1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/NoFolder.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/VectorUtils.h" 43 #include <algorithm> 44 #include <map> 45 46 using namespace llvm; 47 48 #define SV_NAME "slp-vectorizer" 49 #define DEBUG_TYPE "SLP" 50 51 static cl::opt<int> 52 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 53 cl::desc("Only vectorize if you gain more than this " 54 "number ")); 55 56 static cl::opt<bool> 57 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 58 cl::desc("Attempt to vectorize horizontal reductions")); 59 60 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 61 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 62 cl::desc( 63 "Attempt to vectorize horizontal reductions feeding into a store")); 64 65 namespace { 66 67 static const unsigned MinVecRegSize = 128; 68 69 static const unsigned RecursionMaxDepth = 12; 70 71 /// A helper class for numbering instructions in multiple blocks. 72 /// Numbers start at zero for each basic block. 73 struct BlockNumbering { 74 75 BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {} 76 77 void numberInstructions() { 78 unsigned Loc = 0; 79 InstrIdx.clear(); 80 InstrVec.clear(); 81 // Number the instructions in the block. 82 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 83 InstrIdx[it] = Loc++; 84 InstrVec.push_back(it); 85 assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation"); 86 } 87 Valid = true; 88 } 89 90 int getIndex(Instruction *I) { 91 assert(I->getParent() == BB && "Invalid instruction"); 92 if (!Valid) 93 numberInstructions(); 94 assert(InstrIdx.count(I) && "Unknown instruction"); 95 return InstrIdx[I]; 96 } 97 98 Instruction *getInstruction(unsigned loc) { 99 if (!Valid) 100 numberInstructions(); 101 assert(InstrVec.size() > loc && "Invalid Index"); 102 return InstrVec[loc]; 103 } 104 105 void forget() { Valid = false; } 106 107 private: 108 /// The block we are numbering. 109 BasicBlock *BB; 110 /// Is the block numbered. 111 bool Valid; 112 /// Maps instructions to numbers and back. 113 SmallDenseMap<Instruction *, int> InstrIdx; 114 /// Maps integers to Instructions. 115 SmallVector<Instruction *, 32> InstrVec; 116 }; 117 118 /// \returns the parent basic block if all of the instructions in \p VL 119 /// are in the same block or null otherwise. 120 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return nullptr; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return nullptr; 129 130 if (BB != I->getParent()) 131 return nullptr; 132 } 133 return BB; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (unsigned i = 0, e = VL.size(); i < e; ++i) 139 if (!isa<Constant>(VL[i])) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 /// \returns The opcode if all of the Instructions in \p VL have the same 153 /// opcode, or zero. 154 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 155 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 156 if (!I0) 157 return 0; 158 unsigned Opcode = I0->getOpcode(); 159 for (int i = 1, e = VL.size(); i < e; i++) { 160 Instruction *I = dyn_cast<Instruction>(VL[i]); 161 if (!I || Opcode != I->getOpcode()) 162 return 0; 163 } 164 return Opcode; 165 } 166 167 /// \returns \p I after propagating metadata from \p VL. 168 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 169 Instruction *I0 = cast<Instruction>(VL[0]); 170 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 171 I0->getAllMetadataOtherThanDebugLoc(Metadata); 172 173 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 174 unsigned Kind = Metadata[i].first; 175 MDNode *MD = Metadata[i].second; 176 177 for (int i = 1, e = VL.size(); MD && i != e; i++) { 178 Instruction *I = cast<Instruction>(VL[i]); 179 MDNode *IMD = I->getMetadata(Kind); 180 181 switch (Kind) { 182 default: 183 MD = nullptr; // Remove unknown metadata 184 break; 185 case LLVMContext::MD_tbaa: 186 MD = MDNode::getMostGenericTBAA(MD, IMD); 187 break; 188 case LLVMContext::MD_fpmath: 189 MD = MDNode::getMostGenericFPMath(MD, IMD); 190 break; 191 } 192 } 193 I->setMetadata(Kind, MD); 194 } 195 return I; 196 } 197 198 /// \returns The type that all of the values in \p VL have or null if there 199 /// are different types. 200 static Type* getSameType(ArrayRef<Value *> VL) { 201 Type *Ty = VL[0]->getType(); 202 for (int i = 1, e = VL.size(); i < e; i++) 203 if (VL[i]->getType() != Ty) 204 return nullptr; 205 206 return Ty; 207 } 208 209 /// \returns True if the ExtractElement instructions in VL can be vectorized 210 /// to use the original vector. 211 static bool CanReuseExtract(ArrayRef<Value *> VL) { 212 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 213 // Check if all of the extracts come from the same vector and from the 214 // correct offset. 215 Value *VL0 = VL[0]; 216 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 217 Value *Vec = E0->getOperand(0); 218 219 // We have to extract from the same vector type. 220 unsigned NElts = Vec->getType()->getVectorNumElements(); 221 222 if (NElts != VL.size()) 223 return false; 224 225 // Check that all of the indices extract from the correct offset. 226 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 227 if (!CI || CI->getZExtValue()) 228 return false; 229 230 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 231 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 232 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 233 234 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 235 return false; 236 } 237 238 return true; 239 } 240 241 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 242 SmallVectorImpl<Value *> &Left, 243 SmallVectorImpl<Value *> &Right) { 244 245 SmallVector<Value *, 16> OrigLeft, OrigRight; 246 247 bool AllSameOpcodeLeft = true; 248 bool AllSameOpcodeRight = true; 249 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 250 Instruction *I = cast<Instruction>(VL[i]); 251 Value *V0 = I->getOperand(0); 252 Value *V1 = I->getOperand(1); 253 254 OrigLeft.push_back(V0); 255 OrigRight.push_back(V1); 256 257 Instruction *I0 = dyn_cast<Instruction>(V0); 258 Instruction *I1 = dyn_cast<Instruction>(V1); 259 260 // Check whether all operands on one side have the same opcode. In this case 261 // we want to preserve the original order and not make things worse by 262 // reordering. 263 AllSameOpcodeLeft = I0; 264 AllSameOpcodeRight = I1; 265 266 if (i && AllSameOpcodeLeft) { 267 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) { 268 if(P0->getOpcode() != I0->getOpcode()) 269 AllSameOpcodeLeft = false; 270 } else 271 AllSameOpcodeLeft = false; 272 } 273 if (i && AllSameOpcodeRight) { 274 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) { 275 if(P1->getOpcode() != I1->getOpcode()) 276 AllSameOpcodeRight = false; 277 } else 278 AllSameOpcodeRight = false; 279 } 280 281 // Sort two opcodes. In the code below we try to preserve the ability to use 282 // broadcast of values instead of individual inserts. 283 // vl1 = load 284 // vl2 = phi 285 // vr1 = load 286 // vr2 = vr2 287 // = vl1 x vr1 288 // = vl2 x vr2 289 // If we just sorted according to opcode we would leave the first line in 290 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 291 // = vl1 x vr1 292 // = vr2 x vl2 293 // Because vr2 and vr1 are from the same load we loose the opportunity of a 294 // broadcast for the packed right side in the backend: we have [vr1, vl2] 295 // instead of [vr1, vr2=vr1]. 296 if (I0 && I1) { 297 if(!i && I0->getOpcode() > I1->getOpcode()) { 298 Left.push_back(I1); 299 Right.push_back(I0); 300 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { 301 // Try not to destroy a broad cast for no apparent benefit. 302 Left.push_back(I1); 303 Right.push_back(I0); 304 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { 305 // Try preserve broadcasts. 306 Left.push_back(I1); 307 Right.push_back(I0); 308 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { 309 // Try preserve broadcasts. 310 Left.push_back(I1); 311 Right.push_back(I0); 312 } else { 313 Left.push_back(I0); 314 Right.push_back(I1); 315 } 316 continue; 317 } 318 // One opcode, put the instruction on the right. 319 if (I0) { 320 Left.push_back(V1); 321 Right.push_back(I0); 322 continue; 323 } 324 Left.push_back(V0); 325 Right.push_back(V1); 326 } 327 328 bool LeftBroadcast = isSplat(Left); 329 bool RightBroadcast = isSplat(Right); 330 331 // Don't reorder if the operands where good to begin with. 332 if (!(LeftBroadcast || RightBroadcast) && 333 (AllSameOpcodeRight || AllSameOpcodeLeft)) { 334 Left = OrigLeft; 335 Right = OrigRight; 336 } 337 } 338 339 /// Bottom Up SLP Vectorizer. 340 class BoUpSLP { 341 public: 342 typedef SmallVector<Value *, 8> ValueList; 343 typedef SmallVector<Instruction *, 16> InstrList; 344 typedef SmallPtrSet<Value *, 16> ValueSet; 345 typedef SmallVector<StoreInst *, 8> StoreList; 346 347 BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl, 348 TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, 349 LoopInfo *Li, DominatorTree *Dt) 350 : F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 351 Builder(Se->getContext()) {} 352 353 /// \brief Vectorize the tree that starts with the elements in \p VL. 354 /// Returns the vectorized root. 355 Value *vectorizeTree(); 356 357 /// \returns the vectorization cost of the subtree that starts at \p VL. 358 /// A negative number means that this is profitable. 359 int getTreeCost(); 360 361 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 362 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 363 void buildTree(ArrayRef<Value *> Roots, 364 ArrayRef<Value *> UserIgnoreLst = None); 365 366 /// Clear the internal data structures that are created by 'buildTree'. 367 void deleteTree() { 368 VectorizableTree.clear(); 369 ScalarToTreeEntry.clear(); 370 MustGather.clear(); 371 ExternalUses.clear(); 372 MemBarrierIgnoreList.clear(); 373 } 374 375 /// \returns true if the memory operations A and B are consecutive. 376 bool isConsecutiveAccess(Value *A, Value *B); 377 378 /// \brief Perform LICM and CSE on the newly generated gather sequences. 379 void optimizeGatherSequence(); 380 private: 381 struct TreeEntry; 382 383 /// \returns the cost of the vectorizable entry. 384 int getEntryCost(TreeEntry *E); 385 386 /// This is the recursive part of buildTree. 387 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 388 389 /// Vectorize a single entry in the tree. 390 Value *vectorizeTree(TreeEntry *E); 391 392 /// Vectorize a single entry in the tree, starting in \p VL. 393 Value *vectorizeTree(ArrayRef<Value *> VL); 394 395 /// \returns the pointer to the vectorized value if \p VL is already 396 /// vectorized, or NULL. They may happen in cycles. 397 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 398 399 /// \brief Take the pointer operand from the Load/Store instruction. 400 /// \returns NULL if this is not a valid Load/Store instruction. 401 static Value *getPointerOperand(Value *I); 402 403 /// \brief Take the address space operand from the Load/Store instruction. 404 /// \returns -1 if this is not a valid Load/Store instruction. 405 static unsigned getAddressSpaceOperand(Value *I); 406 407 /// \returns the scalarization cost for this type. Scalarization in this 408 /// context means the creation of vectors from a group of scalars. 409 int getGatherCost(Type *Ty); 410 411 /// \returns the scalarization cost for this list of values. Assuming that 412 /// this subtree gets vectorized, we may need to extract the values from the 413 /// roots. This method calculates the cost of extracting the values. 414 int getGatherCost(ArrayRef<Value *> VL); 415 416 /// \returns the AA location that is being access by the instruction. 417 AliasAnalysis::Location getLocation(Instruction *I); 418 419 /// \brief Checks if it is possible to sink an instruction from 420 /// \p Src to \p Dst. 421 /// \returns the pointer to the barrier instruction if we can't sink. 422 Value *getSinkBarrier(Instruction *Src, Instruction *Dst); 423 424 /// \returns the index of the last instruction in the BB from \p VL. 425 int getLastIndex(ArrayRef<Value *> VL); 426 427 /// \returns the Instruction in the bundle \p VL. 428 Instruction *getLastInstruction(ArrayRef<Value *> VL); 429 430 /// \brief Set the Builder insert point to one after the last instruction in 431 /// the bundle 432 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 433 434 /// \returns a vector from a collection of scalars in \p VL. 435 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 436 437 /// \returns whether the VectorizableTree is fully vectoriable and will 438 /// be beneficial even the tree height is tiny. 439 bool isFullyVectorizableTinyTree(); 440 441 struct TreeEntry { 442 TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0), 443 NeedToGather(0) {} 444 445 /// \returns true if the scalars in VL are equal to this entry. 446 bool isSame(ArrayRef<Value *> VL) const { 447 assert(VL.size() == Scalars.size() && "Invalid size"); 448 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 449 } 450 451 /// A vector of scalars. 452 ValueList Scalars; 453 454 /// The Scalars are vectorized into this value. It is initialized to Null. 455 Value *VectorizedValue; 456 457 /// The index in the basic block of the last scalar. 458 int LastScalarIndex; 459 460 /// Do we need to gather this sequence ? 461 bool NeedToGather; 462 }; 463 464 /// Create a new VectorizableTree entry. 465 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 466 VectorizableTree.push_back(TreeEntry()); 467 int idx = VectorizableTree.size() - 1; 468 TreeEntry *Last = &VectorizableTree[idx]; 469 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 470 Last->NeedToGather = !Vectorized; 471 if (Vectorized) { 472 Last->LastScalarIndex = getLastIndex(VL); 473 for (int i = 0, e = VL.size(); i != e; ++i) { 474 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 475 ScalarToTreeEntry[VL[i]] = idx; 476 } 477 } else { 478 Last->LastScalarIndex = 0; 479 MustGather.insert(VL.begin(), VL.end()); 480 } 481 return Last; 482 } 483 484 /// -- Vectorization State -- 485 /// Holds all of the tree entries. 486 std::vector<TreeEntry> VectorizableTree; 487 488 /// Maps a specific scalar to its tree entry. 489 SmallDenseMap<Value*, int> ScalarToTreeEntry; 490 491 /// A list of scalars that we found that we need to keep as scalars. 492 ValueSet MustGather; 493 494 /// This POD struct describes one external user in the vectorized tree. 495 struct ExternalUser { 496 ExternalUser (Value *S, llvm::User *U, int L) : 497 Scalar(S), User(U), Lane(L){}; 498 // Which scalar in our function. 499 Value *Scalar; 500 // Which user that uses the scalar. 501 llvm::User *User; 502 // Which lane does the scalar belong to. 503 int Lane; 504 }; 505 typedef SmallVector<ExternalUser, 16> UserList; 506 507 /// A list of values that need to extracted out of the tree. 508 /// This list holds pairs of (Internal Scalar : External User). 509 UserList ExternalUses; 510 511 /// A list of instructions to ignore while sinking 512 /// memory instructions. This map must be reset between runs of getCost. 513 ValueSet MemBarrierIgnoreList; 514 515 /// Holds all of the instructions that we gathered. 516 SetVector<Instruction *> GatherSeq; 517 /// A list of blocks that we are going to CSE. 518 SetVector<BasicBlock *> CSEBlocks; 519 520 /// Numbers instructions in different blocks. 521 DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers; 522 523 /// \brief Get the corresponding instruction numbering list for a given 524 /// BasicBlock. The list is allocated lazily. 525 BlockNumbering &getBlockNumbering(BasicBlock *BB) { 526 auto I = BlocksNumbers.insert(std::make_pair(BB, BlockNumbering(BB))); 527 return I.first->second; 528 } 529 530 /// List of users to ignore during scheduling and that don't need extracting. 531 ArrayRef<Value *> UserIgnoreList; 532 533 // Analysis and block reference. 534 Function *F; 535 ScalarEvolution *SE; 536 const DataLayout *DL; 537 TargetTransformInfo *TTI; 538 TargetLibraryInfo *TLI; 539 AliasAnalysis *AA; 540 LoopInfo *LI; 541 DominatorTree *DT; 542 /// Instruction builder to construct the vectorized tree. 543 IRBuilder<> Builder; 544 }; 545 546 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 547 ArrayRef<Value *> UserIgnoreLst) { 548 deleteTree(); 549 UserIgnoreList = UserIgnoreLst; 550 if (!getSameType(Roots)) 551 return; 552 buildTree_rec(Roots, 0); 553 554 // Collect the values that we need to extract from the tree. 555 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 556 TreeEntry *Entry = &VectorizableTree[EIdx]; 557 558 // For each lane: 559 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 560 Value *Scalar = Entry->Scalars[Lane]; 561 562 // No need to handle users of gathered values. 563 if (Entry->NeedToGather) 564 continue; 565 566 for (User *U : Scalar->users()) { 567 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 568 569 // Skip in-tree scalars that become vectors. 570 if (ScalarToTreeEntry.count(U)) { 571 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << 572 *U << ".\n"); 573 int Idx = ScalarToTreeEntry[U]; (void) Idx; 574 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 575 continue; 576 } 577 Instruction *UserInst = dyn_cast<Instruction>(U); 578 if (!UserInst) 579 continue; 580 581 // Ignore users in the user ignore list. 582 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 583 UserIgnoreList.end()) 584 continue; 585 586 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 587 Lane << " from " << *Scalar << ".\n"); 588 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 589 } 590 } 591 } 592 } 593 594 595 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 596 bool SameTy = getSameType(VL); (void)SameTy; 597 assert(SameTy && "Invalid types!"); 598 599 if (Depth == RecursionMaxDepth) { 600 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 601 newTreeEntry(VL, false); 602 return; 603 } 604 605 // Don't handle vectors. 606 if (VL[0]->getType()->isVectorTy()) { 607 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 608 newTreeEntry(VL, false); 609 return; 610 } 611 612 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 613 if (SI->getValueOperand()->getType()->isVectorTy()) { 614 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 615 newTreeEntry(VL, false); 616 return; 617 } 618 619 // If all of the operands are identical or constant we have a simple solution. 620 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || 621 !getSameOpcode(VL)) { 622 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 623 newTreeEntry(VL, false); 624 return; 625 } 626 627 // We now know that this is a vector of instructions of the same type from 628 // the same block. 629 630 // Check if this is a duplicate of another entry. 631 if (ScalarToTreeEntry.count(VL[0])) { 632 int Idx = ScalarToTreeEntry[VL[0]]; 633 TreeEntry *E = &VectorizableTree[Idx]; 634 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 635 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 636 if (E->Scalars[i] != VL[i]) { 637 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 638 newTreeEntry(VL, false); 639 return; 640 } 641 } 642 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 643 return; 644 } 645 646 // Check that none of the instructions in the bundle are already in the tree. 647 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 648 if (ScalarToTreeEntry.count(VL[i])) { 649 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 650 ") is already in tree.\n"); 651 newTreeEntry(VL, false); 652 return; 653 } 654 } 655 656 // If any of the scalars appears in the table OR it is marked as a value that 657 // needs to stat scalar then we need to gather the scalars. 658 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 659 if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { 660 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); 661 newTreeEntry(VL, false); 662 return; 663 } 664 } 665 666 // Check that all of the users of the scalars that we want to vectorize are 667 // schedulable. 668 Instruction *VL0 = cast<Instruction>(VL[0]); 669 int MyLastIndex = getLastIndex(VL); 670 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 671 672 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 673 Instruction *Scalar = cast<Instruction>(VL[i]); 674 DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n"); 675 for (User *U : Scalar->users()) { 676 DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n"); 677 Instruction *UI = dyn_cast<Instruction>(U); 678 if (!UI) { 679 DEBUG(dbgs() << "SLP: Gathering due unknown user. \n"); 680 newTreeEntry(VL, false); 681 return; 682 } 683 684 // We don't care if the user is in a different basic block. 685 BasicBlock *UserBlock = UI->getParent(); 686 if (UserBlock != BB) { 687 DEBUG(dbgs() << "SLP: User from a different basic block " 688 << *UI << ". \n"); 689 continue; 690 } 691 692 // If this is a PHINode within this basic block then we can place the 693 // extract wherever we want. 694 if (isa<PHINode>(*UI)) { 695 DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n"); 696 continue; 697 } 698 699 // Check if this is a safe in-tree user. 700 if (ScalarToTreeEntry.count(UI)) { 701 int Idx = ScalarToTreeEntry[UI]; 702 int VecLocation = VectorizableTree[Idx].LastScalarIndex; 703 if (VecLocation <= MyLastIndex) { 704 DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n"); 705 newTreeEntry(VL, false); 706 return; 707 } 708 DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" << 709 VecLocation << " vector value (" << *Scalar << ") at #" 710 << MyLastIndex << ".\n"); 711 continue; 712 } 713 714 // Ignore users in the user ignore list. 715 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) != 716 UserIgnoreList.end()) 717 continue; 718 719 // Make sure that we can schedule this unknown user. 720 BlockNumbering &BN = getBlockNumbering(BB); 721 int UserIndex = BN.getIndex(UI); 722 if (UserIndex < MyLastIndex) { 723 724 DEBUG(dbgs() << "SLP: Can't schedule extractelement for " 725 << *UI << ". \n"); 726 newTreeEntry(VL, false); 727 return; 728 } 729 } 730 } 731 732 // Check that every instructions appears once in this bundle. 733 for (unsigned i = 0, e = VL.size(); i < e; ++i) 734 for (unsigned j = i+1; j < e; ++j) 735 if (VL[i] == VL[j]) { 736 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 737 newTreeEntry(VL, false); 738 return; 739 } 740 741 // Check that instructions in this bundle don't reference other instructions. 742 // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4. 743 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 744 for (User *U : VL[i]->users()) { 745 for (unsigned j = 0; j < e; ++j) { 746 if (i != j && U == VL[j]) { 747 DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n"); 748 newTreeEntry(VL, false); 749 return; 750 } 751 } 752 } 753 } 754 755 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 756 757 unsigned Opcode = getSameOpcode(VL); 758 759 // Check if it is safe to sink the loads or the stores. 760 if (Opcode == Instruction::Load || Opcode == Instruction::Store) { 761 Instruction *Last = getLastInstruction(VL); 762 763 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 764 if (VL[i] == Last) 765 continue; 766 Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last); 767 if (Barrier) { 768 DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last 769 << "\n because of " << *Barrier << ". Gathering.\n"); 770 newTreeEntry(VL, false); 771 return; 772 } 773 } 774 } 775 776 switch (Opcode) { 777 case Instruction::PHI: { 778 PHINode *PH = dyn_cast<PHINode>(VL0); 779 780 // Check for terminator values (e.g. invoke). 781 for (unsigned j = 0; j < VL.size(); ++j) 782 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 783 TerminatorInst *Term = dyn_cast<TerminatorInst>( 784 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 785 if (Term) { 786 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 787 newTreeEntry(VL, false); 788 return; 789 } 790 } 791 792 newTreeEntry(VL, true); 793 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 794 795 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 796 ValueList Operands; 797 // Prepare the operand vector. 798 for (unsigned j = 0; j < VL.size(); ++j) 799 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 800 PH->getIncomingBlock(i))); 801 802 buildTree_rec(Operands, Depth + 1); 803 } 804 return; 805 } 806 case Instruction::ExtractElement: { 807 bool Reuse = CanReuseExtract(VL); 808 if (Reuse) { 809 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 810 } 811 newTreeEntry(VL, Reuse); 812 return; 813 } 814 case Instruction::Load: { 815 // Check if the loads are consecutive or of we need to swizzle them. 816 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 817 LoadInst *L = cast<LoadInst>(VL[i]); 818 if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) { 819 newTreeEntry(VL, false); 820 DEBUG(dbgs() << "SLP: Need to swizzle loads.\n"); 821 return; 822 } 823 } 824 newTreeEntry(VL, true); 825 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 826 return; 827 } 828 case Instruction::ZExt: 829 case Instruction::SExt: 830 case Instruction::FPToUI: 831 case Instruction::FPToSI: 832 case Instruction::FPExt: 833 case Instruction::PtrToInt: 834 case Instruction::IntToPtr: 835 case Instruction::SIToFP: 836 case Instruction::UIToFP: 837 case Instruction::Trunc: 838 case Instruction::FPTrunc: 839 case Instruction::BitCast: { 840 Type *SrcTy = VL0->getOperand(0)->getType(); 841 for (unsigned i = 0; i < VL.size(); ++i) { 842 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 843 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { 844 newTreeEntry(VL, false); 845 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 846 return; 847 } 848 } 849 newTreeEntry(VL, true); 850 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 851 852 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 853 ValueList Operands; 854 // Prepare the operand vector. 855 for (unsigned j = 0; j < VL.size(); ++j) 856 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 857 858 buildTree_rec(Operands, Depth+1); 859 } 860 return; 861 } 862 case Instruction::ICmp: 863 case Instruction::FCmp: { 864 // Check that all of the compares have the same predicate. 865 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 866 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 867 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 868 CmpInst *Cmp = cast<CmpInst>(VL[i]); 869 if (Cmp->getPredicate() != P0 || 870 Cmp->getOperand(0)->getType() != ComparedTy) { 871 newTreeEntry(VL, false); 872 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 873 return; 874 } 875 } 876 877 newTreeEntry(VL, true); 878 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 879 880 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 881 ValueList Operands; 882 // Prepare the operand vector. 883 for (unsigned j = 0; j < VL.size(); ++j) 884 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 885 886 buildTree_rec(Operands, Depth+1); 887 } 888 return; 889 } 890 case Instruction::Select: 891 case Instruction::Add: 892 case Instruction::FAdd: 893 case Instruction::Sub: 894 case Instruction::FSub: 895 case Instruction::Mul: 896 case Instruction::FMul: 897 case Instruction::UDiv: 898 case Instruction::SDiv: 899 case Instruction::FDiv: 900 case Instruction::URem: 901 case Instruction::SRem: 902 case Instruction::FRem: 903 case Instruction::Shl: 904 case Instruction::LShr: 905 case Instruction::AShr: 906 case Instruction::And: 907 case Instruction::Or: 908 case Instruction::Xor: { 909 newTreeEntry(VL, true); 910 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 911 912 // Sort operands of the instructions so that each side is more likely to 913 // have the same opcode. 914 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 915 ValueList Left, Right; 916 reorderInputsAccordingToOpcode(VL, Left, Right); 917 buildTree_rec(Left, Depth + 1); 918 buildTree_rec(Right, Depth + 1); 919 return; 920 } 921 922 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 923 ValueList Operands; 924 // Prepare the operand vector. 925 for (unsigned j = 0; j < VL.size(); ++j) 926 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 927 928 buildTree_rec(Operands, Depth+1); 929 } 930 return; 931 } 932 case Instruction::Store: { 933 // Check if the stores are consecutive or of we need to swizzle them. 934 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 935 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 936 newTreeEntry(VL, false); 937 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 938 return; 939 } 940 941 newTreeEntry(VL, true); 942 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 943 944 ValueList Operands; 945 for (unsigned j = 0; j < VL.size(); ++j) 946 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 947 948 // We can ignore these values because we are sinking them down. 949 MemBarrierIgnoreList.insert(VL.begin(), VL.end()); 950 buildTree_rec(Operands, Depth + 1); 951 return; 952 } 953 case Instruction::Call: { 954 // Check if the calls are all to the same vectorizable intrinsic. 955 CallInst *CI = cast<CallInst>(VL[0]); 956 // Check if this is an Intrinsic call or something that can be 957 // represented by an intrinsic call 958 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 959 if (!isTriviallyVectorizable(ID)) { 960 newTreeEntry(VL, false); 961 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 962 return; 963 } 964 Function *Int = CI->getCalledFunction(); 965 Value *A1I = nullptr; 966 if (hasVectorInstrinsicScalarOpd(ID, 1)) 967 A1I = CI->getArgOperand(1); 968 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 969 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 970 if (!CI2 || CI2->getCalledFunction() != Int || 971 getIntrinsicIDForCall(CI2, TLI) != ID) { 972 newTreeEntry(VL, false); 973 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 974 << "\n"); 975 return; 976 } 977 // ctlz,cttz and powi are special intrinsics whose second argument 978 // should be same in order for them to be vectorized. 979 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 980 Value *A1J = CI2->getArgOperand(1); 981 if (A1I != A1J) { 982 newTreeEntry(VL, false); 983 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 984 << " argument "<< A1I<<"!=" << A1J 985 << "\n"); 986 return; 987 } 988 } 989 } 990 991 newTreeEntry(VL, true); 992 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 993 ValueList Operands; 994 // Prepare the operand vector. 995 for (unsigned j = 0; j < VL.size(); ++j) { 996 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 997 Operands.push_back(CI2->getArgOperand(i)); 998 } 999 buildTree_rec(Operands, Depth + 1); 1000 } 1001 return; 1002 } 1003 default: 1004 newTreeEntry(VL, false); 1005 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1006 return; 1007 } 1008 } 1009 1010 int BoUpSLP::getEntryCost(TreeEntry *E) { 1011 ArrayRef<Value*> VL = E->Scalars; 1012 1013 Type *ScalarTy = VL[0]->getType(); 1014 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1015 ScalarTy = SI->getValueOperand()->getType(); 1016 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1017 1018 if (E->NeedToGather) { 1019 if (allConstant(VL)) 1020 return 0; 1021 if (isSplat(VL)) { 1022 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1023 } 1024 return getGatherCost(E->Scalars); 1025 } 1026 1027 assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) && 1028 "Invalid VL"); 1029 Instruction *VL0 = cast<Instruction>(VL[0]); 1030 unsigned Opcode = VL0->getOpcode(); 1031 switch (Opcode) { 1032 case Instruction::PHI: { 1033 return 0; 1034 } 1035 case Instruction::ExtractElement: { 1036 if (CanReuseExtract(VL)) { 1037 int DeadCost = 0; 1038 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1039 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1040 if (E->hasOneUse()) 1041 // Take credit for instruction that will become dead. 1042 DeadCost += 1043 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1044 } 1045 return -DeadCost; 1046 } 1047 return getGatherCost(VecTy); 1048 } 1049 case Instruction::ZExt: 1050 case Instruction::SExt: 1051 case Instruction::FPToUI: 1052 case Instruction::FPToSI: 1053 case Instruction::FPExt: 1054 case Instruction::PtrToInt: 1055 case Instruction::IntToPtr: 1056 case Instruction::SIToFP: 1057 case Instruction::UIToFP: 1058 case Instruction::Trunc: 1059 case Instruction::FPTrunc: 1060 case Instruction::BitCast: { 1061 Type *SrcTy = VL0->getOperand(0)->getType(); 1062 1063 // Calculate the cost of this instruction. 1064 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1065 VL0->getType(), SrcTy); 1066 1067 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1068 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1069 return VecCost - ScalarCost; 1070 } 1071 case Instruction::FCmp: 1072 case Instruction::ICmp: 1073 case Instruction::Select: 1074 case Instruction::Add: 1075 case Instruction::FAdd: 1076 case Instruction::Sub: 1077 case Instruction::FSub: 1078 case Instruction::Mul: 1079 case Instruction::FMul: 1080 case Instruction::UDiv: 1081 case Instruction::SDiv: 1082 case Instruction::FDiv: 1083 case Instruction::URem: 1084 case Instruction::SRem: 1085 case Instruction::FRem: 1086 case Instruction::Shl: 1087 case Instruction::LShr: 1088 case Instruction::AShr: 1089 case Instruction::And: 1090 case Instruction::Or: 1091 case Instruction::Xor: { 1092 // Calculate the cost of this instruction. 1093 int ScalarCost = 0; 1094 int VecCost = 0; 1095 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1096 Opcode == Instruction::Select) { 1097 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1098 ScalarCost = VecTy->getNumElements() * 1099 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1100 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1101 } else { 1102 // Certain instructions can be cheaper to vectorize if they have a 1103 // constant second vector operand. 1104 TargetTransformInfo::OperandValueKind Op1VK = 1105 TargetTransformInfo::OK_AnyValue; 1106 TargetTransformInfo::OperandValueKind Op2VK = 1107 TargetTransformInfo::OK_UniformConstantValue; 1108 1109 // If all operands are exactly the same ConstantInt then set the 1110 // operand kind to OK_UniformConstantValue. 1111 // If instead not all operands are constants, then set the operand kind 1112 // to OK_AnyValue. If all operands are constants but not the same, 1113 // then set the operand kind to OK_NonUniformConstantValue. 1114 ConstantInt *CInt = nullptr; 1115 for (unsigned i = 0; i < VL.size(); ++i) { 1116 const Instruction *I = cast<Instruction>(VL[i]); 1117 if (!isa<ConstantInt>(I->getOperand(1))) { 1118 Op2VK = TargetTransformInfo::OK_AnyValue; 1119 break; 1120 } 1121 if (i == 0) { 1122 CInt = cast<ConstantInt>(I->getOperand(1)); 1123 continue; 1124 } 1125 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1126 CInt != cast<ConstantInt>(I->getOperand(1))) 1127 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1128 } 1129 1130 ScalarCost = 1131 VecTy->getNumElements() * 1132 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK); 1133 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK); 1134 } 1135 return VecCost - ScalarCost; 1136 } 1137 case Instruction::Load: { 1138 // Cost of wide load - cost of scalar loads. 1139 int ScalarLdCost = VecTy->getNumElements() * 1140 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1141 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1142 return VecLdCost - ScalarLdCost; 1143 } 1144 case Instruction::Store: { 1145 // We know that we can merge the stores. Calculate the cost. 1146 int ScalarStCost = VecTy->getNumElements() * 1147 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1148 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1149 return VecStCost - ScalarStCost; 1150 } 1151 case Instruction::Call: { 1152 CallInst *CI = cast<CallInst>(VL0); 1153 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1154 1155 // Calculate the cost of the scalar and vector calls. 1156 SmallVector<Type*, 4> ScalarTys, VecTys; 1157 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1158 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1159 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1160 VecTy->getNumElements())); 1161 } 1162 1163 int ScalarCallCost = VecTy->getNumElements() * 1164 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1165 1166 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1167 1168 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1169 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1170 << " for " << *CI << "\n"); 1171 1172 return VecCallCost - ScalarCallCost; 1173 } 1174 default: 1175 llvm_unreachable("Unknown instruction"); 1176 } 1177 } 1178 1179 bool BoUpSLP::isFullyVectorizableTinyTree() { 1180 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1181 VectorizableTree.size() << " is fully vectorizable .\n"); 1182 1183 // We only handle trees of height 2. 1184 if (VectorizableTree.size() != 2) 1185 return false; 1186 1187 // Handle splat stores. 1188 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars)) 1189 return true; 1190 1191 // Gathering cost would be too much for tiny trees. 1192 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1193 return false; 1194 1195 return true; 1196 } 1197 1198 int BoUpSLP::getTreeCost() { 1199 int Cost = 0; 1200 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1201 VectorizableTree.size() << ".\n"); 1202 1203 // We only vectorize tiny trees if it is fully vectorizable. 1204 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1205 if (!VectorizableTree.size()) { 1206 assert(!ExternalUses.size() && "We should not have any external users"); 1207 } 1208 return INT_MAX; 1209 } 1210 1211 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1212 1213 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1214 int C = getEntryCost(&VectorizableTree[i]); 1215 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1216 << *VectorizableTree[i].Scalars[0] << " .\n"); 1217 Cost += C; 1218 } 1219 1220 SmallSet<Value *, 16> ExtractCostCalculated; 1221 int ExtractCost = 0; 1222 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1223 I != E; ++I) { 1224 // We only add extract cost once for the same scalar. 1225 if (!ExtractCostCalculated.insert(I->Scalar)) 1226 continue; 1227 1228 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1229 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1230 I->Lane); 1231 } 1232 1233 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1234 return Cost + ExtractCost; 1235 } 1236 1237 int BoUpSLP::getGatherCost(Type *Ty) { 1238 int Cost = 0; 1239 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1240 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1241 return Cost; 1242 } 1243 1244 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1245 // Find the type of the operands in VL. 1246 Type *ScalarTy = VL[0]->getType(); 1247 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1248 ScalarTy = SI->getValueOperand()->getType(); 1249 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1250 // Find the cost of inserting/extracting values from the vector. 1251 return getGatherCost(VecTy); 1252 } 1253 1254 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) { 1255 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1256 return AA->getLocation(SI); 1257 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1258 return AA->getLocation(LI); 1259 return AliasAnalysis::Location(); 1260 } 1261 1262 Value *BoUpSLP::getPointerOperand(Value *I) { 1263 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1264 return LI->getPointerOperand(); 1265 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1266 return SI->getPointerOperand(); 1267 return nullptr; 1268 } 1269 1270 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1271 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1272 return L->getPointerAddressSpace(); 1273 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1274 return S->getPointerAddressSpace(); 1275 return -1; 1276 } 1277 1278 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 1279 Value *PtrA = getPointerOperand(A); 1280 Value *PtrB = getPointerOperand(B); 1281 unsigned ASA = getAddressSpaceOperand(A); 1282 unsigned ASB = getAddressSpaceOperand(B); 1283 1284 // Check that the address spaces match and that the pointers are valid. 1285 if (!PtrA || !PtrB || (ASA != ASB)) 1286 return false; 1287 1288 // Make sure that A and B are different pointers of the same type. 1289 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1290 return false; 1291 1292 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); 1293 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1294 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); 1295 1296 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1297 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); 1298 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); 1299 1300 APInt OffsetDelta = OffsetB - OffsetA; 1301 1302 // Check if they are based on the same pointer. That makes the offsets 1303 // sufficient. 1304 if (PtrA == PtrB) 1305 return OffsetDelta == Size; 1306 1307 // Compute the necessary base pointer delta to have the necessary final delta 1308 // equal to the size. 1309 APInt BaseDelta = Size - OffsetDelta; 1310 1311 // Otherwise compute the distance with SCEV between the base pointers. 1312 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1313 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1314 const SCEV *C = SE->getConstant(BaseDelta); 1315 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1316 return X == PtrSCEVB; 1317 } 1318 1319 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) { 1320 assert(Src->getParent() == Dst->getParent() && "Not the same BB"); 1321 BasicBlock::iterator I = Src, E = Dst; 1322 /// Scan all of the instruction from SRC to DST and check if 1323 /// the source may alias. 1324 for (++I; I != E; ++I) { 1325 // Ignore store instructions that are marked as 'ignore'. 1326 if (MemBarrierIgnoreList.count(I)) 1327 continue; 1328 if (Src->mayWriteToMemory()) /* Write */ { 1329 if (!I->mayReadOrWriteMemory()) 1330 continue; 1331 } else /* Read */ { 1332 if (!I->mayWriteToMemory()) 1333 continue; 1334 } 1335 AliasAnalysis::Location A = getLocation(&*I); 1336 AliasAnalysis::Location B = getLocation(Src); 1337 1338 if (!A.Ptr || !B.Ptr || AA->alias(A, B)) 1339 return I; 1340 } 1341 return nullptr; 1342 } 1343 1344 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) { 1345 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1346 assert(BB == getSameBlock(VL) && "Invalid block"); 1347 BlockNumbering &BN = getBlockNumbering(BB); 1348 1349 int MaxIdx = BN.getIndex(BB->getFirstNonPHI()); 1350 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1351 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1352 return MaxIdx; 1353 } 1354 1355 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) { 1356 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1357 assert(BB == getSameBlock(VL) && "Invalid block"); 1358 BlockNumbering &BN = getBlockNumbering(BB); 1359 1360 int MaxIdx = BN.getIndex(cast<Instruction>(VL[0])); 1361 for (unsigned i = 1, e = VL.size(); i < e; ++i) 1362 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1363 Instruction *I = BN.getInstruction(MaxIdx); 1364 assert(I && "bad location"); 1365 return I; 1366 } 1367 1368 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 1369 Instruction *VL0 = cast<Instruction>(VL[0]); 1370 Instruction *LastInst = getLastInstruction(VL); 1371 BasicBlock::iterator NextInst = LastInst; 1372 ++NextInst; 1373 Builder.SetInsertPoint(VL0->getParent(), NextInst); 1374 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 1375 } 1376 1377 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1378 Value *Vec = UndefValue::get(Ty); 1379 // Generate the 'InsertElement' instruction. 1380 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1381 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1382 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1383 GatherSeq.insert(Insrt); 1384 CSEBlocks.insert(Insrt->getParent()); 1385 1386 // Add to our 'need-to-extract' list. 1387 if (ScalarToTreeEntry.count(VL[i])) { 1388 int Idx = ScalarToTreeEntry[VL[i]]; 1389 TreeEntry *E = &VectorizableTree[Idx]; 1390 // Find which lane we need to extract. 1391 int FoundLane = -1; 1392 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1393 // Is this the lane of the scalar that we are looking for ? 1394 if (E->Scalars[Lane] == VL[i]) { 1395 FoundLane = Lane; 1396 break; 1397 } 1398 } 1399 assert(FoundLane >= 0 && "Could not find the correct lane"); 1400 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1401 } 1402 } 1403 } 1404 1405 return Vec; 1406 } 1407 1408 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 1409 SmallDenseMap<Value*, int>::const_iterator Entry 1410 = ScalarToTreeEntry.find(VL[0]); 1411 if (Entry != ScalarToTreeEntry.end()) { 1412 int Idx = Entry->second; 1413 const TreeEntry *En = &VectorizableTree[Idx]; 1414 if (En->isSame(VL) && En->VectorizedValue) 1415 return En->VectorizedValue; 1416 } 1417 return nullptr; 1418 } 1419 1420 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1421 if (ScalarToTreeEntry.count(VL[0])) { 1422 int Idx = ScalarToTreeEntry[VL[0]]; 1423 TreeEntry *E = &VectorizableTree[Idx]; 1424 if (E->isSame(VL)) 1425 return vectorizeTree(E); 1426 } 1427 1428 Type *ScalarTy = VL[0]->getType(); 1429 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1430 ScalarTy = SI->getValueOperand()->getType(); 1431 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1432 1433 return Gather(VL, VecTy); 1434 } 1435 1436 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1437 IRBuilder<>::InsertPointGuard Guard(Builder); 1438 1439 if (E->VectorizedValue) { 1440 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1441 return E->VectorizedValue; 1442 } 1443 1444 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1445 Type *ScalarTy = VL0->getType(); 1446 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 1447 ScalarTy = SI->getValueOperand()->getType(); 1448 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1449 1450 if (E->NeedToGather) { 1451 setInsertPointAfterBundle(E->Scalars); 1452 return Gather(E->Scalars, VecTy); 1453 } 1454 1455 unsigned Opcode = VL0->getOpcode(); 1456 assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode"); 1457 1458 switch (Opcode) { 1459 case Instruction::PHI: { 1460 PHINode *PH = dyn_cast<PHINode>(VL0); 1461 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 1462 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1463 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1464 E->VectorizedValue = NewPhi; 1465 1466 // PHINodes may have multiple entries from the same block. We want to 1467 // visit every block once. 1468 SmallSet<BasicBlock*, 4> VisitedBBs; 1469 1470 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1471 ValueList Operands; 1472 BasicBlock *IBB = PH->getIncomingBlock(i); 1473 1474 if (!VisitedBBs.insert(IBB)) { 1475 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 1476 continue; 1477 } 1478 1479 // Prepare the operand vector. 1480 for (unsigned j = 0; j < E->Scalars.size(); ++j) 1481 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 1482 getIncomingValueForBlock(IBB)); 1483 1484 Builder.SetInsertPoint(IBB->getTerminator()); 1485 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1486 Value *Vec = vectorizeTree(Operands); 1487 NewPhi->addIncoming(Vec, IBB); 1488 } 1489 1490 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 1491 "Invalid number of incoming values"); 1492 return NewPhi; 1493 } 1494 1495 case Instruction::ExtractElement: { 1496 if (CanReuseExtract(E->Scalars)) { 1497 Value *V = VL0->getOperand(0); 1498 E->VectorizedValue = V; 1499 return V; 1500 } 1501 return Gather(E->Scalars, VecTy); 1502 } 1503 case Instruction::ZExt: 1504 case Instruction::SExt: 1505 case Instruction::FPToUI: 1506 case Instruction::FPToSI: 1507 case Instruction::FPExt: 1508 case Instruction::PtrToInt: 1509 case Instruction::IntToPtr: 1510 case Instruction::SIToFP: 1511 case Instruction::UIToFP: 1512 case Instruction::Trunc: 1513 case Instruction::FPTrunc: 1514 case Instruction::BitCast: { 1515 ValueList INVL; 1516 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1517 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1518 1519 setInsertPointAfterBundle(E->Scalars); 1520 1521 Value *InVec = vectorizeTree(INVL); 1522 1523 if (Value *V = alreadyVectorized(E->Scalars)) 1524 return V; 1525 1526 CastInst *CI = dyn_cast<CastInst>(VL0); 1527 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 1528 E->VectorizedValue = V; 1529 return V; 1530 } 1531 case Instruction::FCmp: 1532 case Instruction::ICmp: { 1533 ValueList LHSV, RHSV; 1534 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1535 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1536 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1537 } 1538 1539 setInsertPointAfterBundle(E->Scalars); 1540 1541 Value *L = vectorizeTree(LHSV); 1542 Value *R = vectorizeTree(RHSV); 1543 1544 if (Value *V = alreadyVectorized(E->Scalars)) 1545 return V; 1546 1547 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1548 Value *V; 1549 if (Opcode == Instruction::FCmp) 1550 V = Builder.CreateFCmp(P0, L, R); 1551 else 1552 V = Builder.CreateICmp(P0, L, R); 1553 1554 E->VectorizedValue = V; 1555 return V; 1556 } 1557 case Instruction::Select: { 1558 ValueList TrueVec, FalseVec, CondVec; 1559 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1560 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1561 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1562 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 1563 } 1564 1565 setInsertPointAfterBundle(E->Scalars); 1566 1567 Value *Cond = vectorizeTree(CondVec); 1568 Value *True = vectorizeTree(TrueVec); 1569 Value *False = vectorizeTree(FalseVec); 1570 1571 if (Value *V = alreadyVectorized(E->Scalars)) 1572 return V; 1573 1574 Value *V = Builder.CreateSelect(Cond, True, False); 1575 E->VectorizedValue = V; 1576 return V; 1577 } 1578 case Instruction::Add: 1579 case Instruction::FAdd: 1580 case Instruction::Sub: 1581 case Instruction::FSub: 1582 case Instruction::Mul: 1583 case Instruction::FMul: 1584 case Instruction::UDiv: 1585 case Instruction::SDiv: 1586 case Instruction::FDiv: 1587 case Instruction::URem: 1588 case Instruction::SRem: 1589 case Instruction::FRem: 1590 case Instruction::Shl: 1591 case Instruction::LShr: 1592 case Instruction::AShr: 1593 case Instruction::And: 1594 case Instruction::Or: 1595 case Instruction::Xor: { 1596 ValueList LHSVL, RHSVL; 1597 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 1598 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 1599 else 1600 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1601 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1602 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1603 } 1604 1605 setInsertPointAfterBundle(E->Scalars); 1606 1607 Value *LHS = vectorizeTree(LHSVL); 1608 Value *RHS = vectorizeTree(RHSVL); 1609 1610 if (LHS == RHS && isa<Instruction>(LHS)) { 1611 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 1612 } 1613 1614 if (Value *V = alreadyVectorized(E->Scalars)) 1615 return V; 1616 1617 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 1618 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 1619 E->VectorizedValue = V; 1620 1621 if (Instruction *I = dyn_cast<Instruction>(V)) 1622 return propagateMetadata(I, E->Scalars); 1623 1624 return V; 1625 } 1626 case Instruction::Load: { 1627 // Loads are inserted at the head of the tree because we don't want to 1628 // sink them all the way down past store instructions. 1629 setInsertPointAfterBundle(E->Scalars); 1630 1631 LoadInst *LI = cast<LoadInst>(VL0); 1632 unsigned AS = LI->getPointerAddressSpace(); 1633 1634 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 1635 VecTy->getPointerTo(AS)); 1636 unsigned Alignment = LI->getAlignment(); 1637 LI = Builder.CreateLoad(VecPtr); 1638 if (!Alignment) 1639 Alignment = DL->getABITypeAlignment(LI->getPointerOperand()->getType()); 1640 LI->setAlignment(Alignment); 1641 E->VectorizedValue = LI; 1642 return propagateMetadata(LI, E->Scalars); 1643 } 1644 case Instruction::Store: { 1645 StoreInst *SI = cast<StoreInst>(VL0); 1646 unsigned Alignment = SI->getAlignment(); 1647 unsigned AS = SI->getPointerAddressSpace(); 1648 1649 ValueList ValueOp; 1650 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1651 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 1652 1653 setInsertPointAfterBundle(E->Scalars); 1654 1655 Value *VecValue = vectorizeTree(ValueOp); 1656 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 1657 VecTy->getPointerTo(AS)); 1658 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 1659 if (!Alignment) 1660 Alignment = DL->getABITypeAlignment(SI->getPointerOperand()->getType()); 1661 S->setAlignment(Alignment); 1662 E->VectorizedValue = S; 1663 return propagateMetadata(S, E->Scalars); 1664 } 1665 case Instruction::Call: { 1666 CallInst *CI = cast<CallInst>(VL0); 1667 setInsertPointAfterBundle(E->Scalars); 1668 Function *FI; 1669 Intrinsic::ID IID = Intrinsic::not_intrinsic; 1670 if (CI && (FI = CI->getCalledFunction())) { 1671 IID = (Intrinsic::ID) FI->getIntrinsicID(); 1672 } 1673 std::vector<Value *> OpVecs; 1674 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 1675 ValueList OpVL; 1676 // ctlz,cttz and powi are special intrinsics whose second argument is 1677 // a scalar. This argument should not be vectorized. 1678 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 1679 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 1680 OpVecs.push_back(CEI->getArgOperand(j)); 1681 continue; 1682 } 1683 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1684 CallInst *CEI = cast<CallInst>(E->Scalars[i]); 1685 OpVL.push_back(CEI->getArgOperand(j)); 1686 } 1687 1688 Value *OpVec = vectorizeTree(OpVL); 1689 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 1690 OpVecs.push_back(OpVec); 1691 } 1692 1693 Module *M = F->getParent(); 1694 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1695 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 1696 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 1697 Value *V = Builder.CreateCall(CF, OpVecs); 1698 E->VectorizedValue = V; 1699 return V; 1700 } 1701 default: 1702 llvm_unreachable("unknown inst"); 1703 } 1704 return nullptr; 1705 } 1706 1707 Value *BoUpSLP::vectorizeTree() { 1708 Builder.SetInsertPoint(F->getEntryBlock().begin()); 1709 vectorizeTree(&VectorizableTree[0]); 1710 1711 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 1712 1713 // Extract all of the elements with the external uses. 1714 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 1715 it != e; ++it) { 1716 Value *Scalar = it->Scalar; 1717 llvm::User *User = it->User; 1718 1719 // Skip users that we already RAUW. This happens when one instruction 1720 // has multiple uses of the same value. 1721 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 1722 Scalar->user_end()) 1723 continue; 1724 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 1725 1726 int Idx = ScalarToTreeEntry[Scalar]; 1727 TreeEntry *E = &VectorizableTree[Idx]; 1728 assert(!E->NeedToGather && "Extracting from a gather list"); 1729 1730 Value *Vec = E->VectorizedValue; 1731 assert(Vec && "Can't find vectorizable value"); 1732 1733 Value *Lane = Builder.getInt32(it->Lane); 1734 // Generate extracts for out-of-tree users. 1735 // Find the insertion point for the extractelement lane. 1736 if (isa<Instruction>(Vec)){ 1737 if (PHINode *PH = dyn_cast<PHINode>(User)) { 1738 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 1739 if (PH->getIncomingValue(i) == Scalar) { 1740 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 1741 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1742 CSEBlocks.insert(PH->getIncomingBlock(i)); 1743 PH->setOperand(i, Ex); 1744 } 1745 } 1746 } else { 1747 Builder.SetInsertPoint(cast<Instruction>(User)); 1748 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1749 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 1750 User->replaceUsesOfWith(Scalar, Ex); 1751 } 1752 } else { 1753 Builder.SetInsertPoint(F->getEntryBlock().begin()); 1754 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1755 CSEBlocks.insert(&F->getEntryBlock()); 1756 User->replaceUsesOfWith(Scalar, Ex); 1757 } 1758 1759 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 1760 } 1761 1762 // For each vectorized value: 1763 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 1764 TreeEntry *Entry = &VectorizableTree[EIdx]; 1765 1766 // For each lane: 1767 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1768 Value *Scalar = Entry->Scalars[Lane]; 1769 1770 // No need to handle users of gathered values. 1771 if (Entry->NeedToGather) 1772 continue; 1773 1774 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 1775 1776 Type *Ty = Scalar->getType(); 1777 if (!Ty->isVoidTy()) { 1778 #ifndef NDEBUG 1779 for (User *U : Scalar->users()) { 1780 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 1781 1782 assert((ScalarToTreeEntry.count(U) || 1783 // It is legal to replace users in the ignorelist by undef. 1784 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 1785 UserIgnoreList.end())) && 1786 "Replacing out-of-tree value with undef"); 1787 } 1788 #endif 1789 Value *Undef = UndefValue::get(Ty); 1790 Scalar->replaceAllUsesWith(Undef); 1791 } 1792 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 1793 cast<Instruction>(Scalar)->eraseFromParent(); 1794 } 1795 } 1796 1797 for (auto &BN : BlocksNumbers) 1798 BN.second.forget(); 1799 1800 Builder.ClearInsertionPoint(); 1801 1802 return VectorizableTree[0].VectorizedValue; 1803 } 1804 1805 void BoUpSLP::optimizeGatherSequence() { 1806 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 1807 << " gather sequences instructions.\n"); 1808 // LICM InsertElementInst sequences. 1809 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 1810 e = GatherSeq.end(); it != e; ++it) { 1811 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 1812 1813 if (!Insert) 1814 continue; 1815 1816 // Check if this block is inside a loop. 1817 Loop *L = LI->getLoopFor(Insert->getParent()); 1818 if (!L) 1819 continue; 1820 1821 // Check if it has a preheader. 1822 BasicBlock *PreHeader = L->getLoopPreheader(); 1823 if (!PreHeader) 1824 continue; 1825 1826 // If the vector or the element that we insert into it are 1827 // instructions that are defined in this basic block then we can't 1828 // hoist this instruction. 1829 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 1830 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 1831 if (CurrVec && L->contains(CurrVec)) 1832 continue; 1833 if (NewElem && L->contains(NewElem)) 1834 continue; 1835 1836 // We can hoist this instruction. Move it to the pre-header. 1837 Insert->moveBefore(PreHeader->getTerminator()); 1838 } 1839 1840 // Make a list of all reachable blocks in our CSE queue. 1841 SmallVector<const DomTreeNode *, 8> CSEWorkList; 1842 CSEWorkList.reserve(CSEBlocks.size()); 1843 for (BasicBlock *BB : CSEBlocks) 1844 if (DomTreeNode *N = DT->getNode(BB)) { 1845 assert(DT->isReachableFromEntry(N)); 1846 CSEWorkList.push_back(N); 1847 } 1848 1849 // Sort blocks by domination. This ensures we visit a block after all blocks 1850 // dominating it are visited. 1851 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 1852 [this](const DomTreeNode *A, const DomTreeNode *B) { 1853 return DT->properlyDominates(A, B); 1854 }); 1855 1856 // Perform O(N^2) search over the gather sequences and merge identical 1857 // instructions. TODO: We can further optimize this scan if we split the 1858 // instructions into different buckets based on the insert lane. 1859 SmallVector<Instruction *, 16> Visited; 1860 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 1861 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 1862 "Worklist not sorted properly!"); 1863 BasicBlock *BB = (*I)->getBlock(); 1864 // For all instructions in blocks containing gather sequences: 1865 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 1866 Instruction *In = it++; 1867 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 1868 continue; 1869 1870 // Check if we can replace this instruction with any of the 1871 // visited instructions. 1872 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 1873 ve = Visited.end(); 1874 v != ve; ++v) { 1875 if (In->isIdenticalTo(*v) && 1876 DT->dominates((*v)->getParent(), In->getParent())) { 1877 In->replaceAllUsesWith(*v); 1878 In->eraseFromParent(); 1879 In = nullptr; 1880 break; 1881 } 1882 } 1883 if (In) { 1884 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 1885 Visited.push_back(In); 1886 } 1887 } 1888 } 1889 CSEBlocks.clear(); 1890 GatherSeq.clear(); 1891 } 1892 1893 /// The SLPVectorizer Pass. 1894 struct SLPVectorizer : public FunctionPass { 1895 typedef SmallVector<StoreInst *, 8> StoreList; 1896 typedef MapVector<Value *, StoreList> StoreListMap; 1897 1898 /// Pass identification, replacement for typeid 1899 static char ID; 1900 1901 explicit SLPVectorizer() : FunctionPass(ID) { 1902 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 1903 } 1904 1905 ScalarEvolution *SE; 1906 const DataLayout *DL; 1907 TargetTransformInfo *TTI; 1908 TargetLibraryInfo *TLI; 1909 AliasAnalysis *AA; 1910 LoopInfo *LI; 1911 DominatorTree *DT; 1912 1913 bool runOnFunction(Function &F) override { 1914 if (skipOptnoneFunction(F)) 1915 return false; 1916 1917 SE = &getAnalysis<ScalarEvolution>(); 1918 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1919 DL = DLP ? &DLP->getDataLayout() : nullptr; 1920 TTI = &getAnalysis<TargetTransformInfo>(); 1921 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1922 AA = &getAnalysis<AliasAnalysis>(); 1923 LI = &getAnalysis<LoopInfo>(); 1924 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1925 1926 StoreRefs.clear(); 1927 bool Changed = false; 1928 1929 // If the target claims to have no vector registers don't attempt 1930 // vectorization. 1931 if (!TTI->getNumberOfRegisters(true)) 1932 return false; 1933 1934 // Must have DataLayout. We can't require it because some tests run w/o 1935 // triple. 1936 if (!DL) 1937 return false; 1938 1939 // Don't vectorize when the attribute NoImplicitFloat is used. 1940 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 1941 return false; 1942 1943 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 1944 1945 // Use the bottom up slp vectorizer to construct chains that start with 1946 // store instructions. 1947 BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT); 1948 1949 // Scan the blocks in the function in post order. 1950 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 1951 e = po_end(&F.getEntryBlock()); it != e; ++it) { 1952 BasicBlock *BB = *it; 1953 1954 // Vectorize trees that end at stores. 1955 if (unsigned count = collectStores(BB, R)) { 1956 (void)count; 1957 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 1958 Changed |= vectorizeStoreChains(R); 1959 } 1960 1961 // Vectorize trees that end at reductions. 1962 Changed |= vectorizeChainsInBlock(BB, R); 1963 } 1964 1965 if (Changed) { 1966 R.optimizeGatherSequence(); 1967 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 1968 DEBUG(verifyFunction(F)); 1969 } 1970 return Changed; 1971 } 1972 1973 void getAnalysisUsage(AnalysisUsage &AU) const override { 1974 FunctionPass::getAnalysisUsage(AU); 1975 AU.addRequired<ScalarEvolution>(); 1976 AU.addRequired<AliasAnalysis>(); 1977 AU.addRequired<TargetTransformInfo>(); 1978 AU.addRequired<LoopInfo>(); 1979 AU.addRequired<DominatorTreeWrapperPass>(); 1980 AU.addPreserved<LoopInfo>(); 1981 AU.addPreserved<DominatorTreeWrapperPass>(); 1982 AU.setPreservesCFG(); 1983 } 1984 1985 private: 1986 1987 /// \brief Collect memory references and sort them according to their base 1988 /// object. We sort the stores to their base objects to reduce the cost of the 1989 /// quadratic search on the stores. TODO: We can further reduce this cost 1990 /// if we flush the chain creation every time we run into a memory barrier. 1991 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 1992 1993 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 1994 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 1995 1996 /// \brief Try to vectorize a list of operands. 1997 /// \@param BuildVector A list of users to ignore for the purpose of 1998 /// scheduling and that don't need extracting. 1999 /// \returns true if a value was vectorized. 2000 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2001 ArrayRef<Value *> BuildVector = None); 2002 2003 /// \brief Try to vectorize a chain that may start at the operands of \V; 2004 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 2005 2006 /// \brief Vectorize the stores that were collected in StoreRefs. 2007 bool vectorizeStoreChains(BoUpSLP &R); 2008 2009 /// \brief Scan the basic block and look for patterns that are likely to start 2010 /// a vectorization chain. 2011 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 2012 2013 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 2014 BoUpSLP &R); 2015 2016 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 2017 BoUpSLP &R); 2018 private: 2019 StoreListMap StoreRefs; 2020 }; 2021 2022 /// \brief Check that the Values in the slice in VL array are still existent in 2023 /// the WeakVH array. 2024 /// Vectorization of part of the VL array may cause later values in the VL array 2025 /// to become invalid. We track when this has happened in the WeakVH array. 2026 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL, 2027 SmallVectorImpl<WeakVH> &VH, 2028 unsigned SliceBegin, 2029 unsigned SliceSize) { 2030 for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i) 2031 if (VH[i] != VL[i]) 2032 return true; 2033 2034 return false; 2035 } 2036 2037 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 2038 int CostThreshold, BoUpSLP &R) { 2039 unsigned ChainLen = Chain.size(); 2040 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 2041 << "\n"); 2042 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 2043 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 2044 unsigned VF = MinVecRegSize / Sz; 2045 2046 if (!isPowerOf2_32(Sz) || VF < 2) 2047 return false; 2048 2049 // Keep track of values that were deleted by vectorizing in the loop below. 2050 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 2051 2052 bool Changed = false; 2053 // Look for profitable vectorizable trees at all offsets, starting at zero. 2054 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 2055 if (i + VF > e) 2056 break; 2057 2058 // Check that a previous iteration of this loop did not delete the Value. 2059 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 2060 continue; 2061 2062 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 2063 << "\n"); 2064 ArrayRef<Value *> Operands = Chain.slice(i, VF); 2065 2066 R.buildTree(Operands); 2067 2068 int Cost = R.getTreeCost(); 2069 2070 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 2071 if (Cost < CostThreshold) { 2072 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 2073 R.vectorizeTree(); 2074 2075 // Move to the next bundle. 2076 i += VF - 1; 2077 Changed = true; 2078 } 2079 } 2080 2081 return Changed; 2082 } 2083 2084 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 2085 int costThreshold, BoUpSLP &R) { 2086 SetVector<Value *> Heads, Tails; 2087 SmallDenseMap<Value *, Value *> ConsecutiveChain; 2088 2089 // We may run into multiple chains that merge into a single chain. We mark the 2090 // stores that we vectorized so that we don't visit the same store twice. 2091 BoUpSLP::ValueSet VectorizedStores; 2092 bool Changed = false; 2093 2094 // Do a quadratic search on all of the given stores and find 2095 // all of the pairs of stores that follow each other. 2096 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 2097 for (unsigned j = 0; j < e; ++j) { 2098 if (i == j) 2099 continue; 2100 2101 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 2102 Tails.insert(Stores[j]); 2103 Heads.insert(Stores[i]); 2104 ConsecutiveChain[Stores[i]] = Stores[j]; 2105 } 2106 } 2107 } 2108 2109 // For stores that start but don't end a link in the chain: 2110 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 2111 it != e; ++it) { 2112 if (Tails.count(*it)) 2113 continue; 2114 2115 // We found a store instr that starts a chain. Now follow the chain and try 2116 // to vectorize it. 2117 BoUpSLP::ValueList Operands; 2118 Value *I = *it; 2119 // Collect the chain into a list. 2120 while (Tails.count(I) || Heads.count(I)) { 2121 if (VectorizedStores.count(I)) 2122 break; 2123 Operands.push_back(I); 2124 // Move to the next value in the chain. 2125 I = ConsecutiveChain[I]; 2126 } 2127 2128 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 2129 2130 // Mark the vectorized stores so that we don't vectorize them again. 2131 if (Vectorized) 2132 VectorizedStores.insert(Operands.begin(), Operands.end()); 2133 Changed |= Vectorized; 2134 } 2135 2136 return Changed; 2137 } 2138 2139 2140 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 2141 unsigned count = 0; 2142 StoreRefs.clear(); 2143 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2144 StoreInst *SI = dyn_cast<StoreInst>(it); 2145 if (!SI) 2146 continue; 2147 2148 // Don't touch volatile stores. 2149 if (!SI->isSimple()) 2150 continue; 2151 2152 // Check that the pointer points to scalars. 2153 Type *Ty = SI->getValueOperand()->getType(); 2154 if (Ty->isAggregateType() || Ty->isVectorTy()) 2155 continue; 2156 2157 // Find the base pointer. 2158 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 2159 2160 // Save the store locations. 2161 StoreRefs[Ptr].push_back(SI); 2162 count++; 2163 } 2164 return count; 2165 } 2166 2167 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 2168 if (!A || !B) 2169 return false; 2170 Value *VL[] = { A, B }; 2171 return tryToVectorizeList(VL, R); 2172 } 2173 2174 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2175 ArrayRef<Value *> BuildVector) { 2176 if (VL.size() < 2) 2177 return false; 2178 2179 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 2180 2181 // Check that all of the parts are scalar instructions of the same type. 2182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 2183 if (!I0) 2184 return false; 2185 2186 unsigned Opcode0 = I0->getOpcode(); 2187 2188 Type *Ty0 = I0->getType(); 2189 unsigned Sz = DL->getTypeSizeInBits(Ty0); 2190 unsigned VF = MinVecRegSize / Sz; 2191 2192 for (int i = 0, e = VL.size(); i < e; ++i) { 2193 Type *Ty = VL[i]->getType(); 2194 if (Ty->isAggregateType() || Ty->isVectorTy()) 2195 return false; 2196 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 2197 if (!Inst || Inst->getOpcode() != Opcode0) 2198 return false; 2199 } 2200 2201 bool Changed = false; 2202 2203 // Keep track of values that were deleted by vectorizing in the loop below. 2204 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 2205 2206 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2207 unsigned OpsWidth = 0; 2208 2209 if (i + VF > e) 2210 OpsWidth = e - i; 2211 else 2212 OpsWidth = VF; 2213 2214 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 2215 break; 2216 2217 // Check that a previous iteration of this loop did not delete the Value. 2218 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 2219 continue; 2220 2221 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 2222 << "\n"); 2223 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 2224 2225 ArrayRef<Value *> BuildVectorSlice; 2226 if (!BuildVector.empty()) 2227 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 2228 2229 R.buildTree(Ops, BuildVectorSlice); 2230 int Cost = R.getTreeCost(); 2231 2232 if (Cost < -SLPCostThreshold) { 2233 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 2234 Value *VectorizedRoot = R.vectorizeTree(); 2235 2236 // Reconstruct the build vector by extracting the vectorized root. This 2237 // way we handle the case where some elements of the vector are undefined. 2238 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 2239 if (!BuildVectorSlice.empty()) { 2240 // The insert point is the last build vector instruction. The vectorized 2241 // root will precede it. This guarantees that we get an instruction. The 2242 // vectorized tree could have been constant folded. 2243 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 2244 unsigned VecIdx = 0; 2245 for (auto &V : BuildVectorSlice) { 2246 IRBuilder<true, NoFolder> Builder( 2247 ++BasicBlock::iterator(InsertAfter)); 2248 InsertElementInst *IE = cast<InsertElementInst>(V); 2249 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 2250 VectorizedRoot, Builder.getInt32(VecIdx++))); 2251 IE->setOperand(1, Extract); 2252 IE->removeFromParent(); 2253 IE->insertAfter(Extract); 2254 InsertAfter = IE; 2255 } 2256 } 2257 // Move to the next bundle. 2258 i += VF - 1; 2259 Changed = true; 2260 } 2261 } 2262 2263 return Changed; 2264 } 2265 2266 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 2267 if (!V) 2268 return false; 2269 2270 // Try to vectorize V. 2271 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 2272 return true; 2273 2274 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 2275 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 2276 // Try to skip B. 2277 if (B && B->hasOneUse()) { 2278 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 2279 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 2280 if (tryToVectorizePair(A, B0, R)) { 2281 B->moveBefore(V); 2282 return true; 2283 } 2284 if (tryToVectorizePair(A, B1, R)) { 2285 B->moveBefore(V); 2286 return true; 2287 } 2288 } 2289 2290 // Try to skip A. 2291 if (A && A->hasOneUse()) { 2292 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 2293 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 2294 if (tryToVectorizePair(A0, B, R)) { 2295 A->moveBefore(V); 2296 return true; 2297 } 2298 if (tryToVectorizePair(A1, B, R)) { 2299 A->moveBefore(V); 2300 return true; 2301 } 2302 } 2303 return 0; 2304 } 2305 2306 /// \brief Generate a shuffle mask to be used in a reduction tree. 2307 /// 2308 /// \param VecLen The length of the vector to be reduced. 2309 /// \param NumEltsToRdx The number of elements that should be reduced in the 2310 /// vector. 2311 /// \param IsPairwise Whether the reduction is a pairwise or splitting 2312 /// reduction. A pairwise reduction will generate a mask of 2313 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 2314 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 2315 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 2316 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 2317 bool IsPairwise, bool IsLeft, 2318 IRBuilder<> &Builder) { 2319 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 2320 2321 SmallVector<Constant *, 32> ShuffleMask( 2322 VecLen, UndefValue::get(Builder.getInt32Ty())); 2323 2324 if (IsPairwise) 2325 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 2326 for (unsigned i = 0; i != NumEltsToRdx; ++i) 2327 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 2328 else 2329 // Move the upper half of the vector to the lower half. 2330 for (unsigned i = 0; i != NumEltsToRdx; ++i) 2331 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 2332 2333 return ConstantVector::get(ShuffleMask); 2334 } 2335 2336 2337 /// Model horizontal reductions. 2338 /// 2339 /// A horizontal reduction is a tree of reduction operations (currently add and 2340 /// fadd) that has operations that can be put into a vector as its leaf. 2341 /// For example, this tree: 2342 /// 2343 /// mul mul mul mul 2344 /// \ / \ / 2345 /// + + 2346 /// \ / 2347 /// + 2348 /// This tree has "mul" as its reduced values and "+" as its reduction 2349 /// operations. A reduction might be feeding into a store or a binary operation 2350 /// feeding a phi. 2351 /// ... 2352 /// \ / 2353 /// + 2354 /// | 2355 /// phi += 2356 /// 2357 /// Or: 2358 /// ... 2359 /// \ / 2360 /// + 2361 /// | 2362 /// *p = 2363 /// 2364 class HorizontalReduction { 2365 SmallVector<Value *, 16> ReductionOps; 2366 SmallVector<Value *, 32> ReducedVals; 2367 2368 BinaryOperator *ReductionRoot; 2369 PHINode *ReductionPHI; 2370 2371 /// The opcode of the reduction. 2372 unsigned ReductionOpcode; 2373 /// The opcode of the values we perform a reduction on. 2374 unsigned ReducedValueOpcode; 2375 /// The width of one full horizontal reduction operation. 2376 unsigned ReduxWidth; 2377 /// Should we model this reduction as a pairwise reduction tree or a tree that 2378 /// splits the vector in halves and adds those halves. 2379 bool IsPairwiseReduction; 2380 2381 public: 2382 HorizontalReduction() 2383 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 2384 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 2385 2386 /// \brief Try to find a reduction tree. 2387 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, 2388 const DataLayout *DL) { 2389 assert((!Phi || 2390 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 2391 "Thi phi needs to use the binary operator"); 2392 2393 // We could have a initial reductions that is not an add. 2394 // r *= v1 + v2 + v3 + v4 2395 // In such a case start looking for a tree rooted in the first '+'. 2396 if (Phi) { 2397 if (B->getOperand(0) == Phi) { 2398 Phi = nullptr; 2399 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 2400 } else if (B->getOperand(1) == Phi) { 2401 Phi = nullptr; 2402 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 2403 } 2404 } 2405 2406 if (!B) 2407 return false; 2408 2409 Type *Ty = B->getType(); 2410 if (Ty->isVectorTy()) 2411 return false; 2412 2413 ReductionOpcode = B->getOpcode(); 2414 ReducedValueOpcode = 0; 2415 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); 2416 ReductionRoot = B; 2417 ReductionPHI = Phi; 2418 2419 if (ReduxWidth < 4) 2420 return false; 2421 2422 // We currently only support adds. 2423 if (ReductionOpcode != Instruction::Add && 2424 ReductionOpcode != Instruction::FAdd) 2425 return false; 2426 2427 // Post order traverse the reduction tree starting at B. We only handle true 2428 // trees containing only binary operators. 2429 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 2430 Stack.push_back(std::make_pair(B, 0)); 2431 while (!Stack.empty()) { 2432 BinaryOperator *TreeN = Stack.back().first; 2433 unsigned EdgeToVist = Stack.back().second++; 2434 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 2435 2436 // Only handle trees in the current basic block. 2437 if (TreeN->getParent() != B->getParent()) 2438 return false; 2439 2440 // Each tree node needs to have one user except for the ultimate 2441 // reduction. 2442 if (!TreeN->hasOneUse() && TreeN != B) 2443 return false; 2444 2445 // Postorder vist. 2446 if (EdgeToVist == 2 || IsReducedValue) { 2447 if (IsReducedValue) { 2448 // Make sure that the opcodes of the operations that we are going to 2449 // reduce match. 2450 if (!ReducedValueOpcode) 2451 ReducedValueOpcode = TreeN->getOpcode(); 2452 else if (ReducedValueOpcode != TreeN->getOpcode()) 2453 return false; 2454 ReducedVals.push_back(TreeN); 2455 } else { 2456 // We need to be able to reassociate the adds. 2457 if (!TreeN->isAssociative()) 2458 return false; 2459 ReductionOps.push_back(TreeN); 2460 } 2461 // Retract. 2462 Stack.pop_back(); 2463 continue; 2464 } 2465 2466 // Visit left or right. 2467 Value *NextV = TreeN->getOperand(EdgeToVist); 2468 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 2469 if (Next) 2470 Stack.push_back(std::make_pair(Next, 0)); 2471 else if (NextV != Phi) 2472 return false; 2473 } 2474 return true; 2475 } 2476 2477 /// \brief Attempt to vectorize the tree found by 2478 /// matchAssociativeReduction. 2479 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 2480 if (ReducedVals.empty()) 2481 return false; 2482 2483 unsigned NumReducedVals = ReducedVals.size(); 2484 if (NumReducedVals < ReduxWidth) 2485 return false; 2486 2487 Value *VectorizedTree = nullptr; 2488 IRBuilder<> Builder(ReductionRoot); 2489 FastMathFlags Unsafe; 2490 Unsafe.setUnsafeAlgebra(); 2491 Builder.SetFastMathFlags(Unsafe); 2492 unsigned i = 0; 2493 2494 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 2495 ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth); 2496 V.buildTree(ValsToReduce, ReductionOps); 2497 2498 // Estimate cost. 2499 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 2500 if (Cost >= -SLPCostThreshold) 2501 break; 2502 2503 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 2504 << ". (HorRdx)\n"); 2505 2506 // Vectorize a tree. 2507 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 2508 Value *VectorizedRoot = V.vectorizeTree(); 2509 2510 // Emit a reduction. 2511 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 2512 if (VectorizedTree) { 2513 Builder.SetCurrentDebugLocation(Loc); 2514 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 2515 ReducedSubTree, "bin.rdx"); 2516 } else 2517 VectorizedTree = ReducedSubTree; 2518 } 2519 2520 if (VectorizedTree) { 2521 // Finish the reduction. 2522 for (; i < NumReducedVals; ++i) { 2523 Builder.SetCurrentDebugLocation( 2524 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 2525 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 2526 ReducedVals[i]); 2527 } 2528 // Update users. 2529 if (ReductionPHI) { 2530 assert(ReductionRoot && "Need a reduction operation"); 2531 ReductionRoot->setOperand(0, VectorizedTree); 2532 ReductionRoot->setOperand(1, ReductionPHI); 2533 } else 2534 ReductionRoot->replaceAllUsesWith(VectorizedTree); 2535 } 2536 return VectorizedTree != nullptr; 2537 } 2538 2539 private: 2540 2541 /// \brief Calcuate the cost of a reduction. 2542 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 2543 Type *ScalarTy = FirstReducedVal->getType(); 2544 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 2545 2546 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 2547 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 2548 2549 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 2550 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 2551 2552 int ScalarReduxCost = 2553 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 2554 2555 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 2556 << " for reduction that starts with " << *FirstReducedVal 2557 << " (It is a " 2558 << (IsPairwiseReduction ? "pairwise" : "splitting") 2559 << " reduction)\n"); 2560 2561 return VecReduxCost - ScalarReduxCost; 2562 } 2563 2564 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 2565 Value *R, const Twine &Name = "") { 2566 if (Opcode == Instruction::FAdd) 2567 return Builder.CreateFAdd(L, R, Name); 2568 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 2569 } 2570 2571 /// \brief Emit a horizontal reduction of the vectorized value. 2572 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 2573 assert(VectorizedValue && "Need to have a vectorized tree node"); 2574 Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue); 2575 assert(isPowerOf2_32(ReduxWidth) && 2576 "We only handle power-of-two reductions for now"); 2577 2578 Value *TmpVec = ValToReduce; 2579 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 2580 if (IsPairwiseReduction) { 2581 Value *LeftMask = 2582 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 2583 Value *RightMask = 2584 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 2585 2586 Value *LeftShuf = Builder.CreateShuffleVector( 2587 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 2588 Value *RightShuf = Builder.CreateShuffleVector( 2589 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 2590 "rdx.shuf.r"); 2591 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 2592 "bin.rdx"); 2593 } else { 2594 Value *UpperHalf = 2595 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 2596 Value *Shuf = Builder.CreateShuffleVector( 2597 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 2598 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 2599 } 2600 } 2601 2602 // The result is in the first element of the vector. 2603 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 2604 } 2605 }; 2606 2607 /// \brief Recognize construction of vectors like 2608 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 2609 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 2610 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 2611 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 2612 /// 2613 /// Returns true if it matches 2614 /// 2615 static bool findBuildVector(InsertElementInst *FirstInsertElem, 2616 SmallVectorImpl<Value *> &BuildVector, 2617 SmallVectorImpl<Value *> &BuildVectorOpds) { 2618 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 2619 return false; 2620 2621 InsertElementInst *IE = FirstInsertElem; 2622 while (true) { 2623 BuildVector.push_back(IE); 2624 BuildVectorOpds.push_back(IE->getOperand(1)); 2625 2626 if (IE->use_empty()) 2627 return false; 2628 2629 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 2630 if (!NextUse) 2631 return true; 2632 2633 // If this isn't the final use, make sure the next insertelement is the only 2634 // use. It's OK if the final constructed vector is used multiple times 2635 if (!IE->hasOneUse()) 2636 return false; 2637 2638 IE = NextUse; 2639 } 2640 2641 return false; 2642 } 2643 2644 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 2645 return V->getType() < V2->getType(); 2646 } 2647 2648 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 2649 bool Changed = false; 2650 SmallVector<Value *, 4> Incoming; 2651 SmallSet<Value *, 16> VisitedInstrs; 2652 2653 bool HaveVectorizedPhiNodes = true; 2654 while (HaveVectorizedPhiNodes) { 2655 HaveVectorizedPhiNodes = false; 2656 2657 // Collect the incoming values from the PHIs. 2658 Incoming.clear(); 2659 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 2660 ++instr) { 2661 PHINode *P = dyn_cast<PHINode>(instr); 2662 if (!P) 2663 break; 2664 2665 if (!VisitedInstrs.count(P)) 2666 Incoming.push_back(P); 2667 } 2668 2669 // Sort by type. 2670 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 2671 2672 // Try to vectorize elements base on their type. 2673 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 2674 E = Incoming.end(); 2675 IncIt != E;) { 2676 2677 // Look for the next elements with the same type. 2678 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 2679 while (SameTypeIt != E && 2680 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 2681 VisitedInstrs.insert(*SameTypeIt); 2682 ++SameTypeIt; 2683 } 2684 2685 // Try to vectorize them. 2686 unsigned NumElts = (SameTypeIt - IncIt); 2687 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 2688 if (NumElts > 1 && 2689 tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) { 2690 // Success start over because instructions might have been changed. 2691 HaveVectorizedPhiNodes = true; 2692 Changed = true; 2693 break; 2694 } 2695 2696 // Start over at the next instruction of a different type (or the end). 2697 IncIt = SameTypeIt; 2698 } 2699 } 2700 2701 VisitedInstrs.clear(); 2702 2703 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 2704 // We may go through BB multiple times so skip the one we have checked. 2705 if (!VisitedInstrs.insert(it)) 2706 continue; 2707 2708 if (isa<DbgInfoIntrinsic>(it)) 2709 continue; 2710 2711 // Try to vectorize reductions that use PHINodes. 2712 if (PHINode *P = dyn_cast<PHINode>(it)) { 2713 // Check that the PHI is a reduction PHI. 2714 if (P->getNumIncomingValues() != 2) 2715 return Changed; 2716 Value *Rdx = 2717 (P->getIncomingBlock(0) == BB 2718 ? (P->getIncomingValue(0)) 2719 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 2720 : nullptr)); 2721 // Check if this is a Binary Operator. 2722 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 2723 if (!BI) 2724 continue; 2725 2726 // Try to match and vectorize a horizontal reduction. 2727 HorizontalReduction HorRdx; 2728 if (ShouldVectorizeHor && 2729 HorRdx.matchAssociativeReduction(P, BI, DL) && 2730 HorRdx.tryToReduce(R, TTI)) { 2731 Changed = true; 2732 it = BB->begin(); 2733 e = BB->end(); 2734 continue; 2735 } 2736 2737 Value *Inst = BI->getOperand(0); 2738 if (Inst == P) 2739 Inst = BI->getOperand(1); 2740 2741 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 2742 // We would like to start over since some instructions are deleted 2743 // and the iterator may become invalid value. 2744 Changed = true; 2745 it = BB->begin(); 2746 e = BB->end(); 2747 continue; 2748 } 2749 2750 continue; 2751 } 2752 2753 // Try to vectorize horizontal reductions feeding into a store. 2754 if (ShouldStartVectorizeHorAtStore) 2755 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 2756 if (BinaryOperator *BinOp = 2757 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 2758 HorizontalReduction HorRdx; 2759 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) && 2760 HorRdx.tryToReduce(R, TTI)) || 2761 tryToVectorize(BinOp, R))) { 2762 Changed = true; 2763 it = BB->begin(); 2764 e = BB->end(); 2765 continue; 2766 } 2767 } 2768 2769 // Try to vectorize trees that start at compare instructions. 2770 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 2771 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 2772 Changed = true; 2773 // We would like to start over since some instructions are deleted 2774 // and the iterator may become invalid value. 2775 it = BB->begin(); 2776 e = BB->end(); 2777 continue; 2778 } 2779 2780 for (int i = 0; i < 2; ++i) { 2781 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 2782 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 2783 Changed = true; 2784 // We would like to start over since some instructions are deleted 2785 // and the iterator may become invalid value. 2786 it = BB->begin(); 2787 e = BB->end(); 2788 } 2789 } 2790 } 2791 continue; 2792 } 2793 2794 // Try to vectorize trees that start at insertelement instructions. 2795 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 2796 SmallVector<Value *, 16> BuildVector; 2797 SmallVector<Value *, 16> BuildVectorOpds; 2798 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 2799 continue; 2800 2801 // Vectorize starting with the build vector operands ignoring the 2802 // BuildVector instructions for the purpose of scheduling and user 2803 // extraction. 2804 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 2805 Changed = true; 2806 it = BB->begin(); 2807 e = BB->end(); 2808 } 2809 2810 continue; 2811 } 2812 } 2813 2814 return Changed; 2815 } 2816 2817 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 2818 bool Changed = false; 2819 // Attempt to sort and vectorize each of the store-groups. 2820 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 2821 it != e; ++it) { 2822 if (it->second.size() < 2) 2823 continue; 2824 2825 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 2826 << it->second.size() << ".\n"); 2827 2828 // Process the stores in chunks of 16. 2829 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 2830 unsigned Len = std::min<unsigned>(CE - CI, 16); 2831 ArrayRef<StoreInst *> Chunk(&it->second[CI], Len); 2832 Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); 2833 } 2834 } 2835 return Changed; 2836 } 2837 2838 } // end anonymous namespace 2839 2840 char SLPVectorizer::ID = 0; 2841 static const char lv_name[] = "SLP Vectorizer"; 2842 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 2843 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 2844 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 2845 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 2846 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 2847 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 2848 2849 namespace llvm { 2850 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 2851 } 2852