1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns true if all of the instructions in \p VL are in the same block or 205 /// false otherwise. 206 static bool allSameBlock(ArrayRef<Value *> VL) { 207 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 208 if (!I0) 209 return false; 210 BasicBlock *BB = I0->getParent(); 211 for (int I = 1, E = VL.size(); I < E; I++) { 212 auto *II = dyn_cast<Instruction>(VL[I]); 213 if (!II) 214 return false; 215 216 if (BB != II->getParent()) 217 return false; 218 } 219 return true; 220 } 221 222 /// \returns True if the value is a constant (but not globals/constant 223 /// expressions). 224 static bool isConstant(Value *V) { 225 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 226 } 227 228 /// \returns True if all of the values in \p VL are constants (but not 229 /// globals/constant expressions). 230 static bool allConstant(ArrayRef<Value *> VL) { 231 // Constant expressions and globals can't be vectorized like normal integer/FP 232 // constants. 233 return all_of(VL, isConstant); 234 } 235 236 /// \returns True if all of the values in \p VL are identical. 237 static bool isSplat(ArrayRef<Value *> VL) { 238 for (unsigned i = 1, e = VL.size(); i < e; ++i) 239 if (VL[i] != VL[0]) 240 return false; 241 return true; 242 } 243 244 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 245 static bool isCommutative(Instruction *I) { 246 if (auto *Cmp = dyn_cast<CmpInst>(I)) 247 return Cmp->isCommutative(); 248 if (auto *BO = dyn_cast<BinaryOperator>(I)) 249 return BO->isCommutative(); 250 // TODO: This should check for generic Instruction::isCommutative(), but 251 // we need to confirm that the caller code correctly handles Intrinsics 252 // for example (does not have 2 operands). 253 return false; 254 } 255 256 /// Checks if the vector of instructions can be represented as a shuffle, like: 257 /// %x0 = extractelement <4 x i8> %x, i32 0 258 /// %x3 = extractelement <4 x i8> %x, i32 3 259 /// %y1 = extractelement <4 x i8> %y, i32 1 260 /// %y2 = extractelement <4 x i8> %y, i32 2 261 /// %x0x0 = mul i8 %x0, %x0 262 /// %x3x3 = mul i8 %x3, %x3 263 /// %y1y1 = mul i8 %y1, %y1 264 /// %y2y2 = mul i8 %y2, %y2 265 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 266 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 267 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 268 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 269 /// ret <4 x i8> %ins4 270 /// can be transformed into: 271 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 272 /// i32 6> 273 /// %2 = mul <4 x i8> %1, %1 274 /// ret <4 x i8> %2 275 /// We convert this initially to something like: 276 /// %x0 = extractelement <4 x i8> %x, i32 0 277 /// %x3 = extractelement <4 x i8> %x, i32 3 278 /// %y1 = extractelement <4 x i8> %y, i32 1 279 /// %y2 = extractelement <4 x i8> %y, i32 2 280 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 281 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 282 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 283 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 284 /// %5 = mul <4 x i8> %4, %4 285 /// %6 = extractelement <4 x i8> %5, i32 0 286 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 287 /// %7 = extractelement <4 x i8> %5, i32 1 288 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 289 /// %8 = extractelement <4 x i8> %5, i32 2 290 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 291 /// %9 = extractelement <4 x i8> %5, i32 3 292 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 293 /// ret <4 x i8> %ins4 294 /// InstCombiner transforms this into a shuffle and vector mul 295 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 296 /// TODO: Can we split off and reuse the shuffle mask detection from 297 /// TargetTransformInfo::getInstructionThroughput? 298 static Optional<TargetTransformInfo::ShuffleKind> 299 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 300 auto *EI0 = cast<ExtractElementInst>(VL[0]); 301 unsigned Size = 302 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 303 Value *Vec1 = nullptr; 304 Value *Vec2 = nullptr; 305 enum ShuffleMode { Unknown, Select, Permute }; 306 ShuffleMode CommonShuffleMode = Unknown; 307 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 308 auto *EI = cast<ExtractElementInst>(VL[I]); 309 auto *Vec = EI->getVectorOperand(); 310 // All vector operands must have the same number of vector elements. 311 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 312 return None; 313 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 314 if (!Idx) 315 return None; 316 // Undefined behavior if Idx is negative or >= Size. 317 if (Idx->getValue().uge(Size)) { 318 Mask.push_back(UndefMaskElem); 319 continue; 320 } 321 unsigned IntIdx = Idx->getValue().getZExtValue(); 322 Mask.push_back(IntIdx); 323 // We can extractelement from undef or poison vector. 324 if (isa<UndefValue>(Vec)) 325 continue; 326 // For correct shuffling we have to have at most 2 different vector operands 327 // in all extractelement instructions. 328 if (!Vec1 || Vec1 == Vec) 329 Vec1 = Vec; 330 else if (!Vec2 || Vec2 == Vec) 331 Vec2 = Vec; 332 else 333 return None; 334 if (CommonShuffleMode == Permute) 335 continue; 336 // If the extract index is not the same as the operation number, it is a 337 // permutation. 338 if (IntIdx != I) { 339 CommonShuffleMode = Permute; 340 continue; 341 } 342 CommonShuffleMode = Select; 343 } 344 // If we're not crossing lanes in different vectors, consider it as blending. 345 if (CommonShuffleMode == Select && Vec2) 346 return TargetTransformInfo::SK_Select; 347 // If Vec2 was never used, we have a permutation of a single vector, otherwise 348 // we have permutation of 2 vectors. 349 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 350 : TargetTransformInfo::SK_PermuteSingleSrc; 351 } 352 353 namespace { 354 355 /// Main data required for vectorization of instructions. 356 struct InstructionsState { 357 /// The very first instruction in the list with the main opcode. 358 Value *OpValue = nullptr; 359 360 /// The main/alternate instruction. 361 Instruction *MainOp = nullptr; 362 Instruction *AltOp = nullptr; 363 364 /// The main/alternate opcodes for the list of instructions. 365 unsigned getOpcode() const { 366 return MainOp ? MainOp->getOpcode() : 0; 367 } 368 369 unsigned getAltOpcode() const { 370 return AltOp ? AltOp->getOpcode() : 0; 371 } 372 373 /// Some of the instructions in the list have alternate opcodes. 374 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 375 376 bool isOpcodeOrAlt(Instruction *I) const { 377 unsigned CheckedOpcode = I->getOpcode(); 378 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 379 } 380 381 InstructionsState() = delete; 382 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 383 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 384 }; 385 386 } // end anonymous namespace 387 388 /// Chooses the correct key for scheduling data. If \p Op has the same (or 389 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 390 /// OpValue. 391 static Value *isOneOf(const InstructionsState &S, Value *Op) { 392 auto *I = dyn_cast<Instruction>(Op); 393 if (I && S.isOpcodeOrAlt(I)) 394 return Op; 395 return S.OpValue; 396 } 397 398 /// \returns true if \p Opcode is allowed as part of of the main/alternate 399 /// instruction for SLP vectorization. 400 /// 401 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 402 /// "shuffled out" lane would result in division by zero. 403 static bool isValidForAlternation(unsigned Opcode) { 404 if (Instruction::isIntDivRem(Opcode)) 405 return false; 406 407 return true; 408 } 409 410 /// \returns analysis of the Instructions in \p VL described in 411 /// InstructionsState, the Opcode that we suppose the whole list 412 /// could be vectorized even if its structure is diverse. 413 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 414 unsigned BaseIndex = 0) { 415 // Make sure these are all Instructions. 416 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 417 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 418 419 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 420 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 421 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 422 unsigned AltOpcode = Opcode; 423 unsigned AltIndex = BaseIndex; 424 425 // Check for one alternate opcode from another BinaryOperator. 426 // TODO - generalize to support all operators (types, calls etc.). 427 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 428 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 429 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 430 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 431 continue; 432 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 433 isValidForAlternation(Opcode)) { 434 AltOpcode = InstOpcode; 435 AltIndex = Cnt; 436 continue; 437 } 438 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 439 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 440 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 441 if (Ty0 == Ty1) { 442 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 443 continue; 444 if (Opcode == AltOpcode) { 445 assert(isValidForAlternation(Opcode) && 446 isValidForAlternation(InstOpcode) && 447 "Cast isn't safe for alternation, logic needs to be updated!"); 448 AltOpcode = InstOpcode; 449 AltIndex = Cnt; 450 continue; 451 } 452 } 453 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 454 continue; 455 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 456 } 457 458 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 459 cast<Instruction>(VL[AltIndex])); 460 } 461 462 /// \returns true if all of the values in \p VL have the same type or false 463 /// otherwise. 464 static bool allSameType(ArrayRef<Value *> VL) { 465 Type *Ty = VL[0]->getType(); 466 for (int i = 1, e = VL.size(); i < e; i++) 467 if (VL[i]->getType() != Ty) 468 return false; 469 470 return true; 471 } 472 473 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 474 static Optional<unsigned> getExtractIndex(Instruction *E) { 475 unsigned Opcode = E->getOpcode(); 476 assert((Opcode == Instruction::ExtractElement || 477 Opcode == Instruction::ExtractValue) && 478 "Expected extractelement or extractvalue instruction."); 479 if (Opcode == Instruction::ExtractElement) { 480 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 481 if (!CI) 482 return None; 483 return CI->getZExtValue(); 484 } 485 ExtractValueInst *EI = cast<ExtractValueInst>(E); 486 if (EI->getNumIndices() != 1) 487 return None; 488 return *EI->idx_begin(); 489 } 490 491 /// \returns True if in-tree use also needs extract. This refers to 492 /// possible scalar operand in vectorized instruction. 493 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 494 TargetLibraryInfo *TLI) { 495 unsigned Opcode = UserInst->getOpcode(); 496 switch (Opcode) { 497 case Instruction::Load: { 498 LoadInst *LI = cast<LoadInst>(UserInst); 499 return (LI->getPointerOperand() == Scalar); 500 } 501 case Instruction::Store: { 502 StoreInst *SI = cast<StoreInst>(UserInst); 503 return (SI->getPointerOperand() == Scalar); 504 } 505 case Instruction::Call: { 506 CallInst *CI = cast<CallInst>(UserInst); 507 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 508 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 509 if (hasVectorInstrinsicScalarOpd(ID, i)) 510 return (CI->getArgOperand(i) == Scalar); 511 } 512 LLVM_FALLTHROUGH; 513 } 514 default: 515 return false; 516 } 517 } 518 519 /// \returns the AA location that is being access by the instruction. 520 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 521 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 522 return MemoryLocation::get(SI); 523 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 524 return MemoryLocation::get(LI); 525 return MemoryLocation(); 526 } 527 528 /// \returns True if the instruction is not a volatile or atomic load/store. 529 static bool isSimple(Instruction *I) { 530 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 531 return LI->isSimple(); 532 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 533 return SI->isSimple(); 534 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 535 return !MI->isVolatile(); 536 return true; 537 } 538 539 /// Shuffles \p Mask in accordance with the given \p SubMask. 540 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 541 if (SubMask.empty()) 542 return; 543 if (Mask.empty()) { 544 Mask.append(SubMask.begin(), SubMask.end()); 545 return; 546 } 547 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 548 int TermValue = std::min(Mask.size(), SubMask.size()); 549 for (int I = 0, E = SubMask.size(); I < E; ++I) { 550 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 551 Mask[SubMask[I]] >= TermValue) 552 continue; 553 NewMask[I] = Mask[SubMask[I]]; 554 } 555 Mask.swap(NewMask); 556 } 557 558 /// Order may have elements assigned special value (size) which is out of 559 /// bounds. Such indices only appear on places which correspond to undef values 560 /// (see canReuseExtract for details) and used in order to avoid undef values 561 /// have effect on operands ordering. 562 /// The first loop below simply finds all unused indices and then the next loop 563 /// nest assigns these indices for undef values positions. 564 /// As an example below Order has two undef positions and they have assigned 565 /// values 3 and 7 respectively: 566 /// before: 6 9 5 4 9 2 1 0 567 /// after: 6 3 5 4 7 2 1 0 568 /// \returns Fixed ordering. 569 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 570 const unsigned Sz = Order.size(); 571 SmallBitVector UsedIndices(Sz); 572 SmallVector<int> MaskedIndices; 573 for (unsigned I = 0; I < Sz; ++I) { 574 if (Order[I] < Sz) 575 UsedIndices.set(Order[I]); 576 else 577 MaskedIndices.push_back(I); 578 } 579 if (MaskedIndices.empty()) 580 return; 581 SmallVector<int> AvailableIndices(MaskedIndices.size()); 582 unsigned Cnt = 0; 583 int Idx = UsedIndices.find_first(); 584 do { 585 AvailableIndices[Cnt] = Idx; 586 Idx = UsedIndices.find_next(Idx); 587 ++Cnt; 588 } while (Idx > 0); 589 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 590 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 591 Order[MaskedIndices[I]] = AvailableIndices[I]; 592 } 593 594 namespace llvm { 595 596 static void inversePermutation(ArrayRef<unsigned> Indices, 597 SmallVectorImpl<int> &Mask) { 598 Mask.clear(); 599 const unsigned E = Indices.size(); 600 Mask.resize(E, UndefMaskElem); 601 for (unsigned I = 0; I < E; ++I) 602 Mask[Indices[I]] = I; 603 } 604 605 /// \returns inserting index of InsertElement or InsertValue instruction, 606 /// using Offset as base offset for index. 607 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 608 int Index = Offset; 609 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 610 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 611 auto *VT = cast<FixedVectorType>(IE->getType()); 612 if (CI->getValue().uge(VT->getNumElements())) 613 return UndefMaskElem; 614 Index *= VT->getNumElements(); 615 Index += CI->getZExtValue(); 616 return Index; 617 } 618 if (isa<UndefValue>(IE->getOperand(2))) 619 return UndefMaskElem; 620 return None; 621 } 622 623 auto *IV = cast<InsertValueInst>(InsertInst); 624 Type *CurrentType = IV->getType(); 625 for (unsigned I : IV->indices()) { 626 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 627 Index *= ST->getNumElements(); 628 CurrentType = ST->getElementType(I); 629 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 630 Index *= AT->getNumElements(); 631 CurrentType = AT->getElementType(); 632 } else { 633 return None; 634 } 635 Index += I; 636 } 637 return Index; 638 } 639 640 /// Reorders the list of scalars in accordance with the given \p Order and then 641 /// the \p Mask. \p Order - is the original order of the scalars, need to 642 /// reorder scalars into an unordered state at first according to the given 643 /// order. Then the ordered scalars are shuffled once again in accordance with 644 /// the provided mask. 645 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 646 ArrayRef<int> Mask) { 647 assert(!Mask.empty() && "Expected non-empty mask."); 648 SmallVector<Value *> Prev(Scalars.size(), 649 UndefValue::get(Scalars.front()->getType())); 650 Prev.swap(Scalars); 651 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 652 if (Mask[I] != UndefMaskElem) 653 Scalars[Mask[I]] = Prev[I]; 654 } 655 656 namespace slpvectorizer { 657 658 /// Bottom Up SLP Vectorizer. 659 class BoUpSLP { 660 struct TreeEntry; 661 struct ScheduleData; 662 663 public: 664 using ValueList = SmallVector<Value *, 8>; 665 using InstrList = SmallVector<Instruction *, 16>; 666 using ValueSet = SmallPtrSet<Value *, 16>; 667 using StoreList = SmallVector<StoreInst *, 8>; 668 using ExtraValueToDebugLocsMap = 669 MapVector<Value *, SmallVector<Instruction *, 2>>; 670 using OrdersType = SmallVector<unsigned, 4>; 671 672 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 673 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 674 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 675 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 676 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 677 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 678 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 679 // Use the vector register size specified by the target unless overridden 680 // by a command-line option. 681 // TODO: It would be better to limit the vectorization factor based on 682 // data type rather than just register size. For example, x86 AVX has 683 // 256-bit registers, but it does not support integer operations 684 // at that width (that requires AVX2). 685 if (MaxVectorRegSizeOption.getNumOccurrences()) 686 MaxVecRegSize = MaxVectorRegSizeOption; 687 else 688 MaxVecRegSize = 689 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 690 .getFixedSize(); 691 692 if (MinVectorRegSizeOption.getNumOccurrences()) 693 MinVecRegSize = MinVectorRegSizeOption; 694 else 695 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 696 } 697 698 /// Vectorize the tree that starts with the elements in \p VL. 699 /// Returns the vectorized root. 700 Value *vectorizeTree(); 701 702 /// Vectorize the tree but with the list of externally used values \p 703 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 704 /// generated extractvalue instructions. 705 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 706 707 /// \returns the cost incurred by unwanted spills and fills, caused by 708 /// holding live values over call sites. 709 InstructionCost getSpillCost() const; 710 711 /// \returns the vectorization cost of the subtree that starts at \p VL. 712 /// A negative number means that this is profitable. 713 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 714 715 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 716 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 717 void buildTree(ArrayRef<Value *> Roots, 718 ArrayRef<Value *> UserIgnoreLst = None); 719 720 /// Builds external uses of the vectorized scalars, i.e. the list of 721 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 722 /// ExternallyUsedValues contains additional list of external uses to handle 723 /// vectorization of reductions. 724 void 725 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 726 727 /// Clear the internal data structures that are created by 'buildTree'. 728 void deleteTree() { 729 VectorizableTree.clear(); 730 ScalarToTreeEntry.clear(); 731 MustGather.clear(); 732 ExternalUses.clear(); 733 for (auto &Iter : BlocksSchedules) { 734 BlockScheduling *BS = Iter.second.get(); 735 BS->clear(); 736 } 737 MinBWs.clear(); 738 InstrElementSize.clear(); 739 } 740 741 unsigned getTreeSize() const { return VectorizableTree.size(); } 742 743 /// Perform LICM and CSE on the newly generated gather sequences. 744 void optimizeGatherSequence(); 745 746 /// Reorders the current graph to the most profitable order starting from the 747 /// root node to the leaf nodes. The best order is chosen only from the nodes 748 /// of the same size (vectorization factor). Smaller nodes are considered 749 /// parts of subgraph with smaller VF and they are reordered independently. We 750 /// can make it because we still need to extend smaller nodes to the wider VF 751 /// and we can merge reordering shuffles with the widening shuffles. 752 void reorderTopToBottom(); 753 754 /// Reorders the current graph to the most profitable order starting from 755 /// leaves to the root. It allows to rotate small subgraphs and reduce the 756 /// number of reshuffles if the leaf nodes use the same order. In this case we 757 /// can merge the orders and just shuffle user node instead of shuffling its 758 /// operands. Plus, even the leaf nodes have different orders, it allows to 759 /// sink reordering in the graph closer to the root node and merge it later 760 /// during analysis. 761 void reorderBottomToTop(); 762 763 /// \return The vector element size in bits to use when vectorizing the 764 /// expression tree ending at \p V. If V is a store, the size is the width of 765 /// the stored value. Otherwise, the size is the width of the largest loaded 766 /// value reaching V. This method is used by the vectorizer to calculate 767 /// vectorization factors. 768 unsigned getVectorElementSize(Value *V); 769 770 /// Compute the minimum type sizes required to represent the entries in a 771 /// vectorizable tree. 772 void computeMinimumValueSizes(); 773 774 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 775 unsigned getMaxVecRegSize() const { 776 return MaxVecRegSize; 777 } 778 779 // \returns minimum vector register size as set by cl::opt. 780 unsigned getMinVecRegSize() const { 781 return MinVecRegSize; 782 } 783 784 unsigned getMinVF(unsigned Sz) const { 785 return std::max(2U, getMinVecRegSize() / Sz); 786 } 787 788 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 789 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 790 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 791 return MaxVF ? MaxVF : UINT_MAX; 792 } 793 794 /// Check if homogeneous aggregate is isomorphic to some VectorType. 795 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 796 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 797 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 798 /// 799 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 800 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 801 802 /// \returns True if the VectorizableTree is both tiny and not fully 803 /// vectorizable. We do not vectorize such trees. 804 bool isTreeTinyAndNotFullyVectorizable() const; 805 806 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 807 /// can be load combined in the backend. Load combining may not be allowed in 808 /// the IR optimizer, so we do not want to alter the pattern. For example, 809 /// partially transforming a scalar bswap() pattern into vector code is 810 /// effectively impossible for the backend to undo. 811 /// TODO: If load combining is allowed in the IR optimizer, this analysis 812 /// may not be necessary. 813 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 814 815 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 816 /// can be load combined in the backend. Load combining may not be allowed in 817 /// the IR optimizer, so we do not want to alter the pattern. For example, 818 /// partially transforming a scalar bswap() pattern into vector code is 819 /// effectively impossible for the backend to undo. 820 /// TODO: If load combining is allowed in the IR optimizer, this analysis 821 /// may not be necessary. 822 bool isLoadCombineCandidate() const; 823 824 OptimizationRemarkEmitter *getORE() { return ORE; } 825 826 /// This structure holds any data we need about the edges being traversed 827 /// during buildTree_rec(). We keep track of: 828 /// (i) the user TreeEntry index, and 829 /// (ii) the index of the edge. 830 struct EdgeInfo { 831 EdgeInfo() = default; 832 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 833 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 834 /// The user TreeEntry. 835 TreeEntry *UserTE = nullptr; 836 /// The operand index of the use. 837 unsigned EdgeIdx = UINT_MAX; 838 #ifndef NDEBUG 839 friend inline raw_ostream &operator<<(raw_ostream &OS, 840 const BoUpSLP::EdgeInfo &EI) { 841 EI.dump(OS); 842 return OS; 843 } 844 /// Debug print. 845 void dump(raw_ostream &OS) const { 846 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 847 << " EdgeIdx:" << EdgeIdx << "}"; 848 } 849 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 850 #endif 851 }; 852 853 /// A helper data structure to hold the operands of a vector of instructions. 854 /// This supports a fixed vector length for all operand vectors. 855 class VLOperands { 856 /// For each operand we need (i) the value, and (ii) the opcode that it 857 /// would be attached to if the expression was in a left-linearized form. 858 /// This is required to avoid illegal operand reordering. 859 /// For example: 860 /// \verbatim 861 /// 0 Op1 862 /// |/ 863 /// Op1 Op2 Linearized + Op2 864 /// \ / ----------> |/ 865 /// - - 866 /// 867 /// Op1 - Op2 (0 + Op1) - Op2 868 /// \endverbatim 869 /// 870 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 871 /// 872 /// Another way to think of this is to track all the operations across the 873 /// path from the operand all the way to the root of the tree and to 874 /// calculate the operation that corresponds to this path. For example, the 875 /// path from Op2 to the root crosses the RHS of the '-', therefore the 876 /// corresponding operation is a '-' (which matches the one in the 877 /// linearized tree, as shown above). 878 /// 879 /// For lack of a better term, we refer to this operation as Accumulated 880 /// Path Operation (APO). 881 struct OperandData { 882 OperandData() = default; 883 OperandData(Value *V, bool APO, bool IsUsed) 884 : V(V), APO(APO), IsUsed(IsUsed) {} 885 /// The operand value. 886 Value *V = nullptr; 887 /// TreeEntries only allow a single opcode, or an alternate sequence of 888 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 889 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 890 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 891 /// (e.g., Add/Mul) 892 bool APO = false; 893 /// Helper data for the reordering function. 894 bool IsUsed = false; 895 }; 896 897 /// During operand reordering, we are trying to select the operand at lane 898 /// that matches best with the operand at the neighboring lane. Our 899 /// selection is based on the type of value we are looking for. For example, 900 /// if the neighboring lane has a load, we need to look for a load that is 901 /// accessing a consecutive address. These strategies are summarized in the 902 /// 'ReorderingMode' enumerator. 903 enum class ReorderingMode { 904 Load, ///< Matching loads to consecutive memory addresses 905 Opcode, ///< Matching instructions based on opcode (same or alternate) 906 Constant, ///< Matching constants 907 Splat, ///< Matching the same instruction multiple times (broadcast) 908 Failed, ///< We failed to create a vectorizable group 909 }; 910 911 using OperandDataVec = SmallVector<OperandData, 2>; 912 913 /// A vector of operand vectors. 914 SmallVector<OperandDataVec, 4> OpsVec; 915 916 const DataLayout &DL; 917 ScalarEvolution &SE; 918 const BoUpSLP &R; 919 920 /// \returns the operand data at \p OpIdx and \p Lane. 921 OperandData &getData(unsigned OpIdx, unsigned Lane) { 922 return OpsVec[OpIdx][Lane]; 923 } 924 925 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 926 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 927 return OpsVec[OpIdx][Lane]; 928 } 929 930 /// Clears the used flag for all entries. 931 void clearUsed() { 932 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 933 OpIdx != NumOperands; ++OpIdx) 934 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 935 ++Lane) 936 OpsVec[OpIdx][Lane].IsUsed = false; 937 } 938 939 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 940 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 941 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 942 } 943 944 // The hard-coded scores listed here are not very important. When computing 945 // the scores of matching one sub-tree with another, we are basically 946 // counting the number of values that are matching. So even if all scores 947 // are set to 1, we would still get a decent matching result. 948 // However, sometimes we have to break ties. For example we may have to 949 // choose between matching loads vs matching opcodes. This is what these 950 // scores are helping us with: they provide the order of preference. 951 952 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 953 static const int ScoreConsecutiveLoads = 3; 954 /// ExtractElementInst from same vector and consecutive indexes. 955 static const int ScoreConsecutiveExtracts = 3; 956 /// Constants. 957 static const int ScoreConstants = 2; 958 /// Instructions with the same opcode. 959 static const int ScoreSameOpcode = 2; 960 /// Instructions with alt opcodes (e.g, add + sub). 961 static const int ScoreAltOpcodes = 1; 962 /// Identical instructions (a.k.a. splat or broadcast). 963 static const int ScoreSplat = 1; 964 /// Matching with an undef is preferable to failing. 965 static const int ScoreUndef = 1; 966 /// Score for failing to find a decent match. 967 static const int ScoreFail = 0; 968 /// User exteranl to the vectorized code. 969 static const int ExternalUseCost = 1; 970 /// The user is internal but in a different lane. 971 static const int UserInDiffLaneCost = ExternalUseCost; 972 973 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 974 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 975 ScalarEvolution &SE) { 976 auto *LI1 = dyn_cast<LoadInst>(V1); 977 auto *LI2 = dyn_cast<LoadInst>(V2); 978 if (LI1 && LI2) { 979 if (LI1->getParent() != LI2->getParent()) 980 return VLOperands::ScoreFail; 981 982 Optional<int> Dist = getPointersDiff( 983 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 984 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 985 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 986 : VLOperands::ScoreFail; 987 } 988 989 auto *C1 = dyn_cast<Constant>(V1); 990 auto *C2 = dyn_cast<Constant>(V2); 991 if (C1 && C2) 992 return VLOperands::ScoreConstants; 993 994 // Extracts from consecutive indexes of the same vector better score as 995 // the extracts could be optimized away. 996 Value *EV; 997 ConstantInt *Ex1Idx, *Ex2Idx; 998 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 999 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1000 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1001 return VLOperands::ScoreConsecutiveExtracts; 1002 1003 auto *I1 = dyn_cast<Instruction>(V1); 1004 auto *I2 = dyn_cast<Instruction>(V2); 1005 if (I1 && I2) { 1006 if (I1 == I2) 1007 return VLOperands::ScoreSplat; 1008 InstructionsState S = getSameOpcode({I1, I2}); 1009 // Note: Only consider instructions with <= 2 operands to avoid 1010 // complexity explosion. 1011 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1012 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1013 : VLOperands::ScoreSameOpcode; 1014 } 1015 1016 if (isa<UndefValue>(V2)) 1017 return VLOperands::ScoreUndef; 1018 1019 return VLOperands::ScoreFail; 1020 } 1021 1022 /// Holds the values and their lane that are taking part in the look-ahead 1023 /// score calculation. This is used in the external uses cost calculation. 1024 SmallDenseMap<Value *, int> InLookAheadValues; 1025 1026 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1027 /// either external to the vectorized code, or require shuffling. 1028 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1029 const std::pair<Value *, int> &RHS) { 1030 int Cost = 0; 1031 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1032 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1033 Value *V = Values[Idx].first; 1034 if (isa<Constant>(V)) { 1035 // Since this is a function pass, it doesn't make semantic sense to 1036 // walk the users of a subclass of Constant. The users could be in 1037 // another function, or even another module that happens to be in 1038 // the same LLVMContext. 1039 continue; 1040 } 1041 1042 // Calculate the absolute lane, using the minimum relative lane of LHS 1043 // and RHS as base and Idx as the offset. 1044 int Ln = std::min(LHS.second, RHS.second) + Idx; 1045 assert(Ln >= 0 && "Bad lane calculation"); 1046 unsigned UsersBudget = LookAheadUsersBudget; 1047 for (User *U : V->users()) { 1048 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1049 // The user is in the VectorizableTree. Check if we need to insert. 1050 auto It = llvm::find(UserTE->Scalars, U); 1051 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1052 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1053 assert(UserLn >= 0 && "Bad lane"); 1054 if (UserLn != Ln) 1055 Cost += UserInDiffLaneCost; 1056 } else { 1057 // Check if the user is in the look-ahead code. 1058 auto It2 = InLookAheadValues.find(U); 1059 if (It2 != InLookAheadValues.end()) { 1060 // The user is in the look-ahead code. Check the lane. 1061 if (It2->second != Ln) 1062 Cost += UserInDiffLaneCost; 1063 } else { 1064 // The user is neither in SLP tree nor in the look-ahead code. 1065 Cost += ExternalUseCost; 1066 } 1067 } 1068 // Limit the number of visited uses to cap compilation time. 1069 if (--UsersBudget == 0) 1070 break; 1071 } 1072 } 1073 return Cost; 1074 } 1075 1076 /// Go through the operands of \p LHS and \p RHS recursively until \p 1077 /// MaxLevel, and return the cummulative score. For example: 1078 /// \verbatim 1079 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1080 /// \ / \ / \ / \ / 1081 /// + + + + 1082 /// G1 G2 G3 G4 1083 /// \endverbatim 1084 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1085 /// each level recursively, accumulating the score. It starts from matching 1086 /// the additions at level 0, then moves on to the loads (level 1). The 1087 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1088 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1089 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1090 /// Please note that the order of the operands does not matter, as we 1091 /// evaluate the score of all profitable combinations of operands. In 1092 /// other words the score of G1 and G4 is the same as G1 and G2. This 1093 /// heuristic is based on ideas described in: 1094 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1095 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1096 /// Luís F. W. Góes 1097 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1098 const std::pair<Value *, int> &RHS, int CurrLevel, 1099 int MaxLevel) { 1100 1101 Value *V1 = LHS.first; 1102 Value *V2 = RHS.first; 1103 // Get the shallow score of V1 and V2. 1104 int ShallowScoreAtThisLevel = 1105 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1106 getExternalUsesCost(LHS, RHS)); 1107 int Lane1 = LHS.second; 1108 int Lane2 = RHS.second; 1109 1110 // If reached MaxLevel, 1111 // or if V1 and V2 are not instructions, 1112 // or if they are SPLAT, 1113 // or if they are not consecutive, early return the current cost. 1114 auto *I1 = dyn_cast<Instruction>(V1); 1115 auto *I2 = dyn_cast<Instruction>(V2); 1116 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1117 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1118 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1119 return ShallowScoreAtThisLevel; 1120 assert(I1 && I2 && "Should have early exited."); 1121 1122 // Keep track of in-tree values for determining the external-use cost. 1123 InLookAheadValues[V1] = Lane1; 1124 InLookAheadValues[V2] = Lane2; 1125 1126 // Contains the I2 operand indexes that got matched with I1 operands. 1127 SmallSet<unsigned, 4> Op2Used; 1128 1129 // Recursion towards the operands of I1 and I2. We are trying all possbile 1130 // operand pairs, and keeping track of the best score. 1131 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1132 OpIdx1 != NumOperands1; ++OpIdx1) { 1133 // Try to pair op1I with the best operand of I2. 1134 int MaxTmpScore = 0; 1135 unsigned MaxOpIdx2 = 0; 1136 bool FoundBest = false; 1137 // If I2 is commutative try all combinations. 1138 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1139 unsigned ToIdx = isCommutative(I2) 1140 ? I2->getNumOperands() 1141 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1142 assert(FromIdx <= ToIdx && "Bad index"); 1143 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1144 // Skip operands already paired with OpIdx1. 1145 if (Op2Used.count(OpIdx2)) 1146 continue; 1147 // Recursively calculate the cost at each level 1148 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1149 {I2->getOperand(OpIdx2), Lane2}, 1150 CurrLevel + 1, MaxLevel); 1151 // Look for the best score. 1152 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1153 MaxTmpScore = TmpScore; 1154 MaxOpIdx2 = OpIdx2; 1155 FoundBest = true; 1156 } 1157 } 1158 if (FoundBest) { 1159 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1160 Op2Used.insert(MaxOpIdx2); 1161 ShallowScoreAtThisLevel += MaxTmpScore; 1162 } 1163 } 1164 return ShallowScoreAtThisLevel; 1165 } 1166 1167 /// \Returns the look-ahead score, which tells us how much the sub-trees 1168 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1169 /// score. This helps break ties in an informed way when we cannot decide on 1170 /// the order of the operands by just considering the immediate 1171 /// predecessors. 1172 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1173 const std::pair<Value *, int> &RHS) { 1174 InLookAheadValues.clear(); 1175 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1176 } 1177 1178 // Search all operands in Ops[*][Lane] for the one that matches best 1179 // Ops[OpIdx][LastLane] and return its opreand index. 1180 // If no good match can be found, return None. 1181 Optional<unsigned> 1182 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1183 ArrayRef<ReorderingMode> ReorderingModes) { 1184 unsigned NumOperands = getNumOperands(); 1185 1186 // The operand of the previous lane at OpIdx. 1187 Value *OpLastLane = getData(OpIdx, LastLane).V; 1188 1189 // Our strategy mode for OpIdx. 1190 ReorderingMode RMode = ReorderingModes[OpIdx]; 1191 1192 // The linearized opcode of the operand at OpIdx, Lane. 1193 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1194 1195 // The best operand index and its score. 1196 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1197 // are using the score to differentiate between the two. 1198 struct BestOpData { 1199 Optional<unsigned> Idx = None; 1200 unsigned Score = 0; 1201 } BestOp; 1202 1203 // Iterate through all unused operands and look for the best. 1204 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1205 // Get the operand at Idx and Lane. 1206 OperandData &OpData = getData(Idx, Lane); 1207 Value *Op = OpData.V; 1208 bool OpAPO = OpData.APO; 1209 1210 // Skip already selected operands. 1211 if (OpData.IsUsed) 1212 continue; 1213 1214 // Skip if we are trying to move the operand to a position with a 1215 // different opcode in the linearized tree form. This would break the 1216 // semantics. 1217 if (OpAPO != OpIdxAPO) 1218 continue; 1219 1220 // Look for an operand that matches the current mode. 1221 switch (RMode) { 1222 case ReorderingMode::Load: 1223 case ReorderingMode::Constant: 1224 case ReorderingMode::Opcode: { 1225 bool LeftToRight = Lane > LastLane; 1226 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1227 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1228 unsigned Score = 1229 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1230 if (Score > BestOp.Score) { 1231 BestOp.Idx = Idx; 1232 BestOp.Score = Score; 1233 } 1234 break; 1235 } 1236 case ReorderingMode::Splat: 1237 if (Op == OpLastLane) 1238 BestOp.Idx = Idx; 1239 break; 1240 case ReorderingMode::Failed: 1241 return None; 1242 } 1243 } 1244 1245 if (BestOp.Idx) { 1246 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1247 return BestOp.Idx; 1248 } 1249 // If we could not find a good match return None. 1250 return None; 1251 } 1252 1253 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1254 /// reordering from. This is the one which has the least number of operands 1255 /// that can freely move about. 1256 unsigned getBestLaneToStartReordering() const { 1257 unsigned BestLane = 0; 1258 unsigned Min = UINT_MAX; 1259 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1260 ++Lane) { 1261 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1262 if (NumFreeOps < Min) { 1263 Min = NumFreeOps; 1264 BestLane = Lane; 1265 } 1266 } 1267 return BestLane; 1268 } 1269 1270 /// \Returns the maximum number of operands that are allowed to be reordered 1271 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1272 /// start operand reordering. 1273 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1274 unsigned CntTrue = 0; 1275 unsigned NumOperands = getNumOperands(); 1276 // Operands with the same APO can be reordered. We therefore need to count 1277 // how many of them we have for each APO, like this: Cnt[APO] = x. 1278 // Since we only have two APOs, namely true and false, we can avoid using 1279 // a map. Instead we can simply count the number of operands that 1280 // correspond to one of them (in this case the 'true' APO), and calculate 1281 // the other by subtracting it from the total number of operands. 1282 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1283 if (getData(OpIdx, Lane).APO) 1284 ++CntTrue; 1285 unsigned CntFalse = NumOperands - CntTrue; 1286 return std::max(CntTrue, CntFalse); 1287 } 1288 1289 /// Go through the instructions in VL and append their operands. 1290 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1291 assert(!VL.empty() && "Bad VL"); 1292 assert((empty() || VL.size() == getNumLanes()) && 1293 "Expected same number of lanes"); 1294 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1295 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1296 OpsVec.resize(NumOperands); 1297 unsigned NumLanes = VL.size(); 1298 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1299 OpsVec[OpIdx].resize(NumLanes); 1300 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1301 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1302 // Our tree has just 3 nodes: the root and two operands. 1303 // It is therefore trivial to get the APO. We only need to check the 1304 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1305 // RHS operand. The LHS operand of both add and sub is never attached 1306 // to an inversese operation in the linearized form, therefore its APO 1307 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1308 1309 // Since operand reordering is performed on groups of commutative 1310 // operations or alternating sequences (e.g., +, -), we can safely 1311 // tell the inverse operations by checking commutativity. 1312 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1313 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1314 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1315 APO, false}; 1316 } 1317 } 1318 } 1319 1320 /// \returns the number of operands. 1321 unsigned getNumOperands() const { return OpsVec.size(); } 1322 1323 /// \returns the number of lanes. 1324 unsigned getNumLanes() const { return OpsVec[0].size(); } 1325 1326 /// \returns the operand value at \p OpIdx and \p Lane. 1327 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1328 return getData(OpIdx, Lane).V; 1329 } 1330 1331 /// \returns true if the data structure is empty. 1332 bool empty() const { return OpsVec.empty(); } 1333 1334 /// Clears the data. 1335 void clear() { OpsVec.clear(); } 1336 1337 /// \Returns true if there are enough operands identical to \p Op to fill 1338 /// the whole vector. 1339 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1340 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1341 bool OpAPO = getData(OpIdx, Lane).APO; 1342 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1343 if (Ln == Lane) 1344 continue; 1345 // This is set to true if we found a candidate for broadcast at Lane. 1346 bool FoundCandidate = false; 1347 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1348 OperandData &Data = getData(OpI, Ln); 1349 if (Data.APO != OpAPO || Data.IsUsed) 1350 continue; 1351 if (Data.V == Op) { 1352 FoundCandidate = true; 1353 Data.IsUsed = true; 1354 break; 1355 } 1356 } 1357 if (!FoundCandidate) 1358 return false; 1359 } 1360 return true; 1361 } 1362 1363 public: 1364 /// Initialize with all the operands of the instruction vector \p RootVL. 1365 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1366 ScalarEvolution &SE, const BoUpSLP &R) 1367 : DL(DL), SE(SE), R(R) { 1368 // Append all the operands of RootVL. 1369 appendOperandsOfVL(RootVL); 1370 } 1371 1372 /// \Returns a value vector with the operands across all lanes for the 1373 /// opearnd at \p OpIdx. 1374 ValueList getVL(unsigned OpIdx) const { 1375 ValueList OpVL(OpsVec[OpIdx].size()); 1376 assert(OpsVec[OpIdx].size() == getNumLanes() && 1377 "Expected same num of lanes across all operands"); 1378 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1379 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1380 return OpVL; 1381 } 1382 1383 // Performs operand reordering for 2 or more operands. 1384 // The original operands are in OrigOps[OpIdx][Lane]. 1385 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1386 void reorder() { 1387 unsigned NumOperands = getNumOperands(); 1388 unsigned NumLanes = getNumLanes(); 1389 // Each operand has its own mode. We are using this mode to help us select 1390 // the instructions for each lane, so that they match best with the ones 1391 // we have selected so far. 1392 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1393 1394 // This is a greedy single-pass algorithm. We are going over each lane 1395 // once and deciding on the best order right away with no back-tracking. 1396 // However, in order to increase its effectiveness, we start with the lane 1397 // that has operands that can move the least. For example, given the 1398 // following lanes: 1399 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1400 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1401 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1402 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1403 // we will start at Lane 1, since the operands of the subtraction cannot 1404 // be reordered. Then we will visit the rest of the lanes in a circular 1405 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1406 1407 // Find the first lane that we will start our search from. 1408 unsigned FirstLane = getBestLaneToStartReordering(); 1409 1410 // Initialize the modes. 1411 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1412 Value *OpLane0 = getValue(OpIdx, FirstLane); 1413 // Keep track if we have instructions with all the same opcode on one 1414 // side. 1415 if (isa<LoadInst>(OpLane0)) 1416 ReorderingModes[OpIdx] = ReorderingMode::Load; 1417 else if (isa<Instruction>(OpLane0)) { 1418 // Check if OpLane0 should be broadcast. 1419 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1420 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1421 else 1422 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1423 } 1424 else if (isa<Constant>(OpLane0)) 1425 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1426 else if (isa<Argument>(OpLane0)) 1427 // Our best hope is a Splat. It may save some cost in some cases. 1428 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1429 else 1430 // NOTE: This should be unreachable. 1431 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1432 } 1433 1434 // If the initial strategy fails for any of the operand indexes, then we 1435 // perform reordering again in a second pass. This helps avoid assigning 1436 // high priority to the failed strategy, and should improve reordering for 1437 // the non-failed operand indexes. 1438 for (int Pass = 0; Pass != 2; ++Pass) { 1439 // Skip the second pass if the first pass did not fail. 1440 bool StrategyFailed = false; 1441 // Mark all operand data as free to use. 1442 clearUsed(); 1443 // We keep the original operand order for the FirstLane, so reorder the 1444 // rest of the lanes. We are visiting the nodes in a circular fashion, 1445 // using FirstLane as the center point and increasing the radius 1446 // distance. 1447 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1448 // Visit the lane on the right and then the lane on the left. 1449 for (int Direction : {+1, -1}) { 1450 int Lane = FirstLane + Direction * Distance; 1451 if (Lane < 0 || Lane >= (int)NumLanes) 1452 continue; 1453 int LastLane = Lane - Direction; 1454 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1455 "Out of bounds"); 1456 // Look for a good match for each operand. 1457 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1458 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1459 Optional<unsigned> BestIdx = 1460 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1461 // By not selecting a value, we allow the operands that follow to 1462 // select a better matching value. We will get a non-null value in 1463 // the next run of getBestOperand(). 1464 if (BestIdx) { 1465 // Swap the current operand with the one returned by 1466 // getBestOperand(). 1467 swap(OpIdx, BestIdx.getValue(), Lane); 1468 } else { 1469 // We failed to find a best operand, set mode to 'Failed'. 1470 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1471 // Enable the second pass. 1472 StrategyFailed = true; 1473 } 1474 } 1475 } 1476 } 1477 // Skip second pass if the strategy did not fail. 1478 if (!StrategyFailed) 1479 break; 1480 } 1481 } 1482 1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1484 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1485 switch (RMode) { 1486 case ReorderingMode::Load: 1487 return "Load"; 1488 case ReorderingMode::Opcode: 1489 return "Opcode"; 1490 case ReorderingMode::Constant: 1491 return "Constant"; 1492 case ReorderingMode::Splat: 1493 return "Splat"; 1494 case ReorderingMode::Failed: 1495 return "Failed"; 1496 } 1497 llvm_unreachable("Unimplemented Reordering Type"); 1498 } 1499 1500 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1501 raw_ostream &OS) { 1502 return OS << getModeStr(RMode); 1503 } 1504 1505 /// Debug print. 1506 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1507 printMode(RMode, dbgs()); 1508 } 1509 1510 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1511 return printMode(RMode, OS); 1512 } 1513 1514 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1515 const unsigned Indent = 2; 1516 unsigned Cnt = 0; 1517 for (const OperandDataVec &OpDataVec : OpsVec) { 1518 OS << "Operand " << Cnt++ << "\n"; 1519 for (const OperandData &OpData : OpDataVec) { 1520 OS.indent(Indent) << "{"; 1521 if (Value *V = OpData.V) 1522 OS << *V; 1523 else 1524 OS << "null"; 1525 OS << ", APO:" << OpData.APO << "}\n"; 1526 } 1527 OS << "\n"; 1528 } 1529 return OS; 1530 } 1531 1532 /// Debug print. 1533 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1534 #endif 1535 }; 1536 1537 /// Checks if the instruction is marked for deletion. 1538 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1539 1540 /// Marks values operands for later deletion by replacing them with Undefs. 1541 void eraseInstructions(ArrayRef<Value *> AV); 1542 1543 ~BoUpSLP(); 1544 1545 private: 1546 /// Checks if all users of \p I are the part of the vectorization tree. 1547 bool areAllUsersVectorized(Instruction *I, 1548 ArrayRef<Value *> VectorizedVals) const; 1549 1550 /// \returns the cost of the vectorizable entry. 1551 InstructionCost getEntryCost(const TreeEntry *E, 1552 ArrayRef<Value *> VectorizedVals); 1553 1554 /// This is the recursive part of buildTree. 1555 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1556 const EdgeInfo &EI); 1557 1558 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1559 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1560 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1561 /// returns false, setting \p CurrentOrder to either an empty vector or a 1562 /// non-identity permutation that allows to reuse extract instructions. 1563 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1564 SmallVectorImpl<unsigned> &CurrentOrder) const; 1565 1566 /// Vectorize a single entry in the tree. 1567 Value *vectorizeTree(TreeEntry *E); 1568 1569 /// Vectorize a single entry in the tree, starting in \p VL. 1570 Value *vectorizeTree(ArrayRef<Value *> VL); 1571 1572 /// \returns the scalarization cost for this type. Scalarization in this 1573 /// context means the creation of vectors from a group of scalars. 1574 InstructionCost 1575 getGatherCost(FixedVectorType *Ty, 1576 const DenseSet<unsigned> &ShuffledIndices) const; 1577 1578 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1579 /// tree entries. 1580 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1581 /// previous tree entries. \p Mask is filled with the shuffle mask. 1582 Optional<TargetTransformInfo::ShuffleKind> 1583 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1584 SmallVectorImpl<const TreeEntry *> &Entries); 1585 1586 /// \returns the scalarization cost for this list of values. Assuming that 1587 /// this subtree gets vectorized, we may need to extract the values from the 1588 /// roots. This method calculates the cost of extracting the values. 1589 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1590 1591 /// Set the Builder insert point to one after the last instruction in 1592 /// the bundle 1593 void setInsertPointAfterBundle(const TreeEntry *E); 1594 1595 /// \returns a vector from a collection of scalars in \p VL. 1596 Value *gather(ArrayRef<Value *> VL); 1597 1598 /// \returns whether the VectorizableTree is fully vectorizable and will 1599 /// be beneficial even the tree height is tiny. 1600 bool isFullyVectorizableTinyTree() const; 1601 1602 /// Reorder commutative or alt operands to get better probability of 1603 /// generating vectorized code. 1604 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1605 SmallVectorImpl<Value *> &Left, 1606 SmallVectorImpl<Value *> &Right, 1607 const DataLayout &DL, 1608 ScalarEvolution &SE, 1609 const BoUpSLP &R); 1610 struct TreeEntry { 1611 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1612 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1613 1614 /// \returns true if the scalars in VL are equal to this entry. 1615 bool isSame(ArrayRef<Value *> VL) const { 1616 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1617 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1618 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1619 return VL.size() == Mask.size() && 1620 std::equal( 1621 VL.begin(), VL.end(), Mask.begin(), 1622 [Scalars](Value *V, int Idx) { return V == Scalars[Idx]; }); 1623 }; 1624 if (!ReorderIndices.empty()) { 1625 // TODO: implement matching if the nodes are just reordered, still can 1626 // treat the vector as the same if the list of scalars matches VL 1627 // directly, without reordering. 1628 SmallVector<int> Mask; 1629 inversePermutation(ReorderIndices, Mask); 1630 if (VL.size() == Scalars.size()) 1631 return IsSame(Scalars, Mask); 1632 if (VL.size() == ReuseShuffleIndices.size()) { 1633 ::addMask(Mask, ReuseShuffleIndices); 1634 return IsSame(Scalars, Mask); 1635 } 1636 return false; 1637 } 1638 return IsSame(Scalars, ReuseShuffleIndices); 1639 } 1640 1641 /// A vector of scalars. 1642 ValueList Scalars; 1643 1644 /// The Scalars are vectorized into this value. It is initialized to Null. 1645 Value *VectorizedValue = nullptr; 1646 1647 /// Do we need to gather this sequence or vectorize it 1648 /// (either with vector instruction or with scatter/gather 1649 /// intrinsics for store/load)? 1650 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1651 EntryState State; 1652 1653 /// Does this sequence require some shuffling? 1654 SmallVector<int, 4> ReuseShuffleIndices; 1655 1656 /// Does this entry require reordering? 1657 SmallVector<unsigned, 4> ReorderIndices; 1658 1659 /// Points back to the VectorizableTree. 1660 /// 1661 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1662 /// to be a pointer and needs to be able to initialize the child iterator. 1663 /// Thus we need a reference back to the container to translate the indices 1664 /// to entries. 1665 VecTreeTy &Container; 1666 1667 /// The TreeEntry index containing the user of this entry. We can actually 1668 /// have multiple users so the data structure is not truly a tree. 1669 SmallVector<EdgeInfo, 1> UserTreeIndices; 1670 1671 /// The index of this treeEntry in VectorizableTree. 1672 int Idx = -1; 1673 1674 private: 1675 /// The operands of each instruction in each lane Operands[op_index][lane]. 1676 /// Note: This helps avoid the replication of the code that performs the 1677 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1678 SmallVector<ValueList, 2> Operands; 1679 1680 /// The main/alternate instruction. 1681 Instruction *MainOp = nullptr; 1682 Instruction *AltOp = nullptr; 1683 1684 public: 1685 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1686 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1687 if (Operands.size() < OpIdx + 1) 1688 Operands.resize(OpIdx + 1); 1689 assert(Operands[OpIdx].empty() && "Already resized?"); 1690 Operands[OpIdx].resize(Scalars.size()); 1691 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1692 Operands[OpIdx][Lane] = OpVL[Lane]; 1693 } 1694 1695 /// Set the operands of this bundle in their original order. 1696 void setOperandsInOrder() { 1697 assert(Operands.empty() && "Already initialized?"); 1698 auto *I0 = cast<Instruction>(Scalars[0]); 1699 Operands.resize(I0->getNumOperands()); 1700 unsigned NumLanes = Scalars.size(); 1701 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1702 OpIdx != NumOperands; ++OpIdx) { 1703 Operands[OpIdx].resize(NumLanes); 1704 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1705 auto *I = cast<Instruction>(Scalars[Lane]); 1706 assert(I->getNumOperands() == NumOperands && 1707 "Expected same number of operands"); 1708 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1709 } 1710 } 1711 } 1712 1713 /// Reorders operands of the node to the given mask \p Mask. 1714 void reorderOperands(ArrayRef<int> Mask) { 1715 for (ValueList &Operand : Operands) 1716 reorderScalars(Operand, Mask); 1717 } 1718 1719 /// \returns the \p OpIdx operand of this TreeEntry. 1720 ValueList &getOperand(unsigned OpIdx) { 1721 assert(OpIdx < Operands.size() && "Off bounds"); 1722 return Operands[OpIdx]; 1723 } 1724 1725 /// \returns the number of operands. 1726 unsigned getNumOperands() const { return Operands.size(); } 1727 1728 /// \return the single \p OpIdx operand. 1729 Value *getSingleOperand(unsigned OpIdx) const { 1730 assert(OpIdx < Operands.size() && "Off bounds"); 1731 assert(!Operands[OpIdx].empty() && "No operand available"); 1732 return Operands[OpIdx][0]; 1733 } 1734 1735 /// Some of the instructions in the list have alternate opcodes. 1736 bool isAltShuffle() const { 1737 return getOpcode() != getAltOpcode(); 1738 } 1739 1740 bool isOpcodeOrAlt(Instruction *I) const { 1741 unsigned CheckedOpcode = I->getOpcode(); 1742 return (getOpcode() == CheckedOpcode || 1743 getAltOpcode() == CheckedOpcode); 1744 } 1745 1746 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1747 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1748 /// \p OpValue. 1749 Value *isOneOf(Value *Op) const { 1750 auto *I = dyn_cast<Instruction>(Op); 1751 if (I && isOpcodeOrAlt(I)) 1752 return Op; 1753 return MainOp; 1754 } 1755 1756 void setOperations(const InstructionsState &S) { 1757 MainOp = S.MainOp; 1758 AltOp = S.AltOp; 1759 } 1760 1761 Instruction *getMainOp() const { 1762 return MainOp; 1763 } 1764 1765 Instruction *getAltOp() const { 1766 return AltOp; 1767 } 1768 1769 /// The main/alternate opcodes for the list of instructions. 1770 unsigned getOpcode() const { 1771 return MainOp ? MainOp->getOpcode() : 0; 1772 } 1773 1774 unsigned getAltOpcode() const { 1775 return AltOp ? AltOp->getOpcode() : 0; 1776 } 1777 1778 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1779 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1780 int findLaneForValue(Value *V) const { 1781 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1782 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1783 if (!ReorderIndices.empty()) 1784 FoundLane = ReorderIndices[FoundLane]; 1785 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1786 if (!ReuseShuffleIndices.empty()) { 1787 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1788 find(ReuseShuffleIndices, FoundLane)); 1789 } 1790 return FoundLane; 1791 } 1792 1793 #ifndef NDEBUG 1794 /// Debug printer. 1795 LLVM_DUMP_METHOD void dump() const { 1796 dbgs() << Idx << ".\n"; 1797 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1798 dbgs() << "Operand " << OpI << ":\n"; 1799 for (const Value *V : Operands[OpI]) 1800 dbgs().indent(2) << *V << "\n"; 1801 } 1802 dbgs() << "Scalars: \n"; 1803 for (Value *V : Scalars) 1804 dbgs().indent(2) << *V << "\n"; 1805 dbgs() << "State: "; 1806 switch (State) { 1807 case Vectorize: 1808 dbgs() << "Vectorize\n"; 1809 break; 1810 case ScatterVectorize: 1811 dbgs() << "ScatterVectorize\n"; 1812 break; 1813 case NeedToGather: 1814 dbgs() << "NeedToGather\n"; 1815 break; 1816 } 1817 dbgs() << "MainOp: "; 1818 if (MainOp) 1819 dbgs() << *MainOp << "\n"; 1820 else 1821 dbgs() << "NULL\n"; 1822 dbgs() << "AltOp: "; 1823 if (AltOp) 1824 dbgs() << *AltOp << "\n"; 1825 else 1826 dbgs() << "NULL\n"; 1827 dbgs() << "VectorizedValue: "; 1828 if (VectorizedValue) 1829 dbgs() << *VectorizedValue << "\n"; 1830 else 1831 dbgs() << "NULL\n"; 1832 dbgs() << "ReuseShuffleIndices: "; 1833 if (ReuseShuffleIndices.empty()) 1834 dbgs() << "Empty"; 1835 else 1836 for (unsigned ReuseIdx : ReuseShuffleIndices) 1837 dbgs() << ReuseIdx << ", "; 1838 dbgs() << "\n"; 1839 dbgs() << "ReorderIndices: "; 1840 for (unsigned ReorderIdx : ReorderIndices) 1841 dbgs() << ReorderIdx << ", "; 1842 dbgs() << "\n"; 1843 dbgs() << "UserTreeIndices: "; 1844 for (const auto &EInfo : UserTreeIndices) 1845 dbgs() << EInfo << ", "; 1846 dbgs() << "\n"; 1847 } 1848 #endif 1849 }; 1850 1851 #ifndef NDEBUG 1852 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1853 InstructionCost VecCost, 1854 InstructionCost ScalarCost) const { 1855 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1856 dbgs() << "SLP: Costs:\n"; 1857 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1858 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1859 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1860 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1861 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1862 } 1863 #endif 1864 1865 /// Create a new VectorizableTree entry. 1866 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1867 const InstructionsState &S, 1868 const EdgeInfo &UserTreeIdx, 1869 ArrayRef<int> ReuseShuffleIndices = None, 1870 ArrayRef<unsigned> ReorderIndices = None) { 1871 TreeEntry::EntryState EntryState = 1872 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1873 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1874 ReuseShuffleIndices, ReorderIndices); 1875 } 1876 1877 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1878 TreeEntry::EntryState EntryState, 1879 Optional<ScheduleData *> Bundle, 1880 const InstructionsState &S, 1881 const EdgeInfo &UserTreeIdx, 1882 ArrayRef<int> ReuseShuffleIndices = None, 1883 ArrayRef<unsigned> ReorderIndices = None) { 1884 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1885 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1886 "Need to vectorize gather entry?"); 1887 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1888 TreeEntry *Last = VectorizableTree.back().get(); 1889 Last->Idx = VectorizableTree.size() - 1; 1890 Last->State = EntryState; 1891 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1892 ReuseShuffleIndices.end()); 1893 if (ReorderIndices.empty()) { 1894 Last->Scalars.assign(VL.begin(), VL.end()); 1895 Last->setOperations(S); 1896 } else { 1897 // Reorder scalars and build final mask. 1898 Last->Scalars.assign(VL.size(), nullptr); 1899 transform(ReorderIndices, Last->Scalars.begin(), 1900 [VL](unsigned Idx) -> Value * { 1901 if (Idx >= VL.size()) 1902 return UndefValue::get(VL.front()->getType()); 1903 return VL[Idx]; 1904 }); 1905 InstructionsState S = getSameOpcode(Last->Scalars); 1906 Last->setOperations(S); 1907 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1908 } 1909 if (Last->State != TreeEntry::NeedToGather) { 1910 for (Value *V : VL) { 1911 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1912 ScalarToTreeEntry[V] = Last; 1913 } 1914 // Update the scheduler bundle to point to this TreeEntry. 1915 unsigned Lane = 0; 1916 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1917 BundleMember = BundleMember->NextInBundle) { 1918 BundleMember->TE = Last; 1919 BundleMember->Lane = Lane; 1920 ++Lane; 1921 } 1922 assert((!Bundle.getValue() || Lane == VL.size()) && 1923 "Bundle and VL out of sync"); 1924 } else { 1925 MustGather.insert(VL.begin(), VL.end()); 1926 } 1927 1928 if (UserTreeIdx.UserTE) 1929 Last->UserTreeIndices.push_back(UserTreeIdx); 1930 1931 return Last; 1932 } 1933 1934 /// -- Vectorization State -- 1935 /// Holds all of the tree entries. 1936 TreeEntry::VecTreeTy VectorizableTree; 1937 1938 #ifndef NDEBUG 1939 /// Debug printer. 1940 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1941 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1942 VectorizableTree[Id]->dump(); 1943 dbgs() << "\n"; 1944 } 1945 } 1946 #endif 1947 1948 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1949 1950 const TreeEntry *getTreeEntry(Value *V) const { 1951 return ScalarToTreeEntry.lookup(V); 1952 } 1953 1954 /// Maps a specific scalar to its tree entry. 1955 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1956 1957 /// Maps a value to the proposed vectorizable size. 1958 SmallDenseMap<Value *, unsigned> InstrElementSize; 1959 1960 /// A list of scalars that we found that we need to keep as scalars. 1961 ValueSet MustGather; 1962 1963 /// This POD struct describes one external user in the vectorized tree. 1964 struct ExternalUser { 1965 ExternalUser(Value *S, llvm::User *U, int L) 1966 : Scalar(S), User(U), Lane(L) {} 1967 1968 // Which scalar in our function. 1969 Value *Scalar; 1970 1971 // Which user that uses the scalar. 1972 llvm::User *User; 1973 1974 // Which lane does the scalar belong to. 1975 int Lane; 1976 }; 1977 using UserList = SmallVector<ExternalUser, 16>; 1978 1979 /// Checks if two instructions may access the same memory. 1980 /// 1981 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1982 /// is invariant in the calling loop. 1983 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1984 Instruction *Inst2) { 1985 // First check if the result is already in the cache. 1986 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1987 Optional<bool> &result = AliasCache[key]; 1988 if (result.hasValue()) { 1989 return result.getValue(); 1990 } 1991 bool aliased = true; 1992 if (Loc1.Ptr && isSimple(Inst1)) 1993 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 1994 // Store the result in the cache. 1995 result = aliased; 1996 return aliased; 1997 } 1998 1999 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2000 2001 /// Cache for alias results. 2002 /// TODO: consider moving this to the AliasAnalysis itself. 2003 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2004 2005 /// Removes an instruction from its block and eventually deletes it. 2006 /// It's like Instruction::eraseFromParent() except that the actual deletion 2007 /// is delayed until BoUpSLP is destructed. 2008 /// This is required to ensure that there are no incorrect collisions in the 2009 /// AliasCache, which can happen if a new instruction is allocated at the 2010 /// same address as a previously deleted instruction. 2011 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2012 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2013 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2014 } 2015 2016 /// Temporary store for deleted instructions. Instructions will be deleted 2017 /// eventually when the BoUpSLP is destructed. 2018 DenseMap<Instruction *, bool> DeletedInstructions; 2019 2020 /// A list of values that need to extracted out of the tree. 2021 /// This list holds pairs of (Internal Scalar : External User). External User 2022 /// can be nullptr, it means that this Internal Scalar will be used later, 2023 /// after vectorization. 2024 UserList ExternalUses; 2025 2026 /// Values used only by @llvm.assume calls. 2027 SmallPtrSet<const Value *, 32> EphValues; 2028 2029 /// Holds all of the instructions that we gathered. 2030 SetVector<Instruction *> GatherSeq; 2031 2032 /// A list of blocks that we are going to CSE. 2033 SetVector<BasicBlock *> CSEBlocks; 2034 2035 /// Contains all scheduling relevant data for an instruction. 2036 /// A ScheduleData either represents a single instruction or a member of an 2037 /// instruction bundle (= a group of instructions which is combined into a 2038 /// vector instruction). 2039 struct ScheduleData { 2040 // The initial value for the dependency counters. It means that the 2041 // dependencies are not calculated yet. 2042 enum { InvalidDeps = -1 }; 2043 2044 ScheduleData() = default; 2045 2046 void init(int BlockSchedulingRegionID, Value *OpVal) { 2047 FirstInBundle = this; 2048 NextInBundle = nullptr; 2049 NextLoadStore = nullptr; 2050 IsScheduled = false; 2051 SchedulingRegionID = BlockSchedulingRegionID; 2052 UnscheduledDepsInBundle = UnscheduledDeps; 2053 clearDependencies(); 2054 OpValue = OpVal; 2055 TE = nullptr; 2056 Lane = -1; 2057 } 2058 2059 /// Returns true if the dependency information has been calculated. 2060 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2061 2062 /// Returns true for single instructions and for bundle representatives 2063 /// (= the head of a bundle). 2064 bool isSchedulingEntity() const { return FirstInBundle == this; } 2065 2066 /// Returns true if it represents an instruction bundle and not only a 2067 /// single instruction. 2068 bool isPartOfBundle() const { 2069 return NextInBundle != nullptr || FirstInBundle != this; 2070 } 2071 2072 /// Returns true if it is ready for scheduling, i.e. it has no more 2073 /// unscheduled depending instructions/bundles. 2074 bool isReady() const { 2075 assert(isSchedulingEntity() && 2076 "can't consider non-scheduling entity for ready list"); 2077 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2078 } 2079 2080 /// Modifies the number of unscheduled dependencies, also updating it for 2081 /// the whole bundle. 2082 int incrementUnscheduledDeps(int Incr) { 2083 UnscheduledDeps += Incr; 2084 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2085 } 2086 2087 /// Sets the number of unscheduled dependencies to the number of 2088 /// dependencies. 2089 void resetUnscheduledDeps() { 2090 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2091 } 2092 2093 /// Clears all dependency information. 2094 void clearDependencies() { 2095 Dependencies = InvalidDeps; 2096 resetUnscheduledDeps(); 2097 MemoryDependencies.clear(); 2098 } 2099 2100 void dump(raw_ostream &os) const { 2101 if (!isSchedulingEntity()) { 2102 os << "/ " << *Inst; 2103 } else if (NextInBundle) { 2104 os << '[' << *Inst; 2105 ScheduleData *SD = NextInBundle; 2106 while (SD) { 2107 os << ';' << *SD->Inst; 2108 SD = SD->NextInBundle; 2109 } 2110 os << ']'; 2111 } else { 2112 os << *Inst; 2113 } 2114 } 2115 2116 Instruction *Inst = nullptr; 2117 2118 /// Points to the head in an instruction bundle (and always to this for 2119 /// single instructions). 2120 ScheduleData *FirstInBundle = nullptr; 2121 2122 /// Single linked list of all instructions in a bundle. Null if it is a 2123 /// single instruction. 2124 ScheduleData *NextInBundle = nullptr; 2125 2126 /// Single linked list of all memory instructions (e.g. load, store, call) 2127 /// in the block - until the end of the scheduling region. 2128 ScheduleData *NextLoadStore = nullptr; 2129 2130 /// The dependent memory instructions. 2131 /// This list is derived on demand in calculateDependencies(). 2132 SmallVector<ScheduleData *, 4> MemoryDependencies; 2133 2134 /// This ScheduleData is in the current scheduling region if this matches 2135 /// the current SchedulingRegionID of BlockScheduling. 2136 int SchedulingRegionID = 0; 2137 2138 /// Used for getting a "good" final ordering of instructions. 2139 int SchedulingPriority = 0; 2140 2141 /// The number of dependencies. Constitutes of the number of users of the 2142 /// instruction plus the number of dependent memory instructions (if any). 2143 /// This value is calculated on demand. 2144 /// If InvalidDeps, the number of dependencies is not calculated yet. 2145 int Dependencies = InvalidDeps; 2146 2147 /// The number of dependencies minus the number of dependencies of scheduled 2148 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2149 /// for scheduling. 2150 /// Note that this is negative as long as Dependencies is not calculated. 2151 int UnscheduledDeps = InvalidDeps; 2152 2153 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2154 /// single instructions. 2155 int UnscheduledDepsInBundle = InvalidDeps; 2156 2157 /// True if this instruction is scheduled (or considered as scheduled in the 2158 /// dry-run). 2159 bool IsScheduled = false; 2160 2161 /// Opcode of the current instruction in the schedule data. 2162 Value *OpValue = nullptr; 2163 2164 /// The TreeEntry that this instruction corresponds to. 2165 TreeEntry *TE = nullptr; 2166 2167 /// The lane of this node in the TreeEntry. 2168 int Lane = -1; 2169 }; 2170 2171 #ifndef NDEBUG 2172 friend inline raw_ostream &operator<<(raw_ostream &os, 2173 const BoUpSLP::ScheduleData &SD) { 2174 SD.dump(os); 2175 return os; 2176 } 2177 #endif 2178 2179 friend struct GraphTraits<BoUpSLP *>; 2180 friend struct DOTGraphTraits<BoUpSLP *>; 2181 2182 /// Contains all scheduling data for a basic block. 2183 struct BlockScheduling { 2184 BlockScheduling(BasicBlock *BB) 2185 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2186 2187 void clear() { 2188 ReadyInsts.clear(); 2189 ScheduleStart = nullptr; 2190 ScheduleEnd = nullptr; 2191 FirstLoadStoreInRegion = nullptr; 2192 LastLoadStoreInRegion = nullptr; 2193 2194 // Reduce the maximum schedule region size by the size of the 2195 // previous scheduling run. 2196 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2197 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2198 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2199 ScheduleRegionSize = 0; 2200 2201 // Make a new scheduling region, i.e. all existing ScheduleData is not 2202 // in the new region yet. 2203 ++SchedulingRegionID; 2204 } 2205 2206 ScheduleData *getScheduleData(Value *V) { 2207 ScheduleData *SD = ScheduleDataMap[V]; 2208 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2209 return SD; 2210 return nullptr; 2211 } 2212 2213 ScheduleData *getScheduleData(Value *V, Value *Key) { 2214 if (V == Key) 2215 return getScheduleData(V); 2216 auto I = ExtraScheduleDataMap.find(V); 2217 if (I != ExtraScheduleDataMap.end()) { 2218 ScheduleData *SD = I->second[Key]; 2219 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2220 return SD; 2221 } 2222 return nullptr; 2223 } 2224 2225 bool isInSchedulingRegion(ScheduleData *SD) const { 2226 return SD->SchedulingRegionID == SchedulingRegionID; 2227 } 2228 2229 /// Marks an instruction as scheduled and puts all dependent ready 2230 /// instructions into the ready-list. 2231 template <typename ReadyListType> 2232 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2233 SD->IsScheduled = true; 2234 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2235 2236 ScheduleData *BundleMember = SD; 2237 while (BundleMember) { 2238 if (BundleMember->Inst != BundleMember->OpValue) { 2239 BundleMember = BundleMember->NextInBundle; 2240 continue; 2241 } 2242 // Handle the def-use chain dependencies. 2243 2244 // Decrement the unscheduled counter and insert to ready list if ready. 2245 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2246 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2247 if (OpDef && OpDef->hasValidDependencies() && 2248 OpDef->incrementUnscheduledDeps(-1) == 0) { 2249 // There are no more unscheduled dependencies after 2250 // decrementing, so we can put the dependent instruction 2251 // into the ready list. 2252 ScheduleData *DepBundle = OpDef->FirstInBundle; 2253 assert(!DepBundle->IsScheduled && 2254 "already scheduled bundle gets ready"); 2255 ReadyList.insert(DepBundle); 2256 LLVM_DEBUG(dbgs() 2257 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2258 } 2259 }); 2260 }; 2261 2262 // If BundleMember is a vector bundle, its operands may have been 2263 // reordered duiring buildTree(). We therefore need to get its operands 2264 // through the TreeEntry. 2265 if (TreeEntry *TE = BundleMember->TE) { 2266 int Lane = BundleMember->Lane; 2267 assert(Lane >= 0 && "Lane not set"); 2268 2269 // Since vectorization tree is being built recursively this assertion 2270 // ensures that the tree entry has all operands set before reaching 2271 // this code. Couple of exceptions known at the moment are extracts 2272 // where their second (immediate) operand is not added. Since 2273 // immediates do not affect scheduler behavior this is considered 2274 // okay. 2275 auto *In = TE->getMainOp(); 2276 assert(In && 2277 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2278 In->getNumOperands() == TE->getNumOperands()) && 2279 "Missed TreeEntry operands?"); 2280 (void)In; // fake use to avoid build failure when assertions disabled 2281 2282 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2283 OpIdx != NumOperands; ++OpIdx) 2284 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2285 DecrUnsched(I); 2286 } else { 2287 // If BundleMember is a stand-alone instruction, no operand reordering 2288 // has taken place, so we directly access its operands. 2289 for (Use &U : BundleMember->Inst->operands()) 2290 if (auto *I = dyn_cast<Instruction>(U.get())) 2291 DecrUnsched(I); 2292 } 2293 // Handle the memory dependencies. 2294 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2295 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2296 // There are no more unscheduled dependencies after decrementing, 2297 // so we can put the dependent instruction into the ready list. 2298 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2299 assert(!DepBundle->IsScheduled && 2300 "already scheduled bundle gets ready"); 2301 ReadyList.insert(DepBundle); 2302 LLVM_DEBUG(dbgs() 2303 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2304 } 2305 } 2306 BundleMember = BundleMember->NextInBundle; 2307 } 2308 } 2309 2310 void doForAllOpcodes(Value *V, 2311 function_ref<void(ScheduleData *SD)> Action) { 2312 if (ScheduleData *SD = getScheduleData(V)) 2313 Action(SD); 2314 auto I = ExtraScheduleDataMap.find(V); 2315 if (I != ExtraScheduleDataMap.end()) 2316 for (auto &P : I->second) 2317 if (P.second->SchedulingRegionID == SchedulingRegionID) 2318 Action(P.second); 2319 } 2320 2321 /// Put all instructions into the ReadyList which are ready for scheduling. 2322 template <typename ReadyListType> 2323 void initialFillReadyList(ReadyListType &ReadyList) { 2324 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2325 doForAllOpcodes(I, [&](ScheduleData *SD) { 2326 if (SD->isSchedulingEntity() && SD->isReady()) { 2327 ReadyList.insert(SD); 2328 LLVM_DEBUG(dbgs() 2329 << "SLP: initially in ready list: " << *I << "\n"); 2330 } 2331 }); 2332 } 2333 } 2334 2335 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2336 /// cyclic dependencies. This is only a dry-run, no instructions are 2337 /// actually moved at this stage. 2338 /// \returns the scheduling bundle. The returned Optional value is non-None 2339 /// if \p VL is allowed to be scheduled. 2340 Optional<ScheduleData *> 2341 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2342 const InstructionsState &S); 2343 2344 /// Un-bundles a group of instructions. 2345 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2346 2347 /// Allocates schedule data chunk. 2348 ScheduleData *allocateScheduleDataChunks(); 2349 2350 /// Extends the scheduling region so that V is inside the region. 2351 /// \returns true if the region size is within the limit. 2352 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2353 2354 /// Initialize the ScheduleData structures for new instructions in the 2355 /// scheduling region. 2356 void initScheduleData(Instruction *FromI, Instruction *ToI, 2357 ScheduleData *PrevLoadStore, 2358 ScheduleData *NextLoadStore); 2359 2360 /// Updates the dependency information of a bundle and of all instructions/ 2361 /// bundles which depend on the original bundle. 2362 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2363 BoUpSLP *SLP); 2364 2365 /// Sets all instruction in the scheduling region to un-scheduled. 2366 void resetSchedule(); 2367 2368 BasicBlock *BB; 2369 2370 /// Simple memory allocation for ScheduleData. 2371 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2372 2373 /// The size of a ScheduleData array in ScheduleDataChunks. 2374 int ChunkSize; 2375 2376 /// The allocator position in the current chunk, which is the last entry 2377 /// of ScheduleDataChunks. 2378 int ChunkPos; 2379 2380 /// Attaches ScheduleData to Instruction. 2381 /// Note that the mapping survives during all vectorization iterations, i.e. 2382 /// ScheduleData structures are recycled. 2383 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2384 2385 /// Attaches ScheduleData to Instruction with the leading key. 2386 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2387 ExtraScheduleDataMap; 2388 2389 struct ReadyList : SmallVector<ScheduleData *, 8> { 2390 void insert(ScheduleData *SD) { push_back(SD); } 2391 }; 2392 2393 /// The ready-list for scheduling (only used for the dry-run). 2394 ReadyList ReadyInsts; 2395 2396 /// The first instruction of the scheduling region. 2397 Instruction *ScheduleStart = nullptr; 2398 2399 /// The first instruction _after_ the scheduling region. 2400 Instruction *ScheduleEnd = nullptr; 2401 2402 /// The first memory accessing instruction in the scheduling region 2403 /// (can be null). 2404 ScheduleData *FirstLoadStoreInRegion = nullptr; 2405 2406 /// The last memory accessing instruction in the scheduling region 2407 /// (can be null). 2408 ScheduleData *LastLoadStoreInRegion = nullptr; 2409 2410 /// The current size of the scheduling region. 2411 int ScheduleRegionSize = 0; 2412 2413 /// The maximum size allowed for the scheduling region. 2414 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2415 2416 /// The ID of the scheduling region. For a new vectorization iteration this 2417 /// is incremented which "removes" all ScheduleData from the region. 2418 // Make sure that the initial SchedulingRegionID is greater than the 2419 // initial SchedulingRegionID in ScheduleData (which is 0). 2420 int SchedulingRegionID = 1; 2421 }; 2422 2423 /// Attaches the BlockScheduling structures to basic blocks. 2424 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2425 2426 /// Performs the "real" scheduling. Done before vectorization is actually 2427 /// performed in a basic block. 2428 void scheduleBlock(BlockScheduling *BS); 2429 2430 /// List of users to ignore during scheduling and that don't need extracting. 2431 ArrayRef<Value *> UserIgnoreList; 2432 2433 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2434 /// sorted SmallVectors of unsigned. 2435 struct OrdersTypeDenseMapInfo { 2436 static OrdersType getEmptyKey() { 2437 OrdersType V; 2438 V.push_back(~1U); 2439 return V; 2440 } 2441 2442 static OrdersType getTombstoneKey() { 2443 OrdersType V; 2444 V.push_back(~2U); 2445 return V; 2446 } 2447 2448 static unsigned getHashValue(const OrdersType &V) { 2449 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2450 } 2451 2452 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2453 return LHS == RHS; 2454 } 2455 }; 2456 2457 // Analysis and block reference. 2458 Function *F; 2459 ScalarEvolution *SE; 2460 TargetTransformInfo *TTI; 2461 TargetLibraryInfo *TLI; 2462 AAResults *AA; 2463 LoopInfo *LI; 2464 DominatorTree *DT; 2465 AssumptionCache *AC; 2466 DemandedBits *DB; 2467 const DataLayout *DL; 2468 OptimizationRemarkEmitter *ORE; 2469 2470 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2471 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2472 2473 /// Instruction builder to construct the vectorized tree. 2474 IRBuilder<> Builder; 2475 2476 /// A map of scalar integer values to the smallest bit width with which they 2477 /// can legally be represented. The values map to (width, signed) pairs, 2478 /// where "width" indicates the minimum bit width and "signed" is True if the 2479 /// value must be signed-extended, rather than zero-extended, back to its 2480 /// original width. 2481 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2482 }; 2483 2484 } // end namespace slpvectorizer 2485 2486 template <> struct GraphTraits<BoUpSLP *> { 2487 using TreeEntry = BoUpSLP::TreeEntry; 2488 2489 /// NodeRef has to be a pointer per the GraphWriter. 2490 using NodeRef = TreeEntry *; 2491 2492 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2493 2494 /// Add the VectorizableTree to the index iterator to be able to return 2495 /// TreeEntry pointers. 2496 struct ChildIteratorType 2497 : public iterator_adaptor_base< 2498 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2499 ContainerTy &VectorizableTree; 2500 2501 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2502 ContainerTy &VT) 2503 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2504 2505 NodeRef operator*() { return I->UserTE; } 2506 }; 2507 2508 static NodeRef getEntryNode(BoUpSLP &R) { 2509 return R.VectorizableTree[0].get(); 2510 } 2511 2512 static ChildIteratorType child_begin(NodeRef N) { 2513 return {N->UserTreeIndices.begin(), N->Container}; 2514 } 2515 2516 static ChildIteratorType child_end(NodeRef N) { 2517 return {N->UserTreeIndices.end(), N->Container}; 2518 } 2519 2520 /// For the node iterator we just need to turn the TreeEntry iterator into a 2521 /// TreeEntry* iterator so that it dereferences to NodeRef. 2522 class nodes_iterator { 2523 using ItTy = ContainerTy::iterator; 2524 ItTy It; 2525 2526 public: 2527 nodes_iterator(const ItTy &It2) : It(It2) {} 2528 NodeRef operator*() { return It->get(); } 2529 nodes_iterator operator++() { 2530 ++It; 2531 return *this; 2532 } 2533 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2534 }; 2535 2536 static nodes_iterator nodes_begin(BoUpSLP *R) { 2537 return nodes_iterator(R->VectorizableTree.begin()); 2538 } 2539 2540 static nodes_iterator nodes_end(BoUpSLP *R) { 2541 return nodes_iterator(R->VectorizableTree.end()); 2542 } 2543 2544 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2545 }; 2546 2547 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2548 using TreeEntry = BoUpSLP::TreeEntry; 2549 2550 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2551 2552 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2553 std::string Str; 2554 raw_string_ostream OS(Str); 2555 if (isSplat(Entry->Scalars)) { 2556 OS << "<splat> " << *Entry->Scalars[0]; 2557 return Str; 2558 } 2559 for (auto V : Entry->Scalars) { 2560 OS << *V; 2561 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2562 return EU.Scalar == V; 2563 })) 2564 OS << " <extract>"; 2565 OS << "\n"; 2566 } 2567 return Str; 2568 } 2569 2570 static std::string getNodeAttributes(const TreeEntry *Entry, 2571 const BoUpSLP *) { 2572 if (Entry->State == TreeEntry::NeedToGather) 2573 return "color=red"; 2574 return ""; 2575 } 2576 }; 2577 2578 } // end namespace llvm 2579 2580 BoUpSLP::~BoUpSLP() { 2581 for (const auto &Pair : DeletedInstructions) { 2582 // Replace operands of ignored instructions with Undefs in case if they were 2583 // marked for deletion. 2584 if (Pair.getSecond()) { 2585 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2586 Pair.getFirst()->replaceAllUsesWith(Undef); 2587 } 2588 Pair.getFirst()->dropAllReferences(); 2589 } 2590 for (const auto &Pair : DeletedInstructions) { 2591 assert(Pair.getFirst()->use_empty() && 2592 "trying to erase instruction with users."); 2593 Pair.getFirst()->eraseFromParent(); 2594 } 2595 #ifdef EXPENSIVE_CHECKS 2596 // If we could guarantee that this call is not extremely slow, we could 2597 // remove the ifdef limitation (see PR47712). 2598 assert(!verifyFunction(*F, &dbgs())); 2599 #endif 2600 } 2601 2602 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2603 for (auto *V : AV) { 2604 if (auto *I = dyn_cast<Instruction>(V)) 2605 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2606 }; 2607 } 2608 2609 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2610 /// contains original mask for the scalars reused in the node. Procedure 2611 /// transform this mask in accordance with the given \p Mask. 2612 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2613 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2614 "Expected non-empty mask."); 2615 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2616 Prev.swap(Reuses); 2617 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2618 if (Mask[I] != UndefMaskElem) 2619 Reuses[Mask[I]] = Prev[I]; 2620 } 2621 2622 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2623 /// the original order of the scalars. Procedure transforms the provided order 2624 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2625 /// identity order, \p Order is cleared. 2626 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2627 assert(!Mask.empty() && "Expected non-empty mask."); 2628 SmallVector<int> MaskOrder; 2629 if (Order.empty()) { 2630 MaskOrder.resize(Mask.size()); 2631 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2632 } else { 2633 inversePermutation(Order, MaskOrder); 2634 } 2635 reorderReuses(MaskOrder, Mask); 2636 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2637 Order.clear(); 2638 return; 2639 } 2640 Order.assign(Mask.size(), Mask.size()); 2641 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2642 if (MaskOrder[I] != UndefMaskElem) 2643 Order[MaskOrder[I]] = I; 2644 fixupOrderingIndices(Order); 2645 } 2646 2647 void BoUpSLP::reorderTopToBottom() { 2648 // Maps VF to the graph nodes. 2649 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2650 // ExtractElement gather nodes which can be vectorized and need to handle 2651 // their ordering. 2652 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2653 // Find all reorderable nodes with the given VF. 2654 // Currently the are vectorized loads,extracts + some gathering of extracts. 2655 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2656 const std::unique_ptr<TreeEntry> &TE) { 2657 // No need to reorder if need to shuffle reuses, still need to shuffle the 2658 // node. 2659 if (!TE->ReuseShuffleIndices.empty()) 2660 return; 2661 if (TE->State == TreeEntry::Vectorize && 2662 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2663 InsertElementInst>(TE->getMainOp()) && 2664 !TE->isAltShuffle()) { 2665 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2666 } else if (TE->State == TreeEntry::NeedToGather && 2667 TE->getOpcode() == Instruction::ExtractElement && 2668 !TE->isAltShuffle() && 2669 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2670 ->getVectorOperandType()) && 2671 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2672 // Check that gather of extractelements can be represented as 2673 // just a shuffle of a single vector. 2674 OrdersType CurrentOrder; 2675 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2676 if (Reuse || !CurrentOrder.empty()) { 2677 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2678 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2679 } 2680 } 2681 }); 2682 2683 // Reorder the graph nodes according to their vectorization factor. 2684 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2685 VF /= 2) { 2686 auto It = VFToOrderedEntries.find(VF); 2687 if (It == VFToOrderedEntries.end()) 2688 continue; 2689 // Try to find the most profitable order. We just are looking for the most 2690 // used order and reorder scalar elements in the nodes according to this 2691 // mostly used order. 2692 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2693 // All operands are reordered and used only in this node - propagate the 2694 // most used order to the user node. 2695 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2696 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2697 for (const TreeEntry *OpTE : OrderedEntries) { 2698 // No need to reorder this nodes, still need to extend and to use shuffle, 2699 // just need to merge reordering shuffle and the reuse shuffle. 2700 if (!OpTE->ReuseShuffleIndices.empty()) 2701 continue; 2702 // Count number of orders uses. 2703 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2704 if (OpTE->State == TreeEntry::NeedToGather) 2705 return GathersToOrders.find(OpTE)->second; 2706 return OpTE->ReorderIndices; 2707 }(); 2708 // Stores actually store the mask, not the order, need to invert. 2709 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2710 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2711 SmallVector<int> Mask; 2712 inversePermutation(Order, Mask); 2713 unsigned E = Order.size(); 2714 OrdersType CurrentOrder(E, E); 2715 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2716 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2717 }); 2718 fixupOrderingIndices(CurrentOrder); 2719 ++OrdersUses.try_emplace(CurrentOrder).first->getSecond(); 2720 } else { 2721 ++OrdersUses.try_emplace(Order).first->getSecond(); 2722 } 2723 } 2724 // Set order of the user node. 2725 if (OrdersUses.empty()) 2726 continue; 2727 // Choose the most used order. 2728 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2729 unsigned Cnt = OrdersUses.begin()->second; 2730 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2731 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2732 BestOrder = Pair.first; 2733 Cnt = Pair.second; 2734 } 2735 } 2736 // Set order of the user node. 2737 if (BestOrder.empty()) 2738 continue; 2739 SmallVector<int> Mask; 2740 inversePermutation(BestOrder, Mask); 2741 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2742 unsigned E = BestOrder.size(); 2743 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2744 return I < E ? static_cast<int>(I) : UndefMaskElem; 2745 }); 2746 // Do an actual reordering, if profitable. 2747 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2748 // Just do the reordering for the nodes with the given VF. 2749 if (TE->Scalars.size() != VF) { 2750 if (TE->ReuseShuffleIndices.size() == VF) { 2751 // Need to reorder the reuses masks of the operands with smaller VF to 2752 // be able to find the match between the graph nodes and scalar 2753 // operands of the given node during vectorization/cost estimation. 2754 assert(all_of(TE->UserTreeIndices, 2755 [VF, &TE](const EdgeInfo &EI) { 2756 return EI.UserTE->Scalars.size() == VF || 2757 EI.UserTE->Scalars.size() == 2758 TE->Scalars.size(); 2759 }) && 2760 "All users must be of VF size."); 2761 // Update ordering of the operands with the smaller VF than the given 2762 // one. 2763 reorderReuses(TE->ReuseShuffleIndices, Mask); 2764 } 2765 continue; 2766 } 2767 if (TE->State == TreeEntry::Vectorize && 2768 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2769 InsertElementInst>(TE->getMainOp()) && 2770 !TE->isAltShuffle()) { 2771 // Build correct orders for extract{element,value}, loads and 2772 // stores. 2773 reorderOrder(TE->ReorderIndices, Mask); 2774 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2775 TE->reorderOperands(Mask); 2776 } else { 2777 // Reorder the node and its operands. 2778 TE->reorderOperands(Mask); 2779 assert(TE->ReorderIndices.empty() && 2780 "Expected empty reorder sequence."); 2781 reorderScalars(TE->Scalars, Mask); 2782 } 2783 if (!TE->ReuseShuffleIndices.empty()) { 2784 // Apply reversed order to keep the original ordering of the reused 2785 // elements to avoid extra reorder indices shuffling. 2786 OrdersType CurrentOrder; 2787 reorderOrder(CurrentOrder, MaskOrder); 2788 SmallVector<int> NewReuses; 2789 inversePermutation(CurrentOrder, NewReuses); 2790 addMask(NewReuses, TE->ReuseShuffleIndices); 2791 TE->ReuseShuffleIndices.swap(NewReuses); 2792 } 2793 } 2794 } 2795 } 2796 2797 void BoUpSLP::reorderBottomToTop() { 2798 SetVector<TreeEntry *> OrderedEntries; 2799 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2800 // Find all reorderable leaf nodes with the given VF. 2801 // Currently the are vectorized loads,extracts without alternate operands + 2802 // some gathering of extracts. 2803 SmallVector<TreeEntry *> NonVectorized; 2804 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2805 &NonVectorized]( 2806 const std::unique_ptr<TreeEntry> &TE) { 2807 // No need to reorder if need to shuffle reuses, still need to shuffle the 2808 // node. 2809 if (!TE->ReuseShuffleIndices.empty()) 2810 return; 2811 if (TE->State == TreeEntry::Vectorize && 2812 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2813 !TE->isAltShuffle()) { 2814 OrderedEntries.insert(TE.get()); 2815 } else if (TE->State == TreeEntry::NeedToGather && 2816 TE->getOpcode() == Instruction::ExtractElement && 2817 !TE->isAltShuffle() && 2818 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2819 ->getVectorOperandType()) && 2820 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2821 // Check that gather of extractelements can be represented as 2822 // just a shuffle of a single vector with a single user only. 2823 OrdersType CurrentOrder; 2824 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2825 if ((Reuse || !CurrentOrder.empty()) && 2826 !any_of( 2827 VectorizableTree, [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2828 return Entry->State == TreeEntry::NeedToGather && 2829 Entry.get() != TE.get() && Entry->isSame(TE->Scalars); 2830 })) { 2831 OrderedEntries.insert(TE.get()); 2832 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2833 } 2834 } 2835 if (TE->State != TreeEntry::Vectorize) 2836 NonVectorized.push_back(TE.get()); 2837 }); 2838 2839 // Checks if the operands of the users are reordarable and have only single 2840 // use. 2841 auto &&CheckOperands = 2842 [this, &NonVectorized](const auto &Data, 2843 SmallVectorImpl<TreeEntry *> &GatherOps) { 2844 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2845 if (any_of(Data.second, 2846 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2847 return OpData.first == I && 2848 OpData.second->State == TreeEntry::Vectorize; 2849 })) 2850 continue; 2851 ArrayRef<Value *> VL = Data.first->getOperand(I); 2852 const TreeEntry *TE = nullptr; 2853 const auto *It = find_if(VL, [this, &TE](Value *V) { 2854 TE = getTreeEntry(V); 2855 return TE; 2856 }); 2857 if (It != VL.end() && TE->isSame(VL)) 2858 return false; 2859 TreeEntry *Gather = nullptr; 2860 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2861 assert(TE->State != TreeEntry::Vectorize && 2862 "Only non-vectorized nodes are expected."); 2863 if (TE->isSame(VL)) { 2864 Gather = TE; 2865 return true; 2866 } 2867 return false; 2868 }) > 1) 2869 return false; 2870 if (Gather) 2871 GatherOps.push_back(Gather); 2872 } 2873 return true; 2874 }; 2875 // 1. Propagate order to the graph nodes, which use only reordered nodes. 2876 // I.e., if the node has operands, that are reordered, try to make at least 2877 // one operand order in the natural order and reorder others + reorder the 2878 // user node itself. 2879 SmallPtrSet<const TreeEntry *, 4> Visited; 2880 while (!OrderedEntries.empty()) { 2881 // 1. Filter out only reordered nodes. 2882 // 2. If the entry has multiple uses - skip it and jump to the next node. 2883 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 2884 SmallVector<TreeEntry *> Filtered; 2885 for (TreeEntry *TE : OrderedEntries) { 2886 if (!(TE->State == TreeEntry::Vectorize || 2887 (TE->State == TreeEntry::NeedToGather && 2888 TE->getOpcode() == Instruction::ExtractElement)) || 2889 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 2890 !all_of(drop_begin(TE->UserTreeIndices), 2891 [TE](const EdgeInfo &EI) { 2892 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 2893 }) || 2894 !Visited.insert(TE).second) { 2895 Filtered.push_back(TE); 2896 continue; 2897 } 2898 // Build a map between user nodes and their operands order to speedup 2899 // search. The graph currently does not provide this dependency directly. 2900 for (EdgeInfo &EI : TE->UserTreeIndices) { 2901 TreeEntry *UserTE = EI.UserTE; 2902 auto It = Users.find(UserTE); 2903 if (It == Users.end()) 2904 It = Users.insert({UserTE, {}}).first; 2905 It->second.emplace_back(EI.EdgeIdx, TE); 2906 } 2907 } 2908 // Erase filtered entries. 2909 for_each(Filtered, 2910 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 2911 for (const auto &Data : Users) { 2912 // Check that operands are used only in the User node. 2913 SmallVector<TreeEntry *> GatherOps; 2914 if (!CheckOperands(Data, GatherOps)) { 2915 for_each(Data.second, 2916 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2917 OrderedEntries.remove(Op.second); 2918 }); 2919 continue; 2920 } 2921 // All operands are reordered and used only in this node - propagate the 2922 // most used order to the user node. 2923 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2924 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2925 for (const auto &Op : Data.second) { 2926 TreeEntry *OpTE = Op.second; 2927 if (!OpTE->ReuseShuffleIndices.empty()) 2928 continue; 2929 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2930 if (OpTE->State == TreeEntry::NeedToGather) 2931 return GathersToOrders.find(OpTE)->second; 2932 return OpTE->ReorderIndices; 2933 }(); 2934 // Stores actually store the mask, not the order, need to invert. 2935 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2936 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2937 SmallVector<int> Mask; 2938 inversePermutation(Order, Mask); 2939 unsigned E = Order.size(); 2940 OrdersType CurrentOrder(E, E); 2941 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2942 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2943 }); 2944 fixupOrderingIndices(CurrentOrder); 2945 ++OrdersUses.try_emplace(CurrentOrder).first->getSecond(); 2946 } else { 2947 ++OrdersUses.try_emplace(Order).first->getSecond(); 2948 } 2949 if (VisitedOps.insert(OpTE).second) 2950 OrdersUses.try_emplace({}, 0).first->getSecond() += 2951 OpTE->UserTreeIndices.size(); 2952 --OrdersUses[{}]; 2953 } 2954 // If no orders - skip current nodes and jump to the next one, if any. 2955 if (OrdersUses.empty()) { 2956 for_each(Data.second, 2957 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2958 OrderedEntries.remove(Op.second); 2959 }); 2960 continue; 2961 } 2962 // Choose the best order. 2963 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2964 unsigned Cnt = OrdersUses.begin()->second; 2965 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2966 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2967 BestOrder = Pair.first; 2968 Cnt = Pair.second; 2969 } 2970 } 2971 // Set order of the user node (reordering of operands and user nodes). 2972 if (BestOrder.empty()) { 2973 for_each(Data.second, 2974 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2975 OrderedEntries.remove(Op.second); 2976 }); 2977 continue; 2978 } 2979 // Erase operands from OrderedEntries list and adjust their orders. 2980 VisitedOps.clear(); 2981 SmallVector<int> Mask; 2982 inversePermutation(BestOrder, Mask); 2983 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2984 unsigned E = BestOrder.size(); 2985 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2986 return I < E ? static_cast<int>(I) : UndefMaskElem; 2987 }); 2988 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 2989 TreeEntry *TE = Op.second; 2990 OrderedEntries.remove(TE); 2991 if (!VisitedOps.insert(TE).second) 2992 continue; 2993 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 2994 // Just reorder reuses indices. 2995 reorderReuses(TE->ReuseShuffleIndices, Mask); 2996 continue; 2997 } 2998 // Gathers are processed separately. 2999 if (TE->State != TreeEntry::Vectorize) 3000 continue; 3001 assert((BestOrder.size() == TE->ReorderIndices.size() || 3002 TE->ReorderIndices.empty()) && 3003 "Non-matching sizes of user/operand entries."); 3004 reorderOrder(TE->ReorderIndices, Mask); 3005 } 3006 // For gathers just need to reorder its scalars. 3007 for (TreeEntry *Gather : GatherOps) { 3008 if (!Gather->ReuseShuffleIndices.empty()) 3009 continue; 3010 assert(Gather->ReorderIndices.empty() && 3011 "Unexpected reordering of gathers."); 3012 reorderScalars(Gather->Scalars, Mask); 3013 OrderedEntries.remove(Gather); 3014 } 3015 // Reorder operands of the user node and set the ordering for the user 3016 // node itself. 3017 if (Data.first->State != TreeEntry::Vectorize || 3018 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3019 Data.first->getMainOp()) || 3020 Data.first->isAltShuffle()) 3021 Data.first->reorderOperands(Mask); 3022 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3023 Data.first->isAltShuffle()) { 3024 reorderScalars(Data.first->Scalars, Mask); 3025 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3026 if (Data.first->ReuseShuffleIndices.empty() && 3027 !Data.first->ReorderIndices.empty() && 3028 !Data.first->isAltShuffle()) { 3029 // Insert user node to the list to try to sink reordering deeper in 3030 // the graph. 3031 OrderedEntries.insert(Data.first); 3032 } 3033 } else { 3034 reorderOrder(Data.first->ReorderIndices, Mask); 3035 } 3036 } 3037 } 3038 } 3039 3040 void BoUpSLP::buildExternalUses( 3041 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3042 // Collect the values that we need to extract from the tree. 3043 for (auto &TEPtr : VectorizableTree) { 3044 TreeEntry *Entry = TEPtr.get(); 3045 3046 // No need to handle users of gathered values. 3047 if (Entry->State == TreeEntry::NeedToGather) 3048 continue; 3049 3050 // For each lane: 3051 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3052 Value *Scalar = Entry->Scalars[Lane]; 3053 int FoundLane = Entry->findLaneForValue(Scalar); 3054 3055 // Check if the scalar is externally used as an extra arg. 3056 auto ExtI = ExternallyUsedValues.find(Scalar); 3057 if (ExtI != ExternallyUsedValues.end()) { 3058 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3059 << Lane << " from " << *Scalar << ".\n"); 3060 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3061 } 3062 for (User *U : Scalar->users()) { 3063 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3064 3065 Instruction *UserInst = dyn_cast<Instruction>(U); 3066 if (!UserInst) 3067 continue; 3068 3069 if (isDeleted(UserInst)) 3070 continue; 3071 3072 // Skip in-tree scalars that become vectors 3073 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3074 Value *UseScalar = UseEntry->Scalars[0]; 3075 // Some in-tree scalars will remain as scalar in vectorized 3076 // instructions. If that is the case, the one in Lane 0 will 3077 // be used. 3078 if (UseScalar != U || 3079 UseEntry->State == TreeEntry::ScatterVectorize || 3080 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3081 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3082 << ".\n"); 3083 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3084 continue; 3085 } 3086 } 3087 3088 // Ignore users in the user ignore list. 3089 if (is_contained(UserIgnoreList, UserInst)) 3090 continue; 3091 3092 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3093 << Lane << " from " << *Scalar << ".\n"); 3094 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3095 } 3096 } 3097 } 3098 } 3099 3100 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3101 ArrayRef<Value *> UserIgnoreLst) { 3102 deleteTree(); 3103 UserIgnoreList = UserIgnoreLst; 3104 if (!allSameType(Roots)) 3105 return; 3106 buildTree_rec(Roots, 0, EdgeInfo()); 3107 } 3108 3109 namespace { 3110 /// Tracks the state we can represent the loads in the given sequence. 3111 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3112 } // anonymous namespace 3113 3114 /// Checks if the given array of loads can be represented as a vectorized, 3115 /// scatter or just simple gather. 3116 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3117 const TargetTransformInfo &TTI, 3118 const DataLayout &DL, ScalarEvolution &SE, 3119 SmallVectorImpl<unsigned> &Order, 3120 SmallVectorImpl<Value *> &PointerOps) { 3121 // Check that a vectorized load would load the same memory as a scalar 3122 // load. For example, we don't want to vectorize loads that are smaller 3123 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3124 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3125 // from such a struct, we read/write packed bits disagreeing with the 3126 // unvectorized version. 3127 Type *ScalarTy = VL0->getType(); 3128 3129 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3130 return LoadsState::Gather; 3131 3132 // Make sure all loads in the bundle are simple - we can't vectorize 3133 // atomic or volatile loads. 3134 PointerOps.clear(); 3135 PointerOps.resize(VL.size()); 3136 auto *POIter = PointerOps.begin(); 3137 for (Value *V : VL) { 3138 auto *L = cast<LoadInst>(V); 3139 if (!L->isSimple()) 3140 return LoadsState::Gather; 3141 *POIter = L->getPointerOperand(); 3142 ++POIter; 3143 } 3144 3145 Order.clear(); 3146 // Check the order of pointer operands. 3147 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3148 Value *Ptr0; 3149 Value *PtrN; 3150 if (Order.empty()) { 3151 Ptr0 = PointerOps.front(); 3152 PtrN = PointerOps.back(); 3153 } else { 3154 Ptr0 = PointerOps[Order.front()]; 3155 PtrN = PointerOps[Order.back()]; 3156 } 3157 Optional<int> Diff = 3158 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3159 // Check that the sorted loads are consecutive. 3160 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3161 return LoadsState::Vectorize; 3162 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3163 for (Value *V : VL) 3164 CommonAlignment = 3165 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3166 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3167 CommonAlignment)) 3168 return LoadsState::ScatterVectorize; 3169 } 3170 3171 return LoadsState::Gather; 3172 } 3173 3174 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3175 const EdgeInfo &UserTreeIdx) { 3176 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3177 3178 InstructionsState S = getSameOpcode(VL); 3179 if (Depth == RecursionMaxDepth) { 3180 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3181 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3182 return; 3183 } 3184 3185 // Don't handle scalable vectors 3186 if (S.getOpcode() == Instruction::ExtractElement && 3187 isa<ScalableVectorType>( 3188 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3189 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3190 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3191 return; 3192 } 3193 3194 // Don't handle vectors. 3195 if (S.OpValue->getType()->isVectorTy() && 3196 !isa<InsertElementInst>(S.OpValue)) { 3197 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3198 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3199 return; 3200 } 3201 3202 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3203 if (SI->getValueOperand()->getType()->isVectorTy()) { 3204 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3205 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3206 return; 3207 } 3208 3209 // If all of the operands are identical or constant we have a simple solution. 3210 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 3211 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3213 return; 3214 } 3215 3216 // We now know that this is a vector of instructions of the same type from 3217 // the same block. 3218 3219 // Don't vectorize ephemeral values. 3220 for (Value *V : VL) { 3221 if (EphValues.count(V)) { 3222 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3223 << ") is ephemeral.\n"); 3224 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3225 return; 3226 } 3227 } 3228 3229 // Check if this is a duplicate of another entry. 3230 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3231 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3232 if (!E->isSame(VL)) { 3233 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3235 return; 3236 } 3237 // Record the reuse of the tree node. FIXME, currently this is only used to 3238 // properly draw the graph rather than for the actual vectorization. 3239 E->UserTreeIndices.push_back(UserTreeIdx); 3240 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3241 << ".\n"); 3242 return; 3243 } 3244 3245 // Check that none of the instructions in the bundle are already in the tree. 3246 for (Value *V : VL) { 3247 auto *I = dyn_cast<Instruction>(V); 3248 if (!I) 3249 continue; 3250 if (getTreeEntry(I)) { 3251 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3252 << ") is already in tree.\n"); 3253 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3254 return; 3255 } 3256 } 3257 3258 // If any of the scalars is marked as a value that needs to stay scalar, then 3259 // we need to gather the scalars. 3260 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3261 for (Value *V : VL) { 3262 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3263 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3264 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3265 return; 3266 } 3267 } 3268 3269 // Check that all of the users of the scalars that we want to vectorize are 3270 // schedulable. 3271 auto *VL0 = cast<Instruction>(S.OpValue); 3272 BasicBlock *BB = VL0->getParent(); 3273 3274 if (!DT->isReachableFromEntry(BB)) { 3275 // Don't go into unreachable blocks. They may contain instructions with 3276 // dependency cycles which confuse the final scheduling. 3277 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3278 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3279 return; 3280 } 3281 3282 // Check that every instruction appears once in this bundle. 3283 SmallVector<int> ReuseShuffleIndicies; 3284 SmallVector<Value *, 4> UniqueValues; 3285 DenseMap<Value *, unsigned> UniquePositions; 3286 for (Value *V : VL) { 3287 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3288 ReuseShuffleIndicies.emplace_back(Res.first->second); 3289 if (Res.second) 3290 UniqueValues.emplace_back(V); 3291 } 3292 size_t NumUniqueScalarValues = UniqueValues.size(); 3293 if (NumUniqueScalarValues == VL.size()) { 3294 ReuseShuffleIndicies.clear(); 3295 } else { 3296 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3297 if (NumUniqueScalarValues <= 1 || 3298 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3299 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3300 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3301 return; 3302 } 3303 VL = UniqueValues; 3304 } 3305 3306 auto &BSRef = BlocksSchedules[BB]; 3307 if (!BSRef) 3308 BSRef = std::make_unique<BlockScheduling>(BB); 3309 3310 BlockScheduling &BS = *BSRef.get(); 3311 3312 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3313 if (!Bundle) { 3314 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3315 assert((!BS.getScheduleData(VL0) || 3316 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3317 "tryScheduleBundle should cancelScheduling on failure"); 3318 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3319 ReuseShuffleIndicies); 3320 return; 3321 } 3322 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3323 3324 unsigned ShuffleOrOp = S.isAltShuffle() ? 3325 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3326 switch (ShuffleOrOp) { 3327 case Instruction::PHI: { 3328 auto *PH = cast<PHINode>(VL0); 3329 3330 // Check for terminator values (e.g. invoke). 3331 for (Value *V : VL) 3332 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3333 Instruction *Term = dyn_cast<Instruction>( 3334 cast<PHINode>(V)->getIncomingValueForBlock( 3335 PH->getIncomingBlock(I))); 3336 if (Term && Term->isTerminator()) { 3337 LLVM_DEBUG(dbgs() 3338 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3339 BS.cancelScheduling(VL, VL0); 3340 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3341 ReuseShuffleIndicies); 3342 return; 3343 } 3344 } 3345 3346 TreeEntry *TE = 3347 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3348 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3349 3350 // Keeps the reordered operands to avoid code duplication. 3351 SmallVector<ValueList, 2> OperandsVec; 3352 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3353 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3354 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3355 TE->setOperand(I, Operands); 3356 OperandsVec.push_back(Operands); 3357 continue; 3358 } 3359 ValueList Operands; 3360 // Prepare the operand vector. 3361 for (Value *V : VL) 3362 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3363 PH->getIncomingBlock(I))); 3364 TE->setOperand(I, Operands); 3365 OperandsVec.push_back(Operands); 3366 } 3367 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3368 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3369 return; 3370 } 3371 case Instruction::ExtractValue: 3372 case Instruction::ExtractElement: { 3373 OrdersType CurrentOrder; 3374 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3375 if (Reuse) { 3376 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3377 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3378 ReuseShuffleIndicies); 3379 // This is a special case, as it does not gather, but at the same time 3380 // we are not extending buildTree_rec() towards the operands. 3381 ValueList Op0; 3382 Op0.assign(VL.size(), VL0->getOperand(0)); 3383 VectorizableTree.back()->setOperand(0, Op0); 3384 return; 3385 } 3386 if (!CurrentOrder.empty()) { 3387 LLVM_DEBUG({ 3388 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3389 "with order"; 3390 for (unsigned Idx : CurrentOrder) 3391 dbgs() << " " << Idx; 3392 dbgs() << "\n"; 3393 }); 3394 fixupOrderingIndices(CurrentOrder); 3395 // Insert new order with initial value 0, if it does not exist, 3396 // otherwise return the iterator to the existing one. 3397 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3398 ReuseShuffleIndicies, CurrentOrder); 3399 // This is a special case, as it does not gather, but at the same time 3400 // we are not extending buildTree_rec() towards the operands. 3401 ValueList Op0; 3402 Op0.assign(VL.size(), VL0->getOperand(0)); 3403 VectorizableTree.back()->setOperand(0, Op0); 3404 return; 3405 } 3406 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3407 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3408 ReuseShuffleIndicies); 3409 BS.cancelScheduling(VL, VL0); 3410 return; 3411 } 3412 case Instruction::InsertElement: { 3413 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3414 3415 // Check that we have a buildvector and not a shuffle of 2 or more 3416 // different vectors. 3417 ValueSet SourceVectors; 3418 int MinIdx = std::numeric_limits<int>::max(); 3419 for (Value *V : VL) { 3420 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3421 Optional<int> Idx = *getInsertIndex(V, 0); 3422 if (!Idx || *Idx == UndefMaskElem) 3423 continue; 3424 MinIdx = std::min(MinIdx, *Idx); 3425 } 3426 3427 if (count_if(VL, [&SourceVectors](Value *V) { 3428 return !SourceVectors.contains(V); 3429 }) >= 2) { 3430 // Found 2nd source vector - cancel. 3431 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3432 "different source vectors.\n"); 3433 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3434 BS.cancelScheduling(VL, VL0); 3435 return; 3436 } 3437 3438 auto OrdCompare = [](const std::pair<int, int> &P1, 3439 const std::pair<int, int> &P2) { 3440 return P1.first > P2.first; 3441 }; 3442 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3443 decltype(OrdCompare)> 3444 Indices(OrdCompare); 3445 for (int I = 0, E = VL.size(); I < E; ++I) { 3446 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3447 if (!Idx || *Idx == UndefMaskElem) 3448 continue; 3449 Indices.emplace(*Idx, I); 3450 } 3451 OrdersType CurrentOrder(VL.size(), VL.size()); 3452 bool IsIdentity = true; 3453 for (int I = 0, E = VL.size(); I < E; ++I) { 3454 CurrentOrder[Indices.top().second] = I; 3455 IsIdentity &= Indices.top().second == I; 3456 Indices.pop(); 3457 } 3458 if (IsIdentity) 3459 CurrentOrder.clear(); 3460 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3461 None, CurrentOrder); 3462 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3463 3464 constexpr int NumOps = 2; 3465 ValueList VectorOperands[NumOps]; 3466 for (int I = 0; I < NumOps; ++I) { 3467 for (Value *V : VL) 3468 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3469 3470 TE->setOperand(I, VectorOperands[I]); 3471 } 3472 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3473 return; 3474 } 3475 case Instruction::Load: { 3476 // Check that a vectorized load would load the same memory as a scalar 3477 // load. For example, we don't want to vectorize loads that are smaller 3478 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3479 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3480 // from such a struct, we read/write packed bits disagreeing with the 3481 // unvectorized version. 3482 SmallVector<Value *> PointerOps; 3483 OrdersType CurrentOrder; 3484 TreeEntry *TE = nullptr; 3485 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3486 PointerOps)) { 3487 case LoadsState::Vectorize: 3488 if (CurrentOrder.empty()) { 3489 // Original loads are consecutive and does not require reordering. 3490 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3491 ReuseShuffleIndicies); 3492 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3493 } else { 3494 fixupOrderingIndices(CurrentOrder); 3495 // Need to reorder. 3496 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3497 ReuseShuffleIndicies, CurrentOrder); 3498 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3499 } 3500 TE->setOperandsInOrder(); 3501 break; 3502 case LoadsState::ScatterVectorize: 3503 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3504 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3505 UserTreeIdx, ReuseShuffleIndicies); 3506 TE->setOperandsInOrder(); 3507 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3508 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3509 break; 3510 case LoadsState::Gather: 3511 BS.cancelScheduling(VL, VL0); 3512 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3513 ReuseShuffleIndicies); 3514 #ifndef NDEBUG 3515 Type *ScalarTy = VL0->getType(); 3516 if (DL->getTypeSizeInBits(ScalarTy) != 3517 DL->getTypeAllocSizeInBits(ScalarTy)) 3518 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3519 else if (any_of(VL, [](Value *V) { 3520 return !cast<LoadInst>(V)->isSimple(); 3521 })) 3522 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3523 else 3524 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3525 #endif // NDEBUG 3526 break; 3527 } 3528 return; 3529 } 3530 case Instruction::ZExt: 3531 case Instruction::SExt: 3532 case Instruction::FPToUI: 3533 case Instruction::FPToSI: 3534 case Instruction::FPExt: 3535 case Instruction::PtrToInt: 3536 case Instruction::IntToPtr: 3537 case Instruction::SIToFP: 3538 case Instruction::UIToFP: 3539 case Instruction::Trunc: 3540 case Instruction::FPTrunc: 3541 case Instruction::BitCast: { 3542 Type *SrcTy = VL0->getOperand(0)->getType(); 3543 for (Value *V : VL) { 3544 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3545 if (Ty != SrcTy || !isValidElementType(Ty)) { 3546 BS.cancelScheduling(VL, VL0); 3547 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3548 ReuseShuffleIndicies); 3549 LLVM_DEBUG(dbgs() 3550 << "SLP: Gathering casts with different src types.\n"); 3551 return; 3552 } 3553 } 3554 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3555 ReuseShuffleIndicies); 3556 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3557 3558 TE->setOperandsInOrder(); 3559 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3560 ValueList Operands; 3561 // Prepare the operand vector. 3562 for (Value *V : VL) 3563 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3564 3565 buildTree_rec(Operands, Depth + 1, {TE, i}); 3566 } 3567 return; 3568 } 3569 case Instruction::ICmp: 3570 case Instruction::FCmp: { 3571 // Check that all of the compares have the same predicate. 3572 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3573 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3574 Type *ComparedTy = VL0->getOperand(0)->getType(); 3575 for (Value *V : VL) { 3576 CmpInst *Cmp = cast<CmpInst>(V); 3577 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3578 Cmp->getOperand(0)->getType() != ComparedTy) { 3579 BS.cancelScheduling(VL, VL0); 3580 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3581 ReuseShuffleIndicies); 3582 LLVM_DEBUG(dbgs() 3583 << "SLP: Gathering cmp with different predicate.\n"); 3584 return; 3585 } 3586 } 3587 3588 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3589 ReuseShuffleIndicies); 3590 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3591 3592 ValueList Left, Right; 3593 if (cast<CmpInst>(VL0)->isCommutative()) { 3594 // Commutative predicate - collect + sort operands of the instructions 3595 // so that each side is more likely to have the same opcode. 3596 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3597 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3598 } else { 3599 // Collect operands - commute if it uses the swapped predicate. 3600 for (Value *V : VL) { 3601 auto *Cmp = cast<CmpInst>(V); 3602 Value *LHS = Cmp->getOperand(0); 3603 Value *RHS = Cmp->getOperand(1); 3604 if (Cmp->getPredicate() != P0) 3605 std::swap(LHS, RHS); 3606 Left.push_back(LHS); 3607 Right.push_back(RHS); 3608 } 3609 } 3610 TE->setOperand(0, Left); 3611 TE->setOperand(1, Right); 3612 buildTree_rec(Left, Depth + 1, {TE, 0}); 3613 buildTree_rec(Right, Depth + 1, {TE, 1}); 3614 return; 3615 } 3616 case Instruction::Select: 3617 case Instruction::FNeg: 3618 case Instruction::Add: 3619 case Instruction::FAdd: 3620 case Instruction::Sub: 3621 case Instruction::FSub: 3622 case Instruction::Mul: 3623 case Instruction::FMul: 3624 case Instruction::UDiv: 3625 case Instruction::SDiv: 3626 case Instruction::FDiv: 3627 case Instruction::URem: 3628 case Instruction::SRem: 3629 case Instruction::FRem: 3630 case Instruction::Shl: 3631 case Instruction::LShr: 3632 case Instruction::AShr: 3633 case Instruction::And: 3634 case Instruction::Or: 3635 case Instruction::Xor: { 3636 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3637 ReuseShuffleIndicies); 3638 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3639 3640 // Sort operands of the instructions so that each side is more likely to 3641 // have the same opcode. 3642 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3643 ValueList Left, Right; 3644 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3645 TE->setOperand(0, Left); 3646 TE->setOperand(1, Right); 3647 buildTree_rec(Left, Depth + 1, {TE, 0}); 3648 buildTree_rec(Right, Depth + 1, {TE, 1}); 3649 return; 3650 } 3651 3652 TE->setOperandsInOrder(); 3653 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3654 ValueList Operands; 3655 // Prepare the operand vector. 3656 for (Value *V : VL) 3657 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3658 3659 buildTree_rec(Operands, Depth + 1, {TE, i}); 3660 } 3661 return; 3662 } 3663 case Instruction::GetElementPtr: { 3664 // We don't combine GEPs with complicated (nested) indexing. 3665 for (Value *V : VL) { 3666 if (cast<Instruction>(V)->getNumOperands() != 2) { 3667 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3668 BS.cancelScheduling(VL, VL0); 3669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3670 ReuseShuffleIndicies); 3671 return; 3672 } 3673 } 3674 3675 // We can't combine several GEPs into one vector if they operate on 3676 // different types. 3677 Type *Ty0 = VL0->getOperand(0)->getType(); 3678 for (Value *V : VL) { 3679 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3680 if (Ty0 != CurTy) { 3681 LLVM_DEBUG(dbgs() 3682 << "SLP: not-vectorizable GEP (different types).\n"); 3683 BS.cancelScheduling(VL, VL0); 3684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3685 ReuseShuffleIndicies); 3686 return; 3687 } 3688 } 3689 3690 // We don't combine GEPs with non-constant indexes. 3691 Type *Ty1 = VL0->getOperand(1)->getType(); 3692 for (Value *V : VL) { 3693 auto Op = cast<Instruction>(V)->getOperand(1); 3694 if (!isa<ConstantInt>(Op) || 3695 (Op->getType() != Ty1 && 3696 Op->getType()->getScalarSizeInBits() > 3697 DL->getIndexSizeInBits( 3698 V->getType()->getPointerAddressSpace()))) { 3699 LLVM_DEBUG(dbgs() 3700 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3701 BS.cancelScheduling(VL, VL0); 3702 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3703 ReuseShuffleIndicies); 3704 return; 3705 } 3706 } 3707 3708 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3709 ReuseShuffleIndicies); 3710 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3711 TE->setOperandsInOrder(); 3712 for (unsigned i = 0, e = 2; i < e; ++i) { 3713 ValueList Operands; 3714 // Prepare the operand vector. 3715 for (Value *V : VL) 3716 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3717 3718 buildTree_rec(Operands, Depth + 1, {TE, i}); 3719 } 3720 return; 3721 } 3722 case Instruction::Store: { 3723 // Check if the stores are consecutive or if we need to swizzle them. 3724 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3725 // Avoid types that are padded when being allocated as scalars, while 3726 // being packed together in a vector (such as i1). 3727 if (DL->getTypeSizeInBits(ScalarTy) != 3728 DL->getTypeAllocSizeInBits(ScalarTy)) { 3729 BS.cancelScheduling(VL, VL0); 3730 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3731 ReuseShuffleIndicies); 3732 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3733 return; 3734 } 3735 // Make sure all stores in the bundle are simple - we can't vectorize 3736 // atomic or volatile stores. 3737 SmallVector<Value *, 4> PointerOps(VL.size()); 3738 ValueList Operands(VL.size()); 3739 auto POIter = PointerOps.begin(); 3740 auto OIter = Operands.begin(); 3741 for (Value *V : VL) { 3742 auto *SI = cast<StoreInst>(V); 3743 if (!SI->isSimple()) { 3744 BS.cancelScheduling(VL, VL0); 3745 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3746 ReuseShuffleIndicies); 3747 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3748 return; 3749 } 3750 *POIter = SI->getPointerOperand(); 3751 *OIter = SI->getValueOperand(); 3752 ++POIter; 3753 ++OIter; 3754 } 3755 3756 OrdersType CurrentOrder; 3757 // Check the order of pointer operands. 3758 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3759 Value *Ptr0; 3760 Value *PtrN; 3761 if (CurrentOrder.empty()) { 3762 Ptr0 = PointerOps.front(); 3763 PtrN = PointerOps.back(); 3764 } else { 3765 Ptr0 = PointerOps[CurrentOrder.front()]; 3766 PtrN = PointerOps[CurrentOrder.back()]; 3767 } 3768 Optional<int> Dist = 3769 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3770 // Check that the sorted pointer operands are consecutive. 3771 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3772 if (CurrentOrder.empty()) { 3773 // Original stores are consecutive and does not require reordering. 3774 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3775 UserTreeIdx, ReuseShuffleIndicies); 3776 TE->setOperandsInOrder(); 3777 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3778 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3779 } else { 3780 fixupOrderingIndices(CurrentOrder); 3781 TreeEntry *TE = 3782 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3783 ReuseShuffleIndicies, CurrentOrder); 3784 TE->setOperandsInOrder(); 3785 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3786 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3787 } 3788 return; 3789 } 3790 } 3791 3792 BS.cancelScheduling(VL, VL0); 3793 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3794 ReuseShuffleIndicies); 3795 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3796 return; 3797 } 3798 case Instruction::Call: { 3799 // Check if the calls are all to the same vectorizable intrinsic or 3800 // library function. 3801 CallInst *CI = cast<CallInst>(VL0); 3802 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3803 3804 VFShape Shape = VFShape::get( 3805 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3806 false /*HasGlobalPred*/); 3807 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3808 3809 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3810 BS.cancelScheduling(VL, VL0); 3811 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3812 ReuseShuffleIndicies); 3813 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3814 return; 3815 } 3816 Function *F = CI->getCalledFunction(); 3817 unsigned NumArgs = CI->getNumArgOperands(); 3818 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3819 for (unsigned j = 0; j != NumArgs; ++j) 3820 if (hasVectorInstrinsicScalarOpd(ID, j)) 3821 ScalarArgs[j] = CI->getArgOperand(j); 3822 for (Value *V : VL) { 3823 CallInst *CI2 = dyn_cast<CallInst>(V); 3824 if (!CI2 || CI2->getCalledFunction() != F || 3825 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3826 (VecFunc && 3827 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3828 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3829 BS.cancelScheduling(VL, VL0); 3830 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3831 ReuseShuffleIndicies); 3832 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3833 << "\n"); 3834 return; 3835 } 3836 // Some intrinsics have scalar arguments and should be same in order for 3837 // them to be vectorized. 3838 for (unsigned j = 0; j != NumArgs; ++j) { 3839 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3840 Value *A1J = CI2->getArgOperand(j); 3841 if (ScalarArgs[j] != A1J) { 3842 BS.cancelScheduling(VL, VL0); 3843 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3844 ReuseShuffleIndicies); 3845 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3846 << " argument " << ScalarArgs[j] << "!=" << A1J 3847 << "\n"); 3848 return; 3849 } 3850 } 3851 } 3852 // Verify that the bundle operands are identical between the two calls. 3853 if (CI->hasOperandBundles() && 3854 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3855 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3856 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3857 BS.cancelScheduling(VL, VL0); 3858 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3859 ReuseShuffleIndicies); 3860 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3861 << *CI << "!=" << *V << '\n'); 3862 return; 3863 } 3864 } 3865 3866 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3867 ReuseShuffleIndicies); 3868 TE->setOperandsInOrder(); 3869 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3870 ValueList Operands; 3871 // Prepare the operand vector. 3872 for (Value *V : VL) { 3873 auto *CI2 = cast<CallInst>(V); 3874 Operands.push_back(CI2->getArgOperand(i)); 3875 } 3876 buildTree_rec(Operands, Depth + 1, {TE, i}); 3877 } 3878 return; 3879 } 3880 case Instruction::ShuffleVector: { 3881 // If this is not an alternate sequence of opcode like add-sub 3882 // then do not vectorize this instruction. 3883 if (!S.isAltShuffle()) { 3884 BS.cancelScheduling(VL, VL0); 3885 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3886 ReuseShuffleIndicies); 3887 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3888 return; 3889 } 3890 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3891 ReuseShuffleIndicies); 3892 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3893 3894 // Reorder operands if reordering would enable vectorization. 3895 if (isa<BinaryOperator>(VL0)) { 3896 ValueList Left, Right; 3897 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3898 TE->setOperand(0, Left); 3899 TE->setOperand(1, Right); 3900 buildTree_rec(Left, Depth + 1, {TE, 0}); 3901 buildTree_rec(Right, Depth + 1, {TE, 1}); 3902 return; 3903 } 3904 3905 TE->setOperandsInOrder(); 3906 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3907 ValueList Operands; 3908 // Prepare the operand vector. 3909 for (Value *V : VL) 3910 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3911 3912 buildTree_rec(Operands, Depth + 1, {TE, i}); 3913 } 3914 return; 3915 } 3916 default: 3917 BS.cancelScheduling(VL, VL0); 3918 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3919 ReuseShuffleIndicies); 3920 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3921 return; 3922 } 3923 } 3924 3925 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3926 unsigned N = 1; 3927 Type *EltTy = T; 3928 3929 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3930 isa<VectorType>(EltTy)) { 3931 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3932 // Check that struct is homogeneous. 3933 for (const auto *Ty : ST->elements()) 3934 if (Ty != *ST->element_begin()) 3935 return 0; 3936 N *= ST->getNumElements(); 3937 EltTy = *ST->element_begin(); 3938 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3939 N *= AT->getNumElements(); 3940 EltTy = AT->getElementType(); 3941 } else { 3942 auto *VT = cast<FixedVectorType>(EltTy); 3943 N *= VT->getNumElements(); 3944 EltTy = VT->getElementType(); 3945 } 3946 } 3947 3948 if (!isValidElementType(EltTy)) 3949 return 0; 3950 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3951 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3952 return 0; 3953 return N; 3954 } 3955 3956 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3957 SmallVectorImpl<unsigned> &CurrentOrder) const { 3958 Instruction *E0 = cast<Instruction>(OpValue); 3959 assert(E0->getOpcode() == Instruction::ExtractElement || 3960 E0->getOpcode() == Instruction::ExtractValue); 3961 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3962 // Check if all of the extracts come from the same vector and from the 3963 // correct offset. 3964 Value *Vec = E0->getOperand(0); 3965 3966 CurrentOrder.clear(); 3967 3968 // We have to extract from a vector/aggregate with the same number of elements. 3969 unsigned NElts; 3970 if (E0->getOpcode() == Instruction::ExtractValue) { 3971 const DataLayout &DL = E0->getModule()->getDataLayout(); 3972 NElts = canMapToVector(Vec->getType(), DL); 3973 if (!NElts) 3974 return false; 3975 // Check if load can be rewritten as load of vector. 3976 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3977 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3978 return false; 3979 } else { 3980 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3981 } 3982 3983 if (NElts != VL.size()) 3984 return false; 3985 3986 // Check that all of the indices extract from the correct offset. 3987 bool ShouldKeepOrder = true; 3988 unsigned E = VL.size(); 3989 // Assign to all items the initial value E + 1 so we can check if the extract 3990 // instruction index was used already. 3991 // Also, later we can check that all the indices are used and we have a 3992 // consecutive access in the extract instructions, by checking that no 3993 // element of CurrentOrder still has value E + 1. 3994 CurrentOrder.assign(E, E + 1); 3995 unsigned I = 0; 3996 for (; I < E; ++I) { 3997 auto *Inst = cast<Instruction>(VL[I]); 3998 if (Inst->getOperand(0) != Vec) 3999 break; 4000 Optional<unsigned> Idx = getExtractIndex(Inst); 4001 if (!Idx) 4002 break; 4003 const unsigned ExtIdx = *Idx; 4004 if (ExtIdx != I) { 4005 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4006 break; 4007 ShouldKeepOrder = false; 4008 CurrentOrder[ExtIdx] = I; 4009 } else { 4010 if (CurrentOrder[I] != E + 1) 4011 break; 4012 CurrentOrder[I] = I; 4013 } 4014 } 4015 if (I < E) { 4016 CurrentOrder.clear(); 4017 return false; 4018 } 4019 4020 return ShouldKeepOrder; 4021 } 4022 4023 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4024 ArrayRef<Value *> VectorizedVals) const { 4025 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4026 llvm::all_of(I->users(), [this](User *U) { 4027 return ScalarToTreeEntry.count(U) > 0; 4028 }); 4029 } 4030 4031 static std::pair<InstructionCost, InstructionCost> 4032 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4033 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4034 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4035 4036 // Calculate the cost of the scalar and vector calls. 4037 SmallVector<Type *, 4> VecTys; 4038 for (Use &Arg : CI->args()) 4039 VecTys.push_back( 4040 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4041 FastMathFlags FMF; 4042 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4043 FMF = FPCI->getFastMathFlags(); 4044 SmallVector<const Value *> Arguments(CI->args()); 4045 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4046 dyn_cast<IntrinsicInst>(CI)); 4047 auto IntrinsicCost = 4048 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4049 4050 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4051 VecTy->getNumElements())), 4052 false /*HasGlobalPred*/); 4053 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4054 auto LibCost = IntrinsicCost; 4055 if (!CI->isNoBuiltin() && VecFunc) { 4056 // Calculate the cost of the vector library call. 4057 // If the corresponding vector call is cheaper, return its cost. 4058 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4059 TTI::TCK_RecipThroughput); 4060 } 4061 return {IntrinsicCost, LibCost}; 4062 } 4063 4064 /// Compute the cost of creating a vector of type \p VecTy containing the 4065 /// extracted values from \p VL. 4066 static InstructionCost 4067 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4068 TargetTransformInfo::ShuffleKind ShuffleKind, 4069 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4070 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4071 4072 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4073 VecTy->getNumElements() < NumOfParts) 4074 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4075 4076 bool AllConsecutive = true; 4077 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4078 unsigned Idx = -1; 4079 InstructionCost Cost = 0; 4080 4081 // Process extracts in blocks of EltsPerVector to check if the source vector 4082 // operand can be re-used directly. If not, add the cost of creating a shuffle 4083 // to extract the values into a vector register. 4084 for (auto *V : VL) { 4085 ++Idx; 4086 4087 // Reached the start of a new vector registers. 4088 if (Idx % EltsPerVector == 0) { 4089 AllConsecutive = true; 4090 continue; 4091 } 4092 4093 // Check all extracts for a vector register on the target directly 4094 // extract values in order. 4095 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4096 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4097 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4098 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4099 4100 if (AllConsecutive) 4101 continue; 4102 4103 // Skip all indices, except for the last index per vector block. 4104 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4105 continue; 4106 4107 // If we have a series of extracts which are not consecutive and hence 4108 // cannot re-use the source vector register directly, compute the shuffle 4109 // cost to extract the a vector with EltsPerVector elements. 4110 Cost += TTI.getShuffleCost( 4111 TargetTransformInfo::SK_PermuteSingleSrc, 4112 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4113 } 4114 return Cost; 4115 } 4116 4117 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4118 /// operations operands. 4119 static void 4120 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4121 ArrayRef<int> ReusesIndices, 4122 const function_ref<bool(Instruction *)> IsAltOp, 4123 SmallVectorImpl<int> &Mask, 4124 SmallVectorImpl<Value *> *OpScalars = nullptr, 4125 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4126 unsigned Sz = VL.size(); 4127 Mask.assign(Sz, UndefMaskElem); 4128 SmallVector<int> OrderMask; 4129 if (!ReorderIndices.empty()) 4130 inversePermutation(ReorderIndices, OrderMask); 4131 for (unsigned I = 0; I < Sz; ++I) { 4132 unsigned Idx = I; 4133 if (!ReorderIndices.empty()) 4134 Idx = OrderMask[I]; 4135 auto *OpInst = cast<Instruction>(VL[Idx]); 4136 if (IsAltOp(OpInst)) { 4137 Mask[I] = Sz + Idx; 4138 if (AltScalars) 4139 AltScalars->push_back(OpInst); 4140 } else { 4141 Mask[I] = Idx; 4142 if (OpScalars) 4143 OpScalars->push_back(OpInst); 4144 } 4145 } 4146 if (!ReusesIndices.empty()) { 4147 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4148 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4149 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4150 }); 4151 Mask.swap(NewMask); 4152 } 4153 } 4154 4155 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4156 ArrayRef<Value *> VectorizedVals) { 4157 ArrayRef<Value*> VL = E->Scalars; 4158 4159 Type *ScalarTy = VL[0]->getType(); 4160 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4161 ScalarTy = SI->getValueOperand()->getType(); 4162 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4163 ScalarTy = CI->getOperand(0)->getType(); 4164 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4165 ScalarTy = IE->getOperand(1)->getType(); 4166 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4167 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4168 4169 // If we have computed a smaller type for the expression, update VecTy so 4170 // that the costs will be accurate. 4171 if (MinBWs.count(VL[0])) 4172 VecTy = FixedVectorType::get( 4173 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4174 auto *FinalVecTy = VecTy; 4175 4176 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4177 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4178 if (NeedToShuffleReuses) 4179 FinalVecTy = 4180 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4181 // FIXME: it tries to fix a problem with MSVC buildbots. 4182 TargetTransformInfo &TTIRef = *TTI; 4183 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4184 VectorizedVals](InstructionCost &Cost, 4185 bool IsGather) { 4186 DenseMap<Value *, int> ExtractVectorsTys; 4187 for (auto *V : VL) { 4188 // If all users of instruction are going to be vectorized and this 4189 // instruction itself is not going to be vectorized, consider this 4190 // instruction as dead and remove its cost from the final cost of the 4191 // vectorized tree. 4192 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4193 (IsGather && ScalarToTreeEntry.count(V))) 4194 continue; 4195 auto *EE = cast<ExtractElementInst>(V); 4196 unsigned Idx = *getExtractIndex(EE); 4197 if (TTIRef.getNumberOfParts(VecTy) != 4198 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4199 auto It = 4200 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4201 It->getSecond() = std::min<int>(It->second, Idx); 4202 } 4203 // Take credit for instruction that will become dead. 4204 if (EE->hasOneUse()) { 4205 Instruction *Ext = EE->user_back(); 4206 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4207 all_of(Ext->users(), 4208 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4209 // Use getExtractWithExtendCost() to calculate the cost of 4210 // extractelement/ext pair. 4211 Cost -= 4212 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4213 EE->getVectorOperandType(), Idx); 4214 // Add back the cost of s|zext which is subtracted separately. 4215 Cost += TTIRef.getCastInstrCost( 4216 Ext->getOpcode(), Ext->getType(), EE->getType(), 4217 TTI::getCastContextHint(Ext), CostKind, Ext); 4218 continue; 4219 } 4220 } 4221 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4222 EE->getVectorOperandType(), Idx); 4223 } 4224 // Add a cost for subvector extracts/inserts if required. 4225 for (const auto &Data : ExtractVectorsTys) { 4226 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4227 unsigned NumElts = VecTy->getNumElements(); 4228 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4229 unsigned Idx = (Data.second / NumElts) * NumElts; 4230 unsigned EENumElts = EEVTy->getNumElements(); 4231 if (Idx + NumElts <= EENumElts) { 4232 Cost += 4233 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4234 EEVTy, None, Idx, VecTy); 4235 } else { 4236 // Need to round up the subvector type vectorization factor to avoid a 4237 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4238 // <= EENumElts. 4239 auto *SubVT = 4240 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4241 Cost += 4242 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4243 EEVTy, None, Idx, SubVT); 4244 } 4245 } else { 4246 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4247 VecTy, None, 0, EEVTy); 4248 } 4249 } 4250 }; 4251 if (E->State == TreeEntry::NeedToGather) { 4252 if (allConstant(VL)) 4253 return 0; 4254 if (isa<InsertElementInst>(VL[0])) 4255 return InstructionCost::getInvalid(); 4256 SmallVector<int> Mask; 4257 SmallVector<const TreeEntry *> Entries; 4258 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4259 isGatherShuffledEntry(E, Mask, Entries); 4260 if (Shuffle.hasValue()) { 4261 InstructionCost GatherCost = 0; 4262 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4263 // Perfect match in the graph, will reuse the previously vectorized 4264 // node. Cost is 0. 4265 LLVM_DEBUG( 4266 dbgs() 4267 << "SLP: perfect diamond match for gather bundle that starts with " 4268 << *VL.front() << ".\n"); 4269 if (NeedToShuffleReuses) 4270 GatherCost = 4271 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4272 FinalVecTy, E->ReuseShuffleIndices); 4273 } else { 4274 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4275 << " entries for bundle that starts with " 4276 << *VL.front() << ".\n"); 4277 // Detected that instead of gather we can emit a shuffle of single/two 4278 // previously vectorized nodes. Add the cost of the permutation rather 4279 // than gather. 4280 ::addMask(Mask, E->ReuseShuffleIndices); 4281 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4282 } 4283 return GatherCost; 4284 } 4285 if (isSplat(VL)) { 4286 // Found the broadcasting of the single scalar, calculate the cost as the 4287 // broadcast. 4288 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4289 } 4290 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4291 allSameBlock(VL) && 4292 !isa<ScalableVectorType>( 4293 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4294 // Check that gather of extractelements can be represented as just a 4295 // shuffle of a single/two vectors the scalars are extracted from. 4296 SmallVector<int> Mask; 4297 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4298 isShuffle(VL, Mask); 4299 if (ShuffleKind.hasValue()) { 4300 // Found the bunch of extractelement instructions that must be gathered 4301 // into a vector and can be represented as a permutation elements in a 4302 // single input vector or of 2 input vectors. 4303 InstructionCost Cost = 4304 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4305 AdjustExtractsCost(Cost, /*IsGather=*/true); 4306 if (NeedToShuffleReuses) 4307 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4308 FinalVecTy, E->ReuseShuffleIndices); 4309 return Cost; 4310 } 4311 } 4312 InstructionCost ReuseShuffleCost = 0; 4313 if (NeedToShuffleReuses) 4314 ReuseShuffleCost = TTI->getShuffleCost( 4315 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4316 // Improve gather cost for gather of loads, if we can group some of the 4317 // loads into vector loads. 4318 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4319 !E->isAltShuffle()) { 4320 BoUpSLP::ValueSet VectorizedLoads; 4321 unsigned StartIdx = 0; 4322 unsigned VF = VL.size() / 2; 4323 unsigned VectorizedCnt = 0; 4324 unsigned ScatterVectorizeCnt = 0; 4325 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4326 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4327 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4328 Cnt += VF) { 4329 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4330 if (!VectorizedLoads.count(Slice.front()) && 4331 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4332 SmallVector<Value *> PointerOps; 4333 OrdersType CurrentOrder; 4334 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4335 *SE, CurrentOrder, PointerOps); 4336 switch (LS) { 4337 case LoadsState::Vectorize: 4338 case LoadsState::ScatterVectorize: 4339 // Mark the vectorized loads so that we don't vectorize them 4340 // again. 4341 if (LS == LoadsState::Vectorize) 4342 ++VectorizedCnt; 4343 else 4344 ++ScatterVectorizeCnt; 4345 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4346 // If we vectorized initial block, no need to try to vectorize it 4347 // again. 4348 if (Cnt == StartIdx) 4349 StartIdx += VF; 4350 break; 4351 case LoadsState::Gather: 4352 break; 4353 } 4354 } 4355 } 4356 // Check if the whole array was vectorized already - exit. 4357 if (StartIdx >= VL.size()) 4358 break; 4359 // Found vectorizable parts - exit. 4360 if (!VectorizedLoads.empty()) 4361 break; 4362 } 4363 if (!VectorizedLoads.empty()) { 4364 InstructionCost GatherCost = 0; 4365 // Get the cost for gathered loads. 4366 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4367 if (VectorizedLoads.contains(VL[I])) 4368 continue; 4369 GatherCost += getGatherCost(VL.slice(I, VF)); 4370 } 4371 // The cost for vectorized loads. 4372 InstructionCost ScalarsCost = 0; 4373 for (Value *V : VectorizedLoads) { 4374 auto *LI = cast<LoadInst>(V); 4375 ScalarsCost += TTI->getMemoryOpCost( 4376 Instruction::Load, LI->getType(), LI->getAlign(), 4377 LI->getPointerAddressSpace(), CostKind, LI); 4378 } 4379 auto *LI = cast<LoadInst>(E->getMainOp()); 4380 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4381 Align Alignment = LI->getAlign(); 4382 GatherCost += 4383 VectorizedCnt * 4384 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4385 LI->getPointerAddressSpace(), CostKind, LI); 4386 GatherCost += ScatterVectorizeCnt * 4387 TTI->getGatherScatterOpCost( 4388 Instruction::Load, LoadTy, LI->getPointerOperand(), 4389 /*VariableMask=*/false, Alignment, CostKind, LI); 4390 // Add the cost for the subvectors shuffling. 4391 GatherCost += ((VL.size() - VF) / VF) * 4392 TTI->getShuffleCost(TTI::SK_Select, VecTy); 4393 return ReuseShuffleCost + GatherCost - ScalarsCost; 4394 } 4395 } 4396 return ReuseShuffleCost + getGatherCost(VL); 4397 } 4398 InstructionCost CommonCost = 0; 4399 SmallVector<int> Mask; 4400 if (!E->ReorderIndices.empty()) { 4401 SmallVector<int> NewMask; 4402 if (E->getOpcode() == Instruction::Store) { 4403 // For stores the order is actually a mask. 4404 NewMask.resize(E->ReorderIndices.size()); 4405 copy(E->ReorderIndices, NewMask.begin()); 4406 } else { 4407 inversePermutation(E->ReorderIndices, NewMask); 4408 } 4409 ::addMask(Mask, NewMask); 4410 } 4411 if (NeedToShuffleReuses) 4412 ::addMask(Mask, E->ReuseShuffleIndices); 4413 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4414 CommonCost = 4415 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4416 assert((E->State == TreeEntry::Vectorize || 4417 E->State == TreeEntry::ScatterVectorize) && 4418 "Unhandled state"); 4419 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4420 Instruction *VL0 = E->getMainOp(); 4421 unsigned ShuffleOrOp = 4422 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4423 switch (ShuffleOrOp) { 4424 case Instruction::PHI: 4425 return 0; 4426 4427 case Instruction::ExtractValue: 4428 case Instruction::ExtractElement: { 4429 // The common cost of removal ExtractElement/ExtractValue instructions + 4430 // the cost of shuffles, if required to resuffle the original vector. 4431 if (NeedToShuffleReuses) { 4432 unsigned Idx = 0; 4433 for (unsigned I : E->ReuseShuffleIndices) { 4434 if (ShuffleOrOp == Instruction::ExtractElement) { 4435 auto *EE = cast<ExtractElementInst>(VL[I]); 4436 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4437 EE->getVectorOperandType(), 4438 *getExtractIndex(EE)); 4439 } else { 4440 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4441 VecTy, Idx); 4442 ++Idx; 4443 } 4444 } 4445 Idx = ReuseShuffleNumbers; 4446 for (Value *V : VL) { 4447 if (ShuffleOrOp == Instruction::ExtractElement) { 4448 auto *EE = cast<ExtractElementInst>(V); 4449 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4450 EE->getVectorOperandType(), 4451 *getExtractIndex(EE)); 4452 } else { 4453 --Idx; 4454 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4455 VecTy, Idx); 4456 } 4457 } 4458 } 4459 if (ShuffleOrOp == Instruction::ExtractValue) { 4460 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4461 auto *EI = cast<Instruction>(VL[I]); 4462 // Take credit for instruction that will become dead. 4463 if (EI->hasOneUse()) { 4464 Instruction *Ext = EI->user_back(); 4465 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4466 all_of(Ext->users(), 4467 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4468 // Use getExtractWithExtendCost() to calculate the cost of 4469 // extractelement/ext pair. 4470 CommonCost -= TTI->getExtractWithExtendCost( 4471 Ext->getOpcode(), Ext->getType(), VecTy, I); 4472 // Add back the cost of s|zext which is subtracted separately. 4473 CommonCost += TTI->getCastInstrCost( 4474 Ext->getOpcode(), Ext->getType(), EI->getType(), 4475 TTI::getCastContextHint(Ext), CostKind, Ext); 4476 continue; 4477 } 4478 } 4479 CommonCost -= 4480 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4481 } 4482 } else { 4483 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4484 } 4485 return CommonCost; 4486 } 4487 case Instruction::InsertElement: { 4488 assert(E->ReuseShuffleIndices.empty() && 4489 "Unique insertelements only are expected."); 4490 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4491 4492 unsigned const NumElts = SrcVecTy->getNumElements(); 4493 unsigned const NumScalars = VL.size(); 4494 APInt DemandedElts = APInt::getZero(NumElts); 4495 // TODO: Add support for Instruction::InsertValue. 4496 SmallVector<int> Mask; 4497 if (!E->ReorderIndices.empty()) { 4498 inversePermutation(E->ReorderIndices, Mask); 4499 Mask.append(NumElts - NumScalars, UndefMaskElem); 4500 } else { 4501 Mask.assign(NumElts, UndefMaskElem); 4502 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4503 } 4504 unsigned Offset = *getInsertIndex(VL0, 0); 4505 bool IsIdentity = true; 4506 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4507 Mask.swap(PrevMask); 4508 for (unsigned I = 0; I < NumScalars; ++I) { 4509 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4510 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4511 continue; 4512 DemandedElts.setBit(*InsertIdx); 4513 IsIdentity &= *InsertIdx - Offset == I; 4514 Mask[*InsertIdx - Offset] = I; 4515 } 4516 assert(Offset < NumElts && "Failed to find vector index offset"); 4517 4518 InstructionCost Cost = 0; 4519 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4520 /*Insert*/ true, /*Extract*/ false); 4521 4522 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4523 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4524 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4525 Cost += TTI->getShuffleCost( 4526 TargetTransformInfo::SK_PermuteSingleSrc, 4527 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4528 } else if (!IsIdentity) { 4529 auto *FirstInsert = 4530 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4531 return !is_contained(E->Scalars, 4532 cast<Instruction>(V)->getOperand(0)); 4533 })); 4534 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4535 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4536 } else { 4537 SmallVector<int> InsertMask(NumElts); 4538 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4539 for (unsigned I = 0; I < NumElts; I++) { 4540 if (Mask[I] != UndefMaskElem) 4541 InsertMask[Offset + I] = NumElts + I; 4542 } 4543 Cost += 4544 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4545 } 4546 } 4547 4548 return Cost; 4549 } 4550 case Instruction::ZExt: 4551 case Instruction::SExt: 4552 case Instruction::FPToUI: 4553 case Instruction::FPToSI: 4554 case Instruction::FPExt: 4555 case Instruction::PtrToInt: 4556 case Instruction::IntToPtr: 4557 case Instruction::SIToFP: 4558 case Instruction::UIToFP: 4559 case Instruction::Trunc: 4560 case Instruction::FPTrunc: 4561 case Instruction::BitCast: { 4562 Type *SrcTy = VL0->getOperand(0)->getType(); 4563 InstructionCost ScalarEltCost = 4564 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4565 TTI::getCastContextHint(VL0), CostKind, VL0); 4566 if (NeedToShuffleReuses) { 4567 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4568 } 4569 4570 // Calculate the cost of this instruction. 4571 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4572 4573 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4574 InstructionCost VecCost = 0; 4575 // Check if the values are candidates to demote. 4576 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4577 VecCost = CommonCost + TTI->getCastInstrCost( 4578 E->getOpcode(), VecTy, SrcVecTy, 4579 TTI::getCastContextHint(VL0), CostKind, VL0); 4580 } 4581 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4582 return VecCost - ScalarCost; 4583 } 4584 case Instruction::FCmp: 4585 case Instruction::ICmp: 4586 case Instruction::Select: { 4587 // Calculate the cost of this instruction. 4588 InstructionCost ScalarEltCost = 4589 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4590 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4591 if (NeedToShuffleReuses) { 4592 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4593 } 4594 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4595 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4596 4597 // Check if all entries in VL are either compares or selects with compares 4598 // as condition that have the same predicates. 4599 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4600 bool First = true; 4601 for (auto *V : VL) { 4602 CmpInst::Predicate CurrentPred; 4603 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4604 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4605 !match(V, MatchCmp)) || 4606 (!First && VecPred != CurrentPred)) { 4607 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4608 break; 4609 } 4610 First = false; 4611 VecPred = CurrentPred; 4612 } 4613 4614 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4615 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4616 // Check if it is possible and profitable to use min/max for selects in 4617 // VL. 4618 // 4619 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4620 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4621 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4622 {VecTy, VecTy}); 4623 InstructionCost IntrinsicCost = 4624 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4625 // If the selects are the only uses of the compares, they will be dead 4626 // and we can adjust the cost by removing their cost. 4627 if (IntrinsicAndUse.second) 4628 IntrinsicCost -= 4629 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4630 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4631 VecCost = std::min(VecCost, IntrinsicCost); 4632 } 4633 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4634 return CommonCost + VecCost - ScalarCost; 4635 } 4636 case Instruction::FNeg: 4637 case Instruction::Add: 4638 case Instruction::FAdd: 4639 case Instruction::Sub: 4640 case Instruction::FSub: 4641 case Instruction::Mul: 4642 case Instruction::FMul: 4643 case Instruction::UDiv: 4644 case Instruction::SDiv: 4645 case Instruction::FDiv: 4646 case Instruction::URem: 4647 case Instruction::SRem: 4648 case Instruction::FRem: 4649 case Instruction::Shl: 4650 case Instruction::LShr: 4651 case Instruction::AShr: 4652 case Instruction::And: 4653 case Instruction::Or: 4654 case Instruction::Xor: { 4655 // Certain instructions can be cheaper to vectorize if they have a 4656 // constant second vector operand. 4657 TargetTransformInfo::OperandValueKind Op1VK = 4658 TargetTransformInfo::OK_AnyValue; 4659 TargetTransformInfo::OperandValueKind Op2VK = 4660 TargetTransformInfo::OK_UniformConstantValue; 4661 TargetTransformInfo::OperandValueProperties Op1VP = 4662 TargetTransformInfo::OP_None; 4663 TargetTransformInfo::OperandValueProperties Op2VP = 4664 TargetTransformInfo::OP_PowerOf2; 4665 4666 // If all operands are exactly the same ConstantInt then set the 4667 // operand kind to OK_UniformConstantValue. 4668 // If instead not all operands are constants, then set the operand kind 4669 // to OK_AnyValue. If all operands are constants but not the same, 4670 // then set the operand kind to OK_NonUniformConstantValue. 4671 ConstantInt *CInt0 = nullptr; 4672 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4673 const Instruction *I = cast<Instruction>(VL[i]); 4674 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4675 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4676 if (!CInt) { 4677 Op2VK = TargetTransformInfo::OK_AnyValue; 4678 Op2VP = TargetTransformInfo::OP_None; 4679 break; 4680 } 4681 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4682 !CInt->getValue().isPowerOf2()) 4683 Op2VP = TargetTransformInfo::OP_None; 4684 if (i == 0) { 4685 CInt0 = CInt; 4686 continue; 4687 } 4688 if (CInt0 != CInt) 4689 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4690 } 4691 4692 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4693 InstructionCost ScalarEltCost = 4694 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4695 Op2VK, Op1VP, Op2VP, Operands, VL0); 4696 if (NeedToShuffleReuses) { 4697 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4698 } 4699 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4700 InstructionCost VecCost = 4701 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4702 Op2VK, Op1VP, Op2VP, Operands, VL0); 4703 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4704 return CommonCost + VecCost - ScalarCost; 4705 } 4706 case Instruction::GetElementPtr: { 4707 TargetTransformInfo::OperandValueKind Op1VK = 4708 TargetTransformInfo::OK_AnyValue; 4709 TargetTransformInfo::OperandValueKind Op2VK = 4710 TargetTransformInfo::OK_UniformConstantValue; 4711 4712 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4713 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4714 if (NeedToShuffleReuses) { 4715 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4716 } 4717 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4718 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4719 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4720 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4721 return CommonCost + VecCost - ScalarCost; 4722 } 4723 case Instruction::Load: { 4724 // Cost of wide load - cost of scalar loads. 4725 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4726 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4727 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4728 if (NeedToShuffleReuses) { 4729 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4730 } 4731 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4732 InstructionCost VecLdCost; 4733 if (E->State == TreeEntry::Vectorize) { 4734 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4735 CostKind, VL0); 4736 } else { 4737 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4738 Align CommonAlignment = Alignment; 4739 for (Value *V : VL) 4740 CommonAlignment = 4741 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4742 VecLdCost = TTI->getGatherScatterOpCost( 4743 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4744 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4745 } 4746 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4747 return CommonCost + VecLdCost - ScalarLdCost; 4748 } 4749 case Instruction::Store: { 4750 // We know that we can merge the stores. Calculate the cost. 4751 bool IsReorder = !E->ReorderIndices.empty(); 4752 auto *SI = 4753 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4754 Align Alignment = SI->getAlign(); 4755 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4756 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4757 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4758 InstructionCost VecStCost = TTI->getMemoryOpCost( 4759 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4760 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4761 return CommonCost + VecStCost - ScalarStCost; 4762 } 4763 case Instruction::Call: { 4764 CallInst *CI = cast<CallInst>(VL0); 4765 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4766 4767 // Calculate the cost of the scalar and vector calls. 4768 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4769 InstructionCost ScalarEltCost = 4770 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4771 if (NeedToShuffleReuses) { 4772 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4773 } 4774 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4775 4776 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4777 InstructionCost VecCallCost = 4778 std::min(VecCallCosts.first, VecCallCosts.second); 4779 4780 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4781 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4782 << " for " << *CI << "\n"); 4783 4784 return CommonCost + VecCallCost - ScalarCallCost; 4785 } 4786 case Instruction::ShuffleVector: { 4787 assert(E->isAltShuffle() && 4788 ((Instruction::isBinaryOp(E->getOpcode()) && 4789 Instruction::isBinaryOp(E->getAltOpcode())) || 4790 (Instruction::isCast(E->getOpcode()) && 4791 Instruction::isCast(E->getAltOpcode()))) && 4792 "Invalid Shuffle Vector Operand"); 4793 InstructionCost ScalarCost = 0; 4794 if (NeedToShuffleReuses) { 4795 for (unsigned Idx : E->ReuseShuffleIndices) { 4796 Instruction *I = cast<Instruction>(VL[Idx]); 4797 CommonCost -= TTI->getInstructionCost(I, CostKind); 4798 } 4799 for (Value *V : VL) { 4800 Instruction *I = cast<Instruction>(V); 4801 CommonCost += TTI->getInstructionCost(I, CostKind); 4802 } 4803 } 4804 for (Value *V : VL) { 4805 Instruction *I = cast<Instruction>(V); 4806 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4807 ScalarCost += TTI->getInstructionCost(I, CostKind); 4808 } 4809 // VecCost is equal to sum of the cost of creating 2 vectors 4810 // and the cost of creating shuffle. 4811 InstructionCost VecCost = 0; 4812 if (Instruction::isBinaryOp(E->getOpcode())) { 4813 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4814 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4815 CostKind); 4816 } else { 4817 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4818 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4819 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4820 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4821 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4822 TTI::CastContextHint::None, CostKind); 4823 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4824 TTI::CastContextHint::None, CostKind); 4825 } 4826 4827 SmallVector<int> Mask; 4828 buildSuffleEntryMask( 4829 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 4830 [E](Instruction *I) { 4831 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4832 return I->getOpcode() == E->getAltOpcode(); 4833 }, 4834 Mask); 4835 CommonCost = 4836 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 4837 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4838 return CommonCost + VecCost - ScalarCost; 4839 } 4840 default: 4841 llvm_unreachable("Unknown instruction"); 4842 } 4843 } 4844 4845 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4846 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4847 << VectorizableTree.size() << " is fully vectorizable .\n"); 4848 4849 // We only handle trees of heights 1 and 2. 4850 if (VectorizableTree.size() == 1 && 4851 VectorizableTree[0]->State == TreeEntry::Vectorize) 4852 return true; 4853 4854 if (VectorizableTree.size() != 2) 4855 return false; 4856 4857 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4858 // with the second gather nodes if they have less scalar operands rather than 4859 // the initial tree element (may be profitable to shuffle the second gather) 4860 // or they are extractelements, which form shuffle. 4861 SmallVector<int> Mask; 4862 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4863 (allConstant(VectorizableTree[1]->Scalars) || 4864 isSplat(VectorizableTree[1]->Scalars) || 4865 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4866 VectorizableTree[1]->Scalars.size() < 4867 VectorizableTree[0]->Scalars.size()) || 4868 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4869 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4870 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4871 return true; 4872 4873 // Gathering cost would be too much for tiny trees. 4874 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4875 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4876 return false; 4877 4878 return true; 4879 } 4880 4881 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4882 TargetTransformInfo *TTI, 4883 bool MustMatchOrInst) { 4884 // Look past the root to find a source value. Arbitrarily follow the 4885 // path through operand 0 of any 'or'. Also, peek through optional 4886 // shift-left-by-multiple-of-8-bits. 4887 Value *ZextLoad = Root; 4888 const APInt *ShAmtC; 4889 bool FoundOr = false; 4890 while (!isa<ConstantExpr>(ZextLoad) && 4891 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4892 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4893 ShAmtC->urem(8) == 0))) { 4894 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4895 ZextLoad = BinOp->getOperand(0); 4896 if (BinOp->getOpcode() == Instruction::Or) 4897 FoundOr = true; 4898 } 4899 // Check if the input is an extended load of the required or/shift expression. 4900 Value *LoadPtr; 4901 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4902 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4903 return false; 4904 4905 // Require that the total load bit width is a legal integer type. 4906 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4907 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4908 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4909 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4910 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4911 return false; 4912 4913 // Everything matched - assume that we can fold the whole sequence using 4914 // load combining. 4915 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4916 << *(cast<Instruction>(Root)) << "\n"); 4917 4918 return true; 4919 } 4920 4921 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4922 if (RdxKind != RecurKind::Or) 4923 return false; 4924 4925 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4926 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4927 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4928 /* MatchOr */ false); 4929 } 4930 4931 bool BoUpSLP::isLoadCombineCandidate() const { 4932 // Peek through a final sequence of stores and check if all operations are 4933 // likely to be load-combined. 4934 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4935 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4936 Value *X; 4937 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4938 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4939 return false; 4940 } 4941 return true; 4942 } 4943 4944 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4945 // No need to vectorize inserts of gathered values. 4946 if (VectorizableTree.size() == 2 && 4947 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4948 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4949 return true; 4950 4951 // We can vectorize the tree if its size is greater than or equal to the 4952 // minimum size specified by the MinTreeSize command line option. 4953 if (VectorizableTree.size() >= MinTreeSize) 4954 return false; 4955 4956 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4957 // can vectorize it if we can prove it fully vectorizable. 4958 if (isFullyVectorizableTinyTree()) 4959 return false; 4960 4961 assert(VectorizableTree.empty() 4962 ? ExternalUses.empty() 4963 : true && "We shouldn't have any external users"); 4964 4965 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4966 // vectorizable. 4967 return true; 4968 } 4969 4970 InstructionCost BoUpSLP::getSpillCost() const { 4971 // Walk from the bottom of the tree to the top, tracking which values are 4972 // live. When we see a call instruction that is not part of our tree, 4973 // query TTI to see if there is a cost to keeping values live over it 4974 // (for example, if spills and fills are required). 4975 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4976 InstructionCost Cost = 0; 4977 4978 SmallPtrSet<Instruction*, 4> LiveValues; 4979 Instruction *PrevInst = nullptr; 4980 4981 // The entries in VectorizableTree are not necessarily ordered by their 4982 // position in basic blocks. Collect them and order them by dominance so later 4983 // instructions are guaranteed to be visited first. For instructions in 4984 // different basic blocks, we only scan to the beginning of the block, so 4985 // their order does not matter, as long as all instructions in a basic block 4986 // are grouped together. Using dominance ensures a deterministic order. 4987 SmallVector<Instruction *, 16> OrderedScalars; 4988 for (const auto &TEPtr : VectorizableTree) { 4989 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4990 if (!Inst) 4991 continue; 4992 OrderedScalars.push_back(Inst); 4993 } 4994 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 4995 auto *NodeA = DT->getNode(A->getParent()); 4996 auto *NodeB = DT->getNode(B->getParent()); 4997 assert(NodeA && "Should only process reachable instructions"); 4998 assert(NodeB && "Should only process reachable instructions"); 4999 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5000 "Different nodes should have different DFS numbers"); 5001 if (NodeA != NodeB) 5002 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5003 return B->comesBefore(A); 5004 }); 5005 5006 for (Instruction *Inst : OrderedScalars) { 5007 if (!PrevInst) { 5008 PrevInst = Inst; 5009 continue; 5010 } 5011 5012 // Update LiveValues. 5013 LiveValues.erase(PrevInst); 5014 for (auto &J : PrevInst->operands()) { 5015 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5016 LiveValues.insert(cast<Instruction>(&*J)); 5017 } 5018 5019 LLVM_DEBUG({ 5020 dbgs() << "SLP: #LV: " << LiveValues.size(); 5021 for (auto *X : LiveValues) 5022 dbgs() << " " << X->getName(); 5023 dbgs() << ", Looking at "; 5024 Inst->dump(); 5025 }); 5026 5027 // Now find the sequence of instructions between PrevInst and Inst. 5028 unsigned NumCalls = 0; 5029 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5030 PrevInstIt = 5031 PrevInst->getIterator().getReverse(); 5032 while (InstIt != PrevInstIt) { 5033 if (PrevInstIt == PrevInst->getParent()->rend()) { 5034 PrevInstIt = Inst->getParent()->rbegin(); 5035 continue; 5036 } 5037 5038 // Debug information does not impact spill cost. 5039 if ((isa<CallInst>(&*PrevInstIt) && 5040 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5041 &*PrevInstIt != PrevInst) 5042 NumCalls++; 5043 5044 ++PrevInstIt; 5045 } 5046 5047 if (NumCalls) { 5048 SmallVector<Type*, 4> V; 5049 for (auto *II : LiveValues) { 5050 auto *ScalarTy = II->getType(); 5051 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5052 ScalarTy = VectorTy->getElementType(); 5053 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5054 } 5055 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5056 } 5057 5058 PrevInst = Inst; 5059 } 5060 5061 return Cost; 5062 } 5063 5064 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5065 InstructionCost Cost = 0; 5066 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5067 << VectorizableTree.size() << ".\n"); 5068 5069 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5070 5071 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5072 TreeEntry &TE = *VectorizableTree[I].get(); 5073 5074 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5075 Cost += C; 5076 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5077 << " for bundle that starts with " << *TE.Scalars[0] 5078 << ".\n" 5079 << "SLP: Current total cost = " << Cost << "\n"); 5080 } 5081 5082 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5083 InstructionCost ExtractCost = 0; 5084 SmallVector<unsigned> VF; 5085 SmallVector<SmallVector<int>> ShuffleMask; 5086 SmallVector<Value *> FirstUsers; 5087 SmallVector<APInt> DemandedElts; 5088 for (ExternalUser &EU : ExternalUses) { 5089 // We only add extract cost once for the same scalar. 5090 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5091 continue; 5092 5093 // Uses by ephemeral values are free (because the ephemeral value will be 5094 // removed prior to code generation, and so the extraction will be 5095 // removed as well). 5096 if (EphValues.count(EU.User)) 5097 continue; 5098 5099 // No extract cost for vector "scalar" 5100 if (isa<FixedVectorType>(EU.Scalar->getType())) 5101 continue; 5102 5103 // Already counted the cost for external uses when tried to adjust the cost 5104 // for extractelements, no need to add it again. 5105 if (isa<ExtractElementInst>(EU.Scalar)) 5106 continue; 5107 5108 // If found user is an insertelement, do not calculate extract cost but try 5109 // to detect it as a final shuffled/identity match. 5110 if (EU.User && isa<InsertElementInst>(EU.User)) { 5111 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5112 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5113 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5114 continue; 5115 Value *VU = EU.User; 5116 auto *It = find_if(FirstUsers, [VU](Value *V) { 5117 // Checks if 2 insertelements are from the same buildvector. 5118 if (VU->getType() != V->getType()) 5119 return false; 5120 auto *IE1 = cast<InsertElementInst>(VU); 5121 auto *IE2 = cast<InsertElementInst>(V); 5122 // Go though of insertelement instructions trying to find either VU as 5123 // the original vector for IE2 or V as the original vector for IE1. 5124 do { 5125 if (IE1 == VU || IE2 == V) 5126 return true; 5127 if (IE1) 5128 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5129 if (IE2) 5130 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5131 } while (IE1 || IE2); 5132 return false; 5133 }); 5134 int VecId = -1; 5135 if (It == FirstUsers.end()) { 5136 VF.push_back(FTy->getNumElements()); 5137 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5138 FirstUsers.push_back(EU.User); 5139 DemandedElts.push_back(APInt::getZero(VF.back())); 5140 VecId = FirstUsers.size() - 1; 5141 } else { 5142 VecId = std::distance(FirstUsers.begin(), It); 5143 } 5144 int Idx = *InsertIdx; 5145 ShuffleMask[VecId][Idx] = EU.Lane; 5146 DemandedElts[VecId].setBit(Idx); 5147 } 5148 } 5149 5150 // If we plan to rewrite the tree in a smaller type, we will need to sign 5151 // extend the extracted value back to the original type. Here, we account 5152 // for the extract and the added cost of the sign extend if needed. 5153 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5154 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5155 if (MinBWs.count(ScalarRoot)) { 5156 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5157 auto Extend = 5158 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5159 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5160 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5161 VecTy, EU.Lane); 5162 } else { 5163 ExtractCost += 5164 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5165 } 5166 } 5167 5168 InstructionCost SpillCost = getSpillCost(); 5169 Cost += SpillCost + ExtractCost; 5170 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5171 // For the very first element - simple shuffle of the source vector. 5172 int Limit = ShuffleMask[I].size() * 2; 5173 if (I == 0 && 5174 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5175 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5176 InstructionCost C = TTI->getShuffleCost( 5177 TTI::SK_PermuteSingleSrc, 5178 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5179 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5180 << " for final shuffle of insertelement external users " 5181 << *VectorizableTree.front()->Scalars.front() << ".\n" 5182 << "SLP: Current total cost = " << Cost << "\n"); 5183 Cost += C; 5184 continue; 5185 } 5186 // Other elements - permutation of 2 vectors (the initial one and the next 5187 // Ith incoming vector). 5188 unsigned VF = ShuffleMask[I].size(); 5189 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5190 int &Mask = ShuffleMask[I][Idx]; 5191 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5192 } 5193 InstructionCost C = TTI->getShuffleCost( 5194 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5195 ShuffleMask[I]); 5196 LLVM_DEBUG( 5197 dbgs() 5198 << "SLP: Adding cost " << C 5199 << " for final shuffle of vector node and external insertelement users " 5200 << *VectorizableTree.front()->Scalars.front() << ".\n" 5201 << "SLP: Current total cost = " << Cost << "\n"); 5202 Cost += C; 5203 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5204 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5205 /*Insert*/ true, 5206 /*Extract*/ false); 5207 Cost -= InsertCost; 5208 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5209 << " for insertelements gather.\n" 5210 << "SLP: Current total cost = " << Cost << "\n"); 5211 } 5212 5213 #ifndef NDEBUG 5214 SmallString<256> Str; 5215 { 5216 raw_svector_ostream OS(Str); 5217 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5218 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5219 << "SLP: Total Cost = " << Cost << ".\n"; 5220 } 5221 LLVM_DEBUG(dbgs() << Str); 5222 if (ViewSLPTree) 5223 ViewGraph(this, "SLP" + F->getName(), false, Str); 5224 #endif 5225 5226 return Cost; 5227 } 5228 5229 Optional<TargetTransformInfo::ShuffleKind> 5230 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5231 SmallVectorImpl<const TreeEntry *> &Entries) { 5232 // TODO: currently checking only for Scalars in the tree entry, need to count 5233 // reused elements too for better cost estimation. 5234 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5235 Entries.clear(); 5236 // Build a lists of values to tree entries. 5237 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5238 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5239 if (EntryPtr.get() == TE) 5240 break; 5241 if (EntryPtr->State != TreeEntry::NeedToGather) 5242 continue; 5243 for (Value *V : EntryPtr->Scalars) 5244 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5245 } 5246 // Find all tree entries used by the gathered values. If no common entries 5247 // found - not a shuffle. 5248 // Here we build a set of tree nodes for each gathered value and trying to 5249 // find the intersection between these sets. If we have at least one common 5250 // tree node for each gathered value - we have just a permutation of the 5251 // single vector. If we have 2 different sets, we're in situation where we 5252 // have a permutation of 2 input vectors. 5253 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5254 DenseMap<Value *, int> UsedValuesEntry; 5255 for (Value *V : TE->Scalars) { 5256 if (isa<UndefValue>(V)) 5257 continue; 5258 // Build a list of tree entries where V is used. 5259 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5260 auto It = ValueToTEs.find(V); 5261 if (It != ValueToTEs.end()) 5262 VToTEs = It->second; 5263 if (const TreeEntry *VTE = getTreeEntry(V)) 5264 VToTEs.insert(VTE); 5265 if (VToTEs.empty()) 5266 return None; 5267 if (UsedTEs.empty()) { 5268 // The first iteration, just insert the list of nodes to vector. 5269 UsedTEs.push_back(VToTEs); 5270 } else { 5271 // Need to check if there are any previously used tree nodes which use V. 5272 // If there are no such nodes, consider that we have another one input 5273 // vector. 5274 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5275 unsigned Idx = 0; 5276 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5277 // Do we have a non-empty intersection of previously listed tree entries 5278 // and tree entries using current V? 5279 set_intersect(VToTEs, Set); 5280 if (!VToTEs.empty()) { 5281 // Yes, write the new subset and continue analysis for the next 5282 // scalar. 5283 Set.swap(VToTEs); 5284 break; 5285 } 5286 VToTEs = SavedVToTEs; 5287 ++Idx; 5288 } 5289 // No non-empty intersection found - need to add a second set of possible 5290 // source vectors. 5291 if (Idx == UsedTEs.size()) { 5292 // If the number of input vectors is greater than 2 - not a permutation, 5293 // fallback to the regular gather. 5294 if (UsedTEs.size() == 2) 5295 return None; 5296 UsedTEs.push_back(SavedVToTEs); 5297 Idx = UsedTEs.size() - 1; 5298 } 5299 UsedValuesEntry.try_emplace(V, Idx); 5300 } 5301 } 5302 5303 unsigned VF = 0; 5304 if (UsedTEs.size() == 1) { 5305 // Try to find the perfect match in another gather node at first. 5306 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5307 return EntryPtr->isSame(TE->Scalars); 5308 }); 5309 if (It != UsedTEs.front().end()) { 5310 Entries.push_back(*It); 5311 std::iota(Mask.begin(), Mask.end(), 0); 5312 return TargetTransformInfo::SK_PermuteSingleSrc; 5313 } 5314 // No perfect match, just shuffle, so choose the first tree node. 5315 Entries.push_back(*UsedTEs.front().begin()); 5316 } else { 5317 // Try to find nodes with the same vector factor. 5318 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5319 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5320 // landed. 5321 auto &&GetVF = [](const TreeEntry *TE) { 5322 if (!TE->ReuseShuffleIndices.empty()) 5323 return TE->ReuseShuffleIndices.size(); 5324 return TE->Scalars.size(); 5325 }; 5326 DenseMap<int, const TreeEntry *> VFToTE; 5327 for (const TreeEntry *TE : UsedTEs.front()) 5328 VFToTE.try_emplace(GetVF(TE), TE); 5329 for (const TreeEntry *TE : UsedTEs.back()) { 5330 auto It = VFToTE.find(GetVF(TE)); 5331 if (It != VFToTE.end()) { 5332 VF = It->first; 5333 Entries.push_back(It->second); 5334 Entries.push_back(TE); 5335 break; 5336 } 5337 } 5338 // No 2 source vectors with the same vector factor - give up and do regular 5339 // gather. 5340 if (Entries.empty()) 5341 return None; 5342 } 5343 5344 // Build a shuffle mask for better cost estimation and vector emission. 5345 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5346 Value *V = TE->Scalars[I]; 5347 if (isa<UndefValue>(V)) 5348 continue; 5349 unsigned Idx = UsedValuesEntry.lookup(V); 5350 const TreeEntry *VTE = Entries[Idx]; 5351 int FoundLane = VTE->findLaneForValue(V); 5352 Mask[I] = Idx * VF + FoundLane; 5353 // Extra check required by isSingleSourceMaskImpl function (called by 5354 // ShuffleVectorInst::isSingleSourceMask). 5355 if (Mask[I] >= 2 * E) 5356 return None; 5357 } 5358 switch (Entries.size()) { 5359 case 1: 5360 return TargetTransformInfo::SK_PermuteSingleSrc; 5361 case 2: 5362 return TargetTransformInfo::SK_PermuteTwoSrc; 5363 default: 5364 break; 5365 } 5366 return None; 5367 } 5368 5369 InstructionCost 5370 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5371 const DenseSet<unsigned> &ShuffledIndices) const { 5372 unsigned NumElts = Ty->getNumElements(); 5373 APInt DemandedElts = APInt::getZero(NumElts); 5374 for (unsigned I = 0; I < NumElts; ++I) 5375 if (!ShuffledIndices.count(I)) 5376 DemandedElts.setBit(I); 5377 InstructionCost Cost = 5378 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5379 /*Extract*/ false); 5380 if (!ShuffledIndices.empty()) 5381 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5382 return Cost; 5383 } 5384 5385 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5386 // Find the type of the operands in VL. 5387 Type *ScalarTy = VL[0]->getType(); 5388 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5389 ScalarTy = SI->getValueOperand()->getType(); 5390 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5391 // Find the cost of inserting/extracting values from the vector. 5392 // Check if the same elements are inserted several times and count them as 5393 // shuffle candidates. 5394 DenseSet<unsigned> ShuffledElements; 5395 DenseSet<Value *> UniqueElements; 5396 // Iterate in reverse order to consider insert elements with the high cost. 5397 for (unsigned I = VL.size(); I > 0; --I) { 5398 unsigned Idx = I - 1; 5399 if (isConstant(VL[Idx])) 5400 continue; 5401 if (!UniqueElements.insert(VL[Idx]).second) 5402 ShuffledElements.insert(Idx); 5403 } 5404 return getGatherCost(VecTy, ShuffledElements); 5405 } 5406 5407 // Perform operand reordering on the instructions in VL and return the reordered 5408 // operands in Left and Right. 5409 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5410 SmallVectorImpl<Value *> &Left, 5411 SmallVectorImpl<Value *> &Right, 5412 const DataLayout &DL, 5413 ScalarEvolution &SE, 5414 const BoUpSLP &R) { 5415 if (VL.empty()) 5416 return; 5417 VLOperands Ops(VL, DL, SE, R); 5418 // Reorder the operands in place. 5419 Ops.reorder(); 5420 Left = Ops.getVL(0); 5421 Right = Ops.getVL(1); 5422 } 5423 5424 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5425 // Get the basic block this bundle is in. All instructions in the bundle 5426 // should be in this block. 5427 auto *Front = E->getMainOp(); 5428 auto *BB = Front->getParent(); 5429 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5430 auto *I = cast<Instruction>(V); 5431 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5432 })); 5433 5434 // The last instruction in the bundle in program order. 5435 Instruction *LastInst = nullptr; 5436 5437 // Find the last instruction. The common case should be that BB has been 5438 // scheduled, and the last instruction is VL.back(). So we start with 5439 // VL.back() and iterate over schedule data until we reach the end of the 5440 // bundle. The end of the bundle is marked by null ScheduleData. 5441 if (BlocksSchedules.count(BB)) { 5442 auto *Bundle = 5443 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5444 if (Bundle && Bundle->isPartOfBundle()) 5445 for (; Bundle; Bundle = Bundle->NextInBundle) 5446 if (Bundle->OpValue == Bundle->Inst) 5447 LastInst = Bundle->Inst; 5448 } 5449 5450 // LastInst can still be null at this point if there's either not an entry 5451 // for BB in BlocksSchedules or there's no ScheduleData available for 5452 // VL.back(). This can be the case if buildTree_rec aborts for various 5453 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5454 // size is reached, etc.). ScheduleData is initialized in the scheduling 5455 // "dry-run". 5456 // 5457 // If this happens, we can still find the last instruction by brute force. We 5458 // iterate forwards from Front (inclusive) until we either see all 5459 // instructions in the bundle or reach the end of the block. If Front is the 5460 // last instruction in program order, LastInst will be set to Front, and we 5461 // will visit all the remaining instructions in the block. 5462 // 5463 // One of the reasons we exit early from buildTree_rec is to place an upper 5464 // bound on compile-time. Thus, taking an additional compile-time hit here is 5465 // not ideal. However, this should be exceedingly rare since it requires that 5466 // we both exit early from buildTree_rec and that the bundle be out-of-order 5467 // (causing us to iterate all the way to the end of the block). 5468 if (!LastInst) { 5469 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5470 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5471 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5472 LastInst = &I; 5473 if (Bundle.empty()) 5474 break; 5475 } 5476 } 5477 assert(LastInst && "Failed to find last instruction in bundle"); 5478 5479 // Set the insertion point after the last instruction in the bundle. Set the 5480 // debug location to Front. 5481 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5482 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5483 } 5484 5485 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5486 // List of instructions/lanes from current block and/or the blocks which are 5487 // part of the current loop. These instructions will be inserted at the end to 5488 // make it possible to optimize loops and hoist invariant instructions out of 5489 // the loops body with better chances for success. 5490 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5491 SmallSet<int, 4> PostponedIndices; 5492 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5493 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5494 SmallPtrSet<BasicBlock *, 4> Visited; 5495 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5496 InsertBB = InsertBB->getSinglePredecessor(); 5497 return InsertBB && InsertBB == InstBB; 5498 }; 5499 for (int I = 0, E = VL.size(); I < E; ++I) { 5500 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5501 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5502 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5503 PostponedIndices.insert(I).second) 5504 PostponedInsts.emplace_back(Inst, I); 5505 } 5506 5507 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5508 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5509 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5510 if (!InsElt) 5511 return Vec; 5512 GatherSeq.insert(InsElt); 5513 CSEBlocks.insert(InsElt->getParent()); 5514 // Add to our 'need-to-extract' list. 5515 if (TreeEntry *Entry = getTreeEntry(V)) { 5516 // Find which lane we need to extract. 5517 unsigned FoundLane = Entry->findLaneForValue(V); 5518 ExternalUses.emplace_back(V, InsElt, FoundLane); 5519 } 5520 return Vec; 5521 }; 5522 Value *Val0 = 5523 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5524 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5525 Value *Vec = PoisonValue::get(VecTy); 5526 SmallVector<int> NonConsts; 5527 // Insert constant values at first. 5528 for (int I = 0, E = VL.size(); I < E; ++I) { 5529 if (PostponedIndices.contains(I)) 5530 continue; 5531 if (!isConstant(VL[I])) { 5532 NonConsts.push_back(I); 5533 continue; 5534 } 5535 Vec = CreateInsertElement(Vec, VL[I], I); 5536 } 5537 // Insert non-constant values. 5538 for (int I : NonConsts) 5539 Vec = CreateInsertElement(Vec, VL[I], I); 5540 // Append instructions, which are/may be part of the loop, in the end to make 5541 // it possible to hoist non-loop-based instructions. 5542 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5543 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5544 5545 return Vec; 5546 } 5547 5548 namespace { 5549 /// Merges shuffle masks and emits final shuffle instruction, if required. 5550 class ShuffleInstructionBuilder { 5551 IRBuilderBase &Builder; 5552 const unsigned VF = 0; 5553 bool IsFinalized = false; 5554 SmallVector<int, 4> Mask; 5555 5556 public: 5557 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5558 : Builder(Builder), VF(VF) {} 5559 5560 /// Adds a mask, inverting it before applying. 5561 void addInversedMask(ArrayRef<unsigned> SubMask) { 5562 if (SubMask.empty()) 5563 return; 5564 SmallVector<int, 4> NewMask; 5565 inversePermutation(SubMask, NewMask); 5566 addMask(NewMask); 5567 } 5568 5569 /// Functions adds masks, merging them into single one. 5570 void addMask(ArrayRef<unsigned> SubMask) { 5571 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5572 addMask(NewMask); 5573 } 5574 5575 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5576 5577 Value *finalize(Value *V) { 5578 IsFinalized = true; 5579 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5580 if (VF == ValueVF && Mask.empty()) 5581 return V; 5582 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5583 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5584 addMask(NormalizedMask); 5585 5586 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5587 return V; 5588 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5589 } 5590 5591 ~ShuffleInstructionBuilder() { 5592 assert((IsFinalized || Mask.empty()) && 5593 "Shuffle construction must be finalized."); 5594 } 5595 }; 5596 } // namespace 5597 5598 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5599 unsigned VF = VL.size(); 5600 InstructionsState S = getSameOpcode(VL); 5601 if (S.getOpcode()) { 5602 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5603 if (E->isSame(VL)) { 5604 Value *V = vectorizeTree(E); 5605 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5606 if (!E->ReuseShuffleIndices.empty()) { 5607 // Reshuffle to get only unique values. 5608 // If some of the scalars are duplicated in the vectorization tree 5609 // entry, we do not vectorize them but instead generate a mask for 5610 // the reuses. But if there are several users of the same entry, 5611 // they may have different vectorization factors. This is especially 5612 // important for PHI nodes. In this case, we need to adapt the 5613 // resulting instruction for the user vectorization factor and have 5614 // to reshuffle it again to take only unique elements of the vector. 5615 // Without this code the function incorrectly returns reduced vector 5616 // instruction with the same elements, not with the unique ones. 5617 5618 // block: 5619 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5620 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 5621 // ... (use %2) 5622 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 5623 // br %block 5624 SmallVector<int> UniqueIdxs; 5625 SmallSet<int, 4> UsedIdxs; 5626 int Pos = 0; 5627 int Sz = VL.size(); 5628 for (int Idx : E->ReuseShuffleIndices) { 5629 if (Idx != Sz && UsedIdxs.insert(Idx).second) 5630 UniqueIdxs.emplace_back(Pos); 5631 ++Pos; 5632 } 5633 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5634 "less than original vector size."); 5635 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5636 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5637 } else { 5638 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5639 "Expected vectorization factor less " 5640 "than original vector size."); 5641 SmallVector<int> UniformMask(VF, 0); 5642 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5643 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5644 } 5645 } 5646 return V; 5647 } 5648 } 5649 5650 // Check that every instruction appears once in this bundle. 5651 SmallVector<int> ReuseShuffleIndicies; 5652 SmallVector<Value *> UniqueValues; 5653 if (VL.size() > 2) { 5654 DenseMap<Value *, unsigned> UniquePositions; 5655 unsigned NumValues = 5656 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5657 return !isa<UndefValue>(V); 5658 }).base()); 5659 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5660 int UniqueVals = 0; 5661 for (Value *V : VL.drop_back(VL.size() - VF)) { 5662 if (isa<UndefValue>(V)) { 5663 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5664 continue; 5665 } 5666 if (isConstant(V)) { 5667 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5668 UniqueValues.emplace_back(V); 5669 continue; 5670 } 5671 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5672 ReuseShuffleIndicies.emplace_back(Res.first->second); 5673 if (Res.second) { 5674 UniqueValues.emplace_back(V); 5675 ++UniqueVals; 5676 } 5677 } 5678 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5679 // Emit pure splat vector. 5680 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5681 UndefMaskElem); 5682 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5683 ReuseShuffleIndicies.clear(); 5684 UniqueValues.clear(); 5685 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5686 } 5687 UniqueValues.append(VF - UniqueValues.size(), 5688 PoisonValue::get(VL[0]->getType())); 5689 VL = UniqueValues; 5690 } 5691 5692 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5693 Value *Vec = gather(VL); 5694 if (!ReuseShuffleIndicies.empty()) { 5695 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5696 Vec = ShuffleBuilder.finalize(Vec); 5697 if (auto *I = dyn_cast<Instruction>(Vec)) { 5698 GatherSeq.insert(I); 5699 CSEBlocks.insert(I->getParent()); 5700 } 5701 } 5702 return Vec; 5703 } 5704 5705 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5706 IRBuilder<>::InsertPointGuard Guard(Builder); 5707 5708 if (E->VectorizedValue) { 5709 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5710 return E->VectorizedValue; 5711 } 5712 5713 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5714 unsigned VF = E->Scalars.size(); 5715 if (NeedToShuffleReuses) 5716 VF = E->ReuseShuffleIndices.size(); 5717 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5718 if (E->State == TreeEntry::NeedToGather) { 5719 setInsertPointAfterBundle(E); 5720 Value *Vec; 5721 SmallVector<int> Mask; 5722 SmallVector<const TreeEntry *> Entries; 5723 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5724 isGatherShuffledEntry(E, Mask, Entries); 5725 if (Shuffle.hasValue()) { 5726 assert((Entries.size() == 1 || Entries.size() == 2) && 5727 "Expected shuffle of 1 or 2 entries."); 5728 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5729 Entries.back()->VectorizedValue, Mask); 5730 } else { 5731 Vec = gather(E->Scalars); 5732 } 5733 if (NeedToShuffleReuses) { 5734 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5735 Vec = ShuffleBuilder.finalize(Vec); 5736 if (auto *I = dyn_cast<Instruction>(Vec)) { 5737 GatherSeq.insert(I); 5738 CSEBlocks.insert(I->getParent()); 5739 } 5740 } 5741 E->VectorizedValue = Vec; 5742 return Vec; 5743 } 5744 5745 assert((E->State == TreeEntry::Vectorize || 5746 E->State == TreeEntry::ScatterVectorize) && 5747 "Unhandled state"); 5748 unsigned ShuffleOrOp = 5749 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5750 Instruction *VL0 = E->getMainOp(); 5751 Type *ScalarTy = VL0->getType(); 5752 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5753 ScalarTy = Store->getValueOperand()->getType(); 5754 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5755 ScalarTy = IE->getOperand(1)->getType(); 5756 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5757 switch (ShuffleOrOp) { 5758 case Instruction::PHI: { 5759 assert( 5760 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5761 "PHI reordering is free."); 5762 auto *PH = cast<PHINode>(VL0); 5763 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5764 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5765 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5766 Value *V = NewPhi; 5767 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5768 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5769 V = ShuffleBuilder.finalize(V); 5770 5771 E->VectorizedValue = V; 5772 5773 // PHINodes may have multiple entries from the same block. We want to 5774 // visit every block once. 5775 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5776 5777 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5778 ValueList Operands; 5779 BasicBlock *IBB = PH->getIncomingBlock(i); 5780 5781 if (!VisitedBBs.insert(IBB).second) { 5782 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5783 continue; 5784 } 5785 5786 Builder.SetInsertPoint(IBB->getTerminator()); 5787 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5788 Value *Vec = vectorizeTree(E->getOperand(i)); 5789 NewPhi->addIncoming(Vec, IBB); 5790 } 5791 5792 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5793 "Invalid number of incoming values"); 5794 return V; 5795 } 5796 5797 case Instruction::ExtractElement: { 5798 Value *V = E->getSingleOperand(0); 5799 Builder.SetInsertPoint(VL0); 5800 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5801 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5802 V = ShuffleBuilder.finalize(V); 5803 E->VectorizedValue = V; 5804 return V; 5805 } 5806 case Instruction::ExtractValue: { 5807 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5808 Builder.SetInsertPoint(LI); 5809 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5810 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5811 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5812 Value *NewV = propagateMetadata(V, E->Scalars); 5813 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5814 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5815 NewV = ShuffleBuilder.finalize(NewV); 5816 E->VectorizedValue = NewV; 5817 return NewV; 5818 } 5819 case Instruction::InsertElement: { 5820 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 5821 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 5822 Value *V = vectorizeTree(E->getOperand(1)); 5823 5824 // Create InsertVector shuffle if necessary 5825 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5826 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 5827 })); 5828 const unsigned NumElts = 5829 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 5830 const unsigned NumScalars = E->Scalars.size(); 5831 5832 unsigned Offset = *getInsertIndex(VL0, 0); 5833 assert(Offset < NumElts && "Failed to find vector index offset"); 5834 5835 // Create shuffle to resize vector 5836 SmallVector<int> Mask; 5837 if (!E->ReorderIndices.empty()) { 5838 inversePermutation(E->ReorderIndices, Mask); 5839 Mask.append(NumElts - NumScalars, UndefMaskElem); 5840 } else { 5841 Mask.assign(NumElts, UndefMaskElem); 5842 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5843 } 5844 // Create InsertVector shuffle if necessary 5845 bool IsIdentity = true; 5846 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5847 Mask.swap(PrevMask); 5848 for (unsigned I = 0; I < NumScalars; ++I) { 5849 Value *Scalar = E->Scalars[PrevMask[I]]; 5850 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5851 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5852 continue; 5853 IsIdentity &= *InsertIdx - Offset == I; 5854 Mask[*InsertIdx - Offset] = I; 5855 } 5856 if (!IsIdentity || NumElts != NumScalars) 5857 V = Builder.CreateShuffleVector(V, Mask); 5858 5859 if ((!IsIdentity || Offset != 0 || 5860 !isa<UndefValue>(FirstInsert->getOperand(0))) && 5861 NumElts != NumScalars) { 5862 SmallVector<int> InsertMask(NumElts); 5863 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5864 for (unsigned I = 0; I < NumElts; I++) { 5865 if (Mask[I] != UndefMaskElem) 5866 InsertMask[Offset + I] = NumElts + I; 5867 } 5868 5869 V = Builder.CreateShuffleVector( 5870 FirstInsert->getOperand(0), V, InsertMask, 5871 cast<Instruction>(E->Scalars.back())->getName()); 5872 } 5873 5874 ++NumVectorInstructions; 5875 E->VectorizedValue = V; 5876 return V; 5877 } 5878 case Instruction::ZExt: 5879 case Instruction::SExt: 5880 case Instruction::FPToUI: 5881 case Instruction::FPToSI: 5882 case Instruction::FPExt: 5883 case Instruction::PtrToInt: 5884 case Instruction::IntToPtr: 5885 case Instruction::SIToFP: 5886 case Instruction::UIToFP: 5887 case Instruction::Trunc: 5888 case Instruction::FPTrunc: 5889 case Instruction::BitCast: { 5890 setInsertPointAfterBundle(E); 5891 5892 Value *InVec = vectorizeTree(E->getOperand(0)); 5893 5894 if (E->VectorizedValue) { 5895 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5896 return E->VectorizedValue; 5897 } 5898 5899 auto *CI = cast<CastInst>(VL0); 5900 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5901 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5902 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5903 V = ShuffleBuilder.finalize(V); 5904 5905 E->VectorizedValue = V; 5906 ++NumVectorInstructions; 5907 return V; 5908 } 5909 case Instruction::FCmp: 5910 case Instruction::ICmp: { 5911 setInsertPointAfterBundle(E); 5912 5913 Value *L = vectorizeTree(E->getOperand(0)); 5914 Value *R = vectorizeTree(E->getOperand(1)); 5915 5916 if (E->VectorizedValue) { 5917 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5918 return E->VectorizedValue; 5919 } 5920 5921 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5922 Value *V = Builder.CreateCmp(P0, L, R); 5923 propagateIRFlags(V, E->Scalars, VL0); 5924 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5925 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5926 V = ShuffleBuilder.finalize(V); 5927 5928 E->VectorizedValue = V; 5929 ++NumVectorInstructions; 5930 return V; 5931 } 5932 case Instruction::Select: { 5933 setInsertPointAfterBundle(E); 5934 5935 Value *Cond = vectorizeTree(E->getOperand(0)); 5936 Value *True = vectorizeTree(E->getOperand(1)); 5937 Value *False = vectorizeTree(E->getOperand(2)); 5938 5939 if (E->VectorizedValue) { 5940 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5941 return E->VectorizedValue; 5942 } 5943 5944 Value *V = Builder.CreateSelect(Cond, True, False); 5945 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5946 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5947 V = ShuffleBuilder.finalize(V); 5948 5949 E->VectorizedValue = V; 5950 ++NumVectorInstructions; 5951 return V; 5952 } 5953 case Instruction::FNeg: { 5954 setInsertPointAfterBundle(E); 5955 5956 Value *Op = vectorizeTree(E->getOperand(0)); 5957 5958 if (E->VectorizedValue) { 5959 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5960 return E->VectorizedValue; 5961 } 5962 5963 Value *V = Builder.CreateUnOp( 5964 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5965 propagateIRFlags(V, E->Scalars, VL0); 5966 if (auto *I = dyn_cast<Instruction>(V)) 5967 V = propagateMetadata(I, E->Scalars); 5968 5969 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5970 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5971 V = ShuffleBuilder.finalize(V); 5972 5973 E->VectorizedValue = V; 5974 ++NumVectorInstructions; 5975 5976 return V; 5977 } 5978 case Instruction::Add: 5979 case Instruction::FAdd: 5980 case Instruction::Sub: 5981 case Instruction::FSub: 5982 case Instruction::Mul: 5983 case Instruction::FMul: 5984 case Instruction::UDiv: 5985 case Instruction::SDiv: 5986 case Instruction::FDiv: 5987 case Instruction::URem: 5988 case Instruction::SRem: 5989 case Instruction::FRem: 5990 case Instruction::Shl: 5991 case Instruction::LShr: 5992 case Instruction::AShr: 5993 case Instruction::And: 5994 case Instruction::Or: 5995 case Instruction::Xor: { 5996 setInsertPointAfterBundle(E); 5997 5998 Value *LHS = vectorizeTree(E->getOperand(0)); 5999 Value *RHS = vectorizeTree(E->getOperand(1)); 6000 6001 if (E->VectorizedValue) { 6002 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6003 return E->VectorizedValue; 6004 } 6005 6006 Value *V = Builder.CreateBinOp( 6007 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6008 RHS); 6009 propagateIRFlags(V, E->Scalars, VL0); 6010 if (auto *I = dyn_cast<Instruction>(V)) 6011 V = propagateMetadata(I, E->Scalars); 6012 6013 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6014 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6015 V = ShuffleBuilder.finalize(V); 6016 6017 E->VectorizedValue = V; 6018 ++NumVectorInstructions; 6019 6020 return V; 6021 } 6022 case Instruction::Load: { 6023 // Loads are inserted at the head of the tree because we don't want to 6024 // sink them all the way down past store instructions. 6025 setInsertPointAfterBundle(E); 6026 6027 LoadInst *LI = cast<LoadInst>(VL0); 6028 Instruction *NewLI; 6029 unsigned AS = LI->getPointerAddressSpace(); 6030 Value *PO = LI->getPointerOperand(); 6031 if (E->State == TreeEntry::Vectorize) { 6032 6033 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6034 6035 // The pointer operand uses an in-tree scalar so we add the new BitCast 6036 // to ExternalUses list to make sure that an extract will be generated 6037 // in the future. 6038 if (TreeEntry *Entry = getTreeEntry(PO)) { 6039 // Find which lane we need to extract. 6040 unsigned FoundLane = Entry->findLaneForValue(PO); 6041 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6042 } 6043 6044 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6045 } else { 6046 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6047 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6048 // Use the minimum alignment of the gathered loads. 6049 Align CommonAlignment = LI->getAlign(); 6050 for (Value *V : E->Scalars) 6051 CommonAlignment = 6052 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6053 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6054 } 6055 Value *V = propagateMetadata(NewLI, E->Scalars); 6056 6057 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6058 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6059 V = ShuffleBuilder.finalize(V); 6060 E->VectorizedValue = V; 6061 ++NumVectorInstructions; 6062 return V; 6063 } 6064 case Instruction::Store: { 6065 auto *SI = cast<StoreInst>(VL0); 6066 unsigned AS = SI->getPointerAddressSpace(); 6067 6068 setInsertPointAfterBundle(E); 6069 6070 Value *VecValue = vectorizeTree(E->getOperand(0)); 6071 ShuffleBuilder.addMask(E->ReorderIndices); 6072 VecValue = ShuffleBuilder.finalize(VecValue); 6073 6074 Value *ScalarPtr = SI->getPointerOperand(); 6075 Value *VecPtr = Builder.CreateBitCast( 6076 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6077 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6078 SI->getAlign()); 6079 6080 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6081 // ExternalUses to make sure that an extract will be generated in the 6082 // future. 6083 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6084 // Find which lane we need to extract. 6085 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6086 ExternalUses.push_back( 6087 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6088 } 6089 6090 Value *V = propagateMetadata(ST, E->Scalars); 6091 6092 E->VectorizedValue = V; 6093 ++NumVectorInstructions; 6094 return V; 6095 } 6096 case Instruction::GetElementPtr: { 6097 setInsertPointAfterBundle(E); 6098 6099 Value *Op0 = vectorizeTree(E->getOperand(0)); 6100 6101 std::vector<Value *> OpVecs; 6102 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 6103 ++j) { 6104 ValueList &VL = E->getOperand(j); 6105 // Need to cast all elements to the same type before vectorization to 6106 // avoid crash. 6107 Type *VL0Ty = VL0->getOperand(j)->getType(); 6108 Type *Ty = llvm::all_of( 6109 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 6110 ? VL0Ty 6111 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 6112 ->getPointerOperandType() 6113 ->getScalarType()); 6114 for (Value *&V : VL) { 6115 auto *CI = cast<ConstantInt>(V); 6116 V = ConstantExpr::getIntegerCast(CI, Ty, 6117 CI->getValue().isSignBitSet()); 6118 } 6119 Value *OpVec = vectorizeTree(VL); 6120 OpVecs.push_back(OpVec); 6121 } 6122 6123 Value *V = Builder.CreateGEP( 6124 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 6125 if (Instruction *I = dyn_cast<Instruction>(V)) 6126 V = propagateMetadata(I, E->Scalars); 6127 6128 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6129 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6130 V = ShuffleBuilder.finalize(V); 6131 6132 E->VectorizedValue = V; 6133 ++NumVectorInstructions; 6134 6135 return V; 6136 } 6137 case Instruction::Call: { 6138 CallInst *CI = cast<CallInst>(VL0); 6139 setInsertPointAfterBundle(E); 6140 6141 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6142 if (Function *FI = CI->getCalledFunction()) 6143 IID = FI->getIntrinsicID(); 6144 6145 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6146 6147 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6148 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6149 VecCallCosts.first <= VecCallCosts.second; 6150 6151 Value *ScalarArg = nullptr; 6152 std::vector<Value *> OpVecs; 6153 SmallVector<Type *, 2> TysForDecl = 6154 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6155 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 6156 ValueList OpVL; 6157 // Some intrinsics have scalar arguments. This argument should not be 6158 // vectorized. 6159 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6160 CallInst *CEI = cast<CallInst>(VL0); 6161 ScalarArg = CEI->getArgOperand(j); 6162 OpVecs.push_back(CEI->getArgOperand(j)); 6163 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6164 TysForDecl.push_back(ScalarArg->getType()); 6165 continue; 6166 } 6167 6168 Value *OpVec = vectorizeTree(E->getOperand(j)); 6169 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6170 OpVecs.push_back(OpVec); 6171 } 6172 6173 Function *CF; 6174 if (!UseIntrinsic) { 6175 VFShape Shape = 6176 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6177 VecTy->getNumElements())), 6178 false /*HasGlobalPred*/); 6179 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6180 } else { 6181 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6182 } 6183 6184 SmallVector<OperandBundleDef, 1> OpBundles; 6185 CI->getOperandBundlesAsDefs(OpBundles); 6186 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6187 6188 // The scalar argument uses an in-tree scalar so we add the new vectorized 6189 // call to ExternalUses list to make sure that an extract will be 6190 // generated in the future. 6191 if (ScalarArg) { 6192 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6193 // Find which lane we need to extract. 6194 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6195 ExternalUses.push_back( 6196 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6197 } 6198 } 6199 6200 propagateIRFlags(V, E->Scalars, VL0); 6201 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6202 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6203 V = ShuffleBuilder.finalize(V); 6204 6205 E->VectorizedValue = V; 6206 ++NumVectorInstructions; 6207 return V; 6208 } 6209 case Instruction::ShuffleVector: { 6210 assert(E->isAltShuffle() && 6211 ((Instruction::isBinaryOp(E->getOpcode()) && 6212 Instruction::isBinaryOp(E->getAltOpcode())) || 6213 (Instruction::isCast(E->getOpcode()) && 6214 Instruction::isCast(E->getAltOpcode()))) && 6215 "Invalid Shuffle Vector Operand"); 6216 6217 Value *LHS = nullptr, *RHS = nullptr; 6218 if (Instruction::isBinaryOp(E->getOpcode())) { 6219 setInsertPointAfterBundle(E); 6220 LHS = vectorizeTree(E->getOperand(0)); 6221 RHS = vectorizeTree(E->getOperand(1)); 6222 } else { 6223 setInsertPointAfterBundle(E); 6224 LHS = vectorizeTree(E->getOperand(0)); 6225 } 6226 6227 if (E->VectorizedValue) { 6228 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6229 return E->VectorizedValue; 6230 } 6231 6232 Value *V0, *V1; 6233 if (Instruction::isBinaryOp(E->getOpcode())) { 6234 V0 = Builder.CreateBinOp( 6235 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6236 V1 = Builder.CreateBinOp( 6237 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6238 } else { 6239 V0 = Builder.CreateCast( 6240 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6241 V1 = Builder.CreateCast( 6242 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6243 } 6244 6245 // Create shuffle to take alternate operations from the vector. 6246 // Also, gather up main and alt scalar ops to propagate IR flags to 6247 // each vector operation. 6248 ValueList OpScalars, AltScalars; 6249 SmallVector<int> Mask; 6250 buildSuffleEntryMask( 6251 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6252 [E](Instruction *I) { 6253 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6254 return I->getOpcode() == E->getAltOpcode(); 6255 }, 6256 Mask, &OpScalars, &AltScalars); 6257 6258 propagateIRFlags(V0, OpScalars); 6259 propagateIRFlags(V1, AltScalars); 6260 6261 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6262 if (Instruction *I = dyn_cast<Instruction>(V)) 6263 V = propagateMetadata(I, E->Scalars); 6264 V = ShuffleBuilder.finalize(V); 6265 6266 E->VectorizedValue = V; 6267 ++NumVectorInstructions; 6268 6269 return V; 6270 } 6271 default: 6272 llvm_unreachable("unknown inst"); 6273 } 6274 return nullptr; 6275 } 6276 6277 Value *BoUpSLP::vectorizeTree() { 6278 ExtraValueToDebugLocsMap ExternallyUsedValues; 6279 return vectorizeTree(ExternallyUsedValues); 6280 } 6281 6282 Value * 6283 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6284 // All blocks must be scheduled before any instructions are inserted. 6285 for (auto &BSIter : BlocksSchedules) { 6286 scheduleBlock(BSIter.second.get()); 6287 } 6288 6289 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6290 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6291 6292 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6293 // vectorized root. InstCombine will then rewrite the entire expression. We 6294 // sign extend the extracted values below. 6295 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6296 if (MinBWs.count(ScalarRoot)) { 6297 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6298 // If current instr is a phi and not the last phi, insert it after the 6299 // last phi node. 6300 if (isa<PHINode>(I)) 6301 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6302 else 6303 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6304 } 6305 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6306 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6307 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6308 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6309 VectorizableTree[0]->VectorizedValue = Trunc; 6310 } 6311 6312 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6313 << " values .\n"); 6314 6315 // Extract all of the elements with the external uses. 6316 for (const auto &ExternalUse : ExternalUses) { 6317 Value *Scalar = ExternalUse.Scalar; 6318 llvm::User *User = ExternalUse.User; 6319 6320 // Skip users that we already RAUW. This happens when one instruction 6321 // has multiple uses of the same value. 6322 if (User && !is_contained(Scalar->users(), User)) 6323 continue; 6324 TreeEntry *E = getTreeEntry(Scalar); 6325 assert(E && "Invalid scalar"); 6326 assert(E->State != TreeEntry::NeedToGather && 6327 "Extracting from a gather list"); 6328 6329 Value *Vec = E->VectorizedValue; 6330 assert(Vec && "Can't find vectorizable value"); 6331 6332 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6333 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6334 if (Scalar->getType() != Vec->getType()) { 6335 Value *Ex; 6336 // "Reuse" the existing extract to improve final codegen. 6337 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6338 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6339 ES->getOperand(1)); 6340 } else { 6341 Ex = Builder.CreateExtractElement(Vec, Lane); 6342 } 6343 // If necessary, sign-extend or zero-extend ScalarRoot 6344 // to the larger type. 6345 if (!MinBWs.count(ScalarRoot)) 6346 return Ex; 6347 if (MinBWs[ScalarRoot].second) 6348 return Builder.CreateSExt(Ex, Scalar->getType()); 6349 return Builder.CreateZExt(Ex, Scalar->getType()); 6350 } 6351 assert(isa<FixedVectorType>(Scalar->getType()) && 6352 isa<InsertElementInst>(Scalar) && 6353 "In-tree scalar of vector type is not insertelement?"); 6354 return Vec; 6355 }; 6356 // If User == nullptr, the Scalar is used as extra arg. Generate 6357 // ExtractElement instruction and update the record for this scalar in 6358 // ExternallyUsedValues. 6359 if (!User) { 6360 assert(ExternallyUsedValues.count(Scalar) && 6361 "Scalar with nullptr as an external user must be registered in " 6362 "ExternallyUsedValues map"); 6363 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6364 Builder.SetInsertPoint(VecI->getParent(), 6365 std::next(VecI->getIterator())); 6366 } else { 6367 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6368 } 6369 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6370 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6371 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6372 auto It = ExternallyUsedValues.find(Scalar); 6373 assert(It != ExternallyUsedValues.end() && 6374 "Externally used scalar is not found in ExternallyUsedValues"); 6375 NewInstLocs.append(It->second); 6376 ExternallyUsedValues.erase(Scalar); 6377 // Required to update internally referenced instructions. 6378 Scalar->replaceAllUsesWith(NewInst); 6379 continue; 6380 } 6381 6382 // Generate extracts for out-of-tree users. 6383 // Find the insertion point for the extractelement lane. 6384 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6385 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6386 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6387 if (PH->getIncomingValue(i) == Scalar) { 6388 Instruction *IncomingTerminator = 6389 PH->getIncomingBlock(i)->getTerminator(); 6390 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6391 Builder.SetInsertPoint(VecI->getParent(), 6392 std::next(VecI->getIterator())); 6393 } else { 6394 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6395 } 6396 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6397 CSEBlocks.insert(PH->getIncomingBlock(i)); 6398 PH->setOperand(i, NewInst); 6399 } 6400 } 6401 } else { 6402 Builder.SetInsertPoint(cast<Instruction>(User)); 6403 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6404 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6405 User->replaceUsesOfWith(Scalar, NewInst); 6406 } 6407 } else { 6408 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6409 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6410 CSEBlocks.insert(&F->getEntryBlock()); 6411 User->replaceUsesOfWith(Scalar, NewInst); 6412 } 6413 6414 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6415 } 6416 6417 // For each vectorized value: 6418 for (auto &TEPtr : VectorizableTree) { 6419 TreeEntry *Entry = TEPtr.get(); 6420 6421 // No need to handle users of gathered values. 6422 if (Entry->State == TreeEntry::NeedToGather) 6423 continue; 6424 6425 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6426 6427 // For each lane: 6428 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6429 Value *Scalar = Entry->Scalars[Lane]; 6430 6431 #ifndef NDEBUG 6432 Type *Ty = Scalar->getType(); 6433 if (!Ty->isVoidTy()) { 6434 for (User *U : Scalar->users()) { 6435 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6436 6437 // It is legal to delete users in the ignorelist. 6438 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6439 (isa_and_nonnull<Instruction>(U) && 6440 isDeleted(cast<Instruction>(U)))) && 6441 "Deleting out-of-tree value"); 6442 } 6443 } 6444 #endif 6445 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6446 eraseInstruction(cast<Instruction>(Scalar)); 6447 } 6448 } 6449 6450 Builder.ClearInsertionPoint(); 6451 InstrElementSize.clear(); 6452 6453 return VectorizableTree[0]->VectorizedValue; 6454 } 6455 6456 void BoUpSLP::optimizeGatherSequence() { 6457 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6458 << " gather sequences instructions.\n"); 6459 // LICM InsertElementInst sequences. 6460 for (Instruction *I : GatherSeq) { 6461 if (isDeleted(I)) 6462 continue; 6463 6464 // Check if this block is inside a loop. 6465 Loop *L = LI->getLoopFor(I->getParent()); 6466 if (!L) 6467 continue; 6468 6469 // Check if it has a preheader. 6470 BasicBlock *PreHeader = L->getLoopPreheader(); 6471 if (!PreHeader) 6472 continue; 6473 6474 // If the vector or the element that we insert into it are 6475 // instructions that are defined in this basic block then we can't 6476 // hoist this instruction. 6477 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6478 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6479 if (Op0 && L->contains(Op0)) 6480 continue; 6481 if (Op1 && L->contains(Op1)) 6482 continue; 6483 6484 // We can hoist this instruction. Move it to the pre-header. 6485 I->moveBefore(PreHeader->getTerminator()); 6486 } 6487 6488 // Make a list of all reachable blocks in our CSE queue. 6489 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6490 CSEWorkList.reserve(CSEBlocks.size()); 6491 for (BasicBlock *BB : CSEBlocks) 6492 if (DomTreeNode *N = DT->getNode(BB)) { 6493 assert(DT->isReachableFromEntry(N)); 6494 CSEWorkList.push_back(N); 6495 } 6496 6497 // Sort blocks by domination. This ensures we visit a block after all blocks 6498 // dominating it are visited. 6499 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6500 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6501 "Different nodes should have different DFS numbers"); 6502 return A->getDFSNumIn() < B->getDFSNumIn(); 6503 }); 6504 6505 // Perform O(N^2) search over the gather sequences and merge identical 6506 // instructions. TODO: We can further optimize this scan if we split the 6507 // instructions into different buckets based on the insert lane. 6508 SmallVector<Instruction *, 16> Visited; 6509 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6510 assert(*I && 6511 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6512 "Worklist not sorted properly!"); 6513 BasicBlock *BB = (*I)->getBlock(); 6514 // For all instructions in blocks containing gather sequences: 6515 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 6516 Instruction *In = &*it++; 6517 if (isDeleted(In)) 6518 continue; 6519 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In) && 6520 !isa<ShuffleVectorInst>(In)) 6521 continue; 6522 6523 // Check if we can replace this instruction with any of the 6524 // visited instructions. 6525 for (Instruction *v : Visited) { 6526 if (In->isIdenticalTo(v) && 6527 DT->dominates(v->getParent(), In->getParent())) { 6528 In->replaceAllUsesWith(v); 6529 eraseInstruction(In); 6530 In = nullptr; 6531 break; 6532 } 6533 } 6534 if (In) { 6535 assert(!is_contained(Visited, In)); 6536 Visited.push_back(In); 6537 } 6538 } 6539 } 6540 CSEBlocks.clear(); 6541 GatherSeq.clear(); 6542 } 6543 6544 // Groups the instructions to a bundle (which is then a single scheduling entity) 6545 // and schedules instructions until the bundle gets ready. 6546 Optional<BoUpSLP::ScheduleData *> 6547 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6548 const InstructionsState &S) { 6549 if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue)) 6550 return nullptr; 6551 6552 // Initialize the instruction bundle. 6553 Instruction *OldScheduleEnd = ScheduleEnd; 6554 ScheduleData *PrevInBundle = nullptr; 6555 ScheduleData *Bundle = nullptr; 6556 bool ReSchedule = false; 6557 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6558 6559 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6560 ScheduleData *Bundle) { 6561 // The scheduling region got new instructions at the lower end (or it is a 6562 // new region for the first bundle). This makes it necessary to 6563 // recalculate all dependencies. 6564 // It is seldom that this needs to be done a second time after adding the 6565 // initial bundle to the region. 6566 if (ScheduleEnd != OldScheduleEnd) { 6567 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6568 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6569 ReSchedule = true; 6570 } 6571 if (ReSchedule) { 6572 resetSchedule(); 6573 initialFillReadyList(ReadyInsts); 6574 } 6575 if (Bundle) { 6576 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6577 << " in block " << BB->getName() << "\n"); 6578 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6579 } 6580 6581 // Now try to schedule the new bundle or (if no bundle) just calculate 6582 // dependencies. As soon as the bundle is "ready" it means that there are no 6583 // cyclic dependencies and we can schedule it. Note that's important that we 6584 // don't "schedule" the bundle yet (see cancelScheduling). 6585 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6586 !ReadyInsts.empty()) { 6587 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6588 if (Picked->isSchedulingEntity() && Picked->isReady()) 6589 schedule(Picked, ReadyInsts); 6590 } 6591 }; 6592 6593 // Make sure that the scheduling region contains all 6594 // instructions of the bundle. 6595 for (Value *V : VL) { 6596 if (!extendSchedulingRegion(V, S)) { 6597 // If the scheduling region got new instructions at the lower end (or it 6598 // is a new region for the first bundle). This makes it necessary to 6599 // recalculate all dependencies. 6600 // Otherwise the compiler may crash trying to incorrectly calculate 6601 // dependencies and emit instruction in the wrong order at the actual 6602 // scheduling. 6603 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6604 return None; 6605 } 6606 } 6607 6608 for (Value *V : VL) { 6609 ScheduleData *BundleMember = getScheduleData(V); 6610 assert(BundleMember && 6611 "no ScheduleData for bundle member (maybe not in same basic block)"); 6612 if (BundleMember->IsScheduled) { 6613 // A bundle member was scheduled as single instruction before and now 6614 // needs to be scheduled as part of the bundle. We just get rid of the 6615 // existing schedule. 6616 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6617 << " was already scheduled\n"); 6618 ReSchedule = true; 6619 } 6620 assert(BundleMember->isSchedulingEntity() && 6621 "bundle member already part of other bundle"); 6622 if (PrevInBundle) { 6623 PrevInBundle->NextInBundle = BundleMember; 6624 } else { 6625 Bundle = BundleMember; 6626 } 6627 BundleMember->UnscheduledDepsInBundle = 0; 6628 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6629 6630 // Group the instructions to a bundle. 6631 BundleMember->FirstInBundle = Bundle; 6632 PrevInBundle = BundleMember; 6633 } 6634 assert(Bundle && "Failed to find schedule bundle"); 6635 TryScheduleBundle(ReSchedule, Bundle); 6636 if (!Bundle->isReady()) { 6637 cancelScheduling(VL, S.OpValue); 6638 return None; 6639 } 6640 return Bundle; 6641 } 6642 6643 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6644 Value *OpValue) { 6645 if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue)) 6646 return; 6647 6648 ScheduleData *Bundle = getScheduleData(OpValue); 6649 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6650 assert(!Bundle->IsScheduled && 6651 "Can't cancel bundle which is already scheduled"); 6652 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6653 "tried to unbundle something which is not a bundle"); 6654 6655 // Un-bundle: make single instructions out of the bundle. 6656 ScheduleData *BundleMember = Bundle; 6657 while (BundleMember) { 6658 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6659 BundleMember->FirstInBundle = BundleMember; 6660 ScheduleData *Next = BundleMember->NextInBundle; 6661 BundleMember->NextInBundle = nullptr; 6662 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6663 if (BundleMember->UnscheduledDepsInBundle == 0) { 6664 ReadyInsts.insert(BundleMember); 6665 } 6666 BundleMember = Next; 6667 } 6668 } 6669 6670 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6671 // Allocate a new ScheduleData for the instruction. 6672 if (ChunkPos >= ChunkSize) { 6673 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6674 ChunkPos = 0; 6675 } 6676 return &(ScheduleDataChunks.back()[ChunkPos++]); 6677 } 6678 6679 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6680 const InstructionsState &S) { 6681 if (getScheduleData(V, isOneOf(S, V))) 6682 return true; 6683 Instruction *I = dyn_cast<Instruction>(V); 6684 assert(I && "bundle member must be an instruction"); 6685 assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) && 6686 "phi nodes/insertelements don't need to be scheduled"); 6687 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6688 ScheduleData *ISD = getScheduleData(I); 6689 if (!ISD) 6690 return false; 6691 assert(isInSchedulingRegion(ISD) && 6692 "ScheduleData not in scheduling region"); 6693 ScheduleData *SD = allocateScheduleDataChunks(); 6694 SD->Inst = I; 6695 SD->init(SchedulingRegionID, S.OpValue); 6696 ExtraScheduleDataMap[I][S.OpValue] = SD; 6697 return true; 6698 }; 6699 if (CheckSheduleForI(I)) 6700 return true; 6701 if (!ScheduleStart) { 6702 // It's the first instruction in the new region. 6703 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6704 ScheduleStart = I; 6705 ScheduleEnd = I->getNextNode(); 6706 if (isOneOf(S, I) != I) 6707 CheckSheduleForI(I); 6708 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6709 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6710 return true; 6711 } 6712 // Search up and down at the same time, because we don't know if the new 6713 // instruction is above or below the existing scheduling region. 6714 BasicBlock::reverse_iterator UpIter = 6715 ++ScheduleStart->getIterator().getReverse(); 6716 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6717 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6718 BasicBlock::iterator LowerEnd = BB->end(); 6719 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6720 &*DownIter != I) { 6721 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6722 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6723 return false; 6724 } 6725 6726 ++UpIter; 6727 ++DownIter; 6728 } 6729 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6730 assert(I->getParent() == ScheduleStart->getParent() && 6731 "Instruction is in wrong basic block."); 6732 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6733 ScheduleStart = I; 6734 if (isOneOf(S, I) != I) 6735 CheckSheduleForI(I); 6736 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6737 << "\n"); 6738 return true; 6739 } 6740 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6741 "Expected to reach top of the basic block or instruction down the " 6742 "lower end."); 6743 assert(I->getParent() == ScheduleEnd->getParent() && 6744 "Instruction is in wrong basic block."); 6745 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6746 nullptr); 6747 ScheduleEnd = I->getNextNode(); 6748 if (isOneOf(S, I) != I) 6749 CheckSheduleForI(I); 6750 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6751 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6752 return true; 6753 } 6754 6755 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6756 Instruction *ToI, 6757 ScheduleData *PrevLoadStore, 6758 ScheduleData *NextLoadStore) { 6759 ScheduleData *CurrentLoadStore = PrevLoadStore; 6760 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6761 ScheduleData *SD = ScheduleDataMap[I]; 6762 if (!SD) { 6763 SD = allocateScheduleDataChunks(); 6764 ScheduleDataMap[I] = SD; 6765 SD->Inst = I; 6766 } 6767 assert(!isInSchedulingRegion(SD) && 6768 "new ScheduleData already in scheduling region"); 6769 SD->init(SchedulingRegionID, I); 6770 6771 if (I->mayReadOrWriteMemory() && 6772 (!isa<IntrinsicInst>(I) || 6773 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6774 cast<IntrinsicInst>(I)->getIntrinsicID() != 6775 Intrinsic::pseudoprobe))) { 6776 // Update the linked list of memory accessing instructions. 6777 if (CurrentLoadStore) { 6778 CurrentLoadStore->NextLoadStore = SD; 6779 } else { 6780 FirstLoadStoreInRegion = SD; 6781 } 6782 CurrentLoadStore = SD; 6783 } 6784 } 6785 if (NextLoadStore) { 6786 if (CurrentLoadStore) 6787 CurrentLoadStore->NextLoadStore = NextLoadStore; 6788 } else { 6789 LastLoadStoreInRegion = CurrentLoadStore; 6790 } 6791 } 6792 6793 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6794 bool InsertInReadyList, 6795 BoUpSLP *SLP) { 6796 assert(SD->isSchedulingEntity()); 6797 6798 SmallVector<ScheduleData *, 10> WorkList; 6799 WorkList.push_back(SD); 6800 6801 while (!WorkList.empty()) { 6802 ScheduleData *SD = WorkList.pop_back_val(); 6803 6804 ScheduleData *BundleMember = SD; 6805 while (BundleMember) { 6806 assert(isInSchedulingRegion(BundleMember)); 6807 if (!BundleMember->hasValidDependencies()) { 6808 6809 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6810 << "\n"); 6811 BundleMember->Dependencies = 0; 6812 BundleMember->resetUnscheduledDeps(); 6813 6814 // Handle def-use chain dependencies. 6815 if (BundleMember->OpValue != BundleMember->Inst) { 6816 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6817 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6818 BundleMember->Dependencies++; 6819 ScheduleData *DestBundle = UseSD->FirstInBundle; 6820 if (!DestBundle->IsScheduled) 6821 BundleMember->incrementUnscheduledDeps(1); 6822 if (!DestBundle->hasValidDependencies()) 6823 WorkList.push_back(DestBundle); 6824 } 6825 } else { 6826 for (User *U : BundleMember->Inst->users()) { 6827 if (isa<Instruction>(U)) { 6828 ScheduleData *UseSD = getScheduleData(U); 6829 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6830 BundleMember->Dependencies++; 6831 ScheduleData *DestBundle = UseSD->FirstInBundle; 6832 if (!DestBundle->IsScheduled) 6833 BundleMember->incrementUnscheduledDeps(1); 6834 if (!DestBundle->hasValidDependencies()) 6835 WorkList.push_back(DestBundle); 6836 } 6837 } else { 6838 // I'm not sure if this can ever happen. But we need to be safe. 6839 // This lets the instruction/bundle never be scheduled and 6840 // eventually disable vectorization. 6841 BundleMember->Dependencies++; 6842 BundleMember->incrementUnscheduledDeps(1); 6843 } 6844 } 6845 } 6846 6847 // Handle the memory dependencies. 6848 ScheduleData *DepDest = BundleMember->NextLoadStore; 6849 if (DepDest) { 6850 Instruction *SrcInst = BundleMember->Inst; 6851 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6852 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6853 unsigned numAliased = 0; 6854 unsigned DistToSrc = 1; 6855 6856 while (DepDest) { 6857 assert(isInSchedulingRegion(DepDest)); 6858 6859 // We have two limits to reduce the complexity: 6860 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6861 // SLP->isAliased (which is the expensive part in this loop). 6862 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6863 // the whole loop (even if the loop is fast, it's quadratic). 6864 // It's important for the loop break condition (see below) to 6865 // check this limit even between two read-only instructions. 6866 if (DistToSrc >= MaxMemDepDistance || 6867 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6868 (numAliased >= AliasedCheckLimit || 6869 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6870 6871 // We increment the counter only if the locations are aliased 6872 // (instead of counting all alias checks). This gives a better 6873 // balance between reduced runtime and accurate dependencies. 6874 numAliased++; 6875 6876 DepDest->MemoryDependencies.push_back(BundleMember); 6877 BundleMember->Dependencies++; 6878 ScheduleData *DestBundle = DepDest->FirstInBundle; 6879 if (!DestBundle->IsScheduled) { 6880 BundleMember->incrementUnscheduledDeps(1); 6881 } 6882 if (!DestBundle->hasValidDependencies()) { 6883 WorkList.push_back(DestBundle); 6884 } 6885 } 6886 DepDest = DepDest->NextLoadStore; 6887 6888 // Example, explaining the loop break condition: Let's assume our 6889 // starting instruction is i0 and MaxMemDepDistance = 3. 6890 // 6891 // +--------v--v--v 6892 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6893 // +--------^--^--^ 6894 // 6895 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6896 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6897 // Previously we already added dependencies from i3 to i6,i7,i8 6898 // (because of MaxMemDepDistance). As we added a dependency from 6899 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6900 // and we can abort this loop at i6. 6901 if (DistToSrc >= 2 * MaxMemDepDistance) 6902 break; 6903 DistToSrc++; 6904 } 6905 } 6906 } 6907 BundleMember = BundleMember->NextInBundle; 6908 } 6909 if (InsertInReadyList && SD->isReady()) { 6910 ReadyInsts.push_back(SD); 6911 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6912 << "\n"); 6913 } 6914 } 6915 } 6916 6917 void BoUpSLP::BlockScheduling::resetSchedule() { 6918 assert(ScheduleStart && 6919 "tried to reset schedule on block which has not been scheduled"); 6920 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6921 doForAllOpcodes(I, [&](ScheduleData *SD) { 6922 assert(isInSchedulingRegion(SD) && 6923 "ScheduleData not in scheduling region"); 6924 SD->IsScheduled = false; 6925 SD->resetUnscheduledDeps(); 6926 }); 6927 } 6928 ReadyInsts.clear(); 6929 } 6930 6931 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6932 if (!BS->ScheduleStart) 6933 return; 6934 6935 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6936 6937 BS->resetSchedule(); 6938 6939 // For the real scheduling we use a more sophisticated ready-list: it is 6940 // sorted by the original instruction location. This lets the final schedule 6941 // be as close as possible to the original instruction order. 6942 struct ScheduleDataCompare { 6943 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6944 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6945 } 6946 }; 6947 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6948 6949 // Ensure that all dependency data is updated and fill the ready-list with 6950 // initial instructions. 6951 int Idx = 0; 6952 int NumToSchedule = 0; 6953 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6954 I = I->getNextNode()) { 6955 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6956 assert((isa<InsertElementInst>(SD->Inst) || 6957 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 6958 "scheduler and vectorizer bundle mismatch"); 6959 SD->FirstInBundle->SchedulingPriority = Idx++; 6960 if (SD->isSchedulingEntity()) { 6961 BS->calculateDependencies(SD, false, this); 6962 NumToSchedule++; 6963 } 6964 }); 6965 } 6966 BS->initialFillReadyList(ReadyInsts); 6967 6968 Instruction *LastScheduledInst = BS->ScheduleEnd; 6969 6970 // Do the "real" scheduling. 6971 while (!ReadyInsts.empty()) { 6972 ScheduleData *picked = *ReadyInsts.begin(); 6973 ReadyInsts.erase(ReadyInsts.begin()); 6974 6975 // Move the scheduled instruction(s) to their dedicated places, if not 6976 // there yet. 6977 ScheduleData *BundleMember = picked; 6978 while (BundleMember) { 6979 Instruction *pickedInst = BundleMember->Inst; 6980 if (pickedInst->getNextNode() != LastScheduledInst) { 6981 BS->BB->getInstList().remove(pickedInst); 6982 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6983 pickedInst); 6984 } 6985 LastScheduledInst = pickedInst; 6986 BundleMember = BundleMember->NextInBundle; 6987 } 6988 6989 BS->schedule(picked, ReadyInsts); 6990 NumToSchedule--; 6991 } 6992 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6993 6994 // Avoid duplicate scheduling of the block. 6995 BS->ScheduleStart = nullptr; 6996 } 6997 6998 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6999 // If V is a store, just return the width of the stored value (or value 7000 // truncated just before storing) without traversing the expression tree. 7001 // This is the common case. 7002 if (auto *Store = dyn_cast<StoreInst>(V)) { 7003 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7004 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7005 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7006 } 7007 7008 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7009 return getVectorElementSize(IEI->getOperand(1)); 7010 7011 auto E = InstrElementSize.find(V); 7012 if (E != InstrElementSize.end()) 7013 return E->second; 7014 7015 // If V is not a store, we can traverse the expression tree to find loads 7016 // that feed it. The type of the loaded value may indicate a more suitable 7017 // width than V's type. We want to base the vector element size on the width 7018 // of memory operations where possible. 7019 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7020 SmallPtrSet<Instruction *, 16> Visited; 7021 if (auto *I = dyn_cast<Instruction>(V)) { 7022 Worklist.emplace_back(I, I->getParent()); 7023 Visited.insert(I); 7024 } 7025 7026 // Traverse the expression tree in bottom-up order looking for loads. If we 7027 // encounter an instruction we don't yet handle, we give up. 7028 auto Width = 0u; 7029 while (!Worklist.empty()) { 7030 Instruction *I; 7031 BasicBlock *Parent; 7032 std::tie(I, Parent) = Worklist.pop_back_val(); 7033 7034 // We should only be looking at scalar instructions here. If the current 7035 // instruction has a vector type, skip. 7036 auto *Ty = I->getType(); 7037 if (isa<VectorType>(Ty)) 7038 continue; 7039 7040 // If the current instruction is a load, update MaxWidth to reflect the 7041 // width of the loaded value. 7042 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7043 isa<ExtractValueInst>(I)) 7044 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7045 7046 // Otherwise, we need to visit the operands of the instruction. We only 7047 // handle the interesting cases from buildTree here. If an operand is an 7048 // instruction we haven't yet visited and from the same basic block as the 7049 // user or the use is a PHI node, we add it to the worklist. 7050 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7051 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7052 isa<UnaryOperator>(I)) { 7053 for (Use &U : I->operands()) 7054 if (auto *J = dyn_cast<Instruction>(U.get())) 7055 if (Visited.insert(J).second && 7056 (isa<PHINode>(I) || J->getParent() == Parent)) 7057 Worklist.emplace_back(J, J->getParent()); 7058 } else { 7059 break; 7060 } 7061 } 7062 7063 // If we didn't encounter a memory access in the expression tree, or if we 7064 // gave up for some reason, just return the width of V. Otherwise, return the 7065 // maximum width we found. 7066 if (!Width) { 7067 if (auto *CI = dyn_cast<CmpInst>(V)) 7068 V = CI->getOperand(0); 7069 Width = DL->getTypeSizeInBits(V->getType()); 7070 } 7071 7072 for (Instruction *I : Visited) 7073 InstrElementSize[I] = Width; 7074 7075 return Width; 7076 } 7077 7078 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7079 // smaller type with a truncation. We collect the values that will be demoted 7080 // in ToDemote and additional roots that require investigating in Roots. 7081 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7082 SmallVectorImpl<Value *> &ToDemote, 7083 SmallVectorImpl<Value *> &Roots) { 7084 // We can always demote constants. 7085 if (isa<Constant>(V)) { 7086 ToDemote.push_back(V); 7087 return true; 7088 } 7089 7090 // If the value is not an instruction in the expression with only one use, it 7091 // cannot be demoted. 7092 auto *I = dyn_cast<Instruction>(V); 7093 if (!I || !I->hasOneUse() || !Expr.count(I)) 7094 return false; 7095 7096 switch (I->getOpcode()) { 7097 7098 // We can always demote truncations and extensions. Since truncations can 7099 // seed additional demotion, we save the truncated value. 7100 case Instruction::Trunc: 7101 Roots.push_back(I->getOperand(0)); 7102 break; 7103 case Instruction::ZExt: 7104 case Instruction::SExt: 7105 if (isa<ExtractElementInst>(I->getOperand(0)) || 7106 isa<InsertElementInst>(I->getOperand(0))) 7107 return false; 7108 break; 7109 7110 // We can demote certain binary operations if we can demote both of their 7111 // operands. 7112 case Instruction::Add: 7113 case Instruction::Sub: 7114 case Instruction::Mul: 7115 case Instruction::And: 7116 case Instruction::Or: 7117 case Instruction::Xor: 7118 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7119 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7120 return false; 7121 break; 7122 7123 // We can demote selects if we can demote their true and false values. 7124 case Instruction::Select: { 7125 SelectInst *SI = cast<SelectInst>(I); 7126 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7127 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7128 return false; 7129 break; 7130 } 7131 7132 // We can demote phis if we can demote all their incoming operands. Note that 7133 // we don't need to worry about cycles since we ensure single use above. 7134 case Instruction::PHI: { 7135 PHINode *PN = cast<PHINode>(I); 7136 for (Value *IncValue : PN->incoming_values()) 7137 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7138 return false; 7139 break; 7140 } 7141 7142 // Otherwise, conservatively give up. 7143 default: 7144 return false; 7145 } 7146 7147 // Record the value that we can demote. 7148 ToDemote.push_back(V); 7149 return true; 7150 } 7151 7152 void BoUpSLP::computeMinimumValueSizes() { 7153 // If there are no external uses, the expression tree must be rooted by a 7154 // store. We can't demote in-memory values, so there is nothing to do here. 7155 if (ExternalUses.empty()) 7156 return; 7157 7158 // We only attempt to truncate integer expressions. 7159 auto &TreeRoot = VectorizableTree[0]->Scalars; 7160 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7161 if (!TreeRootIT) 7162 return; 7163 7164 // If the expression is not rooted by a store, these roots should have 7165 // external uses. We will rely on InstCombine to rewrite the expression in 7166 // the narrower type. However, InstCombine only rewrites single-use values. 7167 // This means that if a tree entry other than a root is used externally, it 7168 // must have multiple uses and InstCombine will not rewrite it. The code 7169 // below ensures that only the roots are used externally. 7170 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7171 for (auto &EU : ExternalUses) 7172 if (!Expr.erase(EU.Scalar)) 7173 return; 7174 if (!Expr.empty()) 7175 return; 7176 7177 // Collect the scalar values of the vectorizable expression. We will use this 7178 // context to determine which values can be demoted. If we see a truncation, 7179 // we mark it as seeding another demotion. 7180 for (auto &EntryPtr : VectorizableTree) 7181 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7182 7183 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7184 // have a single external user that is not in the vectorizable tree. 7185 for (auto *Root : TreeRoot) 7186 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7187 return; 7188 7189 // Conservatively determine if we can actually truncate the roots of the 7190 // expression. Collect the values that can be demoted in ToDemote and 7191 // additional roots that require investigating in Roots. 7192 SmallVector<Value *, 32> ToDemote; 7193 SmallVector<Value *, 4> Roots; 7194 for (auto *Root : TreeRoot) 7195 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7196 return; 7197 7198 // The maximum bit width required to represent all the values that can be 7199 // demoted without loss of precision. It would be safe to truncate the roots 7200 // of the expression to this width. 7201 auto MaxBitWidth = 8u; 7202 7203 // We first check if all the bits of the roots are demanded. If they're not, 7204 // we can truncate the roots to this narrower type. 7205 for (auto *Root : TreeRoot) { 7206 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7207 MaxBitWidth = std::max<unsigned>( 7208 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7209 } 7210 7211 // True if the roots can be zero-extended back to their original type, rather 7212 // than sign-extended. We know that if the leading bits are not demanded, we 7213 // can safely zero-extend. So we initialize IsKnownPositive to True. 7214 bool IsKnownPositive = true; 7215 7216 // If all the bits of the roots are demanded, we can try a little harder to 7217 // compute a narrower type. This can happen, for example, if the roots are 7218 // getelementptr indices. InstCombine promotes these indices to the pointer 7219 // width. Thus, all their bits are technically demanded even though the 7220 // address computation might be vectorized in a smaller type. 7221 // 7222 // We start by looking at each entry that can be demoted. We compute the 7223 // maximum bit width required to store the scalar by using ValueTracking to 7224 // compute the number of high-order bits we can truncate. 7225 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7226 llvm::all_of(TreeRoot, [](Value *R) { 7227 assert(R->hasOneUse() && "Root should have only one use!"); 7228 return isa<GetElementPtrInst>(R->user_back()); 7229 })) { 7230 MaxBitWidth = 8u; 7231 7232 // Determine if the sign bit of all the roots is known to be zero. If not, 7233 // IsKnownPositive is set to False. 7234 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7235 KnownBits Known = computeKnownBits(R, *DL); 7236 return Known.isNonNegative(); 7237 }); 7238 7239 // Determine the maximum number of bits required to store the scalar 7240 // values. 7241 for (auto *Scalar : ToDemote) { 7242 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7243 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7244 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7245 } 7246 7247 // If we can't prove that the sign bit is zero, we must add one to the 7248 // maximum bit width to account for the unknown sign bit. This preserves 7249 // the existing sign bit so we can safely sign-extend the root back to the 7250 // original type. Otherwise, if we know the sign bit is zero, we will 7251 // zero-extend the root instead. 7252 // 7253 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7254 // one to the maximum bit width will yield a larger-than-necessary 7255 // type. In general, we need to add an extra bit only if we can't 7256 // prove that the upper bit of the original type is equal to the 7257 // upper bit of the proposed smaller type. If these two bits are the 7258 // same (either zero or one) we know that sign-extending from the 7259 // smaller type will result in the same value. Here, since we can't 7260 // yet prove this, we are just making the proposed smaller type 7261 // larger to ensure correctness. 7262 if (!IsKnownPositive) 7263 ++MaxBitWidth; 7264 } 7265 7266 // Round MaxBitWidth up to the next power-of-two. 7267 if (!isPowerOf2_64(MaxBitWidth)) 7268 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7269 7270 // If the maximum bit width we compute is less than the with of the roots' 7271 // type, we can proceed with the narrowing. Otherwise, do nothing. 7272 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7273 return; 7274 7275 // If we can truncate the root, we must collect additional values that might 7276 // be demoted as a result. That is, those seeded by truncations we will 7277 // modify. 7278 while (!Roots.empty()) 7279 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7280 7281 // Finally, map the values we can demote to the maximum bit with we computed. 7282 for (auto *Scalar : ToDemote) 7283 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7284 } 7285 7286 namespace { 7287 7288 /// The SLPVectorizer Pass. 7289 struct SLPVectorizer : public FunctionPass { 7290 SLPVectorizerPass Impl; 7291 7292 /// Pass identification, replacement for typeid 7293 static char ID; 7294 7295 explicit SLPVectorizer() : FunctionPass(ID) { 7296 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7297 } 7298 7299 bool doInitialization(Module &M) override { 7300 return false; 7301 } 7302 7303 bool runOnFunction(Function &F) override { 7304 if (skipFunction(F)) 7305 return false; 7306 7307 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7308 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7309 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7310 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7311 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7312 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7313 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7314 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7315 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7316 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7317 7318 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7319 } 7320 7321 void getAnalysisUsage(AnalysisUsage &AU) const override { 7322 FunctionPass::getAnalysisUsage(AU); 7323 AU.addRequired<AssumptionCacheTracker>(); 7324 AU.addRequired<ScalarEvolutionWrapperPass>(); 7325 AU.addRequired<AAResultsWrapperPass>(); 7326 AU.addRequired<TargetTransformInfoWrapperPass>(); 7327 AU.addRequired<LoopInfoWrapperPass>(); 7328 AU.addRequired<DominatorTreeWrapperPass>(); 7329 AU.addRequired<DemandedBitsWrapperPass>(); 7330 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7331 AU.addRequired<InjectTLIMappingsLegacy>(); 7332 AU.addPreserved<LoopInfoWrapperPass>(); 7333 AU.addPreserved<DominatorTreeWrapperPass>(); 7334 AU.addPreserved<AAResultsWrapperPass>(); 7335 AU.addPreserved<GlobalsAAWrapperPass>(); 7336 AU.setPreservesCFG(); 7337 } 7338 }; 7339 7340 } // end anonymous namespace 7341 7342 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7343 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7344 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7345 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7346 auto *AA = &AM.getResult<AAManager>(F); 7347 auto *LI = &AM.getResult<LoopAnalysis>(F); 7348 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7349 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7350 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7351 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7352 7353 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7354 if (!Changed) 7355 return PreservedAnalyses::all(); 7356 7357 PreservedAnalyses PA; 7358 PA.preserveSet<CFGAnalyses>(); 7359 return PA; 7360 } 7361 7362 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7363 TargetTransformInfo *TTI_, 7364 TargetLibraryInfo *TLI_, AAResults *AA_, 7365 LoopInfo *LI_, DominatorTree *DT_, 7366 AssumptionCache *AC_, DemandedBits *DB_, 7367 OptimizationRemarkEmitter *ORE_) { 7368 if (!RunSLPVectorization) 7369 return false; 7370 SE = SE_; 7371 TTI = TTI_; 7372 TLI = TLI_; 7373 AA = AA_; 7374 LI = LI_; 7375 DT = DT_; 7376 AC = AC_; 7377 DB = DB_; 7378 DL = &F.getParent()->getDataLayout(); 7379 7380 Stores.clear(); 7381 GEPs.clear(); 7382 bool Changed = false; 7383 7384 // If the target claims to have no vector registers don't attempt 7385 // vectorization. 7386 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7387 return false; 7388 7389 // Don't vectorize when the attribute NoImplicitFloat is used. 7390 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7391 return false; 7392 7393 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7394 7395 // Use the bottom up slp vectorizer to construct chains that start with 7396 // store instructions. 7397 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7398 7399 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7400 // delete instructions. 7401 7402 // Update DFS numbers now so that we can use them for ordering. 7403 DT->updateDFSNumbers(); 7404 7405 // Scan the blocks in the function in post order. 7406 for (auto BB : post_order(&F.getEntryBlock())) { 7407 collectSeedInstructions(BB); 7408 7409 // Vectorize trees that end at stores. 7410 if (!Stores.empty()) { 7411 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7412 << " underlying objects.\n"); 7413 Changed |= vectorizeStoreChains(R); 7414 } 7415 7416 // Vectorize trees that end at reductions. 7417 Changed |= vectorizeChainsInBlock(BB, R); 7418 7419 // Vectorize the index computations of getelementptr instructions. This 7420 // is primarily intended to catch gather-like idioms ending at 7421 // non-consecutive loads. 7422 if (!GEPs.empty()) { 7423 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7424 << " underlying objects.\n"); 7425 Changed |= vectorizeGEPIndices(BB, R); 7426 } 7427 } 7428 7429 if (Changed) { 7430 R.optimizeGatherSequence(); 7431 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7432 } 7433 return Changed; 7434 } 7435 7436 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7437 unsigned Idx) { 7438 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7439 << "\n"); 7440 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7441 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7442 unsigned VF = Chain.size(); 7443 7444 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7445 return false; 7446 7447 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7448 << "\n"); 7449 7450 R.buildTree(Chain); 7451 if (R.isTreeTinyAndNotFullyVectorizable()) 7452 return false; 7453 if (R.isLoadCombineCandidate()) 7454 return false; 7455 R.reorderTopToBottom(); 7456 R.reorderBottomToTop(); 7457 R.buildExternalUses(); 7458 7459 R.computeMinimumValueSizes(); 7460 7461 InstructionCost Cost = R.getTreeCost(); 7462 7463 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7464 if (Cost < -SLPCostThreshold) { 7465 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7466 7467 using namespace ore; 7468 7469 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7470 cast<StoreInst>(Chain[0])) 7471 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7472 << " and with tree size " 7473 << NV("TreeSize", R.getTreeSize())); 7474 7475 R.vectorizeTree(); 7476 return true; 7477 } 7478 7479 return false; 7480 } 7481 7482 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7483 BoUpSLP &R) { 7484 // We may run into multiple chains that merge into a single chain. We mark the 7485 // stores that we vectorized so that we don't visit the same store twice. 7486 BoUpSLP::ValueSet VectorizedStores; 7487 bool Changed = false; 7488 7489 int E = Stores.size(); 7490 SmallBitVector Tails(E, false); 7491 int MaxIter = MaxStoreLookup.getValue(); 7492 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7493 E, std::make_pair(E, INT_MAX)); 7494 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7495 int IterCnt; 7496 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7497 &CheckedPairs, 7498 &ConsecutiveChain](int K, int Idx) { 7499 if (IterCnt >= MaxIter) 7500 return true; 7501 if (CheckedPairs[Idx].test(K)) 7502 return ConsecutiveChain[K].second == 1 && 7503 ConsecutiveChain[K].first == Idx; 7504 ++IterCnt; 7505 CheckedPairs[Idx].set(K); 7506 CheckedPairs[K].set(Idx); 7507 Optional<int> Diff = getPointersDiff( 7508 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7509 Stores[Idx]->getValueOperand()->getType(), 7510 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7511 if (!Diff || *Diff == 0) 7512 return false; 7513 int Val = *Diff; 7514 if (Val < 0) { 7515 if (ConsecutiveChain[Idx].second > -Val) { 7516 Tails.set(K); 7517 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7518 } 7519 return false; 7520 } 7521 if (ConsecutiveChain[K].second <= Val) 7522 return false; 7523 7524 Tails.set(Idx); 7525 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7526 return Val == 1; 7527 }; 7528 // Do a quadratic search on all of the given stores in reverse order and find 7529 // all of the pairs of stores that follow each other. 7530 for (int Idx = E - 1; Idx >= 0; --Idx) { 7531 // If a store has multiple consecutive store candidates, search according 7532 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7533 // This is because usually pairing with immediate succeeding or preceding 7534 // candidate create the best chance to find slp vectorization opportunity. 7535 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7536 IterCnt = 0; 7537 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7538 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7539 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7540 break; 7541 } 7542 7543 // Tracks if we tried to vectorize stores starting from the given tail 7544 // already. 7545 SmallBitVector TriedTails(E, false); 7546 // For stores that start but don't end a link in the chain: 7547 for (int Cnt = E; Cnt > 0; --Cnt) { 7548 int I = Cnt - 1; 7549 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7550 continue; 7551 // We found a store instr that starts a chain. Now follow the chain and try 7552 // to vectorize it. 7553 BoUpSLP::ValueList Operands; 7554 // Collect the chain into a list. 7555 while (I != E && !VectorizedStores.count(Stores[I])) { 7556 Operands.push_back(Stores[I]); 7557 Tails.set(I); 7558 if (ConsecutiveChain[I].second != 1) { 7559 // Mark the new end in the chain and go back, if required. It might be 7560 // required if the original stores come in reversed order, for example. 7561 if (ConsecutiveChain[I].first != E && 7562 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7563 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7564 TriedTails.set(I); 7565 Tails.reset(ConsecutiveChain[I].first); 7566 if (Cnt < ConsecutiveChain[I].first + 2) 7567 Cnt = ConsecutiveChain[I].first + 2; 7568 } 7569 break; 7570 } 7571 // Move to the next value in the chain. 7572 I = ConsecutiveChain[I].first; 7573 } 7574 assert(!Operands.empty() && "Expected non-empty list of stores."); 7575 7576 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7577 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7578 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7579 7580 unsigned MinVF = R.getMinVF(EltSize); 7581 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7582 MaxElts); 7583 7584 // FIXME: Is division-by-2 the correct step? Should we assert that the 7585 // register size is a power-of-2? 7586 unsigned StartIdx = 0; 7587 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7588 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7589 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7590 if (!VectorizedStores.count(Slice.front()) && 7591 !VectorizedStores.count(Slice.back()) && 7592 vectorizeStoreChain(Slice, R, Cnt)) { 7593 // Mark the vectorized stores so that we don't vectorize them again. 7594 VectorizedStores.insert(Slice.begin(), Slice.end()); 7595 Changed = true; 7596 // If we vectorized initial block, no need to try to vectorize it 7597 // again. 7598 if (Cnt == StartIdx) 7599 StartIdx += Size; 7600 Cnt += Size; 7601 continue; 7602 } 7603 ++Cnt; 7604 } 7605 // Check if the whole array was vectorized already - exit. 7606 if (StartIdx >= Operands.size()) 7607 break; 7608 } 7609 } 7610 7611 return Changed; 7612 } 7613 7614 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7615 // Initialize the collections. We will make a single pass over the block. 7616 Stores.clear(); 7617 GEPs.clear(); 7618 7619 // Visit the store and getelementptr instructions in BB and organize them in 7620 // Stores and GEPs according to the underlying objects of their pointer 7621 // operands. 7622 for (Instruction &I : *BB) { 7623 // Ignore store instructions that are volatile or have a pointer operand 7624 // that doesn't point to a scalar type. 7625 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7626 if (!SI->isSimple()) 7627 continue; 7628 if (!isValidElementType(SI->getValueOperand()->getType())) 7629 continue; 7630 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7631 } 7632 7633 // Ignore getelementptr instructions that have more than one index, a 7634 // constant index, or a pointer operand that doesn't point to a scalar 7635 // type. 7636 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7637 auto Idx = GEP->idx_begin()->get(); 7638 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7639 continue; 7640 if (!isValidElementType(Idx->getType())) 7641 continue; 7642 if (GEP->getType()->isVectorTy()) 7643 continue; 7644 GEPs[GEP->getPointerOperand()].push_back(GEP); 7645 } 7646 } 7647 } 7648 7649 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7650 if (!A || !B) 7651 return false; 7652 Value *VL[] = {A, B}; 7653 return tryToVectorizeList(VL, R); 7654 } 7655 7656 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) { 7657 if (VL.size() < 2) 7658 return false; 7659 7660 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7661 << VL.size() << ".\n"); 7662 7663 // Check that all of the parts are instructions of the same type, 7664 // we permit an alternate opcode via InstructionsState. 7665 InstructionsState S = getSameOpcode(VL); 7666 if (!S.getOpcode()) 7667 return false; 7668 7669 Instruction *I0 = cast<Instruction>(S.OpValue); 7670 // Make sure invalid types (including vector type) are rejected before 7671 // determining vectorization factor for scalar instructions. 7672 for (Value *V : VL) { 7673 Type *Ty = V->getType(); 7674 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7675 // NOTE: the following will give user internal llvm type name, which may 7676 // not be useful. 7677 R.getORE()->emit([&]() { 7678 std::string type_str; 7679 llvm::raw_string_ostream rso(type_str); 7680 Ty->print(rso); 7681 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7682 << "Cannot SLP vectorize list: type " 7683 << rso.str() + " is unsupported by vectorizer"; 7684 }); 7685 return false; 7686 } 7687 } 7688 7689 unsigned Sz = R.getVectorElementSize(I0); 7690 unsigned MinVF = R.getMinVF(Sz); 7691 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7692 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7693 if (MaxVF < 2) { 7694 R.getORE()->emit([&]() { 7695 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7696 << "Cannot SLP vectorize list: vectorization factor " 7697 << "less than 2 is not supported"; 7698 }); 7699 return false; 7700 } 7701 7702 bool Changed = false; 7703 bool CandidateFound = false; 7704 InstructionCost MinCost = SLPCostThreshold.getValue(); 7705 Type *ScalarTy = VL[0]->getType(); 7706 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7707 ScalarTy = IE->getOperand(1)->getType(); 7708 7709 unsigned NextInst = 0, MaxInst = VL.size(); 7710 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7711 // No actual vectorization should happen, if number of parts is the same as 7712 // provided vectorization factor (i.e. the scalar type is used for vector 7713 // code during codegen). 7714 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7715 if (TTI->getNumberOfParts(VecTy) == VF) 7716 continue; 7717 for (unsigned I = NextInst; I < MaxInst; ++I) { 7718 unsigned OpsWidth = 0; 7719 7720 if (I + VF > MaxInst) 7721 OpsWidth = MaxInst - I; 7722 else 7723 OpsWidth = VF; 7724 7725 if (!isPowerOf2_32(OpsWidth)) 7726 continue; 7727 7728 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7729 break; 7730 7731 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7732 // Check that a previous iteration of this loop did not delete the Value. 7733 if (llvm::any_of(Ops, [&R](Value *V) { 7734 auto *I = dyn_cast<Instruction>(V); 7735 return I && R.isDeleted(I); 7736 })) 7737 continue; 7738 7739 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7740 << "\n"); 7741 7742 R.buildTree(Ops); 7743 if (R.isTreeTinyAndNotFullyVectorizable()) 7744 continue; 7745 R.reorderTopToBottom(); 7746 R.reorderBottomToTop(); 7747 R.buildExternalUses(); 7748 7749 R.computeMinimumValueSizes(); 7750 InstructionCost Cost = R.getTreeCost(); 7751 CandidateFound = true; 7752 MinCost = std::min(MinCost, Cost); 7753 7754 if (Cost < -SLPCostThreshold) { 7755 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7756 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7757 cast<Instruction>(Ops[0])) 7758 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7759 << " and with tree size " 7760 << ore::NV("TreeSize", R.getTreeSize())); 7761 7762 R.vectorizeTree(); 7763 // Move to the next bundle. 7764 I += VF - 1; 7765 NextInst = I + 1; 7766 Changed = true; 7767 } 7768 } 7769 } 7770 7771 if (!Changed && CandidateFound) { 7772 R.getORE()->emit([&]() { 7773 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7774 << "List vectorization was possible but not beneficial with cost " 7775 << ore::NV("Cost", MinCost) << " >= " 7776 << ore::NV("Treshold", -SLPCostThreshold); 7777 }); 7778 } else if (!Changed) { 7779 R.getORE()->emit([&]() { 7780 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7781 << "Cannot SLP vectorize list: vectorization was impossible" 7782 << " with available vectorization factors"; 7783 }); 7784 } 7785 return Changed; 7786 } 7787 7788 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7789 if (!I) 7790 return false; 7791 7792 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7793 return false; 7794 7795 Value *P = I->getParent(); 7796 7797 // Vectorize in current basic block only. 7798 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7799 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7800 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7801 return false; 7802 7803 // Try to vectorize V. 7804 if (tryToVectorizePair(Op0, Op1, R)) 7805 return true; 7806 7807 auto *A = dyn_cast<BinaryOperator>(Op0); 7808 auto *B = dyn_cast<BinaryOperator>(Op1); 7809 // Try to skip B. 7810 if (B && B->hasOneUse()) { 7811 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7812 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7813 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7814 return true; 7815 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7816 return true; 7817 } 7818 7819 // Try to skip A. 7820 if (A && A->hasOneUse()) { 7821 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7822 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7823 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7824 return true; 7825 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7826 return true; 7827 } 7828 return false; 7829 } 7830 7831 namespace { 7832 7833 /// Model horizontal reductions. 7834 /// 7835 /// A horizontal reduction is a tree of reduction instructions that has values 7836 /// that can be put into a vector as its leaves. For example: 7837 /// 7838 /// mul mul mul mul 7839 /// \ / \ / 7840 /// + + 7841 /// \ / 7842 /// + 7843 /// This tree has "mul" as its leaf values and "+" as its reduction 7844 /// instructions. A reduction can feed into a store or a binary operation 7845 /// feeding a phi. 7846 /// ... 7847 /// \ / 7848 /// + 7849 /// | 7850 /// phi += 7851 /// 7852 /// Or: 7853 /// ... 7854 /// \ / 7855 /// + 7856 /// | 7857 /// *p = 7858 /// 7859 class HorizontalReduction { 7860 using ReductionOpsType = SmallVector<Value *, 16>; 7861 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7862 ReductionOpsListType ReductionOps; 7863 SmallVector<Value *, 32> ReducedVals; 7864 // Use map vector to make stable output. 7865 MapVector<Instruction *, Value *> ExtraArgs; 7866 WeakTrackingVH ReductionRoot; 7867 /// The type of reduction operation. 7868 RecurKind RdxKind; 7869 7870 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 7871 7872 static bool isCmpSelMinMax(Instruction *I) { 7873 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 7874 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 7875 } 7876 7877 // And/or are potentially poison-safe logical patterns like: 7878 // select x, y, false 7879 // select x, true, y 7880 static bool isBoolLogicOp(Instruction *I) { 7881 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 7882 match(I, m_LogicalOr(m_Value(), m_Value())); 7883 } 7884 7885 /// Checks if instruction is associative and can be vectorized. 7886 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7887 if (Kind == RecurKind::None) 7888 return false; 7889 7890 // Integer ops that map to select instructions or intrinsics are fine. 7891 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 7892 isBoolLogicOp(I)) 7893 return true; 7894 7895 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7896 // FP min/max are associative except for NaN and -0.0. We do not 7897 // have to rule out -0.0 here because the intrinsic semantics do not 7898 // specify a fixed result for it. 7899 return I->getFastMathFlags().noNaNs(); 7900 } 7901 7902 return I->isAssociative(); 7903 } 7904 7905 static Value *getRdxOperand(Instruction *I, unsigned Index) { 7906 // Poison-safe 'or' takes the form: select X, true, Y 7907 // To make that work with the normal operand processing, we skip the 7908 // true value operand. 7909 // TODO: Change the code and data structures to handle this without a hack. 7910 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 7911 return I->getOperand(2); 7912 return I->getOperand(Index); 7913 } 7914 7915 /// Checks if the ParentStackElem.first should be marked as a reduction 7916 /// operation with an extra argument or as extra argument itself. 7917 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7918 Value *ExtraArg) { 7919 if (ExtraArgs.count(ParentStackElem.first)) { 7920 ExtraArgs[ParentStackElem.first] = nullptr; 7921 // We ran into something like: 7922 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7923 // The whole ParentStackElem.first should be considered as an extra value 7924 // in this case. 7925 // Do not perform analysis of remaining operands of ParentStackElem.first 7926 // instruction, this whole instruction is an extra argument. 7927 ParentStackElem.second = INVALID_OPERAND_INDEX; 7928 } else { 7929 // We ran into something like: 7930 // ParentStackElem.first += ... + ExtraArg + ... 7931 ExtraArgs[ParentStackElem.first] = ExtraArg; 7932 } 7933 } 7934 7935 /// Creates reduction operation with the current opcode. 7936 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7937 Value *RHS, const Twine &Name, bool UseSelect) { 7938 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7939 switch (Kind) { 7940 case RecurKind::Add: 7941 case RecurKind::Mul: 7942 case RecurKind::Or: 7943 case RecurKind::And: 7944 case RecurKind::Xor: 7945 case RecurKind::FAdd: 7946 case RecurKind::FMul: 7947 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7948 Name); 7949 case RecurKind::FMax: 7950 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7951 case RecurKind::FMin: 7952 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7953 case RecurKind::SMax: 7954 if (UseSelect) { 7955 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7956 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7957 } 7958 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7959 case RecurKind::SMin: 7960 if (UseSelect) { 7961 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7962 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7963 } 7964 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7965 case RecurKind::UMax: 7966 if (UseSelect) { 7967 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7968 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7969 } 7970 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7971 case RecurKind::UMin: 7972 if (UseSelect) { 7973 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7974 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7975 } 7976 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7977 default: 7978 llvm_unreachable("Unknown reduction operation."); 7979 } 7980 } 7981 7982 /// Creates reduction operation with the current opcode with the IR flags 7983 /// from \p ReductionOps. 7984 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7985 Value *RHS, const Twine &Name, 7986 const ReductionOpsListType &ReductionOps) { 7987 bool UseSelect = ReductionOps.size() == 2; 7988 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7989 "Expected cmp + select pairs for reduction"); 7990 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7991 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7992 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7993 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7994 propagateIRFlags(Op, ReductionOps[1]); 7995 return Op; 7996 } 7997 } 7998 propagateIRFlags(Op, ReductionOps[0]); 7999 return Op; 8000 } 8001 8002 /// Creates reduction operation with the current opcode with the IR flags 8003 /// from \p I. 8004 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8005 Value *RHS, const Twine &Name, Instruction *I) { 8006 auto *SelI = dyn_cast<SelectInst>(I); 8007 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8008 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8009 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8010 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8011 } 8012 propagateIRFlags(Op, I); 8013 return Op; 8014 } 8015 8016 static RecurKind getRdxKind(Instruction *I) { 8017 assert(I && "Expected instruction for reduction matching"); 8018 TargetTransformInfo::ReductionFlags RdxFlags; 8019 if (match(I, m_Add(m_Value(), m_Value()))) 8020 return RecurKind::Add; 8021 if (match(I, m_Mul(m_Value(), m_Value()))) 8022 return RecurKind::Mul; 8023 if (match(I, m_And(m_Value(), m_Value())) || 8024 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8025 return RecurKind::And; 8026 if (match(I, m_Or(m_Value(), m_Value())) || 8027 match(I, m_LogicalOr(m_Value(), m_Value()))) 8028 return RecurKind::Or; 8029 if (match(I, m_Xor(m_Value(), m_Value()))) 8030 return RecurKind::Xor; 8031 if (match(I, m_FAdd(m_Value(), m_Value()))) 8032 return RecurKind::FAdd; 8033 if (match(I, m_FMul(m_Value(), m_Value()))) 8034 return RecurKind::FMul; 8035 8036 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8037 return RecurKind::FMax; 8038 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8039 return RecurKind::FMin; 8040 8041 // This matches either cmp+select or intrinsics. SLP is expected to handle 8042 // either form. 8043 // TODO: If we are canonicalizing to intrinsics, we can remove several 8044 // special-case paths that deal with selects. 8045 if (match(I, m_SMax(m_Value(), m_Value()))) 8046 return RecurKind::SMax; 8047 if (match(I, m_SMin(m_Value(), m_Value()))) 8048 return RecurKind::SMin; 8049 if (match(I, m_UMax(m_Value(), m_Value()))) 8050 return RecurKind::UMax; 8051 if (match(I, m_UMin(m_Value(), m_Value()))) 8052 return RecurKind::UMin; 8053 8054 if (auto *Select = dyn_cast<SelectInst>(I)) { 8055 // Try harder: look for min/max pattern based on instructions producing 8056 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8057 // During the intermediate stages of SLP, it's very common to have 8058 // pattern like this (since optimizeGatherSequence is run only once 8059 // at the end): 8060 // %1 = extractelement <2 x i32> %a, i32 0 8061 // %2 = extractelement <2 x i32> %a, i32 1 8062 // %cond = icmp sgt i32 %1, %2 8063 // %3 = extractelement <2 x i32> %a, i32 0 8064 // %4 = extractelement <2 x i32> %a, i32 1 8065 // %select = select i1 %cond, i32 %3, i32 %4 8066 CmpInst::Predicate Pred; 8067 Instruction *L1; 8068 Instruction *L2; 8069 8070 Value *LHS = Select->getTrueValue(); 8071 Value *RHS = Select->getFalseValue(); 8072 Value *Cond = Select->getCondition(); 8073 8074 // TODO: Support inverse predicates. 8075 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8076 if (!isa<ExtractElementInst>(RHS) || 8077 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8078 return RecurKind::None; 8079 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8080 if (!isa<ExtractElementInst>(LHS) || 8081 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8082 return RecurKind::None; 8083 } else { 8084 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8085 return RecurKind::None; 8086 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8087 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8088 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8089 return RecurKind::None; 8090 } 8091 8092 TargetTransformInfo::ReductionFlags RdxFlags; 8093 switch (Pred) { 8094 default: 8095 return RecurKind::None; 8096 case CmpInst::ICMP_SGT: 8097 case CmpInst::ICMP_SGE: 8098 return RecurKind::SMax; 8099 case CmpInst::ICMP_SLT: 8100 case CmpInst::ICMP_SLE: 8101 return RecurKind::SMin; 8102 case CmpInst::ICMP_UGT: 8103 case CmpInst::ICMP_UGE: 8104 return RecurKind::UMax; 8105 case CmpInst::ICMP_ULT: 8106 case CmpInst::ICMP_ULE: 8107 return RecurKind::UMin; 8108 } 8109 } 8110 return RecurKind::None; 8111 } 8112 8113 /// Get the index of the first operand. 8114 static unsigned getFirstOperandIndex(Instruction *I) { 8115 return isCmpSelMinMax(I) ? 1 : 0; 8116 } 8117 8118 /// Total number of operands in the reduction operation. 8119 static unsigned getNumberOfOperands(Instruction *I) { 8120 return isCmpSelMinMax(I) ? 3 : 2; 8121 } 8122 8123 /// Checks if the instruction is in basic block \p BB. 8124 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8125 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8126 if (isCmpSelMinMax(I)) { 8127 auto *Sel = cast<SelectInst>(I); 8128 auto *Cmp = cast<Instruction>(Sel->getCondition()); 8129 return Sel->getParent() == BB && Cmp->getParent() == BB; 8130 } 8131 return I->getParent() == BB; 8132 } 8133 8134 /// Expected number of uses for reduction operations/reduced values. 8135 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8136 if (IsCmpSelMinMax) { 8137 // SelectInst must be used twice while the condition op must have single 8138 // use only. 8139 if (auto *Sel = dyn_cast<SelectInst>(I)) 8140 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8141 return I->hasNUses(2); 8142 } 8143 8144 // Arithmetic reduction operation must be used once only. 8145 return I->hasOneUse(); 8146 } 8147 8148 /// Initializes the list of reduction operations. 8149 void initReductionOps(Instruction *I) { 8150 if (isCmpSelMinMax(I)) 8151 ReductionOps.assign(2, ReductionOpsType()); 8152 else 8153 ReductionOps.assign(1, ReductionOpsType()); 8154 } 8155 8156 /// Add all reduction operations for the reduction instruction \p I. 8157 void addReductionOps(Instruction *I) { 8158 if (isCmpSelMinMax(I)) { 8159 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8160 ReductionOps[1].emplace_back(I); 8161 } else { 8162 ReductionOps[0].emplace_back(I); 8163 } 8164 } 8165 8166 static Value *getLHS(RecurKind Kind, Instruction *I) { 8167 if (Kind == RecurKind::None) 8168 return nullptr; 8169 return I->getOperand(getFirstOperandIndex(I)); 8170 } 8171 static Value *getRHS(RecurKind Kind, Instruction *I) { 8172 if (Kind == RecurKind::None) 8173 return nullptr; 8174 return I->getOperand(getFirstOperandIndex(I) + 1); 8175 } 8176 8177 public: 8178 HorizontalReduction() = default; 8179 8180 /// Try to find a reduction tree. 8181 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8182 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8183 "Phi needs to use the binary operator"); 8184 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8185 isa<IntrinsicInst>(Inst)) && 8186 "Expected binop, select, or intrinsic for reduction matching"); 8187 RdxKind = getRdxKind(Inst); 8188 8189 // We could have a initial reductions that is not an add. 8190 // r *= v1 + v2 + v3 + v4 8191 // In such a case start looking for a tree rooted in the first '+'. 8192 if (Phi) { 8193 if (getLHS(RdxKind, Inst) == Phi) { 8194 Phi = nullptr; 8195 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8196 if (!Inst) 8197 return false; 8198 RdxKind = getRdxKind(Inst); 8199 } else if (getRHS(RdxKind, Inst) == Phi) { 8200 Phi = nullptr; 8201 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8202 if (!Inst) 8203 return false; 8204 RdxKind = getRdxKind(Inst); 8205 } 8206 } 8207 8208 if (!isVectorizable(RdxKind, Inst)) 8209 return false; 8210 8211 // Analyze "regular" integer/FP types for reductions - no target-specific 8212 // types or pointers. 8213 Type *Ty = Inst->getType(); 8214 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8215 return false; 8216 8217 // Though the ultimate reduction may have multiple uses, its condition must 8218 // have only single use. 8219 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8220 if (!Sel->getCondition()->hasOneUse()) 8221 return false; 8222 8223 ReductionRoot = Inst; 8224 8225 // The opcode for leaf values that we perform a reduction on. 8226 // For example: load(x) + load(y) + load(z) + fptoui(w) 8227 // The leaf opcode for 'w' does not match, so we don't include it as a 8228 // potential candidate for the reduction. 8229 unsigned LeafOpcode = 0; 8230 8231 // Post-order traverse the reduction tree starting at Inst. We only handle 8232 // true trees containing binary operators or selects. 8233 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8234 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8235 initReductionOps(Inst); 8236 while (!Stack.empty()) { 8237 Instruction *TreeN = Stack.back().first; 8238 unsigned EdgeToVisit = Stack.back().second++; 8239 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8240 bool IsReducedValue = TreeRdxKind != RdxKind; 8241 8242 // Postorder visit. 8243 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8244 if (IsReducedValue) 8245 ReducedVals.push_back(TreeN); 8246 else { 8247 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8248 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8249 // Check if TreeN is an extra argument of its parent operation. 8250 if (Stack.size() <= 1) { 8251 // TreeN can't be an extra argument as it is a root reduction 8252 // operation. 8253 return false; 8254 } 8255 // Yes, TreeN is an extra argument, do not add it to a list of 8256 // reduction operations. 8257 // Stack[Stack.size() - 2] always points to the parent operation. 8258 markExtraArg(Stack[Stack.size() - 2], TreeN); 8259 ExtraArgs.erase(TreeN); 8260 } else 8261 addReductionOps(TreeN); 8262 } 8263 // Retract. 8264 Stack.pop_back(); 8265 continue; 8266 } 8267 8268 // Visit operands. 8269 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8270 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8271 if (!EdgeInst) { 8272 // Edge value is not a reduction instruction or a leaf instruction. 8273 // (It may be a constant, function argument, or something else.) 8274 markExtraArg(Stack.back(), EdgeVal); 8275 continue; 8276 } 8277 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8278 // Continue analysis if the next operand is a reduction operation or 8279 // (possibly) a leaf value. If the leaf value opcode is not set, 8280 // the first met operation != reduction operation is considered as the 8281 // leaf opcode. 8282 // Only handle trees in the current basic block. 8283 // Each tree node needs to have minimal number of users except for the 8284 // ultimate reduction. 8285 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8286 if (EdgeInst != Phi && EdgeInst != Inst && 8287 hasSameParent(EdgeInst, Inst->getParent()) && 8288 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8289 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8290 if (IsRdxInst) { 8291 // We need to be able to reassociate the reduction operations. 8292 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8293 // I is an extra argument for TreeN (its parent operation). 8294 markExtraArg(Stack.back(), EdgeInst); 8295 continue; 8296 } 8297 } else if (!LeafOpcode) { 8298 LeafOpcode = EdgeInst->getOpcode(); 8299 } 8300 Stack.push_back( 8301 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8302 continue; 8303 } 8304 // I is an extra argument for TreeN (its parent operation). 8305 markExtraArg(Stack.back(), EdgeInst); 8306 } 8307 return true; 8308 } 8309 8310 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8311 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8312 // If there are a sufficient number of reduction values, reduce 8313 // to a nearby power-of-2. We can safely generate oversized 8314 // vectors and rely on the backend to split them to legal sizes. 8315 unsigned NumReducedVals = ReducedVals.size(); 8316 if (NumReducedVals < 4) 8317 return false; 8318 8319 // Intersect the fast-math-flags from all reduction operations. 8320 FastMathFlags RdxFMF; 8321 RdxFMF.set(); 8322 for (ReductionOpsType &RdxOp : ReductionOps) { 8323 for (Value *RdxVal : RdxOp) { 8324 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8325 RdxFMF &= FPMO->getFastMathFlags(); 8326 } 8327 } 8328 8329 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8330 Builder.setFastMathFlags(RdxFMF); 8331 8332 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8333 // The same extra argument may be used several times, so log each attempt 8334 // to use it. 8335 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8336 assert(Pair.first && "DebugLoc must be set."); 8337 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8338 } 8339 8340 // The compare instruction of a min/max is the insertion point for new 8341 // instructions and may be replaced with a new compare instruction. 8342 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8343 assert(isa<SelectInst>(RdxRootInst) && 8344 "Expected min/max reduction to have select root instruction"); 8345 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8346 assert(isa<Instruction>(ScalarCond) && 8347 "Expected min/max reduction to have compare condition"); 8348 return cast<Instruction>(ScalarCond); 8349 }; 8350 8351 // The reduction root is used as the insertion point for new instructions, 8352 // so set it as externally used to prevent it from being deleted. 8353 ExternallyUsedValues[ReductionRoot]; 8354 SmallVector<Value *, 16> IgnoreList; 8355 for (ReductionOpsType &RdxOp : ReductionOps) 8356 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8357 8358 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8359 if (NumReducedVals > ReduxWidth) { 8360 // In the loop below, we are building a tree based on a window of 8361 // 'ReduxWidth' values. 8362 // If the operands of those values have common traits (compare predicate, 8363 // constant operand, etc), then we want to group those together to 8364 // minimize the cost of the reduction. 8365 8366 // TODO: This should be extended to count common operands for 8367 // compares and binops. 8368 8369 // Step 1: Count the number of times each compare predicate occurs. 8370 SmallDenseMap<unsigned, unsigned> PredCountMap; 8371 for (Value *RdxVal : ReducedVals) { 8372 CmpInst::Predicate Pred; 8373 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8374 ++PredCountMap[Pred]; 8375 } 8376 // Step 2: Sort the values so the most common predicates come first. 8377 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8378 CmpInst::Predicate PredA, PredB; 8379 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8380 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8381 return PredCountMap[PredA] > PredCountMap[PredB]; 8382 } 8383 return false; 8384 }); 8385 } 8386 8387 Value *VectorizedTree = nullptr; 8388 unsigned i = 0; 8389 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8390 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8391 V.buildTree(VL, IgnoreList); 8392 if (V.isTreeTinyAndNotFullyVectorizable()) 8393 break; 8394 if (V.isLoadCombineReductionCandidate(RdxKind)) 8395 break; 8396 V.reorderTopToBottom(); 8397 V.reorderBottomToTop(); 8398 V.buildExternalUses(ExternallyUsedValues); 8399 8400 // For a poison-safe boolean logic reduction, do not replace select 8401 // instructions with logic ops. All reduced values will be frozen (see 8402 // below) to prevent leaking poison. 8403 if (isa<SelectInst>(ReductionRoot) && 8404 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8405 NumReducedVals != ReduxWidth) 8406 break; 8407 8408 V.computeMinimumValueSizes(); 8409 8410 // Estimate cost. 8411 InstructionCost TreeCost = 8412 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8413 InstructionCost ReductionCost = 8414 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8415 InstructionCost Cost = TreeCost + ReductionCost; 8416 if (!Cost.isValid()) { 8417 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8418 return false; 8419 } 8420 if (Cost >= -SLPCostThreshold) { 8421 V.getORE()->emit([&]() { 8422 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8423 cast<Instruction>(VL[0])) 8424 << "Vectorizing horizontal reduction is possible" 8425 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8426 << " and threshold " 8427 << ore::NV("Threshold", -SLPCostThreshold); 8428 }); 8429 break; 8430 } 8431 8432 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8433 << Cost << ". (HorRdx)\n"); 8434 V.getORE()->emit([&]() { 8435 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8436 cast<Instruction>(VL[0])) 8437 << "Vectorized horizontal reduction with cost " 8438 << ore::NV("Cost", Cost) << " and with tree size " 8439 << ore::NV("TreeSize", V.getTreeSize()); 8440 }); 8441 8442 // Vectorize a tree. 8443 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8444 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8445 8446 // Emit a reduction. If the root is a select (min/max idiom), the insert 8447 // point is the compare condition of that select. 8448 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8449 if (isCmpSelMinMax(RdxRootInst)) 8450 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8451 else 8452 Builder.SetInsertPoint(RdxRootInst); 8453 8454 // To prevent poison from leaking across what used to be sequential, safe, 8455 // scalar boolean logic operations, the reduction operand must be frozen. 8456 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8457 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8458 8459 Value *ReducedSubTree = 8460 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8461 8462 if (!VectorizedTree) { 8463 // Initialize the final value in the reduction. 8464 VectorizedTree = ReducedSubTree; 8465 } else { 8466 // Update the final value in the reduction. 8467 Builder.SetCurrentDebugLocation(Loc); 8468 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8469 ReducedSubTree, "op.rdx", ReductionOps); 8470 } 8471 i += ReduxWidth; 8472 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8473 } 8474 8475 if (VectorizedTree) { 8476 // Finish the reduction. 8477 for (; i < NumReducedVals; ++i) { 8478 auto *I = cast<Instruction>(ReducedVals[i]); 8479 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8480 VectorizedTree = 8481 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8482 } 8483 for (auto &Pair : ExternallyUsedValues) { 8484 // Add each externally used value to the final reduction. 8485 for (auto *I : Pair.second) { 8486 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8487 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8488 Pair.first, "op.extra", I); 8489 } 8490 } 8491 8492 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8493 8494 // Mark all scalar reduction ops for deletion, they are replaced by the 8495 // vector reductions. 8496 V.eraseInstructions(IgnoreList); 8497 } 8498 return VectorizedTree != nullptr; 8499 } 8500 8501 unsigned numReductionValues() const { return ReducedVals.size(); } 8502 8503 private: 8504 /// Calculate the cost of a reduction. 8505 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8506 Value *FirstReducedVal, unsigned ReduxWidth, 8507 FastMathFlags FMF) { 8508 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8509 Type *ScalarTy = FirstReducedVal->getType(); 8510 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8511 InstructionCost VectorCost, ScalarCost; 8512 switch (RdxKind) { 8513 case RecurKind::Add: 8514 case RecurKind::Mul: 8515 case RecurKind::Or: 8516 case RecurKind::And: 8517 case RecurKind::Xor: 8518 case RecurKind::FAdd: 8519 case RecurKind::FMul: { 8520 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8521 VectorCost = 8522 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8523 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8524 break; 8525 } 8526 case RecurKind::FMax: 8527 case RecurKind::FMin: { 8528 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8529 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8530 /*unsigned=*/false, CostKind); 8531 ScalarCost = 8532 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 8533 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8534 CmpInst::makeCmpResultType(ScalarTy)); 8535 break; 8536 } 8537 case RecurKind::SMax: 8538 case RecurKind::SMin: 8539 case RecurKind::UMax: 8540 case RecurKind::UMin: { 8541 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8542 bool IsUnsigned = 8543 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8544 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8545 CostKind); 8546 ScalarCost = 8547 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 8548 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8549 CmpInst::makeCmpResultType(ScalarTy)); 8550 break; 8551 } 8552 default: 8553 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8554 } 8555 8556 // Scalar cost is repeated for N-1 elements. 8557 ScalarCost *= (ReduxWidth - 1); 8558 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8559 << " for reduction that starts with " << *FirstReducedVal 8560 << " (It is a splitting reduction)\n"); 8561 return VectorCost - ScalarCost; 8562 } 8563 8564 /// Emit a horizontal reduction of the vectorized value. 8565 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8566 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8567 assert(VectorizedValue && "Need to have a vectorized tree node"); 8568 assert(isPowerOf2_32(ReduxWidth) && 8569 "We only handle power-of-two reductions for now"); 8570 8571 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8572 ReductionOps.back()); 8573 } 8574 }; 8575 8576 } // end anonymous namespace 8577 8578 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8579 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8580 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8581 8582 unsigned AggregateSize = 1; 8583 auto *IV = cast<InsertValueInst>(InsertInst); 8584 Type *CurrentType = IV->getType(); 8585 do { 8586 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8587 for (auto *Elt : ST->elements()) 8588 if (Elt != ST->getElementType(0)) // check homogeneity 8589 return None; 8590 AggregateSize *= ST->getNumElements(); 8591 CurrentType = ST->getElementType(0); 8592 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8593 AggregateSize *= AT->getNumElements(); 8594 CurrentType = AT->getElementType(); 8595 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8596 AggregateSize *= VT->getNumElements(); 8597 return AggregateSize; 8598 } else if (CurrentType->isSingleValueType()) { 8599 return AggregateSize; 8600 } else { 8601 return None; 8602 } 8603 } while (true); 8604 } 8605 8606 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8607 TargetTransformInfo *TTI, 8608 SmallVectorImpl<Value *> &BuildVectorOpds, 8609 SmallVectorImpl<Value *> &InsertElts, 8610 unsigned OperandOffset) { 8611 do { 8612 Value *InsertedOperand = LastInsertInst->getOperand(1); 8613 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8614 if (!OperandIndex) 8615 return false; 8616 if (isa<InsertElementInst>(InsertedOperand) || 8617 isa<InsertValueInst>(InsertedOperand)) { 8618 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8619 BuildVectorOpds, InsertElts, *OperandIndex)) 8620 return false; 8621 } else { 8622 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8623 InsertElts[*OperandIndex] = LastInsertInst; 8624 } 8625 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8626 } while (LastInsertInst != nullptr && 8627 (isa<InsertValueInst>(LastInsertInst) || 8628 isa<InsertElementInst>(LastInsertInst)) && 8629 LastInsertInst->hasOneUse()); 8630 return true; 8631 } 8632 8633 /// Recognize construction of vectors like 8634 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8635 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8636 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8637 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8638 /// starting from the last insertelement or insertvalue instruction. 8639 /// 8640 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8641 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8642 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8643 /// 8644 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8645 /// 8646 /// \return true if it matches. 8647 static bool findBuildAggregate(Instruction *LastInsertInst, 8648 TargetTransformInfo *TTI, 8649 SmallVectorImpl<Value *> &BuildVectorOpds, 8650 SmallVectorImpl<Value *> &InsertElts) { 8651 8652 assert((isa<InsertElementInst>(LastInsertInst) || 8653 isa<InsertValueInst>(LastInsertInst)) && 8654 "Expected insertelement or insertvalue instruction!"); 8655 8656 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8657 "Expected empty result vectors!"); 8658 8659 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8660 if (!AggregateSize) 8661 return false; 8662 BuildVectorOpds.resize(*AggregateSize); 8663 InsertElts.resize(*AggregateSize); 8664 8665 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8666 0)) { 8667 llvm::erase_value(BuildVectorOpds, nullptr); 8668 llvm::erase_value(InsertElts, nullptr); 8669 if (BuildVectorOpds.size() >= 2) 8670 return true; 8671 } 8672 8673 return false; 8674 } 8675 8676 /// Try and get a reduction value from a phi node. 8677 /// 8678 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8679 /// if they come from either \p ParentBB or a containing loop latch. 8680 /// 8681 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8682 /// if not possible. 8683 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8684 BasicBlock *ParentBB, LoopInfo *LI) { 8685 // There are situations where the reduction value is not dominated by the 8686 // reduction phi. Vectorizing such cases has been reported to cause 8687 // miscompiles. See PR25787. 8688 auto DominatedReduxValue = [&](Value *R) { 8689 return isa<Instruction>(R) && 8690 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8691 }; 8692 8693 Value *Rdx = nullptr; 8694 8695 // Return the incoming value if it comes from the same BB as the phi node. 8696 if (P->getIncomingBlock(0) == ParentBB) { 8697 Rdx = P->getIncomingValue(0); 8698 } else if (P->getIncomingBlock(1) == ParentBB) { 8699 Rdx = P->getIncomingValue(1); 8700 } 8701 8702 if (Rdx && DominatedReduxValue(Rdx)) 8703 return Rdx; 8704 8705 // Otherwise, check whether we have a loop latch to look at. 8706 Loop *BBL = LI->getLoopFor(ParentBB); 8707 if (!BBL) 8708 return nullptr; 8709 BasicBlock *BBLatch = BBL->getLoopLatch(); 8710 if (!BBLatch) 8711 return nullptr; 8712 8713 // There is a loop latch, return the incoming value if it comes from 8714 // that. This reduction pattern occasionally turns up. 8715 if (P->getIncomingBlock(0) == BBLatch) { 8716 Rdx = P->getIncomingValue(0); 8717 } else if (P->getIncomingBlock(1) == BBLatch) { 8718 Rdx = P->getIncomingValue(1); 8719 } 8720 8721 if (Rdx && DominatedReduxValue(Rdx)) 8722 return Rdx; 8723 8724 return nullptr; 8725 } 8726 8727 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8728 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8729 return true; 8730 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8731 return true; 8732 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8733 return true; 8734 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8735 return true; 8736 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8737 return true; 8738 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8739 return true; 8740 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8741 return true; 8742 return false; 8743 } 8744 8745 /// Attempt to reduce a horizontal reduction. 8746 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8747 /// with reduction operators \a Root (or one of its operands) in a basic block 8748 /// \a BB, then check if it can be done. If horizontal reduction is not found 8749 /// and root instruction is a binary operation, vectorization of the operands is 8750 /// attempted. 8751 /// \returns true if a horizontal reduction was matched and reduced or operands 8752 /// of one of the binary instruction were vectorized. 8753 /// \returns false if a horizontal reduction was not matched (or not possible) 8754 /// or no vectorization of any binary operation feeding \a Root instruction was 8755 /// performed. 8756 static bool tryToVectorizeHorReductionOrInstOperands( 8757 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8758 TargetTransformInfo *TTI, 8759 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8760 if (!ShouldVectorizeHor) 8761 return false; 8762 8763 if (!Root) 8764 return false; 8765 8766 if (Root->getParent() != BB || isa<PHINode>(Root)) 8767 return false; 8768 // Start analysis starting from Root instruction. If horizontal reduction is 8769 // found, try to vectorize it. If it is not a horizontal reduction or 8770 // vectorization is not possible or not effective, and currently analyzed 8771 // instruction is a binary operation, try to vectorize the operands, using 8772 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8773 // the same procedure considering each operand as a possible root of the 8774 // horizontal reduction. 8775 // Interrupt the process if the Root instruction itself was vectorized or all 8776 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8777 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8778 // CmpInsts so we can skip extra attempts in 8779 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8780 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8781 SmallPtrSet<Value *, 8> VisitedInstrs; 8782 bool Res = false; 8783 while (!Stack.empty()) { 8784 Instruction *Inst; 8785 unsigned Level; 8786 std::tie(Inst, Level) = Stack.pop_back_val(); 8787 // Do not try to analyze instruction that has already been vectorized. 8788 // This may happen when we vectorize instruction operands on a previous 8789 // iteration while stack was populated before that happened. 8790 if (R.isDeleted(Inst)) 8791 continue; 8792 Value *B0, *B1; 8793 bool IsBinop = matchRdxBop(Inst, B0, B1); 8794 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8795 if (IsBinop || IsSelect) { 8796 HorizontalReduction HorRdx; 8797 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8798 if (HorRdx.tryToReduce(R, TTI)) { 8799 Res = true; 8800 // Set P to nullptr to avoid re-analysis of phi node in 8801 // matchAssociativeReduction function unless this is the root node. 8802 P = nullptr; 8803 continue; 8804 } 8805 } 8806 if (P && IsBinop) { 8807 Inst = dyn_cast<Instruction>(B0); 8808 if (Inst == P) 8809 Inst = dyn_cast<Instruction>(B1); 8810 if (!Inst) { 8811 // Set P to nullptr to avoid re-analysis of phi node in 8812 // matchAssociativeReduction function unless this is the root node. 8813 P = nullptr; 8814 continue; 8815 } 8816 } 8817 } 8818 // Set P to nullptr to avoid re-analysis of phi node in 8819 // matchAssociativeReduction function unless this is the root node. 8820 P = nullptr; 8821 // Do not try to vectorize CmpInst operands, this is done separately. 8822 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8823 Res = true; 8824 continue; 8825 } 8826 8827 // Try to vectorize operands. 8828 // Continue analysis for the instruction from the same basic block only to 8829 // save compile time. 8830 if (++Level < RecursionMaxDepth) 8831 for (auto *Op : Inst->operand_values()) 8832 if (VisitedInstrs.insert(Op).second) 8833 if (auto *I = dyn_cast<Instruction>(Op)) 8834 // Do not try to vectorize CmpInst operands, this is done 8835 // separately. 8836 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8837 I->getParent() == BB) 8838 Stack.emplace_back(I, Level); 8839 } 8840 return Res; 8841 } 8842 8843 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8844 BasicBlock *BB, BoUpSLP &R, 8845 TargetTransformInfo *TTI) { 8846 auto *I = dyn_cast_or_null<Instruction>(V); 8847 if (!I) 8848 return false; 8849 8850 if (!isa<BinaryOperator>(I)) 8851 P = nullptr; 8852 // Try to match and vectorize a horizontal reduction. 8853 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8854 return tryToVectorize(I, R); 8855 }; 8856 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8857 ExtraVectorization); 8858 } 8859 8860 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8861 BasicBlock *BB, BoUpSLP &R) { 8862 const DataLayout &DL = BB->getModule()->getDataLayout(); 8863 if (!R.canMapToVector(IVI->getType(), DL)) 8864 return false; 8865 8866 SmallVector<Value *, 16> BuildVectorOpds; 8867 SmallVector<Value *, 16> BuildVectorInsts; 8868 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8869 return false; 8870 8871 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8872 // Aggregate value is unlikely to be processed in vector register, we need to 8873 // extract scalars into scalar registers, so NeedExtraction is set true. 8874 return tryToVectorizeList(BuildVectorOpds, R); 8875 } 8876 8877 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8878 BasicBlock *BB, BoUpSLP &R) { 8879 SmallVector<Value *, 16> BuildVectorInsts; 8880 SmallVector<Value *, 16> BuildVectorOpds; 8881 SmallVector<int> Mask; 8882 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8883 (llvm::all_of(BuildVectorOpds, 8884 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8885 isShuffle(BuildVectorOpds, Mask))) 8886 return false; 8887 8888 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8889 return tryToVectorizeList(BuildVectorInsts, R); 8890 } 8891 8892 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8893 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8894 bool AtTerminator) { 8895 bool OpsChanged = false; 8896 SmallVector<Instruction *, 4> PostponedCmps; 8897 for (auto *I : reverse(Instructions)) { 8898 if (R.isDeleted(I)) 8899 continue; 8900 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8901 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8902 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8903 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8904 else if (isa<CmpInst>(I)) 8905 PostponedCmps.push_back(I); 8906 } 8907 if (AtTerminator) { 8908 // Try to find reductions first. 8909 for (Instruction *I : PostponedCmps) { 8910 if (R.isDeleted(I)) 8911 continue; 8912 for (Value *Op : I->operands()) 8913 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8914 } 8915 // Try to vectorize operands as vector bundles. 8916 for (Instruction *I : PostponedCmps) { 8917 if (R.isDeleted(I)) 8918 continue; 8919 OpsChanged |= tryToVectorize(I, R); 8920 } 8921 Instructions.clear(); 8922 } else { 8923 // Insert in reverse order since the PostponedCmps vector was filled in 8924 // reverse order. 8925 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8926 } 8927 return OpsChanged; 8928 } 8929 8930 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8931 bool Changed = false; 8932 SmallVector<Value *, 4> Incoming; 8933 SmallPtrSet<Value *, 16> VisitedInstrs; 8934 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 8935 // node. Allows better to identify the chains that can be vectorized in the 8936 // better way. 8937 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 8938 8939 bool HaveVectorizedPhiNodes = true; 8940 while (HaveVectorizedPhiNodes) { 8941 HaveVectorizedPhiNodes = false; 8942 8943 // Collect the incoming values from the PHIs. 8944 Incoming.clear(); 8945 for (Instruction &I : *BB) { 8946 PHINode *P = dyn_cast<PHINode>(&I); 8947 if (!P) 8948 break; 8949 8950 // No need to analyze deleted, vectorized and non-vectorizable 8951 // instructions. 8952 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 8953 isValidElementType(P->getType())) 8954 Incoming.push_back(P); 8955 } 8956 8957 // Find the corresponding non-phi nodes for better matching when trying to 8958 // build the tree. 8959 for (Value *V : Incoming) { 8960 SmallVectorImpl<Value *> &Opcodes = 8961 PHIToOpcodes.try_emplace(V).first->getSecond(); 8962 if (!Opcodes.empty()) 8963 continue; 8964 SmallVector<Value *, 4> Nodes(1, V); 8965 SmallPtrSet<Value *, 4> Visited; 8966 while (!Nodes.empty()) { 8967 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 8968 if (!Visited.insert(PHI).second) 8969 continue; 8970 for (Value *V : PHI->incoming_values()) { 8971 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 8972 Nodes.push_back(PHI1); 8973 continue; 8974 } 8975 Opcodes.emplace_back(V); 8976 } 8977 } 8978 } 8979 8980 // Sort by type, parent, operands. 8981 stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) { 8982 assert(isValidElementType(V1->getType()) && 8983 isValidElementType(V2->getType()) && 8984 "Expected vectorizable types only."); 8985 // It is fine to compare type IDs here, since we expect only vectorizable 8986 // types, like ints, floats and pointers, we don't care about other type. 8987 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 8988 return true; 8989 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 8990 return false; 8991 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8992 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8993 if (Opcodes1.size() < Opcodes2.size()) 8994 return true; 8995 if (Opcodes1.size() > Opcodes2.size()) 8996 return false; 8997 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8998 // Undefs are compatible with any other value. 8999 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9000 continue; 9001 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9002 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9003 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9004 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9005 if (!NodeI1) 9006 return NodeI2 != nullptr; 9007 if (!NodeI2) 9008 return false; 9009 assert((NodeI1 == NodeI2) == 9010 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9011 "Different nodes should have different DFS numbers"); 9012 if (NodeI1 != NodeI2) 9013 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9014 InstructionsState S = getSameOpcode({I1, I2}); 9015 if (S.getOpcode()) 9016 continue; 9017 return I1->getOpcode() < I2->getOpcode(); 9018 } 9019 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9020 continue; 9021 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9022 return true; 9023 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9024 return false; 9025 } 9026 return false; 9027 }); 9028 9029 auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9030 if (V1 == V2) 9031 return true; 9032 if (V1->getType() != V2->getType()) 9033 return false; 9034 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9035 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9036 if (Opcodes1.size() != Opcodes2.size()) 9037 return false; 9038 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9039 // Undefs are compatible with any other value. 9040 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9041 continue; 9042 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9043 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9044 if (I1->getParent() != I2->getParent()) 9045 return false; 9046 InstructionsState S = getSameOpcode({I1, I2}); 9047 if (S.getOpcode()) 9048 continue; 9049 return false; 9050 } 9051 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9052 continue; 9053 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9054 return false; 9055 } 9056 return true; 9057 }; 9058 9059 // Try to vectorize elements base on their type. 9060 SmallVector<Value *, 4> Candidates; 9061 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 9062 E = Incoming.end(); 9063 IncIt != E;) { 9064 9065 // Look for the next elements with the same type, parent and operand 9066 // kinds. 9067 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 9068 while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) { 9069 VisitedInstrs.insert(*SameTypeIt); 9070 ++SameTypeIt; 9071 } 9072 9073 // Try to vectorize them. 9074 unsigned NumElts = (SameTypeIt - IncIt); 9075 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 9076 << NumElts << ")\n"); 9077 // The order in which the phi nodes appear in the program does not matter. 9078 // So allow tryToVectorizeList to reorder them if it is beneficial. This 9079 // is done when there are exactly two elements since tryToVectorizeList 9080 // asserts that there are only two values when AllowReorder is true. 9081 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 9082 // Success start over because instructions might have been changed. 9083 HaveVectorizedPhiNodes = true; 9084 Changed = true; 9085 } else if (NumElts < 4 && 9086 (Candidates.empty() || 9087 Candidates.front()->getType() == (*IncIt)->getType())) { 9088 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9089 } 9090 // Final attempt to vectorize phis with the same types. 9091 if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) { 9092 if (Candidates.size() > 1 && tryToVectorizeList(Candidates, R)) { 9093 // Success start over because instructions might have been changed. 9094 HaveVectorizedPhiNodes = true; 9095 Changed = true; 9096 } 9097 Candidates.clear(); 9098 } 9099 9100 // Start over at the next instruction of a different type (or the end). 9101 IncIt = SameTypeIt; 9102 } 9103 } 9104 9105 VisitedInstrs.clear(); 9106 9107 SmallVector<Instruction *, 8> PostProcessInstructions; 9108 SmallDenseSet<Instruction *, 4> KeyNodes; 9109 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9110 // Skip instructions with scalable type. The num of elements is unknown at 9111 // compile-time for scalable type. 9112 if (isa<ScalableVectorType>(it->getType())) 9113 continue; 9114 9115 // Skip instructions marked for the deletion. 9116 if (R.isDeleted(&*it)) 9117 continue; 9118 // We may go through BB multiple times so skip the one we have checked. 9119 if (!VisitedInstrs.insert(&*it).second) { 9120 if (it->use_empty() && KeyNodes.contains(&*it) && 9121 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9122 it->isTerminator())) { 9123 // We would like to start over since some instructions are deleted 9124 // and the iterator may become invalid value. 9125 Changed = true; 9126 it = BB->begin(); 9127 e = BB->end(); 9128 } 9129 continue; 9130 } 9131 9132 if (isa<DbgInfoIntrinsic>(it)) 9133 continue; 9134 9135 // Try to vectorize reductions that use PHINodes. 9136 if (PHINode *P = dyn_cast<PHINode>(it)) { 9137 // Check that the PHI is a reduction PHI. 9138 if (P->getNumIncomingValues() == 2) { 9139 // Try to match and vectorize a horizontal reduction. 9140 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9141 TTI)) { 9142 Changed = true; 9143 it = BB->begin(); 9144 e = BB->end(); 9145 continue; 9146 } 9147 } 9148 // Try to vectorize the incoming values of the PHI, to catch reductions 9149 // that feed into PHIs. 9150 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9151 // Skip if the incoming block is the current BB for now. Also, bypass 9152 // unreachable IR for efficiency and to avoid crashing. 9153 // TODO: Collect the skipped incoming values and try to vectorize them 9154 // after processing BB. 9155 if (BB == P->getIncomingBlock(I) || 9156 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9157 continue; 9158 9159 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9160 P->getIncomingBlock(I), R, TTI); 9161 } 9162 continue; 9163 } 9164 9165 // Ran into an instruction without users, like terminator, or function call 9166 // with ignored return value, store. Ignore unused instructions (basing on 9167 // instruction type, except for CallInst and InvokeInst). 9168 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9169 isa<InvokeInst>(it))) { 9170 KeyNodes.insert(&*it); 9171 bool OpsChanged = false; 9172 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9173 for (auto *V : it->operand_values()) { 9174 // Try to match and vectorize a horizontal reduction. 9175 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9176 } 9177 } 9178 // Start vectorization of post-process list of instructions from the 9179 // top-tree instructions to try to vectorize as many instructions as 9180 // possible. 9181 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9182 it->isTerminator()); 9183 if (OpsChanged) { 9184 // We would like to start over since some instructions are deleted 9185 // and the iterator may become invalid value. 9186 Changed = true; 9187 it = BB->begin(); 9188 e = BB->end(); 9189 continue; 9190 } 9191 } 9192 9193 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9194 isa<InsertValueInst>(it)) 9195 PostProcessInstructions.push_back(&*it); 9196 } 9197 9198 return Changed; 9199 } 9200 9201 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9202 auto Changed = false; 9203 for (auto &Entry : GEPs) { 9204 // If the getelementptr list has fewer than two elements, there's nothing 9205 // to do. 9206 if (Entry.second.size() < 2) 9207 continue; 9208 9209 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9210 << Entry.second.size() << ".\n"); 9211 9212 // Process the GEP list in chunks suitable for the target's supported 9213 // vector size. If a vector register can't hold 1 element, we are done. We 9214 // are trying to vectorize the index computations, so the maximum number of 9215 // elements is based on the size of the index expression, rather than the 9216 // size of the GEP itself (the target's pointer size). 9217 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9218 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9219 if (MaxVecRegSize < EltSize) 9220 continue; 9221 9222 unsigned MaxElts = MaxVecRegSize / EltSize; 9223 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9224 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9225 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9226 9227 // Initialize a set a candidate getelementptrs. Note that we use a 9228 // SetVector here to preserve program order. If the index computations 9229 // are vectorizable and begin with loads, we want to minimize the chance 9230 // of having to reorder them later. 9231 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9232 9233 // Some of the candidates may have already been vectorized after we 9234 // initially collected them. If so, they are marked as deleted, so remove 9235 // them from the set of candidates. 9236 Candidates.remove_if( 9237 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9238 9239 // Remove from the set of candidates all pairs of getelementptrs with 9240 // constant differences. Such getelementptrs are likely not good 9241 // candidates for vectorization in a bottom-up phase since one can be 9242 // computed from the other. We also ensure all candidate getelementptr 9243 // indices are unique. 9244 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9245 auto *GEPI = GEPList[I]; 9246 if (!Candidates.count(GEPI)) 9247 continue; 9248 auto *SCEVI = SE->getSCEV(GEPList[I]); 9249 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9250 auto *GEPJ = GEPList[J]; 9251 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9252 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9253 Candidates.remove(GEPI); 9254 Candidates.remove(GEPJ); 9255 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9256 Candidates.remove(GEPJ); 9257 } 9258 } 9259 } 9260 9261 // We break out of the above computation as soon as we know there are 9262 // fewer than two candidates remaining. 9263 if (Candidates.size() < 2) 9264 continue; 9265 9266 // Add the single, non-constant index of each candidate to the bundle. We 9267 // ensured the indices met these constraints when we originally collected 9268 // the getelementptrs. 9269 SmallVector<Value *, 16> Bundle(Candidates.size()); 9270 auto BundleIndex = 0u; 9271 for (auto *V : Candidates) { 9272 auto *GEP = cast<GetElementPtrInst>(V); 9273 auto *GEPIdx = GEP->idx_begin()->get(); 9274 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9275 Bundle[BundleIndex++] = GEPIdx; 9276 } 9277 9278 // Try and vectorize the indices. We are currently only interested in 9279 // gather-like cases of the form: 9280 // 9281 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9282 // 9283 // where the loads of "a", the loads of "b", and the subtractions can be 9284 // performed in parallel. It's likely that detecting this pattern in a 9285 // bottom-up phase will be simpler and less costly than building a 9286 // full-blown top-down phase beginning at the consecutive loads. 9287 Changed |= tryToVectorizeList(Bundle, R); 9288 } 9289 } 9290 return Changed; 9291 } 9292 9293 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9294 bool Changed = false; 9295 // Sort by type, base pointers and values operand. Value operands must be 9296 // compatible (have the same opcode, same parent), otherwise it is 9297 // definitely not profitable to try to vectorize them. 9298 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9299 if (V->getPointerOperandType()->getTypeID() < 9300 V2->getPointerOperandType()->getTypeID()) 9301 return true; 9302 if (V->getPointerOperandType()->getTypeID() > 9303 V2->getPointerOperandType()->getTypeID()) 9304 return false; 9305 // UndefValues are compatible with all other values. 9306 if (isa<UndefValue>(V->getValueOperand()) || 9307 isa<UndefValue>(V2->getValueOperand())) 9308 return false; 9309 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9310 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9311 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9312 DT->getNode(I1->getParent()); 9313 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9314 DT->getNode(I2->getParent()); 9315 assert(NodeI1 && "Should only process reachable instructions"); 9316 assert(NodeI1 && "Should only process reachable instructions"); 9317 assert((NodeI1 == NodeI2) == 9318 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9319 "Different nodes should have different DFS numbers"); 9320 if (NodeI1 != NodeI2) 9321 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9322 InstructionsState S = getSameOpcode({I1, I2}); 9323 if (S.getOpcode()) 9324 return false; 9325 return I1->getOpcode() < I2->getOpcode(); 9326 } 9327 if (isa<Constant>(V->getValueOperand()) && 9328 isa<Constant>(V2->getValueOperand())) 9329 return false; 9330 return V->getValueOperand()->getValueID() < 9331 V2->getValueOperand()->getValueID(); 9332 }; 9333 9334 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9335 if (V1 == V2) 9336 return true; 9337 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9338 return false; 9339 // Undefs are compatible with any other value. 9340 if (isa<UndefValue>(V1->getValueOperand()) || 9341 isa<UndefValue>(V2->getValueOperand())) 9342 return true; 9343 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9344 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9345 if (I1->getParent() != I2->getParent()) 9346 return false; 9347 InstructionsState S = getSameOpcode({I1, I2}); 9348 return S.getOpcode() > 0; 9349 } 9350 if (isa<Constant>(V1->getValueOperand()) && 9351 isa<Constant>(V2->getValueOperand())) 9352 return true; 9353 return V1->getValueOperand()->getValueID() == 9354 V2->getValueOperand()->getValueID(); 9355 }; 9356 9357 // Attempt to sort and vectorize each of the store-groups. 9358 for (auto &Pair : Stores) { 9359 if (Pair.second.size() < 2) 9360 continue; 9361 9362 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9363 << Pair.second.size() << ".\n"); 9364 9365 stable_sort(Pair.second, StoreSorter); 9366 9367 // Try to vectorize elements based on their compatibility. 9368 for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(), 9369 E = Pair.second.end(); 9370 IncIt != E;) { 9371 9372 // Look for the next elements with the same type. 9373 ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt; 9374 Type *EltTy = (*IncIt)->getPointerOperand()->getType(); 9375 9376 while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt)) 9377 ++SameTypeIt; 9378 9379 // Try to vectorize them. 9380 unsigned NumElts = (SameTypeIt - IncIt); 9381 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores (" 9382 << NumElts << ")\n"); 9383 if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() && 9384 vectorizeStores(makeArrayRef(IncIt, NumElts), R)) { 9385 // Success start over because instructions might have been changed. 9386 Changed = true; 9387 } 9388 9389 // Start over at the next instruction of a different type (or the end). 9390 IncIt = SameTypeIt; 9391 } 9392 } 9393 return Changed; 9394 } 9395 9396 char SLPVectorizer::ID = 0; 9397 9398 static const char lv_name[] = "SLP Vectorizer"; 9399 9400 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9401 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9402 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9403 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9404 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9405 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9406 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9407 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9408 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9409 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9410 9411 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9412