>(Op0); 6370 auto *B = dyn_cast<BinaryOperator>(Op1); 6371 // Try to skip B. 6372 if (B && B->hasOneUse()) { 6373 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6374 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6375 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6376 return true; 6377 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6378 return true; 6379 } 6380 6381 // Try to skip A. 6382 if (A && A->hasOneUse()) { 6383 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6384 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6385 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6386 return true; 6387 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6388 return true; 6389 } 6390 return false; 6391 } 6392 6393 /// Generate a shuffle mask to be used in a reduction tree. 6394 /// 6395 /// \param VecLen The length of the vector to be reduced. 6396 /// \param NumEltsToRdx The number of elements that should be reduced in the 6397 /// vector. 6398 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6399 /// reduction. A pairwise reduction will generate a mask of 6400 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6401 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6402 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6403 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6404 unsigned NumEltsToRdx, 6405 bool IsPairwise, bool IsLeft) { 6406 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6407 6408 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6409 6410 if (IsPairwise) 6411 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6412 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6413 ShuffleMask[i] = 2 * i + !IsLeft; 6414 else 6415 // Move the upper half of the vector to the lower half. 6416 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6417 ShuffleMask[i] = NumEltsToRdx + i; 6418 6419 return ShuffleMask; 6420 } 6421 6422 namespace { 6423 6424 /// Model horizontal reductions. 6425 /// 6426 /// A horizontal reduction is a tree of reduction operations (currently add and 6427 /// fadd) that has operations that can be put into a vector as its leaf. 6428 /// For example, this tree: 6429 /// 6430 /// mul mul mul mul 6431 /// \ / \ / 6432 /// + + 6433 /// \ / 6434 /// + 6435 /// This tree has "mul" as its reduced values and "+" as its reduction 6436 /// operations. A reduction might be feeding into a store or a binary operation 6437 /// feeding a phi. 6438 /// ... 6439 /// \ / 6440 /// + 6441 /// | 6442 /// phi += 6443 /// 6444 /// Or: 6445 /// ... 6446 /// \ / 6447 /// + 6448 /// | 6449 /// *p = 6450 /// 6451 class HorizontalReduction { 6452 using ReductionOpsType = SmallVector<Value *, 16>; 6453 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6454 ReductionOpsListType ReductionOps; 6455 SmallVector<Value *, 32> ReducedVals; 6456 // Use map vector to make stable output. 6457 MapVector<Instruction *, Value *> ExtraArgs; 6458 6459 /// Kind of the reduction data. 6460 enum ReductionKind { 6461 RK_None, /// Not a reduction. 6462 RK_Arithmetic, /// Binary reduction data. 6463 RK_SMin, /// Signed minimum reduction data. 6464 RK_UMin, /// Unsigned minimum reduction data. 6465 RK_SMax, /// Signed maximum reduction data. 6466 RK_UMax, /// Unsigned maximum reduction data. 6467 }; 6468 6469 /// Contains info about operation, like its opcode, left and right operands. 6470 class OperationData { 6471 /// Opcode of the instruction. 6472 unsigned Opcode = 0; 6473 6474 /// Kind of the reduction operation. 6475 ReductionKind Kind = RK_None; 6476 6477 /// Checks if the reduction operation can be vectorized. 6478 bool isVectorizable() const { 6479 // We currently only support add/mul/logical && min/max reductions. 6480 return ((Kind == RK_Arithmetic && 6481 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6482 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6483 Opcode == Instruction::And || Opcode == Instruction::Or || 6484 Opcode == Instruction::Xor)) || 6485 (Opcode == Instruction::ICmp && 6486 (Kind == RK_SMin || Kind == RK_SMax || 6487 Kind == RK_UMin || Kind == RK_UMax))); 6488 } 6489 6490 /// Creates reduction operation with the current opcode. 6491 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6492 const Twine &Name) const { 6493 assert(isVectorizable() && 6494 "Expected add|fadd or min/max reduction operation."); 6495 Value *Cmp = nullptr; 6496 switch (Kind) { 6497 case RK_Arithmetic: 6498 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6499 Name); 6500 case RK_SMin: 6501 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6502 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6503 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6504 case RK_SMax: 6505 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6506 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6507 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6508 case RK_UMin: 6509 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6510 Cmp = Builder.CreateICmpULT(LHS, RHS); 6511 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6512 case RK_UMax: 6513 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6514 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6515 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6516 case RK_None: 6517 break; 6518 } 6519 llvm_unreachable("Unknown reduction operation."); 6520 } 6521 6522 public: 6523 explicit OperationData() = default; 6524 6525 /// Construction for reduced values. They are identified by opcode only and 6526 /// don't have associated LHS/RHS values. 6527 explicit OperationData(Instruction &I) { 6528 Opcode = I.getOpcode(); 6529 } 6530 6531 /// Constructor for reduction operations with opcode and its left and 6532 /// right operands. 6533 OperationData(unsigned Opcode, ReductionKind Kind) 6534 : Opcode(Opcode), Kind(Kind) { 6535 assert(Kind != RK_None && "One of the reduction operations is expected."); 6536 } 6537 6538 explicit operator bool() const { return Opcode; } 6539 6540 /// Return true if this operation is any kind of minimum or maximum. 6541 bool isMinMax() const { 6542 switch (Kind) { 6543 case RK_Arithmetic: 6544 return false; 6545 case RK_SMin: 6546 case RK_SMax: 6547 case RK_UMin: 6548 case RK_UMax: 6549 return true; 6550 case RK_None: 6551 break; 6552 } 6553 llvm_unreachable("Reduction kind is not set"); 6554 } 6555 6556 /// Get the index of the first operand. 6557 unsigned getFirstOperandIndex() const { 6558 assert(!!*this && "The opcode is not set."); 6559 // We allow calling this before 'Kind' is set, so handle that specially. 6560 if (Kind == RK_None) 6561 return 0; 6562 return isMinMax() ? 1 : 0; 6563 } 6564 6565 /// Total number of operands in the reduction operation. 6566 unsigned getNumberOfOperands() const { 6567 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6568 return isMinMax() ? 3 : 2; 6569 } 6570 6571 /// Checks if the instruction is in basic block \p BB. 6572 /// For a min/max reduction check that both compare and select are in \p BB. 6573 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6574 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6575 if (IsRedOp && isMinMax()) { 6576 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6577 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6578 } 6579 return I->getParent() == BB; 6580 } 6581 6582 /// Expected number of uses for reduction operations/reduced values. 6583 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6584 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6585 // SelectInst must be used twice while the condition op must have single 6586 // use only. 6587 if (isMinMax()) 6588 return I->hasNUses(2) && 6589 (!IsReductionOp || 6590 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6591 6592 // Arithmetic reduction operation must be used once only. 6593 return I->hasOneUse(); 6594 } 6595 6596 /// Initializes the list of reduction operations. 6597 void initReductionOps(ReductionOpsListType &ReductionOps) { 6598 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6599 if (isMinMax()) 6600 ReductionOps.assign(2, ReductionOpsType()); 6601 else 6602 ReductionOps.assign(1, ReductionOpsType()); 6603 } 6604 6605 /// Add all reduction operations for the reduction instruction \p I. 6606 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6607 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6608 if (isMinMax()) { 6609 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6610 ReductionOps[1].emplace_back(I); 6611 } else { 6612 ReductionOps[0].emplace_back(I); 6613 } 6614 } 6615 6616 /// Checks if instruction is associative and can be vectorized. 6617 bool isAssociative(Instruction *I) const { 6618 assert(Kind != RK_None && *this && "Expected reduction operation."); 6619 switch (Kind) { 6620 case RK_Arithmetic: 6621 return I->isAssociative(); 6622 case RK_SMin: 6623 case RK_SMax: 6624 case RK_UMin: 6625 case RK_UMax: 6626 assert(Opcode == Instruction::ICmp && 6627 "Only integer compare operation is expected."); 6628 return true; 6629 case RK_None: 6630 break; 6631 } 6632 llvm_unreachable("Reduction kind is not set"); 6633 } 6634 6635 /// Checks if the reduction operation can be vectorized. 6636 bool isVectorizable(Instruction *I) const { 6637 return isVectorizable() && isAssociative(I); 6638 } 6639 6640 /// Checks if two operation data are both a reduction op or both a reduced 6641 /// value. 6642 bool operator==(const OperationData &OD) const { 6643 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6644 "One of the comparing operations is incorrect."); 6645 return Kind == OD.Kind && Opcode == OD.Opcode; 6646 } 6647 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6648 void clear() { 6649 Opcode = 0; 6650 Kind = RK_None; 6651 } 6652 6653 /// Get the opcode of the reduction operation. 6654 unsigned getOpcode() const { 6655 assert(isVectorizable() && "Expected vectorizable operation."); 6656 return Opcode; 6657 } 6658 6659 /// Get kind of reduction data. 6660 ReductionKind getKind() const { return Kind; } 6661 Value *getLHS(Instruction *I) const { 6662 if (Kind == RK_None) 6663 return nullptr; 6664 return I->getOperand(getFirstOperandIndex()); 6665 } 6666 Value *getRHS(Instruction *I) const { 6667 if (Kind == RK_None) 6668 return nullptr; 6669 return I->getOperand(getFirstOperandIndex() + 1); 6670 } 6671 6672 /// Creates reduction operation with the current opcode with the IR flags 6673 /// from \p ReductionOps. 6674 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6675 const Twine &Name, 6676 const ReductionOpsListType &ReductionOps) const { 6677 assert(isVectorizable() && 6678 "Expected add|fadd or min/max reduction operation."); 6679 auto *Op = createOp(Builder, LHS, RHS, Name); 6680 switch (Kind) { 6681 case RK_Arithmetic: 6682 propagateIRFlags(Op, ReductionOps[0]); 6683 return Op; 6684 case RK_SMin: 6685 case RK_SMax: 6686 case RK_UMin: 6687 case RK_UMax: 6688 if (auto *SI = dyn_cast<SelectInst>(Op)) 6689 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6690 propagateIRFlags(Op, ReductionOps[1]); 6691 return Op; 6692 case RK_None: 6693 break; 6694 } 6695 llvm_unreachable("Unknown reduction operation."); 6696 } 6697 /// Creates reduction operation with the current opcode with the IR flags 6698 /// from \p I. 6699 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6700 const Twine &Name, Instruction *I) const { 6701 assert(isVectorizable() && 6702 "Expected add|fadd or min/max reduction operation."); 6703 auto *Op = createOp(Builder, LHS, RHS, Name); 6704 switch (Kind) { 6705 case RK_Arithmetic: 6706 propagateIRFlags(Op, I); 6707 return Op; 6708 case RK_SMin: 6709 case RK_SMax: 6710 case RK_UMin: 6711 case RK_UMax: 6712 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6713 propagateIRFlags(SI->getCondition(), 6714 cast<SelectInst>(I)->getCondition()); 6715 } 6716 propagateIRFlags(Op, I); 6717 return Op; 6718 case RK_None: 6719 break; 6720 } 6721 llvm_unreachable("Unknown reduction operation."); 6722 } 6723 6724 TargetTransformInfo::ReductionFlags getFlags() const { 6725 TargetTransformInfo::ReductionFlags Flags; 6726 switch (Kind) { 6727 case RK_Arithmetic: 6728 break; 6729 case RK_SMin: 6730 Flags.IsSigned = true; 6731 Flags.IsMaxOp = false; 6732 break; 6733 case RK_SMax: 6734 Flags.IsSigned = true; 6735 Flags.IsMaxOp = true; 6736 break; 6737 case RK_UMin: 6738 Flags.IsSigned = false; 6739 Flags.IsMaxOp = false; 6740 break; 6741 case RK_UMax: 6742 Flags.IsSigned = false; 6743 Flags.IsMaxOp = true; 6744 break; 6745 case RK_None: 6746 llvm_unreachable("Reduction kind is not set"); 6747 } 6748 return Flags; 6749 } 6750 }; 6751 6752 WeakTrackingVH ReductionRoot; 6753 6754 /// The operation data of the reduction operation. 6755 OperationData ReductionData; 6756 6757 /// The operation data of the values we perform a reduction on. 6758 OperationData ReducedValueData; 6759 6760 /// Should we model this reduction as a pairwise reduction tree or a tree that 6761 /// splits the vector in halves and adds those halves. 6762 bool IsPairwiseReduction = false; 6763 6764 /// Checks if the ParentStackElem.first should be marked as a reduction 6765 /// operation with an extra argument or as extra argument itself. 6766 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6767 Value *ExtraArg) { 6768 if (ExtraArgs.count(ParentStackElem.first)) { 6769 ExtraArgs[ParentStackElem.first] = nullptr; 6770 // We ran into something like: 6771 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6772 // The whole ParentStackElem.first should be considered as an extra value 6773 // in this case. 6774 // Do not perform analysis of remaining operands of ParentStackElem.first 6775 // instruction, this whole instruction is an extra argument. 6776 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6777 } else { 6778 // We ran into something like: 6779 // ParentStackElem.first += ... + ExtraArg + ... 6780 ExtraArgs[ParentStackElem.first] = ExtraArg; 6781 } 6782 } 6783 6784 static OperationData getOperationData(Instruction *I) { 6785 if (!I) 6786 return OperationData(); 6787 6788 Value *LHS; 6789 Value *RHS; 6790 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6791 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6792 } 6793 if (auto *Select = dyn_cast<SelectInst>(I)) { 6794 // Look for a min/max pattern. 6795 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6796 return OperationData(Instruction::ICmp, RK_UMin); 6797 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6798 return OperationData(Instruction::ICmp, RK_SMin); 6799 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6800 return OperationData(Instruction::ICmp, RK_UMax); 6801 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6802 return OperationData(Instruction::ICmp, RK_SMax); 6803 } else { 6804 // Try harder: look for min/max pattern based on instructions producing 6805 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6806 // During the intermediate stages of SLP, it's very common to have 6807 // pattern like this (since optimizeGatherSequence is run only once 6808 // at the end): 6809 // %1 = extractelement <2 x i32> %a, i32 0 6810 // %2 = extractelement <2 x i32> %a, i32 1 6811 // %cond = icmp sgt i32 %1, %2 6812 // %3 = extractelement <2 x i32> %a, i32 0 6813 // %4 = extractelement <2 x i32> %a, i32 1 6814 // %select = select i1 %cond, i32 %3, i32 %4 6815 CmpInst::Predicate Pred; 6816 Instruction *L1; 6817 Instruction *L2; 6818 6819 LHS = Select->getTrueValue(); 6820 RHS = Select->getFalseValue(); 6821 Value *Cond = Select->getCondition(); 6822 6823 // TODO: Support inverse predicates. 6824 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6825 if (!isa<ExtractElementInst>(RHS) || 6826 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6827 return OperationData(*I); 6828 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6829 if (!isa<ExtractElementInst>(LHS) || 6830 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6831 return OperationData(*I); 6832 } else { 6833 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6834 return OperationData(*I); 6835 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6836 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6837 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6838 return OperationData(*I); 6839 } 6840 switch (Pred) { 6841 default: 6842 return OperationData(*I); 6843 6844 case CmpInst::ICMP_ULT: 6845 case CmpInst::ICMP_ULE: 6846 return OperationData(Instruction::ICmp, RK_UMin); 6847 6848 case CmpInst::ICMP_SLT: 6849 case CmpInst::ICMP_SLE: 6850 return OperationData(Instruction::ICmp, RK_SMin); 6851 6852 case CmpInst::ICMP_UGT: 6853 case CmpInst::ICMP_UGE: 6854 return OperationData(Instruction::ICmp, RK_UMax); 6855 6856 case CmpInst::ICMP_SGT: 6857 case CmpInst::ICMP_SGE: 6858 return OperationData(Instruction::ICmp, RK_SMax); 6859 } 6860 } 6861 } 6862 return OperationData(*I); 6863 } 6864 6865 public: 6866 HorizontalReduction() = default; 6867 6868 /// Try to find a reduction tree. 6869 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6870 assert((!Phi || is_contained(Phi->operands(), B)) && 6871 "Thi phi needs to use the binary operator"); 6872 6873 ReductionData = getOperationData(B); 6874 6875 // We could have a initial reductions that is not an add. 6876 // r *= v1 + v2 + v3 + v4 6877 // In such a case start looking for a tree rooted in the first '+'. 6878 if (Phi) { 6879 if (ReductionData.getLHS(B) == Phi) { 6880 Phi = nullptr; 6881 B = dyn_cast<Instruction>(ReductionData.getRHS(B)); 6882 ReductionData = getOperationData(B); 6883 } else if (ReductionData.getRHS(B) == Phi) { 6884 Phi = nullptr; 6885 B = dyn_cast<Instruction>(ReductionData.getLHS(B)); 6886 ReductionData = getOperationData(B); 6887 } 6888 } 6889 6890 if (!ReductionData.isVectorizable(B)) 6891 return false; 6892 6893 Type *Ty = B->getType(); 6894 if (!isValidElementType(Ty)) 6895 return false; 6896 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6897 return false; 6898 6899 ReducedValueData.clear(); 6900 ReductionRoot = B; 6901 6902 // Post order traverse the reduction tree starting at B. We only handle true 6903 // trees containing only binary operators. 6904 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6905 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6906 ReductionData.initReductionOps(ReductionOps); 6907 while (!Stack.empty()) { 6908 Instruction *TreeN = Stack.back().first; 6909 unsigned EdgeToVist = Stack.back().second++; 6910 OperationData OpData = getOperationData(TreeN); 6911 bool IsReducedValue = OpData != ReductionData; 6912 6913 // Postorder vist. 6914 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6915 if (IsReducedValue) 6916 ReducedVals.push_back(TreeN); 6917 else { 6918 auto I = ExtraArgs.find(TreeN); 6919 if (I != ExtraArgs.end() && !I->second) { 6920 // Check if TreeN is an extra argument of its parent operation. 6921 if (Stack.size() <= 1) { 6922 // TreeN can't be an extra argument as it is a root reduction 6923 // operation. 6924 return false; 6925 } 6926 // Yes, TreeN is an extra argument, do not add it to a list of 6927 // reduction operations. 6928 // Stack[Stack.size() - 2] always points to the parent operation. 6929 markExtraArg(Stack[Stack.size() - 2], TreeN); 6930 ExtraArgs.erase(TreeN); 6931 } else 6932 ReductionData.addReductionOps(TreeN, ReductionOps); 6933 } 6934 // Retract. 6935 Stack.pop_back(); 6936 continue; 6937 } 6938 6939 // Visit left or right. 6940 Value *NextV = TreeN->getOperand(EdgeToVist); 6941 if (NextV != Phi) { 6942 auto *I = dyn_cast<Instruction>(NextV); 6943 OpData = getOperationData(I); 6944 // Continue analysis if the next operand is a reduction operation or 6945 // (possibly) a reduced value. If the reduced value opcode is not set, 6946 // the first met operation != reduction operation is considered as the 6947 // reduced value class. 6948 if (I && (!ReducedValueData || OpData == ReducedValueData || 6949 OpData == ReductionData)) { 6950 const bool IsReductionOperation = OpData == ReductionData; 6951 // Only handle trees in the current basic block. 6952 if (!ReductionData.hasSameParent(I, B->getParent(), 6953 IsReductionOperation)) { 6954 // I is an extra argument for TreeN (its parent operation). 6955 markExtraArg(Stack.back(), I); 6956 continue; 6957 } 6958 6959 // Each tree node needs to have minimal number of users except for the 6960 // ultimate reduction. 6961 if (!ReductionData.hasRequiredNumberOfUses(I, 6962 OpData == ReductionData) && 6963 I != B) { 6964 // I is an extra argument for TreeN (its parent operation). 6965 markExtraArg(Stack.back(), I); 6966 continue; 6967 } 6968 6969 if (IsReductionOperation) { 6970 // We need to be able to reassociate the reduction operations. 6971 if (!OpData.isAssociative(I)) { 6972 // I is an extra argument for TreeN (its parent operation). 6973 markExtraArg(Stack.back(), I); 6974 continue; 6975 } 6976 } else if (ReducedValueData && 6977 ReducedValueData != OpData) { 6978 // Make sure that the opcodes of the operations that we are going to 6979 // reduce match. 6980 // I is an extra argument for TreeN (its parent operation). 6981 markExtraArg(Stack.back(), I); 6982 continue; 6983 } else if (!ReducedValueData) 6984 ReducedValueData = OpData; 6985 6986 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6987 continue; 6988 } 6989 } 6990 // NextV is an extra argument for TreeN (its parent operation). 6991 markExtraArg(Stack.back(), NextV); 6992 } 6993 return true; 6994 } 6995 6996 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6997 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6998 // If there are a sufficient number of reduction values, reduce 6999 // to a nearby power-of-2. We can safely generate oversized 7000 // vectors and rely on the backend to split them to legal sizes. 7001 unsigned NumReducedVals = ReducedVals.size(); 7002 if (NumReducedVals < 4) 7003 return false; 7004 7005 // FIXME: Fast-math-flags should be set based on the instructions in the 7006 // reduction (not all of 'fast' are required). 7007 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7008 FastMathFlags Unsafe; 7009 Unsafe.setFast(); 7010 Builder.setFastMathFlags(Unsafe); 7011 7012 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7013 // The same extra argument may be used several times, so log each attempt 7014 // to use it. 7015 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7016 assert(Pair.first && "DebugLoc must be set."); 7017 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7018 } 7019 7020 // The compare instruction of a min/max is the insertion point for new 7021 // instructions and may be replaced with a new compare instruction. 7022 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7023 assert(isa<SelectInst>(RdxRootInst) && 7024 "Expected min/max reduction to have select root instruction"); 7025 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7026 assert(isa<Instruction>(ScalarCond) && 7027 "Expected min/max reduction to have compare condition"); 7028 return cast<Instruction>(ScalarCond); 7029 }; 7030 7031 // The reduction root is used as the insertion point for new instructions, 7032 // so set it as externally used to prevent it from being deleted. 7033 ExternallyUsedValues[ReductionRoot]; 7034 SmallVector<Value *, 16> IgnoreList; 7035 for (ReductionOpsType &RdxOp : ReductionOps) 7036 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7037 7038 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7039 if (NumReducedVals > ReduxWidth) { 7040 // In the loop below, we are building a tree based on a window of 7041 // 'ReduxWidth' values. 7042 // If the operands of those values have common traits (compare predicate, 7043 // constant operand, etc), then we want to group those together to 7044 // minimize the cost of the reduction. 7045 7046 // TODO: This should be extended to count common operands for 7047 // compares and binops. 7048 7049 // Step 1: Count the number of times each compare predicate occurs. 7050 SmallDenseMap<unsigned, unsigned> PredCountMap; 7051 for (Value *RdxVal : ReducedVals) { 7052 CmpInst::Predicate Pred; 7053 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7054 ++PredCountMap[Pred]; 7055 } 7056 // Step 2: Sort the values so the most common predicates come first. 7057 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7058 CmpInst::Predicate PredA, PredB; 7059 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7060 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7061 return PredCountMap[PredA] > PredCountMap[PredB]; 7062 } 7063 return false; 7064 }); 7065 } 7066 7067 Value *VectorizedTree = nullptr; 7068 unsigned i = 0; 7069 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7070 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7071 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7072 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7073 if (Order) { 7074 assert(Order->size() == VL.size() && 7075 "Order size must be the same as number of vectorized " 7076 "instructions."); 7077 // TODO: reorder tree nodes without tree rebuilding. 7078 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7079 llvm::transform(*Order, ReorderedOps.begin(), 7080 [VL](const unsigned Idx) { return VL[Idx]; }); 7081 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7082 } 7083 if (V.isTreeTinyAndNotFullyVectorizable()) 7084 break; 7085 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 7086 break; 7087 7088 V.computeMinimumValueSizes(); 7089 7090 // Estimate cost. 7091 int TreeCost = V.getTreeCost(); 7092 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7093 int Cost = TreeCost + ReductionCost; 7094 if (Cost >= -SLPCostThreshold) { 7095 V.getORE()->emit([&]() { 7096 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7097 cast<Instruction>(VL[0])) 7098 << "Vectorizing horizontal reduction is possible" 7099 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7100 << " and threshold " 7101 << ore::NV("Threshold", -SLPCostThreshold); 7102 }); 7103 break; 7104 } 7105 7106 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7107 << Cost << ". (HorRdx)\n"); 7108 V.getORE()->emit([&]() { 7109 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7110 cast<Instruction>(VL[0])) 7111 << "Vectorized horizontal reduction with cost " 7112 << ore::NV("Cost", Cost) << " and with tree size " 7113 << ore::NV("TreeSize", V.getTreeSize()); 7114 }); 7115 7116 // Vectorize a tree. 7117 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7118 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7119 7120 // Emit a reduction. For min/max, the root is a select, but the insertion 7121 // point is the compare condition of that select. 7122 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7123 if (ReductionData.isMinMax()) 7124 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7125 else 7126 Builder.SetInsertPoint(RdxRootInst); 7127 7128 Value *ReducedSubTree = 7129 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7130 7131 if (!VectorizedTree) { 7132 // Initialize the final value in the reduction. 7133 VectorizedTree = ReducedSubTree; 7134 } else { 7135 // Update the final value in the reduction. 7136 Builder.SetCurrentDebugLocation(Loc); 7137 VectorizedTree = ReductionData.createOp( 7138 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7139 } 7140 i += ReduxWidth; 7141 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7142 } 7143 7144 if (VectorizedTree) { 7145 // Finish the reduction. 7146 for (; i < NumReducedVals; ++i) { 7147 auto *I = cast<Instruction>(ReducedVals[i]); 7148 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7149 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "", 7150 ReductionOps); 7151 } 7152 for (auto &Pair : ExternallyUsedValues) { 7153 // Add each externally used value to the final reduction. 7154 for (auto *I : Pair.second) { 7155 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7156 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, 7157 Pair.first, "op.extra", I); 7158 } 7159 } 7160 7161 // Update users. For a min/max reduction that ends with a compare and 7162 // select, we also have to RAUW for the compare instruction feeding the 7163 // reduction root. That's because the original compare may have extra uses 7164 // besides the final select of the reduction. 7165 if (ReductionData.isMinMax()) { 7166 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7167 Instruction *ScalarCmp = 7168 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7169 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7170 } 7171 } 7172 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7173 7174 // Mark all scalar reduction ops for deletion, they are replaced by the 7175 // vector reductions. 7176 V.eraseInstructions(IgnoreList); 7177 } 7178 return VectorizedTree != nullptr; 7179 } 7180 7181 unsigned numReductionValues() const { 7182 return ReducedVals.size(); 7183 } 7184 7185 private: 7186 /// Calculate the cost of a reduction. 7187 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7188 unsigned ReduxWidth) { 7189 Type *ScalarTy = FirstReducedVal->getType(); 7190 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7191 7192 int PairwiseRdxCost; 7193 int SplittingRdxCost; 7194 switch (ReductionData.getKind()) { 7195 case RK_Arithmetic: 7196 PairwiseRdxCost = 7197 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7198 /*IsPairwiseForm=*/true); 7199 SplittingRdxCost = 7200 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7201 /*IsPairwiseForm=*/false); 7202 break; 7203 case RK_SMin: 7204 case RK_SMax: 7205 case RK_UMin: 7206 case RK_UMax: { 7207 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7208 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7209 ReductionData.getKind() == RK_UMax; 7210 PairwiseRdxCost = 7211 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7212 /*IsPairwiseForm=*/true, IsUnsigned); 7213 SplittingRdxCost = 7214 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7215 /*IsPairwiseForm=*/false, IsUnsigned); 7216 break; 7217 } 7218 case RK_None: 7219 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7220 } 7221 7222 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7223 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7224 7225 int ScalarReduxCost = 0; 7226 switch (ReductionData.getKind()) { 7227 case RK_Arithmetic: 7228 ScalarReduxCost = 7229 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7230 break; 7231 case RK_SMin: 7232 case RK_SMax: 7233 case RK_UMin: 7234 case RK_UMax: 7235 ScalarReduxCost = 7236 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7237 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7238 CmpInst::makeCmpResultType(ScalarTy)); 7239 break; 7240 case RK_None: 7241 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7242 } 7243 ScalarReduxCost *= (ReduxWidth - 1); 7244 7245 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7246 << " for reduction that starts with " << *FirstReducedVal 7247 << " (It is a " 7248 << (IsPairwiseReduction ? "pairwise" : "splitting") 7249 << " reduction)\n"); 7250 7251 return VecReduxCost - ScalarReduxCost; 7252 } 7253 7254 /// Emit a horizontal reduction of the vectorized value. 7255 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7256 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7257 assert(VectorizedValue && "Need to have a vectorized tree node"); 7258 assert(isPowerOf2_32(ReduxWidth) && 7259 "We only handle power-of-two reductions for now"); 7260 7261 if (!IsPairwiseReduction) { 7262 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7263 // to 'fast'. 7264 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7265 return createSimpleTargetReduction( 7266 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7267 ReductionData.getFlags(), ReductionOps.back()); 7268 } 7269 7270 Value *TmpVec = VectorizedValue; 7271 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7272 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7273 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7274 7275 Value *LeftShuf = 7276 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7277 Value *RightShuf = 7278 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7279 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7280 ReductionOps); 7281 } 7282 7283 // The result is in the first element of the vector. 7284 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7285 } 7286 }; 7287 7288 } // end anonymous namespace 7289 7290 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7291 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7292 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7293 7294 unsigned AggregateSize = 1; 7295 auto *IV = cast<InsertValueInst>(InsertInst); 7296 Type *CurrentType = IV->getType(); 7297 do { 7298 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7299 for (auto *Elt : ST->elements()) 7300 if (Elt != ST->getElementType(0)) // check homogeneity 7301 return None; 7302 AggregateSize *= ST->getNumElements(); 7303 CurrentType = ST->getElementType(0); 7304 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7305 AggregateSize *= AT->getNumElements(); 7306 CurrentType = AT->getElementType(); 7307 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7308 AggregateSize *= VT->getNumElements(); 7309 return AggregateSize; 7310 } else if (CurrentType->isSingleValueType()) { 7311 return AggregateSize; 7312 } else { 7313 return None; 7314 } 7315 } while (true); 7316 } 7317 7318 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7319 unsigned OperandOffset) { 7320 unsigned OperandIndex = OperandOffset; 7321 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7322 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7323 auto *VT = cast<FixedVectorType>(IE->getType()); 7324 OperandIndex *= VT->getNumElements(); 7325 OperandIndex += CI->getZExtValue(); 7326 return OperandIndex; 7327 } 7328 return None; 7329 } 7330 7331 auto *IV = cast<InsertValueInst>(InsertInst); 7332 Type *CurrentType = IV->getType(); 7333 for (unsigned int Index : IV->indices()) { 7334 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7335 OperandIndex *= ST->getNumElements(); 7336 CurrentType = ST->getElementType(Index); 7337 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7338 OperandIndex *= AT->getNumElements(); 7339 CurrentType = AT->getElementType(); 7340 } else { 7341 return None; 7342 } 7343 OperandIndex += Index; 7344 } 7345 return OperandIndex; 7346 } 7347 7348 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7349 TargetTransformInfo *TTI, 7350 SmallVectorImpl<Value *> &BuildVectorOpds, 7351 SmallVectorImpl<Value *> &InsertElts, 7352 unsigned OperandOffset) { 7353 do { 7354 Value *InsertedOperand = LastInsertInst->getOperand(1); 7355 Optional<unsigned> OperandIndex = 7356 getOperandIndex(LastInsertInst, OperandOffset); 7357 if (!OperandIndex) 7358 return false; 7359 if (isa<InsertElementInst>(InsertedOperand) || 7360 isa<InsertValueInst>(InsertedOperand)) { 7361 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7362 BuildVectorOpds, InsertElts, *OperandIndex)) 7363 return false; 7364 } else { 7365 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7366 InsertElts[*OperandIndex] = LastInsertInst; 7367 } 7368 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7369 return true; 7370 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7371 } while (LastInsertInst != nullptr && 7372 (isa<InsertValueInst>(LastInsertInst) || 7373 isa<InsertElementInst>(LastInsertInst)) && 7374 LastInsertInst->hasOneUse()); 7375 return false; 7376 } 7377 7378 /// Recognize construction of vectors like 7379 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7380 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7381 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7382 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7383 /// starting from the last insertelement or insertvalue instruction. 7384 /// 7385 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7386 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7387 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7388 /// 7389 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7390 /// 7391 /// \return true if it matches. 7392 static bool findBuildAggregate(Instruction *LastInsertInst, 7393 TargetTransformInfo *TTI, 7394 SmallVectorImpl<Value *> &BuildVectorOpds, 7395 SmallVectorImpl<Value *> &InsertElts) { 7396 7397 assert((isa<InsertElementInst>(LastInsertInst) || 7398 isa<InsertValueInst>(LastInsertInst)) && 7399 "Expected insertelement or insertvalue instruction!"); 7400 7401 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7402 "Expected empty result vectors!"); 7403 7404 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7405 if (!AggregateSize) 7406 return false; 7407 BuildVectorOpds.resize(*AggregateSize); 7408 InsertElts.resize(*AggregateSize); 7409 7410 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7411 0)) { 7412 llvm::erase_value(BuildVectorOpds, nullptr); 7413 llvm::erase_value(InsertElts, nullptr); 7414 if (BuildVectorOpds.size() >= 2) 7415 return true; 7416 } 7417 7418 return false; 7419 } 7420 7421 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7422 return V->getType() < V2->getType(); 7423 } 7424 7425 /// Try and get a reduction value from a phi node. 7426 /// 7427 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7428 /// if they come from either \p ParentBB or a containing loop latch. 7429 /// 7430 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7431 /// if not possible. 7432 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7433 BasicBlock *ParentBB, LoopInfo *LI) { 7434 // There are situations where the reduction value is not dominated by the 7435 // reduction phi. Vectorizing such cases has been reported to cause 7436 // miscompiles. See PR25787. 7437 auto DominatedReduxValue = [&](Value *R) { 7438 return isa<Instruction>(R) && 7439 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7440 }; 7441 7442 Value *Rdx = nullptr; 7443 7444 // Return the incoming value if it comes from the same BB as the phi node. 7445 if (P->getIncomingBlock(0) == ParentBB) { 7446 Rdx = P->getIncomingValue(0); 7447 } else if (P->getIncomingBlock(1) == ParentBB) { 7448 Rdx = P->getIncomingValue(1); 7449 } 7450 7451 if (Rdx && DominatedReduxValue(Rdx)) 7452 return Rdx; 7453 7454 // Otherwise, check whether we have a loop latch to look at. 7455 Loop *BBL = LI->getLoopFor(ParentBB); 7456 if (!BBL) 7457 return nullptr; 7458 BasicBlock *BBLatch = BBL->getLoopLatch(); 7459 if (!BBLatch) 7460 return nullptr; 7461 7462 // There is a loop latch, return the incoming value if it comes from 7463 // that. This reduction pattern occasionally turns up. 7464 if (P->getIncomingBlock(0) == BBLatch) { 7465 Rdx = P->getIncomingValue(0); 7466 } else if (P->getIncomingBlock(1) == BBLatch) { 7467 Rdx = P->getIncomingValue(1); 7468 } 7469 7470 if (Rdx && DominatedReduxValue(Rdx)) 7471 return Rdx; 7472 7473 return nullptr; 7474 } 7475 7476 /// Attempt to reduce a horizontal reduction. 7477 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7478 /// with reduction operators \a Root (or one of its operands) in a basic block 7479 /// \a BB, then check if it can be done. If horizontal reduction is not found 7480 /// and root instruction is a binary operation, vectorization of the operands is 7481 /// attempted. 7482 /// \returns true if a horizontal reduction was matched and reduced or operands 7483 /// of one of the binary instruction were vectorized. 7484 /// \returns false if a horizontal reduction was not matched (or not possible) 7485 /// or no vectorization of any binary operation feeding \a Root instruction was 7486 /// performed. 7487 static bool tryToVectorizeHorReductionOrInstOperands( 7488 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7489 TargetTransformInfo *TTI, 7490 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7491 if (!ShouldVectorizeHor) 7492 return false; 7493 7494 if (!Root) 7495 return false; 7496 7497 if (Root->getParent() != BB || isa<PHINode>(Root)) 7498 return false; 7499 // Start analysis starting from Root instruction. If horizontal reduction is 7500 // found, try to vectorize it. If it is not a horizontal reduction or 7501 // vectorization is not possible or not effective, and currently analyzed 7502 // instruction is a binary operation, try to vectorize the operands, using 7503 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7504 // the same procedure considering each operand as a possible root of the 7505 // horizontal reduction. 7506 // Interrupt the process if the Root instruction itself was vectorized or all 7507 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7508 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7509 SmallPtrSet<Value *, 8> VisitedInstrs; 7510 bool Res = false; 7511 while (!Stack.empty()) { 7512 Instruction *Inst; 7513 unsigned Level; 7514 std::tie(Inst, Level) = Stack.pop_back_val(); 7515 Value *B0, *B1; 7516 bool IsBinop = match(Inst, m_BinOp(m_Value(B0), m_Value(B1))); 7517 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7518 if (IsBinop || IsSelect) { 7519 HorizontalReduction HorRdx; 7520 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7521 if (HorRdx.tryToReduce(R, TTI)) { 7522 Res = true; 7523 // Set P to nullptr to avoid re-analysis of phi node in 7524 // matchAssociativeReduction function unless this is the root node. 7525 P = nullptr; 7526 continue; 7527 } 7528 } 7529 if (P && IsBinop) { 7530 Inst = dyn_cast<Instruction>(B0); 7531 if (Inst == P) 7532 Inst = dyn_cast<Instruction>(B1); 7533 if (!Inst) { 7534 // Set P to nullptr to avoid re-analysis of phi node in 7535 // matchAssociativeReduction function unless this is the root node. 7536 P = nullptr; 7537 continue; 7538 } 7539 } 7540 } 7541 // Set P to nullptr to avoid re-analysis of phi node in 7542 // matchAssociativeReduction function unless this is the root node. 7543 P = nullptr; 7544 if (Vectorize(Inst, R)) { 7545 Res = true; 7546 continue; 7547 } 7548 7549 // Try to vectorize operands. 7550 // Continue analysis for the instruction from the same basic block only to 7551 // save compile time. 7552 if (++Level < RecursionMaxDepth) 7553 for (auto *Op : Inst->operand_values()) 7554 if (VisitedInstrs.insert(Op).second) 7555 if (auto *I = dyn_cast<Instruction>(Op)) 7556 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7557 Stack.emplace_back(I, Level); 7558 } 7559 return Res; 7560 } 7561 7562 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7563 BasicBlock *BB, BoUpSLP &R, 7564 TargetTransformInfo *TTI) { 7565 auto *I = dyn_cast_or_null<Instruction>(V); 7566 if (!I) 7567 return false; 7568 7569 if (!isa<BinaryOperator>(I)) 7570 P = nullptr; 7571 // Try to match and vectorize a horizontal reduction. 7572 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7573 return tryToVectorize(I, R); 7574 }; 7575 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7576 ExtraVectorization); 7577 } 7578 7579 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7580 BasicBlock *BB, BoUpSLP &R) { 7581 const DataLayout &DL = BB->getModule()->getDataLayout(); 7582 if (!R.canMapToVector(IVI->getType(), DL)) 7583 return false; 7584 7585 SmallVector<Value *, 16> BuildVectorOpds; 7586 SmallVector<Value *, 16> BuildVectorInsts; 7587 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7588 return false; 7589 7590 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7591 // Aggregate value is unlikely to be processed in vector register, we need to 7592 // extract scalars into scalar registers, so NeedExtraction is set true. 7593 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7594 BuildVectorInsts); 7595 } 7596 7597 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7598 BasicBlock *BB, BoUpSLP &R) { 7599 SmallVector<Value *, 16> BuildVectorInsts; 7600 SmallVector<Value *, 16> BuildVectorOpds; 7601 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7602 (llvm::all_of(BuildVectorOpds, 7603 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7604 isShuffle(BuildVectorOpds))) 7605 return false; 7606 7607 // Vectorize starting with the build vector operands ignoring the BuildVector 7608 // instructions for the purpose of scheduling and user extraction. 7609 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7610 BuildVectorInsts); 7611 } 7612 7613 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7614 BoUpSLP &R) { 7615 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7616 return true; 7617 7618 bool OpsChanged = false; 7619 for (int Idx = 0; Idx < 2; ++Idx) { 7620 OpsChanged |= 7621 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7622 } 7623 return OpsChanged; 7624 } 7625 7626 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7627 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7628 bool OpsChanged = false; 7629 for (auto *I : reverse(Instructions)) { 7630 if (R.isDeleted(I)) 7631 continue; 7632 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7633 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7634 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7635 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7636 else if (auto *CI = dyn_cast<CmpInst>(I)) 7637 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7638 } 7639 Instructions.clear(); 7640 return OpsChanged; 7641 } 7642 7643 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7644 bool Changed = false; 7645 SmallVector<Value *, 4> Incoming; 7646 SmallPtrSet<Value *, 16> VisitedInstrs; 7647 7648 bool HaveVectorizedPhiNodes = true; 7649 while (HaveVectorizedPhiNodes) { 7650 HaveVectorizedPhiNodes = false; 7651 7652 // Collect the incoming values from the PHIs. 7653 Incoming.clear(); 7654 for (Instruction &I : *BB) { 7655 PHINode *P = dyn_cast<PHINode>(&I); 7656 if (!P) 7657 break; 7658 7659 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7660 Incoming.push_back(P); 7661 } 7662 7663 // Sort by type. 7664 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7665 7666 // Try to vectorize elements base on their type. 7667 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7668 E = Incoming.end(); 7669 IncIt != E;) { 7670 7671 // Look for the next elements with the same type. 7672 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7673 while (SameTypeIt != E && 7674 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7675 VisitedInstrs.insert(*SameTypeIt); 7676 ++SameTypeIt; 7677 } 7678 7679 // Try to vectorize them. 7680 unsigned NumElts = (SameTypeIt - IncIt); 7681 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7682 << NumElts << ")\n"); 7683 // The order in which the phi nodes appear in the program does not matter. 7684 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7685 // is done when there are exactly two elements since tryToVectorizeList 7686 // asserts that there are only two values when AllowReorder is true. 7687 bool AllowReorder = NumElts == 2; 7688 if (NumElts > 1 && 7689 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7690 // Success start over because instructions might have been changed. 7691 HaveVectorizedPhiNodes = true; 7692 Changed = true; 7693 break; 7694 } 7695 7696 // Start over at the next instruction of a different type (or the end). 7697 IncIt = SameTypeIt; 7698 } 7699 } 7700 7701 VisitedInstrs.clear(); 7702 7703 SmallVector<Instruction *, 8> PostProcessInstructions; 7704 SmallDenseSet<Instruction *, 4> KeyNodes; 7705 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7706 // Skip instructions with scalable type. The num of elements is unknown at 7707 // compile-time for scalable type. 7708 if (isa<ScalableVectorType>(it->getType())) 7709 continue; 7710 7711 // Skip instructions marked for the deletion. 7712 if (R.isDeleted(&*it)) 7713 continue; 7714 // We may go through BB multiple times so skip the one we have checked. 7715 if (!VisitedInstrs.insert(&*it).second) { 7716 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7717 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7718 // We would like to start over since some instructions are deleted 7719 // and the iterator may become invalid value. 7720 Changed = true; 7721 it = BB->begin(); 7722 e = BB->end(); 7723 } 7724 continue; 7725 } 7726 7727 if (isa<DbgInfoIntrinsic>(it)) 7728 continue; 7729 7730 // Try to vectorize reductions that use PHINodes. 7731 if (PHINode *P = dyn_cast<PHINode>(it)) { 7732 // Check that the PHI is a reduction PHI. 7733 if (P->getNumIncomingValues() == 2) { 7734 // Try to match and vectorize a horizontal reduction. 7735 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7736 TTI)) { 7737 Changed = true; 7738 it = BB->begin(); 7739 e = BB->end(); 7740 continue; 7741 } 7742 } 7743 // Try to vectorize the incoming values of the PHI, to catch reductions 7744 // that feed into PHIs. 7745 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7746 // Skip if the incoming block is the current BB for now. Also, bypass 7747 // unreachable IR for efficiency and to avoid crashing. 7748 // TODO: Collect the skipped incoming values and try to vectorize them 7749 // after processing BB. 7750 if (BB == P->getIncomingBlock(I) || 7751 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7752 continue; 7753 7754 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7755 P->getIncomingBlock(I), R, TTI); 7756 } 7757 continue; 7758 } 7759 7760 // Ran into an instruction without users, like terminator, or function call 7761 // with ignored return value, store. Ignore unused instructions (basing on 7762 // instruction type, except for CallInst and InvokeInst). 7763 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7764 isa<InvokeInst>(it))) { 7765 KeyNodes.insert(&*it); 7766 bool OpsChanged = false; 7767 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7768 for (auto *V : it->operand_values()) { 7769 // Try to match and vectorize a horizontal reduction. 7770 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7771 } 7772 } 7773 // Start vectorization of post-process list of instructions from the 7774 // top-tree instructions to try to vectorize as many instructions as 7775 // possible. 7776 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7777 if (OpsChanged) { 7778 // We would like to start over since some instructions are deleted 7779 // and the iterator may become invalid value. 7780 Changed = true; 7781 it = BB->begin(); 7782 e = BB->end(); 7783 continue; 7784 } 7785 } 7786 7787 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7788 isa<InsertValueInst>(it)) 7789 PostProcessInstructions.push_back(&*it); 7790 } 7791 7792 return Changed; 7793 } 7794 7795 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7796 auto Changed = false; 7797 for (auto &Entry : GEPs) { 7798 // If the getelementptr list has fewer than two elements, there's nothing 7799 // to do. 7800 if (Entry.second.size() < 2) 7801 continue; 7802 7803 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7804 << Entry.second.size() << ".\n"); 7805 7806 // Process the GEP list in chunks suitable for the target's supported 7807 // vector size. If a vector register can't hold 1 element, we are done. We 7808 // are trying to vectorize the index computations, so the maximum number of 7809 // elements is based on the size of the index expression, rather than the 7810 // size of the GEP itself (the target's pointer size). 7811 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7812 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7813 if (MaxVecRegSize < EltSize) 7814 continue; 7815 7816 unsigned MaxElts = MaxVecRegSize / EltSize; 7817 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7818 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7819 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7820 7821 // Initialize a set a candidate getelementptrs. Note that we use a 7822 // SetVector here to preserve program order. If the index computations 7823 // are vectorizable and begin with loads, we want to minimize the chance 7824 // of having to reorder them later. 7825 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7826 7827 // Some of the candidates may have already been vectorized after we 7828 // initially collected them. If so, they are marked as deleted, so remove 7829 // them from the set of candidates. 7830 Candidates.remove_if( 7831 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7832 7833 // Remove from the set of candidates all pairs of getelementptrs with 7834 // constant differences. Such getelementptrs are likely not good 7835 // candidates for vectorization in a bottom-up phase since one can be 7836 // computed from the other. We also ensure all candidate getelementptr 7837 // indices are unique. 7838 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7839 auto *GEPI = GEPList[I]; 7840 if (!Candidates.count(GEPI)) 7841 continue; 7842 auto *SCEVI = SE->getSCEV(GEPList[I]); 7843 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7844 auto *GEPJ = GEPList[J]; 7845 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7846 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7847 Candidates.remove(GEPI); 7848 Candidates.remove(GEPJ); 7849 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7850 Candidates.remove(GEPJ); 7851 } 7852 } 7853 } 7854 7855 // We break out of the above computation as soon as we know there are 7856 // fewer than two candidates remaining. 7857 if (Candidates.size() < 2) 7858 continue; 7859 7860 // Add the single, non-constant index of each candidate to the bundle. We 7861 // ensured the indices met these constraints when we originally collected 7862 // the getelementptrs. 7863 SmallVector<Value *, 16> Bundle(Candidates.size()); 7864 auto BundleIndex = 0u; 7865 for (auto *V : Candidates) { 7866 auto *GEP = cast<GetElementPtrInst>(V); 7867 auto *GEPIdx = GEP->idx_begin()->get(); 7868 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7869 Bundle[BundleIndex++] = GEPIdx; 7870 } 7871 7872 // Try and vectorize the indices. We are currently only interested in 7873 // gather-like cases of the form: 7874 // 7875 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7876 // 7877 // where the loads of "a", the loads of "b", and the subtractions can be 7878 // performed in parallel. It's likely that detecting this pattern in a 7879 // bottom-up phase will be simpler and less costly than building a 7880 // full-blown top-down phase beginning at the consecutive loads. 7881 Changed |= tryToVectorizeList(Bundle, R); 7882 } 7883 } 7884 return Changed; 7885 } 7886 7887 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7888 bool Changed = false; 7889 // Attempt to sort and vectorize each of the store-groups. 7890 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7891 ++it) { 7892 if (it->second.size() < 2) 7893 continue; 7894 7895 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7896 << it->second.size() << ".\n"); 7897 7898 Changed |= vectorizeStores(it->second, R); 7899 } 7900 return Changed; 7901 } 7902 7903 char SLPVectorizer::ID = 0; 7904 7905 static const char lv_name[] = "SLP Vectorizer"; 7906 7907 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7908 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7909 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7910 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7911 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7912 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7913 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7914 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7915 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7916 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7917 7918 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7919