1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallBitVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/DOTGraphTraits.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/GraphWriter.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <memory>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 using namespace slpvectorizer;
105 
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
108 
109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
110 
111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112                                   cl::desc("Run the SLP vectorization passes"));
113 
114 static cl::opt<int>
115     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                      cl::desc("Only vectorize if you gain more than this "
117                               "number "));
118 
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                    cl::desc("Attempt to vectorize horizontal reductions"));
122 
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125     cl::desc(
126         "Attempt to vectorize horizontal reductions feeding into a store"));
127 
128 static cl::opt<int>
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130     cl::desc("Attempt to vectorize for this register size in bits"));
131 
132 static cl::opt<int>
133 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
134     cl::desc("Maximum depth of the lookup for consecutive stores."));
135 
136 /// Limits the size of scheduling regions in a block.
137 /// It avoid long compile times for _very_ large blocks where vector
138 /// instructions are spread over a wide range.
139 /// This limit is way higher than needed by real-world functions.
140 static cl::opt<int>
141 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
142     cl::desc("Limit the size of the SLP scheduling region per block"));
143 
144 static cl::opt<int> MinVectorRegSizeOption(
145     "slp-min-reg-size", cl::init(128), cl::Hidden,
146     cl::desc("Attempt to vectorize for this register size in bits"));
147 
148 static cl::opt<unsigned> RecursionMaxDepth(
149     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
150     cl::desc("Limit the recursion depth when building a vectorizable tree"));
151 
152 static cl::opt<unsigned> MinTreeSize(
153     "slp-min-tree-size", cl::init(3), cl::Hidden,
154     cl::desc("Only vectorize small trees if they are fully vectorizable"));
155 
156 // The maximum depth that the look-ahead score heuristic will explore.
157 // The higher this value, the higher the compilation time overhead.
158 static cl::opt<int> LookAheadMaxDepth(
159     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
160     cl::desc("The maximum look-ahead depth for operand reordering scores"));
161 
162 // The Look-ahead heuristic goes through the users of the bundle to calculate
163 // the users cost in getExternalUsesCost(). To avoid compilation time increase
164 // we limit the number of users visited to this value.
165 static cl::opt<unsigned> LookAheadUsersBudget(
166     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
167     cl::desc("The maximum number of users to visit while visiting the "
168              "predecessors. This prevents compilation time increase."));
169 
170 static cl::opt<bool>
171     ViewSLPTree("view-slp-tree", cl::Hidden,
172                 cl::desc("Display the SLP trees with Graphviz"));
173 
174 // Limit the number of alias checks. The limit is chosen so that
175 // it has no negative effect on the llvm benchmarks.
176 static const unsigned AliasedCheckLimit = 10;
177 
178 // Another limit for the alias checks: The maximum distance between load/store
179 // instructions where alias checks are done.
180 // This limit is useful for very large basic blocks.
181 static const unsigned MaxMemDepDistance = 160;
182 
183 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
184 /// regions to be handled.
185 static const int MinScheduleRegionSize = 16;
186 
187 /// Predicate for the element types that the SLP vectorizer supports.
188 ///
189 /// The most important thing to filter here are types which are invalid in LLVM
190 /// vectors. We also filter target specific types which have absolutely no
191 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
192 /// avoids spending time checking the cost model and realizing that they will
193 /// be inevitably scalarized.
194 static bool isValidElementType(Type *Ty) {
195   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
196          !Ty->isPPC_FP128Ty();
197 }
198 
199 /// \returns true if all of the instructions in \p VL are in the same block or
200 /// false otherwise.
201 static bool allSameBlock(ArrayRef<Value *> VL) {
202   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
203   if (!I0)
204     return false;
205   BasicBlock *BB = I0->getParent();
206   for (int i = 1, e = VL.size(); i < e; i++) {
207     Instruction *I = dyn_cast<Instruction>(VL[i]);
208     if (!I)
209       return false;
210 
211     if (BB != I->getParent())
212       return false;
213   }
214   return true;
215 }
216 
217 /// \returns True if all of the values in \p VL are constants (but not
218 /// globals/constant expressions).
219 static bool allConstant(ArrayRef<Value *> VL) {
220   // Constant expressions and globals can't be vectorized like normal integer/FP
221   // constants.
222   for (Value *i : VL)
223     if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
224       return false;
225   return true;
226 }
227 
228 /// \returns True if all of the values in \p VL are identical.
229 static bool isSplat(ArrayRef<Value *> VL) {
230   for (unsigned i = 1, e = VL.size(); i < e; ++i)
231     if (VL[i] != VL[0])
232       return false;
233   return true;
234 }
235 
236 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
237 static bool isCommutative(Instruction *I) {
238   if (auto *IC = dyn_cast<CmpInst>(I))
239     return IC->isCommutative();
240   return I->isCommutative();
241 }
242 
243 /// Checks if the vector of instructions can be represented as a shuffle, like:
244 /// %x0 = extractelement <4 x i8> %x, i32 0
245 /// %x3 = extractelement <4 x i8> %x, i32 3
246 /// %y1 = extractelement <4 x i8> %y, i32 1
247 /// %y2 = extractelement <4 x i8> %y, i32 2
248 /// %x0x0 = mul i8 %x0, %x0
249 /// %x3x3 = mul i8 %x3, %x3
250 /// %y1y1 = mul i8 %y1, %y1
251 /// %y2y2 = mul i8 %y2, %y2
252 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
253 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
255 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
256 /// ret <4 x i8> %ins4
257 /// can be transformed into:
258 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
259 ///                                                         i32 6>
260 /// %2 = mul <4 x i8> %1, %1
261 /// ret <4 x i8> %2
262 /// We convert this initially to something like:
263 /// %x0 = extractelement <4 x i8> %x, i32 0
264 /// %x3 = extractelement <4 x i8> %x, i32 3
265 /// %y1 = extractelement <4 x i8> %y, i32 1
266 /// %y2 = extractelement <4 x i8> %y, i32 2
267 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
268 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
269 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
270 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
271 /// %5 = mul <4 x i8> %4, %4
272 /// %6 = extractelement <4 x i8> %5, i32 0
273 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
274 /// %7 = extractelement <4 x i8> %5, i32 1
275 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
276 /// %8 = extractelement <4 x i8> %5, i32 2
277 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
278 /// %9 = extractelement <4 x i8> %5, i32 3
279 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
280 /// ret <4 x i8> %ins4
281 /// InstCombiner transforms this into a shuffle and vector mul
282 /// TODO: Can we split off and reuse the shuffle mask detection from
283 /// TargetTransformInfo::getInstructionThroughput?
284 static Optional<TargetTransformInfo::ShuffleKind>
285 isShuffle(ArrayRef<Value *> VL) {
286   auto *EI0 = cast<ExtractElementInst>(VL[0]);
287   unsigned Size = EI0->getVectorOperandType()->getNumElements();
288   Value *Vec1 = nullptr;
289   Value *Vec2 = nullptr;
290   enum ShuffleMode { Unknown, Select, Permute };
291   ShuffleMode CommonShuffleMode = Unknown;
292   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
293     auto *EI = cast<ExtractElementInst>(VL[I]);
294     auto *Vec = EI->getVectorOperand();
295     // All vector operands must have the same number of vector elements.
296     if (cast<VectorType>(Vec->getType())->getNumElements() != Size)
297       return None;
298     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
299     if (!Idx)
300       return None;
301     // Undefined behavior if Idx is negative or >= Size.
302     if (Idx->getValue().uge(Size))
303       continue;
304     unsigned IntIdx = Idx->getValue().getZExtValue();
305     // We can extractelement from undef vector.
306     if (isa<UndefValue>(Vec))
307       continue;
308     // For correct shuffling we have to have at most 2 different vector operands
309     // in all extractelement instructions.
310     if (!Vec1 || Vec1 == Vec)
311       Vec1 = Vec;
312     else if (!Vec2 || Vec2 == Vec)
313       Vec2 = Vec;
314     else
315       return None;
316     if (CommonShuffleMode == Permute)
317       continue;
318     // If the extract index is not the same as the operation number, it is a
319     // permutation.
320     if (IntIdx != I) {
321       CommonShuffleMode = Permute;
322       continue;
323     }
324     CommonShuffleMode = Select;
325   }
326   // If we're not crossing lanes in different vectors, consider it as blending.
327   if (CommonShuffleMode == Select && Vec2)
328     return TargetTransformInfo::SK_Select;
329   // If Vec2 was never used, we have a permutation of a single vector, otherwise
330   // we have permutation of 2 vectors.
331   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
332               : TargetTransformInfo::SK_PermuteSingleSrc;
333 }
334 
335 namespace {
336 
337 /// Main data required for vectorization of instructions.
338 struct InstructionsState {
339   /// The very first instruction in the list with the main opcode.
340   Value *OpValue = nullptr;
341 
342   /// The main/alternate instruction.
343   Instruction *MainOp = nullptr;
344   Instruction *AltOp = nullptr;
345 
346   /// The main/alternate opcodes for the list of instructions.
347   unsigned getOpcode() const {
348     return MainOp ? MainOp->getOpcode() : 0;
349   }
350 
351   unsigned getAltOpcode() const {
352     return AltOp ? AltOp->getOpcode() : 0;
353   }
354 
355   /// Some of the instructions in the list have alternate opcodes.
356   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
357 
358   bool isOpcodeOrAlt(Instruction *I) const {
359     unsigned CheckedOpcode = I->getOpcode();
360     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
361   }
362 
363   InstructionsState() = delete;
364   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
365       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
366 };
367 
368 } // end anonymous namespace
369 
370 /// Chooses the correct key for scheduling data. If \p Op has the same (or
371 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
372 /// OpValue.
373 static Value *isOneOf(const InstructionsState &S, Value *Op) {
374   auto *I = dyn_cast<Instruction>(Op);
375   if (I && S.isOpcodeOrAlt(I))
376     return Op;
377   return S.OpValue;
378 }
379 
380 /// \returns true if \p Opcode is allowed as part of of the main/alternate
381 /// instruction for SLP vectorization.
382 ///
383 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
384 /// "shuffled out" lane would result in division by zero.
385 static bool isValidForAlternation(unsigned Opcode) {
386   if (Instruction::isIntDivRem(Opcode))
387     return false;
388 
389   return true;
390 }
391 
392 /// \returns analysis of the Instructions in \p VL described in
393 /// InstructionsState, the Opcode that we suppose the whole list
394 /// could be vectorized even if its structure is diverse.
395 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
396                                        unsigned BaseIndex = 0) {
397   // Make sure these are all Instructions.
398   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
399     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
400 
401   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
402   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
403   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
404   unsigned AltOpcode = Opcode;
405   unsigned AltIndex = BaseIndex;
406 
407   // Check for one alternate opcode from another BinaryOperator.
408   // TODO - generalize to support all operators (types, calls etc.).
409   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
410     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
411     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
412       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
413         continue;
414       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
415           isValidForAlternation(Opcode)) {
416         AltOpcode = InstOpcode;
417         AltIndex = Cnt;
418         continue;
419       }
420     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
421       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
422       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
423       if (Ty0 == Ty1) {
424         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
425           continue;
426         if (Opcode == AltOpcode) {
427           assert(isValidForAlternation(Opcode) &&
428                  isValidForAlternation(InstOpcode) &&
429                  "Cast isn't safe for alternation, logic needs to be updated!");
430           AltOpcode = InstOpcode;
431           AltIndex = Cnt;
432           continue;
433         }
434       }
435     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
436       continue;
437     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
438   }
439 
440   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
441                            cast<Instruction>(VL[AltIndex]));
442 }
443 
444 /// \returns true if all of the values in \p VL have the same type or false
445 /// otherwise.
446 static bool allSameType(ArrayRef<Value *> VL) {
447   Type *Ty = VL[0]->getType();
448   for (int i = 1, e = VL.size(); i < e; i++)
449     if (VL[i]->getType() != Ty)
450       return false;
451 
452   return true;
453 }
454 
455 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
456 static Optional<unsigned> getExtractIndex(Instruction *E) {
457   unsigned Opcode = E->getOpcode();
458   assert((Opcode == Instruction::ExtractElement ||
459           Opcode == Instruction::ExtractValue) &&
460          "Expected extractelement or extractvalue instruction.");
461   if (Opcode == Instruction::ExtractElement) {
462     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
463     if (!CI)
464       return None;
465     return CI->getZExtValue();
466   }
467   ExtractValueInst *EI = cast<ExtractValueInst>(E);
468   if (EI->getNumIndices() != 1)
469     return None;
470   return *EI->idx_begin();
471 }
472 
473 /// \returns True if in-tree use also needs extract. This refers to
474 /// possible scalar operand in vectorized instruction.
475 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
476                                     TargetLibraryInfo *TLI) {
477   unsigned Opcode = UserInst->getOpcode();
478   switch (Opcode) {
479   case Instruction::Load: {
480     LoadInst *LI = cast<LoadInst>(UserInst);
481     return (LI->getPointerOperand() == Scalar);
482   }
483   case Instruction::Store: {
484     StoreInst *SI = cast<StoreInst>(UserInst);
485     return (SI->getPointerOperand() == Scalar);
486   }
487   case Instruction::Call: {
488     CallInst *CI = cast<CallInst>(UserInst);
489     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
490     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
491       if (hasVectorInstrinsicScalarOpd(ID, i))
492         return (CI->getArgOperand(i) == Scalar);
493     }
494     LLVM_FALLTHROUGH;
495   }
496   default:
497     return false;
498   }
499 }
500 
501 /// \returns the AA location that is being access by the instruction.
502 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
503   if (StoreInst *SI = dyn_cast<StoreInst>(I))
504     return MemoryLocation::get(SI);
505   if (LoadInst *LI = dyn_cast<LoadInst>(I))
506     return MemoryLocation::get(LI);
507   return MemoryLocation();
508 }
509 
510 /// \returns True if the instruction is not a volatile or atomic load/store.
511 static bool isSimple(Instruction *I) {
512   if (LoadInst *LI = dyn_cast<LoadInst>(I))
513     return LI->isSimple();
514   if (StoreInst *SI = dyn_cast<StoreInst>(I))
515     return SI->isSimple();
516   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
517     return !MI->isVolatile();
518   return true;
519 }
520 
521 namespace llvm {
522 
523 namespace slpvectorizer {
524 
525 /// Bottom Up SLP Vectorizer.
526 class BoUpSLP {
527   struct TreeEntry;
528   struct ScheduleData;
529 
530 public:
531   using ValueList = SmallVector<Value *, 8>;
532   using InstrList = SmallVector<Instruction *, 16>;
533   using ValueSet = SmallPtrSet<Value *, 16>;
534   using StoreList = SmallVector<StoreInst *, 8>;
535   using ExtraValueToDebugLocsMap =
536       MapVector<Value *, SmallVector<Instruction *, 2>>;
537 
538   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
539           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
540           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
541           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
542       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
543         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
544     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
545     // Use the vector register size specified by the target unless overridden
546     // by a command-line option.
547     // TODO: It would be better to limit the vectorization factor based on
548     //       data type rather than just register size. For example, x86 AVX has
549     //       256-bit registers, but it does not support integer operations
550     //       at that width (that requires AVX2).
551     if (MaxVectorRegSizeOption.getNumOccurrences())
552       MaxVecRegSize = MaxVectorRegSizeOption;
553     else
554       MaxVecRegSize = TTI->getRegisterBitWidth(true);
555 
556     if (MinVectorRegSizeOption.getNumOccurrences())
557       MinVecRegSize = MinVectorRegSizeOption;
558     else
559       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
560   }
561 
562   /// Vectorize the tree that starts with the elements in \p VL.
563   /// Returns the vectorized root.
564   Value *vectorizeTree();
565 
566   /// Vectorize the tree but with the list of externally used values \p
567   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
568   /// generated extractvalue instructions.
569   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
570 
571   /// \returns the cost incurred by unwanted spills and fills, caused by
572   /// holding live values over call sites.
573   int getSpillCost() const;
574 
575   /// \returns the vectorization cost of the subtree that starts at \p VL.
576   /// A negative number means that this is profitable.
577   int getTreeCost();
578 
579   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
580   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
581   void buildTree(ArrayRef<Value *> Roots,
582                  ArrayRef<Value *> UserIgnoreLst = None);
583 
584   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
585   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
586   /// into account (and updating it, if required) list of externally used
587   /// values stored in \p ExternallyUsedValues.
588   void buildTree(ArrayRef<Value *> Roots,
589                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
590                  ArrayRef<Value *> UserIgnoreLst = None);
591 
592   /// Clear the internal data structures that are created by 'buildTree'.
593   void deleteTree() {
594     VectorizableTree.clear();
595     ScalarToTreeEntry.clear();
596     MustGather.clear();
597     ExternalUses.clear();
598     NumOpsWantToKeepOrder.clear();
599     NumOpsWantToKeepOriginalOrder = 0;
600     for (auto &Iter : BlocksSchedules) {
601       BlockScheduling *BS = Iter.second.get();
602       BS->clear();
603     }
604     MinBWs.clear();
605   }
606 
607   unsigned getTreeSize() const { return VectorizableTree.size(); }
608 
609   /// Perform LICM and CSE on the newly generated gather sequences.
610   void optimizeGatherSequence();
611 
612   /// \returns The best order of instructions for vectorization.
613   Optional<ArrayRef<unsigned>> bestOrder() const {
614     auto I = std::max_element(
615         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
616         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
617            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
618           return D1.second < D2.second;
619         });
620     if (I == NumOpsWantToKeepOrder.end() ||
621         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
622       return None;
623 
624     return makeArrayRef(I->getFirst());
625   }
626 
627   /// \return The vector element size in bits to use when vectorizing the
628   /// expression tree ending at \p V. If V is a store, the size is the width of
629   /// the stored value. Otherwise, the size is the width of the largest loaded
630   /// value reaching V. This method is used by the vectorizer to calculate
631   /// vectorization factors.
632   unsigned getVectorElementSize(Value *V) const;
633 
634   /// Compute the minimum type sizes required to represent the entries in a
635   /// vectorizable tree.
636   void computeMinimumValueSizes();
637 
638   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
639   unsigned getMaxVecRegSize() const {
640     return MaxVecRegSize;
641   }
642 
643   // \returns minimum vector register size as set by cl::opt.
644   unsigned getMinVecRegSize() const {
645     return MinVecRegSize;
646   }
647 
648   /// Check if homogeneous aggregate is isomorphic to some VectorType.
649   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
650   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
651   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
652   ///
653   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
654   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
655 
656   /// \returns True if the VectorizableTree is both tiny and not fully
657   /// vectorizable. We do not vectorize such trees.
658   bool isTreeTinyAndNotFullyVectorizable() const;
659 
660   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
661   /// can be load combined in the backend. Load combining may not be allowed in
662   /// the IR optimizer, so we do not want to alter the pattern. For example,
663   /// partially transforming a scalar bswap() pattern into vector code is
664   /// effectively impossible for the backend to undo.
665   /// TODO: If load combining is allowed in the IR optimizer, this analysis
666   ///       may not be necessary.
667   bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
668 
669   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
670   /// can be load combined in the backend. Load combining may not be allowed in
671   /// the IR optimizer, so we do not want to alter the pattern. For example,
672   /// partially transforming a scalar bswap() pattern into vector code is
673   /// effectively impossible for the backend to undo.
674   /// TODO: If load combining is allowed in the IR optimizer, this analysis
675   ///       may not be necessary.
676   bool isLoadCombineCandidate() const;
677 
678   OptimizationRemarkEmitter *getORE() { return ORE; }
679 
680   /// This structure holds any data we need about the edges being traversed
681   /// during buildTree_rec(). We keep track of:
682   /// (i) the user TreeEntry index, and
683   /// (ii) the index of the edge.
684   struct EdgeInfo {
685     EdgeInfo() = default;
686     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
687         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
688     /// The user TreeEntry.
689     TreeEntry *UserTE = nullptr;
690     /// The operand index of the use.
691     unsigned EdgeIdx = UINT_MAX;
692 #ifndef NDEBUG
693     friend inline raw_ostream &operator<<(raw_ostream &OS,
694                                           const BoUpSLP::EdgeInfo &EI) {
695       EI.dump(OS);
696       return OS;
697     }
698     /// Debug print.
699     void dump(raw_ostream &OS) const {
700       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
701          << " EdgeIdx:" << EdgeIdx << "}";
702     }
703     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
704 #endif
705   };
706 
707   /// A helper data structure to hold the operands of a vector of instructions.
708   /// This supports a fixed vector length for all operand vectors.
709   class VLOperands {
710     /// For each operand we need (i) the value, and (ii) the opcode that it
711     /// would be attached to if the expression was in a left-linearized form.
712     /// This is required to avoid illegal operand reordering.
713     /// For example:
714     /// \verbatim
715     ///                         0 Op1
716     ///                         |/
717     /// Op1 Op2   Linearized    + Op2
718     ///   \ /     ---------->   |/
719     ///    -                    -
720     ///
721     /// Op1 - Op2            (0 + Op1) - Op2
722     /// \endverbatim
723     ///
724     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
725     ///
726     /// Another way to think of this is to track all the operations across the
727     /// path from the operand all the way to the root of the tree and to
728     /// calculate the operation that corresponds to this path. For example, the
729     /// path from Op2 to the root crosses the RHS of the '-', therefore the
730     /// corresponding operation is a '-' (which matches the one in the
731     /// linearized tree, as shown above).
732     ///
733     /// For lack of a better term, we refer to this operation as Accumulated
734     /// Path Operation (APO).
735     struct OperandData {
736       OperandData() = default;
737       OperandData(Value *V, bool APO, bool IsUsed)
738           : V(V), APO(APO), IsUsed(IsUsed) {}
739       /// The operand value.
740       Value *V = nullptr;
741       /// TreeEntries only allow a single opcode, or an alternate sequence of
742       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
743       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
744       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
745       /// (e.g., Add/Mul)
746       bool APO = false;
747       /// Helper data for the reordering function.
748       bool IsUsed = false;
749     };
750 
751     /// During operand reordering, we are trying to select the operand at lane
752     /// that matches best with the operand at the neighboring lane. Our
753     /// selection is based on the type of value we are looking for. For example,
754     /// if the neighboring lane has a load, we need to look for a load that is
755     /// accessing a consecutive address. These strategies are summarized in the
756     /// 'ReorderingMode' enumerator.
757     enum class ReorderingMode {
758       Load,     ///< Matching loads to consecutive memory addresses
759       Opcode,   ///< Matching instructions based on opcode (same or alternate)
760       Constant, ///< Matching constants
761       Splat,    ///< Matching the same instruction multiple times (broadcast)
762       Failed,   ///< We failed to create a vectorizable group
763     };
764 
765     using OperandDataVec = SmallVector<OperandData, 2>;
766 
767     /// A vector of operand vectors.
768     SmallVector<OperandDataVec, 4> OpsVec;
769 
770     const DataLayout &DL;
771     ScalarEvolution &SE;
772     const BoUpSLP &R;
773 
774     /// \returns the operand data at \p OpIdx and \p Lane.
775     OperandData &getData(unsigned OpIdx, unsigned Lane) {
776       return OpsVec[OpIdx][Lane];
777     }
778 
779     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
780     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
781       return OpsVec[OpIdx][Lane];
782     }
783 
784     /// Clears the used flag for all entries.
785     void clearUsed() {
786       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
787            OpIdx != NumOperands; ++OpIdx)
788         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
789              ++Lane)
790           OpsVec[OpIdx][Lane].IsUsed = false;
791     }
792 
793     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
794     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
795       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
796     }
797 
798     // The hard-coded scores listed here are not very important. When computing
799     // the scores of matching one sub-tree with another, we are basically
800     // counting the number of values that are matching. So even if all scores
801     // are set to 1, we would still get a decent matching result.
802     // However, sometimes we have to break ties. For example we may have to
803     // choose between matching loads vs matching opcodes. This is what these
804     // scores are helping us with: they provide the order of preference.
805 
806     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
807     static const int ScoreConsecutiveLoads = 3;
808     /// ExtractElementInst from same vector and consecutive indexes.
809     static const int ScoreConsecutiveExtracts = 3;
810     /// Constants.
811     static const int ScoreConstants = 2;
812     /// Instructions with the same opcode.
813     static const int ScoreSameOpcode = 2;
814     /// Instructions with alt opcodes (e.g, add + sub).
815     static const int ScoreAltOpcodes = 1;
816     /// Identical instructions (a.k.a. splat or broadcast).
817     static const int ScoreSplat = 1;
818     /// Matching with an undef is preferable to failing.
819     static const int ScoreUndef = 1;
820     /// Score for failing to find a decent match.
821     static const int ScoreFail = 0;
822     /// User exteranl to the vectorized code.
823     static const int ExternalUseCost = 1;
824     /// The user is internal but in a different lane.
825     static const int UserInDiffLaneCost = ExternalUseCost;
826 
827     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
828     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
829                                ScalarEvolution &SE) {
830       auto *LI1 = dyn_cast<LoadInst>(V1);
831       auto *LI2 = dyn_cast<LoadInst>(V2);
832       if (LI1 && LI2)
833         return isConsecutiveAccess(LI1, LI2, DL, SE)
834                    ? VLOperands::ScoreConsecutiveLoads
835                    : VLOperands::ScoreFail;
836 
837       auto *C1 = dyn_cast<Constant>(V1);
838       auto *C2 = dyn_cast<Constant>(V2);
839       if (C1 && C2)
840         return VLOperands::ScoreConstants;
841 
842       // Extracts from consecutive indexes of the same vector better score as
843       // the extracts could be optimized away.
844       Value *EV;
845       ConstantInt *Ex1Idx, *Ex2Idx;
846       if (match(V1, m_ExtractElement(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
847           match(V2, m_ExtractElement(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
848           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
849         return VLOperands::ScoreConsecutiveExtracts;
850 
851       auto *I1 = dyn_cast<Instruction>(V1);
852       auto *I2 = dyn_cast<Instruction>(V2);
853       if (I1 && I2) {
854         if (I1 == I2)
855           return VLOperands::ScoreSplat;
856         InstructionsState S = getSameOpcode({I1, I2});
857         // Note: Only consider instructions with <= 2 operands to avoid
858         // complexity explosion.
859         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
860           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
861                                   : VLOperands::ScoreSameOpcode;
862       }
863 
864       if (isa<UndefValue>(V2))
865         return VLOperands::ScoreUndef;
866 
867       return VLOperands::ScoreFail;
868     }
869 
870     /// Holds the values and their lane that are taking part in the look-ahead
871     /// score calculation. This is used in the external uses cost calculation.
872     SmallDenseMap<Value *, int> InLookAheadValues;
873 
874     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
875     /// either external to the vectorized code, or require shuffling.
876     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
877                             const std::pair<Value *, int> &RHS) {
878       int Cost = 0;
879       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
880       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
881         Value *V = Values[Idx].first;
882         // Calculate the absolute lane, using the minimum relative lane of LHS
883         // and RHS as base and Idx as the offset.
884         int Ln = std::min(LHS.second, RHS.second) + Idx;
885         assert(Ln >= 0 && "Bad lane calculation");
886         unsigned UsersBudget = LookAheadUsersBudget;
887         for (User *U : V->users()) {
888           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
889             // The user is in the VectorizableTree. Check if we need to insert.
890             auto It = llvm::find(UserTE->Scalars, U);
891             assert(It != UserTE->Scalars.end() && "U is in UserTE");
892             int UserLn = std::distance(UserTE->Scalars.begin(), It);
893             assert(UserLn >= 0 && "Bad lane");
894             if (UserLn != Ln)
895               Cost += UserInDiffLaneCost;
896           } else {
897             // Check if the user is in the look-ahead code.
898             auto It2 = InLookAheadValues.find(U);
899             if (It2 != InLookAheadValues.end()) {
900               // The user is in the look-ahead code. Check the lane.
901               if (It2->second != Ln)
902                 Cost += UserInDiffLaneCost;
903             } else {
904               // The user is neither in SLP tree nor in the look-ahead code.
905               Cost += ExternalUseCost;
906             }
907           }
908           // Limit the number of visited uses to cap compilation time.
909           if (--UsersBudget == 0)
910             break;
911         }
912       }
913       return Cost;
914     }
915 
916     /// Go through the operands of \p LHS and \p RHS recursively until \p
917     /// MaxLevel, and return the cummulative score. For example:
918     /// \verbatim
919     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
920     ///     \ /         \ /         \ /        \ /
921     ///      +           +           +          +
922     ///     G1          G2          G3         G4
923     /// \endverbatim
924     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
925     /// each level recursively, accumulating the score. It starts from matching
926     /// the additions at level 0, then moves on to the loads (level 1). The
927     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
928     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
929     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
930     /// Please note that the order of the operands does not matter, as we
931     /// evaluate the score of all profitable combinations of operands. In
932     /// other words the score of G1 and G4 is the same as G1 and G2. This
933     /// heuristic is based on ideas described in:
934     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
935     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
936     ///   Luís F. W. Góes
937     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
938                            const std::pair<Value *, int> &RHS, int CurrLevel,
939                            int MaxLevel) {
940 
941       Value *V1 = LHS.first;
942       Value *V2 = RHS.first;
943       // Get the shallow score of V1 and V2.
944       int ShallowScoreAtThisLevel =
945           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
946                                        getExternalUsesCost(LHS, RHS));
947       int Lane1 = LHS.second;
948       int Lane2 = RHS.second;
949 
950       // If reached MaxLevel,
951       //  or if V1 and V2 are not instructions,
952       //  or if they are SPLAT,
953       //  or if they are not consecutive, early return the current cost.
954       auto *I1 = dyn_cast<Instruction>(V1);
955       auto *I2 = dyn_cast<Instruction>(V2);
956       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
957           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
958           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
959         return ShallowScoreAtThisLevel;
960       assert(I1 && I2 && "Should have early exited.");
961 
962       // Keep track of in-tree values for determining the external-use cost.
963       InLookAheadValues[V1] = Lane1;
964       InLookAheadValues[V2] = Lane2;
965 
966       // Contains the I2 operand indexes that got matched with I1 operands.
967       SmallSet<unsigned, 4> Op2Used;
968 
969       // Recursion towards the operands of I1 and I2. We are trying all possbile
970       // operand pairs, and keeping track of the best score.
971       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
972            OpIdx1 != NumOperands1; ++OpIdx1) {
973         // Try to pair op1I with the best operand of I2.
974         int MaxTmpScore = 0;
975         unsigned MaxOpIdx2 = 0;
976         bool FoundBest = false;
977         // If I2 is commutative try all combinations.
978         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
979         unsigned ToIdx = isCommutative(I2)
980                              ? I2->getNumOperands()
981                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
982         assert(FromIdx <= ToIdx && "Bad index");
983         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
984           // Skip operands already paired with OpIdx1.
985           if (Op2Used.count(OpIdx2))
986             continue;
987           // Recursively calculate the cost at each level
988           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
989                                             {I2->getOperand(OpIdx2), Lane2},
990                                             CurrLevel + 1, MaxLevel);
991           // Look for the best score.
992           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
993             MaxTmpScore = TmpScore;
994             MaxOpIdx2 = OpIdx2;
995             FoundBest = true;
996           }
997         }
998         if (FoundBest) {
999           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1000           Op2Used.insert(MaxOpIdx2);
1001           ShallowScoreAtThisLevel += MaxTmpScore;
1002         }
1003       }
1004       return ShallowScoreAtThisLevel;
1005     }
1006 
1007     /// \Returns the look-ahead score, which tells us how much the sub-trees
1008     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1009     /// score. This helps break ties in an informed way when we cannot decide on
1010     /// the order of the operands by just considering the immediate
1011     /// predecessors.
1012     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1013                           const std::pair<Value *, int> &RHS) {
1014       InLookAheadValues.clear();
1015       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1016     }
1017 
1018     // Search all operands in Ops[*][Lane] for the one that matches best
1019     // Ops[OpIdx][LastLane] and return its opreand index.
1020     // If no good match can be found, return None.
1021     Optional<unsigned>
1022     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1023                    ArrayRef<ReorderingMode> ReorderingModes) {
1024       unsigned NumOperands = getNumOperands();
1025 
1026       // The operand of the previous lane at OpIdx.
1027       Value *OpLastLane = getData(OpIdx, LastLane).V;
1028 
1029       // Our strategy mode for OpIdx.
1030       ReorderingMode RMode = ReorderingModes[OpIdx];
1031 
1032       // The linearized opcode of the operand at OpIdx, Lane.
1033       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1034 
1035       // The best operand index and its score.
1036       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1037       // are using the score to differentiate between the two.
1038       struct BestOpData {
1039         Optional<unsigned> Idx = None;
1040         unsigned Score = 0;
1041       } BestOp;
1042 
1043       // Iterate through all unused operands and look for the best.
1044       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1045         // Get the operand at Idx and Lane.
1046         OperandData &OpData = getData(Idx, Lane);
1047         Value *Op = OpData.V;
1048         bool OpAPO = OpData.APO;
1049 
1050         // Skip already selected operands.
1051         if (OpData.IsUsed)
1052           continue;
1053 
1054         // Skip if we are trying to move the operand to a position with a
1055         // different opcode in the linearized tree form. This would break the
1056         // semantics.
1057         if (OpAPO != OpIdxAPO)
1058           continue;
1059 
1060         // Look for an operand that matches the current mode.
1061         switch (RMode) {
1062         case ReorderingMode::Load:
1063         case ReorderingMode::Constant:
1064         case ReorderingMode::Opcode: {
1065           bool LeftToRight = Lane > LastLane;
1066           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1067           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1068           unsigned Score =
1069               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1070           if (Score > BestOp.Score) {
1071             BestOp.Idx = Idx;
1072             BestOp.Score = Score;
1073           }
1074           break;
1075         }
1076         case ReorderingMode::Splat:
1077           if (Op == OpLastLane)
1078             BestOp.Idx = Idx;
1079           break;
1080         case ReorderingMode::Failed:
1081           return None;
1082         }
1083       }
1084 
1085       if (BestOp.Idx) {
1086         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1087         return BestOp.Idx;
1088       }
1089       // If we could not find a good match return None.
1090       return None;
1091     }
1092 
1093     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1094     /// reordering from. This is the one which has the least number of operands
1095     /// that can freely move about.
1096     unsigned getBestLaneToStartReordering() const {
1097       unsigned BestLane = 0;
1098       unsigned Min = UINT_MAX;
1099       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1100            ++Lane) {
1101         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1102         if (NumFreeOps < Min) {
1103           Min = NumFreeOps;
1104           BestLane = Lane;
1105         }
1106       }
1107       return BestLane;
1108     }
1109 
1110     /// \Returns the maximum number of operands that are allowed to be reordered
1111     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1112     /// start operand reordering.
1113     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1114       unsigned CntTrue = 0;
1115       unsigned NumOperands = getNumOperands();
1116       // Operands with the same APO can be reordered. We therefore need to count
1117       // how many of them we have for each APO, like this: Cnt[APO] = x.
1118       // Since we only have two APOs, namely true and false, we can avoid using
1119       // a map. Instead we can simply count the number of operands that
1120       // correspond to one of them (in this case the 'true' APO), and calculate
1121       // the other by subtracting it from the total number of operands.
1122       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1123         if (getData(OpIdx, Lane).APO)
1124           ++CntTrue;
1125       unsigned CntFalse = NumOperands - CntTrue;
1126       return std::max(CntTrue, CntFalse);
1127     }
1128 
1129     /// Go through the instructions in VL and append their operands.
1130     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1131       assert(!VL.empty() && "Bad VL");
1132       assert((empty() || VL.size() == getNumLanes()) &&
1133              "Expected same number of lanes");
1134       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1135       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1136       OpsVec.resize(NumOperands);
1137       unsigned NumLanes = VL.size();
1138       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1139         OpsVec[OpIdx].resize(NumLanes);
1140         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1141           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1142           // Our tree has just 3 nodes: the root and two operands.
1143           // It is therefore trivial to get the APO. We only need to check the
1144           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1145           // RHS operand. The LHS operand of both add and sub is never attached
1146           // to an inversese operation in the linearized form, therefore its APO
1147           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1148 
1149           // Since operand reordering is performed on groups of commutative
1150           // operations or alternating sequences (e.g., +, -), we can safely
1151           // tell the inverse operations by checking commutativity.
1152           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1153           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1154           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1155                                  APO, false};
1156         }
1157       }
1158     }
1159 
1160     /// \returns the number of operands.
1161     unsigned getNumOperands() const { return OpsVec.size(); }
1162 
1163     /// \returns the number of lanes.
1164     unsigned getNumLanes() const { return OpsVec[0].size(); }
1165 
1166     /// \returns the operand value at \p OpIdx and \p Lane.
1167     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1168       return getData(OpIdx, Lane).V;
1169     }
1170 
1171     /// \returns true if the data structure is empty.
1172     bool empty() const { return OpsVec.empty(); }
1173 
1174     /// Clears the data.
1175     void clear() { OpsVec.clear(); }
1176 
1177     /// \Returns true if there are enough operands identical to \p Op to fill
1178     /// the whole vector.
1179     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1180     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1181       bool OpAPO = getData(OpIdx, Lane).APO;
1182       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1183         if (Ln == Lane)
1184           continue;
1185         // This is set to true if we found a candidate for broadcast at Lane.
1186         bool FoundCandidate = false;
1187         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1188           OperandData &Data = getData(OpI, Ln);
1189           if (Data.APO != OpAPO || Data.IsUsed)
1190             continue;
1191           if (Data.V == Op) {
1192             FoundCandidate = true;
1193             Data.IsUsed = true;
1194             break;
1195           }
1196         }
1197         if (!FoundCandidate)
1198           return false;
1199       }
1200       return true;
1201     }
1202 
1203   public:
1204     /// Initialize with all the operands of the instruction vector \p RootVL.
1205     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1206                ScalarEvolution &SE, const BoUpSLP &R)
1207         : DL(DL), SE(SE), R(R) {
1208       // Append all the operands of RootVL.
1209       appendOperandsOfVL(RootVL);
1210     }
1211 
1212     /// \Returns a value vector with the operands across all lanes for the
1213     /// opearnd at \p OpIdx.
1214     ValueList getVL(unsigned OpIdx) const {
1215       ValueList OpVL(OpsVec[OpIdx].size());
1216       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1217              "Expected same num of lanes across all operands");
1218       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1219         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1220       return OpVL;
1221     }
1222 
1223     // Performs operand reordering for 2 or more operands.
1224     // The original operands are in OrigOps[OpIdx][Lane].
1225     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1226     void reorder() {
1227       unsigned NumOperands = getNumOperands();
1228       unsigned NumLanes = getNumLanes();
1229       // Each operand has its own mode. We are using this mode to help us select
1230       // the instructions for each lane, so that they match best with the ones
1231       // we have selected so far.
1232       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1233 
1234       // This is a greedy single-pass algorithm. We are going over each lane
1235       // once and deciding on the best order right away with no back-tracking.
1236       // However, in order to increase its effectiveness, we start with the lane
1237       // that has operands that can move the least. For example, given the
1238       // following lanes:
1239       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1240       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1241       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1242       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1243       // we will start at Lane 1, since the operands of the subtraction cannot
1244       // be reordered. Then we will visit the rest of the lanes in a circular
1245       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1246 
1247       // Find the first lane that we will start our search from.
1248       unsigned FirstLane = getBestLaneToStartReordering();
1249 
1250       // Initialize the modes.
1251       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1252         Value *OpLane0 = getValue(OpIdx, FirstLane);
1253         // Keep track if we have instructions with all the same opcode on one
1254         // side.
1255         if (isa<LoadInst>(OpLane0))
1256           ReorderingModes[OpIdx] = ReorderingMode::Load;
1257         else if (isa<Instruction>(OpLane0)) {
1258           // Check if OpLane0 should be broadcast.
1259           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1260             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1261           else
1262             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1263         }
1264         else if (isa<Constant>(OpLane0))
1265           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1266         else if (isa<Argument>(OpLane0))
1267           // Our best hope is a Splat. It may save some cost in some cases.
1268           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1269         else
1270           // NOTE: This should be unreachable.
1271           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1272       }
1273 
1274       // If the initial strategy fails for any of the operand indexes, then we
1275       // perform reordering again in a second pass. This helps avoid assigning
1276       // high priority to the failed strategy, and should improve reordering for
1277       // the non-failed operand indexes.
1278       for (int Pass = 0; Pass != 2; ++Pass) {
1279         // Skip the second pass if the first pass did not fail.
1280         bool StrategyFailed = false;
1281         // Mark all operand data as free to use.
1282         clearUsed();
1283         // We keep the original operand order for the FirstLane, so reorder the
1284         // rest of the lanes. We are visiting the nodes in a circular fashion,
1285         // using FirstLane as the center point and increasing the radius
1286         // distance.
1287         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1288           // Visit the lane on the right and then the lane on the left.
1289           for (int Direction : {+1, -1}) {
1290             int Lane = FirstLane + Direction * Distance;
1291             if (Lane < 0 || Lane >= (int)NumLanes)
1292               continue;
1293             int LastLane = Lane - Direction;
1294             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1295                    "Out of bounds");
1296             // Look for a good match for each operand.
1297             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1298               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1299               Optional<unsigned> BestIdx =
1300                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1301               // By not selecting a value, we allow the operands that follow to
1302               // select a better matching value. We will get a non-null value in
1303               // the next run of getBestOperand().
1304               if (BestIdx) {
1305                 // Swap the current operand with the one returned by
1306                 // getBestOperand().
1307                 swap(OpIdx, BestIdx.getValue(), Lane);
1308               } else {
1309                 // We failed to find a best operand, set mode to 'Failed'.
1310                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1311                 // Enable the second pass.
1312                 StrategyFailed = true;
1313               }
1314             }
1315           }
1316         }
1317         // Skip second pass if the strategy did not fail.
1318         if (!StrategyFailed)
1319           break;
1320       }
1321     }
1322 
1323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1324     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1325       switch (RMode) {
1326       case ReorderingMode::Load:
1327         return "Load";
1328       case ReorderingMode::Opcode:
1329         return "Opcode";
1330       case ReorderingMode::Constant:
1331         return "Constant";
1332       case ReorderingMode::Splat:
1333         return "Splat";
1334       case ReorderingMode::Failed:
1335         return "Failed";
1336       }
1337       llvm_unreachable("Unimplemented Reordering Type");
1338     }
1339 
1340     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1341                                                    raw_ostream &OS) {
1342       return OS << getModeStr(RMode);
1343     }
1344 
1345     /// Debug print.
1346     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1347       printMode(RMode, dbgs());
1348     }
1349 
1350     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1351       return printMode(RMode, OS);
1352     }
1353 
1354     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1355       const unsigned Indent = 2;
1356       unsigned Cnt = 0;
1357       for (const OperandDataVec &OpDataVec : OpsVec) {
1358         OS << "Operand " << Cnt++ << "\n";
1359         for (const OperandData &OpData : OpDataVec) {
1360           OS.indent(Indent) << "{";
1361           if (Value *V = OpData.V)
1362             OS << *V;
1363           else
1364             OS << "null";
1365           OS << ", APO:" << OpData.APO << "}\n";
1366         }
1367         OS << "\n";
1368       }
1369       return OS;
1370     }
1371 
1372     /// Debug print.
1373     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1374 #endif
1375   };
1376 
1377   /// Checks if the instruction is marked for deletion.
1378   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1379 
1380   /// Marks values operands for later deletion by replacing them with Undefs.
1381   void eraseInstructions(ArrayRef<Value *> AV);
1382 
1383   ~BoUpSLP();
1384 
1385 private:
1386   /// Checks if all users of \p I are the part of the vectorization tree.
1387   bool areAllUsersVectorized(Instruction *I) const;
1388 
1389   /// \returns the cost of the vectorizable entry.
1390   int getEntryCost(TreeEntry *E);
1391 
1392   /// This is the recursive part of buildTree.
1393   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1394                      const EdgeInfo &EI);
1395 
1396   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1397   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1398   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1399   /// returns false, setting \p CurrentOrder to either an empty vector or a
1400   /// non-identity permutation that allows to reuse extract instructions.
1401   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1402                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1403 
1404   /// Vectorize a single entry in the tree.
1405   Value *vectorizeTree(TreeEntry *E);
1406 
1407   /// Vectorize a single entry in the tree, starting in \p VL.
1408   Value *vectorizeTree(ArrayRef<Value *> VL);
1409 
1410   /// \returns the scalarization cost for this type. Scalarization in this
1411   /// context means the creation of vectors from a group of scalars.
1412   int getGatherCost(VectorType *Ty,
1413                     const DenseSet<unsigned> &ShuffledIndices) const;
1414 
1415   /// \returns the scalarization cost for this list of values. Assuming that
1416   /// this subtree gets vectorized, we may need to extract the values from the
1417   /// roots. This method calculates the cost of extracting the values.
1418   int getGatherCost(ArrayRef<Value *> VL) const;
1419 
1420   /// Set the Builder insert point to one after the last instruction in
1421   /// the bundle
1422   void setInsertPointAfterBundle(TreeEntry *E);
1423 
1424   /// \returns a vector from a collection of scalars in \p VL.
1425   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1426 
1427   /// \returns whether the VectorizableTree is fully vectorizable and will
1428   /// be beneficial even the tree height is tiny.
1429   bool isFullyVectorizableTinyTree() const;
1430 
1431   /// Reorder commutative or alt operands to get better probability of
1432   /// generating vectorized code.
1433   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1434                                              SmallVectorImpl<Value *> &Left,
1435                                              SmallVectorImpl<Value *> &Right,
1436                                              const DataLayout &DL,
1437                                              ScalarEvolution &SE,
1438                                              const BoUpSLP &R);
1439   struct TreeEntry {
1440     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1441     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1442 
1443     /// \returns true if the scalars in VL are equal to this entry.
1444     bool isSame(ArrayRef<Value *> VL) const {
1445       if (VL.size() == Scalars.size())
1446         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1447       return VL.size() == ReuseShuffleIndices.size() &&
1448              std::equal(
1449                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1450                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1451     }
1452 
1453     /// A vector of scalars.
1454     ValueList Scalars;
1455 
1456     /// The Scalars are vectorized into this value. It is initialized to Null.
1457     Value *VectorizedValue = nullptr;
1458 
1459     /// Do we need to gather this sequence ?
1460     enum EntryState { Vectorize, NeedToGather };
1461     EntryState State;
1462 
1463     /// Does this sequence require some shuffling?
1464     SmallVector<int, 4> ReuseShuffleIndices;
1465 
1466     /// Does this entry require reordering?
1467     ArrayRef<unsigned> ReorderIndices;
1468 
1469     /// Points back to the VectorizableTree.
1470     ///
1471     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1472     /// to be a pointer and needs to be able to initialize the child iterator.
1473     /// Thus we need a reference back to the container to translate the indices
1474     /// to entries.
1475     VecTreeTy &Container;
1476 
1477     /// The TreeEntry index containing the user of this entry.  We can actually
1478     /// have multiple users so the data structure is not truly a tree.
1479     SmallVector<EdgeInfo, 1> UserTreeIndices;
1480 
1481     /// The index of this treeEntry in VectorizableTree.
1482     int Idx = -1;
1483 
1484   private:
1485     /// The operands of each instruction in each lane Operands[op_index][lane].
1486     /// Note: This helps avoid the replication of the code that performs the
1487     /// reordering of operands during buildTree_rec() and vectorizeTree().
1488     SmallVector<ValueList, 2> Operands;
1489 
1490     /// The main/alternate instruction.
1491     Instruction *MainOp = nullptr;
1492     Instruction *AltOp = nullptr;
1493 
1494   public:
1495     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1496     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1497       if (Operands.size() < OpIdx + 1)
1498         Operands.resize(OpIdx + 1);
1499       assert(Operands[OpIdx].size() == 0 && "Already resized?");
1500       Operands[OpIdx].resize(Scalars.size());
1501       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1502         Operands[OpIdx][Lane] = OpVL[Lane];
1503     }
1504 
1505     /// Set the operands of this bundle in their original order.
1506     void setOperandsInOrder() {
1507       assert(Operands.empty() && "Already initialized?");
1508       auto *I0 = cast<Instruction>(Scalars[0]);
1509       Operands.resize(I0->getNumOperands());
1510       unsigned NumLanes = Scalars.size();
1511       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1512            OpIdx != NumOperands; ++OpIdx) {
1513         Operands[OpIdx].resize(NumLanes);
1514         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1515           auto *I = cast<Instruction>(Scalars[Lane]);
1516           assert(I->getNumOperands() == NumOperands &&
1517                  "Expected same number of operands");
1518           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1519         }
1520       }
1521     }
1522 
1523     /// \returns the \p OpIdx operand of this TreeEntry.
1524     ValueList &getOperand(unsigned OpIdx) {
1525       assert(OpIdx < Operands.size() && "Off bounds");
1526       return Operands[OpIdx];
1527     }
1528 
1529     /// \returns the number of operands.
1530     unsigned getNumOperands() const { return Operands.size(); }
1531 
1532     /// \return the single \p OpIdx operand.
1533     Value *getSingleOperand(unsigned OpIdx) const {
1534       assert(OpIdx < Operands.size() && "Off bounds");
1535       assert(!Operands[OpIdx].empty() && "No operand available");
1536       return Operands[OpIdx][0];
1537     }
1538 
1539     /// Some of the instructions in the list have alternate opcodes.
1540     bool isAltShuffle() const {
1541       return getOpcode() != getAltOpcode();
1542     }
1543 
1544     bool isOpcodeOrAlt(Instruction *I) const {
1545       unsigned CheckedOpcode = I->getOpcode();
1546       return (getOpcode() == CheckedOpcode ||
1547               getAltOpcode() == CheckedOpcode);
1548     }
1549 
1550     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1551     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1552     /// \p OpValue.
1553     Value *isOneOf(Value *Op) const {
1554       auto *I = dyn_cast<Instruction>(Op);
1555       if (I && isOpcodeOrAlt(I))
1556         return Op;
1557       return MainOp;
1558     }
1559 
1560     void setOperations(const InstructionsState &S) {
1561       MainOp = S.MainOp;
1562       AltOp = S.AltOp;
1563     }
1564 
1565     Instruction *getMainOp() const {
1566       return MainOp;
1567     }
1568 
1569     Instruction *getAltOp() const {
1570       return AltOp;
1571     }
1572 
1573     /// The main/alternate opcodes for the list of instructions.
1574     unsigned getOpcode() const {
1575       return MainOp ? MainOp->getOpcode() : 0;
1576     }
1577 
1578     unsigned getAltOpcode() const {
1579       return AltOp ? AltOp->getOpcode() : 0;
1580     }
1581 
1582     /// Update operations state of this entry if reorder occurred.
1583     bool updateStateIfReorder() {
1584       if (ReorderIndices.empty())
1585         return false;
1586       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1587       setOperations(S);
1588       return true;
1589     }
1590 
1591 #ifndef NDEBUG
1592     /// Debug printer.
1593     LLVM_DUMP_METHOD void dump() const {
1594       dbgs() << Idx << ".\n";
1595       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1596         dbgs() << "Operand " << OpI << ":\n";
1597         for (const Value *V : Operands[OpI])
1598           dbgs().indent(2) << *V << "\n";
1599       }
1600       dbgs() << "Scalars: \n";
1601       for (Value *V : Scalars)
1602         dbgs().indent(2) << *V << "\n";
1603       dbgs() << "State: ";
1604       switch (State) {
1605       case Vectorize:
1606         dbgs() << "Vectorize\n";
1607         break;
1608       case NeedToGather:
1609         dbgs() << "NeedToGather\n";
1610         break;
1611       }
1612       dbgs() << "MainOp: ";
1613       if (MainOp)
1614         dbgs() << *MainOp << "\n";
1615       else
1616         dbgs() << "NULL\n";
1617       dbgs() << "AltOp: ";
1618       if (AltOp)
1619         dbgs() << *AltOp << "\n";
1620       else
1621         dbgs() << "NULL\n";
1622       dbgs() << "VectorizedValue: ";
1623       if (VectorizedValue)
1624         dbgs() << *VectorizedValue << "\n";
1625       else
1626         dbgs() << "NULL\n";
1627       dbgs() << "ReuseShuffleIndices: ";
1628       if (ReuseShuffleIndices.empty())
1629         dbgs() << "Emtpy";
1630       else
1631         for (unsigned ReuseIdx : ReuseShuffleIndices)
1632           dbgs() << ReuseIdx << ", ";
1633       dbgs() << "\n";
1634       dbgs() << "ReorderIndices: ";
1635       for (unsigned ReorderIdx : ReorderIndices)
1636         dbgs() << ReorderIdx << ", ";
1637       dbgs() << "\n";
1638       dbgs() << "UserTreeIndices: ";
1639       for (const auto &EInfo : UserTreeIndices)
1640         dbgs() << EInfo << ", ";
1641       dbgs() << "\n";
1642     }
1643 #endif
1644   };
1645 
1646   /// Create a new VectorizableTree entry.
1647   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1648                           const InstructionsState &S,
1649                           const EdgeInfo &UserTreeIdx,
1650                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1651                           ArrayRef<unsigned> ReorderIndices = None) {
1652     bool Vectorized = (bool)Bundle;
1653     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1654     TreeEntry *Last = VectorizableTree.back().get();
1655     Last->Idx = VectorizableTree.size() - 1;
1656     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1657     Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1658     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1659                                      ReuseShuffleIndices.end());
1660     Last->ReorderIndices = ReorderIndices;
1661     Last->setOperations(S);
1662     if (Vectorized) {
1663       for (int i = 0, e = VL.size(); i != e; ++i) {
1664         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1665         ScalarToTreeEntry[VL[i]] = Last;
1666       }
1667       // Update the scheduler bundle to point to this TreeEntry.
1668       unsigned Lane = 0;
1669       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1670            BundleMember = BundleMember->NextInBundle) {
1671         BundleMember->TE = Last;
1672         BundleMember->Lane = Lane;
1673         ++Lane;
1674       }
1675       assert((!Bundle.getValue() || Lane == VL.size()) &&
1676              "Bundle and VL out of sync");
1677     } else {
1678       MustGather.insert(VL.begin(), VL.end());
1679     }
1680 
1681     if (UserTreeIdx.UserTE)
1682       Last->UserTreeIndices.push_back(UserTreeIdx);
1683 
1684     return Last;
1685   }
1686 
1687   /// -- Vectorization State --
1688   /// Holds all of the tree entries.
1689   TreeEntry::VecTreeTy VectorizableTree;
1690 
1691 #ifndef NDEBUG
1692   /// Debug printer.
1693   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1694     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1695       VectorizableTree[Id]->dump();
1696       dbgs() << "\n";
1697     }
1698   }
1699 #endif
1700 
1701   TreeEntry *getTreeEntry(Value *V) {
1702     auto I = ScalarToTreeEntry.find(V);
1703     if (I != ScalarToTreeEntry.end())
1704       return I->second;
1705     return nullptr;
1706   }
1707 
1708   const TreeEntry *getTreeEntry(Value *V) const {
1709     auto I = ScalarToTreeEntry.find(V);
1710     if (I != ScalarToTreeEntry.end())
1711       return I->second;
1712     return nullptr;
1713   }
1714 
1715   /// Maps a specific scalar to its tree entry.
1716   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1717 
1718   /// A list of scalars that we found that we need to keep as scalars.
1719   ValueSet MustGather;
1720 
1721   /// This POD struct describes one external user in the vectorized tree.
1722   struct ExternalUser {
1723     ExternalUser(Value *S, llvm::User *U, int L)
1724         : Scalar(S), User(U), Lane(L) {}
1725 
1726     // Which scalar in our function.
1727     Value *Scalar;
1728 
1729     // Which user that uses the scalar.
1730     llvm::User *User;
1731 
1732     // Which lane does the scalar belong to.
1733     int Lane;
1734   };
1735   using UserList = SmallVector<ExternalUser, 16>;
1736 
1737   /// Checks if two instructions may access the same memory.
1738   ///
1739   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1740   /// is invariant in the calling loop.
1741   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1742                  Instruction *Inst2) {
1743     // First check if the result is already in the cache.
1744     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1745     Optional<bool> &result = AliasCache[key];
1746     if (result.hasValue()) {
1747       return result.getValue();
1748     }
1749     MemoryLocation Loc2 = getLocation(Inst2, AA);
1750     bool aliased = true;
1751     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1752       // Do the alias check.
1753       aliased = AA->alias(Loc1, Loc2);
1754     }
1755     // Store the result in the cache.
1756     result = aliased;
1757     return aliased;
1758   }
1759 
1760   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1761 
1762   /// Cache for alias results.
1763   /// TODO: consider moving this to the AliasAnalysis itself.
1764   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1765 
1766   /// Removes an instruction from its block and eventually deletes it.
1767   /// It's like Instruction::eraseFromParent() except that the actual deletion
1768   /// is delayed until BoUpSLP is destructed.
1769   /// This is required to ensure that there are no incorrect collisions in the
1770   /// AliasCache, which can happen if a new instruction is allocated at the
1771   /// same address as a previously deleted instruction.
1772   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1773     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1774     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1775   }
1776 
1777   /// Temporary store for deleted instructions. Instructions will be deleted
1778   /// eventually when the BoUpSLP is destructed.
1779   DenseMap<Instruction *, bool> DeletedInstructions;
1780 
1781   /// A list of values that need to extracted out of the tree.
1782   /// This list holds pairs of (Internal Scalar : External User). External User
1783   /// can be nullptr, it means that this Internal Scalar will be used later,
1784   /// after vectorization.
1785   UserList ExternalUses;
1786 
1787   /// Values used only by @llvm.assume calls.
1788   SmallPtrSet<const Value *, 32> EphValues;
1789 
1790   /// Holds all of the instructions that we gathered.
1791   SetVector<Instruction *> GatherSeq;
1792 
1793   /// A list of blocks that we are going to CSE.
1794   SetVector<BasicBlock *> CSEBlocks;
1795 
1796   /// Contains all scheduling relevant data for an instruction.
1797   /// A ScheduleData either represents a single instruction or a member of an
1798   /// instruction bundle (= a group of instructions which is combined into a
1799   /// vector instruction).
1800   struct ScheduleData {
1801     // The initial value for the dependency counters. It means that the
1802     // dependencies are not calculated yet.
1803     enum { InvalidDeps = -1 };
1804 
1805     ScheduleData() = default;
1806 
1807     void init(int BlockSchedulingRegionID, Value *OpVal) {
1808       FirstInBundle = this;
1809       NextInBundle = nullptr;
1810       NextLoadStore = nullptr;
1811       IsScheduled = false;
1812       SchedulingRegionID = BlockSchedulingRegionID;
1813       UnscheduledDepsInBundle = UnscheduledDeps;
1814       clearDependencies();
1815       OpValue = OpVal;
1816       TE = nullptr;
1817       Lane = -1;
1818     }
1819 
1820     /// Returns true if the dependency information has been calculated.
1821     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1822 
1823     /// Returns true for single instructions and for bundle representatives
1824     /// (= the head of a bundle).
1825     bool isSchedulingEntity() const { return FirstInBundle == this; }
1826 
1827     /// Returns true if it represents an instruction bundle and not only a
1828     /// single instruction.
1829     bool isPartOfBundle() const {
1830       return NextInBundle != nullptr || FirstInBundle != this;
1831     }
1832 
1833     /// Returns true if it is ready for scheduling, i.e. it has no more
1834     /// unscheduled depending instructions/bundles.
1835     bool isReady() const {
1836       assert(isSchedulingEntity() &&
1837              "can't consider non-scheduling entity for ready list");
1838       return UnscheduledDepsInBundle == 0 && !IsScheduled;
1839     }
1840 
1841     /// Modifies the number of unscheduled dependencies, also updating it for
1842     /// the whole bundle.
1843     int incrementUnscheduledDeps(int Incr) {
1844       UnscheduledDeps += Incr;
1845       return FirstInBundle->UnscheduledDepsInBundle += Incr;
1846     }
1847 
1848     /// Sets the number of unscheduled dependencies to the number of
1849     /// dependencies.
1850     void resetUnscheduledDeps() {
1851       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1852     }
1853 
1854     /// Clears all dependency information.
1855     void clearDependencies() {
1856       Dependencies = InvalidDeps;
1857       resetUnscheduledDeps();
1858       MemoryDependencies.clear();
1859     }
1860 
1861     void dump(raw_ostream &os) const {
1862       if (!isSchedulingEntity()) {
1863         os << "/ " << *Inst;
1864       } else if (NextInBundle) {
1865         os << '[' << *Inst;
1866         ScheduleData *SD = NextInBundle;
1867         while (SD) {
1868           os << ';' << *SD->Inst;
1869           SD = SD->NextInBundle;
1870         }
1871         os << ']';
1872       } else {
1873         os << *Inst;
1874       }
1875     }
1876 
1877     Instruction *Inst = nullptr;
1878 
1879     /// Points to the head in an instruction bundle (and always to this for
1880     /// single instructions).
1881     ScheduleData *FirstInBundle = nullptr;
1882 
1883     /// Single linked list of all instructions in a bundle. Null if it is a
1884     /// single instruction.
1885     ScheduleData *NextInBundle = nullptr;
1886 
1887     /// Single linked list of all memory instructions (e.g. load, store, call)
1888     /// in the block - until the end of the scheduling region.
1889     ScheduleData *NextLoadStore = nullptr;
1890 
1891     /// The dependent memory instructions.
1892     /// This list is derived on demand in calculateDependencies().
1893     SmallVector<ScheduleData *, 4> MemoryDependencies;
1894 
1895     /// This ScheduleData is in the current scheduling region if this matches
1896     /// the current SchedulingRegionID of BlockScheduling.
1897     int SchedulingRegionID = 0;
1898 
1899     /// Used for getting a "good" final ordering of instructions.
1900     int SchedulingPriority = 0;
1901 
1902     /// The number of dependencies. Constitutes of the number of users of the
1903     /// instruction plus the number of dependent memory instructions (if any).
1904     /// This value is calculated on demand.
1905     /// If InvalidDeps, the number of dependencies is not calculated yet.
1906     int Dependencies = InvalidDeps;
1907 
1908     /// The number of dependencies minus the number of dependencies of scheduled
1909     /// instructions. As soon as this is zero, the instruction/bundle gets ready
1910     /// for scheduling.
1911     /// Note that this is negative as long as Dependencies is not calculated.
1912     int UnscheduledDeps = InvalidDeps;
1913 
1914     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1915     /// single instructions.
1916     int UnscheduledDepsInBundle = InvalidDeps;
1917 
1918     /// True if this instruction is scheduled (or considered as scheduled in the
1919     /// dry-run).
1920     bool IsScheduled = false;
1921 
1922     /// Opcode of the current instruction in the schedule data.
1923     Value *OpValue = nullptr;
1924 
1925     /// The TreeEntry that this instruction corresponds to.
1926     TreeEntry *TE = nullptr;
1927 
1928     /// The lane of this node in the TreeEntry.
1929     int Lane = -1;
1930   };
1931 
1932 #ifndef NDEBUG
1933   friend inline raw_ostream &operator<<(raw_ostream &os,
1934                                         const BoUpSLP::ScheduleData &SD) {
1935     SD.dump(os);
1936     return os;
1937   }
1938 #endif
1939 
1940   friend struct GraphTraits<BoUpSLP *>;
1941   friend struct DOTGraphTraits<BoUpSLP *>;
1942 
1943   /// Contains all scheduling data for a basic block.
1944   struct BlockScheduling {
1945     BlockScheduling(BasicBlock *BB)
1946         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1947 
1948     void clear() {
1949       ReadyInsts.clear();
1950       ScheduleStart = nullptr;
1951       ScheduleEnd = nullptr;
1952       FirstLoadStoreInRegion = nullptr;
1953       LastLoadStoreInRegion = nullptr;
1954 
1955       // Reduce the maximum schedule region size by the size of the
1956       // previous scheduling run.
1957       ScheduleRegionSizeLimit -= ScheduleRegionSize;
1958       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1959         ScheduleRegionSizeLimit = MinScheduleRegionSize;
1960       ScheduleRegionSize = 0;
1961 
1962       // Make a new scheduling region, i.e. all existing ScheduleData is not
1963       // in the new region yet.
1964       ++SchedulingRegionID;
1965     }
1966 
1967     ScheduleData *getScheduleData(Value *V) {
1968       ScheduleData *SD = ScheduleDataMap[V];
1969       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1970         return SD;
1971       return nullptr;
1972     }
1973 
1974     ScheduleData *getScheduleData(Value *V, Value *Key) {
1975       if (V == Key)
1976         return getScheduleData(V);
1977       auto I = ExtraScheduleDataMap.find(V);
1978       if (I != ExtraScheduleDataMap.end()) {
1979         ScheduleData *SD = I->second[Key];
1980         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1981           return SD;
1982       }
1983       return nullptr;
1984     }
1985 
1986     bool isInSchedulingRegion(ScheduleData *SD) const {
1987       return SD->SchedulingRegionID == SchedulingRegionID;
1988     }
1989 
1990     /// Marks an instruction as scheduled and puts all dependent ready
1991     /// instructions into the ready-list.
1992     template <typename ReadyListType>
1993     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1994       SD->IsScheduled = true;
1995       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
1996 
1997       ScheduleData *BundleMember = SD;
1998       while (BundleMember) {
1999         if (BundleMember->Inst != BundleMember->OpValue) {
2000           BundleMember = BundleMember->NextInBundle;
2001           continue;
2002         }
2003         // Handle the def-use chain dependencies.
2004 
2005         // Decrement the unscheduled counter and insert to ready list if ready.
2006         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2007           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2008             if (OpDef && OpDef->hasValidDependencies() &&
2009                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2010               // There are no more unscheduled dependencies after
2011               // decrementing, so we can put the dependent instruction
2012               // into the ready list.
2013               ScheduleData *DepBundle = OpDef->FirstInBundle;
2014               assert(!DepBundle->IsScheduled &&
2015                      "already scheduled bundle gets ready");
2016               ReadyList.insert(DepBundle);
2017               LLVM_DEBUG(dbgs()
2018                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2019             }
2020           });
2021         };
2022 
2023         // If BundleMember is a vector bundle, its operands may have been
2024         // reordered duiring buildTree(). We therefore need to get its operands
2025         // through the TreeEntry.
2026         if (TreeEntry *TE = BundleMember->TE) {
2027           int Lane = BundleMember->Lane;
2028           assert(Lane >= 0 && "Lane not set");
2029 
2030           // Since vectorization tree is being built recursively this assertion
2031           // ensures that the tree entry has all operands set before reaching
2032           // this code. Couple of exceptions known at the moment are extracts
2033           // where their second (immediate) operand is not added. Since
2034           // immediates do not affect scheduler behavior this is considered
2035           // okay.
2036           auto *In = TE->getMainOp();
2037           assert(In &&
2038                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2039                   In->getNumOperands() == TE->getNumOperands()) &&
2040                  "Missed TreeEntry operands?");
2041           (void)In; // fake use to avoid build failure when assertions disabled
2042 
2043           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2044                OpIdx != NumOperands; ++OpIdx)
2045             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2046               DecrUnsched(I);
2047         } else {
2048           // If BundleMember is a stand-alone instruction, no operand reordering
2049           // has taken place, so we directly access its operands.
2050           for (Use &U : BundleMember->Inst->operands())
2051             if (auto *I = dyn_cast<Instruction>(U.get()))
2052               DecrUnsched(I);
2053         }
2054         // Handle the memory dependencies.
2055         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2056           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2057             // There are no more unscheduled dependencies after decrementing,
2058             // so we can put the dependent instruction into the ready list.
2059             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2060             assert(!DepBundle->IsScheduled &&
2061                    "already scheduled bundle gets ready");
2062             ReadyList.insert(DepBundle);
2063             LLVM_DEBUG(dbgs()
2064                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2065           }
2066         }
2067         BundleMember = BundleMember->NextInBundle;
2068       }
2069     }
2070 
2071     void doForAllOpcodes(Value *V,
2072                          function_ref<void(ScheduleData *SD)> Action) {
2073       if (ScheduleData *SD = getScheduleData(V))
2074         Action(SD);
2075       auto I = ExtraScheduleDataMap.find(V);
2076       if (I != ExtraScheduleDataMap.end())
2077         for (auto &P : I->second)
2078           if (P.second->SchedulingRegionID == SchedulingRegionID)
2079             Action(P.second);
2080     }
2081 
2082     /// Put all instructions into the ReadyList which are ready for scheduling.
2083     template <typename ReadyListType>
2084     void initialFillReadyList(ReadyListType &ReadyList) {
2085       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2086         doForAllOpcodes(I, [&](ScheduleData *SD) {
2087           if (SD->isSchedulingEntity() && SD->isReady()) {
2088             ReadyList.insert(SD);
2089             LLVM_DEBUG(dbgs()
2090                        << "SLP:    initially in ready list: " << *I << "\n");
2091           }
2092         });
2093       }
2094     }
2095 
2096     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2097     /// cyclic dependencies. This is only a dry-run, no instructions are
2098     /// actually moved at this stage.
2099     /// \returns the scheduling bundle. The returned Optional value is non-None
2100     /// if \p VL is allowed to be scheduled.
2101     Optional<ScheduleData *>
2102     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2103                       const InstructionsState &S);
2104 
2105     /// Un-bundles a group of instructions.
2106     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2107 
2108     /// Allocates schedule data chunk.
2109     ScheduleData *allocateScheduleDataChunks();
2110 
2111     /// Extends the scheduling region so that V is inside the region.
2112     /// \returns true if the region size is within the limit.
2113     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2114 
2115     /// Initialize the ScheduleData structures for new instructions in the
2116     /// scheduling region.
2117     void initScheduleData(Instruction *FromI, Instruction *ToI,
2118                           ScheduleData *PrevLoadStore,
2119                           ScheduleData *NextLoadStore);
2120 
2121     /// Updates the dependency information of a bundle and of all instructions/
2122     /// bundles which depend on the original bundle.
2123     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2124                                BoUpSLP *SLP);
2125 
2126     /// Sets all instruction in the scheduling region to un-scheduled.
2127     void resetSchedule();
2128 
2129     BasicBlock *BB;
2130 
2131     /// Simple memory allocation for ScheduleData.
2132     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2133 
2134     /// The size of a ScheduleData array in ScheduleDataChunks.
2135     int ChunkSize;
2136 
2137     /// The allocator position in the current chunk, which is the last entry
2138     /// of ScheduleDataChunks.
2139     int ChunkPos;
2140 
2141     /// Attaches ScheduleData to Instruction.
2142     /// Note that the mapping survives during all vectorization iterations, i.e.
2143     /// ScheduleData structures are recycled.
2144     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2145 
2146     /// Attaches ScheduleData to Instruction with the leading key.
2147     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2148         ExtraScheduleDataMap;
2149 
2150     struct ReadyList : SmallVector<ScheduleData *, 8> {
2151       void insert(ScheduleData *SD) { push_back(SD); }
2152     };
2153 
2154     /// The ready-list for scheduling (only used for the dry-run).
2155     ReadyList ReadyInsts;
2156 
2157     /// The first instruction of the scheduling region.
2158     Instruction *ScheduleStart = nullptr;
2159 
2160     /// The first instruction _after_ the scheduling region.
2161     Instruction *ScheduleEnd = nullptr;
2162 
2163     /// The first memory accessing instruction in the scheduling region
2164     /// (can be null).
2165     ScheduleData *FirstLoadStoreInRegion = nullptr;
2166 
2167     /// The last memory accessing instruction in the scheduling region
2168     /// (can be null).
2169     ScheduleData *LastLoadStoreInRegion = nullptr;
2170 
2171     /// The current size of the scheduling region.
2172     int ScheduleRegionSize = 0;
2173 
2174     /// The maximum size allowed for the scheduling region.
2175     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2176 
2177     /// The ID of the scheduling region. For a new vectorization iteration this
2178     /// is incremented which "removes" all ScheduleData from the region.
2179     // Make sure that the initial SchedulingRegionID is greater than the
2180     // initial SchedulingRegionID in ScheduleData (which is 0).
2181     int SchedulingRegionID = 1;
2182   };
2183 
2184   /// Attaches the BlockScheduling structures to basic blocks.
2185   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2186 
2187   /// Performs the "real" scheduling. Done before vectorization is actually
2188   /// performed in a basic block.
2189   void scheduleBlock(BlockScheduling *BS);
2190 
2191   /// List of users to ignore during scheduling and that don't need extracting.
2192   ArrayRef<Value *> UserIgnoreList;
2193 
2194   using OrdersType = SmallVector<unsigned, 4>;
2195   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2196   /// sorted SmallVectors of unsigned.
2197   struct OrdersTypeDenseMapInfo {
2198     static OrdersType getEmptyKey() {
2199       OrdersType V;
2200       V.push_back(~1U);
2201       return V;
2202     }
2203 
2204     static OrdersType getTombstoneKey() {
2205       OrdersType V;
2206       V.push_back(~2U);
2207       return V;
2208     }
2209 
2210     static unsigned getHashValue(const OrdersType &V) {
2211       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2212     }
2213 
2214     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2215       return LHS == RHS;
2216     }
2217   };
2218 
2219   /// Contains orders of operations along with the number of bundles that have
2220   /// operations in this order. It stores only those orders that require
2221   /// reordering, if reordering is not required it is counted using \a
2222   /// NumOpsWantToKeepOriginalOrder.
2223   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2224   /// Number of bundles that do not require reordering.
2225   unsigned NumOpsWantToKeepOriginalOrder = 0;
2226 
2227   // Analysis and block reference.
2228   Function *F;
2229   ScalarEvolution *SE;
2230   TargetTransformInfo *TTI;
2231   TargetLibraryInfo *TLI;
2232   AliasAnalysis *AA;
2233   LoopInfo *LI;
2234   DominatorTree *DT;
2235   AssumptionCache *AC;
2236   DemandedBits *DB;
2237   const DataLayout *DL;
2238   OptimizationRemarkEmitter *ORE;
2239 
2240   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2241   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2242 
2243   /// Instruction builder to construct the vectorized tree.
2244   IRBuilder<> Builder;
2245 
2246   /// A map of scalar integer values to the smallest bit width with which they
2247   /// can legally be represented. The values map to (width, signed) pairs,
2248   /// where "width" indicates the minimum bit width and "signed" is True if the
2249   /// value must be signed-extended, rather than zero-extended, back to its
2250   /// original width.
2251   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2252 };
2253 
2254 } // end namespace slpvectorizer
2255 
2256 template <> struct GraphTraits<BoUpSLP *> {
2257   using TreeEntry = BoUpSLP::TreeEntry;
2258 
2259   /// NodeRef has to be a pointer per the GraphWriter.
2260   using NodeRef = TreeEntry *;
2261 
2262   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2263 
2264   /// Add the VectorizableTree to the index iterator to be able to return
2265   /// TreeEntry pointers.
2266   struct ChildIteratorType
2267       : public iterator_adaptor_base<
2268             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2269     ContainerTy &VectorizableTree;
2270 
2271     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2272                       ContainerTy &VT)
2273         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2274 
2275     NodeRef operator*() { return I->UserTE; }
2276   };
2277 
2278   static NodeRef getEntryNode(BoUpSLP &R) {
2279     return R.VectorizableTree[0].get();
2280   }
2281 
2282   static ChildIteratorType child_begin(NodeRef N) {
2283     return {N->UserTreeIndices.begin(), N->Container};
2284   }
2285 
2286   static ChildIteratorType child_end(NodeRef N) {
2287     return {N->UserTreeIndices.end(), N->Container};
2288   }
2289 
2290   /// For the node iterator we just need to turn the TreeEntry iterator into a
2291   /// TreeEntry* iterator so that it dereferences to NodeRef.
2292   class nodes_iterator {
2293     using ItTy = ContainerTy::iterator;
2294     ItTy It;
2295 
2296   public:
2297     nodes_iterator(const ItTy &It2) : It(It2) {}
2298     NodeRef operator*() { return It->get(); }
2299     nodes_iterator operator++() {
2300       ++It;
2301       return *this;
2302     }
2303     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2304   };
2305 
2306   static nodes_iterator nodes_begin(BoUpSLP *R) {
2307     return nodes_iterator(R->VectorizableTree.begin());
2308   }
2309 
2310   static nodes_iterator nodes_end(BoUpSLP *R) {
2311     return nodes_iterator(R->VectorizableTree.end());
2312   }
2313 
2314   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2315 };
2316 
2317 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2318   using TreeEntry = BoUpSLP::TreeEntry;
2319 
2320   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2321 
2322   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2323     std::string Str;
2324     raw_string_ostream OS(Str);
2325     if (isSplat(Entry->Scalars)) {
2326       OS << "<splat> " << *Entry->Scalars[0];
2327       return Str;
2328     }
2329     for (auto V : Entry->Scalars) {
2330       OS << *V;
2331       if (std::any_of(
2332               R->ExternalUses.begin(), R->ExternalUses.end(),
2333               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2334         OS << " <extract>";
2335       OS << "\n";
2336     }
2337     return Str;
2338   }
2339 
2340   static std::string getNodeAttributes(const TreeEntry *Entry,
2341                                        const BoUpSLP *) {
2342     if (Entry->State == TreeEntry::NeedToGather)
2343       return "color=red";
2344     return "";
2345   }
2346 };
2347 
2348 } // end namespace llvm
2349 
2350 BoUpSLP::~BoUpSLP() {
2351   for (const auto &Pair : DeletedInstructions) {
2352     // Replace operands of ignored instructions with Undefs in case if they were
2353     // marked for deletion.
2354     if (Pair.getSecond()) {
2355       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2356       Pair.getFirst()->replaceAllUsesWith(Undef);
2357     }
2358     Pair.getFirst()->dropAllReferences();
2359   }
2360   for (const auto &Pair : DeletedInstructions) {
2361     assert(Pair.getFirst()->use_empty() &&
2362            "trying to erase instruction with users.");
2363     Pair.getFirst()->eraseFromParent();
2364   }
2365 }
2366 
2367 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2368   for (auto *V : AV) {
2369     if (auto *I = dyn_cast<Instruction>(V))
2370       eraseInstruction(I, /*ReplaceWithUndef=*/true);
2371   };
2372 }
2373 
2374 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2375                         ArrayRef<Value *> UserIgnoreLst) {
2376   ExtraValueToDebugLocsMap ExternallyUsedValues;
2377   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2378 }
2379 
2380 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2381                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2382                         ArrayRef<Value *> UserIgnoreLst) {
2383   deleteTree();
2384   UserIgnoreList = UserIgnoreLst;
2385   if (!allSameType(Roots))
2386     return;
2387   buildTree_rec(Roots, 0, EdgeInfo());
2388 
2389   // Collect the values that we need to extract from the tree.
2390   for (auto &TEPtr : VectorizableTree) {
2391     TreeEntry *Entry = TEPtr.get();
2392 
2393     // No need to handle users of gathered values.
2394     if (Entry->State == TreeEntry::NeedToGather)
2395       continue;
2396 
2397     // For each lane:
2398     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2399       Value *Scalar = Entry->Scalars[Lane];
2400       int FoundLane = Lane;
2401       if (!Entry->ReuseShuffleIndices.empty()) {
2402         FoundLane =
2403             std::distance(Entry->ReuseShuffleIndices.begin(),
2404                           llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2405       }
2406 
2407       // Check if the scalar is externally used as an extra arg.
2408       auto ExtI = ExternallyUsedValues.find(Scalar);
2409       if (ExtI != ExternallyUsedValues.end()) {
2410         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2411                           << Lane << " from " << *Scalar << ".\n");
2412         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2413       }
2414       for (User *U : Scalar->users()) {
2415         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2416 
2417         Instruction *UserInst = dyn_cast<Instruction>(U);
2418         if (!UserInst)
2419           continue;
2420 
2421         // Skip in-tree scalars that become vectors
2422         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2423           Value *UseScalar = UseEntry->Scalars[0];
2424           // Some in-tree scalars will remain as scalar in vectorized
2425           // instructions. If that is the case, the one in Lane 0 will
2426           // be used.
2427           if (UseScalar != U ||
2428               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2429             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2430                               << ".\n");
2431             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2432             continue;
2433           }
2434         }
2435 
2436         // Ignore users in the user ignore list.
2437         if (is_contained(UserIgnoreList, UserInst))
2438           continue;
2439 
2440         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2441                           << Lane << " from " << *Scalar << ".\n");
2442         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2443       }
2444     }
2445   }
2446 }
2447 
2448 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2449                             const EdgeInfo &UserTreeIdx) {
2450   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2451 
2452   InstructionsState S = getSameOpcode(VL);
2453   if (Depth == RecursionMaxDepth) {
2454     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2455     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2456     return;
2457   }
2458 
2459   // Don't handle vectors.
2460   if (S.OpValue->getType()->isVectorTy()) {
2461     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2462     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2463     return;
2464   }
2465 
2466   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2467     if (SI->getValueOperand()->getType()->isVectorTy()) {
2468       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2469       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2470       return;
2471     }
2472 
2473   // If all of the operands are identical or constant we have a simple solution.
2474   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2475     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2476     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2477     return;
2478   }
2479 
2480   // We now know that this is a vector of instructions of the same type from
2481   // the same block.
2482 
2483   // Don't vectorize ephemeral values.
2484   for (Value *V : VL) {
2485     if (EphValues.count(V)) {
2486       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2487                         << ") is ephemeral.\n");
2488       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2489       return;
2490     }
2491   }
2492 
2493   // Check if this is a duplicate of another entry.
2494   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2495     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2496     if (!E->isSame(VL)) {
2497       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2498       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2499       return;
2500     }
2501     // Record the reuse of the tree node.  FIXME, currently this is only used to
2502     // properly draw the graph rather than for the actual vectorization.
2503     E->UserTreeIndices.push_back(UserTreeIdx);
2504     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2505                       << ".\n");
2506     return;
2507   }
2508 
2509   // Check that none of the instructions in the bundle are already in the tree.
2510   for (Value *V : VL) {
2511     auto *I = dyn_cast<Instruction>(V);
2512     if (!I)
2513       continue;
2514     if (getTreeEntry(I)) {
2515       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2516                         << ") is already in tree.\n");
2517       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2518       return;
2519     }
2520   }
2521 
2522   // If any of the scalars is marked as a value that needs to stay scalar, then
2523   // we need to gather the scalars.
2524   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2525   for (Value *V : VL) {
2526     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2527       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2528       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2529       return;
2530     }
2531   }
2532 
2533   // Check that all of the users of the scalars that we want to vectorize are
2534   // schedulable.
2535   auto *VL0 = cast<Instruction>(S.OpValue);
2536   BasicBlock *BB = VL0->getParent();
2537 
2538   if (!DT->isReachableFromEntry(BB)) {
2539     // Don't go into unreachable blocks. They may contain instructions with
2540     // dependency cycles which confuse the final scheduling.
2541     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2542     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2543     return;
2544   }
2545 
2546   // Check that every instruction appears once in this bundle.
2547   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2548   SmallVector<Value *, 4> UniqueValues;
2549   DenseMap<Value *, unsigned> UniquePositions;
2550   for (Value *V : VL) {
2551     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2552     ReuseShuffleIndicies.emplace_back(Res.first->second);
2553     if (Res.second)
2554       UniqueValues.emplace_back(V);
2555   }
2556   size_t NumUniqueScalarValues = UniqueValues.size();
2557   if (NumUniqueScalarValues == VL.size()) {
2558     ReuseShuffleIndicies.clear();
2559   } else {
2560     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2561     if (NumUniqueScalarValues <= 1 ||
2562         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2563       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2564       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2565       return;
2566     }
2567     VL = UniqueValues;
2568   }
2569 
2570   auto &BSRef = BlocksSchedules[BB];
2571   if (!BSRef)
2572     BSRef = std::make_unique<BlockScheduling>(BB);
2573 
2574   BlockScheduling &BS = *BSRef.get();
2575 
2576   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2577   if (!Bundle) {
2578     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2579     assert((!BS.getScheduleData(VL0) ||
2580             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2581            "tryScheduleBundle should cancelScheduling on failure");
2582     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2583                  ReuseShuffleIndicies);
2584     return;
2585   }
2586   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2587 
2588   unsigned ShuffleOrOp = S.isAltShuffle() ?
2589                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2590   switch (ShuffleOrOp) {
2591     case Instruction::PHI: {
2592       auto *PH = cast<PHINode>(VL0);
2593 
2594       // Check for terminator values (e.g. invoke).
2595       for (unsigned j = 0; j < VL.size(); ++j)
2596         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2597           Instruction *Term = dyn_cast<Instruction>(
2598               cast<PHINode>(VL[j])->getIncomingValueForBlock(
2599                   PH->getIncomingBlock(i)));
2600           if (Term && Term->isTerminator()) {
2601             LLVM_DEBUG(dbgs()
2602                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2603             BS.cancelScheduling(VL, VL0);
2604             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2605                          ReuseShuffleIndicies);
2606             return;
2607           }
2608         }
2609 
2610       TreeEntry *TE =
2611           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2612       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2613 
2614       // Keeps the reordered operands to avoid code duplication.
2615       SmallVector<ValueList, 2> OperandsVec;
2616       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2617         ValueList Operands;
2618         // Prepare the operand vector.
2619         for (Value *j : VL)
2620           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2621               PH->getIncomingBlock(i)));
2622         TE->setOperand(i, Operands);
2623         OperandsVec.push_back(Operands);
2624       }
2625       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2626         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2627       return;
2628     }
2629     case Instruction::ExtractValue:
2630     case Instruction::ExtractElement: {
2631       OrdersType CurrentOrder;
2632       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2633       if (Reuse) {
2634         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2635         ++NumOpsWantToKeepOriginalOrder;
2636         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2637                      ReuseShuffleIndicies);
2638         // This is a special case, as it does not gather, but at the same time
2639         // we are not extending buildTree_rec() towards the operands.
2640         ValueList Op0;
2641         Op0.assign(VL.size(), VL0->getOperand(0));
2642         VectorizableTree.back()->setOperand(0, Op0);
2643         return;
2644       }
2645       if (!CurrentOrder.empty()) {
2646         LLVM_DEBUG({
2647           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2648                     "with order";
2649           for (unsigned Idx : CurrentOrder)
2650             dbgs() << " " << Idx;
2651           dbgs() << "\n";
2652         });
2653         // Insert new order with initial value 0, if it does not exist,
2654         // otherwise return the iterator to the existing one.
2655         auto StoredCurrentOrderAndNum =
2656             NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2657         ++StoredCurrentOrderAndNum->getSecond();
2658         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2659                      ReuseShuffleIndicies,
2660                      StoredCurrentOrderAndNum->getFirst());
2661         // This is a special case, as it does not gather, but at the same time
2662         // we are not extending buildTree_rec() towards the operands.
2663         ValueList Op0;
2664         Op0.assign(VL.size(), VL0->getOperand(0));
2665         VectorizableTree.back()->setOperand(0, Op0);
2666         return;
2667       }
2668       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2669       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2670                    ReuseShuffleIndicies);
2671       BS.cancelScheduling(VL, VL0);
2672       return;
2673     }
2674     case Instruction::Load: {
2675       // Check that a vectorized load would load the same memory as a scalar
2676       // load. For example, we don't want to vectorize loads that are smaller
2677       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2678       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2679       // from such a struct, we read/write packed bits disagreeing with the
2680       // unvectorized version.
2681       Type *ScalarTy = VL0->getType();
2682 
2683       if (DL->getTypeSizeInBits(ScalarTy) !=
2684           DL->getTypeAllocSizeInBits(ScalarTy)) {
2685         BS.cancelScheduling(VL, VL0);
2686         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2687                      ReuseShuffleIndicies);
2688         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2689         return;
2690       }
2691 
2692       // Make sure all loads in the bundle are simple - we can't vectorize
2693       // atomic or volatile loads.
2694       SmallVector<Value *, 4> PointerOps(VL.size());
2695       auto POIter = PointerOps.begin();
2696       for (Value *V : VL) {
2697         auto *L = cast<LoadInst>(V);
2698         if (!L->isSimple()) {
2699           BS.cancelScheduling(VL, VL0);
2700           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2701                        ReuseShuffleIndicies);
2702           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2703           return;
2704         }
2705         *POIter = L->getPointerOperand();
2706         ++POIter;
2707       }
2708 
2709       OrdersType CurrentOrder;
2710       // Check the order of pointer operands.
2711       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2712         Value *Ptr0;
2713         Value *PtrN;
2714         if (CurrentOrder.empty()) {
2715           Ptr0 = PointerOps.front();
2716           PtrN = PointerOps.back();
2717         } else {
2718           Ptr0 = PointerOps[CurrentOrder.front()];
2719           PtrN = PointerOps[CurrentOrder.back()];
2720         }
2721         const SCEV *Scev0 = SE->getSCEV(Ptr0);
2722         const SCEV *ScevN = SE->getSCEV(PtrN);
2723         const auto *Diff =
2724             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2725         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2726         // Check that the sorted loads are consecutive.
2727         if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2728           if (CurrentOrder.empty()) {
2729             // Original loads are consecutive and does not require reordering.
2730             ++NumOpsWantToKeepOriginalOrder;
2731             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2732                                          UserTreeIdx, ReuseShuffleIndicies);
2733             TE->setOperandsInOrder();
2734             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2735           } else {
2736             // Need to reorder.
2737             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2738             ++I->getSecond();
2739             TreeEntry *TE =
2740                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2741                              ReuseShuffleIndicies, I->getFirst());
2742             TE->setOperandsInOrder();
2743             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2744           }
2745           return;
2746         }
2747       }
2748 
2749       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2750       BS.cancelScheduling(VL, VL0);
2751       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2752                    ReuseShuffleIndicies);
2753       return;
2754     }
2755     case Instruction::ZExt:
2756     case Instruction::SExt:
2757     case Instruction::FPToUI:
2758     case Instruction::FPToSI:
2759     case Instruction::FPExt:
2760     case Instruction::PtrToInt:
2761     case Instruction::IntToPtr:
2762     case Instruction::SIToFP:
2763     case Instruction::UIToFP:
2764     case Instruction::Trunc:
2765     case Instruction::FPTrunc:
2766     case Instruction::BitCast: {
2767       Type *SrcTy = VL0->getOperand(0)->getType();
2768       for (Value *V : VL) {
2769         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2770         if (Ty != SrcTy || !isValidElementType(Ty)) {
2771           BS.cancelScheduling(VL, VL0);
2772           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2773                        ReuseShuffleIndicies);
2774           LLVM_DEBUG(dbgs()
2775                      << "SLP: Gathering casts with different src types.\n");
2776           return;
2777         }
2778       }
2779       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2780                                    ReuseShuffleIndicies);
2781       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2782 
2783       TE->setOperandsInOrder();
2784       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2785         ValueList Operands;
2786         // Prepare the operand vector.
2787         for (Value *V : VL)
2788           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2789 
2790         buildTree_rec(Operands, Depth + 1, {TE, i});
2791       }
2792       return;
2793     }
2794     case Instruction::ICmp:
2795     case Instruction::FCmp: {
2796       // Check that all of the compares have the same predicate.
2797       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2798       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2799       Type *ComparedTy = VL0->getOperand(0)->getType();
2800       for (Value *V : VL) {
2801         CmpInst *Cmp = cast<CmpInst>(V);
2802         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2803             Cmp->getOperand(0)->getType() != ComparedTy) {
2804           BS.cancelScheduling(VL, VL0);
2805           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2806                        ReuseShuffleIndicies);
2807           LLVM_DEBUG(dbgs()
2808                      << "SLP: Gathering cmp with different predicate.\n");
2809           return;
2810         }
2811       }
2812 
2813       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2814                                    ReuseShuffleIndicies);
2815       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2816 
2817       ValueList Left, Right;
2818       if (cast<CmpInst>(VL0)->isCommutative()) {
2819         // Commutative predicate - collect + sort operands of the instructions
2820         // so that each side is more likely to have the same opcode.
2821         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2822         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2823       } else {
2824         // Collect operands - commute if it uses the swapped predicate.
2825         for (Value *V : VL) {
2826           auto *Cmp = cast<CmpInst>(V);
2827           Value *LHS = Cmp->getOperand(0);
2828           Value *RHS = Cmp->getOperand(1);
2829           if (Cmp->getPredicate() != P0)
2830             std::swap(LHS, RHS);
2831           Left.push_back(LHS);
2832           Right.push_back(RHS);
2833         }
2834       }
2835       TE->setOperand(0, Left);
2836       TE->setOperand(1, Right);
2837       buildTree_rec(Left, Depth + 1, {TE, 0});
2838       buildTree_rec(Right, Depth + 1, {TE, 1});
2839       return;
2840     }
2841     case Instruction::Select:
2842     case Instruction::FNeg:
2843     case Instruction::Add:
2844     case Instruction::FAdd:
2845     case Instruction::Sub:
2846     case Instruction::FSub:
2847     case Instruction::Mul:
2848     case Instruction::FMul:
2849     case Instruction::UDiv:
2850     case Instruction::SDiv:
2851     case Instruction::FDiv:
2852     case Instruction::URem:
2853     case Instruction::SRem:
2854     case Instruction::FRem:
2855     case Instruction::Shl:
2856     case Instruction::LShr:
2857     case Instruction::AShr:
2858     case Instruction::And:
2859     case Instruction::Or:
2860     case Instruction::Xor: {
2861       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2862                                    ReuseShuffleIndicies);
2863       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2864 
2865       // Sort operands of the instructions so that each side is more likely to
2866       // have the same opcode.
2867       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2868         ValueList Left, Right;
2869         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2870         TE->setOperand(0, Left);
2871         TE->setOperand(1, Right);
2872         buildTree_rec(Left, Depth + 1, {TE, 0});
2873         buildTree_rec(Right, Depth + 1, {TE, 1});
2874         return;
2875       }
2876 
2877       TE->setOperandsInOrder();
2878       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2879         ValueList Operands;
2880         // Prepare the operand vector.
2881         for (Value *j : VL)
2882           Operands.push_back(cast<Instruction>(j)->getOperand(i));
2883 
2884         buildTree_rec(Operands, Depth + 1, {TE, i});
2885       }
2886       return;
2887     }
2888     case Instruction::GetElementPtr: {
2889       // We don't combine GEPs with complicated (nested) indexing.
2890       for (Value *V : VL) {
2891         if (cast<Instruction>(V)->getNumOperands() != 2) {
2892           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2893           BS.cancelScheduling(VL, VL0);
2894           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2895                        ReuseShuffleIndicies);
2896           return;
2897         }
2898       }
2899 
2900       // We can't combine several GEPs into one vector if they operate on
2901       // different types.
2902       Type *Ty0 = VL0->getOperand(0)->getType();
2903       for (Value *V : VL) {
2904         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2905         if (Ty0 != CurTy) {
2906           LLVM_DEBUG(dbgs()
2907                      << "SLP: not-vectorizable GEP (different types).\n");
2908           BS.cancelScheduling(VL, VL0);
2909           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2910                        ReuseShuffleIndicies);
2911           return;
2912         }
2913       }
2914 
2915       // We don't combine GEPs with non-constant indexes.
2916       Type *Ty1 = VL0->getOperand(1)->getType();
2917       for (Value *V : VL) {
2918         auto Op = cast<Instruction>(V)->getOperand(1);
2919         if (!isa<ConstantInt>(Op) ||
2920             (Op->getType() != Ty1 &&
2921              Op->getType()->getScalarSizeInBits() >
2922                  DL->getIndexSizeInBits(
2923                      V->getType()->getPointerAddressSpace()))) {
2924           LLVM_DEBUG(dbgs()
2925                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2926           BS.cancelScheduling(VL, VL0);
2927           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2928                        ReuseShuffleIndicies);
2929           return;
2930         }
2931       }
2932 
2933       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2934                                    ReuseShuffleIndicies);
2935       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2936       TE->setOperandsInOrder();
2937       for (unsigned i = 0, e = 2; i < e; ++i) {
2938         ValueList Operands;
2939         // Prepare the operand vector.
2940         for (Value *V : VL)
2941           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2942 
2943         buildTree_rec(Operands, Depth + 1, {TE, i});
2944       }
2945       return;
2946     }
2947     case Instruction::Store: {
2948       // Check if the stores are consecutive or if we need to swizzle them.
2949       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
2950       // Make sure all stores in the bundle are simple - we can't vectorize
2951       // atomic or volatile stores.
2952       SmallVector<Value *, 4> PointerOps(VL.size());
2953       ValueList Operands(VL.size());
2954       auto POIter = PointerOps.begin();
2955       auto OIter = Operands.begin();
2956       for (Value *V : VL) {
2957         auto *SI = cast<StoreInst>(V);
2958         if (!SI->isSimple()) {
2959           BS.cancelScheduling(VL, VL0);
2960           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2961                        ReuseShuffleIndicies);
2962           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
2963           return;
2964         }
2965         *POIter = SI->getPointerOperand();
2966         *OIter = SI->getValueOperand();
2967         ++POIter;
2968         ++OIter;
2969       }
2970 
2971       OrdersType CurrentOrder;
2972       // Check the order of pointer operands.
2973       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2974         Value *Ptr0;
2975         Value *PtrN;
2976         if (CurrentOrder.empty()) {
2977           Ptr0 = PointerOps.front();
2978           PtrN = PointerOps.back();
2979         } else {
2980           Ptr0 = PointerOps[CurrentOrder.front()];
2981           PtrN = PointerOps[CurrentOrder.back()];
2982         }
2983         const SCEV *Scev0 = SE->getSCEV(Ptr0);
2984         const SCEV *ScevN = SE->getSCEV(PtrN);
2985         const auto *Diff =
2986             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2987         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2988         // Check that the sorted pointer operands are consecutive.
2989         if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2990           if (CurrentOrder.empty()) {
2991             // Original stores are consecutive and does not require reordering.
2992             ++NumOpsWantToKeepOriginalOrder;
2993             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2994                                          UserTreeIdx, ReuseShuffleIndicies);
2995             TE->setOperandsInOrder();
2996             buildTree_rec(Operands, Depth + 1, {TE, 0});
2997             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2998           } else {
2999             // Need to reorder.
3000             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
3001             ++(I->getSecond());
3002             TreeEntry *TE =
3003                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3004                              ReuseShuffleIndicies, I->getFirst());
3005             TE->setOperandsInOrder();
3006             buildTree_rec(Operands, Depth + 1, {TE, 0});
3007             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3008           }
3009           return;
3010         }
3011       }
3012 
3013       BS.cancelScheduling(VL, VL0);
3014       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3015                    ReuseShuffleIndicies);
3016       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3017       return;
3018     }
3019     case Instruction::Call: {
3020       // Check if the calls are all to the same vectorizable intrinsic.
3021       CallInst *CI = cast<CallInst>(VL0);
3022       // Check if this is an Intrinsic call or something that can be
3023       // represented by an intrinsic call
3024       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3025       if (!isTriviallyVectorizable(ID)) {
3026         BS.cancelScheduling(VL, VL0);
3027         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3028                      ReuseShuffleIndicies);
3029         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3030         return;
3031       }
3032       Function *Int = CI->getCalledFunction();
3033       unsigned NumArgs = CI->getNumArgOperands();
3034       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3035       for (unsigned j = 0; j != NumArgs; ++j)
3036         if (hasVectorInstrinsicScalarOpd(ID, j))
3037           ScalarArgs[j] = CI->getArgOperand(j);
3038       for (Value *V : VL) {
3039         CallInst *CI2 = dyn_cast<CallInst>(V);
3040         if (!CI2 || CI2->getCalledFunction() != Int ||
3041             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3042             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3043           BS.cancelScheduling(VL, VL0);
3044           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3045                        ReuseShuffleIndicies);
3046           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3047                             << "\n");
3048           return;
3049         }
3050         // Some intrinsics have scalar arguments and should be same in order for
3051         // them to be vectorized.
3052         for (unsigned j = 0; j != NumArgs; ++j) {
3053           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3054             Value *A1J = CI2->getArgOperand(j);
3055             if (ScalarArgs[j] != A1J) {
3056               BS.cancelScheduling(VL, VL0);
3057               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3058                            ReuseShuffleIndicies);
3059               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3060                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3061                                 << "\n");
3062               return;
3063             }
3064           }
3065         }
3066         // Verify that the bundle operands are identical between the two calls.
3067         if (CI->hasOperandBundles() &&
3068             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3069                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3070                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3071           BS.cancelScheduling(VL, VL0);
3072           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3073                        ReuseShuffleIndicies);
3074           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3075                             << *CI << "!=" << *V << '\n');
3076           return;
3077         }
3078       }
3079 
3080       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3081                                    ReuseShuffleIndicies);
3082       TE->setOperandsInOrder();
3083       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3084         ValueList Operands;
3085         // Prepare the operand vector.
3086         for (Value *V : VL) {
3087           auto *CI2 = cast<CallInst>(V);
3088           Operands.push_back(CI2->getArgOperand(i));
3089         }
3090         buildTree_rec(Operands, Depth + 1, {TE, i});
3091       }
3092       return;
3093     }
3094     case Instruction::ShuffleVector: {
3095       // If this is not an alternate sequence of opcode like add-sub
3096       // then do not vectorize this instruction.
3097       if (!S.isAltShuffle()) {
3098         BS.cancelScheduling(VL, VL0);
3099         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3100                      ReuseShuffleIndicies);
3101         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3102         return;
3103       }
3104       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3105                                    ReuseShuffleIndicies);
3106       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3107 
3108       // Reorder operands if reordering would enable vectorization.
3109       if (isa<BinaryOperator>(VL0)) {
3110         ValueList Left, Right;
3111         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3112         TE->setOperand(0, Left);
3113         TE->setOperand(1, Right);
3114         buildTree_rec(Left, Depth + 1, {TE, 0});
3115         buildTree_rec(Right, Depth + 1, {TE, 1});
3116         return;
3117       }
3118 
3119       TE->setOperandsInOrder();
3120       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3121         ValueList Operands;
3122         // Prepare the operand vector.
3123         for (Value *V : VL)
3124           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3125 
3126         buildTree_rec(Operands, Depth + 1, {TE, i});
3127       }
3128       return;
3129     }
3130     default:
3131       BS.cancelScheduling(VL, VL0);
3132       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3133                    ReuseShuffleIndicies);
3134       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3135       return;
3136   }
3137 }
3138 
3139 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3140   unsigned N = 1;
3141   Type *EltTy = T;
3142 
3143   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3144          isa<VectorType>(EltTy)) {
3145     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3146       // Check that struct is homogeneous.
3147       for (const auto *Ty : ST->elements())
3148         if (Ty != *ST->element_begin())
3149           return 0;
3150       N *= ST->getNumElements();
3151       EltTy = *ST->element_begin();
3152     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3153       N *= AT->getNumElements();
3154       EltTy = AT->getElementType();
3155     } else {
3156       auto *VT = cast<VectorType>(EltTy);
3157       N *= VT->getNumElements();
3158       EltTy = VT->getElementType();
3159     }
3160   }
3161 
3162   if (!isValidElementType(EltTy))
3163     return 0;
3164   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
3165   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3166     return 0;
3167   return N;
3168 }
3169 
3170 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3171                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3172   Instruction *E0 = cast<Instruction>(OpValue);
3173   assert(E0->getOpcode() == Instruction::ExtractElement ||
3174          E0->getOpcode() == Instruction::ExtractValue);
3175   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3176   // Check if all of the extracts come from the same vector and from the
3177   // correct offset.
3178   Value *Vec = E0->getOperand(0);
3179 
3180   CurrentOrder.clear();
3181 
3182   // We have to extract from a vector/aggregate with the same number of elements.
3183   unsigned NElts;
3184   if (E0->getOpcode() == Instruction::ExtractValue) {
3185     const DataLayout &DL = E0->getModule()->getDataLayout();
3186     NElts = canMapToVector(Vec->getType(), DL);
3187     if (!NElts)
3188       return false;
3189     // Check if load can be rewritten as load of vector.
3190     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3191     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3192       return false;
3193   } else {
3194     NElts = cast<VectorType>(Vec->getType())->getNumElements();
3195   }
3196 
3197   if (NElts != VL.size())
3198     return false;
3199 
3200   // Check that all of the indices extract from the correct offset.
3201   bool ShouldKeepOrder = true;
3202   unsigned E = VL.size();
3203   // Assign to all items the initial value E + 1 so we can check if the extract
3204   // instruction index was used already.
3205   // Also, later we can check that all the indices are used and we have a
3206   // consecutive access in the extract instructions, by checking that no
3207   // element of CurrentOrder still has value E + 1.
3208   CurrentOrder.assign(E, E + 1);
3209   unsigned I = 0;
3210   for (; I < E; ++I) {
3211     auto *Inst = cast<Instruction>(VL[I]);
3212     if (Inst->getOperand(0) != Vec)
3213       break;
3214     Optional<unsigned> Idx = getExtractIndex(Inst);
3215     if (!Idx)
3216       break;
3217     const unsigned ExtIdx = *Idx;
3218     if (ExtIdx != I) {
3219       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3220         break;
3221       ShouldKeepOrder = false;
3222       CurrentOrder[ExtIdx] = I;
3223     } else {
3224       if (CurrentOrder[I] != E + 1)
3225         break;
3226       CurrentOrder[I] = I;
3227     }
3228   }
3229   if (I < E) {
3230     CurrentOrder.clear();
3231     return false;
3232   }
3233 
3234   return ShouldKeepOrder;
3235 }
3236 
3237 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3238   return I->hasOneUse() ||
3239          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
3240            return ScalarToTreeEntry.count(U) > 0;
3241          });
3242 }
3243 
3244 static std::pair<unsigned, unsigned>
3245 getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI,
3246                    TargetLibraryInfo *TLI) {
3247   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3248 
3249   // Calculate the cost of the scalar and vector calls.
3250   IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements());
3251   int IntrinsicCost =
3252     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3253 
3254   auto Shape =
3255       VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
3256                    false /*HasGlobalPred*/);
3257   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3258   int LibCost = IntrinsicCost;
3259   if (!CI->isNoBuiltin() && VecFunc) {
3260     // Calculate the cost of the vector library call.
3261     SmallVector<Type *, 4> VecTys;
3262     for (Use &Arg : CI->args())
3263       VecTys.push_back(
3264           VectorType::get(Arg->getType(), VecTy->getNumElements()));
3265 
3266     // If the corresponding vector call is cheaper, return its cost.
3267     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3268                                     TTI::TCK_RecipThroughput);
3269   }
3270   return {IntrinsicCost, LibCost};
3271 }
3272 
3273 int BoUpSLP::getEntryCost(TreeEntry *E) {
3274   ArrayRef<Value*> VL = E->Scalars;
3275 
3276   Type *ScalarTy = VL[0]->getType();
3277   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3278     ScalarTy = SI->getValueOperand()->getType();
3279   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3280     ScalarTy = CI->getOperand(0)->getType();
3281   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3282   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3283 
3284   // If we have computed a smaller type for the expression, update VecTy so
3285   // that the costs will be accurate.
3286   if (MinBWs.count(VL[0]))
3287     VecTy = VectorType::get(
3288         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3289 
3290   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3291   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3292   int ReuseShuffleCost = 0;
3293   if (NeedToShuffleReuses) {
3294     ReuseShuffleCost =
3295         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3296   }
3297   if (E->State == TreeEntry::NeedToGather) {
3298     if (allConstant(VL))
3299       return 0;
3300     if (isSplat(VL)) {
3301       return ReuseShuffleCost +
3302              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
3303     }
3304     if (E->getOpcode() == Instruction::ExtractElement &&
3305         allSameType(VL) && allSameBlock(VL)) {
3306       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
3307       if (ShuffleKind.hasValue()) {
3308         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
3309         for (auto *V : VL) {
3310           // If all users of instruction are going to be vectorized and this
3311           // instruction itself is not going to be vectorized, consider this
3312           // instruction as dead and remove its cost from the final cost of the
3313           // vectorized tree.
3314           if (areAllUsersVectorized(cast<Instruction>(V)) &&
3315               !ScalarToTreeEntry.count(V)) {
3316             auto *IO = cast<ConstantInt>(
3317                 cast<ExtractElementInst>(V)->getIndexOperand());
3318             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3319                                             IO->getZExtValue());
3320           }
3321         }
3322         return ReuseShuffleCost + Cost;
3323       }
3324     }
3325     return ReuseShuffleCost + getGatherCost(VL);
3326   }
3327   assert(E->State == TreeEntry::Vectorize && "Unhandled state");
3328   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3329   Instruction *VL0 = E->getMainOp();
3330   unsigned ShuffleOrOp =
3331       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3332   switch (ShuffleOrOp) {
3333     case Instruction::PHI:
3334       return 0;
3335 
3336     case Instruction::ExtractValue:
3337     case Instruction::ExtractElement: {
3338       if (NeedToShuffleReuses) {
3339         unsigned Idx = 0;
3340         for (unsigned I : E->ReuseShuffleIndices) {
3341           if (ShuffleOrOp == Instruction::ExtractElement) {
3342             auto *IO = cast<ConstantInt>(
3343                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
3344             Idx = IO->getZExtValue();
3345             ReuseShuffleCost -= TTI->getVectorInstrCost(
3346                 Instruction::ExtractElement, VecTy, Idx);
3347           } else {
3348             ReuseShuffleCost -= TTI->getVectorInstrCost(
3349                 Instruction::ExtractElement, VecTy, Idx);
3350             ++Idx;
3351           }
3352         }
3353         Idx = ReuseShuffleNumbers;
3354         for (Value *V : VL) {
3355           if (ShuffleOrOp == Instruction::ExtractElement) {
3356             auto *IO = cast<ConstantInt>(
3357                 cast<ExtractElementInst>(V)->getIndexOperand());
3358             Idx = IO->getZExtValue();
3359           } else {
3360             --Idx;
3361           }
3362           ReuseShuffleCost +=
3363               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3364         }
3365       }
3366       int DeadCost = ReuseShuffleCost;
3367       if (!E->ReorderIndices.empty()) {
3368         // TODO: Merge this shuffle with the ReuseShuffleCost.
3369         DeadCost += TTI->getShuffleCost(
3370             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3371       }
3372       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3373         Instruction *E = cast<Instruction>(VL[i]);
3374         // If all users are going to be vectorized, instruction can be
3375         // considered as dead.
3376         // The same, if have only one user, it will be vectorized for sure.
3377         if (areAllUsersVectorized(E)) {
3378           // Take credit for instruction that will become dead.
3379           if (E->hasOneUse()) {
3380             Instruction *Ext = E->user_back();
3381             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3382                 all_of(Ext->users(),
3383                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3384               // Use getExtractWithExtendCost() to calculate the cost of
3385               // extractelement/ext pair.
3386               DeadCost -= TTI->getExtractWithExtendCost(
3387                   Ext->getOpcode(), Ext->getType(), VecTy, i);
3388               // Add back the cost of s|zext which is subtracted separately.
3389               DeadCost += TTI->getCastInstrCost(
3390                   Ext->getOpcode(), Ext->getType(), E->getType(), CostKind,
3391                   Ext);
3392               continue;
3393             }
3394           }
3395           DeadCost -=
3396               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
3397         }
3398       }
3399       return DeadCost;
3400     }
3401     case Instruction::ZExt:
3402     case Instruction::SExt:
3403     case Instruction::FPToUI:
3404     case Instruction::FPToSI:
3405     case Instruction::FPExt:
3406     case Instruction::PtrToInt:
3407     case Instruction::IntToPtr:
3408     case Instruction::SIToFP:
3409     case Instruction::UIToFP:
3410     case Instruction::Trunc:
3411     case Instruction::FPTrunc:
3412     case Instruction::BitCast: {
3413       Type *SrcTy = VL0->getOperand(0)->getType();
3414       int ScalarEltCost =
3415           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, CostKind,
3416                                 VL0);
3417       if (NeedToShuffleReuses) {
3418         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3419       }
3420 
3421       // Calculate the cost of this instruction.
3422       int ScalarCost = VL.size() * ScalarEltCost;
3423 
3424       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
3425       int VecCost = 0;
3426       // Check if the values are candidates to demote.
3427       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3428         VecCost = ReuseShuffleCost +
3429                   TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3430                                         CostKind, VL0);
3431       }
3432       return VecCost - ScalarCost;
3433     }
3434     case Instruction::FCmp:
3435     case Instruction::ICmp:
3436     case Instruction::Select: {
3437       // Calculate the cost of this instruction.
3438       int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3439                                                   Builder.getInt1Ty(),
3440                                                   CostKind, VL0);
3441       if (NeedToShuffleReuses) {
3442         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3443       }
3444       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
3445       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3446       int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy,
3447                                             CostKind, VL0);
3448       return ReuseShuffleCost + VecCost - ScalarCost;
3449     }
3450     case Instruction::FNeg:
3451     case Instruction::Add:
3452     case Instruction::FAdd:
3453     case Instruction::Sub:
3454     case Instruction::FSub:
3455     case Instruction::Mul:
3456     case Instruction::FMul:
3457     case Instruction::UDiv:
3458     case Instruction::SDiv:
3459     case Instruction::FDiv:
3460     case Instruction::URem:
3461     case Instruction::SRem:
3462     case Instruction::FRem:
3463     case Instruction::Shl:
3464     case Instruction::LShr:
3465     case Instruction::AShr:
3466     case Instruction::And:
3467     case Instruction::Or:
3468     case Instruction::Xor: {
3469       // Certain instructions can be cheaper to vectorize if they have a
3470       // constant second vector operand.
3471       TargetTransformInfo::OperandValueKind Op1VK =
3472           TargetTransformInfo::OK_AnyValue;
3473       TargetTransformInfo::OperandValueKind Op2VK =
3474           TargetTransformInfo::OK_UniformConstantValue;
3475       TargetTransformInfo::OperandValueProperties Op1VP =
3476           TargetTransformInfo::OP_None;
3477       TargetTransformInfo::OperandValueProperties Op2VP =
3478           TargetTransformInfo::OP_PowerOf2;
3479 
3480       // If all operands are exactly the same ConstantInt then set the
3481       // operand kind to OK_UniformConstantValue.
3482       // If instead not all operands are constants, then set the operand kind
3483       // to OK_AnyValue. If all operands are constants but not the same,
3484       // then set the operand kind to OK_NonUniformConstantValue.
3485       ConstantInt *CInt0 = nullptr;
3486       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3487         const Instruction *I = cast<Instruction>(VL[i]);
3488         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3489         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3490         if (!CInt) {
3491           Op2VK = TargetTransformInfo::OK_AnyValue;
3492           Op2VP = TargetTransformInfo::OP_None;
3493           break;
3494         }
3495         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3496             !CInt->getValue().isPowerOf2())
3497           Op2VP = TargetTransformInfo::OP_None;
3498         if (i == 0) {
3499           CInt0 = CInt;
3500           continue;
3501         }
3502         if (CInt0 != CInt)
3503           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3504       }
3505 
3506       SmallVector<const Value *, 4> Operands(VL0->operand_values());
3507       int ScalarEltCost = TTI->getArithmeticInstrCost(
3508           E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
3509           Operands, VL0);
3510       if (NeedToShuffleReuses) {
3511         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3512       }
3513       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3514       int VecCost = TTI->getArithmeticInstrCost(
3515           E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
3516           Operands, VL0);
3517       return ReuseShuffleCost + VecCost - ScalarCost;
3518     }
3519     case Instruction::GetElementPtr: {
3520       TargetTransformInfo::OperandValueKind Op1VK =
3521           TargetTransformInfo::OK_AnyValue;
3522       TargetTransformInfo::OperandValueKind Op2VK =
3523           TargetTransformInfo::OK_UniformConstantValue;
3524 
3525       int ScalarEltCost =
3526           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind,
3527                                       Op1VK, Op2VK);
3528       if (NeedToShuffleReuses) {
3529         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3530       }
3531       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3532       int VecCost =
3533           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind,
3534                                       Op1VK, Op2VK);
3535       return ReuseShuffleCost + VecCost - ScalarCost;
3536     }
3537     case Instruction::Load: {
3538       // Cost of wide load - cost of scalar loads.
3539       Align alignment = cast<LoadInst>(VL0)->getAlign();
3540       int ScalarEltCost =
3541           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0,
3542                                CostKind, VL0);
3543       if (NeedToShuffleReuses) {
3544         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3545       }
3546       int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3547       int VecLdCost =
3548           TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3549                                CostKind, VL0);
3550       if (!E->ReorderIndices.empty()) {
3551         // TODO: Merge this shuffle with the ReuseShuffleCost.
3552         VecLdCost += TTI->getShuffleCost(
3553             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3554       }
3555       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3556     }
3557     case Instruction::Store: {
3558       // We know that we can merge the stores. Calculate the cost.
3559       bool IsReorder = !E->ReorderIndices.empty();
3560       auto *SI =
3561           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3562       Align Alignment = SI->getAlign();
3563       int ScalarEltCost =
3564           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0,
3565                                CostKind, VL0);
3566       if (NeedToShuffleReuses)
3567         ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3568       int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3569       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
3570                                            VecTy, Alignment, 0, CostKind, VL0);
3571       if (IsReorder) {
3572         // TODO: Merge this shuffle with the ReuseShuffleCost.
3573         VecStCost += TTI->getShuffleCost(
3574             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3575       }
3576       return ReuseShuffleCost + VecStCost - ScalarStCost;
3577     }
3578     case Instruction::Call: {
3579       CallInst *CI = cast<CallInst>(VL0);
3580       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3581 
3582       // Calculate the cost of the scalar and vector calls.
3583       IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1);
3584       int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3585       if (NeedToShuffleReuses) {
3586         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3587       }
3588       int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3589 
3590       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3591       int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second);
3592 
3593       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3594                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3595                         << " for " << *CI << "\n");
3596 
3597       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3598     }
3599     case Instruction::ShuffleVector: {
3600       assert(E->isAltShuffle() &&
3601              ((Instruction::isBinaryOp(E->getOpcode()) &&
3602                Instruction::isBinaryOp(E->getAltOpcode())) ||
3603               (Instruction::isCast(E->getOpcode()) &&
3604                Instruction::isCast(E->getAltOpcode()))) &&
3605              "Invalid Shuffle Vector Operand");
3606       int ScalarCost = 0;
3607       if (NeedToShuffleReuses) {
3608         for (unsigned Idx : E->ReuseShuffleIndices) {
3609           Instruction *I = cast<Instruction>(VL[Idx]);
3610           ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3611         }
3612         for (Value *V : VL) {
3613           Instruction *I = cast<Instruction>(V);
3614           ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3615         }
3616       }
3617       for (Value *V : VL) {
3618         Instruction *I = cast<Instruction>(V);
3619         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3620         ScalarCost += TTI->getInstructionCost(I, CostKind);
3621       }
3622       // VecCost is equal to sum of the cost of creating 2 vectors
3623       // and the cost of creating shuffle.
3624       int VecCost = 0;
3625       if (Instruction::isBinaryOp(E->getOpcode())) {
3626         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
3627         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
3628                                                CostKind);
3629       } else {
3630         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3631         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3632         VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3633         VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3634         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
3635                                         CostKind);
3636         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
3637                                          CostKind);
3638       }
3639       VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3640       return ReuseShuffleCost + VecCost - ScalarCost;
3641     }
3642     default:
3643       llvm_unreachable("Unknown instruction");
3644   }
3645 }
3646 
3647 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3648   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3649                     << VectorizableTree.size() << " is fully vectorizable .\n");
3650 
3651   // We only handle trees of heights 1 and 2.
3652   if (VectorizableTree.size() == 1 &&
3653       VectorizableTree[0]->State == TreeEntry::Vectorize)
3654     return true;
3655 
3656   if (VectorizableTree.size() != 2)
3657     return false;
3658 
3659   // Handle splat and all-constants stores.
3660   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3661       (allConstant(VectorizableTree[1]->Scalars) ||
3662        isSplat(VectorizableTree[1]->Scalars)))
3663     return true;
3664 
3665   // Gathering cost would be too much for tiny trees.
3666   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3667       VectorizableTree[1]->State == TreeEntry::NeedToGather)
3668     return false;
3669 
3670   return true;
3671 }
3672 
3673 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
3674                                        TargetTransformInfo *TTI) {
3675   // Look past the root to find a source value. Arbitrarily follow the
3676   // path through operand 0 of any 'or'. Also, peek through optional
3677   // shift-left-by-constant.
3678   Value *ZextLoad = Root;
3679   while (!isa<ConstantExpr>(ZextLoad) &&
3680          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3681           match(ZextLoad, m_Shl(m_Value(), m_Constant()))))
3682     ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3683 
3684   // Check if the input is an extended load of the required or/shift expression.
3685   Value *LoadPtr;
3686   if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3687     return false;
3688 
3689   // Require that the total load bit width is a legal integer type.
3690   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3691   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3692   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3693   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3694   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
3695     return false;
3696 
3697   // Everything matched - assume that we can fold the whole sequence using
3698   // load combining.
3699   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
3700              << *(cast<Instruction>(Root)) << "\n");
3701 
3702   return true;
3703 }
3704 
3705 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
3706   if (RdxOpcode != Instruction::Or)
3707     return false;
3708 
3709   unsigned NumElts = VectorizableTree[0]->Scalars.size();
3710   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
3711   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
3712 }
3713 
3714 bool BoUpSLP::isLoadCombineCandidate() const {
3715   // Peek through a final sequence of stores and check if all operations are
3716   // likely to be load-combined.
3717   unsigned NumElts = VectorizableTree[0]->Scalars.size();
3718   for (Value *Scalar : VectorizableTree[0]->Scalars) {
3719     Value *X;
3720     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
3721         !isLoadCombineCandidateImpl(X, NumElts, TTI))
3722       return false;
3723   }
3724   return true;
3725 }
3726 
3727 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3728   // We can vectorize the tree if its size is greater than or equal to the
3729   // minimum size specified by the MinTreeSize command line option.
3730   if (VectorizableTree.size() >= MinTreeSize)
3731     return false;
3732 
3733   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3734   // can vectorize it if we can prove it fully vectorizable.
3735   if (isFullyVectorizableTinyTree())
3736     return false;
3737 
3738   assert(VectorizableTree.empty()
3739              ? ExternalUses.empty()
3740              : true && "We shouldn't have any external users");
3741 
3742   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3743   // vectorizable.
3744   return true;
3745 }
3746 
3747 int BoUpSLP::getSpillCost() const {
3748   // Walk from the bottom of the tree to the top, tracking which values are
3749   // live. When we see a call instruction that is not part of our tree,
3750   // query TTI to see if there is a cost to keeping values live over it
3751   // (for example, if spills and fills are required).
3752   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3753   int Cost = 0;
3754 
3755   SmallPtrSet<Instruction*, 4> LiveValues;
3756   Instruction *PrevInst = nullptr;
3757 
3758   for (const auto &TEPtr : VectorizableTree) {
3759     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3760     if (!Inst)
3761       continue;
3762 
3763     if (!PrevInst) {
3764       PrevInst = Inst;
3765       continue;
3766     }
3767 
3768     // Update LiveValues.
3769     LiveValues.erase(PrevInst);
3770     for (auto &J : PrevInst->operands()) {
3771       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3772         LiveValues.insert(cast<Instruction>(&*J));
3773     }
3774 
3775     LLVM_DEBUG({
3776       dbgs() << "SLP: #LV: " << LiveValues.size();
3777       for (auto *X : LiveValues)
3778         dbgs() << " " << X->getName();
3779       dbgs() << ", Looking at ";
3780       Inst->dump();
3781     });
3782 
3783     // Now find the sequence of instructions between PrevInst and Inst.
3784     unsigned NumCalls = 0;
3785     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3786                                  PrevInstIt =
3787                                      PrevInst->getIterator().getReverse();
3788     while (InstIt != PrevInstIt) {
3789       if (PrevInstIt == PrevInst->getParent()->rend()) {
3790         PrevInstIt = Inst->getParent()->rbegin();
3791         continue;
3792       }
3793 
3794       // Debug information does not impact spill cost.
3795       if ((isa<CallInst>(&*PrevInstIt) &&
3796            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3797           &*PrevInstIt != PrevInst)
3798         NumCalls++;
3799 
3800       ++PrevInstIt;
3801     }
3802 
3803     if (NumCalls) {
3804       SmallVector<Type*, 4> V;
3805       for (auto *II : LiveValues)
3806         V.push_back(VectorType::get(II->getType(), BundleWidth));
3807       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3808     }
3809 
3810     PrevInst = Inst;
3811   }
3812 
3813   return Cost;
3814 }
3815 
3816 int BoUpSLP::getTreeCost() {
3817   int Cost = 0;
3818   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3819                     << VectorizableTree.size() << ".\n");
3820 
3821   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3822 
3823   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3824     TreeEntry &TE = *VectorizableTree[I].get();
3825 
3826     // We create duplicate tree entries for gather sequences that have multiple
3827     // uses. However, we should not compute the cost of duplicate sequences.
3828     // For example, if we have a build vector (i.e., insertelement sequence)
3829     // that is used by more than one vector instruction, we only need to
3830     // compute the cost of the insertelement instructions once. The redundant
3831     // instructions will be eliminated by CSE.
3832     //
3833     // We should consider not creating duplicate tree entries for gather
3834     // sequences, and instead add additional edges to the tree representing
3835     // their uses. Since such an approach results in fewer total entries,
3836     // existing heuristics based on tree size may yield different results.
3837     //
3838     if (TE.State == TreeEntry::NeedToGather &&
3839         std::any_of(std::next(VectorizableTree.begin(), I + 1),
3840                     VectorizableTree.end(),
3841                     [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3842                       return EntryPtr->State == TreeEntry::NeedToGather &&
3843                              EntryPtr->isSame(TE.Scalars);
3844                     }))
3845       continue;
3846 
3847     int C = getEntryCost(&TE);
3848     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3849                       << " for bundle that starts with " << *TE.Scalars[0]
3850                       << ".\n");
3851     Cost += C;
3852   }
3853 
3854   SmallPtrSet<Value *, 16> ExtractCostCalculated;
3855   int ExtractCost = 0;
3856   for (ExternalUser &EU : ExternalUses) {
3857     // We only add extract cost once for the same scalar.
3858     if (!ExtractCostCalculated.insert(EU.Scalar).second)
3859       continue;
3860 
3861     // Uses by ephemeral values are free (because the ephemeral value will be
3862     // removed prior to code generation, and so the extraction will be
3863     // removed as well).
3864     if (EphValues.count(EU.User))
3865       continue;
3866 
3867     // If we plan to rewrite the tree in a smaller type, we will need to sign
3868     // extend the extracted value back to the original type. Here, we account
3869     // for the extract and the added cost of the sign extend if needed.
3870     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3871     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3872     if (MinBWs.count(ScalarRoot)) {
3873       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3874       auto Extend =
3875           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3876       VecTy = VectorType::get(MinTy, BundleWidth);
3877       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3878                                                    VecTy, EU.Lane);
3879     } else {
3880       ExtractCost +=
3881           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3882     }
3883   }
3884 
3885   int SpillCost = getSpillCost();
3886   Cost += SpillCost + ExtractCost;
3887 
3888   std::string Str;
3889   {
3890     raw_string_ostream OS(Str);
3891     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3892        << "SLP: Extract Cost = " << ExtractCost << ".\n"
3893        << "SLP: Total Cost = " << Cost << ".\n";
3894   }
3895   LLVM_DEBUG(dbgs() << Str);
3896 
3897   if (ViewSLPTree)
3898     ViewGraph(this, "SLP" + F->getName(), false, Str);
3899 
3900   return Cost;
3901 }
3902 
3903 int BoUpSLP::getGatherCost(VectorType *Ty,
3904                            const DenseSet<unsigned> &ShuffledIndices) const {
3905   unsigned NumElts = Ty->getNumElements();
3906   APInt DemandedElts = APInt::getNullValue(NumElts);
3907   for (unsigned i = 0; i < NumElts; ++i)
3908     if (!ShuffledIndices.count(i))
3909       DemandedElts.setBit(i);
3910   int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
3911                                            /*Extract*/ false);
3912   if (!ShuffledIndices.empty())
3913     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3914   return Cost;
3915 }
3916 
3917 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3918   // Find the type of the operands in VL.
3919   Type *ScalarTy = VL[0]->getType();
3920   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3921     ScalarTy = SI->getValueOperand()->getType();
3922   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3923   // Find the cost of inserting/extracting values from the vector.
3924   // Check if the same elements are inserted several times and count them as
3925   // shuffle candidates.
3926   DenseSet<unsigned> ShuffledElements;
3927   DenseSet<Value *> UniqueElements;
3928   // Iterate in reverse order to consider insert elements with the high cost.
3929   for (unsigned I = VL.size(); I > 0; --I) {
3930     unsigned Idx = I - 1;
3931     if (!UniqueElements.insert(VL[Idx]).second)
3932       ShuffledElements.insert(Idx);
3933   }
3934   return getGatherCost(VecTy, ShuffledElements);
3935 }
3936 
3937 // Perform operand reordering on the instructions in VL and return the reordered
3938 // operands in Left and Right.
3939 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
3940                                              SmallVectorImpl<Value *> &Left,
3941                                              SmallVectorImpl<Value *> &Right,
3942                                              const DataLayout &DL,
3943                                              ScalarEvolution &SE,
3944                                              const BoUpSLP &R) {
3945   if (VL.empty())
3946     return;
3947   VLOperands Ops(VL, DL, SE, R);
3948   // Reorder the operands in place.
3949   Ops.reorder();
3950   Left = Ops.getVL(0);
3951   Right = Ops.getVL(1);
3952 }
3953 
3954 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3955   // Get the basic block this bundle is in. All instructions in the bundle
3956   // should be in this block.
3957   auto *Front = E->getMainOp();
3958   auto *BB = Front->getParent();
3959   assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3960                       [=](Value *V) -> bool {
3961                         auto *I = cast<Instruction>(V);
3962                         return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3963                       }));
3964 
3965   // The last instruction in the bundle in program order.
3966   Instruction *LastInst = nullptr;
3967 
3968   // Find the last instruction. The common case should be that BB has been
3969   // scheduled, and the last instruction is VL.back(). So we start with
3970   // VL.back() and iterate over schedule data until we reach the end of the
3971   // bundle. The end of the bundle is marked by null ScheduleData.
3972   if (BlocksSchedules.count(BB)) {
3973     auto *Bundle =
3974         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3975     if (Bundle && Bundle->isPartOfBundle())
3976       for (; Bundle; Bundle = Bundle->NextInBundle)
3977         if (Bundle->OpValue == Bundle->Inst)
3978           LastInst = Bundle->Inst;
3979   }
3980 
3981   // LastInst can still be null at this point if there's either not an entry
3982   // for BB in BlocksSchedules or there's no ScheduleData available for
3983   // VL.back(). This can be the case if buildTree_rec aborts for various
3984   // reasons (e.g., the maximum recursion depth is reached, the maximum region
3985   // size is reached, etc.). ScheduleData is initialized in the scheduling
3986   // "dry-run".
3987   //
3988   // If this happens, we can still find the last instruction by brute force. We
3989   // iterate forwards from Front (inclusive) until we either see all
3990   // instructions in the bundle or reach the end of the block. If Front is the
3991   // last instruction in program order, LastInst will be set to Front, and we
3992   // will visit all the remaining instructions in the block.
3993   //
3994   // One of the reasons we exit early from buildTree_rec is to place an upper
3995   // bound on compile-time. Thus, taking an additional compile-time hit here is
3996   // not ideal. However, this should be exceedingly rare since it requires that
3997   // we both exit early from buildTree_rec and that the bundle be out-of-order
3998   // (causing us to iterate all the way to the end of the block).
3999   if (!LastInst) {
4000     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4001     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4002       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4003         LastInst = &I;
4004       if (Bundle.empty())
4005         break;
4006     }
4007   }
4008   assert(LastInst && "Failed to find last instruction in bundle");
4009 
4010   // Set the insertion point after the last instruction in the bundle. Set the
4011   // debug location to Front.
4012   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4013   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4014 }
4015 
4016 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
4017   Value *Vec = UndefValue::get(Ty);
4018   // Generate the 'InsertElement' instruction.
4019   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
4020     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
4021     if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
4022       GatherSeq.insert(Insrt);
4023       CSEBlocks.insert(Insrt->getParent());
4024 
4025       // Add to our 'need-to-extract' list.
4026       if (TreeEntry *E = getTreeEntry(VL[i])) {
4027         // Find which lane we need to extract.
4028         int FoundLane = -1;
4029         for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
4030           // Is this the lane of the scalar that we are looking for ?
4031           if (E->Scalars[Lane] == VL[i]) {
4032             FoundLane = Lane;
4033             break;
4034           }
4035         }
4036         assert(FoundLane >= 0 && "Could not find the correct lane");
4037         if (!E->ReuseShuffleIndices.empty()) {
4038           FoundLane =
4039               std::distance(E->ReuseShuffleIndices.begin(),
4040                             llvm::find(E->ReuseShuffleIndices, FoundLane));
4041         }
4042         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
4043       }
4044     }
4045   }
4046 
4047   return Vec;
4048 }
4049 
4050 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4051   InstructionsState S = getSameOpcode(VL);
4052   if (S.getOpcode()) {
4053     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4054       if (E->isSame(VL)) {
4055         Value *V = vectorizeTree(E);
4056         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4057           // We need to get the vectorized value but without shuffle.
4058           if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
4059             V = SV->getOperand(0);
4060           } else {
4061             // Reshuffle to get only unique values.
4062             SmallVector<int, 4> UniqueIdxs;
4063             SmallSet<int, 4> UsedIdxs;
4064             for (int Idx : E->ReuseShuffleIndices)
4065               if (UsedIdxs.insert(Idx).second)
4066                 UniqueIdxs.emplace_back(Idx);
4067             V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4068                                             UniqueIdxs);
4069           }
4070         }
4071         return V;
4072       }
4073     }
4074   }
4075 
4076   Type *ScalarTy = S.OpValue->getType();
4077   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4078     ScalarTy = SI->getValueOperand()->getType();
4079 
4080   // Check that every instruction appears once in this bundle.
4081   SmallVector<int, 4> ReuseShuffleIndicies;
4082   SmallVector<Value *, 4> UniqueValues;
4083   if (VL.size() > 2) {
4084     DenseMap<Value *, unsigned> UniquePositions;
4085     for (Value *V : VL) {
4086       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4087       ReuseShuffleIndicies.emplace_back(Res.first->second);
4088       if (Res.second || isa<Constant>(V))
4089         UniqueValues.emplace_back(V);
4090     }
4091     // Do not shuffle single element or if number of unique values is not power
4092     // of 2.
4093     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4094         !llvm::isPowerOf2_32(UniqueValues.size()))
4095       ReuseShuffleIndicies.clear();
4096     else
4097       VL = UniqueValues;
4098   }
4099   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
4100 
4101   Value *V = Gather(VL, VecTy);
4102   if (!ReuseShuffleIndicies.empty()) {
4103     V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4104                                     ReuseShuffleIndicies, "shuffle");
4105     if (auto *I = dyn_cast<Instruction>(V)) {
4106       GatherSeq.insert(I);
4107       CSEBlocks.insert(I->getParent());
4108     }
4109   }
4110   return V;
4111 }
4112 
4113 static void inversePermutation(ArrayRef<unsigned> Indices,
4114                                SmallVectorImpl<int> &Mask) {
4115   Mask.clear();
4116   const unsigned E = Indices.size();
4117   Mask.resize(E);
4118   for (unsigned I = 0; I < E; ++I)
4119     Mask[Indices[I]] = I;
4120 }
4121 
4122 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4123   IRBuilder<>::InsertPointGuard Guard(Builder);
4124 
4125   if (E->VectorizedValue) {
4126     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4127     return E->VectorizedValue;
4128   }
4129 
4130   Instruction *VL0 = E->getMainOp();
4131   Type *ScalarTy = VL0->getType();
4132   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
4133     ScalarTy = SI->getValueOperand()->getType();
4134   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
4135 
4136   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4137 
4138   if (E->State == TreeEntry::NeedToGather) {
4139     setInsertPointAfterBundle(E);
4140     auto *V = Gather(E->Scalars, VecTy);
4141     if (NeedToShuffleReuses) {
4142       V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4143                                       E->ReuseShuffleIndices, "shuffle");
4144       if (auto *I = dyn_cast<Instruction>(V)) {
4145         GatherSeq.insert(I);
4146         CSEBlocks.insert(I->getParent());
4147       }
4148     }
4149     E->VectorizedValue = V;
4150     return V;
4151   }
4152 
4153   assert(E->State == TreeEntry::Vectorize && "Unhandled state");
4154   unsigned ShuffleOrOp =
4155       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4156   switch (ShuffleOrOp) {
4157     case Instruction::PHI: {
4158       auto *PH = cast<PHINode>(VL0);
4159       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4160       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4161       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4162       Value *V = NewPhi;
4163       if (NeedToShuffleReuses) {
4164         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4165                                         E->ReuseShuffleIndices, "shuffle");
4166       }
4167       E->VectorizedValue = V;
4168 
4169       // PHINodes may have multiple entries from the same block. We want to
4170       // visit every block once.
4171       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4172 
4173       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4174         ValueList Operands;
4175         BasicBlock *IBB = PH->getIncomingBlock(i);
4176 
4177         if (!VisitedBBs.insert(IBB).second) {
4178           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4179           continue;
4180         }
4181 
4182         Builder.SetInsertPoint(IBB->getTerminator());
4183         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4184         Value *Vec = vectorizeTree(E->getOperand(i));
4185         NewPhi->addIncoming(Vec, IBB);
4186       }
4187 
4188       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4189              "Invalid number of incoming values");
4190       return V;
4191     }
4192 
4193     case Instruction::ExtractElement: {
4194       Value *V = E->getSingleOperand(0);
4195       if (!E->ReorderIndices.empty()) {
4196         SmallVector<int, 4> Mask;
4197         inversePermutation(E->ReorderIndices, Mask);
4198         Builder.SetInsertPoint(VL0);
4199         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
4200                                         "reorder_shuffle");
4201       }
4202       if (NeedToShuffleReuses) {
4203         // TODO: Merge this shuffle with the ReorderShuffleMask.
4204         if (E->ReorderIndices.empty())
4205           Builder.SetInsertPoint(VL0);
4206         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4207                                         E->ReuseShuffleIndices, "shuffle");
4208       }
4209       E->VectorizedValue = V;
4210       return V;
4211     }
4212     case Instruction::ExtractValue: {
4213       LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
4214       Builder.SetInsertPoint(LI);
4215       PointerType *PtrTy =
4216           PointerType::get(VecTy, LI->getPointerAddressSpace());
4217       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4218       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4219       Value *NewV = propagateMetadata(V, E->Scalars);
4220       if (!E->ReorderIndices.empty()) {
4221         SmallVector<int, 4> Mask;
4222         inversePermutation(E->ReorderIndices, Mask);
4223         NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
4224                                            "reorder_shuffle");
4225       }
4226       if (NeedToShuffleReuses) {
4227         // TODO: Merge this shuffle with the ReorderShuffleMask.
4228         NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy),
4229                                            E->ReuseShuffleIndices, "shuffle");
4230       }
4231       E->VectorizedValue = NewV;
4232       return NewV;
4233     }
4234     case Instruction::ZExt:
4235     case Instruction::SExt:
4236     case Instruction::FPToUI:
4237     case Instruction::FPToSI:
4238     case Instruction::FPExt:
4239     case Instruction::PtrToInt:
4240     case Instruction::IntToPtr:
4241     case Instruction::SIToFP:
4242     case Instruction::UIToFP:
4243     case Instruction::Trunc:
4244     case Instruction::FPTrunc:
4245     case Instruction::BitCast: {
4246       setInsertPointAfterBundle(E);
4247 
4248       Value *InVec = vectorizeTree(E->getOperand(0));
4249 
4250       if (E->VectorizedValue) {
4251         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4252         return E->VectorizedValue;
4253       }
4254 
4255       auto *CI = cast<CastInst>(VL0);
4256       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4257       if (NeedToShuffleReuses) {
4258         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4259                                         E->ReuseShuffleIndices, "shuffle");
4260       }
4261       E->VectorizedValue = V;
4262       ++NumVectorInstructions;
4263       return V;
4264     }
4265     case Instruction::FCmp:
4266     case Instruction::ICmp: {
4267       setInsertPointAfterBundle(E);
4268 
4269       Value *L = vectorizeTree(E->getOperand(0));
4270       Value *R = vectorizeTree(E->getOperand(1));
4271 
4272       if (E->VectorizedValue) {
4273         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4274         return E->VectorizedValue;
4275       }
4276 
4277       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4278       Value *V;
4279       if (E->getOpcode() == Instruction::FCmp)
4280         V = Builder.CreateFCmp(P0, L, R);
4281       else
4282         V = Builder.CreateICmp(P0, L, R);
4283 
4284       propagateIRFlags(V, E->Scalars, VL0);
4285       if (NeedToShuffleReuses) {
4286         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4287                                         E->ReuseShuffleIndices, "shuffle");
4288       }
4289       E->VectorizedValue = V;
4290       ++NumVectorInstructions;
4291       return V;
4292     }
4293     case Instruction::Select: {
4294       setInsertPointAfterBundle(E);
4295 
4296       Value *Cond = vectorizeTree(E->getOperand(0));
4297       Value *True = vectorizeTree(E->getOperand(1));
4298       Value *False = vectorizeTree(E->getOperand(2));
4299 
4300       if (E->VectorizedValue) {
4301         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4302         return E->VectorizedValue;
4303       }
4304 
4305       Value *V = Builder.CreateSelect(Cond, True, False);
4306       if (NeedToShuffleReuses) {
4307         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4308                                         E->ReuseShuffleIndices, "shuffle");
4309       }
4310       E->VectorizedValue = V;
4311       ++NumVectorInstructions;
4312       return V;
4313     }
4314     case Instruction::FNeg: {
4315       setInsertPointAfterBundle(E);
4316 
4317       Value *Op = vectorizeTree(E->getOperand(0));
4318 
4319       if (E->VectorizedValue) {
4320         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4321         return E->VectorizedValue;
4322       }
4323 
4324       Value *V = Builder.CreateUnOp(
4325           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4326       propagateIRFlags(V, E->Scalars, VL0);
4327       if (auto *I = dyn_cast<Instruction>(V))
4328         V = propagateMetadata(I, E->Scalars);
4329 
4330       if (NeedToShuffleReuses) {
4331         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4332                                         E->ReuseShuffleIndices, "shuffle");
4333       }
4334       E->VectorizedValue = V;
4335       ++NumVectorInstructions;
4336 
4337       return V;
4338     }
4339     case Instruction::Add:
4340     case Instruction::FAdd:
4341     case Instruction::Sub:
4342     case Instruction::FSub:
4343     case Instruction::Mul:
4344     case Instruction::FMul:
4345     case Instruction::UDiv:
4346     case Instruction::SDiv:
4347     case Instruction::FDiv:
4348     case Instruction::URem:
4349     case Instruction::SRem:
4350     case Instruction::FRem:
4351     case Instruction::Shl:
4352     case Instruction::LShr:
4353     case Instruction::AShr:
4354     case Instruction::And:
4355     case Instruction::Or:
4356     case Instruction::Xor: {
4357       setInsertPointAfterBundle(E);
4358 
4359       Value *LHS = vectorizeTree(E->getOperand(0));
4360       Value *RHS = vectorizeTree(E->getOperand(1));
4361 
4362       if (E->VectorizedValue) {
4363         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4364         return E->VectorizedValue;
4365       }
4366 
4367       Value *V = Builder.CreateBinOp(
4368           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4369           RHS);
4370       propagateIRFlags(V, E->Scalars, VL0);
4371       if (auto *I = dyn_cast<Instruction>(V))
4372         V = propagateMetadata(I, E->Scalars);
4373 
4374       if (NeedToShuffleReuses) {
4375         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4376                                         E->ReuseShuffleIndices, "shuffle");
4377       }
4378       E->VectorizedValue = V;
4379       ++NumVectorInstructions;
4380 
4381       return V;
4382     }
4383     case Instruction::Load: {
4384       // Loads are inserted at the head of the tree because we don't want to
4385       // sink them all the way down past store instructions.
4386       bool IsReorder = E->updateStateIfReorder();
4387       if (IsReorder)
4388         VL0 = E->getMainOp();
4389       setInsertPointAfterBundle(E);
4390 
4391       LoadInst *LI = cast<LoadInst>(VL0);
4392       unsigned AS = LI->getPointerAddressSpace();
4393 
4394       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
4395                                             VecTy->getPointerTo(AS));
4396 
4397       // The pointer operand uses an in-tree scalar so we add the new BitCast to
4398       // ExternalUses list to make sure that an extract will be generated in the
4399       // future.
4400       Value *PO = LI->getPointerOperand();
4401       if (getTreeEntry(PO))
4402         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
4403 
4404       LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4405       Value *V = propagateMetadata(LI, E->Scalars);
4406       if (IsReorder) {
4407         SmallVector<int, 4> Mask;
4408         inversePermutation(E->ReorderIndices, Mask);
4409         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4410                                         Mask, "reorder_shuffle");
4411       }
4412       if (NeedToShuffleReuses) {
4413         // TODO: Merge this shuffle with the ReorderShuffleMask.
4414         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4415                                         E->ReuseShuffleIndices, "shuffle");
4416       }
4417       E->VectorizedValue = V;
4418       ++NumVectorInstructions;
4419       return V;
4420     }
4421     case Instruction::Store: {
4422       bool IsReorder = !E->ReorderIndices.empty();
4423       auto *SI = cast<StoreInst>(
4424           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4425       unsigned AS = SI->getPointerAddressSpace();
4426 
4427       setInsertPointAfterBundle(E);
4428 
4429       Value *VecValue = vectorizeTree(E->getOperand(0));
4430       if (IsReorder) {
4431         SmallVector<int, 4> Mask(E->ReorderIndices.begin(),
4432                                  E->ReorderIndices.end());
4433         VecValue = Builder.CreateShuffleVector(
4434             VecValue, UndefValue::get(VecValue->getType()), Mask,
4435             "reorder_shuffle");
4436       }
4437       Value *ScalarPtr = SI->getPointerOperand();
4438       Value *VecPtr = Builder.CreateBitCast(
4439           ScalarPtr, VecValue->getType()->getPointerTo(AS));
4440       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4441                                                  SI->getAlign());
4442 
4443       // The pointer operand uses an in-tree scalar, so add the new BitCast to
4444       // ExternalUses to make sure that an extract will be generated in the
4445       // future.
4446       if (getTreeEntry(ScalarPtr))
4447         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4448 
4449       Value *V = propagateMetadata(ST, E->Scalars);
4450       if (NeedToShuffleReuses) {
4451         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4452                                         E->ReuseShuffleIndices, "shuffle");
4453       }
4454       E->VectorizedValue = V;
4455       ++NumVectorInstructions;
4456       return V;
4457     }
4458     case Instruction::GetElementPtr: {
4459       setInsertPointAfterBundle(E);
4460 
4461       Value *Op0 = vectorizeTree(E->getOperand(0));
4462 
4463       std::vector<Value *> OpVecs;
4464       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4465            ++j) {
4466         ValueList &VL = E->getOperand(j);
4467         // Need to cast all elements to the same type before vectorization to
4468         // avoid crash.
4469         Type *VL0Ty = VL0->getOperand(j)->getType();
4470         Type *Ty = llvm::all_of(
4471                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4472                        ? VL0Ty
4473                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4474                                               ->getPointerOperandType()
4475                                               ->getScalarType());
4476         for (Value *&V : VL) {
4477           auto *CI = cast<ConstantInt>(V);
4478           V = ConstantExpr::getIntegerCast(CI, Ty,
4479                                            CI->getValue().isSignBitSet());
4480         }
4481         Value *OpVec = vectorizeTree(VL);
4482         OpVecs.push_back(OpVec);
4483       }
4484 
4485       Value *V = Builder.CreateGEP(
4486           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4487       if (Instruction *I = dyn_cast<Instruction>(V))
4488         V = propagateMetadata(I, E->Scalars);
4489 
4490       if (NeedToShuffleReuses) {
4491         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4492                                         E->ReuseShuffleIndices, "shuffle");
4493       }
4494       E->VectorizedValue = V;
4495       ++NumVectorInstructions;
4496 
4497       return V;
4498     }
4499     case Instruction::Call: {
4500       CallInst *CI = cast<CallInst>(VL0);
4501       setInsertPointAfterBundle(E);
4502 
4503       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4504       if (Function *FI = CI->getCalledFunction())
4505         IID = FI->getIntrinsicID();
4506 
4507       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4508 
4509       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4510       bool UseIntrinsic = VecCallCosts.first <= VecCallCosts.second;
4511 
4512       Value *ScalarArg = nullptr;
4513       std::vector<Value *> OpVecs;
4514       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4515         ValueList OpVL;
4516         // Some intrinsics have scalar arguments. This argument should not be
4517         // vectorized.
4518         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
4519           CallInst *CEI = cast<CallInst>(VL0);
4520           ScalarArg = CEI->getArgOperand(j);
4521           OpVecs.push_back(CEI->getArgOperand(j));
4522           continue;
4523         }
4524 
4525         Value *OpVec = vectorizeTree(E->getOperand(j));
4526         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4527         OpVecs.push_back(OpVec);
4528       }
4529 
4530       Module *M = F->getParent();
4531       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
4532       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
4533 
4534       if (!UseIntrinsic) {
4535         VFShape Shape = VFShape::get(
4536             *CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
4537             false /*HasGlobalPred*/);
4538         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
4539       }
4540 
4541       SmallVector<OperandBundleDef, 1> OpBundles;
4542       CI->getOperandBundlesAsDefs(OpBundles);
4543       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4544 
4545       // The scalar argument uses an in-tree scalar so we add the new vectorized
4546       // call to ExternalUses list to make sure that an extract will be
4547       // generated in the future.
4548       if (ScalarArg && getTreeEntry(ScalarArg))
4549         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4550 
4551       propagateIRFlags(V, E->Scalars, VL0);
4552       if (NeedToShuffleReuses) {
4553         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4554                                         E->ReuseShuffleIndices, "shuffle");
4555       }
4556       E->VectorizedValue = V;
4557       ++NumVectorInstructions;
4558       return V;
4559     }
4560     case Instruction::ShuffleVector: {
4561       assert(E->isAltShuffle() &&
4562              ((Instruction::isBinaryOp(E->getOpcode()) &&
4563                Instruction::isBinaryOp(E->getAltOpcode())) ||
4564               (Instruction::isCast(E->getOpcode()) &&
4565                Instruction::isCast(E->getAltOpcode()))) &&
4566              "Invalid Shuffle Vector Operand");
4567 
4568       Value *LHS = nullptr, *RHS = nullptr;
4569       if (Instruction::isBinaryOp(E->getOpcode())) {
4570         setInsertPointAfterBundle(E);
4571         LHS = vectorizeTree(E->getOperand(0));
4572         RHS = vectorizeTree(E->getOperand(1));
4573       } else {
4574         setInsertPointAfterBundle(E);
4575         LHS = vectorizeTree(E->getOperand(0));
4576       }
4577 
4578       if (E->VectorizedValue) {
4579         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4580         return E->VectorizedValue;
4581       }
4582 
4583       Value *V0, *V1;
4584       if (Instruction::isBinaryOp(E->getOpcode())) {
4585         V0 = Builder.CreateBinOp(
4586             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4587         V1 = Builder.CreateBinOp(
4588             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4589       } else {
4590         V0 = Builder.CreateCast(
4591             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4592         V1 = Builder.CreateCast(
4593             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4594       }
4595 
4596       // Create shuffle to take alternate operations from the vector.
4597       // Also, gather up main and alt scalar ops to propagate IR flags to
4598       // each vector operation.
4599       ValueList OpScalars, AltScalars;
4600       unsigned e = E->Scalars.size();
4601       SmallVector<int, 8> Mask(e);
4602       for (unsigned i = 0; i < e; ++i) {
4603         auto *OpInst = cast<Instruction>(E->Scalars[i]);
4604         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4605         if (OpInst->getOpcode() == E->getAltOpcode()) {
4606           Mask[i] = e + i;
4607           AltScalars.push_back(E->Scalars[i]);
4608         } else {
4609           Mask[i] = i;
4610           OpScalars.push_back(E->Scalars[i]);
4611         }
4612       }
4613 
4614       propagateIRFlags(V0, OpScalars);
4615       propagateIRFlags(V1, AltScalars);
4616 
4617       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
4618       if (Instruction *I = dyn_cast<Instruction>(V))
4619         V = propagateMetadata(I, E->Scalars);
4620       if (NeedToShuffleReuses) {
4621         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4622                                         E->ReuseShuffleIndices, "shuffle");
4623       }
4624       E->VectorizedValue = V;
4625       ++NumVectorInstructions;
4626 
4627       return V;
4628     }
4629     default:
4630     llvm_unreachable("unknown inst");
4631   }
4632   return nullptr;
4633 }
4634 
4635 Value *BoUpSLP::vectorizeTree() {
4636   ExtraValueToDebugLocsMap ExternallyUsedValues;
4637   return vectorizeTree(ExternallyUsedValues);
4638 }
4639 
4640 Value *
4641 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4642   // All blocks must be scheduled before any instructions are inserted.
4643   for (auto &BSIter : BlocksSchedules) {
4644     scheduleBlock(BSIter.second.get());
4645   }
4646 
4647   Builder.SetInsertPoint(&F->getEntryBlock().front());
4648   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4649 
4650   // If the vectorized tree can be rewritten in a smaller type, we truncate the
4651   // vectorized root. InstCombine will then rewrite the entire expression. We
4652   // sign extend the extracted values below.
4653   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4654   if (MinBWs.count(ScalarRoot)) {
4655     if (auto *I = dyn_cast<Instruction>(VectorRoot))
4656       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4657     auto BundleWidth = VectorizableTree[0]->Scalars.size();
4658     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4659     auto *VecTy = VectorType::get(MinTy, BundleWidth);
4660     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4661     VectorizableTree[0]->VectorizedValue = Trunc;
4662   }
4663 
4664   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4665                     << " values .\n");
4666 
4667   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4668   // specified by ScalarType.
4669   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4670     if (!MinBWs.count(ScalarRoot))
4671       return Ex;
4672     if (MinBWs[ScalarRoot].second)
4673       return Builder.CreateSExt(Ex, ScalarType);
4674     return Builder.CreateZExt(Ex, ScalarType);
4675   };
4676 
4677   // Extract all of the elements with the external uses.
4678   for (const auto &ExternalUse : ExternalUses) {
4679     Value *Scalar = ExternalUse.Scalar;
4680     llvm::User *User = ExternalUse.User;
4681 
4682     // Skip users that we already RAUW. This happens when one instruction
4683     // has multiple uses of the same value.
4684     if (User && !is_contained(Scalar->users(), User))
4685       continue;
4686     TreeEntry *E = getTreeEntry(Scalar);
4687     assert(E && "Invalid scalar");
4688     assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");
4689 
4690     Value *Vec = E->VectorizedValue;
4691     assert(Vec && "Can't find vectorizable value");
4692 
4693     Value *Lane = Builder.getInt32(ExternalUse.Lane);
4694     // If User == nullptr, the Scalar is used as extra arg. Generate
4695     // ExtractElement instruction and update the record for this scalar in
4696     // ExternallyUsedValues.
4697     if (!User) {
4698       assert(ExternallyUsedValues.count(Scalar) &&
4699              "Scalar with nullptr as an external user must be registered in "
4700              "ExternallyUsedValues map");
4701       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4702         Builder.SetInsertPoint(VecI->getParent(),
4703                                std::next(VecI->getIterator()));
4704       } else {
4705         Builder.SetInsertPoint(&F->getEntryBlock().front());
4706       }
4707       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4708       Ex = extend(ScalarRoot, Ex, Scalar->getType());
4709       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4710       auto &Locs = ExternallyUsedValues[Scalar];
4711       ExternallyUsedValues.insert({Ex, Locs});
4712       ExternallyUsedValues.erase(Scalar);
4713       // Required to update internally referenced instructions.
4714       Scalar->replaceAllUsesWith(Ex);
4715       continue;
4716     }
4717 
4718     // Generate extracts for out-of-tree users.
4719     // Find the insertion point for the extractelement lane.
4720     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4721       if (PHINode *PH = dyn_cast<PHINode>(User)) {
4722         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4723           if (PH->getIncomingValue(i) == Scalar) {
4724             Instruction *IncomingTerminator =
4725                 PH->getIncomingBlock(i)->getTerminator();
4726             if (isa<CatchSwitchInst>(IncomingTerminator)) {
4727               Builder.SetInsertPoint(VecI->getParent(),
4728                                      std::next(VecI->getIterator()));
4729             } else {
4730               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4731             }
4732             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4733             Ex = extend(ScalarRoot, Ex, Scalar->getType());
4734             CSEBlocks.insert(PH->getIncomingBlock(i));
4735             PH->setOperand(i, Ex);
4736           }
4737         }
4738       } else {
4739         Builder.SetInsertPoint(cast<Instruction>(User));
4740         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4741         Ex = extend(ScalarRoot, Ex, Scalar->getType());
4742         CSEBlocks.insert(cast<Instruction>(User)->getParent());
4743         User->replaceUsesOfWith(Scalar, Ex);
4744       }
4745     } else {
4746       Builder.SetInsertPoint(&F->getEntryBlock().front());
4747       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4748       Ex = extend(ScalarRoot, Ex, Scalar->getType());
4749       CSEBlocks.insert(&F->getEntryBlock());
4750       User->replaceUsesOfWith(Scalar, Ex);
4751     }
4752 
4753     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4754   }
4755 
4756   // For each vectorized value:
4757   for (auto &TEPtr : VectorizableTree) {
4758     TreeEntry *Entry = TEPtr.get();
4759 
4760     // No need to handle users of gathered values.
4761     if (Entry->State == TreeEntry::NeedToGather)
4762       continue;
4763 
4764     assert(Entry->VectorizedValue && "Can't find vectorizable value");
4765 
4766     // For each lane:
4767     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4768       Value *Scalar = Entry->Scalars[Lane];
4769 
4770 #ifndef NDEBUG
4771       Type *Ty = Scalar->getType();
4772       if (!Ty->isVoidTy()) {
4773         for (User *U : Scalar->users()) {
4774           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4775 
4776           // It is legal to delete users in the ignorelist.
4777           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4778                  "Deleting out-of-tree value");
4779         }
4780       }
4781 #endif
4782       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4783       eraseInstruction(cast<Instruction>(Scalar));
4784     }
4785   }
4786 
4787   Builder.ClearInsertionPoint();
4788 
4789   return VectorizableTree[0]->VectorizedValue;
4790 }
4791 
4792 void BoUpSLP::optimizeGatherSequence() {
4793   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4794                     << " gather sequences instructions.\n");
4795   // LICM InsertElementInst sequences.
4796   for (Instruction *I : GatherSeq) {
4797     if (isDeleted(I))
4798       continue;
4799 
4800     // Check if this block is inside a loop.
4801     Loop *L = LI->getLoopFor(I->getParent());
4802     if (!L)
4803       continue;
4804 
4805     // Check if it has a preheader.
4806     BasicBlock *PreHeader = L->getLoopPreheader();
4807     if (!PreHeader)
4808       continue;
4809 
4810     // If the vector or the element that we insert into it are
4811     // instructions that are defined in this basic block then we can't
4812     // hoist this instruction.
4813     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4814     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4815     if (Op0 && L->contains(Op0))
4816       continue;
4817     if (Op1 && L->contains(Op1))
4818       continue;
4819 
4820     // We can hoist this instruction. Move it to the pre-header.
4821     I->moveBefore(PreHeader->getTerminator());
4822   }
4823 
4824   // Make a list of all reachable blocks in our CSE queue.
4825   SmallVector<const DomTreeNode *, 8> CSEWorkList;
4826   CSEWorkList.reserve(CSEBlocks.size());
4827   for (BasicBlock *BB : CSEBlocks)
4828     if (DomTreeNode *N = DT->getNode(BB)) {
4829       assert(DT->isReachableFromEntry(N));
4830       CSEWorkList.push_back(N);
4831     }
4832 
4833   // Sort blocks by domination. This ensures we visit a block after all blocks
4834   // dominating it are visited.
4835   llvm::stable_sort(CSEWorkList,
4836                     [this](const DomTreeNode *A, const DomTreeNode *B) {
4837                       return DT->properlyDominates(A, B);
4838                     });
4839 
4840   // Perform O(N^2) search over the gather sequences and merge identical
4841   // instructions. TODO: We can further optimize this scan if we split the
4842   // instructions into different buckets based on the insert lane.
4843   SmallVector<Instruction *, 16> Visited;
4844   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4845     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4846            "Worklist not sorted properly!");
4847     BasicBlock *BB = (*I)->getBlock();
4848     // For all instructions in blocks containing gather sequences:
4849     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4850       Instruction *In = &*it++;
4851       if (isDeleted(In))
4852         continue;
4853       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4854         continue;
4855 
4856       // Check if we can replace this instruction with any of the
4857       // visited instructions.
4858       for (Instruction *v : Visited) {
4859         if (In->isIdenticalTo(v) &&
4860             DT->dominates(v->getParent(), In->getParent())) {
4861           In->replaceAllUsesWith(v);
4862           eraseInstruction(In);
4863           In = nullptr;
4864           break;
4865         }
4866       }
4867       if (In) {
4868         assert(!is_contained(Visited, In));
4869         Visited.push_back(In);
4870       }
4871     }
4872   }
4873   CSEBlocks.clear();
4874   GatherSeq.clear();
4875 }
4876 
4877 // Groups the instructions to a bundle (which is then a single scheduling entity)
4878 // and schedules instructions until the bundle gets ready.
4879 Optional<BoUpSLP::ScheduleData *>
4880 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4881                                             const InstructionsState &S) {
4882   if (isa<PHINode>(S.OpValue))
4883     return nullptr;
4884 
4885   // Initialize the instruction bundle.
4886   Instruction *OldScheduleEnd = ScheduleEnd;
4887   ScheduleData *PrevInBundle = nullptr;
4888   ScheduleData *Bundle = nullptr;
4889   bool ReSchedule = false;
4890   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
4891 
4892   // Make sure that the scheduling region contains all
4893   // instructions of the bundle.
4894   for (Value *V : VL) {
4895     if (!extendSchedulingRegion(V, S))
4896       return None;
4897   }
4898 
4899   for (Value *V : VL) {
4900     ScheduleData *BundleMember = getScheduleData(V);
4901     assert(BundleMember &&
4902            "no ScheduleData for bundle member (maybe not in same basic block)");
4903     if (BundleMember->IsScheduled) {
4904       // A bundle member was scheduled as single instruction before and now
4905       // needs to be scheduled as part of the bundle. We just get rid of the
4906       // existing schedule.
4907       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
4908                         << " was already scheduled\n");
4909       ReSchedule = true;
4910     }
4911     assert(BundleMember->isSchedulingEntity() &&
4912            "bundle member already part of other bundle");
4913     if (PrevInBundle) {
4914       PrevInBundle->NextInBundle = BundleMember;
4915     } else {
4916       Bundle = BundleMember;
4917     }
4918     BundleMember->UnscheduledDepsInBundle = 0;
4919     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4920 
4921     // Group the instructions to a bundle.
4922     BundleMember->FirstInBundle = Bundle;
4923     PrevInBundle = BundleMember;
4924   }
4925   if (ScheduleEnd != OldScheduleEnd) {
4926     // The scheduling region got new instructions at the lower end (or it is a
4927     // new region for the first bundle). This makes it necessary to
4928     // recalculate all dependencies.
4929     // It is seldom that this needs to be done a second time after adding the
4930     // initial bundle to the region.
4931     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4932       doForAllOpcodes(I, [](ScheduleData *SD) {
4933         SD->clearDependencies();
4934       });
4935     }
4936     ReSchedule = true;
4937   }
4938   if (ReSchedule) {
4939     resetSchedule();
4940     initialFillReadyList(ReadyInsts);
4941   }
4942   assert(Bundle && "Failed to find schedule bundle");
4943 
4944   LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4945                     << BB->getName() << "\n");
4946 
4947   calculateDependencies(Bundle, true, SLP);
4948 
4949   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4950   // means that there are no cyclic dependencies and we can schedule it.
4951   // Note that's important that we don't "schedule" the bundle yet (see
4952   // cancelScheduling).
4953   while (!Bundle->isReady() && !ReadyInsts.empty()) {
4954 
4955     ScheduleData *pickedSD = ReadyInsts.back();
4956     ReadyInsts.pop_back();
4957 
4958     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4959       schedule(pickedSD, ReadyInsts);
4960     }
4961   }
4962   if (!Bundle->isReady()) {
4963     cancelScheduling(VL, S.OpValue);
4964     return None;
4965   }
4966   return Bundle;
4967 }
4968 
4969 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4970                                                 Value *OpValue) {
4971   if (isa<PHINode>(OpValue))
4972     return;
4973 
4974   ScheduleData *Bundle = getScheduleData(OpValue);
4975   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
4976   assert(!Bundle->IsScheduled &&
4977          "Can't cancel bundle which is already scheduled");
4978   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4979          "tried to unbundle something which is not a bundle");
4980 
4981   // Un-bundle: make single instructions out of the bundle.
4982   ScheduleData *BundleMember = Bundle;
4983   while (BundleMember) {
4984     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4985     BundleMember->FirstInBundle = BundleMember;
4986     ScheduleData *Next = BundleMember->NextInBundle;
4987     BundleMember->NextInBundle = nullptr;
4988     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4989     if (BundleMember->UnscheduledDepsInBundle == 0) {
4990       ReadyInsts.insert(BundleMember);
4991     }
4992     BundleMember = Next;
4993   }
4994 }
4995 
4996 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4997   // Allocate a new ScheduleData for the instruction.
4998   if (ChunkPos >= ChunkSize) {
4999     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5000     ChunkPos = 0;
5001   }
5002   return &(ScheduleDataChunks.back()[ChunkPos++]);
5003 }
5004 
5005 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5006                                                       const InstructionsState &S) {
5007   if (getScheduleData(V, isOneOf(S, V)))
5008     return true;
5009   Instruction *I = dyn_cast<Instruction>(V);
5010   assert(I && "bundle member must be an instruction");
5011   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
5012   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5013     ScheduleData *ISD = getScheduleData(I);
5014     if (!ISD)
5015       return false;
5016     assert(isInSchedulingRegion(ISD) &&
5017            "ScheduleData not in scheduling region");
5018     ScheduleData *SD = allocateScheduleDataChunks();
5019     SD->Inst = I;
5020     SD->init(SchedulingRegionID, S.OpValue);
5021     ExtraScheduleDataMap[I][S.OpValue] = SD;
5022     return true;
5023   };
5024   if (CheckSheduleForI(I))
5025     return true;
5026   if (!ScheduleStart) {
5027     // It's the first instruction in the new region.
5028     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5029     ScheduleStart = I;
5030     ScheduleEnd = I->getNextNode();
5031     if (isOneOf(S, I) != I)
5032       CheckSheduleForI(I);
5033     assert(ScheduleEnd && "tried to vectorize a terminator?");
5034     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
5035     return true;
5036   }
5037   // Search up and down at the same time, because we don't know if the new
5038   // instruction is above or below the existing scheduling region.
5039   BasicBlock::reverse_iterator UpIter =
5040       ++ScheduleStart->getIterator().getReverse();
5041   BasicBlock::reverse_iterator UpperEnd = BB->rend();
5042   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5043   BasicBlock::iterator LowerEnd = BB->end();
5044   while (true) {
5045     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5046       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
5047       return false;
5048     }
5049 
5050     if (UpIter != UpperEnd) {
5051       if (&*UpIter == I) {
5052         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5053         ScheduleStart = I;
5054         if (isOneOf(S, I) != I)
5055           CheckSheduleForI(I);
5056         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5057                           << "\n");
5058         return true;
5059       }
5060       ++UpIter;
5061     }
5062     if (DownIter != LowerEnd) {
5063       if (&*DownIter == I) {
5064         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5065                          nullptr);
5066         ScheduleEnd = I->getNextNode();
5067         if (isOneOf(S, I) != I)
5068           CheckSheduleForI(I);
5069         assert(ScheduleEnd && "tried to vectorize a terminator?");
5070         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
5071                           << "\n");
5072         return true;
5073       }
5074       ++DownIter;
5075     }
5076     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
5077            "instruction not found in block");
5078   }
5079   return true;
5080 }
5081 
5082 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5083                                                 Instruction *ToI,
5084                                                 ScheduleData *PrevLoadStore,
5085                                                 ScheduleData *NextLoadStore) {
5086   ScheduleData *CurrentLoadStore = PrevLoadStore;
5087   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5088     ScheduleData *SD = ScheduleDataMap[I];
5089     if (!SD) {
5090       SD = allocateScheduleDataChunks();
5091       ScheduleDataMap[I] = SD;
5092       SD->Inst = I;
5093     }
5094     assert(!isInSchedulingRegion(SD) &&
5095            "new ScheduleData already in scheduling region");
5096     SD->init(SchedulingRegionID, I);
5097 
5098     if (I->mayReadOrWriteMemory() &&
5099         (!isa<IntrinsicInst>(I) ||
5100          cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
5101       // Update the linked list of memory accessing instructions.
5102       if (CurrentLoadStore) {
5103         CurrentLoadStore->NextLoadStore = SD;
5104       } else {
5105         FirstLoadStoreInRegion = SD;
5106       }
5107       CurrentLoadStore = SD;
5108     }
5109   }
5110   if (NextLoadStore) {
5111     if (CurrentLoadStore)
5112       CurrentLoadStore->NextLoadStore = NextLoadStore;
5113   } else {
5114     LastLoadStoreInRegion = CurrentLoadStore;
5115   }
5116 }
5117 
5118 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5119                                                      bool InsertInReadyList,
5120                                                      BoUpSLP *SLP) {
5121   assert(SD->isSchedulingEntity());
5122 
5123   SmallVector<ScheduleData *, 10> WorkList;
5124   WorkList.push_back(SD);
5125 
5126   while (!WorkList.empty()) {
5127     ScheduleData *SD = WorkList.back();
5128     WorkList.pop_back();
5129 
5130     ScheduleData *BundleMember = SD;
5131     while (BundleMember) {
5132       assert(isInSchedulingRegion(BundleMember));
5133       if (!BundleMember->hasValidDependencies()) {
5134 
5135         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5136                           << "\n");
5137         BundleMember->Dependencies = 0;
5138         BundleMember->resetUnscheduledDeps();
5139 
5140         // Handle def-use chain dependencies.
5141         if (BundleMember->OpValue != BundleMember->Inst) {
5142           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5143           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5144             BundleMember->Dependencies++;
5145             ScheduleData *DestBundle = UseSD->FirstInBundle;
5146             if (!DestBundle->IsScheduled)
5147               BundleMember->incrementUnscheduledDeps(1);
5148             if (!DestBundle->hasValidDependencies())
5149               WorkList.push_back(DestBundle);
5150           }
5151         } else {
5152           for (User *U : BundleMember->Inst->users()) {
5153             if (isa<Instruction>(U)) {
5154               ScheduleData *UseSD = getScheduleData(U);
5155               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5156                 BundleMember->Dependencies++;
5157                 ScheduleData *DestBundle = UseSD->FirstInBundle;
5158                 if (!DestBundle->IsScheduled)
5159                   BundleMember->incrementUnscheduledDeps(1);
5160                 if (!DestBundle->hasValidDependencies())
5161                   WorkList.push_back(DestBundle);
5162               }
5163             } else {
5164               // I'm not sure if this can ever happen. But we need to be safe.
5165               // This lets the instruction/bundle never be scheduled and
5166               // eventually disable vectorization.
5167               BundleMember->Dependencies++;
5168               BundleMember->incrementUnscheduledDeps(1);
5169             }
5170           }
5171         }
5172 
5173         // Handle the memory dependencies.
5174         ScheduleData *DepDest = BundleMember->NextLoadStore;
5175         if (DepDest) {
5176           Instruction *SrcInst = BundleMember->Inst;
5177           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5178           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5179           unsigned numAliased = 0;
5180           unsigned DistToSrc = 1;
5181 
5182           while (DepDest) {
5183             assert(isInSchedulingRegion(DepDest));
5184 
5185             // We have two limits to reduce the complexity:
5186             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5187             //    SLP->isAliased (which is the expensive part in this loop).
5188             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5189             //    the whole loop (even if the loop is fast, it's quadratic).
5190             //    It's important for the loop break condition (see below) to
5191             //    check this limit even between two read-only instructions.
5192             if (DistToSrc >= MaxMemDepDistance ||
5193                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5194                      (numAliased >= AliasedCheckLimit ||
5195                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5196 
5197               // We increment the counter only if the locations are aliased
5198               // (instead of counting all alias checks). This gives a better
5199               // balance between reduced runtime and accurate dependencies.
5200               numAliased++;
5201 
5202               DepDest->MemoryDependencies.push_back(BundleMember);
5203               BundleMember->Dependencies++;
5204               ScheduleData *DestBundle = DepDest->FirstInBundle;
5205               if (!DestBundle->IsScheduled) {
5206                 BundleMember->incrementUnscheduledDeps(1);
5207               }
5208               if (!DestBundle->hasValidDependencies()) {
5209                 WorkList.push_back(DestBundle);
5210               }
5211             }
5212             DepDest = DepDest->NextLoadStore;
5213 
5214             // Example, explaining the loop break condition: Let's assume our
5215             // starting instruction is i0 and MaxMemDepDistance = 3.
5216             //
5217             //                      +--------v--v--v
5218             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5219             //             +--------^--^--^
5220             //
5221             // MaxMemDepDistance let us stop alias-checking at i3 and we add
5222             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5223             // Previously we already added dependencies from i3 to i6,i7,i8
5224             // (because of MaxMemDepDistance). As we added a dependency from
5225             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5226             // and we can abort this loop at i6.
5227             if (DistToSrc >= 2 * MaxMemDepDistance)
5228               break;
5229             DistToSrc++;
5230           }
5231         }
5232       }
5233       BundleMember = BundleMember->NextInBundle;
5234     }
5235     if (InsertInReadyList && SD->isReady()) {
5236       ReadyInsts.push_back(SD);
5237       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5238                         << "\n");
5239     }
5240   }
5241 }
5242 
5243 void BoUpSLP::BlockScheduling::resetSchedule() {
5244   assert(ScheduleStart &&
5245          "tried to reset schedule on block which has not been scheduled");
5246   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5247     doForAllOpcodes(I, [&](ScheduleData *SD) {
5248       assert(isInSchedulingRegion(SD) &&
5249              "ScheduleData not in scheduling region");
5250       SD->IsScheduled = false;
5251       SD->resetUnscheduledDeps();
5252     });
5253   }
5254   ReadyInsts.clear();
5255 }
5256 
5257 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5258   if (!BS->ScheduleStart)
5259     return;
5260 
5261   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5262 
5263   BS->resetSchedule();
5264 
5265   // For the real scheduling we use a more sophisticated ready-list: it is
5266   // sorted by the original instruction location. This lets the final schedule
5267   // be as  close as possible to the original instruction order.
5268   struct ScheduleDataCompare {
5269     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5270       return SD2->SchedulingPriority < SD1->SchedulingPriority;
5271     }
5272   };
5273   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5274 
5275   // Ensure that all dependency data is updated and fill the ready-list with
5276   // initial instructions.
5277   int Idx = 0;
5278   int NumToSchedule = 0;
5279   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5280        I = I->getNextNode()) {
5281     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5282       assert(SD->isPartOfBundle() ==
5283                  (getTreeEntry(SD->Inst) != nullptr) &&
5284              "scheduler and vectorizer bundle mismatch");
5285       SD->FirstInBundle->SchedulingPriority = Idx++;
5286       if (SD->isSchedulingEntity()) {
5287         BS->calculateDependencies(SD, false, this);
5288         NumToSchedule++;
5289       }
5290     });
5291   }
5292   BS->initialFillReadyList(ReadyInsts);
5293 
5294   Instruction *LastScheduledInst = BS->ScheduleEnd;
5295 
5296   // Do the "real" scheduling.
5297   while (!ReadyInsts.empty()) {
5298     ScheduleData *picked = *ReadyInsts.begin();
5299     ReadyInsts.erase(ReadyInsts.begin());
5300 
5301     // Move the scheduled instruction(s) to their dedicated places, if not
5302     // there yet.
5303     ScheduleData *BundleMember = picked;
5304     while (BundleMember) {
5305       Instruction *pickedInst = BundleMember->Inst;
5306       if (LastScheduledInst->getNextNode() != pickedInst) {
5307         BS->BB->getInstList().remove(pickedInst);
5308         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5309                                      pickedInst);
5310       }
5311       LastScheduledInst = pickedInst;
5312       BundleMember = BundleMember->NextInBundle;
5313     }
5314 
5315     BS->schedule(picked, ReadyInsts);
5316     NumToSchedule--;
5317   }
5318   assert(NumToSchedule == 0 && "could not schedule all instructions");
5319 
5320   // Avoid duplicate scheduling of the block.
5321   BS->ScheduleStart = nullptr;
5322 }
5323 
5324 unsigned BoUpSLP::getVectorElementSize(Value *V) const {
5325   // If V is a store, just return the width of the stored value without
5326   // traversing the expression tree. This is the common case.
5327   if (auto *Store = dyn_cast<StoreInst>(V))
5328     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5329 
5330   // If V is not a store, we can traverse the expression tree to find loads
5331   // that feed it. The type of the loaded value may indicate a more suitable
5332   // width than V's type. We want to base the vector element size on the width
5333   // of memory operations where possible.
5334   SmallVector<Instruction *, 16> Worklist;
5335   SmallPtrSet<Instruction *, 16> Visited;
5336   if (auto *I = dyn_cast<Instruction>(V)) {
5337     Worklist.push_back(I);
5338     Visited.insert(I);
5339   }
5340 
5341   // Traverse the expression tree in bottom-up order looking for loads. If we
5342   // encounter an instruction we don't yet handle, we give up.
5343   auto MaxWidth = 0u;
5344   auto FoundUnknownInst = false;
5345   while (!Worklist.empty() && !FoundUnknownInst) {
5346     auto *I = Worklist.pop_back_val();
5347 
5348     // We should only be looking at scalar instructions here. If the current
5349     // instruction has a vector type, give up.
5350     auto *Ty = I->getType();
5351     if (isa<VectorType>(Ty))
5352       FoundUnknownInst = true;
5353 
5354     // If the current instruction is a load, update MaxWidth to reflect the
5355     // width of the loaded value.
5356     else if (isa<LoadInst>(I))
5357       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
5358 
5359     // Otherwise, we need to visit the operands of the instruction. We only
5360     // handle the interesting cases from buildTree here. If an operand is an
5361     // instruction we haven't yet visited, we add it to the worklist.
5362     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5363              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
5364       for (Use &U : I->operands())
5365         if (auto *J = dyn_cast<Instruction>(U.get()))
5366           if (Visited.insert(J).second)
5367             Worklist.push_back(J);
5368     }
5369 
5370     // If we don't yet handle the instruction, give up.
5371     else
5372       FoundUnknownInst = true;
5373   }
5374 
5375   // If we didn't encounter a memory access in the expression tree, or if we
5376   // gave up for some reason, just return the width of V.
5377   if (!MaxWidth || FoundUnknownInst)
5378     return DL->getTypeSizeInBits(V->getType());
5379 
5380   // Otherwise, return the maximum width we found.
5381   return MaxWidth;
5382 }
5383 
5384 // Determine if a value V in a vectorizable expression Expr can be demoted to a
5385 // smaller type with a truncation. We collect the values that will be demoted
5386 // in ToDemote and additional roots that require investigating in Roots.
5387 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5388                                   SmallVectorImpl<Value *> &ToDemote,
5389                                   SmallVectorImpl<Value *> &Roots) {
5390   // We can always demote constants.
5391   if (isa<Constant>(V)) {
5392     ToDemote.push_back(V);
5393     return true;
5394   }
5395 
5396   // If the value is not an instruction in the expression with only one use, it
5397   // cannot be demoted.
5398   auto *I = dyn_cast<Instruction>(V);
5399   if (!I || !I->hasOneUse() || !Expr.count(I))
5400     return false;
5401 
5402   switch (I->getOpcode()) {
5403 
5404   // We can always demote truncations and extensions. Since truncations can
5405   // seed additional demotion, we save the truncated value.
5406   case Instruction::Trunc:
5407     Roots.push_back(I->getOperand(0));
5408     break;
5409   case Instruction::ZExt:
5410   case Instruction::SExt:
5411     break;
5412 
5413   // We can demote certain binary operations if we can demote both of their
5414   // operands.
5415   case Instruction::Add:
5416   case Instruction::Sub:
5417   case Instruction::Mul:
5418   case Instruction::And:
5419   case Instruction::Or:
5420   case Instruction::Xor:
5421     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5422         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5423       return false;
5424     break;
5425 
5426   // We can demote selects if we can demote their true and false values.
5427   case Instruction::Select: {
5428     SelectInst *SI = cast<SelectInst>(I);
5429     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5430         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5431       return false;
5432     break;
5433   }
5434 
5435   // We can demote phis if we can demote all their incoming operands. Note that
5436   // we don't need to worry about cycles since we ensure single use above.
5437   case Instruction::PHI: {
5438     PHINode *PN = cast<PHINode>(I);
5439     for (Value *IncValue : PN->incoming_values())
5440       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5441         return false;
5442     break;
5443   }
5444 
5445   // Otherwise, conservatively give up.
5446   default:
5447     return false;
5448   }
5449 
5450   // Record the value that we can demote.
5451   ToDemote.push_back(V);
5452   return true;
5453 }
5454 
5455 void BoUpSLP::computeMinimumValueSizes() {
5456   // If there are no external uses, the expression tree must be rooted by a
5457   // store. We can't demote in-memory values, so there is nothing to do here.
5458   if (ExternalUses.empty())
5459     return;
5460 
5461   // We only attempt to truncate integer expressions.
5462   auto &TreeRoot = VectorizableTree[0]->Scalars;
5463   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5464   if (!TreeRootIT)
5465     return;
5466 
5467   // If the expression is not rooted by a store, these roots should have
5468   // external uses. We will rely on InstCombine to rewrite the expression in
5469   // the narrower type. However, InstCombine only rewrites single-use values.
5470   // This means that if a tree entry other than a root is used externally, it
5471   // must have multiple uses and InstCombine will not rewrite it. The code
5472   // below ensures that only the roots are used externally.
5473   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5474   for (auto &EU : ExternalUses)
5475     if (!Expr.erase(EU.Scalar))
5476       return;
5477   if (!Expr.empty())
5478     return;
5479 
5480   // Collect the scalar values of the vectorizable expression. We will use this
5481   // context to determine which values can be demoted. If we see a truncation,
5482   // we mark it as seeding another demotion.
5483   for (auto &EntryPtr : VectorizableTree)
5484     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5485 
5486   // Ensure the roots of the vectorizable tree don't form a cycle. They must
5487   // have a single external user that is not in the vectorizable tree.
5488   for (auto *Root : TreeRoot)
5489     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5490       return;
5491 
5492   // Conservatively determine if we can actually truncate the roots of the
5493   // expression. Collect the values that can be demoted in ToDemote and
5494   // additional roots that require investigating in Roots.
5495   SmallVector<Value *, 32> ToDemote;
5496   SmallVector<Value *, 4> Roots;
5497   for (auto *Root : TreeRoot)
5498     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5499       return;
5500 
5501   // The maximum bit width required to represent all the values that can be
5502   // demoted without loss of precision. It would be safe to truncate the roots
5503   // of the expression to this width.
5504   auto MaxBitWidth = 8u;
5505 
5506   // We first check if all the bits of the roots are demanded. If they're not,
5507   // we can truncate the roots to this narrower type.
5508   for (auto *Root : TreeRoot) {
5509     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5510     MaxBitWidth = std::max<unsigned>(
5511         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5512   }
5513 
5514   // True if the roots can be zero-extended back to their original type, rather
5515   // than sign-extended. We know that if the leading bits are not demanded, we
5516   // can safely zero-extend. So we initialize IsKnownPositive to True.
5517   bool IsKnownPositive = true;
5518 
5519   // If all the bits of the roots are demanded, we can try a little harder to
5520   // compute a narrower type. This can happen, for example, if the roots are
5521   // getelementptr indices. InstCombine promotes these indices to the pointer
5522   // width. Thus, all their bits are technically demanded even though the
5523   // address computation might be vectorized in a smaller type.
5524   //
5525   // We start by looking at each entry that can be demoted. We compute the
5526   // maximum bit width required to store the scalar by using ValueTracking to
5527   // compute the number of high-order bits we can truncate.
5528   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5529       llvm::all_of(TreeRoot, [](Value *R) {
5530         assert(R->hasOneUse() && "Root should have only one use!");
5531         return isa<GetElementPtrInst>(R->user_back());
5532       })) {
5533     MaxBitWidth = 8u;
5534 
5535     // Determine if the sign bit of all the roots is known to be zero. If not,
5536     // IsKnownPositive is set to False.
5537     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5538       KnownBits Known = computeKnownBits(R, *DL);
5539       return Known.isNonNegative();
5540     });
5541 
5542     // Determine the maximum number of bits required to store the scalar
5543     // values.
5544     for (auto *Scalar : ToDemote) {
5545       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5546       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5547       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5548     }
5549 
5550     // If we can't prove that the sign bit is zero, we must add one to the
5551     // maximum bit width to account for the unknown sign bit. This preserves
5552     // the existing sign bit so we can safely sign-extend the root back to the
5553     // original type. Otherwise, if we know the sign bit is zero, we will
5554     // zero-extend the root instead.
5555     //
5556     // FIXME: This is somewhat suboptimal, as there will be cases where adding
5557     //        one to the maximum bit width will yield a larger-than-necessary
5558     //        type. In general, we need to add an extra bit only if we can't
5559     //        prove that the upper bit of the original type is equal to the
5560     //        upper bit of the proposed smaller type. If these two bits are the
5561     //        same (either zero or one) we know that sign-extending from the
5562     //        smaller type will result in the same value. Here, since we can't
5563     //        yet prove this, we are just making the proposed smaller type
5564     //        larger to ensure correctness.
5565     if (!IsKnownPositive)
5566       ++MaxBitWidth;
5567   }
5568 
5569   // Round MaxBitWidth up to the next power-of-two.
5570   if (!isPowerOf2_64(MaxBitWidth))
5571     MaxBitWidth = NextPowerOf2(MaxBitWidth);
5572 
5573   // If the maximum bit width we compute is less than the with of the roots'
5574   // type, we can proceed with the narrowing. Otherwise, do nothing.
5575   if (MaxBitWidth >= TreeRootIT->getBitWidth())
5576     return;
5577 
5578   // If we can truncate the root, we must collect additional values that might
5579   // be demoted as a result. That is, those seeded by truncations we will
5580   // modify.
5581   while (!Roots.empty())
5582     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5583 
5584   // Finally, map the values we can demote to the maximum bit with we computed.
5585   for (auto *Scalar : ToDemote)
5586     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5587 }
5588 
5589 namespace {
5590 
5591 /// The SLPVectorizer Pass.
5592 struct SLPVectorizer : public FunctionPass {
5593   SLPVectorizerPass Impl;
5594 
5595   /// Pass identification, replacement for typeid
5596   static char ID;
5597 
5598   explicit SLPVectorizer() : FunctionPass(ID) {
5599     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5600   }
5601 
5602   bool doInitialization(Module &M) override {
5603     return false;
5604   }
5605 
5606   bool runOnFunction(Function &F) override {
5607     if (skipFunction(F))
5608       return false;
5609 
5610     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5611     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5612     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5613     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5614     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5615     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5616     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5617     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5618     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5619     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5620 
5621     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5622   }
5623 
5624   void getAnalysisUsage(AnalysisUsage &AU) const override {
5625     FunctionPass::getAnalysisUsage(AU);
5626     AU.addRequired<AssumptionCacheTracker>();
5627     AU.addRequired<ScalarEvolutionWrapperPass>();
5628     AU.addRequired<AAResultsWrapperPass>();
5629     AU.addRequired<TargetTransformInfoWrapperPass>();
5630     AU.addRequired<LoopInfoWrapperPass>();
5631     AU.addRequired<DominatorTreeWrapperPass>();
5632     AU.addRequired<DemandedBitsWrapperPass>();
5633     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5634     AU.addRequired<InjectTLIMappingsLegacy>();
5635     AU.addPreserved<LoopInfoWrapperPass>();
5636     AU.addPreserved<DominatorTreeWrapperPass>();
5637     AU.addPreserved<AAResultsWrapperPass>();
5638     AU.addPreserved<GlobalsAAWrapperPass>();
5639     AU.setPreservesCFG();
5640   }
5641 };
5642 
5643 } // end anonymous namespace
5644 
5645 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5646   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5647   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5648   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5649   auto *AA = &AM.getResult<AAManager>(F);
5650   auto *LI = &AM.getResult<LoopAnalysis>(F);
5651   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5652   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5653   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5654   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5655 
5656   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5657   if (!Changed)
5658     return PreservedAnalyses::all();
5659 
5660   PreservedAnalyses PA;
5661   PA.preserveSet<CFGAnalyses>();
5662   PA.preserve<AAManager>();
5663   PA.preserve<GlobalsAA>();
5664   return PA;
5665 }
5666 
5667 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5668                                 TargetTransformInfo *TTI_,
5669                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5670                                 LoopInfo *LI_, DominatorTree *DT_,
5671                                 AssumptionCache *AC_, DemandedBits *DB_,
5672                                 OptimizationRemarkEmitter *ORE_) {
5673   if (!RunSLPVectorization)
5674     return false;
5675   SE = SE_;
5676   TTI = TTI_;
5677   TLI = TLI_;
5678   AA = AA_;
5679   LI = LI_;
5680   DT = DT_;
5681   AC = AC_;
5682   DB = DB_;
5683   DL = &F.getParent()->getDataLayout();
5684 
5685   Stores.clear();
5686   GEPs.clear();
5687   bool Changed = false;
5688 
5689   // If the target claims to have no vector registers don't attempt
5690   // vectorization.
5691   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
5692     return false;
5693 
5694   // Don't vectorize when the attribute NoImplicitFloat is used.
5695   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5696     return false;
5697 
5698   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5699 
5700   // Use the bottom up slp vectorizer to construct chains that start with
5701   // store instructions.
5702   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5703 
5704   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5705   // delete instructions.
5706 
5707   // Scan the blocks in the function in post order.
5708   for (auto BB : post_order(&F.getEntryBlock())) {
5709     collectSeedInstructions(BB);
5710 
5711     // Vectorize trees that end at stores.
5712     if (!Stores.empty()) {
5713       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5714                         << " underlying objects.\n");
5715       Changed |= vectorizeStoreChains(R);
5716     }
5717 
5718     // Vectorize trees that end at reductions.
5719     Changed |= vectorizeChainsInBlock(BB, R);
5720 
5721     // Vectorize the index computations of getelementptr instructions. This
5722     // is primarily intended to catch gather-like idioms ending at
5723     // non-consecutive loads.
5724     if (!GEPs.empty()) {
5725       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5726                         << " underlying objects.\n");
5727       Changed |= vectorizeGEPIndices(BB, R);
5728     }
5729   }
5730 
5731   if (Changed) {
5732     R.optimizeGatherSequence();
5733     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5734     LLVM_DEBUG(verifyFunction(F));
5735   }
5736   return Changed;
5737 }
5738 
5739 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5740                                             unsigned Idx) {
5741   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
5742                     << "\n");
5743   const unsigned Sz = R.getVectorElementSize(Chain[0]);
5744   const unsigned MinVF = R.getMinVecRegSize() / Sz;
5745   unsigned VF = Chain.size();
5746 
5747   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
5748     return false;
5749 
5750   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
5751                     << "\n");
5752 
5753   R.buildTree(Chain);
5754   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5755   // TODO: Handle orders of size less than number of elements in the vector.
5756   if (Order && Order->size() == Chain.size()) {
5757     // TODO: reorder tree nodes without tree rebuilding.
5758     SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
5759     llvm::transform(*Order, ReorderedOps.begin(),
5760                     [Chain](const unsigned Idx) { return Chain[Idx]; });
5761     R.buildTree(ReorderedOps);
5762   }
5763   if (R.isTreeTinyAndNotFullyVectorizable())
5764     return false;
5765   if (R.isLoadCombineCandidate())
5766     return false;
5767 
5768   R.computeMinimumValueSizes();
5769 
5770   int Cost = R.getTreeCost();
5771 
5772   LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
5773   if (Cost < -SLPCostThreshold) {
5774     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5775 
5776     using namespace ore;
5777 
5778     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5779                                         cast<StoreInst>(Chain[0]))
5780                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5781                      << " and with tree size "
5782                      << NV("TreeSize", R.getTreeSize()));
5783 
5784     R.vectorizeTree();
5785     return true;
5786   }
5787 
5788   return false;
5789 }
5790 
5791 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5792                                         BoUpSLP &R) {
5793   // We may run into multiple chains that merge into a single chain. We mark the
5794   // stores that we vectorized so that we don't visit the same store twice.
5795   BoUpSLP::ValueSet VectorizedStores;
5796   bool Changed = false;
5797 
5798   int E = Stores.size();
5799   SmallBitVector Tails(E, false);
5800   SmallVector<int, 16> ConsecutiveChain(E, E + 1);
5801   int MaxIter = MaxStoreLookup.getValue();
5802   int IterCnt;
5803   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
5804                                   &ConsecutiveChain](int K, int Idx) {
5805     if (IterCnt >= MaxIter)
5806       return true;
5807     ++IterCnt;
5808     if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5809       return false;
5810 
5811     Tails.set(Idx);
5812     ConsecutiveChain[K] = Idx;
5813     return true;
5814   };
5815   // Do a quadratic search on all of the given stores in reverse order and find
5816   // all of the pairs of stores that follow each other.
5817   for (int Idx = E - 1; Idx >= 0; --Idx) {
5818     // If a store has multiple consecutive store candidates, search according
5819     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5820     // This is because usually pairing with immediate succeeding or preceding
5821     // candidate create the best chance to find slp vectorization opportunity.
5822     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
5823     IterCnt = 0;
5824     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
5825       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5826           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5827         break;
5828   }
5829 
5830   // For stores that start but don't end a link in the chain:
5831   for (int Cnt = E; Cnt > 0; --Cnt) {
5832     int I = Cnt - 1;
5833     if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
5834       continue;
5835     // We found a store instr that starts a chain. Now follow the chain and try
5836     // to vectorize it.
5837     BoUpSLP::ValueList Operands;
5838     // Collect the chain into a list.
5839     while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
5840       Operands.push_back(Stores[I]);
5841       // Move to the next value in the chain.
5842       I = ConsecutiveChain[I];
5843     }
5844 
5845     // If a vector register can't hold 1 element, we are done.
5846     unsigned MaxVecRegSize = R.getMaxVecRegSize();
5847     unsigned EltSize = R.getVectorElementSize(Stores[0]);
5848     if (MaxVecRegSize % EltSize != 0)
5849       continue;
5850 
5851     unsigned MaxElts = MaxVecRegSize / EltSize;
5852     // FIXME: Is division-by-2 the correct step? Should we assert that the
5853     // register size is a power-of-2?
5854     unsigned StartIdx = 0;
5855     for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
5856       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
5857         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
5858         if (!VectorizedStores.count(Slice.front()) &&
5859             !VectorizedStores.count(Slice.back()) &&
5860             vectorizeStoreChain(Slice, R, Cnt)) {
5861           // Mark the vectorized stores so that we don't vectorize them again.
5862           VectorizedStores.insert(Slice.begin(), Slice.end());
5863           Changed = true;
5864           // If we vectorized initial block, no need to try to vectorize it
5865           // again.
5866           if (Cnt == StartIdx)
5867             StartIdx += Size;
5868           Cnt += Size;
5869           continue;
5870         }
5871         ++Cnt;
5872       }
5873       // Check if the whole array was vectorized already - exit.
5874       if (StartIdx >= Operands.size())
5875         break;
5876     }
5877   }
5878 
5879   return Changed;
5880 }
5881 
5882 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5883   // Initialize the collections. We will make a single pass over the block.
5884   Stores.clear();
5885   GEPs.clear();
5886 
5887   // Visit the store and getelementptr instructions in BB and organize them in
5888   // Stores and GEPs according to the underlying objects of their pointer
5889   // operands.
5890   for (Instruction &I : *BB) {
5891     // Ignore store instructions that are volatile or have a pointer operand
5892     // that doesn't point to a scalar type.
5893     if (auto *SI = dyn_cast<StoreInst>(&I)) {
5894       if (!SI->isSimple())
5895         continue;
5896       if (!isValidElementType(SI->getValueOperand()->getType()))
5897         continue;
5898       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5899     }
5900 
5901     // Ignore getelementptr instructions that have more than one index, a
5902     // constant index, or a pointer operand that doesn't point to a scalar
5903     // type.
5904     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5905       auto Idx = GEP->idx_begin()->get();
5906       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5907         continue;
5908       if (!isValidElementType(Idx->getType()))
5909         continue;
5910       if (GEP->getType()->isVectorTy())
5911         continue;
5912       GEPs[GEP->getPointerOperand()].push_back(GEP);
5913     }
5914   }
5915 }
5916 
5917 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5918   if (!A || !B)
5919     return false;
5920   Value *VL[] = { A, B };
5921   return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5922 }
5923 
5924 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5925                                            int UserCost, bool AllowReorder) {
5926   if (VL.size() < 2)
5927     return false;
5928 
5929   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5930                     << VL.size() << ".\n");
5931 
5932   // Check that all of the parts are instructions of the same type,
5933   // we permit an alternate opcode via InstructionsState.
5934   InstructionsState S = getSameOpcode(VL);
5935   if (!S.getOpcode())
5936     return false;
5937 
5938   Instruction *I0 = cast<Instruction>(S.OpValue);
5939   // Make sure invalid types (including vector type) are rejected before
5940   // determining vectorization factor for scalar instructions.
5941   for (Value *V : VL) {
5942     Type *Ty = V->getType();
5943     if (!isValidElementType(Ty)) {
5944       // NOTE: the following will give user internal llvm type name, which may
5945       // not be useful.
5946       R.getORE()->emit([&]() {
5947         std::string type_str;
5948         llvm::raw_string_ostream rso(type_str);
5949         Ty->print(rso);
5950         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5951                << "Cannot SLP vectorize list: type "
5952                << rso.str() + " is unsupported by vectorizer";
5953       });
5954       return false;
5955     }
5956   }
5957 
5958   unsigned Sz = R.getVectorElementSize(I0);
5959   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5960   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5961   if (MaxVF < 2) {
5962     R.getORE()->emit([&]() {
5963       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5964              << "Cannot SLP vectorize list: vectorization factor "
5965              << "less than 2 is not supported";
5966     });
5967     return false;
5968   }
5969 
5970   bool Changed = false;
5971   bool CandidateFound = false;
5972   int MinCost = SLPCostThreshold;
5973 
5974   unsigned NextInst = 0, MaxInst = VL.size();
5975   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
5976     // No actual vectorization should happen, if number of parts is the same as
5977     // provided vectorization factor (i.e. the scalar type is used for vector
5978     // code during codegen).
5979     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5980     if (TTI->getNumberOfParts(VecTy) == VF)
5981       continue;
5982     for (unsigned I = NextInst; I < MaxInst; ++I) {
5983       unsigned OpsWidth = 0;
5984 
5985       if (I + VF > MaxInst)
5986         OpsWidth = MaxInst - I;
5987       else
5988         OpsWidth = VF;
5989 
5990       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5991         break;
5992 
5993       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5994       // Check that a previous iteration of this loop did not delete the Value.
5995       if (llvm::any_of(Ops, [&R](Value *V) {
5996             auto *I = dyn_cast<Instruction>(V);
5997             return I && R.isDeleted(I);
5998           }))
5999         continue;
6000 
6001       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
6002                         << "\n");
6003 
6004       R.buildTree(Ops);
6005       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6006       // TODO: check if we can allow reordering for more cases.
6007       if (AllowReorder && Order) {
6008         // TODO: reorder tree nodes without tree rebuilding.
6009         // Conceptually, there is nothing actually preventing us from trying to
6010         // reorder a larger list. In fact, we do exactly this when vectorizing
6011         // reductions. However, at this point, we only expect to get here when
6012         // there are exactly two operations.
6013         assert(Ops.size() == 2);
6014         Value *ReorderedOps[] = {Ops[1], Ops[0]};
6015         R.buildTree(ReorderedOps, None);
6016       }
6017       if (R.isTreeTinyAndNotFullyVectorizable())
6018         continue;
6019 
6020       R.computeMinimumValueSizes();
6021       int Cost = R.getTreeCost() - UserCost;
6022       CandidateFound = true;
6023       MinCost = std::min(MinCost, Cost);
6024 
6025       if (Cost < -SLPCostThreshold) {
6026         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
6027         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
6028                                                     cast<Instruction>(Ops[0]))
6029                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6030                                  << " and with tree size "
6031                                  << ore::NV("TreeSize", R.getTreeSize()));
6032 
6033         R.vectorizeTree();
6034         // Move to the next bundle.
6035         I += VF - 1;
6036         NextInst = I + 1;
6037         Changed = true;
6038       }
6039     }
6040   }
6041 
6042   if (!Changed && CandidateFound) {
6043     R.getORE()->emit([&]() {
6044       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
6045              << "List vectorization was possible but not beneficial with cost "
6046              << ore::NV("Cost", MinCost) << " >= "
6047              << ore::NV("Treshold", -SLPCostThreshold);
6048     });
6049   } else if (!Changed) {
6050     R.getORE()->emit([&]() {
6051       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
6052              << "Cannot SLP vectorize list: vectorization was impossible"
6053              << " with available vectorization factors";
6054     });
6055   }
6056   return Changed;
6057 }
6058 
6059 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6060   if (!I)
6061     return false;
6062 
6063   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6064     return false;
6065 
6066   Value *P = I->getParent();
6067 
6068   // Vectorize in current basic block only.
6069   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6070   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6071   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6072     return false;
6073 
6074   // Try to vectorize V.
6075   if (tryToVectorizePair(Op0, Op1, R))
6076     return true;
6077 
6078   auto *A = dyn_cast<BinaryOperator>(Op0);
6079   auto *B = dyn_cast<BinaryOperator>(Op1);
6080   // Try to skip B.
6081   if (B && B->hasOneUse()) {
6082     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6083     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6084     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6085       return true;
6086     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6087       return true;
6088   }
6089 
6090   // Try to skip A.
6091   if (A && A->hasOneUse()) {
6092     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6093     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6094     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6095       return true;
6096     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6097       return true;
6098   }
6099   return false;
6100 }
6101 
6102 /// Generate a shuffle mask to be used in a reduction tree.
6103 ///
6104 /// \param VecLen The length of the vector to be reduced.
6105 /// \param NumEltsToRdx The number of elements that should be reduced in the
6106 ///        vector.
6107 /// \param IsPairwise Whether the reduction is a pairwise or splitting
6108 ///        reduction. A pairwise reduction will generate a mask of
6109 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
6110 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
6111 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
6112 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen,
6113                                                  unsigned NumEltsToRdx,
6114                                                  bool IsPairwise, bool IsLeft) {
6115   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
6116 
6117   SmallVector<int, 32> ShuffleMask(VecLen, -1);
6118 
6119   if (IsPairwise)
6120     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
6121     for (unsigned i = 0; i != NumEltsToRdx; ++i)
6122       ShuffleMask[i] = 2 * i + !IsLeft;
6123   else
6124     // Move the upper half of the vector to the lower half.
6125     for (unsigned i = 0; i != NumEltsToRdx; ++i)
6126       ShuffleMask[i] = NumEltsToRdx + i;
6127 
6128   return ShuffleMask;
6129 }
6130 
6131 namespace {
6132 
6133 /// Model horizontal reductions.
6134 ///
6135 /// A horizontal reduction is a tree of reduction operations (currently add and
6136 /// fadd) that has operations that can be put into a vector as its leaf.
6137 /// For example, this tree:
6138 ///
6139 /// mul mul mul mul
6140 ///  \  /    \  /
6141 ///   +       +
6142 ///    \     /
6143 ///       +
6144 /// This tree has "mul" as its reduced values and "+" as its reduction
6145 /// operations. A reduction might be feeding into a store or a binary operation
6146 /// feeding a phi.
6147 ///    ...
6148 ///    \  /
6149 ///     +
6150 ///     |
6151 ///  phi +=
6152 ///
6153 ///  Or:
6154 ///    ...
6155 ///    \  /
6156 ///     +
6157 ///     |
6158 ///   *p =
6159 ///
6160 class HorizontalReduction {
6161   using ReductionOpsType = SmallVector<Value *, 16>;
6162   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6163   ReductionOpsListType  ReductionOps;
6164   SmallVector<Value *, 32> ReducedVals;
6165   // Use map vector to make stable output.
6166   MapVector<Instruction *, Value *> ExtraArgs;
6167 
6168   /// Kind of the reduction data.
6169   enum ReductionKind {
6170     RK_None,       /// Not a reduction.
6171     RK_Arithmetic, /// Binary reduction data.
6172     RK_Min,        /// Minimum reduction data.
6173     RK_UMin,       /// Unsigned minimum reduction data.
6174     RK_Max,        /// Maximum reduction data.
6175     RK_UMax,       /// Unsigned maximum reduction data.
6176   };
6177 
6178   /// Contains info about operation, like its opcode, left and right operands.
6179   class OperationData {
6180     /// Opcode of the instruction.
6181     unsigned Opcode = 0;
6182 
6183     /// Left operand of the reduction operation.
6184     Value *LHS = nullptr;
6185 
6186     /// Right operand of the reduction operation.
6187     Value *RHS = nullptr;
6188 
6189     /// Kind of the reduction operation.
6190     ReductionKind Kind = RK_None;
6191 
6192     /// True if float point min/max reduction has no NaNs.
6193     bool NoNaN = false;
6194 
6195     /// Checks if the reduction operation can be vectorized.
6196     bool isVectorizable() const {
6197       return LHS && RHS &&
6198              // We currently only support add/mul/logical && min/max reductions.
6199              ((Kind == RK_Arithmetic &&
6200                (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
6201                 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
6202                 Opcode == Instruction::And || Opcode == Instruction::Or ||
6203                 Opcode == Instruction::Xor)) ||
6204               ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
6205                (Kind == RK_Min || Kind == RK_Max)) ||
6206               (Opcode == Instruction::ICmp &&
6207                (Kind == RK_UMin || Kind == RK_UMax)));
6208     }
6209 
6210     /// Creates reduction operation with the current opcode.
6211     Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
6212       assert(isVectorizable() &&
6213              "Expected add|fadd or min/max reduction operation.");
6214       Value *Cmp = nullptr;
6215       switch (Kind) {
6216       case RK_Arithmetic:
6217         return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
6218                                    Name);
6219       case RK_Min:
6220         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
6221                                           : Builder.CreateFCmpOLT(LHS, RHS);
6222         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6223       case RK_Max:
6224         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
6225                                           : Builder.CreateFCmpOGT(LHS, RHS);
6226         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6227       case RK_UMin:
6228         assert(Opcode == Instruction::ICmp && "Expected integer types.");
6229         Cmp = Builder.CreateICmpULT(LHS, RHS);
6230         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6231       case RK_UMax:
6232         assert(Opcode == Instruction::ICmp && "Expected integer types.");
6233         Cmp = Builder.CreateICmpUGT(LHS, RHS);
6234         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6235       case RK_None:
6236         break;
6237       }
6238       llvm_unreachable("Unknown reduction operation.");
6239     }
6240 
6241   public:
6242     explicit OperationData() = default;
6243 
6244     /// Construction for reduced values. They are identified by opcode only and
6245     /// don't have associated LHS/RHS values.
6246     explicit OperationData(Value *V) {
6247       if (auto *I = dyn_cast<Instruction>(V))
6248         Opcode = I->getOpcode();
6249     }
6250 
6251     /// Constructor for reduction operations with opcode and its left and
6252     /// right operands.
6253     OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
6254                   bool NoNaN = false)
6255         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
6256       assert(Kind != RK_None && "One of the reduction operations is expected.");
6257     }
6258 
6259     explicit operator bool() const { return Opcode; }
6260 
6261     /// Return true if this operation is any kind of minimum or maximum.
6262     bool isMinMax() const {
6263       switch (Kind) {
6264       case RK_Arithmetic:
6265         return false;
6266       case RK_Min:
6267       case RK_Max:
6268       case RK_UMin:
6269       case RK_UMax:
6270         return true;
6271       case RK_None:
6272         break;
6273       }
6274       llvm_unreachable("Reduction kind is not set");
6275     }
6276 
6277     /// Get the index of the first operand.
6278     unsigned getFirstOperandIndex() const {
6279       assert(!!*this && "The opcode is not set.");
6280       // We allow calling this before 'Kind' is set, so handle that specially.
6281       if (Kind == RK_None)
6282         return 0;
6283       return isMinMax() ? 1 : 0;
6284     }
6285 
6286     /// Total number of operands in the reduction operation.
6287     unsigned getNumberOfOperands() const {
6288       assert(Kind != RK_None && !!*this && LHS && RHS &&
6289              "Expected reduction operation.");
6290       return isMinMax() ? 3 : 2;
6291     }
6292 
6293     /// Checks if the operation has the same parent as \p P.
6294     bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
6295       assert(Kind != RK_None && !!*this && LHS && RHS &&
6296              "Expected reduction operation.");
6297       if (!IsRedOp)
6298         return I->getParent() == P;
6299       if (isMinMax()) {
6300         // SelectInst must be used twice while the condition op must have single
6301         // use only.
6302         auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
6303         return I->getParent() == P && Cmp && Cmp->getParent() == P;
6304       }
6305       // Arithmetic reduction operation must be used once only.
6306       return I->getParent() == P;
6307     }
6308 
6309     /// Expected number of uses for reduction operations/reduced values.
6310     bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
6311       assert(Kind != RK_None && !!*this && LHS && RHS &&
6312              "Expected reduction operation.");
6313       if (isMinMax())
6314         return I->hasNUses(2) &&
6315                (!IsReductionOp ||
6316                 cast<SelectInst>(I)->getCondition()->hasOneUse());
6317       return I->hasOneUse();
6318     }
6319 
6320     /// Initializes the list of reduction operations.
6321     void initReductionOps(ReductionOpsListType &ReductionOps) {
6322       assert(Kind != RK_None && !!*this && LHS && RHS &&
6323              "Expected reduction operation.");
6324       if (isMinMax())
6325         ReductionOps.assign(2, ReductionOpsType());
6326       else
6327         ReductionOps.assign(1, ReductionOpsType());
6328     }
6329 
6330     /// Add all reduction operations for the reduction instruction \p I.
6331     void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
6332       assert(Kind != RK_None && !!*this && LHS && RHS &&
6333              "Expected reduction operation.");
6334       if (isMinMax()) {
6335         ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
6336         ReductionOps[1].emplace_back(I);
6337       } else {
6338         ReductionOps[0].emplace_back(I);
6339       }
6340     }
6341 
6342     /// Checks if instruction is associative and can be vectorized.
6343     bool isAssociative(Instruction *I) const {
6344       assert(Kind != RK_None && *this && LHS && RHS &&
6345              "Expected reduction operation.");
6346       switch (Kind) {
6347       case RK_Arithmetic:
6348         return I->isAssociative();
6349       case RK_Min:
6350       case RK_Max:
6351         return Opcode == Instruction::ICmp ||
6352                cast<Instruction>(I->getOperand(0))->isFast();
6353       case RK_UMin:
6354       case RK_UMax:
6355         assert(Opcode == Instruction::ICmp &&
6356                "Only integer compare operation is expected.");
6357         return true;
6358       case RK_None:
6359         break;
6360       }
6361       llvm_unreachable("Reduction kind is not set");
6362     }
6363 
6364     /// Checks if the reduction operation can be vectorized.
6365     bool isVectorizable(Instruction *I) const {
6366       return isVectorizable() && isAssociative(I);
6367     }
6368 
6369     /// Checks if two operation data are both a reduction op or both a reduced
6370     /// value.
6371     bool operator==(const OperationData &OD) const {
6372       assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
6373              "One of the comparing operations is incorrect.");
6374       return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
6375     }
6376     bool operator!=(const OperationData &OD) const { return !(*this == OD); }
6377     void clear() {
6378       Opcode = 0;
6379       LHS = nullptr;
6380       RHS = nullptr;
6381       Kind = RK_None;
6382       NoNaN = false;
6383     }
6384 
6385     /// Get the opcode of the reduction operation.
6386     unsigned getOpcode() const {
6387       assert(isVectorizable() && "Expected vectorizable operation.");
6388       return Opcode;
6389     }
6390 
6391     /// Get kind of reduction data.
6392     ReductionKind getKind() const { return Kind; }
6393     Value *getLHS() const { return LHS; }
6394     Value *getRHS() const { return RHS; }
6395     Type *getConditionType() const {
6396       return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr;
6397     }
6398 
6399     /// Creates reduction operation with the current opcode with the IR flags
6400     /// from \p ReductionOps.
6401     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6402                     const ReductionOpsListType &ReductionOps) const {
6403       assert(isVectorizable() &&
6404              "Expected add|fadd or min/max reduction operation.");
6405       auto *Op = createOp(Builder, Name);
6406       switch (Kind) {
6407       case RK_Arithmetic:
6408         propagateIRFlags(Op, ReductionOps[0]);
6409         return Op;
6410       case RK_Min:
6411       case RK_Max:
6412       case RK_UMin:
6413       case RK_UMax:
6414         if (auto *SI = dyn_cast<SelectInst>(Op))
6415           propagateIRFlags(SI->getCondition(), ReductionOps[0]);
6416         propagateIRFlags(Op, ReductionOps[1]);
6417         return Op;
6418       case RK_None:
6419         break;
6420       }
6421       llvm_unreachable("Unknown reduction operation.");
6422     }
6423     /// Creates reduction operation with the current opcode with the IR flags
6424     /// from \p I.
6425     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6426                     Instruction *I) const {
6427       assert(isVectorizable() &&
6428              "Expected add|fadd or min/max reduction operation.");
6429       auto *Op = createOp(Builder, Name);
6430       switch (Kind) {
6431       case RK_Arithmetic:
6432         propagateIRFlags(Op, I);
6433         return Op;
6434       case RK_Min:
6435       case RK_Max:
6436       case RK_UMin:
6437       case RK_UMax:
6438         if (auto *SI = dyn_cast<SelectInst>(Op)) {
6439           propagateIRFlags(SI->getCondition(),
6440                            cast<SelectInst>(I)->getCondition());
6441         }
6442         propagateIRFlags(Op, I);
6443         return Op;
6444       case RK_None:
6445         break;
6446       }
6447       llvm_unreachable("Unknown reduction operation.");
6448     }
6449 
6450     TargetTransformInfo::ReductionFlags getFlags() const {
6451       TargetTransformInfo::ReductionFlags Flags;
6452       Flags.NoNaN = NoNaN;
6453       switch (Kind) {
6454       case RK_Arithmetic:
6455         break;
6456       case RK_Min:
6457         Flags.IsSigned = Opcode == Instruction::ICmp;
6458         Flags.IsMaxOp = false;
6459         break;
6460       case RK_Max:
6461         Flags.IsSigned = Opcode == Instruction::ICmp;
6462         Flags.IsMaxOp = true;
6463         break;
6464       case RK_UMin:
6465         Flags.IsSigned = false;
6466         Flags.IsMaxOp = false;
6467         break;
6468       case RK_UMax:
6469         Flags.IsSigned = false;
6470         Flags.IsMaxOp = true;
6471         break;
6472       case RK_None:
6473         llvm_unreachable("Reduction kind is not set");
6474       }
6475       return Flags;
6476     }
6477   };
6478 
6479   WeakTrackingVH ReductionRoot;
6480 
6481   /// The operation data of the reduction operation.
6482   OperationData ReductionData;
6483 
6484   /// The operation data of the values we perform a reduction on.
6485   OperationData ReducedValueData;
6486 
6487   /// Should we model this reduction as a pairwise reduction tree or a tree that
6488   /// splits the vector in halves and adds those halves.
6489   bool IsPairwiseReduction = false;
6490 
6491   /// Checks if the ParentStackElem.first should be marked as a reduction
6492   /// operation with an extra argument or as extra argument itself.
6493   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6494                     Value *ExtraArg) {
6495     if (ExtraArgs.count(ParentStackElem.first)) {
6496       ExtraArgs[ParentStackElem.first] = nullptr;
6497       // We ran into something like:
6498       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6499       // The whole ParentStackElem.first should be considered as an extra value
6500       // in this case.
6501       // Do not perform analysis of remaining operands of ParentStackElem.first
6502       // instruction, this whole instruction is an extra argument.
6503       ParentStackElem.second = ParentStackElem.first->getNumOperands();
6504     } else {
6505       // We ran into something like:
6506       // ParentStackElem.first += ... + ExtraArg + ...
6507       ExtraArgs[ParentStackElem.first] = ExtraArg;
6508     }
6509   }
6510 
6511   static OperationData getOperationData(Value *V) {
6512     if (!V)
6513       return OperationData();
6514 
6515     Value *LHS;
6516     Value *RHS;
6517     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6518       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6519                            RK_Arithmetic);
6520     }
6521     if (auto *Select = dyn_cast<SelectInst>(V)) {
6522       // Look for a min/max pattern.
6523       if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6524         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6525       } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6526         return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6527       } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6528                  m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6529         return OperationData(
6530             Instruction::FCmp, LHS, RHS, RK_Min,
6531             cast<Instruction>(Select->getCondition())->hasNoNaNs());
6532       } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6533         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6534       } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6535         return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6536       } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6537                  m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6538         return OperationData(
6539             Instruction::FCmp, LHS, RHS, RK_Max,
6540             cast<Instruction>(Select->getCondition())->hasNoNaNs());
6541       } else {
6542         // Try harder: look for min/max pattern based on instructions producing
6543         // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6544         // During the intermediate stages of SLP, it's very common to have
6545         // pattern like this (since optimizeGatherSequence is run only once
6546         // at the end):
6547         // %1 = extractelement <2 x i32> %a, i32 0
6548         // %2 = extractelement <2 x i32> %a, i32 1
6549         // %cond = icmp sgt i32 %1, %2
6550         // %3 = extractelement <2 x i32> %a, i32 0
6551         // %4 = extractelement <2 x i32> %a, i32 1
6552         // %select = select i1 %cond, i32 %3, i32 %4
6553         CmpInst::Predicate Pred;
6554         Instruction *L1;
6555         Instruction *L2;
6556 
6557         LHS = Select->getTrueValue();
6558         RHS = Select->getFalseValue();
6559         Value *Cond = Select->getCondition();
6560 
6561         // TODO: Support inverse predicates.
6562         if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6563           if (!isa<ExtractElementInst>(RHS) ||
6564               !L2->isIdenticalTo(cast<Instruction>(RHS)))
6565             return OperationData(V);
6566         } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6567           if (!isa<ExtractElementInst>(LHS) ||
6568               !L1->isIdenticalTo(cast<Instruction>(LHS)))
6569             return OperationData(V);
6570         } else {
6571           if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6572             return OperationData(V);
6573           if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6574               !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6575               !L2->isIdenticalTo(cast<Instruction>(RHS)))
6576             return OperationData(V);
6577         }
6578         switch (Pred) {
6579         default:
6580           return OperationData(V);
6581 
6582         case CmpInst::ICMP_ULT:
6583         case CmpInst::ICMP_ULE:
6584           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6585 
6586         case CmpInst::ICMP_SLT:
6587         case CmpInst::ICMP_SLE:
6588           return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6589 
6590         case CmpInst::FCMP_OLT:
6591         case CmpInst::FCMP_OLE:
6592         case CmpInst::FCMP_ULT:
6593         case CmpInst::FCMP_ULE:
6594           return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6595                                cast<Instruction>(Cond)->hasNoNaNs());
6596 
6597         case CmpInst::ICMP_UGT:
6598         case CmpInst::ICMP_UGE:
6599           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6600 
6601         case CmpInst::ICMP_SGT:
6602         case CmpInst::ICMP_SGE:
6603           return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6604 
6605         case CmpInst::FCMP_OGT:
6606         case CmpInst::FCMP_OGE:
6607         case CmpInst::FCMP_UGT:
6608         case CmpInst::FCMP_UGE:
6609           return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6610                                cast<Instruction>(Cond)->hasNoNaNs());
6611         }
6612       }
6613     }
6614     return OperationData(V);
6615   }
6616 
6617 public:
6618   HorizontalReduction() = default;
6619 
6620   /// Try to find a reduction tree.
6621   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6622     assert((!Phi || is_contained(Phi->operands(), B)) &&
6623            "Thi phi needs to use the binary operator");
6624 
6625     ReductionData = getOperationData(B);
6626 
6627     // We could have a initial reductions that is not an add.
6628     //  r *= v1 + v2 + v3 + v4
6629     // In such a case start looking for a tree rooted in the first '+'.
6630     if (Phi) {
6631       if (ReductionData.getLHS() == Phi) {
6632         Phi = nullptr;
6633         B = dyn_cast<Instruction>(ReductionData.getRHS());
6634         ReductionData = getOperationData(B);
6635       } else if (ReductionData.getRHS() == Phi) {
6636         Phi = nullptr;
6637         B = dyn_cast<Instruction>(ReductionData.getLHS());
6638         ReductionData = getOperationData(B);
6639       }
6640     }
6641 
6642     if (!ReductionData.isVectorizable(B))
6643       return false;
6644 
6645     Type *Ty = B->getType();
6646     if (!isValidElementType(Ty))
6647       return false;
6648     if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6649       return false;
6650 
6651     ReducedValueData.clear();
6652     ReductionRoot = B;
6653 
6654     // Post order traverse the reduction tree starting at B. We only handle true
6655     // trees containing only binary operators.
6656     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6657     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6658     ReductionData.initReductionOps(ReductionOps);
6659     while (!Stack.empty()) {
6660       Instruction *TreeN = Stack.back().first;
6661       unsigned EdgeToVist = Stack.back().second++;
6662       OperationData OpData = getOperationData(TreeN);
6663       bool IsReducedValue = OpData != ReductionData;
6664 
6665       // Postorder vist.
6666       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6667         if (IsReducedValue)
6668           ReducedVals.push_back(TreeN);
6669         else {
6670           auto I = ExtraArgs.find(TreeN);
6671           if (I != ExtraArgs.end() && !I->second) {
6672             // Check if TreeN is an extra argument of its parent operation.
6673             if (Stack.size() <= 1) {
6674               // TreeN can't be an extra argument as it is a root reduction
6675               // operation.
6676               return false;
6677             }
6678             // Yes, TreeN is an extra argument, do not add it to a list of
6679             // reduction operations.
6680             // Stack[Stack.size() - 2] always points to the parent operation.
6681             markExtraArg(Stack[Stack.size() - 2], TreeN);
6682             ExtraArgs.erase(TreeN);
6683           } else
6684             ReductionData.addReductionOps(TreeN, ReductionOps);
6685         }
6686         // Retract.
6687         Stack.pop_back();
6688         continue;
6689       }
6690 
6691       // Visit left or right.
6692       Value *NextV = TreeN->getOperand(EdgeToVist);
6693       if (NextV != Phi) {
6694         auto *I = dyn_cast<Instruction>(NextV);
6695         OpData = getOperationData(I);
6696         // Continue analysis if the next operand is a reduction operation or
6697         // (possibly) a reduced value. If the reduced value opcode is not set,
6698         // the first met operation != reduction operation is considered as the
6699         // reduced value class.
6700         if (I && (!ReducedValueData || OpData == ReducedValueData ||
6701                   OpData == ReductionData)) {
6702           const bool IsReductionOperation = OpData == ReductionData;
6703           // Only handle trees in the current basic block.
6704           if (!ReductionData.hasSameParent(I, B->getParent(),
6705                                            IsReductionOperation)) {
6706             // I is an extra argument for TreeN (its parent operation).
6707             markExtraArg(Stack.back(), I);
6708             continue;
6709           }
6710 
6711           // Each tree node needs to have minimal number of users except for the
6712           // ultimate reduction.
6713           if (!ReductionData.hasRequiredNumberOfUses(I,
6714                                                      OpData == ReductionData) &&
6715               I != B) {
6716             // I is an extra argument for TreeN (its parent operation).
6717             markExtraArg(Stack.back(), I);
6718             continue;
6719           }
6720 
6721           if (IsReductionOperation) {
6722             // We need to be able to reassociate the reduction operations.
6723             if (!OpData.isAssociative(I)) {
6724               // I is an extra argument for TreeN (its parent operation).
6725               markExtraArg(Stack.back(), I);
6726               continue;
6727             }
6728           } else if (ReducedValueData &&
6729                      ReducedValueData != OpData) {
6730             // Make sure that the opcodes of the operations that we are going to
6731             // reduce match.
6732             // I is an extra argument for TreeN (its parent operation).
6733             markExtraArg(Stack.back(), I);
6734             continue;
6735           } else if (!ReducedValueData)
6736             ReducedValueData = OpData;
6737 
6738           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6739           continue;
6740         }
6741       }
6742       // NextV is an extra argument for TreeN (its parent operation).
6743       markExtraArg(Stack.back(), NextV);
6744     }
6745     return true;
6746   }
6747 
6748   /// Attempt to vectorize the tree found by
6749   /// matchAssociativeReduction.
6750   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6751     if (ReducedVals.empty())
6752       return false;
6753 
6754     // If there is a sufficient number of reduction values, reduce
6755     // to a nearby power-of-2. Can safely generate oversized
6756     // vectors and rely on the backend to split them to legal sizes.
6757     unsigned NumReducedVals = ReducedVals.size();
6758     if (NumReducedVals < 4)
6759       return false;
6760 
6761     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6762 
6763     Value *VectorizedTree = nullptr;
6764 
6765     // FIXME: Fast-math-flags should be set based on the instructions in the
6766     //        reduction (not all of 'fast' are required).
6767     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6768     FastMathFlags Unsafe;
6769     Unsafe.setFast();
6770     Builder.setFastMathFlags(Unsafe);
6771     unsigned i = 0;
6772 
6773     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6774     // The same extra argument may be used several time, so log each attempt
6775     // to use it.
6776     for (auto &Pair : ExtraArgs) {
6777       assert(Pair.first && "DebugLoc must be set.");
6778       ExternallyUsedValues[Pair.second].push_back(Pair.first);
6779     }
6780 
6781     // The compare instruction of a min/max is the insertion point for new
6782     // instructions and may be replaced with a new compare instruction.
6783     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
6784       assert(isa<SelectInst>(RdxRootInst) &&
6785              "Expected min/max reduction to have select root instruction");
6786       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
6787       assert(isa<Instruction>(ScalarCond) &&
6788              "Expected min/max reduction to have compare condition");
6789       return cast<Instruction>(ScalarCond);
6790     };
6791 
6792     // The reduction root is used as the insertion point for new instructions,
6793     // so set it as externally used to prevent it from being deleted.
6794     ExternallyUsedValues[ReductionRoot];
6795     SmallVector<Value *, 16> IgnoreList;
6796     for (auto &V : ReductionOps)
6797       IgnoreList.append(V.begin(), V.end());
6798     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6799       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6800       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6801       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6802       // TODO: Handle orders of size less than number of elements in the vector.
6803       if (Order && Order->size() == VL.size()) {
6804         // TODO: reorder tree nodes without tree rebuilding.
6805         SmallVector<Value *, 4> ReorderedOps(VL.size());
6806         llvm::transform(*Order, ReorderedOps.begin(),
6807                         [VL](const unsigned Idx) { return VL[Idx]; });
6808         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6809       }
6810       if (V.isTreeTinyAndNotFullyVectorizable())
6811         break;
6812       if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
6813         break;
6814 
6815       V.computeMinimumValueSizes();
6816 
6817       // Estimate cost.
6818       int TreeCost = V.getTreeCost();
6819       int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6820       int Cost = TreeCost + ReductionCost;
6821       if (Cost >= -SLPCostThreshold) {
6822           V.getORE()->emit([&]() {
6823               return OptimizationRemarkMissed(
6824                          SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6825                      << "Vectorizing horizontal reduction is possible"
6826                      << "but not beneficial with cost "
6827                      << ore::NV("Cost", Cost) << " and threshold "
6828                      << ore::NV("Threshold", -SLPCostThreshold);
6829           });
6830           break;
6831       }
6832 
6833       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6834                         << Cost << ". (HorRdx)\n");
6835       V.getORE()->emit([&]() {
6836           return OptimizationRemark(
6837                      SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6838           << "Vectorized horizontal reduction with cost "
6839           << ore::NV("Cost", Cost) << " and with tree size "
6840           << ore::NV("TreeSize", V.getTreeSize());
6841       });
6842 
6843       // Vectorize a tree.
6844       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6845       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6846 
6847       // Emit a reduction. For min/max, the root is a select, but the insertion
6848       // point is the compare condition of that select.
6849       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
6850       if (ReductionData.isMinMax())
6851         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
6852       else
6853         Builder.SetInsertPoint(RdxRootInst);
6854 
6855       Value *ReducedSubTree =
6856           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6857       if (VectorizedTree) {
6858         Builder.SetCurrentDebugLocation(Loc);
6859         OperationData VectReductionData(ReductionData.getOpcode(),
6860                                         VectorizedTree, ReducedSubTree,
6861                                         ReductionData.getKind());
6862         VectorizedTree =
6863             VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6864       } else
6865         VectorizedTree = ReducedSubTree;
6866       i += ReduxWidth;
6867       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6868     }
6869 
6870     if (VectorizedTree) {
6871       // Finish the reduction.
6872       for (; i < NumReducedVals; ++i) {
6873         auto *I = cast<Instruction>(ReducedVals[i]);
6874         Builder.SetCurrentDebugLocation(I->getDebugLoc());
6875         OperationData VectReductionData(ReductionData.getOpcode(),
6876                                         VectorizedTree, I,
6877                                         ReductionData.getKind());
6878         VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6879       }
6880       for (auto &Pair : ExternallyUsedValues) {
6881         // Add each externally used value to the final reduction.
6882         for (auto *I : Pair.second) {
6883           Builder.SetCurrentDebugLocation(I->getDebugLoc());
6884           OperationData VectReductionData(ReductionData.getOpcode(),
6885                                           VectorizedTree, Pair.first,
6886                                           ReductionData.getKind());
6887           VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6888         }
6889       }
6890 
6891       // Update users. For a min/max reduction that ends with a compare and
6892       // select, we also have to RAUW for the compare instruction feeding the
6893       // reduction root. That's because the original compare may have extra uses
6894       // besides the final select of the reduction.
6895       if (ReductionData.isMinMax()) {
6896         if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
6897           Instruction *ScalarCmp =
6898               getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
6899           ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
6900         }
6901       }
6902       ReductionRoot->replaceAllUsesWith(VectorizedTree);
6903 
6904       // Mark all scalar reduction ops for deletion, they are replaced by the
6905       // vector reductions.
6906       V.eraseInstructions(IgnoreList);
6907     }
6908     return VectorizedTree != nullptr;
6909   }
6910 
6911   unsigned numReductionValues() const {
6912     return ReducedVals.size();
6913   }
6914 
6915 private:
6916   /// Calculate the cost of a reduction.
6917   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6918                        unsigned ReduxWidth) {
6919     Type *ScalarTy = FirstReducedVal->getType();
6920     VectorType *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6921 
6922     int PairwiseRdxCost;
6923     int SplittingRdxCost;
6924     switch (ReductionData.getKind()) {
6925     case RK_Arithmetic:
6926       PairwiseRdxCost =
6927           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6928                                           /*IsPairwiseForm=*/true);
6929       SplittingRdxCost =
6930           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6931                                           /*IsPairwiseForm=*/false);
6932       break;
6933     case RK_Min:
6934     case RK_Max:
6935     case RK_UMin:
6936     case RK_UMax: {
6937       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy));
6938       bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6939                         ReductionData.getKind() == RK_UMax;
6940       PairwiseRdxCost =
6941           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6942                                       /*IsPairwiseForm=*/true, IsUnsigned);
6943       SplittingRdxCost =
6944           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6945                                       /*IsPairwiseForm=*/false, IsUnsigned);
6946       break;
6947     }
6948     case RK_None:
6949       llvm_unreachable("Expected arithmetic or min/max reduction operation");
6950     }
6951 
6952     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6953     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6954 
6955     int ScalarReduxCost = 0;
6956     switch (ReductionData.getKind()) {
6957     case RK_Arithmetic:
6958       ScalarReduxCost =
6959           TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6960       break;
6961     case RK_Min:
6962     case RK_Max:
6963     case RK_UMin:
6964     case RK_UMax:
6965       ScalarReduxCost =
6966           TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6967           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6968                                   CmpInst::makeCmpResultType(ScalarTy));
6969       break;
6970     case RK_None:
6971       llvm_unreachable("Expected arithmetic or min/max reduction operation");
6972     }
6973     ScalarReduxCost *= (ReduxWidth - 1);
6974 
6975     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6976                       << " for reduction that starts with " << *FirstReducedVal
6977                       << " (It is a "
6978                       << (IsPairwiseReduction ? "pairwise" : "splitting")
6979                       << " reduction)\n");
6980 
6981     return VecReduxCost - ScalarReduxCost;
6982   }
6983 
6984   /// Emit a horizontal reduction of the vectorized value.
6985   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6986                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6987     assert(VectorizedValue && "Need to have a vectorized tree node");
6988     assert(isPowerOf2_32(ReduxWidth) &&
6989            "We only handle power-of-two reductions for now");
6990 
6991     if (!IsPairwiseReduction) {
6992       // FIXME: The builder should use an FMF guard. It should not be hard-coded
6993       //        to 'fast'.
6994       assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6995       return createSimpleTargetReduction(
6996           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6997           ReductionData.getFlags(), ReductionOps.back());
6998     }
6999 
7000     Value *TmpVec = VectorizedValue;
7001     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
7002       auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true);
7003       auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false);
7004 
7005       Value *LeftShuf = Builder.CreateShuffleVector(
7006           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
7007       Value *RightShuf = Builder.CreateShuffleVector(
7008           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
7009           "rdx.shuf.r");
7010       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
7011                                       RightShuf, ReductionData.getKind());
7012       TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
7013     }
7014 
7015     // The result is in the first element of the vector.
7016     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
7017   }
7018 };
7019 
7020 } // end anonymous namespace
7021 
7022 /// Recognize construction of vectors like
7023 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
7024 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7025 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7026 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7027 ///  starting from the last insertelement or insertvalue instruction.
7028 ///
7029 /// Also recognize aggregates like {<2 x float>, <2 x float>},
7030 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7031 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7032 ///
7033 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7034 ///
7035 /// \return true if it matches.
7036 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI,
7037                                SmallVectorImpl<Value *> &BuildVectorOpds,
7038                                int &UserCost) {
7039   assert((isa<InsertElementInst>(LastInsertInst) ||
7040           isa<InsertValueInst>(LastInsertInst)) &&
7041          "Expected insertelement or insertvalue instruction!");
7042   UserCost = 0;
7043   do {
7044     // TODO: Use TTI's getScalarizationOverhead for sequence of inserts rather
7045     // than sum of single inserts as the latter may overestimate cost.
7046     // This work should imply improving cost estimation for extracts that
7047     // added in for external (for vectorization tree) users.
7048     // For example, in following case all extracts added in order to feed
7049     // into external users (inserts), which in turn form sequence to build
7050     // an aggregate that we do match here:
7051     //  %4 = extractelement <4 x i64> %3, i32 0
7052     //  %v0 = insertelement <4 x i64> undef, i64 %4, i32 0
7053     //  %5 = extractelement <4 x i64> %3, i32 1
7054     //  %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
7055     //  %6 = extractelement <4 x i64> %3, i32 2
7056     //  %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
7057     //  %7 = extractelement <4 x i64> %3, i32 3
7058     //  %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
7059     //
7060     // Cost of this entire sequence is currently estimated as sum of single
7061     // extracts (as this aggregate build sequence is an external to
7062     // vectorization tree user) minus cost of the aggregate build.
7063     // As this whole sequence will be optimized away we want the cost to be
7064     // zero. But it is not quite possible using given approach (at least for
7065     // X86) because inserts can be more expensive than extracts for longer
7066     // vector lengths so the difference turns out not zero in such a case.
7067     // Ideally we want to match this entire sequence and treat it as a no-op
7068     // (i.e. do not count into final cost at all).
7069     // Currently the difference tends to be negative thus adding a bias
7070     // toward favoring vectorization. If we switch into using TTI interface
7071     // the bias tendency will remain but will be lower.
7072     Value *InsertedOperand;
7073     if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) {
7074       InsertedOperand = IE->getOperand(1);
7075       LastInsertInst = IE->getOperand(0);
7076       if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7077         UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
7078                                             IE->getType(), CI->getZExtValue());
7079       }
7080     } else {
7081       auto *IV = cast<InsertValueInst>(LastInsertInst);
7082       InsertedOperand = IV->getInsertedValueOperand();
7083       LastInsertInst = IV->getAggregateOperand();
7084     }
7085     if (isa<InsertElementInst>(InsertedOperand) ||
7086         isa<InsertValueInst>(InsertedOperand)) {
7087       int TmpUserCost;
7088       SmallVector<Value *, 8> TmpBuildVectorOpds;
7089       if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds,
7090                               TmpUserCost))
7091         return false;
7092       BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(),
7093                              TmpBuildVectorOpds.rend());
7094       UserCost += TmpUserCost;
7095     } else {
7096       BuildVectorOpds.push_back(InsertedOperand);
7097     }
7098     if (isa<UndefValue>(LastInsertInst))
7099       break;
7100     if ((!isa<InsertValueInst>(LastInsertInst) &&
7101          !isa<InsertElementInst>(LastInsertInst)) ||
7102         !LastInsertInst->hasOneUse())
7103       return false;
7104   } while (true);
7105   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
7106   return true;
7107 }
7108 
7109 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7110   return V->getType() < V2->getType();
7111 }
7112 
7113 /// Try and get a reduction value from a phi node.
7114 ///
7115 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7116 /// if they come from either \p ParentBB or a containing loop latch.
7117 ///
7118 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
7119 /// if not possible.
7120 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7121                                 BasicBlock *ParentBB, LoopInfo *LI) {
7122   // There are situations where the reduction value is not dominated by the
7123   // reduction phi. Vectorizing such cases has been reported to cause
7124   // miscompiles. See PR25787.
7125   auto DominatedReduxValue = [&](Value *R) {
7126     return isa<Instruction>(R) &&
7127            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7128   };
7129 
7130   Value *Rdx = nullptr;
7131 
7132   // Return the incoming value if it comes from the same BB as the phi node.
7133   if (P->getIncomingBlock(0) == ParentBB) {
7134     Rdx = P->getIncomingValue(0);
7135   } else if (P->getIncomingBlock(1) == ParentBB) {
7136     Rdx = P->getIncomingValue(1);
7137   }
7138 
7139   if (Rdx && DominatedReduxValue(Rdx))
7140     return Rdx;
7141 
7142   // Otherwise, check whether we have a loop latch to look at.
7143   Loop *BBL = LI->getLoopFor(ParentBB);
7144   if (!BBL)
7145     return nullptr;
7146   BasicBlock *BBLatch = BBL->getLoopLatch();
7147   if (!BBLatch)
7148     return nullptr;
7149 
7150   // There is a loop latch, return the incoming value if it comes from
7151   // that. This reduction pattern occasionally turns up.
7152   if (P->getIncomingBlock(0) == BBLatch) {
7153     Rdx = P->getIncomingValue(0);
7154   } else if (P->getIncomingBlock(1) == BBLatch) {
7155     Rdx = P->getIncomingValue(1);
7156   }
7157 
7158   if (Rdx && DominatedReduxValue(Rdx))
7159     return Rdx;
7160 
7161   return nullptr;
7162 }
7163 
7164 /// Attempt to reduce a horizontal reduction.
7165 /// If it is legal to match a horizontal reduction feeding the phi node \a P
7166 /// with reduction operators \a Root (or one of its operands) in a basic block
7167 /// \a BB, then check if it can be done. If horizontal reduction is not found
7168 /// and root instruction is a binary operation, vectorization of the operands is
7169 /// attempted.
7170 /// \returns true if a horizontal reduction was matched and reduced or operands
7171 /// of one of the binary instruction were vectorized.
7172 /// \returns false if a horizontal reduction was not matched (or not possible)
7173 /// or no vectorization of any binary operation feeding \a Root instruction was
7174 /// performed.
7175 static bool tryToVectorizeHorReductionOrInstOperands(
7176     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7177     TargetTransformInfo *TTI,
7178     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7179   if (!ShouldVectorizeHor)
7180     return false;
7181 
7182   if (!Root)
7183     return false;
7184 
7185   if (Root->getParent() != BB || isa<PHINode>(Root))
7186     return false;
7187   // Start analysis starting from Root instruction. If horizontal reduction is
7188   // found, try to vectorize it. If it is not a horizontal reduction or
7189   // vectorization is not possible or not effective, and currently analyzed
7190   // instruction is a binary operation, try to vectorize the operands, using
7191   // pre-order DFS traversal order. If the operands were not vectorized, repeat
7192   // the same procedure considering each operand as a possible root of the
7193   // horizontal reduction.
7194   // Interrupt the process if the Root instruction itself was vectorized or all
7195   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7196   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7197   SmallPtrSet<Value *, 8> VisitedInstrs;
7198   bool Res = false;
7199   while (!Stack.empty()) {
7200     Instruction *Inst;
7201     unsigned Level;
7202     std::tie(Inst, Level) = Stack.pop_back_val();
7203     auto *BI = dyn_cast<BinaryOperator>(Inst);
7204     auto *SI = dyn_cast<SelectInst>(Inst);
7205     if (BI || SI) {
7206       HorizontalReduction HorRdx;
7207       if (HorRdx.matchAssociativeReduction(P, Inst)) {
7208         if (HorRdx.tryToReduce(R, TTI)) {
7209           Res = true;
7210           // Set P to nullptr to avoid re-analysis of phi node in
7211           // matchAssociativeReduction function unless this is the root node.
7212           P = nullptr;
7213           continue;
7214         }
7215       }
7216       if (P && BI) {
7217         Inst = dyn_cast<Instruction>(BI->getOperand(0));
7218         if (Inst == P)
7219           Inst = dyn_cast<Instruction>(BI->getOperand(1));
7220         if (!Inst) {
7221           // Set P to nullptr to avoid re-analysis of phi node in
7222           // matchAssociativeReduction function unless this is the root node.
7223           P = nullptr;
7224           continue;
7225         }
7226       }
7227     }
7228     // Set P to nullptr to avoid re-analysis of phi node in
7229     // matchAssociativeReduction function unless this is the root node.
7230     P = nullptr;
7231     if (Vectorize(Inst, R)) {
7232       Res = true;
7233       continue;
7234     }
7235 
7236     // Try to vectorize operands.
7237     // Continue analysis for the instruction from the same basic block only to
7238     // save compile time.
7239     if (++Level < RecursionMaxDepth)
7240       for (auto *Op : Inst->operand_values())
7241         if (VisitedInstrs.insert(Op).second)
7242           if (auto *I = dyn_cast<Instruction>(Op))
7243             if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
7244               Stack.emplace_back(I, Level);
7245   }
7246   return Res;
7247 }
7248 
7249 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7250                                                  BasicBlock *BB, BoUpSLP &R,
7251                                                  TargetTransformInfo *TTI) {
7252   if (!V)
7253     return false;
7254   auto *I = dyn_cast<Instruction>(V);
7255   if (!I)
7256     return false;
7257 
7258   if (!isa<BinaryOperator>(I))
7259     P = nullptr;
7260   // Try to match and vectorize a horizontal reduction.
7261   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7262     return tryToVectorize(I, R);
7263   };
7264   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7265                                                   ExtraVectorization);
7266 }
7267 
7268 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7269                                                  BasicBlock *BB, BoUpSLP &R) {
7270   int UserCost = 0;
7271   const DataLayout &DL = BB->getModule()->getDataLayout();
7272   if (!R.canMapToVector(IVI->getType(), DL))
7273     return false;
7274 
7275   SmallVector<Value *, 16> BuildVectorOpds;
7276   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost))
7277     return false;
7278 
7279   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7280   // Aggregate value is unlikely to be processed in vector register, we need to
7281   // extract scalars into scalar registers, so NeedExtraction is set true.
7282   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7283 }
7284 
7285 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7286                                                    BasicBlock *BB, BoUpSLP &R) {
7287   int UserCost;
7288   SmallVector<Value *, 16> BuildVectorOpds;
7289   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) ||
7290       (llvm::all_of(BuildVectorOpds,
7291                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7292        isShuffle(BuildVectorOpds)))
7293     return false;
7294 
7295   // Vectorize starting with the build vector operands ignoring the BuildVector
7296   // instructions for the purpose of scheduling and user extraction.
7297   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7298 }
7299 
7300 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
7301                                          BoUpSLP &R) {
7302   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
7303     return true;
7304 
7305   bool OpsChanged = false;
7306   for (int Idx = 0; Idx < 2; ++Idx) {
7307     OpsChanged |=
7308         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
7309   }
7310   return OpsChanged;
7311 }
7312 
7313 bool SLPVectorizerPass::vectorizeSimpleInstructions(
7314     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
7315   bool OpsChanged = false;
7316   for (auto *I : reverse(Instructions)) {
7317     if (R.isDeleted(I))
7318       continue;
7319     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7320       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7321     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7322       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7323     else if (auto *CI = dyn_cast<CmpInst>(I))
7324       OpsChanged |= vectorizeCmpInst(CI, BB, R);
7325   }
7326   Instructions.clear();
7327   return OpsChanged;
7328 }
7329 
7330 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7331   bool Changed = false;
7332   SmallVector<Value *, 4> Incoming;
7333   SmallPtrSet<Value *, 16> VisitedInstrs;
7334 
7335   bool HaveVectorizedPhiNodes = true;
7336   while (HaveVectorizedPhiNodes) {
7337     HaveVectorizedPhiNodes = false;
7338 
7339     // Collect the incoming values from the PHIs.
7340     Incoming.clear();
7341     for (Instruction &I : *BB) {
7342       PHINode *P = dyn_cast<PHINode>(&I);
7343       if (!P)
7344         break;
7345 
7346       if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7347         Incoming.push_back(P);
7348     }
7349 
7350     // Sort by type.
7351     llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7352 
7353     // Try to vectorize elements base on their type.
7354     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7355                                            E = Incoming.end();
7356          IncIt != E;) {
7357 
7358       // Look for the next elements with the same type.
7359       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7360       while (SameTypeIt != E &&
7361              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7362         VisitedInstrs.insert(*SameTypeIt);
7363         ++SameTypeIt;
7364       }
7365 
7366       // Try to vectorize them.
7367       unsigned NumElts = (SameTypeIt - IncIt);
7368       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7369                         << NumElts << ")\n");
7370       // The order in which the phi nodes appear in the program does not matter.
7371       // So allow tryToVectorizeList to reorder them if it is beneficial. This
7372       // is done when there are exactly two elements since tryToVectorizeList
7373       // asserts that there are only two values when AllowReorder is true.
7374       bool AllowReorder = NumElts == 2;
7375       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
7376                                             /*UserCost=*/0, AllowReorder)) {
7377         // Success start over because instructions might have been changed.
7378         HaveVectorizedPhiNodes = true;
7379         Changed = true;
7380         break;
7381       }
7382 
7383       // Start over at the next instruction of a different type (or the end).
7384       IncIt = SameTypeIt;
7385     }
7386   }
7387 
7388   VisitedInstrs.clear();
7389 
7390   SmallVector<Instruction *, 8> PostProcessInstructions;
7391   SmallDenseSet<Instruction *, 4> KeyNodes;
7392   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7393     // Skip instructions marked for the deletion.
7394     if (R.isDeleted(&*it))
7395       continue;
7396     // We may go through BB multiple times so skip the one we have checked.
7397     if (!VisitedInstrs.insert(&*it).second) {
7398       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
7399           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
7400         // We would like to start over since some instructions are deleted
7401         // and the iterator may become invalid value.
7402         Changed = true;
7403         it = BB->begin();
7404         e = BB->end();
7405       }
7406       continue;
7407     }
7408 
7409     if (isa<DbgInfoIntrinsic>(it))
7410       continue;
7411 
7412     // Try to vectorize reductions that use PHINodes.
7413     if (PHINode *P = dyn_cast<PHINode>(it)) {
7414       // Check that the PHI is a reduction PHI.
7415       if (P->getNumIncomingValues() != 2)
7416         return Changed;
7417 
7418       // Try to match and vectorize a horizontal reduction.
7419       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7420                                    TTI)) {
7421         Changed = true;
7422         it = BB->begin();
7423         e = BB->end();
7424         continue;
7425       }
7426       continue;
7427     }
7428 
7429     // Ran into an instruction without users, like terminator, or function call
7430     // with ignored return value, store. Ignore unused instructions (basing on
7431     // instruction type, except for CallInst and InvokeInst).
7432     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7433                             isa<InvokeInst>(it))) {
7434       KeyNodes.insert(&*it);
7435       bool OpsChanged = false;
7436       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7437         for (auto *V : it->operand_values()) {
7438           // Try to match and vectorize a horizontal reduction.
7439           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7440         }
7441       }
7442       // Start vectorization of post-process list of instructions from the
7443       // top-tree instructions to try to vectorize as many instructions as
7444       // possible.
7445       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
7446       if (OpsChanged) {
7447         // We would like to start over since some instructions are deleted
7448         // and the iterator may become invalid value.
7449         Changed = true;
7450         it = BB->begin();
7451         e = BB->end();
7452         continue;
7453       }
7454     }
7455 
7456     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7457         isa<InsertValueInst>(it))
7458       PostProcessInstructions.push_back(&*it);
7459   }
7460 
7461   return Changed;
7462 }
7463 
7464 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7465   auto Changed = false;
7466   for (auto &Entry : GEPs) {
7467     // If the getelementptr list has fewer than two elements, there's nothing
7468     // to do.
7469     if (Entry.second.size() < 2)
7470       continue;
7471 
7472     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7473                       << Entry.second.size() << ".\n");
7474 
7475     // Process the GEP list in chunks suitable for the target's supported
7476     // vector size. If a vector register can't hold 1 element, we are done.
7477     unsigned MaxVecRegSize = R.getMaxVecRegSize();
7478     unsigned EltSize = R.getVectorElementSize(Entry.second[0]);
7479     if (MaxVecRegSize < EltSize)
7480       continue;
7481 
7482     unsigned MaxElts = MaxVecRegSize / EltSize;
7483     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7484       auto Len = std::min<unsigned>(BE - BI, MaxElts);
7485       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
7486 
7487       // Initialize a set a candidate getelementptrs. Note that we use a
7488       // SetVector here to preserve program order. If the index computations
7489       // are vectorizable and begin with loads, we want to minimize the chance
7490       // of having to reorder them later.
7491       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7492 
7493       // Some of the candidates may have already been vectorized after we
7494       // initially collected them. If so, they are marked as deleted, so remove
7495       // them from the set of candidates.
7496       Candidates.remove_if(
7497           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7498 
7499       // Remove from the set of candidates all pairs of getelementptrs with
7500       // constant differences. Such getelementptrs are likely not good
7501       // candidates for vectorization in a bottom-up phase since one can be
7502       // computed from the other. We also ensure all candidate getelementptr
7503       // indices are unique.
7504       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7505         auto *GEPI = GEPList[I];
7506         if (!Candidates.count(GEPI))
7507           continue;
7508         auto *SCEVI = SE->getSCEV(GEPList[I]);
7509         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7510           auto *GEPJ = GEPList[J];
7511           auto *SCEVJ = SE->getSCEV(GEPList[J]);
7512           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7513             Candidates.remove(GEPI);
7514             Candidates.remove(GEPJ);
7515           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7516             Candidates.remove(GEPJ);
7517           }
7518         }
7519       }
7520 
7521       // We break out of the above computation as soon as we know there are
7522       // fewer than two candidates remaining.
7523       if (Candidates.size() < 2)
7524         continue;
7525 
7526       // Add the single, non-constant index of each candidate to the bundle. We
7527       // ensured the indices met these constraints when we originally collected
7528       // the getelementptrs.
7529       SmallVector<Value *, 16> Bundle(Candidates.size());
7530       auto BundleIndex = 0u;
7531       for (auto *V : Candidates) {
7532         auto *GEP = cast<GetElementPtrInst>(V);
7533         auto *GEPIdx = GEP->idx_begin()->get();
7534         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7535         Bundle[BundleIndex++] = GEPIdx;
7536       }
7537 
7538       // Try and vectorize the indices. We are currently only interested in
7539       // gather-like cases of the form:
7540       //
7541       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7542       //
7543       // where the loads of "a", the loads of "b", and the subtractions can be
7544       // performed in parallel. It's likely that detecting this pattern in a
7545       // bottom-up phase will be simpler and less costly than building a
7546       // full-blown top-down phase beginning at the consecutive loads.
7547       Changed |= tryToVectorizeList(Bundle, R);
7548     }
7549   }
7550   return Changed;
7551 }
7552 
7553 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7554   bool Changed = false;
7555   // Attempt to sort and vectorize each of the store-groups.
7556   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7557        ++it) {
7558     if (it->second.size() < 2)
7559       continue;
7560 
7561     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7562                       << it->second.size() << ".\n");
7563 
7564     Changed |= vectorizeStores(it->second, R);
7565   }
7566   return Changed;
7567 }
7568 
7569 char SLPVectorizer::ID = 0;
7570 
7571 static const char lv_name[] = "SLP Vectorizer";
7572 
7573 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7574 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7575 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7576 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7577 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7578 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7579 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7580 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7581 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7582 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7583 
7584 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
7585