1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 732 int Index = Offset; 733 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 734 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 735 auto *VT = cast<FixedVectorType>(IE->getType()); 736 if (CI->getValue().uge(VT->getNumElements())) 737 return UndefMaskElem; 738 Index *= VT->getNumElements(); 739 Index += CI->getZExtValue(); 740 return Index; 741 } 742 if (isa<UndefValue>(IE->getOperand(2))) 743 return UndefMaskElem; 744 return None; 745 } 746 747 auto *IV = cast<InsertValueInst>(InsertInst); 748 Type *CurrentType = IV->getType(); 749 for (unsigned I : IV->indices()) { 750 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 751 Index *= ST->getNumElements(); 752 CurrentType = ST->getElementType(I); 753 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 754 Index *= AT->getNumElements(); 755 CurrentType = AT->getElementType(); 756 } else { 757 return None; 758 } 759 Index += I; 760 } 761 return Index; 762 } 763 764 /// Reorders the list of scalars in accordance with the given \p Order and then 765 /// the \p Mask. \p Order - is the original order of the scalars, need to 766 /// reorder scalars into an unordered state at first according to the given 767 /// order. Then the ordered scalars are shuffled once again in accordance with 768 /// the provided mask. 769 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 770 ArrayRef<int> Mask) { 771 assert(!Mask.empty() && "Expected non-empty mask."); 772 SmallVector<Value *> Prev(Scalars.size(), 773 UndefValue::get(Scalars.front()->getType())); 774 Prev.swap(Scalars); 775 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 776 if (Mask[I] != UndefMaskElem) 777 Scalars[Mask[I]] = Prev[I]; 778 } 779 780 namespace slpvectorizer { 781 782 /// Bottom Up SLP Vectorizer. 783 class BoUpSLP { 784 struct TreeEntry; 785 struct ScheduleData; 786 787 public: 788 using ValueList = SmallVector<Value *, 8>; 789 using InstrList = SmallVector<Instruction *, 16>; 790 using ValueSet = SmallPtrSet<Value *, 16>; 791 using StoreList = SmallVector<StoreInst *, 8>; 792 using ExtraValueToDebugLocsMap = 793 MapVector<Value *, SmallVector<Instruction *, 2>>; 794 using OrdersType = SmallVector<unsigned, 4>; 795 796 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 797 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 798 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 799 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 800 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 801 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 802 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 803 // Use the vector register size specified by the target unless overridden 804 // by a command-line option. 805 // TODO: It would be better to limit the vectorization factor based on 806 // data type rather than just register size. For example, x86 AVX has 807 // 256-bit registers, but it does not support integer operations 808 // at that width (that requires AVX2). 809 if (MaxVectorRegSizeOption.getNumOccurrences()) 810 MaxVecRegSize = MaxVectorRegSizeOption; 811 else 812 MaxVecRegSize = 813 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 814 .getFixedSize(); 815 816 if (MinVectorRegSizeOption.getNumOccurrences()) 817 MinVecRegSize = MinVectorRegSizeOption; 818 else 819 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 820 } 821 822 /// Vectorize the tree that starts with the elements in \p VL. 823 /// Returns the vectorized root. 824 Value *vectorizeTree(); 825 826 /// Vectorize the tree but with the list of externally used values \p 827 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 828 /// generated extractvalue instructions. 829 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 830 831 /// \returns the cost incurred by unwanted spills and fills, caused by 832 /// holding live values over call sites. 833 InstructionCost getSpillCost() const; 834 835 /// \returns the vectorization cost of the subtree that starts at \p VL. 836 /// A negative number means that this is profitable. 837 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 838 839 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 840 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 841 void buildTree(ArrayRef<Value *> Roots, 842 ArrayRef<Value *> UserIgnoreLst = None); 843 844 /// Builds external uses of the vectorized scalars, i.e. the list of 845 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 846 /// ExternallyUsedValues contains additional list of external uses to handle 847 /// vectorization of reductions. 848 void 849 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 850 851 /// Clear the internal data structures that are created by 'buildTree'. 852 void deleteTree() { 853 VectorizableTree.clear(); 854 ScalarToTreeEntry.clear(); 855 MustGather.clear(); 856 ExternalUses.clear(); 857 for (auto &Iter : BlocksSchedules) { 858 BlockScheduling *BS = Iter.second.get(); 859 BS->clear(); 860 } 861 MinBWs.clear(); 862 InstrElementSize.clear(); 863 } 864 865 unsigned getTreeSize() const { return VectorizableTree.size(); } 866 867 /// Perform LICM and CSE on the newly generated gather sequences. 868 void optimizeGatherSequence(); 869 870 /// Checks if the specified gather tree entry \p TE can be represented as a 871 /// shuffled vector entry + (possibly) permutation with other gathers. It 872 /// implements the checks only for possibly ordered scalars (Loads, 873 /// ExtractElement, ExtractValue), which can be part of the graph. 874 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 875 876 /// Gets reordering data for the given tree entry. If the entry is vectorized 877 /// - just return ReorderIndices, otherwise check if the scalars can be 878 /// reordered and return the most optimal order. 879 /// \param TopToBottom If true, include the order of vectorized stores and 880 /// insertelement nodes, otherwise skip them. 881 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 882 883 /// Reorders the current graph to the most profitable order starting from the 884 /// root node to the leaf nodes. The best order is chosen only from the nodes 885 /// of the same size (vectorization factor). Smaller nodes are considered 886 /// parts of subgraph with smaller VF and they are reordered independently. We 887 /// can make it because we still need to extend smaller nodes to the wider VF 888 /// and we can merge reordering shuffles with the widening shuffles. 889 void reorderTopToBottom(); 890 891 /// Reorders the current graph to the most profitable order starting from 892 /// leaves to the root. It allows to rotate small subgraphs and reduce the 893 /// number of reshuffles if the leaf nodes use the same order. In this case we 894 /// can merge the orders and just shuffle user node instead of shuffling its 895 /// operands. Plus, even the leaf nodes have different orders, it allows to 896 /// sink reordering in the graph closer to the root node and merge it later 897 /// during analysis. 898 void reorderBottomToTop(bool IgnoreReorder = false); 899 900 /// \return The vector element size in bits to use when vectorizing the 901 /// expression tree ending at \p V. If V is a store, the size is the width of 902 /// the stored value. Otherwise, the size is the width of the largest loaded 903 /// value reaching V. This method is used by the vectorizer to calculate 904 /// vectorization factors. 905 unsigned getVectorElementSize(Value *V); 906 907 /// Compute the minimum type sizes required to represent the entries in a 908 /// vectorizable tree. 909 void computeMinimumValueSizes(); 910 911 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 912 unsigned getMaxVecRegSize() const { 913 return MaxVecRegSize; 914 } 915 916 // \returns minimum vector register size as set by cl::opt. 917 unsigned getMinVecRegSize() const { 918 return MinVecRegSize; 919 } 920 921 unsigned getMinVF(unsigned Sz) const { 922 return std::max(2U, getMinVecRegSize() / Sz); 923 } 924 925 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 926 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 927 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 928 return MaxVF ? MaxVF : UINT_MAX; 929 } 930 931 /// Check if homogeneous aggregate is isomorphic to some VectorType. 932 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 933 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 934 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 935 /// 936 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 937 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 938 939 /// \returns True if the VectorizableTree is both tiny and not fully 940 /// vectorizable. We do not vectorize such trees. 941 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 942 943 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 944 /// can be load combined in the backend. Load combining may not be allowed in 945 /// the IR optimizer, so we do not want to alter the pattern. For example, 946 /// partially transforming a scalar bswap() pattern into vector code is 947 /// effectively impossible for the backend to undo. 948 /// TODO: If load combining is allowed in the IR optimizer, this analysis 949 /// may not be necessary. 950 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 951 952 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 953 /// can be load combined in the backend. Load combining may not be allowed in 954 /// the IR optimizer, so we do not want to alter the pattern. For example, 955 /// partially transforming a scalar bswap() pattern into vector code is 956 /// effectively impossible for the backend to undo. 957 /// TODO: If load combining is allowed in the IR optimizer, this analysis 958 /// may not be necessary. 959 bool isLoadCombineCandidate() const; 960 961 OptimizationRemarkEmitter *getORE() { return ORE; } 962 963 /// This structure holds any data we need about the edges being traversed 964 /// during buildTree_rec(). We keep track of: 965 /// (i) the user TreeEntry index, and 966 /// (ii) the index of the edge. 967 struct EdgeInfo { 968 EdgeInfo() = default; 969 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 970 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 971 /// The user TreeEntry. 972 TreeEntry *UserTE = nullptr; 973 /// The operand index of the use. 974 unsigned EdgeIdx = UINT_MAX; 975 #ifndef NDEBUG 976 friend inline raw_ostream &operator<<(raw_ostream &OS, 977 const BoUpSLP::EdgeInfo &EI) { 978 EI.dump(OS); 979 return OS; 980 } 981 /// Debug print. 982 void dump(raw_ostream &OS) const { 983 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 984 << " EdgeIdx:" << EdgeIdx << "}"; 985 } 986 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 987 #endif 988 }; 989 990 /// A helper data structure to hold the operands of a vector of instructions. 991 /// This supports a fixed vector length for all operand vectors. 992 class VLOperands { 993 /// For each operand we need (i) the value, and (ii) the opcode that it 994 /// would be attached to if the expression was in a left-linearized form. 995 /// This is required to avoid illegal operand reordering. 996 /// For example: 997 /// \verbatim 998 /// 0 Op1 999 /// |/ 1000 /// Op1 Op2 Linearized + Op2 1001 /// \ / ----------> |/ 1002 /// - - 1003 /// 1004 /// Op1 - Op2 (0 + Op1) - Op2 1005 /// \endverbatim 1006 /// 1007 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1008 /// 1009 /// Another way to think of this is to track all the operations across the 1010 /// path from the operand all the way to the root of the tree and to 1011 /// calculate the operation that corresponds to this path. For example, the 1012 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1013 /// corresponding operation is a '-' (which matches the one in the 1014 /// linearized tree, as shown above). 1015 /// 1016 /// For lack of a better term, we refer to this operation as Accumulated 1017 /// Path Operation (APO). 1018 struct OperandData { 1019 OperandData() = default; 1020 OperandData(Value *V, bool APO, bool IsUsed) 1021 : V(V), APO(APO), IsUsed(IsUsed) {} 1022 /// The operand value. 1023 Value *V = nullptr; 1024 /// TreeEntries only allow a single opcode, or an alternate sequence of 1025 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1026 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1027 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1028 /// (e.g., Add/Mul) 1029 bool APO = false; 1030 /// Helper data for the reordering function. 1031 bool IsUsed = false; 1032 }; 1033 1034 /// During operand reordering, we are trying to select the operand at lane 1035 /// that matches best with the operand at the neighboring lane. Our 1036 /// selection is based on the type of value we are looking for. For example, 1037 /// if the neighboring lane has a load, we need to look for a load that is 1038 /// accessing a consecutive address. These strategies are summarized in the 1039 /// 'ReorderingMode' enumerator. 1040 enum class ReorderingMode { 1041 Load, ///< Matching loads to consecutive memory addresses 1042 Opcode, ///< Matching instructions based on opcode (same or alternate) 1043 Constant, ///< Matching constants 1044 Splat, ///< Matching the same instruction multiple times (broadcast) 1045 Failed, ///< We failed to create a vectorizable group 1046 }; 1047 1048 using OperandDataVec = SmallVector<OperandData, 2>; 1049 1050 /// A vector of operand vectors. 1051 SmallVector<OperandDataVec, 4> OpsVec; 1052 1053 const DataLayout &DL; 1054 ScalarEvolution &SE; 1055 const BoUpSLP &R; 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. 1058 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1063 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1064 return OpsVec[OpIdx][Lane]; 1065 } 1066 1067 /// Clears the used flag for all entries. 1068 void clearUsed() { 1069 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1070 OpIdx != NumOperands; ++OpIdx) 1071 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1072 ++Lane) 1073 OpsVec[OpIdx][Lane].IsUsed = false; 1074 } 1075 1076 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1077 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1078 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1079 } 1080 1081 // The hard-coded scores listed here are not very important, though it shall 1082 // be higher for better matches to improve the resulting cost. When 1083 // computing the scores of matching one sub-tree with another, we are 1084 // basically counting the number of values that are matching. So even if all 1085 // scores are set to 1, we would still get a decent matching result. 1086 // However, sometimes we have to break ties. For example we may have to 1087 // choose between matching loads vs matching opcodes. This is what these 1088 // scores are helping us with: they provide the order of preference. Also, 1089 // this is important if the scalar is externally used or used in another 1090 // tree entry node in the different lane. 1091 1092 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1093 static const int ScoreConsecutiveLoads = 4; 1094 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1095 static const int ScoreReversedLoads = 3; 1096 /// ExtractElementInst from same vector and consecutive indexes. 1097 static const int ScoreConsecutiveExtracts = 4; 1098 /// ExtractElementInst from same vector and reversed indices. 1099 static const int ScoreReversedExtracts = 3; 1100 /// Constants. 1101 static const int ScoreConstants = 2; 1102 /// Instructions with the same opcode. 1103 static const int ScoreSameOpcode = 2; 1104 /// Instructions with alt opcodes (e.g, add + sub). 1105 static const int ScoreAltOpcodes = 1; 1106 /// Identical instructions (a.k.a. splat or broadcast). 1107 static const int ScoreSplat = 1; 1108 /// Matching with an undef is preferable to failing. 1109 static const int ScoreUndef = 1; 1110 /// Score for failing to find a decent match. 1111 static const int ScoreFail = 0; 1112 /// Score if all users are vectorized. 1113 static const int ScoreAllUserVectorized = 1; 1114 1115 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1116 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1117 /// MainAltOps. 1118 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1119 ScalarEvolution &SE, int NumLanes, 1120 ArrayRef<Value *> MainAltOps) { 1121 if (V1 == V2) 1122 return VLOperands::ScoreSplat; 1123 1124 auto *LI1 = dyn_cast<LoadInst>(V1); 1125 auto *LI2 = dyn_cast<LoadInst>(V2); 1126 if (LI1 && LI2) { 1127 if (LI1->getParent() != LI2->getParent()) 1128 return VLOperands::ScoreFail; 1129 1130 Optional<int> Dist = getPointersDiff( 1131 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1132 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1133 if (!Dist || *Dist == 0) 1134 return VLOperands::ScoreFail; 1135 // The distance is too large - still may be profitable to use masked 1136 // loads/gathers. 1137 if (std::abs(*Dist) > NumLanes / 2) 1138 return VLOperands::ScoreAltOpcodes; 1139 // This still will detect consecutive loads, but we might have "holes" 1140 // in some cases. It is ok for non-power-2 vectorization and may produce 1141 // better results. It should not affect current vectorization. 1142 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1143 : VLOperands::ScoreReversedLoads; 1144 } 1145 1146 auto *C1 = dyn_cast<Constant>(V1); 1147 auto *C2 = dyn_cast<Constant>(V2); 1148 if (C1 && C2) 1149 return VLOperands::ScoreConstants; 1150 1151 // Extracts from consecutive indexes of the same vector better score as 1152 // the extracts could be optimized away. 1153 Value *EV1; 1154 ConstantInt *Ex1Idx; 1155 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1156 // Undefs are always profitable for extractelements. 1157 if (isa<UndefValue>(V2)) 1158 return VLOperands::ScoreConsecutiveExtracts; 1159 Value *EV2 = nullptr; 1160 ConstantInt *Ex2Idx = nullptr; 1161 if (match(V2, 1162 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1163 m_Undef())))) { 1164 // Undefs are always profitable for extractelements. 1165 if (!Ex2Idx) 1166 return VLOperands::ScoreConsecutiveExtracts; 1167 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1168 return VLOperands::ScoreConsecutiveExtracts; 1169 if (EV2 == EV1) { 1170 int Idx1 = Ex1Idx->getZExtValue(); 1171 int Idx2 = Ex2Idx->getZExtValue(); 1172 int Dist = Idx2 - Idx1; 1173 // The distance is too large - still may be profitable to use 1174 // shuffles. 1175 if (std::abs(Dist) == 0) 1176 return VLOperands::ScoreSplat; 1177 if (std::abs(Dist) > NumLanes / 2) 1178 return VLOperands::ScoreSameOpcode; 1179 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1180 : VLOperands::ScoreReversedExtracts; 1181 } 1182 return VLOperands::ScoreAltOpcodes; 1183 } 1184 return VLOperands::ScoreFail; 1185 } 1186 1187 auto *I1 = dyn_cast<Instruction>(V1); 1188 auto *I2 = dyn_cast<Instruction>(V2); 1189 if (I1 && I2) { 1190 if (I1->getParent() != I2->getParent()) 1191 return VLOperands::ScoreFail; 1192 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1193 Ops.push_back(I1); 1194 Ops.push_back(I2); 1195 InstructionsState S = getSameOpcode(Ops); 1196 // Note: Only consider instructions with <= 2 operands to avoid 1197 // complexity explosion. 1198 if (S.getOpcode() && 1199 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1200 !S.isAltShuffle()) && 1201 all_of(Ops, [&S](Value *V) { 1202 return cast<Instruction>(V)->getNumOperands() == 1203 S.MainOp->getNumOperands(); 1204 })) 1205 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1206 : VLOperands::ScoreSameOpcode; 1207 } 1208 1209 if (isa<UndefValue>(V2)) 1210 return VLOperands::ScoreUndef; 1211 1212 return VLOperands::ScoreFail; 1213 } 1214 1215 /// \param Lane lane of the operands under analysis. 1216 /// \param OpIdx operand index in \p Lane lane we're looking the best 1217 /// candidate for. 1218 /// \param Idx operand index of the current candidate value. 1219 /// \returns The additional score due to possible broadcasting of the 1220 /// elements in the lane. It is more profitable to have power-of-2 unique 1221 /// elements in the lane, it will be vectorized with higher probability 1222 /// after removing duplicates. Currently the SLP vectorizer supports only 1223 /// vectorization of the power-of-2 number of unique scalars. 1224 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1225 Value *IdxLaneV = getData(Idx, Lane).V; 1226 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1227 return 0; 1228 SmallPtrSet<Value *, 4> Uniques; 1229 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1230 if (Ln == Lane) 1231 continue; 1232 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1233 if (!isa<Instruction>(OpIdxLnV)) 1234 return 0; 1235 Uniques.insert(OpIdxLnV); 1236 } 1237 int UniquesCount = Uniques.size(); 1238 int UniquesCntWithIdxLaneV = 1239 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1240 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1241 int UniquesCntWithOpIdxLaneV = 1242 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1243 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1244 return 0; 1245 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1246 UniquesCntWithOpIdxLaneV) - 1247 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1248 } 1249 1250 /// \param Lane lane of the operands under analysis. 1251 /// \param OpIdx operand index in \p Lane lane we're looking the best 1252 /// candidate for. 1253 /// \param Idx operand index of the current candidate value. 1254 /// \returns The additional score for the scalar which users are all 1255 /// vectorized. 1256 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1257 Value *IdxLaneV = getData(Idx, Lane).V; 1258 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1259 // Do not care about number of uses for vector-like instructions 1260 // (extractelement/extractvalue with constant indices), they are extracts 1261 // themselves and already externally used. Vectorization of such 1262 // instructions does not add extra extractelement instruction, just may 1263 // remove it. 1264 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1265 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1266 return VLOperands::ScoreAllUserVectorized; 1267 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1268 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1269 return 0; 1270 return R.areAllUsersVectorized(IdxLaneI, None) 1271 ? VLOperands::ScoreAllUserVectorized 1272 : 0; 1273 } 1274 1275 /// Go through the operands of \p LHS and \p RHS recursively until \p 1276 /// MaxLevel, and return the cummulative score. For example: 1277 /// \verbatim 1278 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1279 /// \ / \ / \ / \ / 1280 /// + + + + 1281 /// G1 G2 G3 G4 1282 /// \endverbatim 1283 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1284 /// each level recursively, accumulating the score. It starts from matching 1285 /// the additions at level 0, then moves on to the loads (level 1). The 1286 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1287 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1288 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1289 /// Please note that the order of the operands does not matter, as we 1290 /// evaluate the score of all profitable combinations of operands. In 1291 /// other words the score of G1 and G4 is the same as G1 and G2. This 1292 /// heuristic is based on ideas described in: 1293 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1294 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1295 /// Luís F. W. Góes 1296 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1297 ArrayRef<Value *> MainAltOps) { 1298 1299 // Get the shallow score of V1 and V2. 1300 int ShallowScoreAtThisLevel = 1301 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1302 1303 // If reached MaxLevel, 1304 // or if V1 and V2 are not instructions, 1305 // or if they are SPLAT, 1306 // or if they are not consecutive, 1307 // or if profitable to vectorize loads or extractelements, early return 1308 // the current cost. 1309 auto *I1 = dyn_cast<Instruction>(LHS); 1310 auto *I2 = dyn_cast<Instruction>(RHS); 1311 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1312 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1313 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1314 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1315 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1316 ShallowScoreAtThisLevel)) 1317 return ShallowScoreAtThisLevel; 1318 assert(I1 && I2 && "Should have early exited."); 1319 1320 // Contains the I2 operand indexes that got matched with I1 operands. 1321 SmallSet<unsigned, 4> Op2Used; 1322 1323 // Recursion towards the operands of I1 and I2. We are trying all possible 1324 // operand pairs, and keeping track of the best score. 1325 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1326 OpIdx1 != NumOperands1; ++OpIdx1) { 1327 // Try to pair op1I with the best operand of I2. 1328 int MaxTmpScore = 0; 1329 unsigned MaxOpIdx2 = 0; 1330 bool FoundBest = false; 1331 // If I2 is commutative try all combinations. 1332 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1333 unsigned ToIdx = isCommutative(I2) 1334 ? I2->getNumOperands() 1335 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1336 assert(FromIdx <= ToIdx && "Bad index"); 1337 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1338 // Skip operands already paired with OpIdx1. 1339 if (Op2Used.count(OpIdx2)) 1340 continue; 1341 // Recursively calculate the cost at each level 1342 int TmpScore = 1343 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1344 CurrLevel + 1, MaxLevel, None); 1345 // Look for the best score. 1346 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1347 MaxTmpScore = TmpScore; 1348 MaxOpIdx2 = OpIdx2; 1349 FoundBest = true; 1350 } 1351 } 1352 if (FoundBest) { 1353 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1354 Op2Used.insert(MaxOpIdx2); 1355 ShallowScoreAtThisLevel += MaxTmpScore; 1356 } 1357 } 1358 return ShallowScoreAtThisLevel; 1359 } 1360 1361 /// Score scaling factor for fully compatible instructions but with 1362 /// different number of external uses. Allows better selection of the 1363 /// instructions with less external uses. 1364 static const int ScoreScaleFactor = 10; 1365 1366 /// \Returns the look-ahead score, which tells us how much the sub-trees 1367 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1368 /// score. This helps break ties in an informed way when we cannot decide on 1369 /// the order of the operands by just considering the immediate 1370 /// predecessors. 1371 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1372 int Lane, unsigned OpIdx, unsigned Idx, 1373 bool &IsUsed) { 1374 int Score = 1375 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1376 if (Score) { 1377 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1378 if (Score <= -SplatScore) { 1379 // Set the minimum score for splat-like sequence to avoid setting 1380 // failed state. 1381 Score = 1; 1382 } else { 1383 Score += SplatScore; 1384 // Scale score to see the difference between different operands 1385 // and similar operands but all vectorized/not all vectorized 1386 // uses. It does not affect actual selection of the best 1387 // compatible operand in general, just allows to select the 1388 // operand with all vectorized uses. 1389 Score *= ScoreScaleFactor; 1390 Score += getExternalUseScore(Lane, OpIdx, Idx); 1391 IsUsed = true; 1392 } 1393 } 1394 return Score; 1395 } 1396 1397 /// Best defined scores per lanes between the passes. Used to choose the 1398 /// best operand (with the highest score) between the passes. 1399 /// The key - {Operand Index, Lane}. 1400 /// The value - the best score between the passes for the lane and the 1401 /// operand. 1402 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1403 BestScoresPerLanes; 1404 1405 // Search all operands in Ops[*][Lane] for the one that matches best 1406 // Ops[OpIdx][LastLane] and return its opreand index. 1407 // If no good match can be found, return None. 1408 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1409 ArrayRef<ReorderingMode> ReorderingModes, 1410 ArrayRef<Value *> MainAltOps) { 1411 unsigned NumOperands = getNumOperands(); 1412 1413 // The operand of the previous lane at OpIdx. 1414 Value *OpLastLane = getData(OpIdx, LastLane).V; 1415 1416 // Our strategy mode for OpIdx. 1417 ReorderingMode RMode = ReorderingModes[OpIdx]; 1418 if (RMode == ReorderingMode::Failed) 1419 return None; 1420 1421 // The linearized opcode of the operand at OpIdx, Lane. 1422 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1423 1424 // The best operand index and its score. 1425 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1426 // are using the score to differentiate between the two. 1427 struct BestOpData { 1428 Optional<unsigned> Idx = None; 1429 unsigned Score = 0; 1430 } BestOp; 1431 BestOp.Score = 1432 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1433 .first->second; 1434 1435 // Track if the operand must be marked as used. If the operand is set to 1436 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1437 // want to reestimate the operands again on the following iterations). 1438 bool IsUsed = 1439 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1440 // Iterate through all unused operands and look for the best. 1441 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1442 // Get the operand at Idx and Lane. 1443 OperandData &OpData = getData(Idx, Lane); 1444 Value *Op = OpData.V; 1445 bool OpAPO = OpData.APO; 1446 1447 // Skip already selected operands. 1448 if (OpData.IsUsed) 1449 continue; 1450 1451 // Skip if we are trying to move the operand to a position with a 1452 // different opcode in the linearized tree form. This would break the 1453 // semantics. 1454 if (OpAPO != OpIdxAPO) 1455 continue; 1456 1457 // Look for an operand that matches the current mode. 1458 switch (RMode) { 1459 case ReorderingMode::Load: 1460 case ReorderingMode::Constant: 1461 case ReorderingMode::Opcode: { 1462 bool LeftToRight = Lane > LastLane; 1463 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1464 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1465 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1466 OpIdx, Idx, IsUsed); 1467 if (Score > static_cast<int>(BestOp.Score)) { 1468 BestOp.Idx = Idx; 1469 BestOp.Score = Score; 1470 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1471 } 1472 break; 1473 } 1474 case ReorderingMode::Splat: 1475 if (Op == OpLastLane) 1476 BestOp.Idx = Idx; 1477 break; 1478 case ReorderingMode::Failed: 1479 llvm_unreachable("Not expected Failed reordering mode."); 1480 } 1481 } 1482 1483 if (BestOp.Idx) { 1484 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1485 return BestOp.Idx; 1486 } 1487 // If we could not find a good match return None. 1488 return None; 1489 } 1490 1491 /// Helper for reorderOperandVecs. 1492 /// \returns the lane that we should start reordering from. This is the one 1493 /// which has the least number of operands that can freely move about or 1494 /// less profitable because it already has the most optimal set of operands. 1495 unsigned getBestLaneToStartReordering() const { 1496 unsigned Min = UINT_MAX; 1497 unsigned SameOpNumber = 0; 1498 // std::pair<unsigned, unsigned> is used to implement a simple voting 1499 // algorithm and choose the lane with the least number of operands that 1500 // can freely move about or less profitable because it already has the 1501 // most optimal set of operands. The first unsigned is a counter for 1502 // voting, the second unsigned is the counter of lanes with instructions 1503 // with same/alternate opcodes and same parent basic block. 1504 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1505 // Try to be closer to the original results, if we have multiple lanes 1506 // with same cost. If 2 lanes have the same cost, use the one with the 1507 // lowest index. 1508 for (int I = getNumLanes(); I > 0; --I) { 1509 unsigned Lane = I - 1; 1510 OperandsOrderData NumFreeOpsHash = 1511 getMaxNumOperandsThatCanBeReordered(Lane); 1512 // Compare the number of operands that can move and choose the one with 1513 // the least number. 1514 if (NumFreeOpsHash.NumOfAPOs < Min) { 1515 Min = NumFreeOpsHash.NumOfAPOs; 1516 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1517 HashMap.clear(); 1518 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1519 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1520 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1521 // Select the most optimal lane in terms of number of operands that 1522 // should be moved around. 1523 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1526 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1527 auto It = HashMap.find(NumFreeOpsHash.Hash); 1528 if (It == HashMap.end()) 1529 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1530 else 1531 ++It->second.first; 1532 } 1533 } 1534 // Select the lane with the minimum counter. 1535 unsigned BestLane = 0; 1536 unsigned CntMin = UINT_MAX; 1537 for (const auto &Data : reverse(HashMap)) { 1538 if (Data.second.first < CntMin) { 1539 CntMin = Data.second.first; 1540 BestLane = Data.second.second; 1541 } 1542 } 1543 return BestLane; 1544 } 1545 1546 /// Data structure that helps to reorder operands. 1547 struct OperandsOrderData { 1548 /// The best number of operands with the same APOs, which can be 1549 /// reordered. 1550 unsigned NumOfAPOs = UINT_MAX; 1551 /// Number of operands with the same/alternate instruction opcode and 1552 /// parent. 1553 unsigned NumOpsWithSameOpcodeParent = 0; 1554 /// Hash for the actual operands ordering. 1555 /// Used to count operands, actually their position id and opcode 1556 /// value. It is used in the voting mechanism to find the lane with the 1557 /// least number of operands that can freely move about or less profitable 1558 /// because it already has the most optimal set of operands. Can be 1559 /// replaced with SmallVector<unsigned> instead but hash code is faster 1560 /// and requires less memory. 1561 unsigned Hash = 0; 1562 }; 1563 /// \returns the maximum number of operands that are allowed to be reordered 1564 /// for \p Lane and the number of compatible instructions(with the same 1565 /// parent/opcode). This is used as a heuristic for selecting the first lane 1566 /// to start operand reordering. 1567 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1568 unsigned CntTrue = 0; 1569 unsigned NumOperands = getNumOperands(); 1570 // Operands with the same APO can be reordered. We therefore need to count 1571 // how many of them we have for each APO, like this: Cnt[APO] = x. 1572 // Since we only have two APOs, namely true and false, we can avoid using 1573 // a map. Instead we can simply count the number of operands that 1574 // correspond to one of them (in this case the 'true' APO), and calculate 1575 // the other by subtracting it from the total number of operands. 1576 // Operands with the same instruction opcode and parent are more 1577 // profitable since we don't need to move them in many cases, with a high 1578 // probability such lane already can be vectorized effectively. 1579 bool AllUndefs = true; 1580 unsigned NumOpsWithSameOpcodeParent = 0; 1581 Instruction *OpcodeI = nullptr; 1582 BasicBlock *Parent = nullptr; 1583 unsigned Hash = 0; 1584 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1585 const OperandData &OpData = getData(OpIdx, Lane); 1586 if (OpData.APO) 1587 ++CntTrue; 1588 // Use Boyer-Moore majority voting for finding the majority opcode and 1589 // the number of times it occurs. 1590 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1591 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1592 I->getParent() != Parent) { 1593 if (NumOpsWithSameOpcodeParent == 0) { 1594 NumOpsWithSameOpcodeParent = 1; 1595 OpcodeI = I; 1596 Parent = I->getParent(); 1597 } else { 1598 --NumOpsWithSameOpcodeParent; 1599 } 1600 } else { 1601 ++NumOpsWithSameOpcodeParent; 1602 } 1603 } 1604 Hash = hash_combine( 1605 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1606 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1607 } 1608 if (AllUndefs) 1609 return {}; 1610 OperandsOrderData Data; 1611 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1612 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1613 Data.Hash = Hash; 1614 return Data; 1615 } 1616 1617 /// Go through the instructions in VL and append their operands. 1618 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1619 assert(!VL.empty() && "Bad VL"); 1620 assert((empty() || VL.size() == getNumLanes()) && 1621 "Expected same number of lanes"); 1622 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1623 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1624 OpsVec.resize(NumOperands); 1625 unsigned NumLanes = VL.size(); 1626 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1627 OpsVec[OpIdx].resize(NumLanes); 1628 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1629 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1630 // Our tree has just 3 nodes: the root and two operands. 1631 // It is therefore trivial to get the APO. We only need to check the 1632 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1633 // RHS operand. The LHS operand of both add and sub is never attached 1634 // to an inversese operation in the linearized form, therefore its APO 1635 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1636 1637 // Since operand reordering is performed on groups of commutative 1638 // operations or alternating sequences (e.g., +, -), we can safely 1639 // tell the inverse operations by checking commutativity. 1640 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1641 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1642 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1643 APO, false}; 1644 } 1645 } 1646 } 1647 1648 /// \returns the number of operands. 1649 unsigned getNumOperands() const { return OpsVec.size(); } 1650 1651 /// \returns the number of lanes. 1652 unsigned getNumLanes() const { return OpsVec[0].size(); } 1653 1654 /// \returns the operand value at \p OpIdx and \p Lane. 1655 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1656 return getData(OpIdx, Lane).V; 1657 } 1658 1659 /// \returns true if the data structure is empty. 1660 bool empty() const { return OpsVec.empty(); } 1661 1662 /// Clears the data. 1663 void clear() { OpsVec.clear(); } 1664 1665 /// \Returns true if there are enough operands identical to \p Op to fill 1666 /// the whole vector. 1667 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1668 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1669 bool OpAPO = getData(OpIdx, Lane).APO; 1670 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1671 if (Ln == Lane) 1672 continue; 1673 // This is set to true if we found a candidate for broadcast at Lane. 1674 bool FoundCandidate = false; 1675 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1676 OperandData &Data = getData(OpI, Ln); 1677 if (Data.APO != OpAPO || Data.IsUsed) 1678 continue; 1679 if (Data.V == Op) { 1680 FoundCandidate = true; 1681 Data.IsUsed = true; 1682 break; 1683 } 1684 } 1685 if (!FoundCandidate) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 public: 1692 /// Initialize with all the operands of the instruction vector \p RootVL. 1693 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1694 ScalarEvolution &SE, const BoUpSLP &R) 1695 : DL(DL), SE(SE), R(R) { 1696 // Append all the operands of RootVL. 1697 appendOperandsOfVL(RootVL); 1698 } 1699 1700 /// \Returns a value vector with the operands across all lanes for the 1701 /// opearnd at \p OpIdx. 1702 ValueList getVL(unsigned OpIdx) const { 1703 ValueList OpVL(OpsVec[OpIdx].size()); 1704 assert(OpsVec[OpIdx].size() == getNumLanes() && 1705 "Expected same num of lanes across all operands"); 1706 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1707 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1708 return OpVL; 1709 } 1710 1711 // Performs operand reordering for 2 or more operands. 1712 // The original operands are in OrigOps[OpIdx][Lane]. 1713 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1714 void reorder() { 1715 unsigned NumOperands = getNumOperands(); 1716 unsigned NumLanes = getNumLanes(); 1717 // Each operand has its own mode. We are using this mode to help us select 1718 // the instructions for each lane, so that they match best with the ones 1719 // we have selected so far. 1720 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1721 1722 // This is a greedy single-pass algorithm. We are going over each lane 1723 // once and deciding on the best order right away with no back-tracking. 1724 // However, in order to increase its effectiveness, we start with the lane 1725 // that has operands that can move the least. For example, given the 1726 // following lanes: 1727 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1728 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1729 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1730 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1731 // we will start at Lane 1, since the operands of the subtraction cannot 1732 // be reordered. Then we will visit the rest of the lanes in a circular 1733 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1734 1735 // Find the first lane that we will start our search from. 1736 unsigned FirstLane = getBestLaneToStartReordering(); 1737 1738 // Initialize the modes. 1739 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1740 Value *OpLane0 = getValue(OpIdx, FirstLane); 1741 // Keep track if we have instructions with all the same opcode on one 1742 // side. 1743 if (isa<LoadInst>(OpLane0)) 1744 ReorderingModes[OpIdx] = ReorderingMode::Load; 1745 else if (isa<Instruction>(OpLane0)) { 1746 // Check if OpLane0 should be broadcast. 1747 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1749 else 1750 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1751 } 1752 else if (isa<Constant>(OpLane0)) 1753 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1754 else if (isa<Argument>(OpLane0)) 1755 // Our best hope is a Splat. It may save some cost in some cases. 1756 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1757 else 1758 // NOTE: This should be unreachable. 1759 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1760 } 1761 1762 // Check that we don't have same operands. No need to reorder if operands 1763 // are just perfect diamond or shuffled diamond match. Do not do it only 1764 // for possible broadcasts or non-power of 2 number of scalars (just for 1765 // now). 1766 auto &&SkipReordering = [this]() { 1767 SmallPtrSet<Value *, 4> UniqueValues; 1768 ArrayRef<OperandData> Op0 = OpsVec.front(); 1769 for (const OperandData &Data : Op0) 1770 UniqueValues.insert(Data.V); 1771 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1772 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1773 return !UniqueValues.contains(Data.V); 1774 })) 1775 return false; 1776 } 1777 // TODO: Check if we can remove a check for non-power-2 number of 1778 // scalars after full support of non-power-2 vectorization. 1779 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1780 }; 1781 1782 // If the initial strategy fails for any of the operand indexes, then we 1783 // perform reordering again in a second pass. This helps avoid assigning 1784 // high priority to the failed strategy, and should improve reordering for 1785 // the non-failed operand indexes. 1786 for (int Pass = 0; Pass != 2; ++Pass) { 1787 // Check if no need to reorder operands since they're are perfect or 1788 // shuffled diamond match. 1789 // Need to to do it to avoid extra external use cost counting for 1790 // shuffled matches, which may cause regressions. 1791 if (SkipReordering()) 1792 break; 1793 // Skip the second pass if the first pass did not fail. 1794 bool StrategyFailed = false; 1795 // Mark all operand data as free to use. 1796 clearUsed(); 1797 // We keep the original operand order for the FirstLane, so reorder the 1798 // rest of the lanes. We are visiting the nodes in a circular fashion, 1799 // using FirstLane as the center point and increasing the radius 1800 // distance. 1801 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1802 for (unsigned I = 0; I < NumOperands; ++I) 1803 MainAltOps[I].push_back(getData(I, FirstLane).V); 1804 1805 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1806 // Visit the lane on the right and then the lane on the left. 1807 for (int Direction : {+1, -1}) { 1808 int Lane = FirstLane + Direction * Distance; 1809 if (Lane < 0 || Lane >= (int)NumLanes) 1810 continue; 1811 int LastLane = Lane - Direction; 1812 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1813 "Out of bounds"); 1814 // Look for a good match for each operand. 1815 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1816 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1817 Optional<unsigned> BestIdx = getBestOperand( 1818 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1819 // By not selecting a value, we allow the operands that follow to 1820 // select a better matching value. We will get a non-null value in 1821 // the next run of getBestOperand(). 1822 if (BestIdx) { 1823 // Swap the current operand with the one returned by 1824 // getBestOperand(). 1825 swap(OpIdx, BestIdx.getValue(), Lane); 1826 } else { 1827 // We failed to find a best operand, set mode to 'Failed'. 1828 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1829 // Enable the second pass. 1830 StrategyFailed = true; 1831 } 1832 // Try to get the alternate opcode and follow it during analysis. 1833 if (MainAltOps[OpIdx].size() != 2) { 1834 OperandData &AltOp = getData(OpIdx, Lane); 1835 InstructionsState OpS = 1836 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1837 if (OpS.getOpcode() && OpS.isAltShuffle()) 1838 MainAltOps[OpIdx].push_back(AltOp.V); 1839 } 1840 } 1841 } 1842 } 1843 // Skip second pass if the strategy did not fail. 1844 if (!StrategyFailed) 1845 break; 1846 } 1847 } 1848 1849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1850 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1851 switch (RMode) { 1852 case ReorderingMode::Load: 1853 return "Load"; 1854 case ReorderingMode::Opcode: 1855 return "Opcode"; 1856 case ReorderingMode::Constant: 1857 return "Constant"; 1858 case ReorderingMode::Splat: 1859 return "Splat"; 1860 case ReorderingMode::Failed: 1861 return "Failed"; 1862 } 1863 llvm_unreachable("Unimplemented Reordering Type"); 1864 } 1865 1866 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1867 raw_ostream &OS) { 1868 return OS << getModeStr(RMode); 1869 } 1870 1871 /// Debug print. 1872 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1873 printMode(RMode, dbgs()); 1874 } 1875 1876 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1877 return printMode(RMode, OS); 1878 } 1879 1880 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1881 const unsigned Indent = 2; 1882 unsigned Cnt = 0; 1883 for (const OperandDataVec &OpDataVec : OpsVec) { 1884 OS << "Operand " << Cnt++ << "\n"; 1885 for (const OperandData &OpData : OpDataVec) { 1886 OS.indent(Indent) << "{"; 1887 if (Value *V = OpData.V) 1888 OS << *V; 1889 else 1890 OS << "null"; 1891 OS << ", APO:" << OpData.APO << "}\n"; 1892 } 1893 OS << "\n"; 1894 } 1895 return OS; 1896 } 1897 1898 /// Debug print. 1899 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1900 #endif 1901 }; 1902 1903 /// Checks if the instruction is marked for deletion. 1904 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1905 1906 /// Marks values operands for later deletion by replacing them with Undefs. 1907 void eraseInstructions(ArrayRef<Value *> AV); 1908 1909 ~BoUpSLP(); 1910 1911 private: 1912 /// Checks if all users of \p I are the part of the vectorization tree. 1913 bool areAllUsersVectorized(Instruction *I, 1914 ArrayRef<Value *> VectorizedVals) const; 1915 1916 /// \returns the cost of the vectorizable entry. 1917 InstructionCost getEntryCost(const TreeEntry *E, 1918 ArrayRef<Value *> VectorizedVals); 1919 1920 /// This is the recursive part of buildTree. 1921 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1922 const EdgeInfo &EI); 1923 1924 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1925 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1926 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1927 /// returns false, setting \p CurrentOrder to either an empty vector or a 1928 /// non-identity permutation that allows to reuse extract instructions. 1929 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1930 SmallVectorImpl<unsigned> &CurrentOrder) const; 1931 1932 /// Vectorize a single entry in the tree. 1933 Value *vectorizeTree(TreeEntry *E); 1934 1935 /// Vectorize a single entry in the tree, starting in \p VL. 1936 Value *vectorizeTree(ArrayRef<Value *> VL); 1937 1938 /// \returns the scalarization cost for this type. Scalarization in this 1939 /// context means the creation of vectors from a group of scalars. If \p 1940 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1941 /// vector elements. 1942 InstructionCost getGatherCost(FixedVectorType *Ty, 1943 const DenseSet<unsigned> &ShuffledIndices, 1944 bool NeedToShuffle) const; 1945 1946 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1947 /// tree entries. 1948 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1949 /// previous tree entries. \p Mask is filled with the shuffle mask. 1950 Optional<TargetTransformInfo::ShuffleKind> 1951 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1952 SmallVectorImpl<const TreeEntry *> &Entries); 1953 1954 /// \returns the scalarization cost for this list of values. Assuming that 1955 /// this subtree gets vectorized, we may need to extract the values from the 1956 /// roots. This method calculates the cost of extracting the values. 1957 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1958 1959 /// Set the Builder insert point to one after the last instruction in 1960 /// the bundle 1961 void setInsertPointAfterBundle(const TreeEntry *E); 1962 1963 /// \returns a vector from a collection of scalars in \p VL. 1964 Value *gather(ArrayRef<Value *> VL); 1965 1966 /// \returns whether the VectorizableTree is fully vectorizable and will 1967 /// be beneficial even the tree height is tiny. 1968 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1969 1970 /// Reorder commutative or alt operands to get better probability of 1971 /// generating vectorized code. 1972 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1973 SmallVectorImpl<Value *> &Left, 1974 SmallVectorImpl<Value *> &Right, 1975 const DataLayout &DL, 1976 ScalarEvolution &SE, 1977 const BoUpSLP &R); 1978 struct TreeEntry { 1979 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1980 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1981 1982 /// \returns true if the scalars in VL are equal to this entry. 1983 bool isSame(ArrayRef<Value *> VL) const { 1984 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1985 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1986 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1987 return VL.size() == Mask.size() && 1988 std::equal(VL.begin(), VL.end(), Mask.begin(), 1989 [Scalars](Value *V, int Idx) { 1990 return (isa<UndefValue>(V) && 1991 Idx == UndefMaskElem) || 1992 (Idx != UndefMaskElem && V == Scalars[Idx]); 1993 }); 1994 }; 1995 if (!ReorderIndices.empty()) { 1996 // TODO: implement matching if the nodes are just reordered, still can 1997 // treat the vector as the same if the list of scalars matches VL 1998 // directly, without reordering. 1999 SmallVector<int> Mask; 2000 inversePermutation(ReorderIndices, Mask); 2001 if (VL.size() == Scalars.size()) 2002 return IsSame(Scalars, Mask); 2003 if (VL.size() == ReuseShuffleIndices.size()) { 2004 ::addMask(Mask, ReuseShuffleIndices); 2005 return IsSame(Scalars, Mask); 2006 } 2007 return false; 2008 } 2009 return IsSame(Scalars, ReuseShuffleIndices); 2010 } 2011 2012 /// \returns true if current entry has same operands as \p TE. 2013 bool hasEqualOperands(const TreeEntry &TE) const { 2014 if (TE.getNumOperands() != getNumOperands()) 2015 return false; 2016 SmallBitVector Used(getNumOperands()); 2017 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2018 unsigned PrevCount = Used.count(); 2019 for (unsigned K = 0; K < E; ++K) { 2020 if (Used.test(K)) 2021 continue; 2022 if (getOperand(K) == TE.getOperand(I)) { 2023 Used.set(K); 2024 break; 2025 } 2026 } 2027 // Check if we actually found the matching operand. 2028 if (PrevCount == Used.count()) 2029 return false; 2030 } 2031 return true; 2032 } 2033 2034 /// \return Final vectorization factor for the node. Defined by the total 2035 /// number of vectorized scalars, including those, used several times in the 2036 /// entry and counted in the \a ReuseShuffleIndices, if any. 2037 unsigned getVectorFactor() const { 2038 if (!ReuseShuffleIndices.empty()) 2039 return ReuseShuffleIndices.size(); 2040 return Scalars.size(); 2041 }; 2042 2043 /// A vector of scalars. 2044 ValueList Scalars; 2045 2046 /// The Scalars are vectorized into this value. It is initialized to Null. 2047 Value *VectorizedValue = nullptr; 2048 2049 /// Do we need to gather this sequence or vectorize it 2050 /// (either with vector instruction or with scatter/gather 2051 /// intrinsics for store/load)? 2052 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2053 EntryState State; 2054 2055 /// Does this sequence require some shuffling? 2056 SmallVector<int, 4> ReuseShuffleIndices; 2057 2058 /// Does this entry require reordering? 2059 SmallVector<unsigned, 4> ReorderIndices; 2060 2061 /// Points back to the VectorizableTree. 2062 /// 2063 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2064 /// to be a pointer and needs to be able to initialize the child iterator. 2065 /// Thus we need a reference back to the container to translate the indices 2066 /// to entries. 2067 VecTreeTy &Container; 2068 2069 /// The TreeEntry index containing the user of this entry. We can actually 2070 /// have multiple users so the data structure is not truly a tree. 2071 SmallVector<EdgeInfo, 1> UserTreeIndices; 2072 2073 /// The index of this treeEntry in VectorizableTree. 2074 int Idx = -1; 2075 2076 private: 2077 /// The operands of each instruction in each lane Operands[op_index][lane]. 2078 /// Note: This helps avoid the replication of the code that performs the 2079 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2080 SmallVector<ValueList, 2> Operands; 2081 2082 /// The main/alternate instruction. 2083 Instruction *MainOp = nullptr; 2084 Instruction *AltOp = nullptr; 2085 2086 public: 2087 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2088 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2089 if (Operands.size() < OpIdx + 1) 2090 Operands.resize(OpIdx + 1); 2091 assert(Operands[OpIdx].empty() && "Already resized?"); 2092 assert(OpVL.size() <= Scalars.size() && 2093 "Number of operands is greater than the number of scalars."); 2094 Operands[OpIdx].resize(OpVL.size()); 2095 copy(OpVL, Operands[OpIdx].begin()); 2096 } 2097 2098 /// Set the operands of this bundle in their original order. 2099 void setOperandsInOrder() { 2100 assert(Operands.empty() && "Already initialized?"); 2101 auto *I0 = cast<Instruction>(Scalars[0]); 2102 Operands.resize(I0->getNumOperands()); 2103 unsigned NumLanes = Scalars.size(); 2104 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2105 OpIdx != NumOperands; ++OpIdx) { 2106 Operands[OpIdx].resize(NumLanes); 2107 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2108 auto *I = cast<Instruction>(Scalars[Lane]); 2109 assert(I->getNumOperands() == NumOperands && 2110 "Expected same number of operands"); 2111 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2112 } 2113 } 2114 } 2115 2116 /// Reorders operands of the node to the given mask \p Mask. 2117 void reorderOperands(ArrayRef<int> Mask) { 2118 for (ValueList &Operand : Operands) 2119 reorderScalars(Operand, Mask); 2120 } 2121 2122 /// \returns the \p OpIdx operand of this TreeEntry. 2123 ValueList &getOperand(unsigned OpIdx) { 2124 assert(OpIdx < Operands.size() && "Off bounds"); 2125 return Operands[OpIdx]; 2126 } 2127 2128 /// \returns the \p OpIdx operand of this TreeEntry. 2129 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2130 assert(OpIdx < Operands.size() && "Off bounds"); 2131 return Operands[OpIdx]; 2132 } 2133 2134 /// \returns the number of operands. 2135 unsigned getNumOperands() const { return Operands.size(); } 2136 2137 /// \return the single \p OpIdx operand. 2138 Value *getSingleOperand(unsigned OpIdx) const { 2139 assert(OpIdx < Operands.size() && "Off bounds"); 2140 assert(!Operands[OpIdx].empty() && "No operand available"); 2141 return Operands[OpIdx][0]; 2142 } 2143 2144 /// Some of the instructions in the list have alternate opcodes. 2145 bool isAltShuffle() const { return MainOp != AltOp; } 2146 2147 bool isOpcodeOrAlt(Instruction *I) const { 2148 unsigned CheckedOpcode = I->getOpcode(); 2149 return (getOpcode() == CheckedOpcode || 2150 getAltOpcode() == CheckedOpcode); 2151 } 2152 2153 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2154 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2155 /// \p OpValue. 2156 Value *isOneOf(Value *Op) const { 2157 auto *I = dyn_cast<Instruction>(Op); 2158 if (I && isOpcodeOrAlt(I)) 2159 return Op; 2160 return MainOp; 2161 } 2162 2163 void setOperations(const InstructionsState &S) { 2164 MainOp = S.MainOp; 2165 AltOp = S.AltOp; 2166 } 2167 2168 Instruction *getMainOp() const { 2169 return MainOp; 2170 } 2171 2172 Instruction *getAltOp() const { 2173 return AltOp; 2174 } 2175 2176 /// The main/alternate opcodes for the list of instructions. 2177 unsigned getOpcode() const { 2178 return MainOp ? MainOp->getOpcode() : 0; 2179 } 2180 2181 unsigned getAltOpcode() const { 2182 return AltOp ? AltOp->getOpcode() : 0; 2183 } 2184 2185 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2186 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2187 int findLaneForValue(Value *V) const { 2188 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2189 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2190 if (!ReorderIndices.empty()) 2191 FoundLane = ReorderIndices[FoundLane]; 2192 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2193 if (!ReuseShuffleIndices.empty()) { 2194 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2195 find(ReuseShuffleIndices, FoundLane)); 2196 } 2197 return FoundLane; 2198 } 2199 2200 #ifndef NDEBUG 2201 /// Debug printer. 2202 LLVM_DUMP_METHOD void dump() const { 2203 dbgs() << Idx << ".\n"; 2204 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2205 dbgs() << "Operand " << OpI << ":\n"; 2206 for (const Value *V : Operands[OpI]) 2207 dbgs().indent(2) << *V << "\n"; 2208 } 2209 dbgs() << "Scalars: \n"; 2210 for (Value *V : Scalars) 2211 dbgs().indent(2) << *V << "\n"; 2212 dbgs() << "State: "; 2213 switch (State) { 2214 case Vectorize: 2215 dbgs() << "Vectorize\n"; 2216 break; 2217 case ScatterVectorize: 2218 dbgs() << "ScatterVectorize\n"; 2219 break; 2220 case NeedToGather: 2221 dbgs() << "NeedToGather\n"; 2222 break; 2223 } 2224 dbgs() << "MainOp: "; 2225 if (MainOp) 2226 dbgs() << *MainOp << "\n"; 2227 else 2228 dbgs() << "NULL\n"; 2229 dbgs() << "AltOp: "; 2230 if (AltOp) 2231 dbgs() << *AltOp << "\n"; 2232 else 2233 dbgs() << "NULL\n"; 2234 dbgs() << "VectorizedValue: "; 2235 if (VectorizedValue) 2236 dbgs() << *VectorizedValue << "\n"; 2237 else 2238 dbgs() << "NULL\n"; 2239 dbgs() << "ReuseShuffleIndices: "; 2240 if (ReuseShuffleIndices.empty()) 2241 dbgs() << "Empty"; 2242 else 2243 for (int ReuseIdx : ReuseShuffleIndices) 2244 dbgs() << ReuseIdx << ", "; 2245 dbgs() << "\n"; 2246 dbgs() << "ReorderIndices: "; 2247 for (unsigned ReorderIdx : ReorderIndices) 2248 dbgs() << ReorderIdx << ", "; 2249 dbgs() << "\n"; 2250 dbgs() << "UserTreeIndices: "; 2251 for (const auto &EInfo : UserTreeIndices) 2252 dbgs() << EInfo << ", "; 2253 dbgs() << "\n"; 2254 } 2255 #endif 2256 }; 2257 2258 #ifndef NDEBUG 2259 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2260 InstructionCost VecCost, 2261 InstructionCost ScalarCost) const { 2262 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2263 dbgs() << "SLP: Costs:\n"; 2264 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2265 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2266 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2267 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2268 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2269 } 2270 #endif 2271 2272 /// Create a new VectorizableTree entry. 2273 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2274 const InstructionsState &S, 2275 const EdgeInfo &UserTreeIdx, 2276 ArrayRef<int> ReuseShuffleIndices = None, 2277 ArrayRef<unsigned> ReorderIndices = None) { 2278 TreeEntry::EntryState EntryState = 2279 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2280 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2281 ReuseShuffleIndices, ReorderIndices); 2282 } 2283 2284 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2285 TreeEntry::EntryState EntryState, 2286 Optional<ScheduleData *> Bundle, 2287 const InstructionsState &S, 2288 const EdgeInfo &UserTreeIdx, 2289 ArrayRef<int> ReuseShuffleIndices = None, 2290 ArrayRef<unsigned> ReorderIndices = None) { 2291 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2292 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2293 "Need to vectorize gather entry?"); 2294 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2295 TreeEntry *Last = VectorizableTree.back().get(); 2296 Last->Idx = VectorizableTree.size() - 1; 2297 Last->State = EntryState; 2298 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2299 ReuseShuffleIndices.end()); 2300 if (ReorderIndices.empty()) { 2301 Last->Scalars.assign(VL.begin(), VL.end()); 2302 Last->setOperations(S); 2303 } else { 2304 // Reorder scalars and build final mask. 2305 Last->Scalars.assign(VL.size(), nullptr); 2306 transform(ReorderIndices, Last->Scalars.begin(), 2307 [VL](unsigned Idx) -> Value * { 2308 if (Idx >= VL.size()) 2309 return UndefValue::get(VL.front()->getType()); 2310 return VL[Idx]; 2311 }); 2312 InstructionsState S = getSameOpcode(Last->Scalars); 2313 Last->setOperations(S); 2314 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2315 } 2316 if (Last->State != TreeEntry::NeedToGather) { 2317 for (Value *V : VL) { 2318 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2319 ScalarToTreeEntry[V] = Last; 2320 } 2321 // Update the scheduler bundle to point to this TreeEntry. 2322 unsigned Lane = 0; 2323 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2324 BundleMember = BundleMember->NextInBundle) { 2325 BundleMember->TE = Last; 2326 BundleMember->Lane = Lane; 2327 ++Lane; 2328 } 2329 assert((!Bundle.getValue() || Lane == VL.size()) && 2330 "Bundle and VL out of sync"); 2331 } else { 2332 MustGather.insert(VL.begin(), VL.end()); 2333 } 2334 2335 if (UserTreeIdx.UserTE) 2336 Last->UserTreeIndices.push_back(UserTreeIdx); 2337 2338 return Last; 2339 } 2340 2341 /// -- Vectorization State -- 2342 /// Holds all of the tree entries. 2343 TreeEntry::VecTreeTy VectorizableTree; 2344 2345 #ifndef NDEBUG 2346 /// Debug printer. 2347 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2348 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2349 VectorizableTree[Id]->dump(); 2350 dbgs() << "\n"; 2351 } 2352 } 2353 #endif 2354 2355 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2356 2357 const TreeEntry *getTreeEntry(Value *V) const { 2358 return ScalarToTreeEntry.lookup(V); 2359 } 2360 2361 /// Maps a specific scalar to its tree entry. 2362 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2363 2364 /// Maps a value to the proposed vectorizable size. 2365 SmallDenseMap<Value *, unsigned> InstrElementSize; 2366 2367 /// A list of scalars that we found that we need to keep as scalars. 2368 ValueSet MustGather; 2369 2370 /// This POD struct describes one external user in the vectorized tree. 2371 struct ExternalUser { 2372 ExternalUser(Value *S, llvm::User *U, int L) 2373 : Scalar(S), User(U), Lane(L) {} 2374 2375 // Which scalar in our function. 2376 Value *Scalar; 2377 2378 // Which user that uses the scalar. 2379 llvm::User *User; 2380 2381 // Which lane does the scalar belong to. 2382 int Lane; 2383 }; 2384 using UserList = SmallVector<ExternalUser, 16>; 2385 2386 /// Checks if two instructions may access the same memory. 2387 /// 2388 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2389 /// is invariant in the calling loop. 2390 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2391 Instruction *Inst2) { 2392 // First check if the result is already in the cache. 2393 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2394 Optional<bool> &result = AliasCache[key]; 2395 if (result.hasValue()) { 2396 return result.getValue(); 2397 } 2398 bool aliased = true; 2399 if (Loc1.Ptr && isSimple(Inst1)) 2400 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2401 // Store the result in the cache. 2402 result = aliased; 2403 return aliased; 2404 } 2405 2406 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2407 2408 /// Cache for alias results. 2409 /// TODO: consider moving this to the AliasAnalysis itself. 2410 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2411 2412 /// Removes an instruction from its block and eventually deletes it. 2413 /// It's like Instruction::eraseFromParent() except that the actual deletion 2414 /// is delayed until BoUpSLP is destructed. 2415 /// This is required to ensure that there are no incorrect collisions in the 2416 /// AliasCache, which can happen if a new instruction is allocated at the 2417 /// same address as a previously deleted instruction. 2418 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2419 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2420 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2421 } 2422 2423 /// Temporary store for deleted instructions. Instructions will be deleted 2424 /// eventually when the BoUpSLP is destructed. 2425 DenseMap<Instruction *, bool> DeletedInstructions; 2426 2427 /// A list of values that need to extracted out of the tree. 2428 /// This list holds pairs of (Internal Scalar : External User). External User 2429 /// can be nullptr, it means that this Internal Scalar will be used later, 2430 /// after vectorization. 2431 UserList ExternalUses; 2432 2433 /// Values used only by @llvm.assume calls. 2434 SmallPtrSet<const Value *, 32> EphValues; 2435 2436 /// Holds all of the instructions that we gathered. 2437 SetVector<Instruction *> GatherShuffleSeq; 2438 2439 /// A list of blocks that we are going to CSE. 2440 SetVector<BasicBlock *> CSEBlocks; 2441 2442 /// Contains all scheduling relevant data for an instruction. 2443 /// A ScheduleData either represents a single instruction or a member of an 2444 /// instruction bundle (= a group of instructions which is combined into a 2445 /// vector instruction). 2446 struct ScheduleData { 2447 // The initial value for the dependency counters. It means that the 2448 // dependencies are not calculated yet. 2449 enum { InvalidDeps = -1 }; 2450 2451 ScheduleData() = default; 2452 2453 void init(int BlockSchedulingRegionID, Value *OpVal) { 2454 FirstInBundle = this; 2455 NextInBundle = nullptr; 2456 NextLoadStore = nullptr; 2457 IsScheduled = false; 2458 SchedulingRegionID = BlockSchedulingRegionID; 2459 UnscheduledDepsInBundle = UnscheduledDeps; 2460 clearDependencies(); 2461 OpValue = OpVal; 2462 TE = nullptr; 2463 Lane = -1; 2464 } 2465 2466 /// Returns true if the dependency information has been calculated. 2467 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2468 2469 /// Returns true for single instructions and for bundle representatives 2470 /// (= the head of a bundle). 2471 bool isSchedulingEntity() const { return FirstInBundle == this; } 2472 2473 /// Returns true if it represents an instruction bundle and not only a 2474 /// single instruction. 2475 bool isPartOfBundle() const { 2476 return NextInBundle != nullptr || FirstInBundle != this; 2477 } 2478 2479 /// Returns true if it is ready for scheduling, i.e. it has no more 2480 /// unscheduled depending instructions/bundles. 2481 bool isReady() const { 2482 assert(isSchedulingEntity() && 2483 "can't consider non-scheduling entity for ready list"); 2484 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2485 } 2486 2487 /// Modifies the number of unscheduled dependencies, also updating it for 2488 /// the whole bundle. 2489 int incrementUnscheduledDeps(int Incr) { 2490 UnscheduledDeps += Incr; 2491 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2492 } 2493 2494 /// Sets the number of unscheduled dependencies to the number of 2495 /// dependencies. 2496 void resetUnscheduledDeps() { 2497 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2498 } 2499 2500 /// Clears all dependency information. 2501 void clearDependencies() { 2502 Dependencies = InvalidDeps; 2503 resetUnscheduledDeps(); 2504 MemoryDependencies.clear(); 2505 } 2506 2507 void dump(raw_ostream &os) const { 2508 if (!isSchedulingEntity()) { 2509 os << "/ " << *Inst; 2510 } else if (NextInBundle) { 2511 os << '[' << *Inst; 2512 ScheduleData *SD = NextInBundle; 2513 while (SD) { 2514 os << ';' << *SD->Inst; 2515 SD = SD->NextInBundle; 2516 } 2517 os << ']'; 2518 } else { 2519 os << *Inst; 2520 } 2521 } 2522 2523 Instruction *Inst = nullptr; 2524 2525 /// Points to the head in an instruction bundle (and always to this for 2526 /// single instructions). 2527 ScheduleData *FirstInBundle = nullptr; 2528 2529 /// Single linked list of all instructions in a bundle. Null if it is a 2530 /// single instruction. 2531 ScheduleData *NextInBundle = nullptr; 2532 2533 /// Single linked list of all memory instructions (e.g. load, store, call) 2534 /// in the block - until the end of the scheduling region. 2535 ScheduleData *NextLoadStore = nullptr; 2536 2537 /// The dependent memory instructions. 2538 /// This list is derived on demand in calculateDependencies(). 2539 SmallVector<ScheduleData *, 4> MemoryDependencies; 2540 2541 /// This ScheduleData is in the current scheduling region if this matches 2542 /// the current SchedulingRegionID of BlockScheduling. 2543 int SchedulingRegionID = 0; 2544 2545 /// Used for getting a "good" final ordering of instructions. 2546 int SchedulingPriority = 0; 2547 2548 /// The number of dependencies. Constitutes of the number of users of the 2549 /// instruction plus the number of dependent memory instructions (if any). 2550 /// This value is calculated on demand. 2551 /// If InvalidDeps, the number of dependencies is not calculated yet. 2552 int Dependencies = InvalidDeps; 2553 2554 /// The number of dependencies minus the number of dependencies of scheduled 2555 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2556 /// for scheduling. 2557 /// Note that this is negative as long as Dependencies is not calculated. 2558 int UnscheduledDeps = InvalidDeps; 2559 2560 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2561 /// single instructions. 2562 int UnscheduledDepsInBundle = InvalidDeps; 2563 2564 /// True if this instruction is scheduled (or considered as scheduled in the 2565 /// dry-run). 2566 bool IsScheduled = false; 2567 2568 /// Opcode of the current instruction in the schedule data. 2569 Value *OpValue = nullptr; 2570 2571 /// The TreeEntry that this instruction corresponds to. 2572 TreeEntry *TE = nullptr; 2573 2574 /// The lane of this node in the TreeEntry. 2575 int Lane = -1; 2576 }; 2577 2578 #ifndef NDEBUG 2579 friend inline raw_ostream &operator<<(raw_ostream &os, 2580 const BoUpSLP::ScheduleData &SD) { 2581 SD.dump(os); 2582 return os; 2583 } 2584 #endif 2585 2586 friend struct GraphTraits<BoUpSLP *>; 2587 friend struct DOTGraphTraits<BoUpSLP *>; 2588 2589 /// Contains all scheduling data for a basic block. 2590 struct BlockScheduling { 2591 BlockScheduling(BasicBlock *BB) 2592 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2593 2594 void clear() { 2595 ReadyInsts.clear(); 2596 ScheduleStart = nullptr; 2597 ScheduleEnd = nullptr; 2598 FirstLoadStoreInRegion = nullptr; 2599 LastLoadStoreInRegion = nullptr; 2600 2601 // Reduce the maximum schedule region size by the size of the 2602 // previous scheduling run. 2603 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2604 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2605 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2606 ScheduleRegionSize = 0; 2607 2608 // Make a new scheduling region, i.e. all existing ScheduleData is not 2609 // in the new region yet. 2610 ++SchedulingRegionID; 2611 } 2612 2613 ScheduleData *getScheduleData(Value *V) { 2614 ScheduleData *SD = ScheduleDataMap[V]; 2615 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2616 return SD; 2617 return nullptr; 2618 } 2619 2620 ScheduleData *getScheduleData(Value *V, Value *Key) { 2621 if (V == Key) 2622 return getScheduleData(V); 2623 auto I = ExtraScheduleDataMap.find(V); 2624 if (I != ExtraScheduleDataMap.end()) { 2625 ScheduleData *SD = I->second[Key]; 2626 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2627 return SD; 2628 } 2629 return nullptr; 2630 } 2631 2632 bool isInSchedulingRegion(ScheduleData *SD) const { 2633 return SD->SchedulingRegionID == SchedulingRegionID; 2634 } 2635 2636 /// Marks an instruction as scheduled and puts all dependent ready 2637 /// instructions into the ready-list. 2638 template <typename ReadyListType> 2639 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2640 SD->IsScheduled = true; 2641 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2642 2643 for (ScheduleData *BundleMember = SD; BundleMember; 2644 BundleMember = BundleMember->NextInBundle) { 2645 if (BundleMember->Inst != BundleMember->OpValue) 2646 continue; 2647 2648 // Handle the def-use chain dependencies. 2649 2650 // Decrement the unscheduled counter and insert to ready list if ready. 2651 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2652 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2653 if (OpDef && OpDef->hasValidDependencies() && 2654 OpDef->incrementUnscheduledDeps(-1) == 0) { 2655 // There are no more unscheduled dependencies after 2656 // decrementing, so we can put the dependent instruction 2657 // into the ready list. 2658 ScheduleData *DepBundle = OpDef->FirstInBundle; 2659 assert(!DepBundle->IsScheduled && 2660 "already scheduled bundle gets ready"); 2661 ReadyList.insert(DepBundle); 2662 LLVM_DEBUG(dbgs() 2663 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2664 } 2665 }); 2666 }; 2667 2668 // If BundleMember is a vector bundle, its operands may have been 2669 // reordered duiring buildTree(). We therefore need to get its operands 2670 // through the TreeEntry. 2671 if (TreeEntry *TE = BundleMember->TE) { 2672 int Lane = BundleMember->Lane; 2673 assert(Lane >= 0 && "Lane not set"); 2674 2675 // Since vectorization tree is being built recursively this assertion 2676 // ensures that the tree entry has all operands set before reaching 2677 // this code. Couple of exceptions known at the moment are extracts 2678 // where their second (immediate) operand is not added. Since 2679 // immediates do not affect scheduler behavior this is considered 2680 // okay. 2681 auto *In = TE->getMainOp(); 2682 assert(In && 2683 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2684 In->getNumOperands() == TE->getNumOperands()) && 2685 "Missed TreeEntry operands?"); 2686 (void)In; // fake use to avoid build failure when assertions disabled 2687 2688 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2689 OpIdx != NumOperands; ++OpIdx) 2690 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2691 DecrUnsched(I); 2692 } else { 2693 // If BundleMember is a stand-alone instruction, no operand reordering 2694 // has taken place, so we directly access its operands. 2695 for (Use &U : BundleMember->Inst->operands()) 2696 if (auto *I = dyn_cast<Instruction>(U.get())) 2697 DecrUnsched(I); 2698 } 2699 // Handle the memory dependencies. 2700 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2701 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2702 // There are no more unscheduled dependencies after decrementing, 2703 // so we can put the dependent instruction into the ready list. 2704 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2705 assert(!DepBundle->IsScheduled && 2706 "already scheduled bundle gets ready"); 2707 ReadyList.insert(DepBundle); 2708 LLVM_DEBUG(dbgs() 2709 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2710 } 2711 } 2712 } 2713 } 2714 2715 void doForAllOpcodes(Value *V, 2716 function_ref<void(ScheduleData *SD)> Action) { 2717 if (ScheduleData *SD = getScheduleData(V)) 2718 Action(SD); 2719 auto I = ExtraScheduleDataMap.find(V); 2720 if (I != ExtraScheduleDataMap.end()) 2721 for (auto &P : I->second) 2722 if (P.second->SchedulingRegionID == SchedulingRegionID) 2723 Action(P.second); 2724 } 2725 2726 /// Put all instructions into the ReadyList which are ready for scheduling. 2727 template <typename ReadyListType> 2728 void initialFillReadyList(ReadyListType &ReadyList) { 2729 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2730 doForAllOpcodes(I, [&](ScheduleData *SD) { 2731 if (SD->isSchedulingEntity() && SD->isReady()) { 2732 ReadyList.insert(SD); 2733 LLVM_DEBUG(dbgs() 2734 << "SLP: initially in ready list: " << *I << "\n"); 2735 } 2736 }); 2737 } 2738 } 2739 2740 /// Build a bundle from the ScheduleData nodes corresponding to the 2741 /// scalar instruction for each lane. 2742 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2743 2744 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2745 /// cyclic dependencies. This is only a dry-run, no instructions are 2746 /// actually moved at this stage. 2747 /// \returns the scheduling bundle. The returned Optional value is non-None 2748 /// if \p VL is allowed to be scheduled. 2749 Optional<ScheduleData *> 2750 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2751 const InstructionsState &S); 2752 2753 /// Un-bundles a group of instructions. 2754 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2755 2756 /// Allocates schedule data chunk. 2757 ScheduleData *allocateScheduleDataChunks(); 2758 2759 /// Extends the scheduling region so that V is inside the region. 2760 /// \returns true if the region size is within the limit. 2761 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2762 2763 /// Initialize the ScheduleData structures for new instructions in the 2764 /// scheduling region. 2765 void initScheduleData(Instruction *FromI, Instruction *ToI, 2766 ScheduleData *PrevLoadStore, 2767 ScheduleData *NextLoadStore); 2768 2769 /// Updates the dependency information of a bundle and of all instructions/ 2770 /// bundles which depend on the original bundle. 2771 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2772 BoUpSLP *SLP); 2773 2774 /// Sets all instruction in the scheduling region to un-scheduled. 2775 void resetSchedule(); 2776 2777 BasicBlock *BB; 2778 2779 /// Simple memory allocation for ScheduleData. 2780 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2781 2782 /// The size of a ScheduleData array in ScheduleDataChunks. 2783 int ChunkSize; 2784 2785 /// The allocator position in the current chunk, which is the last entry 2786 /// of ScheduleDataChunks. 2787 int ChunkPos; 2788 2789 /// Attaches ScheduleData to Instruction. 2790 /// Note that the mapping survives during all vectorization iterations, i.e. 2791 /// ScheduleData structures are recycled. 2792 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2793 2794 /// Attaches ScheduleData to Instruction with the leading key. 2795 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2796 ExtraScheduleDataMap; 2797 2798 struct ReadyList : SmallVector<ScheduleData *, 8> { 2799 void insert(ScheduleData *SD) { push_back(SD); } 2800 }; 2801 2802 /// The ready-list for scheduling (only used for the dry-run). 2803 ReadyList ReadyInsts; 2804 2805 /// The first instruction of the scheduling region. 2806 Instruction *ScheduleStart = nullptr; 2807 2808 /// The first instruction _after_ the scheduling region. 2809 Instruction *ScheduleEnd = nullptr; 2810 2811 /// The first memory accessing instruction in the scheduling region 2812 /// (can be null). 2813 ScheduleData *FirstLoadStoreInRegion = nullptr; 2814 2815 /// The last memory accessing instruction in the scheduling region 2816 /// (can be null). 2817 ScheduleData *LastLoadStoreInRegion = nullptr; 2818 2819 /// The current size of the scheduling region. 2820 int ScheduleRegionSize = 0; 2821 2822 /// The maximum size allowed for the scheduling region. 2823 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2824 2825 /// The ID of the scheduling region. For a new vectorization iteration this 2826 /// is incremented which "removes" all ScheduleData from the region. 2827 // Make sure that the initial SchedulingRegionID is greater than the 2828 // initial SchedulingRegionID in ScheduleData (which is 0). 2829 int SchedulingRegionID = 1; 2830 }; 2831 2832 /// Attaches the BlockScheduling structures to basic blocks. 2833 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2834 2835 /// Performs the "real" scheduling. Done before vectorization is actually 2836 /// performed in a basic block. 2837 void scheduleBlock(BlockScheduling *BS); 2838 2839 /// List of users to ignore during scheduling and that don't need extracting. 2840 ArrayRef<Value *> UserIgnoreList; 2841 2842 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2843 /// sorted SmallVectors of unsigned. 2844 struct OrdersTypeDenseMapInfo { 2845 static OrdersType getEmptyKey() { 2846 OrdersType V; 2847 V.push_back(~1U); 2848 return V; 2849 } 2850 2851 static OrdersType getTombstoneKey() { 2852 OrdersType V; 2853 V.push_back(~2U); 2854 return V; 2855 } 2856 2857 static unsigned getHashValue(const OrdersType &V) { 2858 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2859 } 2860 2861 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2862 return LHS == RHS; 2863 } 2864 }; 2865 2866 // Analysis and block reference. 2867 Function *F; 2868 ScalarEvolution *SE; 2869 TargetTransformInfo *TTI; 2870 TargetLibraryInfo *TLI; 2871 AAResults *AA; 2872 LoopInfo *LI; 2873 DominatorTree *DT; 2874 AssumptionCache *AC; 2875 DemandedBits *DB; 2876 const DataLayout *DL; 2877 OptimizationRemarkEmitter *ORE; 2878 2879 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2880 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2881 2882 /// Instruction builder to construct the vectorized tree. 2883 IRBuilder<> Builder; 2884 2885 /// A map of scalar integer values to the smallest bit width with which they 2886 /// can legally be represented. The values map to (width, signed) pairs, 2887 /// where "width" indicates the minimum bit width and "signed" is True if the 2888 /// value must be signed-extended, rather than zero-extended, back to its 2889 /// original width. 2890 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2891 }; 2892 2893 } // end namespace slpvectorizer 2894 2895 template <> struct GraphTraits<BoUpSLP *> { 2896 using TreeEntry = BoUpSLP::TreeEntry; 2897 2898 /// NodeRef has to be a pointer per the GraphWriter. 2899 using NodeRef = TreeEntry *; 2900 2901 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2902 2903 /// Add the VectorizableTree to the index iterator to be able to return 2904 /// TreeEntry pointers. 2905 struct ChildIteratorType 2906 : public iterator_adaptor_base< 2907 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2908 ContainerTy &VectorizableTree; 2909 2910 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2911 ContainerTy &VT) 2912 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2913 2914 NodeRef operator*() { return I->UserTE; } 2915 }; 2916 2917 static NodeRef getEntryNode(BoUpSLP &R) { 2918 return R.VectorizableTree[0].get(); 2919 } 2920 2921 static ChildIteratorType child_begin(NodeRef N) { 2922 return {N->UserTreeIndices.begin(), N->Container}; 2923 } 2924 2925 static ChildIteratorType child_end(NodeRef N) { 2926 return {N->UserTreeIndices.end(), N->Container}; 2927 } 2928 2929 /// For the node iterator we just need to turn the TreeEntry iterator into a 2930 /// TreeEntry* iterator so that it dereferences to NodeRef. 2931 class nodes_iterator { 2932 using ItTy = ContainerTy::iterator; 2933 ItTy It; 2934 2935 public: 2936 nodes_iterator(const ItTy &It2) : It(It2) {} 2937 NodeRef operator*() { return It->get(); } 2938 nodes_iterator operator++() { 2939 ++It; 2940 return *this; 2941 } 2942 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2943 }; 2944 2945 static nodes_iterator nodes_begin(BoUpSLP *R) { 2946 return nodes_iterator(R->VectorizableTree.begin()); 2947 } 2948 2949 static nodes_iterator nodes_end(BoUpSLP *R) { 2950 return nodes_iterator(R->VectorizableTree.end()); 2951 } 2952 2953 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2954 }; 2955 2956 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2957 using TreeEntry = BoUpSLP::TreeEntry; 2958 2959 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2960 2961 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2962 std::string Str; 2963 raw_string_ostream OS(Str); 2964 if (isSplat(Entry->Scalars)) 2965 OS << "<splat> "; 2966 for (auto V : Entry->Scalars) { 2967 OS << *V; 2968 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2969 return EU.Scalar == V; 2970 })) 2971 OS << " <extract>"; 2972 OS << "\n"; 2973 } 2974 return Str; 2975 } 2976 2977 static std::string getNodeAttributes(const TreeEntry *Entry, 2978 const BoUpSLP *) { 2979 if (Entry->State == TreeEntry::NeedToGather) 2980 return "color=red"; 2981 return ""; 2982 } 2983 }; 2984 2985 } // end namespace llvm 2986 2987 BoUpSLP::~BoUpSLP() { 2988 for (const auto &Pair : DeletedInstructions) { 2989 // Replace operands of ignored instructions with Undefs in case if they were 2990 // marked for deletion. 2991 if (Pair.getSecond()) { 2992 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2993 Pair.getFirst()->replaceAllUsesWith(Undef); 2994 } 2995 Pair.getFirst()->dropAllReferences(); 2996 } 2997 for (const auto &Pair : DeletedInstructions) { 2998 assert(Pair.getFirst()->use_empty() && 2999 "trying to erase instruction with users."); 3000 Pair.getFirst()->eraseFromParent(); 3001 } 3002 #ifdef EXPENSIVE_CHECKS 3003 // If we could guarantee that this call is not extremely slow, we could 3004 // remove the ifdef limitation (see PR47712). 3005 assert(!verifyFunction(*F, &dbgs())); 3006 #endif 3007 } 3008 3009 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3010 for (auto *V : AV) { 3011 if (auto *I = dyn_cast<Instruction>(V)) 3012 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3013 }; 3014 } 3015 3016 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3017 /// contains original mask for the scalars reused in the node. Procedure 3018 /// transform this mask in accordance with the given \p Mask. 3019 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3020 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3021 "Expected non-empty mask."); 3022 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3023 Prev.swap(Reuses); 3024 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3025 if (Mask[I] != UndefMaskElem) 3026 Reuses[Mask[I]] = Prev[I]; 3027 } 3028 3029 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3030 /// the original order of the scalars. Procedure transforms the provided order 3031 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3032 /// identity order, \p Order is cleared. 3033 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3034 assert(!Mask.empty() && "Expected non-empty mask."); 3035 SmallVector<int> MaskOrder; 3036 if (Order.empty()) { 3037 MaskOrder.resize(Mask.size()); 3038 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3039 } else { 3040 inversePermutation(Order, MaskOrder); 3041 } 3042 reorderReuses(MaskOrder, Mask); 3043 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3044 Order.clear(); 3045 return; 3046 } 3047 Order.assign(Mask.size(), Mask.size()); 3048 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3049 if (MaskOrder[I] != UndefMaskElem) 3050 Order[MaskOrder[I]] = I; 3051 fixupOrderingIndices(Order); 3052 } 3053 3054 Optional<BoUpSLP::OrdersType> 3055 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3056 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3057 unsigned NumScalars = TE.Scalars.size(); 3058 OrdersType CurrentOrder(NumScalars, NumScalars); 3059 SmallVector<int> Positions; 3060 SmallBitVector UsedPositions(NumScalars); 3061 const TreeEntry *STE = nullptr; 3062 // Try to find all gathered scalars that are gets vectorized in other 3063 // vectorize node. Here we can have only one single tree vector node to 3064 // correctly identify order of the gathered scalars. 3065 for (unsigned I = 0; I < NumScalars; ++I) { 3066 Value *V = TE.Scalars[I]; 3067 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3068 continue; 3069 if (const auto *LocalSTE = getTreeEntry(V)) { 3070 if (!STE) 3071 STE = LocalSTE; 3072 else if (STE != LocalSTE) 3073 // Take the order only from the single vector node. 3074 return None; 3075 unsigned Lane = 3076 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3077 if (Lane >= NumScalars) 3078 return None; 3079 if (CurrentOrder[Lane] != NumScalars) { 3080 if (Lane != I) 3081 continue; 3082 UsedPositions.reset(CurrentOrder[Lane]); 3083 } 3084 // The partial identity (where only some elements of the gather node are 3085 // in the identity order) is good. 3086 CurrentOrder[Lane] = I; 3087 UsedPositions.set(I); 3088 } 3089 } 3090 // Need to keep the order if we have a vector entry and at least 2 scalars or 3091 // the vectorized entry has just 2 scalars. 3092 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3093 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3094 for (unsigned I = 0; I < NumScalars; ++I) 3095 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3096 return false; 3097 return true; 3098 }; 3099 if (IsIdentityOrder(CurrentOrder)) { 3100 CurrentOrder.clear(); 3101 return CurrentOrder; 3102 } 3103 auto *It = CurrentOrder.begin(); 3104 for (unsigned I = 0; I < NumScalars;) { 3105 if (UsedPositions.test(I)) { 3106 ++I; 3107 continue; 3108 } 3109 if (*It == NumScalars) { 3110 *It = I; 3111 ++I; 3112 } 3113 ++It; 3114 } 3115 return CurrentOrder; 3116 } 3117 return None; 3118 } 3119 3120 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3121 bool TopToBottom) { 3122 // No need to reorder if need to shuffle reuses, still need to shuffle the 3123 // node. 3124 if (!TE.ReuseShuffleIndices.empty()) 3125 return None; 3126 if (TE.State == TreeEntry::Vectorize && 3127 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3128 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3129 !TE.isAltShuffle()) 3130 return TE.ReorderIndices; 3131 if (TE.State == TreeEntry::NeedToGather) { 3132 // TODO: add analysis of other gather nodes with extractelement 3133 // instructions and other values/instructions, not only undefs. 3134 if (((TE.getOpcode() == Instruction::ExtractElement && 3135 !TE.isAltShuffle()) || 3136 (all_of(TE.Scalars, 3137 [](Value *V) { 3138 return isa<UndefValue, ExtractElementInst>(V); 3139 }) && 3140 any_of(TE.Scalars, 3141 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3142 all_of(TE.Scalars, 3143 [](Value *V) { 3144 auto *EE = dyn_cast<ExtractElementInst>(V); 3145 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3146 }) && 3147 allSameType(TE.Scalars)) { 3148 // Check that gather of extractelements can be represented as 3149 // just a shuffle of a single vector. 3150 OrdersType CurrentOrder; 3151 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3152 if (Reuse || !CurrentOrder.empty()) { 3153 if (!CurrentOrder.empty()) 3154 fixupOrderingIndices(CurrentOrder); 3155 return CurrentOrder; 3156 } 3157 } 3158 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3159 return CurrentOrder; 3160 } 3161 return None; 3162 } 3163 3164 void BoUpSLP::reorderTopToBottom() { 3165 // Maps VF to the graph nodes. 3166 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3167 // ExtractElement gather nodes which can be vectorized and need to handle 3168 // their ordering. 3169 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3170 // Find all reorderable nodes with the given VF. 3171 // Currently the are vectorized stores,loads,extracts + some gathering of 3172 // extracts. 3173 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3174 const std::unique_ptr<TreeEntry> &TE) { 3175 if (Optional<OrdersType> CurrentOrder = 3176 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3177 // Do not include ordering for nodes used in the alt opcode vectorization, 3178 // better to reorder them during bottom-to-top stage. If follow the order 3179 // here, it causes reordering of the whole graph though actually it is 3180 // profitable just to reorder the subgraph that starts from the alternate 3181 // opcode vectorization node. Such nodes already end-up with the shuffle 3182 // instruction and it is just enough to change this shuffle rather than 3183 // rotate the scalars for the whole graph. 3184 unsigned Cnt = 0; 3185 const TreeEntry *UserTE = TE.get(); 3186 while (UserTE && Cnt < RecursionMaxDepth) { 3187 if (UserTE->UserTreeIndices.size() != 1) 3188 break; 3189 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3190 return EI.UserTE->State == TreeEntry::Vectorize && 3191 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3192 })) 3193 return; 3194 if (UserTE->UserTreeIndices.empty()) 3195 UserTE = nullptr; 3196 else 3197 UserTE = UserTE->UserTreeIndices.back().UserTE; 3198 ++Cnt; 3199 } 3200 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3201 if (TE->State != TreeEntry::Vectorize) 3202 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3203 } 3204 }); 3205 3206 // Reorder the graph nodes according to their vectorization factor. 3207 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3208 VF /= 2) { 3209 auto It = VFToOrderedEntries.find(VF); 3210 if (It == VFToOrderedEntries.end()) 3211 continue; 3212 // Try to find the most profitable order. We just are looking for the most 3213 // used order and reorder scalar elements in the nodes according to this 3214 // mostly used order. 3215 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3216 // All operands are reordered and used only in this node - propagate the 3217 // most used order to the user node. 3218 MapVector<OrdersType, unsigned, 3219 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3220 OrdersUses; 3221 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3222 for (const TreeEntry *OpTE : OrderedEntries) { 3223 // No need to reorder this nodes, still need to extend and to use shuffle, 3224 // just need to merge reordering shuffle and the reuse shuffle. 3225 if (!OpTE->ReuseShuffleIndices.empty()) 3226 continue; 3227 // Count number of orders uses. 3228 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3229 if (OpTE->State == TreeEntry::NeedToGather) 3230 return GathersToOrders.find(OpTE)->second; 3231 return OpTE->ReorderIndices; 3232 }(); 3233 // Stores actually store the mask, not the order, need to invert. 3234 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3235 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3236 SmallVector<int> Mask; 3237 inversePermutation(Order, Mask); 3238 unsigned E = Order.size(); 3239 OrdersType CurrentOrder(E, E); 3240 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3241 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3242 }); 3243 fixupOrderingIndices(CurrentOrder); 3244 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3245 } else { 3246 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3247 } 3248 } 3249 // Set order of the user node. 3250 if (OrdersUses.empty()) 3251 continue; 3252 // Choose the most used order. 3253 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3254 unsigned Cnt = OrdersUses.front().second; 3255 for (const auto &Pair : drop_begin(OrdersUses)) { 3256 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3257 BestOrder = Pair.first; 3258 Cnt = Pair.second; 3259 } 3260 } 3261 // Set order of the user node. 3262 if (BestOrder.empty()) 3263 continue; 3264 SmallVector<int> Mask; 3265 inversePermutation(BestOrder, Mask); 3266 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3267 unsigned E = BestOrder.size(); 3268 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3269 return I < E ? static_cast<int>(I) : UndefMaskElem; 3270 }); 3271 // Do an actual reordering, if profitable. 3272 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3273 // Just do the reordering for the nodes with the given VF. 3274 if (TE->Scalars.size() != VF) { 3275 if (TE->ReuseShuffleIndices.size() == VF) { 3276 // Need to reorder the reuses masks of the operands with smaller VF to 3277 // be able to find the match between the graph nodes and scalar 3278 // operands of the given node during vectorization/cost estimation. 3279 assert(all_of(TE->UserTreeIndices, 3280 [VF, &TE](const EdgeInfo &EI) { 3281 return EI.UserTE->Scalars.size() == VF || 3282 EI.UserTE->Scalars.size() == 3283 TE->Scalars.size(); 3284 }) && 3285 "All users must be of VF size."); 3286 // Update ordering of the operands with the smaller VF than the given 3287 // one. 3288 reorderReuses(TE->ReuseShuffleIndices, Mask); 3289 } 3290 continue; 3291 } 3292 if (TE->State == TreeEntry::Vectorize && 3293 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3294 InsertElementInst>(TE->getMainOp()) && 3295 !TE->isAltShuffle()) { 3296 // Build correct orders for extract{element,value}, loads and 3297 // stores. 3298 reorderOrder(TE->ReorderIndices, Mask); 3299 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3300 TE->reorderOperands(Mask); 3301 } else { 3302 // Reorder the node and its operands. 3303 TE->reorderOperands(Mask); 3304 assert(TE->ReorderIndices.empty() && 3305 "Expected empty reorder sequence."); 3306 reorderScalars(TE->Scalars, Mask); 3307 } 3308 if (!TE->ReuseShuffleIndices.empty()) { 3309 // Apply reversed order to keep the original ordering of the reused 3310 // elements to avoid extra reorder indices shuffling. 3311 OrdersType CurrentOrder; 3312 reorderOrder(CurrentOrder, MaskOrder); 3313 SmallVector<int> NewReuses; 3314 inversePermutation(CurrentOrder, NewReuses); 3315 addMask(NewReuses, TE->ReuseShuffleIndices); 3316 TE->ReuseShuffleIndices.swap(NewReuses); 3317 } 3318 } 3319 } 3320 } 3321 3322 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3323 SetVector<TreeEntry *> OrderedEntries; 3324 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3325 // Find all reorderable leaf nodes with the given VF. 3326 // Currently the are vectorized loads,extracts without alternate operands + 3327 // some gathering of extracts. 3328 SmallVector<TreeEntry *> NonVectorized; 3329 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3330 &NonVectorized]( 3331 const std::unique_ptr<TreeEntry> &TE) { 3332 if (TE->State != TreeEntry::Vectorize) 3333 NonVectorized.push_back(TE.get()); 3334 if (Optional<OrdersType> CurrentOrder = 3335 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3336 OrderedEntries.insert(TE.get()); 3337 if (TE->State != TreeEntry::Vectorize) 3338 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3339 } 3340 }); 3341 3342 // Checks if the operands of the users are reordarable and have only single 3343 // use. 3344 auto &&CheckOperands = 3345 [this, &NonVectorized](const auto &Data, 3346 SmallVectorImpl<TreeEntry *> &GatherOps) { 3347 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3348 if (any_of(Data.second, 3349 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3350 return OpData.first == I && 3351 OpData.second->State == TreeEntry::Vectorize; 3352 })) 3353 continue; 3354 ArrayRef<Value *> VL = Data.first->getOperand(I); 3355 const TreeEntry *TE = nullptr; 3356 const auto *It = find_if(VL, [this, &TE](Value *V) { 3357 TE = getTreeEntry(V); 3358 return TE; 3359 }); 3360 if (It != VL.end() && TE->isSame(VL)) 3361 return false; 3362 TreeEntry *Gather = nullptr; 3363 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3364 assert(TE->State != TreeEntry::Vectorize && 3365 "Only non-vectorized nodes are expected."); 3366 if (TE->isSame(VL)) { 3367 Gather = TE; 3368 return true; 3369 } 3370 return false; 3371 }) > 1) 3372 return false; 3373 if (Gather) 3374 GatherOps.push_back(Gather); 3375 } 3376 return true; 3377 }; 3378 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3379 // I.e., if the node has operands, that are reordered, try to make at least 3380 // one operand order in the natural order and reorder others + reorder the 3381 // user node itself. 3382 SmallPtrSet<const TreeEntry *, 4> Visited; 3383 while (!OrderedEntries.empty()) { 3384 // 1. Filter out only reordered nodes. 3385 // 2. If the entry has multiple uses - skip it and jump to the next node. 3386 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3387 SmallVector<TreeEntry *> Filtered; 3388 for (TreeEntry *TE : OrderedEntries) { 3389 if (!(TE->State == TreeEntry::Vectorize || 3390 (TE->State == TreeEntry::NeedToGather && 3391 GathersToOrders.count(TE))) || 3392 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3393 !all_of(drop_begin(TE->UserTreeIndices), 3394 [TE](const EdgeInfo &EI) { 3395 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3396 }) || 3397 !Visited.insert(TE).second) { 3398 Filtered.push_back(TE); 3399 continue; 3400 } 3401 // Build a map between user nodes and their operands order to speedup 3402 // search. The graph currently does not provide this dependency directly. 3403 for (EdgeInfo &EI : TE->UserTreeIndices) { 3404 TreeEntry *UserTE = EI.UserTE; 3405 auto It = Users.find(UserTE); 3406 if (It == Users.end()) 3407 It = Users.insert({UserTE, {}}).first; 3408 It->second.emplace_back(EI.EdgeIdx, TE); 3409 } 3410 } 3411 // Erase filtered entries. 3412 for_each(Filtered, 3413 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3414 for (const auto &Data : Users) { 3415 // Check that operands are used only in the User node. 3416 SmallVector<TreeEntry *> GatherOps; 3417 if (!CheckOperands(Data, GatherOps)) { 3418 for_each(Data.second, 3419 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3420 OrderedEntries.remove(Op.second); 3421 }); 3422 continue; 3423 } 3424 // All operands are reordered and used only in this node - propagate the 3425 // most used order to the user node. 3426 MapVector<OrdersType, unsigned, 3427 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3428 OrdersUses; 3429 // Do the analysis for each tree entry only once, otherwise the order of 3430 // the same node my be considered several times, though might be not 3431 // profitable. 3432 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3433 for (const auto &Op : Data.second) { 3434 TreeEntry *OpTE = Op.second; 3435 if (!VisitedOps.insert(OpTE).second) 3436 continue; 3437 if (!OpTE->ReuseShuffleIndices.empty() || 3438 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3439 continue; 3440 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3441 if (OpTE->State == TreeEntry::NeedToGather) 3442 return GathersToOrders.find(OpTE)->second; 3443 return OpTE->ReorderIndices; 3444 }(); 3445 // Stores actually store the mask, not the order, need to invert. 3446 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3447 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3448 SmallVector<int> Mask; 3449 inversePermutation(Order, Mask); 3450 unsigned E = Order.size(); 3451 OrdersType CurrentOrder(E, E); 3452 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3453 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3454 }); 3455 fixupOrderingIndices(CurrentOrder); 3456 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3457 } else { 3458 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3459 } 3460 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3461 OpTE->UserTreeIndices.size(); 3462 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3463 --OrdersUses[{}]; 3464 } 3465 // If no orders - skip current nodes and jump to the next one, if any. 3466 if (OrdersUses.empty()) { 3467 for_each(Data.second, 3468 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3469 OrderedEntries.remove(Op.second); 3470 }); 3471 continue; 3472 } 3473 // Choose the best order. 3474 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3475 unsigned Cnt = OrdersUses.front().second; 3476 for (const auto &Pair : drop_begin(OrdersUses)) { 3477 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3478 BestOrder = Pair.first; 3479 Cnt = Pair.second; 3480 } 3481 } 3482 // Set order of the user node (reordering of operands and user nodes). 3483 if (BestOrder.empty()) { 3484 for_each(Data.second, 3485 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3486 OrderedEntries.remove(Op.second); 3487 }); 3488 continue; 3489 } 3490 // Erase operands from OrderedEntries list and adjust their orders. 3491 VisitedOps.clear(); 3492 SmallVector<int> Mask; 3493 inversePermutation(BestOrder, Mask); 3494 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3495 unsigned E = BestOrder.size(); 3496 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3497 return I < E ? static_cast<int>(I) : UndefMaskElem; 3498 }); 3499 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3500 TreeEntry *TE = Op.second; 3501 OrderedEntries.remove(TE); 3502 if (!VisitedOps.insert(TE).second) 3503 continue; 3504 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3505 // Just reorder reuses indices. 3506 reorderReuses(TE->ReuseShuffleIndices, Mask); 3507 continue; 3508 } 3509 // Gathers are processed separately. 3510 if (TE->State != TreeEntry::Vectorize) 3511 continue; 3512 assert((BestOrder.size() == TE->ReorderIndices.size() || 3513 TE->ReorderIndices.empty()) && 3514 "Non-matching sizes of user/operand entries."); 3515 reorderOrder(TE->ReorderIndices, Mask); 3516 } 3517 // For gathers just need to reorder its scalars. 3518 for (TreeEntry *Gather : GatherOps) { 3519 assert(Gather->ReorderIndices.empty() && 3520 "Unexpected reordering of gathers."); 3521 if (!Gather->ReuseShuffleIndices.empty()) { 3522 // Just reorder reuses indices. 3523 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3524 continue; 3525 } 3526 reorderScalars(Gather->Scalars, Mask); 3527 OrderedEntries.remove(Gather); 3528 } 3529 // Reorder operands of the user node and set the ordering for the user 3530 // node itself. 3531 if (Data.first->State != TreeEntry::Vectorize || 3532 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3533 Data.first->getMainOp()) || 3534 Data.first->isAltShuffle()) 3535 Data.first->reorderOperands(Mask); 3536 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3537 Data.first->isAltShuffle()) { 3538 reorderScalars(Data.first->Scalars, Mask); 3539 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3540 if (Data.first->ReuseShuffleIndices.empty() && 3541 !Data.first->ReorderIndices.empty() && 3542 !Data.first->isAltShuffle()) { 3543 // Insert user node to the list to try to sink reordering deeper in 3544 // the graph. 3545 OrderedEntries.insert(Data.first); 3546 } 3547 } else { 3548 reorderOrder(Data.first->ReorderIndices, Mask); 3549 } 3550 } 3551 } 3552 // If the reordering is unnecessary, just remove the reorder. 3553 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3554 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3555 VectorizableTree.front()->ReorderIndices.clear(); 3556 } 3557 3558 void BoUpSLP::buildExternalUses( 3559 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3560 // Collect the values that we need to extract from the tree. 3561 for (auto &TEPtr : VectorizableTree) { 3562 TreeEntry *Entry = TEPtr.get(); 3563 3564 // No need to handle users of gathered values. 3565 if (Entry->State == TreeEntry::NeedToGather) 3566 continue; 3567 3568 // For each lane: 3569 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3570 Value *Scalar = Entry->Scalars[Lane]; 3571 int FoundLane = Entry->findLaneForValue(Scalar); 3572 3573 // Check if the scalar is externally used as an extra arg. 3574 auto ExtI = ExternallyUsedValues.find(Scalar); 3575 if (ExtI != ExternallyUsedValues.end()) { 3576 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3577 << Lane << " from " << *Scalar << ".\n"); 3578 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3579 } 3580 for (User *U : Scalar->users()) { 3581 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3582 3583 Instruction *UserInst = dyn_cast<Instruction>(U); 3584 if (!UserInst) 3585 continue; 3586 3587 if (isDeleted(UserInst)) 3588 continue; 3589 3590 // Skip in-tree scalars that become vectors 3591 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3592 Value *UseScalar = UseEntry->Scalars[0]; 3593 // Some in-tree scalars will remain as scalar in vectorized 3594 // instructions. If that is the case, the one in Lane 0 will 3595 // be used. 3596 if (UseScalar != U || 3597 UseEntry->State == TreeEntry::ScatterVectorize || 3598 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3599 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3600 << ".\n"); 3601 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3602 continue; 3603 } 3604 } 3605 3606 // Ignore users in the user ignore list. 3607 if (is_contained(UserIgnoreList, UserInst)) 3608 continue; 3609 3610 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3611 << Lane << " from " << *Scalar << ".\n"); 3612 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3613 } 3614 } 3615 } 3616 } 3617 3618 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3619 ArrayRef<Value *> UserIgnoreLst) { 3620 deleteTree(); 3621 UserIgnoreList = UserIgnoreLst; 3622 if (!allSameType(Roots)) 3623 return; 3624 buildTree_rec(Roots, 0, EdgeInfo()); 3625 } 3626 3627 namespace { 3628 /// Tracks the state we can represent the loads in the given sequence. 3629 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3630 } // anonymous namespace 3631 3632 /// Checks if the given array of loads can be represented as a vectorized, 3633 /// scatter or just simple gather. 3634 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3635 const TargetTransformInfo &TTI, 3636 const DataLayout &DL, ScalarEvolution &SE, 3637 SmallVectorImpl<unsigned> &Order, 3638 SmallVectorImpl<Value *> &PointerOps) { 3639 // Check that a vectorized load would load the same memory as a scalar 3640 // load. For example, we don't want to vectorize loads that are smaller 3641 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3642 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3643 // from such a struct, we read/write packed bits disagreeing with the 3644 // unvectorized version. 3645 Type *ScalarTy = VL0->getType(); 3646 3647 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3648 return LoadsState::Gather; 3649 3650 // Make sure all loads in the bundle are simple - we can't vectorize 3651 // atomic or volatile loads. 3652 PointerOps.clear(); 3653 PointerOps.resize(VL.size()); 3654 auto *POIter = PointerOps.begin(); 3655 for (Value *V : VL) { 3656 auto *L = cast<LoadInst>(V); 3657 if (!L->isSimple()) 3658 return LoadsState::Gather; 3659 *POIter = L->getPointerOperand(); 3660 ++POIter; 3661 } 3662 3663 Order.clear(); 3664 // Check the order of pointer operands. 3665 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3666 Value *Ptr0; 3667 Value *PtrN; 3668 if (Order.empty()) { 3669 Ptr0 = PointerOps.front(); 3670 PtrN = PointerOps.back(); 3671 } else { 3672 Ptr0 = PointerOps[Order.front()]; 3673 PtrN = PointerOps[Order.back()]; 3674 } 3675 Optional<int> Diff = 3676 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3677 // Check that the sorted loads are consecutive. 3678 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3679 return LoadsState::Vectorize; 3680 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3681 for (Value *V : VL) 3682 CommonAlignment = 3683 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3684 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3685 CommonAlignment)) 3686 return LoadsState::ScatterVectorize; 3687 } 3688 3689 return LoadsState::Gather; 3690 } 3691 3692 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3693 const EdgeInfo &UserTreeIdx) { 3694 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3695 3696 SmallVector<int> ReuseShuffleIndicies; 3697 SmallVector<Value *> UniqueValues; 3698 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3699 &UserTreeIdx, 3700 this](const InstructionsState &S) { 3701 // Check that every instruction appears once in this bundle. 3702 DenseMap<Value *, unsigned> UniquePositions; 3703 for (Value *V : VL) { 3704 if (isConstant(V)) { 3705 ReuseShuffleIndicies.emplace_back( 3706 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3707 UniqueValues.emplace_back(V); 3708 continue; 3709 } 3710 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3711 ReuseShuffleIndicies.emplace_back(Res.first->second); 3712 if (Res.second) 3713 UniqueValues.emplace_back(V); 3714 } 3715 size_t NumUniqueScalarValues = UniqueValues.size(); 3716 if (NumUniqueScalarValues == VL.size()) { 3717 ReuseShuffleIndicies.clear(); 3718 } else { 3719 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3720 if (NumUniqueScalarValues <= 1 || 3721 (UniquePositions.size() == 1 && all_of(UniqueValues, 3722 [](Value *V) { 3723 return isa<UndefValue>(V) || 3724 !isConstant(V); 3725 })) || 3726 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3727 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3728 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3729 return false; 3730 } 3731 VL = UniqueValues; 3732 } 3733 return true; 3734 }; 3735 3736 InstructionsState S = getSameOpcode(VL); 3737 if (Depth == RecursionMaxDepth) { 3738 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3739 if (TryToFindDuplicates(S)) 3740 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3741 ReuseShuffleIndicies); 3742 return; 3743 } 3744 3745 // Don't handle scalable vectors 3746 if (S.getOpcode() == Instruction::ExtractElement && 3747 isa<ScalableVectorType>( 3748 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3749 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3750 if (TryToFindDuplicates(S)) 3751 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3752 ReuseShuffleIndicies); 3753 return; 3754 } 3755 3756 // Don't handle vectors. 3757 if (S.OpValue->getType()->isVectorTy() && 3758 !isa<InsertElementInst>(S.OpValue)) { 3759 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3760 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3761 return; 3762 } 3763 3764 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3765 if (SI->getValueOperand()->getType()->isVectorTy()) { 3766 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3767 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3768 return; 3769 } 3770 3771 // If all of the operands are identical or constant we have a simple solution. 3772 // If we deal with insert/extract instructions, they all must have constant 3773 // indices, otherwise we should gather them, not try to vectorize. 3774 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3775 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3776 !all_of(VL, isVectorLikeInstWithConstOps))) { 3777 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3778 if (TryToFindDuplicates(S)) 3779 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3780 ReuseShuffleIndicies); 3781 return; 3782 } 3783 3784 // We now know that this is a vector of instructions of the same type from 3785 // the same block. 3786 3787 // Don't vectorize ephemeral values. 3788 for (Value *V : VL) { 3789 if (EphValues.count(V)) { 3790 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3791 << ") is ephemeral.\n"); 3792 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3793 return; 3794 } 3795 } 3796 3797 // Check if this is a duplicate of another entry. 3798 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3799 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3800 if (!E->isSame(VL)) { 3801 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3802 if (TryToFindDuplicates(S)) 3803 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3804 ReuseShuffleIndicies); 3805 return; 3806 } 3807 // Record the reuse of the tree node. FIXME, currently this is only used to 3808 // properly draw the graph rather than for the actual vectorization. 3809 E->UserTreeIndices.push_back(UserTreeIdx); 3810 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3811 << ".\n"); 3812 return; 3813 } 3814 3815 // Check that none of the instructions in the bundle are already in the tree. 3816 for (Value *V : VL) { 3817 auto *I = dyn_cast<Instruction>(V); 3818 if (!I) 3819 continue; 3820 if (getTreeEntry(I)) { 3821 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3822 << ") is already in tree.\n"); 3823 if (TryToFindDuplicates(S)) 3824 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3825 ReuseShuffleIndicies); 3826 return; 3827 } 3828 } 3829 3830 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3831 for (Value *V : VL) { 3832 if (is_contained(UserIgnoreList, V)) { 3833 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3834 if (TryToFindDuplicates(S)) 3835 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3836 ReuseShuffleIndicies); 3837 return; 3838 } 3839 } 3840 3841 // Check that all of the users of the scalars that we want to vectorize are 3842 // schedulable. 3843 auto *VL0 = cast<Instruction>(S.OpValue); 3844 BasicBlock *BB = VL0->getParent(); 3845 3846 if (!DT->isReachableFromEntry(BB)) { 3847 // Don't go into unreachable blocks. They may contain instructions with 3848 // dependency cycles which confuse the final scheduling. 3849 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3850 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3851 return; 3852 } 3853 3854 // Check that every instruction appears once in this bundle. 3855 if (!TryToFindDuplicates(S)) 3856 return; 3857 3858 auto &BSRef = BlocksSchedules[BB]; 3859 if (!BSRef) 3860 BSRef = std::make_unique<BlockScheduling>(BB); 3861 3862 BlockScheduling &BS = *BSRef.get(); 3863 3864 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3865 if (!Bundle) { 3866 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3867 assert((!BS.getScheduleData(VL0) || 3868 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3869 "tryScheduleBundle should cancelScheduling on failure"); 3870 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3871 ReuseShuffleIndicies); 3872 return; 3873 } 3874 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3875 3876 unsigned ShuffleOrOp = S.isAltShuffle() ? 3877 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3878 switch (ShuffleOrOp) { 3879 case Instruction::PHI: { 3880 auto *PH = cast<PHINode>(VL0); 3881 3882 // Check for terminator values (e.g. invoke). 3883 for (Value *V : VL) 3884 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3885 Instruction *Term = dyn_cast<Instruction>( 3886 cast<PHINode>(V)->getIncomingValueForBlock( 3887 PH->getIncomingBlock(I))); 3888 if (Term && Term->isTerminator()) { 3889 LLVM_DEBUG(dbgs() 3890 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3891 BS.cancelScheduling(VL, VL0); 3892 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3893 ReuseShuffleIndicies); 3894 return; 3895 } 3896 } 3897 3898 TreeEntry *TE = 3899 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3900 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3901 3902 // Keeps the reordered operands to avoid code duplication. 3903 SmallVector<ValueList, 2> OperandsVec; 3904 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3905 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3906 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3907 TE->setOperand(I, Operands); 3908 OperandsVec.push_back(Operands); 3909 continue; 3910 } 3911 ValueList Operands; 3912 // Prepare the operand vector. 3913 for (Value *V : VL) 3914 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3915 PH->getIncomingBlock(I))); 3916 TE->setOperand(I, Operands); 3917 OperandsVec.push_back(Operands); 3918 } 3919 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3920 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3921 return; 3922 } 3923 case Instruction::ExtractValue: 3924 case Instruction::ExtractElement: { 3925 OrdersType CurrentOrder; 3926 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3927 if (Reuse) { 3928 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3929 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3930 ReuseShuffleIndicies); 3931 // This is a special case, as it does not gather, but at the same time 3932 // we are not extending buildTree_rec() towards the operands. 3933 ValueList Op0; 3934 Op0.assign(VL.size(), VL0->getOperand(0)); 3935 VectorizableTree.back()->setOperand(0, Op0); 3936 return; 3937 } 3938 if (!CurrentOrder.empty()) { 3939 LLVM_DEBUG({ 3940 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3941 "with order"; 3942 for (unsigned Idx : CurrentOrder) 3943 dbgs() << " " << Idx; 3944 dbgs() << "\n"; 3945 }); 3946 fixupOrderingIndices(CurrentOrder); 3947 // Insert new order with initial value 0, if it does not exist, 3948 // otherwise return the iterator to the existing one. 3949 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3950 ReuseShuffleIndicies, CurrentOrder); 3951 // This is a special case, as it does not gather, but at the same time 3952 // we are not extending buildTree_rec() towards the operands. 3953 ValueList Op0; 3954 Op0.assign(VL.size(), VL0->getOperand(0)); 3955 VectorizableTree.back()->setOperand(0, Op0); 3956 return; 3957 } 3958 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3959 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3960 ReuseShuffleIndicies); 3961 BS.cancelScheduling(VL, VL0); 3962 return; 3963 } 3964 case Instruction::InsertElement: { 3965 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3966 3967 // Check that we have a buildvector and not a shuffle of 2 or more 3968 // different vectors. 3969 ValueSet SourceVectors; 3970 int MinIdx = std::numeric_limits<int>::max(); 3971 for (Value *V : VL) { 3972 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3973 Optional<int> Idx = *getInsertIndex(V, 0); 3974 if (!Idx || *Idx == UndefMaskElem) 3975 continue; 3976 MinIdx = std::min(MinIdx, *Idx); 3977 } 3978 3979 if (count_if(VL, [&SourceVectors](Value *V) { 3980 return !SourceVectors.contains(V); 3981 }) >= 2) { 3982 // Found 2nd source vector - cancel. 3983 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3984 "different source vectors.\n"); 3985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3986 BS.cancelScheduling(VL, VL0); 3987 return; 3988 } 3989 3990 auto OrdCompare = [](const std::pair<int, int> &P1, 3991 const std::pair<int, int> &P2) { 3992 return P1.first > P2.first; 3993 }; 3994 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3995 decltype(OrdCompare)> 3996 Indices(OrdCompare); 3997 for (int I = 0, E = VL.size(); I < E; ++I) { 3998 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3999 if (!Idx || *Idx == UndefMaskElem) 4000 continue; 4001 Indices.emplace(*Idx, I); 4002 } 4003 OrdersType CurrentOrder(VL.size(), VL.size()); 4004 bool IsIdentity = true; 4005 for (int I = 0, E = VL.size(); I < E; ++I) { 4006 CurrentOrder[Indices.top().second] = I; 4007 IsIdentity &= Indices.top().second == I; 4008 Indices.pop(); 4009 } 4010 if (IsIdentity) 4011 CurrentOrder.clear(); 4012 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4013 None, CurrentOrder); 4014 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4015 4016 constexpr int NumOps = 2; 4017 ValueList VectorOperands[NumOps]; 4018 for (int I = 0; I < NumOps; ++I) { 4019 for (Value *V : VL) 4020 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4021 4022 TE->setOperand(I, VectorOperands[I]); 4023 } 4024 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4025 return; 4026 } 4027 case Instruction::Load: { 4028 // Check that a vectorized load would load the same memory as a scalar 4029 // load. For example, we don't want to vectorize loads that are smaller 4030 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4031 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4032 // from such a struct, we read/write packed bits disagreeing with the 4033 // unvectorized version. 4034 SmallVector<Value *> PointerOps; 4035 OrdersType CurrentOrder; 4036 TreeEntry *TE = nullptr; 4037 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4038 PointerOps)) { 4039 case LoadsState::Vectorize: 4040 if (CurrentOrder.empty()) { 4041 // Original loads are consecutive and does not require reordering. 4042 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4043 ReuseShuffleIndicies); 4044 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4045 } else { 4046 fixupOrderingIndices(CurrentOrder); 4047 // Need to reorder. 4048 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4049 ReuseShuffleIndicies, CurrentOrder); 4050 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4051 } 4052 TE->setOperandsInOrder(); 4053 break; 4054 case LoadsState::ScatterVectorize: 4055 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4056 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4057 UserTreeIdx, ReuseShuffleIndicies); 4058 TE->setOperandsInOrder(); 4059 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4060 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4061 break; 4062 case LoadsState::Gather: 4063 BS.cancelScheduling(VL, VL0); 4064 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4065 ReuseShuffleIndicies); 4066 #ifndef NDEBUG 4067 Type *ScalarTy = VL0->getType(); 4068 if (DL->getTypeSizeInBits(ScalarTy) != 4069 DL->getTypeAllocSizeInBits(ScalarTy)) 4070 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4071 else if (any_of(VL, [](Value *V) { 4072 return !cast<LoadInst>(V)->isSimple(); 4073 })) 4074 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4075 else 4076 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4077 #endif // NDEBUG 4078 break; 4079 } 4080 return; 4081 } 4082 case Instruction::ZExt: 4083 case Instruction::SExt: 4084 case Instruction::FPToUI: 4085 case Instruction::FPToSI: 4086 case Instruction::FPExt: 4087 case Instruction::PtrToInt: 4088 case Instruction::IntToPtr: 4089 case Instruction::SIToFP: 4090 case Instruction::UIToFP: 4091 case Instruction::Trunc: 4092 case Instruction::FPTrunc: 4093 case Instruction::BitCast: { 4094 Type *SrcTy = VL0->getOperand(0)->getType(); 4095 for (Value *V : VL) { 4096 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4097 if (Ty != SrcTy || !isValidElementType(Ty)) { 4098 BS.cancelScheduling(VL, VL0); 4099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4100 ReuseShuffleIndicies); 4101 LLVM_DEBUG(dbgs() 4102 << "SLP: Gathering casts with different src types.\n"); 4103 return; 4104 } 4105 } 4106 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4107 ReuseShuffleIndicies); 4108 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4109 4110 TE->setOperandsInOrder(); 4111 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4112 ValueList Operands; 4113 // Prepare the operand vector. 4114 for (Value *V : VL) 4115 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4116 4117 buildTree_rec(Operands, Depth + 1, {TE, i}); 4118 } 4119 return; 4120 } 4121 case Instruction::ICmp: 4122 case Instruction::FCmp: { 4123 // Check that all of the compares have the same predicate. 4124 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4125 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4126 Type *ComparedTy = VL0->getOperand(0)->getType(); 4127 for (Value *V : VL) { 4128 CmpInst *Cmp = cast<CmpInst>(V); 4129 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4130 Cmp->getOperand(0)->getType() != ComparedTy) { 4131 BS.cancelScheduling(VL, VL0); 4132 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4133 ReuseShuffleIndicies); 4134 LLVM_DEBUG(dbgs() 4135 << "SLP: Gathering cmp with different predicate.\n"); 4136 return; 4137 } 4138 } 4139 4140 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4141 ReuseShuffleIndicies); 4142 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4143 4144 ValueList Left, Right; 4145 if (cast<CmpInst>(VL0)->isCommutative()) { 4146 // Commutative predicate - collect + sort operands of the instructions 4147 // so that each side is more likely to have the same opcode. 4148 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4149 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4150 } else { 4151 // Collect operands - commute if it uses the swapped predicate. 4152 for (Value *V : VL) { 4153 auto *Cmp = cast<CmpInst>(V); 4154 Value *LHS = Cmp->getOperand(0); 4155 Value *RHS = Cmp->getOperand(1); 4156 if (Cmp->getPredicate() != P0) 4157 std::swap(LHS, RHS); 4158 Left.push_back(LHS); 4159 Right.push_back(RHS); 4160 } 4161 } 4162 TE->setOperand(0, Left); 4163 TE->setOperand(1, Right); 4164 buildTree_rec(Left, Depth + 1, {TE, 0}); 4165 buildTree_rec(Right, Depth + 1, {TE, 1}); 4166 return; 4167 } 4168 case Instruction::Select: 4169 case Instruction::FNeg: 4170 case Instruction::Add: 4171 case Instruction::FAdd: 4172 case Instruction::Sub: 4173 case Instruction::FSub: 4174 case Instruction::Mul: 4175 case Instruction::FMul: 4176 case Instruction::UDiv: 4177 case Instruction::SDiv: 4178 case Instruction::FDiv: 4179 case Instruction::URem: 4180 case Instruction::SRem: 4181 case Instruction::FRem: 4182 case Instruction::Shl: 4183 case Instruction::LShr: 4184 case Instruction::AShr: 4185 case Instruction::And: 4186 case Instruction::Or: 4187 case Instruction::Xor: { 4188 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4189 ReuseShuffleIndicies); 4190 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4191 4192 // Sort operands of the instructions so that each side is more likely to 4193 // have the same opcode. 4194 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4195 ValueList Left, Right; 4196 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4197 TE->setOperand(0, Left); 4198 TE->setOperand(1, Right); 4199 buildTree_rec(Left, Depth + 1, {TE, 0}); 4200 buildTree_rec(Right, Depth + 1, {TE, 1}); 4201 return; 4202 } 4203 4204 TE->setOperandsInOrder(); 4205 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4206 ValueList Operands; 4207 // Prepare the operand vector. 4208 for (Value *V : VL) 4209 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4210 4211 buildTree_rec(Operands, Depth + 1, {TE, i}); 4212 } 4213 return; 4214 } 4215 case Instruction::GetElementPtr: { 4216 // We don't combine GEPs with complicated (nested) indexing. 4217 for (Value *V : VL) { 4218 if (cast<Instruction>(V)->getNumOperands() != 2) { 4219 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4220 BS.cancelScheduling(VL, VL0); 4221 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4222 ReuseShuffleIndicies); 4223 return; 4224 } 4225 } 4226 4227 // We can't combine several GEPs into one vector if they operate on 4228 // different types. 4229 Type *Ty0 = VL0->getOperand(0)->getType(); 4230 for (Value *V : VL) { 4231 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4232 if (Ty0 != CurTy) { 4233 LLVM_DEBUG(dbgs() 4234 << "SLP: not-vectorizable GEP (different types).\n"); 4235 BS.cancelScheduling(VL, VL0); 4236 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4237 ReuseShuffleIndicies); 4238 return; 4239 } 4240 } 4241 4242 // We don't combine GEPs with non-constant indexes. 4243 Type *Ty1 = VL0->getOperand(1)->getType(); 4244 for (Value *V : VL) { 4245 auto Op = cast<Instruction>(V)->getOperand(1); 4246 if (!isa<ConstantInt>(Op) || 4247 (Op->getType() != Ty1 && 4248 Op->getType()->getScalarSizeInBits() > 4249 DL->getIndexSizeInBits( 4250 V->getType()->getPointerAddressSpace()))) { 4251 LLVM_DEBUG(dbgs() 4252 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4253 BS.cancelScheduling(VL, VL0); 4254 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4255 ReuseShuffleIndicies); 4256 return; 4257 } 4258 } 4259 4260 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4261 ReuseShuffleIndicies); 4262 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4263 SmallVector<ValueList, 2> Operands(2); 4264 // Prepare the operand vector for pointer operands. 4265 for (Value *V : VL) 4266 Operands.front().push_back( 4267 cast<GetElementPtrInst>(V)->getPointerOperand()); 4268 TE->setOperand(0, Operands.front()); 4269 // Need to cast all indices to the same type before vectorization to 4270 // avoid crash. 4271 // Required to be able to find correct matches between different gather 4272 // nodes and reuse the vectorized values rather than trying to gather them 4273 // again. 4274 int IndexIdx = 1; 4275 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4276 Type *Ty = all_of(VL, 4277 [VL0Ty, IndexIdx](Value *V) { 4278 return VL0Ty == cast<GetElementPtrInst>(V) 4279 ->getOperand(IndexIdx) 4280 ->getType(); 4281 }) 4282 ? VL0Ty 4283 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4284 ->getPointerOperandType() 4285 ->getScalarType()); 4286 // Prepare the operand vector. 4287 for (Value *V : VL) { 4288 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4289 auto *CI = cast<ConstantInt>(Op); 4290 Operands.back().push_back(ConstantExpr::getIntegerCast( 4291 CI, Ty, CI->getValue().isSignBitSet())); 4292 } 4293 TE->setOperand(IndexIdx, Operands.back()); 4294 4295 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4296 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4297 return; 4298 } 4299 case Instruction::Store: { 4300 // Check if the stores are consecutive or if we need to swizzle them. 4301 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4302 // Avoid types that are padded when being allocated as scalars, while 4303 // being packed together in a vector (such as i1). 4304 if (DL->getTypeSizeInBits(ScalarTy) != 4305 DL->getTypeAllocSizeInBits(ScalarTy)) { 4306 BS.cancelScheduling(VL, VL0); 4307 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4308 ReuseShuffleIndicies); 4309 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4310 return; 4311 } 4312 // Make sure all stores in the bundle are simple - we can't vectorize 4313 // atomic or volatile stores. 4314 SmallVector<Value *, 4> PointerOps(VL.size()); 4315 ValueList Operands(VL.size()); 4316 auto POIter = PointerOps.begin(); 4317 auto OIter = Operands.begin(); 4318 for (Value *V : VL) { 4319 auto *SI = cast<StoreInst>(V); 4320 if (!SI->isSimple()) { 4321 BS.cancelScheduling(VL, VL0); 4322 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4323 ReuseShuffleIndicies); 4324 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4325 return; 4326 } 4327 *POIter = SI->getPointerOperand(); 4328 *OIter = SI->getValueOperand(); 4329 ++POIter; 4330 ++OIter; 4331 } 4332 4333 OrdersType CurrentOrder; 4334 // Check the order of pointer operands. 4335 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4336 Value *Ptr0; 4337 Value *PtrN; 4338 if (CurrentOrder.empty()) { 4339 Ptr0 = PointerOps.front(); 4340 PtrN = PointerOps.back(); 4341 } else { 4342 Ptr0 = PointerOps[CurrentOrder.front()]; 4343 PtrN = PointerOps[CurrentOrder.back()]; 4344 } 4345 Optional<int> Dist = 4346 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4347 // Check that the sorted pointer operands are consecutive. 4348 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4349 if (CurrentOrder.empty()) { 4350 // Original stores are consecutive and does not require reordering. 4351 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4352 UserTreeIdx, ReuseShuffleIndicies); 4353 TE->setOperandsInOrder(); 4354 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4355 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4356 } else { 4357 fixupOrderingIndices(CurrentOrder); 4358 TreeEntry *TE = 4359 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4360 ReuseShuffleIndicies, CurrentOrder); 4361 TE->setOperandsInOrder(); 4362 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4363 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4364 } 4365 return; 4366 } 4367 } 4368 4369 BS.cancelScheduling(VL, VL0); 4370 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4371 ReuseShuffleIndicies); 4372 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4373 return; 4374 } 4375 case Instruction::Call: { 4376 // Check if the calls are all to the same vectorizable intrinsic or 4377 // library function. 4378 CallInst *CI = cast<CallInst>(VL0); 4379 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4380 4381 VFShape Shape = VFShape::get( 4382 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4383 false /*HasGlobalPred*/); 4384 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4385 4386 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4387 BS.cancelScheduling(VL, VL0); 4388 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4389 ReuseShuffleIndicies); 4390 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4391 return; 4392 } 4393 Function *F = CI->getCalledFunction(); 4394 unsigned NumArgs = CI->arg_size(); 4395 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4396 for (unsigned j = 0; j != NumArgs; ++j) 4397 if (hasVectorInstrinsicScalarOpd(ID, j)) 4398 ScalarArgs[j] = CI->getArgOperand(j); 4399 for (Value *V : VL) { 4400 CallInst *CI2 = dyn_cast<CallInst>(V); 4401 if (!CI2 || CI2->getCalledFunction() != F || 4402 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4403 (VecFunc && 4404 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4405 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4406 BS.cancelScheduling(VL, VL0); 4407 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4408 ReuseShuffleIndicies); 4409 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4410 << "\n"); 4411 return; 4412 } 4413 // Some intrinsics have scalar arguments and should be same in order for 4414 // them to be vectorized. 4415 for (unsigned j = 0; j != NumArgs; ++j) { 4416 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4417 Value *A1J = CI2->getArgOperand(j); 4418 if (ScalarArgs[j] != A1J) { 4419 BS.cancelScheduling(VL, VL0); 4420 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4421 ReuseShuffleIndicies); 4422 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4423 << " argument " << ScalarArgs[j] << "!=" << A1J 4424 << "\n"); 4425 return; 4426 } 4427 } 4428 } 4429 // Verify that the bundle operands are identical between the two calls. 4430 if (CI->hasOperandBundles() && 4431 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4432 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4433 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4434 BS.cancelScheduling(VL, VL0); 4435 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4436 ReuseShuffleIndicies); 4437 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4438 << *CI << "!=" << *V << '\n'); 4439 return; 4440 } 4441 } 4442 4443 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4444 ReuseShuffleIndicies); 4445 TE->setOperandsInOrder(); 4446 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4447 // For scalar operands no need to to create an entry since no need to 4448 // vectorize it. 4449 if (hasVectorInstrinsicScalarOpd(ID, i)) 4450 continue; 4451 ValueList Operands; 4452 // Prepare the operand vector. 4453 for (Value *V : VL) { 4454 auto *CI2 = cast<CallInst>(V); 4455 Operands.push_back(CI2->getArgOperand(i)); 4456 } 4457 buildTree_rec(Operands, Depth + 1, {TE, i}); 4458 } 4459 return; 4460 } 4461 case Instruction::ShuffleVector: { 4462 // If this is not an alternate sequence of opcode like add-sub 4463 // then do not vectorize this instruction. 4464 if (!S.isAltShuffle()) { 4465 BS.cancelScheduling(VL, VL0); 4466 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4467 ReuseShuffleIndicies); 4468 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4469 return; 4470 } 4471 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4472 ReuseShuffleIndicies); 4473 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4474 4475 // Reorder operands if reordering would enable vectorization. 4476 auto *CI = dyn_cast<CmpInst>(VL0); 4477 if (isa<BinaryOperator>(VL0) || CI) { 4478 ValueList Left, Right; 4479 if (!CI || all_of(VL, [](Value *V) { 4480 return cast<CmpInst>(V)->isCommutative(); 4481 })) { 4482 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4483 } else { 4484 CmpInst::Predicate P0 = CI->getPredicate(); 4485 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4486 assert(P0 != AltP0 && 4487 "Expected different main/alternate predicates."); 4488 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4489 Value *BaseOp0 = VL0->getOperand(0); 4490 Value *BaseOp1 = VL0->getOperand(1); 4491 // Collect operands - commute if it uses the swapped predicate or 4492 // alternate operation. 4493 for (Value *V : VL) { 4494 auto *Cmp = cast<CmpInst>(V); 4495 Value *LHS = Cmp->getOperand(0); 4496 Value *RHS = Cmp->getOperand(1); 4497 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4498 if (P0 == AltP0Swapped) { 4499 if ((P0 == CurrentPred && 4500 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4501 (AltP0 == CurrentPred && 4502 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))) 4503 std::swap(LHS, RHS); 4504 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4505 std::swap(LHS, RHS); 4506 } 4507 Left.push_back(LHS); 4508 Right.push_back(RHS); 4509 } 4510 } 4511 TE->setOperand(0, Left); 4512 TE->setOperand(1, Right); 4513 buildTree_rec(Left, Depth + 1, {TE, 0}); 4514 buildTree_rec(Right, Depth + 1, {TE, 1}); 4515 return; 4516 } 4517 4518 TE->setOperandsInOrder(); 4519 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4520 ValueList Operands; 4521 // Prepare the operand vector. 4522 for (Value *V : VL) 4523 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4524 4525 buildTree_rec(Operands, Depth + 1, {TE, i}); 4526 } 4527 return; 4528 } 4529 default: 4530 BS.cancelScheduling(VL, VL0); 4531 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4532 ReuseShuffleIndicies); 4533 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4534 return; 4535 } 4536 } 4537 4538 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4539 unsigned N = 1; 4540 Type *EltTy = T; 4541 4542 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4543 isa<VectorType>(EltTy)) { 4544 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4545 // Check that struct is homogeneous. 4546 for (const auto *Ty : ST->elements()) 4547 if (Ty != *ST->element_begin()) 4548 return 0; 4549 N *= ST->getNumElements(); 4550 EltTy = *ST->element_begin(); 4551 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4552 N *= AT->getNumElements(); 4553 EltTy = AT->getElementType(); 4554 } else { 4555 auto *VT = cast<FixedVectorType>(EltTy); 4556 N *= VT->getNumElements(); 4557 EltTy = VT->getElementType(); 4558 } 4559 } 4560 4561 if (!isValidElementType(EltTy)) 4562 return 0; 4563 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4564 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4565 return 0; 4566 return N; 4567 } 4568 4569 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4570 SmallVectorImpl<unsigned> &CurrentOrder) const { 4571 const auto *It = find_if(VL, [](Value *V) { 4572 return isa<ExtractElementInst, ExtractValueInst>(V); 4573 }); 4574 assert(It != VL.end() && "Expected at least one extract instruction."); 4575 auto *E0 = cast<Instruction>(*It); 4576 assert(all_of(VL, 4577 [](Value *V) { 4578 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4579 V); 4580 }) && 4581 "Invalid opcode"); 4582 // Check if all of the extracts come from the same vector and from the 4583 // correct offset. 4584 Value *Vec = E0->getOperand(0); 4585 4586 CurrentOrder.clear(); 4587 4588 // We have to extract from a vector/aggregate with the same number of elements. 4589 unsigned NElts; 4590 if (E0->getOpcode() == Instruction::ExtractValue) { 4591 const DataLayout &DL = E0->getModule()->getDataLayout(); 4592 NElts = canMapToVector(Vec->getType(), DL); 4593 if (!NElts) 4594 return false; 4595 // Check if load can be rewritten as load of vector. 4596 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4597 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4598 return false; 4599 } else { 4600 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4601 } 4602 4603 if (NElts != VL.size()) 4604 return false; 4605 4606 // Check that all of the indices extract from the correct offset. 4607 bool ShouldKeepOrder = true; 4608 unsigned E = VL.size(); 4609 // Assign to all items the initial value E + 1 so we can check if the extract 4610 // instruction index was used already. 4611 // Also, later we can check that all the indices are used and we have a 4612 // consecutive access in the extract instructions, by checking that no 4613 // element of CurrentOrder still has value E + 1. 4614 CurrentOrder.assign(E, E); 4615 unsigned I = 0; 4616 for (; I < E; ++I) { 4617 auto *Inst = dyn_cast<Instruction>(VL[I]); 4618 if (!Inst) 4619 continue; 4620 if (Inst->getOperand(0) != Vec) 4621 break; 4622 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4623 if (isa<UndefValue>(EE->getIndexOperand())) 4624 continue; 4625 Optional<unsigned> Idx = getExtractIndex(Inst); 4626 if (!Idx) 4627 break; 4628 const unsigned ExtIdx = *Idx; 4629 if (ExtIdx != I) { 4630 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4631 break; 4632 ShouldKeepOrder = false; 4633 CurrentOrder[ExtIdx] = I; 4634 } else { 4635 if (CurrentOrder[I] != E) 4636 break; 4637 CurrentOrder[I] = I; 4638 } 4639 } 4640 if (I < E) { 4641 CurrentOrder.clear(); 4642 return false; 4643 } 4644 if (ShouldKeepOrder) 4645 CurrentOrder.clear(); 4646 4647 return ShouldKeepOrder; 4648 } 4649 4650 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4651 ArrayRef<Value *> VectorizedVals) const { 4652 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4653 all_of(I->users(), [this](User *U) { 4654 return ScalarToTreeEntry.count(U) > 0 || 4655 isVectorLikeInstWithConstOps(U) || 4656 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4657 }); 4658 } 4659 4660 static std::pair<InstructionCost, InstructionCost> 4661 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4662 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4663 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4664 4665 // Calculate the cost of the scalar and vector calls. 4666 SmallVector<Type *, 4> VecTys; 4667 for (Use &Arg : CI->args()) 4668 VecTys.push_back( 4669 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4670 FastMathFlags FMF; 4671 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4672 FMF = FPCI->getFastMathFlags(); 4673 SmallVector<const Value *> Arguments(CI->args()); 4674 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4675 dyn_cast<IntrinsicInst>(CI)); 4676 auto IntrinsicCost = 4677 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4678 4679 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4680 VecTy->getNumElements())), 4681 false /*HasGlobalPred*/); 4682 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4683 auto LibCost = IntrinsicCost; 4684 if (!CI->isNoBuiltin() && VecFunc) { 4685 // Calculate the cost of the vector library call. 4686 // If the corresponding vector call is cheaper, return its cost. 4687 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4688 TTI::TCK_RecipThroughput); 4689 } 4690 return {IntrinsicCost, LibCost}; 4691 } 4692 4693 /// Compute the cost of creating a vector of type \p VecTy containing the 4694 /// extracted values from \p VL. 4695 static InstructionCost 4696 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4697 TargetTransformInfo::ShuffleKind ShuffleKind, 4698 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4699 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4700 4701 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4702 VecTy->getNumElements() < NumOfParts) 4703 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4704 4705 bool AllConsecutive = true; 4706 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4707 unsigned Idx = -1; 4708 InstructionCost Cost = 0; 4709 4710 // Process extracts in blocks of EltsPerVector to check if the source vector 4711 // operand can be re-used directly. If not, add the cost of creating a shuffle 4712 // to extract the values into a vector register. 4713 for (auto *V : VL) { 4714 ++Idx; 4715 4716 // Need to exclude undefs from analysis. 4717 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4718 continue; 4719 4720 // Reached the start of a new vector registers. 4721 if (Idx % EltsPerVector == 0) { 4722 AllConsecutive = true; 4723 continue; 4724 } 4725 4726 // Check all extracts for a vector register on the target directly 4727 // extract values in order. 4728 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4729 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4730 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4731 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4732 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4733 } 4734 4735 if (AllConsecutive) 4736 continue; 4737 4738 // Skip all indices, except for the last index per vector block. 4739 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4740 continue; 4741 4742 // If we have a series of extracts which are not consecutive and hence 4743 // cannot re-use the source vector register directly, compute the shuffle 4744 // cost to extract the a vector with EltsPerVector elements. 4745 Cost += TTI.getShuffleCost( 4746 TargetTransformInfo::SK_PermuteSingleSrc, 4747 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4748 } 4749 return Cost; 4750 } 4751 4752 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4753 /// operations operands. 4754 static void 4755 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4756 ArrayRef<int> ReusesIndices, 4757 const function_ref<bool(Instruction *)> IsAltOp, 4758 SmallVectorImpl<int> &Mask, 4759 SmallVectorImpl<Value *> *OpScalars = nullptr, 4760 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4761 unsigned Sz = VL.size(); 4762 Mask.assign(Sz, UndefMaskElem); 4763 SmallVector<int> OrderMask; 4764 if (!ReorderIndices.empty()) 4765 inversePermutation(ReorderIndices, OrderMask); 4766 for (unsigned I = 0; I < Sz; ++I) { 4767 unsigned Idx = I; 4768 if (!ReorderIndices.empty()) 4769 Idx = OrderMask[I]; 4770 auto *OpInst = cast<Instruction>(VL[Idx]); 4771 if (IsAltOp(OpInst)) { 4772 Mask[I] = Sz + Idx; 4773 if (AltScalars) 4774 AltScalars->push_back(OpInst); 4775 } else { 4776 Mask[I] = Idx; 4777 if (OpScalars) 4778 OpScalars->push_back(OpInst); 4779 } 4780 } 4781 if (!ReusesIndices.empty()) { 4782 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4783 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4784 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4785 }); 4786 Mask.swap(NewMask); 4787 } 4788 } 4789 4790 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4791 ArrayRef<Value *> VectorizedVals) { 4792 ArrayRef<Value*> VL = E->Scalars; 4793 4794 Type *ScalarTy = VL[0]->getType(); 4795 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4796 ScalarTy = SI->getValueOperand()->getType(); 4797 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4798 ScalarTy = CI->getOperand(0)->getType(); 4799 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4800 ScalarTy = IE->getOperand(1)->getType(); 4801 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4802 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4803 4804 // If we have computed a smaller type for the expression, update VecTy so 4805 // that the costs will be accurate. 4806 if (MinBWs.count(VL[0])) 4807 VecTy = FixedVectorType::get( 4808 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4809 unsigned EntryVF = E->getVectorFactor(); 4810 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4811 4812 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4813 // FIXME: it tries to fix a problem with MSVC buildbots. 4814 TargetTransformInfo &TTIRef = *TTI; 4815 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4816 VectorizedVals, E](InstructionCost &Cost) { 4817 DenseMap<Value *, int> ExtractVectorsTys; 4818 SmallPtrSet<Value *, 4> CheckedExtracts; 4819 for (auto *V : VL) { 4820 if (isa<UndefValue>(V)) 4821 continue; 4822 // If all users of instruction are going to be vectorized and this 4823 // instruction itself is not going to be vectorized, consider this 4824 // instruction as dead and remove its cost from the final cost of the 4825 // vectorized tree. 4826 // Also, avoid adjusting the cost for extractelements with multiple uses 4827 // in different graph entries. 4828 const TreeEntry *VE = getTreeEntry(V); 4829 if (!CheckedExtracts.insert(V).second || 4830 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4831 (VE && VE != E)) 4832 continue; 4833 auto *EE = cast<ExtractElementInst>(V); 4834 Optional<unsigned> EEIdx = getExtractIndex(EE); 4835 if (!EEIdx) 4836 continue; 4837 unsigned Idx = *EEIdx; 4838 if (TTIRef.getNumberOfParts(VecTy) != 4839 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4840 auto It = 4841 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4842 It->getSecond() = std::min<int>(It->second, Idx); 4843 } 4844 // Take credit for instruction that will become dead. 4845 if (EE->hasOneUse()) { 4846 Instruction *Ext = EE->user_back(); 4847 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4848 all_of(Ext->users(), 4849 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4850 // Use getExtractWithExtendCost() to calculate the cost of 4851 // extractelement/ext pair. 4852 Cost -= 4853 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4854 EE->getVectorOperandType(), Idx); 4855 // Add back the cost of s|zext which is subtracted separately. 4856 Cost += TTIRef.getCastInstrCost( 4857 Ext->getOpcode(), Ext->getType(), EE->getType(), 4858 TTI::getCastContextHint(Ext), CostKind, Ext); 4859 continue; 4860 } 4861 } 4862 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4863 EE->getVectorOperandType(), Idx); 4864 } 4865 // Add a cost for subvector extracts/inserts if required. 4866 for (const auto &Data : ExtractVectorsTys) { 4867 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4868 unsigned NumElts = VecTy->getNumElements(); 4869 if (Data.second % NumElts == 0) 4870 continue; 4871 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4872 unsigned Idx = (Data.second / NumElts) * NumElts; 4873 unsigned EENumElts = EEVTy->getNumElements(); 4874 if (Idx + NumElts <= EENumElts) { 4875 Cost += 4876 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4877 EEVTy, None, Idx, VecTy); 4878 } else { 4879 // Need to round up the subvector type vectorization factor to avoid a 4880 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4881 // <= EENumElts. 4882 auto *SubVT = 4883 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4884 Cost += 4885 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4886 EEVTy, None, Idx, SubVT); 4887 } 4888 } else { 4889 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4890 VecTy, None, 0, EEVTy); 4891 } 4892 } 4893 }; 4894 if (E->State == TreeEntry::NeedToGather) { 4895 if (allConstant(VL)) 4896 return 0; 4897 if (isa<InsertElementInst>(VL[0])) 4898 return InstructionCost::getInvalid(); 4899 SmallVector<int> Mask; 4900 SmallVector<const TreeEntry *> Entries; 4901 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4902 isGatherShuffledEntry(E, Mask, Entries); 4903 if (Shuffle.hasValue()) { 4904 InstructionCost GatherCost = 0; 4905 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4906 // Perfect match in the graph, will reuse the previously vectorized 4907 // node. Cost is 0. 4908 LLVM_DEBUG( 4909 dbgs() 4910 << "SLP: perfect diamond match for gather bundle that starts with " 4911 << *VL.front() << ".\n"); 4912 if (NeedToShuffleReuses) 4913 GatherCost = 4914 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4915 FinalVecTy, E->ReuseShuffleIndices); 4916 } else { 4917 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4918 << " entries for bundle that starts with " 4919 << *VL.front() << ".\n"); 4920 // Detected that instead of gather we can emit a shuffle of single/two 4921 // previously vectorized nodes. Add the cost of the permutation rather 4922 // than gather. 4923 ::addMask(Mask, E->ReuseShuffleIndices); 4924 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4925 } 4926 return GatherCost; 4927 } 4928 if ((E->getOpcode() == Instruction::ExtractElement || 4929 all_of(E->Scalars, 4930 [](Value *V) { 4931 return isa<ExtractElementInst, UndefValue>(V); 4932 })) && 4933 allSameType(VL)) { 4934 // Check that gather of extractelements can be represented as just a 4935 // shuffle of a single/two vectors the scalars are extracted from. 4936 SmallVector<int> Mask; 4937 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4938 isFixedVectorShuffle(VL, Mask); 4939 if (ShuffleKind.hasValue()) { 4940 // Found the bunch of extractelement instructions that must be gathered 4941 // into a vector and can be represented as a permutation elements in a 4942 // single input vector or of 2 input vectors. 4943 InstructionCost Cost = 4944 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4945 AdjustExtractsCost(Cost); 4946 if (NeedToShuffleReuses) 4947 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4948 FinalVecTy, E->ReuseShuffleIndices); 4949 return Cost; 4950 } 4951 } 4952 if (isSplat(VL)) { 4953 // Found the broadcasting of the single scalar, calculate the cost as the 4954 // broadcast. 4955 assert(VecTy == FinalVecTy && 4956 "No reused scalars expected for broadcast."); 4957 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4958 } 4959 InstructionCost ReuseShuffleCost = 0; 4960 if (NeedToShuffleReuses) 4961 ReuseShuffleCost = TTI->getShuffleCost( 4962 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4963 // Improve gather cost for gather of loads, if we can group some of the 4964 // loads into vector loads. 4965 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4966 !E->isAltShuffle()) { 4967 BoUpSLP::ValueSet VectorizedLoads; 4968 unsigned StartIdx = 0; 4969 unsigned VF = VL.size() / 2; 4970 unsigned VectorizedCnt = 0; 4971 unsigned ScatterVectorizeCnt = 0; 4972 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4973 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4974 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4975 Cnt += VF) { 4976 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4977 if (!VectorizedLoads.count(Slice.front()) && 4978 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4979 SmallVector<Value *> PointerOps; 4980 OrdersType CurrentOrder; 4981 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4982 *SE, CurrentOrder, PointerOps); 4983 switch (LS) { 4984 case LoadsState::Vectorize: 4985 case LoadsState::ScatterVectorize: 4986 // Mark the vectorized loads so that we don't vectorize them 4987 // again. 4988 if (LS == LoadsState::Vectorize) 4989 ++VectorizedCnt; 4990 else 4991 ++ScatterVectorizeCnt; 4992 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4993 // If we vectorized initial block, no need to try to vectorize it 4994 // again. 4995 if (Cnt == StartIdx) 4996 StartIdx += VF; 4997 break; 4998 case LoadsState::Gather: 4999 break; 5000 } 5001 } 5002 } 5003 // Check if the whole array was vectorized already - exit. 5004 if (StartIdx >= VL.size()) 5005 break; 5006 // Found vectorizable parts - exit. 5007 if (!VectorizedLoads.empty()) 5008 break; 5009 } 5010 if (!VectorizedLoads.empty()) { 5011 InstructionCost GatherCost = 0; 5012 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5013 bool NeedInsertSubvectorAnalysis = 5014 !NumParts || (VL.size() / VF) > NumParts; 5015 // Get the cost for gathered loads. 5016 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5017 if (VectorizedLoads.contains(VL[I])) 5018 continue; 5019 GatherCost += getGatherCost(VL.slice(I, VF)); 5020 } 5021 // The cost for vectorized loads. 5022 InstructionCost ScalarsCost = 0; 5023 for (Value *V : VectorizedLoads) { 5024 auto *LI = cast<LoadInst>(V); 5025 ScalarsCost += TTI->getMemoryOpCost( 5026 Instruction::Load, LI->getType(), LI->getAlign(), 5027 LI->getPointerAddressSpace(), CostKind, LI); 5028 } 5029 auto *LI = cast<LoadInst>(E->getMainOp()); 5030 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5031 Align Alignment = LI->getAlign(); 5032 GatherCost += 5033 VectorizedCnt * 5034 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5035 LI->getPointerAddressSpace(), CostKind, LI); 5036 GatherCost += ScatterVectorizeCnt * 5037 TTI->getGatherScatterOpCost( 5038 Instruction::Load, LoadTy, LI->getPointerOperand(), 5039 /*VariableMask=*/false, Alignment, CostKind, LI); 5040 if (NeedInsertSubvectorAnalysis) { 5041 // Add the cost for the subvectors insert. 5042 for (int I = VF, E = VL.size(); I < E; I += VF) 5043 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5044 None, I, LoadTy); 5045 } 5046 return ReuseShuffleCost + GatherCost - ScalarsCost; 5047 } 5048 } 5049 return ReuseShuffleCost + getGatherCost(VL); 5050 } 5051 InstructionCost CommonCost = 0; 5052 SmallVector<int> Mask; 5053 if (!E->ReorderIndices.empty()) { 5054 SmallVector<int> NewMask; 5055 if (E->getOpcode() == Instruction::Store) { 5056 // For stores the order is actually a mask. 5057 NewMask.resize(E->ReorderIndices.size()); 5058 copy(E->ReorderIndices, NewMask.begin()); 5059 } else { 5060 inversePermutation(E->ReorderIndices, NewMask); 5061 } 5062 ::addMask(Mask, NewMask); 5063 } 5064 if (NeedToShuffleReuses) 5065 ::addMask(Mask, E->ReuseShuffleIndices); 5066 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5067 CommonCost = 5068 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5069 assert((E->State == TreeEntry::Vectorize || 5070 E->State == TreeEntry::ScatterVectorize) && 5071 "Unhandled state"); 5072 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5073 Instruction *VL0 = E->getMainOp(); 5074 unsigned ShuffleOrOp = 5075 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5076 switch (ShuffleOrOp) { 5077 case Instruction::PHI: 5078 return 0; 5079 5080 case Instruction::ExtractValue: 5081 case Instruction::ExtractElement: { 5082 // The common cost of removal ExtractElement/ExtractValue instructions + 5083 // the cost of shuffles, if required to resuffle the original vector. 5084 if (NeedToShuffleReuses) { 5085 unsigned Idx = 0; 5086 for (unsigned I : E->ReuseShuffleIndices) { 5087 if (ShuffleOrOp == Instruction::ExtractElement) { 5088 auto *EE = cast<ExtractElementInst>(VL[I]); 5089 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5090 EE->getVectorOperandType(), 5091 *getExtractIndex(EE)); 5092 } else { 5093 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5094 VecTy, Idx); 5095 ++Idx; 5096 } 5097 } 5098 Idx = EntryVF; 5099 for (Value *V : VL) { 5100 if (ShuffleOrOp == Instruction::ExtractElement) { 5101 auto *EE = cast<ExtractElementInst>(V); 5102 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5103 EE->getVectorOperandType(), 5104 *getExtractIndex(EE)); 5105 } else { 5106 --Idx; 5107 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5108 VecTy, Idx); 5109 } 5110 } 5111 } 5112 if (ShuffleOrOp == Instruction::ExtractValue) { 5113 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5114 auto *EI = cast<Instruction>(VL[I]); 5115 // Take credit for instruction that will become dead. 5116 if (EI->hasOneUse()) { 5117 Instruction *Ext = EI->user_back(); 5118 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5119 all_of(Ext->users(), 5120 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5121 // Use getExtractWithExtendCost() to calculate the cost of 5122 // extractelement/ext pair. 5123 CommonCost -= TTI->getExtractWithExtendCost( 5124 Ext->getOpcode(), Ext->getType(), VecTy, I); 5125 // Add back the cost of s|zext which is subtracted separately. 5126 CommonCost += TTI->getCastInstrCost( 5127 Ext->getOpcode(), Ext->getType(), EI->getType(), 5128 TTI::getCastContextHint(Ext), CostKind, Ext); 5129 continue; 5130 } 5131 } 5132 CommonCost -= 5133 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5134 } 5135 } else { 5136 AdjustExtractsCost(CommonCost); 5137 } 5138 return CommonCost; 5139 } 5140 case Instruction::InsertElement: { 5141 assert(E->ReuseShuffleIndices.empty() && 5142 "Unique insertelements only are expected."); 5143 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5144 5145 unsigned const NumElts = SrcVecTy->getNumElements(); 5146 unsigned const NumScalars = VL.size(); 5147 APInt DemandedElts = APInt::getZero(NumElts); 5148 // TODO: Add support for Instruction::InsertValue. 5149 SmallVector<int> Mask; 5150 if (!E->ReorderIndices.empty()) { 5151 inversePermutation(E->ReorderIndices, Mask); 5152 Mask.append(NumElts - NumScalars, UndefMaskElem); 5153 } else { 5154 Mask.assign(NumElts, UndefMaskElem); 5155 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5156 } 5157 unsigned Offset = *getInsertIndex(VL0, 0); 5158 bool IsIdentity = true; 5159 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5160 Mask.swap(PrevMask); 5161 for (unsigned I = 0; I < NumScalars; ++I) { 5162 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5163 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5164 continue; 5165 DemandedElts.setBit(*InsertIdx); 5166 IsIdentity &= *InsertIdx - Offset == I; 5167 Mask[*InsertIdx - Offset] = I; 5168 } 5169 assert(Offset < NumElts && "Failed to find vector index offset"); 5170 5171 InstructionCost Cost = 0; 5172 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5173 /*Insert*/ true, /*Extract*/ false); 5174 5175 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5176 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5177 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5178 Cost += TTI->getShuffleCost( 5179 TargetTransformInfo::SK_PermuteSingleSrc, 5180 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5181 } else if (!IsIdentity) { 5182 auto *FirstInsert = 5183 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5184 return !is_contained(E->Scalars, 5185 cast<Instruction>(V)->getOperand(0)); 5186 })); 5187 if (isUndefVector(FirstInsert->getOperand(0))) { 5188 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5189 } else { 5190 SmallVector<int> InsertMask(NumElts); 5191 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5192 for (unsigned I = 0; I < NumElts; I++) { 5193 if (Mask[I] != UndefMaskElem) 5194 InsertMask[Offset + I] = NumElts + I; 5195 } 5196 Cost += 5197 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5198 } 5199 } 5200 5201 return Cost; 5202 } 5203 case Instruction::ZExt: 5204 case Instruction::SExt: 5205 case Instruction::FPToUI: 5206 case Instruction::FPToSI: 5207 case Instruction::FPExt: 5208 case Instruction::PtrToInt: 5209 case Instruction::IntToPtr: 5210 case Instruction::SIToFP: 5211 case Instruction::UIToFP: 5212 case Instruction::Trunc: 5213 case Instruction::FPTrunc: 5214 case Instruction::BitCast: { 5215 Type *SrcTy = VL0->getOperand(0)->getType(); 5216 InstructionCost ScalarEltCost = 5217 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5218 TTI::getCastContextHint(VL0), CostKind, VL0); 5219 if (NeedToShuffleReuses) { 5220 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5221 } 5222 5223 // Calculate the cost of this instruction. 5224 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5225 5226 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5227 InstructionCost VecCost = 0; 5228 // Check if the values are candidates to demote. 5229 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5230 VecCost = CommonCost + TTI->getCastInstrCost( 5231 E->getOpcode(), VecTy, SrcVecTy, 5232 TTI::getCastContextHint(VL0), CostKind, VL0); 5233 } 5234 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5235 return VecCost - ScalarCost; 5236 } 5237 case Instruction::FCmp: 5238 case Instruction::ICmp: 5239 case Instruction::Select: { 5240 // Calculate the cost of this instruction. 5241 InstructionCost ScalarEltCost = 5242 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5243 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5244 if (NeedToShuffleReuses) { 5245 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5246 } 5247 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5248 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5249 5250 // Check if all entries in VL are either compares or selects with compares 5251 // as condition that have the same predicates. 5252 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5253 bool First = true; 5254 for (auto *V : VL) { 5255 CmpInst::Predicate CurrentPred; 5256 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5257 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5258 !match(V, MatchCmp)) || 5259 (!First && VecPred != CurrentPred)) { 5260 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5261 break; 5262 } 5263 First = false; 5264 VecPred = CurrentPred; 5265 } 5266 5267 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5268 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5269 // Check if it is possible and profitable to use min/max for selects in 5270 // VL. 5271 // 5272 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5273 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5274 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5275 {VecTy, VecTy}); 5276 InstructionCost IntrinsicCost = 5277 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5278 // If the selects are the only uses of the compares, they will be dead 5279 // and we can adjust the cost by removing their cost. 5280 if (IntrinsicAndUse.second) 5281 IntrinsicCost -= 5282 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5283 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5284 VecCost = std::min(VecCost, IntrinsicCost); 5285 } 5286 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5287 return CommonCost + VecCost - ScalarCost; 5288 } 5289 case Instruction::FNeg: 5290 case Instruction::Add: 5291 case Instruction::FAdd: 5292 case Instruction::Sub: 5293 case Instruction::FSub: 5294 case Instruction::Mul: 5295 case Instruction::FMul: 5296 case Instruction::UDiv: 5297 case Instruction::SDiv: 5298 case Instruction::FDiv: 5299 case Instruction::URem: 5300 case Instruction::SRem: 5301 case Instruction::FRem: 5302 case Instruction::Shl: 5303 case Instruction::LShr: 5304 case Instruction::AShr: 5305 case Instruction::And: 5306 case Instruction::Or: 5307 case Instruction::Xor: { 5308 // Certain instructions can be cheaper to vectorize if they have a 5309 // constant second vector operand. 5310 TargetTransformInfo::OperandValueKind Op1VK = 5311 TargetTransformInfo::OK_AnyValue; 5312 TargetTransformInfo::OperandValueKind Op2VK = 5313 TargetTransformInfo::OK_UniformConstantValue; 5314 TargetTransformInfo::OperandValueProperties Op1VP = 5315 TargetTransformInfo::OP_None; 5316 TargetTransformInfo::OperandValueProperties Op2VP = 5317 TargetTransformInfo::OP_PowerOf2; 5318 5319 // If all operands are exactly the same ConstantInt then set the 5320 // operand kind to OK_UniformConstantValue. 5321 // If instead not all operands are constants, then set the operand kind 5322 // to OK_AnyValue. If all operands are constants but not the same, 5323 // then set the operand kind to OK_NonUniformConstantValue. 5324 ConstantInt *CInt0 = nullptr; 5325 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5326 const Instruction *I = cast<Instruction>(VL[i]); 5327 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5328 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5329 if (!CInt) { 5330 Op2VK = TargetTransformInfo::OK_AnyValue; 5331 Op2VP = TargetTransformInfo::OP_None; 5332 break; 5333 } 5334 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5335 !CInt->getValue().isPowerOf2()) 5336 Op2VP = TargetTransformInfo::OP_None; 5337 if (i == 0) { 5338 CInt0 = CInt; 5339 continue; 5340 } 5341 if (CInt0 != CInt) 5342 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5343 } 5344 5345 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5346 InstructionCost ScalarEltCost = 5347 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5348 Op2VK, Op1VP, Op2VP, Operands, VL0); 5349 if (NeedToShuffleReuses) { 5350 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5351 } 5352 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5353 InstructionCost VecCost = 5354 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5355 Op2VK, Op1VP, Op2VP, Operands, VL0); 5356 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5357 return CommonCost + VecCost - ScalarCost; 5358 } 5359 case Instruction::GetElementPtr: { 5360 TargetTransformInfo::OperandValueKind Op1VK = 5361 TargetTransformInfo::OK_AnyValue; 5362 TargetTransformInfo::OperandValueKind Op2VK = 5363 TargetTransformInfo::OK_UniformConstantValue; 5364 5365 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5366 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5367 if (NeedToShuffleReuses) { 5368 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5369 } 5370 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5371 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5372 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5373 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5374 return CommonCost + VecCost - ScalarCost; 5375 } 5376 case Instruction::Load: { 5377 // Cost of wide load - cost of scalar loads. 5378 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5379 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5380 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5381 if (NeedToShuffleReuses) { 5382 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5383 } 5384 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5385 InstructionCost VecLdCost; 5386 if (E->State == TreeEntry::Vectorize) { 5387 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5388 CostKind, VL0); 5389 } else { 5390 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5391 Align CommonAlignment = Alignment; 5392 for (Value *V : VL) 5393 CommonAlignment = 5394 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5395 VecLdCost = TTI->getGatherScatterOpCost( 5396 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5397 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5398 } 5399 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5400 return CommonCost + VecLdCost - ScalarLdCost; 5401 } 5402 case Instruction::Store: { 5403 // We know that we can merge the stores. Calculate the cost. 5404 bool IsReorder = !E->ReorderIndices.empty(); 5405 auto *SI = 5406 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5407 Align Alignment = SI->getAlign(); 5408 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5409 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5410 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5411 InstructionCost VecStCost = TTI->getMemoryOpCost( 5412 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5413 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5414 return CommonCost + VecStCost - ScalarStCost; 5415 } 5416 case Instruction::Call: { 5417 CallInst *CI = cast<CallInst>(VL0); 5418 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5419 5420 // Calculate the cost of the scalar and vector calls. 5421 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5422 InstructionCost ScalarEltCost = 5423 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5424 if (NeedToShuffleReuses) { 5425 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5426 } 5427 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5428 5429 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5430 InstructionCost VecCallCost = 5431 std::min(VecCallCosts.first, VecCallCosts.second); 5432 5433 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5434 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5435 << " for " << *CI << "\n"); 5436 5437 return CommonCost + VecCallCost - ScalarCallCost; 5438 } 5439 case Instruction::ShuffleVector: { 5440 assert(E->isAltShuffle() && 5441 ((Instruction::isBinaryOp(E->getOpcode()) && 5442 Instruction::isBinaryOp(E->getAltOpcode())) || 5443 (Instruction::isCast(E->getOpcode()) && 5444 Instruction::isCast(E->getAltOpcode())) || 5445 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5446 "Invalid Shuffle Vector Operand"); 5447 InstructionCost ScalarCost = 0; 5448 if (NeedToShuffleReuses) { 5449 for (unsigned Idx : E->ReuseShuffleIndices) { 5450 Instruction *I = cast<Instruction>(VL[Idx]); 5451 CommonCost -= TTI->getInstructionCost(I, CostKind); 5452 } 5453 for (Value *V : VL) { 5454 Instruction *I = cast<Instruction>(V); 5455 CommonCost += TTI->getInstructionCost(I, CostKind); 5456 } 5457 } 5458 for (Value *V : VL) { 5459 Instruction *I = cast<Instruction>(V); 5460 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5461 ScalarCost += TTI->getInstructionCost(I, CostKind); 5462 } 5463 // VecCost is equal to sum of the cost of creating 2 vectors 5464 // and the cost of creating shuffle. 5465 InstructionCost VecCost = 0; 5466 // Try to find the previous shuffle node with the same operands and same 5467 // main/alternate ops. 5468 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5469 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5470 if (TE.get() == E) 5471 break; 5472 if (TE->isAltShuffle() && 5473 ((TE->getOpcode() == E->getOpcode() && 5474 TE->getAltOpcode() == E->getAltOpcode()) || 5475 (TE->getOpcode() == E->getAltOpcode() && 5476 TE->getAltOpcode() == E->getOpcode())) && 5477 TE->hasEqualOperands(*E)) 5478 return true; 5479 } 5480 return false; 5481 }; 5482 if (TryFindNodeWithEqualOperands()) { 5483 LLVM_DEBUG({ 5484 dbgs() << "SLP: diamond match for alternate node found.\n"; 5485 E->dump(); 5486 }); 5487 // No need to add new vector costs here since we're going to reuse 5488 // same main/alternate vector ops, just do different shuffling. 5489 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5490 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5491 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5492 CostKind); 5493 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5494 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5495 Builder.getInt1Ty(), 5496 CI0->getPredicate(), CostKind, VL0); 5497 VecCost += TTI->getCmpSelInstrCost( 5498 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5499 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5500 E->getAltOp()); 5501 } else { 5502 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5503 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5504 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5505 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5506 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5507 TTI::CastContextHint::None, CostKind); 5508 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5509 TTI::CastContextHint::None, CostKind); 5510 } 5511 5512 SmallVector<int> Mask; 5513 buildSuffleEntryMask( 5514 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5515 [E](Instruction *I) { 5516 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5517 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 5518 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 5519 auto *CI = cast<CmpInst>(I); 5520 CmpInst::Predicate P0 = CI0->getPredicate(); 5521 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5522 assert(P0 != AltP0 && 5523 "Expected different main/alternate predicates."); 5524 CmpInst::Predicate AltP0Swapped = 5525 CmpInst::getSwappedPredicate(AltP0); 5526 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5527 if (P0 == AltP0Swapped) 5528 return (P0 == CurrentPred && 5529 !areCompatibleCmpOps( 5530 CI0->getOperand(0), CI0->getOperand(1), 5531 CI->getOperand(0), CI->getOperand(1))) || 5532 (AltP0 == CurrentPred && 5533 !areCompatibleCmpOps( 5534 CI0->getOperand(0), CI0->getOperand(1), 5535 CI->getOperand(1), CI->getOperand(0))); 5536 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5537 } 5538 return I->getOpcode() == E->getAltOpcode(); 5539 }, 5540 Mask); 5541 CommonCost = 5542 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5543 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5544 return CommonCost + VecCost - ScalarCost; 5545 } 5546 default: 5547 llvm_unreachable("Unknown instruction"); 5548 } 5549 } 5550 5551 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5552 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5553 << VectorizableTree.size() << " is fully vectorizable .\n"); 5554 5555 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5556 SmallVector<int> Mask; 5557 return TE->State == TreeEntry::NeedToGather && 5558 !any_of(TE->Scalars, 5559 [this](Value *V) { return EphValues.contains(V); }) && 5560 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5561 TE->Scalars.size() < Limit || 5562 ((TE->getOpcode() == Instruction::ExtractElement || 5563 all_of(TE->Scalars, 5564 [](Value *V) { 5565 return isa<ExtractElementInst, UndefValue>(V); 5566 })) && 5567 isFixedVectorShuffle(TE->Scalars, Mask)) || 5568 (TE->State == TreeEntry::NeedToGather && 5569 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5570 }; 5571 5572 // We only handle trees of heights 1 and 2. 5573 if (VectorizableTree.size() == 1 && 5574 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5575 (ForReduction && 5576 AreVectorizableGathers(VectorizableTree[0].get(), 5577 VectorizableTree[0]->Scalars.size()) && 5578 VectorizableTree[0]->getVectorFactor() > 2))) 5579 return true; 5580 5581 if (VectorizableTree.size() != 2) 5582 return false; 5583 5584 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5585 // with the second gather nodes if they have less scalar operands rather than 5586 // the initial tree element (may be profitable to shuffle the second gather) 5587 // or they are extractelements, which form shuffle. 5588 SmallVector<int> Mask; 5589 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5590 AreVectorizableGathers(VectorizableTree[1].get(), 5591 VectorizableTree[0]->Scalars.size())) 5592 return true; 5593 5594 // Gathering cost would be too much for tiny trees. 5595 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5596 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5597 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5598 return false; 5599 5600 return true; 5601 } 5602 5603 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5604 TargetTransformInfo *TTI, 5605 bool MustMatchOrInst) { 5606 // Look past the root to find a source value. Arbitrarily follow the 5607 // path through operand 0 of any 'or'. Also, peek through optional 5608 // shift-left-by-multiple-of-8-bits. 5609 Value *ZextLoad = Root; 5610 const APInt *ShAmtC; 5611 bool FoundOr = false; 5612 while (!isa<ConstantExpr>(ZextLoad) && 5613 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5614 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5615 ShAmtC->urem(8) == 0))) { 5616 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5617 ZextLoad = BinOp->getOperand(0); 5618 if (BinOp->getOpcode() == Instruction::Or) 5619 FoundOr = true; 5620 } 5621 // Check if the input is an extended load of the required or/shift expression. 5622 Value *Load; 5623 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5624 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5625 return false; 5626 5627 // Require that the total load bit width is a legal integer type. 5628 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5629 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5630 Type *SrcTy = Load->getType(); 5631 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5632 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5633 return false; 5634 5635 // Everything matched - assume that we can fold the whole sequence using 5636 // load combining. 5637 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5638 << *(cast<Instruction>(Root)) << "\n"); 5639 5640 return true; 5641 } 5642 5643 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5644 if (RdxKind != RecurKind::Or) 5645 return false; 5646 5647 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5648 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5649 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5650 /* MatchOr */ false); 5651 } 5652 5653 bool BoUpSLP::isLoadCombineCandidate() const { 5654 // Peek through a final sequence of stores and check if all operations are 5655 // likely to be load-combined. 5656 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5657 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5658 Value *X; 5659 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5660 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5661 return false; 5662 } 5663 return true; 5664 } 5665 5666 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5667 // No need to vectorize inserts of gathered values. 5668 if (VectorizableTree.size() == 2 && 5669 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5670 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5671 return true; 5672 5673 // We can vectorize the tree if its size is greater than or equal to the 5674 // minimum size specified by the MinTreeSize command line option. 5675 if (VectorizableTree.size() >= MinTreeSize) 5676 return false; 5677 5678 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5679 // can vectorize it if we can prove it fully vectorizable. 5680 if (isFullyVectorizableTinyTree(ForReduction)) 5681 return false; 5682 5683 assert(VectorizableTree.empty() 5684 ? ExternalUses.empty() 5685 : true && "We shouldn't have any external users"); 5686 5687 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5688 // vectorizable. 5689 return true; 5690 } 5691 5692 InstructionCost BoUpSLP::getSpillCost() const { 5693 // Walk from the bottom of the tree to the top, tracking which values are 5694 // live. When we see a call instruction that is not part of our tree, 5695 // query TTI to see if there is a cost to keeping values live over it 5696 // (for example, if spills and fills are required). 5697 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5698 InstructionCost Cost = 0; 5699 5700 SmallPtrSet<Instruction*, 4> LiveValues; 5701 Instruction *PrevInst = nullptr; 5702 5703 // The entries in VectorizableTree are not necessarily ordered by their 5704 // position in basic blocks. Collect them and order them by dominance so later 5705 // instructions are guaranteed to be visited first. For instructions in 5706 // different basic blocks, we only scan to the beginning of the block, so 5707 // their order does not matter, as long as all instructions in a basic block 5708 // are grouped together. Using dominance ensures a deterministic order. 5709 SmallVector<Instruction *, 16> OrderedScalars; 5710 for (const auto &TEPtr : VectorizableTree) { 5711 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5712 if (!Inst) 5713 continue; 5714 OrderedScalars.push_back(Inst); 5715 } 5716 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5717 auto *NodeA = DT->getNode(A->getParent()); 5718 auto *NodeB = DT->getNode(B->getParent()); 5719 assert(NodeA && "Should only process reachable instructions"); 5720 assert(NodeB && "Should only process reachable instructions"); 5721 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5722 "Different nodes should have different DFS numbers"); 5723 if (NodeA != NodeB) 5724 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5725 return B->comesBefore(A); 5726 }); 5727 5728 for (Instruction *Inst : OrderedScalars) { 5729 if (!PrevInst) { 5730 PrevInst = Inst; 5731 continue; 5732 } 5733 5734 // Update LiveValues. 5735 LiveValues.erase(PrevInst); 5736 for (auto &J : PrevInst->operands()) { 5737 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5738 LiveValues.insert(cast<Instruction>(&*J)); 5739 } 5740 5741 LLVM_DEBUG({ 5742 dbgs() << "SLP: #LV: " << LiveValues.size(); 5743 for (auto *X : LiveValues) 5744 dbgs() << " " << X->getName(); 5745 dbgs() << ", Looking at "; 5746 Inst->dump(); 5747 }); 5748 5749 // Now find the sequence of instructions between PrevInst and Inst. 5750 unsigned NumCalls = 0; 5751 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5752 PrevInstIt = 5753 PrevInst->getIterator().getReverse(); 5754 while (InstIt != PrevInstIt) { 5755 if (PrevInstIt == PrevInst->getParent()->rend()) { 5756 PrevInstIt = Inst->getParent()->rbegin(); 5757 continue; 5758 } 5759 5760 // Debug information does not impact spill cost. 5761 if ((isa<CallInst>(&*PrevInstIt) && 5762 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5763 &*PrevInstIt != PrevInst) 5764 NumCalls++; 5765 5766 ++PrevInstIt; 5767 } 5768 5769 if (NumCalls) { 5770 SmallVector<Type*, 4> V; 5771 for (auto *II : LiveValues) { 5772 auto *ScalarTy = II->getType(); 5773 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5774 ScalarTy = VectorTy->getElementType(); 5775 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5776 } 5777 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5778 } 5779 5780 PrevInst = Inst; 5781 } 5782 5783 return Cost; 5784 } 5785 5786 /// Check if two insertelement instructions are from the same buildvector. 5787 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5788 InsertElementInst *V) { 5789 // Instructions must be from the same basic blocks. 5790 if (VU->getParent() != V->getParent()) 5791 return false; 5792 // Checks if 2 insertelements are from the same buildvector. 5793 if (VU->getType() != V->getType()) 5794 return false; 5795 // Multiple used inserts are separate nodes. 5796 if (!VU->hasOneUse() && !V->hasOneUse()) 5797 return false; 5798 auto *IE1 = VU; 5799 auto *IE2 = V; 5800 // Go through the vector operand of insertelement instructions trying to find 5801 // either VU as the original vector for IE2 or V as the original vector for 5802 // IE1. 5803 do { 5804 if (IE2 == VU || IE1 == V) 5805 return true; 5806 if (IE1) { 5807 if (IE1 != VU && !IE1->hasOneUse()) 5808 IE1 = nullptr; 5809 else 5810 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5811 } 5812 if (IE2) { 5813 if (IE2 != V && !IE2->hasOneUse()) 5814 IE2 = nullptr; 5815 else 5816 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5817 } 5818 } while (IE1 || IE2); 5819 return false; 5820 } 5821 5822 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5823 InstructionCost Cost = 0; 5824 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5825 << VectorizableTree.size() << ".\n"); 5826 5827 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5828 5829 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5830 TreeEntry &TE = *VectorizableTree[I].get(); 5831 5832 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5833 Cost += C; 5834 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5835 << " for bundle that starts with " << *TE.Scalars[0] 5836 << ".\n" 5837 << "SLP: Current total cost = " << Cost << "\n"); 5838 } 5839 5840 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5841 InstructionCost ExtractCost = 0; 5842 SmallVector<unsigned> VF; 5843 SmallVector<SmallVector<int>> ShuffleMask; 5844 SmallVector<Value *> FirstUsers; 5845 SmallVector<APInt> DemandedElts; 5846 for (ExternalUser &EU : ExternalUses) { 5847 // We only add extract cost once for the same scalar. 5848 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5849 !ExtractCostCalculated.insert(EU.Scalar).second) 5850 continue; 5851 5852 // Uses by ephemeral values are free (because the ephemeral value will be 5853 // removed prior to code generation, and so the extraction will be 5854 // removed as well). 5855 if (EphValues.count(EU.User)) 5856 continue; 5857 5858 // No extract cost for vector "scalar" 5859 if (isa<FixedVectorType>(EU.Scalar->getType())) 5860 continue; 5861 5862 // Already counted the cost for external uses when tried to adjust the cost 5863 // for extractelements, no need to add it again. 5864 if (isa<ExtractElementInst>(EU.Scalar)) 5865 continue; 5866 5867 // If found user is an insertelement, do not calculate extract cost but try 5868 // to detect it as a final shuffled/identity match. 5869 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5870 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5871 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5872 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5873 continue; 5874 auto *It = find_if(FirstUsers, [VU](Value *V) { 5875 return areTwoInsertFromSameBuildVector(VU, 5876 cast<InsertElementInst>(V)); 5877 }); 5878 int VecId = -1; 5879 if (It == FirstUsers.end()) { 5880 VF.push_back(FTy->getNumElements()); 5881 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5882 // Find the insertvector, vectorized in tree, if any. 5883 Value *Base = VU; 5884 while (isa<InsertElementInst>(Base)) { 5885 // Build the mask for the vectorized insertelement instructions. 5886 if (const TreeEntry *E = getTreeEntry(Base)) { 5887 VU = cast<InsertElementInst>(Base); 5888 do { 5889 int Idx = E->findLaneForValue(Base); 5890 ShuffleMask.back()[Idx] = Idx; 5891 Base = cast<InsertElementInst>(Base)->getOperand(0); 5892 } while (E == getTreeEntry(Base)); 5893 break; 5894 } 5895 Base = cast<InsertElementInst>(Base)->getOperand(0); 5896 } 5897 FirstUsers.push_back(VU); 5898 DemandedElts.push_back(APInt::getZero(VF.back())); 5899 VecId = FirstUsers.size() - 1; 5900 } else { 5901 VecId = std::distance(FirstUsers.begin(), It); 5902 } 5903 int Idx = *InsertIdx; 5904 ShuffleMask[VecId][Idx] = EU.Lane; 5905 DemandedElts[VecId].setBit(Idx); 5906 continue; 5907 } 5908 } 5909 5910 // If we plan to rewrite the tree in a smaller type, we will need to sign 5911 // extend the extracted value back to the original type. Here, we account 5912 // for the extract and the added cost of the sign extend if needed. 5913 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5914 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5915 if (MinBWs.count(ScalarRoot)) { 5916 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5917 auto Extend = 5918 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5919 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5920 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5921 VecTy, EU.Lane); 5922 } else { 5923 ExtractCost += 5924 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5925 } 5926 } 5927 5928 InstructionCost SpillCost = getSpillCost(); 5929 Cost += SpillCost + ExtractCost; 5930 if (FirstUsers.size() == 1) { 5931 int Limit = ShuffleMask.front().size() * 2; 5932 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5933 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5934 InstructionCost C = TTI->getShuffleCost( 5935 TTI::SK_PermuteSingleSrc, 5936 cast<FixedVectorType>(FirstUsers.front()->getType()), 5937 ShuffleMask.front()); 5938 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5939 << " for final shuffle of insertelement external users " 5940 << *VectorizableTree.front()->Scalars.front() << ".\n" 5941 << "SLP: Current total cost = " << Cost << "\n"); 5942 Cost += C; 5943 } 5944 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5945 cast<FixedVectorType>(FirstUsers.front()->getType()), 5946 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5947 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5948 << " for insertelements gather.\n" 5949 << "SLP: Current total cost = " << Cost << "\n"); 5950 Cost -= InsertCost; 5951 } else if (FirstUsers.size() >= 2) { 5952 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5953 // Combined masks of the first 2 vectors. 5954 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5955 copy(ShuffleMask.front(), CombinedMask.begin()); 5956 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5957 auto *VecTy = FixedVectorType::get( 5958 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5959 MaxVF); 5960 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5961 if (ShuffleMask[1][I] != UndefMaskElem) { 5962 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5963 CombinedDemandedElts.setBit(I); 5964 } 5965 } 5966 InstructionCost C = 5967 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5968 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5969 << " for final shuffle of vector node and external " 5970 "insertelement users " 5971 << *VectorizableTree.front()->Scalars.front() << ".\n" 5972 << "SLP: Current total cost = " << Cost << "\n"); 5973 Cost += C; 5974 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5975 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5976 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5977 << " for insertelements gather.\n" 5978 << "SLP: Current total cost = " << Cost << "\n"); 5979 Cost -= InsertCost; 5980 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5981 // Other elements - permutation of 2 vectors (the initial one and the 5982 // next Ith incoming vector). 5983 unsigned VF = ShuffleMask[I].size(); 5984 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5985 int Mask = ShuffleMask[I][Idx]; 5986 if (Mask != UndefMaskElem) 5987 CombinedMask[Idx] = MaxVF + Mask; 5988 else if (CombinedMask[Idx] != UndefMaskElem) 5989 CombinedMask[Idx] = Idx; 5990 } 5991 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5992 if (CombinedMask[Idx] != UndefMaskElem) 5993 CombinedMask[Idx] = Idx; 5994 InstructionCost C = 5995 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5996 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5997 << " for final shuffle of vector node and external " 5998 "insertelement users " 5999 << *VectorizableTree.front()->Scalars.front() << ".\n" 6000 << "SLP: Current total cost = " << Cost << "\n"); 6001 Cost += C; 6002 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6003 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6004 /*Insert*/ true, /*Extract*/ false); 6005 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6006 << " for insertelements gather.\n" 6007 << "SLP: Current total cost = " << Cost << "\n"); 6008 Cost -= InsertCost; 6009 } 6010 } 6011 6012 #ifndef NDEBUG 6013 SmallString<256> Str; 6014 { 6015 raw_svector_ostream OS(Str); 6016 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6017 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6018 << "SLP: Total Cost = " << Cost << ".\n"; 6019 } 6020 LLVM_DEBUG(dbgs() << Str); 6021 if (ViewSLPTree) 6022 ViewGraph(this, "SLP" + F->getName(), false, Str); 6023 #endif 6024 6025 return Cost; 6026 } 6027 6028 Optional<TargetTransformInfo::ShuffleKind> 6029 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6030 SmallVectorImpl<const TreeEntry *> &Entries) { 6031 // TODO: currently checking only for Scalars in the tree entry, need to count 6032 // reused elements too for better cost estimation. 6033 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6034 Entries.clear(); 6035 // Build a lists of values to tree entries. 6036 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6037 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6038 if (EntryPtr.get() == TE) 6039 break; 6040 if (EntryPtr->State != TreeEntry::NeedToGather) 6041 continue; 6042 for (Value *V : EntryPtr->Scalars) 6043 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6044 } 6045 // Find all tree entries used by the gathered values. If no common entries 6046 // found - not a shuffle. 6047 // Here we build a set of tree nodes for each gathered value and trying to 6048 // find the intersection between these sets. If we have at least one common 6049 // tree node for each gathered value - we have just a permutation of the 6050 // single vector. If we have 2 different sets, we're in situation where we 6051 // have a permutation of 2 input vectors. 6052 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6053 DenseMap<Value *, int> UsedValuesEntry; 6054 for (Value *V : TE->Scalars) { 6055 if (isa<UndefValue>(V)) 6056 continue; 6057 // Build a list of tree entries where V is used. 6058 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6059 auto It = ValueToTEs.find(V); 6060 if (It != ValueToTEs.end()) 6061 VToTEs = It->second; 6062 if (const TreeEntry *VTE = getTreeEntry(V)) 6063 VToTEs.insert(VTE); 6064 if (VToTEs.empty()) 6065 return None; 6066 if (UsedTEs.empty()) { 6067 // The first iteration, just insert the list of nodes to vector. 6068 UsedTEs.push_back(VToTEs); 6069 } else { 6070 // Need to check if there are any previously used tree nodes which use V. 6071 // If there are no such nodes, consider that we have another one input 6072 // vector. 6073 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6074 unsigned Idx = 0; 6075 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6076 // Do we have a non-empty intersection of previously listed tree entries 6077 // and tree entries using current V? 6078 set_intersect(VToTEs, Set); 6079 if (!VToTEs.empty()) { 6080 // Yes, write the new subset and continue analysis for the next 6081 // scalar. 6082 Set.swap(VToTEs); 6083 break; 6084 } 6085 VToTEs = SavedVToTEs; 6086 ++Idx; 6087 } 6088 // No non-empty intersection found - need to add a second set of possible 6089 // source vectors. 6090 if (Idx == UsedTEs.size()) { 6091 // If the number of input vectors is greater than 2 - not a permutation, 6092 // fallback to the regular gather. 6093 if (UsedTEs.size() == 2) 6094 return None; 6095 UsedTEs.push_back(SavedVToTEs); 6096 Idx = UsedTEs.size() - 1; 6097 } 6098 UsedValuesEntry.try_emplace(V, Idx); 6099 } 6100 } 6101 6102 unsigned VF = 0; 6103 if (UsedTEs.size() == 1) { 6104 // Try to find the perfect match in another gather node at first. 6105 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6106 return EntryPtr->isSame(TE->Scalars); 6107 }); 6108 if (It != UsedTEs.front().end()) { 6109 Entries.push_back(*It); 6110 std::iota(Mask.begin(), Mask.end(), 0); 6111 return TargetTransformInfo::SK_PermuteSingleSrc; 6112 } 6113 // No perfect match, just shuffle, so choose the first tree node. 6114 Entries.push_back(*UsedTEs.front().begin()); 6115 } else { 6116 // Try to find nodes with the same vector factor. 6117 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6118 DenseMap<int, const TreeEntry *> VFToTE; 6119 for (const TreeEntry *TE : UsedTEs.front()) 6120 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6121 for (const TreeEntry *TE : UsedTEs.back()) { 6122 auto It = VFToTE.find(TE->getVectorFactor()); 6123 if (It != VFToTE.end()) { 6124 VF = It->first; 6125 Entries.push_back(It->second); 6126 Entries.push_back(TE); 6127 break; 6128 } 6129 } 6130 // No 2 source vectors with the same vector factor - give up and do regular 6131 // gather. 6132 if (Entries.empty()) 6133 return None; 6134 } 6135 6136 // Build a shuffle mask for better cost estimation and vector emission. 6137 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6138 Value *V = TE->Scalars[I]; 6139 if (isa<UndefValue>(V)) 6140 continue; 6141 unsigned Idx = UsedValuesEntry.lookup(V); 6142 const TreeEntry *VTE = Entries[Idx]; 6143 int FoundLane = VTE->findLaneForValue(V); 6144 Mask[I] = Idx * VF + FoundLane; 6145 // Extra check required by isSingleSourceMaskImpl function (called by 6146 // ShuffleVectorInst::isSingleSourceMask). 6147 if (Mask[I] >= 2 * E) 6148 return None; 6149 } 6150 switch (Entries.size()) { 6151 case 1: 6152 return TargetTransformInfo::SK_PermuteSingleSrc; 6153 case 2: 6154 return TargetTransformInfo::SK_PermuteTwoSrc; 6155 default: 6156 break; 6157 } 6158 return None; 6159 } 6160 6161 InstructionCost 6162 BoUpSLP::getGatherCost(FixedVectorType *Ty, 6163 const DenseSet<unsigned> &ShuffledIndices, 6164 bool NeedToShuffle) const { 6165 unsigned NumElts = Ty->getNumElements(); 6166 APInt DemandedElts = APInt::getZero(NumElts); 6167 for (unsigned I = 0; I < NumElts; ++I) 6168 if (!ShuffledIndices.count(I)) 6169 DemandedElts.setBit(I); 6170 InstructionCost Cost = 6171 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 6172 /*Extract*/ false); 6173 if (NeedToShuffle) 6174 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6175 return Cost; 6176 } 6177 6178 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6179 // Find the type of the operands in VL. 6180 Type *ScalarTy = VL[0]->getType(); 6181 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6182 ScalarTy = SI->getValueOperand()->getType(); 6183 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6184 bool DuplicateNonConst = false; 6185 // Find the cost of inserting/extracting values from the vector. 6186 // Check if the same elements are inserted several times and count them as 6187 // shuffle candidates. 6188 DenseSet<unsigned> ShuffledElements; 6189 DenseSet<Value *> UniqueElements; 6190 // Iterate in reverse order to consider insert elements with the high cost. 6191 for (unsigned I = VL.size(); I > 0; --I) { 6192 unsigned Idx = I - 1; 6193 // No need to shuffle duplicates for constants. 6194 if (isConstant(VL[Idx])) { 6195 ShuffledElements.insert(Idx); 6196 continue; 6197 } 6198 if (!UniqueElements.insert(VL[Idx]).second) { 6199 DuplicateNonConst = true; 6200 ShuffledElements.insert(Idx); 6201 } 6202 } 6203 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6204 } 6205 6206 // Perform operand reordering on the instructions in VL and return the reordered 6207 // operands in Left and Right. 6208 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6209 SmallVectorImpl<Value *> &Left, 6210 SmallVectorImpl<Value *> &Right, 6211 const DataLayout &DL, 6212 ScalarEvolution &SE, 6213 const BoUpSLP &R) { 6214 if (VL.empty()) 6215 return; 6216 VLOperands Ops(VL, DL, SE, R); 6217 // Reorder the operands in place. 6218 Ops.reorder(); 6219 Left = Ops.getVL(0); 6220 Right = Ops.getVL(1); 6221 } 6222 6223 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6224 // Get the basic block this bundle is in. All instructions in the bundle 6225 // should be in this block. 6226 auto *Front = E->getMainOp(); 6227 auto *BB = Front->getParent(); 6228 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6229 auto *I = cast<Instruction>(V); 6230 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6231 })); 6232 6233 // The last instruction in the bundle in program order. 6234 Instruction *LastInst = nullptr; 6235 6236 // Find the last instruction. The common case should be that BB has been 6237 // scheduled, and the last instruction is VL.back(). So we start with 6238 // VL.back() and iterate over schedule data until we reach the end of the 6239 // bundle. The end of the bundle is marked by null ScheduleData. 6240 if (BlocksSchedules.count(BB)) { 6241 auto *Bundle = 6242 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6243 if (Bundle && Bundle->isPartOfBundle()) 6244 for (; Bundle; Bundle = Bundle->NextInBundle) 6245 if (Bundle->OpValue == Bundle->Inst) 6246 LastInst = Bundle->Inst; 6247 } 6248 6249 // LastInst can still be null at this point if there's either not an entry 6250 // for BB in BlocksSchedules or there's no ScheduleData available for 6251 // VL.back(). This can be the case if buildTree_rec aborts for various 6252 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6253 // size is reached, etc.). ScheduleData is initialized in the scheduling 6254 // "dry-run". 6255 // 6256 // If this happens, we can still find the last instruction by brute force. We 6257 // iterate forwards from Front (inclusive) until we either see all 6258 // instructions in the bundle or reach the end of the block. If Front is the 6259 // last instruction in program order, LastInst will be set to Front, and we 6260 // will visit all the remaining instructions in the block. 6261 // 6262 // One of the reasons we exit early from buildTree_rec is to place an upper 6263 // bound on compile-time. Thus, taking an additional compile-time hit here is 6264 // not ideal. However, this should be exceedingly rare since it requires that 6265 // we both exit early from buildTree_rec and that the bundle be out-of-order 6266 // (causing us to iterate all the way to the end of the block). 6267 if (!LastInst) { 6268 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6269 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6270 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6271 LastInst = &I; 6272 if (Bundle.empty()) 6273 break; 6274 } 6275 } 6276 assert(LastInst && "Failed to find last instruction in bundle"); 6277 6278 // Set the insertion point after the last instruction in the bundle. Set the 6279 // debug location to Front. 6280 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6281 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6282 } 6283 6284 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6285 // List of instructions/lanes from current block and/or the blocks which are 6286 // part of the current loop. These instructions will be inserted at the end to 6287 // make it possible to optimize loops and hoist invariant instructions out of 6288 // the loops body with better chances for success. 6289 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6290 SmallSet<int, 4> PostponedIndices; 6291 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6292 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6293 SmallPtrSet<BasicBlock *, 4> Visited; 6294 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6295 InsertBB = InsertBB->getSinglePredecessor(); 6296 return InsertBB && InsertBB == InstBB; 6297 }; 6298 for (int I = 0, E = VL.size(); I < E; ++I) { 6299 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6300 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6301 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6302 PostponedIndices.insert(I).second) 6303 PostponedInsts.emplace_back(Inst, I); 6304 } 6305 6306 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6307 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6308 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6309 if (!InsElt) 6310 return Vec; 6311 GatherShuffleSeq.insert(InsElt); 6312 CSEBlocks.insert(InsElt->getParent()); 6313 // Add to our 'need-to-extract' list. 6314 if (TreeEntry *Entry = getTreeEntry(V)) { 6315 // Find which lane we need to extract. 6316 unsigned FoundLane = Entry->findLaneForValue(V); 6317 ExternalUses.emplace_back(V, InsElt, FoundLane); 6318 } 6319 return Vec; 6320 }; 6321 Value *Val0 = 6322 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6323 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6324 Value *Vec = PoisonValue::get(VecTy); 6325 SmallVector<int> NonConsts; 6326 // Insert constant values at first. 6327 for (int I = 0, E = VL.size(); I < E; ++I) { 6328 if (PostponedIndices.contains(I)) 6329 continue; 6330 if (!isConstant(VL[I])) { 6331 NonConsts.push_back(I); 6332 continue; 6333 } 6334 Vec = CreateInsertElement(Vec, VL[I], I); 6335 } 6336 // Insert non-constant values. 6337 for (int I : NonConsts) 6338 Vec = CreateInsertElement(Vec, VL[I], I); 6339 // Append instructions, which are/may be part of the loop, in the end to make 6340 // it possible to hoist non-loop-based instructions. 6341 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6342 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6343 6344 return Vec; 6345 } 6346 6347 namespace { 6348 /// Merges shuffle masks and emits final shuffle instruction, if required. 6349 class ShuffleInstructionBuilder { 6350 IRBuilderBase &Builder; 6351 const unsigned VF = 0; 6352 bool IsFinalized = false; 6353 SmallVector<int, 4> Mask; 6354 /// Holds all of the instructions that we gathered. 6355 SetVector<Instruction *> &GatherShuffleSeq; 6356 /// A list of blocks that we are going to CSE. 6357 SetVector<BasicBlock *> &CSEBlocks; 6358 6359 public: 6360 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6361 SetVector<Instruction *> &GatherShuffleSeq, 6362 SetVector<BasicBlock *> &CSEBlocks) 6363 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6364 CSEBlocks(CSEBlocks) {} 6365 6366 /// Adds a mask, inverting it before applying. 6367 void addInversedMask(ArrayRef<unsigned> SubMask) { 6368 if (SubMask.empty()) 6369 return; 6370 SmallVector<int, 4> NewMask; 6371 inversePermutation(SubMask, NewMask); 6372 addMask(NewMask); 6373 } 6374 6375 /// Functions adds masks, merging them into single one. 6376 void addMask(ArrayRef<unsigned> SubMask) { 6377 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6378 addMask(NewMask); 6379 } 6380 6381 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6382 6383 Value *finalize(Value *V) { 6384 IsFinalized = true; 6385 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6386 if (VF == ValueVF && Mask.empty()) 6387 return V; 6388 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6389 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6390 addMask(NormalizedMask); 6391 6392 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6393 return V; 6394 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6395 if (auto *I = dyn_cast<Instruction>(Vec)) { 6396 GatherShuffleSeq.insert(I); 6397 CSEBlocks.insert(I->getParent()); 6398 } 6399 return Vec; 6400 } 6401 6402 ~ShuffleInstructionBuilder() { 6403 assert((IsFinalized || Mask.empty()) && 6404 "Shuffle construction must be finalized."); 6405 } 6406 }; 6407 } // namespace 6408 6409 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6410 unsigned VF = VL.size(); 6411 InstructionsState S = getSameOpcode(VL); 6412 if (S.getOpcode()) { 6413 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6414 if (E->isSame(VL)) { 6415 Value *V = vectorizeTree(E); 6416 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6417 if (!E->ReuseShuffleIndices.empty()) { 6418 // Reshuffle to get only unique values. 6419 // If some of the scalars are duplicated in the vectorization tree 6420 // entry, we do not vectorize them but instead generate a mask for 6421 // the reuses. But if there are several users of the same entry, 6422 // they may have different vectorization factors. This is especially 6423 // important for PHI nodes. In this case, we need to adapt the 6424 // resulting instruction for the user vectorization factor and have 6425 // to reshuffle it again to take only unique elements of the vector. 6426 // Without this code the function incorrectly returns reduced vector 6427 // instruction with the same elements, not with the unique ones. 6428 6429 // block: 6430 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6431 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6432 // ... (use %2) 6433 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6434 // br %block 6435 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6436 SmallSet<int, 4> UsedIdxs; 6437 int Pos = 0; 6438 int Sz = VL.size(); 6439 for (int Idx : E->ReuseShuffleIndices) { 6440 if (Idx != Sz && Idx != UndefMaskElem && 6441 UsedIdxs.insert(Idx).second) 6442 UniqueIdxs[Idx] = Pos; 6443 ++Pos; 6444 } 6445 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6446 "less than original vector size."); 6447 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6448 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6449 } else { 6450 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6451 "Expected vectorization factor less " 6452 "than original vector size."); 6453 SmallVector<int> UniformMask(VF, 0); 6454 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6455 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6456 } 6457 if (auto *I = dyn_cast<Instruction>(V)) { 6458 GatherShuffleSeq.insert(I); 6459 CSEBlocks.insert(I->getParent()); 6460 } 6461 } 6462 return V; 6463 } 6464 } 6465 6466 // Check that every instruction appears once in this bundle. 6467 SmallVector<int> ReuseShuffleIndicies; 6468 SmallVector<Value *> UniqueValues; 6469 if (VL.size() > 2) { 6470 DenseMap<Value *, unsigned> UniquePositions; 6471 unsigned NumValues = 6472 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6473 return !isa<UndefValue>(V); 6474 }).base()); 6475 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6476 int UniqueVals = 0; 6477 for (Value *V : VL.drop_back(VL.size() - VF)) { 6478 if (isa<UndefValue>(V)) { 6479 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6480 continue; 6481 } 6482 if (isConstant(V)) { 6483 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6484 UniqueValues.emplace_back(V); 6485 continue; 6486 } 6487 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6488 ReuseShuffleIndicies.emplace_back(Res.first->second); 6489 if (Res.second) { 6490 UniqueValues.emplace_back(V); 6491 ++UniqueVals; 6492 } 6493 } 6494 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6495 // Emit pure splat vector. 6496 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6497 UndefMaskElem); 6498 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6499 ReuseShuffleIndicies.clear(); 6500 UniqueValues.clear(); 6501 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6502 } 6503 UniqueValues.append(VF - UniqueValues.size(), 6504 PoisonValue::get(VL[0]->getType())); 6505 VL = UniqueValues; 6506 } 6507 6508 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6509 CSEBlocks); 6510 Value *Vec = gather(VL); 6511 if (!ReuseShuffleIndicies.empty()) { 6512 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6513 Vec = ShuffleBuilder.finalize(Vec); 6514 } 6515 return Vec; 6516 } 6517 6518 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6519 IRBuilder<>::InsertPointGuard Guard(Builder); 6520 6521 if (E->VectorizedValue) { 6522 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6523 return E->VectorizedValue; 6524 } 6525 6526 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6527 unsigned VF = E->getVectorFactor(); 6528 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6529 CSEBlocks); 6530 if (E->State == TreeEntry::NeedToGather) { 6531 if (E->getMainOp()) 6532 setInsertPointAfterBundle(E); 6533 Value *Vec; 6534 SmallVector<int> Mask; 6535 SmallVector<const TreeEntry *> Entries; 6536 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6537 isGatherShuffledEntry(E, Mask, Entries); 6538 if (Shuffle.hasValue()) { 6539 assert((Entries.size() == 1 || Entries.size() == 2) && 6540 "Expected shuffle of 1 or 2 entries."); 6541 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6542 Entries.back()->VectorizedValue, Mask); 6543 if (auto *I = dyn_cast<Instruction>(Vec)) { 6544 GatherShuffleSeq.insert(I); 6545 CSEBlocks.insert(I->getParent()); 6546 } 6547 } else { 6548 Vec = gather(E->Scalars); 6549 } 6550 if (NeedToShuffleReuses) { 6551 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6552 Vec = ShuffleBuilder.finalize(Vec); 6553 } 6554 E->VectorizedValue = Vec; 6555 return Vec; 6556 } 6557 6558 assert((E->State == TreeEntry::Vectorize || 6559 E->State == TreeEntry::ScatterVectorize) && 6560 "Unhandled state"); 6561 unsigned ShuffleOrOp = 6562 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6563 Instruction *VL0 = E->getMainOp(); 6564 Type *ScalarTy = VL0->getType(); 6565 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6566 ScalarTy = Store->getValueOperand()->getType(); 6567 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6568 ScalarTy = IE->getOperand(1)->getType(); 6569 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6570 switch (ShuffleOrOp) { 6571 case Instruction::PHI: { 6572 assert( 6573 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6574 "PHI reordering is free."); 6575 auto *PH = cast<PHINode>(VL0); 6576 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6577 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6578 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6579 Value *V = NewPhi; 6580 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6581 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6582 V = ShuffleBuilder.finalize(V); 6583 6584 E->VectorizedValue = V; 6585 6586 // PHINodes may have multiple entries from the same block. We want to 6587 // visit every block once. 6588 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6589 6590 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6591 ValueList Operands; 6592 BasicBlock *IBB = PH->getIncomingBlock(i); 6593 6594 if (!VisitedBBs.insert(IBB).second) { 6595 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6596 continue; 6597 } 6598 6599 Builder.SetInsertPoint(IBB->getTerminator()); 6600 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6601 Value *Vec = vectorizeTree(E->getOperand(i)); 6602 NewPhi->addIncoming(Vec, IBB); 6603 } 6604 6605 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6606 "Invalid number of incoming values"); 6607 return V; 6608 } 6609 6610 case Instruction::ExtractElement: { 6611 Value *V = E->getSingleOperand(0); 6612 Builder.SetInsertPoint(VL0); 6613 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6614 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6615 V = ShuffleBuilder.finalize(V); 6616 E->VectorizedValue = V; 6617 return V; 6618 } 6619 case Instruction::ExtractValue: { 6620 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6621 Builder.SetInsertPoint(LI); 6622 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6623 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6624 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6625 Value *NewV = propagateMetadata(V, E->Scalars); 6626 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6627 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6628 NewV = ShuffleBuilder.finalize(NewV); 6629 E->VectorizedValue = NewV; 6630 return NewV; 6631 } 6632 case Instruction::InsertElement: { 6633 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6634 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6635 Value *V = vectorizeTree(E->getOperand(1)); 6636 6637 // Create InsertVector shuffle if necessary 6638 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6639 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6640 })); 6641 const unsigned NumElts = 6642 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6643 const unsigned NumScalars = E->Scalars.size(); 6644 6645 unsigned Offset = *getInsertIndex(VL0, 0); 6646 assert(Offset < NumElts && "Failed to find vector index offset"); 6647 6648 // Create shuffle to resize vector 6649 SmallVector<int> Mask; 6650 if (!E->ReorderIndices.empty()) { 6651 inversePermutation(E->ReorderIndices, Mask); 6652 Mask.append(NumElts - NumScalars, UndefMaskElem); 6653 } else { 6654 Mask.assign(NumElts, UndefMaskElem); 6655 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6656 } 6657 // Create InsertVector shuffle if necessary 6658 bool IsIdentity = true; 6659 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6660 Mask.swap(PrevMask); 6661 for (unsigned I = 0; I < NumScalars; ++I) { 6662 Value *Scalar = E->Scalars[PrevMask[I]]; 6663 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6664 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6665 continue; 6666 IsIdentity &= *InsertIdx - Offset == I; 6667 Mask[*InsertIdx - Offset] = I; 6668 } 6669 if (!IsIdentity || NumElts != NumScalars) { 6670 V = Builder.CreateShuffleVector(V, Mask); 6671 if (auto *I = dyn_cast<Instruction>(V)) { 6672 GatherShuffleSeq.insert(I); 6673 CSEBlocks.insert(I->getParent()); 6674 } 6675 } 6676 6677 if ((!IsIdentity || Offset != 0 || 6678 !isUndefVector(FirstInsert->getOperand(0))) && 6679 NumElts != NumScalars) { 6680 SmallVector<int> InsertMask(NumElts); 6681 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6682 for (unsigned I = 0; I < NumElts; I++) { 6683 if (Mask[I] != UndefMaskElem) 6684 InsertMask[Offset + I] = NumElts + I; 6685 } 6686 6687 V = Builder.CreateShuffleVector( 6688 FirstInsert->getOperand(0), V, InsertMask, 6689 cast<Instruction>(E->Scalars.back())->getName()); 6690 if (auto *I = dyn_cast<Instruction>(V)) { 6691 GatherShuffleSeq.insert(I); 6692 CSEBlocks.insert(I->getParent()); 6693 } 6694 } 6695 6696 ++NumVectorInstructions; 6697 E->VectorizedValue = V; 6698 return V; 6699 } 6700 case Instruction::ZExt: 6701 case Instruction::SExt: 6702 case Instruction::FPToUI: 6703 case Instruction::FPToSI: 6704 case Instruction::FPExt: 6705 case Instruction::PtrToInt: 6706 case Instruction::IntToPtr: 6707 case Instruction::SIToFP: 6708 case Instruction::UIToFP: 6709 case Instruction::Trunc: 6710 case Instruction::FPTrunc: 6711 case Instruction::BitCast: { 6712 setInsertPointAfterBundle(E); 6713 6714 Value *InVec = vectorizeTree(E->getOperand(0)); 6715 6716 if (E->VectorizedValue) { 6717 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6718 return E->VectorizedValue; 6719 } 6720 6721 auto *CI = cast<CastInst>(VL0); 6722 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6723 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6724 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6725 V = ShuffleBuilder.finalize(V); 6726 6727 E->VectorizedValue = V; 6728 ++NumVectorInstructions; 6729 return V; 6730 } 6731 case Instruction::FCmp: 6732 case Instruction::ICmp: { 6733 setInsertPointAfterBundle(E); 6734 6735 Value *L = vectorizeTree(E->getOperand(0)); 6736 Value *R = vectorizeTree(E->getOperand(1)); 6737 6738 if (E->VectorizedValue) { 6739 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6740 return E->VectorizedValue; 6741 } 6742 6743 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6744 Value *V = Builder.CreateCmp(P0, L, R); 6745 propagateIRFlags(V, E->Scalars, VL0); 6746 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6747 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6748 V = ShuffleBuilder.finalize(V); 6749 6750 E->VectorizedValue = V; 6751 ++NumVectorInstructions; 6752 return V; 6753 } 6754 case Instruction::Select: { 6755 setInsertPointAfterBundle(E); 6756 6757 Value *Cond = vectorizeTree(E->getOperand(0)); 6758 Value *True = vectorizeTree(E->getOperand(1)); 6759 Value *False = vectorizeTree(E->getOperand(2)); 6760 6761 if (E->VectorizedValue) { 6762 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6763 return E->VectorizedValue; 6764 } 6765 6766 Value *V = Builder.CreateSelect(Cond, True, False); 6767 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6768 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6769 V = ShuffleBuilder.finalize(V); 6770 6771 E->VectorizedValue = V; 6772 ++NumVectorInstructions; 6773 return V; 6774 } 6775 case Instruction::FNeg: { 6776 setInsertPointAfterBundle(E); 6777 6778 Value *Op = vectorizeTree(E->getOperand(0)); 6779 6780 if (E->VectorizedValue) { 6781 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6782 return E->VectorizedValue; 6783 } 6784 6785 Value *V = Builder.CreateUnOp( 6786 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6787 propagateIRFlags(V, E->Scalars, VL0); 6788 if (auto *I = dyn_cast<Instruction>(V)) 6789 V = propagateMetadata(I, E->Scalars); 6790 6791 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6792 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6793 V = ShuffleBuilder.finalize(V); 6794 6795 E->VectorizedValue = V; 6796 ++NumVectorInstructions; 6797 6798 return V; 6799 } 6800 case Instruction::Add: 6801 case Instruction::FAdd: 6802 case Instruction::Sub: 6803 case Instruction::FSub: 6804 case Instruction::Mul: 6805 case Instruction::FMul: 6806 case Instruction::UDiv: 6807 case Instruction::SDiv: 6808 case Instruction::FDiv: 6809 case Instruction::URem: 6810 case Instruction::SRem: 6811 case Instruction::FRem: 6812 case Instruction::Shl: 6813 case Instruction::LShr: 6814 case Instruction::AShr: 6815 case Instruction::And: 6816 case Instruction::Or: 6817 case Instruction::Xor: { 6818 setInsertPointAfterBundle(E); 6819 6820 Value *LHS = vectorizeTree(E->getOperand(0)); 6821 Value *RHS = vectorizeTree(E->getOperand(1)); 6822 6823 if (E->VectorizedValue) { 6824 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6825 return E->VectorizedValue; 6826 } 6827 6828 Value *V = Builder.CreateBinOp( 6829 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6830 RHS); 6831 propagateIRFlags(V, E->Scalars, VL0); 6832 if (auto *I = dyn_cast<Instruction>(V)) 6833 V = propagateMetadata(I, E->Scalars); 6834 6835 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6836 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6837 V = ShuffleBuilder.finalize(V); 6838 6839 E->VectorizedValue = V; 6840 ++NumVectorInstructions; 6841 6842 return V; 6843 } 6844 case Instruction::Load: { 6845 // Loads are inserted at the head of the tree because we don't want to 6846 // sink them all the way down past store instructions. 6847 setInsertPointAfterBundle(E); 6848 6849 LoadInst *LI = cast<LoadInst>(VL0); 6850 Instruction *NewLI; 6851 unsigned AS = LI->getPointerAddressSpace(); 6852 Value *PO = LI->getPointerOperand(); 6853 if (E->State == TreeEntry::Vectorize) { 6854 6855 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6856 6857 // The pointer operand uses an in-tree scalar so we add the new BitCast 6858 // to ExternalUses list to make sure that an extract will be generated 6859 // in the future. 6860 if (TreeEntry *Entry = getTreeEntry(PO)) { 6861 // Find which lane we need to extract. 6862 unsigned FoundLane = Entry->findLaneForValue(PO); 6863 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6864 } 6865 6866 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6867 } else { 6868 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6869 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6870 // Use the minimum alignment of the gathered loads. 6871 Align CommonAlignment = LI->getAlign(); 6872 for (Value *V : E->Scalars) 6873 CommonAlignment = 6874 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6875 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6876 } 6877 Value *V = propagateMetadata(NewLI, E->Scalars); 6878 6879 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6880 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6881 V = ShuffleBuilder.finalize(V); 6882 E->VectorizedValue = V; 6883 ++NumVectorInstructions; 6884 return V; 6885 } 6886 case Instruction::Store: { 6887 auto *SI = cast<StoreInst>(VL0); 6888 unsigned AS = SI->getPointerAddressSpace(); 6889 6890 setInsertPointAfterBundle(E); 6891 6892 Value *VecValue = vectorizeTree(E->getOperand(0)); 6893 ShuffleBuilder.addMask(E->ReorderIndices); 6894 VecValue = ShuffleBuilder.finalize(VecValue); 6895 6896 Value *ScalarPtr = SI->getPointerOperand(); 6897 Value *VecPtr = Builder.CreateBitCast( 6898 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6899 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6900 SI->getAlign()); 6901 6902 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6903 // ExternalUses to make sure that an extract will be generated in the 6904 // future. 6905 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6906 // Find which lane we need to extract. 6907 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6908 ExternalUses.push_back( 6909 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6910 } 6911 6912 Value *V = propagateMetadata(ST, E->Scalars); 6913 6914 E->VectorizedValue = V; 6915 ++NumVectorInstructions; 6916 return V; 6917 } 6918 case Instruction::GetElementPtr: { 6919 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6920 setInsertPointAfterBundle(E); 6921 6922 Value *Op0 = vectorizeTree(E->getOperand(0)); 6923 6924 SmallVector<Value *> OpVecs; 6925 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6926 Value *OpVec = vectorizeTree(E->getOperand(J)); 6927 OpVecs.push_back(OpVec); 6928 } 6929 6930 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6931 if (Instruction *I = dyn_cast<Instruction>(V)) 6932 V = propagateMetadata(I, E->Scalars); 6933 6934 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6935 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6936 V = ShuffleBuilder.finalize(V); 6937 6938 E->VectorizedValue = V; 6939 ++NumVectorInstructions; 6940 6941 return V; 6942 } 6943 case Instruction::Call: { 6944 CallInst *CI = cast<CallInst>(VL0); 6945 setInsertPointAfterBundle(E); 6946 6947 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6948 if (Function *FI = CI->getCalledFunction()) 6949 IID = FI->getIntrinsicID(); 6950 6951 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6952 6953 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6954 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6955 VecCallCosts.first <= VecCallCosts.second; 6956 6957 Value *ScalarArg = nullptr; 6958 std::vector<Value *> OpVecs; 6959 SmallVector<Type *, 2> TysForDecl = 6960 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6961 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6962 ValueList OpVL; 6963 // Some intrinsics have scalar arguments. This argument should not be 6964 // vectorized. 6965 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6966 CallInst *CEI = cast<CallInst>(VL0); 6967 ScalarArg = CEI->getArgOperand(j); 6968 OpVecs.push_back(CEI->getArgOperand(j)); 6969 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6970 TysForDecl.push_back(ScalarArg->getType()); 6971 continue; 6972 } 6973 6974 Value *OpVec = vectorizeTree(E->getOperand(j)); 6975 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6976 OpVecs.push_back(OpVec); 6977 } 6978 6979 Function *CF; 6980 if (!UseIntrinsic) { 6981 VFShape Shape = 6982 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6983 VecTy->getNumElements())), 6984 false /*HasGlobalPred*/); 6985 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6986 } else { 6987 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6988 } 6989 6990 SmallVector<OperandBundleDef, 1> OpBundles; 6991 CI->getOperandBundlesAsDefs(OpBundles); 6992 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6993 6994 // The scalar argument uses an in-tree scalar so we add the new vectorized 6995 // call to ExternalUses list to make sure that an extract will be 6996 // generated in the future. 6997 if (ScalarArg) { 6998 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6999 // Find which lane we need to extract. 7000 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7001 ExternalUses.push_back( 7002 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7003 } 7004 } 7005 7006 propagateIRFlags(V, E->Scalars, VL0); 7007 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7008 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7009 V = ShuffleBuilder.finalize(V); 7010 7011 E->VectorizedValue = V; 7012 ++NumVectorInstructions; 7013 return V; 7014 } 7015 case Instruction::ShuffleVector: { 7016 assert(E->isAltShuffle() && 7017 ((Instruction::isBinaryOp(E->getOpcode()) && 7018 Instruction::isBinaryOp(E->getAltOpcode())) || 7019 (Instruction::isCast(E->getOpcode()) && 7020 Instruction::isCast(E->getAltOpcode())) || 7021 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7022 "Invalid Shuffle Vector Operand"); 7023 7024 Value *LHS = nullptr, *RHS = nullptr; 7025 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7026 setInsertPointAfterBundle(E); 7027 LHS = vectorizeTree(E->getOperand(0)); 7028 RHS = vectorizeTree(E->getOperand(1)); 7029 } else { 7030 setInsertPointAfterBundle(E); 7031 LHS = vectorizeTree(E->getOperand(0)); 7032 } 7033 7034 if (E->VectorizedValue) { 7035 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7036 return E->VectorizedValue; 7037 } 7038 7039 Value *V0, *V1; 7040 if (Instruction::isBinaryOp(E->getOpcode())) { 7041 V0 = Builder.CreateBinOp( 7042 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7043 V1 = Builder.CreateBinOp( 7044 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7045 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7046 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7047 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7048 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7049 unsigned AltIdx = 7050 std::distance(E->Scalars.begin(), find(E->Scalars, AltCI)); 7051 if (AltCI->getOperand(0) != E->getOperand(0)[AltIdx]) 7052 AltPred = CmpInst::getSwappedPredicate(AltPred); 7053 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7054 } else { 7055 V0 = Builder.CreateCast( 7056 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7057 V1 = Builder.CreateCast( 7058 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7059 } 7060 // Add V0 and V1 to later analysis to try to find and remove matching 7061 // instruction, if any. 7062 for (Value *V : {V0, V1}) { 7063 if (auto *I = dyn_cast<Instruction>(V)) { 7064 GatherShuffleSeq.insert(I); 7065 CSEBlocks.insert(I->getParent()); 7066 } 7067 } 7068 7069 // Create shuffle to take alternate operations from the vector. 7070 // Also, gather up main and alt scalar ops to propagate IR flags to 7071 // each vector operation. 7072 ValueList OpScalars, AltScalars; 7073 SmallVector<int> Mask; 7074 buildSuffleEntryMask( 7075 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7076 [E](Instruction *I) { 7077 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7078 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 7079 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 7080 auto *CI = cast<CmpInst>(I); 7081 CmpInst::Predicate P0 = CI0->getPredicate(); 7082 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 7083 assert(P0 != AltP0 && 7084 "Expected different main/alternate predicates."); 7085 CmpInst::Predicate AltP0Swapped = 7086 CmpInst::getSwappedPredicate(AltP0); 7087 CmpInst::Predicate CurrentPred = CI->getPredicate(); 7088 if (P0 == AltP0Swapped) 7089 return (P0 == CurrentPred && 7090 !areCompatibleCmpOps( 7091 CI0->getOperand(0), CI0->getOperand(1), 7092 CI->getOperand(0), CI->getOperand(1))) || 7093 (AltP0 == CurrentPred && 7094 !areCompatibleCmpOps( 7095 CI0->getOperand(0), CI0->getOperand(1), 7096 CI->getOperand(1), CI->getOperand(0))); 7097 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 7098 } 7099 return I->getOpcode() == E->getAltOpcode(); 7100 }, 7101 Mask, &OpScalars, &AltScalars); 7102 7103 propagateIRFlags(V0, OpScalars); 7104 propagateIRFlags(V1, AltScalars); 7105 7106 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7107 if (auto *I = dyn_cast<Instruction>(V)) { 7108 V = propagateMetadata(I, E->Scalars); 7109 GatherShuffleSeq.insert(I); 7110 CSEBlocks.insert(I->getParent()); 7111 } 7112 V = ShuffleBuilder.finalize(V); 7113 7114 E->VectorizedValue = V; 7115 ++NumVectorInstructions; 7116 7117 return V; 7118 } 7119 default: 7120 llvm_unreachable("unknown inst"); 7121 } 7122 return nullptr; 7123 } 7124 7125 Value *BoUpSLP::vectorizeTree() { 7126 ExtraValueToDebugLocsMap ExternallyUsedValues; 7127 return vectorizeTree(ExternallyUsedValues); 7128 } 7129 7130 Value * 7131 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7132 // All blocks must be scheduled before any instructions are inserted. 7133 for (auto &BSIter : BlocksSchedules) { 7134 scheduleBlock(BSIter.second.get()); 7135 } 7136 7137 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7138 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7139 7140 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7141 // vectorized root. InstCombine will then rewrite the entire expression. We 7142 // sign extend the extracted values below. 7143 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7144 if (MinBWs.count(ScalarRoot)) { 7145 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7146 // If current instr is a phi and not the last phi, insert it after the 7147 // last phi node. 7148 if (isa<PHINode>(I)) 7149 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7150 else 7151 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7152 } 7153 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7154 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7155 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7156 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7157 VectorizableTree[0]->VectorizedValue = Trunc; 7158 } 7159 7160 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7161 << " values .\n"); 7162 7163 // Extract all of the elements with the external uses. 7164 for (const auto &ExternalUse : ExternalUses) { 7165 Value *Scalar = ExternalUse.Scalar; 7166 llvm::User *User = ExternalUse.User; 7167 7168 // Skip users that we already RAUW. This happens when one instruction 7169 // has multiple uses of the same value. 7170 if (User && !is_contained(Scalar->users(), User)) 7171 continue; 7172 TreeEntry *E = getTreeEntry(Scalar); 7173 assert(E && "Invalid scalar"); 7174 assert(E->State != TreeEntry::NeedToGather && 7175 "Extracting from a gather list"); 7176 7177 Value *Vec = E->VectorizedValue; 7178 assert(Vec && "Can't find vectorizable value"); 7179 7180 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7181 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7182 if (Scalar->getType() != Vec->getType()) { 7183 Value *Ex; 7184 // "Reuse" the existing extract to improve final codegen. 7185 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7186 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7187 ES->getOperand(1)); 7188 } else { 7189 Ex = Builder.CreateExtractElement(Vec, Lane); 7190 } 7191 // If necessary, sign-extend or zero-extend ScalarRoot 7192 // to the larger type. 7193 if (!MinBWs.count(ScalarRoot)) 7194 return Ex; 7195 if (MinBWs[ScalarRoot].second) 7196 return Builder.CreateSExt(Ex, Scalar->getType()); 7197 return Builder.CreateZExt(Ex, Scalar->getType()); 7198 } 7199 assert(isa<FixedVectorType>(Scalar->getType()) && 7200 isa<InsertElementInst>(Scalar) && 7201 "In-tree scalar of vector type is not insertelement?"); 7202 return Vec; 7203 }; 7204 // If User == nullptr, the Scalar is used as extra arg. Generate 7205 // ExtractElement instruction and update the record for this scalar in 7206 // ExternallyUsedValues. 7207 if (!User) { 7208 assert(ExternallyUsedValues.count(Scalar) && 7209 "Scalar with nullptr as an external user must be registered in " 7210 "ExternallyUsedValues map"); 7211 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7212 Builder.SetInsertPoint(VecI->getParent(), 7213 std::next(VecI->getIterator())); 7214 } else { 7215 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7216 } 7217 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7218 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7219 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7220 auto It = ExternallyUsedValues.find(Scalar); 7221 assert(It != ExternallyUsedValues.end() && 7222 "Externally used scalar is not found in ExternallyUsedValues"); 7223 NewInstLocs.append(It->second); 7224 ExternallyUsedValues.erase(Scalar); 7225 // Required to update internally referenced instructions. 7226 Scalar->replaceAllUsesWith(NewInst); 7227 continue; 7228 } 7229 7230 // Generate extracts for out-of-tree users. 7231 // Find the insertion point for the extractelement lane. 7232 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7233 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7234 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7235 if (PH->getIncomingValue(i) == Scalar) { 7236 Instruction *IncomingTerminator = 7237 PH->getIncomingBlock(i)->getTerminator(); 7238 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7239 Builder.SetInsertPoint(VecI->getParent(), 7240 std::next(VecI->getIterator())); 7241 } else { 7242 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7243 } 7244 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7245 CSEBlocks.insert(PH->getIncomingBlock(i)); 7246 PH->setOperand(i, NewInst); 7247 } 7248 } 7249 } else { 7250 Builder.SetInsertPoint(cast<Instruction>(User)); 7251 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7252 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7253 User->replaceUsesOfWith(Scalar, NewInst); 7254 } 7255 } else { 7256 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7257 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7258 CSEBlocks.insert(&F->getEntryBlock()); 7259 User->replaceUsesOfWith(Scalar, NewInst); 7260 } 7261 7262 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7263 } 7264 7265 // For each vectorized value: 7266 for (auto &TEPtr : VectorizableTree) { 7267 TreeEntry *Entry = TEPtr.get(); 7268 7269 // No need to handle users of gathered values. 7270 if (Entry->State == TreeEntry::NeedToGather) 7271 continue; 7272 7273 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7274 7275 // For each lane: 7276 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7277 Value *Scalar = Entry->Scalars[Lane]; 7278 7279 #ifndef NDEBUG 7280 Type *Ty = Scalar->getType(); 7281 if (!Ty->isVoidTy()) { 7282 for (User *U : Scalar->users()) { 7283 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7284 7285 // It is legal to delete users in the ignorelist. 7286 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7287 (isa_and_nonnull<Instruction>(U) && 7288 isDeleted(cast<Instruction>(U)))) && 7289 "Deleting out-of-tree value"); 7290 } 7291 } 7292 #endif 7293 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7294 eraseInstruction(cast<Instruction>(Scalar)); 7295 } 7296 } 7297 7298 Builder.ClearInsertionPoint(); 7299 InstrElementSize.clear(); 7300 7301 return VectorizableTree[0]->VectorizedValue; 7302 } 7303 7304 void BoUpSLP::optimizeGatherSequence() { 7305 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7306 << " gather sequences instructions.\n"); 7307 // LICM InsertElementInst sequences. 7308 for (Instruction *I : GatherShuffleSeq) { 7309 if (isDeleted(I)) 7310 continue; 7311 7312 // Check if this block is inside a loop. 7313 Loop *L = LI->getLoopFor(I->getParent()); 7314 if (!L) 7315 continue; 7316 7317 // Check if it has a preheader. 7318 BasicBlock *PreHeader = L->getLoopPreheader(); 7319 if (!PreHeader) 7320 continue; 7321 7322 // If the vector or the element that we insert into it are 7323 // instructions that are defined in this basic block then we can't 7324 // hoist this instruction. 7325 if (any_of(I->operands(), [L](Value *V) { 7326 auto *OpI = dyn_cast<Instruction>(V); 7327 return OpI && L->contains(OpI); 7328 })) 7329 continue; 7330 7331 // We can hoist this instruction. Move it to the pre-header. 7332 I->moveBefore(PreHeader->getTerminator()); 7333 } 7334 7335 // Make a list of all reachable blocks in our CSE queue. 7336 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7337 CSEWorkList.reserve(CSEBlocks.size()); 7338 for (BasicBlock *BB : CSEBlocks) 7339 if (DomTreeNode *N = DT->getNode(BB)) { 7340 assert(DT->isReachableFromEntry(N)); 7341 CSEWorkList.push_back(N); 7342 } 7343 7344 // Sort blocks by domination. This ensures we visit a block after all blocks 7345 // dominating it are visited. 7346 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7347 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7348 "Different nodes should have different DFS numbers"); 7349 return A->getDFSNumIn() < B->getDFSNumIn(); 7350 }); 7351 7352 // Less defined shuffles can be replaced by the more defined copies. 7353 // Between two shuffles one is less defined if it has the same vector operands 7354 // and its mask indeces are the same as in the first one or undefs. E.g. 7355 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7356 // poison, <0, 0, 0, 0>. 7357 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7358 SmallVectorImpl<int> &NewMask) { 7359 if (I1->getType() != I2->getType()) 7360 return false; 7361 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7362 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7363 if (!SI1 || !SI2) 7364 return I1->isIdenticalTo(I2); 7365 if (SI1->isIdenticalTo(SI2)) 7366 return true; 7367 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7368 if (SI1->getOperand(I) != SI2->getOperand(I)) 7369 return false; 7370 // Check if the second instruction is more defined than the first one. 7371 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7372 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7373 // Count trailing undefs in the mask to check the final number of used 7374 // registers. 7375 unsigned LastUndefsCnt = 0; 7376 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7377 if (SM1[I] == UndefMaskElem) 7378 ++LastUndefsCnt; 7379 else 7380 LastUndefsCnt = 0; 7381 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7382 NewMask[I] != SM1[I]) 7383 return false; 7384 if (NewMask[I] == UndefMaskElem) 7385 NewMask[I] = SM1[I]; 7386 } 7387 // Check if the last undefs actually change the final number of used vector 7388 // registers. 7389 return SM1.size() - LastUndefsCnt > 1 && 7390 TTI->getNumberOfParts(SI1->getType()) == 7391 TTI->getNumberOfParts( 7392 FixedVectorType::get(SI1->getType()->getElementType(), 7393 SM1.size() - LastUndefsCnt)); 7394 }; 7395 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7396 // instructions. TODO: We can further optimize this scan if we split the 7397 // instructions into different buckets based on the insert lane. 7398 SmallVector<Instruction *, 16> Visited; 7399 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7400 assert(*I && 7401 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7402 "Worklist not sorted properly!"); 7403 BasicBlock *BB = (*I)->getBlock(); 7404 // For all instructions in blocks containing gather sequences: 7405 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7406 if (isDeleted(&In)) 7407 continue; 7408 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7409 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7410 continue; 7411 7412 // Check if we can replace this instruction with any of the 7413 // visited instructions. 7414 bool Replaced = false; 7415 for (Instruction *&V : Visited) { 7416 SmallVector<int> NewMask; 7417 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7418 DT->dominates(V->getParent(), In.getParent())) { 7419 In.replaceAllUsesWith(V); 7420 eraseInstruction(&In); 7421 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7422 if (!NewMask.empty()) 7423 SI->setShuffleMask(NewMask); 7424 Replaced = true; 7425 break; 7426 } 7427 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7428 GatherShuffleSeq.contains(V) && 7429 IsIdenticalOrLessDefined(V, &In, NewMask) && 7430 DT->dominates(In.getParent(), V->getParent())) { 7431 In.moveAfter(V); 7432 V->replaceAllUsesWith(&In); 7433 eraseInstruction(V); 7434 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7435 if (!NewMask.empty()) 7436 SI->setShuffleMask(NewMask); 7437 V = &In; 7438 Replaced = true; 7439 break; 7440 } 7441 } 7442 if (!Replaced) { 7443 assert(!is_contained(Visited, &In)); 7444 Visited.push_back(&In); 7445 } 7446 } 7447 } 7448 CSEBlocks.clear(); 7449 GatherShuffleSeq.clear(); 7450 } 7451 7452 BoUpSLP::ScheduleData * 7453 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7454 ScheduleData *Bundle = nullptr; 7455 ScheduleData *PrevInBundle = nullptr; 7456 for (Value *V : VL) { 7457 ScheduleData *BundleMember = getScheduleData(V); 7458 assert(BundleMember && 7459 "no ScheduleData for bundle member " 7460 "(maybe not in same basic block)"); 7461 assert(BundleMember->isSchedulingEntity() && 7462 "bundle member already part of other bundle"); 7463 if (PrevInBundle) { 7464 PrevInBundle->NextInBundle = BundleMember; 7465 } else { 7466 Bundle = BundleMember; 7467 } 7468 BundleMember->UnscheduledDepsInBundle = 0; 7469 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7470 7471 // Group the instructions to a bundle. 7472 BundleMember->FirstInBundle = Bundle; 7473 PrevInBundle = BundleMember; 7474 } 7475 assert(Bundle && "Failed to find schedule bundle"); 7476 return Bundle; 7477 } 7478 7479 // Groups the instructions to a bundle (which is then a single scheduling entity) 7480 // and schedules instructions until the bundle gets ready. 7481 Optional<BoUpSLP::ScheduleData *> 7482 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7483 const InstructionsState &S) { 7484 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7485 // instructions. 7486 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7487 return nullptr; 7488 7489 // Initialize the instruction bundle. 7490 Instruction *OldScheduleEnd = ScheduleEnd; 7491 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7492 7493 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7494 ScheduleData *Bundle) { 7495 // The scheduling region got new instructions at the lower end (or it is a 7496 // new region for the first bundle). This makes it necessary to 7497 // recalculate all dependencies. 7498 // It is seldom that this needs to be done a second time after adding the 7499 // initial bundle to the region. 7500 if (ScheduleEnd != OldScheduleEnd) { 7501 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7502 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7503 ReSchedule = true; 7504 } 7505 if (ReSchedule) { 7506 resetSchedule(); 7507 initialFillReadyList(ReadyInsts); 7508 } 7509 if (Bundle) { 7510 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7511 << " in block " << BB->getName() << "\n"); 7512 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7513 } 7514 7515 // Now try to schedule the new bundle or (if no bundle) just calculate 7516 // dependencies. As soon as the bundle is "ready" it means that there are no 7517 // cyclic dependencies and we can schedule it. Note that's important that we 7518 // don't "schedule" the bundle yet (see cancelScheduling). 7519 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7520 !ReadyInsts.empty()) { 7521 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7522 if (Picked->isSchedulingEntity() && Picked->isReady()) 7523 schedule(Picked, ReadyInsts); 7524 } 7525 }; 7526 7527 // Make sure that the scheduling region contains all 7528 // instructions of the bundle. 7529 for (Value *V : VL) { 7530 if (!extendSchedulingRegion(V, S)) { 7531 // If the scheduling region got new instructions at the lower end (or it 7532 // is a new region for the first bundle). This makes it necessary to 7533 // recalculate all dependencies. 7534 // Otherwise the compiler may crash trying to incorrectly calculate 7535 // dependencies and emit instruction in the wrong order at the actual 7536 // scheduling. 7537 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7538 return None; 7539 } 7540 } 7541 7542 bool ReSchedule = false; 7543 for (Value *V : VL) { 7544 ScheduleData *BundleMember = getScheduleData(V); 7545 assert(BundleMember && 7546 "no ScheduleData for bundle member (maybe not in same basic block)"); 7547 if (!BundleMember->IsScheduled) 7548 continue; 7549 // A bundle member was scheduled as single instruction before and now 7550 // needs to be scheduled as part of the bundle. We just get rid of the 7551 // existing schedule. 7552 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7553 << " was already scheduled\n"); 7554 ReSchedule = true; 7555 } 7556 7557 auto *Bundle = buildBundle(VL); 7558 TryScheduleBundleImpl(ReSchedule, Bundle); 7559 if (!Bundle->isReady()) { 7560 cancelScheduling(VL, S.OpValue); 7561 return None; 7562 } 7563 return Bundle; 7564 } 7565 7566 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7567 Value *OpValue) { 7568 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7569 return; 7570 7571 ScheduleData *Bundle = getScheduleData(OpValue); 7572 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7573 assert(!Bundle->IsScheduled && 7574 "Can't cancel bundle which is already scheduled"); 7575 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7576 "tried to unbundle something which is not a bundle"); 7577 7578 // Un-bundle: make single instructions out of the bundle. 7579 ScheduleData *BundleMember = Bundle; 7580 while (BundleMember) { 7581 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7582 BundleMember->FirstInBundle = BundleMember; 7583 ScheduleData *Next = BundleMember->NextInBundle; 7584 BundleMember->NextInBundle = nullptr; 7585 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7586 if (BundleMember->UnscheduledDepsInBundle == 0) { 7587 ReadyInsts.insert(BundleMember); 7588 } 7589 BundleMember = Next; 7590 } 7591 } 7592 7593 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7594 // Allocate a new ScheduleData for the instruction. 7595 if (ChunkPos >= ChunkSize) { 7596 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7597 ChunkPos = 0; 7598 } 7599 return &(ScheduleDataChunks.back()[ChunkPos++]); 7600 } 7601 7602 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7603 const InstructionsState &S) { 7604 if (getScheduleData(V, isOneOf(S, V))) 7605 return true; 7606 Instruction *I = dyn_cast<Instruction>(V); 7607 assert(I && "bundle member must be an instruction"); 7608 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7609 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7610 "be scheduled"); 7611 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7612 ScheduleData *ISD = getScheduleData(I); 7613 if (!ISD) 7614 return false; 7615 assert(isInSchedulingRegion(ISD) && 7616 "ScheduleData not in scheduling region"); 7617 ScheduleData *SD = allocateScheduleDataChunks(); 7618 SD->Inst = I; 7619 SD->init(SchedulingRegionID, S.OpValue); 7620 ExtraScheduleDataMap[I][S.OpValue] = SD; 7621 return true; 7622 }; 7623 if (CheckSheduleForI(I)) 7624 return true; 7625 if (!ScheduleStart) { 7626 // It's the first instruction in the new region. 7627 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7628 ScheduleStart = I; 7629 ScheduleEnd = I->getNextNode(); 7630 if (isOneOf(S, I) != I) 7631 CheckSheduleForI(I); 7632 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7633 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7634 return true; 7635 } 7636 // Search up and down at the same time, because we don't know if the new 7637 // instruction is above or below the existing scheduling region. 7638 BasicBlock::reverse_iterator UpIter = 7639 ++ScheduleStart->getIterator().getReverse(); 7640 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7641 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7642 BasicBlock::iterator LowerEnd = BB->end(); 7643 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7644 &*DownIter != I) { 7645 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7646 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7647 return false; 7648 } 7649 7650 ++UpIter; 7651 ++DownIter; 7652 } 7653 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7654 assert(I->getParent() == ScheduleStart->getParent() && 7655 "Instruction is in wrong basic block."); 7656 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7657 ScheduleStart = I; 7658 if (isOneOf(S, I) != I) 7659 CheckSheduleForI(I); 7660 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7661 << "\n"); 7662 return true; 7663 } 7664 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7665 "Expected to reach top of the basic block or instruction down the " 7666 "lower end."); 7667 assert(I->getParent() == ScheduleEnd->getParent() && 7668 "Instruction is in wrong basic block."); 7669 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7670 nullptr); 7671 ScheduleEnd = I->getNextNode(); 7672 if (isOneOf(S, I) != I) 7673 CheckSheduleForI(I); 7674 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7675 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7676 return true; 7677 } 7678 7679 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7680 Instruction *ToI, 7681 ScheduleData *PrevLoadStore, 7682 ScheduleData *NextLoadStore) { 7683 ScheduleData *CurrentLoadStore = PrevLoadStore; 7684 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7685 ScheduleData *SD = ScheduleDataMap[I]; 7686 if (!SD) { 7687 SD = allocateScheduleDataChunks(); 7688 ScheduleDataMap[I] = SD; 7689 SD->Inst = I; 7690 } 7691 assert(!isInSchedulingRegion(SD) && 7692 "new ScheduleData already in scheduling region"); 7693 SD->init(SchedulingRegionID, I); 7694 7695 if (I->mayReadOrWriteMemory() && 7696 (!isa<IntrinsicInst>(I) || 7697 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7698 cast<IntrinsicInst>(I)->getIntrinsicID() != 7699 Intrinsic::pseudoprobe))) { 7700 // Update the linked list of memory accessing instructions. 7701 if (CurrentLoadStore) { 7702 CurrentLoadStore->NextLoadStore = SD; 7703 } else { 7704 FirstLoadStoreInRegion = SD; 7705 } 7706 CurrentLoadStore = SD; 7707 } 7708 } 7709 if (NextLoadStore) { 7710 if (CurrentLoadStore) 7711 CurrentLoadStore->NextLoadStore = NextLoadStore; 7712 } else { 7713 LastLoadStoreInRegion = CurrentLoadStore; 7714 } 7715 } 7716 7717 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7718 bool InsertInReadyList, 7719 BoUpSLP *SLP) { 7720 assert(SD->isSchedulingEntity()); 7721 7722 SmallVector<ScheduleData *, 10> WorkList; 7723 WorkList.push_back(SD); 7724 7725 while (!WorkList.empty()) { 7726 ScheduleData *SD = WorkList.pop_back_val(); 7727 for (ScheduleData *BundleMember = SD; BundleMember; 7728 BundleMember = BundleMember->NextInBundle) { 7729 assert(isInSchedulingRegion(BundleMember)); 7730 if (BundleMember->hasValidDependencies()) 7731 continue; 7732 7733 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7734 << "\n"); 7735 BundleMember->Dependencies = 0; 7736 BundleMember->resetUnscheduledDeps(); 7737 7738 // Handle def-use chain dependencies. 7739 if (BundleMember->OpValue != BundleMember->Inst) { 7740 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7741 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7742 BundleMember->Dependencies++; 7743 ScheduleData *DestBundle = UseSD->FirstInBundle; 7744 if (!DestBundle->IsScheduled) 7745 BundleMember->incrementUnscheduledDeps(1); 7746 if (!DestBundle->hasValidDependencies()) 7747 WorkList.push_back(DestBundle); 7748 } 7749 } else { 7750 for (User *U : BundleMember->Inst->users()) { 7751 assert(isa<Instruction>(U) && 7752 "user of instruction must be instruction"); 7753 ScheduleData *UseSD = getScheduleData(U); 7754 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7755 BundleMember->Dependencies++; 7756 ScheduleData *DestBundle = UseSD->FirstInBundle; 7757 if (!DestBundle->IsScheduled) 7758 BundleMember->incrementUnscheduledDeps(1); 7759 if (!DestBundle->hasValidDependencies()) 7760 WorkList.push_back(DestBundle); 7761 } 7762 } 7763 } 7764 7765 // Handle the memory dependencies (if any). 7766 ScheduleData *DepDest = BundleMember->NextLoadStore; 7767 if (!DepDest) 7768 continue; 7769 Instruction *SrcInst = BundleMember->Inst; 7770 assert(SrcInst->mayReadOrWriteMemory() && 7771 "NextLoadStore list for non memory effecting bundle?"); 7772 MemoryLocation SrcLoc = getLocation(SrcInst); 7773 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7774 unsigned numAliased = 0; 7775 unsigned DistToSrc = 1; 7776 7777 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7778 assert(isInSchedulingRegion(DepDest)); 7779 7780 // We have two limits to reduce the complexity: 7781 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7782 // SLP->isAliased (which is the expensive part in this loop). 7783 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7784 // the whole loop (even if the loop is fast, it's quadratic). 7785 // It's important for the loop break condition (see below) to 7786 // check this limit even between two read-only instructions. 7787 if (DistToSrc >= MaxMemDepDistance || 7788 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7789 (numAliased >= AliasedCheckLimit || 7790 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7791 7792 // We increment the counter only if the locations are aliased 7793 // (instead of counting all alias checks). This gives a better 7794 // balance between reduced runtime and accurate dependencies. 7795 numAliased++; 7796 7797 DepDest->MemoryDependencies.push_back(BundleMember); 7798 BundleMember->Dependencies++; 7799 ScheduleData *DestBundle = DepDest->FirstInBundle; 7800 if (!DestBundle->IsScheduled) { 7801 BundleMember->incrementUnscheduledDeps(1); 7802 } 7803 if (!DestBundle->hasValidDependencies()) { 7804 WorkList.push_back(DestBundle); 7805 } 7806 } 7807 7808 // Example, explaining the loop break condition: Let's assume our 7809 // starting instruction is i0 and MaxMemDepDistance = 3. 7810 // 7811 // +--------v--v--v 7812 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7813 // +--------^--^--^ 7814 // 7815 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7816 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7817 // Previously we already added dependencies from i3 to i6,i7,i8 7818 // (because of MaxMemDepDistance). As we added a dependency from 7819 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7820 // and we can abort this loop at i6. 7821 if (DistToSrc >= 2 * MaxMemDepDistance) 7822 break; 7823 DistToSrc++; 7824 } 7825 } 7826 if (InsertInReadyList && SD->isReady()) { 7827 ReadyInsts.push_back(SD); 7828 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7829 << "\n"); 7830 } 7831 } 7832 } 7833 7834 void BoUpSLP::BlockScheduling::resetSchedule() { 7835 assert(ScheduleStart && 7836 "tried to reset schedule on block which has not been scheduled"); 7837 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7838 doForAllOpcodes(I, [&](ScheduleData *SD) { 7839 assert(isInSchedulingRegion(SD) && 7840 "ScheduleData not in scheduling region"); 7841 SD->IsScheduled = false; 7842 SD->resetUnscheduledDeps(); 7843 }); 7844 } 7845 ReadyInsts.clear(); 7846 } 7847 7848 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7849 if (!BS->ScheduleStart) 7850 return; 7851 7852 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7853 7854 BS->resetSchedule(); 7855 7856 // For the real scheduling we use a more sophisticated ready-list: it is 7857 // sorted by the original instruction location. This lets the final schedule 7858 // be as close as possible to the original instruction order. 7859 struct ScheduleDataCompare { 7860 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7861 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7862 } 7863 }; 7864 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7865 7866 // Ensure that all dependency data is updated and fill the ready-list with 7867 // initial instructions. 7868 int Idx = 0; 7869 int NumToSchedule = 0; 7870 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7871 I = I->getNextNode()) { 7872 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7873 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7874 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7875 "scheduler and vectorizer bundle mismatch"); 7876 SD->FirstInBundle->SchedulingPriority = Idx++; 7877 if (SD->isSchedulingEntity()) { 7878 BS->calculateDependencies(SD, false, this); 7879 NumToSchedule++; 7880 } 7881 }); 7882 } 7883 BS->initialFillReadyList(ReadyInsts); 7884 7885 Instruction *LastScheduledInst = BS->ScheduleEnd; 7886 7887 // Do the "real" scheduling. 7888 while (!ReadyInsts.empty()) { 7889 ScheduleData *picked = *ReadyInsts.begin(); 7890 ReadyInsts.erase(ReadyInsts.begin()); 7891 7892 // Move the scheduled instruction(s) to their dedicated places, if not 7893 // there yet. 7894 for (ScheduleData *BundleMember = picked; BundleMember; 7895 BundleMember = BundleMember->NextInBundle) { 7896 Instruction *pickedInst = BundleMember->Inst; 7897 if (pickedInst->getNextNode() != LastScheduledInst) 7898 pickedInst->moveBefore(LastScheduledInst); 7899 LastScheduledInst = pickedInst; 7900 } 7901 7902 BS->schedule(picked, ReadyInsts); 7903 NumToSchedule--; 7904 } 7905 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7906 7907 // Avoid duplicate scheduling of the block. 7908 BS->ScheduleStart = nullptr; 7909 } 7910 7911 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7912 // If V is a store, just return the width of the stored value (or value 7913 // truncated just before storing) without traversing the expression tree. 7914 // This is the common case. 7915 if (auto *Store = dyn_cast<StoreInst>(V)) { 7916 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7917 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7918 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7919 } 7920 7921 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7922 return getVectorElementSize(IEI->getOperand(1)); 7923 7924 auto E = InstrElementSize.find(V); 7925 if (E != InstrElementSize.end()) 7926 return E->second; 7927 7928 // If V is not a store, we can traverse the expression tree to find loads 7929 // that feed it. The type of the loaded value may indicate a more suitable 7930 // width than V's type. We want to base the vector element size on the width 7931 // of memory operations where possible. 7932 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7933 SmallPtrSet<Instruction *, 16> Visited; 7934 if (auto *I = dyn_cast<Instruction>(V)) { 7935 Worklist.emplace_back(I, I->getParent()); 7936 Visited.insert(I); 7937 } 7938 7939 // Traverse the expression tree in bottom-up order looking for loads. If we 7940 // encounter an instruction we don't yet handle, we give up. 7941 auto Width = 0u; 7942 while (!Worklist.empty()) { 7943 Instruction *I; 7944 BasicBlock *Parent; 7945 std::tie(I, Parent) = Worklist.pop_back_val(); 7946 7947 // We should only be looking at scalar instructions here. If the current 7948 // instruction has a vector type, skip. 7949 auto *Ty = I->getType(); 7950 if (isa<VectorType>(Ty)) 7951 continue; 7952 7953 // If the current instruction is a load, update MaxWidth to reflect the 7954 // width of the loaded value. 7955 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7956 isa<ExtractValueInst>(I)) 7957 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7958 7959 // Otherwise, we need to visit the operands of the instruction. We only 7960 // handle the interesting cases from buildTree here. If an operand is an 7961 // instruction we haven't yet visited and from the same basic block as the 7962 // user or the use is a PHI node, we add it to the worklist. 7963 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7964 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7965 isa<UnaryOperator>(I)) { 7966 for (Use &U : I->operands()) 7967 if (auto *J = dyn_cast<Instruction>(U.get())) 7968 if (Visited.insert(J).second && 7969 (isa<PHINode>(I) || J->getParent() == Parent)) 7970 Worklist.emplace_back(J, J->getParent()); 7971 } else { 7972 break; 7973 } 7974 } 7975 7976 // If we didn't encounter a memory access in the expression tree, or if we 7977 // gave up for some reason, just return the width of V. Otherwise, return the 7978 // maximum width we found. 7979 if (!Width) { 7980 if (auto *CI = dyn_cast<CmpInst>(V)) 7981 V = CI->getOperand(0); 7982 Width = DL->getTypeSizeInBits(V->getType()); 7983 } 7984 7985 for (Instruction *I : Visited) 7986 InstrElementSize[I] = Width; 7987 7988 return Width; 7989 } 7990 7991 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7992 // smaller type with a truncation. We collect the values that will be demoted 7993 // in ToDemote and additional roots that require investigating in Roots. 7994 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7995 SmallVectorImpl<Value *> &ToDemote, 7996 SmallVectorImpl<Value *> &Roots) { 7997 // We can always demote constants. 7998 if (isa<Constant>(V)) { 7999 ToDemote.push_back(V); 8000 return true; 8001 } 8002 8003 // If the value is not an instruction in the expression with only one use, it 8004 // cannot be demoted. 8005 auto *I = dyn_cast<Instruction>(V); 8006 if (!I || !I->hasOneUse() || !Expr.count(I)) 8007 return false; 8008 8009 switch (I->getOpcode()) { 8010 8011 // We can always demote truncations and extensions. Since truncations can 8012 // seed additional demotion, we save the truncated value. 8013 case Instruction::Trunc: 8014 Roots.push_back(I->getOperand(0)); 8015 break; 8016 case Instruction::ZExt: 8017 case Instruction::SExt: 8018 if (isa<ExtractElementInst>(I->getOperand(0)) || 8019 isa<InsertElementInst>(I->getOperand(0))) 8020 return false; 8021 break; 8022 8023 // We can demote certain binary operations if we can demote both of their 8024 // operands. 8025 case Instruction::Add: 8026 case Instruction::Sub: 8027 case Instruction::Mul: 8028 case Instruction::And: 8029 case Instruction::Or: 8030 case Instruction::Xor: 8031 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8032 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8033 return false; 8034 break; 8035 8036 // We can demote selects if we can demote their true and false values. 8037 case Instruction::Select: { 8038 SelectInst *SI = cast<SelectInst>(I); 8039 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8040 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8041 return false; 8042 break; 8043 } 8044 8045 // We can demote phis if we can demote all their incoming operands. Note that 8046 // we don't need to worry about cycles since we ensure single use above. 8047 case Instruction::PHI: { 8048 PHINode *PN = cast<PHINode>(I); 8049 for (Value *IncValue : PN->incoming_values()) 8050 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8051 return false; 8052 break; 8053 } 8054 8055 // Otherwise, conservatively give up. 8056 default: 8057 return false; 8058 } 8059 8060 // Record the value that we can demote. 8061 ToDemote.push_back(V); 8062 return true; 8063 } 8064 8065 void BoUpSLP::computeMinimumValueSizes() { 8066 // If there are no external uses, the expression tree must be rooted by a 8067 // store. We can't demote in-memory values, so there is nothing to do here. 8068 if (ExternalUses.empty()) 8069 return; 8070 8071 // We only attempt to truncate integer expressions. 8072 auto &TreeRoot = VectorizableTree[0]->Scalars; 8073 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8074 if (!TreeRootIT) 8075 return; 8076 8077 // If the expression is not rooted by a store, these roots should have 8078 // external uses. We will rely on InstCombine to rewrite the expression in 8079 // the narrower type. However, InstCombine only rewrites single-use values. 8080 // This means that if a tree entry other than a root is used externally, it 8081 // must have multiple uses and InstCombine will not rewrite it. The code 8082 // below ensures that only the roots are used externally. 8083 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8084 for (auto &EU : ExternalUses) 8085 if (!Expr.erase(EU.Scalar)) 8086 return; 8087 if (!Expr.empty()) 8088 return; 8089 8090 // Collect the scalar values of the vectorizable expression. We will use this 8091 // context to determine which values can be demoted. If we see a truncation, 8092 // we mark it as seeding another demotion. 8093 for (auto &EntryPtr : VectorizableTree) 8094 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8095 8096 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8097 // have a single external user that is not in the vectorizable tree. 8098 for (auto *Root : TreeRoot) 8099 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8100 return; 8101 8102 // Conservatively determine if we can actually truncate the roots of the 8103 // expression. Collect the values that can be demoted in ToDemote and 8104 // additional roots that require investigating in Roots. 8105 SmallVector<Value *, 32> ToDemote; 8106 SmallVector<Value *, 4> Roots; 8107 for (auto *Root : TreeRoot) 8108 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8109 return; 8110 8111 // The maximum bit width required to represent all the values that can be 8112 // demoted without loss of precision. It would be safe to truncate the roots 8113 // of the expression to this width. 8114 auto MaxBitWidth = 8u; 8115 8116 // We first check if all the bits of the roots are demanded. If they're not, 8117 // we can truncate the roots to this narrower type. 8118 for (auto *Root : TreeRoot) { 8119 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8120 MaxBitWidth = std::max<unsigned>( 8121 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8122 } 8123 8124 // True if the roots can be zero-extended back to their original type, rather 8125 // than sign-extended. We know that if the leading bits are not demanded, we 8126 // can safely zero-extend. So we initialize IsKnownPositive to True. 8127 bool IsKnownPositive = true; 8128 8129 // If all the bits of the roots are demanded, we can try a little harder to 8130 // compute a narrower type. This can happen, for example, if the roots are 8131 // getelementptr indices. InstCombine promotes these indices to the pointer 8132 // width. Thus, all their bits are technically demanded even though the 8133 // address computation might be vectorized in a smaller type. 8134 // 8135 // We start by looking at each entry that can be demoted. We compute the 8136 // maximum bit width required to store the scalar by using ValueTracking to 8137 // compute the number of high-order bits we can truncate. 8138 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8139 llvm::all_of(TreeRoot, [](Value *R) { 8140 assert(R->hasOneUse() && "Root should have only one use!"); 8141 return isa<GetElementPtrInst>(R->user_back()); 8142 })) { 8143 MaxBitWidth = 8u; 8144 8145 // Determine if the sign bit of all the roots is known to be zero. If not, 8146 // IsKnownPositive is set to False. 8147 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8148 KnownBits Known = computeKnownBits(R, *DL); 8149 return Known.isNonNegative(); 8150 }); 8151 8152 // Determine the maximum number of bits required to store the scalar 8153 // values. 8154 for (auto *Scalar : ToDemote) { 8155 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8156 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8157 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8158 } 8159 8160 // If we can't prove that the sign bit is zero, we must add one to the 8161 // maximum bit width to account for the unknown sign bit. This preserves 8162 // the existing sign bit so we can safely sign-extend the root back to the 8163 // original type. Otherwise, if we know the sign bit is zero, we will 8164 // zero-extend the root instead. 8165 // 8166 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8167 // one to the maximum bit width will yield a larger-than-necessary 8168 // type. In general, we need to add an extra bit only if we can't 8169 // prove that the upper bit of the original type is equal to the 8170 // upper bit of the proposed smaller type. If these two bits are the 8171 // same (either zero or one) we know that sign-extending from the 8172 // smaller type will result in the same value. Here, since we can't 8173 // yet prove this, we are just making the proposed smaller type 8174 // larger to ensure correctness. 8175 if (!IsKnownPositive) 8176 ++MaxBitWidth; 8177 } 8178 8179 // Round MaxBitWidth up to the next power-of-two. 8180 if (!isPowerOf2_64(MaxBitWidth)) 8181 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8182 8183 // If the maximum bit width we compute is less than the with of the roots' 8184 // type, we can proceed with the narrowing. Otherwise, do nothing. 8185 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8186 return; 8187 8188 // If we can truncate the root, we must collect additional values that might 8189 // be demoted as a result. That is, those seeded by truncations we will 8190 // modify. 8191 while (!Roots.empty()) 8192 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8193 8194 // Finally, map the values we can demote to the maximum bit with we computed. 8195 for (auto *Scalar : ToDemote) 8196 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8197 } 8198 8199 namespace { 8200 8201 /// The SLPVectorizer Pass. 8202 struct SLPVectorizer : public FunctionPass { 8203 SLPVectorizerPass Impl; 8204 8205 /// Pass identification, replacement for typeid 8206 static char ID; 8207 8208 explicit SLPVectorizer() : FunctionPass(ID) { 8209 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8210 } 8211 8212 bool doInitialization(Module &M) override { return false; } 8213 8214 bool runOnFunction(Function &F) override { 8215 if (skipFunction(F)) 8216 return false; 8217 8218 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8219 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8220 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8221 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8222 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8223 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8224 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8225 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8226 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8227 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8228 8229 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8230 } 8231 8232 void getAnalysisUsage(AnalysisUsage &AU) const override { 8233 FunctionPass::getAnalysisUsage(AU); 8234 AU.addRequired<AssumptionCacheTracker>(); 8235 AU.addRequired<ScalarEvolutionWrapperPass>(); 8236 AU.addRequired<AAResultsWrapperPass>(); 8237 AU.addRequired<TargetTransformInfoWrapperPass>(); 8238 AU.addRequired<LoopInfoWrapperPass>(); 8239 AU.addRequired<DominatorTreeWrapperPass>(); 8240 AU.addRequired<DemandedBitsWrapperPass>(); 8241 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8242 AU.addRequired<InjectTLIMappingsLegacy>(); 8243 AU.addPreserved<LoopInfoWrapperPass>(); 8244 AU.addPreserved<DominatorTreeWrapperPass>(); 8245 AU.addPreserved<AAResultsWrapperPass>(); 8246 AU.addPreserved<GlobalsAAWrapperPass>(); 8247 AU.setPreservesCFG(); 8248 } 8249 }; 8250 8251 } // end anonymous namespace 8252 8253 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8254 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8255 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8256 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8257 auto *AA = &AM.getResult<AAManager>(F); 8258 auto *LI = &AM.getResult<LoopAnalysis>(F); 8259 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8260 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8261 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8262 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8263 8264 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8265 if (!Changed) 8266 return PreservedAnalyses::all(); 8267 8268 PreservedAnalyses PA; 8269 PA.preserveSet<CFGAnalyses>(); 8270 return PA; 8271 } 8272 8273 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8274 TargetTransformInfo *TTI_, 8275 TargetLibraryInfo *TLI_, AAResults *AA_, 8276 LoopInfo *LI_, DominatorTree *DT_, 8277 AssumptionCache *AC_, DemandedBits *DB_, 8278 OptimizationRemarkEmitter *ORE_) { 8279 if (!RunSLPVectorization) 8280 return false; 8281 SE = SE_; 8282 TTI = TTI_; 8283 TLI = TLI_; 8284 AA = AA_; 8285 LI = LI_; 8286 DT = DT_; 8287 AC = AC_; 8288 DB = DB_; 8289 DL = &F.getParent()->getDataLayout(); 8290 8291 Stores.clear(); 8292 GEPs.clear(); 8293 bool Changed = false; 8294 8295 // If the target claims to have no vector registers don't attempt 8296 // vectorization. 8297 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8298 LLVM_DEBUG( 8299 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8300 return false; 8301 } 8302 8303 // Don't vectorize when the attribute NoImplicitFloat is used. 8304 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8305 return false; 8306 8307 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8308 8309 // Use the bottom up slp vectorizer to construct chains that start with 8310 // store instructions. 8311 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8312 8313 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8314 // delete instructions. 8315 8316 // Update DFS numbers now so that we can use them for ordering. 8317 DT->updateDFSNumbers(); 8318 8319 // Scan the blocks in the function in post order. 8320 for (auto BB : post_order(&F.getEntryBlock())) { 8321 collectSeedInstructions(BB); 8322 8323 // Vectorize trees that end at stores. 8324 if (!Stores.empty()) { 8325 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8326 << " underlying objects.\n"); 8327 Changed |= vectorizeStoreChains(R); 8328 } 8329 8330 // Vectorize trees that end at reductions. 8331 Changed |= vectorizeChainsInBlock(BB, R); 8332 8333 // Vectorize the index computations of getelementptr instructions. This 8334 // is primarily intended to catch gather-like idioms ending at 8335 // non-consecutive loads. 8336 if (!GEPs.empty()) { 8337 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8338 << " underlying objects.\n"); 8339 Changed |= vectorizeGEPIndices(BB, R); 8340 } 8341 } 8342 8343 if (Changed) { 8344 R.optimizeGatherSequence(); 8345 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8346 } 8347 return Changed; 8348 } 8349 8350 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8351 unsigned Idx) { 8352 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8353 << "\n"); 8354 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8355 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8356 unsigned VF = Chain.size(); 8357 8358 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8359 return false; 8360 8361 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8362 << "\n"); 8363 8364 R.buildTree(Chain); 8365 if (R.isTreeTinyAndNotFullyVectorizable()) 8366 return false; 8367 if (R.isLoadCombineCandidate()) 8368 return false; 8369 R.reorderTopToBottom(); 8370 R.reorderBottomToTop(); 8371 R.buildExternalUses(); 8372 8373 R.computeMinimumValueSizes(); 8374 8375 InstructionCost Cost = R.getTreeCost(); 8376 8377 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8378 if (Cost < -SLPCostThreshold) { 8379 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8380 8381 using namespace ore; 8382 8383 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8384 cast<StoreInst>(Chain[0])) 8385 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8386 << " and with tree size " 8387 << NV("TreeSize", R.getTreeSize())); 8388 8389 R.vectorizeTree(); 8390 return true; 8391 } 8392 8393 return false; 8394 } 8395 8396 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8397 BoUpSLP &R) { 8398 // We may run into multiple chains that merge into a single chain. We mark the 8399 // stores that we vectorized so that we don't visit the same store twice. 8400 BoUpSLP::ValueSet VectorizedStores; 8401 bool Changed = false; 8402 8403 int E = Stores.size(); 8404 SmallBitVector Tails(E, false); 8405 int MaxIter = MaxStoreLookup.getValue(); 8406 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8407 E, std::make_pair(E, INT_MAX)); 8408 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8409 int IterCnt; 8410 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8411 &CheckedPairs, 8412 &ConsecutiveChain](int K, int Idx) { 8413 if (IterCnt >= MaxIter) 8414 return true; 8415 if (CheckedPairs[Idx].test(K)) 8416 return ConsecutiveChain[K].second == 1 && 8417 ConsecutiveChain[K].first == Idx; 8418 ++IterCnt; 8419 CheckedPairs[Idx].set(K); 8420 CheckedPairs[K].set(Idx); 8421 Optional<int> Diff = getPointersDiff( 8422 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8423 Stores[Idx]->getValueOperand()->getType(), 8424 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8425 if (!Diff || *Diff == 0) 8426 return false; 8427 int Val = *Diff; 8428 if (Val < 0) { 8429 if (ConsecutiveChain[Idx].second > -Val) { 8430 Tails.set(K); 8431 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8432 } 8433 return false; 8434 } 8435 if (ConsecutiveChain[K].second <= Val) 8436 return false; 8437 8438 Tails.set(Idx); 8439 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8440 return Val == 1; 8441 }; 8442 // Do a quadratic search on all of the given stores in reverse order and find 8443 // all of the pairs of stores that follow each other. 8444 for (int Idx = E - 1; Idx >= 0; --Idx) { 8445 // If a store has multiple consecutive store candidates, search according 8446 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8447 // This is because usually pairing with immediate succeeding or preceding 8448 // candidate create the best chance to find slp vectorization opportunity. 8449 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8450 IterCnt = 0; 8451 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8452 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8453 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8454 break; 8455 } 8456 8457 // Tracks if we tried to vectorize stores starting from the given tail 8458 // already. 8459 SmallBitVector TriedTails(E, false); 8460 // For stores that start but don't end a link in the chain: 8461 for (int Cnt = E; Cnt > 0; --Cnt) { 8462 int I = Cnt - 1; 8463 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8464 continue; 8465 // We found a store instr that starts a chain. Now follow the chain and try 8466 // to vectorize it. 8467 BoUpSLP::ValueList Operands; 8468 // Collect the chain into a list. 8469 while (I != E && !VectorizedStores.count(Stores[I])) { 8470 Operands.push_back(Stores[I]); 8471 Tails.set(I); 8472 if (ConsecutiveChain[I].second != 1) { 8473 // Mark the new end in the chain and go back, if required. It might be 8474 // required if the original stores come in reversed order, for example. 8475 if (ConsecutiveChain[I].first != E && 8476 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8477 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8478 TriedTails.set(I); 8479 Tails.reset(ConsecutiveChain[I].first); 8480 if (Cnt < ConsecutiveChain[I].first + 2) 8481 Cnt = ConsecutiveChain[I].first + 2; 8482 } 8483 break; 8484 } 8485 // Move to the next value in the chain. 8486 I = ConsecutiveChain[I].first; 8487 } 8488 assert(!Operands.empty() && "Expected non-empty list of stores."); 8489 8490 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8491 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8492 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8493 8494 unsigned MinVF = R.getMinVF(EltSize); 8495 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8496 MaxElts); 8497 8498 // FIXME: Is division-by-2 the correct step? Should we assert that the 8499 // register size is a power-of-2? 8500 unsigned StartIdx = 0; 8501 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8502 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8503 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8504 if (!VectorizedStores.count(Slice.front()) && 8505 !VectorizedStores.count(Slice.back()) && 8506 vectorizeStoreChain(Slice, R, Cnt)) { 8507 // Mark the vectorized stores so that we don't vectorize them again. 8508 VectorizedStores.insert(Slice.begin(), Slice.end()); 8509 Changed = true; 8510 // If we vectorized initial block, no need to try to vectorize it 8511 // again. 8512 if (Cnt == StartIdx) 8513 StartIdx += Size; 8514 Cnt += Size; 8515 continue; 8516 } 8517 ++Cnt; 8518 } 8519 // Check if the whole array was vectorized already - exit. 8520 if (StartIdx >= Operands.size()) 8521 break; 8522 } 8523 } 8524 8525 return Changed; 8526 } 8527 8528 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8529 // Initialize the collections. We will make a single pass over the block. 8530 Stores.clear(); 8531 GEPs.clear(); 8532 8533 // Visit the store and getelementptr instructions in BB and organize them in 8534 // Stores and GEPs according to the underlying objects of their pointer 8535 // operands. 8536 for (Instruction &I : *BB) { 8537 // Ignore store instructions that are volatile or have a pointer operand 8538 // that doesn't point to a scalar type. 8539 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8540 if (!SI->isSimple()) 8541 continue; 8542 if (!isValidElementType(SI->getValueOperand()->getType())) 8543 continue; 8544 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8545 } 8546 8547 // Ignore getelementptr instructions that have more than one index, a 8548 // constant index, or a pointer operand that doesn't point to a scalar 8549 // type. 8550 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8551 auto Idx = GEP->idx_begin()->get(); 8552 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8553 continue; 8554 if (!isValidElementType(Idx->getType())) 8555 continue; 8556 if (GEP->getType()->isVectorTy()) 8557 continue; 8558 GEPs[GEP->getPointerOperand()].push_back(GEP); 8559 } 8560 } 8561 } 8562 8563 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8564 if (!A || !B) 8565 return false; 8566 Value *VL[] = {A, B}; 8567 return tryToVectorizeList(VL, R); 8568 } 8569 8570 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8571 bool LimitForRegisterSize) { 8572 if (VL.size() < 2) 8573 return false; 8574 8575 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8576 << VL.size() << ".\n"); 8577 8578 // Check that all of the parts are instructions of the same type, 8579 // we permit an alternate opcode via InstructionsState. 8580 InstructionsState S = getSameOpcode(VL); 8581 if (!S.getOpcode()) 8582 return false; 8583 8584 Instruction *I0 = cast<Instruction>(S.OpValue); 8585 // Make sure invalid types (including vector type) are rejected before 8586 // determining vectorization factor for scalar instructions. 8587 for (Value *V : VL) { 8588 Type *Ty = V->getType(); 8589 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8590 // NOTE: the following will give user internal llvm type name, which may 8591 // not be useful. 8592 R.getORE()->emit([&]() { 8593 std::string type_str; 8594 llvm::raw_string_ostream rso(type_str); 8595 Ty->print(rso); 8596 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8597 << "Cannot SLP vectorize list: type " 8598 << rso.str() + " is unsupported by vectorizer"; 8599 }); 8600 return false; 8601 } 8602 } 8603 8604 unsigned Sz = R.getVectorElementSize(I0); 8605 unsigned MinVF = R.getMinVF(Sz); 8606 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8607 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8608 if (MaxVF < 2) { 8609 R.getORE()->emit([&]() { 8610 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8611 << "Cannot SLP vectorize list: vectorization factor " 8612 << "less than 2 is not supported"; 8613 }); 8614 return false; 8615 } 8616 8617 bool Changed = false; 8618 bool CandidateFound = false; 8619 InstructionCost MinCost = SLPCostThreshold.getValue(); 8620 Type *ScalarTy = VL[0]->getType(); 8621 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8622 ScalarTy = IE->getOperand(1)->getType(); 8623 8624 unsigned NextInst = 0, MaxInst = VL.size(); 8625 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8626 // No actual vectorization should happen, if number of parts is the same as 8627 // provided vectorization factor (i.e. the scalar type is used for vector 8628 // code during codegen). 8629 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8630 if (TTI->getNumberOfParts(VecTy) == VF) 8631 continue; 8632 for (unsigned I = NextInst; I < MaxInst; ++I) { 8633 unsigned OpsWidth = 0; 8634 8635 if (I + VF > MaxInst) 8636 OpsWidth = MaxInst - I; 8637 else 8638 OpsWidth = VF; 8639 8640 if (!isPowerOf2_32(OpsWidth)) 8641 continue; 8642 8643 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8644 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8645 break; 8646 8647 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8648 // Check that a previous iteration of this loop did not delete the Value. 8649 if (llvm::any_of(Ops, [&R](Value *V) { 8650 auto *I = dyn_cast<Instruction>(V); 8651 return I && R.isDeleted(I); 8652 })) 8653 continue; 8654 8655 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8656 << "\n"); 8657 8658 R.buildTree(Ops); 8659 if (R.isTreeTinyAndNotFullyVectorizable()) 8660 continue; 8661 R.reorderTopToBottom(); 8662 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8663 R.buildExternalUses(); 8664 8665 R.computeMinimumValueSizes(); 8666 InstructionCost Cost = R.getTreeCost(); 8667 CandidateFound = true; 8668 MinCost = std::min(MinCost, Cost); 8669 8670 if (Cost < -SLPCostThreshold) { 8671 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8672 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8673 cast<Instruction>(Ops[0])) 8674 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8675 << " and with tree size " 8676 << ore::NV("TreeSize", R.getTreeSize())); 8677 8678 R.vectorizeTree(); 8679 // Move to the next bundle. 8680 I += VF - 1; 8681 NextInst = I + 1; 8682 Changed = true; 8683 } 8684 } 8685 } 8686 8687 if (!Changed && CandidateFound) { 8688 R.getORE()->emit([&]() { 8689 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8690 << "List vectorization was possible but not beneficial with cost " 8691 << ore::NV("Cost", MinCost) << " >= " 8692 << ore::NV("Treshold", -SLPCostThreshold); 8693 }); 8694 } else if (!Changed) { 8695 R.getORE()->emit([&]() { 8696 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8697 << "Cannot SLP vectorize list: vectorization was impossible" 8698 << " with available vectorization factors"; 8699 }); 8700 } 8701 return Changed; 8702 } 8703 8704 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8705 if (!I) 8706 return false; 8707 8708 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8709 return false; 8710 8711 Value *P = I->getParent(); 8712 8713 // Vectorize in current basic block only. 8714 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8715 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8716 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8717 return false; 8718 8719 // Try to vectorize V. 8720 if (tryToVectorizePair(Op0, Op1, R)) 8721 return true; 8722 8723 auto *A = dyn_cast<BinaryOperator>(Op0); 8724 auto *B = dyn_cast<BinaryOperator>(Op1); 8725 // Try to skip B. 8726 if (B && B->hasOneUse()) { 8727 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8728 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8729 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8730 return true; 8731 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8732 return true; 8733 } 8734 8735 // Try to skip A. 8736 if (A && A->hasOneUse()) { 8737 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8738 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8739 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8740 return true; 8741 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8742 return true; 8743 } 8744 return false; 8745 } 8746 8747 namespace { 8748 8749 /// Model horizontal reductions. 8750 /// 8751 /// A horizontal reduction is a tree of reduction instructions that has values 8752 /// that can be put into a vector as its leaves. For example: 8753 /// 8754 /// mul mul mul mul 8755 /// \ / \ / 8756 /// + + 8757 /// \ / 8758 /// + 8759 /// This tree has "mul" as its leaf values and "+" as its reduction 8760 /// instructions. A reduction can feed into a store or a binary operation 8761 /// feeding a phi. 8762 /// ... 8763 /// \ / 8764 /// + 8765 /// | 8766 /// phi += 8767 /// 8768 /// Or: 8769 /// ... 8770 /// \ / 8771 /// + 8772 /// | 8773 /// *p = 8774 /// 8775 class HorizontalReduction { 8776 using ReductionOpsType = SmallVector<Value *, 16>; 8777 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8778 ReductionOpsListType ReductionOps; 8779 SmallVector<Value *, 32> ReducedVals; 8780 // Use map vector to make stable output. 8781 MapVector<Instruction *, Value *> ExtraArgs; 8782 WeakTrackingVH ReductionRoot; 8783 /// The type of reduction operation. 8784 RecurKind RdxKind; 8785 8786 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8787 8788 static bool isCmpSelMinMax(Instruction *I) { 8789 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8790 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8791 } 8792 8793 // And/or are potentially poison-safe logical patterns like: 8794 // select x, y, false 8795 // select x, true, y 8796 static bool isBoolLogicOp(Instruction *I) { 8797 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8798 match(I, m_LogicalOr(m_Value(), m_Value())); 8799 } 8800 8801 /// Checks if instruction is associative and can be vectorized. 8802 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8803 if (Kind == RecurKind::None) 8804 return false; 8805 8806 // Integer ops that map to select instructions or intrinsics are fine. 8807 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8808 isBoolLogicOp(I)) 8809 return true; 8810 8811 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8812 // FP min/max are associative except for NaN and -0.0. We do not 8813 // have to rule out -0.0 here because the intrinsic semantics do not 8814 // specify a fixed result for it. 8815 return I->getFastMathFlags().noNaNs(); 8816 } 8817 8818 return I->isAssociative(); 8819 } 8820 8821 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8822 // Poison-safe 'or' takes the form: select X, true, Y 8823 // To make that work with the normal operand processing, we skip the 8824 // true value operand. 8825 // TODO: Change the code and data structures to handle this without a hack. 8826 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8827 return I->getOperand(2); 8828 return I->getOperand(Index); 8829 } 8830 8831 /// Checks if the ParentStackElem.first should be marked as a reduction 8832 /// operation with an extra argument or as extra argument itself. 8833 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8834 Value *ExtraArg) { 8835 if (ExtraArgs.count(ParentStackElem.first)) { 8836 ExtraArgs[ParentStackElem.first] = nullptr; 8837 // We ran into something like: 8838 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8839 // The whole ParentStackElem.first should be considered as an extra value 8840 // in this case. 8841 // Do not perform analysis of remaining operands of ParentStackElem.first 8842 // instruction, this whole instruction is an extra argument. 8843 ParentStackElem.second = INVALID_OPERAND_INDEX; 8844 } else { 8845 // We ran into something like: 8846 // ParentStackElem.first += ... + ExtraArg + ... 8847 ExtraArgs[ParentStackElem.first] = ExtraArg; 8848 } 8849 } 8850 8851 /// Creates reduction operation with the current opcode. 8852 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8853 Value *RHS, const Twine &Name, bool UseSelect) { 8854 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8855 switch (Kind) { 8856 case RecurKind::Or: 8857 if (UseSelect && 8858 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8859 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8860 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8861 Name); 8862 case RecurKind::And: 8863 if (UseSelect && 8864 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8865 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8866 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8867 Name); 8868 case RecurKind::Add: 8869 case RecurKind::Mul: 8870 case RecurKind::Xor: 8871 case RecurKind::FAdd: 8872 case RecurKind::FMul: 8873 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8874 Name); 8875 case RecurKind::FMax: 8876 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8877 case RecurKind::FMin: 8878 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8879 case RecurKind::SMax: 8880 if (UseSelect) { 8881 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8882 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8883 } 8884 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8885 case RecurKind::SMin: 8886 if (UseSelect) { 8887 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8888 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8889 } 8890 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8891 case RecurKind::UMax: 8892 if (UseSelect) { 8893 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8894 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8895 } 8896 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8897 case RecurKind::UMin: 8898 if (UseSelect) { 8899 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8900 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8901 } 8902 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8903 default: 8904 llvm_unreachable("Unknown reduction operation."); 8905 } 8906 } 8907 8908 /// Creates reduction operation with the current opcode with the IR flags 8909 /// from \p ReductionOps. 8910 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8911 Value *RHS, const Twine &Name, 8912 const ReductionOpsListType &ReductionOps) { 8913 bool UseSelect = ReductionOps.size() == 2 || 8914 // Logical or/and. 8915 (ReductionOps.size() == 1 && 8916 isa<SelectInst>(ReductionOps.front().front())); 8917 assert((!UseSelect || ReductionOps.size() != 2 || 8918 isa<SelectInst>(ReductionOps[1][0])) && 8919 "Expected cmp + select pairs for reduction"); 8920 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8921 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8922 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8923 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8924 propagateIRFlags(Op, ReductionOps[1]); 8925 return Op; 8926 } 8927 } 8928 propagateIRFlags(Op, ReductionOps[0]); 8929 return Op; 8930 } 8931 8932 /// Creates reduction operation with the current opcode with the IR flags 8933 /// from \p I. 8934 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8935 Value *RHS, const Twine &Name, Instruction *I) { 8936 auto *SelI = dyn_cast<SelectInst>(I); 8937 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8938 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8939 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8940 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8941 } 8942 propagateIRFlags(Op, I); 8943 return Op; 8944 } 8945 8946 static RecurKind getRdxKind(Instruction *I) { 8947 assert(I && "Expected instruction for reduction matching"); 8948 if (match(I, m_Add(m_Value(), m_Value()))) 8949 return RecurKind::Add; 8950 if (match(I, m_Mul(m_Value(), m_Value()))) 8951 return RecurKind::Mul; 8952 if (match(I, m_And(m_Value(), m_Value())) || 8953 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8954 return RecurKind::And; 8955 if (match(I, m_Or(m_Value(), m_Value())) || 8956 match(I, m_LogicalOr(m_Value(), m_Value()))) 8957 return RecurKind::Or; 8958 if (match(I, m_Xor(m_Value(), m_Value()))) 8959 return RecurKind::Xor; 8960 if (match(I, m_FAdd(m_Value(), m_Value()))) 8961 return RecurKind::FAdd; 8962 if (match(I, m_FMul(m_Value(), m_Value()))) 8963 return RecurKind::FMul; 8964 8965 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8966 return RecurKind::FMax; 8967 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8968 return RecurKind::FMin; 8969 8970 // This matches either cmp+select or intrinsics. SLP is expected to handle 8971 // either form. 8972 // TODO: If we are canonicalizing to intrinsics, we can remove several 8973 // special-case paths that deal with selects. 8974 if (match(I, m_SMax(m_Value(), m_Value()))) 8975 return RecurKind::SMax; 8976 if (match(I, m_SMin(m_Value(), m_Value()))) 8977 return RecurKind::SMin; 8978 if (match(I, m_UMax(m_Value(), m_Value()))) 8979 return RecurKind::UMax; 8980 if (match(I, m_UMin(m_Value(), m_Value()))) 8981 return RecurKind::UMin; 8982 8983 if (auto *Select = dyn_cast<SelectInst>(I)) { 8984 // Try harder: look for min/max pattern based on instructions producing 8985 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8986 // During the intermediate stages of SLP, it's very common to have 8987 // pattern like this (since optimizeGatherSequence is run only once 8988 // at the end): 8989 // %1 = extractelement <2 x i32> %a, i32 0 8990 // %2 = extractelement <2 x i32> %a, i32 1 8991 // %cond = icmp sgt i32 %1, %2 8992 // %3 = extractelement <2 x i32> %a, i32 0 8993 // %4 = extractelement <2 x i32> %a, i32 1 8994 // %select = select i1 %cond, i32 %3, i32 %4 8995 CmpInst::Predicate Pred; 8996 Instruction *L1; 8997 Instruction *L2; 8998 8999 Value *LHS = Select->getTrueValue(); 9000 Value *RHS = Select->getFalseValue(); 9001 Value *Cond = Select->getCondition(); 9002 9003 // TODO: Support inverse predicates. 9004 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9005 if (!isa<ExtractElementInst>(RHS) || 9006 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9007 return RecurKind::None; 9008 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9009 if (!isa<ExtractElementInst>(LHS) || 9010 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9011 return RecurKind::None; 9012 } else { 9013 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9014 return RecurKind::None; 9015 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9016 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9017 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9018 return RecurKind::None; 9019 } 9020 9021 switch (Pred) { 9022 default: 9023 return RecurKind::None; 9024 case CmpInst::ICMP_SGT: 9025 case CmpInst::ICMP_SGE: 9026 return RecurKind::SMax; 9027 case CmpInst::ICMP_SLT: 9028 case CmpInst::ICMP_SLE: 9029 return RecurKind::SMin; 9030 case CmpInst::ICMP_UGT: 9031 case CmpInst::ICMP_UGE: 9032 return RecurKind::UMax; 9033 case CmpInst::ICMP_ULT: 9034 case CmpInst::ICMP_ULE: 9035 return RecurKind::UMin; 9036 } 9037 } 9038 return RecurKind::None; 9039 } 9040 9041 /// Get the index of the first operand. 9042 static unsigned getFirstOperandIndex(Instruction *I) { 9043 return isCmpSelMinMax(I) ? 1 : 0; 9044 } 9045 9046 /// Total number of operands in the reduction operation. 9047 static unsigned getNumberOfOperands(Instruction *I) { 9048 return isCmpSelMinMax(I) ? 3 : 2; 9049 } 9050 9051 /// Checks if the instruction is in basic block \p BB. 9052 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9053 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9054 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9055 auto *Sel = cast<SelectInst>(I); 9056 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9057 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9058 } 9059 return I->getParent() == BB; 9060 } 9061 9062 /// Expected number of uses for reduction operations/reduced values. 9063 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9064 if (IsCmpSelMinMax) { 9065 // SelectInst must be used twice while the condition op must have single 9066 // use only. 9067 if (auto *Sel = dyn_cast<SelectInst>(I)) 9068 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9069 return I->hasNUses(2); 9070 } 9071 9072 // Arithmetic reduction operation must be used once only. 9073 return I->hasOneUse(); 9074 } 9075 9076 /// Initializes the list of reduction operations. 9077 void initReductionOps(Instruction *I) { 9078 if (isCmpSelMinMax(I)) 9079 ReductionOps.assign(2, ReductionOpsType()); 9080 else 9081 ReductionOps.assign(1, ReductionOpsType()); 9082 } 9083 9084 /// Add all reduction operations for the reduction instruction \p I. 9085 void addReductionOps(Instruction *I) { 9086 if (isCmpSelMinMax(I)) { 9087 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9088 ReductionOps[1].emplace_back(I); 9089 } else { 9090 ReductionOps[0].emplace_back(I); 9091 } 9092 } 9093 9094 static Value *getLHS(RecurKind Kind, Instruction *I) { 9095 if (Kind == RecurKind::None) 9096 return nullptr; 9097 return I->getOperand(getFirstOperandIndex(I)); 9098 } 9099 static Value *getRHS(RecurKind Kind, Instruction *I) { 9100 if (Kind == RecurKind::None) 9101 return nullptr; 9102 return I->getOperand(getFirstOperandIndex(I) + 1); 9103 } 9104 9105 public: 9106 HorizontalReduction() = default; 9107 9108 /// Try to find a reduction tree. 9109 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9110 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9111 "Phi needs to use the binary operator"); 9112 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9113 isa<IntrinsicInst>(Inst)) && 9114 "Expected binop, select, or intrinsic for reduction matching"); 9115 RdxKind = getRdxKind(Inst); 9116 9117 // We could have a initial reductions that is not an add. 9118 // r *= v1 + v2 + v3 + v4 9119 // In such a case start looking for a tree rooted in the first '+'. 9120 if (Phi) { 9121 if (getLHS(RdxKind, Inst) == Phi) { 9122 Phi = nullptr; 9123 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9124 if (!Inst) 9125 return false; 9126 RdxKind = getRdxKind(Inst); 9127 } else if (getRHS(RdxKind, Inst) == Phi) { 9128 Phi = nullptr; 9129 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9130 if (!Inst) 9131 return false; 9132 RdxKind = getRdxKind(Inst); 9133 } 9134 } 9135 9136 if (!isVectorizable(RdxKind, Inst)) 9137 return false; 9138 9139 // Analyze "regular" integer/FP types for reductions - no target-specific 9140 // types or pointers. 9141 Type *Ty = Inst->getType(); 9142 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9143 return false; 9144 9145 // Though the ultimate reduction may have multiple uses, its condition must 9146 // have only single use. 9147 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9148 if (!Sel->getCondition()->hasOneUse()) 9149 return false; 9150 9151 ReductionRoot = Inst; 9152 9153 // The opcode for leaf values that we perform a reduction on. 9154 // For example: load(x) + load(y) + load(z) + fptoui(w) 9155 // The leaf opcode for 'w' does not match, so we don't include it as a 9156 // potential candidate for the reduction. 9157 unsigned LeafOpcode = 0; 9158 9159 // Post-order traverse the reduction tree starting at Inst. We only handle 9160 // true trees containing binary operators or selects. 9161 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9162 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9163 initReductionOps(Inst); 9164 while (!Stack.empty()) { 9165 Instruction *TreeN = Stack.back().first; 9166 unsigned EdgeToVisit = Stack.back().second++; 9167 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9168 bool IsReducedValue = TreeRdxKind != RdxKind; 9169 9170 // Postorder visit. 9171 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9172 if (IsReducedValue) 9173 ReducedVals.push_back(TreeN); 9174 else { 9175 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9176 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9177 // Check if TreeN is an extra argument of its parent operation. 9178 if (Stack.size() <= 1) { 9179 // TreeN can't be an extra argument as it is a root reduction 9180 // operation. 9181 return false; 9182 } 9183 // Yes, TreeN is an extra argument, do not add it to a list of 9184 // reduction operations. 9185 // Stack[Stack.size() - 2] always points to the parent operation. 9186 markExtraArg(Stack[Stack.size() - 2], TreeN); 9187 ExtraArgs.erase(TreeN); 9188 } else 9189 addReductionOps(TreeN); 9190 } 9191 // Retract. 9192 Stack.pop_back(); 9193 continue; 9194 } 9195 9196 // Visit operands. 9197 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9198 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9199 if (!EdgeInst) { 9200 // Edge value is not a reduction instruction or a leaf instruction. 9201 // (It may be a constant, function argument, or something else.) 9202 markExtraArg(Stack.back(), EdgeVal); 9203 continue; 9204 } 9205 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9206 // Continue analysis if the next operand is a reduction operation or 9207 // (possibly) a leaf value. If the leaf value opcode is not set, 9208 // the first met operation != reduction operation is considered as the 9209 // leaf opcode. 9210 // Only handle trees in the current basic block. 9211 // Each tree node needs to have minimal number of users except for the 9212 // ultimate reduction. 9213 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9214 if (EdgeInst != Phi && EdgeInst != Inst && 9215 hasSameParent(EdgeInst, Inst->getParent()) && 9216 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9217 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9218 if (IsRdxInst) { 9219 // We need to be able to reassociate the reduction operations. 9220 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9221 // I is an extra argument for TreeN (its parent operation). 9222 markExtraArg(Stack.back(), EdgeInst); 9223 continue; 9224 } 9225 } else if (!LeafOpcode) { 9226 LeafOpcode = EdgeInst->getOpcode(); 9227 } 9228 Stack.push_back( 9229 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9230 continue; 9231 } 9232 // I is an extra argument for TreeN (its parent operation). 9233 markExtraArg(Stack.back(), EdgeInst); 9234 } 9235 return true; 9236 } 9237 9238 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9239 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9240 // If there are a sufficient number of reduction values, reduce 9241 // to a nearby power-of-2. We can safely generate oversized 9242 // vectors and rely on the backend to split them to legal sizes. 9243 unsigned NumReducedVals = ReducedVals.size(); 9244 if (NumReducedVals < 4) 9245 return nullptr; 9246 9247 // Intersect the fast-math-flags from all reduction operations. 9248 FastMathFlags RdxFMF; 9249 RdxFMF.set(); 9250 for (ReductionOpsType &RdxOp : ReductionOps) { 9251 for (Value *RdxVal : RdxOp) { 9252 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9253 RdxFMF &= FPMO->getFastMathFlags(); 9254 } 9255 } 9256 9257 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9258 Builder.setFastMathFlags(RdxFMF); 9259 9260 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9261 // The same extra argument may be used several times, so log each attempt 9262 // to use it. 9263 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9264 assert(Pair.first && "DebugLoc must be set."); 9265 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9266 } 9267 9268 // The compare instruction of a min/max is the insertion point for new 9269 // instructions and may be replaced with a new compare instruction. 9270 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9271 assert(isa<SelectInst>(RdxRootInst) && 9272 "Expected min/max reduction to have select root instruction"); 9273 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9274 assert(isa<Instruction>(ScalarCond) && 9275 "Expected min/max reduction to have compare condition"); 9276 return cast<Instruction>(ScalarCond); 9277 }; 9278 9279 // The reduction root is used as the insertion point for new instructions, 9280 // so set it as externally used to prevent it from being deleted. 9281 ExternallyUsedValues[ReductionRoot]; 9282 SmallVector<Value *, 16> IgnoreList; 9283 for (ReductionOpsType &RdxOp : ReductionOps) 9284 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9285 9286 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9287 if (NumReducedVals > ReduxWidth) { 9288 // In the loop below, we are building a tree based on a window of 9289 // 'ReduxWidth' values. 9290 // If the operands of those values have common traits (compare predicate, 9291 // constant operand, etc), then we want to group those together to 9292 // minimize the cost of the reduction. 9293 9294 // TODO: This should be extended to count common operands for 9295 // compares and binops. 9296 9297 // Step 1: Count the number of times each compare predicate occurs. 9298 SmallDenseMap<unsigned, unsigned> PredCountMap; 9299 for (Value *RdxVal : ReducedVals) { 9300 CmpInst::Predicate Pred; 9301 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9302 ++PredCountMap[Pred]; 9303 } 9304 // Step 2: Sort the values so the most common predicates come first. 9305 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9306 CmpInst::Predicate PredA, PredB; 9307 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9308 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9309 return PredCountMap[PredA] > PredCountMap[PredB]; 9310 } 9311 return false; 9312 }); 9313 } 9314 9315 Value *VectorizedTree = nullptr; 9316 unsigned i = 0; 9317 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9318 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9319 V.buildTree(VL, IgnoreList); 9320 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9321 break; 9322 if (V.isLoadCombineReductionCandidate(RdxKind)) 9323 break; 9324 V.reorderTopToBottom(); 9325 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9326 V.buildExternalUses(ExternallyUsedValues); 9327 9328 // For a poison-safe boolean logic reduction, do not replace select 9329 // instructions with logic ops. All reduced values will be frozen (see 9330 // below) to prevent leaking poison. 9331 if (isa<SelectInst>(ReductionRoot) && 9332 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9333 NumReducedVals != ReduxWidth) 9334 break; 9335 9336 V.computeMinimumValueSizes(); 9337 9338 // Estimate cost. 9339 InstructionCost TreeCost = 9340 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9341 InstructionCost ReductionCost = 9342 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9343 InstructionCost Cost = TreeCost + ReductionCost; 9344 if (!Cost.isValid()) { 9345 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9346 return nullptr; 9347 } 9348 if (Cost >= -SLPCostThreshold) { 9349 V.getORE()->emit([&]() { 9350 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9351 cast<Instruction>(VL[0])) 9352 << "Vectorizing horizontal reduction is possible" 9353 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9354 << " and threshold " 9355 << ore::NV("Threshold", -SLPCostThreshold); 9356 }); 9357 break; 9358 } 9359 9360 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9361 << Cost << ". (HorRdx)\n"); 9362 V.getORE()->emit([&]() { 9363 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9364 cast<Instruction>(VL[0])) 9365 << "Vectorized horizontal reduction with cost " 9366 << ore::NV("Cost", Cost) << " and with tree size " 9367 << ore::NV("TreeSize", V.getTreeSize()); 9368 }); 9369 9370 // Vectorize a tree. 9371 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9372 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9373 9374 // Emit a reduction. If the root is a select (min/max idiom), the insert 9375 // point is the compare condition of that select. 9376 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9377 if (isCmpSelMinMax(RdxRootInst)) 9378 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9379 else 9380 Builder.SetInsertPoint(RdxRootInst); 9381 9382 // To prevent poison from leaking across what used to be sequential, safe, 9383 // scalar boolean logic operations, the reduction operand must be frozen. 9384 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9385 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9386 9387 Value *ReducedSubTree = 9388 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9389 9390 if (!VectorizedTree) { 9391 // Initialize the final value in the reduction. 9392 VectorizedTree = ReducedSubTree; 9393 } else { 9394 // Update the final value in the reduction. 9395 Builder.SetCurrentDebugLocation(Loc); 9396 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9397 ReducedSubTree, "op.rdx", ReductionOps); 9398 } 9399 i += ReduxWidth; 9400 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9401 } 9402 9403 if (VectorizedTree) { 9404 // Finish the reduction. 9405 for (; i < NumReducedVals; ++i) { 9406 auto *I = cast<Instruction>(ReducedVals[i]); 9407 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9408 VectorizedTree = 9409 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9410 } 9411 for (auto &Pair : ExternallyUsedValues) { 9412 // Add each externally used value to the final reduction. 9413 for (auto *I : Pair.second) { 9414 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9415 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9416 Pair.first, "op.extra", I); 9417 } 9418 } 9419 9420 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9421 9422 // Mark all scalar reduction ops for deletion, they are replaced by the 9423 // vector reductions. 9424 V.eraseInstructions(IgnoreList); 9425 } 9426 return VectorizedTree; 9427 } 9428 9429 unsigned numReductionValues() const { return ReducedVals.size(); } 9430 9431 private: 9432 /// Calculate the cost of a reduction. 9433 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9434 Value *FirstReducedVal, unsigned ReduxWidth, 9435 FastMathFlags FMF) { 9436 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9437 Type *ScalarTy = FirstReducedVal->getType(); 9438 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9439 InstructionCost VectorCost, ScalarCost; 9440 switch (RdxKind) { 9441 case RecurKind::Add: 9442 case RecurKind::Mul: 9443 case RecurKind::Or: 9444 case RecurKind::And: 9445 case RecurKind::Xor: 9446 case RecurKind::FAdd: 9447 case RecurKind::FMul: { 9448 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9449 VectorCost = 9450 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9451 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9452 break; 9453 } 9454 case RecurKind::FMax: 9455 case RecurKind::FMin: { 9456 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9457 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9458 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9459 /*IsUnsigned=*/false, CostKind); 9460 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9461 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9462 SclCondTy, RdxPred, CostKind) + 9463 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9464 SclCondTy, RdxPred, CostKind); 9465 break; 9466 } 9467 case RecurKind::SMax: 9468 case RecurKind::SMin: 9469 case RecurKind::UMax: 9470 case RecurKind::UMin: { 9471 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9472 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9473 bool IsUnsigned = 9474 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9475 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9476 CostKind); 9477 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9478 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9479 SclCondTy, RdxPred, CostKind) + 9480 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9481 SclCondTy, RdxPred, CostKind); 9482 break; 9483 } 9484 default: 9485 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9486 } 9487 9488 // Scalar cost is repeated for N-1 elements. 9489 ScalarCost *= (ReduxWidth - 1); 9490 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9491 << " for reduction that starts with " << *FirstReducedVal 9492 << " (It is a splitting reduction)\n"); 9493 return VectorCost - ScalarCost; 9494 } 9495 9496 /// Emit a horizontal reduction of the vectorized value. 9497 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9498 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9499 assert(VectorizedValue && "Need to have a vectorized tree node"); 9500 assert(isPowerOf2_32(ReduxWidth) && 9501 "We only handle power-of-two reductions for now"); 9502 assert(RdxKind != RecurKind::FMulAdd && 9503 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9504 9505 ++NumVectorInstructions; 9506 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9507 } 9508 }; 9509 9510 } // end anonymous namespace 9511 9512 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9513 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9514 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9515 9516 unsigned AggregateSize = 1; 9517 auto *IV = cast<InsertValueInst>(InsertInst); 9518 Type *CurrentType = IV->getType(); 9519 do { 9520 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9521 for (auto *Elt : ST->elements()) 9522 if (Elt != ST->getElementType(0)) // check homogeneity 9523 return None; 9524 AggregateSize *= ST->getNumElements(); 9525 CurrentType = ST->getElementType(0); 9526 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9527 AggregateSize *= AT->getNumElements(); 9528 CurrentType = AT->getElementType(); 9529 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9530 AggregateSize *= VT->getNumElements(); 9531 return AggregateSize; 9532 } else if (CurrentType->isSingleValueType()) { 9533 return AggregateSize; 9534 } else { 9535 return None; 9536 } 9537 } while (true); 9538 } 9539 9540 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9541 TargetTransformInfo *TTI, 9542 SmallVectorImpl<Value *> &BuildVectorOpds, 9543 SmallVectorImpl<Value *> &InsertElts, 9544 unsigned OperandOffset) { 9545 do { 9546 Value *InsertedOperand = LastInsertInst->getOperand(1); 9547 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9548 if (!OperandIndex) 9549 return false; 9550 if (isa<InsertElementInst>(InsertedOperand) || 9551 isa<InsertValueInst>(InsertedOperand)) { 9552 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9553 BuildVectorOpds, InsertElts, *OperandIndex)) 9554 return false; 9555 } else { 9556 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9557 InsertElts[*OperandIndex] = LastInsertInst; 9558 } 9559 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9560 } while (LastInsertInst != nullptr && 9561 (isa<InsertValueInst>(LastInsertInst) || 9562 isa<InsertElementInst>(LastInsertInst)) && 9563 LastInsertInst->hasOneUse()); 9564 return true; 9565 } 9566 9567 /// Recognize construction of vectors like 9568 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9569 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9570 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9571 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9572 /// starting from the last insertelement or insertvalue instruction. 9573 /// 9574 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9575 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9576 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9577 /// 9578 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9579 /// 9580 /// \return true if it matches. 9581 static bool findBuildAggregate(Instruction *LastInsertInst, 9582 TargetTransformInfo *TTI, 9583 SmallVectorImpl<Value *> &BuildVectorOpds, 9584 SmallVectorImpl<Value *> &InsertElts) { 9585 9586 assert((isa<InsertElementInst>(LastInsertInst) || 9587 isa<InsertValueInst>(LastInsertInst)) && 9588 "Expected insertelement or insertvalue instruction!"); 9589 9590 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9591 "Expected empty result vectors!"); 9592 9593 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9594 if (!AggregateSize) 9595 return false; 9596 BuildVectorOpds.resize(*AggregateSize); 9597 InsertElts.resize(*AggregateSize); 9598 9599 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9600 0)) { 9601 llvm::erase_value(BuildVectorOpds, nullptr); 9602 llvm::erase_value(InsertElts, nullptr); 9603 if (BuildVectorOpds.size() >= 2) 9604 return true; 9605 } 9606 9607 return false; 9608 } 9609 9610 /// Try and get a reduction value from a phi node. 9611 /// 9612 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9613 /// if they come from either \p ParentBB or a containing loop latch. 9614 /// 9615 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9616 /// if not possible. 9617 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9618 BasicBlock *ParentBB, LoopInfo *LI) { 9619 // There are situations where the reduction value is not dominated by the 9620 // reduction phi. Vectorizing such cases has been reported to cause 9621 // miscompiles. See PR25787. 9622 auto DominatedReduxValue = [&](Value *R) { 9623 return isa<Instruction>(R) && 9624 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9625 }; 9626 9627 Value *Rdx = nullptr; 9628 9629 // Return the incoming value if it comes from the same BB as the phi node. 9630 if (P->getIncomingBlock(0) == ParentBB) { 9631 Rdx = P->getIncomingValue(0); 9632 } else if (P->getIncomingBlock(1) == ParentBB) { 9633 Rdx = P->getIncomingValue(1); 9634 } 9635 9636 if (Rdx && DominatedReduxValue(Rdx)) 9637 return Rdx; 9638 9639 // Otherwise, check whether we have a loop latch to look at. 9640 Loop *BBL = LI->getLoopFor(ParentBB); 9641 if (!BBL) 9642 return nullptr; 9643 BasicBlock *BBLatch = BBL->getLoopLatch(); 9644 if (!BBLatch) 9645 return nullptr; 9646 9647 // There is a loop latch, return the incoming value if it comes from 9648 // that. This reduction pattern occasionally turns up. 9649 if (P->getIncomingBlock(0) == BBLatch) { 9650 Rdx = P->getIncomingValue(0); 9651 } else if (P->getIncomingBlock(1) == BBLatch) { 9652 Rdx = P->getIncomingValue(1); 9653 } 9654 9655 if (Rdx && DominatedReduxValue(Rdx)) 9656 return Rdx; 9657 9658 return nullptr; 9659 } 9660 9661 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9662 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9663 return true; 9664 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9665 return true; 9666 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9667 return true; 9668 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9669 return true; 9670 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9671 return true; 9672 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9673 return true; 9674 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9675 return true; 9676 return false; 9677 } 9678 9679 /// Attempt to reduce a horizontal reduction. 9680 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9681 /// with reduction operators \a Root (or one of its operands) in a basic block 9682 /// \a BB, then check if it can be done. If horizontal reduction is not found 9683 /// and root instruction is a binary operation, vectorization of the operands is 9684 /// attempted. 9685 /// \returns true if a horizontal reduction was matched and reduced or operands 9686 /// of one of the binary instruction were vectorized. 9687 /// \returns false if a horizontal reduction was not matched (or not possible) 9688 /// or no vectorization of any binary operation feeding \a Root instruction was 9689 /// performed. 9690 static bool tryToVectorizeHorReductionOrInstOperands( 9691 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9692 TargetTransformInfo *TTI, 9693 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9694 if (!ShouldVectorizeHor) 9695 return false; 9696 9697 if (!Root) 9698 return false; 9699 9700 if (Root->getParent() != BB || isa<PHINode>(Root)) 9701 return false; 9702 // Start analysis starting from Root instruction. If horizontal reduction is 9703 // found, try to vectorize it. If it is not a horizontal reduction or 9704 // vectorization is not possible or not effective, and currently analyzed 9705 // instruction is a binary operation, try to vectorize the operands, using 9706 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9707 // the same procedure considering each operand as a possible root of the 9708 // horizontal reduction. 9709 // Interrupt the process if the Root instruction itself was vectorized or all 9710 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9711 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9712 // CmpInsts so we can skip extra attempts in 9713 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9714 std::queue<std::pair<Instruction *, unsigned>> Stack; 9715 Stack.emplace(Root, 0); 9716 SmallPtrSet<Value *, 8> VisitedInstrs; 9717 SmallVector<WeakTrackingVH> PostponedInsts; 9718 bool Res = false; 9719 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9720 Value *&B1) -> Value * { 9721 bool IsBinop = matchRdxBop(Inst, B0, B1); 9722 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9723 if (IsBinop || IsSelect) { 9724 HorizontalReduction HorRdx; 9725 if (HorRdx.matchAssociativeReduction(P, Inst)) 9726 return HorRdx.tryToReduce(R, TTI); 9727 } 9728 return nullptr; 9729 }; 9730 while (!Stack.empty()) { 9731 Instruction *Inst; 9732 unsigned Level; 9733 std::tie(Inst, Level) = Stack.front(); 9734 Stack.pop(); 9735 // Do not try to analyze instruction that has already been vectorized. 9736 // This may happen when we vectorize instruction operands on a previous 9737 // iteration while stack was populated before that happened. 9738 if (R.isDeleted(Inst)) 9739 continue; 9740 Value *B0 = nullptr, *B1 = nullptr; 9741 if (Value *V = TryToReduce(Inst, B0, B1)) { 9742 Res = true; 9743 // Set P to nullptr to avoid re-analysis of phi node in 9744 // matchAssociativeReduction function unless this is the root node. 9745 P = nullptr; 9746 if (auto *I = dyn_cast<Instruction>(V)) { 9747 // Try to find another reduction. 9748 Stack.emplace(I, Level); 9749 continue; 9750 } 9751 } else { 9752 bool IsBinop = B0 && B1; 9753 if (P && IsBinop) { 9754 Inst = dyn_cast<Instruction>(B0); 9755 if (Inst == P) 9756 Inst = dyn_cast<Instruction>(B1); 9757 if (!Inst) { 9758 // Set P to nullptr to avoid re-analysis of phi node in 9759 // matchAssociativeReduction function unless this is the root node. 9760 P = nullptr; 9761 continue; 9762 } 9763 } 9764 // Set P to nullptr to avoid re-analysis of phi node in 9765 // matchAssociativeReduction function unless this is the root node. 9766 P = nullptr; 9767 // Do not try to vectorize CmpInst operands, this is done separately. 9768 // Final attempt for binop args vectorization should happen after the loop 9769 // to try to find reductions. 9770 if (!isa<CmpInst>(Inst)) 9771 PostponedInsts.push_back(Inst); 9772 } 9773 9774 // Try to vectorize operands. 9775 // Continue analysis for the instruction from the same basic block only to 9776 // save compile time. 9777 if (++Level < RecursionMaxDepth) 9778 for (auto *Op : Inst->operand_values()) 9779 if (VisitedInstrs.insert(Op).second) 9780 if (auto *I = dyn_cast<Instruction>(Op)) 9781 // Do not try to vectorize CmpInst operands, this is done 9782 // separately. 9783 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9784 I->getParent() == BB) 9785 Stack.emplace(I, Level); 9786 } 9787 // Try to vectorized binops where reductions were not found. 9788 for (Value *V : PostponedInsts) 9789 if (auto *Inst = dyn_cast<Instruction>(V)) 9790 if (!R.isDeleted(Inst)) 9791 Res |= Vectorize(Inst, R); 9792 return Res; 9793 } 9794 9795 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9796 BasicBlock *BB, BoUpSLP &R, 9797 TargetTransformInfo *TTI) { 9798 auto *I = dyn_cast_or_null<Instruction>(V); 9799 if (!I) 9800 return false; 9801 9802 if (!isa<BinaryOperator>(I)) 9803 P = nullptr; 9804 // Try to match and vectorize a horizontal reduction. 9805 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9806 return tryToVectorize(I, R); 9807 }; 9808 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9809 ExtraVectorization); 9810 } 9811 9812 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9813 BasicBlock *BB, BoUpSLP &R) { 9814 const DataLayout &DL = BB->getModule()->getDataLayout(); 9815 if (!R.canMapToVector(IVI->getType(), DL)) 9816 return false; 9817 9818 SmallVector<Value *, 16> BuildVectorOpds; 9819 SmallVector<Value *, 16> BuildVectorInsts; 9820 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9821 return false; 9822 9823 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9824 // Aggregate value is unlikely to be processed in vector register. 9825 return tryToVectorizeList(BuildVectorOpds, R); 9826 } 9827 9828 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9829 BasicBlock *BB, BoUpSLP &R) { 9830 SmallVector<Value *, 16> BuildVectorInsts; 9831 SmallVector<Value *, 16> BuildVectorOpds; 9832 SmallVector<int> Mask; 9833 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9834 (llvm::all_of( 9835 BuildVectorOpds, 9836 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9837 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9838 return false; 9839 9840 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9841 return tryToVectorizeList(BuildVectorInsts, R); 9842 } 9843 9844 template <typename T> 9845 static bool 9846 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9847 function_ref<unsigned(T *)> Limit, 9848 function_ref<bool(T *, T *)> Comparator, 9849 function_ref<bool(T *, T *)> AreCompatible, 9850 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9851 bool LimitForRegisterSize) { 9852 bool Changed = false; 9853 // Sort by type, parent, operands. 9854 stable_sort(Incoming, Comparator); 9855 9856 // Try to vectorize elements base on their type. 9857 SmallVector<T *> Candidates; 9858 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9859 // Look for the next elements with the same type, parent and operand 9860 // kinds. 9861 auto *SameTypeIt = IncIt; 9862 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9863 ++SameTypeIt; 9864 9865 // Try to vectorize them. 9866 unsigned NumElts = (SameTypeIt - IncIt); 9867 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9868 << NumElts << ")\n"); 9869 // The vectorization is a 3-state attempt: 9870 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9871 // size of maximal register at first. 9872 // 2. Try to vectorize remaining instructions with the same type, if 9873 // possible. This may result in the better vectorization results rather than 9874 // if we try just to vectorize instructions with the same/alternate opcodes. 9875 // 3. Final attempt to try to vectorize all instructions with the 9876 // same/alternate ops only, this may result in some extra final 9877 // vectorization. 9878 if (NumElts > 1 && 9879 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9880 // Success start over because instructions might have been changed. 9881 Changed = true; 9882 } else if (NumElts < Limit(*IncIt) && 9883 (Candidates.empty() || 9884 Candidates.front()->getType() == (*IncIt)->getType())) { 9885 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9886 } 9887 // Final attempt to vectorize instructions with the same types. 9888 if (Candidates.size() > 1 && 9889 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9890 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9891 // Success start over because instructions might have been changed. 9892 Changed = true; 9893 } else if (LimitForRegisterSize) { 9894 // Try to vectorize using small vectors. 9895 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9896 It != End;) { 9897 auto *SameTypeIt = It; 9898 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9899 ++SameTypeIt; 9900 unsigned NumElts = (SameTypeIt - It); 9901 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9902 /*LimitForRegisterSize=*/false)) 9903 Changed = true; 9904 It = SameTypeIt; 9905 } 9906 } 9907 Candidates.clear(); 9908 } 9909 9910 // Start over at the next instruction of a different type (or the end). 9911 IncIt = SameTypeIt; 9912 } 9913 return Changed; 9914 } 9915 9916 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9917 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9918 /// operands. If IsCompatibility is false, function implements strict weak 9919 /// ordering relation between two cmp instructions, returning true if the first 9920 /// instruction is "less" than the second, i.e. its predicate is less than the 9921 /// predicate of the second or the operands IDs are less than the operands IDs 9922 /// of the second cmp instruction. 9923 template <bool IsCompatibility> 9924 static bool compareCmp(Value *V, Value *V2, 9925 function_ref<bool(Instruction *)> IsDeleted) { 9926 auto *CI1 = cast<CmpInst>(V); 9927 auto *CI2 = cast<CmpInst>(V2); 9928 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9929 return false; 9930 if (CI1->getOperand(0)->getType()->getTypeID() < 9931 CI2->getOperand(0)->getType()->getTypeID()) 9932 return !IsCompatibility; 9933 if (CI1->getOperand(0)->getType()->getTypeID() > 9934 CI2->getOperand(0)->getType()->getTypeID()) 9935 return false; 9936 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9937 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9938 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9939 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9940 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9941 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9942 if (BasePred1 < BasePred2) 9943 return !IsCompatibility; 9944 if (BasePred1 > BasePred2) 9945 return false; 9946 // Compare operands. 9947 bool LEPreds = Pred1 <= Pred2; 9948 bool GEPreds = Pred1 >= Pred2; 9949 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9950 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9951 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9952 if (Op1->getValueID() < Op2->getValueID()) 9953 return !IsCompatibility; 9954 if (Op1->getValueID() > Op2->getValueID()) 9955 return false; 9956 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9957 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9958 if (I1->getParent() != I2->getParent()) 9959 return false; 9960 InstructionsState S = getSameOpcode({I1, I2}); 9961 if (S.getOpcode()) 9962 continue; 9963 return false; 9964 } 9965 } 9966 return IsCompatibility; 9967 } 9968 9969 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9970 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9971 bool AtTerminator) { 9972 bool OpsChanged = false; 9973 SmallVector<Instruction *, 4> PostponedCmps; 9974 for (auto *I : reverse(Instructions)) { 9975 if (R.isDeleted(I)) 9976 continue; 9977 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9978 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9979 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9980 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9981 else if (isa<CmpInst>(I)) 9982 PostponedCmps.push_back(I); 9983 } 9984 if (AtTerminator) { 9985 // Try to find reductions first. 9986 for (Instruction *I : PostponedCmps) { 9987 if (R.isDeleted(I)) 9988 continue; 9989 for (Value *Op : I->operands()) 9990 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9991 } 9992 // Try to vectorize operands as vector bundles. 9993 for (Instruction *I : PostponedCmps) { 9994 if (R.isDeleted(I)) 9995 continue; 9996 OpsChanged |= tryToVectorize(I, R); 9997 } 9998 // Try to vectorize list of compares. 9999 // Sort by type, compare predicate, etc. 10000 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10001 return compareCmp<false>(V, V2, 10002 [&R](Instruction *I) { return R.isDeleted(I); }); 10003 }; 10004 10005 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10006 if (V1 == V2) 10007 return true; 10008 return compareCmp<true>(V1, V2, 10009 [&R](Instruction *I) { return R.isDeleted(I); }); 10010 }; 10011 auto Limit = [&R](Value *V) { 10012 unsigned EltSize = R.getVectorElementSize(V); 10013 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10014 }; 10015 10016 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10017 OpsChanged |= tryToVectorizeSequence<Value>( 10018 Vals, Limit, CompareSorter, AreCompatibleCompares, 10019 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10020 // Exclude possible reductions from other blocks. 10021 bool ArePossiblyReducedInOtherBlock = 10022 any_of(Candidates, [](Value *V) { 10023 return any_of(V->users(), [V](User *U) { 10024 return isa<SelectInst>(U) && 10025 cast<SelectInst>(U)->getParent() != 10026 cast<Instruction>(V)->getParent(); 10027 }); 10028 }); 10029 if (ArePossiblyReducedInOtherBlock) 10030 return false; 10031 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10032 }, 10033 /*LimitForRegisterSize=*/true); 10034 Instructions.clear(); 10035 } else { 10036 // Insert in reverse order since the PostponedCmps vector was filled in 10037 // reverse order. 10038 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10039 } 10040 return OpsChanged; 10041 } 10042 10043 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10044 bool Changed = false; 10045 SmallVector<Value *, 4> Incoming; 10046 SmallPtrSet<Value *, 16> VisitedInstrs; 10047 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10048 // node. Allows better to identify the chains that can be vectorized in the 10049 // better way. 10050 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10051 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10052 assert(isValidElementType(V1->getType()) && 10053 isValidElementType(V2->getType()) && 10054 "Expected vectorizable types only."); 10055 // It is fine to compare type IDs here, since we expect only vectorizable 10056 // types, like ints, floats and pointers, we don't care about other type. 10057 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10058 return true; 10059 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10060 return false; 10061 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10062 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10063 if (Opcodes1.size() < Opcodes2.size()) 10064 return true; 10065 if (Opcodes1.size() > Opcodes2.size()) 10066 return false; 10067 Optional<bool> ConstOrder; 10068 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10069 // Undefs are compatible with any other value. 10070 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10071 if (!ConstOrder) 10072 ConstOrder = 10073 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10074 continue; 10075 } 10076 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10077 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10078 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10079 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10080 if (!NodeI1) 10081 return NodeI2 != nullptr; 10082 if (!NodeI2) 10083 return false; 10084 assert((NodeI1 == NodeI2) == 10085 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10086 "Different nodes should have different DFS numbers"); 10087 if (NodeI1 != NodeI2) 10088 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10089 InstructionsState S = getSameOpcode({I1, I2}); 10090 if (S.getOpcode()) 10091 continue; 10092 return I1->getOpcode() < I2->getOpcode(); 10093 } 10094 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10095 if (!ConstOrder) 10096 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10097 continue; 10098 } 10099 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10100 return true; 10101 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10102 return false; 10103 } 10104 return ConstOrder && *ConstOrder; 10105 }; 10106 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10107 if (V1 == V2) 10108 return true; 10109 if (V1->getType() != V2->getType()) 10110 return false; 10111 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10112 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10113 if (Opcodes1.size() != Opcodes2.size()) 10114 return false; 10115 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10116 // Undefs are compatible with any other value. 10117 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10118 continue; 10119 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10120 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10121 if (I1->getParent() != I2->getParent()) 10122 return false; 10123 InstructionsState S = getSameOpcode({I1, I2}); 10124 if (S.getOpcode()) 10125 continue; 10126 return false; 10127 } 10128 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10129 continue; 10130 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10131 return false; 10132 } 10133 return true; 10134 }; 10135 auto Limit = [&R](Value *V) { 10136 unsigned EltSize = R.getVectorElementSize(V); 10137 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10138 }; 10139 10140 bool HaveVectorizedPhiNodes = false; 10141 do { 10142 // Collect the incoming values from the PHIs. 10143 Incoming.clear(); 10144 for (Instruction &I : *BB) { 10145 PHINode *P = dyn_cast<PHINode>(&I); 10146 if (!P) 10147 break; 10148 10149 // No need to analyze deleted, vectorized and non-vectorizable 10150 // instructions. 10151 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10152 isValidElementType(P->getType())) 10153 Incoming.push_back(P); 10154 } 10155 10156 // Find the corresponding non-phi nodes for better matching when trying to 10157 // build the tree. 10158 for (Value *V : Incoming) { 10159 SmallVectorImpl<Value *> &Opcodes = 10160 PHIToOpcodes.try_emplace(V).first->getSecond(); 10161 if (!Opcodes.empty()) 10162 continue; 10163 SmallVector<Value *, 4> Nodes(1, V); 10164 SmallPtrSet<Value *, 4> Visited; 10165 while (!Nodes.empty()) { 10166 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10167 if (!Visited.insert(PHI).second) 10168 continue; 10169 for (Value *V : PHI->incoming_values()) { 10170 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10171 Nodes.push_back(PHI1); 10172 continue; 10173 } 10174 Opcodes.emplace_back(V); 10175 } 10176 } 10177 } 10178 10179 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10180 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10181 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10182 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10183 }, 10184 /*LimitForRegisterSize=*/true); 10185 Changed |= HaveVectorizedPhiNodes; 10186 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10187 } while (HaveVectorizedPhiNodes); 10188 10189 VisitedInstrs.clear(); 10190 10191 SmallVector<Instruction *, 8> PostProcessInstructions; 10192 SmallDenseSet<Instruction *, 4> KeyNodes; 10193 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10194 // Skip instructions with scalable type. The num of elements is unknown at 10195 // compile-time for scalable type. 10196 if (isa<ScalableVectorType>(it->getType())) 10197 continue; 10198 10199 // Skip instructions marked for the deletion. 10200 if (R.isDeleted(&*it)) 10201 continue; 10202 // We may go through BB multiple times so skip the one we have checked. 10203 if (!VisitedInstrs.insert(&*it).second) { 10204 if (it->use_empty() && KeyNodes.contains(&*it) && 10205 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10206 it->isTerminator())) { 10207 // We would like to start over since some instructions are deleted 10208 // and the iterator may become invalid value. 10209 Changed = true; 10210 it = BB->begin(); 10211 e = BB->end(); 10212 } 10213 continue; 10214 } 10215 10216 if (isa<DbgInfoIntrinsic>(it)) 10217 continue; 10218 10219 // Try to vectorize reductions that use PHINodes. 10220 if (PHINode *P = dyn_cast<PHINode>(it)) { 10221 // Check that the PHI is a reduction PHI. 10222 if (P->getNumIncomingValues() == 2) { 10223 // Try to match and vectorize a horizontal reduction. 10224 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10225 TTI)) { 10226 Changed = true; 10227 it = BB->begin(); 10228 e = BB->end(); 10229 continue; 10230 } 10231 } 10232 // Try to vectorize the incoming values of the PHI, to catch reductions 10233 // that feed into PHIs. 10234 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10235 // Skip if the incoming block is the current BB for now. Also, bypass 10236 // unreachable IR for efficiency and to avoid crashing. 10237 // TODO: Collect the skipped incoming values and try to vectorize them 10238 // after processing BB. 10239 if (BB == P->getIncomingBlock(I) || 10240 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10241 continue; 10242 10243 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10244 P->getIncomingBlock(I), R, TTI); 10245 } 10246 continue; 10247 } 10248 10249 // Ran into an instruction without users, like terminator, or function call 10250 // with ignored return value, store. Ignore unused instructions (basing on 10251 // instruction type, except for CallInst and InvokeInst). 10252 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10253 isa<InvokeInst>(it))) { 10254 KeyNodes.insert(&*it); 10255 bool OpsChanged = false; 10256 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10257 for (auto *V : it->operand_values()) { 10258 // Try to match and vectorize a horizontal reduction. 10259 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10260 } 10261 } 10262 // Start vectorization of post-process list of instructions from the 10263 // top-tree instructions to try to vectorize as many instructions as 10264 // possible. 10265 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10266 it->isTerminator()); 10267 if (OpsChanged) { 10268 // We would like to start over since some instructions are deleted 10269 // and the iterator may become invalid value. 10270 Changed = true; 10271 it = BB->begin(); 10272 e = BB->end(); 10273 continue; 10274 } 10275 } 10276 10277 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10278 isa<InsertValueInst>(it)) 10279 PostProcessInstructions.push_back(&*it); 10280 } 10281 10282 return Changed; 10283 } 10284 10285 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10286 auto Changed = false; 10287 for (auto &Entry : GEPs) { 10288 // If the getelementptr list has fewer than two elements, there's nothing 10289 // to do. 10290 if (Entry.second.size() < 2) 10291 continue; 10292 10293 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10294 << Entry.second.size() << ".\n"); 10295 10296 // Process the GEP list in chunks suitable for the target's supported 10297 // vector size. If a vector register can't hold 1 element, we are done. We 10298 // are trying to vectorize the index computations, so the maximum number of 10299 // elements is based on the size of the index expression, rather than the 10300 // size of the GEP itself (the target's pointer size). 10301 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10302 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10303 if (MaxVecRegSize < EltSize) 10304 continue; 10305 10306 unsigned MaxElts = MaxVecRegSize / EltSize; 10307 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10308 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10309 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10310 10311 // Initialize a set a candidate getelementptrs. Note that we use a 10312 // SetVector here to preserve program order. If the index computations 10313 // are vectorizable and begin with loads, we want to minimize the chance 10314 // of having to reorder them later. 10315 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10316 10317 // Some of the candidates may have already been vectorized after we 10318 // initially collected them. If so, they are marked as deleted, so remove 10319 // them from the set of candidates. 10320 Candidates.remove_if( 10321 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10322 10323 // Remove from the set of candidates all pairs of getelementptrs with 10324 // constant differences. Such getelementptrs are likely not good 10325 // candidates for vectorization in a bottom-up phase since one can be 10326 // computed from the other. We also ensure all candidate getelementptr 10327 // indices are unique. 10328 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10329 auto *GEPI = GEPList[I]; 10330 if (!Candidates.count(GEPI)) 10331 continue; 10332 auto *SCEVI = SE->getSCEV(GEPList[I]); 10333 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10334 auto *GEPJ = GEPList[J]; 10335 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10336 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10337 Candidates.remove(GEPI); 10338 Candidates.remove(GEPJ); 10339 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10340 Candidates.remove(GEPJ); 10341 } 10342 } 10343 } 10344 10345 // We break out of the above computation as soon as we know there are 10346 // fewer than two candidates remaining. 10347 if (Candidates.size() < 2) 10348 continue; 10349 10350 // Add the single, non-constant index of each candidate to the bundle. We 10351 // ensured the indices met these constraints when we originally collected 10352 // the getelementptrs. 10353 SmallVector<Value *, 16> Bundle(Candidates.size()); 10354 auto BundleIndex = 0u; 10355 for (auto *V : Candidates) { 10356 auto *GEP = cast<GetElementPtrInst>(V); 10357 auto *GEPIdx = GEP->idx_begin()->get(); 10358 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10359 Bundle[BundleIndex++] = GEPIdx; 10360 } 10361 10362 // Try and vectorize the indices. We are currently only interested in 10363 // gather-like cases of the form: 10364 // 10365 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10366 // 10367 // where the loads of "a", the loads of "b", and the subtractions can be 10368 // performed in parallel. It's likely that detecting this pattern in a 10369 // bottom-up phase will be simpler and less costly than building a 10370 // full-blown top-down phase beginning at the consecutive loads. 10371 Changed |= tryToVectorizeList(Bundle, R); 10372 } 10373 } 10374 return Changed; 10375 } 10376 10377 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10378 bool Changed = false; 10379 // Sort by type, base pointers and values operand. Value operands must be 10380 // compatible (have the same opcode, same parent), otherwise it is 10381 // definitely not profitable to try to vectorize them. 10382 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10383 if (V->getPointerOperandType()->getTypeID() < 10384 V2->getPointerOperandType()->getTypeID()) 10385 return true; 10386 if (V->getPointerOperandType()->getTypeID() > 10387 V2->getPointerOperandType()->getTypeID()) 10388 return false; 10389 // UndefValues are compatible with all other values. 10390 if (isa<UndefValue>(V->getValueOperand()) || 10391 isa<UndefValue>(V2->getValueOperand())) 10392 return false; 10393 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10394 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10395 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10396 DT->getNode(I1->getParent()); 10397 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10398 DT->getNode(I2->getParent()); 10399 assert(NodeI1 && "Should only process reachable instructions"); 10400 assert(NodeI1 && "Should only process reachable instructions"); 10401 assert((NodeI1 == NodeI2) == 10402 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10403 "Different nodes should have different DFS numbers"); 10404 if (NodeI1 != NodeI2) 10405 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10406 InstructionsState S = getSameOpcode({I1, I2}); 10407 if (S.getOpcode()) 10408 return false; 10409 return I1->getOpcode() < I2->getOpcode(); 10410 } 10411 if (isa<Constant>(V->getValueOperand()) && 10412 isa<Constant>(V2->getValueOperand())) 10413 return false; 10414 return V->getValueOperand()->getValueID() < 10415 V2->getValueOperand()->getValueID(); 10416 }; 10417 10418 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10419 if (V1 == V2) 10420 return true; 10421 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10422 return false; 10423 // Undefs are compatible with any other value. 10424 if (isa<UndefValue>(V1->getValueOperand()) || 10425 isa<UndefValue>(V2->getValueOperand())) 10426 return true; 10427 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10428 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10429 if (I1->getParent() != I2->getParent()) 10430 return false; 10431 InstructionsState S = getSameOpcode({I1, I2}); 10432 return S.getOpcode() > 0; 10433 } 10434 if (isa<Constant>(V1->getValueOperand()) && 10435 isa<Constant>(V2->getValueOperand())) 10436 return true; 10437 return V1->getValueOperand()->getValueID() == 10438 V2->getValueOperand()->getValueID(); 10439 }; 10440 auto Limit = [&R, this](StoreInst *SI) { 10441 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10442 return R.getMinVF(EltSize); 10443 }; 10444 10445 // Attempt to sort and vectorize each of the store-groups. 10446 for (auto &Pair : Stores) { 10447 if (Pair.second.size() < 2) 10448 continue; 10449 10450 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10451 << Pair.second.size() << ".\n"); 10452 10453 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10454 continue; 10455 10456 Changed |= tryToVectorizeSequence<StoreInst>( 10457 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10458 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10459 return vectorizeStores(Candidates, R); 10460 }, 10461 /*LimitForRegisterSize=*/false); 10462 } 10463 return Changed; 10464 } 10465 10466 char SLPVectorizer::ID = 0; 10467 10468 static const char lv_name[] = "SLP Vectorizer"; 10469 10470 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10471 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10472 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10473 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10474 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10475 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10476 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10477 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10478 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10479 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10480 10481 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10482