1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 namespace slpvectorizer { 776 777 /// Bottom Up SLP Vectorizer. 778 class BoUpSLP { 779 struct TreeEntry; 780 struct ScheduleData; 781 782 public: 783 using ValueList = SmallVector<Value *, 8>; 784 using InstrList = SmallVector<Instruction *, 16>; 785 using ValueSet = SmallPtrSet<Value *, 16>; 786 using StoreList = SmallVector<StoreInst *, 8>; 787 using ExtraValueToDebugLocsMap = 788 MapVector<Value *, SmallVector<Instruction *, 2>>; 789 using OrdersType = SmallVector<unsigned, 4>; 790 791 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 792 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 793 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 794 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 795 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 796 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 797 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 798 // Use the vector register size specified by the target unless overridden 799 // by a command-line option. 800 // TODO: It would be better to limit the vectorization factor based on 801 // data type rather than just register size. For example, x86 AVX has 802 // 256-bit registers, but it does not support integer operations 803 // at that width (that requires AVX2). 804 if (MaxVectorRegSizeOption.getNumOccurrences()) 805 MaxVecRegSize = MaxVectorRegSizeOption; 806 else 807 MaxVecRegSize = 808 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 809 .getFixedSize(); 810 811 if (MinVectorRegSizeOption.getNumOccurrences()) 812 MinVecRegSize = MinVectorRegSizeOption; 813 else 814 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 815 } 816 817 /// Vectorize the tree that starts with the elements in \p VL. 818 /// Returns the vectorized root. 819 Value *vectorizeTree(); 820 821 /// Vectorize the tree but with the list of externally used values \p 822 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 823 /// generated extractvalue instructions. 824 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 825 826 /// \returns the cost incurred by unwanted spills and fills, caused by 827 /// holding live values over call sites. 828 InstructionCost getSpillCost() const; 829 830 /// \returns the vectorization cost of the subtree that starts at \p VL. 831 /// A negative number means that this is profitable. 832 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 833 834 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 835 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 836 void buildTree(ArrayRef<Value *> Roots, 837 ArrayRef<Value *> UserIgnoreLst = None); 838 839 /// Builds external uses of the vectorized scalars, i.e. the list of 840 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 841 /// ExternallyUsedValues contains additional list of external uses to handle 842 /// vectorization of reductions. 843 void 844 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 845 846 /// Clear the internal data structures that are created by 'buildTree'. 847 void deleteTree() { 848 VectorizableTree.clear(); 849 ScalarToTreeEntry.clear(); 850 MustGather.clear(); 851 ExternalUses.clear(); 852 for (auto &Iter : BlocksSchedules) { 853 BlockScheduling *BS = Iter.second.get(); 854 BS->clear(); 855 } 856 MinBWs.clear(); 857 InstrElementSize.clear(); 858 } 859 860 unsigned getTreeSize() const { return VectorizableTree.size(); } 861 862 /// Perform LICM and CSE on the newly generated gather sequences. 863 void optimizeGatherSequence(); 864 865 /// Checks if the specified gather tree entry \p TE can be represented as a 866 /// shuffled vector entry + (possibly) permutation with other gathers. It 867 /// implements the checks only for possibly ordered scalars (Loads, 868 /// ExtractElement, ExtractValue), which can be part of the graph. 869 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 870 871 /// Gets reordering data for the given tree entry. If the entry is vectorized 872 /// - just return ReorderIndices, otherwise check if the scalars can be 873 /// reordered and return the most optimal order. 874 /// \param TopToBottom If true, include the order of vectorized stores and 875 /// insertelement nodes, otherwise skip them. 876 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 877 878 /// Reorders the current graph to the most profitable order starting from the 879 /// root node to the leaf nodes. The best order is chosen only from the nodes 880 /// of the same size (vectorization factor). Smaller nodes are considered 881 /// parts of subgraph with smaller VF and they are reordered independently. We 882 /// can make it because we still need to extend smaller nodes to the wider VF 883 /// and we can merge reordering shuffles with the widening shuffles. 884 void reorderTopToBottom(); 885 886 /// Reorders the current graph to the most profitable order starting from 887 /// leaves to the root. It allows to rotate small subgraphs and reduce the 888 /// number of reshuffles if the leaf nodes use the same order. In this case we 889 /// can merge the orders and just shuffle user node instead of shuffling its 890 /// operands. Plus, even the leaf nodes have different orders, it allows to 891 /// sink reordering in the graph closer to the root node and merge it later 892 /// during analysis. 893 void reorderBottomToTop(bool IgnoreReorder = false); 894 895 /// \return The vector element size in bits to use when vectorizing the 896 /// expression tree ending at \p V. If V is a store, the size is the width of 897 /// the stored value. Otherwise, the size is the width of the largest loaded 898 /// value reaching V. This method is used by the vectorizer to calculate 899 /// vectorization factors. 900 unsigned getVectorElementSize(Value *V); 901 902 /// Compute the minimum type sizes required to represent the entries in a 903 /// vectorizable tree. 904 void computeMinimumValueSizes(); 905 906 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 907 unsigned getMaxVecRegSize() const { 908 return MaxVecRegSize; 909 } 910 911 // \returns minimum vector register size as set by cl::opt. 912 unsigned getMinVecRegSize() const { 913 return MinVecRegSize; 914 } 915 916 unsigned getMinVF(unsigned Sz) const { 917 return std::max(2U, getMinVecRegSize() / Sz); 918 } 919 920 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 921 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 922 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 923 return MaxVF ? MaxVF : UINT_MAX; 924 } 925 926 /// Check if homogeneous aggregate is isomorphic to some VectorType. 927 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 928 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 929 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 930 /// 931 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 932 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 933 934 /// \returns True if the VectorizableTree is both tiny and not fully 935 /// vectorizable. We do not vectorize such trees. 936 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 937 938 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 939 /// can be load combined in the backend. Load combining may not be allowed in 940 /// the IR optimizer, so we do not want to alter the pattern. For example, 941 /// partially transforming a scalar bswap() pattern into vector code is 942 /// effectively impossible for the backend to undo. 943 /// TODO: If load combining is allowed in the IR optimizer, this analysis 944 /// may not be necessary. 945 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 946 947 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 948 /// can be load combined in the backend. Load combining may not be allowed in 949 /// the IR optimizer, so we do not want to alter the pattern. For example, 950 /// partially transforming a scalar bswap() pattern into vector code is 951 /// effectively impossible for the backend to undo. 952 /// TODO: If load combining is allowed in the IR optimizer, this analysis 953 /// may not be necessary. 954 bool isLoadCombineCandidate() const; 955 956 OptimizationRemarkEmitter *getORE() { return ORE; } 957 958 /// This structure holds any data we need about the edges being traversed 959 /// during buildTree_rec(). We keep track of: 960 /// (i) the user TreeEntry index, and 961 /// (ii) the index of the edge. 962 struct EdgeInfo { 963 EdgeInfo() = default; 964 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 965 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 966 /// The user TreeEntry. 967 TreeEntry *UserTE = nullptr; 968 /// The operand index of the use. 969 unsigned EdgeIdx = UINT_MAX; 970 #ifndef NDEBUG 971 friend inline raw_ostream &operator<<(raw_ostream &OS, 972 const BoUpSLP::EdgeInfo &EI) { 973 EI.dump(OS); 974 return OS; 975 } 976 /// Debug print. 977 void dump(raw_ostream &OS) const { 978 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 979 << " EdgeIdx:" << EdgeIdx << "}"; 980 } 981 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 982 #endif 983 }; 984 985 /// A helper data structure to hold the operands of a vector of instructions. 986 /// This supports a fixed vector length for all operand vectors. 987 class VLOperands { 988 /// For each operand we need (i) the value, and (ii) the opcode that it 989 /// would be attached to if the expression was in a left-linearized form. 990 /// This is required to avoid illegal operand reordering. 991 /// For example: 992 /// \verbatim 993 /// 0 Op1 994 /// |/ 995 /// Op1 Op2 Linearized + Op2 996 /// \ / ----------> |/ 997 /// - - 998 /// 999 /// Op1 - Op2 (0 + Op1) - Op2 1000 /// \endverbatim 1001 /// 1002 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1003 /// 1004 /// Another way to think of this is to track all the operations across the 1005 /// path from the operand all the way to the root of the tree and to 1006 /// calculate the operation that corresponds to this path. For example, the 1007 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1008 /// corresponding operation is a '-' (which matches the one in the 1009 /// linearized tree, as shown above). 1010 /// 1011 /// For lack of a better term, we refer to this operation as Accumulated 1012 /// Path Operation (APO). 1013 struct OperandData { 1014 OperandData() = default; 1015 OperandData(Value *V, bool APO, bool IsUsed) 1016 : V(V), APO(APO), IsUsed(IsUsed) {} 1017 /// The operand value. 1018 Value *V = nullptr; 1019 /// TreeEntries only allow a single opcode, or an alternate sequence of 1020 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1021 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1022 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1023 /// (e.g., Add/Mul) 1024 bool APO = false; 1025 /// Helper data for the reordering function. 1026 bool IsUsed = false; 1027 }; 1028 1029 /// During operand reordering, we are trying to select the operand at lane 1030 /// that matches best with the operand at the neighboring lane. Our 1031 /// selection is based on the type of value we are looking for. For example, 1032 /// if the neighboring lane has a load, we need to look for a load that is 1033 /// accessing a consecutive address. These strategies are summarized in the 1034 /// 'ReorderingMode' enumerator. 1035 enum class ReorderingMode { 1036 Load, ///< Matching loads to consecutive memory addresses 1037 Opcode, ///< Matching instructions based on opcode (same or alternate) 1038 Constant, ///< Matching constants 1039 Splat, ///< Matching the same instruction multiple times (broadcast) 1040 Failed, ///< We failed to create a vectorizable group 1041 }; 1042 1043 using OperandDataVec = SmallVector<OperandData, 2>; 1044 1045 /// A vector of operand vectors. 1046 SmallVector<OperandDataVec, 4> OpsVec; 1047 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 1052 /// \returns the operand data at \p OpIdx and \p Lane. 1053 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1054 return OpsVec[OpIdx][Lane]; 1055 } 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1058 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// Clears the used flag for all entries. 1063 void clearUsed() { 1064 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1065 OpIdx != NumOperands; ++OpIdx) 1066 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1067 ++Lane) 1068 OpsVec[OpIdx][Lane].IsUsed = false; 1069 } 1070 1071 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1072 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1073 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1074 } 1075 1076 // The hard-coded scores listed here are not very important, though it shall 1077 // be higher for better matches to improve the resulting cost. When 1078 // computing the scores of matching one sub-tree with another, we are 1079 // basically counting the number of values that are matching. So even if all 1080 // scores are set to 1, we would still get a decent matching result. 1081 // However, sometimes we have to break ties. For example we may have to 1082 // choose between matching loads vs matching opcodes. This is what these 1083 // scores are helping us with: they provide the order of preference. Also, 1084 // this is important if the scalar is externally used or used in another 1085 // tree entry node in the different lane. 1086 1087 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1088 static const int ScoreConsecutiveLoads = 4; 1089 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1090 static const int ScoreReversedLoads = 3; 1091 /// ExtractElementInst from same vector and consecutive indexes. 1092 static const int ScoreConsecutiveExtracts = 4; 1093 /// ExtractElementInst from same vector and reversed indices. 1094 static const int ScoreReversedExtracts = 3; 1095 /// Constants. 1096 static const int ScoreConstants = 2; 1097 /// Instructions with the same opcode. 1098 static const int ScoreSameOpcode = 2; 1099 /// Instructions with alt opcodes (e.g, add + sub). 1100 static const int ScoreAltOpcodes = 1; 1101 /// Identical instructions (a.k.a. splat or broadcast). 1102 static const int ScoreSplat = 1; 1103 /// Matching with an undef is preferable to failing. 1104 static const int ScoreUndef = 1; 1105 /// Score for failing to find a decent match. 1106 static const int ScoreFail = 0; 1107 /// Score if all users are vectorized. 1108 static const int ScoreAllUserVectorized = 1; 1109 1110 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1111 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1112 /// MainAltOps. 1113 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1114 ScalarEvolution &SE, int NumLanes, 1115 ArrayRef<Value *> MainAltOps) { 1116 if (V1 == V2) 1117 return VLOperands::ScoreSplat; 1118 1119 auto *LI1 = dyn_cast<LoadInst>(V1); 1120 auto *LI2 = dyn_cast<LoadInst>(V2); 1121 if (LI1 && LI2) { 1122 if (LI1->getParent() != LI2->getParent()) 1123 return VLOperands::ScoreFail; 1124 1125 Optional<int> Dist = getPointersDiff( 1126 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1127 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1128 if (!Dist || *Dist == 0) 1129 return VLOperands::ScoreFail; 1130 // The distance is too large - still may be profitable to use masked 1131 // loads/gathers. 1132 if (std::abs(*Dist) > NumLanes / 2) 1133 return VLOperands::ScoreAltOpcodes; 1134 // This still will detect consecutive loads, but we might have "holes" 1135 // in some cases. It is ok for non-power-2 vectorization and may produce 1136 // better results. It should not affect current vectorization. 1137 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1138 : VLOperands::ScoreReversedLoads; 1139 } 1140 1141 auto *C1 = dyn_cast<Constant>(V1); 1142 auto *C2 = dyn_cast<Constant>(V2); 1143 if (C1 && C2) 1144 return VLOperands::ScoreConstants; 1145 1146 // Extracts from consecutive indexes of the same vector better score as 1147 // the extracts could be optimized away. 1148 Value *EV1; 1149 ConstantInt *Ex1Idx; 1150 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1151 // Undefs are always profitable for extractelements. 1152 if (isa<UndefValue>(V2)) 1153 return VLOperands::ScoreConsecutiveExtracts; 1154 Value *EV2 = nullptr; 1155 ConstantInt *Ex2Idx = nullptr; 1156 if (match(V2, 1157 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1158 m_Undef())))) { 1159 // Undefs are always profitable for extractelements. 1160 if (!Ex2Idx) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (EV2 == EV1) { 1165 int Idx1 = Ex1Idx->getZExtValue(); 1166 int Idx2 = Ex2Idx->getZExtValue(); 1167 int Dist = Idx2 - Idx1; 1168 // The distance is too large - still may be profitable to use 1169 // shuffles. 1170 if (std::abs(Dist) == 0) 1171 return VLOperands::ScoreSplat; 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreSameOpcode; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 return VLOperands::ScoreAltOpcodes; 1178 } 1179 return VLOperands::ScoreFail; 1180 } 1181 1182 auto *I1 = dyn_cast<Instruction>(V1); 1183 auto *I2 = dyn_cast<Instruction>(V2); 1184 if (I1 && I2) { 1185 if (I1->getParent() != I2->getParent()) 1186 return VLOperands::ScoreFail; 1187 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1188 Ops.push_back(I1); 1189 Ops.push_back(I2); 1190 InstructionsState S = getSameOpcode(Ops); 1191 // Note: Only consider instructions with <= 2 operands to avoid 1192 // complexity explosion. 1193 if (S.getOpcode() && 1194 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1195 !S.isAltShuffle()) && 1196 all_of(Ops, [&S](Value *V) { 1197 return cast<Instruction>(V)->getNumOperands() == 1198 S.MainOp->getNumOperands(); 1199 })) 1200 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1201 : VLOperands::ScoreSameOpcode; 1202 } 1203 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreUndef; 1206 1207 return VLOperands::ScoreFail; 1208 } 1209 1210 /// \param Lane lane of the operands under analysis. 1211 /// \param OpIdx operand index in \p Lane lane we're looking the best 1212 /// candidate for. 1213 /// \param Idx operand index of the current candidate value. 1214 /// \returns The additional score due to possible broadcasting of the 1215 /// elements in the lane. It is more profitable to have power-of-2 unique 1216 /// elements in the lane, it will be vectorized with higher probability 1217 /// after removing duplicates. Currently the SLP vectorizer supports only 1218 /// vectorization of the power-of-2 number of unique scalars. 1219 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1220 Value *IdxLaneV = getData(Idx, Lane).V; 1221 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1222 return 0; 1223 SmallPtrSet<Value *, 4> Uniques; 1224 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1225 if (Ln == Lane) 1226 continue; 1227 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1228 if (!isa<Instruction>(OpIdxLnV)) 1229 return 0; 1230 Uniques.insert(OpIdxLnV); 1231 } 1232 int UniquesCount = Uniques.size(); 1233 int UniquesCntWithIdxLaneV = 1234 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1235 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1236 int UniquesCntWithOpIdxLaneV = 1237 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1238 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1239 return 0; 1240 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1241 UniquesCntWithOpIdxLaneV) - 1242 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1243 } 1244 1245 /// \param Lane lane of the operands under analysis. 1246 /// \param OpIdx operand index in \p Lane lane we're looking the best 1247 /// candidate for. 1248 /// \param Idx operand index of the current candidate value. 1249 /// \returns The additional score for the scalar which users are all 1250 /// vectorized. 1251 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1252 Value *IdxLaneV = getData(Idx, Lane).V; 1253 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1254 // Do not care about number of uses for vector-like instructions 1255 // (extractelement/extractvalue with constant indices), they are extracts 1256 // themselves and already externally used. Vectorization of such 1257 // instructions does not add extra extractelement instruction, just may 1258 // remove it. 1259 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1260 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1261 return VLOperands::ScoreAllUserVectorized; 1262 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1263 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1264 return 0; 1265 return R.areAllUsersVectorized(IdxLaneI, None) 1266 ? VLOperands::ScoreAllUserVectorized 1267 : 0; 1268 } 1269 1270 /// Go through the operands of \p LHS and \p RHS recursively until \p 1271 /// MaxLevel, and return the cummulative score. For example: 1272 /// \verbatim 1273 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1274 /// \ / \ / \ / \ / 1275 /// + + + + 1276 /// G1 G2 G3 G4 1277 /// \endverbatim 1278 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1279 /// each level recursively, accumulating the score. It starts from matching 1280 /// the additions at level 0, then moves on to the loads (level 1). The 1281 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1282 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1283 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1284 /// Please note that the order of the operands does not matter, as we 1285 /// evaluate the score of all profitable combinations of operands. In 1286 /// other words the score of G1 and G4 is the same as G1 and G2. This 1287 /// heuristic is based on ideas described in: 1288 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1289 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1290 /// Luís F. W. Góes 1291 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1292 ArrayRef<Value *> MainAltOps) { 1293 1294 // Get the shallow score of V1 and V2. 1295 int ShallowScoreAtThisLevel = 1296 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1297 1298 // If reached MaxLevel, 1299 // or if V1 and V2 are not instructions, 1300 // or if they are SPLAT, 1301 // or if they are not consecutive, 1302 // or if profitable to vectorize loads or extractelements, early return 1303 // the current cost. 1304 auto *I1 = dyn_cast<Instruction>(LHS); 1305 auto *I2 = dyn_cast<Instruction>(RHS); 1306 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1307 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1308 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1309 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1310 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1311 ShallowScoreAtThisLevel)) 1312 return ShallowScoreAtThisLevel; 1313 assert(I1 && I2 && "Should have early exited."); 1314 1315 // Contains the I2 operand indexes that got matched with I1 operands. 1316 SmallSet<unsigned, 4> Op2Used; 1317 1318 // Recursion towards the operands of I1 and I2. We are trying all possible 1319 // operand pairs, and keeping track of the best score. 1320 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1321 OpIdx1 != NumOperands1; ++OpIdx1) { 1322 // Try to pair op1I with the best operand of I2. 1323 int MaxTmpScore = 0; 1324 unsigned MaxOpIdx2 = 0; 1325 bool FoundBest = false; 1326 // If I2 is commutative try all combinations. 1327 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1328 unsigned ToIdx = isCommutative(I2) 1329 ? I2->getNumOperands() 1330 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1331 assert(FromIdx <= ToIdx && "Bad index"); 1332 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1333 // Skip operands already paired with OpIdx1. 1334 if (Op2Used.count(OpIdx2)) 1335 continue; 1336 // Recursively calculate the cost at each level 1337 int TmpScore = 1338 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1339 CurrLevel + 1, MaxLevel, None); 1340 // Look for the best score. 1341 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1342 MaxTmpScore = TmpScore; 1343 MaxOpIdx2 = OpIdx2; 1344 FoundBest = true; 1345 } 1346 } 1347 if (FoundBest) { 1348 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1349 Op2Used.insert(MaxOpIdx2); 1350 ShallowScoreAtThisLevel += MaxTmpScore; 1351 } 1352 } 1353 return ShallowScoreAtThisLevel; 1354 } 1355 1356 /// Score scaling factor for fully compatible instructions but with 1357 /// different number of external uses. Allows better selection of the 1358 /// instructions with less external uses. 1359 static const int ScoreScaleFactor = 10; 1360 1361 /// \Returns the look-ahead score, which tells us how much the sub-trees 1362 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1363 /// score. This helps break ties in an informed way when we cannot decide on 1364 /// the order of the operands by just considering the immediate 1365 /// predecessors. 1366 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1367 int Lane, unsigned OpIdx, unsigned Idx, 1368 bool &IsUsed) { 1369 int Score = 1370 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1371 if (Score) { 1372 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1373 if (Score <= -SplatScore) { 1374 // Set the minimum score for splat-like sequence to avoid setting 1375 // failed state. 1376 Score = 1; 1377 } else { 1378 Score += SplatScore; 1379 // Scale score to see the difference between different operands 1380 // and similar operands but all vectorized/not all vectorized 1381 // uses. It does not affect actual selection of the best 1382 // compatible operand in general, just allows to select the 1383 // operand with all vectorized uses. 1384 Score *= ScoreScaleFactor; 1385 Score += getExternalUseScore(Lane, OpIdx, Idx); 1386 IsUsed = true; 1387 } 1388 } 1389 return Score; 1390 } 1391 1392 /// Best defined scores per lanes between the passes. Used to choose the 1393 /// best operand (with the highest score) between the passes. 1394 /// The key - {Operand Index, Lane}. 1395 /// The value - the best score between the passes for the lane and the 1396 /// operand. 1397 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1398 BestScoresPerLanes; 1399 1400 // Search all operands in Ops[*][Lane] for the one that matches best 1401 // Ops[OpIdx][LastLane] and return its opreand index. 1402 // If no good match can be found, return None. 1403 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1404 ArrayRef<ReorderingMode> ReorderingModes, 1405 ArrayRef<Value *> MainAltOps) { 1406 unsigned NumOperands = getNumOperands(); 1407 1408 // The operand of the previous lane at OpIdx. 1409 Value *OpLastLane = getData(OpIdx, LastLane).V; 1410 1411 // Our strategy mode for OpIdx. 1412 ReorderingMode RMode = ReorderingModes[OpIdx]; 1413 if (RMode == ReorderingMode::Failed) 1414 return None; 1415 1416 // The linearized opcode of the operand at OpIdx, Lane. 1417 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1418 1419 // The best operand index and its score. 1420 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1421 // are using the score to differentiate between the two. 1422 struct BestOpData { 1423 Optional<unsigned> Idx = None; 1424 unsigned Score = 0; 1425 } BestOp; 1426 BestOp.Score = 1427 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1428 .first->second; 1429 1430 // Track if the operand must be marked as used. If the operand is set to 1431 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1432 // want to reestimate the operands again on the following iterations). 1433 bool IsUsed = 1434 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1435 // Iterate through all unused operands and look for the best. 1436 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1437 // Get the operand at Idx and Lane. 1438 OperandData &OpData = getData(Idx, Lane); 1439 Value *Op = OpData.V; 1440 bool OpAPO = OpData.APO; 1441 1442 // Skip already selected operands. 1443 if (OpData.IsUsed) 1444 continue; 1445 1446 // Skip if we are trying to move the operand to a position with a 1447 // different opcode in the linearized tree form. This would break the 1448 // semantics. 1449 if (OpAPO != OpIdxAPO) 1450 continue; 1451 1452 // Look for an operand that matches the current mode. 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 case ReorderingMode::Constant: 1456 case ReorderingMode::Opcode: { 1457 bool LeftToRight = Lane > LastLane; 1458 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1459 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1460 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1461 OpIdx, Idx, IsUsed); 1462 if (Score > static_cast<int>(BestOp.Score)) { 1463 BestOp.Idx = Idx; 1464 BestOp.Score = Score; 1465 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1466 } 1467 break; 1468 } 1469 case ReorderingMode::Splat: 1470 if (Op == OpLastLane) 1471 BestOp.Idx = Idx; 1472 break; 1473 case ReorderingMode::Failed: 1474 llvm_unreachable("Not expected Failed reordering mode."); 1475 } 1476 } 1477 1478 if (BestOp.Idx) { 1479 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1480 return BestOp.Idx; 1481 } 1482 // If we could not find a good match return None. 1483 return None; 1484 } 1485 1486 /// Helper for reorderOperandVecs. 1487 /// \returns the lane that we should start reordering from. This is the one 1488 /// which has the least number of operands that can freely move about or 1489 /// less profitable because it already has the most optimal set of operands. 1490 unsigned getBestLaneToStartReordering() const { 1491 unsigned Min = UINT_MAX; 1492 unsigned SameOpNumber = 0; 1493 // std::pair<unsigned, unsigned> is used to implement a simple voting 1494 // algorithm and choose the lane with the least number of operands that 1495 // can freely move about or less profitable because it already has the 1496 // most optimal set of operands. The first unsigned is a counter for 1497 // voting, the second unsigned is the counter of lanes with instructions 1498 // with same/alternate opcodes and same parent basic block. 1499 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1500 // Try to be closer to the original results, if we have multiple lanes 1501 // with same cost. If 2 lanes have the same cost, use the one with the 1502 // lowest index. 1503 for (int I = getNumLanes(); I > 0; --I) { 1504 unsigned Lane = I - 1; 1505 OperandsOrderData NumFreeOpsHash = 1506 getMaxNumOperandsThatCanBeReordered(Lane); 1507 // Compare the number of operands that can move and choose the one with 1508 // the least number. 1509 if (NumFreeOpsHash.NumOfAPOs < Min) { 1510 Min = NumFreeOpsHash.NumOfAPOs; 1511 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1512 HashMap.clear(); 1513 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1514 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1515 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1516 // Select the most optimal lane in terms of number of operands that 1517 // should be moved around. 1518 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1519 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1520 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1521 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1522 auto It = HashMap.find(NumFreeOpsHash.Hash); 1523 if (It == HashMap.end()) 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 else 1526 ++It->second.first; 1527 } 1528 } 1529 // Select the lane with the minimum counter. 1530 unsigned BestLane = 0; 1531 unsigned CntMin = UINT_MAX; 1532 for (const auto &Data : reverse(HashMap)) { 1533 if (Data.second.first < CntMin) { 1534 CntMin = Data.second.first; 1535 BestLane = Data.second.second; 1536 } 1537 } 1538 return BestLane; 1539 } 1540 1541 /// Data structure that helps to reorder operands. 1542 struct OperandsOrderData { 1543 /// The best number of operands with the same APOs, which can be 1544 /// reordered. 1545 unsigned NumOfAPOs = UINT_MAX; 1546 /// Number of operands with the same/alternate instruction opcode and 1547 /// parent. 1548 unsigned NumOpsWithSameOpcodeParent = 0; 1549 /// Hash for the actual operands ordering. 1550 /// Used to count operands, actually their position id and opcode 1551 /// value. It is used in the voting mechanism to find the lane with the 1552 /// least number of operands that can freely move about or less profitable 1553 /// because it already has the most optimal set of operands. Can be 1554 /// replaced with SmallVector<unsigned> instead but hash code is faster 1555 /// and requires less memory. 1556 unsigned Hash = 0; 1557 }; 1558 /// \returns the maximum number of operands that are allowed to be reordered 1559 /// for \p Lane and the number of compatible instructions(with the same 1560 /// parent/opcode). This is used as a heuristic for selecting the first lane 1561 /// to start operand reordering. 1562 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1563 unsigned CntTrue = 0; 1564 unsigned NumOperands = getNumOperands(); 1565 // Operands with the same APO can be reordered. We therefore need to count 1566 // how many of them we have for each APO, like this: Cnt[APO] = x. 1567 // Since we only have two APOs, namely true and false, we can avoid using 1568 // a map. Instead we can simply count the number of operands that 1569 // correspond to one of them (in this case the 'true' APO), and calculate 1570 // the other by subtracting it from the total number of operands. 1571 // Operands with the same instruction opcode and parent are more 1572 // profitable since we don't need to move them in many cases, with a high 1573 // probability such lane already can be vectorized effectively. 1574 bool AllUndefs = true; 1575 unsigned NumOpsWithSameOpcodeParent = 0; 1576 Instruction *OpcodeI = nullptr; 1577 BasicBlock *Parent = nullptr; 1578 unsigned Hash = 0; 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 const OperandData &OpData = getData(OpIdx, Lane); 1581 if (OpData.APO) 1582 ++CntTrue; 1583 // Use Boyer-Moore majority voting for finding the majority opcode and 1584 // the number of times it occurs. 1585 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1586 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1587 I->getParent() != Parent) { 1588 if (NumOpsWithSameOpcodeParent == 0) { 1589 NumOpsWithSameOpcodeParent = 1; 1590 OpcodeI = I; 1591 Parent = I->getParent(); 1592 } else { 1593 --NumOpsWithSameOpcodeParent; 1594 } 1595 } else { 1596 ++NumOpsWithSameOpcodeParent; 1597 } 1598 } 1599 Hash = hash_combine( 1600 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1601 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1602 } 1603 if (AllUndefs) 1604 return {}; 1605 OperandsOrderData Data; 1606 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1607 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1608 Data.Hash = Hash; 1609 return Data; 1610 } 1611 1612 /// Go through the instructions in VL and append their operands. 1613 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1614 assert(!VL.empty() && "Bad VL"); 1615 assert((empty() || VL.size() == getNumLanes()) && 1616 "Expected same number of lanes"); 1617 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1618 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1619 OpsVec.resize(NumOperands); 1620 unsigned NumLanes = VL.size(); 1621 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1622 OpsVec[OpIdx].resize(NumLanes); 1623 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1624 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1625 // Our tree has just 3 nodes: the root and two operands. 1626 // It is therefore trivial to get the APO. We only need to check the 1627 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1628 // RHS operand. The LHS operand of both add and sub is never attached 1629 // to an inversese operation in the linearized form, therefore its APO 1630 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1631 1632 // Since operand reordering is performed on groups of commutative 1633 // operations or alternating sequences (e.g., +, -), we can safely 1634 // tell the inverse operations by checking commutativity. 1635 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1636 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1637 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1638 APO, false}; 1639 } 1640 } 1641 } 1642 1643 /// \returns the number of operands. 1644 unsigned getNumOperands() const { return OpsVec.size(); } 1645 1646 /// \returns the number of lanes. 1647 unsigned getNumLanes() const { return OpsVec[0].size(); } 1648 1649 /// \returns the operand value at \p OpIdx and \p Lane. 1650 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1651 return getData(OpIdx, Lane).V; 1652 } 1653 1654 /// \returns true if the data structure is empty. 1655 bool empty() const { return OpsVec.empty(); } 1656 1657 /// Clears the data. 1658 void clear() { OpsVec.clear(); } 1659 1660 /// \Returns true if there are enough operands identical to \p Op to fill 1661 /// the whole vector. 1662 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1663 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1664 bool OpAPO = getData(OpIdx, Lane).APO; 1665 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1666 if (Ln == Lane) 1667 continue; 1668 // This is set to true if we found a candidate for broadcast at Lane. 1669 bool FoundCandidate = false; 1670 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1671 OperandData &Data = getData(OpI, Ln); 1672 if (Data.APO != OpAPO || Data.IsUsed) 1673 continue; 1674 if (Data.V == Op) { 1675 FoundCandidate = true; 1676 Data.IsUsed = true; 1677 break; 1678 } 1679 } 1680 if (!FoundCandidate) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 public: 1687 /// Initialize with all the operands of the instruction vector \p RootVL. 1688 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1689 ScalarEvolution &SE, const BoUpSLP &R) 1690 : DL(DL), SE(SE), R(R) { 1691 // Append all the operands of RootVL. 1692 appendOperandsOfVL(RootVL); 1693 } 1694 1695 /// \Returns a value vector with the operands across all lanes for the 1696 /// opearnd at \p OpIdx. 1697 ValueList getVL(unsigned OpIdx) const { 1698 ValueList OpVL(OpsVec[OpIdx].size()); 1699 assert(OpsVec[OpIdx].size() == getNumLanes() && 1700 "Expected same num of lanes across all operands"); 1701 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1702 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1703 return OpVL; 1704 } 1705 1706 // Performs operand reordering for 2 or more operands. 1707 // The original operands are in OrigOps[OpIdx][Lane]. 1708 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1709 void reorder() { 1710 unsigned NumOperands = getNumOperands(); 1711 unsigned NumLanes = getNumLanes(); 1712 // Each operand has its own mode. We are using this mode to help us select 1713 // the instructions for each lane, so that they match best with the ones 1714 // we have selected so far. 1715 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1716 1717 // This is a greedy single-pass algorithm. We are going over each lane 1718 // once and deciding on the best order right away with no back-tracking. 1719 // However, in order to increase its effectiveness, we start with the lane 1720 // that has operands that can move the least. For example, given the 1721 // following lanes: 1722 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1723 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1724 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1725 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1726 // we will start at Lane 1, since the operands of the subtraction cannot 1727 // be reordered. Then we will visit the rest of the lanes in a circular 1728 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1729 1730 // Find the first lane that we will start our search from. 1731 unsigned FirstLane = getBestLaneToStartReordering(); 1732 1733 // Initialize the modes. 1734 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1735 Value *OpLane0 = getValue(OpIdx, FirstLane); 1736 // Keep track if we have instructions with all the same opcode on one 1737 // side. 1738 if (isa<LoadInst>(OpLane0)) 1739 ReorderingModes[OpIdx] = ReorderingMode::Load; 1740 else if (isa<Instruction>(OpLane0)) { 1741 // Check if OpLane0 should be broadcast. 1742 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1743 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1744 else 1745 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1746 } 1747 else if (isa<Constant>(OpLane0)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1749 else if (isa<Argument>(OpLane0)) 1750 // Our best hope is a Splat. It may save some cost in some cases. 1751 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1752 else 1753 // NOTE: This should be unreachable. 1754 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1755 } 1756 1757 // Check that we don't have same operands. No need to reorder if operands 1758 // are just perfect diamond or shuffled diamond match. Do not do it only 1759 // for possible broadcasts or non-power of 2 number of scalars (just for 1760 // now). 1761 auto &&SkipReordering = [this]() { 1762 SmallPtrSet<Value *, 4> UniqueValues; 1763 ArrayRef<OperandData> Op0 = OpsVec.front(); 1764 for (const OperandData &Data : Op0) 1765 UniqueValues.insert(Data.V); 1766 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1767 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1768 return !UniqueValues.contains(Data.V); 1769 })) 1770 return false; 1771 } 1772 // TODO: Check if we can remove a check for non-power-2 number of 1773 // scalars after full support of non-power-2 vectorization. 1774 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1775 }; 1776 1777 // If the initial strategy fails for any of the operand indexes, then we 1778 // perform reordering again in a second pass. This helps avoid assigning 1779 // high priority to the failed strategy, and should improve reordering for 1780 // the non-failed operand indexes. 1781 for (int Pass = 0; Pass != 2; ++Pass) { 1782 // Check if no need to reorder operands since they're are perfect or 1783 // shuffled diamond match. 1784 // Need to to do it to avoid extra external use cost counting for 1785 // shuffled matches, which may cause regressions. 1786 if (SkipReordering()) 1787 break; 1788 // Skip the second pass if the first pass did not fail. 1789 bool StrategyFailed = false; 1790 // Mark all operand data as free to use. 1791 clearUsed(); 1792 // We keep the original operand order for the FirstLane, so reorder the 1793 // rest of the lanes. We are visiting the nodes in a circular fashion, 1794 // using FirstLane as the center point and increasing the radius 1795 // distance. 1796 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1797 for (unsigned I = 0; I < NumOperands; ++I) 1798 MainAltOps[I].push_back(getData(I, FirstLane).V); 1799 1800 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1801 // Visit the lane on the right and then the lane on the left. 1802 for (int Direction : {+1, -1}) { 1803 int Lane = FirstLane + Direction * Distance; 1804 if (Lane < 0 || Lane >= (int)NumLanes) 1805 continue; 1806 int LastLane = Lane - Direction; 1807 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1808 "Out of bounds"); 1809 // Look for a good match for each operand. 1810 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1811 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1812 Optional<unsigned> BestIdx = getBestOperand( 1813 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1814 // By not selecting a value, we allow the operands that follow to 1815 // select a better matching value. We will get a non-null value in 1816 // the next run of getBestOperand(). 1817 if (BestIdx) { 1818 // Swap the current operand with the one returned by 1819 // getBestOperand(). 1820 swap(OpIdx, BestIdx.getValue(), Lane); 1821 } else { 1822 // We failed to find a best operand, set mode to 'Failed'. 1823 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1824 // Enable the second pass. 1825 StrategyFailed = true; 1826 } 1827 // Try to get the alternate opcode and follow it during analysis. 1828 if (MainAltOps[OpIdx].size() != 2) { 1829 OperandData &AltOp = getData(OpIdx, Lane); 1830 InstructionsState OpS = 1831 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1832 if (OpS.getOpcode() && OpS.isAltShuffle()) 1833 MainAltOps[OpIdx].push_back(AltOp.V); 1834 } 1835 } 1836 } 1837 } 1838 // Skip second pass if the strategy did not fail. 1839 if (!StrategyFailed) 1840 break; 1841 } 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1846 switch (RMode) { 1847 case ReorderingMode::Load: 1848 return "Load"; 1849 case ReorderingMode::Opcode: 1850 return "Opcode"; 1851 case ReorderingMode::Constant: 1852 return "Constant"; 1853 case ReorderingMode::Splat: 1854 return "Splat"; 1855 case ReorderingMode::Failed: 1856 return "Failed"; 1857 } 1858 llvm_unreachable("Unimplemented Reordering Type"); 1859 } 1860 1861 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1862 raw_ostream &OS) { 1863 return OS << getModeStr(RMode); 1864 } 1865 1866 /// Debug print. 1867 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1868 printMode(RMode, dbgs()); 1869 } 1870 1871 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1872 return printMode(RMode, OS); 1873 } 1874 1875 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1876 const unsigned Indent = 2; 1877 unsigned Cnt = 0; 1878 for (const OperandDataVec &OpDataVec : OpsVec) { 1879 OS << "Operand " << Cnt++ << "\n"; 1880 for (const OperandData &OpData : OpDataVec) { 1881 OS.indent(Indent) << "{"; 1882 if (Value *V = OpData.V) 1883 OS << *V; 1884 else 1885 OS << "null"; 1886 OS << ", APO:" << OpData.APO << "}\n"; 1887 } 1888 OS << "\n"; 1889 } 1890 return OS; 1891 } 1892 1893 /// Debug print. 1894 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1895 #endif 1896 }; 1897 1898 /// Checks if the instruction is marked for deletion. 1899 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1900 1901 /// Marks values operands for later deletion by replacing them with Undefs. 1902 void eraseInstructions(ArrayRef<Value *> AV); 1903 1904 ~BoUpSLP(); 1905 1906 private: 1907 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1908 /// reordering (i.e. the operands can be reordered because they have only one 1909 /// user and reordarable). 1910 /// \param NonVectorized List of all gather nodes that require reordering 1911 /// (e.g., gather of extractlements or partially vectorizable loads). 1912 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1913 /// reordering, subset of \p NonVectorized. 1914 bool 1915 canReorderOperands(TreeEntry *UserTE, 1916 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1917 ArrayRef<TreeEntry *> ReorderableGathers, 1918 SmallVectorImpl<TreeEntry *> &GatherOps); 1919 1920 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1921 /// if any. If it is not vectorized (gather node), returns nullptr. 1922 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1923 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1924 TreeEntry *TE = nullptr; 1925 const auto *It = find_if(VL, [this, &TE](Value *V) { 1926 TE = getTreeEntry(V); 1927 return TE; 1928 }); 1929 if (It != VL.end() && TE->isSame(VL)) 1930 return TE; 1931 return nullptr; 1932 } 1933 1934 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1935 /// if any. If it is not vectorized (gather node), returns nullptr. 1936 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1937 unsigned OpIdx) const { 1938 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1939 const_cast<TreeEntry *>(UserTE), OpIdx); 1940 } 1941 1942 /// Checks if all users of \p I are the part of the vectorization tree. 1943 bool areAllUsersVectorized(Instruction *I, 1944 ArrayRef<Value *> VectorizedVals) const; 1945 1946 /// \returns the cost of the vectorizable entry. 1947 InstructionCost getEntryCost(const TreeEntry *E, 1948 ArrayRef<Value *> VectorizedVals); 1949 1950 /// This is the recursive part of buildTree. 1951 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1952 const EdgeInfo &EI); 1953 1954 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1955 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1956 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1957 /// returns false, setting \p CurrentOrder to either an empty vector or a 1958 /// non-identity permutation that allows to reuse extract instructions. 1959 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1960 SmallVectorImpl<unsigned> &CurrentOrder) const; 1961 1962 /// Vectorize a single entry in the tree. 1963 Value *vectorizeTree(TreeEntry *E); 1964 1965 /// Vectorize a single entry in the tree, starting in \p VL. 1966 Value *vectorizeTree(ArrayRef<Value *> VL); 1967 1968 /// \returns the scalarization cost for this type. Scalarization in this 1969 /// context means the creation of vectors from a group of scalars. If \p 1970 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1971 /// vector elements. 1972 InstructionCost getGatherCost(FixedVectorType *Ty, 1973 const APInt &ShuffledIndices, 1974 bool NeedToShuffle) const; 1975 1976 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1977 /// tree entries. 1978 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1979 /// previous tree entries. \p Mask is filled with the shuffle mask. 1980 Optional<TargetTransformInfo::ShuffleKind> 1981 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1982 SmallVectorImpl<const TreeEntry *> &Entries); 1983 1984 /// \returns the scalarization cost for this list of values. Assuming that 1985 /// this subtree gets vectorized, we may need to extract the values from the 1986 /// roots. This method calculates the cost of extracting the values. 1987 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1988 1989 /// Set the Builder insert point to one after the last instruction in 1990 /// the bundle 1991 void setInsertPointAfterBundle(const TreeEntry *E); 1992 1993 /// \returns a vector from a collection of scalars in \p VL. 1994 Value *gather(ArrayRef<Value *> VL); 1995 1996 /// \returns whether the VectorizableTree is fully vectorizable and will 1997 /// be beneficial even the tree height is tiny. 1998 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1999 2000 /// Reorder commutative or alt operands to get better probability of 2001 /// generating vectorized code. 2002 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2003 SmallVectorImpl<Value *> &Left, 2004 SmallVectorImpl<Value *> &Right, 2005 const DataLayout &DL, 2006 ScalarEvolution &SE, 2007 const BoUpSLP &R); 2008 struct TreeEntry { 2009 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2010 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2011 2012 /// \returns true if the scalars in VL are equal to this entry. 2013 bool isSame(ArrayRef<Value *> VL) const { 2014 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2015 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2016 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2017 return VL.size() == Mask.size() && 2018 std::equal(VL.begin(), VL.end(), Mask.begin(), 2019 [Scalars](Value *V, int Idx) { 2020 return (isa<UndefValue>(V) && 2021 Idx == UndefMaskElem) || 2022 (Idx != UndefMaskElem && V == Scalars[Idx]); 2023 }); 2024 }; 2025 if (!ReorderIndices.empty()) { 2026 // TODO: implement matching if the nodes are just reordered, still can 2027 // treat the vector as the same if the list of scalars matches VL 2028 // directly, without reordering. 2029 SmallVector<int> Mask; 2030 inversePermutation(ReorderIndices, Mask); 2031 if (VL.size() == Scalars.size()) 2032 return IsSame(Scalars, Mask); 2033 if (VL.size() == ReuseShuffleIndices.size()) { 2034 ::addMask(Mask, ReuseShuffleIndices); 2035 return IsSame(Scalars, Mask); 2036 } 2037 return false; 2038 } 2039 return IsSame(Scalars, ReuseShuffleIndices); 2040 } 2041 2042 /// \returns true if current entry has same operands as \p TE. 2043 bool hasEqualOperands(const TreeEntry &TE) const { 2044 if (TE.getNumOperands() != getNumOperands()) 2045 return false; 2046 SmallBitVector Used(getNumOperands()); 2047 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2048 unsigned PrevCount = Used.count(); 2049 for (unsigned K = 0; K < E; ++K) { 2050 if (Used.test(K)) 2051 continue; 2052 if (getOperand(K) == TE.getOperand(I)) { 2053 Used.set(K); 2054 break; 2055 } 2056 } 2057 // Check if we actually found the matching operand. 2058 if (PrevCount == Used.count()) 2059 return false; 2060 } 2061 return true; 2062 } 2063 2064 /// \return Final vectorization factor for the node. Defined by the total 2065 /// number of vectorized scalars, including those, used several times in the 2066 /// entry and counted in the \a ReuseShuffleIndices, if any. 2067 unsigned getVectorFactor() const { 2068 if (!ReuseShuffleIndices.empty()) 2069 return ReuseShuffleIndices.size(); 2070 return Scalars.size(); 2071 }; 2072 2073 /// A vector of scalars. 2074 ValueList Scalars; 2075 2076 /// The Scalars are vectorized into this value. It is initialized to Null. 2077 Value *VectorizedValue = nullptr; 2078 2079 /// Do we need to gather this sequence or vectorize it 2080 /// (either with vector instruction or with scatter/gather 2081 /// intrinsics for store/load)? 2082 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2083 EntryState State; 2084 2085 /// Does this sequence require some shuffling? 2086 SmallVector<int, 4> ReuseShuffleIndices; 2087 2088 /// Does this entry require reordering? 2089 SmallVector<unsigned, 4> ReorderIndices; 2090 2091 /// Points back to the VectorizableTree. 2092 /// 2093 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2094 /// to be a pointer and needs to be able to initialize the child iterator. 2095 /// Thus we need a reference back to the container to translate the indices 2096 /// to entries. 2097 VecTreeTy &Container; 2098 2099 /// The TreeEntry index containing the user of this entry. We can actually 2100 /// have multiple users so the data structure is not truly a tree. 2101 SmallVector<EdgeInfo, 1> UserTreeIndices; 2102 2103 /// The index of this treeEntry in VectorizableTree. 2104 int Idx = -1; 2105 2106 private: 2107 /// The operands of each instruction in each lane Operands[op_index][lane]. 2108 /// Note: This helps avoid the replication of the code that performs the 2109 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2110 SmallVector<ValueList, 2> Operands; 2111 2112 /// The main/alternate instruction. 2113 Instruction *MainOp = nullptr; 2114 Instruction *AltOp = nullptr; 2115 2116 public: 2117 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2118 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2119 if (Operands.size() < OpIdx + 1) 2120 Operands.resize(OpIdx + 1); 2121 assert(Operands[OpIdx].empty() && "Already resized?"); 2122 assert(OpVL.size() <= Scalars.size() && 2123 "Number of operands is greater than the number of scalars."); 2124 Operands[OpIdx].resize(OpVL.size()); 2125 copy(OpVL, Operands[OpIdx].begin()); 2126 } 2127 2128 /// Set the operands of this bundle in their original order. 2129 void setOperandsInOrder() { 2130 assert(Operands.empty() && "Already initialized?"); 2131 auto *I0 = cast<Instruction>(Scalars[0]); 2132 Operands.resize(I0->getNumOperands()); 2133 unsigned NumLanes = Scalars.size(); 2134 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2135 OpIdx != NumOperands; ++OpIdx) { 2136 Operands[OpIdx].resize(NumLanes); 2137 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2138 auto *I = cast<Instruction>(Scalars[Lane]); 2139 assert(I->getNumOperands() == NumOperands && 2140 "Expected same number of operands"); 2141 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2142 } 2143 } 2144 } 2145 2146 /// Reorders operands of the node to the given mask \p Mask. 2147 void reorderOperands(ArrayRef<int> Mask) { 2148 for (ValueList &Operand : Operands) 2149 reorderScalars(Operand, Mask); 2150 } 2151 2152 /// \returns the \p OpIdx operand of this TreeEntry. 2153 ValueList &getOperand(unsigned OpIdx) { 2154 assert(OpIdx < Operands.size() && "Off bounds"); 2155 return Operands[OpIdx]; 2156 } 2157 2158 /// \returns the \p OpIdx operand of this TreeEntry. 2159 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2160 assert(OpIdx < Operands.size() && "Off bounds"); 2161 return Operands[OpIdx]; 2162 } 2163 2164 /// \returns the number of operands. 2165 unsigned getNumOperands() const { return Operands.size(); } 2166 2167 /// \return the single \p OpIdx operand. 2168 Value *getSingleOperand(unsigned OpIdx) const { 2169 assert(OpIdx < Operands.size() && "Off bounds"); 2170 assert(!Operands[OpIdx].empty() && "No operand available"); 2171 return Operands[OpIdx][0]; 2172 } 2173 2174 /// Some of the instructions in the list have alternate opcodes. 2175 bool isAltShuffle() const { return MainOp != AltOp; } 2176 2177 bool isOpcodeOrAlt(Instruction *I) const { 2178 unsigned CheckedOpcode = I->getOpcode(); 2179 return (getOpcode() == CheckedOpcode || 2180 getAltOpcode() == CheckedOpcode); 2181 } 2182 2183 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2184 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2185 /// \p OpValue. 2186 Value *isOneOf(Value *Op) const { 2187 auto *I = dyn_cast<Instruction>(Op); 2188 if (I && isOpcodeOrAlt(I)) 2189 return Op; 2190 return MainOp; 2191 } 2192 2193 void setOperations(const InstructionsState &S) { 2194 MainOp = S.MainOp; 2195 AltOp = S.AltOp; 2196 } 2197 2198 Instruction *getMainOp() const { 2199 return MainOp; 2200 } 2201 2202 Instruction *getAltOp() const { 2203 return AltOp; 2204 } 2205 2206 /// The main/alternate opcodes for the list of instructions. 2207 unsigned getOpcode() const { 2208 return MainOp ? MainOp->getOpcode() : 0; 2209 } 2210 2211 unsigned getAltOpcode() const { 2212 return AltOp ? AltOp->getOpcode() : 0; 2213 } 2214 2215 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2216 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2217 int findLaneForValue(Value *V) const { 2218 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2219 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2220 if (!ReorderIndices.empty()) 2221 FoundLane = ReorderIndices[FoundLane]; 2222 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2223 if (!ReuseShuffleIndices.empty()) { 2224 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2225 find(ReuseShuffleIndices, FoundLane)); 2226 } 2227 return FoundLane; 2228 } 2229 2230 #ifndef NDEBUG 2231 /// Debug printer. 2232 LLVM_DUMP_METHOD void dump() const { 2233 dbgs() << Idx << ".\n"; 2234 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2235 dbgs() << "Operand " << OpI << ":\n"; 2236 for (const Value *V : Operands[OpI]) 2237 dbgs().indent(2) << *V << "\n"; 2238 } 2239 dbgs() << "Scalars: \n"; 2240 for (Value *V : Scalars) 2241 dbgs().indent(2) << *V << "\n"; 2242 dbgs() << "State: "; 2243 switch (State) { 2244 case Vectorize: 2245 dbgs() << "Vectorize\n"; 2246 break; 2247 case ScatterVectorize: 2248 dbgs() << "ScatterVectorize\n"; 2249 break; 2250 case NeedToGather: 2251 dbgs() << "NeedToGather\n"; 2252 break; 2253 } 2254 dbgs() << "MainOp: "; 2255 if (MainOp) 2256 dbgs() << *MainOp << "\n"; 2257 else 2258 dbgs() << "NULL\n"; 2259 dbgs() << "AltOp: "; 2260 if (AltOp) 2261 dbgs() << *AltOp << "\n"; 2262 else 2263 dbgs() << "NULL\n"; 2264 dbgs() << "VectorizedValue: "; 2265 if (VectorizedValue) 2266 dbgs() << *VectorizedValue << "\n"; 2267 else 2268 dbgs() << "NULL\n"; 2269 dbgs() << "ReuseShuffleIndices: "; 2270 if (ReuseShuffleIndices.empty()) 2271 dbgs() << "Empty"; 2272 else 2273 for (int ReuseIdx : ReuseShuffleIndices) 2274 dbgs() << ReuseIdx << ", "; 2275 dbgs() << "\n"; 2276 dbgs() << "ReorderIndices: "; 2277 for (unsigned ReorderIdx : ReorderIndices) 2278 dbgs() << ReorderIdx << ", "; 2279 dbgs() << "\n"; 2280 dbgs() << "UserTreeIndices: "; 2281 for (const auto &EInfo : UserTreeIndices) 2282 dbgs() << EInfo << ", "; 2283 dbgs() << "\n"; 2284 } 2285 #endif 2286 }; 2287 2288 #ifndef NDEBUG 2289 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2290 InstructionCost VecCost, 2291 InstructionCost ScalarCost) const { 2292 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2293 dbgs() << "SLP: Costs:\n"; 2294 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2295 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2296 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2297 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2298 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2299 } 2300 #endif 2301 2302 /// Create a new VectorizableTree entry. 2303 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2304 const InstructionsState &S, 2305 const EdgeInfo &UserTreeIdx, 2306 ArrayRef<int> ReuseShuffleIndices = None, 2307 ArrayRef<unsigned> ReorderIndices = None) { 2308 TreeEntry::EntryState EntryState = 2309 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2310 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2311 ReuseShuffleIndices, ReorderIndices); 2312 } 2313 2314 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2315 TreeEntry::EntryState EntryState, 2316 Optional<ScheduleData *> Bundle, 2317 const InstructionsState &S, 2318 const EdgeInfo &UserTreeIdx, 2319 ArrayRef<int> ReuseShuffleIndices = None, 2320 ArrayRef<unsigned> ReorderIndices = None) { 2321 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2322 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2323 "Need to vectorize gather entry?"); 2324 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2325 TreeEntry *Last = VectorizableTree.back().get(); 2326 Last->Idx = VectorizableTree.size() - 1; 2327 Last->State = EntryState; 2328 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2329 ReuseShuffleIndices.end()); 2330 if (ReorderIndices.empty()) { 2331 Last->Scalars.assign(VL.begin(), VL.end()); 2332 Last->setOperations(S); 2333 } else { 2334 // Reorder scalars and build final mask. 2335 Last->Scalars.assign(VL.size(), nullptr); 2336 transform(ReorderIndices, Last->Scalars.begin(), 2337 [VL](unsigned Idx) -> Value * { 2338 if (Idx >= VL.size()) 2339 return UndefValue::get(VL.front()->getType()); 2340 return VL[Idx]; 2341 }); 2342 InstructionsState S = getSameOpcode(Last->Scalars); 2343 Last->setOperations(S); 2344 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2345 } 2346 if (Last->State != TreeEntry::NeedToGather) { 2347 for (Value *V : VL) { 2348 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2349 ScalarToTreeEntry[V] = Last; 2350 } 2351 // Update the scheduler bundle to point to this TreeEntry. 2352 unsigned Lane = 0; 2353 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2354 BundleMember = BundleMember->NextInBundle) { 2355 BundleMember->TE = Last; 2356 BundleMember->Lane = Lane; 2357 ++Lane; 2358 } 2359 assert((!Bundle.getValue() || Lane == VL.size()) && 2360 "Bundle and VL out of sync"); 2361 } else { 2362 MustGather.insert(VL.begin(), VL.end()); 2363 } 2364 2365 if (UserTreeIdx.UserTE) 2366 Last->UserTreeIndices.push_back(UserTreeIdx); 2367 2368 return Last; 2369 } 2370 2371 /// -- Vectorization State -- 2372 /// Holds all of the tree entries. 2373 TreeEntry::VecTreeTy VectorizableTree; 2374 2375 #ifndef NDEBUG 2376 /// Debug printer. 2377 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2378 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2379 VectorizableTree[Id]->dump(); 2380 dbgs() << "\n"; 2381 } 2382 } 2383 #endif 2384 2385 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2386 2387 const TreeEntry *getTreeEntry(Value *V) const { 2388 return ScalarToTreeEntry.lookup(V); 2389 } 2390 2391 /// Maps a specific scalar to its tree entry. 2392 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2393 2394 /// Maps a value to the proposed vectorizable size. 2395 SmallDenseMap<Value *, unsigned> InstrElementSize; 2396 2397 /// A list of scalars that we found that we need to keep as scalars. 2398 ValueSet MustGather; 2399 2400 /// This POD struct describes one external user in the vectorized tree. 2401 struct ExternalUser { 2402 ExternalUser(Value *S, llvm::User *U, int L) 2403 : Scalar(S), User(U), Lane(L) {} 2404 2405 // Which scalar in our function. 2406 Value *Scalar; 2407 2408 // Which user that uses the scalar. 2409 llvm::User *User; 2410 2411 // Which lane does the scalar belong to. 2412 int Lane; 2413 }; 2414 using UserList = SmallVector<ExternalUser, 16>; 2415 2416 /// Checks if two instructions may access the same memory. 2417 /// 2418 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2419 /// is invariant in the calling loop. 2420 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2421 Instruction *Inst2) { 2422 // First check if the result is already in the cache. 2423 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2424 Optional<bool> &result = AliasCache[key]; 2425 if (result.hasValue()) { 2426 return result.getValue(); 2427 } 2428 bool aliased = true; 2429 if (Loc1.Ptr && isSimple(Inst1)) 2430 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2431 // Store the result in the cache. 2432 result = aliased; 2433 return aliased; 2434 } 2435 2436 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2437 2438 /// Cache for alias results. 2439 /// TODO: consider moving this to the AliasAnalysis itself. 2440 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2441 2442 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2443 // globally through SLP because we don't perform any action which 2444 // invalidates capture results. 2445 BatchAAResults BatchAA; 2446 2447 /// Removes an instruction from its block and eventually deletes it. 2448 /// It's like Instruction::eraseFromParent() except that the actual deletion 2449 /// is delayed until BoUpSLP is destructed. 2450 /// This is required to ensure that there are no incorrect collisions in the 2451 /// AliasCache, which can happen if a new instruction is allocated at the 2452 /// same address as a previously deleted instruction. 2453 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2454 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2455 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2456 } 2457 2458 /// Temporary store for deleted instructions. Instructions will be deleted 2459 /// eventually when the BoUpSLP is destructed. 2460 DenseMap<Instruction *, bool> DeletedInstructions; 2461 2462 /// A list of values that need to extracted out of the tree. 2463 /// This list holds pairs of (Internal Scalar : External User). External User 2464 /// can be nullptr, it means that this Internal Scalar will be used later, 2465 /// after vectorization. 2466 UserList ExternalUses; 2467 2468 /// Values used only by @llvm.assume calls. 2469 SmallPtrSet<const Value *, 32> EphValues; 2470 2471 /// Holds all of the instructions that we gathered. 2472 SetVector<Instruction *> GatherShuffleSeq; 2473 2474 /// A list of blocks that we are going to CSE. 2475 SetVector<BasicBlock *> CSEBlocks; 2476 2477 /// Contains all scheduling relevant data for an instruction. 2478 /// A ScheduleData either represents a single instruction or a member of an 2479 /// instruction bundle (= a group of instructions which is combined into a 2480 /// vector instruction). 2481 struct ScheduleData { 2482 // The initial value for the dependency counters. It means that the 2483 // dependencies are not calculated yet. 2484 enum { InvalidDeps = -1 }; 2485 2486 ScheduleData() = default; 2487 2488 void init(int BlockSchedulingRegionID, Value *OpVal) { 2489 FirstInBundle = this; 2490 NextInBundle = nullptr; 2491 NextLoadStore = nullptr; 2492 IsScheduled = false; 2493 SchedulingRegionID = BlockSchedulingRegionID; 2494 clearDependencies(); 2495 OpValue = OpVal; 2496 TE = nullptr; 2497 Lane = -1; 2498 } 2499 2500 /// Verify basic self consistency properties 2501 void verify() { 2502 if (hasValidDependencies()) { 2503 assert(UnscheduledDeps <= Dependencies && "invariant"); 2504 } else { 2505 assert(UnscheduledDeps == Dependencies && "invariant"); 2506 } 2507 2508 if (IsScheduled) { 2509 assert(isSchedulingEntity() && 2510 "unexpected scheduled state"); 2511 for (const ScheduleData *BundleMember = this; BundleMember; 2512 BundleMember = BundleMember->NextInBundle) { 2513 assert(BundleMember->hasValidDependencies() && 2514 BundleMember->UnscheduledDeps == 0 && 2515 "unexpected scheduled state"); 2516 assert((BundleMember == this || !BundleMember->IsScheduled) && 2517 "only bundle is marked scheduled"); 2518 } 2519 } 2520 2521 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2522 "all bundle members must be in same basic block"); 2523 } 2524 2525 /// Returns true if the dependency information has been calculated. 2526 /// Note that depenendency validity can vary between instructions within 2527 /// a single bundle. 2528 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2529 2530 /// Returns true for single instructions and for bundle representatives 2531 /// (= the head of a bundle). 2532 bool isSchedulingEntity() const { return FirstInBundle == this; } 2533 2534 /// Returns true if it represents an instruction bundle and not only a 2535 /// single instruction. 2536 bool isPartOfBundle() const { 2537 return NextInBundle != nullptr || FirstInBundle != this; 2538 } 2539 2540 /// Returns true if it is ready for scheduling, i.e. it has no more 2541 /// unscheduled depending instructions/bundles. 2542 bool isReady() const { 2543 assert(isSchedulingEntity() && 2544 "can't consider non-scheduling entity for ready list"); 2545 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2546 } 2547 2548 /// Modifies the number of unscheduled dependencies for this instruction, 2549 /// and returns the number of remaining dependencies for the containing 2550 /// bundle. 2551 int incrementUnscheduledDeps(int Incr) { 2552 assert(hasValidDependencies() && 2553 "increment of unscheduled deps would be meaningless"); 2554 UnscheduledDeps += Incr; 2555 return FirstInBundle->unscheduledDepsInBundle(); 2556 } 2557 2558 /// Sets the number of unscheduled dependencies to the number of 2559 /// dependencies. 2560 void resetUnscheduledDeps() { 2561 UnscheduledDeps = Dependencies; 2562 } 2563 2564 /// Clears all dependency information. 2565 void clearDependencies() { 2566 Dependencies = InvalidDeps; 2567 resetUnscheduledDeps(); 2568 MemoryDependencies.clear(); 2569 } 2570 2571 int unscheduledDepsInBundle() const { 2572 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2573 int Sum = 0; 2574 for (const ScheduleData *BundleMember = this; BundleMember; 2575 BundleMember = BundleMember->NextInBundle) { 2576 if (BundleMember->UnscheduledDeps == InvalidDeps) 2577 return InvalidDeps; 2578 Sum += BundleMember->UnscheduledDeps; 2579 } 2580 return Sum; 2581 } 2582 2583 void dump(raw_ostream &os) const { 2584 if (!isSchedulingEntity()) { 2585 os << "/ " << *Inst; 2586 } else if (NextInBundle) { 2587 os << '[' << *Inst; 2588 ScheduleData *SD = NextInBundle; 2589 while (SD) { 2590 os << ';' << *SD->Inst; 2591 SD = SD->NextInBundle; 2592 } 2593 os << ']'; 2594 } else { 2595 os << *Inst; 2596 } 2597 } 2598 2599 Instruction *Inst = nullptr; 2600 2601 /// Opcode of the current instruction in the schedule data. 2602 Value *OpValue = nullptr; 2603 2604 /// The TreeEntry that this instruction corresponds to. 2605 TreeEntry *TE = nullptr; 2606 2607 /// Points to the head in an instruction bundle (and always to this for 2608 /// single instructions). 2609 ScheduleData *FirstInBundle = nullptr; 2610 2611 /// Single linked list of all instructions in a bundle. Null if it is a 2612 /// single instruction. 2613 ScheduleData *NextInBundle = nullptr; 2614 2615 /// Single linked list of all memory instructions (e.g. load, store, call) 2616 /// in the block - until the end of the scheduling region. 2617 ScheduleData *NextLoadStore = nullptr; 2618 2619 /// The dependent memory instructions. 2620 /// This list is derived on demand in calculateDependencies(). 2621 SmallVector<ScheduleData *, 4> MemoryDependencies; 2622 2623 /// This ScheduleData is in the current scheduling region if this matches 2624 /// the current SchedulingRegionID of BlockScheduling. 2625 int SchedulingRegionID = 0; 2626 2627 /// Used for getting a "good" final ordering of instructions. 2628 int SchedulingPriority = 0; 2629 2630 /// The number of dependencies. Constitutes of the number of users of the 2631 /// instruction plus the number of dependent memory instructions (if any). 2632 /// This value is calculated on demand. 2633 /// If InvalidDeps, the number of dependencies is not calculated yet. 2634 int Dependencies = InvalidDeps; 2635 2636 /// The number of dependencies minus the number of dependencies of scheduled 2637 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2638 /// for scheduling. 2639 /// Note that this is negative as long as Dependencies is not calculated. 2640 int UnscheduledDeps = InvalidDeps; 2641 2642 /// The lane of this node in the TreeEntry. 2643 int Lane = -1; 2644 2645 /// True if this instruction is scheduled (or considered as scheduled in the 2646 /// dry-run). 2647 bool IsScheduled = false; 2648 }; 2649 2650 #ifndef NDEBUG 2651 friend inline raw_ostream &operator<<(raw_ostream &os, 2652 const BoUpSLP::ScheduleData &SD) { 2653 SD.dump(os); 2654 return os; 2655 } 2656 #endif 2657 2658 friend struct GraphTraits<BoUpSLP *>; 2659 friend struct DOTGraphTraits<BoUpSLP *>; 2660 2661 /// Contains all scheduling data for a basic block. 2662 struct BlockScheduling { 2663 BlockScheduling(BasicBlock *BB) 2664 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2665 2666 void clear() { 2667 ReadyInsts.clear(); 2668 ScheduleStart = nullptr; 2669 ScheduleEnd = nullptr; 2670 FirstLoadStoreInRegion = nullptr; 2671 LastLoadStoreInRegion = nullptr; 2672 2673 // Reduce the maximum schedule region size by the size of the 2674 // previous scheduling run. 2675 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2676 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2677 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2678 ScheduleRegionSize = 0; 2679 2680 // Make a new scheduling region, i.e. all existing ScheduleData is not 2681 // in the new region yet. 2682 ++SchedulingRegionID; 2683 } 2684 2685 ScheduleData *getScheduleData(Instruction *I) { 2686 if (BB != I->getParent()) 2687 // Avoid lookup if can't possibly be in map. 2688 return nullptr; 2689 ScheduleData *SD = ScheduleDataMap[I]; 2690 if (SD && isInSchedulingRegion(SD)) 2691 return SD; 2692 return nullptr; 2693 } 2694 2695 ScheduleData *getScheduleData(Value *V) { 2696 if (auto *I = dyn_cast<Instruction>(V)) 2697 return getScheduleData(I); 2698 return nullptr; 2699 } 2700 2701 ScheduleData *getScheduleData(Value *V, Value *Key) { 2702 if (V == Key) 2703 return getScheduleData(V); 2704 auto I = ExtraScheduleDataMap.find(V); 2705 if (I != ExtraScheduleDataMap.end()) { 2706 ScheduleData *SD = I->second[Key]; 2707 if (SD && isInSchedulingRegion(SD)) 2708 return SD; 2709 } 2710 return nullptr; 2711 } 2712 2713 bool isInSchedulingRegion(ScheduleData *SD) const { 2714 return SD->SchedulingRegionID == SchedulingRegionID; 2715 } 2716 2717 /// Marks an instruction as scheduled and puts all dependent ready 2718 /// instructions into the ready-list. 2719 template <typename ReadyListType> 2720 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2721 SD->IsScheduled = true; 2722 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2723 2724 for (ScheduleData *BundleMember = SD; BundleMember; 2725 BundleMember = BundleMember->NextInBundle) { 2726 if (BundleMember->Inst != BundleMember->OpValue) 2727 continue; 2728 2729 // Handle the def-use chain dependencies. 2730 2731 // Decrement the unscheduled counter and insert to ready list if ready. 2732 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2733 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2734 if (OpDef && OpDef->hasValidDependencies() && 2735 OpDef->incrementUnscheduledDeps(-1) == 0) { 2736 // There are no more unscheduled dependencies after 2737 // decrementing, so we can put the dependent instruction 2738 // into the ready list. 2739 ScheduleData *DepBundle = OpDef->FirstInBundle; 2740 assert(!DepBundle->IsScheduled && 2741 "already scheduled bundle gets ready"); 2742 ReadyList.insert(DepBundle); 2743 LLVM_DEBUG(dbgs() 2744 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2745 } 2746 }); 2747 }; 2748 2749 // If BundleMember is a vector bundle, its operands may have been 2750 // reordered during buildTree(). We therefore need to get its operands 2751 // through the TreeEntry. 2752 if (TreeEntry *TE = BundleMember->TE) { 2753 int Lane = BundleMember->Lane; 2754 assert(Lane >= 0 && "Lane not set"); 2755 2756 // Since vectorization tree is being built recursively this assertion 2757 // ensures that the tree entry has all operands set before reaching 2758 // this code. Couple of exceptions known at the moment are extracts 2759 // where their second (immediate) operand is not added. Since 2760 // immediates do not affect scheduler behavior this is considered 2761 // okay. 2762 auto *In = TE->getMainOp(); 2763 assert(In && 2764 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2765 In->getNumOperands() == TE->getNumOperands()) && 2766 "Missed TreeEntry operands?"); 2767 (void)In; // fake use to avoid build failure when assertions disabled 2768 2769 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2770 OpIdx != NumOperands; ++OpIdx) 2771 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2772 DecrUnsched(I); 2773 } else { 2774 // If BundleMember is a stand-alone instruction, no operand reordering 2775 // has taken place, so we directly access its operands. 2776 for (Use &U : BundleMember->Inst->operands()) 2777 if (auto *I = dyn_cast<Instruction>(U.get())) 2778 DecrUnsched(I); 2779 } 2780 // Handle the memory dependencies. 2781 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2782 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2783 // There are no more unscheduled dependencies after decrementing, 2784 // so we can put the dependent instruction into the ready list. 2785 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2786 assert(!DepBundle->IsScheduled && 2787 "already scheduled bundle gets ready"); 2788 ReadyList.insert(DepBundle); 2789 LLVM_DEBUG(dbgs() 2790 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2791 } 2792 } 2793 } 2794 } 2795 2796 /// Verify basic self consistency properties of the data structure. 2797 void verify() { 2798 if (!ScheduleStart) 2799 return; 2800 2801 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2802 ScheduleStart->comesBefore(ScheduleEnd) && 2803 "Not a valid scheduling region?"); 2804 2805 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2806 auto *SD = getScheduleData(I); 2807 assert(SD && "primary scheduledata must exist in window"); 2808 assert(isInSchedulingRegion(SD) && 2809 "primary schedule data not in window?"); 2810 assert(isInSchedulingRegion(SD->FirstInBundle) && 2811 "entire bundle in window!"); 2812 (void)SD; 2813 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2814 } 2815 2816 for (auto *SD : ReadyInsts) { 2817 assert(SD->isSchedulingEntity() && SD->isReady() && 2818 "item in ready list not ready?"); 2819 (void)SD; 2820 } 2821 } 2822 2823 void doForAllOpcodes(Value *V, 2824 function_ref<void(ScheduleData *SD)> Action) { 2825 if (ScheduleData *SD = getScheduleData(V)) 2826 Action(SD); 2827 auto I = ExtraScheduleDataMap.find(V); 2828 if (I != ExtraScheduleDataMap.end()) 2829 for (auto &P : I->second) 2830 if (isInSchedulingRegion(P.second)) 2831 Action(P.second); 2832 } 2833 2834 /// Put all instructions into the ReadyList which are ready for scheduling. 2835 template <typename ReadyListType> 2836 void initialFillReadyList(ReadyListType &ReadyList) { 2837 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2838 doForAllOpcodes(I, [&](ScheduleData *SD) { 2839 if (SD->isSchedulingEntity() && SD->isReady()) { 2840 ReadyList.insert(SD); 2841 LLVM_DEBUG(dbgs() 2842 << "SLP: initially in ready list: " << *SD << "\n"); 2843 } 2844 }); 2845 } 2846 } 2847 2848 /// Build a bundle from the ScheduleData nodes corresponding to the 2849 /// scalar instruction for each lane. 2850 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2851 2852 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2853 /// cyclic dependencies. This is only a dry-run, no instructions are 2854 /// actually moved at this stage. 2855 /// \returns the scheduling bundle. The returned Optional value is non-None 2856 /// if \p VL is allowed to be scheduled. 2857 Optional<ScheduleData *> 2858 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2859 const InstructionsState &S); 2860 2861 /// Un-bundles a group of instructions. 2862 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2863 2864 /// Allocates schedule data chunk. 2865 ScheduleData *allocateScheduleDataChunks(); 2866 2867 /// Extends the scheduling region so that V is inside the region. 2868 /// \returns true if the region size is within the limit. 2869 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2870 2871 /// Initialize the ScheduleData structures for new instructions in the 2872 /// scheduling region. 2873 void initScheduleData(Instruction *FromI, Instruction *ToI, 2874 ScheduleData *PrevLoadStore, 2875 ScheduleData *NextLoadStore); 2876 2877 /// Updates the dependency information of a bundle and of all instructions/ 2878 /// bundles which depend on the original bundle. 2879 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2880 BoUpSLP *SLP); 2881 2882 /// Sets all instruction in the scheduling region to un-scheduled. 2883 void resetSchedule(); 2884 2885 BasicBlock *BB; 2886 2887 /// Simple memory allocation for ScheduleData. 2888 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2889 2890 /// The size of a ScheduleData array in ScheduleDataChunks. 2891 int ChunkSize; 2892 2893 /// The allocator position in the current chunk, which is the last entry 2894 /// of ScheduleDataChunks. 2895 int ChunkPos; 2896 2897 /// Attaches ScheduleData to Instruction. 2898 /// Note that the mapping survives during all vectorization iterations, i.e. 2899 /// ScheduleData structures are recycled. 2900 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2901 2902 /// Attaches ScheduleData to Instruction with the leading key. 2903 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2904 ExtraScheduleDataMap; 2905 2906 /// The ready-list for scheduling (only used for the dry-run). 2907 SetVector<ScheduleData *> ReadyInsts; 2908 2909 /// The first instruction of the scheduling region. 2910 Instruction *ScheduleStart = nullptr; 2911 2912 /// The first instruction _after_ the scheduling region. 2913 Instruction *ScheduleEnd = nullptr; 2914 2915 /// The first memory accessing instruction in the scheduling region 2916 /// (can be null). 2917 ScheduleData *FirstLoadStoreInRegion = nullptr; 2918 2919 /// The last memory accessing instruction in the scheduling region 2920 /// (can be null). 2921 ScheduleData *LastLoadStoreInRegion = nullptr; 2922 2923 /// The current size of the scheduling region. 2924 int ScheduleRegionSize = 0; 2925 2926 /// The maximum size allowed for the scheduling region. 2927 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2928 2929 /// The ID of the scheduling region. For a new vectorization iteration this 2930 /// is incremented which "removes" all ScheduleData from the region. 2931 /// Make sure that the initial SchedulingRegionID is greater than the 2932 /// initial SchedulingRegionID in ScheduleData (which is 0). 2933 int SchedulingRegionID = 1; 2934 }; 2935 2936 /// Attaches the BlockScheduling structures to basic blocks. 2937 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2938 2939 /// Performs the "real" scheduling. Done before vectorization is actually 2940 /// performed in a basic block. 2941 void scheduleBlock(BlockScheduling *BS); 2942 2943 /// List of users to ignore during scheduling and that don't need extracting. 2944 ArrayRef<Value *> UserIgnoreList; 2945 2946 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2947 /// sorted SmallVectors of unsigned. 2948 struct OrdersTypeDenseMapInfo { 2949 static OrdersType getEmptyKey() { 2950 OrdersType V; 2951 V.push_back(~1U); 2952 return V; 2953 } 2954 2955 static OrdersType getTombstoneKey() { 2956 OrdersType V; 2957 V.push_back(~2U); 2958 return V; 2959 } 2960 2961 static unsigned getHashValue(const OrdersType &V) { 2962 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2963 } 2964 2965 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2966 return LHS == RHS; 2967 } 2968 }; 2969 2970 // Analysis and block reference. 2971 Function *F; 2972 ScalarEvolution *SE; 2973 TargetTransformInfo *TTI; 2974 TargetLibraryInfo *TLI; 2975 LoopInfo *LI; 2976 DominatorTree *DT; 2977 AssumptionCache *AC; 2978 DemandedBits *DB; 2979 const DataLayout *DL; 2980 OptimizationRemarkEmitter *ORE; 2981 2982 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2983 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2984 2985 /// Instruction builder to construct the vectorized tree. 2986 IRBuilder<> Builder; 2987 2988 /// A map of scalar integer values to the smallest bit width with which they 2989 /// can legally be represented. The values map to (width, signed) pairs, 2990 /// where "width" indicates the minimum bit width and "signed" is True if the 2991 /// value must be signed-extended, rather than zero-extended, back to its 2992 /// original width. 2993 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2994 }; 2995 2996 } // end namespace slpvectorizer 2997 2998 template <> struct GraphTraits<BoUpSLP *> { 2999 using TreeEntry = BoUpSLP::TreeEntry; 3000 3001 /// NodeRef has to be a pointer per the GraphWriter. 3002 using NodeRef = TreeEntry *; 3003 3004 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3005 3006 /// Add the VectorizableTree to the index iterator to be able to return 3007 /// TreeEntry pointers. 3008 struct ChildIteratorType 3009 : public iterator_adaptor_base< 3010 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3011 ContainerTy &VectorizableTree; 3012 3013 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3014 ContainerTy &VT) 3015 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3016 3017 NodeRef operator*() { return I->UserTE; } 3018 }; 3019 3020 static NodeRef getEntryNode(BoUpSLP &R) { 3021 return R.VectorizableTree[0].get(); 3022 } 3023 3024 static ChildIteratorType child_begin(NodeRef N) { 3025 return {N->UserTreeIndices.begin(), N->Container}; 3026 } 3027 3028 static ChildIteratorType child_end(NodeRef N) { 3029 return {N->UserTreeIndices.end(), N->Container}; 3030 } 3031 3032 /// For the node iterator we just need to turn the TreeEntry iterator into a 3033 /// TreeEntry* iterator so that it dereferences to NodeRef. 3034 class nodes_iterator { 3035 using ItTy = ContainerTy::iterator; 3036 ItTy It; 3037 3038 public: 3039 nodes_iterator(const ItTy &It2) : It(It2) {} 3040 NodeRef operator*() { return It->get(); } 3041 nodes_iterator operator++() { 3042 ++It; 3043 return *this; 3044 } 3045 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3046 }; 3047 3048 static nodes_iterator nodes_begin(BoUpSLP *R) { 3049 return nodes_iterator(R->VectorizableTree.begin()); 3050 } 3051 3052 static nodes_iterator nodes_end(BoUpSLP *R) { 3053 return nodes_iterator(R->VectorizableTree.end()); 3054 } 3055 3056 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3057 }; 3058 3059 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3060 using TreeEntry = BoUpSLP::TreeEntry; 3061 3062 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3063 3064 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3065 std::string Str; 3066 raw_string_ostream OS(Str); 3067 if (isSplat(Entry->Scalars)) 3068 OS << "<splat> "; 3069 for (auto V : Entry->Scalars) { 3070 OS << *V; 3071 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3072 return EU.Scalar == V; 3073 })) 3074 OS << " <extract>"; 3075 OS << "\n"; 3076 } 3077 return Str; 3078 } 3079 3080 static std::string getNodeAttributes(const TreeEntry *Entry, 3081 const BoUpSLP *) { 3082 if (Entry->State == TreeEntry::NeedToGather) 3083 return "color=red"; 3084 return ""; 3085 } 3086 }; 3087 3088 } // end namespace llvm 3089 3090 BoUpSLP::~BoUpSLP() { 3091 for (const auto &Pair : DeletedInstructions) { 3092 // Replace operands of ignored instructions with Undefs in case if they were 3093 // marked for deletion. 3094 if (Pair.getSecond()) { 3095 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3096 Pair.getFirst()->replaceAllUsesWith(Undef); 3097 } 3098 Pair.getFirst()->dropAllReferences(); 3099 } 3100 for (const auto &Pair : DeletedInstructions) { 3101 assert(Pair.getFirst()->use_empty() && 3102 "trying to erase instruction with users."); 3103 Pair.getFirst()->eraseFromParent(); 3104 } 3105 #ifdef EXPENSIVE_CHECKS 3106 // If we could guarantee that this call is not extremely slow, we could 3107 // remove the ifdef limitation (see PR47712). 3108 assert(!verifyFunction(*F, &dbgs())); 3109 #endif 3110 } 3111 3112 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3113 for (auto *V : AV) { 3114 if (auto *I = dyn_cast<Instruction>(V)) 3115 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3116 }; 3117 } 3118 3119 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3120 /// contains original mask for the scalars reused in the node. Procedure 3121 /// transform this mask in accordance with the given \p Mask. 3122 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3123 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3124 "Expected non-empty mask."); 3125 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3126 Prev.swap(Reuses); 3127 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3128 if (Mask[I] != UndefMaskElem) 3129 Reuses[Mask[I]] = Prev[I]; 3130 } 3131 3132 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3133 /// the original order of the scalars. Procedure transforms the provided order 3134 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3135 /// identity order, \p Order is cleared. 3136 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3137 assert(!Mask.empty() && "Expected non-empty mask."); 3138 SmallVector<int> MaskOrder; 3139 if (Order.empty()) { 3140 MaskOrder.resize(Mask.size()); 3141 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3142 } else { 3143 inversePermutation(Order, MaskOrder); 3144 } 3145 reorderReuses(MaskOrder, Mask); 3146 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3147 Order.clear(); 3148 return; 3149 } 3150 Order.assign(Mask.size(), Mask.size()); 3151 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3152 if (MaskOrder[I] != UndefMaskElem) 3153 Order[MaskOrder[I]] = I; 3154 fixupOrderingIndices(Order); 3155 } 3156 3157 Optional<BoUpSLP::OrdersType> 3158 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3159 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3160 unsigned NumScalars = TE.Scalars.size(); 3161 OrdersType CurrentOrder(NumScalars, NumScalars); 3162 SmallVector<int> Positions; 3163 SmallBitVector UsedPositions(NumScalars); 3164 const TreeEntry *STE = nullptr; 3165 // Try to find all gathered scalars that are gets vectorized in other 3166 // vectorize node. Here we can have only one single tree vector node to 3167 // correctly identify order of the gathered scalars. 3168 for (unsigned I = 0; I < NumScalars; ++I) { 3169 Value *V = TE.Scalars[I]; 3170 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3171 continue; 3172 if (const auto *LocalSTE = getTreeEntry(V)) { 3173 if (!STE) 3174 STE = LocalSTE; 3175 else if (STE != LocalSTE) 3176 // Take the order only from the single vector node. 3177 return None; 3178 unsigned Lane = 3179 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3180 if (Lane >= NumScalars) 3181 return None; 3182 if (CurrentOrder[Lane] != NumScalars) { 3183 if (Lane != I) 3184 continue; 3185 UsedPositions.reset(CurrentOrder[Lane]); 3186 } 3187 // The partial identity (where only some elements of the gather node are 3188 // in the identity order) is good. 3189 CurrentOrder[Lane] = I; 3190 UsedPositions.set(I); 3191 } 3192 } 3193 // Need to keep the order if we have a vector entry and at least 2 scalars or 3194 // the vectorized entry has just 2 scalars. 3195 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3196 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3197 for (unsigned I = 0; I < NumScalars; ++I) 3198 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3199 return false; 3200 return true; 3201 }; 3202 if (IsIdentityOrder(CurrentOrder)) { 3203 CurrentOrder.clear(); 3204 return CurrentOrder; 3205 } 3206 auto *It = CurrentOrder.begin(); 3207 for (unsigned I = 0; I < NumScalars;) { 3208 if (UsedPositions.test(I)) { 3209 ++I; 3210 continue; 3211 } 3212 if (*It == NumScalars) { 3213 *It = I; 3214 ++I; 3215 } 3216 ++It; 3217 } 3218 return CurrentOrder; 3219 } 3220 return None; 3221 } 3222 3223 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3224 bool TopToBottom) { 3225 // No need to reorder if need to shuffle reuses, still need to shuffle the 3226 // node. 3227 if (!TE.ReuseShuffleIndices.empty()) 3228 return None; 3229 if (TE.State == TreeEntry::Vectorize && 3230 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3231 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3232 !TE.isAltShuffle()) 3233 return TE.ReorderIndices; 3234 if (TE.State == TreeEntry::NeedToGather) { 3235 // TODO: add analysis of other gather nodes with extractelement 3236 // instructions and other values/instructions, not only undefs. 3237 if (((TE.getOpcode() == Instruction::ExtractElement && 3238 !TE.isAltShuffle()) || 3239 (all_of(TE.Scalars, 3240 [](Value *V) { 3241 return isa<UndefValue, ExtractElementInst>(V); 3242 }) && 3243 any_of(TE.Scalars, 3244 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3245 all_of(TE.Scalars, 3246 [](Value *V) { 3247 auto *EE = dyn_cast<ExtractElementInst>(V); 3248 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3249 }) && 3250 allSameType(TE.Scalars)) { 3251 // Check that gather of extractelements can be represented as 3252 // just a shuffle of a single vector. 3253 OrdersType CurrentOrder; 3254 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3255 if (Reuse || !CurrentOrder.empty()) { 3256 if (!CurrentOrder.empty()) 3257 fixupOrderingIndices(CurrentOrder); 3258 return CurrentOrder; 3259 } 3260 } 3261 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3262 return CurrentOrder; 3263 } 3264 return None; 3265 } 3266 3267 void BoUpSLP::reorderTopToBottom() { 3268 // Maps VF to the graph nodes. 3269 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3270 // ExtractElement gather nodes which can be vectorized and need to handle 3271 // their ordering. 3272 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3273 // Find all reorderable nodes with the given VF. 3274 // Currently the are vectorized stores,loads,extracts + some gathering of 3275 // extracts. 3276 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3277 const std::unique_ptr<TreeEntry> &TE) { 3278 if (Optional<OrdersType> CurrentOrder = 3279 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3280 // Do not include ordering for nodes used in the alt opcode vectorization, 3281 // better to reorder them during bottom-to-top stage. If follow the order 3282 // here, it causes reordering of the whole graph though actually it is 3283 // profitable just to reorder the subgraph that starts from the alternate 3284 // opcode vectorization node. Such nodes already end-up with the shuffle 3285 // instruction and it is just enough to change this shuffle rather than 3286 // rotate the scalars for the whole graph. 3287 unsigned Cnt = 0; 3288 const TreeEntry *UserTE = TE.get(); 3289 while (UserTE && Cnt < RecursionMaxDepth) { 3290 if (UserTE->UserTreeIndices.size() != 1) 3291 break; 3292 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3293 return EI.UserTE->State == TreeEntry::Vectorize && 3294 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3295 })) 3296 return; 3297 if (UserTE->UserTreeIndices.empty()) 3298 UserTE = nullptr; 3299 else 3300 UserTE = UserTE->UserTreeIndices.back().UserTE; 3301 ++Cnt; 3302 } 3303 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3304 if (TE->State != TreeEntry::Vectorize) 3305 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3306 } 3307 }); 3308 3309 // Reorder the graph nodes according to their vectorization factor. 3310 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3311 VF /= 2) { 3312 auto It = VFToOrderedEntries.find(VF); 3313 if (It == VFToOrderedEntries.end()) 3314 continue; 3315 // Try to find the most profitable order. We just are looking for the most 3316 // used order and reorder scalar elements in the nodes according to this 3317 // mostly used order. 3318 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3319 // All operands are reordered and used only in this node - propagate the 3320 // most used order to the user node. 3321 MapVector<OrdersType, unsigned, 3322 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3323 OrdersUses; 3324 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3325 for (const TreeEntry *OpTE : OrderedEntries) { 3326 // No need to reorder this nodes, still need to extend and to use shuffle, 3327 // just need to merge reordering shuffle and the reuse shuffle. 3328 if (!OpTE->ReuseShuffleIndices.empty()) 3329 continue; 3330 // Count number of orders uses. 3331 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3332 if (OpTE->State == TreeEntry::NeedToGather) 3333 return GathersToOrders.find(OpTE)->second; 3334 return OpTE->ReorderIndices; 3335 }(); 3336 // Stores actually store the mask, not the order, need to invert. 3337 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3338 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3339 SmallVector<int> Mask; 3340 inversePermutation(Order, Mask); 3341 unsigned E = Order.size(); 3342 OrdersType CurrentOrder(E, E); 3343 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3344 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3345 }); 3346 fixupOrderingIndices(CurrentOrder); 3347 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3348 } else { 3349 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3350 } 3351 } 3352 // Set order of the user node. 3353 if (OrdersUses.empty()) 3354 continue; 3355 // Choose the most used order. 3356 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3357 unsigned Cnt = OrdersUses.front().second; 3358 for (const auto &Pair : drop_begin(OrdersUses)) { 3359 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3360 BestOrder = Pair.first; 3361 Cnt = Pair.second; 3362 } 3363 } 3364 // Set order of the user node. 3365 if (BestOrder.empty()) 3366 continue; 3367 SmallVector<int> Mask; 3368 inversePermutation(BestOrder, Mask); 3369 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3370 unsigned E = BestOrder.size(); 3371 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3372 return I < E ? static_cast<int>(I) : UndefMaskElem; 3373 }); 3374 // Do an actual reordering, if profitable. 3375 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3376 // Just do the reordering for the nodes with the given VF. 3377 if (TE->Scalars.size() != VF) { 3378 if (TE->ReuseShuffleIndices.size() == VF) { 3379 // Need to reorder the reuses masks of the operands with smaller VF to 3380 // be able to find the match between the graph nodes and scalar 3381 // operands of the given node during vectorization/cost estimation. 3382 assert(all_of(TE->UserTreeIndices, 3383 [VF, &TE](const EdgeInfo &EI) { 3384 return EI.UserTE->Scalars.size() == VF || 3385 EI.UserTE->Scalars.size() == 3386 TE->Scalars.size(); 3387 }) && 3388 "All users must be of VF size."); 3389 // Update ordering of the operands with the smaller VF than the given 3390 // one. 3391 reorderReuses(TE->ReuseShuffleIndices, Mask); 3392 } 3393 continue; 3394 } 3395 if (TE->State == TreeEntry::Vectorize && 3396 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3397 InsertElementInst>(TE->getMainOp()) && 3398 !TE->isAltShuffle()) { 3399 // Build correct orders for extract{element,value}, loads and 3400 // stores. 3401 reorderOrder(TE->ReorderIndices, Mask); 3402 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3403 TE->reorderOperands(Mask); 3404 } else { 3405 // Reorder the node and its operands. 3406 TE->reorderOperands(Mask); 3407 assert(TE->ReorderIndices.empty() && 3408 "Expected empty reorder sequence."); 3409 reorderScalars(TE->Scalars, Mask); 3410 } 3411 if (!TE->ReuseShuffleIndices.empty()) { 3412 // Apply reversed order to keep the original ordering of the reused 3413 // elements to avoid extra reorder indices shuffling. 3414 OrdersType CurrentOrder; 3415 reorderOrder(CurrentOrder, MaskOrder); 3416 SmallVector<int> NewReuses; 3417 inversePermutation(CurrentOrder, NewReuses); 3418 addMask(NewReuses, TE->ReuseShuffleIndices); 3419 TE->ReuseShuffleIndices.swap(NewReuses); 3420 } 3421 } 3422 } 3423 } 3424 3425 bool BoUpSLP::canReorderOperands( 3426 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3427 ArrayRef<TreeEntry *> ReorderableGathers, 3428 SmallVectorImpl<TreeEntry *> &GatherOps) { 3429 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3430 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3431 return OpData.first == I && 3432 OpData.second->State == TreeEntry::Vectorize; 3433 })) 3434 continue; 3435 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3436 // Do not reorder if operand node is used by many user nodes. 3437 if (any_of(TE->UserTreeIndices, 3438 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3439 return false; 3440 // Add the node to the list of the ordered nodes with the identity 3441 // order. 3442 Edges.emplace_back(I, TE); 3443 continue; 3444 } 3445 ArrayRef<Value *> VL = UserTE->getOperand(I); 3446 TreeEntry *Gather = nullptr; 3447 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3448 assert(TE->State != TreeEntry::Vectorize && 3449 "Only non-vectorized nodes are expected."); 3450 if (TE->isSame(VL)) { 3451 Gather = TE; 3452 return true; 3453 } 3454 return false; 3455 }) > 1) 3456 return false; 3457 if (Gather) 3458 GatherOps.push_back(Gather); 3459 } 3460 return true; 3461 } 3462 3463 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3464 SetVector<TreeEntry *> OrderedEntries; 3465 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3466 // Find all reorderable leaf nodes with the given VF. 3467 // Currently the are vectorized loads,extracts without alternate operands + 3468 // some gathering of extracts. 3469 SmallVector<TreeEntry *> NonVectorized; 3470 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3471 &NonVectorized]( 3472 const std::unique_ptr<TreeEntry> &TE) { 3473 if (TE->State != TreeEntry::Vectorize) 3474 NonVectorized.push_back(TE.get()); 3475 if (Optional<OrdersType> CurrentOrder = 3476 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3477 OrderedEntries.insert(TE.get()); 3478 if (TE->State != TreeEntry::Vectorize) 3479 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3480 } 3481 }); 3482 3483 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3484 // I.e., if the node has operands, that are reordered, try to make at least 3485 // one operand order in the natural order and reorder others + reorder the 3486 // user node itself. 3487 SmallPtrSet<const TreeEntry *, 4> Visited; 3488 while (!OrderedEntries.empty()) { 3489 // 1. Filter out only reordered nodes. 3490 // 2. If the entry has multiple uses - skip it and jump to the next node. 3491 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3492 SmallVector<TreeEntry *> Filtered; 3493 for (TreeEntry *TE : OrderedEntries) { 3494 if (!(TE->State == TreeEntry::Vectorize || 3495 (TE->State == TreeEntry::NeedToGather && 3496 GathersToOrders.count(TE))) || 3497 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3498 !all_of(drop_begin(TE->UserTreeIndices), 3499 [TE](const EdgeInfo &EI) { 3500 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3501 }) || 3502 !Visited.insert(TE).second) { 3503 Filtered.push_back(TE); 3504 continue; 3505 } 3506 // Build a map between user nodes and their operands order to speedup 3507 // search. The graph currently does not provide this dependency directly. 3508 for (EdgeInfo &EI : TE->UserTreeIndices) { 3509 TreeEntry *UserTE = EI.UserTE; 3510 auto It = Users.find(UserTE); 3511 if (It == Users.end()) 3512 It = Users.insert({UserTE, {}}).first; 3513 It->second.emplace_back(EI.EdgeIdx, TE); 3514 } 3515 } 3516 // Erase filtered entries. 3517 for_each(Filtered, 3518 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3519 for (auto &Data : Users) { 3520 // Check that operands are used only in the User node. 3521 SmallVector<TreeEntry *> GatherOps; 3522 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3523 GatherOps)) { 3524 for_each(Data.second, 3525 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3526 OrderedEntries.remove(Op.second); 3527 }); 3528 continue; 3529 } 3530 // All operands are reordered and used only in this node - propagate the 3531 // most used order to the user node. 3532 MapVector<OrdersType, unsigned, 3533 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3534 OrdersUses; 3535 // Do the analysis for each tree entry only once, otherwise the order of 3536 // the same node my be considered several times, though might be not 3537 // profitable. 3538 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3539 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3540 for (const auto &Op : Data.second) { 3541 TreeEntry *OpTE = Op.second; 3542 if (!VisitedOps.insert(OpTE).second) 3543 continue; 3544 if (!OpTE->ReuseShuffleIndices.empty() || 3545 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3546 continue; 3547 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3548 if (OpTE->State == TreeEntry::NeedToGather) 3549 return GathersToOrders.find(OpTE)->second; 3550 return OpTE->ReorderIndices; 3551 }(); 3552 unsigned NumOps = count_if( 3553 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3554 return P.second == OpTE; 3555 }); 3556 // Stores actually store the mask, not the order, need to invert. 3557 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3558 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3559 SmallVector<int> Mask; 3560 inversePermutation(Order, Mask); 3561 unsigned E = Order.size(); 3562 OrdersType CurrentOrder(E, E); 3563 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3564 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3565 }); 3566 fixupOrderingIndices(CurrentOrder); 3567 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3568 NumOps; 3569 } else { 3570 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3571 } 3572 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3573 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3574 const TreeEntry *TE) { 3575 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3576 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3577 (IgnoreReorder && TE->Idx == 0)) 3578 return true; 3579 if (TE->State == TreeEntry::NeedToGather) { 3580 auto It = GathersToOrders.find(TE); 3581 if (It != GathersToOrders.end()) 3582 return !It->second.empty(); 3583 return true; 3584 } 3585 return false; 3586 }; 3587 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3588 TreeEntry *UserTE = EI.UserTE; 3589 if (!VisitedUsers.insert(UserTE).second) 3590 continue; 3591 // May reorder user node if it requires reordering, has reused 3592 // scalars, is an alternate op vectorize node or its op nodes require 3593 // reordering. 3594 if (AllowsReordering(UserTE)) 3595 continue; 3596 // Check if users allow reordering. 3597 // Currently look up just 1 level of operands to avoid increase of 3598 // the compile time. 3599 // Profitable to reorder if definitely more operands allow 3600 // reordering rather than those with natural order. 3601 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3602 if (static_cast<unsigned>(count_if( 3603 Ops, [UserTE, &AllowsReordering]( 3604 const std::pair<unsigned, TreeEntry *> &Op) { 3605 return AllowsReordering(Op.second) && 3606 all_of(Op.second->UserTreeIndices, 3607 [UserTE](const EdgeInfo &EI) { 3608 return EI.UserTE == UserTE; 3609 }); 3610 })) <= Ops.size() / 2) 3611 ++Res.first->second; 3612 } 3613 } 3614 // If no orders - skip current nodes and jump to the next one, if any. 3615 if (OrdersUses.empty()) { 3616 for_each(Data.second, 3617 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3618 OrderedEntries.remove(Op.second); 3619 }); 3620 continue; 3621 } 3622 // Choose the best order. 3623 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3624 unsigned Cnt = OrdersUses.front().second; 3625 for (const auto &Pair : drop_begin(OrdersUses)) { 3626 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3627 BestOrder = Pair.first; 3628 Cnt = Pair.second; 3629 } 3630 } 3631 // Set order of the user node (reordering of operands and user nodes). 3632 if (BestOrder.empty()) { 3633 for_each(Data.second, 3634 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3635 OrderedEntries.remove(Op.second); 3636 }); 3637 continue; 3638 } 3639 // Erase operands from OrderedEntries list and adjust their orders. 3640 VisitedOps.clear(); 3641 SmallVector<int> Mask; 3642 inversePermutation(BestOrder, Mask); 3643 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3644 unsigned E = BestOrder.size(); 3645 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3646 return I < E ? static_cast<int>(I) : UndefMaskElem; 3647 }); 3648 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3649 TreeEntry *TE = Op.second; 3650 OrderedEntries.remove(TE); 3651 if (!VisitedOps.insert(TE).second) 3652 continue; 3653 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3654 // Just reorder reuses indices. 3655 reorderReuses(TE->ReuseShuffleIndices, Mask); 3656 continue; 3657 } 3658 // Gathers are processed separately. 3659 if (TE->State != TreeEntry::Vectorize) 3660 continue; 3661 assert((BestOrder.size() == TE->ReorderIndices.size() || 3662 TE->ReorderIndices.empty()) && 3663 "Non-matching sizes of user/operand entries."); 3664 reorderOrder(TE->ReorderIndices, Mask); 3665 } 3666 // For gathers just need to reorder its scalars. 3667 for (TreeEntry *Gather : GatherOps) { 3668 assert(Gather->ReorderIndices.empty() && 3669 "Unexpected reordering of gathers."); 3670 if (!Gather->ReuseShuffleIndices.empty()) { 3671 // Just reorder reuses indices. 3672 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3673 continue; 3674 } 3675 reorderScalars(Gather->Scalars, Mask); 3676 OrderedEntries.remove(Gather); 3677 } 3678 // Reorder operands of the user node and set the ordering for the user 3679 // node itself. 3680 if (Data.first->State != TreeEntry::Vectorize || 3681 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3682 Data.first->getMainOp()) || 3683 Data.first->isAltShuffle()) 3684 Data.first->reorderOperands(Mask); 3685 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3686 Data.first->isAltShuffle()) { 3687 reorderScalars(Data.first->Scalars, Mask); 3688 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3689 if (Data.first->ReuseShuffleIndices.empty() && 3690 !Data.first->ReorderIndices.empty() && 3691 !Data.first->isAltShuffle()) { 3692 // Insert user node to the list to try to sink reordering deeper in 3693 // the graph. 3694 OrderedEntries.insert(Data.first); 3695 } 3696 } else { 3697 reorderOrder(Data.first->ReorderIndices, Mask); 3698 } 3699 } 3700 } 3701 // If the reordering is unnecessary, just remove the reorder. 3702 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3703 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3704 VectorizableTree.front()->ReorderIndices.clear(); 3705 } 3706 3707 void BoUpSLP::buildExternalUses( 3708 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3709 // Collect the values that we need to extract from the tree. 3710 for (auto &TEPtr : VectorizableTree) { 3711 TreeEntry *Entry = TEPtr.get(); 3712 3713 // No need to handle users of gathered values. 3714 if (Entry->State == TreeEntry::NeedToGather) 3715 continue; 3716 3717 // For each lane: 3718 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3719 Value *Scalar = Entry->Scalars[Lane]; 3720 int FoundLane = Entry->findLaneForValue(Scalar); 3721 3722 // Check if the scalar is externally used as an extra arg. 3723 auto ExtI = ExternallyUsedValues.find(Scalar); 3724 if (ExtI != ExternallyUsedValues.end()) { 3725 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3726 << Lane << " from " << *Scalar << ".\n"); 3727 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3728 } 3729 for (User *U : Scalar->users()) { 3730 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3731 3732 Instruction *UserInst = dyn_cast<Instruction>(U); 3733 if (!UserInst) 3734 continue; 3735 3736 if (isDeleted(UserInst)) 3737 continue; 3738 3739 // Skip in-tree scalars that become vectors 3740 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3741 Value *UseScalar = UseEntry->Scalars[0]; 3742 // Some in-tree scalars will remain as scalar in vectorized 3743 // instructions. If that is the case, the one in Lane 0 will 3744 // be used. 3745 if (UseScalar != U || 3746 UseEntry->State == TreeEntry::ScatterVectorize || 3747 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3748 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3749 << ".\n"); 3750 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3751 continue; 3752 } 3753 } 3754 3755 // Ignore users in the user ignore list. 3756 if (is_contained(UserIgnoreList, UserInst)) 3757 continue; 3758 3759 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3760 << Lane << " from " << *Scalar << ".\n"); 3761 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3762 } 3763 } 3764 } 3765 } 3766 3767 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3768 ArrayRef<Value *> UserIgnoreLst) { 3769 deleteTree(); 3770 UserIgnoreList = UserIgnoreLst; 3771 if (!allSameType(Roots)) 3772 return; 3773 buildTree_rec(Roots, 0, EdgeInfo()); 3774 } 3775 3776 namespace { 3777 /// Tracks the state we can represent the loads in the given sequence. 3778 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3779 } // anonymous namespace 3780 3781 /// Checks if the given array of loads can be represented as a vectorized, 3782 /// scatter or just simple gather. 3783 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3784 const TargetTransformInfo &TTI, 3785 const DataLayout &DL, ScalarEvolution &SE, 3786 SmallVectorImpl<unsigned> &Order, 3787 SmallVectorImpl<Value *> &PointerOps) { 3788 // Check that a vectorized load would load the same memory as a scalar 3789 // load. For example, we don't want to vectorize loads that are smaller 3790 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3791 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3792 // from such a struct, we read/write packed bits disagreeing with the 3793 // unvectorized version. 3794 Type *ScalarTy = VL0->getType(); 3795 3796 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3797 return LoadsState::Gather; 3798 3799 // Make sure all loads in the bundle are simple - we can't vectorize 3800 // atomic or volatile loads. 3801 PointerOps.clear(); 3802 PointerOps.resize(VL.size()); 3803 auto *POIter = PointerOps.begin(); 3804 for (Value *V : VL) { 3805 auto *L = cast<LoadInst>(V); 3806 if (!L->isSimple()) 3807 return LoadsState::Gather; 3808 *POIter = L->getPointerOperand(); 3809 ++POIter; 3810 } 3811 3812 Order.clear(); 3813 // Check the order of pointer operands. 3814 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3815 Value *Ptr0; 3816 Value *PtrN; 3817 if (Order.empty()) { 3818 Ptr0 = PointerOps.front(); 3819 PtrN = PointerOps.back(); 3820 } else { 3821 Ptr0 = PointerOps[Order.front()]; 3822 PtrN = PointerOps[Order.back()]; 3823 } 3824 Optional<int> Diff = 3825 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3826 // Check that the sorted loads are consecutive. 3827 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3828 return LoadsState::Vectorize; 3829 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3830 for (Value *V : VL) 3831 CommonAlignment = 3832 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3833 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3834 CommonAlignment)) 3835 return LoadsState::ScatterVectorize; 3836 } 3837 3838 return LoadsState::Gather; 3839 } 3840 3841 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3842 const EdgeInfo &UserTreeIdx) { 3843 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3844 3845 SmallVector<int> ReuseShuffleIndicies; 3846 SmallVector<Value *> UniqueValues; 3847 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3848 &UserTreeIdx, 3849 this](const InstructionsState &S) { 3850 // Check that every instruction appears once in this bundle. 3851 DenseMap<Value *, unsigned> UniquePositions; 3852 for (Value *V : VL) { 3853 if (isConstant(V)) { 3854 ReuseShuffleIndicies.emplace_back( 3855 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3856 UniqueValues.emplace_back(V); 3857 continue; 3858 } 3859 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3860 ReuseShuffleIndicies.emplace_back(Res.first->second); 3861 if (Res.second) 3862 UniqueValues.emplace_back(V); 3863 } 3864 size_t NumUniqueScalarValues = UniqueValues.size(); 3865 if (NumUniqueScalarValues == VL.size()) { 3866 ReuseShuffleIndicies.clear(); 3867 } else { 3868 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3869 if (NumUniqueScalarValues <= 1 || 3870 (UniquePositions.size() == 1 && all_of(UniqueValues, 3871 [](Value *V) { 3872 return isa<UndefValue>(V) || 3873 !isConstant(V); 3874 })) || 3875 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3876 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3878 return false; 3879 } 3880 VL = UniqueValues; 3881 } 3882 return true; 3883 }; 3884 3885 InstructionsState S = getSameOpcode(VL); 3886 if (Depth == RecursionMaxDepth) { 3887 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3888 if (TryToFindDuplicates(S)) 3889 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3890 ReuseShuffleIndicies); 3891 return; 3892 } 3893 3894 // Don't handle scalable vectors 3895 if (S.getOpcode() == Instruction::ExtractElement && 3896 isa<ScalableVectorType>( 3897 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3898 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3899 if (TryToFindDuplicates(S)) 3900 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3901 ReuseShuffleIndicies); 3902 return; 3903 } 3904 3905 // Don't handle vectors. 3906 if (S.OpValue->getType()->isVectorTy() && 3907 !isa<InsertElementInst>(S.OpValue)) { 3908 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3909 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3910 return; 3911 } 3912 3913 // Avoid attempting to schedule allocas; there are unmodeled dependencies 3914 // for "static" alloca status and for reordering with stacksave calls. 3915 for (Value *V : VL) { 3916 if (isa<AllocaInst>(V)) { 3917 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 3918 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3919 return; 3920 } 3921 } 3922 3923 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3924 if (SI->getValueOperand()->getType()->isVectorTy()) { 3925 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3926 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3927 return; 3928 } 3929 3930 // If all of the operands are identical or constant we have a simple solution. 3931 // If we deal with insert/extract instructions, they all must have constant 3932 // indices, otherwise we should gather them, not try to vectorize. 3933 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3934 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3935 !all_of(VL, isVectorLikeInstWithConstOps))) { 3936 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3937 if (TryToFindDuplicates(S)) 3938 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3939 ReuseShuffleIndicies); 3940 return; 3941 } 3942 3943 // We now know that this is a vector of instructions of the same type from 3944 // the same block. 3945 3946 // Don't vectorize ephemeral values. 3947 for (Value *V : VL) { 3948 if (EphValues.count(V)) { 3949 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3950 << ") is ephemeral.\n"); 3951 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3952 return; 3953 } 3954 } 3955 3956 // Check if this is a duplicate of another entry. 3957 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3958 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3959 if (!E->isSame(VL)) { 3960 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3961 if (TryToFindDuplicates(S)) 3962 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3963 ReuseShuffleIndicies); 3964 return; 3965 } 3966 // Record the reuse of the tree node. FIXME, currently this is only used to 3967 // properly draw the graph rather than for the actual vectorization. 3968 E->UserTreeIndices.push_back(UserTreeIdx); 3969 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3970 << ".\n"); 3971 return; 3972 } 3973 3974 // Check that none of the instructions in the bundle are already in the tree. 3975 for (Value *V : VL) { 3976 auto *I = dyn_cast<Instruction>(V); 3977 if (!I) 3978 continue; 3979 if (getTreeEntry(I)) { 3980 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3981 << ") is already in tree.\n"); 3982 if (TryToFindDuplicates(S)) 3983 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3984 ReuseShuffleIndicies); 3985 return; 3986 } 3987 } 3988 3989 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3990 for (Value *V : VL) { 3991 if (is_contained(UserIgnoreList, V)) { 3992 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3993 if (TryToFindDuplicates(S)) 3994 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3995 ReuseShuffleIndicies); 3996 return; 3997 } 3998 } 3999 4000 // Check that all of the users of the scalars that we want to vectorize are 4001 // schedulable. 4002 auto *VL0 = cast<Instruction>(S.OpValue); 4003 BasicBlock *BB = VL0->getParent(); 4004 4005 if (!DT->isReachableFromEntry(BB)) { 4006 // Don't go into unreachable blocks. They may contain instructions with 4007 // dependency cycles which confuse the final scheduling. 4008 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4009 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4010 return; 4011 } 4012 4013 // Check that every instruction appears once in this bundle. 4014 if (!TryToFindDuplicates(S)) 4015 return; 4016 4017 auto &BSRef = BlocksSchedules[BB]; 4018 if (!BSRef) 4019 BSRef = std::make_unique<BlockScheduling>(BB); 4020 4021 BlockScheduling &BS = *BSRef.get(); 4022 4023 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4024 #ifdef EXPENSIVE_CHECKS 4025 // Make sure we didn't break any internal invariants 4026 BS.verify(); 4027 #endif 4028 if (!Bundle) { 4029 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4030 assert((!BS.getScheduleData(VL0) || 4031 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4032 "tryScheduleBundle should cancelScheduling on failure"); 4033 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4034 ReuseShuffleIndicies); 4035 return; 4036 } 4037 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4038 4039 unsigned ShuffleOrOp = S.isAltShuffle() ? 4040 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4041 switch (ShuffleOrOp) { 4042 case Instruction::PHI: { 4043 auto *PH = cast<PHINode>(VL0); 4044 4045 // Check for terminator values (e.g. invoke). 4046 for (Value *V : VL) 4047 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4048 Instruction *Term = dyn_cast<Instruction>( 4049 cast<PHINode>(V)->getIncomingValueForBlock( 4050 PH->getIncomingBlock(I))); 4051 if (Term && Term->isTerminator()) { 4052 LLVM_DEBUG(dbgs() 4053 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4054 BS.cancelScheduling(VL, VL0); 4055 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4056 ReuseShuffleIndicies); 4057 return; 4058 } 4059 } 4060 4061 TreeEntry *TE = 4062 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4063 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4064 4065 // Keeps the reordered operands to avoid code duplication. 4066 SmallVector<ValueList, 2> OperandsVec; 4067 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4068 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4069 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4070 TE->setOperand(I, Operands); 4071 OperandsVec.push_back(Operands); 4072 continue; 4073 } 4074 ValueList Operands; 4075 // Prepare the operand vector. 4076 for (Value *V : VL) 4077 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4078 PH->getIncomingBlock(I))); 4079 TE->setOperand(I, Operands); 4080 OperandsVec.push_back(Operands); 4081 } 4082 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4083 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4084 return; 4085 } 4086 case Instruction::ExtractValue: 4087 case Instruction::ExtractElement: { 4088 OrdersType CurrentOrder; 4089 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4090 if (Reuse) { 4091 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4092 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4093 ReuseShuffleIndicies); 4094 // This is a special case, as it does not gather, but at the same time 4095 // we are not extending buildTree_rec() towards the operands. 4096 ValueList Op0; 4097 Op0.assign(VL.size(), VL0->getOperand(0)); 4098 VectorizableTree.back()->setOperand(0, Op0); 4099 return; 4100 } 4101 if (!CurrentOrder.empty()) { 4102 LLVM_DEBUG({ 4103 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4104 "with order"; 4105 for (unsigned Idx : CurrentOrder) 4106 dbgs() << " " << Idx; 4107 dbgs() << "\n"; 4108 }); 4109 fixupOrderingIndices(CurrentOrder); 4110 // Insert new order with initial value 0, if it does not exist, 4111 // otherwise return the iterator to the existing one. 4112 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4113 ReuseShuffleIndicies, CurrentOrder); 4114 // This is a special case, as it does not gather, but at the same time 4115 // we are not extending buildTree_rec() towards the operands. 4116 ValueList Op0; 4117 Op0.assign(VL.size(), VL0->getOperand(0)); 4118 VectorizableTree.back()->setOperand(0, Op0); 4119 return; 4120 } 4121 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4122 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4123 ReuseShuffleIndicies); 4124 BS.cancelScheduling(VL, VL0); 4125 return; 4126 } 4127 case Instruction::InsertElement: { 4128 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4129 4130 // Check that we have a buildvector and not a shuffle of 2 or more 4131 // different vectors. 4132 ValueSet SourceVectors; 4133 for (Value *V : VL) { 4134 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4135 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4136 } 4137 4138 if (count_if(VL, [&SourceVectors](Value *V) { 4139 return !SourceVectors.contains(V); 4140 }) >= 2) { 4141 // Found 2nd source vector - cancel. 4142 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4143 "different source vectors.\n"); 4144 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4145 BS.cancelScheduling(VL, VL0); 4146 return; 4147 } 4148 4149 auto OrdCompare = [](const std::pair<int, int> &P1, 4150 const std::pair<int, int> &P2) { 4151 return P1.first > P2.first; 4152 }; 4153 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4154 decltype(OrdCompare)> 4155 Indices(OrdCompare); 4156 for (int I = 0, E = VL.size(); I < E; ++I) { 4157 unsigned Idx = *getInsertIndex(VL[I]); 4158 Indices.emplace(Idx, I); 4159 } 4160 OrdersType CurrentOrder(VL.size(), VL.size()); 4161 bool IsIdentity = true; 4162 for (int I = 0, E = VL.size(); I < E; ++I) { 4163 CurrentOrder[Indices.top().second] = I; 4164 IsIdentity &= Indices.top().second == I; 4165 Indices.pop(); 4166 } 4167 if (IsIdentity) 4168 CurrentOrder.clear(); 4169 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4170 None, CurrentOrder); 4171 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4172 4173 constexpr int NumOps = 2; 4174 ValueList VectorOperands[NumOps]; 4175 for (int I = 0; I < NumOps; ++I) { 4176 for (Value *V : VL) 4177 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4178 4179 TE->setOperand(I, VectorOperands[I]); 4180 } 4181 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4182 return; 4183 } 4184 case Instruction::Load: { 4185 // Check that a vectorized load would load the same memory as a scalar 4186 // load. For example, we don't want to vectorize loads that are smaller 4187 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4188 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4189 // from such a struct, we read/write packed bits disagreeing with the 4190 // unvectorized version. 4191 SmallVector<Value *> PointerOps; 4192 OrdersType CurrentOrder; 4193 TreeEntry *TE = nullptr; 4194 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4195 PointerOps)) { 4196 case LoadsState::Vectorize: 4197 if (CurrentOrder.empty()) { 4198 // Original loads are consecutive and does not require reordering. 4199 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4200 ReuseShuffleIndicies); 4201 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4202 } else { 4203 fixupOrderingIndices(CurrentOrder); 4204 // Need to reorder. 4205 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4206 ReuseShuffleIndicies, CurrentOrder); 4207 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4208 } 4209 TE->setOperandsInOrder(); 4210 break; 4211 case LoadsState::ScatterVectorize: 4212 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4213 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4214 UserTreeIdx, ReuseShuffleIndicies); 4215 TE->setOperandsInOrder(); 4216 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4217 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4218 break; 4219 case LoadsState::Gather: 4220 BS.cancelScheduling(VL, VL0); 4221 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4222 ReuseShuffleIndicies); 4223 #ifndef NDEBUG 4224 Type *ScalarTy = VL0->getType(); 4225 if (DL->getTypeSizeInBits(ScalarTy) != 4226 DL->getTypeAllocSizeInBits(ScalarTy)) 4227 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4228 else if (any_of(VL, [](Value *V) { 4229 return !cast<LoadInst>(V)->isSimple(); 4230 })) 4231 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4232 else 4233 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4234 #endif // NDEBUG 4235 break; 4236 } 4237 return; 4238 } 4239 case Instruction::ZExt: 4240 case Instruction::SExt: 4241 case Instruction::FPToUI: 4242 case Instruction::FPToSI: 4243 case Instruction::FPExt: 4244 case Instruction::PtrToInt: 4245 case Instruction::IntToPtr: 4246 case Instruction::SIToFP: 4247 case Instruction::UIToFP: 4248 case Instruction::Trunc: 4249 case Instruction::FPTrunc: 4250 case Instruction::BitCast: { 4251 Type *SrcTy = VL0->getOperand(0)->getType(); 4252 for (Value *V : VL) { 4253 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4254 if (Ty != SrcTy || !isValidElementType(Ty)) { 4255 BS.cancelScheduling(VL, VL0); 4256 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4257 ReuseShuffleIndicies); 4258 LLVM_DEBUG(dbgs() 4259 << "SLP: Gathering casts with different src types.\n"); 4260 return; 4261 } 4262 } 4263 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4264 ReuseShuffleIndicies); 4265 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4266 4267 TE->setOperandsInOrder(); 4268 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4269 ValueList Operands; 4270 // Prepare the operand vector. 4271 for (Value *V : VL) 4272 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4273 4274 buildTree_rec(Operands, Depth + 1, {TE, i}); 4275 } 4276 return; 4277 } 4278 case Instruction::ICmp: 4279 case Instruction::FCmp: { 4280 // Check that all of the compares have the same predicate. 4281 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4282 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4283 Type *ComparedTy = VL0->getOperand(0)->getType(); 4284 for (Value *V : VL) { 4285 CmpInst *Cmp = cast<CmpInst>(V); 4286 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4287 Cmp->getOperand(0)->getType() != ComparedTy) { 4288 BS.cancelScheduling(VL, VL0); 4289 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4290 ReuseShuffleIndicies); 4291 LLVM_DEBUG(dbgs() 4292 << "SLP: Gathering cmp with different predicate.\n"); 4293 return; 4294 } 4295 } 4296 4297 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4298 ReuseShuffleIndicies); 4299 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4300 4301 ValueList Left, Right; 4302 if (cast<CmpInst>(VL0)->isCommutative()) { 4303 // Commutative predicate - collect + sort operands of the instructions 4304 // so that each side is more likely to have the same opcode. 4305 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4306 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4307 } else { 4308 // Collect operands - commute if it uses the swapped predicate. 4309 for (Value *V : VL) { 4310 auto *Cmp = cast<CmpInst>(V); 4311 Value *LHS = Cmp->getOperand(0); 4312 Value *RHS = Cmp->getOperand(1); 4313 if (Cmp->getPredicate() != P0) 4314 std::swap(LHS, RHS); 4315 Left.push_back(LHS); 4316 Right.push_back(RHS); 4317 } 4318 } 4319 TE->setOperand(0, Left); 4320 TE->setOperand(1, Right); 4321 buildTree_rec(Left, Depth + 1, {TE, 0}); 4322 buildTree_rec(Right, Depth + 1, {TE, 1}); 4323 return; 4324 } 4325 case Instruction::Select: 4326 case Instruction::FNeg: 4327 case Instruction::Add: 4328 case Instruction::FAdd: 4329 case Instruction::Sub: 4330 case Instruction::FSub: 4331 case Instruction::Mul: 4332 case Instruction::FMul: 4333 case Instruction::UDiv: 4334 case Instruction::SDiv: 4335 case Instruction::FDiv: 4336 case Instruction::URem: 4337 case Instruction::SRem: 4338 case Instruction::FRem: 4339 case Instruction::Shl: 4340 case Instruction::LShr: 4341 case Instruction::AShr: 4342 case Instruction::And: 4343 case Instruction::Or: 4344 case Instruction::Xor: { 4345 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4346 ReuseShuffleIndicies); 4347 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4348 4349 // Sort operands of the instructions so that each side is more likely to 4350 // have the same opcode. 4351 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4352 ValueList Left, Right; 4353 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4354 TE->setOperand(0, Left); 4355 TE->setOperand(1, Right); 4356 buildTree_rec(Left, Depth + 1, {TE, 0}); 4357 buildTree_rec(Right, Depth + 1, {TE, 1}); 4358 return; 4359 } 4360 4361 TE->setOperandsInOrder(); 4362 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4363 ValueList Operands; 4364 // Prepare the operand vector. 4365 for (Value *V : VL) 4366 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4367 4368 buildTree_rec(Operands, Depth + 1, {TE, i}); 4369 } 4370 return; 4371 } 4372 case Instruction::GetElementPtr: { 4373 // We don't combine GEPs with complicated (nested) indexing. 4374 for (Value *V : VL) { 4375 if (cast<Instruction>(V)->getNumOperands() != 2) { 4376 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4377 BS.cancelScheduling(VL, VL0); 4378 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4379 ReuseShuffleIndicies); 4380 return; 4381 } 4382 } 4383 4384 // We can't combine several GEPs into one vector if they operate on 4385 // different types. 4386 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4387 for (Value *V : VL) { 4388 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4389 if (Ty0 != CurTy) { 4390 LLVM_DEBUG(dbgs() 4391 << "SLP: not-vectorizable GEP (different types).\n"); 4392 BS.cancelScheduling(VL, VL0); 4393 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4394 ReuseShuffleIndicies); 4395 return; 4396 } 4397 } 4398 4399 // We don't combine GEPs with non-constant indexes. 4400 Type *Ty1 = VL0->getOperand(1)->getType(); 4401 for (Value *V : VL) { 4402 auto Op = cast<Instruction>(V)->getOperand(1); 4403 if (!isa<ConstantInt>(Op) || 4404 (Op->getType() != Ty1 && 4405 Op->getType()->getScalarSizeInBits() > 4406 DL->getIndexSizeInBits( 4407 V->getType()->getPointerAddressSpace()))) { 4408 LLVM_DEBUG(dbgs() 4409 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4410 BS.cancelScheduling(VL, VL0); 4411 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4412 ReuseShuffleIndicies); 4413 return; 4414 } 4415 } 4416 4417 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4418 ReuseShuffleIndicies); 4419 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4420 SmallVector<ValueList, 2> Operands(2); 4421 // Prepare the operand vector for pointer operands. 4422 for (Value *V : VL) 4423 Operands.front().push_back( 4424 cast<GetElementPtrInst>(V)->getPointerOperand()); 4425 TE->setOperand(0, Operands.front()); 4426 // Need to cast all indices to the same type before vectorization to 4427 // avoid crash. 4428 // Required to be able to find correct matches between different gather 4429 // nodes and reuse the vectorized values rather than trying to gather them 4430 // again. 4431 int IndexIdx = 1; 4432 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4433 Type *Ty = all_of(VL, 4434 [VL0Ty, IndexIdx](Value *V) { 4435 return VL0Ty == cast<GetElementPtrInst>(V) 4436 ->getOperand(IndexIdx) 4437 ->getType(); 4438 }) 4439 ? VL0Ty 4440 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4441 ->getPointerOperandType() 4442 ->getScalarType()); 4443 // Prepare the operand vector. 4444 for (Value *V : VL) { 4445 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4446 auto *CI = cast<ConstantInt>(Op); 4447 Operands.back().push_back(ConstantExpr::getIntegerCast( 4448 CI, Ty, CI->getValue().isSignBitSet())); 4449 } 4450 TE->setOperand(IndexIdx, Operands.back()); 4451 4452 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4453 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4454 return; 4455 } 4456 case Instruction::Store: { 4457 // Check if the stores are consecutive or if we need to swizzle them. 4458 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4459 // Avoid types that are padded when being allocated as scalars, while 4460 // being packed together in a vector (such as i1). 4461 if (DL->getTypeSizeInBits(ScalarTy) != 4462 DL->getTypeAllocSizeInBits(ScalarTy)) { 4463 BS.cancelScheduling(VL, VL0); 4464 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4465 ReuseShuffleIndicies); 4466 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4467 return; 4468 } 4469 // Make sure all stores in the bundle are simple - we can't vectorize 4470 // atomic or volatile stores. 4471 SmallVector<Value *, 4> PointerOps(VL.size()); 4472 ValueList Operands(VL.size()); 4473 auto POIter = PointerOps.begin(); 4474 auto OIter = Operands.begin(); 4475 for (Value *V : VL) { 4476 auto *SI = cast<StoreInst>(V); 4477 if (!SI->isSimple()) { 4478 BS.cancelScheduling(VL, VL0); 4479 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4480 ReuseShuffleIndicies); 4481 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4482 return; 4483 } 4484 *POIter = SI->getPointerOperand(); 4485 *OIter = SI->getValueOperand(); 4486 ++POIter; 4487 ++OIter; 4488 } 4489 4490 OrdersType CurrentOrder; 4491 // Check the order of pointer operands. 4492 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4493 Value *Ptr0; 4494 Value *PtrN; 4495 if (CurrentOrder.empty()) { 4496 Ptr0 = PointerOps.front(); 4497 PtrN = PointerOps.back(); 4498 } else { 4499 Ptr0 = PointerOps[CurrentOrder.front()]; 4500 PtrN = PointerOps[CurrentOrder.back()]; 4501 } 4502 Optional<int> Dist = 4503 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4504 // Check that the sorted pointer operands are consecutive. 4505 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4506 if (CurrentOrder.empty()) { 4507 // Original stores are consecutive and does not require reordering. 4508 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4509 UserTreeIdx, ReuseShuffleIndicies); 4510 TE->setOperandsInOrder(); 4511 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4512 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4513 } else { 4514 fixupOrderingIndices(CurrentOrder); 4515 TreeEntry *TE = 4516 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4517 ReuseShuffleIndicies, CurrentOrder); 4518 TE->setOperandsInOrder(); 4519 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4520 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4521 } 4522 return; 4523 } 4524 } 4525 4526 BS.cancelScheduling(VL, VL0); 4527 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4528 ReuseShuffleIndicies); 4529 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4530 return; 4531 } 4532 case Instruction::Call: { 4533 // Check if the calls are all to the same vectorizable intrinsic or 4534 // library function. 4535 CallInst *CI = cast<CallInst>(VL0); 4536 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4537 4538 VFShape Shape = VFShape::get( 4539 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4540 false /*HasGlobalPred*/); 4541 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4542 4543 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4544 BS.cancelScheduling(VL, VL0); 4545 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4546 ReuseShuffleIndicies); 4547 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4548 return; 4549 } 4550 Function *F = CI->getCalledFunction(); 4551 unsigned NumArgs = CI->arg_size(); 4552 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4553 for (unsigned j = 0; j != NumArgs; ++j) 4554 if (hasVectorInstrinsicScalarOpd(ID, j)) 4555 ScalarArgs[j] = CI->getArgOperand(j); 4556 for (Value *V : VL) { 4557 CallInst *CI2 = dyn_cast<CallInst>(V); 4558 if (!CI2 || CI2->getCalledFunction() != F || 4559 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4560 (VecFunc && 4561 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4562 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4563 BS.cancelScheduling(VL, VL0); 4564 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4565 ReuseShuffleIndicies); 4566 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4567 << "\n"); 4568 return; 4569 } 4570 // Some intrinsics have scalar arguments and should be same in order for 4571 // them to be vectorized. 4572 for (unsigned j = 0; j != NumArgs; ++j) { 4573 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4574 Value *A1J = CI2->getArgOperand(j); 4575 if (ScalarArgs[j] != A1J) { 4576 BS.cancelScheduling(VL, VL0); 4577 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4578 ReuseShuffleIndicies); 4579 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4580 << " argument " << ScalarArgs[j] << "!=" << A1J 4581 << "\n"); 4582 return; 4583 } 4584 } 4585 } 4586 // Verify that the bundle operands are identical between the two calls. 4587 if (CI->hasOperandBundles() && 4588 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4589 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4590 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4591 BS.cancelScheduling(VL, VL0); 4592 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4593 ReuseShuffleIndicies); 4594 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4595 << *CI << "!=" << *V << '\n'); 4596 return; 4597 } 4598 } 4599 4600 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4601 ReuseShuffleIndicies); 4602 TE->setOperandsInOrder(); 4603 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4604 // For scalar operands no need to to create an entry since no need to 4605 // vectorize it. 4606 if (hasVectorInstrinsicScalarOpd(ID, i)) 4607 continue; 4608 ValueList Operands; 4609 // Prepare the operand vector. 4610 for (Value *V : VL) { 4611 auto *CI2 = cast<CallInst>(V); 4612 Operands.push_back(CI2->getArgOperand(i)); 4613 } 4614 buildTree_rec(Operands, Depth + 1, {TE, i}); 4615 } 4616 return; 4617 } 4618 case Instruction::ShuffleVector: { 4619 // If this is not an alternate sequence of opcode like add-sub 4620 // then do not vectorize this instruction. 4621 if (!S.isAltShuffle()) { 4622 BS.cancelScheduling(VL, VL0); 4623 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4624 ReuseShuffleIndicies); 4625 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4626 return; 4627 } 4628 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4629 ReuseShuffleIndicies); 4630 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4631 4632 // Reorder operands if reordering would enable vectorization. 4633 auto *CI = dyn_cast<CmpInst>(VL0); 4634 if (isa<BinaryOperator>(VL0) || CI) { 4635 ValueList Left, Right; 4636 if (!CI || all_of(VL, [](Value *V) { 4637 return cast<CmpInst>(V)->isCommutative(); 4638 })) { 4639 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4640 } else { 4641 CmpInst::Predicate P0 = CI->getPredicate(); 4642 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4643 assert(P0 != AltP0 && 4644 "Expected different main/alternate predicates."); 4645 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4646 Value *BaseOp0 = VL0->getOperand(0); 4647 Value *BaseOp1 = VL0->getOperand(1); 4648 // Collect operands - commute if it uses the swapped predicate or 4649 // alternate operation. 4650 for (Value *V : VL) { 4651 auto *Cmp = cast<CmpInst>(V); 4652 Value *LHS = Cmp->getOperand(0); 4653 Value *RHS = Cmp->getOperand(1); 4654 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4655 if (P0 == AltP0Swapped) { 4656 if (CI != Cmp && S.AltOp != Cmp && 4657 ((P0 == CurrentPred && 4658 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4659 (AltP0 == CurrentPred && 4660 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4661 std::swap(LHS, RHS); 4662 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4663 std::swap(LHS, RHS); 4664 } 4665 Left.push_back(LHS); 4666 Right.push_back(RHS); 4667 } 4668 } 4669 TE->setOperand(0, Left); 4670 TE->setOperand(1, Right); 4671 buildTree_rec(Left, Depth + 1, {TE, 0}); 4672 buildTree_rec(Right, Depth + 1, {TE, 1}); 4673 return; 4674 } 4675 4676 TE->setOperandsInOrder(); 4677 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4678 ValueList Operands; 4679 // Prepare the operand vector. 4680 for (Value *V : VL) 4681 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4682 4683 buildTree_rec(Operands, Depth + 1, {TE, i}); 4684 } 4685 return; 4686 } 4687 default: 4688 BS.cancelScheduling(VL, VL0); 4689 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4690 ReuseShuffleIndicies); 4691 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4692 return; 4693 } 4694 } 4695 4696 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4697 unsigned N = 1; 4698 Type *EltTy = T; 4699 4700 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4701 isa<VectorType>(EltTy)) { 4702 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4703 // Check that struct is homogeneous. 4704 for (const auto *Ty : ST->elements()) 4705 if (Ty != *ST->element_begin()) 4706 return 0; 4707 N *= ST->getNumElements(); 4708 EltTy = *ST->element_begin(); 4709 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4710 N *= AT->getNumElements(); 4711 EltTy = AT->getElementType(); 4712 } else { 4713 auto *VT = cast<FixedVectorType>(EltTy); 4714 N *= VT->getNumElements(); 4715 EltTy = VT->getElementType(); 4716 } 4717 } 4718 4719 if (!isValidElementType(EltTy)) 4720 return 0; 4721 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4722 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4723 return 0; 4724 return N; 4725 } 4726 4727 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4728 SmallVectorImpl<unsigned> &CurrentOrder) const { 4729 const auto *It = find_if(VL, [](Value *V) { 4730 return isa<ExtractElementInst, ExtractValueInst>(V); 4731 }); 4732 assert(It != VL.end() && "Expected at least one extract instruction."); 4733 auto *E0 = cast<Instruction>(*It); 4734 assert(all_of(VL, 4735 [](Value *V) { 4736 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4737 V); 4738 }) && 4739 "Invalid opcode"); 4740 // Check if all of the extracts come from the same vector and from the 4741 // correct offset. 4742 Value *Vec = E0->getOperand(0); 4743 4744 CurrentOrder.clear(); 4745 4746 // We have to extract from a vector/aggregate with the same number of elements. 4747 unsigned NElts; 4748 if (E0->getOpcode() == Instruction::ExtractValue) { 4749 const DataLayout &DL = E0->getModule()->getDataLayout(); 4750 NElts = canMapToVector(Vec->getType(), DL); 4751 if (!NElts) 4752 return false; 4753 // Check if load can be rewritten as load of vector. 4754 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4755 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4756 return false; 4757 } else { 4758 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4759 } 4760 4761 if (NElts != VL.size()) 4762 return false; 4763 4764 // Check that all of the indices extract from the correct offset. 4765 bool ShouldKeepOrder = true; 4766 unsigned E = VL.size(); 4767 // Assign to all items the initial value E + 1 so we can check if the extract 4768 // instruction index was used already. 4769 // Also, later we can check that all the indices are used and we have a 4770 // consecutive access in the extract instructions, by checking that no 4771 // element of CurrentOrder still has value E + 1. 4772 CurrentOrder.assign(E, E); 4773 unsigned I = 0; 4774 for (; I < E; ++I) { 4775 auto *Inst = dyn_cast<Instruction>(VL[I]); 4776 if (!Inst) 4777 continue; 4778 if (Inst->getOperand(0) != Vec) 4779 break; 4780 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4781 if (isa<UndefValue>(EE->getIndexOperand())) 4782 continue; 4783 Optional<unsigned> Idx = getExtractIndex(Inst); 4784 if (!Idx) 4785 break; 4786 const unsigned ExtIdx = *Idx; 4787 if (ExtIdx != I) { 4788 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4789 break; 4790 ShouldKeepOrder = false; 4791 CurrentOrder[ExtIdx] = I; 4792 } else { 4793 if (CurrentOrder[I] != E) 4794 break; 4795 CurrentOrder[I] = I; 4796 } 4797 } 4798 if (I < E) { 4799 CurrentOrder.clear(); 4800 return false; 4801 } 4802 if (ShouldKeepOrder) 4803 CurrentOrder.clear(); 4804 4805 return ShouldKeepOrder; 4806 } 4807 4808 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4809 ArrayRef<Value *> VectorizedVals) const { 4810 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4811 all_of(I->users(), [this](User *U) { 4812 return ScalarToTreeEntry.count(U) > 0 || 4813 isVectorLikeInstWithConstOps(U) || 4814 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4815 }); 4816 } 4817 4818 static std::pair<InstructionCost, InstructionCost> 4819 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4820 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4821 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4822 4823 // Calculate the cost of the scalar and vector calls. 4824 SmallVector<Type *, 4> VecTys; 4825 for (Use &Arg : CI->args()) 4826 VecTys.push_back( 4827 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4828 FastMathFlags FMF; 4829 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4830 FMF = FPCI->getFastMathFlags(); 4831 SmallVector<const Value *> Arguments(CI->args()); 4832 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4833 dyn_cast<IntrinsicInst>(CI)); 4834 auto IntrinsicCost = 4835 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4836 4837 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4838 VecTy->getNumElements())), 4839 false /*HasGlobalPred*/); 4840 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4841 auto LibCost = IntrinsicCost; 4842 if (!CI->isNoBuiltin() && VecFunc) { 4843 // Calculate the cost of the vector library call. 4844 // If the corresponding vector call is cheaper, return its cost. 4845 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4846 TTI::TCK_RecipThroughput); 4847 } 4848 return {IntrinsicCost, LibCost}; 4849 } 4850 4851 /// Compute the cost of creating a vector of type \p VecTy containing the 4852 /// extracted values from \p VL. 4853 static InstructionCost 4854 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4855 TargetTransformInfo::ShuffleKind ShuffleKind, 4856 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4857 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4858 4859 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4860 VecTy->getNumElements() < NumOfParts) 4861 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4862 4863 bool AllConsecutive = true; 4864 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4865 unsigned Idx = -1; 4866 InstructionCost Cost = 0; 4867 4868 // Process extracts in blocks of EltsPerVector to check if the source vector 4869 // operand can be re-used directly. If not, add the cost of creating a shuffle 4870 // to extract the values into a vector register. 4871 for (auto *V : VL) { 4872 ++Idx; 4873 4874 // Need to exclude undefs from analysis. 4875 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4876 continue; 4877 4878 // Reached the start of a new vector registers. 4879 if (Idx % EltsPerVector == 0) { 4880 AllConsecutive = true; 4881 continue; 4882 } 4883 4884 // Check all extracts for a vector register on the target directly 4885 // extract values in order. 4886 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4887 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4888 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4889 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4890 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4891 } 4892 4893 if (AllConsecutive) 4894 continue; 4895 4896 // Skip all indices, except for the last index per vector block. 4897 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4898 continue; 4899 4900 // If we have a series of extracts which are not consecutive and hence 4901 // cannot re-use the source vector register directly, compute the shuffle 4902 // cost to extract the a vector with EltsPerVector elements. 4903 Cost += TTI.getShuffleCost( 4904 TargetTransformInfo::SK_PermuteSingleSrc, 4905 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4906 } 4907 return Cost; 4908 } 4909 4910 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4911 /// operations operands. 4912 static void 4913 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4914 ArrayRef<int> ReusesIndices, 4915 const function_ref<bool(Instruction *)> IsAltOp, 4916 SmallVectorImpl<int> &Mask, 4917 SmallVectorImpl<Value *> *OpScalars = nullptr, 4918 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4919 unsigned Sz = VL.size(); 4920 Mask.assign(Sz, UndefMaskElem); 4921 SmallVector<int> OrderMask; 4922 if (!ReorderIndices.empty()) 4923 inversePermutation(ReorderIndices, OrderMask); 4924 for (unsigned I = 0; I < Sz; ++I) { 4925 unsigned Idx = I; 4926 if (!ReorderIndices.empty()) 4927 Idx = OrderMask[I]; 4928 auto *OpInst = cast<Instruction>(VL[Idx]); 4929 if (IsAltOp(OpInst)) { 4930 Mask[I] = Sz + Idx; 4931 if (AltScalars) 4932 AltScalars->push_back(OpInst); 4933 } else { 4934 Mask[I] = Idx; 4935 if (OpScalars) 4936 OpScalars->push_back(OpInst); 4937 } 4938 } 4939 if (!ReusesIndices.empty()) { 4940 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4941 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4942 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4943 }); 4944 Mask.swap(NewMask); 4945 } 4946 } 4947 4948 /// Checks if the specified instruction \p I is an alternate operation for the 4949 /// given \p MainOp and \p AltOp instructions. 4950 static bool isAlternateInstruction(const Instruction *I, 4951 const Instruction *MainOp, 4952 const Instruction *AltOp) { 4953 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4954 auto *AltCI0 = cast<CmpInst>(AltOp); 4955 auto *CI = cast<CmpInst>(I); 4956 CmpInst::Predicate P0 = CI0->getPredicate(); 4957 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4958 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4959 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4960 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4961 if (P0 == AltP0Swapped) 4962 return I == AltCI0 || 4963 (I != MainOp && 4964 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4965 CI->getOperand(0), CI->getOperand(1))); 4966 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4967 } 4968 return I->getOpcode() == AltOp->getOpcode(); 4969 } 4970 4971 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4972 ArrayRef<Value *> VectorizedVals) { 4973 ArrayRef<Value*> VL = E->Scalars; 4974 4975 Type *ScalarTy = VL[0]->getType(); 4976 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4977 ScalarTy = SI->getValueOperand()->getType(); 4978 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4979 ScalarTy = CI->getOperand(0)->getType(); 4980 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4981 ScalarTy = IE->getOperand(1)->getType(); 4982 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4983 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4984 4985 // If we have computed a smaller type for the expression, update VecTy so 4986 // that the costs will be accurate. 4987 if (MinBWs.count(VL[0])) 4988 VecTy = FixedVectorType::get( 4989 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4990 unsigned EntryVF = E->getVectorFactor(); 4991 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4992 4993 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4994 // FIXME: it tries to fix a problem with MSVC buildbots. 4995 TargetTransformInfo &TTIRef = *TTI; 4996 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4997 VectorizedVals, E](InstructionCost &Cost) { 4998 DenseMap<Value *, int> ExtractVectorsTys; 4999 SmallPtrSet<Value *, 4> CheckedExtracts; 5000 for (auto *V : VL) { 5001 if (isa<UndefValue>(V)) 5002 continue; 5003 // If all users of instruction are going to be vectorized and this 5004 // instruction itself is not going to be vectorized, consider this 5005 // instruction as dead and remove its cost from the final cost of the 5006 // vectorized tree. 5007 // Also, avoid adjusting the cost for extractelements with multiple uses 5008 // in different graph entries. 5009 const TreeEntry *VE = getTreeEntry(V); 5010 if (!CheckedExtracts.insert(V).second || 5011 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5012 (VE && VE != E)) 5013 continue; 5014 auto *EE = cast<ExtractElementInst>(V); 5015 Optional<unsigned> EEIdx = getExtractIndex(EE); 5016 if (!EEIdx) 5017 continue; 5018 unsigned Idx = *EEIdx; 5019 if (TTIRef.getNumberOfParts(VecTy) != 5020 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5021 auto It = 5022 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5023 It->getSecond() = std::min<int>(It->second, Idx); 5024 } 5025 // Take credit for instruction that will become dead. 5026 if (EE->hasOneUse()) { 5027 Instruction *Ext = EE->user_back(); 5028 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5029 all_of(Ext->users(), 5030 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5031 // Use getExtractWithExtendCost() to calculate the cost of 5032 // extractelement/ext pair. 5033 Cost -= 5034 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5035 EE->getVectorOperandType(), Idx); 5036 // Add back the cost of s|zext which is subtracted separately. 5037 Cost += TTIRef.getCastInstrCost( 5038 Ext->getOpcode(), Ext->getType(), EE->getType(), 5039 TTI::getCastContextHint(Ext), CostKind, Ext); 5040 continue; 5041 } 5042 } 5043 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5044 EE->getVectorOperandType(), Idx); 5045 } 5046 // Add a cost for subvector extracts/inserts if required. 5047 for (const auto &Data : ExtractVectorsTys) { 5048 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5049 unsigned NumElts = VecTy->getNumElements(); 5050 if (Data.second % NumElts == 0) 5051 continue; 5052 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5053 unsigned Idx = (Data.second / NumElts) * NumElts; 5054 unsigned EENumElts = EEVTy->getNumElements(); 5055 if (Idx + NumElts <= EENumElts) { 5056 Cost += 5057 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5058 EEVTy, None, Idx, VecTy); 5059 } else { 5060 // Need to round up the subvector type vectorization factor to avoid a 5061 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5062 // <= EENumElts. 5063 auto *SubVT = 5064 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5065 Cost += 5066 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5067 EEVTy, None, Idx, SubVT); 5068 } 5069 } else { 5070 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5071 VecTy, None, 0, EEVTy); 5072 } 5073 } 5074 }; 5075 if (E->State == TreeEntry::NeedToGather) { 5076 if (allConstant(VL)) 5077 return 0; 5078 if (isa<InsertElementInst>(VL[0])) 5079 return InstructionCost::getInvalid(); 5080 SmallVector<int> Mask; 5081 SmallVector<const TreeEntry *> Entries; 5082 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5083 isGatherShuffledEntry(E, Mask, Entries); 5084 if (Shuffle.hasValue()) { 5085 InstructionCost GatherCost = 0; 5086 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5087 // Perfect match in the graph, will reuse the previously vectorized 5088 // node. Cost is 0. 5089 LLVM_DEBUG( 5090 dbgs() 5091 << "SLP: perfect diamond match for gather bundle that starts with " 5092 << *VL.front() << ".\n"); 5093 if (NeedToShuffleReuses) 5094 GatherCost = 5095 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5096 FinalVecTy, E->ReuseShuffleIndices); 5097 } else { 5098 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5099 << " entries for bundle that starts with " 5100 << *VL.front() << ".\n"); 5101 // Detected that instead of gather we can emit a shuffle of single/two 5102 // previously vectorized nodes. Add the cost of the permutation rather 5103 // than gather. 5104 ::addMask(Mask, E->ReuseShuffleIndices); 5105 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5106 } 5107 return GatherCost; 5108 } 5109 if ((E->getOpcode() == Instruction::ExtractElement || 5110 all_of(E->Scalars, 5111 [](Value *V) { 5112 return isa<ExtractElementInst, UndefValue>(V); 5113 })) && 5114 allSameType(VL)) { 5115 // Check that gather of extractelements can be represented as just a 5116 // shuffle of a single/two vectors the scalars are extracted from. 5117 SmallVector<int> Mask; 5118 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5119 isFixedVectorShuffle(VL, Mask); 5120 if (ShuffleKind.hasValue()) { 5121 // Found the bunch of extractelement instructions that must be gathered 5122 // into a vector and can be represented as a permutation elements in a 5123 // single input vector or of 2 input vectors. 5124 InstructionCost Cost = 5125 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5126 AdjustExtractsCost(Cost); 5127 if (NeedToShuffleReuses) 5128 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5129 FinalVecTy, E->ReuseShuffleIndices); 5130 return Cost; 5131 } 5132 } 5133 if (isSplat(VL)) { 5134 // Found the broadcasting of the single scalar, calculate the cost as the 5135 // broadcast. 5136 assert(VecTy == FinalVecTy && 5137 "No reused scalars expected for broadcast."); 5138 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5139 } 5140 InstructionCost ReuseShuffleCost = 0; 5141 if (NeedToShuffleReuses) 5142 ReuseShuffleCost = TTI->getShuffleCost( 5143 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5144 // Improve gather cost for gather of loads, if we can group some of the 5145 // loads into vector loads. 5146 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5147 !E->isAltShuffle()) { 5148 BoUpSLP::ValueSet VectorizedLoads; 5149 unsigned StartIdx = 0; 5150 unsigned VF = VL.size() / 2; 5151 unsigned VectorizedCnt = 0; 5152 unsigned ScatterVectorizeCnt = 0; 5153 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5154 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5155 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5156 Cnt += VF) { 5157 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5158 if (!VectorizedLoads.count(Slice.front()) && 5159 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5160 SmallVector<Value *> PointerOps; 5161 OrdersType CurrentOrder; 5162 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5163 *SE, CurrentOrder, PointerOps); 5164 switch (LS) { 5165 case LoadsState::Vectorize: 5166 case LoadsState::ScatterVectorize: 5167 // Mark the vectorized loads so that we don't vectorize them 5168 // again. 5169 if (LS == LoadsState::Vectorize) 5170 ++VectorizedCnt; 5171 else 5172 ++ScatterVectorizeCnt; 5173 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5174 // If we vectorized initial block, no need to try to vectorize it 5175 // again. 5176 if (Cnt == StartIdx) 5177 StartIdx += VF; 5178 break; 5179 case LoadsState::Gather: 5180 break; 5181 } 5182 } 5183 } 5184 // Check if the whole array was vectorized already - exit. 5185 if (StartIdx >= VL.size()) 5186 break; 5187 // Found vectorizable parts - exit. 5188 if (!VectorizedLoads.empty()) 5189 break; 5190 } 5191 if (!VectorizedLoads.empty()) { 5192 InstructionCost GatherCost = 0; 5193 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5194 bool NeedInsertSubvectorAnalysis = 5195 !NumParts || (VL.size() / VF) > NumParts; 5196 // Get the cost for gathered loads. 5197 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5198 if (VectorizedLoads.contains(VL[I])) 5199 continue; 5200 GatherCost += getGatherCost(VL.slice(I, VF)); 5201 } 5202 // The cost for vectorized loads. 5203 InstructionCost ScalarsCost = 0; 5204 for (Value *V : VectorizedLoads) { 5205 auto *LI = cast<LoadInst>(V); 5206 ScalarsCost += TTI->getMemoryOpCost( 5207 Instruction::Load, LI->getType(), LI->getAlign(), 5208 LI->getPointerAddressSpace(), CostKind, LI); 5209 } 5210 auto *LI = cast<LoadInst>(E->getMainOp()); 5211 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5212 Align Alignment = LI->getAlign(); 5213 GatherCost += 5214 VectorizedCnt * 5215 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5216 LI->getPointerAddressSpace(), CostKind, LI); 5217 GatherCost += ScatterVectorizeCnt * 5218 TTI->getGatherScatterOpCost( 5219 Instruction::Load, LoadTy, LI->getPointerOperand(), 5220 /*VariableMask=*/false, Alignment, CostKind, LI); 5221 if (NeedInsertSubvectorAnalysis) { 5222 // Add the cost for the subvectors insert. 5223 for (int I = VF, E = VL.size(); I < E; I += VF) 5224 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5225 None, I, LoadTy); 5226 } 5227 return ReuseShuffleCost + GatherCost - ScalarsCost; 5228 } 5229 } 5230 return ReuseShuffleCost + getGatherCost(VL); 5231 } 5232 InstructionCost CommonCost = 0; 5233 SmallVector<int> Mask; 5234 if (!E->ReorderIndices.empty()) { 5235 SmallVector<int> NewMask; 5236 if (E->getOpcode() == Instruction::Store) { 5237 // For stores the order is actually a mask. 5238 NewMask.resize(E->ReorderIndices.size()); 5239 copy(E->ReorderIndices, NewMask.begin()); 5240 } else { 5241 inversePermutation(E->ReorderIndices, NewMask); 5242 } 5243 ::addMask(Mask, NewMask); 5244 } 5245 if (NeedToShuffleReuses) 5246 ::addMask(Mask, E->ReuseShuffleIndices); 5247 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5248 CommonCost = 5249 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5250 assert((E->State == TreeEntry::Vectorize || 5251 E->State == TreeEntry::ScatterVectorize) && 5252 "Unhandled state"); 5253 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5254 Instruction *VL0 = E->getMainOp(); 5255 unsigned ShuffleOrOp = 5256 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5257 switch (ShuffleOrOp) { 5258 case Instruction::PHI: 5259 return 0; 5260 5261 case Instruction::ExtractValue: 5262 case Instruction::ExtractElement: { 5263 // The common cost of removal ExtractElement/ExtractValue instructions + 5264 // the cost of shuffles, if required to resuffle the original vector. 5265 if (NeedToShuffleReuses) { 5266 unsigned Idx = 0; 5267 for (unsigned I : E->ReuseShuffleIndices) { 5268 if (ShuffleOrOp == Instruction::ExtractElement) { 5269 auto *EE = cast<ExtractElementInst>(VL[I]); 5270 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5271 EE->getVectorOperandType(), 5272 *getExtractIndex(EE)); 5273 } else { 5274 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5275 VecTy, Idx); 5276 ++Idx; 5277 } 5278 } 5279 Idx = EntryVF; 5280 for (Value *V : VL) { 5281 if (ShuffleOrOp == Instruction::ExtractElement) { 5282 auto *EE = cast<ExtractElementInst>(V); 5283 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5284 EE->getVectorOperandType(), 5285 *getExtractIndex(EE)); 5286 } else { 5287 --Idx; 5288 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5289 VecTy, Idx); 5290 } 5291 } 5292 } 5293 if (ShuffleOrOp == Instruction::ExtractValue) { 5294 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5295 auto *EI = cast<Instruction>(VL[I]); 5296 // Take credit for instruction that will become dead. 5297 if (EI->hasOneUse()) { 5298 Instruction *Ext = EI->user_back(); 5299 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5300 all_of(Ext->users(), 5301 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5302 // Use getExtractWithExtendCost() to calculate the cost of 5303 // extractelement/ext pair. 5304 CommonCost -= TTI->getExtractWithExtendCost( 5305 Ext->getOpcode(), Ext->getType(), VecTy, I); 5306 // Add back the cost of s|zext which is subtracted separately. 5307 CommonCost += TTI->getCastInstrCost( 5308 Ext->getOpcode(), Ext->getType(), EI->getType(), 5309 TTI::getCastContextHint(Ext), CostKind, Ext); 5310 continue; 5311 } 5312 } 5313 CommonCost -= 5314 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5315 } 5316 } else { 5317 AdjustExtractsCost(CommonCost); 5318 } 5319 return CommonCost; 5320 } 5321 case Instruction::InsertElement: { 5322 assert(E->ReuseShuffleIndices.empty() && 5323 "Unique insertelements only are expected."); 5324 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5325 5326 unsigned const NumElts = SrcVecTy->getNumElements(); 5327 unsigned const NumScalars = VL.size(); 5328 APInt DemandedElts = APInt::getZero(NumElts); 5329 // TODO: Add support for Instruction::InsertValue. 5330 SmallVector<int> Mask; 5331 if (!E->ReorderIndices.empty()) { 5332 inversePermutation(E->ReorderIndices, Mask); 5333 Mask.append(NumElts - NumScalars, UndefMaskElem); 5334 } else { 5335 Mask.assign(NumElts, UndefMaskElem); 5336 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5337 } 5338 unsigned Offset = *getInsertIndex(VL0); 5339 bool IsIdentity = true; 5340 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5341 Mask.swap(PrevMask); 5342 for (unsigned I = 0; I < NumScalars; ++I) { 5343 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5344 DemandedElts.setBit(InsertIdx); 5345 IsIdentity &= InsertIdx - Offset == I; 5346 Mask[InsertIdx - Offset] = I; 5347 } 5348 assert(Offset < NumElts && "Failed to find vector index offset"); 5349 5350 InstructionCost Cost = 0; 5351 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5352 /*Insert*/ true, /*Extract*/ false); 5353 5354 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5355 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5356 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5357 Cost += TTI->getShuffleCost( 5358 TargetTransformInfo::SK_PermuteSingleSrc, 5359 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5360 } else if (!IsIdentity) { 5361 auto *FirstInsert = 5362 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5363 return !is_contained(E->Scalars, 5364 cast<Instruction>(V)->getOperand(0)); 5365 })); 5366 if (isUndefVector(FirstInsert->getOperand(0))) { 5367 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5368 } else { 5369 SmallVector<int> InsertMask(NumElts); 5370 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5371 for (unsigned I = 0; I < NumElts; I++) { 5372 if (Mask[I] != UndefMaskElem) 5373 InsertMask[Offset + I] = NumElts + I; 5374 } 5375 Cost += 5376 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5377 } 5378 } 5379 5380 return Cost; 5381 } 5382 case Instruction::ZExt: 5383 case Instruction::SExt: 5384 case Instruction::FPToUI: 5385 case Instruction::FPToSI: 5386 case Instruction::FPExt: 5387 case Instruction::PtrToInt: 5388 case Instruction::IntToPtr: 5389 case Instruction::SIToFP: 5390 case Instruction::UIToFP: 5391 case Instruction::Trunc: 5392 case Instruction::FPTrunc: 5393 case Instruction::BitCast: { 5394 Type *SrcTy = VL0->getOperand(0)->getType(); 5395 InstructionCost ScalarEltCost = 5396 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5397 TTI::getCastContextHint(VL0), CostKind, VL0); 5398 if (NeedToShuffleReuses) { 5399 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5400 } 5401 5402 // Calculate the cost of this instruction. 5403 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5404 5405 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5406 InstructionCost VecCost = 0; 5407 // Check if the values are candidates to demote. 5408 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5409 VecCost = CommonCost + TTI->getCastInstrCost( 5410 E->getOpcode(), VecTy, SrcVecTy, 5411 TTI::getCastContextHint(VL0), CostKind, VL0); 5412 } 5413 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5414 return VecCost - ScalarCost; 5415 } 5416 case Instruction::FCmp: 5417 case Instruction::ICmp: 5418 case Instruction::Select: { 5419 // Calculate the cost of this instruction. 5420 InstructionCost ScalarEltCost = 5421 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5422 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5423 if (NeedToShuffleReuses) { 5424 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5425 } 5426 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5427 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5428 5429 // Check if all entries in VL are either compares or selects with compares 5430 // as condition that have the same predicates. 5431 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5432 bool First = true; 5433 for (auto *V : VL) { 5434 CmpInst::Predicate CurrentPred; 5435 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5436 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5437 !match(V, MatchCmp)) || 5438 (!First && VecPred != CurrentPred)) { 5439 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5440 break; 5441 } 5442 First = false; 5443 VecPred = CurrentPred; 5444 } 5445 5446 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5447 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5448 // Check if it is possible and profitable to use min/max for selects in 5449 // VL. 5450 // 5451 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5452 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5453 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5454 {VecTy, VecTy}); 5455 InstructionCost IntrinsicCost = 5456 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5457 // If the selects are the only uses of the compares, they will be dead 5458 // and we can adjust the cost by removing their cost. 5459 if (IntrinsicAndUse.second) 5460 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5461 MaskTy, VecPred, CostKind); 5462 VecCost = std::min(VecCost, IntrinsicCost); 5463 } 5464 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5465 return CommonCost + VecCost - ScalarCost; 5466 } 5467 case Instruction::FNeg: 5468 case Instruction::Add: 5469 case Instruction::FAdd: 5470 case Instruction::Sub: 5471 case Instruction::FSub: 5472 case Instruction::Mul: 5473 case Instruction::FMul: 5474 case Instruction::UDiv: 5475 case Instruction::SDiv: 5476 case Instruction::FDiv: 5477 case Instruction::URem: 5478 case Instruction::SRem: 5479 case Instruction::FRem: 5480 case Instruction::Shl: 5481 case Instruction::LShr: 5482 case Instruction::AShr: 5483 case Instruction::And: 5484 case Instruction::Or: 5485 case Instruction::Xor: { 5486 // Certain instructions can be cheaper to vectorize if they have a 5487 // constant second vector operand. 5488 TargetTransformInfo::OperandValueKind Op1VK = 5489 TargetTransformInfo::OK_AnyValue; 5490 TargetTransformInfo::OperandValueKind Op2VK = 5491 TargetTransformInfo::OK_UniformConstantValue; 5492 TargetTransformInfo::OperandValueProperties Op1VP = 5493 TargetTransformInfo::OP_None; 5494 TargetTransformInfo::OperandValueProperties Op2VP = 5495 TargetTransformInfo::OP_PowerOf2; 5496 5497 // If all operands are exactly the same ConstantInt then set the 5498 // operand kind to OK_UniformConstantValue. 5499 // If instead not all operands are constants, then set the operand kind 5500 // to OK_AnyValue. If all operands are constants but not the same, 5501 // then set the operand kind to OK_NonUniformConstantValue. 5502 ConstantInt *CInt0 = nullptr; 5503 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5504 const Instruction *I = cast<Instruction>(VL[i]); 5505 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5506 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5507 if (!CInt) { 5508 Op2VK = TargetTransformInfo::OK_AnyValue; 5509 Op2VP = TargetTransformInfo::OP_None; 5510 break; 5511 } 5512 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5513 !CInt->getValue().isPowerOf2()) 5514 Op2VP = TargetTransformInfo::OP_None; 5515 if (i == 0) { 5516 CInt0 = CInt; 5517 continue; 5518 } 5519 if (CInt0 != CInt) 5520 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5521 } 5522 5523 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5524 InstructionCost ScalarEltCost = 5525 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5526 Op2VK, Op1VP, Op2VP, Operands, VL0); 5527 if (NeedToShuffleReuses) { 5528 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5529 } 5530 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5531 InstructionCost VecCost = 5532 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5533 Op2VK, Op1VP, Op2VP, Operands, VL0); 5534 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5535 return CommonCost + VecCost - ScalarCost; 5536 } 5537 case Instruction::GetElementPtr: { 5538 TargetTransformInfo::OperandValueKind Op1VK = 5539 TargetTransformInfo::OK_AnyValue; 5540 TargetTransformInfo::OperandValueKind Op2VK = 5541 TargetTransformInfo::OK_UniformConstantValue; 5542 5543 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5544 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5545 if (NeedToShuffleReuses) { 5546 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5547 } 5548 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5549 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5550 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5551 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5552 return CommonCost + VecCost - ScalarCost; 5553 } 5554 case Instruction::Load: { 5555 // Cost of wide load - cost of scalar loads. 5556 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5557 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5558 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5559 if (NeedToShuffleReuses) { 5560 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5561 } 5562 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5563 InstructionCost VecLdCost; 5564 if (E->State == TreeEntry::Vectorize) { 5565 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5566 CostKind, VL0); 5567 } else { 5568 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5569 Align CommonAlignment = Alignment; 5570 for (Value *V : VL) 5571 CommonAlignment = 5572 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5573 VecLdCost = TTI->getGatherScatterOpCost( 5574 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5575 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5576 } 5577 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5578 return CommonCost + VecLdCost - ScalarLdCost; 5579 } 5580 case Instruction::Store: { 5581 // We know that we can merge the stores. Calculate the cost. 5582 bool IsReorder = !E->ReorderIndices.empty(); 5583 auto *SI = 5584 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5585 Align Alignment = SI->getAlign(); 5586 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5587 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5588 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5589 InstructionCost VecStCost = TTI->getMemoryOpCost( 5590 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5591 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5592 return CommonCost + VecStCost - ScalarStCost; 5593 } 5594 case Instruction::Call: { 5595 CallInst *CI = cast<CallInst>(VL0); 5596 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5597 5598 // Calculate the cost of the scalar and vector calls. 5599 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5600 InstructionCost ScalarEltCost = 5601 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5602 if (NeedToShuffleReuses) { 5603 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5604 } 5605 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5606 5607 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5608 InstructionCost VecCallCost = 5609 std::min(VecCallCosts.first, VecCallCosts.second); 5610 5611 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5612 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5613 << " for " << *CI << "\n"); 5614 5615 return CommonCost + VecCallCost - ScalarCallCost; 5616 } 5617 case Instruction::ShuffleVector: { 5618 assert(E->isAltShuffle() && 5619 ((Instruction::isBinaryOp(E->getOpcode()) && 5620 Instruction::isBinaryOp(E->getAltOpcode())) || 5621 (Instruction::isCast(E->getOpcode()) && 5622 Instruction::isCast(E->getAltOpcode())) || 5623 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5624 "Invalid Shuffle Vector Operand"); 5625 InstructionCost ScalarCost = 0; 5626 if (NeedToShuffleReuses) { 5627 for (unsigned Idx : E->ReuseShuffleIndices) { 5628 Instruction *I = cast<Instruction>(VL[Idx]); 5629 CommonCost -= TTI->getInstructionCost(I, CostKind); 5630 } 5631 for (Value *V : VL) { 5632 Instruction *I = cast<Instruction>(V); 5633 CommonCost += TTI->getInstructionCost(I, CostKind); 5634 } 5635 } 5636 for (Value *V : VL) { 5637 Instruction *I = cast<Instruction>(V); 5638 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5639 ScalarCost += TTI->getInstructionCost(I, CostKind); 5640 } 5641 // VecCost is equal to sum of the cost of creating 2 vectors 5642 // and the cost of creating shuffle. 5643 InstructionCost VecCost = 0; 5644 // Try to find the previous shuffle node with the same operands and same 5645 // main/alternate ops. 5646 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5647 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5648 if (TE.get() == E) 5649 break; 5650 if (TE->isAltShuffle() && 5651 ((TE->getOpcode() == E->getOpcode() && 5652 TE->getAltOpcode() == E->getAltOpcode()) || 5653 (TE->getOpcode() == E->getAltOpcode() && 5654 TE->getAltOpcode() == E->getOpcode())) && 5655 TE->hasEqualOperands(*E)) 5656 return true; 5657 } 5658 return false; 5659 }; 5660 if (TryFindNodeWithEqualOperands()) { 5661 LLVM_DEBUG({ 5662 dbgs() << "SLP: diamond match for alternate node found.\n"; 5663 E->dump(); 5664 }); 5665 // No need to add new vector costs here since we're going to reuse 5666 // same main/alternate vector ops, just do different shuffling. 5667 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5668 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5669 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5670 CostKind); 5671 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5672 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5673 Builder.getInt1Ty(), 5674 CI0->getPredicate(), CostKind, VL0); 5675 VecCost += TTI->getCmpSelInstrCost( 5676 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5677 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5678 E->getAltOp()); 5679 } else { 5680 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5681 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5682 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5683 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5684 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5685 TTI::CastContextHint::None, CostKind); 5686 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5687 TTI::CastContextHint::None, CostKind); 5688 } 5689 5690 SmallVector<int> Mask; 5691 buildShuffleEntryMask( 5692 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5693 [E](Instruction *I) { 5694 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5695 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5696 }, 5697 Mask); 5698 CommonCost = 5699 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5700 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5701 return CommonCost + VecCost - ScalarCost; 5702 } 5703 default: 5704 llvm_unreachable("Unknown instruction"); 5705 } 5706 } 5707 5708 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5709 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5710 << VectorizableTree.size() << " is fully vectorizable .\n"); 5711 5712 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5713 SmallVector<int> Mask; 5714 return TE->State == TreeEntry::NeedToGather && 5715 !any_of(TE->Scalars, 5716 [this](Value *V) { return EphValues.contains(V); }) && 5717 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5718 TE->Scalars.size() < Limit || 5719 ((TE->getOpcode() == Instruction::ExtractElement || 5720 all_of(TE->Scalars, 5721 [](Value *V) { 5722 return isa<ExtractElementInst, UndefValue>(V); 5723 })) && 5724 isFixedVectorShuffle(TE->Scalars, Mask)) || 5725 (TE->State == TreeEntry::NeedToGather && 5726 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5727 }; 5728 5729 // We only handle trees of heights 1 and 2. 5730 if (VectorizableTree.size() == 1 && 5731 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5732 (ForReduction && 5733 AreVectorizableGathers(VectorizableTree[0].get(), 5734 VectorizableTree[0]->Scalars.size()) && 5735 VectorizableTree[0]->getVectorFactor() > 2))) 5736 return true; 5737 5738 if (VectorizableTree.size() != 2) 5739 return false; 5740 5741 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5742 // with the second gather nodes if they have less scalar operands rather than 5743 // the initial tree element (may be profitable to shuffle the second gather) 5744 // or they are extractelements, which form shuffle. 5745 SmallVector<int> Mask; 5746 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5747 AreVectorizableGathers(VectorizableTree[1].get(), 5748 VectorizableTree[0]->Scalars.size())) 5749 return true; 5750 5751 // Gathering cost would be too much for tiny trees. 5752 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5753 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5754 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5755 return false; 5756 5757 return true; 5758 } 5759 5760 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5761 TargetTransformInfo *TTI, 5762 bool MustMatchOrInst) { 5763 // Look past the root to find a source value. Arbitrarily follow the 5764 // path through operand 0 of any 'or'. Also, peek through optional 5765 // shift-left-by-multiple-of-8-bits. 5766 Value *ZextLoad = Root; 5767 const APInt *ShAmtC; 5768 bool FoundOr = false; 5769 while (!isa<ConstantExpr>(ZextLoad) && 5770 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5771 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5772 ShAmtC->urem(8) == 0))) { 5773 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5774 ZextLoad = BinOp->getOperand(0); 5775 if (BinOp->getOpcode() == Instruction::Or) 5776 FoundOr = true; 5777 } 5778 // Check if the input is an extended load of the required or/shift expression. 5779 Value *Load; 5780 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5781 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5782 return false; 5783 5784 // Require that the total load bit width is a legal integer type. 5785 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5786 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5787 Type *SrcTy = Load->getType(); 5788 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5789 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5790 return false; 5791 5792 // Everything matched - assume that we can fold the whole sequence using 5793 // load combining. 5794 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5795 << *(cast<Instruction>(Root)) << "\n"); 5796 5797 return true; 5798 } 5799 5800 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5801 if (RdxKind != RecurKind::Or) 5802 return false; 5803 5804 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5805 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5806 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5807 /* MatchOr */ false); 5808 } 5809 5810 bool BoUpSLP::isLoadCombineCandidate() const { 5811 // Peek through a final sequence of stores and check if all operations are 5812 // likely to be load-combined. 5813 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5814 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5815 Value *X; 5816 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5817 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5818 return false; 5819 } 5820 return true; 5821 } 5822 5823 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5824 // No need to vectorize inserts of gathered values. 5825 if (VectorizableTree.size() == 2 && 5826 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5827 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5828 return true; 5829 5830 // We can vectorize the tree if its size is greater than or equal to the 5831 // minimum size specified by the MinTreeSize command line option. 5832 if (VectorizableTree.size() >= MinTreeSize) 5833 return false; 5834 5835 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5836 // can vectorize it if we can prove it fully vectorizable. 5837 if (isFullyVectorizableTinyTree(ForReduction)) 5838 return false; 5839 5840 assert(VectorizableTree.empty() 5841 ? ExternalUses.empty() 5842 : true && "We shouldn't have any external users"); 5843 5844 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5845 // vectorizable. 5846 return true; 5847 } 5848 5849 InstructionCost BoUpSLP::getSpillCost() const { 5850 // Walk from the bottom of the tree to the top, tracking which values are 5851 // live. When we see a call instruction that is not part of our tree, 5852 // query TTI to see if there is a cost to keeping values live over it 5853 // (for example, if spills and fills are required). 5854 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5855 InstructionCost Cost = 0; 5856 5857 SmallPtrSet<Instruction*, 4> LiveValues; 5858 Instruction *PrevInst = nullptr; 5859 5860 // The entries in VectorizableTree are not necessarily ordered by their 5861 // position in basic blocks. Collect them and order them by dominance so later 5862 // instructions are guaranteed to be visited first. For instructions in 5863 // different basic blocks, we only scan to the beginning of the block, so 5864 // their order does not matter, as long as all instructions in a basic block 5865 // are grouped together. Using dominance ensures a deterministic order. 5866 SmallVector<Instruction *, 16> OrderedScalars; 5867 for (const auto &TEPtr : VectorizableTree) { 5868 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5869 if (!Inst) 5870 continue; 5871 OrderedScalars.push_back(Inst); 5872 } 5873 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5874 auto *NodeA = DT->getNode(A->getParent()); 5875 auto *NodeB = DT->getNode(B->getParent()); 5876 assert(NodeA && "Should only process reachable instructions"); 5877 assert(NodeB && "Should only process reachable instructions"); 5878 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5879 "Different nodes should have different DFS numbers"); 5880 if (NodeA != NodeB) 5881 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5882 return B->comesBefore(A); 5883 }); 5884 5885 for (Instruction *Inst : OrderedScalars) { 5886 if (!PrevInst) { 5887 PrevInst = Inst; 5888 continue; 5889 } 5890 5891 // Update LiveValues. 5892 LiveValues.erase(PrevInst); 5893 for (auto &J : PrevInst->operands()) { 5894 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5895 LiveValues.insert(cast<Instruction>(&*J)); 5896 } 5897 5898 LLVM_DEBUG({ 5899 dbgs() << "SLP: #LV: " << LiveValues.size(); 5900 for (auto *X : LiveValues) 5901 dbgs() << " " << X->getName(); 5902 dbgs() << ", Looking at "; 5903 Inst->dump(); 5904 }); 5905 5906 // Now find the sequence of instructions between PrevInst and Inst. 5907 unsigned NumCalls = 0; 5908 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5909 PrevInstIt = 5910 PrevInst->getIterator().getReverse(); 5911 while (InstIt != PrevInstIt) { 5912 if (PrevInstIt == PrevInst->getParent()->rend()) { 5913 PrevInstIt = Inst->getParent()->rbegin(); 5914 continue; 5915 } 5916 5917 // Debug information does not impact spill cost. 5918 if ((isa<CallInst>(&*PrevInstIt) && 5919 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5920 &*PrevInstIt != PrevInst) 5921 NumCalls++; 5922 5923 ++PrevInstIt; 5924 } 5925 5926 if (NumCalls) { 5927 SmallVector<Type*, 4> V; 5928 for (auto *II : LiveValues) { 5929 auto *ScalarTy = II->getType(); 5930 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5931 ScalarTy = VectorTy->getElementType(); 5932 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5933 } 5934 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5935 } 5936 5937 PrevInst = Inst; 5938 } 5939 5940 return Cost; 5941 } 5942 5943 /// Check if two insertelement instructions are from the same buildvector. 5944 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5945 InsertElementInst *V) { 5946 // Instructions must be from the same basic blocks. 5947 if (VU->getParent() != V->getParent()) 5948 return false; 5949 // Checks if 2 insertelements are from the same buildvector. 5950 if (VU->getType() != V->getType()) 5951 return false; 5952 // Multiple used inserts are separate nodes. 5953 if (!VU->hasOneUse() && !V->hasOneUse()) 5954 return false; 5955 auto *IE1 = VU; 5956 auto *IE2 = V; 5957 // Go through the vector operand of insertelement instructions trying to find 5958 // either VU as the original vector for IE2 or V as the original vector for 5959 // IE1. 5960 do { 5961 if (IE2 == VU || IE1 == V) 5962 return true; 5963 if (IE1) { 5964 if (IE1 != VU && !IE1->hasOneUse()) 5965 IE1 = nullptr; 5966 else 5967 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5968 } 5969 if (IE2) { 5970 if (IE2 != V && !IE2->hasOneUse()) 5971 IE2 = nullptr; 5972 else 5973 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5974 } 5975 } while (IE1 || IE2); 5976 return false; 5977 } 5978 5979 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5980 InstructionCost Cost = 0; 5981 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5982 << VectorizableTree.size() << ".\n"); 5983 5984 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5985 5986 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5987 TreeEntry &TE = *VectorizableTree[I].get(); 5988 5989 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5990 Cost += C; 5991 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5992 << " for bundle that starts with " << *TE.Scalars[0] 5993 << ".\n" 5994 << "SLP: Current total cost = " << Cost << "\n"); 5995 } 5996 5997 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5998 InstructionCost ExtractCost = 0; 5999 SmallVector<unsigned> VF; 6000 SmallVector<SmallVector<int>> ShuffleMask; 6001 SmallVector<Value *> FirstUsers; 6002 SmallVector<APInt> DemandedElts; 6003 for (ExternalUser &EU : ExternalUses) { 6004 // We only add extract cost once for the same scalar. 6005 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6006 !ExtractCostCalculated.insert(EU.Scalar).second) 6007 continue; 6008 6009 // Uses by ephemeral values are free (because the ephemeral value will be 6010 // removed prior to code generation, and so the extraction will be 6011 // removed as well). 6012 if (EphValues.count(EU.User)) 6013 continue; 6014 6015 // No extract cost for vector "scalar" 6016 if (isa<FixedVectorType>(EU.Scalar->getType())) 6017 continue; 6018 6019 // Already counted the cost for external uses when tried to adjust the cost 6020 // for extractelements, no need to add it again. 6021 if (isa<ExtractElementInst>(EU.Scalar)) 6022 continue; 6023 6024 // If found user is an insertelement, do not calculate extract cost but try 6025 // to detect it as a final shuffled/identity match. 6026 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6027 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6028 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6029 if (InsertIdx) { 6030 auto *It = find_if(FirstUsers, [VU](Value *V) { 6031 return areTwoInsertFromSameBuildVector(VU, 6032 cast<InsertElementInst>(V)); 6033 }); 6034 int VecId = -1; 6035 if (It == FirstUsers.end()) { 6036 VF.push_back(FTy->getNumElements()); 6037 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6038 // Find the insertvector, vectorized in tree, if any. 6039 Value *Base = VU; 6040 while (isa<InsertElementInst>(Base)) { 6041 // Build the mask for the vectorized insertelement instructions. 6042 if (const TreeEntry *E = getTreeEntry(Base)) { 6043 VU = cast<InsertElementInst>(Base); 6044 do { 6045 int Idx = E->findLaneForValue(Base); 6046 ShuffleMask.back()[Idx] = Idx; 6047 Base = cast<InsertElementInst>(Base)->getOperand(0); 6048 } while (E == getTreeEntry(Base)); 6049 break; 6050 } 6051 Base = cast<InsertElementInst>(Base)->getOperand(0); 6052 } 6053 FirstUsers.push_back(VU); 6054 DemandedElts.push_back(APInt::getZero(VF.back())); 6055 VecId = FirstUsers.size() - 1; 6056 } else { 6057 VecId = std::distance(FirstUsers.begin(), It); 6058 } 6059 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6060 DemandedElts[VecId].setBit(*InsertIdx); 6061 continue; 6062 } 6063 } 6064 } 6065 6066 // If we plan to rewrite the tree in a smaller type, we will need to sign 6067 // extend the extracted value back to the original type. Here, we account 6068 // for the extract and the added cost of the sign extend if needed. 6069 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6070 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6071 if (MinBWs.count(ScalarRoot)) { 6072 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6073 auto Extend = 6074 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6075 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6076 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6077 VecTy, EU.Lane); 6078 } else { 6079 ExtractCost += 6080 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6081 } 6082 } 6083 6084 InstructionCost SpillCost = getSpillCost(); 6085 Cost += SpillCost + ExtractCost; 6086 if (FirstUsers.size() == 1) { 6087 int Limit = ShuffleMask.front().size() * 2; 6088 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6089 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6090 InstructionCost C = TTI->getShuffleCost( 6091 TTI::SK_PermuteSingleSrc, 6092 cast<FixedVectorType>(FirstUsers.front()->getType()), 6093 ShuffleMask.front()); 6094 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6095 << " for final shuffle of insertelement external users " 6096 << *VectorizableTree.front()->Scalars.front() << ".\n" 6097 << "SLP: Current total cost = " << Cost << "\n"); 6098 Cost += C; 6099 } 6100 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6101 cast<FixedVectorType>(FirstUsers.front()->getType()), 6102 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6103 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6104 << " for insertelements gather.\n" 6105 << "SLP: Current total cost = " << Cost << "\n"); 6106 Cost -= InsertCost; 6107 } else if (FirstUsers.size() >= 2) { 6108 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6109 // Combined masks of the first 2 vectors. 6110 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6111 copy(ShuffleMask.front(), CombinedMask.begin()); 6112 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6113 auto *VecTy = FixedVectorType::get( 6114 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6115 MaxVF); 6116 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6117 if (ShuffleMask[1][I] != UndefMaskElem) { 6118 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6119 CombinedDemandedElts.setBit(I); 6120 } 6121 } 6122 InstructionCost C = 6123 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6124 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6125 << " for final shuffle of vector node and external " 6126 "insertelement users " 6127 << *VectorizableTree.front()->Scalars.front() << ".\n" 6128 << "SLP: Current total cost = " << Cost << "\n"); 6129 Cost += C; 6130 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6131 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6132 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6133 << " for insertelements gather.\n" 6134 << "SLP: Current total cost = " << Cost << "\n"); 6135 Cost -= InsertCost; 6136 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6137 // Other elements - permutation of 2 vectors (the initial one and the 6138 // next Ith incoming vector). 6139 unsigned VF = ShuffleMask[I].size(); 6140 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6141 int Mask = ShuffleMask[I][Idx]; 6142 if (Mask != UndefMaskElem) 6143 CombinedMask[Idx] = MaxVF + Mask; 6144 else if (CombinedMask[Idx] != UndefMaskElem) 6145 CombinedMask[Idx] = Idx; 6146 } 6147 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6148 if (CombinedMask[Idx] != UndefMaskElem) 6149 CombinedMask[Idx] = Idx; 6150 InstructionCost C = 6151 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6152 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6153 << " for final shuffle of vector node and external " 6154 "insertelement users " 6155 << *VectorizableTree.front()->Scalars.front() << ".\n" 6156 << "SLP: Current total cost = " << Cost << "\n"); 6157 Cost += C; 6158 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6159 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6160 /*Insert*/ true, /*Extract*/ false); 6161 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6162 << " for insertelements gather.\n" 6163 << "SLP: Current total cost = " << Cost << "\n"); 6164 Cost -= InsertCost; 6165 } 6166 } 6167 6168 #ifndef NDEBUG 6169 SmallString<256> Str; 6170 { 6171 raw_svector_ostream OS(Str); 6172 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6173 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6174 << "SLP: Total Cost = " << Cost << ".\n"; 6175 } 6176 LLVM_DEBUG(dbgs() << Str); 6177 if (ViewSLPTree) 6178 ViewGraph(this, "SLP" + F->getName(), false, Str); 6179 #endif 6180 6181 return Cost; 6182 } 6183 6184 Optional<TargetTransformInfo::ShuffleKind> 6185 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6186 SmallVectorImpl<const TreeEntry *> &Entries) { 6187 // TODO: currently checking only for Scalars in the tree entry, need to count 6188 // reused elements too for better cost estimation. 6189 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6190 Entries.clear(); 6191 // Build a lists of values to tree entries. 6192 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6193 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6194 if (EntryPtr.get() == TE) 6195 break; 6196 if (EntryPtr->State != TreeEntry::NeedToGather) 6197 continue; 6198 for (Value *V : EntryPtr->Scalars) 6199 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6200 } 6201 // Find all tree entries used by the gathered values. If no common entries 6202 // found - not a shuffle. 6203 // Here we build a set of tree nodes for each gathered value and trying to 6204 // find the intersection between these sets. If we have at least one common 6205 // tree node for each gathered value - we have just a permutation of the 6206 // single vector. If we have 2 different sets, we're in situation where we 6207 // have a permutation of 2 input vectors. 6208 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6209 DenseMap<Value *, int> UsedValuesEntry; 6210 for (Value *V : TE->Scalars) { 6211 if (isa<UndefValue>(V)) 6212 continue; 6213 // Build a list of tree entries where V is used. 6214 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6215 auto It = ValueToTEs.find(V); 6216 if (It != ValueToTEs.end()) 6217 VToTEs = It->second; 6218 if (const TreeEntry *VTE = getTreeEntry(V)) 6219 VToTEs.insert(VTE); 6220 if (VToTEs.empty()) 6221 return None; 6222 if (UsedTEs.empty()) { 6223 // The first iteration, just insert the list of nodes to vector. 6224 UsedTEs.push_back(VToTEs); 6225 } else { 6226 // Need to check if there are any previously used tree nodes which use V. 6227 // If there are no such nodes, consider that we have another one input 6228 // vector. 6229 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6230 unsigned Idx = 0; 6231 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6232 // Do we have a non-empty intersection of previously listed tree entries 6233 // and tree entries using current V? 6234 set_intersect(VToTEs, Set); 6235 if (!VToTEs.empty()) { 6236 // Yes, write the new subset and continue analysis for the next 6237 // scalar. 6238 Set.swap(VToTEs); 6239 break; 6240 } 6241 VToTEs = SavedVToTEs; 6242 ++Idx; 6243 } 6244 // No non-empty intersection found - need to add a second set of possible 6245 // source vectors. 6246 if (Idx == UsedTEs.size()) { 6247 // If the number of input vectors is greater than 2 - not a permutation, 6248 // fallback to the regular gather. 6249 if (UsedTEs.size() == 2) 6250 return None; 6251 UsedTEs.push_back(SavedVToTEs); 6252 Idx = UsedTEs.size() - 1; 6253 } 6254 UsedValuesEntry.try_emplace(V, Idx); 6255 } 6256 } 6257 6258 unsigned VF = 0; 6259 if (UsedTEs.size() == 1) { 6260 // Try to find the perfect match in another gather node at first. 6261 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6262 return EntryPtr->isSame(TE->Scalars); 6263 }); 6264 if (It != UsedTEs.front().end()) { 6265 Entries.push_back(*It); 6266 std::iota(Mask.begin(), Mask.end(), 0); 6267 return TargetTransformInfo::SK_PermuteSingleSrc; 6268 } 6269 // No perfect match, just shuffle, so choose the first tree node. 6270 Entries.push_back(*UsedTEs.front().begin()); 6271 } else { 6272 // Try to find nodes with the same vector factor. 6273 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6274 DenseMap<int, const TreeEntry *> VFToTE; 6275 for (const TreeEntry *TE : UsedTEs.front()) 6276 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6277 for (const TreeEntry *TE : UsedTEs.back()) { 6278 auto It = VFToTE.find(TE->getVectorFactor()); 6279 if (It != VFToTE.end()) { 6280 VF = It->first; 6281 Entries.push_back(It->second); 6282 Entries.push_back(TE); 6283 break; 6284 } 6285 } 6286 // No 2 source vectors with the same vector factor - give up and do regular 6287 // gather. 6288 if (Entries.empty()) 6289 return None; 6290 } 6291 6292 // Build a shuffle mask for better cost estimation and vector emission. 6293 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6294 Value *V = TE->Scalars[I]; 6295 if (isa<UndefValue>(V)) 6296 continue; 6297 unsigned Idx = UsedValuesEntry.lookup(V); 6298 const TreeEntry *VTE = Entries[Idx]; 6299 int FoundLane = VTE->findLaneForValue(V); 6300 Mask[I] = Idx * VF + FoundLane; 6301 // Extra check required by isSingleSourceMaskImpl function (called by 6302 // ShuffleVectorInst::isSingleSourceMask). 6303 if (Mask[I] >= 2 * E) 6304 return None; 6305 } 6306 switch (Entries.size()) { 6307 case 1: 6308 return TargetTransformInfo::SK_PermuteSingleSrc; 6309 case 2: 6310 return TargetTransformInfo::SK_PermuteTwoSrc; 6311 default: 6312 break; 6313 } 6314 return None; 6315 } 6316 6317 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6318 const APInt &ShuffledIndices, 6319 bool NeedToShuffle) const { 6320 InstructionCost Cost = 6321 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6322 /*Extract*/ false); 6323 if (NeedToShuffle) 6324 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6325 return Cost; 6326 } 6327 6328 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6329 // Find the type of the operands in VL. 6330 Type *ScalarTy = VL[0]->getType(); 6331 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6332 ScalarTy = SI->getValueOperand()->getType(); 6333 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6334 bool DuplicateNonConst = false; 6335 // Find the cost of inserting/extracting values from the vector. 6336 // Check if the same elements are inserted several times and count them as 6337 // shuffle candidates. 6338 APInt ShuffledElements = APInt::getZero(VL.size()); 6339 DenseSet<Value *> UniqueElements; 6340 // Iterate in reverse order to consider insert elements with the high cost. 6341 for (unsigned I = VL.size(); I > 0; --I) { 6342 unsigned Idx = I - 1; 6343 // No need to shuffle duplicates for constants. 6344 if (isConstant(VL[Idx])) { 6345 ShuffledElements.setBit(Idx); 6346 continue; 6347 } 6348 if (!UniqueElements.insert(VL[Idx]).second) { 6349 DuplicateNonConst = true; 6350 ShuffledElements.setBit(Idx); 6351 } 6352 } 6353 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6354 } 6355 6356 // Perform operand reordering on the instructions in VL and return the reordered 6357 // operands in Left and Right. 6358 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6359 SmallVectorImpl<Value *> &Left, 6360 SmallVectorImpl<Value *> &Right, 6361 const DataLayout &DL, 6362 ScalarEvolution &SE, 6363 const BoUpSLP &R) { 6364 if (VL.empty()) 6365 return; 6366 VLOperands Ops(VL, DL, SE, R); 6367 // Reorder the operands in place. 6368 Ops.reorder(); 6369 Left = Ops.getVL(0); 6370 Right = Ops.getVL(1); 6371 } 6372 6373 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6374 // Get the basic block this bundle is in. All instructions in the bundle 6375 // should be in this block. 6376 auto *Front = E->getMainOp(); 6377 auto *BB = Front->getParent(); 6378 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6379 auto *I = cast<Instruction>(V); 6380 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6381 })); 6382 6383 // The last instruction in the bundle in program order. 6384 Instruction *LastInst = nullptr; 6385 6386 // Find the last instruction. The common case should be that BB has been 6387 // scheduled, and the last instruction is VL.back(). So we start with 6388 // VL.back() and iterate over schedule data until we reach the end of the 6389 // bundle. The end of the bundle is marked by null ScheduleData. 6390 if (BlocksSchedules.count(BB)) { 6391 auto *Bundle = 6392 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6393 if (Bundle && Bundle->isPartOfBundle()) 6394 for (; Bundle; Bundle = Bundle->NextInBundle) 6395 if (Bundle->OpValue == Bundle->Inst) 6396 LastInst = Bundle->Inst; 6397 } 6398 6399 // LastInst can still be null at this point if there's either not an entry 6400 // for BB in BlocksSchedules or there's no ScheduleData available for 6401 // VL.back(). This can be the case if buildTree_rec aborts for various 6402 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6403 // size is reached, etc.). ScheduleData is initialized in the scheduling 6404 // "dry-run". 6405 // 6406 // If this happens, we can still find the last instruction by brute force. We 6407 // iterate forwards from Front (inclusive) until we either see all 6408 // instructions in the bundle or reach the end of the block. If Front is the 6409 // last instruction in program order, LastInst will be set to Front, and we 6410 // will visit all the remaining instructions in the block. 6411 // 6412 // One of the reasons we exit early from buildTree_rec is to place an upper 6413 // bound on compile-time. Thus, taking an additional compile-time hit here is 6414 // not ideal. However, this should be exceedingly rare since it requires that 6415 // we both exit early from buildTree_rec and that the bundle be out-of-order 6416 // (causing us to iterate all the way to the end of the block). 6417 if (!LastInst) { 6418 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6419 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6420 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6421 LastInst = &I; 6422 if (Bundle.empty()) 6423 break; 6424 } 6425 } 6426 assert(LastInst && "Failed to find last instruction in bundle"); 6427 6428 // Set the insertion point after the last instruction in the bundle. Set the 6429 // debug location to Front. 6430 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6431 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6432 } 6433 6434 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6435 // List of instructions/lanes from current block and/or the blocks which are 6436 // part of the current loop. These instructions will be inserted at the end to 6437 // make it possible to optimize loops and hoist invariant instructions out of 6438 // the loops body with better chances for success. 6439 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6440 SmallSet<int, 4> PostponedIndices; 6441 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6442 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6443 SmallPtrSet<BasicBlock *, 4> Visited; 6444 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6445 InsertBB = InsertBB->getSinglePredecessor(); 6446 return InsertBB && InsertBB == InstBB; 6447 }; 6448 for (int I = 0, E = VL.size(); I < E; ++I) { 6449 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6450 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6451 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6452 PostponedIndices.insert(I).second) 6453 PostponedInsts.emplace_back(Inst, I); 6454 } 6455 6456 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6457 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6458 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6459 if (!InsElt) 6460 return Vec; 6461 GatherShuffleSeq.insert(InsElt); 6462 CSEBlocks.insert(InsElt->getParent()); 6463 // Add to our 'need-to-extract' list. 6464 if (TreeEntry *Entry = getTreeEntry(V)) { 6465 // Find which lane we need to extract. 6466 unsigned FoundLane = Entry->findLaneForValue(V); 6467 ExternalUses.emplace_back(V, InsElt, FoundLane); 6468 } 6469 return Vec; 6470 }; 6471 Value *Val0 = 6472 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6473 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6474 Value *Vec = PoisonValue::get(VecTy); 6475 SmallVector<int> NonConsts; 6476 // Insert constant values at first. 6477 for (int I = 0, E = VL.size(); I < E; ++I) { 6478 if (PostponedIndices.contains(I)) 6479 continue; 6480 if (!isConstant(VL[I])) { 6481 NonConsts.push_back(I); 6482 continue; 6483 } 6484 Vec = CreateInsertElement(Vec, VL[I], I); 6485 } 6486 // Insert non-constant values. 6487 for (int I : NonConsts) 6488 Vec = CreateInsertElement(Vec, VL[I], I); 6489 // Append instructions, which are/may be part of the loop, in the end to make 6490 // it possible to hoist non-loop-based instructions. 6491 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6492 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6493 6494 return Vec; 6495 } 6496 6497 namespace { 6498 /// Merges shuffle masks and emits final shuffle instruction, if required. 6499 class ShuffleInstructionBuilder { 6500 IRBuilderBase &Builder; 6501 const unsigned VF = 0; 6502 bool IsFinalized = false; 6503 SmallVector<int, 4> Mask; 6504 /// Holds all of the instructions that we gathered. 6505 SetVector<Instruction *> &GatherShuffleSeq; 6506 /// A list of blocks that we are going to CSE. 6507 SetVector<BasicBlock *> &CSEBlocks; 6508 6509 public: 6510 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6511 SetVector<Instruction *> &GatherShuffleSeq, 6512 SetVector<BasicBlock *> &CSEBlocks) 6513 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6514 CSEBlocks(CSEBlocks) {} 6515 6516 /// Adds a mask, inverting it before applying. 6517 void addInversedMask(ArrayRef<unsigned> SubMask) { 6518 if (SubMask.empty()) 6519 return; 6520 SmallVector<int, 4> NewMask; 6521 inversePermutation(SubMask, NewMask); 6522 addMask(NewMask); 6523 } 6524 6525 /// Functions adds masks, merging them into single one. 6526 void addMask(ArrayRef<unsigned> SubMask) { 6527 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6528 addMask(NewMask); 6529 } 6530 6531 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6532 6533 Value *finalize(Value *V) { 6534 IsFinalized = true; 6535 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6536 if (VF == ValueVF && Mask.empty()) 6537 return V; 6538 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6539 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6540 addMask(NormalizedMask); 6541 6542 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6543 return V; 6544 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6545 if (auto *I = dyn_cast<Instruction>(Vec)) { 6546 GatherShuffleSeq.insert(I); 6547 CSEBlocks.insert(I->getParent()); 6548 } 6549 return Vec; 6550 } 6551 6552 ~ShuffleInstructionBuilder() { 6553 assert((IsFinalized || Mask.empty()) && 6554 "Shuffle construction must be finalized."); 6555 } 6556 }; 6557 } // namespace 6558 6559 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6560 unsigned VF = VL.size(); 6561 InstructionsState S = getSameOpcode(VL); 6562 if (S.getOpcode()) { 6563 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6564 if (E->isSame(VL)) { 6565 Value *V = vectorizeTree(E); 6566 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6567 if (!E->ReuseShuffleIndices.empty()) { 6568 // Reshuffle to get only unique values. 6569 // If some of the scalars are duplicated in the vectorization tree 6570 // entry, we do not vectorize them but instead generate a mask for 6571 // the reuses. But if there are several users of the same entry, 6572 // they may have different vectorization factors. This is especially 6573 // important for PHI nodes. In this case, we need to adapt the 6574 // resulting instruction for the user vectorization factor and have 6575 // to reshuffle it again to take only unique elements of the vector. 6576 // Without this code the function incorrectly returns reduced vector 6577 // instruction with the same elements, not with the unique ones. 6578 6579 // block: 6580 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6581 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6582 // ... (use %2) 6583 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6584 // br %block 6585 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6586 SmallSet<int, 4> UsedIdxs; 6587 int Pos = 0; 6588 int Sz = VL.size(); 6589 for (int Idx : E->ReuseShuffleIndices) { 6590 if (Idx != Sz && Idx != UndefMaskElem && 6591 UsedIdxs.insert(Idx).second) 6592 UniqueIdxs[Idx] = Pos; 6593 ++Pos; 6594 } 6595 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6596 "less than original vector size."); 6597 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6598 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6599 } else { 6600 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6601 "Expected vectorization factor less " 6602 "than original vector size."); 6603 SmallVector<int> UniformMask(VF, 0); 6604 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6605 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6606 } 6607 if (auto *I = dyn_cast<Instruction>(V)) { 6608 GatherShuffleSeq.insert(I); 6609 CSEBlocks.insert(I->getParent()); 6610 } 6611 } 6612 return V; 6613 } 6614 } 6615 6616 // Check that every instruction appears once in this bundle. 6617 SmallVector<int> ReuseShuffleIndicies; 6618 SmallVector<Value *> UniqueValues; 6619 if (VL.size() > 2) { 6620 DenseMap<Value *, unsigned> UniquePositions; 6621 unsigned NumValues = 6622 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6623 return !isa<UndefValue>(V); 6624 }).base()); 6625 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6626 int UniqueVals = 0; 6627 for (Value *V : VL.drop_back(VL.size() - VF)) { 6628 if (isa<UndefValue>(V)) { 6629 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6630 continue; 6631 } 6632 if (isConstant(V)) { 6633 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6634 UniqueValues.emplace_back(V); 6635 continue; 6636 } 6637 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6638 ReuseShuffleIndicies.emplace_back(Res.first->second); 6639 if (Res.second) { 6640 UniqueValues.emplace_back(V); 6641 ++UniqueVals; 6642 } 6643 } 6644 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6645 // Emit pure splat vector. 6646 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6647 UndefMaskElem); 6648 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6649 ReuseShuffleIndicies.clear(); 6650 UniqueValues.clear(); 6651 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6652 } 6653 UniqueValues.append(VF - UniqueValues.size(), 6654 PoisonValue::get(VL[0]->getType())); 6655 VL = UniqueValues; 6656 } 6657 6658 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6659 CSEBlocks); 6660 Value *Vec = gather(VL); 6661 if (!ReuseShuffleIndicies.empty()) { 6662 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6663 Vec = ShuffleBuilder.finalize(Vec); 6664 } 6665 return Vec; 6666 } 6667 6668 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6669 IRBuilder<>::InsertPointGuard Guard(Builder); 6670 6671 if (E->VectorizedValue) { 6672 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6673 return E->VectorizedValue; 6674 } 6675 6676 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6677 unsigned VF = E->getVectorFactor(); 6678 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6679 CSEBlocks); 6680 if (E->State == TreeEntry::NeedToGather) { 6681 if (E->getMainOp()) 6682 setInsertPointAfterBundle(E); 6683 Value *Vec; 6684 SmallVector<int> Mask; 6685 SmallVector<const TreeEntry *> Entries; 6686 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6687 isGatherShuffledEntry(E, Mask, Entries); 6688 if (Shuffle.hasValue()) { 6689 assert((Entries.size() == 1 || Entries.size() == 2) && 6690 "Expected shuffle of 1 or 2 entries."); 6691 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6692 Entries.back()->VectorizedValue, Mask); 6693 if (auto *I = dyn_cast<Instruction>(Vec)) { 6694 GatherShuffleSeq.insert(I); 6695 CSEBlocks.insert(I->getParent()); 6696 } 6697 } else { 6698 Vec = gather(E->Scalars); 6699 } 6700 if (NeedToShuffleReuses) { 6701 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6702 Vec = ShuffleBuilder.finalize(Vec); 6703 } 6704 E->VectorizedValue = Vec; 6705 return Vec; 6706 } 6707 6708 assert((E->State == TreeEntry::Vectorize || 6709 E->State == TreeEntry::ScatterVectorize) && 6710 "Unhandled state"); 6711 unsigned ShuffleOrOp = 6712 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6713 Instruction *VL0 = E->getMainOp(); 6714 Type *ScalarTy = VL0->getType(); 6715 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6716 ScalarTy = Store->getValueOperand()->getType(); 6717 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6718 ScalarTy = IE->getOperand(1)->getType(); 6719 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6720 switch (ShuffleOrOp) { 6721 case Instruction::PHI: { 6722 assert( 6723 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6724 "PHI reordering is free."); 6725 auto *PH = cast<PHINode>(VL0); 6726 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6727 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6728 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6729 Value *V = NewPhi; 6730 6731 // Adjust insertion point once all PHI's have been generated. 6732 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6733 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6734 6735 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6736 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6737 V = ShuffleBuilder.finalize(V); 6738 6739 E->VectorizedValue = V; 6740 6741 // PHINodes may have multiple entries from the same block. We want to 6742 // visit every block once. 6743 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6744 6745 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6746 ValueList Operands; 6747 BasicBlock *IBB = PH->getIncomingBlock(i); 6748 6749 if (!VisitedBBs.insert(IBB).second) { 6750 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6751 continue; 6752 } 6753 6754 Builder.SetInsertPoint(IBB->getTerminator()); 6755 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6756 Value *Vec = vectorizeTree(E->getOperand(i)); 6757 NewPhi->addIncoming(Vec, IBB); 6758 } 6759 6760 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6761 "Invalid number of incoming values"); 6762 return V; 6763 } 6764 6765 case Instruction::ExtractElement: { 6766 Value *V = E->getSingleOperand(0); 6767 Builder.SetInsertPoint(VL0); 6768 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6769 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6770 V = ShuffleBuilder.finalize(V); 6771 E->VectorizedValue = V; 6772 return V; 6773 } 6774 case Instruction::ExtractValue: { 6775 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6776 Builder.SetInsertPoint(LI); 6777 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6778 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6779 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6780 Value *NewV = propagateMetadata(V, E->Scalars); 6781 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6782 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6783 NewV = ShuffleBuilder.finalize(NewV); 6784 E->VectorizedValue = NewV; 6785 return NewV; 6786 } 6787 case Instruction::InsertElement: { 6788 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6789 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6790 Value *V = vectorizeTree(E->getOperand(1)); 6791 6792 // Create InsertVector shuffle if necessary 6793 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6794 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6795 })); 6796 const unsigned NumElts = 6797 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6798 const unsigned NumScalars = E->Scalars.size(); 6799 6800 unsigned Offset = *getInsertIndex(VL0); 6801 assert(Offset < NumElts && "Failed to find vector index offset"); 6802 6803 // Create shuffle to resize vector 6804 SmallVector<int> Mask; 6805 if (!E->ReorderIndices.empty()) { 6806 inversePermutation(E->ReorderIndices, Mask); 6807 Mask.append(NumElts - NumScalars, UndefMaskElem); 6808 } else { 6809 Mask.assign(NumElts, UndefMaskElem); 6810 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6811 } 6812 // Create InsertVector shuffle if necessary 6813 bool IsIdentity = true; 6814 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6815 Mask.swap(PrevMask); 6816 for (unsigned I = 0; I < NumScalars; ++I) { 6817 Value *Scalar = E->Scalars[PrevMask[I]]; 6818 unsigned InsertIdx = *getInsertIndex(Scalar); 6819 IsIdentity &= InsertIdx - Offset == I; 6820 Mask[InsertIdx - Offset] = I; 6821 } 6822 if (!IsIdentity || NumElts != NumScalars) { 6823 V = Builder.CreateShuffleVector(V, Mask); 6824 if (auto *I = dyn_cast<Instruction>(V)) { 6825 GatherShuffleSeq.insert(I); 6826 CSEBlocks.insert(I->getParent()); 6827 } 6828 } 6829 6830 if ((!IsIdentity || Offset != 0 || 6831 !isUndefVector(FirstInsert->getOperand(0))) && 6832 NumElts != NumScalars) { 6833 SmallVector<int> InsertMask(NumElts); 6834 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6835 for (unsigned I = 0; I < NumElts; I++) { 6836 if (Mask[I] != UndefMaskElem) 6837 InsertMask[Offset + I] = NumElts + I; 6838 } 6839 6840 V = Builder.CreateShuffleVector( 6841 FirstInsert->getOperand(0), V, InsertMask, 6842 cast<Instruction>(E->Scalars.back())->getName()); 6843 if (auto *I = dyn_cast<Instruction>(V)) { 6844 GatherShuffleSeq.insert(I); 6845 CSEBlocks.insert(I->getParent()); 6846 } 6847 } 6848 6849 ++NumVectorInstructions; 6850 E->VectorizedValue = V; 6851 return V; 6852 } 6853 case Instruction::ZExt: 6854 case Instruction::SExt: 6855 case Instruction::FPToUI: 6856 case Instruction::FPToSI: 6857 case Instruction::FPExt: 6858 case Instruction::PtrToInt: 6859 case Instruction::IntToPtr: 6860 case Instruction::SIToFP: 6861 case Instruction::UIToFP: 6862 case Instruction::Trunc: 6863 case Instruction::FPTrunc: 6864 case Instruction::BitCast: { 6865 setInsertPointAfterBundle(E); 6866 6867 Value *InVec = vectorizeTree(E->getOperand(0)); 6868 6869 if (E->VectorizedValue) { 6870 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6871 return E->VectorizedValue; 6872 } 6873 6874 auto *CI = cast<CastInst>(VL0); 6875 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6876 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6877 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6878 V = ShuffleBuilder.finalize(V); 6879 6880 E->VectorizedValue = V; 6881 ++NumVectorInstructions; 6882 return V; 6883 } 6884 case Instruction::FCmp: 6885 case Instruction::ICmp: { 6886 setInsertPointAfterBundle(E); 6887 6888 Value *L = vectorizeTree(E->getOperand(0)); 6889 Value *R = vectorizeTree(E->getOperand(1)); 6890 6891 if (E->VectorizedValue) { 6892 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6893 return E->VectorizedValue; 6894 } 6895 6896 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6897 Value *V = Builder.CreateCmp(P0, L, R); 6898 propagateIRFlags(V, E->Scalars, VL0); 6899 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6900 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6901 V = ShuffleBuilder.finalize(V); 6902 6903 E->VectorizedValue = V; 6904 ++NumVectorInstructions; 6905 return V; 6906 } 6907 case Instruction::Select: { 6908 setInsertPointAfterBundle(E); 6909 6910 Value *Cond = vectorizeTree(E->getOperand(0)); 6911 Value *True = vectorizeTree(E->getOperand(1)); 6912 Value *False = vectorizeTree(E->getOperand(2)); 6913 6914 if (E->VectorizedValue) { 6915 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6916 return E->VectorizedValue; 6917 } 6918 6919 Value *V = Builder.CreateSelect(Cond, True, False); 6920 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6921 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6922 V = ShuffleBuilder.finalize(V); 6923 6924 E->VectorizedValue = V; 6925 ++NumVectorInstructions; 6926 return V; 6927 } 6928 case Instruction::FNeg: { 6929 setInsertPointAfterBundle(E); 6930 6931 Value *Op = vectorizeTree(E->getOperand(0)); 6932 6933 if (E->VectorizedValue) { 6934 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6935 return E->VectorizedValue; 6936 } 6937 6938 Value *V = Builder.CreateUnOp( 6939 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6940 propagateIRFlags(V, E->Scalars, VL0); 6941 if (auto *I = dyn_cast<Instruction>(V)) 6942 V = propagateMetadata(I, E->Scalars); 6943 6944 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6945 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6946 V = ShuffleBuilder.finalize(V); 6947 6948 E->VectorizedValue = V; 6949 ++NumVectorInstructions; 6950 6951 return V; 6952 } 6953 case Instruction::Add: 6954 case Instruction::FAdd: 6955 case Instruction::Sub: 6956 case Instruction::FSub: 6957 case Instruction::Mul: 6958 case Instruction::FMul: 6959 case Instruction::UDiv: 6960 case Instruction::SDiv: 6961 case Instruction::FDiv: 6962 case Instruction::URem: 6963 case Instruction::SRem: 6964 case Instruction::FRem: 6965 case Instruction::Shl: 6966 case Instruction::LShr: 6967 case Instruction::AShr: 6968 case Instruction::And: 6969 case Instruction::Or: 6970 case Instruction::Xor: { 6971 setInsertPointAfterBundle(E); 6972 6973 Value *LHS = vectorizeTree(E->getOperand(0)); 6974 Value *RHS = vectorizeTree(E->getOperand(1)); 6975 6976 if (E->VectorizedValue) { 6977 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6978 return E->VectorizedValue; 6979 } 6980 6981 Value *V = Builder.CreateBinOp( 6982 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6983 RHS); 6984 propagateIRFlags(V, E->Scalars, VL0); 6985 if (auto *I = dyn_cast<Instruction>(V)) 6986 V = propagateMetadata(I, E->Scalars); 6987 6988 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6989 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6990 V = ShuffleBuilder.finalize(V); 6991 6992 E->VectorizedValue = V; 6993 ++NumVectorInstructions; 6994 6995 return V; 6996 } 6997 case Instruction::Load: { 6998 // Loads are inserted at the head of the tree because we don't want to 6999 // sink them all the way down past store instructions. 7000 setInsertPointAfterBundle(E); 7001 7002 LoadInst *LI = cast<LoadInst>(VL0); 7003 Instruction *NewLI; 7004 unsigned AS = LI->getPointerAddressSpace(); 7005 Value *PO = LI->getPointerOperand(); 7006 if (E->State == TreeEntry::Vectorize) { 7007 7008 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7009 7010 // The pointer operand uses an in-tree scalar so we add the new BitCast 7011 // to ExternalUses list to make sure that an extract will be generated 7012 // in the future. 7013 if (TreeEntry *Entry = getTreeEntry(PO)) { 7014 // Find which lane we need to extract. 7015 unsigned FoundLane = Entry->findLaneForValue(PO); 7016 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 7017 } 7018 7019 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7020 } else { 7021 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7022 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7023 // Use the minimum alignment of the gathered loads. 7024 Align CommonAlignment = LI->getAlign(); 7025 for (Value *V : E->Scalars) 7026 CommonAlignment = 7027 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7028 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7029 } 7030 Value *V = propagateMetadata(NewLI, E->Scalars); 7031 7032 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7033 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7034 V = ShuffleBuilder.finalize(V); 7035 E->VectorizedValue = V; 7036 ++NumVectorInstructions; 7037 return V; 7038 } 7039 case Instruction::Store: { 7040 auto *SI = cast<StoreInst>(VL0); 7041 unsigned AS = SI->getPointerAddressSpace(); 7042 7043 setInsertPointAfterBundle(E); 7044 7045 Value *VecValue = vectorizeTree(E->getOperand(0)); 7046 ShuffleBuilder.addMask(E->ReorderIndices); 7047 VecValue = ShuffleBuilder.finalize(VecValue); 7048 7049 Value *ScalarPtr = SI->getPointerOperand(); 7050 Value *VecPtr = Builder.CreateBitCast( 7051 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7052 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 7053 SI->getAlign()); 7054 7055 // The pointer operand uses an in-tree scalar, so add the new BitCast to 7056 // ExternalUses to make sure that an extract will be generated in the 7057 // future. 7058 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7059 // Find which lane we need to extract. 7060 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7061 ExternalUses.push_back( 7062 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 7063 } 7064 7065 Value *V = propagateMetadata(ST, E->Scalars); 7066 7067 E->VectorizedValue = V; 7068 ++NumVectorInstructions; 7069 return V; 7070 } 7071 case Instruction::GetElementPtr: { 7072 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7073 setInsertPointAfterBundle(E); 7074 7075 Value *Op0 = vectorizeTree(E->getOperand(0)); 7076 7077 SmallVector<Value *> OpVecs; 7078 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7079 Value *OpVec = vectorizeTree(E->getOperand(J)); 7080 OpVecs.push_back(OpVec); 7081 } 7082 7083 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7084 if (Instruction *I = dyn_cast<Instruction>(V)) 7085 V = propagateMetadata(I, E->Scalars); 7086 7087 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7088 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7089 V = ShuffleBuilder.finalize(V); 7090 7091 E->VectorizedValue = V; 7092 ++NumVectorInstructions; 7093 7094 return V; 7095 } 7096 case Instruction::Call: { 7097 CallInst *CI = cast<CallInst>(VL0); 7098 setInsertPointAfterBundle(E); 7099 7100 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7101 if (Function *FI = CI->getCalledFunction()) 7102 IID = FI->getIntrinsicID(); 7103 7104 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7105 7106 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7107 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7108 VecCallCosts.first <= VecCallCosts.second; 7109 7110 Value *ScalarArg = nullptr; 7111 std::vector<Value *> OpVecs; 7112 SmallVector<Type *, 2> TysForDecl = 7113 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7114 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7115 ValueList OpVL; 7116 // Some intrinsics have scalar arguments. This argument should not be 7117 // vectorized. 7118 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7119 CallInst *CEI = cast<CallInst>(VL0); 7120 ScalarArg = CEI->getArgOperand(j); 7121 OpVecs.push_back(CEI->getArgOperand(j)); 7122 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7123 TysForDecl.push_back(ScalarArg->getType()); 7124 continue; 7125 } 7126 7127 Value *OpVec = vectorizeTree(E->getOperand(j)); 7128 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7129 OpVecs.push_back(OpVec); 7130 } 7131 7132 Function *CF; 7133 if (!UseIntrinsic) { 7134 VFShape Shape = 7135 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7136 VecTy->getNumElements())), 7137 false /*HasGlobalPred*/); 7138 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7139 } else { 7140 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7141 } 7142 7143 SmallVector<OperandBundleDef, 1> OpBundles; 7144 CI->getOperandBundlesAsDefs(OpBundles); 7145 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7146 7147 // The scalar argument uses an in-tree scalar so we add the new vectorized 7148 // call to ExternalUses list to make sure that an extract will be 7149 // generated in the future. 7150 if (ScalarArg) { 7151 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7152 // Find which lane we need to extract. 7153 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7154 ExternalUses.push_back( 7155 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7156 } 7157 } 7158 7159 propagateIRFlags(V, E->Scalars, VL0); 7160 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7161 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7162 V = ShuffleBuilder.finalize(V); 7163 7164 E->VectorizedValue = V; 7165 ++NumVectorInstructions; 7166 return V; 7167 } 7168 case Instruction::ShuffleVector: { 7169 assert(E->isAltShuffle() && 7170 ((Instruction::isBinaryOp(E->getOpcode()) && 7171 Instruction::isBinaryOp(E->getAltOpcode())) || 7172 (Instruction::isCast(E->getOpcode()) && 7173 Instruction::isCast(E->getAltOpcode())) || 7174 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7175 "Invalid Shuffle Vector Operand"); 7176 7177 Value *LHS = nullptr, *RHS = nullptr; 7178 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7179 setInsertPointAfterBundle(E); 7180 LHS = vectorizeTree(E->getOperand(0)); 7181 RHS = vectorizeTree(E->getOperand(1)); 7182 } else { 7183 setInsertPointAfterBundle(E); 7184 LHS = vectorizeTree(E->getOperand(0)); 7185 } 7186 7187 if (E->VectorizedValue) { 7188 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7189 return E->VectorizedValue; 7190 } 7191 7192 Value *V0, *V1; 7193 if (Instruction::isBinaryOp(E->getOpcode())) { 7194 V0 = Builder.CreateBinOp( 7195 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7196 V1 = Builder.CreateBinOp( 7197 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7198 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7199 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7200 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7201 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7202 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7203 } else { 7204 V0 = Builder.CreateCast( 7205 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7206 V1 = Builder.CreateCast( 7207 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7208 } 7209 // Add V0 and V1 to later analysis to try to find and remove matching 7210 // instruction, if any. 7211 for (Value *V : {V0, V1}) { 7212 if (auto *I = dyn_cast<Instruction>(V)) { 7213 GatherShuffleSeq.insert(I); 7214 CSEBlocks.insert(I->getParent()); 7215 } 7216 } 7217 7218 // Create shuffle to take alternate operations from the vector. 7219 // Also, gather up main and alt scalar ops to propagate IR flags to 7220 // each vector operation. 7221 ValueList OpScalars, AltScalars; 7222 SmallVector<int> Mask; 7223 buildShuffleEntryMask( 7224 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7225 [E](Instruction *I) { 7226 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7227 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7228 }, 7229 Mask, &OpScalars, &AltScalars); 7230 7231 propagateIRFlags(V0, OpScalars); 7232 propagateIRFlags(V1, AltScalars); 7233 7234 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7235 if (auto *I = dyn_cast<Instruction>(V)) { 7236 V = propagateMetadata(I, E->Scalars); 7237 GatherShuffleSeq.insert(I); 7238 CSEBlocks.insert(I->getParent()); 7239 } 7240 V = ShuffleBuilder.finalize(V); 7241 7242 E->VectorizedValue = V; 7243 ++NumVectorInstructions; 7244 7245 return V; 7246 } 7247 default: 7248 llvm_unreachable("unknown inst"); 7249 } 7250 return nullptr; 7251 } 7252 7253 Value *BoUpSLP::vectorizeTree() { 7254 ExtraValueToDebugLocsMap ExternallyUsedValues; 7255 return vectorizeTree(ExternallyUsedValues); 7256 } 7257 7258 Value * 7259 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7260 // All blocks must be scheduled before any instructions are inserted. 7261 for (auto &BSIter : BlocksSchedules) { 7262 scheduleBlock(BSIter.second.get()); 7263 } 7264 7265 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7266 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7267 7268 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7269 // vectorized root. InstCombine will then rewrite the entire expression. We 7270 // sign extend the extracted values below. 7271 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7272 if (MinBWs.count(ScalarRoot)) { 7273 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7274 // If current instr is a phi and not the last phi, insert it after the 7275 // last phi node. 7276 if (isa<PHINode>(I)) 7277 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7278 else 7279 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7280 } 7281 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7282 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7283 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7284 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7285 VectorizableTree[0]->VectorizedValue = Trunc; 7286 } 7287 7288 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7289 << " values .\n"); 7290 7291 // Extract all of the elements with the external uses. 7292 for (const auto &ExternalUse : ExternalUses) { 7293 Value *Scalar = ExternalUse.Scalar; 7294 llvm::User *User = ExternalUse.User; 7295 7296 // Skip users that we already RAUW. This happens when one instruction 7297 // has multiple uses of the same value. 7298 if (User && !is_contained(Scalar->users(), User)) 7299 continue; 7300 TreeEntry *E = getTreeEntry(Scalar); 7301 assert(E && "Invalid scalar"); 7302 assert(E->State != TreeEntry::NeedToGather && 7303 "Extracting from a gather list"); 7304 7305 Value *Vec = E->VectorizedValue; 7306 assert(Vec && "Can't find vectorizable value"); 7307 7308 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7309 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7310 if (Scalar->getType() != Vec->getType()) { 7311 Value *Ex; 7312 // "Reuse" the existing extract to improve final codegen. 7313 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7314 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7315 ES->getOperand(1)); 7316 } else { 7317 Ex = Builder.CreateExtractElement(Vec, Lane); 7318 } 7319 // If necessary, sign-extend or zero-extend ScalarRoot 7320 // to the larger type. 7321 if (!MinBWs.count(ScalarRoot)) 7322 return Ex; 7323 if (MinBWs[ScalarRoot].second) 7324 return Builder.CreateSExt(Ex, Scalar->getType()); 7325 return Builder.CreateZExt(Ex, Scalar->getType()); 7326 } 7327 assert(isa<FixedVectorType>(Scalar->getType()) && 7328 isa<InsertElementInst>(Scalar) && 7329 "In-tree scalar of vector type is not insertelement?"); 7330 return Vec; 7331 }; 7332 // If User == nullptr, the Scalar is used as extra arg. Generate 7333 // ExtractElement instruction and update the record for this scalar in 7334 // ExternallyUsedValues. 7335 if (!User) { 7336 assert(ExternallyUsedValues.count(Scalar) && 7337 "Scalar with nullptr as an external user must be registered in " 7338 "ExternallyUsedValues map"); 7339 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7340 Builder.SetInsertPoint(VecI->getParent(), 7341 std::next(VecI->getIterator())); 7342 } else { 7343 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7344 } 7345 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7346 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7347 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7348 auto It = ExternallyUsedValues.find(Scalar); 7349 assert(It != ExternallyUsedValues.end() && 7350 "Externally used scalar is not found in ExternallyUsedValues"); 7351 NewInstLocs.append(It->second); 7352 ExternallyUsedValues.erase(Scalar); 7353 // Required to update internally referenced instructions. 7354 Scalar->replaceAllUsesWith(NewInst); 7355 continue; 7356 } 7357 7358 // Generate extracts for out-of-tree users. 7359 // Find the insertion point for the extractelement lane. 7360 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7361 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7362 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7363 if (PH->getIncomingValue(i) == Scalar) { 7364 Instruction *IncomingTerminator = 7365 PH->getIncomingBlock(i)->getTerminator(); 7366 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7367 Builder.SetInsertPoint(VecI->getParent(), 7368 std::next(VecI->getIterator())); 7369 } else { 7370 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7371 } 7372 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7373 CSEBlocks.insert(PH->getIncomingBlock(i)); 7374 PH->setOperand(i, NewInst); 7375 } 7376 } 7377 } else { 7378 Builder.SetInsertPoint(cast<Instruction>(User)); 7379 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7380 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7381 User->replaceUsesOfWith(Scalar, NewInst); 7382 } 7383 } else { 7384 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7385 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7386 CSEBlocks.insert(&F->getEntryBlock()); 7387 User->replaceUsesOfWith(Scalar, NewInst); 7388 } 7389 7390 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7391 } 7392 7393 // For each vectorized value: 7394 for (auto &TEPtr : VectorizableTree) { 7395 TreeEntry *Entry = TEPtr.get(); 7396 7397 // No need to handle users of gathered values. 7398 if (Entry->State == TreeEntry::NeedToGather) 7399 continue; 7400 7401 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7402 7403 // For each lane: 7404 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7405 Value *Scalar = Entry->Scalars[Lane]; 7406 7407 #ifndef NDEBUG 7408 Type *Ty = Scalar->getType(); 7409 if (!Ty->isVoidTy()) { 7410 for (User *U : Scalar->users()) { 7411 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7412 7413 // It is legal to delete users in the ignorelist. 7414 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7415 (isa_and_nonnull<Instruction>(U) && 7416 isDeleted(cast<Instruction>(U)))) && 7417 "Deleting out-of-tree value"); 7418 } 7419 } 7420 #endif 7421 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7422 eraseInstruction(cast<Instruction>(Scalar)); 7423 } 7424 } 7425 7426 Builder.ClearInsertionPoint(); 7427 InstrElementSize.clear(); 7428 7429 return VectorizableTree[0]->VectorizedValue; 7430 } 7431 7432 void BoUpSLP::optimizeGatherSequence() { 7433 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7434 << " gather sequences instructions.\n"); 7435 // LICM InsertElementInst sequences. 7436 for (Instruction *I : GatherShuffleSeq) { 7437 if (isDeleted(I)) 7438 continue; 7439 7440 // Check if this block is inside a loop. 7441 Loop *L = LI->getLoopFor(I->getParent()); 7442 if (!L) 7443 continue; 7444 7445 // Check if it has a preheader. 7446 BasicBlock *PreHeader = L->getLoopPreheader(); 7447 if (!PreHeader) 7448 continue; 7449 7450 // If the vector or the element that we insert into it are 7451 // instructions that are defined in this basic block then we can't 7452 // hoist this instruction. 7453 if (any_of(I->operands(), [L](Value *V) { 7454 auto *OpI = dyn_cast<Instruction>(V); 7455 return OpI && L->contains(OpI); 7456 })) 7457 continue; 7458 7459 // We can hoist this instruction. Move it to the pre-header. 7460 I->moveBefore(PreHeader->getTerminator()); 7461 } 7462 7463 // Make a list of all reachable blocks in our CSE queue. 7464 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7465 CSEWorkList.reserve(CSEBlocks.size()); 7466 for (BasicBlock *BB : CSEBlocks) 7467 if (DomTreeNode *N = DT->getNode(BB)) { 7468 assert(DT->isReachableFromEntry(N)); 7469 CSEWorkList.push_back(N); 7470 } 7471 7472 // Sort blocks by domination. This ensures we visit a block after all blocks 7473 // dominating it are visited. 7474 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7475 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7476 "Different nodes should have different DFS numbers"); 7477 return A->getDFSNumIn() < B->getDFSNumIn(); 7478 }); 7479 7480 // Less defined shuffles can be replaced by the more defined copies. 7481 // Between two shuffles one is less defined if it has the same vector operands 7482 // and its mask indeces are the same as in the first one or undefs. E.g. 7483 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7484 // poison, <0, 0, 0, 0>. 7485 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7486 SmallVectorImpl<int> &NewMask) { 7487 if (I1->getType() != I2->getType()) 7488 return false; 7489 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7490 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7491 if (!SI1 || !SI2) 7492 return I1->isIdenticalTo(I2); 7493 if (SI1->isIdenticalTo(SI2)) 7494 return true; 7495 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7496 if (SI1->getOperand(I) != SI2->getOperand(I)) 7497 return false; 7498 // Check if the second instruction is more defined than the first one. 7499 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7500 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7501 // Count trailing undefs in the mask to check the final number of used 7502 // registers. 7503 unsigned LastUndefsCnt = 0; 7504 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7505 if (SM1[I] == UndefMaskElem) 7506 ++LastUndefsCnt; 7507 else 7508 LastUndefsCnt = 0; 7509 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7510 NewMask[I] != SM1[I]) 7511 return false; 7512 if (NewMask[I] == UndefMaskElem) 7513 NewMask[I] = SM1[I]; 7514 } 7515 // Check if the last undefs actually change the final number of used vector 7516 // registers. 7517 return SM1.size() - LastUndefsCnt > 1 && 7518 TTI->getNumberOfParts(SI1->getType()) == 7519 TTI->getNumberOfParts( 7520 FixedVectorType::get(SI1->getType()->getElementType(), 7521 SM1.size() - LastUndefsCnt)); 7522 }; 7523 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7524 // instructions. TODO: We can further optimize this scan if we split the 7525 // instructions into different buckets based on the insert lane. 7526 SmallVector<Instruction *, 16> Visited; 7527 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7528 assert(*I && 7529 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7530 "Worklist not sorted properly!"); 7531 BasicBlock *BB = (*I)->getBlock(); 7532 // For all instructions in blocks containing gather sequences: 7533 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7534 if (isDeleted(&In)) 7535 continue; 7536 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7537 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7538 continue; 7539 7540 // Check if we can replace this instruction with any of the 7541 // visited instructions. 7542 bool Replaced = false; 7543 for (Instruction *&V : Visited) { 7544 SmallVector<int> NewMask; 7545 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7546 DT->dominates(V->getParent(), In.getParent())) { 7547 In.replaceAllUsesWith(V); 7548 eraseInstruction(&In); 7549 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7550 if (!NewMask.empty()) 7551 SI->setShuffleMask(NewMask); 7552 Replaced = true; 7553 break; 7554 } 7555 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7556 GatherShuffleSeq.contains(V) && 7557 IsIdenticalOrLessDefined(V, &In, NewMask) && 7558 DT->dominates(In.getParent(), V->getParent())) { 7559 In.moveAfter(V); 7560 V->replaceAllUsesWith(&In); 7561 eraseInstruction(V); 7562 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7563 if (!NewMask.empty()) 7564 SI->setShuffleMask(NewMask); 7565 V = &In; 7566 Replaced = true; 7567 break; 7568 } 7569 } 7570 if (!Replaced) { 7571 assert(!is_contained(Visited, &In)); 7572 Visited.push_back(&In); 7573 } 7574 } 7575 } 7576 CSEBlocks.clear(); 7577 GatherShuffleSeq.clear(); 7578 } 7579 7580 BoUpSLP::ScheduleData * 7581 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7582 ScheduleData *Bundle = nullptr; 7583 ScheduleData *PrevInBundle = nullptr; 7584 for (Value *V : VL) { 7585 ScheduleData *BundleMember = getScheduleData(V); 7586 assert(BundleMember && 7587 "no ScheduleData for bundle member " 7588 "(maybe not in same basic block)"); 7589 assert(BundleMember->isSchedulingEntity() && 7590 "bundle member already part of other bundle"); 7591 if (PrevInBundle) { 7592 PrevInBundle->NextInBundle = BundleMember; 7593 } else { 7594 Bundle = BundleMember; 7595 } 7596 7597 // Group the instructions to a bundle. 7598 BundleMember->FirstInBundle = Bundle; 7599 PrevInBundle = BundleMember; 7600 } 7601 assert(Bundle && "Failed to find schedule bundle"); 7602 return Bundle; 7603 } 7604 7605 // Groups the instructions to a bundle (which is then a single scheduling entity) 7606 // and schedules instructions until the bundle gets ready. 7607 Optional<BoUpSLP::ScheduleData *> 7608 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7609 const InstructionsState &S) { 7610 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7611 // instructions. 7612 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7613 return nullptr; 7614 7615 // Initialize the instruction bundle. 7616 Instruction *OldScheduleEnd = ScheduleEnd; 7617 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7618 7619 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7620 ScheduleData *Bundle) { 7621 // The scheduling region got new instructions at the lower end (or it is a 7622 // new region for the first bundle). This makes it necessary to 7623 // recalculate all dependencies. 7624 // It is seldom that this needs to be done a second time after adding the 7625 // initial bundle to the region. 7626 if (ScheduleEnd != OldScheduleEnd) { 7627 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7628 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7629 ReSchedule = true; 7630 } 7631 if (Bundle) { 7632 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7633 << " in block " << BB->getName() << "\n"); 7634 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7635 } 7636 7637 if (ReSchedule) { 7638 resetSchedule(); 7639 initialFillReadyList(ReadyInsts); 7640 } 7641 7642 // Now try to schedule the new bundle or (if no bundle) just calculate 7643 // dependencies. As soon as the bundle is "ready" it means that there are no 7644 // cyclic dependencies and we can schedule it. Note that's important that we 7645 // don't "schedule" the bundle yet (see cancelScheduling). 7646 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7647 !ReadyInsts.empty()) { 7648 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7649 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7650 "must be ready to schedule"); 7651 schedule(Picked, ReadyInsts); 7652 } 7653 }; 7654 7655 // Make sure that the scheduling region contains all 7656 // instructions of the bundle. 7657 for (Value *V : VL) { 7658 if (!extendSchedulingRegion(V, S)) { 7659 // If the scheduling region got new instructions at the lower end (or it 7660 // is a new region for the first bundle). This makes it necessary to 7661 // recalculate all dependencies. 7662 // Otherwise the compiler may crash trying to incorrectly calculate 7663 // dependencies and emit instruction in the wrong order at the actual 7664 // scheduling. 7665 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7666 return None; 7667 } 7668 } 7669 7670 bool ReSchedule = false; 7671 for (Value *V : VL) { 7672 ScheduleData *BundleMember = getScheduleData(V); 7673 assert(BundleMember && 7674 "no ScheduleData for bundle member (maybe not in same basic block)"); 7675 7676 // Make sure we don't leave the pieces of the bundle in the ready list when 7677 // whole bundle might not be ready. 7678 ReadyInsts.remove(BundleMember); 7679 7680 if (!BundleMember->IsScheduled) 7681 continue; 7682 // A bundle member was scheduled as single instruction before and now 7683 // needs to be scheduled as part of the bundle. We just get rid of the 7684 // existing schedule. 7685 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7686 << " was already scheduled\n"); 7687 ReSchedule = true; 7688 } 7689 7690 auto *Bundle = buildBundle(VL); 7691 TryScheduleBundleImpl(ReSchedule, Bundle); 7692 if (!Bundle->isReady()) { 7693 cancelScheduling(VL, S.OpValue); 7694 return None; 7695 } 7696 return Bundle; 7697 } 7698 7699 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7700 Value *OpValue) { 7701 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7702 return; 7703 7704 ScheduleData *Bundle = getScheduleData(OpValue); 7705 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7706 assert(!Bundle->IsScheduled && 7707 "Can't cancel bundle which is already scheduled"); 7708 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7709 "tried to unbundle something which is not a bundle"); 7710 7711 // Remove the bundle from the ready list. 7712 if (Bundle->isReady()) 7713 ReadyInsts.remove(Bundle); 7714 7715 // Un-bundle: make single instructions out of the bundle. 7716 ScheduleData *BundleMember = Bundle; 7717 while (BundleMember) { 7718 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7719 BundleMember->FirstInBundle = BundleMember; 7720 ScheduleData *Next = BundleMember->NextInBundle; 7721 BundleMember->NextInBundle = nullptr; 7722 if (BundleMember->unscheduledDepsInBundle() == 0) { 7723 ReadyInsts.insert(BundleMember); 7724 } 7725 BundleMember = Next; 7726 } 7727 } 7728 7729 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7730 // Allocate a new ScheduleData for the instruction. 7731 if (ChunkPos >= ChunkSize) { 7732 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7733 ChunkPos = 0; 7734 } 7735 return &(ScheduleDataChunks.back()[ChunkPos++]); 7736 } 7737 7738 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7739 const InstructionsState &S) { 7740 if (getScheduleData(V, isOneOf(S, V))) 7741 return true; 7742 Instruction *I = dyn_cast<Instruction>(V); 7743 assert(I && "bundle member must be an instruction"); 7744 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7745 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7746 "be scheduled"); 7747 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7748 ScheduleData *ISD = getScheduleData(I); 7749 if (!ISD) 7750 return false; 7751 assert(isInSchedulingRegion(ISD) && 7752 "ScheduleData not in scheduling region"); 7753 ScheduleData *SD = allocateScheduleDataChunks(); 7754 SD->Inst = I; 7755 SD->init(SchedulingRegionID, S.OpValue); 7756 ExtraScheduleDataMap[I][S.OpValue] = SD; 7757 return true; 7758 }; 7759 if (CheckSheduleForI(I)) 7760 return true; 7761 if (!ScheduleStart) { 7762 // It's the first instruction in the new region. 7763 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7764 ScheduleStart = I; 7765 ScheduleEnd = I->getNextNode(); 7766 if (isOneOf(S, I) != I) 7767 CheckSheduleForI(I); 7768 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7769 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7770 return true; 7771 } 7772 // Search up and down at the same time, because we don't know if the new 7773 // instruction is above or below the existing scheduling region. 7774 BasicBlock::reverse_iterator UpIter = 7775 ++ScheduleStart->getIterator().getReverse(); 7776 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7777 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7778 BasicBlock::iterator LowerEnd = BB->end(); 7779 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7780 &*DownIter != I) { 7781 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7782 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7783 return false; 7784 } 7785 7786 ++UpIter; 7787 ++DownIter; 7788 } 7789 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7790 assert(I->getParent() == ScheduleStart->getParent() && 7791 "Instruction is in wrong basic block."); 7792 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7793 ScheduleStart = I; 7794 if (isOneOf(S, I) != I) 7795 CheckSheduleForI(I); 7796 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7797 << "\n"); 7798 return true; 7799 } 7800 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7801 "Expected to reach top of the basic block or instruction down the " 7802 "lower end."); 7803 assert(I->getParent() == ScheduleEnd->getParent() && 7804 "Instruction is in wrong basic block."); 7805 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7806 nullptr); 7807 ScheduleEnd = I->getNextNode(); 7808 if (isOneOf(S, I) != I) 7809 CheckSheduleForI(I); 7810 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7811 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7812 return true; 7813 } 7814 7815 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7816 Instruction *ToI, 7817 ScheduleData *PrevLoadStore, 7818 ScheduleData *NextLoadStore) { 7819 ScheduleData *CurrentLoadStore = PrevLoadStore; 7820 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7821 ScheduleData *SD = ScheduleDataMap[I]; 7822 if (!SD) { 7823 SD = allocateScheduleDataChunks(); 7824 ScheduleDataMap[I] = SD; 7825 SD->Inst = I; 7826 } 7827 assert(!isInSchedulingRegion(SD) && 7828 "new ScheduleData already in scheduling region"); 7829 SD->init(SchedulingRegionID, I); 7830 7831 if (I->mayReadOrWriteMemory() && 7832 (!isa<IntrinsicInst>(I) || 7833 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7834 cast<IntrinsicInst>(I)->getIntrinsicID() != 7835 Intrinsic::pseudoprobe))) { 7836 // Update the linked list of memory accessing instructions. 7837 if (CurrentLoadStore) { 7838 CurrentLoadStore->NextLoadStore = SD; 7839 } else { 7840 FirstLoadStoreInRegion = SD; 7841 } 7842 CurrentLoadStore = SD; 7843 } 7844 } 7845 if (NextLoadStore) { 7846 if (CurrentLoadStore) 7847 CurrentLoadStore->NextLoadStore = NextLoadStore; 7848 } else { 7849 LastLoadStoreInRegion = CurrentLoadStore; 7850 } 7851 } 7852 7853 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7854 bool InsertInReadyList, 7855 BoUpSLP *SLP) { 7856 assert(SD->isSchedulingEntity()); 7857 7858 SmallVector<ScheduleData *, 10> WorkList; 7859 WorkList.push_back(SD); 7860 7861 while (!WorkList.empty()) { 7862 ScheduleData *SD = WorkList.pop_back_val(); 7863 for (ScheduleData *BundleMember = SD; BundleMember; 7864 BundleMember = BundleMember->NextInBundle) { 7865 assert(isInSchedulingRegion(BundleMember)); 7866 if (BundleMember->hasValidDependencies()) 7867 continue; 7868 7869 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7870 << "\n"); 7871 BundleMember->Dependencies = 0; 7872 BundleMember->resetUnscheduledDeps(); 7873 7874 // Handle def-use chain dependencies. 7875 if (BundleMember->OpValue != BundleMember->Inst) { 7876 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7877 BundleMember->Dependencies++; 7878 ScheduleData *DestBundle = UseSD->FirstInBundle; 7879 if (!DestBundle->IsScheduled) 7880 BundleMember->incrementUnscheduledDeps(1); 7881 if (!DestBundle->hasValidDependencies()) 7882 WorkList.push_back(DestBundle); 7883 } 7884 } else { 7885 for (User *U : BundleMember->Inst->users()) { 7886 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7887 BundleMember->Dependencies++; 7888 ScheduleData *DestBundle = UseSD->FirstInBundle; 7889 if (!DestBundle->IsScheduled) 7890 BundleMember->incrementUnscheduledDeps(1); 7891 if (!DestBundle->hasValidDependencies()) 7892 WorkList.push_back(DestBundle); 7893 } 7894 } 7895 } 7896 7897 // Handle the memory dependencies (if any). 7898 ScheduleData *DepDest = BundleMember->NextLoadStore; 7899 if (!DepDest) 7900 continue; 7901 Instruction *SrcInst = BundleMember->Inst; 7902 assert(SrcInst->mayReadOrWriteMemory() && 7903 "NextLoadStore list for non memory effecting bundle?"); 7904 MemoryLocation SrcLoc = getLocation(SrcInst); 7905 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7906 unsigned numAliased = 0; 7907 unsigned DistToSrc = 1; 7908 7909 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7910 assert(isInSchedulingRegion(DepDest)); 7911 7912 // We have two limits to reduce the complexity: 7913 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7914 // SLP->isAliased (which is the expensive part in this loop). 7915 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7916 // the whole loop (even if the loop is fast, it's quadratic). 7917 // It's important for the loop break condition (see below) to 7918 // check this limit even between two read-only instructions. 7919 if (DistToSrc >= MaxMemDepDistance || 7920 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7921 (numAliased >= AliasedCheckLimit || 7922 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7923 7924 // We increment the counter only if the locations are aliased 7925 // (instead of counting all alias checks). This gives a better 7926 // balance between reduced runtime and accurate dependencies. 7927 numAliased++; 7928 7929 DepDest->MemoryDependencies.push_back(BundleMember); 7930 BundleMember->Dependencies++; 7931 ScheduleData *DestBundle = DepDest->FirstInBundle; 7932 if (!DestBundle->IsScheduled) { 7933 BundleMember->incrementUnscheduledDeps(1); 7934 } 7935 if (!DestBundle->hasValidDependencies()) { 7936 WorkList.push_back(DestBundle); 7937 } 7938 } 7939 7940 // Example, explaining the loop break condition: Let's assume our 7941 // starting instruction is i0 and MaxMemDepDistance = 3. 7942 // 7943 // +--------v--v--v 7944 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7945 // +--------^--^--^ 7946 // 7947 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7948 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7949 // Previously we already added dependencies from i3 to i6,i7,i8 7950 // (because of MaxMemDepDistance). As we added a dependency from 7951 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7952 // and we can abort this loop at i6. 7953 if (DistToSrc >= 2 * MaxMemDepDistance) 7954 break; 7955 DistToSrc++; 7956 } 7957 } 7958 if (InsertInReadyList && SD->isReady()) { 7959 ReadyInsts.insert(SD); 7960 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7961 << "\n"); 7962 } 7963 } 7964 } 7965 7966 void BoUpSLP::BlockScheduling::resetSchedule() { 7967 assert(ScheduleStart && 7968 "tried to reset schedule on block which has not been scheduled"); 7969 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7970 doForAllOpcodes(I, [&](ScheduleData *SD) { 7971 assert(isInSchedulingRegion(SD) && 7972 "ScheduleData not in scheduling region"); 7973 SD->IsScheduled = false; 7974 SD->resetUnscheduledDeps(); 7975 }); 7976 } 7977 ReadyInsts.clear(); 7978 } 7979 7980 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7981 if (!BS->ScheduleStart) 7982 return; 7983 7984 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7985 7986 BS->resetSchedule(); 7987 7988 // For the real scheduling we use a more sophisticated ready-list: it is 7989 // sorted by the original instruction location. This lets the final schedule 7990 // be as close as possible to the original instruction order. 7991 struct ScheduleDataCompare { 7992 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7993 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7994 } 7995 }; 7996 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7997 7998 // Ensure that all dependency data is updated and fill the ready-list with 7999 // initial instructions. 8000 int Idx = 0; 8001 int NumToSchedule = 0; 8002 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8003 I = I->getNextNode()) { 8004 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8005 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8006 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 8007 "scheduler and vectorizer bundle mismatch"); 8008 SD->FirstInBundle->SchedulingPriority = Idx++; 8009 if (SD->isSchedulingEntity()) { 8010 BS->calculateDependencies(SD, false, this); 8011 NumToSchedule++; 8012 } 8013 }); 8014 } 8015 BS->initialFillReadyList(ReadyInsts); 8016 8017 Instruction *LastScheduledInst = BS->ScheduleEnd; 8018 8019 // Do the "real" scheduling. 8020 while (!ReadyInsts.empty()) { 8021 ScheduleData *picked = *ReadyInsts.begin(); 8022 ReadyInsts.erase(ReadyInsts.begin()); 8023 8024 // Move the scheduled instruction(s) to their dedicated places, if not 8025 // there yet. 8026 for (ScheduleData *BundleMember = picked; BundleMember; 8027 BundleMember = BundleMember->NextInBundle) { 8028 Instruction *pickedInst = BundleMember->Inst; 8029 if (pickedInst->getNextNode() != LastScheduledInst) 8030 pickedInst->moveBefore(LastScheduledInst); 8031 LastScheduledInst = pickedInst; 8032 } 8033 8034 BS->schedule(picked, ReadyInsts); 8035 NumToSchedule--; 8036 } 8037 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8038 8039 // Check that we didn't break any of our invariants. 8040 #ifdef EXPENSIVE_CHECKS 8041 BS->verify(); 8042 #endif 8043 8044 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8045 // Check that all schedulable entities got scheduled 8046 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8047 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8048 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8049 assert(SD->IsScheduled && "must be scheduled at this point"); 8050 } 8051 }); 8052 } 8053 #endif 8054 8055 // Avoid duplicate scheduling of the block. 8056 BS->ScheduleStart = nullptr; 8057 } 8058 8059 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8060 // If V is a store, just return the width of the stored value (or value 8061 // truncated just before storing) without traversing the expression tree. 8062 // This is the common case. 8063 if (auto *Store = dyn_cast<StoreInst>(V)) { 8064 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8065 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8066 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8067 } 8068 8069 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8070 return getVectorElementSize(IEI->getOperand(1)); 8071 8072 auto E = InstrElementSize.find(V); 8073 if (E != InstrElementSize.end()) 8074 return E->second; 8075 8076 // If V is not a store, we can traverse the expression tree to find loads 8077 // that feed it. The type of the loaded value may indicate a more suitable 8078 // width than V's type. We want to base the vector element size on the width 8079 // of memory operations where possible. 8080 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8081 SmallPtrSet<Instruction *, 16> Visited; 8082 if (auto *I = dyn_cast<Instruction>(V)) { 8083 Worklist.emplace_back(I, I->getParent()); 8084 Visited.insert(I); 8085 } 8086 8087 // Traverse the expression tree in bottom-up order looking for loads. If we 8088 // encounter an instruction we don't yet handle, we give up. 8089 auto Width = 0u; 8090 while (!Worklist.empty()) { 8091 Instruction *I; 8092 BasicBlock *Parent; 8093 std::tie(I, Parent) = Worklist.pop_back_val(); 8094 8095 // We should only be looking at scalar instructions here. If the current 8096 // instruction has a vector type, skip. 8097 auto *Ty = I->getType(); 8098 if (isa<VectorType>(Ty)) 8099 continue; 8100 8101 // If the current instruction is a load, update MaxWidth to reflect the 8102 // width of the loaded value. 8103 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8104 isa<ExtractValueInst>(I)) 8105 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8106 8107 // Otherwise, we need to visit the operands of the instruction. We only 8108 // handle the interesting cases from buildTree here. If an operand is an 8109 // instruction we haven't yet visited and from the same basic block as the 8110 // user or the use is a PHI node, we add it to the worklist. 8111 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8112 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8113 isa<UnaryOperator>(I)) { 8114 for (Use &U : I->operands()) 8115 if (auto *J = dyn_cast<Instruction>(U.get())) 8116 if (Visited.insert(J).second && 8117 (isa<PHINode>(I) || J->getParent() == Parent)) 8118 Worklist.emplace_back(J, J->getParent()); 8119 } else { 8120 break; 8121 } 8122 } 8123 8124 // If we didn't encounter a memory access in the expression tree, or if we 8125 // gave up for some reason, just return the width of V. Otherwise, return the 8126 // maximum width we found. 8127 if (!Width) { 8128 if (auto *CI = dyn_cast<CmpInst>(V)) 8129 V = CI->getOperand(0); 8130 Width = DL->getTypeSizeInBits(V->getType()); 8131 } 8132 8133 for (Instruction *I : Visited) 8134 InstrElementSize[I] = Width; 8135 8136 return Width; 8137 } 8138 8139 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8140 // smaller type with a truncation. We collect the values that will be demoted 8141 // in ToDemote and additional roots that require investigating in Roots. 8142 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8143 SmallVectorImpl<Value *> &ToDemote, 8144 SmallVectorImpl<Value *> &Roots) { 8145 // We can always demote constants. 8146 if (isa<Constant>(V)) { 8147 ToDemote.push_back(V); 8148 return true; 8149 } 8150 8151 // If the value is not an instruction in the expression with only one use, it 8152 // cannot be demoted. 8153 auto *I = dyn_cast<Instruction>(V); 8154 if (!I || !I->hasOneUse() || !Expr.count(I)) 8155 return false; 8156 8157 switch (I->getOpcode()) { 8158 8159 // We can always demote truncations and extensions. Since truncations can 8160 // seed additional demotion, we save the truncated value. 8161 case Instruction::Trunc: 8162 Roots.push_back(I->getOperand(0)); 8163 break; 8164 case Instruction::ZExt: 8165 case Instruction::SExt: 8166 if (isa<ExtractElementInst>(I->getOperand(0)) || 8167 isa<InsertElementInst>(I->getOperand(0))) 8168 return false; 8169 break; 8170 8171 // We can demote certain binary operations if we can demote both of their 8172 // operands. 8173 case Instruction::Add: 8174 case Instruction::Sub: 8175 case Instruction::Mul: 8176 case Instruction::And: 8177 case Instruction::Or: 8178 case Instruction::Xor: 8179 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8180 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8181 return false; 8182 break; 8183 8184 // We can demote selects if we can demote their true and false values. 8185 case Instruction::Select: { 8186 SelectInst *SI = cast<SelectInst>(I); 8187 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8188 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8189 return false; 8190 break; 8191 } 8192 8193 // We can demote phis if we can demote all their incoming operands. Note that 8194 // we don't need to worry about cycles since we ensure single use above. 8195 case Instruction::PHI: { 8196 PHINode *PN = cast<PHINode>(I); 8197 for (Value *IncValue : PN->incoming_values()) 8198 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8199 return false; 8200 break; 8201 } 8202 8203 // Otherwise, conservatively give up. 8204 default: 8205 return false; 8206 } 8207 8208 // Record the value that we can demote. 8209 ToDemote.push_back(V); 8210 return true; 8211 } 8212 8213 void BoUpSLP::computeMinimumValueSizes() { 8214 // If there are no external uses, the expression tree must be rooted by a 8215 // store. We can't demote in-memory values, so there is nothing to do here. 8216 if (ExternalUses.empty()) 8217 return; 8218 8219 // We only attempt to truncate integer expressions. 8220 auto &TreeRoot = VectorizableTree[0]->Scalars; 8221 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8222 if (!TreeRootIT) 8223 return; 8224 8225 // If the expression is not rooted by a store, these roots should have 8226 // external uses. We will rely on InstCombine to rewrite the expression in 8227 // the narrower type. However, InstCombine only rewrites single-use values. 8228 // This means that if a tree entry other than a root is used externally, it 8229 // must have multiple uses and InstCombine will not rewrite it. The code 8230 // below ensures that only the roots are used externally. 8231 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8232 for (auto &EU : ExternalUses) 8233 if (!Expr.erase(EU.Scalar)) 8234 return; 8235 if (!Expr.empty()) 8236 return; 8237 8238 // Collect the scalar values of the vectorizable expression. We will use this 8239 // context to determine which values can be demoted. If we see a truncation, 8240 // we mark it as seeding another demotion. 8241 for (auto &EntryPtr : VectorizableTree) 8242 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8243 8244 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8245 // have a single external user that is not in the vectorizable tree. 8246 for (auto *Root : TreeRoot) 8247 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8248 return; 8249 8250 // Conservatively determine if we can actually truncate the roots of the 8251 // expression. Collect the values that can be demoted in ToDemote and 8252 // additional roots that require investigating in Roots. 8253 SmallVector<Value *, 32> ToDemote; 8254 SmallVector<Value *, 4> Roots; 8255 for (auto *Root : TreeRoot) 8256 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8257 return; 8258 8259 // The maximum bit width required to represent all the values that can be 8260 // demoted without loss of precision. It would be safe to truncate the roots 8261 // of the expression to this width. 8262 auto MaxBitWidth = 8u; 8263 8264 // We first check if all the bits of the roots are demanded. If they're not, 8265 // we can truncate the roots to this narrower type. 8266 for (auto *Root : TreeRoot) { 8267 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8268 MaxBitWidth = std::max<unsigned>( 8269 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8270 } 8271 8272 // True if the roots can be zero-extended back to their original type, rather 8273 // than sign-extended. We know that if the leading bits are not demanded, we 8274 // can safely zero-extend. So we initialize IsKnownPositive to True. 8275 bool IsKnownPositive = true; 8276 8277 // If all the bits of the roots are demanded, we can try a little harder to 8278 // compute a narrower type. This can happen, for example, if the roots are 8279 // getelementptr indices. InstCombine promotes these indices to the pointer 8280 // width. Thus, all their bits are technically demanded even though the 8281 // address computation might be vectorized in a smaller type. 8282 // 8283 // We start by looking at each entry that can be demoted. We compute the 8284 // maximum bit width required to store the scalar by using ValueTracking to 8285 // compute the number of high-order bits we can truncate. 8286 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8287 llvm::all_of(TreeRoot, [](Value *R) { 8288 assert(R->hasOneUse() && "Root should have only one use!"); 8289 return isa<GetElementPtrInst>(R->user_back()); 8290 })) { 8291 MaxBitWidth = 8u; 8292 8293 // Determine if the sign bit of all the roots is known to be zero. If not, 8294 // IsKnownPositive is set to False. 8295 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8296 KnownBits Known = computeKnownBits(R, *DL); 8297 return Known.isNonNegative(); 8298 }); 8299 8300 // Determine the maximum number of bits required to store the scalar 8301 // values. 8302 for (auto *Scalar : ToDemote) { 8303 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8304 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8305 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8306 } 8307 8308 // If we can't prove that the sign bit is zero, we must add one to the 8309 // maximum bit width to account for the unknown sign bit. This preserves 8310 // the existing sign bit so we can safely sign-extend the root back to the 8311 // original type. Otherwise, if we know the sign bit is zero, we will 8312 // zero-extend the root instead. 8313 // 8314 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8315 // one to the maximum bit width will yield a larger-than-necessary 8316 // type. In general, we need to add an extra bit only if we can't 8317 // prove that the upper bit of the original type is equal to the 8318 // upper bit of the proposed smaller type. If these two bits are the 8319 // same (either zero or one) we know that sign-extending from the 8320 // smaller type will result in the same value. Here, since we can't 8321 // yet prove this, we are just making the proposed smaller type 8322 // larger to ensure correctness. 8323 if (!IsKnownPositive) 8324 ++MaxBitWidth; 8325 } 8326 8327 // Round MaxBitWidth up to the next power-of-two. 8328 if (!isPowerOf2_64(MaxBitWidth)) 8329 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8330 8331 // If the maximum bit width we compute is less than the with of the roots' 8332 // type, we can proceed with the narrowing. Otherwise, do nothing. 8333 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8334 return; 8335 8336 // If we can truncate the root, we must collect additional values that might 8337 // be demoted as a result. That is, those seeded by truncations we will 8338 // modify. 8339 while (!Roots.empty()) 8340 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8341 8342 // Finally, map the values we can demote to the maximum bit with we computed. 8343 for (auto *Scalar : ToDemote) 8344 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8345 } 8346 8347 namespace { 8348 8349 /// The SLPVectorizer Pass. 8350 struct SLPVectorizer : public FunctionPass { 8351 SLPVectorizerPass Impl; 8352 8353 /// Pass identification, replacement for typeid 8354 static char ID; 8355 8356 explicit SLPVectorizer() : FunctionPass(ID) { 8357 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8358 } 8359 8360 bool doInitialization(Module &M) override { return false; } 8361 8362 bool runOnFunction(Function &F) override { 8363 if (skipFunction(F)) 8364 return false; 8365 8366 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8367 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8368 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8369 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8370 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8371 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8372 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8373 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8374 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8375 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8376 8377 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8378 } 8379 8380 void getAnalysisUsage(AnalysisUsage &AU) const override { 8381 FunctionPass::getAnalysisUsage(AU); 8382 AU.addRequired<AssumptionCacheTracker>(); 8383 AU.addRequired<ScalarEvolutionWrapperPass>(); 8384 AU.addRequired<AAResultsWrapperPass>(); 8385 AU.addRequired<TargetTransformInfoWrapperPass>(); 8386 AU.addRequired<LoopInfoWrapperPass>(); 8387 AU.addRequired<DominatorTreeWrapperPass>(); 8388 AU.addRequired<DemandedBitsWrapperPass>(); 8389 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8390 AU.addRequired<InjectTLIMappingsLegacy>(); 8391 AU.addPreserved<LoopInfoWrapperPass>(); 8392 AU.addPreserved<DominatorTreeWrapperPass>(); 8393 AU.addPreserved<AAResultsWrapperPass>(); 8394 AU.addPreserved<GlobalsAAWrapperPass>(); 8395 AU.setPreservesCFG(); 8396 } 8397 }; 8398 8399 } // end anonymous namespace 8400 8401 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8402 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8403 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8404 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8405 auto *AA = &AM.getResult<AAManager>(F); 8406 auto *LI = &AM.getResult<LoopAnalysis>(F); 8407 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8408 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8409 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8410 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8411 8412 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8413 if (!Changed) 8414 return PreservedAnalyses::all(); 8415 8416 PreservedAnalyses PA; 8417 PA.preserveSet<CFGAnalyses>(); 8418 return PA; 8419 } 8420 8421 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8422 TargetTransformInfo *TTI_, 8423 TargetLibraryInfo *TLI_, AAResults *AA_, 8424 LoopInfo *LI_, DominatorTree *DT_, 8425 AssumptionCache *AC_, DemandedBits *DB_, 8426 OptimizationRemarkEmitter *ORE_) { 8427 if (!RunSLPVectorization) 8428 return false; 8429 SE = SE_; 8430 TTI = TTI_; 8431 TLI = TLI_; 8432 AA = AA_; 8433 LI = LI_; 8434 DT = DT_; 8435 AC = AC_; 8436 DB = DB_; 8437 DL = &F.getParent()->getDataLayout(); 8438 8439 Stores.clear(); 8440 GEPs.clear(); 8441 bool Changed = false; 8442 8443 // If the target claims to have no vector registers don't attempt 8444 // vectorization. 8445 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8446 LLVM_DEBUG( 8447 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8448 return false; 8449 } 8450 8451 // Don't vectorize when the attribute NoImplicitFloat is used. 8452 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8453 return false; 8454 8455 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8456 8457 // Use the bottom up slp vectorizer to construct chains that start with 8458 // store instructions. 8459 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8460 8461 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8462 // delete instructions. 8463 8464 // Update DFS numbers now so that we can use them for ordering. 8465 DT->updateDFSNumbers(); 8466 8467 // Scan the blocks in the function in post order. 8468 for (auto BB : post_order(&F.getEntryBlock())) { 8469 collectSeedInstructions(BB); 8470 8471 // Vectorize trees that end at stores. 8472 if (!Stores.empty()) { 8473 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8474 << " underlying objects.\n"); 8475 Changed |= vectorizeStoreChains(R); 8476 } 8477 8478 // Vectorize trees that end at reductions. 8479 Changed |= vectorizeChainsInBlock(BB, R); 8480 8481 // Vectorize the index computations of getelementptr instructions. This 8482 // is primarily intended to catch gather-like idioms ending at 8483 // non-consecutive loads. 8484 if (!GEPs.empty()) { 8485 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8486 << " underlying objects.\n"); 8487 Changed |= vectorizeGEPIndices(BB, R); 8488 } 8489 } 8490 8491 if (Changed) { 8492 R.optimizeGatherSequence(); 8493 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8494 } 8495 return Changed; 8496 } 8497 8498 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8499 unsigned Idx) { 8500 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8501 << "\n"); 8502 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8503 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8504 unsigned VF = Chain.size(); 8505 8506 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8507 return false; 8508 8509 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8510 << "\n"); 8511 8512 R.buildTree(Chain); 8513 if (R.isTreeTinyAndNotFullyVectorizable()) 8514 return false; 8515 if (R.isLoadCombineCandidate()) 8516 return false; 8517 R.reorderTopToBottom(); 8518 R.reorderBottomToTop(); 8519 R.buildExternalUses(); 8520 8521 R.computeMinimumValueSizes(); 8522 8523 InstructionCost Cost = R.getTreeCost(); 8524 8525 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8526 if (Cost < -SLPCostThreshold) { 8527 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8528 8529 using namespace ore; 8530 8531 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8532 cast<StoreInst>(Chain[0])) 8533 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8534 << " and with tree size " 8535 << NV("TreeSize", R.getTreeSize())); 8536 8537 R.vectorizeTree(); 8538 return true; 8539 } 8540 8541 return false; 8542 } 8543 8544 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8545 BoUpSLP &R) { 8546 // We may run into multiple chains that merge into a single chain. We mark the 8547 // stores that we vectorized so that we don't visit the same store twice. 8548 BoUpSLP::ValueSet VectorizedStores; 8549 bool Changed = false; 8550 8551 int E = Stores.size(); 8552 SmallBitVector Tails(E, false); 8553 int MaxIter = MaxStoreLookup.getValue(); 8554 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8555 E, std::make_pair(E, INT_MAX)); 8556 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8557 int IterCnt; 8558 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8559 &CheckedPairs, 8560 &ConsecutiveChain](int K, int Idx) { 8561 if (IterCnt >= MaxIter) 8562 return true; 8563 if (CheckedPairs[Idx].test(K)) 8564 return ConsecutiveChain[K].second == 1 && 8565 ConsecutiveChain[K].first == Idx; 8566 ++IterCnt; 8567 CheckedPairs[Idx].set(K); 8568 CheckedPairs[K].set(Idx); 8569 Optional<int> Diff = getPointersDiff( 8570 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8571 Stores[Idx]->getValueOperand()->getType(), 8572 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8573 if (!Diff || *Diff == 0) 8574 return false; 8575 int Val = *Diff; 8576 if (Val < 0) { 8577 if (ConsecutiveChain[Idx].second > -Val) { 8578 Tails.set(K); 8579 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8580 } 8581 return false; 8582 } 8583 if (ConsecutiveChain[K].second <= Val) 8584 return false; 8585 8586 Tails.set(Idx); 8587 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8588 return Val == 1; 8589 }; 8590 // Do a quadratic search on all of the given stores in reverse order and find 8591 // all of the pairs of stores that follow each other. 8592 for (int Idx = E - 1; Idx >= 0; --Idx) { 8593 // If a store has multiple consecutive store candidates, search according 8594 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8595 // This is because usually pairing with immediate succeeding or preceding 8596 // candidate create the best chance to find slp vectorization opportunity. 8597 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8598 IterCnt = 0; 8599 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8600 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8601 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8602 break; 8603 } 8604 8605 // Tracks if we tried to vectorize stores starting from the given tail 8606 // already. 8607 SmallBitVector TriedTails(E, false); 8608 // For stores that start but don't end a link in the chain: 8609 for (int Cnt = E; Cnt > 0; --Cnt) { 8610 int I = Cnt - 1; 8611 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8612 continue; 8613 // We found a store instr that starts a chain. Now follow the chain and try 8614 // to vectorize it. 8615 BoUpSLP::ValueList Operands; 8616 // Collect the chain into a list. 8617 while (I != E && !VectorizedStores.count(Stores[I])) { 8618 Operands.push_back(Stores[I]); 8619 Tails.set(I); 8620 if (ConsecutiveChain[I].second != 1) { 8621 // Mark the new end in the chain and go back, if required. It might be 8622 // required if the original stores come in reversed order, for example. 8623 if (ConsecutiveChain[I].first != E && 8624 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8625 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8626 TriedTails.set(I); 8627 Tails.reset(ConsecutiveChain[I].first); 8628 if (Cnt < ConsecutiveChain[I].first + 2) 8629 Cnt = ConsecutiveChain[I].first + 2; 8630 } 8631 break; 8632 } 8633 // Move to the next value in the chain. 8634 I = ConsecutiveChain[I].first; 8635 } 8636 assert(!Operands.empty() && "Expected non-empty list of stores."); 8637 8638 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8639 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8640 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8641 8642 unsigned MinVF = R.getMinVF(EltSize); 8643 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8644 MaxElts); 8645 8646 // FIXME: Is division-by-2 the correct step? Should we assert that the 8647 // register size is a power-of-2? 8648 unsigned StartIdx = 0; 8649 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8650 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8651 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8652 if (!VectorizedStores.count(Slice.front()) && 8653 !VectorizedStores.count(Slice.back()) && 8654 vectorizeStoreChain(Slice, R, Cnt)) { 8655 // Mark the vectorized stores so that we don't vectorize them again. 8656 VectorizedStores.insert(Slice.begin(), Slice.end()); 8657 Changed = true; 8658 // If we vectorized initial block, no need to try to vectorize it 8659 // again. 8660 if (Cnt == StartIdx) 8661 StartIdx += Size; 8662 Cnt += Size; 8663 continue; 8664 } 8665 ++Cnt; 8666 } 8667 // Check if the whole array was vectorized already - exit. 8668 if (StartIdx >= Operands.size()) 8669 break; 8670 } 8671 } 8672 8673 return Changed; 8674 } 8675 8676 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8677 // Initialize the collections. We will make a single pass over the block. 8678 Stores.clear(); 8679 GEPs.clear(); 8680 8681 // Visit the store and getelementptr instructions in BB and organize them in 8682 // Stores and GEPs according to the underlying objects of their pointer 8683 // operands. 8684 for (Instruction &I : *BB) { 8685 // Ignore store instructions that are volatile or have a pointer operand 8686 // that doesn't point to a scalar type. 8687 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8688 if (!SI->isSimple()) 8689 continue; 8690 if (!isValidElementType(SI->getValueOperand()->getType())) 8691 continue; 8692 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8693 } 8694 8695 // Ignore getelementptr instructions that have more than one index, a 8696 // constant index, or a pointer operand that doesn't point to a scalar 8697 // type. 8698 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8699 auto Idx = GEP->idx_begin()->get(); 8700 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8701 continue; 8702 if (!isValidElementType(Idx->getType())) 8703 continue; 8704 if (GEP->getType()->isVectorTy()) 8705 continue; 8706 GEPs[GEP->getPointerOperand()].push_back(GEP); 8707 } 8708 } 8709 } 8710 8711 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8712 if (!A || !B) 8713 return false; 8714 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8715 return false; 8716 Value *VL[] = {A, B}; 8717 return tryToVectorizeList(VL, R); 8718 } 8719 8720 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8721 bool LimitForRegisterSize) { 8722 if (VL.size() < 2) 8723 return false; 8724 8725 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8726 << VL.size() << ".\n"); 8727 8728 // Check that all of the parts are instructions of the same type, 8729 // we permit an alternate opcode via InstructionsState. 8730 InstructionsState S = getSameOpcode(VL); 8731 if (!S.getOpcode()) 8732 return false; 8733 8734 Instruction *I0 = cast<Instruction>(S.OpValue); 8735 // Make sure invalid types (including vector type) are rejected before 8736 // determining vectorization factor for scalar instructions. 8737 for (Value *V : VL) { 8738 Type *Ty = V->getType(); 8739 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8740 // NOTE: the following will give user internal llvm type name, which may 8741 // not be useful. 8742 R.getORE()->emit([&]() { 8743 std::string type_str; 8744 llvm::raw_string_ostream rso(type_str); 8745 Ty->print(rso); 8746 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8747 << "Cannot SLP vectorize list: type " 8748 << rso.str() + " is unsupported by vectorizer"; 8749 }); 8750 return false; 8751 } 8752 } 8753 8754 unsigned Sz = R.getVectorElementSize(I0); 8755 unsigned MinVF = R.getMinVF(Sz); 8756 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8757 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8758 if (MaxVF < 2) { 8759 R.getORE()->emit([&]() { 8760 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8761 << "Cannot SLP vectorize list: vectorization factor " 8762 << "less than 2 is not supported"; 8763 }); 8764 return false; 8765 } 8766 8767 bool Changed = false; 8768 bool CandidateFound = false; 8769 InstructionCost MinCost = SLPCostThreshold.getValue(); 8770 Type *ScalarTy = VL[0]->getType(); 8771 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8772 ScalarTy = IE->getOperand(1)->getType(); 8773 8774 unsigned NextInst = 0, MaxInst = VL.size(); 8775 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8776 // No actual vectorization should happen, if number of parts is the same as 8777 // provided vectorization factor (i.e. the scalar type is used for vector 8778 // code during codegen). 8779 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8780 if (TTI->getNumberOfParts(VecTy) == VF) 8781 continue; 8782 for (unsigned I = NextInst; I < MaxInst; ++I) { 8783 unsigned OpsWidth = 0; 8784 8785 if (I + VF > MaxInst) 8786 OpsWidth = MaxInst - I; 8787 else 8788 OpsWidth = VF; 8789 8790 if (!isPowerOf2_32(OpsWidth)) 8791 continue; 8792 8793 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8794 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8795 break; 8796 8797 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8798 // Check that a previous iteration of this loop did not delete the Value. 8799 if (llvm::any_of(Ops, [&R](Value *V) { 8800 auto *I = dyn_cast<Instruction>(V); 8801 return I && R.isDeleted(I); 8802 })) 8803 continue; 8804 8805 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8806 << "\n"); 8807 8808 R.buildTree(Ops); 8809 if (R.isTreeTinyAndNotFullyVectorizable()) 8810 continue; 8811 R.reorderTopToBottom(); 8812 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8813 R.buildExternalUses(); 8814 8815 R.computeMinimumValueSizes(); 8816 InstructionCost Cost = R.getTreeCost(); 8817 CandidateFound = true; 8818 MinCost = std::min(MinCost, Cost); 8819 8820 if (Cost < -SLPCostThreshold) { 8821 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8822 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8823 cast<Instruction>(Ops[0])) 8824 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8825 << " and with tree size " 8826 << ore::NV("TreeSize", R.getTreeSize())); 8827 8828 R.vectorizeTree(); 8829 // Move to the next bundle. 8830 I += VF - 1; 8831 NextInst = I + 1; 8832 Changed = true; 8833 } 8834 } 8835 } 8836 8837 if (!Changed && CandidateFound) { 8838 R.getORE()->emit([&]() { 8839 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8840 << "List vectorization was possible but not beneficial with cost " 8841 << ore::NV("Cost", MinCost) << " >= " 8842 << ore::NV("Treshold", -SLPCostThreshold); 8843 }); 8844 } else if (!Changed) { 8845 R.getORE()->emit([&]() { 8846 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8847 << "Cannot SLP vectorize list: vectorization was impossible" 8848 << " with available vectorization factors"; 8849 }); 8850 } 8851 return Changed; 8852 } 8853 8854 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8855 if (!I) 8856 return false; 8857 8858 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8859 return false; 8860 8861 Value *P = I->getParent(); 8862 8863 // Vectorize in current basic block only. 8864 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8865 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8866 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8867 return false; 8868 8869 // Try to vectorize V. 8870 if (tryToVectorizePair(Op0, Op1, R)) 8871 return true; 8872 8873 auto *A = dyn_cast<BinaryOperator>(Op0); 8874 auto *B = dyn_cast<BinaryOperator>(Op1); 8875 // Try to skip B. 8876 if (B && B->hasOneUse()) { 8877 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8878 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8879 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8880 return true; 8881 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8882 return true; 8883 } 8884 8885 // Try to skip A. 8886 if (A && A->hasOneUse()) { 8887 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8888 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8889 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8890 return true; 8891 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8892 return true; 8893 } 8894 return false; 8895 } 8896 8897 namespace { 8898 8899 /// Model horizontal reductions. 8900 /// 8901 /// A horizontal reduction is a tree of reduction instructions that has values 8902 /// that can be put into a vector as its leaves. For example: 8903 /// 8904 /// mul mul mul mul 8905 /// \ / \ / 8906 /// + + 8907 /// \ / 8908 /// + 8909 /// This tree has "mul" as its leaf values and "+" as its reduction 8910 /// instructions. A reduction can feed into a store or a binary operation 8911 /// feeding a phi. 8912 /// ... 8913 /// \ / 8914 /// + 8915 /// | 8916 /// phi += 8917 /// 8918 /// Or: 8919 /// ... 8920 /// \ / 8921 /// + 8922 /// | 8923 /// *p = 8924 /// 8925 class HorizontalReduction { 8926 using ReductionOpsType = SmallVector<Value *, 16>; 8927 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8928 ReductionOpsListType ReductionOps; 8929 SmallVector<Value *, 32> ReducedVals; 8930 // Use map vector to make stable output. 8931 MapVector<Instruction *, Value *> ExtraArgs; 8932 WeakTrackingVH ReductionRoot; 8933 /// The type of reduction operation. 8934 RecurKind RdxKind; 8935 8936 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8937 8938 static bool isCmpSelMinMax(Instruction *I) { 8939 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8940 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8941 } 8942 8943 // And/or are potentially poison-safe logical patterns like: 8944 // select x, y, false 8945 // select x, true, y 8946 static bool isBoolLogicOp(Instruction *I) { 8947 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8948 match(I, m_LogicalOr(m_Value(), m_Value())); 8949 } 8950 8951 /// Checks if instruction is associative and can be vectorized. 8952 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8953 if (Kind == RecurKind::None) 8954 return false; 8955 8956 // Integer ops that map to select instructions or intrinsics are fine. 8957 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8958 isBoolLogicOp(I)) 8959 return true; 8960 8961 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8962 // FP min/max are associative except for NaN and -0.0. We do not 8963 // have to rule out -0.0 here because the intrinsic semantics do not 8964 // specify a fixed result for it. 8965 return I->getFastMathFlags().noNaNs(); 8966 } 8967 8968 return I->isAssociative(); 8969 } 8970 8971 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8972 // Poison-safe 'or' takes the form: select X, true, Y 8973 // To make that work with the normal operand processing, we skip the 8974 // true value operand. 8975 // TODO: Change the code and data structures to handle this without a hack. 8976 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8977 return I->getOperand(2); 8978 return I->getOperand(Index); 8979 } 8980 8981 /// Checks if the ParentStackElem.first should be marked as a reduction 8982 /// operation with an extra argument or as extra argument itself. 8983 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8984 Value *ExtraArg) { 8985 if (ExtraArgs.count(ParentStackElem.first)) { 8986 ExtraArgs[ParentStackElem.first] = nullptr; 8987 // We ran into something like: 8988 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8989 // The whole ParentStackElem.first should be considered as an extra value 8990 // in this case. 8991 // Do not perform analysis of remaining operands of ParentStackElem.first 8992 // instruction, this whole instruction is an extra argument. 8993 ParentStackElem.second = INVALID_OPERAND_INDEX; 8994 } else { 8995 // We ran into something like: 8996 // ParentStackElem.first += ... + ExtraArg + ... 8997 ExtraArgs[ParentStackElem.first] = ExtraArg; 8998 } 8999 } 9000 9001 /// Creates reduction operation with the current opcode. 9002 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9003 Value *RHS, const Twine &Name, bool UseSelect) { 9004 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9005 switch (Kind) { 9006 case RecurKind::Or: 9007 if (UseSelect && 9008 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9009 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9010 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9011 Name); 9012 case RecurKind::And: 9013 if (UseSelect && 9014 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9015 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9016 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9017 Name); 9018 case RecurKind::Add: 9019 case RecurKind::Mul: 9020 case RecurKind::Xor: 9021 case RecurKind::FAdd: 9022 case RecurKind::FMul: 9023 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9024 Name); 9025 case RecurKind::FMax: 9026 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9027 case RecurKind::FMin: 9028 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9029 case RecurKind::SMax: 9030 if (UseSelect) { 9031 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9032 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9033 } 9034 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9035 case RecurKind::SMin: 9036 if (UseSelect) { 9037 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9038 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9039 } 9040 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9041 case RecurKind::UMax: 9042 if (UseSelect) { 9043 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9044 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9045 } 9046 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9047 case RecurKind::UMin: 9048 if (UseSelect) { 9049 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9050 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9051 } 9052 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9053 default: 9054 llvm_unreachable("Unknown reduction operation."); 9055 } 9056 } 9057 9058 /// Creates reduction operation with the current opcode with the IR flags 9059 /// from \p ReductionOps. 9060 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9061 Value *RHS, const Twine &Name, 9062 const ReductionOpsListType &ReductionOps) { 9063 bool UseSelect = ReductionOps.size() == 2 || 9064 // Logical or/and. 9065 (ReductionOps.size() == 1 && 9066 isa<SelectInst>(ReductionOps.front().front())); 9067 assert((!UseSelect || ReductionOps.size() != 2 || 9068 isa<SelectInst>(ReductionOps[1][0])) && 9069 "Expected cmp + select pairs for reduction"); 9070 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9071 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9072 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9073 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9074 propagateIRFlags(Op, ReductionOps[1]); 9075 return Op; 9076 } 9077 } 9078 propagateIRFlags(Op, ReductionOps[0]); 9079 return Op; 9080 } 9081 9082 /// Creates reduction operation with the current opcode with the IR flags 9083 /// from \p I. 9084 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9085 Value *RHS, const Twine &Name, Instruction *I) { 9086 auto *SelI = dyn_cast<SelectInst>(I); 9087 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9088 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9089 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9090 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9091 } 9092 propagateIRFlags(Op, I); 9093 return Op; 9094 } 9095 9096 static RecurKind getRdxKind(Instruction *I) { 9097 assert(I && "Expected instruction for reduction matching"); 9098 if (match(I, m_Add(m_Value(), m_Value()))) 9099 return RecurKind::Add; 9100 if (match(I, m_Mul(m_Value(), m_Value()))) 9101 return RecurKind::Mul; 9102 if (match(I, m_And(m_Value(), m_Value())) || 9103 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9104 return RecurKind::And; 9105 if (match(I, m_Or(m_Value(), m_Value())) || 9106 match(I, m_LogicalOr(m_Value(), m_Value()))) 9107 return RecurKind::Or; 9108 if (match(I, m_Xor(m_Value(), m_Value()))) 9109 return RecurKind::Xor; 9110 if (match(I, m_FAdd(m_Value(), m_Value()))) 9111 return RecurKind::FAdd; 9112 if (match(I, m_FMul(m_Value(), m_Value()))) 9113 return RecurKind::FMul; 9114 9115 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9116 return RecurKind::FMax; 9117 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9118 return RecurKind::FMin; 9119 9120 // This matches either cmp+select or intrinsics. SLP is expected to handle 9121 // either form. 9122 // TODO: If we are canonicalizing to intrinsics, we can remove several 9123 // special-case paths that deal with selects. 9124 if (match(I, m_SMax(m_Value(), m_Value()))) 9125 return RecurKind::SMax; 9126 if (match(I, m_SMin(m_Value(), m_Value()))) 9127 return RecurKind::SMin; 9128 if (match(I, m_UMax(m_Value(), m_Value()))) 9129 return RecurKind::UMax; 9130 if (match(I, m_UMin(m_Value(), m_Value()))) 9131 return RecurKind::UMin; 9132 9133 if (auto *Select = dyn_cast<SelectInst>(I)) { 9134 // Try harder: look for min/max pattern based on instructions producing 9135 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9136 // During the intermediate stages of SLP, it's very common to have 9137 // pattern like this (since optimizeGatherSequence is run only once 9138 // at the end): 9139 // %1 = extractelement <2 x i32> %a, i32 0 9140 // %2 = extractelement <2 x i32> %a, i32 1 9141 // %cond = icmp sgt i32 %1, %2 9142 // %3 = extractelement <2 x i32> %a, i32 0 9143 // %4 = extractelement <2 x i32> %a, i32 1 9144 // %select = select i1 %cond, i32 %3, i32 %4 9145 CmpInst::Predicate Pred; 9146 Instruction *L1; 9147 Instruction *L2; 9148 9149 Value *LHS = Select->getTrueValue(); 9150 Value *RHS = Select->getFalseValue(); 9151 Value *Cond = Select->getCondition(); 9152 9153 // TODO: Support inverse predicates. 9154 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9155 if (!isa<ExtractElementInst>(RHS) || 9156 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9157 return RecurKind::None; 9158 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9159 if (!isa<ExtractElementInst>(LHS) || 9160 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9161 return RecurKind::None; 9162 } else { 9163 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9164 return RecurKind::None; 9165 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9166 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9167 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9168 return RecurKind::None; 9169 } 9170 9171 switch (Pred) { 9172 default: 9173 return RecurKind::None; 9174 case CmpInst::ICMP_SGT: 9175 case CmpInst::ICMP_SGE: 9176 return RecurKind::SMax; 9177 case CmpInst::ICMP_SLT: 9178 case CmpInst::ICMP_SLE: 9179 return RecurKind::SMin; 9180 case CmpInst::ICMP_UGT: 9181 case CmpInst::ICMP_UGE: 9182 return RecurKind::UMax; 9183 case CmpInst::ICMP_ULT: 9184 case CmpInst::ICMP_ULE: 9185 return RecurKind::UMin; 9186 } 9187 } 9188 return RecurKind::None; 9189 } 9190 9191 /// Get the index of the first operand. 9192 static unsigned getFirstOperandIndex(Instruction *I) { 9193 return isCmpSelMinMax(I) ? 1 : 0; 9194 } 9195 9196 /// Total number of operands in the reduction operation. 9197 static unsigned getNumberOfOperands(Instruction *I) { 9198 return isCmpSelMinMax(I) ? 3 : 2; 9199 } 9200 9201 /// Checks if the instruction is in basic block \p BB. 9202 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9203 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9204 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9205 auto *Sel = cast<SelectInst>(I); 9206 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9207 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9208 } 9209 return I->getParent() == BB; 9210 } 9211 9212 /// Expected number of uses for reduction operations/reduced values. 9213 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9214 if (IsCmpSelMinMax) { 9215 // SelectInst must be used twice while the condition op must have single 9216 // use only. 9217 if (auto *Sel = dyn_cast<SelectInst>(I)) 9218 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9219 return I->hasNUses(2); 9220 } 9221 9222 // Arithmetic reduction operation must be used once only. 9223 return I->hasOneUse(); 9224 } 9225 9226 /// Initializes the list of reduction operations. 9227 void initReductionOps(Instruction *I) { 9228 if (isCmpSelMinMax(I)) 9229 ReductionOps.assign(2, ReductionOpsType()); 9230 else 9231 ReductionOps.assign(1, ReductionOpsType()); 9232 } 9233 9234 /// Add all reduction operations for the reduction instruction \p I. 9235 void addReductionOps(Instruction *I) { 9236 if (isCmpSelMinMax(I)) { 9237 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9238 ReductionOps[1].emplace_back(I); 9239 } else { 9240 ReductionOps[0].emplace_back(I); 9241 } 9242 } 9243 9244 static Value *getLHS(RecurKind Kind, Instruction *I) { 9245 if (Kind == RecurKind::None) 9246 return nullptr; 9247 return I->getOperand(getFirstOperandIndex(I)); 9248 } 9249 static Value *getRHS(RecurKind Kind, Instruction *I) { 9250 if (Kind == RecurKind::None) 9251 return nullptr; 9252 return I->getOperand(getFirstOperandIndex(I) + 1); 9253 } 9254 9255 public: 9256 HorizontalReduction() = default; 9257 9258 /// Try to find a reduction tree. 9259 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9260 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9261 "Phi needs to use the binary operator"); 9262 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9263 isa<IntrinsicInst>(Inst)) && 9264 "Expected binop, select, or intrinsic for reduction matching"); 9265 RdxKind = getRdxKind(Inst); 9266 9267 // We could have a initial reductions that is not an add. 9268 // r *= v1 + v2 + v3 + v4 9269 // In such a case start looking for a tree rooted in the first '+'. 9270 if (Phi) { 9271 if (getLHS(RdxKind, Inst) == Phi) { 9272 Phi = nullptr; 9273 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9274 if (!Inst) 9275 return false; 9276 RdxKind = getRdxKind(Inst); 9277 } else if (getRHS(RdxKind, Inst) == Phi) { 9278 Phi = nullptr; 9279 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9280 if (!Inst) 9281 return false; 9282 RdxKind = getRdxKind(Inst); 9283 } 9284 } 9285 9286 if (!isVectorizable(RdxKind, Inst)) 9287 return false; 9288 9289 // Analyze "regular" integer/FP types for reductions - no target-specific 9290 // types or pointers. 9291 Type *Ty = Inst->getType(); 9292 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9293 return false; 9294 9295 // Though the ultimate reduction may have multiple uses, its condition must 9296 // have only single use. 9297 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9298 if (!Sel->getCondition()->hasOneUse()) 9299 return false; 9300 9301 ReductionRoot = Inst; 9302 9303 // The opcode for leaf values that we perform a reduction on. 9304 // For example: load(x) + load(y) + load(z) + fptoui(w) 9305 // The leaf opcode for 'w' does not match, so we don't include it as a 9306 // potential candidate for the reduction. 9307 unsigned LeafOpcode = 0; 9308 9309 // Post-order traverse the reduction tree starting at Inst. We only handle 9310 // true trees containing binary operators or selects. 9311 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9312 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9313 initReductionOps(Inst); 9314 while (!Stack.empty()) { 9315 Instruction *TreeN = Stack.back().first; 9316 unsigned EdgeToVisit = Stack.back().second++; 9317 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9318 bool IsReducedValue = TreeRdxKind != RdxKind; 9319 9320 // Postorder visit. 9321 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9322 if (IsReducedValue) 9323 ReducedVals.push_back(TreeN); 9324 else { 9325 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9326 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9327 // Check if TreeN is an extra argument of its parent operation. 9328 if (Stack.size() <= 1) { 9329 // TreeN can't be an extra argument as it is a root reduction 9330 // operation. 9331 return false; 9332 } 9333 // Yes, TreeN is an extra argument, do not add it to a list of 9334 // reduction operations. 9335 // Stack[Stack.size() - 2] always points to the parent operation. 9336 markExtraArg(Stack[Stack.size() - 2], TreeN); 9337 ExtraArgs.erase(TreeN); 9338 } else 9339 addReductionOps(TreeN); 9340 } 9341 // Retract. 9342 Stack.pop_back(); 9343 continue; 9344 } 9345 9346 // Visit operands. 9347 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9348 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9349 if (!EdgeInst) { 9350 // Edge value is not a reduction instruction or a leaf instruction. 9351 // (It may be a constant, function argument, or something else.) 9352 markExtraArg(Stack.back(), EdgeVal); 9353 continue; 9354 } 9355 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9356 // Continue analysis if the next operand is a reduction operation or 9357 // (possibly) a leaf value. If the leaf value opcode is not set, 9358 // the first met operation != reduction operation is considered as the 9359 // leaf opcode. 9360 // Only handle trees in the current basic block. 9361 // Each tree node needs to have minimal number of users except for the 9362 // ultimate reduction. 9363 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9364 if (EdgeInst != Phi && EdgeInst != Inst && 9365 hasSameParent(EdgeInst, Inst->getParent()) && 9366 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9367 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9368 if (IsRdxInst) { 9369 // We need to be able to reassociate the reduction operations. 9370 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9371 // I is an extra argument for TreeN (its parent operation). 9372 markExtraArg(Stack.back(), EdgeInst); 9373 continue; 9374 } 9375 } else if (!LeafOpcode) { 9376 LeafOpcode = EdgeInst->getOpcode(); 9377 } 9378 Stack.push_back( 9379 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9380 continue; 9381 } 9382 // I is an extra argument for TreeN (its parent operation). 9383 markExtraArg(Stack.back(), EdgeInst); 9384 } 9385 return true; 9386 } 9387 9388 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9389 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9390 // If there are a sufficient number of reduction values, reduce 9391 // to a nearby power-of-2. We can safely generate oversized 9392 // vectors and rely on the backend to split them to legal sizes. 9393 unsigned NumReducedVals = ReducedVals.size(); 9394 if (NumReducedVals < 4) 9395 return nullptr; 9396 9397 // Intersect the fast-math-flags from all reduction operations. 9398 FastMathFlags RdxFMF; 9399 RdxFMF.set(); 9400 for (ReductionOpsType &RdxOp : ReductionOps) { 9401 for (Value *RdxVal : RdxOp) { 9402 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9403 RdxFMF &= FPMO->getFastMathFlags(); 9404 } 9405 } 9406 9407 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9408 Builder.setFastMathFlags(RdxFMF); 9409 9410 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9411 // The same extra argument may be used several times, so log each attempt 9412 // to use it. 9413 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9414 assert(Pair.first && "DebugLoc must be set."); 9415 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9416 } 9417 9418 // The compare instruction of a min/max is the insertion point for new 9419 // instructions and may be replaced with a new compare instruction. 9420 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9421 assert(isa<SelectInst>(RdxRootInst) && 9422 "Expected min/max reduction to have select root instruction"); 9423 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9424 assert(isa<Instruction>(ScalarCond) && 9425 "Expected min/max reduction to have compare condition"); 9426 return cast<Instruction>(ScalarCond); 9427 }; 9428 9429 // The reduction root is used as the insertion point for new instructions, 9430 // so set it as externally used to prevent it from being deleted. 9431 ExternallyUsedValues[ReductionRoot]; 9432 SmallVector<Value *, 16> IgnoreList; 9433 for (ReductionOpsType &RdxOp : ReductionOps) 9434 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9435 9436 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9437 if (NumReducedVals > ReduxWidth) { 9438 // In the loop below, we are building a tree based on a window of 9439 // 'ReduxWidth' values. 9440 // If the operands of those values have common traits (compare predicate, 9441 // constant operand, etc), then we want to group those together to 9442 // minimize the cost of the reduction. 9443 9444 // TODO: This should be extended to count common operands for 9445 // compares and binops. 9446 9447 // Step 1: Count the number of times each compare predicate occurs. 9448 SmallDenseMap<unsigned, unsigned> PredCountMap; 9449 for (Value *RdxVal : ReducedVals) { 9450 CmpInst::Predicate Pred; 9451 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9452 ++PredCountMap[Pred]; 9453 } 9454 // Step 2: Sort the values so the most common predicates come first. 9455 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9456 CmpInst::Predicate PredA, PredB; 9457 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9458 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9459 return PredCountMap[PredA] > PredCountMap[PredB]; 9460 } 9461 return false; 9462 }); 9463 } 9464 9465 Value *VectorizedTree = nullptr; 9466 unsigned i = 0; 9467 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9468 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9469 V.buildTree(VL, IgnoreList); 9470 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9471 break; 9472 if (V.isLoadCombineReductionCandidate(RdxKind)) 9473 break; 9474 V.reorderTopToBottom(); 9475 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9476 V.buildExternalUses(ExternallyUsedValues); 9477 9478 // For a poison-safe boolean logic reduction, do not replace select 9479 // instructions with logic ops. All reduced values will be frozen (see 9480 // below) to prevent leaking poison. 9481 if (isa<SelectInst>(ReductionRoot) && 9482 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9483 NumReducedVals != ReduxWidth) 9484 break; 9485 9486 V.computeMinimumValueSizes(); 9487 9488 // Estimate cost. 9489 InstructionCost TreeCost = 9490 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9491 InstructionCost ReductionCost = 9492 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9493 InstructionCost Cost = TreeCost + ReductionCost; 9494 if (!Cost.isValid()) { 9495 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9496 return nullptr; 9497 } 9498 if (Cost >= -SLPCostThreshold) { 9499 V.getORE()->emit([&]() { 9500 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9501 cast<Instruction>(VL[0])) 9502 << "Vectorizing horizontal reduction is possible" 9503 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9504 << " and threshold " 9505 << ore::NV("Threshold", -SLPCostThreshold); 9506 }); 9507 break; 9508 } 9509 9510 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9511 << Cost << ". (HorRdx)\n"); 9512 V.getORE()->emit([&]() { 9513 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9514 cast<Instruction>(VL[0])) 9515 << "Vectorized horizontal reduction with cost " 9516 << ore::NV("Cost", Cost) << " and with tree size " 9517 << ore::NV("TreeSize", V.getTreeSize()); 9518 }); 9519 9520 // Vectorize a tree. 9521 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9522 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9523 9524 // Emit a reduction. If the root is a select (min/max idiom), the insert 9525 // point is the compare condition of that select. 9526 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9527 if (isCmpSelMinMax(RdxRootInst)) 9528 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9529 else 9530 Builder.SetInsertPoint(RdxRootInst); 9531 9532 // To prevent poison from leaking across what used to be sequential, safe, 9533 // scalar boolean logic operations, the reduction operand must be frozen. 9534 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9535 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9536 9537 Value *ReducedSubTree = 9538 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9539 9540 if (!VectorizedTree) { 9541 // Initialize the final value in the reduction. 9542 VectorizedTree = ReducedSubTree; 9543 } else { 9544 // Update the final value in the reduction. 9545 Builder.SetCurrentDebugLocation(Loc); 9546 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9547 ReducedSubTree, "op.rdx", ReductionOps); 9548 } 9549 i += ReduxWidth; 9550 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9551 } 9552 9553 if (VectorizedTree) { 9554 // Finish the reduction. 9555 for (; i < NumReducedVals; ++i) { 9556 auto *I = cast<Instruction>(ReducedVals[i]); 9557 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9558 VectorizedTree = 9559 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9560 } 9561 for (auto &Pair : ExternallyUsedValues) { 9562 // Add each externally used value to the final reduction. 9563 for (auto *I : Pair.second) { 9564 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9565 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9566 Pair.first, "op.extra", I); 9567 } 9568 } 9569 9570 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9571 9572 // Mark all scalar reduction ops for deletion, they are replaced by the 9573 // vector reductions. 9574 V.eraseInstructions(IgnoreList); 9575 } 9576 return VectorizedTree; 9577 } 9578 9579 unsigned numReductionValues() const { return ReducedVals.size(); } 9580 9581 private: 9582 /// Calculate the cost of a reduction. 9583 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9584 Value *FirstReducedVal, unsigned ReduxWidth, 9585 FastMathFlags FMF) { 9586 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9587 Type *ScalarTy = FirstReducedVal->getType(); 9588 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9589 InstructionCost VectorCost, ScalarCost; 9590 switch (RdxKind) { 9591 case RecurKind::Add: 9592 case RecurKind::Mul: 9593 case RecurKind::Or: 9594 case RecurKind::And: 9595 case RecurKind::Xor: 9596 case RecurKind::FAdd: 9597 case RecurKind::FMul: { 9598 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9599 VectorCost = 9600 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9601 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9602 break; 9603 } 9604 case RecurKind::FMax: 9605 case RecurKind::FMin: { 9606 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9607 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9608 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9609 /*IsUnsigned=*/false, CostKind); 9610 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9611 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9612 SclCondTy, RdxPred, CostKind) + 9613 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9614 SclCondTy, RdxPred, CostKind); 9615 break; 9616 } 9617 case RecurKind::SMax: 9618 case RecurKind::SMin: 9619 case RecurKind::UMax: 9620 case RecurKind::UMin: { 9621 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9622 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9623 bool IsUnsigned = 9624 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9625 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9626 CostKind); 9627 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9628 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9629 SclCondTy, RdxPred, CostKind) + 9630 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9631 SclCondTy, RdxPred, CostKind); 9632 break; 9633 } 9634 default: 9635 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9636 } 9637 9638 // Scalar cost is repeated for N-1 elements. 9639 ScalarCost *= (ReduxWidth - 1); 9640 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9641 << " for reduction that starts with " << *FirstReducedVal 9642 << " (It is a splitting reduction)\n"); 9643 return VectorCost - ScalarCost; 9644 } 9645 9646 /// Emit a horizontal reduction of the vectorized value. 9647 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9648 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9649 assert(VectorizedValue && "Need to have a vectorized tree node"); 9650 assert(isPowerOf2_32(ReduxWidth) && 9651 "We only handle power-of-two reductions for now"); 9652 assert(RdxKind != RecurKind::FMulAdd && 9653 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9654 9655 ++NumVectorInstructions; 9656 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9657 } 9658 }; 9659 9660 } // end anonymous namespace 9661 9662 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9663 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9664 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9665 9666 unsigned AggregateSize = 1; 9667 auto *IV = cast<InsertValueInst>(InsertInst); 9668 Type *CurrentType = IV->getType(); 9669 do { 9670 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9671 for (auto *Elt : ST->elements()) 9672 if (Elt != ST->getElementType(0)) // check homogeneity 9673 return None; 9674 AggregateSize *= ST->getNumElements(); 9675 CurrentType = ST->getElementType(0); 9676 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9677 AggregateSize *= AT->getNumElements(); 9678 CurrentType = AT->getElementType(); 9679 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9680 AggregateSize *= VT->getNumElements(); 9681 return AggregateSize; 9682 } else if (CurrentType->isSingleValueType()) { 9683 return AggregateSize; 9684 } else { 9685 return None; 9686 } 9687 } while (true); 9688 } 9689 9690 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9691 TargetTransformInfo *TTI, 9692 SmallVectorImpl<Value *> &BuildVectorOpds, 9693 SmallVectorImpl<Value *> &InsertElts, 9694 unsigned OperandOffset) { 9695 do { 9696 Value *InsertedOperand = LastInsertInst->getOperand(1); 9697 Optional<unsigned> OperandIndex = 9698 getInsertIndex(LastInsertInst, OperandOffset); 9699 if (!OperandIndex) 9700 return; 9701 if (isa<InsertElementInst>(InsertedOperand) || 9702 isa<InsertValueInst>(InsertedOperand)) { 9703 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9704 BuildVectorOpds, InsertElts, *OperandIndex); 9705 9706 } else { 9707 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9708 InsertElts[*OperandIndex] = LastInsertInst; 9709 } 9710 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9711 } while (LastInsertInst != nullptr && 9712 (isa<InsertValueInst>(LastInsertInst) || 9713 isa<InsertElementInst>(LastInsertInst)) && 9714 LastInsertInst->hasOneUse()); 9715 } 9716 9717 /// Recognize construction of vectors like 9718 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9719 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9720 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9721 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9722 /// starting from the last insertelement or insertvalue instruction. 9723 /// 9724 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9725 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9726 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9727 /// 9728 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9729 /// 9730 /// \return true if it matches. 9731 static bool findBuildAggregate(Instruction *LastInsertInst, 9732 TargetTransformInfo *TTI, 9733 SmallVectorImpl<Value *> &BuildVectorOpds, 9734 SmallVectorImpl<Value *> &InsertElts) { 9735 9736 assert((isa<InsertElementInst>(LastInsertInst) || 9737 isa<InsertValueInst>(LastInsertInst)) && 9738 "Expected insertelement or insertvalue instruction!"); 9739 9740 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9741 "Expected empty result vectors!"); 9742 9743 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9744 if (!AggregateSize) 9745 return false; 9746 BuildVectorOpds.resize(*AggregateSize); 9747 InsertElts.resize(*AggregateSize); 9748 9749 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9750 llvm::erase_value(BuildVectorOpds, nullptr); 9751 llvm::erase_value(InsertElts, nullptr); 9752 if (BuildVectorOpds.size() >= 2) 9753 return true; 9754 9755 return false; 9756 } 9757 9758 /// Try and get a reduction value from a phi node. 9759 /// 9760 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9761 /// if they come from either \p ParentBB or a containing loop latch. 9762 /// 9763 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9764 /// if not possible. 9765 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9766 BasicBlock *ParentBB, LoopInfo *LI) { 9767 // There are situations where the reduction value is not dominated by the 9768 // reduction phi. Vectorizing such cases has been reported to cause 9769 // miscompiles. See PR25787. 9770 auto DominatedReduxValue = [&](Value *R) { 9771 return isa<Instruction>(R) && 9772 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9773 }; 9774 9775 Value *Rdx = nullptr; 9776 9777 // Return the incoming value if it comes from the same BB as the phi node. 9778 if (P->getIncomingBlock(0) == ParentBB) { 9779 Rdx = P->getIncomingValue(0); 9780 } else if (P->getIncomingBlock(1) == ParentBB) { 9781 Rdx = P->getIncomingValue(1); 9782 } 9783 9784 if (Rdx && DominatedReduxValue(Rdx)) 9785 return Rdx; 9786 9787 // Otherwise, check whether we have a loop latch to look at. 9788 Loop *BBL = LI->getLoopFor(ParentBB); 9789 if (!BBL) 9790 return nullptr; 9791 BasicBlock *BBLatch = BBL->getLoopLatch(); 9792 if (!BBLatch) 9793 return nullptr; 9794 9795 // There is a loop latch, return the incoming value if it comes from 9796 // that. This reduction pattern occasionally turns up. 9797 if (P->getIncomingBlock(0) == BBLatch) { 9798 Rdx = P->getIncomingValue(0); 9799 } else if (P->getIncomingBlock(1) == BBLatch) { 9800 Rdx = P->getIncomingValue(1); 9801 } 9802 9803 if (Rdx && DominatedReduxValue(Rdx)) 9804 return Rdx; 9805 9806 return nullptr; 9807 } 9808 9809 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9810 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9811 return true; 9812 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9813 return true; 9814 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9815 return true; 9816 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9817 return true; 9818 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9819 return true; 9820 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9821 return true; 9822 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9823 return true; 9824 return false; 9825 } 9826 9827 /// Attempt to reduce a horizontal reduction. 9828 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9829 /// with reduction operators \a Root (or one of its operands) in a basic block 9830 /// \a BB, then check if it can be done. If horizontal reduction is not found 9831 /// and root instruction is a binary operation, vectorization of the operands is 9832 /// attempted. 9833 /// \returns true if a horizontal reduction was matched and reduced or operands 9834 /// of one of the binary instruction were vectorized. 9835 /// \returns false if a horizontal reduction was not matched (or not possible) 9836 /// or no vectorization of any binary operation feeding \a Root instruction was 9837 /// performed. 9838 static bool tryToVectorizeHorReductionOrInstOperands( 9839 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9840 TargetTransformInfo *TTI, 9841 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9842 if (!ShouldVectorizeHor) 9843 return false; 9844 9845 if (!Root) 9846 return false; 9847 9848 if (Root->getParent() != BB || isa<PHINode>(Root)) 9849 return false; 9850 // Start analysis starting from Root instruction. If horizontal reduction is 9851 // found, try to vectorize it. If it is not a horizontal reduction or 9852 // vectorization is not possible or not effective, and currently analyzed 9853 // instruction is a binary operation, try to vectorize the operands, using 9854 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9855 // the same procedure considering each operand as a possible root of the 9856 // horizontal reduction. 9857 // Interrupt the process if the Root instruction itself was vectorized or all 9858 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9859 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9860 // CmpInsts so we can skip extra attempts in 9861 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9862 std::queue<std::pair<Instruction *, unsigned>> Stack; 9863 Stack.emplace(Root, 0); 9864 SmallPtrSet<Value *, 8> VisitedInstrs; 9865 SmallVector<WeakTrackingVH> PostponedInsts; 9866 bool Res = false; 9867 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9868 Value *&B1) -> Value * { 9869 bool IsBinop = matchRdxBop(Inst, B0, B1); 9870 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9871 if (IsBinop || IsSelect) { 9872 HorizontalReduction HorRdx; 9873 if (HorRdx.matchAssociativeReduction(P, Inst)) 9874 return HorRdx.tryToReduce(R, TTI); 9875 } 9876 return nullptr; 9877 }; 9878 while (!Stack.empty()) { 9879 Instruction *Inst; 9880 unsigned Level; 9881 std::tie(Inst, Level) = Stack.front(); 9882 Stack.pop(); 9883 // Do not try to analyze instruction that has already been vectorized. 9884 // This may happen when we vectorize instruction operands on a previous 9885 // iteration while stack was populated before that happened. 9886 if (R.isDeleted(Inst)) 9887 continue; 9888 Value *B0 = nullptr, *B1 = nullptr; 9889 if (Value *V = TryToReduce(Inst, B0, B1)) { 9890 Res = true; 9891 // Set P to nullptr to avoid re-analysis of phi node in 9892 // matchAssociativeReduction function unless this is the root node. 9893 P = nullptr; 9894 if (auto *I = dyn_cast<Instruction>(V)) { 9895 // Try to find another reduction. 9896 Stack.emplace(I, Level); 9897 continue; 9898 } 9899 } else { 9900 bool IsBinop = B0 && B1; 9901 if (P && IsBinop) { 9902 Inst = dyn_cast<Instruction>(B0); 9903 if (Inst == P) 9904 Inst = dyn_cast<Instruction>(B1); 9905 if (!Inst) { 9906 // Set P to nullptr to avoid re-analysis of phi node in 9907 // matchAssociativeReduction function unless this is the root node. 9908 P = nullptr; 9909 continue; 9910 } 9911 } 9912 // Set P to nullptr to avoid re-analysis of phi node in 9913 // matchAssociativeReduction function unless this is the root node. 9914 P = nullptr; 9915 // Do not try to vectorize CmpInst operands, this is done separately. 9916 // Final attempt for binop args vectorization should happen after the loop 9917 // to try to find reductions. 9918 if (!isa<CmpInst>(Inst)) 9919 PostponedInsts.push_back(Inst); 9920 } 9921 9922 // Try to vectorize operands. 9923 // Continue analysis for the instruction from the same basic block only to 9924 // save compile time. 9925 if (++Level < RecursionMaxDepth) 9926 for (auto *Op : Inst->operand_values()) 9927 if (VisitedInstrs.insert(Op).second) 9928 if (auto *I = dyn_cast<Instruction>(Op)) 9929 // Do not try to vectorize CmpInst operands, this is done 9930 // separately. 9931 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9932 I->getParent() == BB) 9933 Stack.emplace(I, Level); 9934 } 9935 // Try to vectorized binops where reductions were not found. 9936 for (Value *V : PostponedInsts) 9937 if (auto *Inst = dyn_cast<Instruction>(V)) 9938 if (!R.isDeleted(Inst)) 9939 Res |= Vectorize(Inst, R); 9940 return Res; 9941 } 9942 9943 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9944 BasicBlock *BB, BoUpSLP &R, 9945 TargetTransformInfo *TTI) { 9946 auto *I = dyn_cast_or_null<Instruction>(V); 9947 if (!I) 9948 return false; 9949 9950 if (!isa<BinaryOperator>(I)) 9951 P = nullptr; 9952 // Try to match and vectorize a horizontal reduction. 9953 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9954 return tryToVectorize(I, R); 9955 }; 9956 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9957 ExtraVectorization); 9958 } 9959 9960 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9961 BasicBlock *BB, BoUpSLP &R) { 9962 const DataLayout &DL = BB->getModule()->getDataLayout(); 9963 if (!R.canMapToVector(IVI->getType(), DL)) 9964 return false; 9965 9966 SmallVector<Value *, 16> BuildVectorOpds; 9967 SmallVector<Value *, 16> BuildVectorInsts; 9968 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9969 return false; 9970 9971 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9972 // Aggregate value is unlikely to be processed in vector register. 9973 return tryToVectorizeList(BuildVectorOpds, R); 9974 } 9975 9976 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9977 BasicBlock *BB, BoUpSLP &R) { 9978 SmallVector<Value *, 16> BuildVectorInsts; 9979 SmallVector<Value *, 16> BuildVectorOpds; 9980 SmallVector<int> Mask; 9981 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9982 (llvm::all_of( 9983 BuildVectorOpds, 9984 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9985 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9986 return false; 9987 9988 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9989 return tryToVectorizeList(BuildVectorInsts, R); 9990 } 9991 9992 template <typename T> 9993 static bool 9994 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9995 function_ref<unsigned(T *)> Limit, 9996 function_ref<bool(T *, T *)> Comparator, 9997 function_ref<bool(T *, T *)> AreCompatible, 9998 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9999 bool LimitForRegisterSize) { 10000 bool Changed = false; 10001 // Sort by type, parent, operands. 10002 stable_sort(Incoming, Comparator); 10003 10004 // Try to vectorize elements base on their type. 10005 SmallVector<T *> Candidates; 10006 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10007 // Look for the next elements with the same type, parent and operand 10008 // kinds. 10009 auto *SameTypeIt = IncIt; 10010 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10011 ++SameTypeIt; 10012 10013 // Try to vectorize them. 10014 unsigned NumElts = (SameTypeIt - IncIt); 10015 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10016 << NumElts << ")\n"); 10017 // The vectorization is a 3-state attempt: 10018 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10019 // size of maximal register at first. 10020 // 2. Try to vectorize remaining instructions with the same type, if 10021 // possible. This may result in the better vectorization results rather than 10022 // if we try just to vectorize instructions with the same/alternate opcodes. 10023 // 3. Final attempt to try to vectorize all instructions with the 10024 // same/alternate ops only, this may result in some extra final 10025 // vectorization. 10026 if (NumElts > 1 && 10027 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10028 // Success start over because instructions might have been changed. 10029 Changed = true; 10030 } else if (NumElts < Limit(*IncIt) && 10031 (Candidates.empty() || 10032 Candidates.front()->getType() == (*IncIt)->getType())) { 10033 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10034 } 10035 // Final attempt to vectorize instructions with the same types. 10036 if (Candidates.size() > 1 && 10037 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10038 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10039 // Success start over because instructions might have been changed. 10040 Changed = true; 10041 } else if (LimitForRegisterSize) { 10042 // Try to vectorize using small vectors. 10043 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10044 It != End;) { 10045 auto *SameTypeIt = It; 10046 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10047 ++SameTypeIt; 10048 unsigned NumElts = (SameTypeIt - It); 10049 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10050 /*LimitForRegisterSize=*/false)) 10051 Changed = true; 10052 It = SameTypeIt; 10053 } 10054 } 10055 Candidates.clear(); 10056 } 10057 10058 // Start over at the next instruction of a different type (or the end). 10059 IncIt = SameTypeIt; 10060 } 10061 return Changed; 10062 } 10063 10064 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10065 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10066 /// operands. If IsCompatibility is false, function implements strict weak 10067 /// ordering relation between two cmp instructions, returning true if the first 10068 /// instruction is "less" than the second, i.e. its predicate is less than the 10069 /// predicate of the second or the operands IDs are less than the operands IDs 10070 /// of the second cmp instruction. 10071 template <bool IsCompatibility> 10072 static bool compareCmp(Value *V, Value *V2, 10073 function_ref<bool(Instruction *)> IsDeleted) { 10074 auto *CI1 = cast<CmpInst>(V); 10075 auto *CI2 = cast<CmpInst>(V2); 10076 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10077 return false; 10078 if (CI1->getOperand(0)->getType()->getTypeID() < 10079 CI2->getOperand(0)->getType()->getTypeID()) 10080 return !IsCompatibility; 10081 if (CI1->getOperand(0)->getType()->getTypeID() > 10082 CI2->getOperand(0)->getType()->getTypeID()) 10083 return false; 10084 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10085 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10086 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10087 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10088 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10089 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10090 if (BasePred1 < BasePred2) 10091 return !IsCompatibility; 10092 if (BasePred1 > BasePred2) 10093 return false; 10094 // Compare operands. 10095 bool LEPreds = Pred1 <= Pred2; 10096 bool GEPreds = Pred1 >= Pred2; 10097 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10098 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10099 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10100 if (Op1->getValueID() < Op2->getValueID()) 10101 return !IsCompatibility; 10102 if (Op1->getValueID() > Op2->getValueID()) 10103 return false; 10104 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10105 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10106 if (I1->getParent() != I2->getParent()) 10107 return false; 10108 InstructionsState S = getSameOpcode({I1, I2}); 10109 if (S.getOpcode()) 10110 continue; 10111 return false; 10112 } 10113 } 10114 return IsCompatibility; 10115 } 10116 10117 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10118 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10119 bool AtTerminator) { 10120 bool OpsChanged = false; 10121 SmallVector<Instruction *, 4> PostponedCmps; 10122 for (auto *I : reverse(Instructions)) { 10123 if (R.isDeleted(I)) 10124 continue; 10125 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10126 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10127 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10128 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10129 else if (isa<CmpInst>(I)) 10130 PostponedCmps.push_back(I); 10131 } 10132 if (AtTerminator) { 10133 // Try to find reductions first. 10134 for (Instruction *I : PostponedCmps) { 10135 if (R.isDeleted(I)) 10136 continue; 10137 for (Value *Op : I->operands()) 10138 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10139 } 10140 // Try to vectorize operands as vector bundles. 10141 for (Instruction *I : PostponedCmps) { 10142 if (R.isDeleted(I)) 10143 continue; 10144 OpsChanged |= tryToVectorize(I, R); 10145 } 10146 // Try to vectorize list of compares. 10147 // Sort by type, compare predicate, etc. 10148 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10149 return compareCmp<false>(V, V2, 10150 [&R](Instruction *I) { return R.isDeleted(I); }); 10151 }; 10152 10153 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10154 if (V1 == V2) 10155 return true; 10156 return compareCmp<true>(V1, V2, 10157 [&R](Instruction *I) { return R.isDeleted(I); }); 10158 }; 10159 auto Limit = [&R](Value *V) { 10160 unsigned EltSize = R.getVectorElementSize(V); 10161 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10162 }; 10163 10164 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10165 OpsChanged |= tryToVectorizeSequence<Value>( 10166 Vals, Limit, CompareSorter, AreCompatibleCompares, 10167 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10168 // Exclude possible reductions from other blocks. 10169 bool ArePossiblyReducedInOtherBlock = 10170 any_of(Candidates, [](Value *V) { 10171 return any_of(V->users(), [V](User *U) { 10172 return isa<SelectInst>(U) && 10173 cast<SelectInst>(U)->getParent() != 10174 cast<Instruction>(V)->getParent(); 10175 }); 10176 }); 10177 if (ArePossiblyReducedInOtherBlock) 10178 return false; 10179 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10180 }, 10181 /*LimitForRegisterSize=*/true); 10182 Instructions.clear(); 10183 } else { 10184 // Insert in reverse order since the PostponedCmps vector was filled in 10185 // reverse order. 10186 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10187 } 10188 return OpsChanged; 10189 } 10190 10191 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10192 bool Changed = false; 10193 SmallVector<Value *, 4> Incoming; 10194 SmallPtrSet<Value *, 16> VisitedInstrs; 10195 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10196 // node. Allows better to identify the chains that can be vectorized in the 10197 // better way. 10198 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10199 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10200 assert(isValidElementType(V1->getType()) && 10201 isValidElementType(V2->getType()) && 10202 "Expected vectorizable types only."); 10203 // It is fine to compare type IDs here, since we expect only vectorizable 10204 // types, like ints, floats and pointers, we don't care about other type. 10205 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10206 return true; 10207 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10208 return false; 10209 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10210 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10211 if (Opcodes1.size() < Opcodes2.size()) 10212 return true; 10213 if (Opcodes1.size() > Opcodes2.size()) 10214 return false; 10215 Optional<bool> ConstOrder; 10216 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10217 // Undefs are compatible with any other value. 10218 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10219 if (!ConstOrder) 10220 ConstOrder = 10221 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10222 continue; 10223 } 10224 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10225 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10226 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10227 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10228 if (!NodeI1) 10229 return NodeI2 != nullptr; 10230 if (!NodeI2) 10231 return false; 10232 assert((NodeI1 == NodeI2) == 10233 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10234 "Different nodes should have different DFS numbers"); 10235 if (NodeI1 != NodeI2) 10236 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10237 InstructionsState S = getSameOpcode({I1, I2}); 10238 if (S.getOpcode()) 10239 continue; 10240 return I1->getOpcode() < I2->getOpcode(); 10241 } 10242 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10243 if (!ConstOrder) 10244 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10245 continue; 10246 } 10247 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10248 return true; 10249 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10250 return false; 10251 } 10252 return ConstOrder && *ConstOrder; 10253 }; 10254 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10255 if (V1 == V2) 10256 return true; 10257 if (V1->getType() != V2->getType()) 10258 return false; 10259 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10260 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10261 if (Opcodes1.size() != Opcodes2.size()) 10262 return false; 10263 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10264 // Undefs are compatible with any other value. 10265 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10266 continue; 10267 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10268 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10269 if (I1->getParent() != I2->getParent()) 10270 return false; 10271 InstructionsState S = getSameOpcode({I1, I2}); 10272 if (S.getOpcode()) 10273 continue; 10274 return false; 10275 } 10276 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10277 continue; 10278 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10279 return false; 10280 } 10281 return true; 10282 }; 10283 auto Limit = [&R](Value *V) { 10284 unsigned EltSize = R.getVectorElementSize(V); 10285 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10286 }; 10287 10288 bool HaveVectorizedPhiNodes = false; 10289 do { 10290 // Collect the incoming values from the PHIs. 10291 Incoming.clear(); 10292 for (Instruction &I : *BB) { 10293 PHINode *P = dyn_cast<PHINode>(&I); 10294 if (!P) 10295 break; 10296 10297 // No need to analyze deleted, vectorized and non-vectorizable 10298 // instructions. 10299 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10300 isValidElementType(P->getType())) 10301 Incoming.push_back(P); 10302 } 10303 10304 // Find the corresponding non-phi nodes for better matching when trying to 10305 // build the tree. 10306 for (Value *V : Incoming) { 10307 SmallVectorImpl<Value *> &Opcodes = 10308 PHIToOpcodes.try_emplace(V).first->getSecond(); 10309 if (!Opcodes.empty()) 10310 continue; 10311 SmallVector<Value *, 4> Nodes(1, V); 10312 SmallPtrSet<Value *, 4> Visited; 10313 while (!Nodes.empty()) { 10314 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10315 if (!Visited.insert(PHI).second) 10316 continue; 10317 for (Value *V : PHI->incoming_values()) { 10318 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10319 Nodes.push_back(PHI1); 10320 continue; 10321 } 10322 Opcodes.emplace_back(V); 10323 } 10324 } 10325 } 10326 10327 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10328 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10329 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10330 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10331 }, 10332 /*LimitForRegisterSize=*/true); 10333 Changed |= HaveVectorizedPhiNodes; 10334 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10335 } while (HaveVectorizedPhiNodes); 10336 10337 VisitedInstrs.clear(); 10338 10339 SmallVector<Instruction *, 8> PostProcessInstructions; 10340 SmallDenseSet<Instruction *, 4> KeyNodes; 10341 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10342 // Skip instructions with scalable type. The num of elements is unknown at 10343 // compile-time for scalable type. 10344 if (isa<ScalableVectorType>(it->getType())) 10345 continue; 10346 10347 // Skip instructions marked for the deletion. 10348 if (R.isDeleted(&*it)) 10349 continue; 10350 // We may go through BB multiple times so skip the one we have checked. 10351 if (!VisitedInstrs.insert(&*it).second) { 10352 if (it->use_empty() && KeyNodes.contains(&*it) && 10353 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10354 it->isTerminator())) { 10355 // We would like to start over since some instructions are deleted 10356 // and the iterator may become invalid value. 10357 Changed = true; 10358 it = BB->begin(); 10359 e = BB->end(); 10360 } 10361 continue; 10362 } 10363 10364 if (isa<DbgInfoIntrinsic>(it)) 10365 continue; 10366 10367 // Try to vectorize reductions that use PHINodes. 10368 if (PHINode *P = dyn_cast<PHINode>(it)) { 10369 // Check that the PHI is a reduction PHI. 10370 if (P->getNumIncomingValues() == 2) { 10371 // Try to match and vectorize a horizontal reduction. 10372 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10373 TTI)) { 10374 Changed = true; 10375 it = BB->begin(); 10376 e = BB->end(); 10377 continue; 10378 } 10379 } 10380 // Try to vectorize the incoming values of the PHI, to catch reductions 10381 // that feed into PHIs. 10382 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10383 // Skip if the incoming block is the current BB for now. Also, bypass 10384 // unreachable IR for efficiency and to avoid crashing. 10385 // TODO: Collect the skipped incoming values and try to vectorize them 10386 // after processing BB. 10387 if (BB == P->getIncomingBlock(I) || 10388 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10389 continue; 10390 10391 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10392 P->getIncomingBlock(I), R, TTI); 10393 } 10394 continue; 10395 } 10396 10397 // Ran into an instruction without users, like terminator, or function call 10398 // with ignored return value, store. Ignore unused instructions (basing on 10399 // instruction type, except for CallInst and InvokeInst). 10400 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10401 isa<InvokeInst>(it))) { 10402 KeyNodes.insert(&*it); 10403 bool OpsChanged = false; 10404 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10405 for (auto *V : it->operand_values()) { 10406 // Try to match and vectorize a horizontal reduction. 10407 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10408 } 10409 } 10410 // Start vectorization of post-process list of instructions from the 10411 // top-tree instructions to try to vectorize as many instructions as 10412 // possible. 10413 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10414 it->isTerminator()); 10415 if (OpsChanged) { 10416 // We would like to start over since some instructions are deleted 10417 // and the iterator may become invalid value. 10418 Changed = true; 10419 it = BB->begin(); 10420 e = BB->end(); 10421 continue; 10422 } 10423 } 10424 10425 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10426 isa<InsertValueInst>(it)) 10427 PostProcessInstructions.push_back(&*it); 10428 } 10429 10430 return Changed; 10431 } 10432 10433 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10434 auto Changed = false; 10435 for (auto &Entry : GEPs) { 10436 // If the getelementptr list has fewer than two elements, there's nothing 10437 // to do. 10438 if (Entry.second.size() < 2) 10439 continue; 10440 10441 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10442 << Entry.second.size() << ".\n"); 10443 10444 // Process the GEP list in chunks suitable for the target's supported 10445 // vector size. If a vector register can't hold 1 element, we are done. We 10446 // are trying to vectorize the index computations, so the maximum number of 10447 // elements is based on the size of the index expression, rather than the 10448 // size of the GEP itself (the target's pointer size). 10449 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10450 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10451 if (MaxVecRegSize < EltSize) 10452 continue; 10453 10454 unsigned MaxElts = MaxVecRegSize / EltSize; 10455 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10456 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10457 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10458 10459 // Initialize a set a candidate getelementptrs. Note that we use a 10460 // SetVector here to preserve program order. If the index computations 10461 // are vectorizable and begin with loads, we want to minimize the chance 10462 // of having to reorder them later. 10463 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10464 10465 // Some of the candidates may have already been vectorized after we 10466 // initially collected them. If so, they are marked as deleted, so remove 10467 // them from the set of candidates. 10468 Candidates.remove_if( 10469 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10470 10471 // Remove from the set of candidates all pairs of getelementptrs with 10472 // constant differences. Such getelementptrs are likely not good 10473 // candidates for vectorization in a bottom-up phase since one can be 10474 // computed from the other. We also ensure all candidate getelementptr 10475 // indices are unique. 10476 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10477 auto *GEPI = GEPList[I]; 10478 if (!Candidates.count(GEPI)) 10479 continue; 10480 auto *SCEVI = SE->getSCEV(GEPList[I]); 10481 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10482 auto *GEPJ = GEPList[J]; 10483 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10484 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10485 Candidates.remove(GEPI); 10486 Candidates.remove(GEPJ); 10487 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10488 Candidates.remove(GEPJ); 10489 } 10490 } 10491 } 10492 10493 // We break out of the above computation as soon as we know there are 10494 // fewer than two candidates remaining. 10495 if (Candidates.size() < 2) 10496 continue; 10497 10498 // Add the single, non-constant index of each candidate to the bundle. We 10499 // ensured the indices met these constraints when we originally collected 10500 // the getelementptrs. 10501 SmallVector<Value *, 16> Bundle(Candidates.size()); 10502 auto BundleIndex = 0u; 10503 for (auto *V : Candidates) { 10504 auto *GEP = cast<GetElementPtrInst>(V); 10505 auto *GEPIdx = GEP->idx_begin()->get(); 10506 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10507 Bundle[BundleIndex++] = GEPIdx; 10508 } 10509 10510 // Try and vectorize the indices. We are currently only interested in 10511 // gather-like cases of the form: 10512 // 10513 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10514 // 10515 // where the loads of "a", the loads of "b", and the subtractions can be 10516 // performed in parallel. It's likely that detecting this pattern in a 10517 // bottom-up phase will be simpler and less costly than building a 10518 // full-blown top-down phase beginning at the consecutive loads. 10519 Changed |= tryToVectorizeList(Bundle, R); 10520 } 10521 } 10522 return Changed; 10523 } 10524 10525 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10526 bool Changed = false; 10527 // Sort by type, base pointers and values operand. Value operands must be 10528 // compatible (have the same opcode, same parent), otherwise it is 10529 // definitely not profitable to try to vectorize them. 10530 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10531 if (V->getPointerOperandType()->getTypeID() < 10532 V2->getPointerOperandType()->getTypeID()) 10533 return true; 10534 if (V->getPointerOperandType()->getTypeID() > 10535 V2->getPointerOperandType()->getTypeID()) 10536 return false; 10537 // UndefValues are compatible with all other values. 10538 if (isa<UndefValue>(V->getValueOperand()) || 10539 isa<UndefValue>(V2->getValueOperand())) 10540 return false; 10541 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10542 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10543 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10544 DT->getNode(I1->getParent()); 10545 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10546 DT->getNode(I2->getParent()); 10547 assert(NodeI1 && "Should only process reachable instructions"); 10548 assert(NodeI1 && "Should only process reachable instructions"); 10549 assert((NodeI1 == NodeI2) == 10550 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10551 "Different nodes should have different DFS numbers"); 10552 if (NodeI1 != NodeI2) 10553 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10554 InstructionsState S = getSameOpcode({I1, I2}); 10555 if (S.getOpcode()) 10556 return false; 10557 return I1->getOpcode() < I2->getOpcode(); 10558 } 10559 if (isa<Constant>(V->getValueOperand()) && 10560 isa<Constant>(V2->getValueOperand())) 10561 return false; 10562 return V->getValueOperand()->getValueID() < 10563 V2->getValueOperand()->getValueID(); 10564 }; 10565 10566 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10567 if (V1 == V2) 10568 return true; 10569 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10570 return false; 10571 // Undefs are compatible with any other value. 10572 if (isa<UndefValue>(V1->getValueOperand()) || 10573 isa<UndefValue>(V2->getValueOperand())) 10574 return true; 10575 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10576 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10577 if (I1->getParent() != I2->getParent()) 10578 return false; 10579 InstructionsState S = getSameOpcode({I1, I2}); 10580 return S.getOpcode() > 0; 10581 } 10582 if (isa<Constant>(V1->getValueOperand()) && 10583 isa<Constant>(V2->getValueOperand())) 10584 return true; 10585 return V1->getValueOperand()->getValueID() == 10586 V2->getValueOperand()->getValueID(); 10587 }; 10588 auto Limit = [&R, this](StoreInst *SI) { 10589 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10590 return R.getMinVF(EltSize); 10591 }; 10592 10593 // Attempt to sort and vectorize each of the store-groups. 10594 for (auto &Pair : Stores) { 10595 if (Pair.second.size() < 2) 10596 continue; 10597 10598 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10599 << Pair.second.size() << ".\n"); 10600 10601 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10602 continue; 10603 10604 Changed |= tryToVectorizeSequence<StoreInst>( 10605 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10606 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10607 return vectorizeStores(Candidates, R); 10608 }, 10609 /*LimitForRegisterSize=*/false); 10610 } 10611 return Changed; 10612 } 10613 10614 char SLPVectorizer::ID = 0; 10615 10616 static const char lv_name[] = "SLP Vectorizer"; 10617 10618 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10619 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10620 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10621 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10622 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10623 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10624 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10625 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10626 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10627 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10628 10629 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10630