1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/MemorySSA.h" 45 #include "llvm/Analysis/MemorySSAUpdater.h" 46 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 47 #include "llvm/Analysis/ScalarEvolution.h" 48 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/Analysis/VectorUtils.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/Constant.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/IRBuilder.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Intrinsics.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/Verifier.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 static cl::opt<bool> EnableMSSAInSLPVectorizer( 172 "enable-mssa-in-slp-vectorizer", cl::Hidden, cl::init(false), 173 cl::desc("Enable MemorySSA for SLPVectorizer in new pass manager")); 174 175 // Limit the number of alias checks. The limit is chosen so that 176 // it has no negative effect on the llvm benchmarks. 177 static const unsigned AliasedCheckLimit = 10; 178 179 // Another limit for the alias checks: The maximum distance between load/store 180 // instructions where alias checks are done. 181 // This limit is useful for very large basic blocks. 182 static const unsigned MaxMemDepDistance = 160; 183 184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 185 /// regions to be handled. 186 static const int MinScheduleRegionSize = 16; 187 188 /// Predicate for the element types that the SLP vectorizer supports. 189 /// 190 /// The most important thing to filter here are types which are invalid in LLVM 191 /// vectors. We also filter target specific types which have absolutely no 192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 193 /// avoids spending time checking the cost model and realizing that they will 194 /// be inevitably scalarized. 195 static bool isValidElementType(Type *Ty) { 196 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 197 !Ty->isPPC_FP128Ty(); 198 } 199 200 /// \returns True if the value is a constant (but not globals/constant 201 /// expressions). 202 static bool isConstant(Value *V) { 203 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 204 } 205 206 /// Checks if \p V is one of vector-like instructions, i.e. undef, 207 /// insertelement/extractelement with constant indices for fixed vector type or 208 /// extractvalue instruction. 209 static bool isVectorLikeInstWithConstOps(Value *V) { 210 if (!isa<InsertElementInst, ExtractElementInst>(V) && 211 !isa<ExtractValueInst, UndefValue>(V)) 212 return false; 213 auto *I = dyn_cast<Instruction>(V); 214 if (!I || isa<ExtractValueInst>(I)) 215 return true; 216 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 217 return false; 218 if (isa<ExtractElementInst>(I)) 219 return isConstant(I->getOperand(1)); 220 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 221 return isConstant(I->getOperand(2)); 222 } 223 224 /// \returns true if all of the instructions in \p VL are in the same block or 225 /// false otherwise. 226 static bool allSameBlock(ArrayRef<Value *> VL) { 227 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 228 if (!I0) 229 return false; 230 if (all_of(VL, isVectorLikeInstWithConstOps)) 231 return true; 232 233 BasicBlock *BB = I0->getParent(); 234 for (int I = 1, E = VL.size(); I < E; I++) { 235 auto *II = dyn_cast<Instruction>(VL[I]); 236 if (!II) 237 return false; 238 239 if (BB != II->getParent()) 240 return false; 241 } 242 return true; 243 } 244 245 /// \returns True if all of the values in \p VL are constants (but not 246 /// globals/constant expressions). 247 static bool allConstant(ArrayRef<Value *> VL) { 248 // Constant expressions and globals can't be vectorized like normal integer/FP 249 // constants. 250 return all_of(VL, isConstant); 251 } 252 253 /// \returns True if all of the values in \p VL are identical or some of them 254 /// are UndefValue. 255 static bool isSplat(ArrayRef<Value *> VL) { 256 Value *FirstNonUndef = nullptr; 257 for (Value *V : VL) { 258 if (isa<UndefValue>(V)) 259 continue; 260 if (!FirstNonUndef) { 261 FirstNonUndef = V; 262 continue; 263 } 264 if (V != FirstNonUndef) 265 return false; 266 } 267 return FirstNonUndef != nullptr; 268 } 269 270 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 271 static bool isCommutative(Instruction *I) { 272 if (auto *Cmp = dyn_cast<CmpInst>(I)) 273 return Cmp->isCommutative(); 274 if (auto *BO = dyn_cast<BinaryOperator>(I)) 275 return BO->isCommutative(); 276 // TODO: This should check for generic Instruction::isCommutative(), but 277 // we need to confirm that the caller code correctly handles Intrinsics 278 // for example (does not have 2 operands). 279 return false; 280 } 281 282 /// Checks if the given value is actually an undefined constant vector. 283 static bool isUndefVector(const Value *V) { 284 if (isa<UndefValue>(V)) 285 return true; 286 auto *C = dyn_cast<Constant>(V); 287 if (!C) 288 return false; 289 if (!C->containsUndefOrPoisonElement()) 290 return false; 291 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 292 if (!VecTy) 293 return false; 294 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 295 if (Constant *Elem = C->getAggregateElement(I)) 296 if (!isa<UndefValue>(Elem)) 297 return false; 298 } 299 return true; 300 } 301 302 /// Checks if the vector of instructions can be represented as a shuffle, like: 303 /// %x0 = extractelement <4 x i8> %x, i32 0 304 /// %x3 = extractelement <4 x i8> %x, i32 3 305 /// %y1 = extractelement <4 x i8> %y, i32 1 306 /// %y2 = extractelement <4 x i8> %y, i32 2 307 /// %x0x0 = mul i8 %x0, %x0 308 /// %x3x3 = mul i8 %x3, %x3 309 /// %y1y1 = mul i8 %y1, %y1 310 /// %y2y2 = mul i8 %y2, %y2 311 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 312 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 313 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 314 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 315 /// ret <4 x i8> %ins4 316 /// can be transformed into: 317 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 318 /// i32 6> 319 /// %2 = mul <4 x i8> %1, %1 320 /// ret <4 x i8> %2 321 /// We convert this initially to something like: 322 /// %x0 = extractelement <4 x i8> %x, i32 0 323 /// %x3 = extractelement <4 x i8> %x, i32 3 324 /// %y1 = extractelement <4 x i8> %y, i32 1 325 /// %y2 = extractelement <4 x i8> %y, i32 2 326 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 327 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 328 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 329 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 330 /// %5 = mul <4 x i8> %4, %4 331 /// %6 = extractelement <4 x i8> %5, i32 0 332 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 333 /// %7 = extractelement <4 x i8> %5, i32 1 334 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 335 /// %8 = extractelement <4 x i8> %5, i32 2 336 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 337 /// %9 = extractelement <4 x i8> %5, i32 3 338 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 339 /// ret <4 x i8> %ins4 340 /// InstCombiner transforms this into a shuffle and vector mul 341 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 342 /// TODO: Can we split off and reuse the shuffle mask detection from 343 /// TargetTransformInfo::getInstructionThroughput? 344 static Optional<TargetTransformInfo::ShuffleKind> 345 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 346 const auto *It = 347 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 348 if (It == VL.end()) 349 return None; 350 auto *EI0 = cast<ExtractElementInst>(*It); 351 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 352 return None; 353 unsigned Size = 354 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 355 Value *Vec1 = nullptr; 356 Value *Vec2 = nullptr; 357 enum ShuffleMode { Unknown, Select, Permute }; 358 ShuffleMode CommonShuffleMode = Unknown; 359 Mask.assign(VL.size(), UndefMaskElem); 360 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 361 // Undef can be represented as an undef element in a vector. 362 if (isa<UndefValue>(VL[I])) 363 continue; 364 auto *EI = cast<ExtractElementInst>(VL[I]); 365 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 366 return None; 367 auto *Vec = EI->getVectorOperand(); 368 // We can extractelement from undef or poison vector. 369 if (isUndefVector(Vec)) 370 continue; 371 // All vector operands must have the same number of vector elements. 372 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 373 return None; 374 if (isa<UndefValue>(EI->getIndexOperand())) 375 continue; 376 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 377 if (!Idx) 378 return None; 379 // Undefined behavior if Idx is negative or >= Size. 380 if (Idx->getValue().uge(Size)) 381 continue; 382 unsigned IntIdx = Idx->getValue().getZExtValue(); 383 Mask[I] = IntIdx; 384 // For correct shuffling we have to have at most 2 different vector operands 385 // in all extractelement instructions. 386 if (!Vec1 || Vec1 == Vec) { 387 Vec1 = Vec; 388 } else if (!Vec2 || Vec2 == Vec) { 389 Vec2 = Vec; 390 Mask[I] += Size; 391 } else { 392 return None; 393 } 394 if (CommonShuffleMode == Permute) 395 continue; 396 // If the extract index is not the same as the operation number, it is a 397 // permutation. 398 if (IntIdx != I) { 399 CommonShuffleMode = Permute; 400 continue; 401 } 402 CommonShuffleMode = Select; 403 } 404 // If we're not crossing lanes in different vectors, consider it as blending. 405 if (CommonShuffleMode == Select && Vec2) 406 return TargetTransformInfo::SK_Select; 407 // If Vec2 was never used, we have a permutation of a single vector, otherwise 408 // we have permutation of 2 vectors. 409 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 410 : TargetTransformInfo::SK_PermuteSingleSrc; 411 } 412 413 namespace { 414 415 /// Main data required for vectorization of instructions. 416 struct InstructionsState { 417 /// The very first instruction in the list with the main opcode. 418 Value *OpValue = nullptr; 419 420 /// The main/alternate instruction. 421 Instruction *MainOp = nullptr; 422 Instruction *AltOp = nullptr; 423 424 /// The main/alternate opcodes for the list of instructions. 425 unsigned getOpcode() const { 426 return MainOp ? MainOp->getOpcode() : 0; 427 } 428 429 unsigned getAltOpcode() const { 430 return AltOp ? AltOp->getOpcode() : 0; 431 } 432 433 /// Some of the instructions in the list have alternate opcodes. 434 bool isAltShuffle() const { return AltOp != MainOp; } 435 436 bool isOpcodeOrAlt(Instruction *I) const { 437 unsigned CheckedOpcode = I->getOpcode(); 438 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 439 } 440 441 InstructionsState() = delete; 442 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 443 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 444 }; 445 446 } // end anonymous namespace 447 448 /// Chooses the correct key for scheduling data. If \p Op has the same (or 449 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 450 /// OpValue. 451 static Value *isOneOf(const InstructionsState &S, Value *Op) { 452 auto *I = dyn_cast<Instruction>(Op); 453 if (I && S.isOpcodeOrAlt(I)) 454 return Op; 455 return S.OpValue; 456 } 457 458 /// \returns true if \p Opcode is allowed as part of of the main/alternate 459 /// instruction for SLP vectorization. 460 /// 461 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 462 /// "shuffled out" lane would result in division by zero. 463 static bool isValidForAlternation(unsigned Opcode) { 464 if (Instruction::isIntDivRem(Opcode)) 465 return false; 466 467 return true; 468 } 469 470 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 471 unsigned BaseIndex = 0); 472 473 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 474 /// compatible instructions or constants, or just some other regular values. 475 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 476 Value *Op1) { 477 return (isConstant(BaseOp0) && isConstant(Op0)) || 478 (isConstant(BaseOp1) && isConstant(Op1)) || 479 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 480 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 481 getSameOpcode({BaseOp0, Op0}).getOpcode() || 482 getSameOpcode({BaseOp1, Op1}).getOpcode(); 483 } 484 485 /// \returns analysis of the Instructions in \p VL described in 486 /// InstructionsState, the Opcode that we suppose the whole list 487 /// could be vectorized even if its structure is diverse. 488 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 489 unsigned BaseIndex) { 490 // Make sure these are all Instructions. 491 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 492 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 493 494 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 495 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 496 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 497 CmpInst::Predicate BasePred = 498 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 499 : CmpInst::BAD_ICMP_PREDICATE; 500 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 501 unsigned AltOpcode = Opcode; 502 unsigned AltIndex = BaseIndex; 503 504 // Check for one alternate opcode from another BinaryOperator. 505 // TODO - generalize to support all operators (types, calls etc.). 506 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 507 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 508 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 509 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 510 continue; 511 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 512 isValidForAlternation(Opcode)) { 513 AltOpcode = InstOpcode; 514 AltIndex = Cnt; 515 continue; 516 } 517 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 518 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 519 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 520 if (Ty0 == Ty1) { 521 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 522 continue; 523 if (Opcode == AltOpcode) { 524 assert(isValidForAlternation(Opcode) && 525 isValidForAlternation(InstOpcode) && 526 "Cast isn't safe for alternation, logic needs to be updated!"); 527 AltOpcode = InstOpcode; 528 AltIndex = Cnt; 529 continue; 530 } 531 } 532 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 533 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 534 auto *Inst = cast<Instruction>(VL[Cnt]); 535 Type *Ty0 = BaseInst->getOperand(0)->getType(); 536 Type *Ty1 = Inst->getOperand(0)->getType(); 537 if (Ty0 == Ty1) { 538 Value *BaseOp0 = BaseInst->getOperand(0); 539 Value *BaseOp1 = BaseInst->getOperand(1); 540 Value *Op0 = Inst->getOperand(0); 541 Value *Op1 = Inst->getOperand(1); 542 CmpInst::Predicate CurrentPred = 543 cast<CmpInst>(VL[Cnt])->getPredicate(); 544 CmpInst::Predicate SwappedCurrentPred = 545 CmpInst::getSwappedPredicate(CurrentPred); 546 // Check for compatible operands. If the corresponding operands are not 547 // compatible - need to perform alternate vectorization. 548 if (InstOpcode == Opcode) { 549 if (BasePred == CurrentPred && 550 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 551 continue; 552 if (BasePred == SwappedCurrentPred && 553 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 554 continue; 555 if (E == 2 && 556 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 557 continue; 558 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 559 CmpInst::Predicate AltPred = AltInst->getPredicate(); 560 Value *AltOp0 = AltInst->getOperand(0); 561 Value *AltOp1 = AltInst->getOperand(1); 562 // Check if operands are compatible with alternate operands. 563 if (AltPred == CurrentPred && 564 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 565 continue; 566 if (AltPred == SwappedCurrentPred && 567 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 568 continue; 569 } 570 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 571 assert(isValidForAlternation(Opcode) && 572 isValidForAlternation(InstOpcode) && 573 "Cast isn't safe for alternation, logic needs to be updated!"); 574 AltIndex = Cnt; 575 continue; 576 } 577 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 578 CmpInst::Predicate AltPred = AltInst->getPredicate(); 579 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 580 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 581 continue; 582 } 583 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 584 continue; 585 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 586 } 587 588 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 589 cast<Instruction>(VL[AltIndex])); 590 } 591 592 /// \returns true if all of the values in \p VL have the same type or false 593 /// otherwise. 594 static bool allSameType(ArrayRef<Value *> VL) { 595 Type *Ty = VL[0]->getType(); 596 for (int i = 1, e = VL.size(); i < e; i++) 597 if (VL[i]->getType() != Ty) 598 return false; 599 600 return true; 601 } 602 603 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 604 static Optional<unsigned> getExtractIndex(Instruction *E) { 605 unsigned Opcode = E->getOpcode(); 606 assert((Opcode == Instruction::ExtractElement || 607 Opcode == Instruction::ExtractValue) && 608 "Expected extractelement or extractvalue instruction."); 609 if (Opcode == Instruction::ExtractElement) { 610 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 611 if (!CI) 612 return None; 613 return CI->getZExtValue(); 614 } 615 ExtractValueInst *EI = cast<ExtractValueInst>(E); 616 if (EI->getNumIndices() != 1) 617 return None; 618 return *EI->idx_begin(); 619 } 620 621 /// \returns True if in-tree use also needs extract. This refers to 622 /// possible scalar operand in vectorized instruction. 623 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 624 TargetLibraryInfo *TLI) { 625 unsigned Opcode = UserInst->getOpcode(); 626 switch (Opcode) { 627 case Instruction::Load: { 628 LoadInst *LI = cast<LoadInst>(UserInst); 629 return (LI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Store: { 632 StoreInst *SI = cast<StoreInst>(UserInst); 633 return (SI->getPointerOperand() == Scalar); 634 } 635 case Instruction::Call: { 636 CallInst *CI = cast<CallInst>(UserInst); 637 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 638 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 639 if (hasVectorInstrinsicScalarOpd(ID, i)) 640 return (CI->getArgOperand(i) == Scalar); 641 } 642 LLVM_FALLTHROUGH; 643 } 644 default: 645 return false; 646 } 647 } 648 649 /// \returns the AA location that is being access by the instruction. 650 static MemoryLocation getLocation(Instruction *I) { 651 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 652 return MemoryLocation::get(SI); 653 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 654 return MemoryLocation::get(LI); 655 return MemoryLocation(); 656 } 657 658 /// \returns True if the instruction is not a volatile or atomic load/store. 659 static bool isSimple(Instruction *I) { 660 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 661 return LI->isSimple(); 662 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 663 return SI->isSimple(); 664 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 665 return !MI->isVolatile(); 666 return true; 667 } 668 669 /// Shuffles \p Mask in accordance with the given \p SubMask. 670 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 671 if (SubMask.empty()) 672 return; 673 if (Mask.empty()) { 674 Mask.append(SubMask.begin(), SubMask.end()); 675 return; 676 } 677 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 678 int TermValue = std::min(Mask.size(), SubMask.size()); 679 for (int I = 0, E = SubMask.size(); I < E; ++I) { 680 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 681 Mask[SubMask[I]] >= TermValue) 682 continue; 683 NewMask[I] = Mask[SubMask[I]]; 684 } 685 Mask.swap(NewMask); 686 } 687 688 /// Order may have elements assigned special value (size) which is out of 689 /// bounds. Such indices only appear on places which correspond to undef values 690 /// (see canReuseExtract for details) and used in order to avoid undef values 691 /// have effect on operands ordering. 692 /// The first loop below simply finds all unused indices and then the next loop 693 /// nest assigns these indices for undef values positions. 694 /// As an example below Order has two undef positions and they have assigned 695 /// values 3 and 7 respectively: 696 /// before: 6 9 5 4 9 2 1 0 697 /// after: 6 3 5 4 7 2 1 0 698 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 699 const unsigned Sz = Order.size(); 700 SmallBitVector UnusedIndices(Sz, /*t=*/true); 701 SmallBitVector MaskedIndices(Sz); 702 for (unsigned I = 0; I < Sz; ++I) { 703 if (Order[I] < Sz) 704 UnusedIndices.reset(Order[I]); 705 else 706 MaskedIndices.set(I); 707 } 708 if (MaskedIndices.none()) 709 return; 710 assert(UnusedIndices.count() == MaskedIndices.count() && 711 "Non-synced masked/available indices."); 712 int Idx = UnusedIndices.find_first(); 713 int MIdx = MaskedIndices.find_first(); 714 while (MIdx >= 0) { 715 assert(Idx >= 0 && "Indices must be synced."); 716 Order[MIdx] = Idx; 717 Idx = UnusedIndices.find_next(Idx); 718 MIdx = MaskedIndices.find_next(MIdx); 719 } 720 } 721 722 namespace llvm { 723 724 static void inversePermutation(ArrayRef<unsigned> Indices, 725 SmallVectorImpl<int> &Mask) { 726 Mask.clear(); 727 const unsigned E = Indices.size(); 728 Mask.resize(E, UndefMaskElem); 729 for (unsigned I = 0; I < E; ++I) 730 Mask[Indices[I]] = I; 731 } 732 733 /// \returns inserting index of InsertElement or InsertValue instruction, 734 /// using Offset as base offset for index. 735 static Optional<unsigned> getInsertIndex(Value *InsertInst, 736 unsigned Offset = 0) { 737 int Index = Offset; 738 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 739 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 740 auto *VT = cast<FixedVectorType>(IE->getType()); 741 if (CI->getValue().uge(VT->getNumElements())) 742 return None; 743 Index *= VT->getNumElements(); 744 Index += CI->getZExtValue(); 745 return Index; 746 } 747 return None; 748 } 749 750 auto *IV = cast<InsertValueInst>(InsertInst); 751 Type *CurrentType = IV->getType(); 752 for (unsigned I : IV->indices()) { 753 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 754 Index *= ST->getNumElements(); 755 CurrentType = ST->getElementType(I); 756 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 757 Index *= AT->getNumElements(); 758 CurrentType = AT->getElementType(); 759 } else { 760 return None; 761 } 762 Index += I; 763 } 764 return Index; 765 } 766 767 /// Reorders the list of scalars in accordance with the given \p Mask. 768 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 769 ArrayRef<int> Mask) { 770 assert(!Mask.empty() && "Expected non-empty mask."); 771 SmallVector<Value *> Prev(Scalars.size(), 772 UndefValue::get(Scalars.front()->getType())); 773 Prev.swap(Scalars); 774 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 775 if (Mask[I] != UndefMaskElem) 776 Scalars[Mask[I]] = Prev[I]; 777 } 778 779 /// Checks if the provided value does not require scheduling. It does not 780 /// require scheduling if this is not an instruction or it is an instruction 781 /// that does not read/write memory and all operands are either not instructions 782 /// or phi nodes or instructions from different blocks. 783 static bool areAllOperandsNonInsts(Value *V) { 784 auto *I = dyn_cast<Instruction>(V); 785 if (!I) 786 return true; 787 return !I->mayReadOrWriteMemory() && all_of(I->operands(), [I](Value *V) { 788 auto *IO = dyn_cast<Instruction>(V); 789 if (!IO) 790 return true; 791 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 792 }); 793 } 794 795 /// Checks if the provided value does not require scheduling. It does not 796 /// require scheduling if this is not an instruction or it is an instruction 797 /// that does not read/write memory and all users are phi nodes or instructions 798 /// from the different blocks. 799 static bool isUsedOutsideBlock(Value *V) { 800 auto *I = dyn_cast<Instruction>(V); 801 if (!I) 802 return true; 803 // Limits the number of uses to save compile time. 804 constexpr int UsesLimit = 8; 805 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 806 all_of(I->users(), [I](User *U) { 807 auto *IU = dyn_cast<Instruction>(U); 808 if (!IU) 809 return true; 810 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 811 }); 812 } 813 814 /// Checks if the specified value does not require scheduling. It does not 815 /// require scheduling if all operands and all users do not need to be scheduled 816 /// in the current basic block. 817 static bool doesNotNeedToBeScheduled(Value *V) { 818 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 819 } 820 821 /// Checks if the specified array of instructions does not require scheduling. 822 /// It is so if all either instructions have operands that do not require 823 /// scheduling or their users do not require scheduling since they are phis or 824 /// in other basic blocks. 825 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 826 return !VL.empty() && 827 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 828 } 829 830 namespace slpvectorizer { 831 832 /// Bottom Up SLP Vectorizer. 833 class BoUpSLP { 834 struct TreeEntry; 835 struct ScheduleData; 836 837 public: 838 using ValueList = SmallVector<Value *, 8>; 839 using InstrList = SmallVector<Instruction *, 16>; 840 using ValueSet = SmallPtrSet<Value *, 16>; 841 using StoreList = SmallVector<StoreInst *, 8>; 842 using ExtraValueToDebugLocsMap = 843 MapVector<Value *, SmallVector<Instruction *, 2>>; 844 using OrdersType = SmallVector<unsigned, 4>; 845 846 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 847 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 848 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 849 MemorySSA *MSSA, const DataLayout *DL, OptimizationRemarkEmitter *ORE) 850 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 851 DT(Dt), AC(AC), DB(DB), MSSA(MSSA), DL(DL), ORE(ORE), 852 Builder(Se->getContext()) { 853 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 854 // Use the vector register size specified by the target unless overridden 855 // by a command-line option. 856 // TODO: It would be better to limit the vectorization factor based on 857 // data type rather than just register size. For example, x86 AVX has 858 // 256-bit registers, but it does not support integer operations 859 // at that width (that requires AVX2). 860 if (MaxVectorRegSizeOption.getNumOccurrences()) 861 MaxVecRegSize = MaxVectorRegSizeOption; 862 else 863 MaxVecRegSize = 864 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 865 .getFixedSize(); 866 867 if (MinVectorRegSizeOption.getNumOccurrences()) 868 MinVecRegSize = MinVectorRegSizeOption; 869 else 870 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 871 } 872 873 /// Vectorize the tree that starts with the elements in \p VL. 874 /// Returns the vectorized root. 875 Value *vectorizeTree(); 876 877 /// Vectorize the tree but with the list of externally used values \p 878 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 879 /// generated extractvalue instructions. 880 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 881 882 /// \returns the cost incurred by unwanted spills and fills, caused by 883 /// holding live values over call sites. 884 InstructionCost getSpillCost() const; 885 886 /// \returns the vectorization cost of the subtree that starts at \p VL. 887 /// A negative number means that this is profitable. 888 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 889 890 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 891 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 892 void buildTree(ArrayRef<Value *> Roots, 893 ArrayRef<Value *> UserIgnoreLst = None); 894 895 /// Builds external uses of the vectorized scalars, i.e. the list of 896 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 897 /// ExternallyUsedValues contains additional list of external uses to handle 898 /// vectorization of reductions. 899 void 900 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 901 902 /// Clear the internal data structures that are created by 'buildTree'. 903 void deleteTree() { 904 VectorizableTree.clear(); 905 ScalarToTreeEntry.clear(); 906 MustGather.clear(); 907 ExternalUses.clear(); 908 for (auto &Iter : BlocksSchedules) { 909 BlockScheduling *BS = Iter.second.get(); 910 BS->clear(); 911 } 912 MinBWs.clear(); 913 InstrElementSize.clear(); 914 } 915 916 unsigned getTreeSize() const { return VectorizableTree.size(); } 917 918 /// Perform LICM and CSE on the newly generated gather sequences. 919 void optimizeGatherSequence(); 920 921 /// Checks if the specified gather tree entry \p TE can be represented as a 922 /// shuffled vector entry + (possibly) permutation with other gathers. It 923 /// implements the checks only for possibly ordered scalars (Loads, 924 /// ExtractElement, ExtractValue), which can be part of the graph. 925 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 926 927 /// Gets reordering data for the given tree entry. If the entry is vectorized 928 /// - just return ReorderIndices, otherwise check if the scalars can be 929 /// reordered and return the most optimal order. 930 /// \param TopToBottom If true, include the order of vectorized stores and 931 /// insertelement nodes, otherwise skip them. 932 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 933 934 /// Reorders the current graph to the most profitable order starting from the 935 /// root node to the leaf nodes. The best order is chosen only from the nodes 936 /// of the same size (vectorization factor). Smaller nodes are considered 937 /// parts of subgraph with smaller VF and they are reordered independently. We 938 /// can make it because we still need to extend smaller nodes to the wider VF 939 /// and we can merge reordering shuffles with the widening shuffles. 940 void reorderTopToBottom(); 941 942 /// Reorders the current graph to the most profitable order starting from 943 /// leaves to the root. It allows to rotate small subgraphs and reduce the 944 /// number of reshuffles if the leaf nodes use the same order. In this case we 945 /// can merge the orders and just shuffle user node instead of shuffling its 946 /// operands. Plus, even the leaf nodes have different orders, it allows to 947 /// sink reordering in the graph closer to the root node and merge it later 948 /// during analysis. 949 void reorderBottomToTop(bool IgnoreReorder = false); 950 951 /// \return The vector element size in bits to use when vectorizing the 952 /// expression tree ending at \p V. If V is a store, the size is the width of 953 /// the stored value. Otherwise, the size is the width of the largest loaded 954 /// value reaching V. This method is used by the vectorizer to calculate 955 /// vectorization factors. 956 unsigned getVectorElementSize(Value *V); 957 958 /// Compute the minimum type sizes required to represent the entries in a 959 /// vectorizable tree. 960 void computeMinimumValueSizes(); 961 962 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 963 unsigned getMaxVecRegSize() const { 964 return MaxVecRegSize; 965 } 966 967 // \returns minimum vector register size as set by cl::opt. 968 unsigned getMinVecRegSize() const { 969 return MinVecRegSize; 970 } 971 972 unsigned getMinVF(unsigned Sz) const { 973 return std::max(2U, getMinVecRegSize() / Sz); 974 } 975 976 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 977 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 978 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 979 return MaxVF ? MaxVF : UINT_MAX; 980 } 981 982 /// Check if homogeneous aggregate is isomorphic to some VectorType. 983 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 984 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 985 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 986 /// 987 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 988 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 989 990 /// \returns True if the VectorizableTree is both tiny and not fully 991 /// vectorizable. We do not vectorize such trees. 992 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 993 994 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 995 /// can be load combined in the backend. Load combining may not be allowed in 996 /// the IR optimizer, so we do not want to alter the pattern. For example, 997 /// partially transforming a scalar bswap() pattern into vector code is 998 /// effectively impossible for the backend to undo. 999 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1000 /// may not be necessary. 1001 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1002 1003 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1004 /// can be load combined in the backend. Load combining may not be allowed in 1005 /// the IR optimizer, so we do not want to alter the pattern. For example, 1006 /// partially transforming a scalar bswap() pattern into vector code is 1007 /// effectively impossible for the backend to undo. 1008 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1009 /// may not be necessary. 1010 bool isLoadCombineCandidate() const; 1011 1012 OptimizationRemarkEmitter *getORE() { return ORE; } 1013 1014 /// This structure holds any data we need about the edges being traversed 1015 /// during buildTree_rec(). We keep track of: 1016 /// (i) the user TreeEntry index, and 1017 /// (ii) the index of the edge. 1018 struct EdgeInfo { 1019 EdgeInfo() = default; 1020 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1021 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1022 /// The user TreeEntry. 1023 TreeEntry *UserTE = nullptr; 1024 /// The operand index of the use. 1025 unsigned EdgeIdx = UINT_MAX; 1026 #ifndef NDEBUG 1027 friend inline raw_ostream &operator<<(raw_ostream &OS, 1028 const BoUpSLP::EdgeInfo &EI) { 1029 EI.dump(OS); 1030 return OS; 1031 } 1032 /// Debug print. 1033 void dump(raw_ostream &OS) const { 1034 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1035 << " EdgeIdx:" << EdgeIdx << "}"; 1036 } 1037 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1038 #endif 1039 }; 1040 1041 /// A helper data structure to hold the operands of a vector of instructions. 1042 /// This supports a fixed vector length for all operand vectors. 1043 class VLOperands { 1044 /// For each operand we need (i) the value, and (ii) the opcode that it 1045 /// would be attached to if the expression was in a left-linearized form. 1046 /// This is required to avoid illegal operand reordering. 1047 /// For example: 1048 /// \verbatim 1049 /// 0 Op1 1050 /// |/ 1051 /// Op1 Op2 Linearized + Op2 1052 /// \ / ----------> |/ 1053 /// - - 1054 /// 1055 /// Op1 - Op2 (0 + Op1) - Op2 1056 /// \endverbatim 1057 /// 1058 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1059 /// 1060 /// Another way to think of this is to track all the operations across the 1061 /// path from the operand all the way to the root of the tree and to 1062 /// calculate the operation that corresponds to this path. For example, the 1063 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1064 /// corresponding operation is a '-' (which matches the one in the 1065 /// linearized tree, as shown above). 1066 /// 1067 /// For lack of a better term, we refer to this operation as Accumulated 1068 /// Path Operation (APO). 1069 struct OperandData { 1070 OperandData() = default; 1071 OperandData(Value *V, bool APO, bool IsUsed) 1072 : V(V), APO(APO), IsUsed(IsUsed) {} 1073 /// The operand value. 1074 Value *V = nullptr; 1075 /// TreeEntries only allow a single opcode, or an alternate sequence of 1076 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1077 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1078 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1079 /// (e.g., Add/Mul) 1080 bool APO = false; 1081 /// Helper data for the reordering function. 1082 bool IsUsed = false; 1083 }; 1084 1085 /// During operand reordering, we are trying to select the operand at lane 1086 /// that matches best with the operand at the neighboring lane. Our 1087 /// selection is based on the type of value we are looking for. For example, 1088 /// if the neighboring lane has a load, we need to look for a load that is 1089 /// accessing a consecutive address. These strategies are summarized in the 1090 /// 'ReorderingMode' enumerator. 1091 enum class ReorderingMode { 1092 Load, ///< Matching loads to consecutive memory addresses 1093 Opcode, ///< Matching instructions based on opcode (same or alternate) 1094 Constant, ///< Matching constants 1095 Splat, ///< Matching the same instruction multiple times (broadcast) 1096 Failed, ///< We failed to create a vectorizable group 1097 }; 1098 1099 using OperandDataVec = SmallVector<OperandData, 2>; 1100 1101 /// A vector of operand vectors. 1102 SmallVector<OperandDataVec, 4> OpsVec; 1103 1104 const DataLayout &DL; 1105 ScalarEvolution &SE; 1106 const BoUpSLP &R; 1107 1108 /// \returns the operand data at \p OpIdx and \p Lane. 1109 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1110 return OpsVec[OpIdx][Lane]; 1111 } 1112 1113 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1114 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1115 return OpsVec[OpIdx][Lane]; 1116 } 1117 1118 /// Clears the used flag for all entries. 1119 void clearUsed() { 1120 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1121 OpIdx != NumOperands; ++OpIdx) 1122 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1123 ++Lane) 1124 OpsVec[OpIdx][Lane].IsUsed = false; 1125 } 1126 1127 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1128 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1129 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1130 } 1131 1132 // The hard-coded scores listed here are not very important, though it shall 1133 // be higher for better matches to improve the resulting cost. When 1134 // computing the scores of matching one sub-tree with another, we are 1135 // basically counting the number of values that are matching. So even if all 1136 // scores are set to 1, we would still get a decent matching result. 1137 // However, sometimes we have to break ties. For example we may have to 1138 // choose between matching loads vs matching opcodes. This is what these 1139 // scores are helping us with: they provide the order of preference. Also, 1140 // this is important if the scalar is externally used or used in another 1141 // tree entry node in the different lane. 1142 1143 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1144 static const int ScoreConsecutiveLoads = 4; 1145 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1146 static const int ScoreReversedLoads = 3; 1147 /// ExtractElementInst from same vector and consecutive indexes. 1148 static const int ScoreConsecutiveExtracts = 4; 1149 /// ExtractElementInst from same vector and reversed indices. 1150 static const int ScoreReversedExtracts = 3; 1151 /// Constants. 1152 static const int ScoreConstants = 2; 1153 /// Instructions with the same opcode. 1154 static const int ScoreSameOpcode = 2; 1155 /// Instructions with alt opcodes (e.g, add + sub). 1156 static const int ScoreAltOpcodes = 1; 1157 /// Identical instructions (a.k.a. splat or broadcast). 1158 static const int ScoreSplat = 1; 1159 /// Matching with an undef is preferable to failing. 1160 static const int ScoreUndef = 1; 1161 /// Score for failing to find a decent match. 1162 static const int ScoreFail = 0; 1163 /// Score if all users are vectorized. 1164 static const int ScoreAllUserVectorized = 1; 1165 1166 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1167 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1168 /// MainAltOps. 1169 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1170 ScalarEvolution &SE, int NumLanes, 1171 ArrayRef<Value *> MainAltOps) { 1172 if (V1 == V2) 1173 return VLOperands::ScoreSplat; 1174 1175 auto *LI1 = dyn_cast<LoadInst>(V1); 1176 auto *LI2 = dyn_cast<LoadInst>(V2); 1177 if (LI1 && LI2) { 1178 if (LI1->getParent() != LI2->getParent()) 1179 return VLOperands::ScoreFail; 1180 1181 Optional<int> Dist = getPointersDiff( 1182 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1183 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1184 if (!Dist || *Dist == 0) 1185 return VLOperands::ScoreFail; 1186 // The distance is too large - still may be profitable to use masked 1187 // loads/gathers. 1188 if (std::abs(*Dist) > NumLanes / 2) 1189 return VLOperands::ScoreAltOpcodes; 1190 // This still will detect consecutive loads, but we might have "holes" 1191 // in some cases. It is ok for non-power-2 vectorization and may produce 1192 // better results. It should not affect current vectorization. 1193 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1194 : VLOperands::ScoreReversedLoads; 1195 } 1196 1197 auto *C1 = dyn_cast<Constant>(V1); 1198 auto *C2 = dyn_cast<Constant>(V2); 1199 if (C1 && C2) 1200 return VLOperands::ScoreConstants; 1201 1202 // Extracts from consecutive indexes of the same vector better score as 1203 // the extracts could be optimized away. 1204 Value *EV1; 1205 ConstantInt *Ex1Idx; 1206 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1207 // Undefs are always profitable for extractelements. 1208 if (isa<UndefValue>(V2)) 1209 return VLOperands::ScoreConsecutiveExtracts; 1210 Value *EV2 = nullptr; 1211 ConstantInt *Ex2Idx = nullptr; 1212 if (match(V2, 1213 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1214 m_Undef())))) { 1215 // Undefs are always profitable for extractelements. 1216 if (!Ex2Idx) 1217 return VLOperands::ScoreConsecutiveExtracts; 1218 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1219 return VLOperands::ScoreConsecutiveExtracts; 1220 if (EV2 == EV1) { 1221 int Idx1 = Ex1Idx->getZExtValue(); 1222 int Idx2 = Ex2Idx->getZExtValue(); 1223 int Dist = Idx2 - Idx1; 1224 // The distance is too large - still may be profitable to use 1225 // shuffles. 1226 if (std::abs(Dist) == 0) 1227 return VLOperands::ScoreSplat; 1228 if (std::abs(Dist) > NumLanes / 2) 1229 return VLOperands::ScoreSameOpcode; 1230 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1231 : VLOperands::ScoreReversedExtracts; 1232 } 1233 return VLOperands::ScoreAltOpcodes; 1234 } 1235 return VLOperands::ScoreFail; 1236 } 1237 1238 auto *I1 = dyn_cast<Instruction>(V1); 1239 auto *I2 = dyn_cast<Instruction>(V2); 1240 if (I1 && I2) { 1241 if (I1->getParent() != I2->getParent()) 1242 return VLOperands::ScoreFail; 1243 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1244 Ops.push_back(I1); 1245 Ops.push_back(I2); 1246 InstructionsState S = getSameOpcode(Ops); 1247 // Note: Only consider instructions with <= 2 operands to avoid 1248 // complexity explosion. 1249 if (S.getOpcode() && 1250 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1251 !S.isAltShuffle()) && 1252 all_of(Ops, [&S](Value *V) { 1253 return cast<Instruction>(V)->getNumOperands() == 1254 S.MainOp->getNumOperands(); 1255 })) 1256 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1257 : VLOperands::ScoreSameOpcode; 1258 } 1259 1260 if (isa<UndefValue>(V2)) 1261 return VLOperands::ScoreUndef; 1262 1263 return VLOperands::ScoreFail; 1264 } 1265 1266 /// \param Lane lane of the operands under analysis. 1267 /// \param OpIdx operand index in \p Lane lane we're looking the best 1268 /// candidate for. 1269 /// \param Idx operand index of the current candidate value. 1270 /// \returns The additional score due to possible broadcasting of the 1271 /// elements in the lane. It is more profitable to have power-of-2 unique 1272 /// elements in the lane, it will be vectorized with higher probability 1273 /// after removing duplicates. Currently the SLP vectorizer supports only 1274 /// vectorization of the power-of-2 number of unique scalars. 1275 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1276 Value *IdxLaneV = getData(Idx, Lane).V; 1277 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1278 return 0; 1279 SmallPtrSet<Value *, 4> Uniques; 1280 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1281 if (Ln == Lane) 1282 continue; 1283 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1284 if (!isa<Instruction>(OpIdxLnV)) 1285 return 0; 1286 Uniques.insert(OpIdxLnV); 1287 } 1288 int UniquesCount = Uniques.size(); 1289 int UniquesCntWithIdxLaneV = 1290 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1291 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1292 int UniquesCntWithOpIdxLaneV = 1293 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1294 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1295 return 0; 1296 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1297 UniquesCntWithOpIdxLaneV) - 1298 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1299 } 1300 1301 /// \param Lane lane of the operands under analysis. 1302 /// \param OpIdx operand index in \p Lane lane we're looking the best 1303 /// candidate for. 1304 /// \param Idx operand index of the current candidate value. 1305 /// \returns The additional score for the scalar which users are all 1306 /// vectorized. 1307 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1308 Value *IdxLaneV = getData(Idx, Lane).V; 1309 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1310 // Do not care about number of uses for vector-like instructions 1311 // (extractelement/extractvalue with constant indices), they are extracts 1312 // themselves and already externally used. Vectorization of such 1313 // instructions does not add extra extractelement instruction, just may 1314 // remove it. 1315 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1316 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1317 return VLOperands::ScoreAllUserVectorized; 1318 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1319 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1320 return 0; 1321 return R.areAllUsersVectorized(IdxLaneI, None) 1322 ? VLOperands::ScoreAllUserVectorized 1323 : 0; 1324 } 1325 1326 /// Go through the operands of \p LHS and \p RHS recursively until \p 1327 /// MaxLevel, and return the cummulative score. For example: 1328 /// \verbatim 1329 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1330 /// \ / \ / \ / \ / 1331 /// + + + + 1332 /// G1 G2 G3 G4 1333 /// \endverbatim 1334 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1335 /// each level recursively, accumulating the score. It starts from matching 1336 /// the additions at level 0, then moves on to the loads (level 1). The 1337 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1338 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1339 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1340 /// Please note that the order of the operands does not matter, as we 1341 /// evaluate the score of all profitable combinations of operands. In 1342 /// other words the score of G1 and G4 is the same as G1 and G2. This 1343 /// heuristic is based on ideas described in: 1344 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1345 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1346 /// Luís F. W. Góes 1347 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1348 ArrayRef<Value *> MainAltOps) { 1349 1350 // Get the shallow score of V1 and V2. 1351 int ShallowScoreAtThisLevel = 1352 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1353 1354 // If reached MaxLevel, 1355 // or if V1 and V2 are not instructions, 1356 // or if they are SPLAT, 1357 // or if they are not consecutive, 1358 // or if profitable to vectorize loads or extractelements, early return 1359 // the current cost. 1360 auto *I1 = dyn_cast<Instruction>(LHS); 1361 auto *I2 = dyn_cast<Instruction>(RHS); 1362 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1363 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1364 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1365 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1366 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1367 ShallowScoreAtThisLevel)) 1368 return ShallowScoreAtThisLevel; 1369 assert(I1 && I2 && "Should have early exited."); 1370 1371 // Contains the I2 operand indexes that got matched with I1 operands. 1372 SmallSet<unsigned, 4> Op2Used; 1373 1374 // Recursion towards the operands of I1 and I2. We are trying all possible 1375 // operand pairs, and keeping track of the best score. 1376 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1377 OpIdx1 != NumOperands1; ++OpIdx1) { 1378 // Try to pair op1I with the best operand of I2. 1379 int MaxTmpScore = 0; 1380 unsigned MaxOpIdx2 = 0; 1381 bool FoundBest = false; 1382 // If I2 is commutative try all combinations. 1383 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1384 unsigned ToIdx = isCommutative(I2) 1385 ? I2->getNumOperands() 1386 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1387 assert(FromIdx <= ToIdx && "Bad index"); 1388 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1389 // Skip operands already paired with OpIdx1. 1390 if (Op2Used.count(OpIdx2)) 1391 continue; 1392 // Recursively calculate the cost at each level 1393 int TmpScore = 1394 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1395 CurrLevel + 1, MaxLevel, None); 1396 // Look for the best score. 1397 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1398 MaxTmpScore = TmpScore; 1399 MaxOpIdx2 = OpIdx2; 1400 FoundBest = true; 1401 } 1402 } 1403 if (FoundBest) { 1404 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1405 Op2Used.insert(MaxOpIdx2); 1406 ShallowScoreAtThisLevel += MaxTmpScore; 1407 } 1408 } 1409 return ShallowScoreAtThisLevel; 1410 } 1411 1412 /// Score scaling factor for fully compatible instructions but with 1413 /// different number of external uses. Allows better selection of the 1414 /// instructions with less external uses. 1415 static const int ScoreScaleFactor = 10; 1416 1417 /// \Returns the look-ahead score, which tells us how much the sub-trees 1418 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1419 /// score. This helps break ties in an informed way when we cannot decide on 1420 /// the order of the operands by just considering the immediate 1421 /// predecessors. 1422 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1423 int Lane, unsigned OpIdx, unsigned Idx, 1424 bool &IsUsed) { 1425 int Score = 1426 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1427 if (Score) { 1428 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1429 if (Score <= -SplatScore) { 1430 // Set the minimum score for splat-like sequence to avoid setting 1431 // failed state. 1432 Score = 1; 1433 } else { 1434 Score += SplatScore; 1435 // Scale score to see the difference between different operands 1436 // and similar operands but all vectorized/not all vectorized 1437 // uses. It does not affect actual selection of the best 1438 // compatible operand in general, just allows to select the 1439 // operand with all vectorized uses. 1440 Score *= ScoreScaleFactor; 1441 Score += getExternalUseScore(Lane, OpIdx, Idx); 1442 IsUsed = true; 1443 } 1444 } 1445 return Score; 1446 } 1447 1448 /// Best defined scores per lanes between the passes. Used to choose the 1449 /// best operand (with the highest score) between the passes. 1450 /// The key - {Operand Index, Lane}. 1451 /// The value - the best score between the passes for the lane and the 1452 /// operand. 1453 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1454 BestScoresPerLanes; 1455 1456 // Search all operands in Ops[*][Lane] for the one that matches best 1457 // Ops[OpIdx][LastLane] and return its opreand index. 1458 // If no good match can be found, return None. 1459 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1460 ArrayRef<ReorderingMode> ReorderingModes, 1461 ArrayRef<Value *> MainAltOps) { 1462 unsigned NumOperands = getNumOperands(); 1463 1464 // The operand of the previous lane at OpIdx. 1465 Value *OpLastLane = getData(OpIdx, LastLane).V; 1466 1467 // Our strategy mode for OpIdx. 1468 ReorderingMode RMode = ReorderingModes[OpIdx]; 1469 if (RMode == ReorderingMode::Failed) 1470 return None; 1471 1472 // The linearized opcode of the operand at OpIdx, Lane. 1473 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1474 1475 // The best operand index and its score. 1476 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1477 // are using the score to differentiate between the two. 1478 struct BestOpData { 1479 Optional<unsigned> Idx = None; 1480 unsigned Score = 0; 1481 } BestOp; 1482 BestOp.Score = 1483 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1484 .first->second; 1485 1486 // Track if the operand must be marked as used. If the operand is set to 1487 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1488 // want to reestimate the operands again on the following iterations). 1489 bool IsUsed = 1490 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1491 // Iterate through all unused operands and look for the best. 1492 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1493 // Get the operand at Idx and Lane. 1494 OperandData &OpData = getData(Idx, Lane); 1495 Value *Op = OpData.V; 1496 bool OpAPO = OpData.APO; 1497 1498 // Skip already selected operands. 1499 if (OpData.IsUsed) 1500 continue; 1501 1502 // Skip if we are trying to move the operand to a position with a 1503 // different opcode in the linearized tree form. This would break the 1504 // semantics. 1505 if (OpAPO != OpIdxAPO) 1506 continue; 1507 1508 // Look for an operand that matches the current mode. 1509 switch (RMode) { 1510 case ReorderingMode::Load: 1511 case ReorderingMode::Constant: 1512 case ReorderingMode::Opcode: { 1513 bool LeftToRight = Lane > LastLane; 1514 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1515 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1516 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1517 OpIdx, Idx, IsUsed); 1518 if (Score > static_cast<int>(BestOp.Score)) { 1519 BestOp.Idx = Idx; 1520 BestOp.Score = Score; 1521 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1522 } 1523 break; 1524 } 1525 case ReorderingMode::Splat: 1526 if (Op == OpLastLane) 1527 BestOp.Idx = Idx; 1528 break; 1529 case ReorderingMode::Failed: 1530 llvm_unreachable("Not expected Failed reordering mode."); 1531 } 1532 } 1533 1534 if (BestOp.Idx) { 1535 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1536 return BestOp.Idx; 1537 } 1538 // If we could not find a good match return None. 1539 return None; 1540 } 1541 1542 /// Helper for reorderOperandVecs. 1543 /// \returns the lane that we should start reordering from. This is the one 1544 /// which has the least number of operands that can freely move about or 1545 /// less profitable because it already has the most optimal set of operands. 1546 unsigned getBestLaneToStartReordering() const { 1547 unsigned Min = UINT_MAX; 1548 unsigned SameOpNumber = 0; 1549 // std::pair<unsigned, unsigned> is used to implement a simple voting 1550 // algorithm and choose the lane with the least number of operands that 1551 // can freely move about or less profitable because it already has the 1552 // most optimal set of operands. The first unsigned is a counter for 1553 // voting, the second unsigned is the counter of lanes with instructions 1554 // with same/alternate opcodes and same parent basic block. 1555 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1556 // Try to be closer to the original results, if we have multiple lanes 1557 // with same cost. If 2 lanes have the same cost, use the one with the 1558 // lowest index. 1559 for (int I = getNumLanes(); I > 0; --I) { 1560 unsigned Lane = I - 1; 1561 OperandsOrderData NumFreeOpsHash = 1562 getMaxNumOperandsThatCanBeReordered(Lane); 1563 // Compare the number of operands that can move and choose the one with 1564 // the least number. 1565 if (NumFreeOpsHash.NumOfAPOs < Min) { 1566 Min = NumFreeOpsHash.NumOfAPOs; 1567 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1568 HashMap.clear(); 1569 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1570 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1571 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1572 // Select the most optimal lane in terms of number of operands that 1573 // should be moved around. 1574 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1575 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1576 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1577 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1578 auto It = HashMap.find(NumFreeOpsHash.Hash); 1579 if (It == HashMap.end()) 1580 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1581 else 1582 ++It->second.first; 1583 } 1584 } 1585 // Select the lane with the minimum counter. 1586 unsigned BestLane = 0; 1587 unsigned CntMin = UINT_MAX; 1588 for (const auto &Data : reverse(HashMap)) { 1589 if (Data.second.first < CntMin) { 1590 CntMin = Data.second.first; 1591 BestLane = Data.second.second; 1592 } 1593 } 1594 return BestLane; 1595 } 1596 1597 /// Data structure that helps to reorder operands. 1598 struct OperandsOrderData { 1599 /// The best number of operands with the same APOs, which can be 1600 /// reordered. 1601 unsigned NumOfAPOs = UINT_MAX; 1602 /// Number of operands with the same/alternate instruction opcode and 1603 /// parent. 1604 unsigned NumOpsWithSameOpcodeParent = 0; 1605 /// Hash for the actual operands ordering. 1606 /// Used to count operands, actually their position id and opcode 1607 /// value. It is used in the voting mechanism to find the lane with the 1608 /// least number of operands that can freely move about or less profitable 1609 /// because it already has the most optimal set of operands. Can be 1610 /// replaced with SmallVector<unsigned> instead but hash code is faster 1611 /// and requires less memory. 1612 unsigned Hash = 0; 1613 }; 1614 /// \returns the maximum number of operands that are allowed to be reordered 1615 /// for \p Lane and the number of compatible instructions(with the same 1616 /// parent/opcode). This is used as a heuristic for selecting the first lane 1617 /// to start operand reordering. 1618 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1619 unsigned CntTrue = 0; 1620 unsigned NumOperands = getNumOperands(); 1621 // Operands with the same APO can be reordered. We therefore need to count 1622 // how many of them we have for each APO, like this: Cnt[APO] = x. 1623 // Since we only have two APOs, namely true and false, we can avoid using 1624 // a map. Instead we can simply count the number of operands that 1625 // correspond to one of them (in this case the 'true' APO), and calculate 1626 // the other by subtracting it from the total number of operands. 1627 // Operands with the same instruction opcode and parent are more 1628 // profitable since we don't need to move them in many cases, with a high 1629 // probability such lane already can be vectorized effectively. 1630 bool AllUndefs = true; 1631 unsigned NumOpsWithSameOpcodeParent = 0; 1632 Instruction *OpcodeI = nullptr; 1633 BasicBlock *Parent = nullptr; 1634 unsigned Hash = 0; 1635 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1636 const OperandData &OpData = getData(OpIdx, Lane); 1637 if (OpData.APO) 1638 ++CntTrue; 1639 // Use Boyer-Moore majority voting for finding the majority opcode and 1640 // the number of times it occurs. 1641 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1642 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1643 I->getParent() != Parent) { 1644 if (NumOpsWithSameOpcodeParent == 0) { 1645 NumOpsWithSameOpcodeParent = 1; 1646 OpcodeI = I; 1647 Parent = I->getParent(); 1648 } else { 1649 --NumOpsWithSameOpcodeParent; 1650 } 1651 } else { 1652 ++NumOpsWithSameOpcodeParent; 1653 } 1654 } 1655 Hash = hash_combine( 1656 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1657 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1658 } 1659 if (AllUndefs) 1660 return {}; 1661 OperandsOrderData Data; 1662 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1663 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1664 Data.Hash = Hash; 1665 return Data; 1666 } 1667 1668 /// Go through the instructions in VL and append their operands. 1669 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1670 assert(!VL.empty() && "Bad VL"); 1671 assert((empty() || VL.size() == getNumLanes()) && 1672 "Expected same number of lanes"); 1673 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1674 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1675 OpsVec.resize(NumOperands); 1676 unsigned NumLanes = VL.size(); 1677 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1678 OpsVec[OpIdx].resize(NumLanes); 1679 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1680 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1681 // Our tree has just 3 nodes: the root and two operands. 1682 // It is therefore trivial to get the APO. We only need to check the 1683 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1684 // RHS operand. The LHS operand of both add and sub is never attached 1685 // to an inversese operation in the linearized form, therefore its APO 1686 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1687 1688 // Since operand reordering is performed on groups of commutative 1689 // operations or alternating sequences (e.g., +, -), we can safely 1690 // tell the inverse operations by checking commutativity. 1691 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1692 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1693 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1694 APO, false}; 1695 } 1696 } 1697 } 1698 1699 /// \returns the number of operands. 1700 unsigned getNumOperands() const { return OpsVec.size(); } 1701 1702 /// \returns the number of lanes. 1703 unsigned getNumLanes() const { return OpsVec[0].size(); } 1704 1705 /// \returns the operand value at \p OpIdx and \p Lane. 1706 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1707 return getData(OpIdx, Lane).V; 1708 } 1709 1710 /// \returns true if the data structure is empty. 1711 bool empty() const { return OpsVec.empty(); } 1712 1713 /// Clears the data. 1714 void clear() { OpsVec.clear(); } 1715 1716 /// \Returns true if there are enough operands identical to \p Op to fill 1717 /// the whole vector. 1718 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1719 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1720 bool OpAPO = getData(OpIdx, Lane).APO; 1721 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1722 if (Ln == Lane) 1723 continue; 1724 // This is set to true if we found a candidate for broadcast at Lane. 1725 bool FoundCandidate = false; 1726 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1727 OperandData &Data = getData(OpI, Ln); 1728 if (Data.APO != OpAPO || Data.IsUsed) 1729 continue; 1730 if (Data.V == Op) { 1731 FoundCandidate = true; 1732 Data.IsUsed = true; 1733 break; 1734 } 1735 } 1736 if (!FoundCandidate) 1737 return false; 1738 } 1739 return true; 1740 } 1741 1742 public: 1743 /// Initialize with all the operands of the instruction vector \p RootVL. 1744 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1745 ScalarEvolution &SE, const BoUpSLP &R) 1746 : DL(DL), SE(SE), R(R) { 1747 // Append all the operands of RootVL. 1748 appendOperandsOfVL(RootVL); 1749 } 1750 1751 /// \Returns a value vector with the operands across all lanes for the 1752 /// opearnd at \p OpIdx. 1753 ValueList getVL(unsigned OpIdx) const { 1754 ValueList OpVL(OpsVec[OpIdx].size()); 1755 assert(OpsVec[OpIdx].size() == getNumLanes() && 1756 "Expected same num of lanes across all operands"); 1757 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1758 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1759 return OpVL; 1760 } 1761 1762 // Performs operand reordering for 2 or more operands. 1763 // The original operands are in OrigOps[OpIdx][Lane]. 1764 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1765 void reorder() { 1766 unsigned NumOperands = getNumOperands(); 1767 unsigned NumLanes = getNumLanes(); 1768 // Each operand has its own mode. We are using this mode to help us select 1769 // the instructions for each lane, so that they match best with the ones 1770 // we have selected so far. 1771 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1772 1773 // This is a greedy single-pass algorithm. We are going over each lane 1774 // once and deciding on the best order right away with no back-tracking. 1775 // However, in order to increase its effectiveness, we start with the lane 1776 // that has operands that can move the least. For example, given the 1777 // following lanes: 1778 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1779 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1780 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1781 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1782 // we will start at Lane 1, since the operands of the subtraction cannot 1783 // be reordered. Then we will visit the rest of the lanes in a circular 1784 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1785 1786 // Find the first lane that we will start our search from. 1787 unsigned FirstLane = getBestLaneToStartReordering(); 1788 1789 // Initialize the modes. 1790 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1791 Value *OpLane0 = getValue(OpIdx, FirstLane); 1792 // Keep track if we have instructions with all the same opcode on one 1793 // side. 1794 if (isa<LoadInst>(OpLane0)) 1795 ReorderingModes[OpIdx] = ReorderingMode::Load; 1796 else if (isa<Instruction>(OpLane0)) { 1797 // Check if OpLane0 should be broadcast. 1798 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1799 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1800 else 1801 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1802 } 1803 else if (isa<Constant>(OpLane0)) 1804 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1805 else if (isa<Argument>(OpLane0)) 1806 // Our best hope is a Splat. It may save some cost in some cases. 1807 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1808 else 1809 // NOTE: This should be unreachable. 1810 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1811 } 1812 1813 // Check that we don't have same operands. No need to reorder if operands 1814 // are just perfect diamond or shuffled diamond match. Do not do it only 1815 // for possible broadcasts or non-power of 2 number of scalars (just for 1816 // now). 1817 auto &&SkipReordering = [this]() { 1818 SmallPtrSet<Value *, 4> UniqueValues; 1819 ArrayRef<OperandData> Op0 = OpsVec.front(); 1820 for (const OperandData &Data : Op0) 1821 UniqueValues.insert(Data.V); 1822 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1823 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1824 return !UniqueValues.contains(Data.V); 1825 })) 1826 return false; 1827 } 1828 // TODO: Check if we can remove a check for non-power-2 number of 1829 // scalars after full support of non-power-2 vectorization. 1830 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1831 }; 1832 1833 // If the initial strategy fails for any of the operand indexes, then we 1834 // perform reordering again in a second pass. This helps avoid assigning 1835 // high priority to the failed strategy, and should improve reordering for 1836 // the non-failed operand indexes. 1837 for (int Pass = 0; Pass != 2; ++Pass) { 1838 // Check if no need to reorder operands since they're are perfect or 1839 // shuffled diamond match. 1840 // Need to to do it to avoid extra external use cost counting for 1841 // shuffled matches, which may cause regressions. 1842 if (SkipReordering()) 1843 break; 1844 // Skip the second pass if the first pass did not fail. 1845 bool StrategyFailed = false; 1846 // Mark all operand data as free to use. 1847 clearUsed(); 1848 // We keep the original operand order for the FirstLane, so reorder the 1849 // rest of the lanes. We are visiting the nodes in a circular fashion, 1850 // using FirstLane as the center point and increasing the radius 1851 // distance. 1852 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1853 for (unsigned I = 0; I < NumOperands; ++I) 1854 MainAltOps[I].push_back(getData(I, FirstLane).V); 1855 1856 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1857 // Visit the lane on the right and then the lane on the left. 1858 for (int Direction : {+1, -1}) { 1859 int Lane = FirstLane + Direction * Distance; 1860 if (Lane < 0 || Lane >= (int)NumLanes) 1861 continue; 1862 int LastLane = Lane - Direction; 1863 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1864 "Out of bounds"); 1865 // Look for a good match for each operand. 1866 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1867 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1868 Optional<unsigned> BestIdx = getBestOperand( 1869 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1870 // By not selecting a value, we allow the operands that follow to 1871 // select a better matching value. We will get a non-null value in 1872 // the next run of getBestOperand(). 1873 if (BestIdx) { 1874 // Swap the current operand with the one returned by 1875 // getBestOperand(). 1876 swap(OpIdx, BestIdx.getValue(), Lane); 1877 } else { 1878 // We failed to find a best operand, set mode to 'Failed'. 1879 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1880 // Enable the second pass. 1881 StrategyFailed = true; 1882 } 1883 // Try to get the alternate opcode and follow it during analysis. 1884 if (MainAltOps[OpIdx].size() != 2) { 1885 OperandData &AltOp = getData(OpIdx, Lane); 1886 InstructionsState OpS = 1887 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1888 if (OpS.getOpcode() && OpS.isAltShuffle()) 1889 MainAltOps[OpIdx].push_back(AltOp.V); 1890 } 1891 } 1892 } 1893 } 1894 // Skip second pass if the strategy did not fail. 1895 if (!StrategyFailed) 1896 break; 1897 } 1898 } 1899 1900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1901 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1902 switch (RMode) { 1903 case ReorderingMode::Load: 1904 return "Load"; 1905 case ReorderingMode::Opcode: 1906 return "Opcode"; 1907 case ReorderingMode::Constant: 1908 return "Constant"; 1909 case ReorderingMode::Splat: 1910 return "Splat"; 1911 case ReorderingMode::Failed: 1912 return "Failed"; 1913 } 1914 llvm_unreachable("Unimplemented Reordering Type"); 1915 } 1916 1917 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1918 raw_ostream &OS) { 1919 return OS << getModeStr(RMode); 1920 } 1921 1922 /// Debug print. 1923 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1924 printMode(RMode, dbgs()); 1925 } 1926 1927 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1928 return printMode(RMode, OS); 1929 } 1930 1931 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1932 const unsigned Indent = 2; 1933 unsigned Cnt = 0; 1934 for (const OperandDataVec &OpDataVec : OpsVec) { 1935 OS << "Operand " << Cnt++ << "\n"; 1936 for (const OperandData &OpData : OpDataVec) { 1937 OS.indent(Indent) << "{"; 1938 if (Value *V = OpData.V) 1939 OS << *V; 1940 else 1941 OS << "null"; 1942 OS << ", APO:" << OpData.APO << "}\n"; 1943 } 1944 OS << "\n"; 1945 } 1946 return OS; 1947 } 1948 1949 /// Debug print. 1950 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1951 #endif 1952 }; 1953 1954 /// Checks if the instruction is marked for deletion. 1955 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1956 1957 /// Marks values operands for later deletion by replacing them with Undefs. 1958 void eraseInstructions(ArrayRef<Value *> AV); 1959 1960 ~BoUpSLP(); 1961 1962 private: 1963 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1964 /// reordering (i.e. the operands can be reordered because they have only one 1965 /// user and reordarable). 1966 /// \param NonVectorized List of all gather nodes that require reordering 1967 /// (e.g., gather of extractlements or partially vectorizable loads). 1968 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1969 /// reordering, subset of \p NonVectorized. 1970 bool 1971 canReorderOperands(TreeEntry *UserTE, 1972 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1973 ArrayRef<TreeEntry *> ReorderableGathers, 1974 SmallVectorImpl<TreeEntry *> &GatherOps); 1975 1976 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1977 /// if any. If it is not vectorized (gather node), returns nullptr. 1978 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1979 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1980 TreeEntry *TE = nullptr; 1981 const auto *It = find_if(VL, [this, &TE](Value *V) { 1982 TE = getTreeEntry(V); 1983 return TE; 1984 }); 1985 if (It != VL.end() && TE->isSame(VL)) 1986 return TE; 1987 return nullptr; 1988 } 1989 1990 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1991 /// if any. If it is not vectorized (gather node), returns nullptr. 1992 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1993 unsigned OpIdx) const { 1994 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1995 const_cast<TreeEntry *>(UserTE), OpIdx); 1996 } 1997 1998 /// Checks if all users of \p I are the part of the vectorization tree. 1999 bool areAllUsersVectorized(Instruction *I, 2000 ArrayRef<Value *> VectorizedVals) const; 2001 2002 /// \returns the cost of the vectorizable entry. 2003 InstructionCost getEntryCost(const TreeEntry *E, 2004 ArrayRef<Value *> VectorizedVals); 2005 2006 /// This is the recursive part of buildTree. 2007 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2008 const EdgeInfo &EI); 2009 2010 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2011 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2012 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2013 /// returns false, setting \p CurrentOrder to either an empty vector or a 2014 /// non-identity permutation that allows to reuse extract instructions. 2015 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2016 SmallVectorImpl<unsigned> &CurrentOrder) const; 2017 2018 /// Vectorize a single entry in the tree. 2019 Value *vectorizeTree(TreeEntry *E); 2020 2021 /// Vectorize a single entry in the tree, starting in \p VL. 2022 Value *vectorizeTree(ArrayRef<Value *> VL); 2023 2024 /// Create a new vector from a list of scalar values. Produces a sequence 2025 /// which exploits values reused across lanes, and arranges the inserts 2026 /// for ease of later optimization. 2027 Value *createBuildVector(ArrayRef<Value *> VL); 2028 2029 /// \returns the scalarization cost for this type. Scalarization in this 2030 /// context means the creation of vectors from a group of scalars. If \p 2031 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2032 /// vector elements. 2033 InstructionCost getGatherCost(FixedVectorType *Ty, 2034 const APInt &ShuffledIndices, 2035 bool NeedToShuffle) const; 2036 2037 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2038 /// tree entries. 2039 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2040 /// previous tree entries. \p Mask is filled with the shuffle mask. 2041 Optional<TargetTransformInfo::ShuffleKind> 2042 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2043 SmallVectorImpl<const TreeEntry *> &Entries); 2044 2045 /// \returns the scalarization cost for this list of values. Assuming that 2046 /// this subtree gets vectorized, we may need to extract the values from the 2047 /// roots. This method calculates the cost of extracting the values. 2048 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2049 2050 /// Set the Builder insert point to one after the last instruction in 2051 /// the bundle 2052 void setInsertPointAfterBundle(const TreeEntry *E); 2053 2054 /// \returns a vector from a collection of scalars in \p VL. 2055 Value *gather(ArrayRef<Value *> VL); 2056 2057 /// \returns whether the VectorizableTree is fully vectorizable and will 2058 /// be beneficial even the tree height is tiny. 2059 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2060 2061 /// Reorder commutative or alt operands to get better probability of 2062 /// generating vectorized code. 2063 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2064 SmallVectorImpl<Value *> &Left, 2065 SmallVectorImpl<Value *> &Right, 2066 const DataLayout &DL, 2067 ScalarEvolution &SE, 2068 const BoUpSLP &R); 2069 struct TreeEntry { 2070 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2071 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2072 2073 /// \returns true if the scalars in VL are equal to this entry. 2074 bool isSame(ArrayRef<Value *> VL) const { 2075 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2076 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2077 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2078 return VL.size() == Mask.size() && 2079 std::equal(VL.begin(), VL.end(), Mask.begin(), 2080 [Scalars](Value *V, int Idx) { 2081 return (isa<UndefValue>(V) && 2082 Idx == UndefMaskElem) || 2083 (Idx != UndefMaskElem && V == Scalars[Idx]); 2084 }); 2085 }; 2086 if (!ReorderIndices.empty()) { 2087 // TODO: implement matching if the nodes are just reordered, still can 2088 // treat the vector as the same if the list of scalars matches VL 2089 // directly, without reordering. 2090 SmallVector<int> Mask; 2091 inversePermutation(ReorderIndices, Mask); 2092 if (VL.size() == Scalars.size()) 2093 return IsSame(Scalars, Mask); 2094 if (VL.size() == ReuseShuffleIndices.size()) { 2095 ::addMask(Mask, ReuseShuffleIndices); 2096 return IsSame(Scalars, Mask); 2097 } 2098 return false; 2099 } 2100 return IsSame(Scalars, ReuseShuffleIndices); 2101 } 2102 2103 /// \returns true if current entry has same operands as \p TE. 2104 bool hasEqualOperands(const TreeEntry &TE) const { 2105 if (TE.getNumOperands() != getNumOperands()) 2106 return false; 2107 SmallBitVector Used(getNumOperands()); 2108 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2109 unsigned PrevCount = Used.count(); 2110 for (unsigned K = 0; K < E; ++K) { 2111 if (Used.test(K)) 2112 continue; 2113 if (getOperand(K) == TE.getOperand(I)) { 2114 Used.set(K); 2115 break; 2116 } 2117 } 2118 // Check if we actually found the matching operand. 2119 if (PrevCount == Used.count()) 2120 return false; 2121 } 2122 return true; 2123 } 2124 2125 /// \return Final vectorization factor for the node. Defined by the total 2126 /// number of vectorized scalars, including those, used several times in the 2127 /// entry and counted in the \a ReuseShuffleIndices, if any. 2128 unsigned getVectorFactor() const { 2129 if (!ReuseShuffleIndices.empty()) 2130 return ReuseShuffleIndices.size(); 2131 return Scalars.size(); 2132 }; 2133 2134 /// A vector of scalars. 2135 ValueList Scalars; 2136 2137 /// The Scalars are vectorized into this value. It is initialized to Null. 2138 Value *VectorizedValue = nullptr; 2139 2140 /// Do we need to gather this sequence or vectorize it 2141 /// (either with vector instruction or with scatter/gather 2142 /// intrinsics for store/load)? 2143 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2144 EntryState State; 2145 2146 /// Does this sequence require some shuffling? 2147 SmallVector<int, 4> ReuseShuffleIndices; 2148 2149 /// Does this entry require reordering? 2150 SmallVector<unsigned, 4> ReorderIndices; 2151 2152 /// Points back to the VectorizableTree. 2153 /// 2154 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2155 /// to be a pointer and needs to be able to initialize the child iterator. 2156 /// Thus we need a reference back to the container to translate the indices 2157 /// to entries. 2158 VecTreeTy &Container; 2159 2160 /// The TreeEntry index containing the user of this entry. We can actually 2161 /// have multiple users so the data structure is not truly a tree. 2162 SmallVector<EdgeInfo, 1> UserTreeIndices; 2163 2164 /// The index of this treeEntry in VectorizableTree. 2165 int Idx = -1; 2166 2167 private: 2168 /// The operands of each instruction in each lane Operands[op_index][lane]. 2169 /// Note: This helps avoid the replication of the code that performs the 2170 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2171 SmallVector<ValueList, 2> Operands; 2172 2173 /// The main/alternate instruction. 2174 Instruction *MainOp = nullptr; 2175 Instruction *AltOp = nullptr; 2176 2177 public: 2178 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2179 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2180 if (Operands.size() < OpIdx + 1) 2181 Operands.resize(OpIdx + 1); 2182 assert(Operands[OpIdx].empty() && "Already resized?"); 2183 assert(OpVL.size() <= Scalars.size() && 2184 "Number of operands is greater than the number of scalars."); 2185 Operands[OpIdx].resize(OpVL.size()); 2186 copy(OpVL, Operands[OpIdx].begin()); 2187 } 2188 2189 /// Set the operands of this bundle in their original order. 2190 void setOperandsInOrder() { 2191 assert(Operands.empty() && "Already initialized?"); 2192 auto *I0 = cast<Instruction>(Scalars[0]); 2193 Operands.resize(I0->getNumOperands()); 2194 unsigned NumLanes = Scalars.size(); 2195 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2196 OpIdx != NumOperands; ++OpIdx) { 2197 Operands[OpIdx].resize(NumLanes); 2198 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2199 auto *I = cast<Instruction>(Scalars[Lane]); 2200 assert(I->getNumOperands() == NumOperands && 2201 "Expected same number of operands"); 2202 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2203 } 2204 } 2205 } 2206 2207 /// Reorders operands of the node to the given mask \p Mask. 2208 void reorderOperands(ArrayRef<int> Mask) { 2209 for (ValueList &Operand : Operands) 2210 reorderScalars(Operand, Mask); 2211 } 2212 2213 /// \returns the \p OpIdx operand of this TreeEntry. 2214 ValueList &getOperand(unsigned OpIdx) { 2215 assert(OpIdx < Operands.size() && "Off bounds"); 2216 return Operands[OpIdx]; 2217 } 2218 2219 /// \returns the \p OpIdx operand of this TreeEntry. 2220 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2221 assert(OpIdx < Operands.size() && "Off bounds"); 2222 return Operands[OpIdx]; 2223 } 2224 2225 /// \returns the number of operands. 2226 unsigned getNumOperands() const { return Operands.size(); } 2227 2228 /// \return the single \p OpIdx operand. 2229 Value *getSingleOperand(unsigned OpIdx) const { 2230 assert(OpIdx < Operands.size() && "Off bounds"); 2231 assert(!Operands[OpIdx].empty() && "No operand available"); 2232 return Operands[OpIdx][0]; 2233 } 2234 2235 /// Some of the instructions in the list have alternate opcodes. 2236 bool isAltShuffle() const { return MainOp != AltOp; } 2237 2238 bool isOpcodeOrAlt(Instruction *I) const { 2239 unsigned CheckedOpcode = I->getOpcode(); 2240 return (getOpcode() == CheckedOpcode || 2241 getAltOpcode() == CheckedOpcode); 2242 } 2243 2244 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2245 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2246 /// \p OpValue. 2247 Value *isOneOf(Value *Op) const { 2248 auto *I = dyn_cast<Instruction>(Op); 2249 if (I && isOpcodeOrAlt(I)) 2250 return Op; 2251 return MainOp; 2252 } 2253 2254 void setOperations(const InstructionsState &S) { 2255 MainOp = S.MainOp; 2256 AltOp = S.AltOp; 2257 } 2258 2259 Instruction *getMainOp() const { 2260 return MainOp; 2261 } 2262 2263 Instruction *getAltOp() const { 2264 return AltOp; 2265 } 2266 2267 /// The main/alternate opcodes for the list of instructions. 2268 unsigned getOpcode() const { 2269 return MainOp ? MainOp->getOpcode() : 0; 2270 } 2271 2272 unsigned getAltOpcode() const { 2273 return AltOp ? AltOp->getOpcode() : 0; 2274 } 2275 2276 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2277 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2278 int findLaneForValue(Value *V) const { 2279 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2280 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2281 if (!ReorderIndices.empty()) 2282 FoundLane = ReorderIndices[FoundLane]; 2283 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2284 if (!ReuseShuffleIndices.empty()) { 2285 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2286 find(ReuseShuffleIndices, FoundLane)); 2287 } 2288 return FoundLane; 2289 } 2290 2291 #ifndef NDEBUG 2292 /// Debug printer. 2293 LLVM_DUMP_METHOD void dump() const { 2294 dbgs() << Idx << ".\n"; 2295 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2296 dbgs() << "Operand " << OpI << ":\n"; 2297 for (const Value *V : Operands[OpI]) 2298 dbgs().indent(2) << *V << "\n"; 2299 } 2300 dbgs() << "Scalars: \n"; 2301 for (Value *V : Scalars) 2302 dbgs().indent(2) << *V << "\n"; 2303 dbgs() << "State: "; 2304 switch (State) { 2305 case Vectorize: 2306 dbgs() << "Vectorize\n"; 2307 break; 2308 case ScatterVectorize: 2309 dbgs() << "ScatterVectorize\n"; 2310 break; 2311 case NeedToGather: 2312 dbgs() << "NeedToGather\n"; 2313 break; 2314 } 2315 dbgs() << "MainOp: "; 2316 if (MainOp) 2317 dbgs() << *MainOp << "\n"; 2318 else 2319 dbgs() << "NULL\n"; 2320 dbgs() << "AltOp: "; 2321 if (AltOp) 2322 dbgs() << *AltOp << "\n"; 2323 else 2324 dbgs() << "NULL\n"; 2325 dbgs() << "VectorizedValue: "; 2326 if (VectorizedValue) 2327 dbgs() << *VectorizedValue << "\n"; 2328 else 2329 dbgs() << "NULL\n"; 2330 dbgs() << "ReuseShuffleIndices: "; 2331 if (ReuseShuffleIndices.empty()) 2332 dbgs() << "Empty"; 2333 else 2334 for (int ReuseIdx : ReuseShuffleIndices) 2335 dbgs() << ReuseIdx << ", "; 2336 dbgs() << "\n"; 2337 dbgs() << "ReorderIndices: "; 2338 for (unsigned ReorderIdx : ReorderIndices) 2339 dbgs() << ReorderIdx << ", "; 2340 dbgs() << "\n"; 2341 dbgs() << "UserTreeIndices: "; 2342 for (const auto &EInfo : UserTreeIndices) 2343 dbgs() << EInfo << ", "; 2344 dbgs() << "\n"; 2345 } 2346 #endif 2347 }; 2348 2349 #ifndef NDEBUG 2350 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2351 InstructionCost VecCost, 2352 InstructionCost ScalarCost) const { 2353 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2354 dbgs() << "SLP: Costs:\n"; 2355 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2356 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2357 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2358 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2359 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2360 } 2361 #endif 2362 2363 /// Create a new VectorizableTree entry. 2364 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2365 const InstructionsState &S, 2366 const EdgeInfo &UserTreeIdx, 2367 ArrayRef<int> ReuseShuffleIndices = None, 2368 ArrayRef<unsigned> ReorderIndices = None) { 2369 TreeEntry::EntryState EntryState = 2370 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2371 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2372 ReuseShuffleIndices, ReorderIndices); 2373 } 2374 2375 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2376 TreeEntry::EntryState EntryState, 2377 Optional<ScheduleData *> Bundle, 2378 const InstructionsState &S, 2379 const EdgeInfo &UserTreeIdx, 2380 ArrayRef<int> ReuseShuffleIndices = None, 2381 ArrayRef<unsigned> ReorderIndices = None) { 2382 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2383 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2384 "Need to vectorize gather entry?"); 2385 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2386 TreeEntry *Last = VectorizableTree.back().get(); 2387 Last->Idx = VectorizableTree.size() - 1; 2388 Last->State = EntryState; 2389 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2390 ReuseShuffleIndices.end()); 2391 if (ReorderIndices.empty()) { 2392 Last->Scalars.assign(VL.begin(), VL.end()); 2393 Last->setOperations(S); 2394 } else { 2395 // Reorder scalars and build final mask. 2396 Last->Scalars.assign(VL.size(), nullptr); 2397 transform(ReorderIndices, Last->Scalars.begin(), 2398 [VL](unsigned Idx) -> Value * { 2399 if (Idx >= VL.size()) 2400 return UndefValue::get(VL.front()->getType()); 2401 return VL[Idx]; 2402 }); 2403 InstructionsState S = getSameOpcode(Last->Scalars); 2404 Last->setOperations(S); 2405 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2406 } 2407 if (Last->State != TreeEntry::NeedToGather) { 2408 for (Value *V : VL) { 2409 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2410 ScalarToTreeEntry[V] = Last; 2411 } 2412 // Update the scheduler bundle to point to this TreeEntry. 2413 ScheduleData *BundleMember = Bundle.getValue(); 2414 assert((BundleMember || isa<PHINode>(S.MainOp) || 2415 isVectorLikeInstWithConstOps(S.MainOp) || 2416 doesNotNeedToSchedule(VL)) && 2417 "Bundle and VL out of sync"); 2418 if (BundleMember) { 2419 for (Value *V : VL) { 2420 if (doesNotNeedToBeScheduled(V)) 2421 continue; 2422 assert(BundleMember && "Unexpected end of bundle."); 2423 BundleMember->TE = Last; 2424 BundleMember = BundleMember->NextInBundle; 2425 } 2426 } 2427 assert(!BundleMember && "Bundle and VL out of sync"); 2428 } else { 2429 MustGather.insert(VL.begin(), VL.end()); 2430 } 2431 2432 if (UserTreeIdx.UserTE) 2433 Last->UserTreeIndices.push_back(UserTreeIdx); 2434 2435 return Last; 2436 } 2437 2438 /// -- Vectorization State -- 2439 /// Holds all of the tree entries. 2440 TreeEntry::VecTreeTy VectorizableTree; 2441 2442 #ifndef NDEBUG 2443 /// Debug printer. 2444 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2445 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2446 VectorizableTree[Id]->dump(); 2447 dbgs() << "\n"; 2448 } 2449 } 2450 #endif 2451 2452 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2453 2454 const TreeEntry *getTreeEntry(Value *V) const { 2455 return ScalarToTreeEntry.lookup(V); 2456 } 2457 2458 /// Maps a specific scalar to its tree entry. 2459 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2460 2461 /// Maps a value to the proposed vectorizable size. 2462 SmallDenseMap<Value *, unsigned> InstrElementSize; 2463 2464 /// A list of scalars that we found that we need to keep as scalars. 2465 ValueSet MustGather; 2466 2467 /// This POD struct describes one external user in the vectorized tree. 2468 struct ExternalUser { 2469 ExternalUser(Value *S, llvm::User *U, int L) 2470 : Scalar(S), User(U), Lane(L) {} 2471 2472 // Which scalar in our function. 2473 Value *Scalar; 2474 2475 // Which user that uses the scalar. 2476 llvm::User *User; 2477 2478 // Which lane does the scalar belong to. 2479 int Lane; 2480 }; 2481 using UserList = SmallVector<ExternalUser, 16>; 2482 2483 /// Checks if two instructions may access the same memory. 2484 /// 2485 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2486 /// is invariant in the calling loop. 2487 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2488 Instruction *Inst2) { 2489 // First check if the result is already in the cache. 2490 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2491 Optional<bool> &result = AliasCache[key]; 2492 if (result.hasValue()) { 2493 return result.getValue(); 2494 } 2495 bool aliased = true; 2496 if (Loc1.Ptr && isSimple(Inst1)) 2497 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2498 // Store the result in the cache. 2499 result = aliased; 2500 return aliased; 2501 } 2502 2503 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2504 2505 /// Cache for alias results. 2506 /// TODO: consider moving this to the AliasAnalysis itself. 2507 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2508 2509 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2510 // globally through SLP because we don't perform any action which 2511 // invalidates capture results. 2512 BatchAAResults BatchAA; 2513 2514 /// Removes an instruction from its block and eventually deletes it. 2515 /// It's like Instruction::eraseFromParent() except that the actual deletion 2516 /// is delayed until BoUpSLP is destructed. 2517 /// This is required to ensure that there are no incorrect collisions in the 2518 /// AliasCache, which can happen if a new instruction is allocated at the 2519 /// same address as a previously deleted instruction. 2520 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2521 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2522 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2523 } 2524 2525 /// Temporary store for deleted instructions. Instructions will be deleted 2526 /// eventually when the BoUpSLP is destructed. 2527 DenseMap<Instruction *, bool> DeletedInstructions; 2528 2529 /// A list of values that need to extracted out of the tree. 2530 /// This list holds pairs of (Internal Scalar : External User). External User 2531 /// can be nullptr, it means that this Internal Scalar will be used later, 2532 /// after vectorization. 2533 UserList ExternalUses; 2534 2535 /// Values used only by @llvm.assume calls. 2536 SmallPtrSet<const Value *, 32> EphValues; 2537 2538 /// Holds all of the instructions that we gathered. 2539 SetVector<Instruction *> GatherShuffleSeq; 2540 2541 /// A list of blocks that we are going to CSE. 2542 SetVector<BasicBlock *> CSEBlocks; 2543 2544 /// Contains all scheduling relevant data for an instruction. 2545 /// A ScheduleData either represents a single instruction or a member of an 2546 /// instruction bundle (= a group of instructions which is combined into a 2547 /// vector instruction). 2548 struct ScheduleData { 2549 // The initial value for the dependency counters. It means that the 2550 // dependencies are not calculated yet. 2551 enum { InvalidDeps = -1 }; 2552 2553 ScheduleData() = default; 2554 2555 void init(int BlockSchedulingRegionID, Value *OpVal) { 2556 FirstInBundle = this; 2557 NextInBundle = nullptr; 2558 NextLoadStore = nullptr; 2559 IsScheduled = false; 2560 SchedulingRegionID = BlockSchedulingRegionID; 2561 clearDependencies(); 2562 OpValue = OpVal; 2563 TE = nullptr; 2564 } 2565 2566 /// Verify basic self consistency properties 2567 void verify() { 2568 if (hasValidDependencies()) { 2569 assert(UnscheduledDeps <= Dependencies && "invariant"); 2570 } else { 2571 assert(UnscheduledDeps == Dependencies && "invariant"); 2572 } 2573 2574 if (IsScheduled) { 2575 assert(isSchedulingEntity() && 2576 "unexpected scheduled state"); 2577 for (const ScheduleData *BundleMember = this; BundleMember; 2578 BundleMember = BundleMember->NextInBundle) { 2579 assert(BundleMember->hasValidDependencies() && 2580 BundleMember->UnscheduledDeps == 0 && 2581 "unexpected scheduled state"); 2582 assert((BundleMember == this || !BundleMember->IsScheduled) && 2583 "only bundle is marked scheduled"); 2584 } 2585 } 2586 2587 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2588 "all bundle members must be in same basic block"); 2589 } 2590 2591 /// Returns true if the dependency information has been calculated. 2592 /// Note that depenendency validity can vary between instructions within 2593 /// a single bundle. 2594 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2595 2596 /// Returns true for single instructions and for bundle representatives 2597 /// (= the head of a bundle). 2598 bool isSchedulingEntity() const { return FirstInBundle == this; } 2599 2600 /// Returns true if it represents an instruction bundle and not only a 2601 /// single instruction. 2602 bool isPartOfBundle() const { 2603 return NextInBundle != nullptr || FirstInBundle != this || TE; 2604 } 2605 2606 /// Returns true if it is ready for scheduling, i.e. it has no more 2607 /// unscheduled depending instructions/bundles. 2608 bool isReady() const { 2609 assert(isSchedulingEntity() && 2610 "can't consider non-scheduling entity for ready list"); 2611 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2612 } 2613 2614 /// Modifies the number of unscheduled dependencies for this instruction, 2615 /// and returns the number of remaining dependencies for the containing 2616 /// bundle. 2617 int incrementUnscheduledDeps(int Incr) { 2618 assert(hasValidDependencies() && 2619 "increment of unscheduled deps would be meaningless"); 2620 UnscheduledDeps += Incr; 2621 return FirstInBundle->unscheduledDepsInBundle(); 2622 } 2623 2624 /// Sets the number of unscheduled dependencies to the number of 2625 /// dependencies. 2626 void resetUnscheduledDeps() { 2627 UnscheduledDeps = Dependencies; 2628 } 2629 2630 /// Clears all dependency information. 2631 void clearDependencies() { 2632 Dependencies = InvalidDeps; 2633 resetUnscheduledDeps(); 2634 MemoryDependencies.clear(); 2635 } 2636 2637 int unscheduledDepsInBundle() const { 2638 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2639 int Sum = 0; 2640 for (const ScheduleData *BundleMember = this; BundleMember; 2641 BundleMember = BundleMember->NextInBundle) { 2642 if (BundleMember->UnscheduledDeps == InvalidDeps) 2643 return InvalidDeps; 2644 Sum += BundleMember->UnscheduledDeps; 2645 } 2646 return Sum; 2647 } 2648 2649 void dump(raw_ostream &os) const { 2650 if (!isSchedulingEntity()) { 2651 os << "/ " << *Inst; 2652 } else if (NextInBundle) { 2653 os << '[' << *Inst; 2654 ScheduleData *SD = NextInBundle; 2655 while (SD) { 2656 os << ';' << *SD->Inst; 2657 SD = SD->NextInBundle; 2658 } 2659 os << ']'; 2660 } else { 2661 os << *Inst; 2662 } 2663 } 2664 2665 Instruction *Inst = nullptr; 2666 2667 /// Opcode of the current instruction in the schedule data. 2668 Value *OpValue = nullptr; 2669 2670 /// The TreeEntry that this instruction corresponds to. 2671 TreeEntry *TE = nullptr; 2672 2673 /// Points to the head in an instruction bundle (and always to this for 2674 /// single instructions). 2675 ScheduleData *FirstInBundle = nullptr; 2676 2677 /// Single linked list of all instructions in a bundle. Null if it is a 2678 /// single instruction. 2679 ScheduleData *NextInBundle = nullptr; 2680 2681 /// Single linked list of all memory instructions (e.g. load, store, call) 2682 /// in the block - until the end of the scheduling region. 2683 ScheduleData *NextLoadStore = nullptr; 2684 2685 /// The dependent memory instructions. 2686 /// This list is derived on demand in calculateDependencies(). 2687 SmallVector<ScheduleData *, 4> MemoryDependencies; 2688 2689 /// This ScheduleData is in the current scheduling region if this matches 2690 /// the current SchedulingRegionID of BlockScheduling. 2691 int SchedulingRegionID = 0; 2692 2693 /// Used for getting a "good" final ordering of instructions. 2694 int SchedulingPriority = 0; 2695 2696 /// The number of dependencies. Constitutes of the number of users of the 2697 /// instruction plus the number of dependent memory instructions (if any). 2698 /// This value is calculated on demand. 2699 /// If InvalidDeps, the number of dependencies is not calculated yet. 2700 int Dependencies = InvalidDeps; 2701 2702 /// The number of dependencies minus the number of dependencies of scheduled 2703 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2704 /// for scheduling. 2705 /// Note that this is negative as long as Dependencies is not calculated. 2706 int UnscheduledDeps = InvalidDeps; 2707 2708 /// True if this instruction is scheduled (or considered as scheduled in the 2709 /// dry-run). 2710 bool IsScheduled = false; 2711 }; 2712 2713 #ifndef NDEBUG 2714 friend inline raw_ostream &operator<<(raw_ostream &os, 2715 const BoUpSLP::ScheduleData &SD) { 2716 SD.dump(os); 2717 return os; 2718 } 2719 #endif 2720 2721 friend struct GraphTraits<BoUpSLP *>; 2722 friend struct DOTGraphTraits<BoUpSLP *>; 2723 2724 /// Contains all scheduling data for a basic block. 2725 /// It does not schedules instructions, which are not memory read/write 2726 /// instructions and their operands are either constants, or arguments, or 2727 /// phis, or instructions from others blocks, or their users are phis or from 2728 /// the other blocks. The resulting vector instructions can be placed at the 2729 /// beginning of the basic block without scheduling (if operands does not need 2730 /// to be scheduled) or at the end of the block (if users are outside of the 2731 /// block). It allows to save some compile time and memory used by the 2732 /// compiler. 2733 /// ScheduleData is assigned for each instruction in between the boundaries of 2734 /// the tree entry, even for those, which are not part of the graph. It is 2735 /// required to correctly follow the dependencies between the instructions and 2736 /// their correct scheduling. The ScheduleData is not allocated for the 2737 /// instructions, which do not require scheduling, like phis, nodes with 2738 /// extractelements/insertelements only or nodes with instructions, with 2739 /// uses/operands outside of the block. 2740 struct BlockScheduling { 2741 BlockScheduling(BasicBlock *BB) 2742 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2743 2744 void clear() { 2745 ReadyInsts.clear(); 2746 ScheduleStart = nullptr; 2747 ScheduleEnd = nullptr; 2748 FirstLoadStoreInRegion = nullptr; 2749 LastLoadStoreInRegion = nullptr; 2750 2751 // Reduce the maximum schedule region size by the size of the 2752 // previous scheduling run. 2753 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2754 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2755 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2756 ScheduleRegionSize = 0; 2757 2758 // Make a new scheduling region, i.e. all existing ScheduleData is not 2759 // in the new region yet. 2760 ++SchedulingRegionID; 2761 } 2762 2763 ScheduleData *getScheduleData(Instruction *I) { 2764 if (BB != I->getParent()) 2765 // Avoid lookup if can't possibly be in map. 2766 return nullptr; 2767 ScheduleData *SD = ScheduleDataMap.lookup(I); 2768 if (SD && isInSchedulingRegion(SD)) 2769 return SD; 2770 return nullptr; 2771 } 2772 2773 ScheduleData *getScheduleData(Value *V) { 2774 if (auto *I = dyn_cast<Instruction>(V)) 2775 return getScheduleData(I); 2776 return nullptr; 2777 } 2778 2779 ScheduleData *getScheduleData(Value *V, Value *Key) { 2780 if (V == Key) 2781 return getScheduleData(V); 2782 auto I = ExtraScheduleDataMap.find(V); 2783 if (I != ExtraScheduleDataMap.end()) { 2784 ScheduleData *SD = I->second.lookup(Key); 2785 if (SD && isInSchedulingRegion(SD)) 2786 return SD; 2787 } 2788 return nullptr; 2789 } 2790 2791 bool isInSchedulingRegion(ScheduleData *SD) const { 2792 return SD->SchedulingRegionID == SchedulingRegionID; 2793 } 2794 2795 /// Marks an instruction as scheduled and puts all dependent ready 2796 /// instructions into the ready-list. 2797 template <typename ReadyListType> 2798 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2799 SD->IsScheduled = true; 2800 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2801 2802 for (ScheduleData *BundleMember = SD; BundleMember; 2803 BundleMember = BundleMember->NextInBundle) { 2804 if (BundleMember->Inst != BundleMember->OpValue) 2805 continue; 2806 2807 // Handle the def-use chain dependencies. 2808 2809 // Decrement the unscheduled counter and insert to ready list if ready. 2810 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2811 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2812 if (OpDef && OpDef->hasValidDependencies() && 2813 OpDef->incrementUnscheduledDeps(-1) == 0) { 2814 // There are no more unscheduled dependencies after 2815 // decrementing, so we can put the dependent instruction 2816 // into the ready list. 2817 ScheduleData *DepBundle = OpDef->FirstInBundle; 2818 assert(!DepBundle->IsScheduled && 2819 "already scheduled bundle gets ready"); 2820 ReadyList.insert(DepBundle); 2821 LLVM_DEBUG(dbgs() 2822 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2823 } 2824 }); 2825 }; 2826 2827 // If BundleMember is a vector bundle, its operands may have been 2828 // reordered during buildTree(). We therefore need to get its operands 2829 // through the TreeEntry. 2830 if (TreeEntry *TE = BundleMember->TE) { 2831 // Need to search for the lane since the tree entry can be reordered. 2832 int Lane = std::distance(TE->Scalars.begin(), 2833 find(TE->Scalars, BundleMember->Inst)); 2834 assert(Lane >= 0 && "Lane not set"); 2835 2836 // Since vectorization tree is being built recursively this assertion 2837 // ensures that the tree entry has all operands set before reaching 2838 // this code. Couple of exceptions known at the moment are extracts 2839 // where their second (immediate) operand is not added. Since 2840 // immediates do not affect scheduler behavior this is considered 2841 // okay. 2842 auto *In = BundleMember->Inst; 2843 assert(In && 2844 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2845 In->getNumOperands() == TE->getNumOperands()) && 2846 "Missed TreeEntry operands?"); 2847 (void)In; // fake use to avoid build failure when assertions disabled 2848 2849 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2850 OpIdx != NumOperands; ++OpIdx) 2851 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2852 DecrUnsched(I); 2853 } else { 2854 // If BundleMember is a stand-alone instruction, no operand reordering 2855 // has taken place, so we directly access its operands. 2856 for (Use &U : BundleMember->Inst->operands()) 2857 if (auto *I = dyn_cast<Instruction>(U.get())) 2858 DecrUnsched(I); 2859 } 2860 // Handle the memory dependencies. 2861 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2862 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2863 // There are no more unscheduled dependencies after decrementing, 2864 // so we can put the dependent instruction into the ready list. 2865 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2866 assert(!DepBundle->IsScheduled && 2867 "already scheduled bundle gets ready"); 2868 ReadyList.insert(DepBundle); 2869 LLVM_DEBUG(dbgs() 2870 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2871 } 2872 } 2873 } 2874 } 2875 2876 /// Verify basic self consistency properties of the data structure. 2877 void verify() { 2878 if (!ScheduleStart) 2879 return; 2880 2881 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2882 ScheduleStart->comesBefore(ScheduleEnd) && 2883 "Not a valid scheduling region?"); 2884 2885 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2886 auto *SD = getScheduleData(I); 2887 if (!SD) 2888 continue; 2889 assert(isInSchedulingRegion(SD) && 2890 "primary schedule data not in window?"); 2891 assert(isInSchedulingRegion(SD->FirstInBundle) && 2892 "entire bundle in window!"); 2893 (void)SD; 2894 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2895 } 2896 2897 for (auto *SD : ReadyInsts) { 2898 assert(SD->isSchedulingEntity() && SD->isReady() && 2899 "item in ready list not ready?"); 2900 (void)SD; 2901 } 2902 } 2903 2904 void doForAllOpcodes(Value *V, 2905 function_ref<void(ScheduleData *SD)> Action) { 2906 if (ScheduleData *SD = getScheduleData(V)) 2907 Action(SD); 2908 auto I = ExtraScheduleDataMap.find(V); 2909 if (I != ExtraScheduleDataMap.end()) 2910 for (auto &P : I->second) 2911 if (isInSchedulingRegion(P.second)) 2912 Action(P.second); 2913 } 2914 2915 /// Put all instructions into the ReadyList which are ready for scheduling. 2916 template <typename ReadyListType> 2917 void initialFillReadyList(ReadyListType &ReadyList) { 2918 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2919 doForAllOpcodes(I, [&](ScheduleData *SD) { 2920 if (SD->isSchedulingEntity() && SD->isReady()) { 2921 ReadyList.insert(SD); 2922 LLVM_DEBUG(dbgs() 2923 << "SLP: initially in ready list: " << *SD << "\n"); 2924 } 2925 }); 2926 } 2927 } 2928 2929 /// Build a bundle from the ScheduleData nodes corresponding to the 2930 /// scalar instruction for each lane. 2931 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2932 2933 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2934 /// cyclic dependencies. This is only a dry-run, no instructions are 2935 /// actually moved at this stage. 2936 /// \returns the scheduling bundle. The returned Optional value is non-None 2937 /// if \p VL is allowed to be scheduled. 2938 Optional<ScheduleData *> 2939 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2940 const InstructionsState &S); 2941 2942 /// Un-bundles a group of instructions. 2943 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2944 2945 /// Allocates schedule data chunk. 2946 ScheduleData *allocateScheduleDataChunks(); 2947 2948 /// Extends the scheduling region so that V is inside the region. 2949 /// \returns true if the region size is within the limit. 2950 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2951 2952 /// Initialize the ScheduleData structures for new instructions in the 2953 /// scheduling region. 2954 void initScheduleData(Instruction *FromI, Instruction *ToI, 2955 ScheduleData *PrevLoadStore, 2956 ScheduleData *NextLoadStore); 2957 2958 /// Updates the dependency information of a bundle and of all instructions/ 2959 /// bundles which depend on the original bundle. 2960 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2961 BoUpSLP *SLP); 2962 2963 /// Sets all instruction in the scheduling region to un-scheduled. 2964 void resetSchedule(); 2965 2966 BasicBlock *BB; 2967 2968 /// Simple memory allocation for ScheduleData. 2969 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2970 2971 /// The size of a ScheduleData array in ScheduleDataChunks. 2972 int ChunkSize; 2973 2974 /// The allocator position in the current chunk, which is the last entry 2975 /// of ScheduleDataChunks. 2976 int ChunkPos; 2977 2978 /// Attaches ScheduleData to Instruction. 2979 /// Note that the mapping survives during all vectorization iterations, i.e. 2980 /// ScheduleData structures are recycled. 2981 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2982 2983 /// Attaches ScheduleData to Instruction with the leading key. 2984 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2985 ExtraScheduleDataMap; 2986 2987 /// The ready-list for scheduling (only used for the dry-run). 2988 SetVector<ScheduleData *> ReadyInsts; 2989 2990 /// The first instruction of the scheduling region. 2991 Instruction *ScheduleStart = nullptr; 2992 2993 /// The first instruction _after_ the scheduling region. 2994 Instruction *ScheduleEnd = nullptr; 2995 2996 /// The first memory accessing instruction in the scheduling region 2997 /// (can be null). 2998 ScheduleData *FirstLoadStoreInRegion = nullptr; 2999 3000 /// The last memory accessing instruction in the scheduling region 3001 /// (can be null). 3002 ScheduleData *LastLoadStoreInRegion = nullptr; 3003 3004 /// The current size of the scheduling region. 3005 int ScheduleRegionSize = 0; 3006 3007 /// The maximum size allowed for the scheduling region. 3008 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3009 3010 /// The ID of the scheduling region. For a new vectorization iteration this 3011 /// is incremented which "removes" all ScheduleData from the region. 3012 /// Make sure that the initial SchedulingRegionID is greater than the 3013 /// initial SchedulingRegionID in ScheduleData (which is 0). 3014 int SchedulingRegionID = 1; 3015 }; 3016 3017 /// Attaches the BlockScheduling structures to basic blocks. 3018 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3019 3020 /// Performs the "real" scheduling. Done before vectorization is actually 3021 /// performed in a basic block. 3022 void scheduleBlock(BlockScheduling *BS); 3023 3024 /// List of users to ignore during scheduling and that don't need extracting. 3025 ArrayRef<Value *> UserIgnoreList; 3026 3027 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3028 /// sorted SmallVectors of unsigned. 3029 struct OrdersTypeDenseMapInfo { 3030 static OrdersType getEmptyKey() { 3031 OrdersType V; 3032 V.push_back(~1U); 3033 return V; 3034 } 3035 3036 static OrdersType getTombstoneKey() { 3037 OrdersType V; 3038 V.push_back(~2U); 3039 return V; 3040 } 3041 3042 static unsigned getHashValue(const OrdersType &V) { 3043 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3044 } 3045 3046 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3047 return LHS == RHS; 3048 } 3049 }; 3050 3051 // Analysis and block reference. 3052 Function *F; 3053 ScalarEvolution *SE; 3054 TargetTransformInfo *TTI; 3055 TargetLibraryInfo *TLI; 3056 LoopInfo *LI; 3057 DominatorTree *DT; 3058 AssumptionCache *AC; 3059 DemandedBits *DB; 3060 MemorySSA *MSSA; 3061 const DataLayout *DL; 3062 OptimizationRemarkEmitter *ORE; 3063 3064 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3065 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3066 3067 /// Instruction builder to construct the vectorized tree. 3068 IRBuilder<> Builder; 3069 3070 /// A map of scalar integer values to the smallest bit width with which they 3071 /// can legally be represented. The values map to (width, signed) pairs, 3072 /// where "width" indicates the minimum bit width and "signed" is True if the 3073 /// value must be signed-extended, rather than zero-extended, back to its 3074 /// original width. 3075 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3076 }; 3077 3078 } // end namespace slpvectorizer 3079 3080 template <> struct GraphTraits<BoUpSLP *> { 3081 using TreeEntry = BoUpSLP::TreeEntry; 3082 3083 /// NodeRef has to be a pointer per the GraphWriter. 3084 using NodeRef = TreeEntry *; 3085 3086 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3087 3088 /// Add the VectorizableTree to the index iterator to be able to return 3089 /// TreeEntry pointers. 3090 struct ChildIteratorType 3091 : public iterator_adaptor_base< 3092 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3093 ContainerTy &VectorizableTree; 3094 3095 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3096 ContainerTy &VT) 3097 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3098 3099 NodeRef operator*() { return I->UserTE; } 3100 }; 3101 3102 static NodeRef getEntryNode(BoUpSLP &R) { 3103 return R.VectorizableTree[0].get(); 3104 } 3105 3106 static ChildIteratorType child_begin(NodeRef N) { 3107 return {N->UserTreeIndices.begin(), N->Container}; 3108 } 3109 3110 static ChildIteratorType child_end(NodeRef N) { 3111 return {N->UserTreeIndices.end(), N->Container}; 3112 } 3113 3114 /// For the node iterator we just need to turn the TreeEntry iterator into a 3115 /// TreeEntry* iterator so that it dereferences to NodeRef. 3116 class nodes_iterator { 3117 using ItTy = ContainerTy::iterator; 3118 ItTy It; 3119 3120 public: 3121 nodes_iterator(const ItTy &It2) : It(It2) {} 3122 NodeRef operator*() { return It->get(); } 3123 nodes_iterator operator++() { 3124 ++It; 3125 return *this; 3126 } 3127 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3128 }; 3129 3130 static nodes_iterator nodes_begin(BoUpSLP *R) { 3131 return nodes_iterator(R->VectorizableTree.begin()); 3132 } 3133 3134 static nodes_iterator nodes_end(BoUpSLP *R) { 3135 return nodes_iterator(R->VectorizableTree.end()); 3136 } 3137 3138 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3139 }; 3140 3141 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3142 using TreeEntry = BoUpSLP::TreeEntry; 3143 3144 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3145 3146 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3147 std::string Str; 3148 raw_string_ostream OS(Str); 3149 if (isSplat(Entry->Scalars)) 3150 OS << "<splat> "; 3151 for (auto V : Entry->Scalars) { 3152 OS << *V; 3153 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3154 return EU.Scalar == V; 3155 })) 3156 OS << " <extract>"; 3157 OS << "\n"; 3158 } 3159 return Str; 3160 } 3161 3162 static std::string getNodeAttributes(const TreeEntry *Entry, 3163 const BoUpSLP *) { 3164 if (Entry->State == TreeEntry::NeedToGather) 3165 return "color=red"; 3166 return ""; 3167 } 3168 }; 3169 3170 } // end namespace llvm 3171 3172 BoUpSLP::~BoUpSLP() { 3173 if (MSSA) { 3174 MemorySSAUpdater MSSAU(MSSA); 3175 for (const auto &Pair : DeletedInstructions) { 3176 if (auto *Access = MSSA->getMemoryAccess(Pair.first)) 3177 MSSAU.removeMemoryAccess(Access); 3178 } 3179 } 3180 for (const auto &Pair : DeletedInstructions) { 3181 // Replace operands of ignored instructions with Undefs in case if they were 3182 // marked for deletion. 3183 if (Pair.getSecond()) { 3184 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3185 Pair.getFirst()->replaceAllUsesWith(Undef); 3186 } 3187 Pair.getFirst()->dropAllReferences(); 3188 } 3189 for (const auto &Pair : DeletedInstructions) { 3190 assert(Pair.getFirst()->use_empty() && 3191 "trying to erase instruction with users."); 3192 Pair.getFirst()->eraseFromParent(); 3193 } 3194 #ifdef EXPENSIVE_CHECKS 3195 // If we could guarantee that this call is not extremely slow, we could 3196 // remove the ifdef limitation (see PR47712). 3197 assert(!verifyFunction(*F, &dbgs())); 3198 #endif 3199 } 3200 3201 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3202 for (auto *V : AV) { 3203 if (auto *I = dyn_cast<Instruction>(V)) 3204 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3205 }; 3206 } 3207 3208 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3209 /// contains original mask for the scalars reused in the node. Procedure 3210 /// transform this mask in accordance with the given \p Mask. 3211 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3212 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3213 "Expected non-empty mask."); 3214 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3215 Prev.swap(Reuses); 3216 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3217 if (Mask[I] != UndefMaskElem) 3218 Reuses[Mask[I]] = Prev[I]; 3219 } 3220 3221 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3222 /// the original order of the scalars. Procedure transforms the provided order 3223 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3224 /// identity order, \p Order is cleared. 3225 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3226 assert(!Mask.empty() && "Expected non-empty mask."); 3227 SmallVector<int> MaskOrder; 3228 if (Order.empty()) { 3229 MaskOrder.resize(Mask.size()); 3230 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3231 } else { 3232 inversePermutation(Order, MaskOrder); 3233 } 3234 reorderReuses(MaskOrder, Mask); 3235 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3236 Order.clear(); 3237 return; 3238 } 3239 Order.assign(Mask.size(), Mask.size()); 3240 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3241 if (MaskOrder[I] != UndefMaskElem) 3242 Order[MaskOrder[I]] = I; 3243 fixupOrderingIndices(Order); 3244 } 3245 3246 Optional<BoUpSLP::OrdersType> 3247 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3248 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3249 unsigned NumScalars = TE.Scalars.size(); 3250 OrdersType CurrentOrder(NumScalars, NumScalars); 3251 SmallVector<int> Positions; 3252 SmallBitVector UsedPositions(NumScalars); 3253 const TreeEntry *STE = nullptr; 3254 // Try to find all gathered scalars that are gets vectorized in other 3255 // vectorize node. Here we can have only one single tree vector node to 3256 // correctly identify order of the gathered scalars. 3257 for (unsigned I = 0; I < NumScalars; ++I) { 3258 Value *V = TE.Scalars[I]; 3259 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3260 continue; 3261 if (const auto *LocalSTE = getTreeEntry(V)) { 3262 if (!STE) 3263 STE = LocalSTE; 3264 else if (STE != LocalSTE) 3265 // Take the order only from the single vector node. 3266 return None; 3267 unsigned Lane = 3268 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3269 if (Lane >= NumScalars) 3270 return None; 3271 if (CurrentOrder[Lane] != NumScalars) { 3272 if (Lane != I) 3273 continue; 3274 UsedPositions.reset(CurrentOrder[Lane]); 3275 } 3276 // The partial identity (where only some elements of the gather node are 3277 // in the identity order) is good. 3278 CurrentOrder[Lane] = I; 3279 UsedPositions.set(I); 3280 } 3281 } 3282 // Need to keep the order if we have a vector entry and at least 2 scalars or 3283 // the vectorized entry has just 2 scalars. 3284 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3285 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3286 for (unsigned I = 0; I < NumScalars; ++I) 3287 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3288 return false; 3289 return true; 3290 }; 3291 if (IsIdentityOrder(CurrentOrder)) { 3292 CurrentOrder.clear(); 3293 return CurrentOrder; 3294 } 3295 auto *It = CurrentOrder.begin(); 3296 for (unsigned I = 0; I < NumScalars;) { 3297 if (UsedPositions.test(I)) { 3298 ++I; 3299 continue; 3300 } 3301 if (*It == NumScalars) { 3302 *It = I; 3303 ++I; 3304 } 3305 ++It; 3306 } 3307 return CurrentOrder; 3308 } 3309 return None; 3310 } 3311 3312 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3313 bool TopToBottom) { 3314 // No need to reorder if need to shuffle reuses, still need to shuffle the 3315 // node. 3316 if (!TE.ReuseShuffleIndices.empty()) 3317 return None; 3318 if (TE.State == TreeEntry::Vectorize && 3319 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3320 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3321 !TE.isAltShuffle()) 3322 return TE.ReorderIndices; 3323 if (TE.State == TreeEntry::NeedToGather) { 3324 // TODO: add analysis of other gather nodes with extractelement 3325 // instructions and other values/instructions, not only undefs. 3326 if (((TE.getOpcode() == Instruction::ExtractElement && 3327 !TE.isAltShuffle()) || 3328 (all_of(TE.Scalars, 3329 [](Value *V) { 3330 return isa<UndefValue, ExtractElementInst>(V); 3331 }) && 3332 any_of(TE.Scalars, 3333 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3334 all_of(TE.Scalars, 3335 [](Value *V) { 3336 auto *EE = dyn_cast<ExtractElementInst>(V); 3337 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3338 }) && 3339 allSameType(TE.Scalars)) { 3340 // Check that gather of extractelements can be represented as 3341 // just a shuffle of a single vector. 3342 OrdersType CurrentOrder; 3343 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3344 if (Reuse || !CurrentOrder.empty()) { 3345 if (!CurrentOrder.empty()) 3346 fixupOrderingIndices(CurrentOrder); 3347 return CurrentOrder; 3348 } 3349 } 3350 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3351 return CurrentOrder; 3352 } 3353 return None; 3354 } 3355 3356 void BoUpSLP::reorderTopToBottom() { 3357 // Maps VF to the graph nodes. 3358 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3359 // ExtractElement gather nodes which can be vectorized and need to handle 3360 // their ordering. 3361 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3362 // Find all reorderable nodes with the given VF. 3363 // Currently the are vectorized stores,loads,extracts + some gathering of 3364 // extracts. 3365 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3366 const std::unique_ptr<TreeEntry> &TE) { 3367 if (Optional<OrdersType> CurrentOrder = 3368 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3369 // Do not include ordering for nodes used in the alt opcode vectorization, 3370 // better to reorder them during bottom-to-top stage. If follow the order 3371 // here, it causes reordering of the whole graph though actually it is 3372 // profitable just to reorder the subgraph that starts from the alternate 3373 // opcode vectorization node. Such nodes already end-up with the shuffle 3374 // instruction and it is just enough to change this shuffle rather than 3375 // rotate the scalars for the whole graph. 3376 unsigned Cnt = 0; 3377 const TreeEntry *UserTE = TE.get(); 3378 while (UserTE && Cnt < RecursionMaxDepth) { 3379 if (UserTE->UserTreeIndices.size() != 1) 3380 break; 3381 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3382 return EI.UserTE->State == TreeEntry::Vectorize && 3383 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3384 })) 3385 return; 3386 if (UserTE->UserTreeIndices.empty()) 3387 UserTE = nullptr; 3388 else 3389 UserTE = UserTE->UserTreeIndices.back().UserTE; 3390 ++Cnt; 3391 } 3392 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3393 if (TE->State != TreeEntry::Vectorize) 3394 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3395 } 3396 }); 3397 3398 // Reorder the graph nodes according to their vectorization factor. 3399 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3400 VF /= 2) { 3401 auto It = VFToOrderedEntries.find(VF); 3402 if (It == VFToOrderedEntries.end()) 3403 continue; 3404 // Try to find the most profitable order. We just are looking for the most 3405 // used order and reorder scalar elements in the nodes according to this 3406 // mostly used order. 3407 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3408 // All operands are reordered and used only in this node - propagate the 3409 // most used order to the user node. 3410 MapVector<OrdersType, unsigned, 3411 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3412 OrdersUses; 3413 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3414 for (const TreeEntry *OpTE : OrderedEntries) { 3415 // No need to reorder this nodes, still need to extend and to use shuffle, 3416 // just need to merge reordering shuffle and the reuse shuffle. 3417 if (!OpTE->ReuseShuffleIndices.empty()) 3418 continue; 3419 // Count number of orders uses. 3420 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3421 if (OpTE->State == TreeEntry::NeedToGather) 3422 return GathersToOrders.find(OpTE)->second; 3423 return OpTE->ReorderIndices; 3424 }(); 3425 // Stores actually store the mask, not the order, need to invert. 3426 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3427 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3428 SmallVector<int> Mask; 3429 inversePermutation(Order, Mask); 3430 unsigned E = Order.size(); 3431 OrdersType CurrentOrder(E, E); 3432 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3433 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3434 }); 3435 fixupOrderingIndices(CurrentOrder); 3436 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3437 } else { 3438 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3439 } 3440 } 3441 // Set order of the user node. 3442 if (OrdersUses.empty()) 3443 continue; 3444 // Choose the most used order. 3445 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3446 unsigned Cnt = OrdersUses.front().second; 3447 for (const auto &Pair : drop_begin(OrdersUses)) { 3448 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3449 BestOrder = Pair.first; 3450 Cnt = Pair.second; 3451 } 3452 } 3453 // Set order of the user node. 3454 if (BestOrder.empty()) 3455 continue; 3456 SmallVector<int> Mask; 3457 inversePermutation(BestOrder, Mask); 3458 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3459 unsigned E = BestOrder.size(); 3460 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3461 return I < E ? static_cast<int>(I) : UndefMaskElem; 3462 }); 3463 // Do an actual reordering, if profitable. 3464 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3465 // Just do the reordering for the nodes with the given VF. 3466 if (TE->Scalars.size() != VF) { 3467 if (TE->ReuseShuffleIndices.size() == VF) { 3468 // Need to reorder the reuses masks of the operands with smaller VF to 3469 // be able to find the match between the graph nodes and scalar 3470 // operands of the given node during vectorization/cost estimation. 3471 assert(all_of(TE->UserTreeIndices, 3472 [VF, &TE](const EdgeInfo &EI) { 3473 return EI.UserTE->Scalars.size() == VF || 3474 EI.UserTE->Scalars.size() == 3475 TE->Scalars.size(); 3476 }) && 3477 "All users must be of VF size."); 3478 // Update ordering of the operands with the smaller VF than the given 3479 // one. 3480 reorderReuses(TE->ReuseShuffleIndices, Mask); 3481 } 3482 continue; 3483 } 3484 if (TE->State == TreeEntry::Vectorize && 3485 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3486 InsertElementInst>(TE->getMainOp()) && 3487 !TE->isAltShuffle()) { 3488 // Build correct orders for extract{element,value}, loads and 3489 // stores. 3490 reorderOrder(TE->ReorderIndices, Mask); 3491 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3492 TE->reorderOperands(Mask); 3493 } else { 3494 // Reorder the node and its operands. 3495 TE->reorderOperands(Mask); 3496 assert(TE->ReorderIndices.empty() && 3497 "Expected empty reorder sequence."); 3498 reorderScalars(TE->Scalars, Mask); 3499 } 3500 if (!TE->ReuseShuffleIndices.empty()) { 3501 // Apply reversed order to keep the original ordering of the reused 3502 // elements to avoid extra reorder indices shuffling. 3503 OrdersType CurrentOrder; 3504 reorderOrder(CurrentOrder, MaskOrder); 3505 SmallVector<int> NewReuses; 3506 inversePermutation(CurrentOrder, NewReuses); 3507 addMask(NewReuses, TE->ReuseShuffleIndices); 3508 TE->ReuseShuffleIndices.swap(NewReuses); 3509 } 3510 } 3511 } 3512 } 3513 3514 bool BoUpSLP::canReorderOperands( 3515 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3516 ArrayRef<TreeEntry *> ReorderableGathers, 3517 SmallVectorImpl<TreeEntry *> &GatherOps) { 3518 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3519 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3520 return OpData.first == I && 3521 OpData.second->State == TreeEntry::Vectorize; 3522 })) 3523 continue; 3524 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3525 // Do not reorder if operand node is used by many user nodes. 3526 if (any_of(TE->UserTreeIndices, 3527 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3528 return false; 3529 // Add the node to the list of the ordered nodes with the identity 3530 // order. 3531 Edges.emplace_back(I, TE); 3532 continue; 3533 } 3534 ArrayRef<Value *> VL = UserTE->getOperand(I); 3535 TreeEntry *Gather = nullptr; 3536 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3537 assert(TE->State != TreeEntry::Vectorize && 3538 "Only non-vectorized nodes are expected."); 3539 if (TE->isSame(VL)) { 3540 Gather = TE; 3541 return true; 3542 } 3543 return false; 3544 }) > 1) 3545 return false; 3546 if (Gather) 3547 GatherOps.push_back(Gather); 3548 } 3549 return true; 3550 } 3551 3552 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3553 SetVector<TreeEntry *> OrderedEntries; 3554 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3555 // Find all reorderable leaf nodes with the given VF. 3556 // Currently the are vectorized loads,extracts without alternate operands + 3557 // some gathering of extracts. 3558 SmallVector<TreeEntry *> NonVectorized; 3559 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3560 &NonVectorized]( 3561 const std::unique_ptr<TreeEntry> &TE) { 3562 if (TE->State != TreeEntry::Vectorize) 3563 NonVectorized.push_back(TE.get()); 3564 if (Optional<OrdersType> CurrentOrder = 3565 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3566 OrderedEntries.insert(TE.get()); 3567 if (TE->State != TreeEntry::Vectorize) 3568 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3569 } 3570 }); 3571 3572 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3573 // I.e., if the node has operands, that are reordered, try to make at least 3574 // one operand order in the natural order and reorder others + reorder the 3575 // user node itself. 3576 SmallPtrSet<const TreeEntry *, 4> Visited; 3577 while (!OrderedEntries.empty()) { 3578 // 1. Filter out only reordered nodes. 3579 // 2. If the entry has multiple uses - skip it and jump to the next node. 3580 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3581 SmallVector<TreeEntry *> Filtered; 3582 for (TreeEntry *TE : OrderedEntries) { 3583 if (!(TE->State == TreeEntry::Vectorize || 3584 (TE->State == TreeEntry::NeedToGather && 3585 GathersToOrders.count(TE))) || 3586 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3587 !all_of(drop_begin(TE->UserTreeIndices), 3588 [TE](const EdgeInfo &EI) { 3589 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3590 }) || 3591 !Visited.insert(TE).second) { 3592 Filtered.push_back(TE); 3593 continue; 3594 } 3595 // Build a map between user nodes and their operands order to speedup 3596 // search. The graph currently does not provide this dependency directly. 3597 for (EdgeInfo &EI : TE->UserTreeIndices) { 3598 TreeEntry *UserTE = EI.UserTE; 3599 auto It = Users.find(UserTE); 3600 if (It == Users.end()) 3601 It = Users.insert({UserTE, {}}).first; 3602 It->second.emplace_back(EI.EdgeIdx, TE); 3603 } 3604 } 3605 // Erase filtered entries. 3606 for_each(Filtered, 3607 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3608 for (auto &Data : Users) { 3609 // Check that operands are used only in the User node. 3610 SmallVector<TreeEntry *> GatherOps; 3611 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3612 GatherOps)) { 3613 for_each(Data.second, 3614 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3615 OrderedEntries.remove(Op.second); 3616 }); 3617 continue; 3618 } 3619 // All operands are reordered and used only in this node - propagate the 3620 // most used order to the user node. 3621 MapVector<OrdersType, unsigned, 3622 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3623 OrdersUses; 3624 // Do the analysis for each tree entry only once, otherwise the order of 3625 // the same node my be considered several times, though might be not 3626 // profitable. 3627 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3628 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3629 for (const auto &Op : Data.second) { 3630 TreeEntry *OpTE = Op.second; 3631 if (!VisitedOps.insert(OpTE).second) 3632 continue; 3633 if (!OpTE->ReuseShuffleIndices.empty() || 3634 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3635 continue; 3636 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3637 if (OpTE->State == TreeEntry::NeedToGather) 3638 return GathersToOrders.find(OpTE)->second; 3639 return OpTE->ReorderIndices; 3640 }(); 3641 unsigned NumOps = count_if( 3642 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3643 return P.second == OpTE; 3644 }); 3645 // Stores actually store the mask, not the order, need to invert. 3646 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3647 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3648 SmallVector<int> Mask; 3649 inversePermutation(Order, Mask); 3650 unsigned E = Order.size(); 3651 OrdersType CurrentOrder(E, E); 3652 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3653 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3654 }); 3655 fixupOrderingIndices(CurrentOrder); 3656 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3657 NumOps; 3658 } else { 3659 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3660 } 3661 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3662 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3663 const TreeEntry *TE) { 3664 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3665 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3666 (IgnoreReorder && TE->Idx == 0)) 3667 return true; 3668 if (TE->State == TreeEntry::NeedToGather) { 3669 auto It = GathersToOrders.find(TE); 3670 if (It != GathersToOrders.end()) 3671 return !It->second.empty(); 3672 return true; 3673 } 3674 return false; 3675 }; 3676 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3677 TreeEntry *UserTE = EI.UserTE; 3678 if (!VisitedUsers.insert(UserTE).second) 3679 continue; 3680 // May reorder user node if it requires reordering, has reused 3681 // scalars, is an alternate op vectorize node or its op nodes require 3682 // reordering. 3683 if (AllowsReordering(UserTE)) 3684 continue; 3685 // Check if users allow reordering. 3686 // Currently look up just 1 level of operands to avoid increase of 3687 // the compile time. 3688 // Profitable to reorder if definitely more operands allow 3689 // reordering rather than those with natural order. 3690 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3691 if (static_cast<unsigned>(count_if( 3692 Ops, [UserTE, &AllowsReordering]( 3693 const std::pair<unsigned, TreeEntry *> &Op) { 3694 return AllowsReordering(Op.second) && 3695 all_of(Op.second->UserTreeIndices, 3696 [UserTE](const EdgeInfo &EI) { 3697 return EI.UserTE == UserTE; 3698 }); 3699 })) <= Ops.size() / 2) 3700 ++Res.first->second; 3701 } 3702 } 3703 // If no orders - skip current nodes and jump to the next one, if any. 3704 if (OrdersUses.empty()) { 3705 for_each(Data.second, 3706 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3707 OrderedEntries.remove(Op.second); 3708 }); 3709 continue; 3710 } 3711 // Choose the best order. 3712 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3713 unsigned Cnt = OrdersUses.front().second; 3714 for (const auto &Pair : drop_begin(OrdersUses)) { 3715 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3716 BestOrder = Pair.first; 3717 Cnt = Pair.second; 3718 } 3719 } 3720 // Set order of the user node (reordering of operands and user nodes). 3721 if (BestOrder.empty()) { 3722 for_each(Data.second, 3723 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3724 OrderedEntries.remove(Op.second); 3725 }); 3726 continue; 3727 } 3728 // Erase operands from OrderedEntries list and adjust their orders. 3729 VisitedOps.clear(); 3730 SmallVector<int> Mask; 3731 inversePermutation(BestOrder, Mask); 3732 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3733 unsigned E = BestOrder.size(); 3734 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3735 return I < E ? static_cast<int>(I) : UndefMaskElem; 3736 }); 3737 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3738 TreeEntry *TE = Op.second; 3739 OrderedEntries.remove(TE); 3740 if (!VisitedOps.insert(TE).second) 3741 continue; 3742 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3743 // Just reorder reuses indices. 3744 reorderReuses(TE->ReuseShuffleIndices, Mask); 3745 continue; 3746 } 3747 // Gathers are processed separately. 3748 if (TE->State != TreeEntry::Vectorize) 3749 continue; 3750 assert((BestOrder.size() == TE->ReorderIndices.size() || 3751 TE->ReorderIndices.empty()) && 3752 "Non-matching sizes of user/operand entries."); 3753 reorderOrder(TE->ReorderIndices, Mask); 3754 } 3755 // For gathers just need to reorder its scalars. 3756 for (TreeEntry *Gather : GatherOps) { 3757 assert(Gather->ReorderIndices.empty() && 3758 "Unexpected reordering of gathers."); 3759 if (!Gather->ReuseShuffleIndices.empty()) { 3760 // Just reorder reuses indices. 3761 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3762 continue; 3763 } 3764 reorderScalars(Gather->Scalars, Mask); 3765 OrderedEntries.remove(Gather); 3766 } 3767 // Reorder operands of the user node and set the ordering for the user 3768 // node itself. 3769 if (Data.first->State != TreeEntry::Vectorize || 3770 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3771 Data.first->getMainOp()) || 3772 Data.first->isAltShuffle()) 3773 Data.first->reorderOperands(Mask); 3774 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3775 Data.first->isAltShuffle()) { 3776 reorderScalars(Data.first->Scalars, Mask); 3777 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3778 if (Data.first->ReuseShuffleIndices.empty() && 3779 !Data.first->ReorderIndices.empty() && 3780 !Data.first->isAltShuffle()) { 3781 // Insert user node to the list to try to sink reordering deeper in 3782 // the graph. 3783 OrderedEntries.insert(Data.first); 3784 } 3785 } else { 3786 reorderOrder(Data.first->ReorderIndices, Mask); 3787 } 3788 } 3789 } 3790 // If the reordering is unnecessary, just remove the reorder. 3791 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3792 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3793 VectorizableTree.front()->ReorderIndices.clear(); 3794 } 3795 3796 void BoUpSLP::buildExternalUses( 3797 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3798 // Collect the values that we need to extract from the tree. 3799 for (auto &TEPtr : VectorizableTree) { 3800 TreeEntry *Entry = TEPtr.get(); 3801 3802 // No need to handle users of gathered values. 3803 if (Entry->State == TreeEntry::NeedToGather) 3804 continue; 3805 3806 // For each lane: 3807 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3808 Value *Scalar = Entry->Scalars[Lane]; 3809 int FoundLane = Entry->findLaneForValue(Scalar); 3810 3811 // Check if the scalar is externally used as an extra arg. 3812 auto ExtI = ExternallyUsedValues.find(Scalar); 3813 if (ExtI != ExternallyUsedValues.end()) { 3814 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3815 << Lane << " from " << *Scalar << ".\n"); 3816 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3817 } 3818 for (User *U : Scalar->users()) { 3819 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3820 3821 Instruction *UserInst = dyn_cast<Instruction>(U); 3822 if (!UserInst) 3823 continue; 3824 3825 if (isDeleted(UserInst)) 3826 continue; 3827 3828 // Skip in-tree scalars that become vectors 3829 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3830 Value *UseScalar = UseEntry->Scalars[0]; 3831 // Some in-tree scalars will remain as scalar in vectorized 3832 // instructions. If that is the case, the one in Lane 0 will 3833 // be used. 3834 if (UseScalar != U || 3835 UseEntry->State == TreeEntry::ScatterVectorize || 3836 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3837 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3838 << ".\n"); 3839 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3840 continue; 3841 } 3842 } 3843 3844 // Ignore users in the user ignore list. 3845 if (is_contained(UserIgnoreList, UserInst)) 3846 continue; 3847 3848 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3849 << Lane << " from " << *Scalar << ".\n"); 3850 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3851 } 3852 } 3853 } 3854 } 3855 3856 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3857 ArrayRef<Value *> UserIgnoreLst) { 3858 deleteTree(); 3859 UserIgnoreList = UserIgnoreLst; 3860 if (!allSameType(Roots)) 3861 return; 3862 buildTree_rec(Roots, 0, EdgeInfo()); 3863 } 3864 3865 namespace { 3866 /// Tracks the state we can represent the loads in the given sequence. 3867 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3868 } // anonymous namespace 3869 3870 /// Checks if the given array of loads can be represented as a vectorized, 3871 /// scatter or just simple gather. 3872 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3873 const TargetTransformInfo &TTI, 3874 const DataLayout &DL, ScalarEvolution &SE, 3875 SmallVectorImpl<unsigned> &Order, 3876 SmallVectorImpl<Value *> &PointerOps) { 3877 // Check that a vectorized load would load the same memory as a scalar 3878 // load. For example, we don't want to vectorize loads that are smaller 3879 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3880 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3881 // from such a struct, we read/write packed bits disagreeing with the 3882 // unvectorized version. 3883 Type *ScalarTy = VL0->getType(); 3884 3885 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3886 return LoadsState::Gather; 3887 3888 // Make sure all loads in the bundle are simple - we can't vectorize 3889 // atomic or volatile loads. 3890 PointerOps.clear(); 3891 PointerOps.resize(VL.size()); 3892 auto *POIter = PointerOps.begin(); 3893 for (Value *V : VL) { 3894 auto *L = cast<LoadInst>(V); 3895 if (!L->isSimple()) 3896 return LoadsState::Gather; 3897 *POIter = L->getPointerOperand(); 3898 ++POIter; 3899 } 3900 3901 Order.clear(); 3902 // Check the order of pointer operands. 3903 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3904 Value *Ptr0; 3905 Value *PtrN; 3906 if (Order.empty()) { 3907 Ptr0 = PointerOps.front(); 3908 PtrN = PointerOps.back(); 3909 } else { 3910 Ptr0 = PointerOps[Order.front()]; 3911 PtrN = PointerOps[Order.back()]; 3912 } 3913 Optional<int> Diff = 3914 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3915 // Check that the sorted loads are consecutive. 3916 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3917 return LoadsState::Vectorize; 3918 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3919 for (Value *V : VL) 3920 CommonAlignment = 3921 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3922 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3923 CommonAlignment)) 3924 return LoadsState::ScatterVectorize; 3925 } 3926 3927 return LoadsState::Gather; 3928 } 3929 3930 /// \return true if the specified list of values has only one instruction that 3931 /// requires scheduling, false otherwise. 3932 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3933 Value *NeedsScheduling = nullptr; 3934 for (Value *V : VL) { 3935 if (doesNotNeedToBeScheduled(V)) 3936 continue; 3937 if (!NeedsScheduling) { 3938 NeedsScheduling = V; 3939 continue; 3940 } 3941 return false; 3942 } 3943 return NeedsScheduling; 3944 } 3945 3946 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3947 const EdgeInfo &UserTreeIdx) { 3948 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3949 3950 SmallVector<int> ReuseShuffleIndicies; 3951 SmallVector<Value *> UniqueValues; 3952 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3953 &UserTreeIdx, 3954 this](const InstructionsState &S) { 3955 // Check that every instruction appears once in this bundle. 3956 DenseMap<Value *, unsigned> UniquePositions; 3957 for (Value *V : VL) { 3958 if (isConstant(V)) { 3959 ReuseShuffleIndicies.emplace_back( 3960 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3961 UniqueValues.emplace_back(V); 3962 continue; 3963 } 3964 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3965 ReuseShuffleIndicies.emplace_back(Res.first->second); 3966 if (Res.second) 3967 UniqueValues.emplace_back(V); 3968 } 3969 size_t NumUniqueScalarValues = UniqueValues.size(); 3970 if (NumUniqueScalarValues == VL.size()) { 3971 ReuseShuffleIndicies.clear(); 3972 } else { 3973 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3974 if (NumUniqueScalarValues <= 1 || 3975 (UniquePositions.size() == 1 && all_of(UniqueValues, 3976 [](Value *V) { 3977 return isa<UndefValue>(V) || 3978 !isConstant(V); 3979 })) || 3980 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3981 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3982 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3983 return false; 3984 } 3985 VL = UniqueValues; 3986 } 3987 return true; 3988 }; 3989 3990 InstructionsState S = getSameOpcode(VL); 3991 if (Depth == RecursionMaxDepth) { 3992 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3993 if (TryToFindDuplicates(S)) 3994 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3995 ReuseShuffleIndicies); 3996 return; 3997 } 3998 3999 // Don't handle scalable vectors 4000 if (S.getOpcode() == Instruction::ExtractElement && 4001 isa<ScalableVectorType>( 4002 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4003 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4004 if (TryToFindDuplicates(S)) 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4006 ReuseShuffleIndicies); 4007 return; 4008 } 4009 4010 // Don't handle vectors. 4011 if (S.OpValue->getType()->isVectorTy() && 4012 !isa<InsertElementInst>(S.OpValue)) { 4013 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4014 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4015 return; 4016 } 4017 4018 // Avoid attempting to schedule allocas; there are unmodeled dependencies 4019 // for "static" alloca status and for reordering with stacksave calls. 4020 for (Value *V : VL) { 4021 if (isa<AllocaInst>(V)) { 4022 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 4023 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4024 return; 4025 } 4026 } 4027 4028 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4029 if (SI->getValueOperand()->getType()->isVectorTy()) { 4030 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4031 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4032 return; 4033 } 4034 4035 // If all of the operands are identical or constant we have a simple solution. 4036 // If we deal with insert/extract instructions, they all must have constant 4037 // indices, otherwise we should gather them, not try to vectorize. 4038 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4039 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4040 !all_of(VL, isVectorLikeInstWithConstOps))) { 4041 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4042 if (TryToFindDuplicates(S)) 4043 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4044 ReuseShuffleIndicies); 4045 return; 4046 } 4047 4048 // We now know that this is a vector of instructions of the same type from 4049 // the same block. 4050 4051 // Don't vectorize ephemeral values. 4052 for (Value *V : VL) { 4053 if (EphValues.count(V)) { 4054 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4055 << ") is ephemeral.\n"); 4056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4057 return; 4058 } 4059 } 4060 4061 // Check if this is a duplicate of another entry. 4062 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4063 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4064 if (!E->isSame(VL)) { 4065 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4066 if (TryToFindDuplicates(S)) 4067 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4068 ReuseShuffleIndicies); 4069 return; 4070 } 4071 // Record the reuse of the tree node. FIXME, currently this is only used to 4072 // properly draw the graph rather than for the actual vectorization. 4073 E->UserTreeIndices.push_back(UserTreeIdx); 4074 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4075 << ".\n"); 4076 return; 4077 } 4078 4079 // Check that none of the instructions in the bundle are already in the tree. 4080 for (Value *V : VL) { 4081 auto *I = dyn_cast<Instruction>(V); 4082 if (!I) 4083 continue; 4084 if (getTreeEntry(I)) { 4085 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4086 << ") is already in tree.\n"); 4087 if (TryToFindDuplicates(S)) 4088 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4089 ReuseShuffleIndicies); 4090 return; 4091 } 4092 } 4093 4094 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4095 for (Value *V : VL) { 4096 if (is_contained(UserIgnoreList, V)) { 4097 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4098 if (TryToFindDuplicates(S)) 4099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4100 ReuseShuffleIndicies); 4101 return; 4102 } 4103 } 4104 4105 // Check that all of the users of the scalars that we want to vectorize are 4106 // schedulable. 4107 auto *VL0 = cast<Instruction>(S.OpValue); 4108 BasicBlock *BB = VL0->getParent(); 4109 4110 if (!DT->isReachableFromEntry(BB)) { 4111 // Don't go into unreachable blocks. They may contain instructions with 4112 // dependency cycles which confuse the final scheduling. 4113 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4114 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4115 return; 4116 } 4117 4118 // Check that every instruction appears once in this bundle. 4119 if (!TryToFindDuplicates(S)) 4120 return; 4121 4122 auto &BSRef = BlocksSchedules[BB]; 4123 if (!BSRef) 4124 BSRef = std::make_unique<BlockScheduling>(BB); 4125 4126 BlockScheduling &BS = *BSRef.get(); 4127 4128 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4129 #ifdef EXPENSIVE_CHECKS 4130 // Make sure we didn't break any internal invariants 4131 BS.verify(); 4132 #endif 4133 if (!Bundle) { 4134 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4135 assert((!BS.getScheduleData(VL0) || 4136 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4137 "tryScheduleBundle should cancelScheduling on failure"); 4138 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4139 ReuseShuffleIndicies); 4140 return; 4141 } 4142 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4143 4144 unsigned ShuffleOrOp = S.isAltShuffle() ? 4145 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4146 switch (ShuffleOrOp) { 4147 case Instruction::PHI: { 4148 auto *PH = cast<PHINode>(VL0); 4149 4150 // Check for terminator values (e.g. invoke). 4151 for (Value *V : VL) 4152 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4153 Instruction *Term = dyn_cast<Instruction>( 4154 cast<PHINode>(V)->getIncomingValueForBlock( 4155 PH->getIncomingBlock(I))); 4156 if (Term && Term->isTerminator()) { 4157 LLVM_DEBUG(dbgs() 4158 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4159 BS.cancelScheduling(VL, VL0); 4160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4161 ReuseShuffleIndicies); 4162 return; 4163 } 4164 } 4165 4166 TreeEntry *TE = 4167 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4168 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4169 4170 // Keeps the reordered operands to avoid code duplication. 4171 SmallVector<ValueList, 2> OperandsVec; 4172 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4173 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4174 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4175 TE->setOperand(I, Operands); 4176 OperandsVec.push_back(Operands); 4177 continue; 4178 } 4179 ValueList Operands; 4180 // Prepare the operand vector. 4181 for (Value *V : VL) 4182 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4183 PH->getIncomingBlock(I))); 4184 TE->setOperand(I, Operands); 4185 OperandsVec.push_back(Operands); 4186 } 4187 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4188 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4189 return; 4190 } 4191 case Instruction::ExtractValue: 4192 case Instruction::ExtractElement: { 4193 OrdersType CurrentOrder; 4194 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4195 if (Reuse) { 4196 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4197 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4198 ReuseShuffleIndicies); 4199 // This is a special case, as it does not gather, but at the same time 4200 // we are not extending buildTree_rec() towards the operands. 4201 ValueList Op0; 4202 Op0.assign(VL.size(), VL0->getOperand(0)); 4203 VectorizableTree.back()->setOperand(0, Op0); 4204 return; 4205 } 4206 if (!CurrentOrder.empty()) { 4207 LLVM_DEBUG({ 4208 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4209 "with order"; 4210 for (unsigned Idx : CurrentOrder) 4211 dbgs() << " " << Idx; 4212 dbgs() << "\n"; 4213 }); 4214 fixupOrderingIndices(CurrentOrder); 4215 // Insert new order with initial value 0, if it does not exist, 4216 // otherwise return the iterator to the existing one. 4217 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4218 ReuseShuffleIndicies, CurrentOrder); 4219 // This is a special case, as it does not gather, but at the same time 4220 // we are not extending buildTree_rec() towards the operands. 4221 ValueList Op0; 4222 Op0.assign(VL.size(), VL0->getOperand(0)); 4223 VectorizableTree.back()->setOperand(0, Op0); 4224 return; 4225 } 4226 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4227 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4228 ReuseShuffleIndicies); 4229 BS.cancelScheduling(VL, VL0); 4230 return; 4231 } 4232 case Instruction::InsertElement: { 4233 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4234 4235 // Check that we have a buildvector and not a shuffle of 2 or more 4236 // different vectors. 4237 ValueSet SourceVectors; 4238 for (Value *V : VL) { 4239 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4240 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4241 } 4242 4243 if (count_if(VL, [&SourceVectors](Value *V) { 4244 return !SourceVectors.contains(V); 4245 }) >= 2) { 4246 // Found 2nd source vector - cancel. 4247 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4248 "different source vectors.\n"); 4249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4250 BS.cancelScheduling(VL, VL0); 4251 return; 4252 } 4253 4254 auto OrdCompare = [](const std::pair<int, int> &P1, 4255 const std::pair<int, int> &P2) { 4256 return P1.first > P2.first; 4257 }; 4258 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4259 decltype(OrdCompare)> 4260 Indices(OrdCompare); 4261 for (int I = 0, E = VL.size(); I < E; ++I) { 4262 unsigned Idx = *getInsertIndex(VL[I]); 4263 Indices.emplace(Idx, I); 4264 } 4265 OrdersType CurrentOrder(VL.size(), VL.size()); 4266 bool IsIdentity = true; 4267 for (int I = 0, E = VL.size(); I < E; ++I) { 4268 CurrentOrder[Indices.top().second] = I; 4269 IsIdentity &= Indices.top().second == I; 4270 Indices.pop(); 4271 } 4272 if (IsIdentity) 4273 CurrentOrder.clear(); 4274 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4275 None, CurrentOrder); 4276 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4277 4278 constexpr int NumOps = 2; 4279 ValueList VectorOperands[NumOps]; 4280 for (int I = 0; I < NumOps; ++I) { 4281 for (Value *V : VL) 4282 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4283 4284 TE->setOperand(I, VectorOperands[I]); 4285 } 4286 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4287 return; 4288 } 4289 case Instruction::Load: { 4290 // Check that a vectorized load would load the same memory as a scalar 4291 // load. For example, we don't want to vectorize loads that are smaller 4292 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4293 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4294 // from such a struct, we read/write packed bits disagreeing with the 4295 // unvectorized version. 4296 SmallVector<Value *> PointerOps; 4297 OrdersType CurrentOrder; 4298 TreeEntry *TE = nullptr; 4299 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4300 PointerOps)) { 4301 case LoadsState::Vectorize: 4302 if (CurrentOrder.empty()) { 4303 // Original loads are consecutive and does not require reordering. 4304 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4305 ReuseShuffleIndicies); 4306 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4307 } else { 4308 fixupOrderingIndices(CurrentOrder); 4309 // Need to reorder. 4310 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4311 ReuseShuffleIndicies, CurrentOrder); 4312 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4313 } 4314 TE->setOperandsInOrder(); 4315 break; 4316 case LoadsState::ScatterVectorize: 4317 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4318 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4319 UserTreeIdx, ReuseShuffleIndicies); 4320 TE->setOperandsInOrder(); 4321 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4322 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4323 break; 4324 case LoadsState::Gather: 4325 BS.cancelScheduling(VL, VL0); 4326 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4327 ReuseShuffleIndicies); 4328 #ifndef NDEBUG 4329 Type *ScalarTy = VL0->getType(); 4330 if (DL->getTypeSizeInBits(ScalarTy) != 4331 DL->getTypeAllocSizeInBits(ScalarTy)) 4332 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4333 else if (any_of(VL, [](Value *V) { 4334 return !cast<LoadInst>(V)->isSimple(); 4335 })) 4336 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4337 else 4338 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4339 #endif // NDEBUG 4340 break; 4341 } 4342 return; 4343 } 4344 case Instruction::ZExt: 4345 case Instruction::SExt: 4346 case Instruction::FPToUI: 4347 case Instruction::FPToSI: 4348 case Instruction::FPExt: 4349 case Instruction::PtrToInt: 4350 case Instruction::IntToPtr: 4351 case Instruction::SIToFP: 4352 case Instruction::UIToFP: 4353 case Instruction::Trunc: 4354 case Instruction::FPTrunc: 4355 case Instruction::BitCast: { 4356 Type *SrcTy = VL0->getOperand(0)->getType(); 4357 for (Value *V : VL) { 4358 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4359 if (Ty != SrcTy || !isValidElementType(Ty)) { 4360 BS.cancelScheduling(VL, VL0); 4361 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4362 ReuseShuffleIndicies); 4363 LLVM_DEBUG(dbgs() 4364 << "SLP: Gathering casts with different src types.\n"); 4365 return; 4366 } 4367 } 4368 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4369 ReuseShuffleIndicies); 4370 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4371 4372 TE->setOperandsInOrder(); 4373 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4374 ValueList Operands; 4375 // Prepare the operand vector. 4376 for (Value *V : VL) 4377 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4378 4379 buildTree_rec(Operands, Depth + 1, {TE, i}); 4380 } 4381 return; 4382 } 4383 case Instruction::ICmp: 4384 case Instruction::FCmp: { 4385 // Check that all of the compares have the same predicate. 4386 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4387 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4388 Type *ComparedTy = VL0->getOperand(0)->getType(); 4389 for (Value *V : VL) { 4390 CmpInst *Cmp = cast<CmpInst>(V); 4391 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4392 Cmp->getOperand(0)->getType() != ComparedTy) { 4393 BS.cancelScheduling(VL, VL0); 4394 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4395 ReuseShuffleIndicies); 4396 LLVM_DEBUG(dbgs() 4397 << "SLP: Gathering cmp with different predicate.\n"); 4398 return; 4399 } 4400 } 4401 4402 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4403 ReuseShuffleIndicies); 4404 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4405 4406 ValueList Left, Right; 4407 if (cast<CmpInst>(VL0)->isCommutative()) { 4408 // Commutative predicate - collect + sort operands of the instructions 4409 // so that each side is more likely to have the same opcode. 4410 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4411 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4412 } else { 4413 // Collect operands - commute if it uses the swapped predicate. 4414 for (Value *V : VL) { 4415 auto *Cmp = cast<CmpInst>(V); 4416 Value *LHS = Cmp->getOperand(0); 4417 Value *RHS = Cmp->getOperand(1); 4418 if (Cmp->getPredicate() != P0) 4419 std::swap(LHS, RHS); 4420 Left.push_back(LHS); 4421 Right.push_back(RHS); 4422 } 4423 } 4424 TE->setOperand(0, Left); 4425 TE->setOperand(1, Right); 4426 buildTree_rec(Left, Depth + 1, {TE, 0}); 4427 buildTree_rec(Right, Depth + 1, {TE, 1}); 4428 return; 4429 } 4430 case Instruction::Select: 4431 case Instruction::FNeg: 4432 case Instruction::Add: 4433 case Instruction::FAdd: 4434 case Instruction::Sub: 4435 case Instruction::FSub: 4436 case Instruction::Mul: 4437 case Instruction::FMul: 4438 case Instruction::UDiv: 4439 case Instruction::SDiv: 4440 case Instruction::FDiv: 4441 case Instruction::URem: 4442 case Instruction::SRem: 4443 case Instruction::FRem: 4444 case Instruction::Shl: 4445 case Instruction::LShr: 4446 case Instruction::AShr: 4447 case Instruction::And: 4448 case Instruction::Or: 4449 case Instruction::Xor: { 4450 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4451 ReuseShuffleIndicies); 4452 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4453 4454 // Sort operands of the instructions so that each side is more likely to 4455 // have the same opcode. 4456 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4457 ValueList Left, Right; 4458 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4459 TE->setOperand(0, Left); 4460 TE->setOperand(1, Right); 4461 buildTree_rec(Left, Depth + 1, {TE, 0}); 4462 buildTree_rec(Right, Depth + 1, {TE, 1}); 4463 return; 4464 } 4465 4466 TE->setOperandsInOrder(); 4467 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4468 ValueList Operands; 4469 // Prepare the operand vector. 4470 for (Value *V : VL) 4471 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4472 4473 buildTree_rec(Operands, Depth + 1, {TE, i}); 4474 } 4475 return; 4476 } 4477 case Instruction::GetElementPtr: { 4478 // We don't combine GEPs with complicated (nested) indexing. 4479 for (Value *V : VL) { 4480 if (cast<Instruction>(V)->getNumOperands() != 2) { 4481 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4482 BS.cancelScheduling(VL, VL0); 4483 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4484 ReuseShuffleIndicies); 4485 return; 4486 } 4487 } 4488 4489 // We can't combine several GEPs into one vector if they operate on 4490 // different types. 4491 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4492 for (Value *V : VL) { 4493 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4494 if (Ty0 != CurTy) { 4495 LLVM_DEBUG(dbgs() 4496 << "SLP: not-vectorizable GEP (different types).\n"); 4497 BS.cancelScheduling(VL, VL0); 4498 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4499 ReuseShuffleIndicies); 4500 return; 4501 } 4502 } 4503 4504 // We don't combine GEPs with non-constant indexes. 4505 Type *Ty1 = VL0->getOperand(1)->getType(); 4506 for (Value *V : VL) { 4507 auto Op = cast<Instruction>(V)->getOperand(1); 4508 if (!isa<ConstantInt>(Op) || 4509 (Op->getType() != Ty1 && 4510 Op->getType()->getScalarSizeInBits() > 4511 DL->getIndexSizeInBits( 4512 V->getType()->getPointerAddressSpace()))) { 4513 LLVM_DEBUG(dbgs() 4514 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4515 BS.cancelScheduling(VL, VL0); 4516 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4517 ReuseShuffleIndicies); 4518 return; 4519 } 4520 } 4521 4522 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4523 ReuseShuffleIndicies); 4524 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4525 SmallVector<ValueList, 2> Operands(2); 4526 // Prepare the operand vector for pointer operands. 4527 for (Value *V : VL) 4528 Operands.front().push_back( 4529 cast<GetElementPtrInst>(V)->getPointerOperand()); 4530 TE->setOperand(0, Operands.front()); 4531 // Need to cast all indices to the same type before vectorization to 4532 // avoid crash. 4533 // Required to be able to find correct matches between different gather 4534 // nodes and reuse the vectorized values rather than trying to gather them 4535 // again. 4536 int IndexIdx = 1; 4537 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4538 Type *Ty = all_of(VL, 4539 [VL0Ty, IndexIdx](Value *V) { 4540 return VL0Ty == cast<GetElementPtrInst>(V) 4541 ->getOperand(IndexIdx) 4542 ->getType(); 4543 }) 4544 ? VL0Ty 4545 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4546 ->getPointerOperandType() 4547 ->getScalarType()); 4548 // Prepare the operand vector. 4549 for (Value *V : VL) { 4550 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4551 auto *CI = cast<ConstantInt>(Op); 4552 Operands.back().push_back(ConstantExpr::getIntegerCast( 4553 CI, Ty, CI->getValue().isSignBitSet())); 4554 } 4555 TE->setOperand(IndexIdx, Operands.back()); 4556 4557 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4558 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4559 return; 4560 } 4561 case Instruction::Store: { 4562 // Check if the stores are consecutive or if we need to swizzle them. 4563 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4564 // Avoid types that are padded when being allocated as scalars, while 4565 // being packed together in a vector (such as i1). 4566 if (DL->getTypeSizeInBits(ScalarTy) != 4567 DL->getTypeAllocSizeInBits(ScalarTy)) { 4568 BS.cancelScheduling(VL, VL0); 4569 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4570 ReuseShuffleIndicies); 4571 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4572 return; 4573 } 4574 // Make sure all stores in the bundle are simple - we can't vectorize 4575 // atomic or volatile stores. 4576 SmallVector<Value *, 4> PointerOps(VL.size()); 4577 ValueList Operands(VL.size()); 4578 auto POIter = PointerOps.begin(); 4579 auto OIter = Operands.begin(); 4580 for (Value *V : VL) { 4581 auto *SI = cast<StoreInst>(V); 4582 if (!SI->isSimple()) { 4583 BS.cancelScheduling(VL, VL0); 4584 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4585 ReuseShuffleIndicies); 4586 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4587 return; 4588 } 4589 *POIter = SI->getPointerOperand(); 4590 *OIter = SI->getValueOperand(); 4591 ++POIter; 4592 ++OIter; 4593 } 4594 4595 OrdersType CurrentOrder; 4596 // Check the order of pointer operands. 4597 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4598 Value *Ptr0; 4599 Value *PtrN; 4600 if (CurrentOrder.empty()) { 4601 Ptr0 = PointerOps.front(); 4602 PtrN = PointerOps.back(); 4603 } else { 4604 Ptr0 = PointerOps[CurrentOrder.front()]; 4605 PtrN = PointerOps[CurrentOrder.back()]; 4606 } 4607 Optional<int> Dist = 4608 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4609 // Check that the sorted pointer operands are consecutive. 4610 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4611 if (CurrentOrder.empty()) { 4612 // Original stores are consecutive and does not require reordering. 4613 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4614 UserTreeIdx, ReuseShuffleIndicies); 4615 TE->setOperandsInOrder(); 4616 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4617 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4618 } else { 4619 fixupOrderingIndices(CurrentOrder); 4620 TreeEntry *TE = 4621 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4622 ReuseShuffleIndicies, CurrentOrder); 4623 TE->setOperandsInOrder(); 4624 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4625 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4626 } 4627 return; 4628 } 4629 } 4630 4631 BS.cancelScheduling(VL, VL0); 4632 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4633 ReuseShuffleIndicies); 4634 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4635 return; 4636 } 4637 case Instruction::Call: { 4638 // Check if the calls are all to the same vectorizable intrinsic or 4639 // library function. 4640 CallInst *CI = cast<CallInst>(VL0); 4641 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4642 4643 VFShape Shape = VFShape::get( 4644 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4645 false /*HasGlobalPred*/); 4646 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4647 4648 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4649 BS.cancelScheduling(VL, VL0); 4650 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4651 ReuseShuffleIndicies); 4652 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4653 return; 4654 } 4655 Function *F = CI->getCalledFunction(); 4656 unsigned NumArgs = CI->arg_size(); 4657 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4658 for (unsigned j = 0; j != NumArgs; ++j) 4659 if (hasVectorInstrinsicScalarOpd(ID, j)) 4660 ScalarArgs[j] = CI->getArgOperand(j); 4661 for (Value *V : VL) { 4662 CallInst *CI2 = dyn_cast<CallInst>(V); 4663 if (!CI2 || CI2->getCalledFunction() != F || 4664 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4665 (VecFunc && 4666 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4667 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4668 BS.cancelScheduling(VL, VL0); 4669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4670 ReuseShuffleIndicies); 4671 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4672 << "\n"); 4673 return; 4674 } 4675 // Some intrinsics have scalar arguments and should be same in order for 4676 // them to be vectorized. 4677 for (unsigned j = 0; j != NumArgs; ++j) { 4678 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4679 Value *A1J = CI2->getArgOperand(j); 4680 if (ScalarArgs[j] != A1J) { 4681 BS.cancelScheduling(VL, VL0); 4682 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4683 ReuseShuffleIndicies); 4684 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4685 << " argument " << ScalarArgs[j] << "!=" << A1J 4686 << "\n"); 4687 return; 4688 } 4689 } 4690 } 4691 // Verify that the bundle operands are identical between the two calls. 4692 if (CI->hasOperandBundles() && 4693 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4694 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4695 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4696 BS.cancelScheduling(VL, VL0); 4697 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4698 ReuseShuffleIndicies); 4699 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4700 << *CI << "!=" << *V << '\n'); 4701 return; 4702 } 4703 } 4704 4705 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4706 ReuseShuffleIndicies); 4707 TE->setOperandsInOrder(); 4708 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4709 // For scalar operands no need to to create an entry since no need to 4710 // vectorize it. 4711 if (hasVectorInstrinsicScalarOpd(ID, i)) 4712 continue; 4713 ValueList Operands; 4714 // Prepare the operand vector. 4715 for (Value *V : VL) { 4716 auto *CI2 = cast<CallInst>(V); 4717 Operands.push_back(CI2->getArgOperand(i)); 4718 } 4719 buildTree_rec(Operands, Depth + 1, {TE, i}); 4720 } 4721 return; 4722 } 4723 case Instruction::ShuffleVector: { 4724 // If this is not an alternate sequence of opcode like add-sub 4725 // then do not vectorize this instruction. 4726 if (!S.isAltShuffle()) { 4727 BS.cancelScheduling(VL, VL0); 4728 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4729 ReuseShuffleIndicies); 4730 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4731 return; 4732 } 4733 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4734 ReuseShuffleIndicies); 4735 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4736 4737 // Reorder operands if reordering would enable vectorization. 4738 auto *CI = dyn_cast<CmpInst>(VL0); 4739 if (isa<BinaryOperator>(VL0) || CI) { 4740 ValueList Left, Right; 4741 if (!CI || all_of(VL, [](Value *V) { 4742 return cast<CmpInst>(V)->isCommutative(); 4743 })) { 4744 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4745 } else { 4746 CmpInst::Predicate P0 = CI->getPredicate(); 4747 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4748 assert(P0 != AltP0 && 4749 "Expected different main/alternate predicates."); 4750 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4751 Value *BaseOp0 = VL0->getOperand(0); 4752 Value *BaseOp1 = VL0->getOperand(1); 4753 // Collect operands - commute if it uses the swapped predicate or 4754 // alternate operation. 4755 for (Value *V : VL) { 4756 auto *Cmp = cast<CmpInst>(V); 4757 Value *LHS = Cmp->getOperand(0); 4758 Value *RHS = Cmp->getOperand(1); 4759 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4760 if (P0 == AltP0Swapped) { 4761 if (CI != Cmp && S.AltOp != Cmp && 4762 ((P0 == CurrentPred && 4763 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4764 (AltP0 == CurrentPred && 4765 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4766 std::swap(LHS, RHS); 4767 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4768 std::swap(LHS, RHS); 4769 } 4770 Left.push_back(LHS); 4771 Right.push_back(RHS); 4772 } 4773 } 4774 TE->setOperand(0, Left); 4775 TE->setOperand(1, Right); 4776 buildTree_rec(Left, Depth + 1, {TE, 0}); 4777 buildTree_rec(Right, Depth + 1, {TE, 1}); 4778 return; 4779 } 4780 4781 TE->setOperandsInOrder(); 4782 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4783 ValueList Operands; 4784 // Prepare the operand vector. 4785 for (Value *V : VL) 4786 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4787 4788 buildTree_rec(Operands, Depth + 1, {TE, i}); 4789 } 4790 return; 4791 } 4792 default: 4793 BS.cancelScheduling(VL, VL0); 4794 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4795 ReuseShuffleIndicies); 4796 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4797 return; 4798 } 4799 } 4800 4801 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4802 unsigned N = 1; 4803 Type *EltTy = T; 4804 4805 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4806 isa<VectorType>(EltTy)) { 4807 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4808 // Check that struct is homogeneous. 4809 for (const auto *Ty : ST->elements()) 4810 if (Ty != *ST->element_begin()) 4811 return 0; 4812 N *= ST->getNumElements(); 4813 EltTy = *ST->element_begin(); 4814 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4815 N *= AT->getNumElements(); 4816 EltTy = AT->getElementType(); 4817 } else { 4818 auto *VT = cast<FixedVectorType>(EltTy); 4819 N *= VT->getNumElements(); 4820 EltTy = VT->getElementType(); 4821 } 4822 } 4823 4824 if (!isValidElementType(EltTy)) 4825 return 0; 4826 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4827 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4828 return 0; 4829 return N; 4830 } 4831 4832 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4833 SmallVectorImpl<unsigned> &CurrentOrder) const { 4834 const auto *It = find_if(VL, [](Value *V) { 4835 return isa<ExtractElementInst, ExtractValueInst>(V); 4836 }); 4837 assert(It != VL.end() && "Expected at least one extract instruction."); 4838 auto *E0 = cast<Instruction>(*It); 4839 assert(all_of(VL, 4840 [](Value *V) { 4841 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4842 V); 4843 }) && 4844 "Invalid opcode"); 4845 // Check if all of the extracts come from the same vector and from the 4846 // correct offset. 4847 Value *Vec = E0->getOperand(0); 4848 4849 CurrentOrder.clear(); 4850 4851 // We have to extract from a vector/aggregate with the same number of elements. 4852 unsigned NElts; 4853 if (E0->getOpcode() == Instruction::ExtractValue) { 4854 const DataLayout &DL = E0->getModule()->getDataLayout(); 4855 NElts = canMapToVector(Vec->getType(), DL); 4856 if (!NElts) 4857 return false; 4858 // Check if load can be rewritten as load of vector. 4859 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4860 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4861 return false; 4862 } else { 4863 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4864 } 4865 4866 if (NElts != VL.size()) 4867 return false; 4868 4869 // Check that all of the indices extract from the correct offset. 4870 bool ShouldKeepOrder = true; 4871 unsigned E = VL.size(); 4872 // Assign to all items the initial value E + 1 so we can check if the extract 4873 // instruction index was used already. 4874 // Also, later we can check that all the indices are used and we have a 4875 // consecutive access in the extract instructions, by checking that no 4876 // element of CurrentOrder still has value E + 1. 4877 CurrentOrder.assign(E, E); 4878 unsigned I = 0; 4879 for (; I < E; ++I) { 4880 auto *Inst = dyn_cast<Instruction>(VL[I]); 4881 if (!Inst) 4882 continue; 4883 if (Inst->getOperand(0) != Vec) 4884 break; 4885 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4886 if (isa<UndefValue>(EE->getIndexOperand())) 4887 continue; 4888 Optional<unsigned> Idx = getExtractIndex(Inst); 4889 if (!Idx) 4890 break; 4891 const unsigned ExtIdx = *Idx; 4892 if (ExtIdx != I) { 4893 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4894 break; 4895 ShouldKeepOrder = false; 4896 CurrentOrder[ExtIdx] = I; 4897 } else { 4898 if (CurrentOrder[I] != E) 4899 break; 4900 CurrentOrder[I] = I; 4901 } 4902 } 4903 if (I < E) { 4904 CurrentOrder.clear(); 4905 return false; 4906 } 4907 if (ShouldKeepOrder) 4908 CurrentOrder.clear(); 4909 4910 return ShouldKeepOrder; 4911 } 4912 4913 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4914 ArrayRef<Value *> VectorizedVals) const { 4915 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4916 all_of(I->users(), [this](User *U) { 4917 return ScalarToTreeEntry.count(U) > 0 || 4918 isVectorLikeInstWithConstOps(U) || 4919 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4920 }); 4921 } 4922 4923 static std::pair<InstructionCost, InstructionCost> 4924 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4925 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4926 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4927 4928 // Calculate the cost of the scalar and vector calls. 4929 SmallVector<Type *, 4> VecTys; 4930 for (Use &Arg : CI->args()) 4931 VecTys.push_back( 4932 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4933 FastMathFlags FMF; 4934 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4935 FMF = FPCI->getFastMathFlags(); 4936 SmallVector<const Value *> Arguments(CI->args()); 4937 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4938 dyn_cast<IntrinsicInst>(CI)); 4939 auto IntrinsicCost = 4940 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4941 4942 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4943 VecTy->getNumElements())), 4944 false /*HasGlobalPred*/); 4945 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4946 auto LibCost = IntrinsicCost; 4947 if (!CI->isNoBuiltin() && VecFunc) { 4948 // Calculate the cost of the vector library call. 4949 // If the corresponding vector call is cheaper, return its cost. 4950 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4951 TTI::TCK_RecipThroughput); 4952 } 4953 return {IntrinsicCost, LibCost}; 4954 } 4955 4956 /// Compute the cost of creating a vector of type \p VecTy containing the 4957 /// extracted values from \p VL. 4958 static InstructionCost 4959 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4960 TargetTransformInfo::ShuffleKind ShuffleKind, 4961 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4962 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4963 4964 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4965 VecTy->getNumElements() < NumOfParts) 4966 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4967 4968 bool AllConsecutive = true; 4969 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4970 unsigned Idx = -1; 4971 InstructionCost Cost = 0; 4972 4973 // Process extracts in blocks of EltsPerVector to check if the source vector 4974 // operand can be re-used directly. If not, add the cost of creating a shuffle 4975 // to extract the values into a vector register. 4976 for (auto *V : VL) { 4977 ++Idx; 4978 4979 // Need to exclude undefs from analysis. 4980 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4981 continue; 4982 4983 // Reached the start of a new vector registers. 4984 if (Idx % EltsPerVector == 0) { 4985 AllConsecutive = true; 4986 continue; 4987 } 4988 4989 // Check all extracts for a vector register on the target directly 4990 // extract values in order. 4991 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4992 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4993 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4994 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4995 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4996 } 4997 4998 if (AllConsecutive) 4999 continue; 5000 5001 // Skip all indices, except for the last index per vector block. 5002 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5003 continue; 5004 5005 // If we have a series of extracts which are not consecutive and hence 5006 // cannot re-use the source vector register directly, compute the shuffle 5007 // cost to extract the a vector with EltsPerVector elements. 5008 Cost += TTI.getShuffleCost( 5009 TargetTransformInfo::SK_PermuteSingleSrc, 5010 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5011 } 5012 return Cost; 5013 } 5014 5015 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5016 /// operations operands. 5017 static void 5018 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5019 ArrayRef<int> ReusesIndices, 5020 const function_ref<bool(Instruction *)> IsAltOp, 5021 SmallVectorImpl<int> &Mask, 5022 SmallVectorImpl<Value *> *OpScalars = nullptr, 5023 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5024 unsigned Sz = VL.size(); 5025 Mask.assign(Sz, UndefMaskElem); 5026 SmallVector<int> OrderMask; 5027 if (!ReorderIndices.empty()) 5028 inversePermutation(ReorderIndices, OrderMask); 5029 for (unsigned I = 0; I < Sz; ++I) { 5030 unsigned Idx = I; 5031 if (!ReorderIndices.empty()) 5032 Idx = OrderMask[I]; 5033 auto *OpInst = cast<Instruction>(VL[Idx]); 5034 if (IsAltOp(OpInst)) { 5035 Mask[I] = Sz + Idx; 5036 if (AltScalars) 5037 AltScalars->push_back(OpInst); 5038 } else { 5039 Mask[I] = Idx; 5040 if (OpScalars) 5041 OpScalars->push_back(OpInst); 5042 } 5043 } 5044 if (!ReusesIndices.empty()) { 5045 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5046 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5047 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5048 }); 5049 Mask.swap(NewMask); 5050 } 5051 } 5052 5053 /// Checks if the specified instruction \p I is an alternate operation for the 5054 /// given \p MainOp and \p AltOp instructions. 5055 static bool isAlternateInstruction(const Instruction *I, 5056 const Instruction *MainOp, 5057 const Instruction *AltOp) { 5058 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5059 auto *AltCI0 = cast<CmpInst>(AltOp); 5060 auto *CI = cast<CmpInst>(I); 5061 CmpInst::Predicate P0 = CI0->getPredicate(); 5062 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5063 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5064 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5065 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5066 if (P0 == AltP0Swapped) 5067 return I == AltCI0 || 5068 (I != MainOp && 5069 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5070 CI->getOperand(0), CI->getOperand(1))); 5071 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5072 } 5073 return I->getOpcode() == AltOp->getOpcode(); 5074 } 5075 5076 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5077 ArrayRef<Value *> VectorizedVals) { 5078 ArrayRef<Value*> VL = E->Scalars; 5079 5080 Type *ScalarTy = VL[0]->getType(); 5081 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5082 ScalarTy = SI->getValueOperand()->getType(); 5083 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5084 ScalarTy = CI->getOperand(0)->getType(); 5085 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5086 ScalarTy = IE->getOperand(1)->getType(); 5087 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5088 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5089 5090 // If we have computed a smaller type for the expression, update VecTy so 5091 // that the costs will be accurate. 5092 if (MinBWs.count(VL[0])) 5093 VecTy = FixedVectorType::get( 5094 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5095 unsigned EntryVF = E->getVectorFactor(); 5096 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5097 5098 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5099 // FIXME: it tries to fix a problem with MSVC buildbots. 5100 TargetTransformInfo &TTIRef = *TTI; 5101 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5102 VectorizedVals, E](InstructionCost &Cost) { 5103 DenseMap<Value *, int> ExtractVectorsTys; 5104 SmallPtrSet<Value *, 4> CheckedExtracts; 5105 for (auto *V : VL) { 5106 if (isa<UndefValue>(V)) 5107 continue; 5108 // If all users of instruction are going to be vectorized and this 5109 // instruction itself is not going to be vectorized, consider this 5110 // instruction as dead and remove its cost from the final cost of the 5111 // vectorized tree. 5112 // Also, avoid adjusting the cost for extractelements with multiple uses 5113 // in different graph entries. 5114 const TreeEntry *VE = getTreeEntry(V); 5115 if (!CheckedExtracts.insert(V).second || 5116 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5117 (VE && VE != E)) 5118 continue; 5119 auto *EE = cast<ExtractElementInst>(V); 5120 Optional<unsigned> EEIdx = getExtractIndex(EE); 5121 if (!EEIdx) 5122 continue; 5123 unsigned Idx = *EEIdx; 5124 if (TTIRef.getNumberOfParts(VecTy) != 5125 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5126 auto It = 5127 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5128 It->getSecond() = std::min<int>(It->second, Idx); 5129 } 5130 // Take credit for instruction that will become dead. 5131 if (EE->hasOneUse()) { 5132 Instruction *Ext = EE->user_back(); 5133 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5134 all_of(Ext->users(), 5135 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5136 // Use getExtractWithExtendCost() to calculate the cost of 5137 // extractelement/ext pair. 5138 Cost -= 5139 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5140 EE->getVectorOperandType(), Idx); 5141 // Add back the cost of s|zext which is subtracted separately. 5142 Cost += TTIRef.getCastInstrCost( 5143 Ext->getOpcode(), Ext->getType(), EE->getType(), 5144 TTI::getCastContextHint(Ext), CostKind, Ext); 5145 continue; 5146 } 5147 } 5148 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5149 EE->getVectorOperandType(), Idx); 5150 } 5151 // Add a cost for subvector extracts/inserts if required. 5152 for (const auto &Data : ExtractVectorsTys) { 5153 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5154 unsigned NumElts = VecTy->getNumElements(); 5155 if (Data.second % NumElts == 0) 5156 continue; 5157 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5158 unsigned Idx = (Data.second / NumElts) * NumElts; 5159 unsigned EENumElts = EEVTy->getNumElements(); 5160 if (Idx + NumElts <= EENumElts) { 5161 Cost += 5162 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5163 EEVTy, None, Idx, VecTy); 5164 } else { 5165 // Need to round up the subvector type vectorization factor to avoid a 5166 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5167 // <= EENumElts. 5168 auto *SubVT = 5169 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5170 Cost += 5171 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5172 EEVTy, None, Idx, SubVT); 5173 } 5174 } else { 5175 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5176 VecTy, None, 0, EEVTy); 5177 } 5178 } 5179 }; 5180 if (E->State == TreeEntry::NeedToGather) { 5181 if (allConstant(VL)) 5182 return 0; 5183 if (isa<InsertElementInst>(VL[0])) 5184 return InstructionCost::getInvalid(); 5185 SmallVector<int> Mask; 5186 SmallVector<const TreeEntry *> Entries; 5187 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5188 isGatherShuffledEntry(E, Mask, Entries); 5189 if (Shuffle.hasValue()) { 5190 InstructionCost GatherCost = 0; 5191 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5192 // Perfect match in the graph, will reuse the previously vectorized 5193 // node. Cost is 0. 5194 LLVM_DEBUG( 5195 dbgs() 5196 << "SLP: perfect diamond match for gather bundle that starts with " 5197 << *VL.front() << ".\n"); 5198 if (NeedToShuffleReuses) 5199 GatherCost = 5200 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5201 FinalVecTy, E->ReuseShuffleIndices); 5202 } else { 5203 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5204 << " entries for bundle that starts with " 5205 << *VL.front() << ".\n"); 5206 // Detected that instead of gather we can emit a shuffle of single/two 5207 // previously vectorized nodes. Add the cost of the permutation rather 5208 // than gather. 5209 ::addMask(Mask, E->ReuseShuffleIndices); 5210 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5211 } 5212 return GatherCost; 5213 } 5214 if ((E->getOpcode() == Instruction::ExtractElement || 5215 all_of(E->Scalars, 5216 [](Value *V) { 5217 return isa<ExtractElementInst, UndefValue>(V); 5218 })) && 5219 allSameType(VL)) { 5220 // Check that gather of extractelements can be represented as just a 5221 // shuffle of a single/two vectors the scalars are extracted from. 5222 SmallVector<int> Mask; 5223 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5224 isFixedVectorShuffle(VL, Mask); 5225 if (ShuffleKind.hasValue()) { 5226 // Found the bunch of extractelement instructions that must be gathered 5227 // into a vector and can be represented as a permutation elements in a 5228 // single input vector or of 2 input vectors. 5229 InstructionCost Cost = 5230 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5231 AdjustExtractsCost(Cost); 5232 if (NeedToShuffleReuses) 5233 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5234 FinalVecTy, E->ReuseShuffleIndices); 5235 return Cost; 5236 } 5237 } 5238 if (isSplat(VL)) { 5239 // Found the broadcasting of the single scalar, calculate the cost as the 5240 // broadcast. 5241 assert(VecTy == FinalVecTy && 5242 "No reused scalars expected for broadcast."); 5243 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5244 } 5245 InstructionCost ReuseShuffleCost = 0; 5246 if (NeedToShuffleReuses) 5247 ReuseShuffleCost = TTI->getShuffleCost( 5248 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5249 // Improve gather cost for gather of loads, if we can group some of the 5250 // loads into vector loads. 5251 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5252 !E->isAltShuffle()) { 5253 BoUpSLP::ValueSet VectorizedLoads; 5254 unsigned StartIdx = 0; 5255 unsigned VF = VL.size() / 2; 5256 unsigned VectorizedCnt = 0; 5257 unsigned ScatterVectorizeCnt = 0; 5258 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5259 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5260 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5261 Cnt += VF) { 5262 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5263 if (!VectorizedLoads.count(Slice.front()) && 5264 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5265 SmallVector<Value *> PointerOps; 5266 OrdersType CurrentOrder; 5267 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5268 *SE, CurrentOrder, PointerOps); 5269 switch (LS) { 5270 case LoadsState::Vectorize: 5271 case LoadsState::ScatterVectorize: 5272 // Mark the vectorized loads so that we don't vectorize them 5273 // again. 5274 if (LS == LoadsState::Vectorize) 5275 ++VectorizedCnt; 5276 else 5277 ++ScatterVectorizeCnt; 5278 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5279 // If we vectorized initial block, no need to try to vectorize it 5280 // again. 5281 if (Cnt == StartIdx) 5282 StartIdx += VF; 5283 break; 5284 case LoadsState::Gather: 5285 break; 5286 } 5287 } 5288 } 5289 // Check if the whole array was vectorized already - exit. 5290 if (StartIdx >= VL.size()) 5291 break; 5292 // Found vectorizable parts - exit. 5293 if (!VectorizedLoads.empty()) 5294 break; 5295 } 5296 if (!VectorizedLoads.empty()) { 5297 InstructionCost GatherCost = 0; 5298 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5299 bool NeedInsertSubvectorAnalysis = 5300 !NumParts || (VL.size() / VF) > NumParts; 5301 // Get the cost for gathered loads. 5302 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5303 if (VectorizedLoads.contains(VL[I])) 5304 continue; 5305 GatherCost += getGatherCost(VL.slice(I, VF)); 5306 } 5307 // The cost for vectorized loads. 5308 InstructionCost ScalarsCost = 0; 5309 for (Value *V : VectorizedLoads) { 5310 auto *LI = cast<LoadInst>(V); 5311 ScalarsCost += TTI->getMemoryOpCost( 5312 Instruction::Load, LI->getType(), LI->getAlign(), 5313 LI->getPointerAddressSpace(), CostKind, LI); 5314 } 5315 auto *LI = cast<LoadInst>(E->getMainOp()); 5316 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5317 Align Alignment = LI->getAlign(); 5318 GatherCost += 5319 VectorizedCnt * 5320 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5321 LI->getPointerAddressSpace(), CostKind, LI); 5322 GatherCost += ScatterVectorizeCnt * 5323 TTI->getGatherScatterOpCost( 5324 Instruction::Load, LoadTy, LI->getPointerOperand(), 5325 /*VariableMask=*/false, Alignment, CostKind, LI); 5326 if (NeedInsertSubvectorAnalysis) { 5327 // Add the cost for the subvectors insert. 5328 for (int I = VF, E = VL.size(); I < E; I += VF) 5329 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5330 None, I, LoadTy); 5331 } 5332 return ReuseShuffleCost + GatherCost - ScalarsCost; 5333 } 5334 } 5335 return ReuseShuffleCost + getGatherCost(VL); 5336 } 5337 InstructionCost CommonCost = 0; 5338 SmallVector<int> Mask; 5339 if (!E->ReorderIndices.empty()) { 5340 SmallVector<int> NewMask; 5341 if (E->getOpcode() == Instruction::Store) { 5342 // For stores the order is actually a mask. 5343 NewMask.resize(E->ReorderIndices.size()); 5344 copy(E->ReorderIndices, NewMask.begin()); 5345 } else { 5346 inversePermutation(E->ReorderIndices, NewMask); 5347 } 5348 ::addMask(Mask, NewMask); 5349 } 5350 if (NeedToShuffleReuses) 5351 ::addMask(Mask, E->ReuseShuffleIndices); 5352 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5353 CommonCost = 5354 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5355 assert((E->State == TreeEntry::Vectorize || 5356 E->State == TreeEntry::ScatterVectorize) && 5357 "Unhandled state"); 5358 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5359 Instruction *VL0 = E->getMainOp(); 5360 unsigned ShuffleOrOp = 5361 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5362 switch (ShuffleOrOp) { 5363 case Instruction::PHI: 5364 return 0; 5365 5366 case Instruction::ExtractValue: 5367 case Instruction::ExtractElement: { 5368 // The common cost of removal ExtractElement/ExtractValue instructions + 5369 // the cost of shuffles, if required to resuffle the original vector. 5370 if (NeedToShuffleReuses) { 5371 unsigned Idx = 0; 5372 for (unsigned I : E->ReuseShuffleIndices) { 5373 if (ShuffleOrOp == Instruction::ExtractElement) { 5374 auto *EE = cast<ExtractElementInst>(VL[I]); 5375 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5376 EE->getVectorOperandType(), 5377 *getExtractIndex(EE)); 5378 } else { 5379 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5380 VecTy, Idx); 5381 ++Idx; 5382 } 5383 } 5384 Idx = EntryVF; 5385 for (Value *V : VL) { 5386 if (ShuffleOrOp == Instruction::ExtractElement) { 5387 auto *EE = cast<ExtractElementInst>(V); 5388 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5389 EE->getVectorOperandType(), 5390 *getExtractIndex(EE)); 5391 } else { 5392 --Idx; 5393 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5394 VecTy, Idx); 5395 } 5396 } 5397 } 5398 if (ShuffleOrOp == Instruction::ExtractValue) { 5399 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5400 auto *EI = cast<Instruction>(VL[I]); 5401 // Take credit for instruction that will become dead. 5402 if (EI->hasOneUse()) { 5403 Instruction *Ext = EI->user_back(); 5404 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5405 all_of(Ext->users(), 5406 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5407 // Use getExtractWithExtendCost() to calculate the cost of 5408 // extractelement/ext pair. 5409 CommonCost -= TTI->getExtractWithExtendCost( 5410 Ext->getOpcode(), Ext->getType(), VecTy, I); 5411 // Add back the cost of s|zext which is subtracted separately. 5412 CommonCost += TTI->getCastInstrCost( 5413 Ext->getOpcode(), Ext->getType(), EI->getType(), 5414 TTI::getCastContextHint(Ext), CostKind, Ext); 5415 continue; 5416 } 5417 } 5418 CommonCost -= 5419 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5420 } 5421 } else { 5422 AdjustExtractsCost(CommonCost); 5423 } 5424 return CommonCost; 5425 } 5426 case Instruction::InsertElement: { 5427 assert(E->ReuseShuffleIndices.empty() && 5428 "Unique insertelements only are expected."); 5429 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5430 5431 unsigned const NumElts = SrcVecTy->getNumElements(); 5432 unsigned const NumScalars = VL.size(); 5433 APInt DemandedElts = APInt::getZero(NumElts); 5434 // TODO: Add support for Instruction::InsertValue. 5435 SmallVector<int> Mask; 5436 if (!E->ReorderIndices.empty()) { 5437 inversePermutation(E->ReorderIndices, Mask); 5438 Mask.append(NumElts - NumScalars, UndefMaskElem); 5439 } else { 5440 Mask.assign(NumElts, UndefMaskElem); 5441 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5442 } 5443 unsigned Offset = *getInsertIndex(VL0); 5444 bool IsIdentity = true; 5445 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5446 Mask.swap(PrevMask); 5447 for (unsigned I = 0; I < NumScalars; ++I) { 5448 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5449 DemandedElts.setBit(InsertIdx); 5450 IsIdentity &= InsertIdx - Offset == I; 5451 Mask[InsertIdx - Offset] = I; 5452 } 5453 assert(Offset < NumElts && "Failed to find vector index offset"); 5454 5455 InstructionCost Cost = 0; 5456 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5457 /*Insert*/ true, /*Extract*/ false); 5458 5459 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5460 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5461 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5462 Cost += TTI->getShuffleCost( 5463 TargetTransformInfo::SK_PermuteSingleSrc, 5464 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5465 } else if (!IsIdentity) { 5466 auto *FirstInsert = 5467 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5468 return !is_contained(E->Scalars, 5469 cast<Instruction>(V)->getOperand(0)); 5470 })); 5471 if (isUndefVector(FirstInsert->getOperand(0))) { 5472 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5473 } else { 5474 SmallVector<int> InsertMask(NumElts); 5475 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5476 for (unsigned I = 0; I < NumElts; I++) { 5477 if (Mask[I] != UndefMaskElem) 5478 InsertMask[Offset + I] = NumElts + I; 5479 } 5480 Cost += 5481 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5482 } 5483 } 5484 5485 return Cost; 5486 } 5487 case Instruction::ZExt: 5488 case Instruction::SExt: 5489 case Instruction::FPToUI: 5490 case Instruction::FPToSI: 5491 case Instruction::FPExt: 5492 case Instruction::PtrToInt: 5493 case Instruction::IntToPtr: 5494 case Instruction::SIToFP: 5495 case Instruction::UIToFP: 5496 case Instruction::Trunc: 5497 case Instruction::FPTrunc: 5498 case Instruction::BitCast: { 5499 Type *SrcTy = VL0->getOperand(0)->getType(); 5500 InstructionCost ScalarEltCost = 5501 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5502 TTI::getCastContextHint(VL0), CostKind, VL0); 5503 if (NeedToShuffleReuses) { 5504 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5505 } 5506 5507 // Calculate the cost of this instruction. 5508 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5509 5510 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5511 InstructionCost VecCost = 0; 5512 // Check if the values are candidates to demote. 5513 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5514 VecCost = CommonCost + TTI->getCastInstrCost( 5515 E->getOpcode(), VecTy, SrcVecTy, 5516 TTI::getCastContextHint(VL0), CostKind, VL0); 5517 } 5518 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5519 return VecCost - ScalarCost; 5520 } 5521 case Instruction::FCmp: 5522 case Instruction::ICmp: 5523 case Instruction::Select: { 5524 // Calculate the cost of this instruction. 5525 InstructionCost ScalarEltCost = 5526 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5527 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5528 if (NeedToShuffleReuses) { 5529 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5530 } 5531 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5532 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5533 5534 // Check if all entries in VL are either compares or selects with compares 5535 // as condition that have the same predicates. 5536 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5537 bool First = true; 5538 for (auto *V : VL) { 5539 CmpInst::Predicate CurrentPred; 5540 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5541 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5542 !match(V, MatchCmp)) || 5543 (!First && VecPred != CurrentPred)) { 5544 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5545 break; 5546 } 5547 First = false; 5548 VecPred = CurrentPred; 5549 } 5550 5551 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5552 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5553 // Check if it is possible and profitable to use min/max for selects in 5554 // VL. 5555 // 5556 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5557 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5558 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5559 {VecTy, VecTy}); 5560 InstructionCost IntrinsicCost = 5561 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5562 // If the selects are the only uses of the compares, they will be dead 5563 // and we can adjust the cost by removing their cost. 5564 if (IntrinsicAndUse.second) 5565 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5566 MaskTy, VecPred, CostKind); 5567 VecCost = std::min(VecCost, IntrinsicCost); 5568 } 5569 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5570 return CommonCost + VecCost - ScalarCost; 5571 } 5572 case Instruction::FNeg: 5573 case Instruction::Add: 5574 case Instruction::FAdd: 5575 case Instruction::Sub: 5576 case Instruction::FSub: 5577 case Instruction::Mul: 5578 case Instruction::FMul: 5579 case Instruction::UDiv: 5580 case Instruction::SDiv: 5581 case Instruction::FDiv: 5582 case Instruction::URem: 5583 case Instruction::SRem: 5584 case Instruction::FRem: 5585 case Instruction::Shl: 5586 case Instruction::LShr: 5587 case Instruction::AShr: 5588 case Instruction::And: 5589 case Instruction::Or: 5590 case Instruction::Xor: { 5591 // Certain instructions can be cheaper to vectorize if they have a 5592 // constant second vector operand. 5593 TargetTransformInfo::OperandValueKind Op1VK = 5594 TargetTransformInfo::OK_AnyValue; 5595 TargetTransformInfo::OperandValueKind Op2VK = 5596 TargetTransformInfo::OK_UniformConstantValue; 5597 TargetTransformInfo::OperandValueProperties Op1VP = 5598 TargetTransformInfo::OP_None; 5599 TargetTransformInfo::OperandValueProperties Op2VP = 5600 TargetTransformInfo::OP_PowerOf2; 5601 5602 // If all operands are exactly the same ConstantInt then set the 5603 // operand kind to OK_UniformConstantValue. 5604 // If instead not all operands are constants, then set the operand kind 5605 // to OK_AnyValue. If all operands are constants but not the same, 5606 // then set the operand kind to OK_NonUniformConstantValue. 5607 ConstantInt *CInt0 = nullptr; 5608 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5609 const Instruction *I = cast<Instruction>(VL[i]); 5610 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5611 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5612 if (!CInt) { 5613 Op2VK = TargetTransformInfo::OK_AnyValue; 5614 Op2VP = TargetTransformInfo::OP_None; 5615 break; 5616 } 5617 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5618 !CInt->getValue().isPowerOf2()) 5619 Op2VP = TargetTransformInfo::OP_None; 5620 if (i == 0) { 5621 CInt0 = CInt; 5622 continue; 5623 } 5624 if (CInt0 != CInt) 5625 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5626 } 5627 5628 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5629 InstructionCost ScalarEltCost = 5630 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5631 Op2VK, Op1VP, Op2VP, Operands, VL0); 5632 if (NeedToShuffleReuses) { 5633 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5634 } 5635 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5636 InstructionCost VecCost = 5637 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5638 Op2VK, Op1VP, Op2VP, Operands, VL0); 5639 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5640 return CommonCost + VecCost - ScalarCost; 5641 } 5642 case Instruction::GetElementPtr: { 5643 TargetTransformInfo::OperandValueKind Op1VK = 5644 TargetTransformInfo::OK_AnyValue; 5645 TargetTransformInfo::OperandValueKind Op2VK = 5646 TargetTransformInfo::OK_UniformConstantValue; 5647 5648 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5649 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5650 if (NeedToShuffleReuses) { 5651 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5652 } 5653 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5654 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5655 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5656 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5657 return CommonCost + VecCost - ScalarCost; 5658 } 5659 case Instruction::Load: { 5660 // Cost of wide load - cost of scalar loads. 5661 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5662 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5663 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5664 if (NeedToShuffleReuses) { 5665 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5666 } 5667 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5668 InstructionCost VecLdCost; 5669 if (E->State == TreeEntry::Vectorize) { 5670 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5671 CostKind, VL0); 5672 } else { 5673 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5674 Align CommonAlignment = Alignment; 5675 for (Value *V : VL) 5676 CommonAlignment = 5677 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5678 VecLdCost = TTI->getGatherScatterOpCost( 5679 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5680 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5681 } 5682 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5683 return CommonCost + VecLdCost - ScalarLdCost; 5684 } 5685 case Instruction::Store: { 5686 // We know that we can merge the stores. Calculate the cost. 5687 bool IsReorder = !E->ReorderIndices.empty(); 5688 auto *SI = 5689 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5690 Align Alignment = SI->getAlign(); 5691 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5692 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5693 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5694 InstructionCost VecStCost = TTI->getMemoryOpCost( 5695 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5696 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5697 return CommonCost + VecStCost - ScalarStCost; 5698 } 5699 case Instruction::Call: { 5700 CallInst *CI = cast<CallInst>(VL0); 5701 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5702 5703 // Calculate the cost of the scalar and vector calls. 5704 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5705 InstructionCost ScalarEltCost = 5706 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5707 if (NeedToShuffleReuses) { 5708 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5709 } 5710 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5711 5712 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5713 InstructionCost VecCallCost = 5714 std::min(VecCallCosts.first, VecCallCosts.second); 5715 5716 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5717 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5718 << " for " << *CI << "\n"); 5719 5720 return CommonCost + VecCallCost - ScalarCallCost; 5721 } 5722 case Instruction::ShuffleVector: { 5723 assert(E->isAltShuffle() && 5724 ((Instruction::isBinaryOp(E->getOpcode()) && 5725 Instruction::isBinaryOp(E->getAltOpcode())) || 5726 (Instruction::isCast(E->getOpcode()) && 5727 Instruction::isCast(E->getAltOpcode())) || 5728 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5729 "Invalid Shuffle Vector Operand"); 5730 InstructionCost ScalarCost = 0; 5731 if (NeedToShuffleReuses) { 5732 for (unsigned Idx : E->ReuseShuffleIndices) { 5733 Instruction *I = cast<Instruction>(VL[Idx]); 5734 CommonCost -= TTI->getInstructionCost(I, CostKind); 5735 } 5736 for (Value *V : VL) { 5737 Instruction *I = cast<Instruction>(V); 5738 CommonCost += TTI->getInstructionCost(I, CostKind); 5739 } 5740 } 5741 for (Value *V : VL) { 5742 Instruction *I = cast<Instruction>(V); 5743 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5744 ScalarCost += TTI->getInstructionCost(I, CostKind); 5745 } 5746 // VecCost is equal to sum of the cost of creating 2 vectors 5747 // and the cost of creating shuffle. 5748 InstructionCost VecCost = 0; 5749 // Try to find the previous shuffle node with the same operands and same 5750 // main/alternate ops. 5751 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5752 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5753 if (TE.get() == E) 5754 break; 5755 if (TE->isAltShuffle() && 5756 ((TE->getOpcode() == E->getOpcode() && 5757 TE->getAltOpcode() == E->getAltOpcode()) || 5758 (TE->getOpcode() == E->getAltOpcode() && 5759 TE->getAltOpcode() == E->getOpcode())) && 5760 TE->hasEqualOperands(*E)) 5761 return true; 5762 } 5763 return false; 5764 }; 5765 if (TryFindNodeWithEqualOperands()) { 5766 LLVM_DEBUG({ 5767 dbgs() << "SLP: diamond match for alternate node found.\n"; 5768 E->dump(); 5769 }); 5770 // No need to add new vector costs here since we're going to reuse 5771 // same main/alternate vector ops, just do different shuffling. 5772 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5773 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5774 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5775 CostKind); 5776 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5777 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5778 Builder.getInt1Ty(), 5779 CI0->getPredicate(), CostKind, VL0); 5780 VecCost += TTI->getCmpSelInstrCost( 5781 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5782 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5783 E->getAltOp()); 5784 } else { 5785 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5786 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5787 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5788 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5789 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5790 TTI::CastContextHint::None, CostKind); 5791 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5792 TTI::CastContextHint::None, CostKind); 5793 } 5794 5795 SmallVector<int> Mask; 5796 buildShuffleEntryMask( 5797 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5798 [E](Instruction *I) { 5799 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5800 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5801 }, 5802 Mask); 5803 CommonCost = 5804 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5805 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5806 return CommonCost + VecCost - ScalarCost; 5807 } 5808 default: 5809 llvm_unreachable("Unknown instruction"); 5810 } 5811 } 5812 5813 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5814 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5815 << VectorizableTree.size() << " is fully vectorizable .\n"); 5816 5817 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5818 SmallVector<int> Mask; 5819 return TE->State == TreeEntry::NeedToGather && 5820 !any_of(TE->Scalars, 5821 [this](Value *V) { return EphValues.contains(V); }) && 5822 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5823 TE->Scalars.size() < Limit || 5824 ((TE->getOpcode() == Instruction::ExtractElement || 5825 all_of(TE->Scalars, 5826 [](Value *V) { 5827 return isa<ExtractElementInst, UndefValue>(V); 5828 })) && 5829 isFixedVectorShuffle(TE->Scalars, Mask)) || 5830 (TE->State == TreeEntry::NeedToGather && 5831 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5832 }; 5833 5834 // We only handle trees of heights 1 and 2. 5835 if (VectorizableTree.size() == 1 && 5836 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5837 (ForReduction && 5838 AreVectorizableGathers(VectorizableTree[0].get(), 5839 VectorizableTree[0]->Scalars.size()) && 5840 VectorizableTree[0]->getVectorFactor() > 2))) 5841 return true; 5842 5843 if (VectorizableTree.size() != 2) 5844 return false; 5845 5846 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5847 // with the second gather nodes if they have less scalar operands rather than 5848 // the initial tree element (may be profitable to shuffle the second gather) 5849 // or they are extractelements, which form shuffle. 5850 SmallVector<int> Mask; 5851 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5852 AreVectorizableGathers(VectorizableTree[1].get(), 5853 VectorizableTree[0]->Scalars.size())) 5854 return true; 5855 5856 // Gathering cost would be too much for tiny trees. 5857 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5858 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5859 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5860 return false; 5861 5862 return true; 5863 } 5864 5865 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5866 TargetTransformInfo *TTI, 5867 bool MustMatchOrInst) { 5868 // Look past the root to find a source value. Arbitrarily follow the 5869 // path through operand 0 of any 'or'. Also, peek through optional 5870 // shift-left-by-multiple-of-8-bits. 5871 Value *ZextLoad = Root; 5872 const APInt *ShAmtC; 5873 bool FoundOr = false; 5874 while (!isa<ConstantExpr>(ZextLoad) && 5875 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5876 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5877 ShAmtC->urem(8) == 0))) { 5878 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5879 ZextLoad = BinOp->getOperand(0); 5880 if (BinOp->getOpcode() == Instruction::Or) 5881 FoundOr = true; 5882 } 5883 // Check if the input is an extended load of the required or/shift expression. 5884 Value *Load; 5885 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5886 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5887 return false; 5888 5889 // Require that the total load bit width is a legal integer type. 5890 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5891 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5892 Type *SrcTy = Load->getType(); 5893 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5894 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5895 return false; 5896 5897 // Everything matched - assume that we can fold the whole sequence using 5898 // load combining. 5899 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5900 << *(cast<Instruction>(Root)) << "\n"); 5901 5902 return true; 5903 } 5904 5905 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5906 if (RdxKind != RecurKind::Or) 5907 return false; 5908 5909 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5910 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5911 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5912 /* MatchOr */ false); 5913 } 5914 5915 bool BoUpSLP::isLoadCombineCandidate() const { 5916 // Peek through a final sequence of stores and check if all operations are 5917 // likely to be load-combined. 5918 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5919 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5920 Value *X; 5921 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5922 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5923 return false; 5924 } 5925 return true; 5926 } 5927 5928 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5929 // No need to vectorize inserts of gathered values. 5930 if (VectorizableTree.size() == 2 && 5931 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5932 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5933 return true; 5934 5935 // We can vectorize the tree if its size is greater than or equal to the 5936 // minimum size specified by the MinTreeSize command line option. 5937 if (VectorizableTree.size() >= MinTreeSize) 5938 return false; 5939 5940 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5941 // can vectorize it if we can prove it fully vectorizable. 5942 if (isFullyVectorizableTinyTree(ForReduction)) 5943 return false; 5944 5945 assert(VectorizableTree.empty() 5946 ? ExternalUses.empty() 5947 : true && "We shouldn't have any external users"); 5948 5949 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5950 // vectorizable. 5951 return true; 5952 } 5953 5954 InstructionCost BoUpSLP::getSpillCost() const { 5955 // Walk from the bottom of the tree to the top, tracking which values are 5956 // live. When we see a call instruction that is not part of our tree, 5957 // query TTI to see if there is a cost to keeping values live over it 5958 // (for example, if spills and fills are required). 5959 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5960 InstructionCost Cost = 0; 5961 5962 SmallPtrSet<Instruction*, 4> LiveValues; 5963 Instruction *PrevInst = nullptr; 5964 5965 // The entries in VectorizableTree are not necessarily ordered by their 5966 // position in basic blocks. Collect them and order them by dominance so later 5967 // instructions are guaranteed to be visited first. For instructions in 5968 // different basic blocks, we only scan to the beginning of the block, so 5969 // their order does not matter, as long as all instructions in a basic block 5970 // are grouped together. Using dominance ensures a deterministic order. 5971 SmallVector<Instruction *, 16> OrderedScalars; 5972 for (const auto &TEPtr : VectorizableTree) { 5973 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5974 if (!Inst) 5975 continue; 5976 OrderedScalars.push_back(Inst); 5977 } 5978 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5979 auto *NodeA = DT->getNode(A->getParent()); 5980 auto *NodeB = DT->getNode(B->getParent()); 5981 assert(NodeA && "Should only process reachable instructions"); 5982 assert(NodeB && "Should only process reachable instructions"); 5983 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5984 "Different nodes should have different DFS numbers"); 5985 if (NodeA != NodeB) 5986 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5987 return B->comesBefore(A); 5988 }); 5989 5990 for (Instruction *Inst : OrderedScalars) { 5991 if (!PrevInst) { 5992 PrevInst = Inst; 5993 continue; 5994 } 5995 5996 // Update LiveValues. 5997 LiveValues.erase(PrevInst); 5998 for (auto &J : PrevInst->operands()) { 5999 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6000 LiveValues.insert(cast<Instruction>(&*J)); 6001 } 6002 6003 LLVM_DEBUG({ 6004 dbgs() << "SLP: #LV: " << LiveValues.size(); 6005 for (auto *X : LiveValues) 6006 dbgs() << " " << X->getName(); 6007 dbgs() << ", Looking at "; 6008 Inst->dump(); 6009 }); 6010 6011 // Now find the sequence of instructions between PrevInst and Inst. 6012 unsigned NumCalls = 0; 6013 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6014 PrevInstIt = 6015 PrevInst->getIterator().getReverse(); 6016 while (InstIt != PrevInstIt) { 6017 if (PrevInstIt == PrevInst->getParent()->rend()) { 6018 PrevInstIt = Inst->getParent()->rbegin(); 6019 continue; 6020 } 6021 6022 // Debug information does not impact spill cost. 6023 if ((isa<CallInst>(&*PrevInstIt) && 6024 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6025 &*PrevInstIt != PrevInst) 6026 NumCalls++; 6027 6028 ++PrevInstIt; 6029 } 6030 6031 if (NumCalls) { 6032 SmallVector<Type*, 4> V; 6033 for (auto *II : LiveValues) { 6034 auto *ScalarTy = II->getType(); 6035 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6036 ScalarTy = VectorTy->getElementType(); 6037 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6038 } 6039 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6040 } 6041 6042 PrevInst = Inst; 6043 } 6044 6045 return Cost; 6046 } 6047 6048 /// Check if two insertelement instructions are from the same buildvector. 6049 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6050 InsertElementInst *V) { 6051 // Instructions must be from the same basic blocks. 6052 if (VU->getParent() != V->getParent()) 6053 return false; 6054 // Checks if 2 insertelements are from the same buildvector. 6055 if (VU->getType() != V->getType()) 6056 return false; 6057 // Multiple used inserts are separate nodes. 6058 if (!VU->hasOneUse() && !V->hasOneUse()) 6059 return false; 6060 auto *IE1 = VU; 6061 auto *IE2 = V; 6062 // Go through the vector operand of insertelement instructions trying to find 6063 // either VU as the original vector for IE2 or V as the original vector for 6064 // IE1. 6065 do { 6066 if (IE2 == VU || IE1 == V) 6067 return true; 6068 if (IE1) { 6069 if (IE1 != VU && !IE1->hasOneUse()) 6070 IE1 = nullptr; 6071 else 6072 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6073 } 6074 if (IE2) { 6075 if (IE2 != V && !IE2->hasOneUse()) 6076 IE2 = nullptr; 6077 else 6078 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6079 } 6080 } while (IE1 || IE2); 6081 return false; 6082 } 6083 6084 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6085 InstructionCost Cost = 0; 6086 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6087 << VectorizableTree.size() << ".\n"); 6088 6089 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6090 6091 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6092 TreeEntry &TE = *VectorizableTree[I].get(); 6093 6094 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6095 Cost += C; 6096 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6097 << " for bundle that starts with " << *TE.Scalars[0] 6098 << ".\n" 6099 << "SLP: Current total cost = " << Cost << "\n"); 6100 } 6101 6102 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6103 InstructionCost ExtractCost = 0; 6104 SmallVector<unsigned> VF; 6105 SmallVector<SmallVector<int>> ShuffleMask; 6106 SmallVector<Value *> FirstUsers; 6107 SmallVector<APInt> DemandedElts; 6108 for (ExternalUser &EU : ExternalUses) { 6109 // We only add extract cost once for the same scalar. 6110 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6111 !ExtractCostCalculated.insert(EU.Scalar).second) 6112 continue; 6113 6114 // Uses by ephemeral values are free (because the ephemeral value will be 6115 // removed prior to code generation, and so the extraction will be 6116 // removed as well). 6117 if (EphValues.count(EU.User)) 6118 continue; 6119 6120 // No extract cost for vector "scalar" 6121 if (isa<FixedVectorType>(EU.Scalar->getType())) 6122 continue; 6123 6124 // Already counted the cost for external uses when tried to adjust the cost 6125 // for extractelements, no need to add it again. 6126 if (isa<ExtractElementInst>(EU.Scalar)) 6127 continue; 6128 6129 // If found user is an insertelement, do not calculate extract cost but try 6130 // to detect it as a final shuffled/identity match. 6131 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6132 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6133 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6134 if (InsertIdx) { 6135 auto *It = find_if(FirstUsers, [VU](Value *V) { 6136 return areTwoInsertFromSameBuildVector(VU, 6137 cast<InsertElementInst>(V)); 6138 }); 6139 int VecId = -1; 6140 if (It == FirstUsers.end()) { 6141 VF.push_back(FTy->getNumElements()); 6142 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6143 // Find the insertvector, vectorized in tree, if any. 6144 Value *Base = VU; 6145 while (isa<InsertElementInst>(Base)) { 6146 // Build the mask for the vectorized insertelement instructions. 6147 if (const TreeEntry *E = getTreeEntry(Base)) { 6148 VU = cast<InsertElementInst>(Base); 6149 do { 6150 int Idx = E->findLaneForValue(Base); 6151 ShuffleMask.back()[Idx] = Idx; 6152 Base = cast<InsertElementInst>(Base)->getOperand(0); 6153 } while (E == getTreeEntry(Base)); 6154 break; 6155 } 6156 Base = cast<InsertElementInst>(Base)->getOperand(0); 6157 } 6158 FirstUsers.push_back(VU); 6159 DemandedElts.push_back(APInt::getZero(VF.back())); 6160 VecId = FirstUsers.size() - 1; 6161 } else { 6162 VecId = std::distance(FirstUsers.begin(), It); 6163 } 6164 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6165 DemandedElts[VecId].setBit(*InsertIdx); 6166 continue; 6167 } 6168 } 6169 } 6170 6171 // If we plan to rewrite the tree in a smaller type, we will need to sign 6172 // extend the extracted value back to the original type. Here, we account 6173 // for the extract and the added cost of the sign extend if needed. 6174 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6175 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6176 if (MinBWs.count(ScalarRoot)) { 6177 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6178 auto Extend = 6179 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6180 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6181 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6182 VecTy, EU.Lane); 6183 } else { 6184 ExtractCost += 6185 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6186 } 6187 } 6188 6189 InstructionCost SpillCost = getSpillCost(); 6190 Cost += SpillCost + ExtractCost; 6191 if (FirstUsers.size() == 1) { 6192 int Limit = ShuffleMask.front().size() * 2; 6193 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6194 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6195 InstructionCost C = TTI->getShuffleCost( 6196 TTI::SK_PermuteSingleSrc, 6197 cast<FixedVectorType>(FirstUsers.front()->getType()), 6198 ShuffleMask.front()); 6199 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6200 << " for final shuffle of insertelement external users " 6201 << *VectorizableTree.front()->Scalars.front() << ".\n" 6202 << "SLP: Current total cost = " << Cost << "\n"); 6203 Cost += C; 6204 } 6205 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6206 cast<FixedVectorType>(FirstUsers.front()->getType()), 6207 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6208 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6209 << " for insertelements gather.\n" 6210 << "SLP: Current total cost = " << Cost << "\n"); 6211 Cost -= InsertCost; 6212 } else if (FirstUsers.size() >= 2) { 6213 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6214 // Combined masks of the first 2 vectors. 6215 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6216 copy(ShuffleMask.front(), CombinedMask.begin()); 6217 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6218 auto *VecTy = FixedVectorType::get( 6219 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6220 MaxVF); 6221 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6222 if (ShuffleMask[1][I] != UndefMaskElem) { 6223 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6224 CombinedDemandedElts.setBit(I); 6225 } 6226 } 6227 InstructionCost C = 6228 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6229 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6230 << " for final shuffle of vector node and external " 6231 "insertelement users " 6232 << *VectorizableTree.front()->Scalars.front() << ".\n" 6233 << "SLP: Current total cost = " << Cost << "\n"); 6234 Cost += C; 6235 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6236 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6237 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6238 << " for insertelements gather.\n" 6239 << "SLP: Current total cost = " << Cost << "\n"); 6240 Cost -= InsertCost; 6241 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6242 // Other elements - permutation of 2 vectors (the initial one and the 6243 // next Ith incoming vector). 6244 unsigned VF = ShuffleMask[I].size(); 6245 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6246 int Mask = ShuffleMask[I][Idx]; 6247 if (Mask != UndefMaskElem) 6248 CombinedMask[Idx] = MaxVF + Mask; 6249 else if (CombinedMask[Idx] != UndefMaskElem) 6250 CombinedMask[Idx] = Idx; 6251 } 6252 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6253 if (CombinedMask[Idx] != UndefMaskElem) 6254 CombinedMask[Idx] = Idx; 6255 InstructionCost C = 6256 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6257 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6258 << " for final shuffle of vector node and external " 6259 "insertelement users " 6260 << *VectorizableTree.front()->Scalars.front() << ".\n" 6261 << "SLP: Current total cost = " << Cost << "\n"); 6262 Cost += C; 6263 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6264 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6265 /*Insert*/ true, /*Extract*/ false); 6266 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6267 << " for insertelements gather.\n" 6268 << "SLP: Current total cost = " << Cost << "\n"); 6269 Cost -= InsertCost; 6270 } 6271 } 6272 6273 #ifndef NDEBUG 6274 SmallString<256> Str; 6275 { 6276 raw_svector_ostream OS(Str); 6277 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6278 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6279 << "SLP: Total Cost = " << Cost << ".\n"; 6280 } 6281 LLVM_DEBUG(dbgs() << Str); 6282 if (ViewSLPTree) 6283 ViewGraph(this, "SLP" + F->getName(), false, Str); 6284 #endif 6285 6286 return Cost; 6287 } 6288 6289 Optional<TargetTransformInfo::ShuffleKind> 6290 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6291 SmallVectorImpl<const TreeEntry *> &Entries) { 6292 // TODO: currently checking only for Scalars in the tree entry, need to count 6293 // reused elements too for better cost estimation. 6294 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6295 Entries.clear(); 6296 // Build a lists of values to tree entries. 6297 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6298 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6299 if (EntryPtr.get() == TE) 6300 break; 6301 if (EntryPtr->State != TreeEntry::NeedToGather) 6302 continue; 6303 for (Value *V : EntryPtr->Scalars) 6304 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6305 } 6306 // Find all tree entries used by the gathered values. If no common entries 6307 // found - not a shuffle. 6308 // Here we build a set of tree nodes for each gathered value and trying to 6309 // find the intersection between these sets. If we have at least one common 6310 // tree node for each gathered value - we have just a permutation of the 6311 // single vector. If we have 2 different sets, we're in situation where we 6312 // have a permutation of 2 input vectors. 6313 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6314 DenseMap<Value *, int> UsedValuesEntry; 6315 for (Value *V : TE->Scalars) { 6316 if (isa<UndefValue>(V)) 6317 continue; 6318 // Build a list of tree entries where V is used. 6319 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6320 auto It = ValueToTEs.find(V); 6321 if (It != ValueToTEs.end()) 6322 VToTEs = It->second; 6323 if (const TreeEntry *VTE = getTreeEntry(V)) 6324 VToTEs.insert(VTE); 6325 if (VToTEs.empty()) 6326 return None; 6327 if (UsedTEs.empty()) { 6328 // The first iteration, just insert the list of nodes to vector. 6329 UsedTEs.push_back(VToTEs); 6330 } else { 6331 // Need to check if there are any previously used tree nodes which use V. 6332 // If there are no such nodes, consider that we have another one input 6333 // vector. 6334 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6335 unsigned Idx = 0; 6336 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6337 // Do we have a non-empty intersection of previously listed tree entries 6338 // and tree entries using current V? 6339 set_intersect(VToTEs, Set); 6340 if (!VToTEs.empty()) { 6341 // Yes, write the new subset and continue analysis for the next 6342 // scalar. 6343 Set.swap(VToTEs); 6344 break; 6345 } 6346 VToTEs = SavedVToTEs; 6347 ++Idx; 6348 } 6349 // No non-empty intersection found - need to add a second set of possible 6350 // source vectors. 6351 if (Idx == UsedTEs.size()) { 6352 // If the number of input vectors is greater than 2 - not a permutation, 6353 // fallback to the regular gather. 6354 if (UsedTEs.size() == 2) 6355 return None; 6356 UsedTEs.push_back(SavedVToTEs); 6357 Idx = UsedTEs.size() - 1; 6358 } 6359 UsedValuesEntry.try_emplace(V, Idx); 6360 } 6361 } 6362 6363 unsigned VF = 0; 6364 if (UsedTEs.size() == 1) { 6365 // Try to find the perfect match in another gather node at first. 6366 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6367 return EntryPtr->isSame(TE->Scalars); 6368 }); 6369 if (It != UsedTEs.front().end()) { 6370 Entries.push_back(*It); 6371 std::iota(Mask.begin(), Mask.end(), 0); 6372 return TargetTransformInfo::SK_PermuteSingleSrc; 6373 } 6374 // No perfect match, just shuffle, so choose the first tree node. 6375 Entries.push_back(*UsedTEs.front().begin()); 6376 } else { 6377 // Try to find nodes with the same vector factor. 6378 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6379 DenseMap<int, const TreeEntry *> VFToTE; 6380 for (const TreeEntry *TE : UsedTEs.front()) 6381 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6382 for (const TreeEntry *TE : UsedTEs.back()) { 6383 auto It = VFToTE.find(TE->getVectorFactor()); 6384 if (It != VFToTE.end()) { 6385 VF = It->first; 6386 Entries.push_back(It->second); 6387 Entries.push_back(TE); 6388 break; 6389 } 6390 } 6391 // No 2 source vectors with the same vector factor - give up and do regular 6392 // gather. 6393 if (Entries.empty()) 6394 return None; 6395 } 6396 6397 // Build a shuffle mask for better cost estimation and vector emission. 6398 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6399 Value *V = TE->Scalars[I]; 6400 if (isa<UndefValue>(V)) 6401 continue; 6402 unsigned Idx = UsedValuesEntry.lookup(V); 6403 const TreeEntry *VTE = Entries[Idx]; 6404 int FoundLane = VTE->findLaneForValue(V); 6405 Mask[I] = Idx * VF + FoundLane; 6406 // Extra check required by isSingleSourceMaskImpl function (called by 6407 // ShuffleVectorInst::isSingleSourceMask). 6408 if (Mask[I] >= 2 * E) 6409 return None; 6410 } 6411 switch (Entries.size()) { 6412 case 1: 6413 return TargetTransformInfo::SK_PermuteSingleSrc; 6414 case 2: 6415 return TargetTransformInfo::SK_PermuteTwoSrc; 6416 default: 6417 break; 6418 } 6419 return None; 6420 } 6421 6422 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6423 const APInt &ShuffledIndices, 6424 bool NeedToShuffle) const { 6425 InstructionCost Cost = 6426 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6427 /*Extract*/ false); 6428 if (NeedToShuffle) 6429 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6430 return Cost; 6431 } 6432 6433 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6434 // Find the type of the operands in VL. 6435 Type *ScalarTy = VL[0]->getType(); 6436 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6437 ScalarTy = SI->getValueOperand()->getType(); 6438 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6439 bool DuplicateNonConst = false; 6440 // Find the cost of inserting/extracting values from the vector. 6441 // Check if the same elements are inserted several times and count them as 6442 // shuffle candidates. 6443 APInt ShuffledElements = APInt::getZero(VL.size()); 6444 DenseSet<Value *> UniqueElements; 6445 // Iterate in reverse order to consider insert elements with the high cost. 6446 for (unsigned I = VL.size(); I > 0; --I) { 6447 unsigned Idx = I - 1; 6448 // No need to shuffle duplicates for constants. 6449 if (isConstant(VL[Idx])) { 6450 ShuffledElements.setBit(Idx); 6451 continue; 6452 } 6453 if (!UniqueElements.insert(VL[Idx]).second) { 6454 DuplicateNonConst = true; 6455 ShuffledElements.setBit(Idx); 6456 } 6457 } 6458 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6459 } 6460 6461 // Perform operand reordering on the instructions in VL and return the reordered 6462 // operands in Left and Right. 6463 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6464 SmallVectorImpl<Value *> &Left, 6465 SmallVectorImpl<Value *> &Right, 6466 const DataLayout &DL, 6467 ScalarEvolution &SE, 6468 const BoUpSLP &R) { 6469 if (VL.empty()) 6470 return; 6471 VLOperands Ops(VL, DL, SE, R); 6472 // Reorder the operands in place. 6473 Ops.reorder(); 6474 Left = Ops.getVL(0); 6475 Right = Ops.getVL(1); 6476 } 6477 6478 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6479 // Get the basic block this bundle is in. All instructions in the bundle 6480 // should be in this block. 6481 auto *Front = E->getMainOp(); 6482 auto *BB = Front->getParent(); 6483 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6484 auto *I = cast<Instruction>(V); 6485 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6486 })); 6487 6488 // Set the insert point to the beginning of the basic block if the entry 6489 // should not be scheduled. 6490 if (E->State != TreeEntry::NeedToGather && 6491 doesNotNeedToSchedule(E->Scalars)) { 6492 BasicBlock::iterator InsertPt; 6493 if (all_of(E->Scalars, isUsedOutsideBlock)) 6494 InsertPt = BB->getTerminator()->getIterator(); 6495 else 6496 InsertPt = BB->getFirstInsertionPt(); 6497 Builder.SetInsertPoint(BB, InsertPt); 6498 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6499 return; 6500 } 6501 6502 // The last instruction in the bundle in program order. 6503 Instruction *LastInst = nullptr; 6504 6505 // Find the last instruction. The common case should be that BB has been 6506 // scheduled, and the last instruction is VL.back(). So we start with 6507 // VL.back() and iterate over schedule data until we reach the end of the 6508 // bundle. The end of the bundle is marked by null ScheduleData. 6509 if (BlocksSchedules.count(BB)) { 6510 Value *V = E->isOneOf(E->Scalars.back()); 6511 if (doesNotNeedToBeScheduled(V)) 6512 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6513 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6514 if (Bundle && Bundle->isPartOfBundle()) 6515 for (; Bundle; Bundle = Bundle->NextInBundle) 6516 if (Bundle->OpValue == Bundle->Inst) 6517 LastInst = Bundle->Inst; 6518 } 6519 6520 // LastInst can still be null at this point if there's either not an entry 6521 // for BB in BlocksSchedules or there's no ScheduleData available for 6522 // VL.back(). This can be the case if buildTree_rec aborts for various 6523 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6524 // size is reached, etc.). ScheduleData is initialized in the scheduling 6525 // "dry-run". 6526 // 6527 // If this happens, we can still find the last instruction by brute force. We 6528 // iterate forwards from Front (inclusive) until we either see all 6529 // instructions in the bundle or reach the end of the block. If Front is the 6530 // last instruction in program order, LastInst will be set to Front, and we 6531 // will visit all the remaining instructions in the block. 6532 // 6533 // One of the reasons we exit early from buildTree_rec is to place an upper 6534 // bound on compile-time. Thus, taking an additional compile-time hit here is 6535 // not ideal. However, this should be exceedingly rare since it requires that 6536 // we both exit early from buildTree_rec and that the bundle be out-of-order 6537 // (causing us to iterate all the way to the end of the block). 6538 if (!LastInst) { 6539 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6540 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6541 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6542 LastInst = &I; 6543 if (Bundle.empty()) 6544 break; 6545 } 6546 } 6547 assert(LastInst && "Failed to find last instruction in bundle"); 6548 6549 // Set the insertion point after the last instruction in the bundle. Set the 6550 // debug location to Front. 6551 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6552 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6553 } 6554 6555 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6556 // List of instructions/lanes from current block and/or the blocks which are 6557 // part of the current loop. These instructions will be inserted at the end to 6558 // make it possible to optimize loops and hoist invariant instructions out of 6559 // the loops body with better chances for success. 6560 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6561 SmallSet<int, 4> PostponedIndices; 6562 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6563 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6564 SmallPtrSet<BasicBlock *, 4> Visited; 6565 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6566 InsertBB = InsertBB->getSinglePredecessor(); 6567 return InsertBB && InsertBB == InstBB; 6568 }; 6569 for (int I = 0, E = VL.size(); I < E; ++I) { 6570 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6571 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6572 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6573 PostponedIndices.insert(I).second) 6574 PostponedInsts.emplace_back(Inst, I); 6575 } 6576 6577 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6578 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6579 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6580 if (!InsElt) 6581 return Vec; 6582 GatherShuffleSeq.insert(InsElt); 6583 CSEBlocks.insert(InsElt->getParent()); 6584 // Add to our 'need-to-extract' list. 6585 if (TreeEntry *Entry = getTreeEntry(V)) { 6586 // Find which lane we need to extract. 6587 unsigned FoundLane = Entry->findLaneForValue(V); 6588 ExternalUses.emplace_back(V, InsElt, FoundLane); 6589 } 6590 return Vec; 6591 }; 6592 Value *Val0 = 6593 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6594 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6595 Value *Vec = PoisonValue::get(VecTy); 6596 SmallVector<int> NonConsts; 6597 // Insert constant values at first. 6598 for (int I = 0, E = VL.size(); I < E; ++I) { 6599 if (PostponedIndices.contains(I)) 6600 continue; 6601 if (!isConstant(VL[I])) { 6602 NonConsts.push_back(I); 6603 continue; 6604 } 6605 Vec = CreateInsertElement(Vec, VL[I], I); 6606 } 6607 // Insert non-constant values. 6608 for (int I : NonConsts) 6609 Vec = CreateInsertElement(Vec, VL[I], I); 6610 // Append instructions, which are/may be part of the loop, in the end to make 6611 // it possible to hoist non-loop-based instructions. 6612 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6613 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6614 6615 return Vec; 6616 } 6617 6618 namespace { 6619 /// Merges shuffle masks and emits final shuffle instruction, if required. 6620 class ShuffleInstructionBuilder { 6621 IRBuilderBase &Builder; 6622 const unsigned VF = 0; 6623 bool IsFinalized = false; 6624 SmallVector<int, 4> Mask; 6625 /// Holds all of the instructions that we gathered. 6626 SetVector<Instruction *> &GatherShuffleSeq; 6627 /// A list of blocks that we are going to CSE. 6628 SetVector<BasicBlock *> &CSEBlocks; 6629 6630 public: 6631 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6632 SetVector<Instruction *> &GatherShuffleSeq, 6633 SetVector<BasicBlock *> &CSEBlocks) 6634 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6635 CSEBlocks(CSEBlocks) {} 6636 6637 /// Adds a mask, inverting it before applying. 6638 void addInversedMask(ArrayRef<unsigned> SubMask) { 6639 if (SubMask.empty()) 6640 return; 6641 SmallVector<int, 4> NewMask; 6642 inversePermutation(SubMask, NewMask); 6643 addMask(NewMask); 6644 } 6645 6646 /// Functions adds masks, merging them into single one. 6647 void addMask(ArrayRef<unsigned> SubMask) { 6648 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6649 addMask(NewMask); 6650 } 6651 6652 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6653 6654 Value *finalize(Value *V) { 6655 IsFinalized = true; 6656 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6657 if (VF == ValueVF && Mask.empty()) 6658 return V; 6659 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6660 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6661 addMask(NormalizedMask); 6662 6663 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6664 return V; 6665 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6666 if (auto *I = dyn_cast<Instruction>(Vec)) { 6667 GatherShuffleSeq.insert(I); 6668 CSEBlocks.insert(I->getParent()); 6669 } 6670 return Vec; 6671 } 6672 6673 ~ShuffleInstructionBuilder() { 6674 assert((IsFinalized || Mask.empty()) && 6675 "Shuffle construction must be finalized."); 6676 } 6677 }; 6678 } // namespace 6679 6680 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6681 const unsigned VF = VL.size(); 6682 InstructionsState S = getSameOpcode(VL); 6683 if (S.getOpcode()) { 6684 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6685 if (E->isSame(VL)) { 6686 Value *V = vectorizeTree(E); 6687 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6688 if (!E->ReuseShuffleIndices.empty()) { 6689 // Reshuffle to get only unique values. 6690 // If some of the scalars are duplicated in the vectorization tree 6691 // entry, we do not vectorize them but instead generate a mask for 6692 // the reuses. But if there are several users of the same entry, 6693 // they may have different vectorization factors. This is especially 6694 // important for PHI nodes. In this case, we need to adapt the 6695 // resulting instruction for the user vectorization factor and have 6696 // to reshuffle it again to take only unique elements of the vector. 6697 // Without this code the function incorrectly returns reduced vector 6698 // instruction with the same elements, not with the unique ones. 6699 6700 // block: 6701 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6702 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6703 // ... (use %2) 6704 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6705 // br %block 6706 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6707 SmallSet<int, 4> UsedIdxs; 6708 int Pos = 0; 6709 int Sz = VL.size(); 6710 for (int Idx : E->ReuseShuffleIndices) { 6711 if (Idx != Sz && Idx != UndefMaskElem && 6712 UsedIdxs.insert(Idx).second) 6713 UniqueIdxs[Idx] = Pos; 6714 ++Pos; 6715 } 6716 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6717 "less than original vector size."); 6718 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6719 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6720 } else { 6721 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6722 "Expected vectorization factor less " 6723 "than original vector size."); 6724 SmallVector<int> UniformMask(VF, 0); 6725 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6726 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6727 } 6728 if (auto *I = dyn_cast<Instruction>(V)) { 6729 GatherShuffleSeq.insert(I); 6730 CSEBlocks.insert(I->getParent()); 6731 } 6732 } 6733 return V; 6734 } 6735 } 6736 6737 // Can't vectorize this, so simply build a new vector with each lane 6738 // corresponding to the requested value. 6739 return createBuildVector(VL); 6740 } 6741 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6742 unsigned VF = VL.size(); 6743 // Exploit possible reuse of values across lanes. 6744 SmallVector<int> ReuseShuffleIndicies; 6745 SmallVector<Value *> UniqueValues; 6746 if (VL.size() > 2) { 6747 DenseMap<Value *, unsigned> UniquePositions; 6748 unsigned NumValues = 6749 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6750 return !isa<UndefValue>(V); 6751 }).base()); 6752 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6753 int UniqueVals = 0; 6754 for (Value *V : VL.drop_back(VL.size() - VF)) { 6755 if (isa<UndefValue>(V)) { 6756 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6757 continue; 6758 } 6759 if (isConstant(V)) { 6760 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6761 UniqueValues.emplace_back(V); 6762 continue; 6763 } 6764 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6765 ReuseShuffleIndicies.emplace_back(Res.first->second); 6766 if (Res.second) { 6767 UniqueValues.emplace_back(V); 6768 ++UniqueVals; 6769 } 6770 } 6771 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6772 // Emit pure splat vector. 6773 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6774 UndefMaskElem); 6775 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6776 ReuseShuffleIndicies.clear(); 6777 UniqueValues.clear(); 6778 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6779 } 6780 UniqueValues.append(VF - UniqueValues.size(), 6781 PoisonValue::get(VL[0]->getType())); 6782 VL = UniqueValues; 6783 } 6784 6785 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6786 CSEBlocks); 6787 Value *Vec = gather(VL); 6788 if (!ReuseShuffleIndicies.empty()) { 6789 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6790 Vec = ShuffleBuilder.finalize(Vec); 6791 } 6792 return Vec; 6793 } 6794 6795 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6796 IRBuilder<>::InsertPointGuard Guard(Builder); 6797 6798 if (E->VectorizedValue) { 6799 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6800 return E->VectorizedValue; 6801 } 6802 6803 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6804 unsigned VF = E->getVectorFactor(); 6805 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6806 CSEBlocks); 6807 if (E->State == TreeEntry::NeedToGather) { 6808 if (E->getMainOp()) 6809 setInsertPointAfterBundle(E); 6810 Value *Vec; 6811 SmallVector<int> Mask; 6812 SmallVector<const TreeEntry *> Entries; 6813 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6814 isGatherShuffledEntry(E, Mask, Entries); 6815 if (Shuffle.hasValue()) { 6816 assert((Entries.size() == 1 || Entries.size() == 2) && 6817 "Expected shuffle of 1 or 2 entries."); 6818 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6819 Entries.back()->VectorizedValue, Mask); 6820 if (auto *I = dyn_cast<Instruction>(Vec)) { 6821 GatherShuffleSeq.insert(I); 6822 CSEBlocks.insert(I->getParent()); 6823 } 6824 } else { 6825 Vec = gather(E->Scalars); 6826 } 6827 if (NeedToShuffleReuses) { 6828 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6829 Vec = ShuffleBuilder.finalize(Vec); 6830 } 6831 E->VectorizedValue = Vec; 6832 return Vec; 6833 } 6834 6835 assert((E->State == TreeEntry::Vectorize || 6836 E->State == TreeEntry::ScatterVectorize) && 6837 "Unhandled state"); 6838 unsigned ShuffleOrOp = 6839 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6840 Instruction *VL0 = E->getMainOp(); 6841 Type *ScalarTy = VL0->getType(); 6842 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6843 ScalarTy = Store->getValueOperand()->getType(); 6844 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6845 ScalarTy = IE->getOperand(1)->getType(); 6846 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6847 switch (ShuffleOrOp) { 6848 case Instruction::PHI: { 6849 assert( 6850 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6851 "PHI reordering is free."); 6852 auto *PH = cast<PHINode>(VL0); 6853 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6854 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6855 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6856 Value *V = NewPhi; 6857 6858 // Adjust insertion point once all PHI's have been generated. 6859 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6860 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6861 6862 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6863 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6864 V = ShuffleBuilder.finalize(V); 6865 6866 E->VectorizedValue = V; 6867 6868 // PHINodes may have multiple entries from the same block. We want to 6869 // visit every block once. 6870 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6871 6872 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6873 ValueList Operands; 6874 BasicBlock *IBB = PH->getIncomingBlock(i); 6875 6876 if (!VisitedBBs.insert(IBB).second) { 6877 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6878 continue; 6879 } 6880 6881 Builder.SetInsertPoint(IBB->getTerminator()); 6882 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6883 Value *Vec = vectorizeTree(E->getOperand(i)); 6884 NewPhi->addIncoming(Vec, IBB); 6885 } 6886 6887 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6888 "Invalid number of incoming values"); 6889 return V; 6890 } 6891 6892 case Instruction::ExtractElement: { 6893 Value *V = E->getSingleOperand(0); 6894 Builder.SetInsertPoint(VL0); 6895 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6896 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6897 V = ShuffleBuilder.finalize(V); 6898 E->VectorizedValue = V; 6899 return V; 6900 } 6901 case Instruction::ExtractValue: { 6902 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6903 Builder.SetInsertPoint(LI); 6904 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6905 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6906 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6907 if (MSSA) { 6908 MemorySSAUpdater MSSAU(MSSA); 6909 auto *Access = MSSA->getMemoryAccess(LI); 6910 assert(Access); 6911 MemoryUseOrDef *NewAccess = 6912 MSSAU.createMemoryAccessBefore(V, Access->getDefiningAccess(), 6913 Access); 6914 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 6915 } 6916 Value *NewV = propagateMetadata(V, E->Scalars); 6917 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6918 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6919 NewV = ShuffleBuilder.finalize(NewV); 6920 E->VectorizedValue = NewV; 6921 return NewV; 6922 } 6923 case Instruction::InsertElement: { 6924 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6925 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6926 Value *V = vectorizeTree(E->getOperand(1)); 6927 6928 // Create InsertVector shuffle if necessary 6929 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6930 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6931 })); 6932 const unsigned NumElts = 6933 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6934 const unsigned NumScalars = E->Scalars.size(); 6935 6936 unsigned Offset = *getInsertIndex(VL0); 6937 assert(Offset < NumElts && "Failed to find vector index offset"); 6938 6939 // Create shuffle to resize vector 6940 SmallVector<int> Mask; 6941 if (!E->ReorderIndices.empty()) { 6942 inversePermutation(E->ReorderIndices, Mask); 6943 Mask.append(NumElts - NumScalars, UndefMaskElem); 6944 } else { 6945 Mask.assign(NumElts, UndefMaskElem); 6946 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6947 } 6948 // Create InsertVector shuffle if necessary 6949 bool IsIdentity = true; 6950 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6951 Mask.swap(PrevMask); 6952 for (unsigned I = 0; I < NumScalars; ++I) { 6953 Value *Scalar = E->Scalars[PrevMask[I]]; 6954 unsigned InsertIdx = *getInsertIndex(Scalar); 6955 IsIdentity &= InsertIdx - Offset == I; 6956 Mask[InsertIdx - Offset] = I; 6957 } 6958 if (!IsIdentity || NumElts != NumScalars) { 6959 V = Builder.CreateShuffleVector(V, Mask); 6960 if (auto *I = dyn_cast<Instruction>(V)) { 6961 GatherShuffleSeq.insert(I); 6962 CSEBlocks.insert(I->getParent()); 6963 } 6964 } 6965 6966 if ((!IsIdentity || Offset != 0 || 6967 !isUndefVector(FirstInsert->getOperand(0))) && 6968 NumElts != NumScalars) { 6969 SmallVector<int> InsertMask(NumElts); 6970 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6971 for (unsigned I = 0; I < NumElts; I++) { 6972 if (Mask[I] != UndefMaskElem) 6973 InsertMask[Offset + I] = NumElts + I; 6974 } 6975 6976 V = Builder.CreateShuffleVector( 6977 FirstInsert->getOperand(0), V, InsertMask, 6978 cast<Instruction>(E->Scalars.back())->getName()); 6979 if (auto *I = dyn_cast<Instruction>(V)) { 6980 GatherShuffleSeq.insert(I); 6981 CSEBlocks.insert(I->getParent()); 6982 } 6983 } 6984 6985 ++NumVectorInstructions; 6986 E->VectorizedValue = V; 6987 return V; 6988 } 6989 case Instruction::ZExt: 6990 case Instruction::SExt: 6991 case Instruction::FPToUI: 6992 case Instruction::FPToSI: 6993 case Instruction::FPExt: 6994 case Instruction::PtrToInt: 6995 case Instruction::IntToPtr: 6996 case Instruction::SIToFP: 6997 case Instruction::UIToFP: 6998 case Instruction::Trunc: 6999 case Instruction::FPTrunc: 7000 case Instruction::BitCast: { 7001 setInsertPointAfterBundle(E); 7002 7003 Value *InVec = vectorizeTree(E->getOperand(0)); 7004 7005 if (E->VectorizedValue) { 7006 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7007 return E->VectorizedValue; 7008 } 7009 7010 auto *CI = cast<CastInst>(VL0); 7011 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7012 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7013 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7014 V = ShuffleBuilder.finalize(V); 7015 7016 E->VectorizedValue = V; 7017 ++NumVectorInstructions; 7018 return V; 7019 } 7020 case Instruction::FCmp: 7021 case Instruction::ICmp: { 7022 setInsertPointAfterBundle(E); 7023 7024 Value *L = vectorizeTree(E->getOperand(0)); 7025 Value *R = vectorizeTree(E->getOperand(1)); 7026 7027 if (E->VectorizedValue) { 7028 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7029 return E->VectorizedValue; 7030 } 7031 7032 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7033 Value *V = Builder.CreateCmp(P0, L, R); 7034 propagateIRFlags(V, E->Scalars, VL0); 7035 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7036 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7037 V = ShuffleBuilder.finalize(V); 7038 7039 E->VectorizedValue = V; 7040 ++NumVectorInstructions; 7041 return V; 7042 } 7043 case Instruction::Select: { 7044 setInsertPointAfterBundle(E); 7045 7046 Value *Cond = vectorizeTree(E->getOperand(0)); 7047 Value *True = vectorizeTree(E->getOperand(1)); 7048 Value *False = vectorizeTree(E->getOperand(2)); 7049 7050 if (E->VectorizedValue) { 7051 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7052 return E->VectorizedValue; 7053 } 7054 7055 Value *V = Builder.CreateSelect(Cond, True, False); 7056 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7057 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7058 V = ShuffleBuilder.finalize(V); 7059 7060 E->VectorizedValue = V; 7061 ++NumVectorInstructions; 7062 return V; 7063 } 7064 case Instruction::FNeg: { 7065 setInsertPointAfterBundle(E); 7066 7067 Value *Op = vectorizeTree(E->getOperand(0)); 7068 7069 if (E->VectorizedValue) { 7070 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7071 return E->VectorizedValue; 7072 } 7073 7074 Value *V = Builder.CreateUnOp( 7075 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7076 propagateIRFlags(V, E->Scalars, VL0); 7077 if (auto *I = dyn_cast<Instruction>(V)) 7078 V = propagateMetadata(I, E->Scalars); 7079 7080 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7081 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7082 V = ShuffleBuilder.finalize(V); 7083 7084 E->VectorizedValue = V; 7085 ++NumVectorInstructions; 7086 7087 return V; 7088 } 7089 case Instruction::Add: 7090 case Instruction::FAdd: 7091 case Instruction::Sub: 7092 case Instruction::FSub: 7093 case Instruction::Mul: 7094 case Instruction::FMul: 7095 case Instruction::UDiv: 7096 case Instruction::SDiv: 7097 case Instruction::FDiv: 7098 case Instruction::URem: 7099 case Instruction::SRem: 7100 case Instruction::FRem: 7101 case Instruction::Shl: 7102 case Instruction::LShr: 7103 case Instruction::AShr: 7104 case Instruction::And: 7105 case Instruction::Or: 7106 case Instruction::Xor: { 7107 setInsertPointAfterBundle(E); 7108 7109 Value *LHS = vectorizeTree(E->getOperand(0)); 7110 Value *RHS = vectorizeTree(E->getOperand(1)); 7111 7112 if (E->VectorizedValue) { 7113 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7114 return E->VectorizedValue; 7115 } 7116 7117 Value *V = Builder.CreateBinOp( 7118 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7119 RHS); 7120 propagateIRFlags(V, E->Scalars, VL0); 7121 if (auto *I = dyn_cast<Instruction>(V)) 7122 V = propagateMetadata(I, E->Scalars); 7123 7124 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7125 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7126 V = ShuffleBuilder.finalize(V); 7127 7128 E->VectorizedValue = V; 7129 ++NumVectorInstructions; 7130 7131 return V; 7132 } 7133 case Instruction::Load: { 7134 // Loads are inserted at the head of the tree because we don't want to 7135 // sink them all the way down past store instructions. 7136 setInsertPointAfterBundle(E); 7137 7138 LoadInst *LI = cast<LoadInst>(VL0); 7139 Instruction *NewLI; 7140 unsigned AS = LI->getPointerAddressSpace(); 7141 Value *PO = LI->getPointerOperand(); 7142 if (E->State == TreeEntry::Vectorize) { 7143 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7144 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7145 7146 // The pointer operand uses an in-tree scalar so we add the new BitCast 7147 // or LoadInst to ExternalUses list to make sure that an extract will 7148 // be generated in the future. 7149 if (TreeEntry *Entry = getTreeEntry(PO)) { 7150 // Find which lane we need to extract. 7151 unsigned FoundLane = Entry->findLaneForValue(PO); 7152 ExternalUses.emplace_back( 7153 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7154 } 7155 } else { 7156 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7157 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7158 // Use the minimum alignment of the gathered loads. 7159 Align CommonAlignment = LI->getAlign(); 7160 for (Value *V : E->Scalars) 7161 CommonAlignment = 7162 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7163 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7164 } 7165 7166 if (MSSA) { 7167 MemorySSAUpdater MSSAU(MSSA); 7168 auto *Access = MSSA->getMemoryAccess(LI); 7169 assert(Access); 7170 MemoryUseOrDef *NewAccess = 7171 MSSAU.createMemoryAccessAfter(NewLI, Access->getDefiningAccess(), 7172 Access); 7173 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 7174 } 7175 7176 Value *V = propagateMetadata(NewLI, E->Scalars); 7177 7178 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7179 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7180 V = ShuffleBuilder.finalize(V); 7181 E->VectorizedValue = V; 7182 ++NumVectorInstructions; 7183 return V; 7184 } 7185 case Instruction::Store: { 7186 auto *SI = cast<StoreInst>(VL0); 7187 unsigned AS = SI->getPointerAddressSpace(); 7188 7189 setInsertPointAfterBundle(E); 7190 7191 Value *VecValue = vectorizeTree(E->getOperand(0)); 7192 ShuffleBuilder.addMask(E->ReorderIndices); 7193 VecValue = ShuffleBuilder.finalize(VecValue); 7194 7195 Value *ScalarPtr = SI->getPointerOperand(); 7196 Value *VecPtr = Builder.CreateBitCast( 7197 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7198 StoreInst *ST = 7199 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7200 7201 if (MSSA) { 7202 MemorySSAUpdater MSSAU(MSSA); 7203 auto *Access = MSSA->getMemoryAccess(SI); 7204 assert(Access); 7205 MemoryUseOrDef *NewAccess = 7206 MSSAU.createMemoryAccessAfter(ST, Access->getDefiningAccess(), 7207 Access); 7208 MSSAU.insertDef(cast<MemoryDef>(NewAccess), true); 7209 } 7210 7211 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7212 // StoreInst to ExternalUses to make sure that an extract will be 7213 // generated in the future. 7214 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7215 // Find which lane we need to extract. 7216 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7217 ExternalUses.push_back(ExternalUser( 7218 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7219 FoundLane)); 7220 } 7221 7222 Value *V = propagateMetadata(ST, E->Scalars); 7223 7224 E->VectorizedValue = V; 7225 ++NumVectorInstructions; 7226 return V; 7227 } 7228 case Instruction::GetElementPtr: { 7229 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7230 setInsertPointAfterBundle(E); 7231 7232 Value *Op0 = vectorizeTree(E->getOperand(0)); 7233 7234 SmallVector<Value *> OpVecs; 7235 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7236 Value *OpVec = vectorizeTree(E->getOperand(J)); 7237 OpVecs.push_back(OpVec); 7238 } 7239 7240 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7241 if (Instruction *I = dyn_cast<Instruction>(V)) 7242 V = propagateMetadata(I, E->Scalars); 7243 7244 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7245 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7246 V = ShuffleBuilder.finalize(V); 7247 7248 E->VectorizedValue = V; 7249 ++NumVectorInstructions; 7250 7251 return V; 7252 } 7253 case Instruction::Call: { 7254 CallInst *CI = cast<CallInst>(VL0); 7255 setInsertPointAfterBundle(E); 7256 7257 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7258 if (Function *FI = CI->getCalledFunction()) 7259 IID = FI->getIntrinsicID(); 7260 7261 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7262 7263 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7264 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7265 VecCallCosts.first <= VecCallCosts.second; 7266 7267 Value *ScalarArg = nullptr; 7268 std::vector<Value *> OpVecs; 7269 SmallVector<Type *, 2> TysForDecl = 7270 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7271 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7272 ValueList OpVL; 7273 // Some intrinsics have scalar arguments. This argument should not be 7274 // vectorized. 7275 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7276 CallInst *CEI = cast<CallInst>(VL0); 7277 ScalarArg = CEI->getArgOperand(j); 7278 OpVecs.push_back(CEI->getArgOperand(j)); 7279 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7280 TysForDecl.push_back(ScalarArg->getType()); 7281 continue; 7282 } 7283 7284 Value *OpVec = vectorizeTree(E->getOperand(j)); 7285 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7286 OpVecs.push_back(OpVec); 7287 } 7288 7289 Function *CF; 7290 if (!UseIntrinsic) { 7291 VFShape Shape = 7292 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7293 VecTy->getNumElements())), 7294 false /*HasGlobalPred*/); 7295 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7296 } else { 7297 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7298 } 7299 7300 SmallVector<OperandBundleDef, 1> OpBundles; 7301 CI->getOperandBundlesAsDefs(OpBundles); 7302 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7303 7304 // The scalar argument uses an in-tree scalar so we add the new vectorized 7305 // call to ExternalUses list to make sure that an extract will be 7306 // generated in the future. 7307 if (ScalarArg) { 7308 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7309 // Find which lane we need to extract. 7310 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7311 ExternalUses.push_back( 7312 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7313 } 7314 } 7315 7316 propagateIRFlags(V, E->Scalars, VL0); 7317 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7318 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7319 V = ShuffleBuilder.finalize(V); 7320 7321 E->VectorizedValue = V; 7322 ++NumVectorInstructions; 7323 return V; 7324 } 7325 case Instruction::ShuffleVector: { 7326 assert(E->isAltShuffle() && 7327 ((Instruction::isBinaryOp(E->getOpcode()) && 7328 Instruction::isBinaryOp(E->getAltOpcode())) || 7329 (Instruction::isCast(E->getOpcode()) && 7330 Instruction::isCast(E->getAltOpcode())) || 7331 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7332 "Invalid Shuffle Vector Operand"); 7333 7334 Value *LHS = nullptr, *RHS = nullptr; 7335 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7336 setInsertPointAfterBundle(E); 7337 LHS = vectorizeTree(E->getOperand(0)); 7338 RHS = vectorizeTree(E->getOperand(1)); 7339 } else { 7340 setInsertPointAfterBundle(E); 7341 LHS = vectorizeTree(E->getOperand(0)); 7342 } 7343 7344 if (E->VectorizedValue) { 7345 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7346 return E->VectorizedValue; 7347 } 7348 7349 Value *V0, *V1; 7350 if (Instruction::isBinaryOp(E->getOpcode())) { 7351 V0 = Builder.CreateBinOp( 7352 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7353 V1 = Builder.CreateBinOp( 7354 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7355 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7356 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7357 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7358 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7359 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7360 } else { 7361 V0 = Builder.CreateCast( 7362 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7363 V1 = Builder.CreateCast( 7364 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7365 } 7366 // Add V0 and V1 to later analysis to try to find and remove matching 7367 // instruction, if any. 7368 for (Value *V : {V0, V1}) { 7369 if (auto *I = dyn_cast<Instruction>(V)) { 7370 GatherShuffleSeq.insert(I); 7371 CSEBlocks.insert(I->getParent()); 7372 } 7373 } 7374 7375 // Create shuffle to take alternate operations from the vector. 7376 // Also, gather up main and alt scalar ops to propagate IR flags to 7377 // each vector operation. 7378 ValueList OpScalars, AltScalars; 7379 SmallVector<int> Mask; 7380 buildShuffleEntryMask( 7381 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7382 [E](Instruction *I) { 7383 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7384 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7385 }, 7386 Mask, &OpScalars, &AltScalars); 7387 7388 propagateIRFlags(V0, OpScalars); 7389 propagateIRFlags(V1, AltScalars); 7390 7391 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7392 if (auto *I = dyn_cast<Instruction>(V)) { 7393 V = propagateMetadata(I, E->Scalars); 7394 GatherShuffleSeq.insert(I); 7395 CSEBlocks.insert(I->getParent()); 7396 } 7397 V = ShuffleBuilder.finalize(V); 7398 7399 E->VectorizedValue = V; 7400 ++NumVectorInstructions; 7401 7402 return V; 7403 } 7404 default: 7405 llvm_unreachable("unknown inst"); 7406 } 7407 return nullptr; 7408 } 7409 7410 Value *BoUpSLP::vectorizeTree() { 7411 ExtraValueToDebugLocsMap ExternallyUsedValues; 7412 return vectorizeTree(ExternallyUsedValues); 7413 } 7414 7415 Value * 7416 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7417 // All blocks must be scheduled before any instructions are inserted. 7418 for (auto &BSIter : BlocksSchedules) { 7419 scheduleBlock(BSIter.second.get()); 7420 } 7421 7422 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7423 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7424 7425 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7426 // vectorized root. InstCombine will then rewrite the entire expression. We 7427 // sign extend the extracted values below. 7428 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7429 if (MinBWs.count(ScalarRoot)) { 7430 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7431 // If current instr is a phi and not the last phi, insert it after the 7432 // last phi node. 7433 if (isa<PHINode>(I)) 7434 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7435 else 7436 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7437 } 7438 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7439 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7440 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7441 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7442 VectorizableTree[0]->VectorizedValue = Trunc; 7443 } 7444 7445 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7446 << " values .\n"); 7447 7448 // Extract all of the elements with the external uses. 7449 for (const auto &ExternalUse : ExternalUses) { 7450 Value *Scalar = ExternalUse.Scalar; 7451 llvm::User *User = ExternalUse.User; 7452 7453 // Skip users that we already RAUW. This happens when one instruction 7454 // has multiple uses of the same value. 7455 if (User && !is_contained(Scalar->users(), User)) 7456 continue; 7457 TreeEntry *E = getTreeEntry(Scalar); 7458 assert(E && "Invalid scalar"); 7459 assert(E->State != TreeEntry::NeedToGather && 7460 "Extracting from a gather list"); 7461 7462 Value *Vec = E->VectorizedValue; 7463 assert(Vec && "Can't find vectorizable value"); 7464 7465 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7466 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7467 if (Scalar->getType() != Vec->getType()) { 7468 Value *Ex; 7469 // "Reuse" the existing extract to improve final codegen. 7470 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7471 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7472 ES->getOperand(1)); 7473 } else { 7474 Ex = Builder.CreateExtractElement(Vec, Lane); 7475 } 7476 // If necessary, sign-extend or zero-extend ScalarRoot 7477 // to the larger type. 7478 if (!MinBWs.count(ScalarRoot)) 7479 return Ex; 7480 if (MinBWs[ScalarRoot].second) 7481 return Builder.CreateSExt(Ex, Scalar->getType()); 7482 return Builder.CreateZExt(Ex, Scalar->getType()); 7483 } 7484 assert(isa<FixedVectorType>(Scalar->getType()) && 7485 isa<InsertElementInst>(Scalar) && 7486 "In-tree scalar of vector type is not insertelement?"); 7487 return Vec; 7488 }; 7489 // If User == nullptr, the Scalar is used as extra arg. Generate 7490 // ExtractElement instruction and update the record for this scalar in 7491 // ExternallyUsedValues. 7492 if (!User) { 7493 assert(ExternallyUsedValues.count(Scalar) && 7494 "Scalar with nullptr as an external user must be registered in " 7495 "ExternallyUsedValues map"); 7496 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7497 Builder.SetInsertPoint(VecI->getParent(), 7498 std::next(VecI->getIterator())); 7499 } else { 7500 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7501 } 7502 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7503 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7504 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7505 auto It = ExternallyUsedValues.find(Scalar); 7506 assert(It != ExternallyUsedValues.end() && 7507 "Externally used scalar is not found in ExternallyUsedValues"); 7508 NewInstLocs.append(It->second); 7509 ExternallyUsedValues.erase(Scalar); 7510 // Required to update internally referenced instructions. 7511 Scalar->replaceAllUsesWith(NewInst); 7512 continue; 7513 } 7514 7515 // Generate extracts for out-of-tree users. 7516 // Find the insertion point for the extractelement lane. 7517 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7518 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7519 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7520 if (PH->getIncomingValue(i) == Scalar) { 7521 Instruction *IncomingTerminator = 7522 PH->getIncomingBlock(i)->getTerminator(); 7523 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7524 Builder.SetInsertPoint(VecI->getParent(), 7525 std::next(VecI->getIterator())); 7526 } else { 7527 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7528 } 7529 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7530 CSEBlocks.insert(PH->getIncomingBlock(i)); 7531 PH->setOperand(i, NewInst); 7532 } 7533 } 7534 } else { 7535 Builder.SetInsertPoint(cast<Instruction>(User)); 7536 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7537 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7538 User->replaceUsesOfWith(Scalar, NewInst); 7539 } 7540 } else { 7541 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7542 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7543 CSEBlocks.insert(&F->getEntryBlock()); 7544 User->replaceUsesOfWith(Scalar, NewInst); 7545 } 7546 7547 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7548 } 7549 7550 // For each vectorized value: 7551 for (auto &TEPtr : VectorizableTree) { 7552 TreeEntry *Entry = TEPtr.get(); 7553 7554 // No need to handle users of gathered values. 7555 if (Entry->State == TreeEntry::NeedToGather) 7556 continue; 7557 7558 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7559 7560 // For each lane: 7561 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7562 Value *Scalar = Entry->Scalars[Lane]; 7563 7564 #ifndef NDEBUG 7565 Type *Ty = Scalar->getType(); 7566 if (!Ty->isVoidTy()) { 7567 for (User *U : Scalar->users()) { 7568 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7569 7570 // It is legal to delete users in the ignorelist. 7571 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7572 (isa_and_nonnull<Instruction>(U) && 7573 isDeleted(cast<Instruction>(U)))) && 7574 "Deleting out-of-tree value"); 7575 } 7576 } 7577 #endif 7578 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7579 eraseInstruction(cast<Instruction>(Scalar)); 7580 } 7581 } 7582 7583 Builder.ClearInsertionPoint(); 7584 InstrElementSize.clear(); 7585 7586 return VectorizableTree[0]->VectorizedValue; 7587 } 7588 7589 void BoUpSLP::optimizeGatherSequence() { 7590 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7591 << " gather sequences instructions.\n"); 7592 // LICM InsertElementInst sequences. 7593 for (Instruction *I : GatherShuffleSeq) { 7594 if (isDeleted(I)) 7595 continue; 7596 7597 // Check if this block is inside a loop. 7598 Loop *L = LI->getLoopFor(I->getParent()); 7599 if (!L) 7600 continue; 7601 7602 // Check if it has a preheader. 7603 BasicBlock *PreHeader = L->getLoopPreheader(); 7604 if (!PreHeader) 7605 continue; 7606 7607 // If the vector or the element that we insert into it are 7608 // instructions that are defined in this basic block then we can't 7609 // hoist this instruction. 7610 if (any_of(I->operands(), [L](Value *V) { 7611 auto *OpI = dyn_cast<Instruction>(V); 7612 return OpI && L->contains(OpI); 7613 })) 7614 continue; 7615 7616 // We can hoist this instruction. Move it to the pre-header. 7617 I->moveBefore(PreHeader->getTerminator()); 7618 } 7619 7620 // Make a list of all reachable blocks in our CSE queue. 7621 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7622 CSEWorkList.reserve(CSEBlocks.size()); 7623 for (BasicBlock *BB : CSEBlocks) 7624 if (DomTreeNode *N = DT->getNode(BB)) { 7625 assert(DT->isReachableFromEntry(N)); 7626 CSEWorkList.push_back(N); 7627 } 7628 7629 // Sort blocks by domination. This ensures we visit a block after all blocks 7630 // dominating it are visited. 7631 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7632 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7633 "Different nodes should have different DFS numbers"); 7634 return A->getDFSNumIn() < B->getDFSNumIn(); 7635 }); 7636 7637 // Less defined shuffles can be replaced by the more defined copies. 7638 // Between two shuffles one is less defined if it has the same vector operands 7639 // and its mask indeces are the same as in the first one or undefs. E.g. 7640 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7641 // poison, <0, 0, 0, 0>. 7642 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7643 SmallVectorImpl<int> &NewMask) { 7644 if (I1->getType() != I2->getType()) 7645 return false; 7646 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7647 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7648 if (!SI1 || !SI2) 7649 return I1->isIdenticalTo(I2); 7650 if (SI1->isIdenticalTo(SI2)) 7651 return true; 7652 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7653 if (SI1->getOperand(I) != SI2->getOperand(I)) 7654 return false; 7655 // Check if the second instruction is more defined than the first one. 7656 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7657 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7658 // Count trailing undefs in the mask to check the final number of used 7659 // registers. 7660 unsigned LastUndefsCnt = 0; 7661 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7662 if (SM1[I] == UndefMaskElem) 7663 ++LastUndefsCnt; 7664 else 7665 LastUndefsCnt = 0; 7666 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7667 NewMask[I] != SM1[I]) 7668 return false; 7669 if (NewMask[I] == UndefMaskElem) 7670 NewMask[I] = SM1[I]; 7671 } 7672 // Check if the last undefs actually change the final number of used vector 7673 // registers. 7674 return SM1.size() - LastUndefsCnt > 1 && 7675 TTI->getNumberOfParts(SI1->getType()) == 7676 TTI->getNumberOfParts( 7677 FixedVectorType::get(SI1->getType()->getElementType(), 7678 SM1.size() - LastUndefsCnt)); 7679 }; 7680 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7681 // instructions. TODO: We can further optimize this scan if we split the 7682 // instructions into different buckets based on the insert lane. 7683 SmallVector<Instruction *, 16> Visited; 7684 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7685 assert(*I && 7686 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7687 "Worklist not sorted properly!"); 7688 BasicBlock *BB = (*I)->getBlock(); 7689 // For all instructions in blocks containing gather sequences: 7690 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7691 if (isDeleted(&In)) 7692 continue; 7693 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7694 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7695 continue; 7696 7697 // Check if we can replace this instruction with any of the 7698 // visited instructions. 7699 bool Replaced = false; 7700 for (Instruction *&V : Visited) { 7701 SmallVector<int> NewMask; 7702 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7703 DT->dominates(V->getParent(), In.getParent())) { 7704 In.replaceAllUsesWith(V); 7705 eraseInstruction(&In); 7706 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7707 if (!NewMask.empty()) 7708 SI->setShuffleMask(NewMask); 7709 Replaced = true; 7710 break; 7711 } 7712 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7713 GatherShuffleSeq.contains(V) && 7714 IsIdenticalOrLessDefined(V, &In, NewMask) && 7715 DT->dominates(In.getParent(), V->getParent())) { 7716 In.moveAfter(V); 7717 V->replaceAllUsesWith(&In); 7718 eraseInstruction(V); 7719 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7720 if (!NewMask.empty()) 7721 SI->setShuffleMask(NewMask); 7722 V = &In; 7723 Replaced = true; 7724 break; 7725 } 7726 } 7727 if (!Replaced) { 7728 assert(!is_contained(Visited, &In)); 7729 Visited.push_back(&In); 7730 } 7731 } 7732 } 7733 CSEBlocks.clear(); 7734 GatherShuffleSeq.clear(); 7735 } 7736 7737 BoUpSLP::ScheduleData * 7738 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7739 ScheduleData *Bundle = nullptr; 7740 ScheduleData *PrevInBundle = nullptr; 7741 for (Value *V : VL) { 7742 if (doesNotNeedToBeScheduled(V)) 7743 continue; 7744 ScheduleData *BundleMember = getScheduleData(V); 7745 assert(BundleMember && 7746 "no ScheduleData for bundle member " 7747 "(maybe not in same basic block)"); 7748 assert(BundleMember->isSchedulingEntity() && 7749 "bundle member already part of other bundle"); 7750 if (PrevInBundle) { 7751 PrevInBundle->NextInBundle = BundleMember; 7752 } else { 7753 Bundle = BundleMember; 7754 } 7755 7756 // Group the instructions to a bundle. 7757 BundleMember->FirstInBundle = Bundle; 7758 PrevInBundle = BundleMember; 7759 } 7760 assert(Bundle && "Failed to find schedule bundle"); 7761 return Bundle; 7762 } 7763 7764 // Groups the instructions to a bundle (which is then a single scheduling entity) 7765 // and schedules instructions until the bundle gets ready. 7766 Optional<BoUpSLP::ScheduleData *> 7767 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7768 const InstructionsState &S) { 7769 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7770 // instructions. 7771 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7772 doesNotNeedToSchedule(VL)) 7773 return nullptr; 7774 7775 // Initialize the instruction bundle. 7776 Instruction *OldScheduleEnd = ScheduleEnd; 7777 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7778 7779 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7780 ScheduleData *Bundle) { 7781 // The scheduling region got new instructions at the lower end (or it is a 7782 // new region for the first bundle). This makes it necessary to 7783 // recalculate all dependencies. 7784 // It is seldom that this needs to be done a second time after adding the 7785 // initial bundle to the region. 7786 if (ScheduleEnd != OldScheduleEnd) { 7787 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7788 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7789 ReSchedule = true; 7790 } 7791 if (Bundle) { 7792 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7793 << " in block " << BB->getName() << "\n"); 7794 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7795 } 7796 7797 if (ReSchedule) { 7798 resetSchedule(); 7799 initialFillReadyList(ReadyInsts); 7800 } 7801 7802 // Now try to schedule the new bundle or (if no bundle) just calculate 7803 // dependencies. As soon as the bundle is "ready" it means that there are no 7804 // cyclic dependencies and we can schedule it. Note that's important that we 7805 // don't "schedule" the bundle yet (see cancelScheduling). 7806 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7807 !ReadyInsts.empty()) { 7808 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7809 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7810 "must be ready to schedule"); 7811 schedule(Picked, ReadyInsts); 7812 } 7813 }; 7814 7815 // Make sure that the scheduling region contains all 7816 // instructions of the bundle. 7817 for (Value *V : VL) { 7818 if (doesNotNeedToBeScheduled(V)) 7819 continue; 7820 if (!extendSchedulingRegion(V, S)) { 7821 // If the scheduling region got new instructions at the lower end (or it 7822 // is a new region for the first bundle). This makes it necessary to 7823 // recalculate all dependencies. 7824 // Otherwise the compiler may crash trying to incorrectly calculate 7825 // dependencies and emit instruction in the wrong order at the actual 7826 // scheduling. 7827 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7828 return None; 7829 } 7830 } 7831 7832 bool ReSchedule = false; 7833 for (Value *V : VL) { 7834 if (doesNotNeedToBeScheduled(V)) 7835 continue; 7836 ScheduleData *BundleMember = getScheduleData(V); 7837 assert(BundleMember && 7838 "no ScheduleData for bundle member (maybe not in same basic block)"); 7839 7840 // Make sure we don't leave the pieces of the bundle in the ready list when 7841 // whole bundle might not be ready. 7842 ReadyInsts.remove(BundleMember); 7843 7844 if (!BundleMember->IsScheduled) 7845 continue; 7846 // A bundle member was scheduled as single instruction before and now 7847 // needs to be scheduled as part of the bundle. We just get rid of the 7848 // existing schedule. 7849 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7850 << " was already scheduled\n"); 7851 ReSchedule = true; 7852 } 7853 7854 auto *Bundle = buildBundle(VL); 7855 TryScheduleBundleImpl(ReSchedule, Bundle); 7856 if (!Bundle->isReady()) { 7857 cancelScheduling(VL, S.OpValue); 7858 return None; 7859 } 7860 return Bundle; 7861 } 7862 7863 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7864 Value *OpValue) { 7865 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7866 doesNotNeedToSchedule(VL)) 7867 return; 7868 7869 if (doesNotNeedToBeScheduled(OpValue)) 7870 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7871 ScheduleData *Bundle = getScheduleData(OpValue); 7872 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7873 assert(!Bundle->IsScheduled && 7874 "Can't cancel bundle which is already scheduled"); 7875 assert(Bundle->isSchedulingEntity() && 7876 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7877 "tried to unbundle something which is not a bundle"); 7878 7879 // Remove the bundle from the ready list. 7880 if (Bundle->isReady()) 7881 ReadyInsts.remove(Bundle); 7882 7883 // Un-bundle: make single instructions out of the bundle. 7884 ScheduleData *BundleMember = Bundle; 7885 while (BundleMember) { 7886 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7887 BundleMember->FirstInBundle = BundleMember; 7888 ScheduleData *Next = BundleMember->NextInBundle; 7889 BundleMember->NextInBundle = nullptr; 7890 BundleMember->TE = nullptr; 7891 if (BundleMember->unscheduledDepsInBundle() == 0) { 7892 ReadyInsts.insert(BundleMember); 7893 } 7894 BundleMember = Next; 7895 } 7896 } 7897 7898 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7899 // Allocate a new ScheduleData for the instruction. 7900 if (ChunkPos >= ChunkSize) { 7901 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7902 ChunkPos = 0; 7903 } 7904 return &(ScheduleDataChunks.back()[ChunkPos++]); 7905 } 7906 7907 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7908 const InstructionsState &S) { 7909 if (getScheduleData(V, isOneOf(S, V))) 7910 return true; 7911 Instruction *I = dyn_cast<Instruction>(V); 7912 assert(I && "bundle member must be an instruction"); 7913 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7914 !doesNotNeedToBeScheduled(I) && 7915 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7916 "be scheduled"); 7917 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7918 ScheduleData *ISD = getScheduleData(I); 7919 if (!ISD) 7920 return false; 7921 assert(isInSchedulingRegion(ISD) && 7922 "ScheduleData not in scheduling region"); 7923 ScheduleData *SD = allocateScheduleDataChunks(); 7924 SD->Inst = I; 7925 SD->init(SchedulingRegionID, S.OpValue); 7926 ExtraScheduleDataMap[I][S.OpValue] = SD; 7927 return true; 7928 }; 7929 if (CheckScheduleForI(I)) 7930 return true; 7931 if (!ScheduleStart) { 7932 // It's the first instruction in the new region. 7933 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7934 ScheduleStart = I; 7935 ScheduleEnd = I->getNextNode(); 7936 if (isOneOf(S, I) != I) 7937 CheckScheduleForI(I); 7938 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7939 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7940 return true; 7941 } 7942 // Search up and down at the same time, because we don't know if the new 7943 // instruction is above or below the existing scheduling region. 7944 BasicBlock::reverse_iterator UpIter = 7945 ++ScheduleStart->getIterator().getReverse(); 7946 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7947 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7948 BasicBlock::iterator LowerEnd = BB->end(); 7949 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7950 &*DownIter != I) { 7951 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7952 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7953 return false; 7954 } 7955 7956 ++UpIter; 7957 ++DownIter; 7958 } 7959 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7960 assert(I->getParent() == ScheduleStart->getParent() && 7961 "Instruction is in wrong basic block."); 7962 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7963 ScheduleStart = I; 7964 if (isOneOf(S, I) != I) 7965 CheckScheduleForI(I); 7966 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7967 << "\n"); 7968 return true; 7969 } 7970 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7971 "Expected to reach top of the basic block or instruction down the " 7972 "lower end."); 7973 assert(I->getParent() == ScheduleEnd->getParent() && 7974 "Instruction is in wrong basic block."); 7975 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7976 nullptr); 7977 ScheduleEnd = I->getNextNode(); 7978 if (isOneOf(S, I) != I) 7979 CheckScheduleForI(I); 7980 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7981 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7982 return true; 7983 } 7984 7985 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7986 Instruction *ToI, 7987 ScheduleData *PrevLoadStore, 7988 ScheduleData *NextLoadStore) { 7989 ScheduleData *CurrentLoadStore = PrevLoadStore; 7990 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7991 // No need to allocate data for non-schedulable instructions. 7992 if (doesNotNeedToBeScheduled(I)) 7993 continue; 7994 ScheduleData *SD = ScheduleDataMap.lookup(I); 7995 if (!SD) { 7996 SD = allocateScheduleDataChunks(); 7997 ScheduleDataMap[I] = SD; 7998 SD->Inst = I; 7999 } 8000 assert(!isInSchedulingRegion(SD) && 8001 "new ScheduleData already in scheduling region"); 8002 SD->init(SchedulingRegionID, I); 8003 8004 if (I->mayReadOrWriteMemory() && 8005 (!isa<IntrinsicInst>(I) || 8006 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8007 cast<IntrinsicInst>(I)->getIntrinsicID() != 8008 Intrinsic::pseudoprobe))) { 8009 // Update the linked list of memory accessing instructions. 8010 if (CurrentLoadStore) { 8011 CurrentLoadStore->NextLoadStore = SD; 8012 } else { 8013 FirstLoadStoreInRegion = SD; 8014 } 8015 CurrentLoadStore = SD; 8016 } 8017 } 8018 if (NextLoadStore) { 8019 if (CurrentLoadStore) 8020 CurrentLoadStore->NextLoadStore = NextLoadStore; 8021 } else { 8022 LastLoadStoreInRegion = CurrentLoadStore; 8023 } 8024 } 8025 8026 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8027 bool InsertInReadyList, 8028 BoUpSLP *SLP) { 8029 assert(SD->isSchedulingEntity()); 8030 8031 SmallVector<ScheduleData *, 10> WorkList; 8032 WorkList.push_back(SD); 8033 8034 while (!WorkList.empty()) { 8035 ScheduleData *SD = WorkList.pop_back_val(); 8036 for (ScheduleData *BundleMember = SD; BundleMember; 8037 BundleMember = BundleMember->NextInBundle) { 8038 assert(isInSchedulingRegion(BundleMember)); 8039 if (BundleMember->hasValidDependencies()) 8040 continue; 8041 8042 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8043 << "\n"); 8044 BundleMember->Dependencies = 0; 8045 BundleMember->resetUnscheduledDeps(); 8046 8047 // Handle def-use chain dependencies. 8048 if (BundleMember->OpValue != BundleMember->Inst) { 8049 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8050 BundleMember->Dependencies++; 8051 ScheduleData *DestBundle = UseSD->FirstInBundle; 8052 if (!DestBundle->IsScheduled) 8053 BundleMember->incrementUnscheduledDeps(1); 8054 if (!DestBundle->hasValidDependencies()) 8055 WorkList.push_back(DestBundle); 8056 } 8057 } else { 8058 for (User *U : BundleMember->Inst->users()) { 8059 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8060 BundleMember->Dependencies++; 8061 ScheduleData *DestBundle = UseSD->FirstInBundle; 8062 if (!DestBundle->IsScheduled) 8063 BundleMember->incrementUnscheduledDeps(1); 8064 if (!DestBundle->hasValidDependencies()) 8065 WorkList.push_back(DestBundle); 8066 } 8067 } 8068 } 8069 8070 // Handle the memory dependencies (if any). 8071 ScheduleData *DepDest = BundleMember->NextLoadStore; 8072 if (!DepDest) 8073 continue; 8074 Instruction *SrcInst = BundleMember->Inst; 8075 assert(SrcInst->mayReadOrWriteMemory() && 8076 "NextLoadStore list for non memory effecting bundle?"); 8077 MemoryLocation SrcLoc = getLocation(SrcInst); 8078 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8079 unsigned numAliased = 0; 8080 unsigned DistToSrc = 1; 8081 8082 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8083 assert(isInSchedulingRegion(DepDest)); 8084 8085 // We have two limits to reduce the complexity: 8086 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8087 // SLP->isAliased (which is the expensive part in this loop). 8088 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8089 // the whole loop (even if the loop is fast, it's quadratic). 8090 // It's important for the loop break condition (see below) to 8091 // check this limit even between two read-only instructions. 8092 if (DistToSrc >= MaxMemDepDistance || 8093 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8094 (numAliased >= AliasedCheckLimit || 8095 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8096 8097 // We increment the counter only if the locations are aliased 8098 // (instead of counting all alias checks). This gives a better 8099 // balance between reduced runtime and accurate dependencies. 8100 numAliased++; 8101 8102 DepDest->MemoryDependencies.push_back(BundleMember); 8103 BundleMember->Dependencies++; 8104 ScheduleData *DestBundle = DepDest->FirstInBundle; 8105 if (!DestBundle->IsScheduled) { 8106 BundleMember->incrementUnscheduledDeps(1); 8107 } 8108 if (!DestBundle->hasValidDependencies()) { 8109 WorkList.push_back(DestBundle); 8110 } 8111 } 8112 8113 // Example, explaining the loop break condition: Let's assume our 8114 // starting instruction is i0 and MaxMemDepDistance = 3. 8115 // 8116 // +--------v--v--v 8117 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8118 // +--------^--^--^ 8119 // 8120 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8121 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8122 // Previously we already added dependencies from i3 to i6,i7,i8 8123 // (because of MaxMemDepDistance). As we added a dependency from 8124 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8125 // and we can abort this loop at i6. 8126 if (DistToSrc >= 2 * MaxMemDepDistance) 8127 break; 8128 DistToSrc++; 8129 } 8130 } 8131 if (InsertInReadyList && SD->isReady()) { 8132 ReadyInsts.insert(SD); 8133 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8134 << "\n"); 8135 } 8136 } 8137 } 8138 8139 void BoUpSLP::BlockScheduling::resetSchedule() { 8140 assert(ScheduleStart && 8141 "tried to reset schedule on block which has not been scheduled"); 8142 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8143 doForAllOpcodes(I, [&](ScheduleData *SD) { 8144 assert(isInSchedulingRegion(SD) && 8145 "ScheduleData not in scheduling region"); 8146 SD->IsScheduled = false; 8147 SD->resetUnscheduledDeps(); 8148 }); 8149 } 8150 ReadyInsts.clear(); 8151 } 8152 8153 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8154 if (!BS->ScheduleStart) 8155 return; 8156 8157 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8158 8159 BS->resetSchedule(); 8160 8161 // For the real scheduling we use a more sophisticated ready-list: it is 8162 // sorted by the original instruction location. This lets the final schedule 8163 // be as close as possible to the original instruction order. 8164 struct ScheduleDataCompare { 8165 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8166 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8167 } 8168 }; 8169 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8170 8171 // Ensure that all dependency data is updated and fill the ready-list with 8172 // initial instructions. 8173 int Idx = 0; 8174 int NumToSchedule = 0; 8175 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8176 I = I->getNextNode()) { 8177 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8178 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8179 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8180 SD->isPartOfBundle() == 8181 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8182 "scheduler and vectorizer bundle mismatch"); 8183 SD->FirstInBundle->SchedulingPriority = Idx++; 8184 if (SD->isSchedulingEntity()) { 8185 BS->calculateDependencies(SD, false, this); 8186 NumToSchedule++; 8187 } 8188 }); 8189 } 8190 BS->initialFillReadyList(ReadyInsts); 8191 8192 Instruction *LastScheduledInst = BS->ScheduleEnd; 8193 MemoryAccess *MemInsertPt = nullptr; 8194 if (MSSA) { 8195 for (auto I = LastScheduledInst->getIterator(); I != BS->BB->end(); I++) { 8196 if (auto *Access = MSSA->getMemoryAccess(&*I)) { 8197 MemInsertPt = Access; 8198 break; 8199 } 8200 } 8201 } 8202 8203 // Do the "real" scheduling. 8204 while (!ReadyInsts.empty()) { 8205 ScheduleData *picked = *ReadyInsts.begin(); 8206 ReadyInsts.erase(ReadyInsts.begin()); 8207 8208 // Move the scheduled instruction(s) to their dedicated places, if not 8209 // there yet. 8210 for (ScheduleData *BundleMember = picked; BundleMember; 8211 BundleMember = BundleMember->NextInBundle) { 8212 Instruction *pickedInst = BundleMember->Inst; 8213 if (pickedInst->getNextNode() != LastScheduledInst) { 8214 pickedInst->moveBefore(LastScheduledInst); 8215 if (MSSA) { 8216 MemorySSAUpdater MSSAU(MSSA); 8217 if (auto *Access = MSSA->getMemoryAccess(pickedInst)) { 8218 if (MemInsertPt) 8219 MSSAU.moveBefore(Access, cast<MemoryUseOrDef>(MemInsertPt)); 8220 else 8221 MSSAU.moveToPlace(Access, BS->BB, 8222 MemorySSA::InsertionPlace::End); 8223 } 8224 } 8225 } 8226 8227 LastScheduledInst = pickedInst; 8228 if (MSSA) 8229 if (auto *Access = MSSA->getMemoryAccess(LastScheduledInst)) 8230 MemInsertPt = Access; 8231 } 8232 8233 BS->schedule(picked, ReadyInsts); 8234 NumToSchedule--; 8235 } 8236 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8237 8238 // Check that we didn't break any of our invariants. 8239 #ifdef EXPENSIVE_CHECKS 8240 BS->verify(); 8241 #endif 8242 8243 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8244 // Check that all schedulable entities got scheduled 8245 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8246 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8247 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8248 assert(SD->IsScheduled && "must be scheduled at this point"); 8249 } 8250 }); 8251 } 8252 #endif 8253 8254 // Avoid duplicate scheduling of the block. 8255 BS->ScheduleStart = nullptr; 8256 } 8257 8258 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8259 // If V is a store, just return the width of the stored value (or value 8260 // truncated just before storing) without traversing the expression tree. 8261 // This is the common case. 8262 if (auto *Store = dyn_cast<StoreInst>(V)) { 8263 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8264 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8265 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8266 } 8267 8268 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8269 return getVectorElementSize(IEI->getOperand(1)); 8270 8271 auto E = InstrElementSize.find(V); 8272 if (E != InstrElementSize.end()) 8273 return E->second; 8274 8275 // If V is not a store, we can traverse the expression tree to find loads 8276 // that feed it. The type of the loaded value may indicate a more suitable 8277 // width than V's type. We want to base the vector element size on the width 8278 // of memory operations where possible. 8279 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8280 SmallPtrSet<Instruction *, 16> Visited; 8281 if (auto *I = dyn_cast<Instruction>(V)) { 8282 Worklist.emplace_back(I, I->getParent()); 8283 Visited.insert(I); 8284 } 8285 8286 // Traverse the expression tree in bottom-up order looking for loads. If we 8287 // encounter an instruction we don't yet handle, we give up. 8288 auto Width = 0u; 8289 while (!Worklist.empty()) { 8290 Instruction *I; 8291 BasicBlock *Parent; 8292 std::tie(I, Parent) = Worklist.pop_back_val(); 8293 8294 // We should only be looking at scalar instructions here. If the current 8295 // instruction has a vector type, skip. 8296 auto *Ty = I->getType(); 8297 if (isa<VectorType>(Ty)) 8298 continue; 8299 8300 // If the current instruction is a load, update MaxWidth to reflect the 8301 // width of the loaded value. 8302 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8303 isa<ExtractValueInst>(I)) 8304 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8305 8306 // Otherwise, we need to visit the operands of the instruction. We only 8307 // handle the interesting cases from buildTree here. If an operand is an 8308 // instruction we haven't yet visited and from the same basic block as the 8309 // user or the use is a PHI node, we add it to the worklist. 8310 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8311 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8312 isa<UnaryOperator>(I)) { 8313 for (Use &U : I->operands()) 8314 if (auto *J = dyn_cast<Instruction>(U.get())) 8315 if (Visited.insert(J).second && 8316 (isa<PHINode>(I) || J->getParent() == Parent)) 8317 Worklist.emplace_back(J, J->getParent()); 8318 } else { 8319 break; 8320 } 8321 } 8322 8323 // If we didn't encounter a memory access in the expression tree, or if we 8324 // gave up for some reason, just return the width of V. Otherwise, return the 8325 // maximum width we found. 8326 if (!Width) { 8327 if (auto *CI = dyn_cast<CmpInst>(V)) 8328 V = CI->getOperand(0); 8329 Width = DL->getTypeSizeInBits(V->getType()); 8330 } 8331 8332 for (Instruction *I : Visited) 8333 InstrElementSize[I] = Width; 8334 8335 return Width; 8336 } 8337 8338 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8339 // smaller type with a truncation. We collect the values that will be demoted 8340 // in ToDemote and additional roots that require investigating in Roots. 8341 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8342 SmallVectorImpl<Value *> &ToDemote, 8343 SmallVectorImpl<Value *> &Roots) { 8344 // We can always demote constants. 8345 if (isa<Constant>(V)) { 8346 ToDemote.push_back(V); 8347 return true; 8348 } 8349 8350 // If the value is not an instruction in the expression with only one use, it 8351 // cannot be demoted. 8352 auto *I = dyn_cast<Instruction>(V); 8353 if (!I || !I->hasOneUse() || !Expr.count(I)) 8354 return false; 8355 8356 switch (I->getOpcode()) { 8357 8358 // We can always demote truncations and extensions. Since truncations can 8359 // seed additional demotion, we save the truncated value. 8360 case Instruction::Trunc: 8361 Roots.push_back(I->getOperand(0)); 8362 break; 8363 case Instruction::ZExt: 8364 case Instruction::SExt: 8365 if (isa<ExtractElementInst>(I->getOperand(0)) || 8366 isa<InsertElementInst>(I->getOperand(0))) 8367 return false; 8368 break; 8369 8370 // We can demote certain binary operations if we can demote both of their 8371 // operands. 8372 case Instruction::Add: 8373 case Instruction::Sub: 8374 case Instruction::Mul: 8375 case Instruction::And: 8376 case Instruction::Or: 8377 case Instruction::Xor: 8378 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8379 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8380 return false; 8381 break; 8382 8383 // We can demote selects if we can demote their true and false values. 8384 case Instruction::Select: { 8385 SelectInst *SI = cast<SelectInst>(I); 8386 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8387 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8388 return false; 8389 break; 8390 } 8391 8392 // We can demote phis if we can demote all their incoming operands. Note that 8393 // we don't need to worry about cycles since we ensure single use above. 8394 case Instruction::PHI: { 8395 PHINode *PN = cast<PHINode>(I); 8396 for (Value *IncValue : PN->incoming_values()) 8397 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8398 return false; 8399 break; 8400 } 8401 8402 // Otherwise, conservatively give up. 8403 default: 8404 return false; 8405 } 8406 8407 // Record the value that we can demote. 8408 ToDemote.push_back(V); 8409 return true; 8410 } 8411 8412 void BoUpSLP::computeMinimumValueSizes() { 8413 // If there are no external uses, the expression tree must be rooted by a 8414 // store. We can't demote in-memory values, so there is nothing to do here. 8415 if (ExternalUses.empty()) 8416 return; 8417 8418 // We only attempt to truncate integer expressions. 8419 auto &TreeRoot = VectorizableTree[0]->Scalars; 8420 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8421 if (!TreeRootIT) 8422 return; 8423 8424 // If the expression is not rooted by a store, these roots should have 8425 // external uses. We will rely on InstCombine to rewrite the expression in 8426 // the narrower type. However, InstCombine only rewrites single-use values. 8427 // This means that if a tree entry other than a root is used externally, it 8428 // must have multiple uses and InstCombine will not rewrite it. The code 8429 // below ensures that only the roots are used externally. 8430 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8431 for (auto &EU : ExternalUses) 8432 if (!Expr.erase(EU.Scalar)) 8433 return; 8434 if (!Expr.empty()) 8435 return; 8436 8437 // Collect the scalar values of the vectorizable expression. We will use this 8438 // context to determine which values can be demoted. If we see a truncation, 8439 // we mark it as seeding another demotion. 8440 for (auto &EntryPtr : VectorizableTree) 8441 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8442 8443 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8444 // have a single external user that is not in the vectorizable tree. 8445 for (auto *Root : TreeRoot) 8446 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8447 return; 8448 8449 // Conservatively determine if we can actually truncate the roots of the 8450 // expression. Collect the values that can be demoted in ToDemote and 8451 // additional roots that require investigating in Roots. 8452 SmallVector<Value *, 32> ToDemote; 8453 SmallVector<Value *, 4> Roots; 8454 for (auto *Root : TreeRoot) 8455 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8456 return; 8457 8458 // The maximum bit width required to represent all the values that can be 8459 // demoted without loss of precision. It would be safe to truncate the roots 8460 // of the expression to this width. 8461 auto MaxBitWidth = 8u; 8462 8463 // We first check if all the bits of the roots are demanded. If they're not, 8464 // we can truncate the roots to this narrower type. 8465 for (auto *Root : TreeRoot) { 8466 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8467 MaxBitWidth = std::max<unsigned>( 8468 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8469 } 8470 8471 // True if the roots can be zero-extended back to their original type, rather 8472 // than sign-extended. We know that if the leading bits are not demanded, we 8473 // can safely zero-extend. So we initialize IsKnownPositive to True. 8474 bool IsKnownPositive = true; 8475 8476 // If all the bits of the roots are demanded, we can try a little harder to 8477 // compute a narrower type. This can happen, for example, if the roots are 8478 // getelementptr indices. InstCombine promotes these indices to the pointer 8479 // width. Thus, all their bits are technically demanded even though the 8480 // address computation might be vectorized in a smaller type. 8481 // 8482 // We start by looking at each entry that can be demoted. We compute the 8483 // maximum bit width required to store the scalar by using ValueTracking to 8484 // compute the number of high-order bits we can truncate. 8485 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8486 llvm::all_of(TreeRoot, [](Value *R) { 8487 assert(R->hasOneUse() && "Root should have only one use!"); 8488 return isa<GetElementPtrInst>(R->user_back()); 8489 })) { 8490 MaxBitWidth = 8u; 8491 8492 // Determine if the sign bit of all the roots is known to be zero. If not, 8493 // IsKnownPositive is set to False. 8494 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8495 KnownBits Known = computeKnownBits(R, *DL); 8496 return Known.isNonNegative(); 8497 }); 8498 8499 // Determine the maximum number of bits required to store the scalar 8500 // values. 8501 for (auto *Scalar : ToDemote) { 8502 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8503 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8504 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8505 } 8506 8507 // If we can't prove that the sign bit is zero, we must add one to the 8508 // maximum bit width to account for the unknown sign bit. This preserves 8509 // the existing sign bit so we can safely sign-extend the root back to the 8510 // original type. Otherwise, if we know the sign bit is zero, we will 8511 // zero-extend the root instead. 8512 // 8513 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8514 // one to the maximum bit width will yield a larger-than-necessary 8515 // type. In general, we need to add an extra bit only if we can't 8516 // prove that the upper bit of the original type is equal to the 8517 // upper bit of the proposed smaller type. If these two bits are the 8518 // same (either zero or one) we know that sign-extending from the 8519 // smaller type will result in the same value. Here, since we can't 8520 // yet prove this, we are just making the proposed smaller type 8521 // larger to ensure correctness. 8522 if (!IsKnownPositive) 8523 ++MaxBitWidth; 8524 } 8525 8526 // Round MaxBitWidth up to the next power-of-two. 8527 if (!isPowerOf2_64(MaxBitWidth)) 8528 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8529 8530 // If the maximum bit width we compute is less than the with of the roots' 8531 // type, we can proceed with the narrowing. Otherwise, do nothing. 8532 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8533 return; 8534 8535 // If we can truncate the root, we must collect additional values that might 8536 // be demoted as a result. That is, those seeded by truncations we will 8537 // modify. 8538 while (!Roots.empty()) 8539 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8540 8541 // Finally, map the values we can demote to the maximum bit with we computed. 8542 for (auto *Scalar : ToDemote) 8543 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8544 } 8545 8546 namespace { 8547 8548 /// The SLPVectorizer Pass. 8549 struct SLPVectorizer : public FunctionPass { 8550 SLPVectorizerPass Impl; 8551 8552 /// Pass identification, replacement for typeid 8553 static char ID; 8554 8555 explicit SLPVectorizer() : FunctionPass(ID) { 8556 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8557 } 8558 8559 bool doInitialization(Module &M) override { return false; } 8560 8561 bool runOnFunction(Function &F) override { 8562 if (skipFunction(F)) 8563 return false; 8564 8565 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8566 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8567 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8568 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8569 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8570 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8571 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8572 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8573 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8574 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8575 8576 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, /*MSSA*/nullptr, ORE); 8577 } 8578 8579 void getAnalysisUsage(AnalysisUsage &AU) const override { 8580 FunctionPass::getAnalysisUsage(AU); 8581 AU.addRequired<AssumptionCacheTracker>(); 8582 AU.addRequired<ScalarEvolutionWrapperPass>(); 8583 AU.addRequired<AAResultsWrapperPass>(); 8584 AU.addRequired<TargetTransformInfoWrapperPass>(); 8585 AU.addRequired<LoopInfoWrapperPass>(); 8586 AU.addRequired<DominatorTreeWrapperPass>(); 8587 AU.addRequired<DemandedBitsWrapperPass>(); 8588 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8589 AU.addRequired<InjectTLIMappingsLegacy>(); 8590 AU.addPreserved<LoopInfoWrapperPass>(); 8591 AU.addPreserved<DominatorTreeWrapperPass>(); 8592 AU.addPreserved<AAResultsWrapperPass>(); 8593 AU.addPreserved<GlobalsAAWrapperPass>(); 8594 AU.setPreservesCFG(); 8595 } 8596 }; 8597 8598 } // end anonymous namespace 8599 8600 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8601 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8602 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8603 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8604 auto *AA = &AM.getResult<AAManager>(F); 8605 auto *LI = &AM.getResult<LoopAnalysis>(F); 8606 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8607 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8608 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8609 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8610 auto *MSSA = EnableMSSAInSLPVectorizer ? 8611 &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : (MemorySSA*)nullptr; 8612 8613 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, ORE); 8614 if (!Changed) 8615 return PreservedAnalyses::all(); 8616 8617 PreservedAnalyses PA; 8618 PA.preserveSet<CFGAnalyses>(); 8619 if (MSSA) { 8620 #ifdef EXPENSIVE_CHECKS 8621 MSSA->verifyMemorySSA(); 8622 #endif 8623 PA.preserve<MemorySSAAnalysis>(); 8624 } 8625 return PA; 8626 } 8627 8628 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8629 TargetTransformInfo *TTI_, 8630 TargetLibraryInfo *TLI_, AAResults *AA_, 8631 LoopInfo *LI_, DominatorTree *DT_, 8632 AssumptionCache *AC_, DemandedBits *DB_, 8633 MemorySSA *MSSA, 8634 OptimizationRemarkEmitter *ORE_) { 8635 if (!RunSLPVectorization) 8636 return false; 8637 SE = SE_; 8638 TTI = TTI_; 8639 TLI = TLI_; 8640 AA = AA_; 8641 LI = LI_; 8642 DT = DT_; 8643 AC = AC_; 8644 DB = DB_; 8645 DL = &F.getParent()->getDataLayout(); 8646 8647 Stores.clear(); 8648 GEPs.clear(); 8649 bool Changed = false; 8650 8651 // If the target claims to have no vector registers don't attempt 8652 // vectorization. 8653 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8654 LLVM_DEBUG( 8655 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8656 return false; 8657 } 8658 8659 // Don't vectorize when the attribute NoImplicitFloat is used. 8660 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8661 return false; 8662 8663 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8664 8665 // Use the bottom up slp vectorizer to construct chains that start with 8666 // store instructions. 8667 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, DL, ORE_); 8668 8669 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8670 // delete instructions. 8671 8672 // Update DFS numbers now so that we can use them for ordering. 8673 DT->updateDFSNumbers(); 8674 8675 // Scan the blocks in the function in post order. 8676 for (auto BB : post_order(&F.getEntryBlock())) { 8677 collectSeedInstructions(BB); 8678 8679 // Vectorize trees that end at stores. 8680 if (!Stores.empty()) { 8681 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8682 << " underlying objects.\n"); 8683 Changed |= vectorizeStoreChains(R); 8684 } 8685 8686 // Vectorize trees that end at reductions. 8687 Changed |= vectorizeChainsInBlock(BB, R); 8688 8689 // Vectorize the index computations of getelementptr instructions. This 8690 // is primarily intended to catch gather-like idioms ending at 8691 // non-consecutive loads. 8692 if (!GEPs.empty()) { 8693 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8694 << " underlying objects.\n"); 8695 Changed |= vectorizeGEPIndices(BB, R); 8696 } 8697 } 8698 8699 if (Changed) { 8700 R.optimizeGatherSequence(); 8701 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8702 } 8703 return Changed; 8704 } 8705 8706 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8707 unsigned Idx) { 8708 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8709 << "\n"); 8710 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8711 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8712 unsigned VF = Chain.size(); 8713 8714 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8715 return false; 8716 8717 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8718 << "\n"); 8719 8720 R.buildTree(Chain); 8721 if (R.isTreeTinyAndNotFullyVectorizable()) 8722 return false; 8723 if (R.isLoadCombineCandidate()) 8724 return false; 8725 R.reorderTopToBottom(); 8726 R.reorderBottomToTop(); 8727 R.buildExternalUses(); 8728 8729 R.computeMinimumValueSizes(); 8730 8731 InstructionCost Cost = R.getTreeCost(); 8732 8733 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8734 if (Cost < -SLPCostThreshold) { 8735 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8736 8737 using namespace ore; 8738 8739 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8740 cast<StoreInst>(Chain[0])) 8741 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8742 << " and with tree size " 8743 << NV("TreeSize", R.getTreeSize())); 8744 8745 R.vectorizeTree(); 8746 return true; 8747 } 8748 8749 return false; 8750 } 8751 8752 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8753 BoUpSLP &R) { 8754 // We may run into multiple chains that merge into a single chain. We mark the 8755 // stores that we vectorized so that we don't visit the same store twice. 8756 BoUpSLP::ValueSet VectorizedStores; 8757 bool Changed = false; 8758 8759 int E = Stores.size(); 8760 SmallBitVector Tails(E, false); 8761 int MaxIter = MaxStoreLookup.getValue(); 8762 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8763 E, std::make_pair(E, INT_MAX)); 8764 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8765 int IterCnt; 8766 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8767 &CheckedPairs, 8768 &ConsecutiveChain](int K, int Idx) { 8769 if (IterCnt >= MaxIter) 8770 return true; 8771 if (CheckedPairs[Idx].test(K)) 8772 return ConsecutiveChain[K].second == 1 && 8773 ConsecutiveChain[K].first == Idx; 8774 ++IterCnt; 8775 CheckedPairs[Idx].set(K); 8776 CheckedPairs[K].set(Idx); 8777 Optional<int> Diff = getPointersDiff( 8778 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8779 Stores[Idx]->getValueOperand()->getType(), 8780 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8781 if (!Diff || *Diff == 0) 8782 return false; 8783 int Val = *Diff; 8784 if (Val < 0) { 8785 if (ConsecutiveChain[Idx].second > -Val) { 8786 Tails.set(K); 8787 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8788 } 8789 return false; 8790 } 8791 if (ConsecutiveChain[K].second <= Val) 8792 return false; 8793 8794 Tails.set(Idx); 8795 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8796 return Val == 1; 8797 }; 8798 // Do a quadratic search on all of the given stores in reverse order and find 8799 // all of the pairs of stores that follow each other. 8800 for (int Idx = E - 1; Idx >= 0; --Idx) { 8801 // If a store has multiple consecutive store candidates, search according 8802 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8803 // This is because usually pairing with immediate succeeding or preceding 8804 // candidate create the best chance to find slp vectorization opportunity. 8805 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8806 IterCnt = 0; 8807 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8808 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8809 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8810 break; 8811 } 8812 8813 // Tracks if we tried to vectorize stores starting from the given tail 8814 // already. 8815 SmallBitVector TriedTails(E, false); 8816 // For stores that start but don't end a link in the chain: 8817 for (int Cnt = E; Cnt > 0; --Cnt) { 8818 int I = Cnt - 1; 8819 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8820 continue; 8821 // We found a store instr that starts a chain. Now follow the chain and try 8822 // to vectorize it. 8823 BoUpSLP::ValueList Operands; 8824 // Collect the chain into a list. 8825 while (I != E && !VectorizedStores.count(Stores[I])) { 8826 Operands.push_back(Stores[I]); 8827 Tails.set(I); 8828 if (ConsecutiveChain[I].second != 1) { 8829 // Mark the new end in the chain and go back, if required. It might be 8830 // required if the original stores come in reversed order, for example. 8831 if (ConsecutiveChain[I].first != E && 8832 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8833 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8834 TriedTails.set(I); 8835 Tails.reset(ConsecutiveChain[I].first); 8836 if (Cnt < ConsecutiveChain[I].first + 2) 8837 Cnt = ConsecutiveChain[I].first + 2; 8838 } 8839 break; 8840 } 8841 // Move to the next value in the chain. 8842 I = ConsecutiveChain[I].first; 8843 } 8844 assert(!Operands.empty() && "Expected non-empty list of stores."); 8845 8846 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8847 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8848 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8849 8850 unsigned MinVF = R.getMinVF(EltSize); 8851 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8852 MaxElts); 8853 8854 // FIXME: Is division-by-2 the correct step? Should we assert that the 8855 // register size is a power-of-2? 8856 unsigned StartIdx = 0; 8857 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8858 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8859 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8860 if (!VectorizedStores.count(Slice.front()) && 8861 !VectorizedStores.count(Slice.back()) && 8862 vectorizeStoreChain(Slice, R, Cnt)) { 8863 // Mark the vectorized stores so that we don't vectorize them again. 8864 VectorizedStores.insert(Slice.begin(), Slice.end()); 8865 Changed = true; 8866 // If we vectorized initial block, no need to try to vectorize it 8867 // again. 8868 if (Cnt == StartIdx) 8869 StartIdx += Size; 8870 Cnt += Size; 8871 continue; 8872 } 8873 ++Cnt; 8874 } 8875 // Check if the whole array was vectorized already - exit. 8876 if (StartIdx >= Operands.size()) 8877 break; 8878 } 8879 } 8880 8881 return Changed; 8882 } 8883 8884 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8885 // Initialize the collections. We will make a single pass over the block. 8886 Stores.clear(); 8887 GEPs.clear(); 8888 8889 // Visit the store and getelementptr instructions in BB and organize them in 8890 // Stores and GEPs according to the underlying objects of their pointer 8891 // operands. 8892 for (Instruction &I : *BB) { 8893 // Ignore store instructions that are volatile or have a pointer operand 8894 // that doesn't point to a scalar type. 8895 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8896 if (!SI->isSimple()) 8897 continue; 8898 if (!isValidElementType(SI->getValueOperand()->getType())) 8899 continue; 8900 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8901 } 8902 8903 // Ignore getelementptr instructions that have more than one index, a 8904 // constant index, or a pointer operand that doesn't point to a scalar 8905 // type. 8906 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8907 auto Idx = GEP->idx_begin()->get(); 8908 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8909 continue; 8910 if (!isValidElementType(Idx->getType())) 8911 continue; 8912 if (GEP->getType()->isVectorTy()) 8913 continue; 8914 GEPs[GEP->getPointerOperand()].push_back(GEP); 8915 } 8916 } 8917 } 8918 8919 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8920 if (!A || !B) 8921 return false; 8922 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8923 return false; 8924 Value *VL[] = {A, B}; 8925 return tryToVectorizeList(VL, R); 8926 } 8927 8928 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8929 bool LimitForRegisterSize) { 8930 if (VL.size() < 2) 8931 return false; 8932 8933 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8934 << VL.size() << ".\n"); 8935 8936 // Check that all of the parts are instructions of the same type, 8937 // we permit an alternate opcode via InstructionsState. 8938 InstructionsState S = getSameOpcode(VL); 8939 if (!S.getOpcode()) 8940 return false; 8941 8942 Instruction *I0 = cast<Instruction>(S.OpValue); 8943 // Make sure invalid types (including vector type) are rejected before 8944 // determining vectorization factor for scalar instructions. 8945 for (Value *V : VL) { 8946 Type *Ty = V->getType(); 8947 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8948 // NOTE: the following will give user internal llvm type name, which may 8949 // not be useful. 8950 R.getORE()->emit([&]() { 8951 std::string type_str; 8952 llvm::raw_string_ostream rso(type_str); 8953 Ty->print(rso); 8954 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8955 << "Cannot SLP vectorize list: type " 8956 << rso.str() + " is unsupported by vectorizer"; 8957 }); 8958 return false; 8959 } 8960 } 8961 8962 unsigned Sz = R.getVectorElementSize(I0); 8963 unsigned MinVF = R.getMinVF(Sz); 8964 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8965 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8966 if (MaxVF < 2) { 8967 R.getORE()->emit([&]() { 8968 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8969 << "Cannot SLP vectorize list: vectorization factor " 8970 << "less than 2 is not supported"; 8971 }); 8972 return false; 8973 } 8974 8975 bool Changed = false; 8976 bool CandidateFound = false; 8977 InstructionCost MinCost = SLPCostThreshold.getValue(); 8978 Type *ScalarTy = VL[0]->getType(); 8979 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8980 ScalarTy = IE->getOperand(1)->getType(); 8981 8982 unsigned NextInst = 0, MaxInst = VL.size(); 8983 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8984 // No actual vectorization should happen, if number of parts is the same as 8985 // provided vectorization factor (i.e. the scalar type is used for vector 8986 // code during codegen). 8987 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8988 if (TTI->getNumberOfParts(VecTy) == VF) 8989 continue; 8990 for (unsigned I = NextInst; I < MaxInst; ++I) { 8991 unsigned OpsWidth = 0; 8992 8993 if (I + VF > MaxInst) 8994 OpsWidth = MaxInst - I; 8995 else 8996 OpsWidth = VF; 8997 8998 if (!isPowerOf2_32(OpsWidth)) 8999 continue; 9000 9001 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9002 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9003 break; 9004 9005 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9006 // Check that a previous iteration of this loop did not delete the Value. 9007 if (llvm::any_of(Ops, [&R](Value *V) { 9008 auto *I = dyn_cast<Instruction>(V); 9009 return I && R.isDeleted(I); 9010 })) 9011 continue; 9012 9013 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9014 << "\n"); 9015 9016 R.buildTree(Ops); 9017 if (R.isTreeTinyAndNotFullyVectorizable()) 9018 continue; 9019 R.reorderTopToBottom(); 9020 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9021 R.buildExternalUses(); 9022 9023 R.computeMinimumValueSizes(); 9024 InstructionCost Cost = R.getTreeCost(); 9025 CandidateFound = true; 9026 MinCost = std::min(MinCost, Cost); 9027 9028 if (Cost < -SLPCostThreshold) { 9029 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9030 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9031 cast<Instruction>(Ops[0])) 9032 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9033 << " and with tree size " 9034 << ore::NV("TreeSize", R.getTreeSize())); 9035 9036 R.vectorizeTree(); 9037 // Move to the next bundle. 9038 I += VF - 1; 9039 NextInst = I + 1; 9040 Changed = true; 9041 } 9042 } 9043 } 9044 9045 if (!Changed && CandidateFound) { 9046 R.getORE()->emit([&]() { 9047 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9048 << "List vectorization was possible but not beneficial with cost " 9049 << ore::NV("Cost", MinCost) << " >= " 9050 << ore::NV("Treshold", -SLPCostThreshold); 9051 }); 9052 } else if (!Changed) { 9053 R.getORE()->emit([&]() { 9054 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9055 << "Cannot SLP vectorize list: vectorization was impossible" 9056 << " with available vectorization factors"; 9057 }); 9058 } 9059 return Changed; 9060 } 9061 9062 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9063 if (!I) 9064 return false; 9065 9066 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9067 return false; 9068 9069 Value *P = I->getParent(); 9070 9071 // Vectorize in current basic block only. 9072 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9073 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9074 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9075 return false; 9076 9077 // Try to vectorize V. 9078 if (tryToVectorizePair(Op0, Op1, R)) 9079 return true; 9080 9081 auto *A = dyn_cast<BinaryOperator>(Op0); 9082 auto *B = dyn_cast<BinaryOperator>(Op1); 9083 // Try to skip B. 9084 if (B && B->hasOneUse()) { 9085 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9086 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9087 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9088 return true; 9089 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9090 return true; 9091 } 9092 9093 // Try to skip A. 9094 if (A && A->hasOneUse()) { 9095 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9096 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9097 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9098 return true; 9099 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9100 return true; 9101 } 9102 return false; 9103 } 9104 9105 namespace { 9106 9107 /// Model horizontal reductions. 9108 /// 9109 /// A horizontal reduction is a tree of reduction instructions that has values 9110 /// that can be put into a vector as its leaves. For example: 9111 /// 9112 /// mul mul mul mul 9113 /// \ / \ / 9114 /// + + 9115 /// \ / 9116 /// + 9117 /// This tree has "mul" as its leaf values and "+" as its reduction 9118 /// instructions. A reduction can feed into a store or a binary operation 9119 /// feeding a phi. 9120 /// ... 9121 /// \ / 9122 /// + 9123 /// | 9124 /// phi += 9125 /// 9126 /// Or: 9127 /// ... 9128 /// \ / 9129 /// + 9130 /// | 9131 /// *p = 9132 /// 9133 class HorizontalReduction { 9134 using ReductionOpsType = SmallVector<Value *, 16>; 9135 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9136 ReductionOpsListType ReductionOps; 9137 SmallVector<Value *, 32> ReducedVals; 9138 // Use map vector to make stable output. 9139 MapVector<Instruction *, Value *> ExtraArgs; 9140 WeakTrackingVH ReductionRoot; 9141 /// The type of reduction operation. 9142 RecurKind RdxKind; 9143 9144 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9145 9146 static bool isCmpSelMinMax(Instruction *I) { 9147 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9148 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9149 } 9150 9151 // And/or are potentially poison-safe logical patterns like: 9152 // select x, y, false 9153 // select x, true, y 9154 static bool isBoolLogicOp(Instruction *I) { 9155 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9156 match(I, m_LogicalOr(m_Value(), m_Value())); 9157 } 9158 9159 /// Checks if instruction is associative and can be vectorized. 9160 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9161 if (Kind == RecurKind::None) 9162 return false; 9163 9164 // Integer ops that map to select instructions or intrinsics are fine. 9165 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9166 isBoolLogicOp(I)) 9167 return true; 9168 9169 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9170 // FP min/max are associative except for NaN and -0.0. We do not 9171 // have to rule out -0.0 here because the intrinsic semantics do not 9172 // specify a fixed result for it. 9173 return I->getFastMathFlags().noNaNs(); 9174 } 9175 9176 return I->isAssociative(); 9177 } 9178 9179 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9180 // Poison-safe 'or' takes the form: select X, true, Y 9181 // To make that work with the normal operand processing, we skip the 9182 // true value operand. 9183 // TODO: Change the code and data structures to handle this without a hack. 9184 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9185 return I->getOperand(2); 9186 return I->getOperand(Index); 9187 } 9188 9189 /// Checks if the ParentStackElem.first should be marked as a reduction 9190 /// operation with an extra argument or as extra argument itself. 9191 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9192 Value *ExtraArg) { 9193 if (ExtraArgs.count(ParentStackElem.first)) { 9194 ExtraArgs[ParentStackElem.first] = nullptr; 9195 // We ran into something like: 9196 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9197 // The whole ParentStackElem.first should be considered as an extra value 9198 // in this case. 9199 // Do not perform analysis of remaining operands of ParentStackElem.first 9200 // instruction, this whole instruction is an extra argument. 9201 ParentStackElem.second = INVALID_OPERAND_INDEX; 9202 } else { 9203 // We ran into something like: 9204 // ParentStackElem.first += ... + ExtraArg + ... 9205 ExtraArgs[ParentStackElem.first] = ExtraArg; 9206 } 9207 } 9208 9209 /// Creates reduction operation with the current opcode. 9210 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9211 Value *RHS, const Twine &Name, bool UseSelect) { 9212 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9213 switch (Kind) { 9214 case RecurKind::Or: 9215 if (UseSelect && 9216 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9217 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9218 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9219 Name); 9220 case RecurKind::And: 9221 if (UseSelect && 9222 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9223 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9224 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9225 Name); 9226 case RecurKind::Add: 9227 case RecurKind::Mul: 9228 case RecurKind::Xor: 9229 case RecurKind::FAdd: 9230 case RecurKind::FMul: 9231 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9232 Name); 9233 case RecurKind::FMax: 9234 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9235 case RecurKind::FMin: 9236 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9237 case RecurKind::SMax: 9238 if (UseSelect) { 9239 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9240 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9241 } 9242 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9243 case RecurKind::SMin: 9244 if (UseSelect) { 9245 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9246 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9247 } 9248 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9249 case RecurKind::UMax: 9250 if (UseSelect) { 9251 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9252 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9253 } 9254 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9255 case RecurKind::UMin: 9256 if (UseSelect) { 9257 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9258 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9259 } 9260 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9261 default: 9262 llvm_unreachable("Unknown reduction operation."); 9263 } 9264 } 9265 9266 /// Creates reduction operation with the current opcode with the IR flags 9267 /// from \p ReductionOps. 9268 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9269 Value *RHS, const Twine &Name, 9270 const ReductionOpsListType &ReductionOps) { 9271 bool UseSelect = ReductionOps.size() == 2 || 9272 // Logical or/and. 9273 (ReductionOps.size() == 1 && 9274 isa<SelectInst>(ReductionOps.front().front())); 9275 assert((!UseSelect || ReductionOps.size() != 2 || 9276 isa<SelectInst>(ReductionOps[1][0])) && 9277 "Expected cmp + select pairs for reduction"); 9278 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9279 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9280 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9281 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9282 propagateIRFlags(Op, ReductionOps[1]); 9283 return Op; 9284 } 9285 } 9286 propagateIRFlags(Op, ReductionOps[0]); 9287 return Op; 9288 } 9289 9290 /// Creates reduction operation with the current opcode with the IR flags 9291 /// from \p I. 9292 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9293 Value *RHS, const Twine &Name, Instruction *I) { 9294 auto *SelI = dyn_cast<SelectInst>(I); 9295 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9296 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9297 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9298 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9299 } 9300 propagateIRFlags(Op, I); 9301 return Op; 9302 } 9303 9304 static RecurKind getRdxKind(Instruction *I) { 9305 assert(I && "Expected instruction for reduction matching"); 9306 if (match(I, m_Add(m_Value(), m_Value()))) 9307 return RecurKind::Add; 9308 if (match(I, m_Mul(m_Value(), m_Value()))) 9309 return RecurKind::Mul; 9310 if (match(I, m_And(m_Value(), m_Value())) || 9311 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9312 return RecurKind::And; 9313 if (match(I, m_Or(m_Value(), m_Value())) || 9314 match(I, m_LogicalOr(m_Value(), m_Value()))) 9315 return RecurKind::Or; 9316 if (match(I, m_Xor(m_Value(), m_Value()))) 9317 return RecurKind::Xor; 9318 if (match(I, m_FAdd(m_Value(), m_Value()))) 9319 return RecurKind::FAdd; 9320 if (match(I, m_FMul(m_Value(), m_Value()))) 9321 return RecurKind::FMul; 9322 9323 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9324 return RecurKind::FMax; 9325 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9326 return RecurKind::FMin; 9327 9328 // This matches either cmp+select or intrinsics. SLP is expected to handle 9329 // either form. 9330 // TODO: If we are canonicalizing to intrinsics, we can remove several 9331 // special-case paths that deal with selects. 9332 if (match(I, m_SMax(m_Value(), m_Value()))) 9333 return RecurKind::SMax; 9334 if (match(I, m_SMin(m_Value(), m_Value()))) 9335 return RecurKind::SMin; 9336 if (match(I, m_UMax(m_Value(), m_Value()))) 9337 return RecurKind::UMax; 9338 if (match(I, m_UMin(m_Value(), m_Value()))) 9339 return RecurKind::UMin; 9340 9341 if (auto *Select = dyn_cast<SelectInst>(I)) { 9342 // Try harder: look for min/max pattern based on instructions producing 9343 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9344 // During the intermediate stages of SLP, it's very common to have 9345 // pattern like this (since optimizeGatherSequence is run only once 9346 // at the end): 9347 // %1 = extractelement <2 x i32> %a, i32 0 9348 // %2 = extractelement <2 x i32> %a, i32 1 9349 // %cond = icmp sgt i32 %1, %2 9350 // %3 = extractelement <2 x i32> %a, i32 0 9351 // %4 = extractelement <2 x i32> %a, i32 1 9352 // %select = select i1 %cond, i32 %3, i32 %4 9353 CmpInst::Predicate Pred; 9354 Instruction *L1; 9355 Instruction *L2; 9356 9357 Value *LHS = Select->getTrueValue(); 9358 Value *RHS = Select->getFalseValue(); 9359 Value *Cond = Select->getCondition(); 9360 9361 // TODO: Support inverse predicates. 9362 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9363 if (!isa<ExtractElementInst>(RHS) || 9364 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9365 return RecurKind::None; 9366 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9367 if (!isa<ExtractElementInst>(LHS) || 9368 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9369 return RecurKind::None; 9370 } else { 9371 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9372 return RecurKind::None; 9373 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9374 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9375 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9376 return RecurKind::None; 9377 } 9378 9379 switch (Pred) { 9380 default: 9381 return RecurKind::None; 9382 case CmpInst::ICMP_SGT: 9383 case CmpInst::ICMP_SGE: 9384 return RecurKind::SMax; 9385 case CmpInst::ICMP_SLT: 9386 case CmpInst::ICMP_SLE: 9387 return RecurKind::SMin; 9388 case CmpInst::ICMP_UGT: 9389 case CmpInst::ICMP_UGE: 9390 return RecurKind::UMax; 9391 case CmpInst::ICMP_ULT: 9392 case CmpInst::ICMP_ULE: 9393 return RecurKind::UMin; 9394 } 9395 } 9396 return RecurKind::None; 9397 } 9398 9399 /// Get the index of the first operand. 9400 static unsigned getFirstOperandIndex(Instruction *I) { 9401 return isCmpSelMinMax(I) ? 1 : 0; 9402 } 9403 9404 /// Total number of operands in the reduction operation. 9405 static unsigned getNumberOfOperands(Instruction *I) { 9406 return isCmpSelMinMax(I) ? 3 : 2; 9407 } 9408 9409 /// Checks if the instruction is in basic block \p BB. 9410 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9411 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9412 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9413 auto *Sel = cast<SelectInst>(I); 9414 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9415 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9416 } 9417 return I->getParent() == BB; 9418 } 9419 9420 /// Expected number of uses for reduction operations/reduced values. 9421 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9422 if (IsCmpSelMinMax) { 9423 // SelectInst must be used twice while the condition op must have single 9424 // use only. 9425 if (auto *Sel = dyn_cast<SelectInst>(I)) 9426 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9427 return I->hasNUses(2); 9428 } 9429 9430 // Arithmetic reduction operation must be used once only. 9431 return I->hasOneUse(); 9432 } 9433 9434 /// Initializes the list of reduction operations. 9435 void initReductionOps(Instruction *I) { 9436 if (isCmpSelMinMax(I)) 9437 ReductionOps.assign(2, ReductionOpsType()); 9438 else 9439 ReductionOps.assign(1, ReductionOpsType()); 9440 } 9441 9442 /// Add all reduction operations for the reduction instruction \p I. 9443 void addReductionOps(Instruction *I) { 9444 if (isCmpSelMinMax(I)) { 9445 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9446 ReductionOps[1].emplace_back(I); 9447 } else { 9448 ReductionOps[0].emplace_back(I); 9449 } 9450 } 9451 9452 static Value *getLHS(RecurKind Kind, Instruction *I) { 9453 if (Kind == RecurKind::None) 9454 return nullptr; 9455 return I->getOperand(getFirstOperandIndex(I)); 9456 } 9457 static Value *getRHS(RecurKind Kind, Instruction *I) { 9458 if (Kind == RecurKind::None) 9459 return nullptr; 9460 return I->getOperand(getFirstOperandIndex(I) + 1); 9461 } 9462 9463 public: 9464 HorizontalReduction() = default; 9465 9466 /// Try to find a reduction tree. 9467 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9468 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9469 "Phi needs to use the binary operator"); 9470 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9471 isa<IntrinsicInst>(Inst)) && 9472 "Expected binop, select, or intrinsic for reduction matching"); 9473 RdxKind = getRdxKind(Inst); 9474 9475 // We could have a initial reductions that is not an add. 9476 // r *= v1 + v2 + v3 + v4 9477 // In such a case start looking for a tree rooted in the first '+'. 9478 if (Phi) { 9479 if (getLHS(RdxKind, Inst) == Phi) { 9480 Phi = nullptr; 9481 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9482 if (!Inst) 9483 return false; 9484 RdxKind = getRdxKind(Inst); 9485 } else if (getRHS(RdxKind, Inst) == Phi) { 9486 Phi = nullptr; 9487 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9488 if (!Inst) 9489 return false; 9490 RdxKind = getRdxKind(Inst); 9491 } 9492 } 9493 9494 if (!isVectorizable(RdxKind, Inst)) 9495 return false; 9496 9497 // Analyze "regular" integer/FP types for reductions - no target-specific 9498 // types or pointers. 9499 Type *Ty = Inst->getType(); 9500 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9501 return false; 9502 9503 // Though the ultimate reduction may have multiple uses, its condition must 9504 // have only single use. 9505 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9506 if (!Sel->getCondition()->hasOneUse()) 9507 return false; 9508 9509 ReductionRoot = Inst; 9510 9511 // The opcode for leaf values that we perform a reduction on. 9512 // For example: load(x) + load(y) + load(z) + fptoui(w) 9513 // The leaf opcode for 'w' does not match, so we don't include it as a 9514 // potential candidate for the reduction. 9515 unsigned LeafOpcode = 0; 9516 9517 // Post-order traverse the reduction tree starting at Inst. We only handle 9518 // true trees containing binary operators or selects. 9519 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9520 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9521 initReductionOps(Inst); 9522 while (!Stack.empty()) { 9523 Instruction *TreeN = Stack.back().first; 9524 unsigned EdgeToVisit = Stack.back().second++; 9525 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9526 bool IsReducedValue = TreeRdxKind != RdxKind; 9527 9528 // Postorder visit. 9529 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9530 if (IsReducedValue) 9531 ReducedVals.push_back(TreeN); 9532 else { 9533 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9534 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9535 // Check if TreeN is an extra argument of its parent operation. 9536 if (Stack.size() <= 1) { 9537 // TreeN can't be an extra argument as it is a root reduction 9538 // operation. 9539 return false; 9540 } 9541 // Yes, TreeN is an extra argument, do not add it to a list of 9542 // reduction operations. 9543 // Stack[Stack.size() - 2] always points to the parent operation. 9544 markExtraArg(Stack[Stack.size() - 2], TreeN); 9545 ExtraArgs.erase(TreeN); 9546 } else 9547 addReductionOps(TreeN); 9548 } 9549 // Retract. 9550 Stack.pop_back(); 9551 continue; 9552 } 9553 9554 // Visit operands. 9555 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9556 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9557 if (!EdgeInst) { 9558 // Edge value is not a reduction instruction or a leaf instruction. 9559 // (It may be a constant, function argument, or something else.) 9560 markExtraArg(Stack.back(), EdgeVal); 9561 continue; 9562 } 9563 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9564 // Continue analysis if the next operand is a reduction operation or 9565 // (possibly) a leaf value. If the leaf value opcode is not set, 9566 // the first met operation != reduction operation is considered as the 9567 // leaf opcode. 9568 // Only handle trees in the current basic block. 9569 // Each tree node needs to have minimal number of users except for the 9570 // ultimate reduction. 9571 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9572 if (EdgeInst != Phi && EdgeInst != Inst && 9573 hasSameParent(EdgeInst, Inst->getParent()) && 9574 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9575 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9576 if (IsRdxInst) { 9577 // We need to be able to reassociate the reduction operations. 9578 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9579 // I is an extra argument for TreeN (its parent operation). 9580 markExtraArg(Stack.back(), EdgeInst); 9581 continue; 9582 } 9583 } else if (!LeafOpcode) { 9584 LeafOpcode = EdgeInst->getOpcode(); 9585 } 9586 Stack.push_back( 9587 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9588 continue; 9589 } 9590 // I is an extra argument for TreeN (its parent operation). 9591 markExtraArg(Stack.back(), EdgeInst); 9592 } 9593 return true; 9594 } 9595 9596 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9597 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9598 // If there are a sufficient number of reduction values, reduce 9599 // to a nearby power-of-2. We can safely generate oversized 9600 // vectors and rely on the backend to split them to legal sizes. 9601 unsigned NumReducedVals = ReducedVals.size(); 9602 if (NumReducedVals < 4) 9603 return nullptr; 9604 9605 // Intersect the fast-math-flags from all reduction operations. 9606 FastMathFlags RdxFMF; 9607 RdxFMF.set(); 9608 for (ReductionOpsType &RdxOp : ReductionOps) { 9609 for (Value *RdxVal : RdxOp) { 9610 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9611 RdxFMF &= FPMO->getFastMathFlags(); 9612 } 9613 } 9614 9615 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9616 Builder.setFastMathFlags(RdxFMF); 9617 9618 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9619 // The same extra argument may be used several times, so log each attempt 9620 // to use it. 9621 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9622 assert(Pair.first && "DebugLoc must be set."); 9623 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9624 } 9625 9626 // The compare instruction of a min/max is the insertion point for new 9627 // instructions and may be replaced with a new compare instruction. 9628 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9629 assert(isa<SelectInst>(RdxRootInst) && 9630 "Expected min/max reduction to have select root instruction"); 9631 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9632 assert(isa<Instruction>(ScalarCond) && 9633 "Expected min/max reduction to have compare condition"); 9634 return cast<Instruction>(ScalarCond); 9635 }; 9636 9637 // The reduction root is used as the insertion point for new instructions, 9638 // so set it as externally used to prevent it from being deleted. 9639 ExternallyUsedValues[ReductionRoot]; 9640 SmallVector<Value *, 16> IgnoreList; 9641 for (ReductionOpsType &RdxOp : ReductionOps) 9642 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9643 9644 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9645 if (NumReducedVals > ReduxWidth) { 9646 // In the loop below, we are building a tree based on a window of 9647 // 'ReduxWidth' values. 9648 // If the operands of those values have common traits (compare predicate, 9649 // constant operand, etc), then we want to group those together to 9650 // minimize the cost of the reduction. 9651 9652 // TODO: This should be extended to count common operands for 9653 // compares and binops. 9654 9655 // Step 1: Count the number of times each compare predicate occurs. 9656 SmallDenseMap<unsigned, unsigned> PredCountMap; 9657 for (Value *RdxVal : ReducedVals) { 9658 CmpInst::Predicate Pred; 9659 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9660 ++PredCountMap[Pred]; 9661 } 9662 // Step 2: Sort the values so the most common predicates come first. 9663 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9664 CmpInst::Predicate PredA, PredB; 9665 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9666 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9667 return PredCountMap[PredA] > PredCountMap[PredB]; 9668 } 9669 return false; 9670 }); 9671 } 9672 9673 Value *VectorizedTree = nullptr; 9674 unsigned i = 0; 9675 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9676 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9677 V.buildTree(VL, IgnoreList); 9678 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9679 break; 9680 if (V.isLoadCombineReductionCandidate(RdxKind)) 9681 break; 9682 V.reorderTopToBottom(); 9683 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9684 V.buildExternalUses(ExternallyUsedValues); 9685 9686 // For a poison-safe boolean logic reduction, do not replace select 9687 // instructions with logic ops. All reduced values will be frozen (see 9688 // below) to prevent leaking poison. 9689 if (isa<SelectInst>(ReductionRoot) && 9690 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9691 NumReducedVals != ReduxWidth) 9692 break; 9693 9694 V.computeMinimumValueSizes(); 9695 9696 // Estimate cost. 9697 InstructionCost TreeCost = 9698 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9699 InstructionCost ReductionCost = 9700 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9701 InstructionCost Cost = TreeCost + ReductionCost; 9702 if (!Cost.isValid()) { 9703 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9704 return nullptr; 9705 } 9706 if (Cost >= -SLPCostThreshold) { 9707 V.getORE()->emit([&]() { 9708 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9709 cast<Instruction>(VL[0])) 9710 << "Vectorizing horizontal reduction is possible" 9711 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9712 << " and threshold " 9713 << ore::NV("Threshold", -SLPCostThreshold); 9714 }); 9715 break; 9716 } 9717 9718 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9719 << Cost << ". (HorRdx)\n"); 9720 V.getORE()->emit([&]() { 9721 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9722 cast<Instruction>(VL[0])) 9723 << "Vectorized horizontal reduction with cost " 9724 << ore::NV("Cost", Cost) << " and with tree size " 9725 << ore::NV("TreeSize", V.getTreeSize()); 9726 }); 9727 9728 // Vectorize a tree. 9729 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9730 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9731 9732 // Emit a reduction. If the root is a select (min/max idiom), the insert 9733 // point is the compare condition of that select. 9734 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9735 if (isCmpSelMinMax(RdxRootInst)) 9736 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9737 else 9738 Builder.SetInsertPoint(RdxRootInst); 9739 9740 // To prevent poison from leaking across what used to be sequential, safe, 9741 // scalar boolean logic operations, the reduction operand must be frozen. 9742 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9743 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9744 9745 Value *ReducedSubTree = 9746 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9747 9748 if (!VectorizedTree) { 9749 // Initialize the final value in the reduction. 9750 VectorizedTree = ReducedSubTree; 9751 } else { 9752 // Update the final value in the reduction. 9753 Builder.SetCurrentDebugLocation(Loc); 9754 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9755 ReducedSubTree, "op.rdx", ReductionOps); 9756 } 9757 i += ReduxWidth; 9758 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9759 } 9760 9761 if (VectorizedTree) { 9762 // Finish the reduction. 9763 for (; i < NumReducedVals; ++i) { 9764 auto *I = cast<Instruction>(ReducedVals[i]); 9765 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9766 VectorizedTree = 9767 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9768 } 9769 for (auto &Pair : ExternallyUsedValues) { 9770 // Add each externally used value to the final reduction. 9771 for (auto *I : Pair.second) { 9772 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9773 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9774 Pair.first, "op.extra", I); 9775 } 9776 } 9777 9778 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9779 9780 // Mark all scalar reduction ops for deletion, they are replaced by the 9781 // vector reductions. 9782 V.eraseInstructions(IgnoreList); 9783 } 9784 return VectorizedTree; 9785 } 9786 9787 unsigned numReductionValues() const { return ReducedVals.size(); } 9788 9789 private: 9790 /// Calculate the cost of a reduction. 9791 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9792 Value *FirstReducedVal, unsigned ReduxWidth, 9793 FastMathFlags FMF) { 9794 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9795 Type *ScalarTy = FirstReducedVal->getType(); 9796 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9797 InstructionCost VectorCost, ScalarCost; 9798 switch (RdxKind) { 9799 case RecurKind::Add: 9800 case RecurKind::Mul: 9801 case RecurKind::Or: 9802 case RecurKind::And: 9803 case RecurKind::Xor: 9804 case RecurKind::FAdd: 9805 case RecurKind::FMul: { 9806 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9807 VectorCost = 9808 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9809 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9810 break; 9811 } 9812 case RecurKind::FMax: 9813 case RecurKind::FMin: { 9814 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9815 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9816 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9817 /*IsUnsigned=*/false, CostKind); 9818 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9819 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9820 SclCondTy, RdxPred, CostKind) + 9821 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9822 SclCondTy, RdxPred, CostKind); 9823 break; 9824 } 9825 case RecurKind::SMax: 9826 case RecurKind::SMin: 9827 case RecurKind::UMax: 9828 case RecurKind::UMin: { 9829 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9830 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9831 bool IsUnsigned = 9832 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9833 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9834 CostKind); 9835 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9836 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9837 SclCondTy, RdxPred, CostKind) + 9838 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9839 SclCondTy, RdxPred, CostKind); 9840 break; 9841 } 9842 default: 9843 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9844 } 9845 9846 // Scalar cost is repeated for N-1 elements. 9847 ScalarCost *= (ReduxWidth - 1); 9848 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9849 << " for reduction that starts with " << *FirstReducedVal 9850 << " (It is a splitting reduction)\n"); 9851 return VectorCost - ScalarCost; 9852 } 9853 9854 /// Emit a horizontal reduction of the vectorized value. 9855 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9856 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9857 assert(VectorizedValue && "Need to have a vectorized tree node"); 9858 assert(isPowerOf2_32(ReduxWidth) && 9859 "We only handle power-of-two reductions for now"); 9860 assert(RdxKind != RecurKind::FMulAdd && 9861 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9862 9863 ++NumVectorInstructions; 9864 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9865 } 9866 }; 9867 9868 } // end anonymous namespace 9869 9870 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9871 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9872 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9873 9874 unsigned AggregateSize = 1; 9875 auto *IV = cast<InsertValueInst>(InsertInst); 9876 Type *CurrentType = IV->getType(); 9877 do { 9878 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9879 for (auto *Elt : ST->elements()) 9880 if (Elt != ST->getElementType(0)) // check homogeneity 9881 return None; 9882 AggregateSize *= ST->getNumElements(); 9883 CurrentType = ST->getElementType(0); 9884 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9885 AggregateSize *= AT->getNumElements(); 9886 CurrentType = AT->getElementType(); 9887 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9888 AggregateSize *= VT->getNumElements(); 9889 return AggregateSize; 9890 } else if (CurrentType->isSingleValueType()) { 9891 return AggregateSize; 9892 } else { 9893 return None; 9894 } 9895 } while (true); 9896 } 9897 9898 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9899 TargetTransformInfo *TTI, 9900 SmallVectorImpl<Value *> &BuildVectorOpds, 9901 SmallVectorImpl<Value *> &InsertElts, 9902 unsigned OperandOffset) { 9903 do { 9904 Value *InsertedOperand = LastInsertInst->getOperand(1); 9905 Optional<unsigned> OperandIndex = 9906 getInsertIndex(LastInsertInst, OperandOffset); 9907 if (!OperandIndex) 9908 return; 9909 if (isa<InsertElementInst>(InsertedOperand) || 9910 isa<InsertValueInst>(InsertedOperand)) { 9911 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9912 BuildVectorOpds, InsertElts, *OperandIndex); 9913 9914 } else { 9915 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9916 InsertElts[*OperandIndex] = LastInsertInst; 9917 } 9918 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9919 } while (LastInsertInst != nullptr && 9920 (isa<InsertValueInst>(LastInsertInst) || 9921 isa<InsertElementInst>(LastInsertInst)) && 9922 LastInsertInst->hasOneUse()); 9923 } 9924 9925 /// Recognize construction of vectors like 9926 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9927 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9928 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9929 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9930 /// starting from the last insertelement or insertvalue instruction. 9931 /// 9932 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9933 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9934 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9935 /// 9936 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9937 /// 9938 /// \return true if it matches. 9939 static bool findBuildAggregate(Instruction *LastInsertInst, 9940 TargetTransformInfo *TTI, 9941 SmallVectorImpl<Value *> &BuildVectorOpds, 9942 SmallVectorImpl<Value *> &InsertElts) { 9943 9944 assert((isa<InsertElementInst>(LastInsertInst) || 9945 isa<InsertValueInst>(LastInsertInst)) && 9946 "Expected insertelement or insertvalue instruction!"); 9947 9948 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9949 "Expected empty result vectors!"); 9950 9951 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9952 if (!AggregateSize) 9953 return false; 9954 BuildVectorOpds.resize(*AggregateSize); 9955 InsertElts.resize(*AggregateSize); 9956 9957 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9958 llvm::erase_value(BuildVectorOpds, nullptr); 9959 llvm::erase_value(InsertElts, nullptr); 9960 if (BuildVectorOpds.size() >= 2) 9961 return true; 9962 9963 return false; 9964 } 9965 9966 /// Try and get a reduction value from a phi node. 9967 /// 9968 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9969 /// if they come from either \p ParentBB or a containing loop latch. 9970 /// 9971 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9972 /// if not possible. 9973 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9974 BasicBlock *ParentBB, LoopInfo *LI) { 9975 // There are situations where the reduction value is not dominated by the 9976 // reduction phi. Vectorizing such cases has been reported to cause 9977 // miscompiles. See PR25787. 9978 auto DominatedReduxValue = [&](Value *R) { 9979 return isa<Instruction>(R) && 9980 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9981 }; 9982 9983 Value *Rdx = nullptr; 9984 9985 // Return the incoming value if it comes from the same BB as the phi node. 9986 if (P->getIncomingBlock(0) == ParentBB) { 9987 Rdx = P->getIncomingValue(0); 9988 } else if (P->getIncomingBlock(1) == ParentBB) { 9989 Rdx = P->getIncomingValue(1); 9990 } 9991 9992 if (Rdx && DominatedReduxValue(Rdx)) 9993 return Rdx; 9994 9995 // Otherwise, check whether we have a loop latch to look at. 9996 Loop *BBL = LI->getLoopFor(ParentBB); 9997 if (!BBL) 9998 return nullptr; 9999 BasicBlock *BBLatch = BBL->getLoopLatch(); 10000 if (!BBLatch) 10001 return nullptr; 10002 10003 // There is a loop latch, return the incoming value if it comes from 10004 // that. This reduction pattern occasionally turns up. 10005 if (P->getIncomingBlock(0) == BBLatch) { 10006 Rdx = P->getIncomingValue(0); 10007 } else if (P->getIncomingBlock(1) == BBLatch) { 10008 Rdx = P->getIncomingValue(1); 10009 } 10010 10011 if (Rdx && DominatedReduxValue(Rdx)) 10012 return Rdx; 10013 10014 return nullptr; 10015 } 10016 10017 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10018 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10019 return true; 10020 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10021 return true; 10022 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10023 return true; 10024 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10025 return true; 10026 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10027 return true; 10028 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10029 return true; 10030 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10031 return true; 10032 return false; 10033 } 10034 10035 /// Attempt to reduce a horizontal reduction. 10036 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10037 /// with reduction operators \a Root (or one of its operands) in a basic block 10038 /// \a BB, then check if it can be done. If horizontal reduction is not found 10039 /// and root instruction is a binary operation, vectorization of the operands is 10040 /// attempted. 10041 /// \returns true if a horizontal reduction was matched and reduced or operands 10042 /// of one of the binary instruction were vectorized. 10043 /// \returns false if a horizontal reduction was not matched (or not possible) 10044 /// or no vectorization of any binary operation feeding \a Root instruction was 10045 /// performed. 10046 static bool tryToVectorizeHorReductionOrInstOperands( 10047 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10048 TargetTransformInfo *TTI, 10049 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10050 if (!ShouldVectorizeHor) 10051 return false; 10052 10053 if (!Root) 10054 return false; 10055 10056 if (Root->getParent() != BB || isa<PHINode>(Root)) 10057 return false; 10058 // Start analysis starting from Root instruction. If horizontal reduction is 10059 // found, try to vectorize it. If it is not a horizontal reduction or 10060 // vectorization is not possible or not effective, and currently analyzed 10061 // instruction is a binary operation, try to vectorize the operands, using 10062 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10063 // the same procedure considering each operand as a possible root of the 10064 // horizontal reduction. 10065 // Interrupt the process if the Root instruction itself was vectorized or all 10066 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10067 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10068 // CmpInsts so we can skip extra attempts in 10069 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10070 std::queue<std::pair<Instruction *, unsigned>> Stack; 10071 Stack.emplace(Root, 0); 10072 SmallPtrSet<Value *, 8> VisitedInstrs; 10073 SmallVector<WeakTrackingVH> PostponedInsts; 10074 bool Res = false; 10075 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10076 Value *&B1) -> Value * { 10077 bool IsBinop = matchRdxBop(Inst, B0, B1); 10078 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10079 if (IsBinop || IsSelect) { 10080 HorizontalReduction HorRdx; 10081 if (HorRdx.matchAssociativeReduction(P, Inst)) 10082 return HorRdx.tryToReduce(R, TTI); 10083 } 10084 return nullptr; 10085 }; 10086 while (!Stack.empty()) { 10087 Instruction *Inst; 10088 unsigned Level; 10089 std::tie(Inst, Level) = Stack.front(); 10090 Stack.pop(); 10091 // Do not try to analyze instruction that has already been vectorized. 10092 // This may happen when we vectorize instruction operands on a previous 10093 // iteration while stack was populated before that happened. 10094 if (R.isDeleted(Inst)) 10095 continue; 10096 Value *B0 = nullptr, *B1 = nullptr; 10097 if (Value *V = TryToReduce(Inst, B0, B1)) { 10098 Res = true; 10099 // Set P to nullptr to avoid re-analysis of phi node in 10100 // matchAssociativeReduction function unless this is the root node. 10101 P = nullptr; 10102 if (auto *I = dyn_cast<Instruction>(V)) { 10103 // Try to find another reduction. 10104 Stack.emplace(I, Level); 10105 continue; 10106 } 10107 } else { 10108 bool IsBinop = B0 && B1; 10109 if (P && IsBinop) { 10110 Inst = dyn_cast<Instruction>(B0); 10111 if (Inst == P) 10112 Inst = dyn_cast<Instruction>(B1); 10113 if (!Inst) { 10114 // Set P to nullptr to avoid re-analysis of phi node in 10115 // matchAssociativeReduction function unless this is the root node. 10116 P = nullptr; 10117 continue; 10118 } 10119 } 10120 // Set P to nullptr to avoid re-analysis of phi node in 10121 // matchAssociativeReduction function unless this is the root node. 10122 P = nullptr; 10123 // Do not try to vectorize CmpInst operands, this is done separately. 10124 // Final attempt for binop args vectorization should happen after the loop 10125 // to try to find reductions. 10126 if (!isa<CmpInst>(Inst)) 10127 PostponedInsts.push_back(Inst); 10128 } 10129 10130 // Try to vectorize operands. 10131 // Continue analysis for the instruction from the same basic block only to 10132 // save compile time. 10133 if (++Level < RecursionMaxDepth) 10134 for (auto *Op : Inst->operand_values()) 10135 if (VisitedInstrs.insert(Op).second) 10136 if (auto *I = dyn_cast<Instruction>(Op)) 10137 // Do not try to vectorize CmpInst operands, this is done 10138 // separately. 10139 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10140 I->getParent() == BB) 10141 Stack.emplace(I, Level); 10142 } 10143 // Try to vectorized binops where reductions were not found. 10144 for (Value *V : PostponedInsts) 10145 if (auto *Inst = dyn_cast<Instruction>(V)) 10146 if (!R.isDeleted(Inst)) 10147 Res |= Vectorize(Inst, R); 10148 return Res; 10149 } 10150 10151 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10152 BasicBlock *BB, BoUpSLP &R, 10153 TargetTransformInfo *TTI) { 10154 auto *I = dyn_cast_or_null<Instruction>(V); 10155 if (!I) 10156 return false; 10157 10158 if (!isa<BinaryOperator>(I)) 10159 P = nullptr; 10160 // Try to match and vectorize a horizontal reduction. 10161 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10162 return tryToVectorize(I, R); 10163 }; 10164 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10165 ExtraVectorization); 10166 } 10167 10168 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10169 BasicBlock *BB, BoUpSLP &R) { 10170 const DataLayout &DL = BB->getModule()->getDataLayout(); 10171 if (!R.canMapToVector(IVI->getType(), DL)) 10172 return false; 10173 10174 SmallVector<Value *, 16> BuildVectorOpds; 10175 SmallVector<Value *, 16> BuildVectorInsts; 10176 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10177 return false; 10178 10179 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10180 // Aggregate value is unlikely to be processed in vector register. 10181 return tryToVectorizeList(BuildVectorOpds, R); 10182 } 10183 10184 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10185 BasicBlock *BB, BoUpSLP &R) { 10186 SmallVector<Value *, 16> BuildVectorInsts; 10187 SmallVector<Value *, 16> BuildVectorOpds; 10188 SmallVector<int> Mask; 10189 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10190 (llvm::all_of( 10191 BuildVectorOpds, 10192 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10193 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10194 return false; 10195 10196 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10197 return tryToVectorizeList(BuildVectorInsts, R); 10198 } 10199 10200 template <typename T> 10201 static bool 10202 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10203 function_ref<unsigned(T *)> Limit, 10204 function_ref<bool(T *, T *)> Comparator, 10205 function_ref<bool(T *, T *)> AreCompatible, 10206 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10207 bool LimitForRegisterSize) { 10208 bool Changed = false; 10209 // Sort by type, parent, operands. 10210 stable_sort(Incoming, Comparator); 10211 10212 // Try to vectorize elements base on their type. 10213 SmallVector<T *> Candidates; 10214 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10215 // Look for the next elements with the same type, parent and operand 10216 // kinds. 10217 auto *SameTypeIt = IncIt; 10218 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10219 ++SameTypeIt; 10220 10221 // Try to vectorize them. 10222 unsigned NumElts = (SameTypeIt - IncIt); 10223 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10224 << NumElts << ")\n"); 10225 // The vectorization is a 3-state attempt: 10226 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10227 // size of maximal register at first. 10228 // 2. Try to vectorize remaining instructions with the same type, if 10229 // possible. This may result in the better vectorization results rather than 10230 // if we try just to vectorize instructions with the same/alternate opcodes. 10231 // 3. Final attempt to try to vectorize all instructions with the 10232 // same/alternate ops only, this may result in some extra final 10233 // vectorization. 10234 if (NumElts > 1 && 10235 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10236 // Success start over because instructions might have been changed. 10237 Changed = true; 10238 } else if (NumElts < Limit(*IncIt) && 10239 (Candidates.empty() || 10240 Candidates.front()->getType() == (*IncIt)->getType())) { 10241 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10242 } 10243 // Final attempt to vectorize instructions with the same types. 10244 if (Candidates.size() > 1 && 10245 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10246 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10247 // Success start over because instructions might have been changed. 10248 Changed = true; 10249 } else if (LimitForRegisterSize) { 10250 // Try to vectorize using small vectors. 10251 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10252 It != End;) { 10253 auto *SameTypeIt = It; 10254 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10255 ++SameTypeIt; 10256 unsigned NumElts = (SameTypeIt - It); 10257 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10258 /*LimitForRegisterSize=*/false)) 10259 Changed = true; 10260 It = SameTypeIt; 10261 } 10262 } 10263 Candidates.clear(); 10264 } 10265 10266 // Start over at the next instruction of a different type (or the end). 10267 IncIt = SameTypeIt; 10268 } 10269 return Changed; 10270 } 10271 10272 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10273 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10274 /// operands. If IsCompatibility is false, function implements strict weak 10275 /// ordering relation between two cmp instructions, returning true if the first 10276 /// instruction is "less" than the second, i.e. its predicate is less than the 10277 /// predicate of the second or the operands IDs are less than the operands IDs 10278 /// of the second cmp instruction. 10279 template <bool IsCompatibility> 10280 static bool compareCmp(Value *V, Value *V2, 10281 function_ref<bool(Instruction *)> IsDeleted) { 10282 auto *CI1 = cast<CmpInst>(V); 10283 auto *CI2 = cast<CmpInst>(V2); 10284 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10285 return false; 10286 if (CI1->getOperand(0)->getType()->getTypeID() < 10287 CI2->getOperand(0)->getType()->getTypeID()) 10288 return !IsCompatibility; 10289 if (CI1->getOperand(0)->getType()->getTypeID() > 10290 CI2->getOperand(0)->getType()->getTypeID()) 10291 return false; 10292 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10293 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10294 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10295 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10296 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10297 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10298 if (BasePred1 < BasePred2) 10299 return !IsCompatibility; 10300 if (BasePred1 > BasePred2) 10301 return false; 10302 // Compare operands. 10303 bool LEPreds = Pred1 <= Pred2; 10304 bool GEPreds = Pred1 >= Pred2; 10305 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10306 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10307 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10308 if (Op1->getValueID() < Op2->getValueID()) 10309 return !IsCompatibility; 10310 if (Op1->getValueID() > Op2->getValueID()) 10311 return false; 10312 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10313 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10314 if (I1->getParent() != I2->getParent()) 10315 return false; 10316 InstructionsState S = getSameOpcode({I1, I2}); 10317 if (S.getOpcode()) 10318 continue; 10319 return false; 10320 } 10321 } 10322 return IsCompatibility; 10323 } 10324 10325 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10326 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10327 bool AtTerminator) { 10328 bool OpsChanged = false; 10329 SmallVector<Instruction *, 4> PostponedCmps; 10330 for (auto *I : reverse(Instructions)) { 10331 if (R.isDeleted(I)) 10332 continue; 10333 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10334 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10335 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10336 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10337 else if (isa<CmpInst>(I)) 10338 PostponedCmps.push_back(I); 10339 } 10340 if (AtTerminator) { 10341 // Try to find reductions first. 10342 for (Instruction *I : PostponedCmps) { 10343 if (R.isDeleted(I)) 10344 continue; 10345 for (Value *Op : I->operands()) 10346 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10347 } 10348 // Try to vectorize operands as vector bundles. 10349 for (Instruction *I : PostponedCmps) { 10350 if (R.isDeleted(I)) 10351 continue; 10352 OpsChanged |= tryToVectorize(I, R); 10353 } 10354 // Try to vectorize list of compares. 10355 // Sort by type, compare predicate, etc. 10356 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10357 return compareCmp<false>(V, V2, 10358 [&R](Instruction *I) { return R.isDeleted(I); }); 10359 }; 10360 10361 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10362 if (V1 == V2) 10363 return true; 10364 return compareCmp<true>(V1, V2, 10365 [&R](Instruction *I) { return R.isDeleted(I); }); 10366 }; 10367 auto Limit = [&R](Value *V) { 10368 unsigned EltSize = R.getVectorElementSize(V); 10369 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10370 }; 10371 10372 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10373 OpsChanged |= tryToVectorizeSequence<Value>( 10374 Vals, Limit, CompareSorter, AreCompatibleCompares, 10375 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10376 // Exclude possible reductions from other blocks. 10377 bool ArePossiblyReducedInOtherBlock = 10378 any_of(Candidates, [](Value *V) { 10379 return any_of(V->users(), [V](User *U) { 10380 return isa<SelectInst>(U) && 10381 cast<SelectInst>(U)->getParent() != 10382 cast<Instruction>(V)->getParent(); 10383 }); 10384 }); 10385 if (ArePossiblyReducedInOtherBlock) 10386 return false; 10387 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10388 }, 10389 /*LimitForRegisterSize=*/true); 10390 Instructions.clear(); 10391 } else { 10392 // Insert in reverse order since the PostponedCmps vector was filled in 10393 // reverse order. 10394 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10395 } 10396 return OpsChanged; 10397 } 10398 10399 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10400 bool Changed = false; 10401 SmallVector<Value *, 4> Incoming; 10402 SmallPtrSet<Value *, 16> VisitedInstrs; 10403 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10404 // node. Allows better to identify the chains that can be vectorized in the 10405 // better way. 10406 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10407 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10408 assert(isValidElementType(V1->getType()) && 10409 isValidElementType(V2->getType()) && 10410 "Expected vectorizable types only."); 10411 // It is fine to compare type IDs here, since we expect only vectorizable 10412 // types, like ints, floats and pointers, we don't care about other type. 10413 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10414 return true; 10415 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10416 return false; 10417 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10418 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10419 if (Opcodes1.size() < Opcodes2.size()) 10420 return true; 10421 if (Opcodes1.size() > Opcodes2.size()) 10422 return false; 10423 Optional<bool> ConstOrder; 10424 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10425 // Undefs are compatible with any other value. 10426 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10427 if (!ConstOrder) 10428 ConstOrder = 10429 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10430 continue; 10431 } 10432 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10433 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10434 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10435 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10436 if (!NodeI1) 10437 return NodeI2 != nullptr; 10438 if (!NodeI2) 10439 return false; 10440 assert((NodeI1 == NodeI2) == 10441 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10442 "Different nodes should have different DFS numbers"); 10443 if (NodeI1 != NodeI2) 10444 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10445 InstructionsState S = getSameOpcode({I1, I2}); 10446 if (S.getOpcode()) 10447 continue; 10448 return I1->getOpcode() < I2->getOpcode(); 10449 } 10450 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10451 if (!ConstOrder) 10452 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10453 continue; 10454 } 10455 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10456 return true; 10457 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10458 return false; 10459 } 10460 return ConstOrder && *ConstOrder; 10461 }; 10462 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10463 if (V1 == V2) 10464 return true; 10465 if (V1->getType() != V2->getType()) 10466 return false; 10467 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10468 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10469 if (Opcodes1.size() != Opcodes2.size()) 10470 return false; 10471 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10472 // Undefs are compatible with any other value. 10473 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10474 continue; 10475 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10476 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10477 if (I1->getParent() != I2->getParent()) 10478 return false; 10479 InstructionsState S = getSameOpcode({I1, I2}); 10480 if (S.getOpcode()) 10481 continue; 10482 return false; 10483 } 10484 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10485 continue; 10486 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10487 return false; 10488 } 10489 return true; 10490 }; 10491 auto Limit = [&R](Value *V) { 10492 unsigned EltSize = R.getVectorElementSize(V); 10493 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10494 }; 10495 10496 bool HaveVectorizedPhiNodes = false; 10497 do { 10498 // Collect the incoming values from the PHIs. 10499 Incoming.clear(); 10500 for (Instruction &I : *BB) { 10501 PHINode *P = dyn_cast<PHINode>(&I); 10502 if (!P) 10503 break; 10504 10505 // No need to analyze deleted, vectorized and non-vectorizable 10506 // instructions. 10507 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10508 isValidElementType(P->getType())) 10509 Incoming.push_back(P); 10510 } 10511 10512 // Find the corresponding non-phi nodes for better matching when trying to 10513 // build the tree. 10514 for (Value *V : Incoming) { 10515 SmallVectorImpl<Value *> &Opcodes = 10516 PHIToOpcodes.try_emplace(V).first->getSecond(); 10517 if (!Opcodes.empty()) 10518 continue; 10519 SmallVector<Value *, 4> Nodes(1, V); 10520 SmallPtrSet<Value *, 4> Visited; 10521 while (!Nodes.empty()) { 10522 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10523 if (!Visited.insert(PHI).second) 10524 continue; 10525 for (Value *V : PHI->incoming_values()) { 10526 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10527 Nodes.push_back(PHI1); 10528 continue; 10529 } 10530 Opcodes.emplace_back(V); 10531 } 10532 } 10533 } 10534 10535 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10536 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10537 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10538 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10539 }, 10540 /*LimitForRegisterSize=*/true); 10541 Changed |= HaveVectorizedPhiNodes; 10542 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10543 } while (HaveVectorizedPhiNodes); 10544 10545 VisitedInstrs.clear(); 10546 10547 SmallVector<Instruction *, 8> PostProcessInstructions; 10548 SmallDenseSet<Instruction *, 4> KeyNodes; 10549 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10550 // Skip instructions with scalable type. The num of elements is unknown at 10551 // compile-time for scalable type. 10552 if (isa<ScalableVectorType>(it->getType())) 10553 continue; 10554 10555 // Skip instructions marked for the deletion. 10556 if (R.isDeleted(&*it)) 10557 continue; 10558 // We may go through BB multiple times so skip the one we have checked. 10559 if (!VisitedInstrs.insert(&*it).second) { 10560 if (it->use_empty() && KeyNodes.contains(&*it) && 10561 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10562 it->isTerminator())) { 10563 // We would like to start over since some instructions are deleted 10564 // and the iterator may become invalid value. 10565 Changed = true; 10566 it = BB->begin(); 10567 e = BB->end(); 10568 } 10569 continue; 10570 } 10571 10572 if (isa<DbgInfoIntrinsic>(it)) 10573 continue; 10574 10575 // Try to vectorize reductions that use PHINodes. 10576 if (PHINode *P = dyn_cast<PHINode>(it)) { 10577 // Check that the PHI is a reduction PHI. 10578 if (P->getNumIncomingValues() == 2) { 10579 // Try to match and vectorize a horizontal reduction. 10580 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10581 TTI)) { 10582 Changed = true; 10583 it = BB->begin(); 10584 e = BB->end(); 10585 continue; 10586 } 10587 } 10588 // Try to vectorize the incoming values of the PHI, to catch reductions 10589 // that feed into PHIs. 10590 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10591 // Skip if the incoming block is the current BB for now. Also, bypass 10592 // unreachable IR for efficiency and to avoid crashing. 10593 // TODO: Collect the skipped incoming values and try to vectorize them 10594 // after processing BB. 10595 if (BB == P->getIncomingBlock(I) || 10596 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10597 continue; 10598 10599 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10600 P->getIncomingBlock(I), R, TTI); 10601 } 10602 continue; 10603 } 10604 10605 // Ran into an instruction without users, like terminator, or function call 10606 // with ignored return value, store. Ignore unused instructions (basing on 10607 // instruction type, except for CallInst and InvokeInst). 10608 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10609 isa<InvokeInst>(it))) { 10610 KeyNodes.insert(&*it); 10611 bool OpsChanged = false; 10612 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10613 for (auto *V : it->operand_values()) { 10614 // Try to match and vectorize a horizontal reduction. 10615 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10616 } 10617 } 10618 // Start vectorization of post-process list of instructions from the 10619 // top-tree instructions to try to vectorize as many instructions as 10620 // possible. 10621 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10622 it->isTerminator()); 10623 if (OpsChanged) { 10624 // We would like to start over since some instructions are deleted 10625 // and the iterator may become invalid value. 10626 Changed = true; 10627 it = BB->begin(); 10628 e = BB->end(); 10629 continue; 10630 } 10631 } 10632 10633 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10634 isa<InsertValueInst>(it)) 10635 PostProcessInstructions.push_back(&*it); 10636 } 10637 10638 return Changed; 10639 } 10640 10641 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10642 auto Changed = false; 10643 for (auto &Entry : GEPs) { 10644 // If the getelementptr list has fewer than two elements, there's nothing 10645 // to do. 10646 if (Entry.second.size() < 2) 10647 continue; 10648 10649 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10650 << Entry.second.size() << ".\n"); 10651 10652 // Process the GEP list in chunks suitable for the target's supported 10653 // vector size. If a vector register can't hold 1 element, we are done. We 10654 // are trying to vectorize the index computations, so the maximum number of 10655 // elements is based on the size of the index expression, rather than the 10656 // size of the GEP itself (the target's pointer size). 10657 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10658 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10659 if (MaxVecRegSize < EltSize) 10660 continue; 10661 10662 unsigned MaxElts = MaxVecRegSize / EltSize; 10663 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10664 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10665 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10666 10667 // Initialize a set a candidate getelementptrs. Note that we use a 10668 // SetVector here to preserve program order. If the index computations 10669 // are vectorizable and begin with loads, we want to minimize the chance 10670 // of having to reorder them later. 10671 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10672 10673 // Some of the candidates may have already been vectorized after we 10674 // initially collected them. If so, they are marked as deleted, so remove 10675 // them from the set of candidates. 10676 Candidates.remove_if( 10677 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10678 10679 // Remove from the set of candidates all pairs of getelementptrs with 10680 // constant differences. Such getelementptrs are likely not good 10681 // candidates for vectorization in a bottom-up phase since one can be 10682 // computed from the other. We also ensure all candidate getelementptr 10683 // indices are unique. 10684 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10685 auto *GEPI = GEPList[I]; 10686 if (!Candidates.count(GEPI)) 10687 continue; 10688 auto *SCEVI = SE->getSCEV(GEPList[I]); 10689 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10690 auto *GEPJ = GEPList[J]; 10691 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10692 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10693 Candidates.remove(GEPI); 10694 Candidates.remove(GEPJ); 10695 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10696 Candidates.remove(GEPJ); 10697 } 10698 } 10699 } 10700 10701 // We break out of the above computation as soon as we know there are 10702 // fewer than two candidates remaining. 10703 if (Candidates.size() < 2) 10704 continue; 10705 10706 // Add the single, non-constant index of each candidate to the bundle. We 10707 // ensured the indices met these constraints when we originally collected 10708 // the getelementptrs. 10709 SmallVector<Value *, 16> Bundle(Candidates.size()); 10710 auto BundleIndex = 0u; 10711 for (auto *V : Candidates) { 10712 auto *GEP = cast<GetElementPtrInst>(V); 10713 auto *GEPIdx = GEP->idx_begin()->get(); 10714 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10715 Bundle[BundleIndex++] = GEPIdx; 10716 } 10717 10718 // Try and vectorize the indices. We are currently only interested in 10719 // gather-like cases of the form: 10720 // 10721 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10722 // 10723 // where the loads of "a", the loads of "b", and the subtractions can be 10724 // performed in parallel. It's likely that detecting this pattern in a 10725 // bottom-up phase will be simpler and less costly than building a 10726 // full-blown top-down phase beginning at the consecutive loads. 10727 Changed |= tryToVectorizeList(Bundle, R); 10728 } 10729 } 10730 return Changed; 10731 } 10732 10733 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10734 bool Changed = false; 10735 // Sort by type, base pointers and values operand. Value operands must be 10736 // compatible (have the same opcode, same parent), otherwise it is 10737 // definitely not profitable to try to vectorize them. 10738 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10739 if (V->getPointerOperandType()->getTypeID() < 10740 V2->getPointerOperandType()->getTypeID()) 10741 return true; 10742 if (V->getPointerOperandType()->getTypeID() > 10743 V2->getPointerOperandType()->getTypeID()) 10744 return false; 10745 // UndefValues are compatible with all other values. 10746 if (isa<UndefValue>(V->getValueOperand()) || 10747 isa<UndefValue>(V2->getValueOperand())) 10748 return false; 10749 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10750 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10751 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10752 DT->getNode(I1->getParent()); 10753 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10754 DT->getNode(I2->getParent()); 10755 assert(NodeI1 && "Should only process reachable instructions"); 10756 assert(NodeI1 && "Should only process reachable instructions"); 10757 assert((NodeI1 == NodeI2) == 10758 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10759 "Different nodes should have different DFS numbers"); 10760 if (NodeI1 != NodeI2) 10761 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10762 InstructionsState S = getSameOpcode({I1, I2}); 10763 if (S.getOpcode()) 10764 return false; 10765 return I1->getOpcode() < I2->getOpcode(); 10766 } 10767 if (isa<Constant>(V->getValueOperand()) && 10768 isa<Constant>(V2->getValueOperand())) 10769 return false; 10770 return V->getValueOperand()->getValueID() < 10771 V2->getValueOperand()->getValueID(); 10772 }; 10773 10774 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10775 if (V1 == V2) 10776 return true; 10777 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10778 return false; 10779 // Undefs are compatible with any other value. 10780 if (isa<UndefValue>(V1->getValueOperand()) || 10781 isa<UndefValue>(V2->getValueOperand())) 10782 return true; 10783 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10784 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10785 if (I1->getParent() != I2->getParent()) 10786 return false; 10787 InstructionsState S = getSameOpcode({I1, I2}); 10788 return S.getOpcode() > 0; 10789 } 10790 if (isa<Constant>(V1->getValueOperand()) && 10791 isa<Constant>(V2->getValueOperand())) 10792 return true; 10793 return V1->getValueOperand()->getValueID() == 10794 V2->getValueOperand()->getValueID(); 10795 }; 10796 auto Limit = [&R, this](StoreInst *SI) { 10797 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10798 return R.getMinVF(EltSize); 10799 }; 10800 10801 // Attempt to sort and vectorize each of the store-groups. 10802 for (auto &Pair : Stores) { 10803 if (Pair.second.size() < 2) 10804 continue; 10805 10806 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10807 << Pair.second.size() << ".\n"); 10808 10809 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10810 continue; 10811 10812 Changed |= tryToVectorizeSequence<StoreInst>( 10813 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10814 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10815 return vectorizeStores(Candidates, R); 10816 }, 10817 /*LimitForRegisterSize=*/false); 10818 } 10819 return Changed; 10820 } 10821 10822 char SLPVectorizer::ID = 0; 10823 10824 static const char lv_name[] = "SLP Vectorizer"; 10825 10826 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10827 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10828 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10829 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10830 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10831 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10832 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10833 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10834 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10835 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10836 10837 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10838