1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #ifdef EXPENSIVE_CHECKS 75 #include "llvm/IR/Verifier.h" 76 #endif 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1142 static const int ScoreReversedLoads = 3; 1143 /// ExtractElementInst from same vector and consecutive indexes. 1144 static const int ScoreConsecutiveExtracts = 4; 1145 /// ExtractElementInst from same vector and reversed indices. 1146 static const int ScoreReversedExtracts = 3; 1147 /// Constants. 1148 static const int ScoreConstants = 2; 1149 /// Instructions with the same opcode. 1150 static const int ScoreSameOpcode = 2; 1151 /// Instructions with alt opcodes (e.g, add + sub). 1152 static const int ScoreAltOpcodes = 1; 1153 /// Identical instructions (a.k.a. splat or broadcast). 1154 static const int ScoreSplat = 1; 1155 /// Matching with an undef is preferable to failing. 1156 static const int ScoreUndef = 1; 1157 /// Score for failing to find a decent match. 1158 static const int ScoreFail = 0; 1159 /// Score if all users are vectorized. 1160 static const int ScoreAllUserVectorized = 1; 1161 1162 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1163 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1164 /// MainAltOps. 1165 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1166 ScalarEvolution &SE, int NumLanes, 1167 ArrayRef<Value *> MainAltOps) { 1168 if (V1 == V2) 1169 return VLOperands::ScoreSplat; 1170 1171 auto *LI1 = dyn_cast<LoadInst>(V1); 1172 auto *LI2 = dyn_cast<LoadInst>(V2); 1173 if (LI1 && LI2) { 1174 if (LI1->getParent() != LI2->getParent()) 1175 return VLOperands::ScoreFail; 1176 1177 Optional<int> Dist = getPointersDiff( 1178 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1179 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1180 if (!Dist || *Dist == 0) 1181 return VLOperands::ScoreFail; 1182 // The distance is too large - still may be profitable to use masked 1183 // loads/gathers. 1184 if (std::abs(*Dist) > NumLanes / 2) 1185 return VLOperands::ScoreAltOpcodes; 1186 // This still will detect consecutive loads, but we might have "holes" 1187 // in some cases. It is ok for non-power-2 vectorization and may produce 1188 // better results. It should not affect current vectorization. 1189 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1190 : VLOperands::ScoreReversedLoads; 1191 } 1192 1193 auto *C1 = dyn_cast<Constant>(V1); 1194 auto *C2 = dyn_cast<Constant>(V2); 1195 if (C1 && C2) 1196 return VLOperands::ScoreConstants; 1197 1198 // Extracts from consecutive indexes of the same vector better score as 1199 // the extracts could be optimized away. 1200 Value *EV1; 1201 ConstantInt *Ex1Idx; 1202 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1203 // Undefs are always profitable for extractelements. 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreConsecutiveExtracts; 1206 Value *EV2 = nullptr; 1207 ConstantInt *Ex2Idx = nullptr; 1208 if (match(V2, 1209 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1210 m_Undef())))) { 1211 // Undefs are always profitable for extractelements. 1212 if (!Ex2Idx) 1213 return VLOperands::ScoreConsecutiveExtracts; 1214 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1215 return VLOperands::ScoreConsecutiveExtracts; 1216 if (EV2 == EV1) { 1217 int Idx1 = Ex1Idx->getZExtValue(); 1218 int Idx2 = Ex2Idx->getZExtValue(); 1219 int Dist = Idx2 - Idx1; 1220 // The distance is too large - still may be profitable to use 1221 // shuffles. 1222 if (std::abs(Dist) == 0) 1223 return VLOperands::ScoreSplat; 1224 if (std::abs(Dist) > NumLanes / 2) 1225 return VLOperands::ScoreSameOpcode; 1226 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1227 : VLOperands::ScoreReversedExtracts; 1228 } 1229 return VLOperands::ScoreAltOpcodes; 1230 } 1231 return VLOperands::ScoreFail; 1232 } 1233 1234 auto *I1 = dyn_cast<Instruction>(V1); 1235 auto *I2 = dyn_cast<Instruction>(V2); 1236 if (I1 && I2) { 1237 if (I1->getParent() != I2->getParent()) 1238 return VLOperands::ScoreFail; 1239 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1240 Ops.push_back(I1); 1241 Ops.push_back(I2); 1242 InstructionsState S = getSameOpcode(Ops); 1243 // Note: Only consider instructions with <= 2 operands to avoid 1244 // complexity explosion. 1245 if (S.getOpcode() && 1246 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1247 !S.isAltShuffle()) && 1248 all_of(Ops, [&S](Value *V) { 1249 return cast<Instruction>(V)->getNumOperands() == 1250 S.MainOp->getNumOperands(); 1251 })) 1252 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1253 : VLOperands::ScoreSameOpcode; 1254 } 1255 1256 if (isa<UndefValue>(V2)) 1257 return VLOperands::ScoreUndef; 1258 1259 return VLOperands::ScoreFail; 1260 } 1261 1262 /// \param Lane lane of the operands under analysis. 1263 /// \param OpIdx operand index in \p Lane lane we're looking the best 1264 /// candidate for. 1265 /// \param Idx operand index of the current candidate value. 1266 /// \returns The additional score due to possible broadcasting of the 1267 /// elements in the lane. It is more profitable to have power-of-2 unique 1268 /// elements in the lane, it will be vectorized with higher probability 1269 /// after removing duplicates. Currently the SLP vectorizer supports only 1270 /// vectorization of the power-of-2 number of unique scalars. 1271 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1272 Value *IdxLaneV = getData(Idx, Lane).V; 1273 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1274 return 0; 1275 SmallPtrSet<Value *, 4> Uniques; 1276 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1277 if (Ln == Lane) 1278 continue; 1279 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1280 if (!isa<Instruction>(OpIdxLnV)) 1281 return 0; 1282 Uniques.insert(OpIdxLnV); 1283 } 1284 int UniquesCount = Uniques.size(); 1285 int UniquesCntWithIdxLaneV = 1286 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1287 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1288 int UniquesCntWithOpIdxLaneV = 1289 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1290 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1291 return 0; 1292 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1293 UniquesCntWithOpIdxLaneV) - 1294 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1295 } 1296 1297 /// \param Lane lane of the operands under analysis. 1298 /// \param OpIdx operand index in \p Lane lane we're looking the best 1299 /// candidate for. 1300 /// \param Idx operand index of the current candidate value. 1301 /// \returns The additional score for the scalar which users are all 1302 /// vectorized. 1303 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1304 Value *IdxLaneV = getData(Idx, Lane).V; 1305 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1306 // Do not care about number of uses for vector-like instructions 1307 // (extractelement/extractvalue with constant indices), they are extracts 1308 // themselves and already externally used. Vectorization of such 1309 // instructions does not add extra extractelement instruction, just may 1310 // remove it. 1311 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1312 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1313 return VLOperands::ScoreAllUserVectorized; 1314 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1315 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1316 return 0; 1317 return R.areAllUsersVectorized(IdxLaneI, None) 1318 ? VLOperands::ScoreAllUserVectorized 1319 : 0; 1320 } 1321 1322 /// Go through the operands of \p LHS and \p RHS recursively until \p 1323 /// MaxLevel, and return the cummulative score. For example: 1324 /// \verbatim 1325 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1326 /// \ / \ / \ / \ / 1327 /// + + + + 1328 /// G1 G2 G3 G4 1329 /// \endverbatim 1330 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1331 /// each level recursively, accumulating the score. It starts from matching 1332 /// the additions at level 0, then moves on to the loads (level 1). The 1333 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1334 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1335 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1336 /// Please note that the order of the operands does not matter, as we 1337 /// evaluate the score of all profitable combinations of operands. In 1338 /// other words the score of G1 and G4 is the same as G1 and G2. This 1339 /// heuristic is based on ideas described in: 1340 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1341 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1342 /// Luís F. W. Góes 1343 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1344 ArrayRef<Value *> MainAltOps) { 1345 1346 // Get the shallow score of V1 and V2. 1347 int ShallowScoreAtThisLevel = 1348 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1349 1350 // If reached MaxLevel, 1351 // or if V1 and V2 are not instructions, 1352 // or if they are SPLAT, 1353 // or if they are not consecutive, 1354 // or if profitable to vectorize loads or extractelements, early return 1355 // the current cost. 1356 auto *I1 = dyn_cast<Instruction>(LHS); 1357 auto *I2 = dyn_cast<Instruction>(RHS); 1358 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1359 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1360 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1361 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1362 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1363 ShallowScoreAtThisLevel)) 1364 return ShallowScoreAtThisLevel; 1365 assert(I1 && I2 && "Should have early exited."); 1366 1367 // Contains the I2 operand indexes that got matched with I1 operands. 1368 SmallSet<unsigned, 4> Op2Used; 1369 1370 // Recursion towards the operands of I1 and I2. We are trying all possible 1371 // operand pairs, and keeping track of the best score. 1372 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1373 OpIdx1 != NumOperands1; ++OpIdx1) { 1374 // Try to pair op1I with the best operand of I2. 1375 int MaxTmpScore = 0; 1376 unsigned MaxOpIdx2 = 0; 1377 bool FoundBest = false; 1378 // If I2 is commutative try all combinations. 1379 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1380 unsigned ToIdx = isCommutative(I2) 1381 ? I2->getNumOperands() 1382 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1383 assert(FromIdx <= ToIdx && "Bad index"); 1384 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1385 // Skip operands already paired with OpIdx1. 1386 if (Op2Used.count(OpIdx2)) 1387 continue; 1388 // Recursively calculate the cost at each level 1389 int TmpScore = 1390 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1391 CurrLevel + 1, MaxLevel, None); 1392 // Look for the best score. 1393 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1394 MaxTmpScore = TmpScore; 1395 MaxOpIdx2 = OpIdx2; 1396 FoundBest = true; 1397 } 1398 } 1399 if (FoundBest) { 1400 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1401 Op2Used.insert(MaxOpIdx2); 1402 ShallowScoreAtThisLevel += MaxTmpScore; 1403 } 1404 } 1405 return ShallowScoreAtThisLevel; 1406 } 1407 1408 /// Score scaling factor for fully compatible instructions but with 1409 /// different number of external uses. Allows better selection of the 1410 /// instructions with less external uses. 1411 static const int ScoreScaleFactor = 10; 1412 1413 /// \Returns the look-ahead score, which tells us how much the sub-trees 1414 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1415 /// score. This helps break ties in an informed way when we cannot decide on 1416 /// the order of the operands by just considering the immediate 1417 /// predecessors. 1418 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1419 int Lane, unsigned OpIdx, unsigned Idx, 1420 bool &IsUsed) { 1421 int Score = 1422 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1423 if (Score) { 1424 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1425 if (Score <= -SplatScore) { 1426 // Set the minimum score for splat-like sequence to avoid setting 1427 // failed state. 1428 Score = 1; 1429 } else { 1430 Score += SplatScore; 1431 // Scale score to see the difference between different operands 1432 // and similar operands but all vectorized/not all vectorized 1433 // uses. It does not affect actual selection of the best 1434 // compatible operand in general, just allows to select the 1435 // operand with all vectorized uses. 1436 Score *= ScoreScaleFactor; 1437 Score += getExternalUseScore(Lane, OpIdx, Idx); 1438 IsUsed = true; 1439 } 1440 } 1441 return Score; 1442 } 1443 1444 /// Best defined scores per lanes between the passes. Used to choose the 1445 /// best operand (with the highest score) between the passes. 1446 /// The key - {Operand Index, Lane}. 1447 /// The value - the best score between the passes for the lane and the 1448 /// operand. 1449 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1450 BestScoresPerLanes; 1451 1452 // Search all operands in Ops[*][Lane] for the one that matches best 1453 // Ops[OpIdx][LastLane] and return its opreand index. 1454 // If no good match can be found, return None. 1455 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1456 ArrayRef<ReorderingMode> ReorderingModes, 1457 ArrayRef<Value *> MainAltOps) { 1458 unsigned NumOperands = getNumOperands(); 1459 1460 // The operand of the previous lane at OpIdx. 1461 Value *OpLastLane = getData(OpIdx, LastLane).V; 1462 1463 // Our strategy mode for OpIdx. 1464 ReorderingMode RMode = ReorderingModes[OpIdx]; 1465 if (RMode == ReorderingMode::Failed) 1466 return None; 1467 1468 // The linearized opcode of the operand at OpIdx, Lane. 1469 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1470 1471 // The best operand index and its score. 1472 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1473 // are using the score to differentiate between the two. 1474 struct BestOpData { 1475 Optional<unsigned> Idx = None; 1476 unsigned Score = 0; 1477 } BestOp; 1478 BestOp.Score = 1479 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1480 .first->second; 1481 1482 // Track if the operand must be marked as used. If the operand is set to 1483 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1484 // want to reestimate the operands again on the following iterations). 1485 bool IsUsed = 1486 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1487 // Iterate through all unused operands and look for the best. 1488 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1489 // Get the operand at Idx and Lane. 1490 OperandData &OpData = getData(Idx, Lane); 1491 Value *Op = OpData.V; 1492 bool OpAPO = OpData.APO; 1493 1494 // Skip already selected operands. 1495 if (OpData.IsUsed) 1496 continue; 1497 1498 // Skip if we are trying to move the operand to a position with a 1499 // different opcode in the linearized tree form. This would break the 1500 // semantics. 1501 if (OpAPO != OpIdxAPO) 1502 continue; 1503 1504 // Look for an operand that matches the current mode. 1505 switch (RMode) { 1506 case ReorderingMode::Load: 1507 case ReorderingMode::Constant: 1508 case ReorderingMode::Opcode: { 1509 bool LeftToRight = Lane > LastLane; 1510 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1511 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1512 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1513 OpIdx, Idx, IsUsed); 1514 if (Score > static_cast<int>(BestOp.Score)) { 1515 BestOp.Idx = Idx; 1516 BestOp.Score = Score; 1517 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1518 } 1519 break; 1520 } 1521 case ReorderingMode::Splat: 1522 if (Op == OpLastLane) 1523 BestOp.Idx = Idx; 1524 break; 1525 case ReorderingMode::Failed: 1526 llvm_unreachable("Not expected Failed reordering mode."); 1527 } 1528 } 1529 1530 if (BestOp.Idx) { 1531 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1532 return BestOp.Idx; 1533 } 1534 // If we could not find a good match return None. 1535 return None; 1536 } 1537 1538 /// Helper for reorderOperandVecs. 1539 /// \returns the lane that we should start reordering from. This is the one 1540 /// which has the least number of operands that can freely move about or 1541 /// less profitable because it already has the most optimal set of operands. 1542 unsigned getBestLaneToStartReordering() const { 1543 unsigned Min = UINT_MAX; 1544 unsigned SameOpNumber = 0; 1545 // std::pair<unsigned, unsigned> is used to implement a simple voting 1546 // algorithm and choose the lane with the least number of operands that 1547 // can freely move about or less profitable because it already has the 1548 // most optimal set of operands. The first unsigned is a counter for 1549 // voting, the second unsigned is the counter of lanes with instructions 1550 // with same/alternate opcodes and same parent basic block. 1551 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1552 // Try to be closer to the original results, if we have multiple lanes 1553 // with same cost. If 2 lanes have the same cost, use the one with the 1554 // lowest index. 1555 for (int I = getNumLanes(); I > 0; --I) { 1556 unsigned Lane = I - 1; 1557 OperandsOrderData NumFreeOpsHash = 1558 getMaxNumOperandsThatCanBeReordered(Lane); 1559 // Compare the number of operands that can move and choose the one with 1560 // the least number. 1561 if (NumFreeOpsHash.NumOfAPOs < Min) { 1562 Min = NumFreeOpsHash.NumOfAPOs; 1563 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1564 HashMap.clear(); 1565 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1566 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1567 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1568 // Select the most optimal lane in terms of number of operands that 1569 // should be moved around. 1570 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1571 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1572 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1573 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1574 auto It = HashMap.find(NumFreeOpsHash.Hash); 1575 if (It == HashMap.end()) 1576 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1577 else 1578 ++It->second.first; 1579 } 1580 } 1581 // Select the lane with the minimum counter. 1582 unsigned BestLane = 0; 1583 unsigned CntMin = UINT_MAX; 1584 for (const auto &Data : reverse(HashMap)) { 1585 if (Data.second.first < CntMin) { 1586 CntMin = Data.second.first; 1587 BestLane = Data.second.second; 1588 } 1589 } 1590 return BestLane; 1591 } 1592 1593 /// Data structure that helps to reorder operands. 1594 struct OperandsOrderData { 1595 /// The best number of operands with the same APOs, which can be 1596 /// reordered. 1597 unsigned NumOfAPOs = UINT_MAX; 1598 /// Number of operands with the same/alternate instruction opcode and 1599 /// parent. 1600 unsigned NumOpsWithSameOpcodeParent = 0; 1601 /// Hash for the actual operands ordering. 1602 /// Used to count operands, actually their position id and opcode 1603 /// value. It is used in the voting mechanism to find the lane with the 1604 /// least number of operands that can freely move about or less profitable 1605 /// because it already has the most optimal set of operands. Can be 1606 /// replaced with SmallVector<unsigned> instead but hash code is faster 1607 /// and requires less memory. 1608 unsigned Hash = 0; 1609 }; 1610 /// \returns the maximum number of operands that are allowed to be reordered 1611 /// for \p Lane and the number of compatible instructions(with the same 1612 /// parent/opcode). This is used as a heuristic for selecting the first lane 1613 /// to start operand reordering. 1614 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1615 unsigned CntTrue = 0; 1616 unsigned NumOperands = getNumOperands(); 1617 // Operands with the same APO can be reordered. We therefore need to count 1618 // how many of them we have for each APO, like this: Cnt[APO] = x. 1619 // Since we only have two APOs, namely true and false, we can avoid using 1620 // a map. Instead we can simply count the number of operands that 1621 // correspond to one of them (in this case the 'true' APO), and calculate 1622 // the other by subtracting it from the total number of operands. 1623 // Operands with the same instruction opcode and parent are more 1624 // profitable since we don't need to move them in many cases, with a high 1625 // probability such lane already can be vectorized effectively. 1626 bool AllUndefs = true; 1627 unsigned NumOpsWithSameOpcodeParent = 0; 1628 Instruction *OpcodeI = nullptr; 1629 BasicBlock *Parent = nullptr; 1630 unsigned Hash = 0; 1631 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1632 const OperandData &OpData = getData(OpIdx, Lane); 1633 if (OpData.APO) 1634 ++CntTrue; 1635 // Use Boyer-Moore majority voting for finding the majority opcode and 1636 // the number of times it occurs. 1637 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1638 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1639 I->getParent() != Parent) { 1640 if (NumOpsWithSameOpcodeParent == 0) { 1641 NumOpsWithSameOpcodeParent = 1; 1642 OpcodeI = I; 1643 Parent = I->getParent(); 1644 } else { 1645 --NumOpsWithSameOpcodeParent; 1646 } 1647 } else { 1648 ++NumOpsWithSameOpcodeParent; 1649 } 1650 } 1651 Hash = hash_combine( 1652 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1653 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1654 } 1655 if (AllUndefs) 1656 return {}; 1657 OperandsOrderData Data; 1658 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1659 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1660 Data.Hash = Hash; 1661 return Data; 1662 } 1663 1664 /// Go through the instructions in VL and append their operands. 1665 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1666 assert(!VL.empty() && "Bad VL"); 1667 assert((empty() || VL.size() == getNumLanes()) && 1668 "Expected same number of lanes"); 1669 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1670 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1671 OpsVec.resize(NumOperands); 1672 unsigned NumLanes = VL.size(); 1673 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1674 OpsVec[OpIdx].resize(NumLanes); 1675 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1676 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1677 // Our tree has just 3 nodes: the root and two operands. 1678 // It is therefore trivial to get the APO. We only need to check the 1679 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1680 // RHS operand. The LHS operand of both add and sub is never attached 1681 // to an inversese operation in the linearized form, therefore its APO 1682 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1683 1684 // Since operand reordering is performed on groups of commutative 1685 // operations or alternating sequences (e.g., +, -), we can safely 1686 // tell the inverse operations by checking commutativity. 1687 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1688 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1689 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1690 APO, false}; 1691 } 1692 } 1693 } 1694 1695 /// \returns the number of operands. 1696 unsigned getNumOperands() const { return OpsVec.size(); } 1697 1698 /// \returns the number of lanes. 1699 unsigned getNumLanes() const { return OpsVec[0].size(); } 1700 1701 /// \returns the operand value at \p OpIdx and \p Lane. 1702 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1703 return getData(OpIdx, Lane).V; 1704 } 1705 1706 /// \returns true if the data structure is empty. 1707 bool empty() const { return OpsVec.empty(); } 1708 1709 /// Clears the data. 1710 void clear() { OpsVec.clear(); } 1711 1712 /// \Returns true if there are enough operands identical to \p Op to fill 1713 /// the whole vector. 1714 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1715 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1716 bool OpAPO = getData(OpIdx, Lane).APO; 1717 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1718 if (Ln == Lane) 1719 continue; 1720 // This is set to true if we found a candidate for broadcast at Lane. 1721 bool FoundCandidate = false; 1722 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1723 OperandData &Data = getData(OpI, Ln); 1724 if (Data.APO != OpAPO || Data.IsUsed) 1725 continue; 1726 if (Data.V == Op) { 1727 FoundCandidate = true; 1728 Data.IsUsed = true; 1729 break; 1730 } 1731 } 1732 if (!FoundCandidate) 1733 return false; 1734 } 1735 return true; 1736 } 1737 1738 public: 1739 /// Initialize with all the operands of the instruction vector \p RootVL. 1740 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1741 ScalarEvolution &SE, const BoUpSLP &R) 1742 : DL(DL), SE(SE), R(R) { 1743 // Append all the operands of RootVL. 1744 appendOperandsOfVL(RootVL); 1745 } 1746 1747 /// \Returns a value vector with the operands across all lanes for the 1748 /// opearnd at \p OpIdx. 1749 ValueList getVL(unsigned OpIdx) const { 1750 ValueList OpVL(OpsVec[OpIdx].size()); 1751 assert(OpsVec[OpIdx].size() == getNumLanes() && 1752 "Expected same num of lanes across all operands"); 1753 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1754 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1755 return OpVL; 1756 } 1757 1758 // Performs operand reordering for 2 or more operands. 1759 // The original operands are in OrigOps[OpIdx][Lane]. 1760 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1761 void reorder() { 1762 unsigned NumOperands = getNumOperands(); 1763 unsigned NumLanes = getNumLanes(); 1764 // Each operand has its own mode. We are using this mode to help us select 1765 // the instructions for each lane, so that they match best with the ones 1766 // we have selected so far. 1767 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1768 1769 // This is a greedy single-pass algorithm. We are going over each lane 1770 // once and deciding on the best order right away with no back-tracking. 1771 // However, in order to increase its effectiveness, we start with the lane 1772 // that has operands that can move the least. For example, given the 1773 // following lanes: 1774 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1775 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1776 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1777 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1778 // we will start at Lane 1, since the operands of the subtraction cannot 1779 // be reordered. Then we will visit the rest of the lanes in a circular 1780 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1781 1782 // Find the first lane that we will start our search from. 1783 unsigned FirstLane = getBestLaneToStartReordering(); 1784 1785 // Initialize the modes. 1786 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1787 Value *OpLane0 = getValue(OpIdx, FirstLane); 1788 // Keep track if we have instructions with all the same opcode on one 1789 // side. 1790 if (isa<LoadInst>(OpLane0)) 1791 ReorderingModes[OpIdx] = ReorderingMode::Load; 1792 else if (isa<Instruction>(OpLane0)) { 1793 // Check if OpLane0 should be broadcast. 1794 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1795 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1796 else 1797 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1798 } 1799 else if (isa<Constant>(OpLane0)) 1800 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1801 else if (isa<Argument>(OpLane0)) 1802 // Our best hope is a Splat. It may save some cost in some cases. 1803 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1804 else 1805 // NOTE: This should be unreachable. 1806 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1807 } 1808 1809 // Check that we don't have same operands. No need to reorder if operands 1810 // are just perfect diamond or shuffled diamond match. Do not do it only 1811 // for possible broadcasts or non-power of 2 number of scalars (just for 1812 // now). 1813 auto &&SkipReordering = [this]() { 1814 SmallPtrSet<Value *, 4> UniqueValues; 1815 ArrayRef<OperandData> Op0 = OpsVec.front(); 1816 for (const OperandData &Data : Op0) 1817 UniqueValues.insert(Data.V); 1818 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1819 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1820 return !UniqueValues.contains(Data.V); 1821 })) 1822 return false; 1823 } 1824 // TODO: Check if we can remove a check for non-power-2 number of 1825 // scalars after full support of non-power-2 vectorization. 1826 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1827 }; 1828 1829 // If the initial strategy fails for any of the operand indexes, then we 1830 // perform reordering again in a second pass. This helps avoid assigning 1831 // high priority to the failed strategy, and should improve reordering for 1832 // the non-failed operand indexes. 1833 for (int Pass = 0; Pass != 2; ++Pass) { 1834 // Check if no need to reorder operands since they're are perfect or 1835 // shuffled diamond match. 1836 // Need to to do it to avoid extra external use cost counting for 1837 // shuffled matches, which may cause regressions. 1838 if (SkipReordering()) 1839 break; 1840 // Skip the second pass if the first pass did not fail. 1841 bool StrategyFailed = false; 1842 // Mark all operand data as free to use. 1843 clearUsed(); 1844 // We keep the original operand order for the FirstLane, so reorder the 1845 // rest of the lanes. We are visiting the nodes in a circular fashion, 1846 // using FirstLane as the center point and increasing the radius 1847 // distance. 1848 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1849 for (unsigned I = 0; I < NumOperands; ++I) 1850 MainAltOps[I].push_back(getData(I, FirstLane).V); 1851 1852 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1853 // Visit the lane on the right and then the lane on the left. 1854 for (int Direction : {+1, -1}) { 1855 int Lane = FirstLane + Direction * Distance; 1856 if (Lane < 0 || Lane >= (int)NumLanes) 1857 continue; 1858 int LastLane = Lane - Direction; 1859 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1860 "Out of bounds"); 1861 // Look for a good match for each operand. 1862 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1863 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1864 Optional<unsigned> BestIdx = getBestOperand( 1865 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1866 // By not selecting a value, we allow the operands that follow to 1867 // select a better matching value. We will get a non-null value in 1868 // the next run of getBestOperand(). 1869 if (BestIdx) { 1870 // Swap the current operand with the one returned by 1871 // getBestOperand(). 1872 swap(OpIdx, BestIdx.getValue(), Lane); 1873 } else { 1874 // We failed to find a best operand, set mode to 'Failed'. 1875 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1876 // Enable the second pass. 1877 StrategyFailed = true; 1878 } 1879 // Try to get the alternate opcode and follow it during analysis. 1880 if (MainAltOps[OpIdx].size() != 2) { 1881 OperandData &AltOp = getData(OpIdx, Lane); 1882 InstructionsState OpS = 1883 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1884 if (OpS.getOpcode() && OpS.isAltShuffle()) 1885 MainAltOps[OpIdx].push_back(AltOp.V); 1886 } 1887 } 1888 } 1889 } 1890 // Skip second pass if the strategy did not fail. 1891 if (!StrategyFailed) 1892 break; 1893 } 1894 } 1895 1896 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1897 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1898 switch (RMode) { 1899 case ReorderingMode::Load: 1900 return "Load"; 1901 case ReorderingMode::Opcode: 1902 return "Opcode"; 1903 case ReorderingMode::Constant: 1904 return "Constant"; 1905 case ReorderingMode::Splat: 1906 return "Splat"; 1907 case ReorderingMode::Failed: 1908 return "Failed"; 1909 } 1910 llvm_unreachable("Unimplemented Reordering Type"); 1911 } 1912 1913 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1914 raw_ostream &OS) { 1915 return OS << getModeStr(RMode); 1916 } 1917 1918 /// Debug print. 1919 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1920 printMode(RMode, dbgs()); 1921 } 1922 1923 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1924 return printMode(RMode, OS); 1925 } 1926 1927 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1928 const unsigned Indent = 2; 1929 unsigned Cnt = 0; 1930 for (const OperandDataVec &OpDataVec : OpsVec) { 1931 OS << "Operand " << Cnt++ << "\n"; 1932 for (const OperandData &OpData : OpDataVec) { 1933 OS.indent(Indent) << "{"; 1934 if (Value *V = OpData.V) 1935 OS << *V; 1936 else 1937 OS << "null"; 1938 OS << ", APO:" << OpData.APO << "}\n"; 1939 } 1940 OS << "\n"; 1941 } 1942 return OS; 1943 } 1944 1945 /// Debug print. 1946 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1947 #endif 1948 }; 1949 1950 /// Checks if the instruction is marked for deletion. 1951 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1952 1953 /// Marks values operands for later deletion by replacing them with Undefs. 1954 void eraseInstructions(ArrayRef<Value *> AV); 1955 1956 ~BoUpSLP(); 1957 1958 private: 1959 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1960 /// reordering (i.e. the operands can be reordered because they have only one 1961 /// user and reordarable). 1962 /// \param NonVectorized List of all gather nodes that require reordering 1963 /// (e.g., gather of extractlements or partially vectorizable loads). 1964 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1965 /// reordering, subset of \p NonVectorized. 1966 bool 1967 canReorderOperands(TreeEntry *UserTE, 1968 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1969 ArrayRef<TreeEntry *> ReorderableGathers, 1970 SmallVectorImpl<TreeEntry *> &GatherOps); 1971 1972 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1973 /// if any. If it is not vectorized (gather node), returns nullptr. 1974 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1975 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1976 TreeEntry *TE = nullptr; 1977 const auto *It = find_if(VL, [this, &TE](Value *V) { 1978 TE = getTreeEntry(V); 1979 return TE; 1980 }); 1981 if (It != VL.end() && TE->isSame(VL)) 1982 return TE; 1983 return nullptr; 1984 } 1985 1986 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1987 /// if any. If it is not vectorized (gather node), returns nullptr. 1988 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1989 unsigned OpIdx) const { 1990 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1991 const_cast<TreeEntry *>(UserTE), OpIdx); 1992 } 1993 1994 /// Checks if all users of \p I are the part of the vectorization tree. 1995 bool areAllUsersVectorized(Instruction *I, 1996 ArrayRef<Value *> VectorizedVals) const; 1997 1998 /// \returns the cost of the vectorizable entry. 1999 InstructionCost getEntryCost(const TreeEntry *E, 2000 ArrayRef<Value *> VectorizedVals); 2001 2002 /// This is the recursive part of buildTree. 2003 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2004 const EdgeInfo &EI); 2005 2006 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2007 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2008 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2009 /// returns false, setting \p CurrentOrder to either an empty vector or a 2010 /// non-identity permutation that allows to reuse extract instructions. 2011 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2012 SmallVectorImpl<unsigned> &CurrentOrder) const; 2013 2014 /// Vectorize a single entry in the tree. 2015 Value *vectorizeTree(TreeEntry *E); 2016 2017 /// Vectorize a single entry in the tree, starting in \p VL. 2018 Value *vectorizeTree(ArrayRef<Value *> VL); 2019 2020 /// Create a new vector from a list of scalar values. Produces a sequence 2021 /// which exploits values reused across lanes, and arranges the inserts 2022 /// for ease of later optimization. 2023 Value *createBuildVector(ArrayRef<Value *> VL); 2024 2025 /// \returns the scalarization cost for this type. Scalarization in this 2026 /// context means the creation of vectors from a group of scalars. If \p 2027 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2028 /// vector elements. 2029 InstructionCost getGatherCost(FixedVectorType *Ty, 2030 const APInt &ShuffledIndices, 2031 bool NeedToShuffle) const; 2032 2033 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2034 /// tree entries. 2035 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2036 /// previous tree entries. \p Mask is filled with the shuffle mask. 2037 Optional<TargetTransformInfo::ShuffleKind> 2038 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2039 SmallVectorImpl<const TreeEntry *> &Entries); 2040 2041 /// \returns the scalarization cost for this list of values. Assuming that 2042 /// this subtree gets vectorized, we may need to extract the values from the 2043 /// roots. This method calculates the cost of extracting the values. 2044 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2045 2046 /// Set the Builder insert point to one after the last instruction in 2047 /// the bundle 2048 void setInsertPointAfterBundle(const TreeEntry *E); 2049 2050 /// \returns a vector from a collection of scalars in \p VL. 2051 Value *gather(ArrayRef<Value *> VL); 2052 2053 /// \returns whether the VectorizableTree is fully vectorizable and will 2054 /// be beneficial even the tree height is tiny. 2055 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2056 2057 /// Reorder commutative or alt operands to get better probability of 2058 /// generating vectorized code. 2059 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2060 SmallVectorImpl<Value *> &Left, 2061 SmallVectorImpl<Value *> &Right, 2062 const DataLayout &DL, 2063 ScalarEvolution &SE, 2064 const BoUpSLP &R); 2065 struct TreeEntry { 2066 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2067 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2068 2069 /// \returns true if the scalars in VL are equal to this entry. 2070 bool isSame(ArrayRef<Value *> VL) const { 2071 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2072 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2073 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2074 return VL.size() == Mask.size() && 2075 std::equal(VL.begin(), VL.end(), Mask.begin(), 2076 [Scalars](Value *V, int Idx) { 2077 return (isa<UndefValue>(V) && 2078 Idx == UndefMaskElem) || 2079 (Idx != UndefMaskElem && V == Scalars[Idx]); 2080 }); 2081 }; 2082 if (!ReorderIndices.empty()) { 2083 // TODO: implement matching if the nodes are just reordered, still can 2084 // treat the vector as the same if the list of scalars matches VL 2085 // directly, without reordering. 2086 SmallVector<int> Mask; 2087 inversePermutation(ReorderIndices, Mask); 2088 if (VL.size() == Scalars.size()) 2089 return IsSame(Scalars, Mask); 2090 if (VL.size() == ReuseShuffleIndices.size()) { 2091 ::addMask(Mask, ReuseShuffleIndices); 2092 return IsSame(Scalars, Mask); 2093 } 2094 return false; 2095 } 2096 return IsSame(Scalars, ReuseShuffleIndices); 2097 } 2098 2099 /// \returns true if current entry has same operands as \p TE. 2100 bool hasEqualOperands(const TreeEntry &TE) const { 2101 if (TE.getNumOperands() != getNumOperands()) 2102 return false; 2103 SmallBitVector Used(getNumOperands()); 2104 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2105 unsigned PrevCount = Used.count(); 2106 for (unsigned K = 0; K < E; ++K) { 2107 if (Used.test(K)) 2108 continue; 2109 if (getOperand(K) == TE.getOperand(I)) { 2110 Used.set(K); 2111 break; 2112 } 2113 } 2114 // Check if we actually found the matching operand. 2115 if (PrevCount == Used.count()) 2116 return false; 2117 } 2118 return true; 2119 } 2120 2121 /// \return Final vectorization factor for the node. Defined by the total 2122 /// number of vectorized scalars, including those, used several times in the 2123 /// entry and counted in the \a ReuseShuffleIndices, if any. 2124 unsigned getVectorFactor() const { 2125 if (!ReuseShuffleIndices.empty()) 2126 return ReuseShuffleIndices.size(); 2127 return Scalars.size(); 2128 }; 2129 2130 /// A vector of scalars. 2131 ValueList Scalars; 2132 2133 /// The Scalars are vectorized into this value. It is initialized to Null. 2134 Value *VectorizedValue = nullptr; 2135 2136 /// Do we need to gather this sequence or vectorize it 2137 /// (either with vector instruction or with scatter/gather 2138 /// intrinsics for store/load)? 2139 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2140 EntryState State; 2141 2142 /// Does this sequence require some shuffling? 2143 SmallVector<int, 4> ReuseShuffleIndices; 2144 2145 /// Does this entry require reordering? 2146 SmallVector<unsigned, 4> ReorderIndices; 2147 2148 /// Points back to the VectorizableTree. 2149 /// 2150 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2151 /// to be a pointer and needs to be able to initialize the child iterator. 2152 /// Thus we need a reference back to the container to translate the indices 2153 /// to entries. 2154 VecTreeTy &Container; 2155 2156 /// The TreeEntry index containing the user of this entry. We can actually 2157 /// have multiple users so the data structure is not truly a tree. 2158 SmallVector<EdgeInfo, 1> UserTreeIndices; 2159 2160 /// The index of this treeEntry in VectorizableTree. 2161 int Idx = -1; 2162 2163 private: 2164 /// The operands of each instruction in each lane Operands[op_index][lane]. 2165 /// Note: This helps avoid the replication of the code that performs the 2166 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2167 SmallVector<ValueList, 2> Operands; 2168 2169 /// The main/alternate instruction. 2170 Instruction *MainOp = nullptr; 2171 Instruction *AltOp = nullptr; 2172 2173 public: 2174 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2175 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2176 if (Operands.size() < OpIdx + 1) 2177 Operands.resize(OpIdx + 1); 2178 assert(Operands[OpIdx].empty() && "Already resized?"); 2179 assert(OpVL.size() <= Scalars.size() && 2180 "Number of operands is greater than the number of scalars."); 2181 Operands[OpIdx].resize(OpVL.size()); 2182 copy(OpVL, Operands[OpIdx].begin()); 2183 } 2184 2185 /// Set the operands of this bundle in their original order. 2186 void setOperandsInOrder() { 2187 assert(Operands.empty() && "Already initialized?"); 2188 auto *I0 = cast<Instruction>(Scalars[0]); 2189 Operands.resize(I0->getNumOperands()); 2190 unsigned NumLanes = Scalars.size(); 2191 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2192 OpIdx != NumOperands; ++OpIdx) { 2193 Operands[OpIdx].resize(NumLanes); 2194 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2195 auto *I = cast<Instruction>(Scalars[Lane]); 2196 assert(I->getNumOperands() == NumOperands && 2197 "Expected same number of operands"); 2198 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2199 } 2200 } 2201 } 2202 2203 /// Reorders operands of the node to the given mask \p Mask. 2204 void reorderOperands(ArrayRef<int> Mask) { 2205 for (ValueList &Operand : Operands) 2206 reorderScalars(Operand, Mask); 2207 } 2208 2209 /// \returns the \p OpIdx operand of this TreeEntry. 2210 ValueList &getOperand(unsigned OpIdx) { 2211 assert(OpIdx < Operands.size() && "Off bounds"); 2212 return Operands[OpIdx]; 2213 } 2214 2215 /// \returns the \p OpIdx operand of this TreeEntry. 2216 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2217 assert(OpIdx < Operands.size() && "Off bounds"); 2218 return Operands[OpIdx]; 2219 } 2220 2221 /// \returns the number of operands. 2222 unsigned getNumOperands() const { return Operands.size(); } 2223 2224 /// \return the single \p OpIdx operand. 2225 Value *getSingleOperand(unsigned OpIdx) const { 2226 assert(OpIdx < Operands.size() && "Off bounds"); 2227 assert(!Operands[OpIdx].empty() && "No operand available"); 2228 return Operands[OpIdx][0]; 2229 } 2230 2231 /// Some of the instructions in the list have alternate opcodes. 2232 bool isAltShuffle() const { return MainOp != AltOp; } 2233 2234 bool isOpcodeOrAlt(Instruction *I) const { 2235 unsigned CheckedOpcode = I->getOpcode(); 2236 return (getOpcode() == CheckedOpcode || 2237 getAltOpcode() == CheckedOpcode); 2238 } 2239 2240 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2241 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2242 /// \p OpValue. 2243 Value *isOneOf(Value *Op) const { 2244 auto *I = dyn_cast<Instruction>(Op); 2245 if (I && isOpcodeOrAlt(I)) 2246 return Op; 2247 return MainOp; 2248 } 2249 2250 void setOperations(const InstructionsState &S) { 2251 MainOp = S.MainOp; 2252 AltOp = S.AltOp; 2253 } 2254 2255 Instruction *getMainOp() const { 2256 return MainOp; 2257 } 2258 2259 Instruction *getAltOp() const { 2260 return AltOp; 2261 } 2262 2263 /// The main/alternate opcodes for the list of instructions. 2264 unsigned getOpcode() const { 2265 return MainOp ? MainOp->getOpcode() : 0; 2266 } 2267 2268 unsigned getAltOpcode() const { 2269 return AltOp ? AltOp->getOpcode() : 0; 2270 } 2271 2272 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2273 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2274 int findLaneForValue(Value *V) const { 2275 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2276 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2277 if (!ReorderIndices.empty()) 2278 FoundLane = ReorderIndices[FoundLane]; 2279 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2280 if (!ReuseShuffleIndices.empty()) { 2281 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2282 find(ReuseShuffleIndices, FoundLane)); 2283 } 2284 return FoundLane; 2285 } 2286 2287 #ifndef NDEBUG 2288 /// Debug printer. 2289 LLVM_DUMP_METHOD void dump() const { 2290 dbgs() << Idx << ".\n"; 2291 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2292 dbgs() << "Operand " << OpI << ":\n"; 2293 for (const Value *V : Operands[OpI]) 2294 dbgs().indent(2) << *V << "\n"; 2295 } 2296 dbgs() << "Scalars: \n"; 2297 for (Value *V : Scalars) 2298 dbgs().indent(2) << *V << "\n"; 2299 dbgs() << "State: "; 2300 switch (State) { 2301 case Vectorize: 2302 dbgs() << "Vectorize\n"; 2303 break; 2304 case ScatterVectorize: 2305 dbgs() << "ScatterVectorize\n"; 2306 break; 2307 case NeedToGather: 2308 dbgs() << "NeedToGather\n"; 2309 break; 2310 } 2311 dbgs() << "MainOp: "; 2312 if (MainOp) 2313 dbgs() << *MainOp << "\n"; 2314 else 2315 dbgs() << "NULL\n"; 2316 dbgs() << "AltOp: "; 2317 if (AltOp) 2318 dbgs() << *AltOp << "\n"; 2319 else 2320 dbgs() << "NULL\n"; 2321 dbgs() << "VectorizedValue: "; 2322 if (VectorizedValue) 2323 dbgs() << *VectorizedValue << "\n"; 2324 else 2325 dbgs() << "NULL\n"; 2326 dbgs() << "ReuseShuffleIndices: "; 2327 if (ReuseShuffleIndices.empty()) 2328 dbgs() << "Empty"; 2329 else 2330 for (int ReuseIdx : ReuseShuffleIndices) 2331 dbgs() << ReuseIdx << ", "; 2332 dbgs() << "\n"; 2333 dbgs() << "ReorderIndices: "; 2334 for (unsigned ReorderIdx : ReorderIndices) 2335 dbgs() << ReorderIdx << ", "; 2336 dbgs() << "\n"; 2337 dbgs() << "UserTreeIndices: "; 2338 for (const auto &EInfo : UserTreeIndices) 2339 dbgs() << EInfo << ", "; 2340 dbgs() << "\n"; 2341 } 2342 #endif 2343 }; 2344 2345 #ifndef NDEBUG 2346 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2347 InstructionCost VecCost, 2348 InstructionCost ScalarCost) const { 2349 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2350 dbgs() << "SLP: Costs:\n"; 2351 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2352 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2353 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2354 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2355 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2356 } 2357 #endif 2358 2359 /// Create a new VectorizableTree entry. 2360 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2361 const InstructionsState &S, 2362 const EdgeInfo &UserTreeIdx, 2363 ArrayRef<int> ReuseShuffleIndices = None, 2364 ArrayRef<unsigned> ReorderIndices = None) { 2365 TreeEntry::EntryState EntryState = 2366 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2367 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2368 ReuseShuffleIndices, ReorderIndices); 2369 } 2370 2371 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2372 TreeEntry::EntryState EntryState, 2373 Optional<ScheduleData *> Bundle, 2374 const InstructionsState &S, 2375 const EdgeInfo &UserTreeIdx, 2376 ArrayRef<int> ReuseShuffleIndices = None, 2377 ArrayRef<unsigned> ReorderIndices = None) { 2378 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2379 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2380 "Need to vectorize gather entry?"); 2381 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2382 TreeEntry *Last = VectorizableTree.back().get(); 2383 Last->Idx = VectorizableTree.size() - 1; 2384 Last->State = EntryState; 2385 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2386 ReuseShuffleIndices.end()); 2387 if (ReorderIndices.empty()) { 2388 Last->Scalars.assign(VL.begin(), VL.end()); 2389 Last->setOperations(S); 2390 } else { 2391 // Reorder scalars and build final mask. 2392 Last->Scalars.assign(VL.size(), nullptr); 2393 transform(ReorderIndices, Last->Scalars.begin(), 2394 [VL](unsigned Idx) -> Value * { 2395 if (Idx >= VL.size()) 2396 return UndefValue::get(VL.front()->getType()); 2397 return VL[Idx]; 2398 }); 2399 InstructionsState S = getSameOpcode(Last->Scalars); 2400 Last->setOperations(S); 2401 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2402 } 2403 if (Last->State != TreeEntry::NeedToGather) { 2404 for (Value *V : VL) { 2405 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2406 ScalarToTreeEntry[V] = Last; 2407 } 2408 // Update the scheduler bundle to point to this TreeEntry. 2409 ScheduleData *BundleMember = Bundle.getValue(); 2410 assert((BundleMember || isa<PHINode>(S.MainOp) || 2411 isVectorLikeInstWithConstOps(S.MainOp) || 2412 doesNotNeedToSchedule(VL)) && 2413 "Bundle and VL out of sync"); 2414 if (BundleMember) { 2415 for (Value *V : VL) { 2416 if (doesNotNeedToBeScheduled(V)) 2417 continue; 2418 assert(BundleMember && "Unexpected end of bundle."); 2419 BundleMember->TE = Last; 2420 BundleMember = BundleMember->NextInBundle; 2421 } 2422 } 2423 assert(!BundleMember && "Bundle and VL out of sync"); 2424 } else { 2425 MustGather.insert(VL.begin(), VL.end()); 2426 } 2427 2428 if (UserTreeIdx.UserTE) 2429 Last->UserTreeIndices.push_back(UserTreeIdx); 2430 2431 return Last; 2432 } 2433 2434 /// -- Vectorization State -- 2435 /// Holds all of the tree entries. 2436 TreeEntry::VecTreeTy VectorizableTree; 2437 2438 #ifndef NDEBUG 2439 /// Debug printer. 2440 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2441 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2442 VectorizableTree[Id]->dump(); 2443 dbgs() << "\n"; 2444 } 2445 } 2446 #endif 2447 2448 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2449 2450 const TreeEntry *getTreeEntry(Value *V) const { 2451 return ScalarToTreeEntry.lookup(V); 2452 } 2453 2454 /// Maps a specific scalar to its tree entry. 2455 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2456 2457 /// Maps a value to the proposed vectorizable size. 2458 SmallDenseMap<Value *, unsigned> InstrElementSize; 2459 2460 /// A list of scalars that we found that we need to keep as scalars. 2461 ValueSet MustGather; 2462 2463 /// This POD struct describes one external user in the vectorized tree. 2464 struct ExternalUser { 2465 ExternalUser(Value *S, llvm::User *U, int L) 2466 : Scalar(S), User(U), Lane(L) {} 2467 2468 // Which scalar in our function. 2469 Value *Scalar; 2470 2471 // Which user that uses the scalar. 2472 llvm::User *User; 2473 2474 // Which lane does the scalar belong to. 2475 int Lane; 2476 }; 2477 using UserList = SmallVector<ExternalUser, 16>; 2478 2479 /// Checks if two instructions may access the same memory. 2480 /// 2481 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2482 /// is invariant in the calling loop. 2483 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2484 Instruction *Inst2) { 2485 // First check if the result is already in the cache. 2486 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2487 Optional<bool> &result = AliasCache[key]; 2488 if (result.hasValue()) { 2489 return result.getValue(); 2490 } 2491 bool aliased = true; 2492 if (Loc1.Ptr && isSimple(Inst1)) 2493 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2494 // Store the result in the cache. 2495 result = aliased; 2496 return aliased; 2497 } 2498 2499 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2500 2501 /// Cache for alias results. 2502 /// TODO: consider moving this to the AliasAnalysis itself. 2503 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2504 2505 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2506 // globally through SLP because we don't perform any action which 2507 // invalidates capture results. 2508 BatchAAResults BatchAA; 2509 2510 /// Removes an instruction from its block and eventually deletes it. 2511 /// It's like Instruction::eraseFromParent() except that the actual deletion 2512 /// is delayed until BoUpSLP is destructed. 2513 /// This is required to ensure that there are no incorrect collisions in the 2514 /// AliasCache, which can happen if a new instruction is allocated at the 2515 /// same address as a previously deleted instruction. 2516 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2517 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2518 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2519 } 2520 2521 /// Temporary store for deleted instructions. Instructions will be deleted 2522 /// eventually when the BoUpSLP is destructed. 2523 DenseMap<Instruction *, bool> DeletedInstructions; 2524 2525 /// A list of values that need to extracted out of the tree. 2526 /// This list holds pairs of (Internal Scalar : External User). External User 2527 /// can be nullptr, it means that this Internal Scalar will be used later, 2528 /// after vectorization. 2529 UserList ExternalUses; 2530 2531 /// Values used only by @llvm.assume calls. 2532 SmallPtrSet<const Value *, 32> EphValues; 2533 2534 /// Holds all of the instructions that we gathered. 2535 SetVector<Instruction *> GatherShuffleSeq; 2536 2537 /// A list of blocks that we are going to CSE. 2538 SetVector<BasicBlock *> CSEBlocks; 2539 2540 /// Contains all scheduling relevant data for an instruction. 2541 /// A ScheduleData either represents a single instruction or a member of an 2542 /// instruction bundle (= a group of instructions which is combined into a 2543 /// vector instruction). 2544 struct ScheduleData { 2545 // The initial value for the dependency counters. It means that the 2546 // dependencies are not calculated yet. 2547 enum { InvalidDeps = -1 }; 2548 2549 ScheduleData() = default; 2550 2551 void init(int BlockSchedulingRegionID, Value *OpVal) { 2552 FirstInBundle = this; 2553 NextInBundle = nullptr; 2554 NextLoadStore = nullptr; 2555 IsScheduled = false; 2556 SchedulingRegionID = BlockSchedulingRegionID; 2557 clearDependencies(); 2558 OpValue = OpVal; 2559 TE = nullptr; 2560 } 2561 2562 /// Verify basic self consistency properties 2563 void verify() { 2564 if (hasValidDependencies()) { 2565 assert(UnscheduledDeps <= Dependencies && "invariant"); 2566 } else { 2567 assert(UnscheduledDeps == Dependencies && "invariant"); 2568 } 2569 2570 if (IsScheduled) { 2571 assert(isSchedulingEntity() && 2572 "unexpected scheduled state"); 2573 for (const ScheduleData *BundleMember = this; BundleMember; 2574 BundleMember = BundleMember->NextInBundle) { 2575 assert(BundleMember->hasValidDependencies() && 2576 BundleMember->UnscheduledDeps == 0 && 2577 "unexpected scheduled state"); 2578 assert((BundleMember == this || !BundleMember->IsScheduled) && 2579 "only bundle is marked scheduled"); 2580 } 2581 } 2582 2583 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2584 "all bundle members must be in same basic block"); 2585 } 2586 2587 /// Returns true if the dependency information has been calculated. 2588 /// Note that depenendency validity can vary between instructions within 2589 /// a single bundle. 2590 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2591 2592 /// Returns true for single instructions and for bundle representatives 2593 /// (= the head of a bundle). 2594 bool isSchedulingEntity() const { return FirstInBundle == this; } 2595 2596 /// Returns true if it represents an instruction bundle and not only a 2597 /// single instruction. 2598 bool isPartOfBundle() const { 2599 return NextInBundle != nullptr || FirstInBundle != this || TE; 2600 } 2601 2602 /// Returns true if it is ready for scheduling, i.e. it has no more 2603 /// unscheduled depending instructions/bundles. 2604 bool isReady() const { 2605 assert(isSchedulingEntity() && 2606 "can't consider non-scheduling entity for ready list"); 2607 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2608 } 2609 2610 /// Modifies the number of unscheduled dependencies for this instruction, 2611 /// and returns the number of remaining dependencies for the containing 2612 /// bundle. 2613 int incrementUnscheduledDeps(int Incr) { 2614 assert(hasValidDependencies() && 2615 "increment of unscheduled deps would be meaningless"); 2616 UnscheduledDeps += Incr; 2617 return FirstInBundle->unscheduledDepsInBundle(); 2618 } 2619 2620 /// Sets the number of unscheduled dependencies to the number of 2621 /// dependencies. 2622 void resetUnscheduledDeps() { 2623 UnscheduledDeps = Dependencies; 2624 } 2625 2626 /// Clears all dependency information. 2627 void clearDependencies() { 2628 Dependencies = InvalidDeps; 2629 resetUnscheduledDeps(); 2630 MemoryDependencies.clear(); 2631 ControlDependencies.clear(); 2632 } 2633 2634 int unscheduledDepsInBundle() const { 2635 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2636 int Sum = 0; 2637 for (const ScheduleData *BundleMember = this; BundleMember; 2638 BundleMember = BundleMember->NextInBundle) { 2639 if (BundleMember->UnscheduledDeps == InvalidDeps) 2640 return InvalidDeps; 2641 Sum += BundleMember->UnscheduledDeps; 2642 } 2643 return Sum; 2644 } 2645 2646 void dump(raw_ostream &os) const { 2647 if (!isSchedulingEntity()) { 2648 os << "/ " << *Inst; 2649 } else if (NextInBundle) { 2650 os << '[' << *Inst; 2651 ScheduleData *SD = NextInBundle; 2652 while (SD) { 2653 os << ';' << *SD->Inst; 2654 SD = SD->NextInBundle; 2655 } 2656 os << ']'; 2657 } else { 2658 os << *Inst; 2659 } 2660 } 2661 2662 Instruction *Inst = nullptr; 2663 2664 /// Opcode of the current instruction in the schedule data. 2665 Value *OpValue = nullptr; 2666 2667 /// The TreeEntry that this instruction corresponds to. 2668 TreeEntry *TE = nullptr; 2669 2670 /// Points to the head in an instruction bundle (and always to this for 2671 /// single instructions). 2672 ScheduleData *FirstInBundle = nullptr; 2673 2674 /// Single linked list of all instructions in a bundle. Null if it is a 2675 /// single instruction. 2676 ScheduleData *NextInBundle = nullptr; 2677 2678 /// Single linked list of all memory instructions (e.g. load, store, call) 2679 /// in the block - until the end of the scheduling region. 2680 ScheduleData *NextLoadStore = nullptr; 2681 2682 /// The dependent memory instructions. 2683 /// This list is derived on demand in calculateDependencies(). 2684 SmallVector<ScheduleData *, 4> MemoryDependencies; 2685 2686 /// List of instructions which this instruction could be control dependent 2687 /// on. Allowing such nodes to be scheduled below this one could introduce 2688 /// a runtime fault which didn't exist in the original program. 2689 /// ex: this is a load or udiv following a readonly call which inf loops 2690 SmallVector<ScheduleData *, 4> ControlDependencies; 2691 2692 /// This ScheduleData is in the current scheduling region if this matches 2693 /// the current SchedulingRegionID of BlockScheduling. 2694 int SchedulingRegionID = 0; 2695 2696 /// Used for getting a "good" final ordering of instructions. 2697 int SchedulingPriority = 0; 2698 2699 /// The number of dependencies. Constitutes of the number of users of the 2700 /// instruction plus the number of dependent memory instructions (if any). 2701 /// This value is calculated on demand. 2702 /// If InvalidDeps, the number of dependencies is not calculated yet. 2703 int Dependencies = InvalidDeps; 2704 2705 /// The number of dependencies minus the number of dependencies of scheduled 2706 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2707 /// for scheduling. 2708 /// Note that this is negative as long as Dependencies is not calculated. 2709 int UnscheduledDeps = InvalidDeps; 2710 2711 /// True if this instruction is scheduled (or considered as scheduled in the 2712 /// dry-run). 2713 bool IsScheduled = false; 2714 }; 2715 2716 #ifndef NDEBUG 2717 friend inline raw_ostream &operator<<(raw_ostream &os, 2718 const BoUpSLP::ScheduleData &SD) { 2719 SD.dump(os); 2720 return os; 2721 } 2722 #endif 2723 2724 friend struct GraphTraits<BoUpSLP *>; 2725 friend struct DOTGraphTraits<BoUpSLP *>; 2726 2727 /// Contains all scheduling data for a basic block. 2728 /// It does not schedules instructions, which are not memory read/write 2729 /// instructions and their operands are either constants, or arguments, or 2730 /// phis, or instructions from others blocks, or their users are phis or from 2731 /// the other blocks. The resulting vector instructions can be placed at the 2732 /// beginning of the basic block without scheduling (if operands does not need 2733 /// to be scheduled) or at the end of the block (if users are outside of the 2734 /// block). It allows to save some compile time and memory used by the 2735 /// compiler. 2736 /// ScheduleData is assigned for each instruction in between the boundaries of 2737 /// the tree entry, even for those, which are not part of the graph. It is 2738 /// required to correctly follow the dependencies between the instructions and 2739 /// their correct scheduling. The ScheduleData is not allocated for the 2740 /// instructions, which do not require scheduling, like phis, nodes with 2741 /// extractelements/insertelements only or nodes with instructions, with 2742 /// uses/operands outside of the block. 2743 struct BlockScheduling { 2744 BlockScheduling(BasicBlock *BB) 2745 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2746 2747 void clear() { 2748 ReadyInsts.clear(); 2749 ScheduleStart = nullptr; 2750 ScheduleEnd = nullptr; 2751 FirstLoadStoreInRegion = nullptr; 2752 LastLoadStoreInRegion = nullptr; 2753 2754 // Reduce the maximum schedule region size by the size of the 2755 // previous scheduling run. 2756 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2757 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2758 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2759 ScheduleRegionSize = 0; 2760 2761 // Make a new scheduling region, i.e. all existing ScheduleData is not 2762 // in the new region yet. 2763 ++SchedulingRegionID; 2764 } 2765 2766 ScheduleData *getScheduleData(Instruction *I) { 2767 if (BB != I->getParent()) 2768 // Avoid lookup if can't possibly be in map. 2769 return nullptr; 2770 ScheduleData *SD = ScheduleDataMap.lookup(I); 2771 if (SD && isInSchedulingRegion(SD)) 2772 return SD; 2773 return nullptr; 2774 } 2775 2776 ScheduleData *getScheduleData(Value *V) { 2777 if (auto *I = dyn_cast<Instruction>(V)) 2778 return getScheduleData(I); 2779 return nullptr; 2780 } 2781 2782 ScheduleData *getScheduleData(Value *V, Value *Key) { 2783 if (V == Key) 2784 return getScheduleData(V); 2785 auto I = ExtraScheduleDataMap.find(V); 2786 if (I != ExtraScheduleDataMap.end()) { 2787 ScheduleData *SD = I->second.lookup(Key); 2788 if (SD && isInSchedulingRegion(SD)) 2789 return SD; 2790 } 2791 return nullptr; 2792 } 2793 2794 bool isInSchedulingRegion(ScheduleData *SD) const { 2795 return SD->SchedulingRegionID == SchedulingRegionID; 2796 } 2797 2798 /// Marks an instruction as scheduled and puts all dependent ready 2799 /// instructions into the ready-list. 2800 template <typename ReadyListType> 2801 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2802 SD->IsScheduled = true; 2803 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2804 2805 for (ScheduleData *BundleMember = SD; BundleMember; 2806 BundleMember = BundleMember->NextInBundle) { 2807 if (BundleMember->Inst != BundleMember->OpValue) 2808 continue; 2809 2810 // Handle the def-use chain dependencies. 2811 2812 // Decrement the unscheduled counter and insert to ready list if ready. 2813 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2814 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2815 if (OpDef && OpDef->hasValidDependencies() && 2816 OpDef->incrementUnscheduledDeps(-1) == 0) { 2817 // There are no more unscheduled dependencies after 2818 // decrementing, so we can put the dependent instruction 2819 // into the ready list. 2820 ScheduleData *DepBundle = OpDef->FirstInBundle; 2821 assert(!DepBundle->IsScheduled && 2822 "already scheduled bundle gets ready"); 2823 ReadyList.insert(DepBundle); 2824 LLVM_DEBUG(dbgs() 2825 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2826 } 2827 }); 2828 }; 2829 2830 // If BundleMember is a vector bundle, its operands may have been 2831 // reordered during buildTree(). We therefore need to get its operands 2832 // through the TreeEntry. 2833 if (TreeEntry *TE = BundleMember->TE) { 2834 // Need to search for the lane since the tree entry can be reordered. 2835 int Lane = std::distance(TE->Scalars.begin(), 2836 find(TE->Scalars, BundleMember->Inst)); 2837 assert(Lane >= 0 && "Lane not set"); 2838 2839 // Since vectorization tree is being built recursively this assertion 2840 // ensures that the tree entry has all operands set before reaching 2841 // this code. Couple of exceptions known at the moment are extracts 2842 // where their second (immediate) operand is not added. Since 2843 // immediates do not affect scheduler behavior this is considered 2844 // okay. 2845 auto *In = BundleMember->Inst; 2846 assert(In && 2847 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2848 In->getNumOperands() == TE->getNumOperands()) && 2849 "Missed TreeEntry operands?"); 2850 (void)In; // fake use to avoid build failure when assertions disabled 2851 2852 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2853 OpIdx != NumOperands; ++OpIdx) 2854 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2855 DecrUnsched(I); 2856 } else { 2857 // If BundleMember is a stand-alone instruction, no operand reordering 2858 // has taken place, so we directly access its operands. 2859 for (Use &U : BundleMember->Inst->operands()) 2860 if (auto *I = dyn_cast<Instruction>(U.get())) 2861 DecrUnsched(I); 2862 } 2863 // Handle the memory dependencies. 2864 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2865 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2866 // There are no more unscheduled dependencies after decrementing, 2867 // so we can put the dependent instruction into the ready list. 2868 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2869 assert(!DepBundle->IsScheduled && 2870 "already scheduled bundle gets ready"); 2871 ReadyList.insert(DepBundle); 2872 LLVM_DEBUG(dbgs() 2873 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2874 } 2875 } 2876 // Handle the control dependencies. 2877 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2878 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2879 // There are no more unscheduled dependencies after decrementing, 2880 // so we can put the dependent instruction into the ready list. 2881 ScheduleData *DepBundle = DepSD->FirstInBundle; 2882 assert(!DepBundle->IsScheduled && 2883 "already scheduled bundle gets ready"); 2884 ReadyList.insert(DepBundle); 2885 LLVM_DEBUG(dbgs() 2886 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2887 } 2888 } 2889 2890 } 2891 } 2892 2893 /// Verify basic self consistency properties of the data structure. 2894 void verify() { 2895 if (!ScheduleStart) 2896 return; 2897 2898 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2899 ScheduleStart->comesBefore(ScheduleEnd) && 2900 "Not a valid scheduling region?"); 2901 2902 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2903 auto *SD = getScheduleData(I); 2904 if (!SD) 2905 continue; 2906 assert(isInSchedulingRegion(SD) && 2907 "primary schedule data not in window?"); 2908 assert(isInSchedulingRegion(SD->FirstInBundle) && 2909 "entire bundle in window!"); 2910 (void)SD; 2911 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2912 } 2913 2914 for (auto *SD : ReadyInsts) { 2915 assert(SD->isSchedulingEntity() && SD->isReady() && 2916 "item in ready list not ready?"); 2917 (void)SD; 2918 } 2919 } 2920 2921 void doForAllOpcodes(Value *V, 2922 function_ref<void(ScheduleData *SD)> Action) { 2923 if (ScheduleData *SD = getScheduleData(V)) 2924 Action(SD); 2925 auto I = ExtraScheduleDataMap.find(V); 2926 if (I != ExtraScheduleDataMap.end()) 2927 for (auto &P : I->second) 2928 if (isInSchedulingRegion(P.second)) 2929 Action(P.second); 2930 } 2931 2932 /// Put all instructions into the ReadyList which are ready for scheduling. 2933 template <typename ReadyListType> 2934 void initialFillReadyList(ReadyListType &ReadyList) { 2935 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2936 doForAllOpcodes(I, [&](ScheduleData *SD) { 2937 if (SD->isSchedulingEntity() && SD->isReady()) { 2938 ReadyList.insert(SD); 2939 LLVM_DEBUG(dbgs() 2940 << "SLP: initially in ready list: " << *SD << "\n"); 2941 } 2942 }); 2943 } 2944 } 2945 2946 /// Build a bundle from the ScheduleData nodes corresponding to the 2947 /// scalar instruction for each lane. 2948 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2949 2950 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2951 /// cyclic dependencies. This is only a dry-run, no instructions are 2952 /// actually moved at this stage. 2953 /// \returns the scheduling bundle. The returned Optional value is non-None 2954 /// if \p VL is allowed to be scheduled. 2955 Optional<ScheduleData *> 2956 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2957 const InstructionsState &S); 2958 2959 /// Un-bundles a group of instructions. 2960 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2961 2962 /// Allocates schedule data chunk. 2963 ScheduleData *allocateScheduleDataChunks(); 2964 2965 /// Extends the scheduling region so that V is inside the region. 2966 /// \returns true if the region size is within the limit. 2967 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2968 2969 /// Initialize the ScheduleData structures for new instructions in the 2970 /// scheduling region. 2971 void initScheduleData(Instruction *FromI, Instruction *ToI, 2972 ScheduleData *PrevLoadStore, 2973 ScheduleData *NextLoadStore); 2974 2975 /// Updates the dependency information of a bundle and of all instructions/ 2976 /// bundles which depend on the original bundle. 2977 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2978 BoUpSLP *SLP); 2979 2980 /// Sets all instruction in the scheduling region to un-scheduled. 2981 void resetSchedule(); 2982 2983 BasicBlock *BB; 2984 2985 /// Simple memory allocation for ScheduleData. 2986 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2987 2988 /// The size of a ScheduleData array in ScheduleDataChunks. 2989 int ChunkSize; 2990 2991 /// The allocator position in the current chunk, which is the last entry 2992 /// of ScheduleDataChunks. 2993 int ChunkPos; 2994 2995 /// Attaches ScheduleData to Instruction. 2996 /// Note that the mapping survives during all vectorization iterations, i.e. 2997 /// ScheduleData structures are recycled. 2998 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2999 3000 /// Attaches ScheduleData to Instruction with the leading key. 3001 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3002 ExtraScheduleDataMap; 3003 3004 /// The ready-list for scheduling (only used for the dry-run). 3005 SetVector<ScheduleData *> ReadyInsts; 3006 3007 /// The first instruction of the scheduling region. 3008 Instruction *ScheduleStart = nullptr; 3009 3010 /// The first instruction _after_ the scheduling region. 3011 Instruction *ScheduleEnd = nullptr; 3012 3013 /// The first memory accessing instruction in the scheduling region 3014 /// (can be null). 3015 ScheduleData *FirstLoadStoreInRegion = nullptr; 3016 3017 /// The last memory accessing instruction in the scheduling region 3018 /// (can be null). 3019 ScheduleData *LastLoadStoreInRegion = nullptr; 3020 3021 /// The current size of the scheduling region. 3022 int ScheduleRegionSize = 0; 3023 3024 /// The maximum size allowed for the scheduling region. 3025 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3026 3027 /// The ID of the scheduling region. For a new vectorization iteration this 3028 /// is incremented which "removes" all ScheduleData from the region. 3029 /// Make sure that the initial SchedulingRegionID is greater than the 3030 /// initial SchedulingRegionID in ScheduleData (which is 0). 3031 int SchedulingRegionID = 1; 3032 }; 3033 3034 /// Attaches the BlockScheduling structures to basic blocks. 3035 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3036 3037 /// Performs the "real" scheduling. Done before vectorization is actually 3038 /// performed in a basic block. 3039 void scheduleBlock(BlockScheduling *BS); 3040 3041 /// List of users to ignore during scheduling and that don't need extracting. 3042 ArrayRef<Value *> UserIgnoreList; 3043 3044 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3045 /// sorted SmallVectors of unsigned. 3046 struct OrdersTypeDenseMapInfo { 3047 static OrdersType getEmptyKey() { 3048 OrdersType V; 3049 V.push_back(~1U); 3050 return V; 3051 } 3052 3053 static OrdersType getTombstoneKey() { 3054 OrdersType V; 3055 V.push_back(~2U); 3056 return V; 3057 } 3058 3059 static unsigned getHashValue(const OrdersType &V) { 3060 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3061 } 3062 3063 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3064 return LHS == RHS; 3065 } 3066 }; 3067 3068 // Analysis and block reference. 3069 Function *F; 3070 ScalarEvolution *SE; 3071 TargetTransformInfo *TTI; 3072 TargetLibraryInfo *TLI; 3073 LoopInfo *LI; 3074 DominatorTree *DT; 3075 AssumptionCache *AC; 3076 DemandedBits *DB; 3077 const DataLayout *DL; 3078 OptimizationRemarkEmitter *ORE; 3079 3080 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3081 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3082 3083 /// Instruction builder to construct the vectorized tree. 3084 IRBuilder<> Builder; 3085 3086 /// A map of scalar integer values to the smallest bit width with which they 3087 /// can legally be represented. The values map to (width, signed) pairs, 3088 /// where "width" indicates the minimum bit width and "signed" is True if the 3089 /// value must be signed-extended, rather than zero-extended, back to its 3090 /// original width. 3091 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3092 }; 3093 3094 } // end namespace slpvectorizer 3095 3096 template <> struct GraphTraits<BoUpSLP *> { 3097 using TreeEntry = BoUpSLP::TreeEntry; 3098 3099 /// NodeRef has to be a pointer per the GraphWriter. 3100 using NodeRef = TreeEntry *; 3101 3102 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3103 3104 /// Add the VectorizableTree to the index iterator to be able to return 3105 /// TreeEntry pointers. 3106 struct ChildIteratorType 3107 : public iterator_adaptor_base< 3108 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3109 ContainerTy &VectorizableTree; 3110 3111 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3112 ContainerTy &VT) 3113 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3114 3115 NodeRef operator*() { return I->UserTE; } 3116 }; 3117 3118 static NodeRef getEntryNode(BoUpSLP &R) { 3119 return R.VectorizableTree[0].get(); 3120 } 3121 3122 static ChildIteratorType child_begin(NodeRef N) { 3123 return {N->UserTreeIndices.begin(), N->Container}; 3124 } 3125 3126 static ChildIteratorType child_end(NodeRef N) { 3127 return {N->UserTreeIndices.end(), N->Container}; 3128 } 3129 3130 /// For the node iterator we just need to turn the TreeEntry iterator into a 3131 /// TreeEntry* iterator so that it dereferences to NodeRef. 3132 class nodes_iterator { 3133 using ItTy = ContainerTy::iterator; 3134 ItTy It; 3135 3136 public: 3137 nodes_iterator(const ItTy &It2) : It(It2) {} 3138 NodeRef operator*() { return It->get(); } 3139 nodes_iterator operator++() { 3140 ++It; 3141 return *this; 3142 } 3143 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3144 }; 3145 3146 static nodes_iterator nodes_begin(BoUpSLP *R) { 3147 return nodes_iterator(R->VectorizableTree.begin()); 3148 } 3149 3150 static nodes_iterator nodes_end(BoUpSLP *R) { 3151 return nodes_iterator(R->VectorizableTree.end()); 3152 } 3153 3154 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3155 }; 3156 3157 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3158 using TreeEntry = BoUpSLP::TreeEntry; 3159 3160 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3161 3162 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3163 std::string Str; 3164 raw_string_ostream OS(Str); 3165 if (isSplat(Entry->Scalars)) 3166 OS << "<splat> "; 3167 for (auto V : Entry->Scalars) { 3168 OS << *V; 3169 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3170 return EU.Scalar == V; 3171 })) 3172 OS << " <extract>"; 3173 OS << "\n"; 3174 } 3175 return Str; 3176 } 3177 3178 static std::string getNodeAttributes(const TreeEntry *Entry, 3179 const BoUpSLP *) { 3180 if (Entry->State == TreeEntry::NeedToGather) 3181 return "color=red"; 3182 return ""; 3183 } 3184 }; 3185 3186 } // end namespace llvm 3187 3188 BoUpSLP::~BoUpSLP() { 3189 for (const auto &Pair : DeletedInstructions) { 3190 // Replace operands of ignored instructions with Undefs in case if they were 3191 // marked for deletion. 3192 if (Pair.getSecond()) { 3193 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3194 Pair.getFirst()->replaceAllUsesWith(Undef); 3195 } 3196 Pair.getFirst()->dropAllReferences(); 3197 } 3198 for (const auto &Pair : DeletedInstructions) { 3199 assert(Pair.getFirst()->use_empty() && 3200 "trying to erase instruction with users."); 3201 Pair.getFirst()->eraseFromParent(); 3202 } 3203 #ifdef EXPENSIVE_CHECKS 3204 // If we could guarantee that this call is not extremely slow, we could 3205 // remove the ifdef limitation (see PR47712). 3206 assert(!verifyFunction(*F, &dbgs())); 3207 #endif 3208 } 3209 3210 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3211 for (auto *V : AV) { 3212 if (auto *I = dyn_cast<Instruction>(V)) 3213 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3214 }; 3215 } 3216 3217 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3218 /// contains original mask for the scalars reused in the node. Procedure 3219 /// transform this mask in accordance with the given \p Mask. 3220 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3221 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3222 "Expected non-empty mask."); 3223 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3224 Prev.swap(Reuses); 3225 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3226 if (Mask[I] != UndefMaskElem) 3227 Reuses[Mask[I]] = Prev[I]; 3228 } 3229 3230 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3231 /// the original order of the scalars. Procedure transforms the provided order 3232 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3233 /// identity order, \p Order is cleared. 3234 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3235 assert(!Mask.empty() && "Expected non-empty mask."); 3236 SmallVector<int> MaskOrder; 3237 if (Order.empty()) { 3238 MaskOrder.resize(Mask.size()); 3239 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3240 } else { 3241 inversePermutation(Order, MaskOrder); 3242 } 3243 reorderReuses(MaskOrder, Mask); 3244 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3245 Order.clear(); 3246 return; 3247 } 3248 Order.assign(Mask.size(), Mask.size()); 3249 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3250 if (MaskOrder[I] != UndefMaskElem) 3251 Order[MaskOrder[I]] = I; 3252 fixupOrderingIndices(Order); 3253 } 3254 3255 Optional<BoUpSLP::OrdersType> 3256 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3257 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3258 unsigned NumScalars = TE.Scalars.size(); 3259 OrdersType CurrentOrder(NumScalars, NumScalars); 3260 SmallVector<int> Positions; 3261 SmallBitVector UsedPositions(NumScalars); 3262 const TreeEntry *STE = nullptr; 3263 // Try to find all gathered scalars that are gets vectorized in other 3264 // vectorize node. Here we can have only one single tree vector node to 3265 // correctly identify order of the gathered scalars. 3266 for (unsigned I = 0; I < NumScalars; ++I) { 3267 Value *V = TE.Scalars[I]; 3268 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3269 continue; 3270 if (const auto *LocalSTE = getTreeEntry(V)) { 3271 if (!STE) 3272 STE = LocalSTE; 3273 else if (STE != LocalSTE) 3274 // Take the order only from the single vector node. 3275 return None; 3276 unsigned Lane = 3277 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3278 if (Lane >= NumScalars) 3279 return None; 3280 if (CurrentOrder[Lane] != NumScalars) { 3281 if (Lane != I) 3282 continue; 3283 UsedPositions.reset(CurrentOrder[Lane]); 3284 } 3285 // The partial identity (where only some elements of the gather node are 3286 // in the identity order) is good. 3287 CurrentOrder[Lane] = I; 3288 UsedPositions.set(I); 3289 } 3290 } 3291 // Need to keep the order if we have a vector entry and at least 2 scalars or 3292 // the vectorized entry has just 2 scalars. 3293 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3294 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3295 for (unsigned I = 0; I < NumScalars; ++I) 3296 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3297 return false; 3298 return true; 3299 }; 3300 if (IsIdentityOrder(CurrentOrder)) { 3301 CurrentOrder.clear(); 3302 return CurrentOrder; 3303 } 3304 auto *It = CurrentOrder.begin(); 3305 for (unsigned I = 0; I < NumScalars;) { 3306 if (UsedPositions.test(I)) { 3307 ++I; 3308 continue; 3309 } 3310 if (*It == NumScalars) { 3311 *It = I; 3312 ++I; 3313 } 3314 ++It; 3315 } 3316 return CurrentOrder; 3317 } 3318 return None; 3319 } 3320 3321 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3322 bool TopToBottom) { 3323 // No need to reorder if need to shuffle reuses, still need to shuffle the 3324 // node. 3325 if (!TE.ReuseShuffleIndices.empty()) 3326 return None; 3327 if (TE.State == TreeEntry::Vectorize && 3328 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3329 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3330 !TE.isAltShuffle()) 3331 return TE.ReorderIndices; 3332 if (TE.State == TreeEntry::NeedToGather) { 3333 // TODO: add analysis of other gather nodes with extractelement 3334 // instructions and other values/instructions, not only undefs. 3335 if (((TE.getOpcode() == Instruction::ExtractElement && 3336 !TE.isAltShuffle()) || 3337 (all_of(TE.Scalars, 3338 [](Value *V) { 3339 return isa<UndefValue, ExtractElementInst>(V); 3340 }) && 3341 any_of(TE.Scalars, 3342 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3343 all_of(TE.Scalars, 3344 [](Value *V) { 3345 auto *EE = dyn_cast<ExtractElementInst>(V); 3346 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3347 }) && 3348 allSameType(TE.Scalars)) { 3349 // Check that gather of extractelements can be represented as 3350 // just a shuffle of a single vector. 3351 OrdersType CurrentOrder; 3352 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3353 if (Reuse || !CurrentOrder.empty()) { 3354 if (!CurrentOrder.empty()) 3355 fixupOrderingIndices(CurrentOrder); 3356 return CurrentOrder; 3357 } 3358 } 3359 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3360 return CurrentOrder; 3361 } 3362 return None; 3363 } 3364 3365 void BoUpSLP::reorderTopToBottom() { 3366 // Maps VF to the graph nodes. 3367 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3368 // ExtractElement gather nodes which can be vectorized and need to handle 3369 // their ordering. 3370 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3371 // Find all reorderable nodes with the given VF. 3372 // Currently the are vectorized stores,loads,extracts + some gathering of 3373 // extracts. 3374 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3375 const std::unique_ptr<TreeEntry> &TE) { 3376 if (Optional<OrdersType> CurrentOrder = 3377 getReorderingData(*TE, /*TopToBottom=*/true)) { 3378 // Do not include ordering for nodes used in the alt opcode vectorization, 3379 // better to reorder them during bottom-to-top stage. If follow the order 3380 // here, it causes reordering of the whole graph though actually it is 3381 // profitable just to reorder the subgraph that starts from the alternate 3382 // opcode vectorization node. Such nodes already end-up with the shuffle 3383 // instruction and it is just enough to change this shuffle rather than 3384 // rotate the scalars for the whole graph. 3385 unsigned Cnt = 0; 3386 const TreeEntry *UserTE = TE.get(); 3387 while (UserTE && Cnt < RecursionMaxDepth) { 3388 if (UserTE->UserTreeIndices.size() != 1) 3389 break; 3390 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3391 return EI.UserTE->State == TreeEntry::Vectorize && 3392 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3393 })) 3394 return; 3395 if (UserTE->UserTreeIndices.empty()) 3396 UserTE = nullptr; 3397 else 3398 UserTE = UserTE->UserTreeIndices.back().UserTE; 3399 ++Cnt; 3400 } 3401 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3402 if (TE->State != TreeEntry::Vectorize) 3403 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3404 } 3405 }); 3406 3407 // Reorder the graph nodes according to their vectorization factor. 3408 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3409 VF /= 2) { 3410 auto It = VFToOrderedEntries.find(VF); 3411 if (It == VFToOrderedEntries.end()) 3412 continue; 3413 // Try to find the most profitable order. We just are looking for the most 3414 // used order and reorder scalar elements in the nodes according to this 3415 // mostly used order. 3416 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3417 // All operands are reordered and used only in this node - propagate the 3418 // most used order to the user node. 3419 MapVector<OrdersType, unsigned, 3420 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3421 OrdersUses; 3422 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3423 for (const TreeEntry *OpTE : OrderedEntries) { 3424 // No need to reorder this nodes, still need to extend and to use shuffle, 3425 // just need to merge reordering shuffle and the reuse shuffle. 3426 if (!OpTE->ReuseShuffleIndices.empty()) 3427 continue; 3428 // Count number of orders uses. 3429 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3430 if (OpTE->State == TreeEntry::NeedToGather) 3431 return GathersToOrders.find(OpTE)->second; 3432 return OpTE->ReorderIndices; 3433 }(); 3434 // Stores actually store the mask, not the order, need to invert. 3435 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3436 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3437 SmallVector<int> Mask; 3438 inversePermutation(Order, Mask); 3439 unsigned E = Order.size(); 3440 OrdersType CurrentOrder(E, E); 3441 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3442 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3443 }); 3444 fixupOrderingIndices(CurrentOrder); 3445 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3446 } else { 3447 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3448 } 3449 } 3450 // Set order of the user node. 3451 if (OrdersUses.empty()) 3452 continue; 3453 // Choose the most used order. 3454 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3455 unsigned Cnt = OrdersUses.front().second; 3456 for (const auto &Pair : drop_begin(OrdersUses)) { 3457 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3458 BestOrder = Pair.first; 3459 Cnt = Pair.second; 3460 } 3461 } 3462 // Set order of the user node. 3463 if (BestOrder.empty()) 3464 continue; 3465 SmallVector<int> Mask; 3466 inversePermutation(BestOrder, Mask); 3467 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3468 unsigned E = BestOrder.size(); 3469 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3470 return I < E ? static_cast<int>(I) : UndefMaskElem; 3471 }); 3472 // Do an actual reordering, if profitable. 3473 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3474 // Just do the reordering for the nodes with the given VF. 3475 if (TE->Scalars.size() != VF) { 3476 if (TE->ReuseShuffleIndices.size() == VF) { 3477 // Need to reorder the reuses masks of the operands with smaller VF to 3478 // be able to find the match between the graph nodes and scalar 3479 // operands of the given node during vectorization/cost estimation. 3480 assert(all_of(TE->UserTreeIndices, 3481 [VF, &TE](const EdgeInfo &EI) { 3482 return EI.UserTE->Scalars.size() == VF || 3483 EI.UserTE->Scalars.size() == 3484 TE->Scalars.size(); 3485 }) && 3486 "All users must be of VF size."); 3487 // Update ordering of the operands with the smaller VF than the given 3488 // one. 3489 reorderReuses(TE->ReuseShuffleIndices, Mask); 3490 } 3491 continue; 3492 } 3493 if (TE->State == TreeEntry::Vectorize && 3494 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3495 InsertElementInst>(TE->getMainOp()) && 3496 !TE->isAltShuffle()) { 3497 // Build correct orders for extract{element,value}, loads and 3498 // stores. 3499 reorderOrder(TE->ReorderIndices, Mask); 3500 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3501 TE->reorderOperands(Mask); 3502 } else { 3503 // Reorder the node and its operands. 3504 TE->reorderOperands(Mask); 3505 assert(TE->ReorderIndices.empty() && 3506 "Expected empty reorder sequence."); 3507 reorderScalars(TE->Scalars, Mask); 3508 } 3509 if (!TE->ReuseShuffleIndices.empty()) { 3510 // Apply reversed order to keep the original ordering of the reused 3511 // elements to avoid extra reorder indices shuffling. 3512 OrdersType CurrentOrder; 3513 reorderOrder(CurrentOrder, MaskOrder); 3514 SmallVector<int> NewReuses; 3515 inversePermutation(CurrentOrder, NewReuses); 3516 addMask(NewReuses, TE->ReuseShuffleIndices); 3517 TE->ReuseShuffleIndices.swap(NewReuses); 3518 } 3519 } 3520 } 3521 } 3522 3523 bool BoUpSLP::canReorderOperands( 3524 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3525 ArrayRef<TreeEntry *> ReorderableGathers, 3526 SmallVectorImpl<TreeEntry *> &GatherOps) { 3527 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3528 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3529 return OpData.first == I && 3530 OpData.second->State == TreeEntry::Vectorize; 3531 })) 3532 continue; 3533 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3534 // Do not reorder if operand node is used by many user nodes. 3535 if (any_of(TE->UserTreeIndices, 3536 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3537 return false; 3538 // Add the node to the list of the ordered nodes with the identity 3539 // order. 3540 Edges.emplace_back(I, TE); 3541 continue; 3542 } 3543 ArrayRef<Value *> VL = UserTE->getOperand(I); 3544 TreeEntry *Gather = nullptr; 3545 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3546 assert(TE->State != TreeEntry::Vectorize && 3547 "Only non-vectorized nodes are expected."); 3548 if (TE->isSame(VL)) { 3549 Gather = TE; 3550 return true; 3551 } 3552 return false; 3553 }) > 1) 3554 return false; 3555 if (Gather) 3556 GatherOps.push_back(Gather); 3557 } 3558 return true; 3559 } 3560 3561 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3562 SetVector<TreeEntry *> OrderedEntries; 3563 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3564 // Find all reorderable leaf nodes with the given VF. 3565 // Currently the are vectorized loads,extracts without alternate operands + 3566 // some gathering of extracts. 3567 SmallVector<TreeEntry *> NonVectorized; 3568 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3569 &NonVectorized]( 3570 const std::unique_ptr<TreeEntry> &TE) { 3571 if (TE->State != TreeEntry::Vectorize) 3572 NonVectorized.push_back(TE.get()); 3573 if (Optional<OrdersType> CurrentOrder = 3574 getReorderingData(*TE, /*TopToBottom=*/false)) { 3575 OrderedEntries.insert(TE.get()); 3576 if (TE->State != TreeEntry::Vectorize) 3577 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3578 } 3579 }); 3580 3581 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3582 // I.e., if the node has operands, that are reordered, try to make at least 3583 // one operand order in the natural order and reorder others + reorder the 3584 // user node itself. 3585 SmallPtrSet<const TreeEntry *, 4> Visited; 3586 while (!OrderedEntries.empty()) { 3587 // 1. Filter out only reordered nodes. 3588 // 2. If the entry has multiple uses - skip it and jump to the next node. 3589 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3590 SmallVector<TreeEntry *> Filtered; 3591 for (TreeEntry *TE : OrderedEntries) { 3592 if (!(TE->State == TreeEntry::Vectorize || 3593 (TE->State == TreeEntry::NeedToGather && 3594 GathersToOrders.count(TE))) || 3595 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3596 !all_of(drop_begin(TE->UserTreeIndices), 3597 [TE](const EdgeInfo &EI) { 3598 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3599 }) || 3600 !Visited.insert(TE).second) { 3601 Filtered.push_back(TE); 3602 continue; 3603 } 3604 // Build a map between user nodes and their operands order to speedup 3605 // search. The graph currently does not provide this dependency directly. 3606 for (EdgeInfo &EI : TE->UserTreeIndices) { 3607 TreeEntry *UserTE = EI.UserTE; 3608 auto It = Users.find(UserTE); 3609 if (It == Users.end()) 3610 It = Users.insert({UserTE, {}}).first; 3611 It->second.emplace_back(EI.EdgeIdx, TE); 3612 } 3613 } 3614 // Erase filtered entries. 3615 for_each(Filtered, 3616 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3617 for (auto &Data : Users) { 3618 // Check that operands are used only in the User node. 3619 SmallVector<TreeEntry *> GatherOps; 3620 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3621 GatherOps)) { 3622 for_each(Data.second, 3623 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3624 OrderedEntries.remove(Op.second); 3625 }); 3626 continue; 3627 } 3628 // All operands are reordered and used only in this node - propagate the 3629 // most used order to the user node. 3630 MapVector<OrdersType, unsigned, 3631 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3632 OrdersUses; 3633 // Do the analysis for each tree entry only once, otherwise the order of 3634 // the same node my be considered several times, though might be not 3635 // profitable. 3636 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3637 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3638 for (const auto &Op : Data.second) { 3639 TreeEntry *OpTE = Op.second; 3640 if (!VisitedOps.insert(OpTE).second) 3641 continue; 3642 if (!OpTE->ReuseShuffleIndices.empty() || 3643 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3644 continue; 3645 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3646 if (OpTE->State == TreeEntry::NeedToGather) 3647 return GathersToOrders.find(OpTE)->second; 3648 return OpTE->ReorderIndices; 3649 }(); 3650 unsigned NumOps = count_if( 3651 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3652 return P.second == OpTE; 3653 }); 3654 // Stores actually store the mask, not the order, need to invert. 3655 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3656 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3657 SmallVector<int> Mask; 3658 inversePermutation(Order, Mask); 3659 unsigned E = Order.size(); 3660 OrdersType CurrentOrder(E, E); 3661 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3662 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3663 }); 3664 fixupOrderingIndices(CurrentOrder); 3665 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3666 NumOps; 3667 } else { 3668 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3669 } 3670 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3671 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3672 const TreeEntry *TE) { 3673 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3674 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3675 (IgnoreReorder && TE->Idx == 0)) 3676 return true; 3677 if (TE->State == TreeEntry::NeedToGather) { 3678 auto It = GathersToOrders.find(TE); 3679 if (It != GathersToOrders.end()) 3680 return !It->second.empty(); 3681 return true; 3682 } 3683 return false; 3684 }; 3685 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3686 TreeEntry *UserTE = EI.UserTE; 3687 if (!VisitedUsers.insert(UserTE).second) 3688 continue; 3689 // May reorder user node if it requires reordering, has reused 3690 // scalars, is an alternate op vectorize node or its op nodes require 3691 // reordering. 3692 if (AllowsReordering(UserTE)) 3693 continue; 3694 // Check if users allow reordering. 3695 // Currently look up just 1 level of operands to avoid increase of 3696 // the compile time. 3697 // Profitable to reorder if definitely more operands allow 3698 // reordering rather than those with natural order. 3699 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3700 if (static_cast<unsigned>(count_if( 3701 Ops, [UserTE, &AllowsReordering]( 3702 const std::pair<unsigned, TreeEntry *> &Op) { 3703 return AllowsReordering(Op.second) && 3704 all_of(Op.second->UserTreeIndices, 3705 [UserTE](const EdgeInfo &EI) { 3706 return EI.UserTE == UserTE; 3707 }); 3708 })) <= Ops.size() / 2) 3709 ++Res.first->second; 3710 } 3711 } 3712 // If no orders - skip current nodes and jump to the next one, if any. 3713 if (OrdersUses.empty()) { 3714 for_each(Data.second, 3715 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3716 OrderedEntries.remove(Op.second); 3717 }); 3718 continue; 3719 } 3720 // Choose the best order. 3721 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3722 unsigned Cnt = OrdersUses.front().second; 3723 for (const auto &Pair : drop_begin(OrdersUses)) { 3724 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3725 BestOrder = Pair.first; 3726 Cnt = Pair.second; 3727 } 3728 } 3729 // Set order of the user node (reordering of operands and user nodes). 3730 if (BestOrder.empty()) { 3731 for_each(Data.second, 3732 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3733 OrderedEntries.remove(Op.second); 3734 }); 3735 continue; 3736 } 3737 // Erase operands from OrderedEntries list and adjust their orders. 3738 VisitedOps.clear(); 3739 SmallVector<int> Mask; 3740 inversePermutation(BestOrder, Mask); 3741 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3742 unsigned E = BestOrder.size(); 3743 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3744 return I < E ? static_cast<int>(I) : UndefMaskElem; 3745 }); 3746 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3747 TreeEntry *TE = Op.second; 3748 OrderedEntries.remove(TE); 3749 if (!VisitedOps.insert(TE).second) 3750 continue; 3751 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3752 // Just reorder reuses indices. 3753 reorderReuses(TE->ReuseShuffleIndices, Mask); 3754 continue; 3755 } 3756 // Gathers are processed separately. 3757 if (TE->State != TreeEntry::Vectorize) 3758 continue; 3759 assert((BestOrder.size() == TE->ReorderIndices.size() || 3760 TE->ReorderIndices.empty()) && 3761 "Non-matching sizes of user/operand entries."); 3762 reorderOrder(TE->ReorderIndices, Mask); 3763 } 3764 // For gathers just need to reorder its scalars. 3765 for (TreeEntry *Gather : GatherOps) { 3766 assert(Gather->ReorderIndices.empty() && 3767 "Unexpected reordering of gathers."); 3768 if (!Gather->ReuseShuffleIndices.empty()) { 3769 // Just reorder reuses indices. 3770 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3771 continue; 3772 } 3773 reorderScalars(Gather->Scalars, Mask); 3774 OrderedEntries.remove(Gather); 3775 } 3776 // Reorder operands of the user node and set the ordering for the user 3777 // node itself. 3778 if (Data.first->State != TreeEntry::Vectorize || 3779 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3780 Data.first->getMainOp()) || 3781 Data.first->isAltShuffle()) 3782 Data.first->reorderOperands(Mask); 3783 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3784 Data.first->isAltShuffle()) { 3785 reorderScalars(Data.first->Scalars, Mask); 3786 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3787 if (Data.first->ReuseShuffleIndices.empty() && 3788 !Data.first->ReorderIndices.empty() && 3789 !Data.first->isAltShuffle()) { 3790 // Insert user node to the list to try to sink reordering deeper in 3791 // the graph. 3792 OrderedEntries.insert(Data.first); 3793 } 3794 } else { 3795 reorderOrder(Data.first->ReorderIndices, Mask); 3796 } 3797 } 3798 } 3799 // If the reordering is unnecessary, just remove the reorder. 3800 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3801 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3802 VectorizableTree.front()->ReorderIndices.clear(); 3803 } 3804 3805 void BoUpSLP::buildExternalUses( 3806 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3807 // Collect the values that we need to extract from the tree. 3808 for (auto &TEPtr : VectorizableTree) { 3809 TreeEntry *Entry = TEPtr.get(); 3810 3811 // No need to handle users of gathered values. 3812 if (Entry->State == TreeEntry::NeedToGather) 3813 continue; 3814 3815 // For each lane: 3816 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3817 Value *Scalar = Entry->Scalars[Lane]; 3818 int FoundLane = Entry->findLaneForValue(Scalar); 3819 3820 // Check if the scalar is externally used as an extra arg. 3821 auto ExtI = ExternallyUsedValues.find(Scalar); 3822 if (ExtI != ExternallyUsedValues.end()) { 3823 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3824 << Lane << " from " << *Scalar << ".\n"); 3825 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3826 } 3827 for (User *U : Scalar->users()) { 3828 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3829 3830 Instruction *UserInst = dyn_cast<Instruction>(U); 3831 if (!UserInst) 3832 continue; 3833 3834 if (isDeleted(UserInst)) 3835 continue; 3836 3837 // Skip in-tree scalars that become vectors 3838 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3839 Value *UseScalar = UseEntry->Scalars[0]; 3840 // Some in-tree scalars will remain as scalar in vectorized 3841 // instructions. If that is the case, the one in Lane 0 will 3842 // be used. 3843 if (UseScalar != U || 3844 UseEntry->State == TreeEntry::ScatterVectorize || 3845 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3846 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3847 << ".\n"); 3848 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3849 continue; 3850 } 3851 } 3852 3853 // Ignore users in the user ignore list. 3854 if (is_contained(UserIgnoreList, UserInst)) 3855 continue; 3856 3857 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3858 << Lane << " from " << *Scalar << ".\n"); 3859 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3860 } 3861 } 3862 } 3863 } 3864 3865 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3866 ArrayRef<Value *> UserIgnoreLst) { 3867 deleteTree(); 3868 UserIgnoreList = UserIgnoreLst; 3869 if (!allSameType(Roots)) 3870 return; 3871 buildTree_rec(Roots, 0, EdgeInfo()); 3872 } 3873 3874 namespace { 3875 /// Tracks the state we can represent the loads in the given sequence. 3876 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3877 } // anonymous namespace 3878 3879 /// Checks if the given array of loads can be represented as a vectorized, 3880 /// scatter or just simple gather. 3881 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3882 const TargetTransformInfo &TTI, 3883 const DataLayout &DL, ScalarEvolution &SE, 3884 SmallVectorImpl<unsigned> &Order, 3885 SmallVectorImpl<Value *> &PointerOps) { 3886 // Check that a vectorized load would load the same memory as a scalar 3887 // load. For example, we don't want to vectorize loads that are smaller 3888 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3889 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3890 // from such a struct, we read/write packed bits disagreeing with the 3891 // unvectorized version. 3892 Type *ScalarTy = VL0->getType(); 3893 3894 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3895 return LoadsState::Gather; 3896 3897 // Make sure all loads in the bundle are simple - we can't vectorize 3898 // atomic or volatile loads. 3899 PointerOps.clear(); 3900 PointerOps.resize(VL.size()); 3901 auto *POIter = PointerOps.begin(); 3902 for (Value *V : VL) { 3903 auto *L = cast<LoadInst>(V); 3904 if (!L->isSimple()) 3905 return LoadsState::Gather; 3906 *POIter = L->getPointerOperand(); 3907 ++POIter; 3908 } 3909 3910 Order.clear(); 3911 // Check the order of pointer operands. 3912 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3913 Value *Ptr0; 3914 Value *PtrN; 3915 if (Order.empty()) { 3916 Ptr0 = PointerOps.front(); 3917 PtrN = PointerOps.back(); 3918 } else { 3919 Ptr0 = PointerOps[Order.front()]; 3920 PtrN = PointerOps[Order.back()]; 3921 } 3922 Optional<int> Diff = 3923 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3924 // Check that the sorted loads are consecutive. 3925 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3926 return LoadsState::Vectorize; 3927 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3928 for (Value *V : VL) 3929 CommonAlignment = 3930 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3931 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3932 CommonAlignment)) 3933 return LoadsState::ScatterVectorize; 3934 } 3935 3936 return LoadsState::Gather; 3937 } 3938 3939 /// \return true if the specified list of values has only one instruction that 3940 /// requires scheduling, false otherwise. 3941 #ifndef NDEBUG 3942 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3943 Value *NeedsScheduling = nullptr; 3944 for (Value *V : VL) { 3945 if (doesNotNeedToBeScheduled(V)) 3946 continue; 3947 if (!NeedsScheduling) { 3948 NeedsScheduling = V; 3949 continue; 3950 } 3951 return false; 3952 } 3953 return NeedsScheduling; 3954 } 3955 #endif 3956 3957 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3958 const EdgeInfo &UserTreeIdx) { 3959 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3960 3961 SmallVector<int> ReuseShuffleIndicies; 3962 SmallVector<Value *> UniqueValues; 3963 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3964 &UserTreeIdx, 3965 this](const InstructionsState &S) { 3966 // Check that every instruction appears once in this bundle. 3967 DenseMap<Value *, unsigned> UniquePositions; 3968 for (Value *V : VL) { 3969 if (isConstant(V)) { 3970 ReuseShuffleIndicies.emplace_back( 3971 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3972 UniqueValues.emplace_back(V); 3973 continue; 3974 } 3975 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3976 ReuseShuffleIndicies.emplace_back(Res.first->second); 3977 if (Res.second) 3978 UniqueValues.emplace_back(V); 3979 } 3980 size_t NumUniqueScalarValues = UniqueValues.size(); 3981 if (NumUniqueScalarValues == VL.size()) { 3982 ReuseShuffleIndicies.clear(); 3983 } else { 3984 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3985 if (NumUniqueScalarValues <= 1 || 3986 (UniquePositions.size() == 1 && all_of(UniqueValues, 3987 [](Value *V) { 3988 return isa<UndefValue>(V) || 3989 !isConstant(V); 3990 })) || 3991 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3992 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3993 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3994 return false; 3995 } 3996 VL = UniqueValues; 3997 } 3998 return true; 3999 }; 4000 4001 InstructionsState S = getSameOpcode(VL); 4002 if (Depth == RecursionMaxDepth) { 4003 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4004 if (TryToFindDuplicates(S)) 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4006 ReuseShuffleIndicies); 4007 return; 4008 } 4009 4010 // Don't handle scalable vectors 4011 if (S.getOpcode() == Instruction::ExtractElement && 4012 isa<ScalableVectorType>( 4013 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4014 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4015 if (TryToFindDuplicates(S)) 4016 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4017 ReuseShuffleIndicies); 4018 return; 4019 } 4020 4021 // Don't handle vectors. 4022 if (S.OpValue->getType()->isVectorTy() && 4023 !isa<InsertElementInst>(S.OpValue)) { 4024 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4025 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4026 return; 4027 } 4028 4029 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4030 if (SI->getValueOperand()->getType()->isVectorTy()) { 4031 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4032 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4033 return; 4034 } 4035 4036 // If all of the operands are identical or constant we have a simple solution. 4037 // If we deal with insert/extract instructions, they all must have constant 4038 // indices, otherwise we should gather them, not try to vectorize. 4039 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4040 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4041 !all_of(VL, isVectorLikeInstWithConstOps))) { 4042 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4043 if (TryToFindDuplicates(S)) 4044 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4045 ReuseShuffleIndicies); 4046 return; 4047 } 4048 4049 // We now know that this is a vector of instructions of the same type from 4050 // the same block. 4051 4052 // Don't vectorize ephemeral values. 4053 for (Value *V : VL) { 4054 if (EphValues.count(V)) { 4055 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4056 << ") is ephemeral.\n"); 4057 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4058 return; 4059 } 4060 } 4061 4062 // Check if this is a duplicate of another entry. 4063 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4064 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4065 if (!E->isSame(VL)) { 4066 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4067 if (TryToFindDuplicates(S)) 4068 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4069 ReuseShuffleIndicies); 4070 return; 4071 } 4072 // Record the reuse of the tree node. FIXME, currently this is only used to 4073 // properly draw the graph rather than for the actual vectorization. 4074 E->UserTreeIndices.push_back(UserTreeIdx); 4075 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4076 << ".\n"); 4077 return; 4078 } 4079 4080 // Check that none of the instructions in the bundle are already in the tree. 4081 for (Value *V : VL) { 4082 auto *I = dyn_cast<Instruction>(V); 4083 if (!I) 4084 continue; 4085 if (getTreeEntry(I)) { 4086 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4087 << ") is already in tree.\n"); 4088 if (TryToFindDuplicates(S)) 4089 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4090 ReuseShuffleIndicies); 4091 return; 4092 } 4093 } 4094 4095 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4096 for (Value *V : VL) { 4097 if (is_contained(UserIgnoreList, V)) { 4098 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4099 if (TryToFindDuplicates(S)) 4100 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4101 ReuseShuffleIndicies); 4102 return; 4103 } 4104 } 4105 4106 // Check that all of the users of the scalars that we want to vectorize are 4107 // schedulable. 4108 auto *VL0 = cast<Instruction>(S.OpValue); 4109 BasicBlock *BB = VL0->getParent(); 4110 4111 if (!DT->isReachableFromEntry(BB)) { 4112 // Don't go into unreachable blocks. They may contain instructions with 4113 // dependency cycles which confuse the final scheduling. 4114 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4115 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4116 return; 4117 } 4118 4119 // Check that every instruction appears once in this bundle. 4120 if (!TryToFindDuplicates(S)) 4121 return; 4122 4123 auto &BSRef = BlocksSchedules[BB]; 4124 if (!BSRef) 4125 BSRef = std::make_unique<BlockScheduling>(BB); 4126 4127 BlockScheduling &BS = *BSRef; 4128 4129 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4130 #ifdef EXPENSIVE_CHECKS 4131 // Make sure we didn't break any internal invariants 4132 BS.verify(); 4133 #endif 4134 if (!Bundle) { 4135 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4136 assert((!BS.getScheduleData(VL0) || 4137 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4138 "tryScheduleBundle should cancelScheduling on failure"); 4139 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4140 ReuseShuffleIndicies); 4141 return; 4142 } 4143 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4144 4145 unsigned ShuffleOrOp = S.isAltShuffle() ? 4146 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4147 switch (ShuffleOrOp) { 4148 case Instruction::PHI: { 4149 auto *PH = cast<PHINode>(VL0); 4150 4151 // Check for terminator values (e.g. invoke). 4152 for (Value *V : VL) 4153 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4154 Instruction *Term = dyn_cast<Instruction>(Incoming); 4155 if (Term && Term->isTerminator()) { 4156 LLVM_DEBUG(dbgs() 4157 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4158 BS.cancelScheduling(VL, VL0); 4159 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4160 ReuseShuffleIndicies); 4161 return; 4162 } 4163 } 4164 4165 TreeEntry *TE = 4166 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4167 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4168 4169 // Keeps the reordered operands to avoid code duplication. 4170 SmallVector<ValueList, 2> OperandsVec; 4171 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4172 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4173 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4174 TE->setOperand(I, Operands); 4175 OperandsVec.push_back(Operands); 4176 continue; 4177 } 4178 ValueList Operands; 4179 // Prepare the operand vector. 4180 for (Value *V : VL) 4181 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4182 PH->getIncomingBlock(I))); 4183 TE->setOperand(I, Operands); 4184 OperandsVec.push_back(Operands); 4185 } 4186 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4187 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4188 return; 4189 } 4190 case Instruction::ExtractValue: 4191 case Instruction::ExtractElement: { 4192 OrdersType CurrentOrder; 4193 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4194 if (Reuse) { 4195 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4196 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4197 ReuseShuffleIndicies); 4198 // This is a special case, as it does not gather, but at the same time 4199 // we are not extending buildTree_rec() towards the operands. 4200 ValueList Op0; 4201 Op0.assign(VL.size(), VL0->getOperand(0)); 4202 VectorizableTree.back()->setOperand(0, Op0); 4203 return; 4204 } 4205 if (!CurrentOrder.empty()) { 4206 LLVM_DEBUG({ 4207 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4208 "with order"; 4209 for (unsigned Idx : CurrentOrder) 4210 dbgs() << " " << Idx; 4211 dbgs() << "\n"; 4212 }); 4213 fixupOrderingIndices(CurrentOrder); 4214 // Insert new order with initial value 0, if it does not exist, 4215 // otherwise return the iterator to the existing one. 4216 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4217 ReuseShuffleIndicies, CurrentOrder); 4218 // This is a special case, as it does not gather, but at the same time 4219 // we are not extending buildTree_rec() towards the operands. 4220 ValueList Op0; 4221 Op0.assign(VL.size(), VL0->getOperand(0)); 4222 VectorizableTree.back()->setOperand(0, Op0); 4223 return; 4224 } 4225 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4226 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4227 ReuseShuffleIndicies); 4228 BS.cancelScheduling(VL, VL0); 4229 return; 4230 } 4231 case Instruction::InsertElement: { 4232 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4233 4234 // Check that we have a buildvector and not a shuffle of 2 or more 4235 // different vectors. 4236 ValueSet SourceVectors; 4237 for (Value *V : VL) { 4238 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4239 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4240 } 4241 4242 if (count_if(VL, [&SourceVectors](Value *V) { 4243 return !SourceVectors.contains(V); 4244 }) >= 2) { 4245 // Found 2nd source vector - cancel. 4246 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4247 "different source vectors.\n"); 4248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4249 BS.cancelScheduling(VL, VL0); 4250 return; 4251 } 4252 4253 auto OrdCompare = [](const std::pair<int, int> &P1, 4254 const std::pair<int, int> &P2) { 4255 return P1.first > P2.first; 4256 }; 4257 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4258 decltype(OrdCompare)> 4259 Indices(OrdCompare); 4260 for (int I = 0, E = VL.size(); I < E; ++I) { 4261 unsigned Idx = *getInsertIndex(VL[I]); 4262 Indices.emplace(Idx, I); 4263 } 4264 OrdersType CurrentOrder(VL.size(), VL.size()); 4265 bool IsIdentity = true; 4266 for (int I = 0, E = VL.size(); I < E; ++I) { 4267 CurrentOrder[Indices.top().second] = I; 4268 IsIdentity &= Indices.top().second == I; 4269 Indices.pop(); 4270 } 4271 if (IsIdentity) 4272 CurrentOrder.clear(); 4273 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4274 None, CurrentOrder); 4275 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4276 4277 constexpr int NumOps = 2; 4278 ValueList VectorOperands[NumOps]; 4279 for (int I = 0; I < NumOps; ++I) { 4280 for (Value *V : VL) 4281 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4282 4283 TE->setOperand(I, VectorOperands[I]); 4284 } 4285 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4286 return; 4287 } 4288 case Instruction::Load: { 4289 // Check that a vectorized load would load the same memory as a scalar 4290 // load. For example, we don't want to vectorize loads that are smaller 4291 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4292 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4293 // from such a struct, we read/write packed bits disagreeing with the 4294 // unvectorized version. 4295 SmallVector<Value *> PointerOps; 4296 OrdersType CurrentOrder; 4297 TreeEntry *TE = nullptr; 4298 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4299 PointerOps)) { 4300 case LoadsState::Vectorize: 4301 if (CurrentOrder.empty()) { 4302 // Original loads are consecutive and does not require reordering. 4303 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4304 ReuseShuffleIndicies); 4305 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4306 } else { 4307 fixupOrderingIndices(CurrentOrder); 4308 // Need to reorder. 4309 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4310 ReuseShuffleIndicies, CurrentOrder); 4311 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4312 } 4313 TE->setOperandsInOrder(); 4314 break; 4315 case LoadsState::ScatterVectorize: 4316 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4317 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4318 UserTreeIdx, ReuseShuffleIndicies); 4319 TE->setOperandsInOrder(); 4320 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4321 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4322 break; 4323 case LoadsState::Gather: 4324 BS.cancelScheduling(VL, VL0); 4325 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4326 ReuseShuffleIndicies); 4327 #ifndef NDEBUG 4328 Type *ScalarTy = VL0->getType(); 4329 if (DL->getTypeSizeInBits(ScalarTy) != 4330 DL->getTypeAllocSizeInBits(ScalarTy)) 4331 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4332 else if (any_of(VL, [](Value *V) { 4333 return !cast<LoadInst>(V)->isSimple(); 4334 })) 4335 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4336 else 4337 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4338 #endif // NDEBUG 4339 break; 4340 } 4341 return; 4342 } 4343 case Instruction::ZExt: 4344 case Instruction::SExt: 4345 case Instruction::FPToUI: 4346 case Instruction::FPToSI: 4347 case Instruction::FPExt: 4348 case Instruction::PtrToInt: 4349 case Instruction::IntToPtr: 4350 case Instruction::SIToFP: 4351 case Instruction::UIToFP: 4352 case Instruction::Trunc: 4353 case Instruction::FPTrunc: 4354 case Instruction::BitCast: { 4355 Type *SrcTy = VL0->getOperand(0)->getType(); 4356 for (Value *V : VL) { 4357 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4358 if (Ty != SrcTy || !isValidElementType(Ty)) { 4359 BS.cancelScheduling(VL, VL0); 4360 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4361 ReuseShuffleIndicies); 4362 LLVM_DEBUG(dbgs() 4363 << "SLP: Gathering casts with different src types.\n"); 4364 return; 4365 } 4366 } 4367 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4368 ReuseShuffleIndicies); 4369 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4370 4371 TE->setOperandsInOrder(); 4372 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4373 ValueList Operands; 4374 // Prepare the operand vector. 4375 for (Value *V : VL) 4376 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4377 4378 buildTree_rec(Operands, Depth + 1, {TE, i}); 4379 } 4380 return; 4381 } 4382 case Instruction::ICmp: 4383 case Instruction::FCmp: { 4384 // Check that all of the compares have the same predicate. 4385 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4386 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4387 Type *ComparedTy = VL0->getOperand(0)->getType(); 4388 for (Value *V : VL) { 4389 CmpInst *Cmp = cast<CmpInst>(V); 4390 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4391 Cmp->getOperand(0)->getType() != ComparedTy) { 4392 BS.cancelScheduling(VL, VL0); 4393 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4394 ReuseShuffleIndicies); 4395 LLVM_DEBUG(dbgs() 4396 << "SLP: Gathering cmp with different predicate.\n"); 4397 return; 4398 } 4399 } 4400 4401 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4402 ReuseShuffleIndicies); 4403 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4404 4405 ValueList Left, Right; 4406 if (cast<CmpInst>(VL0)->isCommutative()) { 4407 // Commutative predicate - collect + sort operands of the instructions 4408 // so that each side is more likely to have the same opcode. 4409 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4410 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4411 } else { 4412 // Collect operands - commute if it uses the swapped predicate. 4413 for (Value *V : VL) { 4414 auto *Cmp = cast<CmpInst>(V); 4415 Value *LHS = Cmp->getOperand(0); 4416 Value *RHS = Cmp->getOperand(1); 4417 if (Cmp->getPredicate() != P0) 4418 std::swap(LHS, RHS); 4419 Left.push_back(LHS); 4420 Right.push_back(RHS); 4421 } 4422 } 4423 TE->setOperand(0, Left); 4424 TE->setOperand(1, Right); 4425 buildTree_rec(Left, Depth + 1, {TE, 0}); 4426 buildTree_rec(Right, Depth + 1, {TE, 1}); 4427 return; 4428 } 4429 case Instruction::Select: 4430 case Instruction::FNeg: 4431 case Instruction::Add: 4432 case Instruction::FAdd: 4433 case Instruction::Sub: 4434 case Instruction::FSub: 4435 case Instruction::Mul: 4436 case Instruction::FMul: 4437 case Instruction::UDiv: 4438 case Instruction::SDiv: 4439 case Instruction::FDiv: 4440 case Instruction::URem: 4441 case Instruction::SRem: 4442 case Instruction::FRem: 4443 case Instruction::Shl: 4444 case Instruction::LShr: 4445 case Instruction::AShr: 4446 case Instruction::And: 4447 case Instruction::Or: 4448 case Instruction::Xor: { 4449 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4450 ReuseShuffleIndicies); 4451 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4452 4453 // Sort operands of the instructions so that each side is more likely to 4454 // have the same opcode. 4455 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4456 ValueList Left, Right; 4457 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4458 TE->setOperand(0, Left); 4459 TE->setOperand(1, Right); 4460 buildTree_rec(Left, Depth + 1, {TE, 0}); 4461 buildTree_rec(Right, Depth + 1, {TE, 1}); 4462 return; 4463 } 4464 4465 TE->setOperandsInOrder(); 4466 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4467 ValueList Operands; 4468 // Prepare the operand vector. 4469 for (Value *V : VL) 4470 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4471 4472 buildTree_rec(Operands, Depth + 1, {TE, i}); 4473 } 4474 return; 4475 } 4476 case Instruction::GetElementPtr: { 4477 // We don't combine GEPs with complicated (nested) indexing. 4478 for (Value *V : VL) { 4479 if (cast<Instruction>(V)->getNumOperands() != 2) { 4480 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4481 BS.cancelScheduling(VL, VL0); 4482 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4483 ReuseShuffleIndicies); 4484 return; 4485 } 4486 } 4487 4488 // We can't combine several GEPs into one vector if they operate on 4489 // different types. 4490 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4491 for (Value *V : VL) { 4492 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4493 if (Ty0 != CurTy) { 4494 LLVM_DEBUG(dbgs() 4495 << "SLP: not-vectorizable GEP (different types).\n"); 4496 BS.cancelScheduling(VL, VL0); 4497 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4498 ReuseShuffleIndicies); 4499 return; 4500 } 4501 } 4502 4503 // We don't combine GEPs with non-constant indexes. 4504 Type *Ty1 = VL0->getOperand(1)->getType(); 4505 for (Value *V : VL) { 4506 auto Op = cast<Instruction>(V)->getOperand(1); 4507 if (!isa<ConstantInt>(Op) || 4508 (Op->getType() != Ty1 && 4509 Op->getType()->getScalarSizeInBits() > 4510 DL->getIndexSizeInBits( 4511 V->getType()->getPointerAddressSpace()))) { 4512 LLVM_DEBUG(dbgs() 4513 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4514 BS.cancelScheduling(VL, VL0); 4515 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4516 ReuseShuffleIndicies); 4517 return; 4518 } 4519 } 4520 4521 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4522 ReuseShuffleIndicies); 4523 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4524 SmallVector<ValueList, 2> Operands(2); 4525 // Prepare the operand vector for pointer operands. 4526 for (Value *V : VL) 4527 Operands.front().push_back( 4528 cast<GetElementPtrInst>(V)->getPointerOperand()); 4529 TE->setOperand(0, Operands.front()); 4530 // Need to cast all indices to the same type before vectorization to 4531 // avoid crash. 4532 // Required to be able to find correct matches between different gather 4533 // nodes and reuse the vectorized values rather than trying to gather them 4534 // again. 4535 int IndexIdx = 1; 4536 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4537 Type *Ty = all_of(VL, 4538 [VL0Ty, IndexIdx](Value *V) { 4539 return VL0Ty == cast<GetElementPtrInst>(V) 4540 ->getOperand(IndexIdx) 4541 ->getType(); 4542 }) 4543 ? VL0Ty 4544 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4545 ->getPointerOperandType() 4546 ->getScalarType()); 4547 // Prepare the operand vector. 4548 for (Value *V : VL) { 4549 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4550 auto *CI = cast<ConstantInt>(Op); 4551 Operands.back().push_back(ConstantExpr::getIntegerCast( 4552 CI, Ty, CI->getValue().isSignBitSet())); 4553 } 4554 TE->setOperand(IndexIdx, Operands.back()); 4555 4556 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4557 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4558 return; 4559 } 4560 case Instruction::Store: { 4561 // Check if the stores are consecutive or if we need to swizzle them. 4562 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4563 // Avoid types that are padded when being allocated as scalars, while 4564 // being packed together in a vector (such as i1). 4565 if (DL->getTypeSizeInBits(ScalarTy) != 4566 DL->getTypeAllocSizeInBits(ScalarTy)) { 4567 BS.cancelScheduling(VL, VL0); 4568 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4569 ReuseShuffleIndicies); 4570 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4571 return; 4572 } 4573 // Make sure all stores in the bundle are simple - we can't vectorize 4574 // atomic or volatile stores. 4575 SmallVector<Value *, 4> PointerOps(VL.size()); 4576 ValueList Operands(VL.size()); 4577 auto POIter = PointerOps.begin(); 4578 auto OIter = Operands.begin(); 4579 for (Value *V : VL) { 4580 auto *SI = cast<StoreInst>(V); 4581 if (!SI->isSimple()) { 4582 BS.cancelScheduling(VL, VL0); 4583 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4584 ReuseShuffleIndicies); 4585 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4586 return; 4587 } 4588 *POIter = SI->getPointerOperand(); 4589 *OIter = SI->getValueOperand(); 4590 ++POIter; 4591 ++OIter; 4592 } 4593 4594 OrdersType CurrentOrder; 4595 // Check the order of pointer operands. 4596 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4597 Value *Ptr0; 4598 Value *PtrN; 4599 if (CurrentOrder.empty()) { 4600 Ptr0 = PointerOps.front(); 4601 PtrN = PointerOps.back(); 4602 } else { 4603 Ptr0 = PointerOps[CurrentOrder.front()]; 4604 PtrN = PointerOps[CurrentOrder.back()]; 4605 } 4606 Optional<int> Dist = 4607 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4608 // Check that the sorted pointer operands are consecutive. 4609 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4610 if (CurrentOrder.empty()) { 4611 // Original stores are consecutive and does not require reordering. 4612 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4613 UserTreeIdx, ReuseShuffleIndicies); 4614 TE->setOperandsInOrder(); 4615 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4616 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4617 } else { 4618 fixupOrderingIndices(CurrentOrder); 4619 TreeEntry *TE = 4620 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4621 ReuseShuffleIndicies, CurrentOrder); 4622 TE->setOperandsInOrder(); 4623 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4624 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4625 } 4626 return; 4627 } 4628 } 4629 4630 BS.cancelScheduling(VL, VL0); 4631 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4632 ReuseShuffleIndicies); 4633 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4634 return; 4635 } 4636 case Instruction::Call: { 4637 // Check if the calls are all to the same vectorizable intrinsic or 4638 // library function. 4639 CallInst *CI = cast<CallInst>(VL0); 4640 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4641 4642 VFShape Shape = VFShape::get( 4643 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4644 false /*HasGlobalPred*/); 4645 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4646 4647 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4648 BS.cancelScheduling(VL, VL0); 4649 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4650 ReuseShuffleIndicies); 4651 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4652 return; 4653 } 4654 Function *F = CI->getCalledFunction(); 4655 unsigned NumArgs = CI->arg_size(); 4656 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4657 for (unsigned j = 0; j != NumArgs; ++j) 4658 if (hasVectorInstrinsicScalarOpd(ID, j)) 4659 ScalarArgs[j] = CI->getArgOperand(j); 4660 for (Value *V : VL) { 4661 CallInst *CI2 = dyn_cast<CallInst>(V); 4662 if (!CI2 || CI2->getCalledFunction() != F || 4663 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4664 (VecFunc && 4665 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4666 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4667 BS.cancelScheduling(VL, VL0); 4668 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4669 ReuseShuffleIndicies); 4670 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4671 << "\n"); 4672 return; 4673 } 4674 // Some intrinsics have scalar arguments and should be same in order for 4675 // them to be vectorized. 4676 for (unsigned j = 0; j != NumArgs; ++j) { 4677 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4678 Value *A1J = CI2->getArgOperand(j); 4679 if (ScalarArgs[j] != A1J) { 4680 BS.cancelScheduling(VL, VL0); 4681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4682 ReuseShuffleIndicies); 4683 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4684 << " argument " << ScalarArgs[j] << "!=" << A1J 4685 << "\n"); 4686 return; 4687 } 4688 } 4689 } 4690 // Verify that the bundle operands are identical between the two calls. 4691 if (CI->hasOperandBundles() && 4692 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4693 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4694 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4695 BS.cancelScheduling(VL, VL0); 4696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4697 ReuseShuffleIndicies); 4698 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4699 << *CI << "!=" << *V << '\n'); 4700 return; 4701 } 4702 } 4703 4704 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4705 ReuseShuffleIndicies); 4706 TE->setOperandsInOrder(); 4707 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4708 // For scalar operands no need to to create an entry since no need to 4709 // vectorize it. 4710 if (hasVectorInstrinsicScalarOpd(ID, i)) 4711 continue; 4712 ValueList Operands; 4713 // Prepare the operand vector. 4714 for (Value *V : VL) { 4715 auto *CI2 = cast<CallInst>(V); 4716 Operands.push_back(CI2->getArgOperand(i)); 4717 } 4718 buildTree_rec(Operands, Depth + 1, {TE, i}); 4719 } 4720 return; 4721 } 4722 case Instruction::ShuffleVector: { 4723 // If this is not an alternate sequence of opcode like add-sub 4724 // then do not vectorize this instruction. 4725 if (!S.isAltShuffle()) { 4726 BS.cancelScheduling(VL, VL0); 4727 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4728 ReuseShuffleIndicies); 4729 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4730 return; 4731 } 4732 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4733 ReuseShuffleIndicies); 4734 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4735 4736 // Reorder operands if reordering would enable vectorization. 4737 auto *CI = dyn_cast<CmpInst>(VL0); 4738 if (isa<BinaryOperator>(VL0) || CI) { 4739 ValueList Left, Right; 4740 if (!CI || all_of(VL, [](Value *V) { 4741 return cast<CmpInst>(V)->isCommutative(); 4742 })) { 4743 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4744 } else { 4745 CmpInst::Predicate P0 = CI->getPredicate(); 4746 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4747 assert(P0 != AltP0 && 4748 "Expected different main/alternate predicates."); 4749 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4750 Value *BaseOp0 = VL0->getOperand(0); 4751 Value *BaseOp1 = VL0->getOperand(1); 4752 // Collect operands - commute if it uses the swapped predicate or 4753 // alternate operation. 4754 for (Value *V : VL) { 4755 auto *Cmp = cast<CmpInst>(V); 4756 Value *LHS = Cmp->getOperand(0); 4757 Value *RHS = Cmp->getOperand(1); 4758 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4759 if (P0 == AltP0Swapped) { 4760 if (CI != Cmp && S.AltOp != Cmp && 4761 ((P0 == CurrentPred && 4762 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4763 (AltP0 == CurrentPred && 4764 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4765 std::swap(LHS, RHS); 4766 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4767 std::swap(LHS, RHS); 4768 } 4769 Left.push_back(LHS); 4770 Right.push_back(RHS); 4771 } 4772 } 4773 TE->setOperand(0, Left); 4774 TE->setOperand(1, Right); 4775 buildTree_rec(Left, Depth + 1, {TE, 0}); 4776 buildTree_rec(Right, Depth + 1, {TE, 1}); 4777 return; 4778 } 4779 4780 TE->setOperandsInOrder(); 4781 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4782 ValueList Operands; 4783 // Prepare the operand vector. 4784 for (Value *V : VL) 4785 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4786 4787 buildTree_rec(Operands, Depth + 1, {TE, i}); 4788 } 4789 return; 4790 } 4791 default: 4792 BS.cancelScheduling(VL, VL0); 4793 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4794 ReuseShuffleIndicies); 4795 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4796 return; 4797 } 4798 } 4799 4800 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4801 unsigned N = 1; 4802 Type *EltTy = T; 4803 4804 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4805 isa<VectorType>(EltTy)) { 4806 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4807 // Check that struct is homogeneous. 4808 for (const auto *Ty : ST->elements()) 4809 if (Ty != *ST->element_begin()) 4810 return 0; 4811 N *= ST->getNumElements(); 4812 EltTy = *ST->element_begin(); 4813 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4814 N *= AT->getNumElements(); 4815 EltTy = AT->getElementType(); 4816 } else { 4817 auto *VT = cast<FixedVectorType>(EltTy); 4818 N *= VT->getNumElements(); 4819 EltTy = VT->getElementType(); 4820 } 4821 } 4822 4823 if (!isValidElementType(EltTy)) 4824 return 0; 4825 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4826 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4827 return 0; 4828 return N; 4829 } 4830 4831 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4832 SmallVectorImpl<unsigned> &CurrentOrder) const { 4833 const auto *It = find_if(VL, [](Value *V) { 4834 return isa<ExtractElementInst, ExtractValueInst>(V); 4835 }); 4836 assert(It != VL.end() && "Expected at least one extract instruction."); 4837 auto *E0 = cast<Instruction>(*It); 4838 assert(all_of(VL, 4839 [](Value *V) { 4840 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4841 V); 4842 }) && 4843 "Invalid opcode"); 4844 // Check if all of the extracts come from the same vector and from the 4845 // correct offset. 4846 Value *Vec = E0->getOperand(0); 4847 4848 CurrentOrder.clear(); 4849 4850 // We have to extract from a vector/aggregate with the same number of elements. 4851 unsigned NElts; 4852 if (E0->getOpcode() == Instruction::ExtractValue) { 4853 const DataLayout &DL = E0->getModule()->getDataLayout(); 4854 NElts = canMapToVector(Vec->getType(), DL); 4855 if (!NElts) 4856 return false; 4857 // Check if load can be rewritten as load of vector. 4858 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4859 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4860 return false; 4861 } else { 4862 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4863 } 4864 4865 if (NElts != VL.size()) 4866 return false; 4867 4868 // Check that all of the indices extract from the correct offset. 4869 bool ShouldKeepOrder = true; 4870 unsigned E = VL.size(); 4871 // Assign to all items the initial value E + 1 so we can check if the extract 4872 // instruction index was used already. 4873 // Also, later we can check that all the indices are used and we have a 4874 // consecutive access in the extract instructions, by checking that no 4875 // element of CurrentOrder still has value E + 1. 4876 CurrentOrder.assign(E, E); 4877 unsigned I = 0; 4878 for (; I < E; ++I) { 4879 auto *Inst = dyn_cast<Instruction>(VL[I]); 4880 if (!Inst) 4881 continue; 4882 if (Inst->getOperand(0) != Vec) 4883 break; 4884 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4885 if (isa<UndefValue>(EE->getIndexOperand())) 4886 continue; 4887 Optional<unsigned> Idx = getExtractIndex(Inst); 4888 if (!Idx) 4889 break; 4890 const unsigned ExtIdx = *Idx; 4891 if (ExtIdx != I) { 4892 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4893 break; 4894 ShouldKeepOrder = false; 4895 CurrentOrder[ExtIdx] = I; 4896 } else { 4897 if (CurrentOrder[I] != E) 4898 break; 4899 CurrentOrder[I] = I; 4900 } 4901 } 4902 if (I < E) { 4903 CurrentOrder.clear(); 4904 return false; 4905 } 4906 if (ShouldKeepOrder) 4907 CurrentOrder.clear(); 4908 4909 return ShouldKeepOrder; 4910 } 4911 4912 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4913 ArrayRef<Value *> VectorizedVals) const { 4914 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4915 all_of(I->users(), [this](User *U) { 4916 return ScalarToTreeEntry.count(U) > 0 || 4917 isVectorLikeInstWithConstOps(U) || 4918 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4919 }); 4920 } 4921 4922 static std::pair<InstructionCost, InstructionCost> 4923 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4924 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4925 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4926 4927 // Calculate the cost of the scalar and vector calls. 4928 SmallVector<Type *, 4> VecTys; 4929 for (Use &Arg : CI->args()) 4930 VecTys.push_back( 4931 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4932 FastMathFlags FMF; 4933 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4934 FMF = FPCI->getFastMathFlags(); 4935 SmallVector<const Value *> Arguments(CI->args()); 4936 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4937 dyn_cast<IntrinsicInst>(CI)); 4938 auto IntrinsicCost = 4939 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4940 4941 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4942 VecTy->getNumElements())), 4943 false /*HasGlobalPred*/); 4944 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4945 auto LibCost = IntrinsicCost; 4946 if (!CI->isNoBuiltin() && VecFunc) { 4947 // Calculate the cost of the vector library call. 4948 // If the corresponding vector call is cheaper, return its cost. 4949 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4950 TTI::TCK_RecipThroughput); 4951 } 4952 return {IntrinsicCost, LibCost}; 4953 } 4954 4955 /// Compute the cost of creating a vector of type \p VecTy containing the 4956 /// extracted values from \p VL. 4957 static InstructionCost 4958 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4959 TargetTransformInfo::ShuffleKind ShuffleKind, 4960 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4961 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4962 4963 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4964 VecTy->getNumElements() < NumOfParts) 4965 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4966 4967 bool AllConsecutive = true; 4968 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4969 unsigned Idx = -1; 4970 InstructionCost Cost = 0; 4971 4972 // Process extracts in blocks of EltsPerVector to check if the source vector 4973 // operand can be re-used directly. If not, add the cost of creating a shuffle 4974 // to extract the values into a vector register. 4975 for (auto *V : VL) { 4976 ++Idx; 4977 4978 // Need to exclude undefs from analysis. 4979 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4980 continue; 4981 4982 // Reached the start of a new vector registers. 4983 if (Idx % EltsPerVector == 0) { 4984 AllConsecutive = true; 4985 continue; 4986 } 4987 4988 // Check all extracts for a vector register on the target directly 4989 // extract values in order. 4990 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4991 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4992 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4993 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4994 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4995 } 4996 4997 if (AllConsecutive) 4998 continue; 4999 5000 // Skip all indices, except for the last index per vector block. 5001 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5002 continue; 5003 5004 // If we have a series of extracts which are not consecutive and hence 5005 // cannot re-use the source vector register directly, compute the shuffle 5006 // cost to extract the a vector with EltsPerVector elements. 5007 Cost += TTI.getShuffleCost( 5008 TargetTransformInfo::SK_PermuteSingleSrc, 5009 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5010 } 5011 return Cost; 5012 } 5013 5014 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5015 /// operations operands. 5016 static void 5017 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5018 ArrayRef<int> ReusesIndices, 5019 const function_ref<bool(Instruction *)> IsAltOp, 5020 SmallVectorImpl<int> &Mask, 5021 SmallVectorImpl<Value *> *OpScalars = nullptr, 5022 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5023 unsigned Sz = VL.size(); 5024 Mask.assign(Sz, UndefMaskElem); 5025 SmallVector<int> OrderMask; 5026 if (!ReorderIndices.empty()) 5027 inversePermutation(ReorderIndices, OrderMask); 5028 for (unsigned I = 0; I < Sz; ++I) { 5029 unsigned Idx = I; 5030 if (!ReorderIndices.empty()) 5031 Idx = OrderMask[I]; 5032 auto *OpInst = cast<Instruction>(VL[Idx]); 5033 if (IsAltOp(OpInst)) { 5034 Mask[I] = Sz + Idx; 5035 if (AltScalars) 5036 AltScalars->push_back(OpInst); 5037 } else { 5038 Mask[I] = Idx; 5039 if (OpScalars) 5040 OpScalars->push_back(OpInst); 5041 } 5042 } 5043 if (!ReusesIndices.empty()) { 5044 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5045 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5046 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5047 }); 5048 Mask.swap(NewMask); 5049 } 5050 } 5051 5052 /// Checks if the specified instruction \p I is an alternate operation for the 5053 /// given \p MainOp and \p AltOp instructions. 5054 static bool isAlternateInstruction(const Instruction *I, 5055 const Instruction *MainOp, 5056 const Instruction *AltOp) { 5057 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5058 auto *AltCI0 = cast<CmpInst>(AltOp); 5059 auto *CI = cast<CmpInst>(I); 5060 CmpInst::Predicate P0 = CI0->getPredicate(); 5061 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5062 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5063 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5064 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5065 if (P0 == AltP0Swapped) 5066 return I == AltCI0 || 5067 (I != MainOp && 5068 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5069 CI->getOperand(0), CI->getOperand(1))); 5070 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5071 } 5072 return I->getOpcode() == AltOp->getOpcode(); 5073 } 5074 5075 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5076 ArrayRef<Value *> VectorizedVals) { 5077 ArrayRef<Value*> VL = E->Scalars; 5078 5079 Type *ScalarTy = VL[0]->getType(); 5080 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5081 ScalarTy = SI->getValueOperand()->getType(); 5082 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5083 ScalarTy = CI->getOperand(0)->getType(); 5084 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5085 ScalarTy = IE->getOperand(1)->getType(); 5086 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5087 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5088 5089 // If we have computed a smaller type for the expression, update VecTy so 5090 // that the costs will be accurate. 5091 if (MinBWs.count(VL[0])) 5092 VecTy = FixedVectorType::get( 5093 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5094 unsigned EntryVF = E->getVectorFactor(); 5095 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5096 5097 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5098 // FIXME: it tries to fix a problem with MSVC buildbots. 5099 TargetTransformInfo &TTIRef = *TTI; 5100 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5101 VectorizedVals, E](InstructionCost &Cost) { 5102 DenseMap<Value *, int> ExtractVectorsTys; 5103 SmallPtrSet<Value *, 4> CheckedExtracts; 5104 for (auto *V : VL) { 5105 if (isa<UndefValue>(V)) 5106 continue; 5107 // If all users of instruction are going to be vectorized and this 5108 // instruction itself is not going to be vectorized, consider this 5109 // instruction as dead and remove its cost from the final cost of the 5110 // vectorized tree. 5111 // Also, avoid adjusting the cost for extractelements with multiple uses 5112 // in different graph entries. 5113 const TreeEntry *VE = getTreeEntry(V); 5114 if (!CheckedExtracts.insert(V).second || 5115 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5116 (VE && VE != E)) 5117 continue; 5118 auto *EE = cast<ExtractElementInst>(V); 5119 Optional<unsigned> EEIdx = getExtractIndex(EE); 5120 if (!EEIdx) 5121 continue; 5122 unsigned Idx = *EEIdx; 5123 if (TTIRef.getNumberOfParts(VecTy) != 5124 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5125 auto It = 5126 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5127 It->getSecond() = std::min<int>(It->second, Idx); 5128 } 5129 // Take credit for instruction that will become dead. 5130 if (EE->hasOneUse()) { 5131 Instruction *Ext = EE->user_back(); 5132 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5133 all_of(Ext->users(), 5134 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5135 // Use getExtractWithExtendCost() to calculate the cost of 5136 // extractelement/ext pair. 5137 Cost -= 5138 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5139 EE->getVectorOperandType(), Idx); 5140 // Add back the cost of s|zext which is subtracted separately. 5141 Cost += TTIRef.getCastInstrCost( 5142 Ext->getOpcode(), Ext->getType(), EE->getType(), 5143 TTI::getCastContextHint(Ext), CostKind, Ext); 5144 continue; 5145 } 5146 } 5147 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5148 EE->getVectorOperandType(), Idx); 5149 } 5150 // Add a cost for subvector extracts/inserts if required. 5151 for (const auto &Data : ExtractVectorsTys) { 5152 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5153 unsigned NumElts = VecTy->getNumElements(); 5154 if (Data.second % NumElts == 0) 5155 continue; 5156 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5157 unsigned Idx = (Data.second / NumElts) * NumElts; 5158 unsigned EENumElts = EEVTy->getNumElements(); 5159 if (Idx + NumElts <= EENumElts) { 5160 Cost += 5161 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5162 EEVTy, None, Idx, VecTy); 5163 } else { 5164 // Need to round up the subvector type vectorization factor to avoid a 5165 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5166 // <= EENumElts. 5167 auto *SubVT = 5168 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5169 Cost += 5170 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5171 EEVTy, None, Idx, SubVT); 5172 } 5173 } else { 5174 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5175 VecTy, None, 0, EEVTy); 5176 } 5177 } 5178 }; 5179 if (E->State == TreeEntry::NeedToGather) { 5180 if (allConstant(VL)) 5181 return 0; 5182 if (isa<InsertElementInst>(VL[0])) 5183 return InstructionCost::getInvalid(); 5184 SmallVector<int> Mask; 5185 SmallVector<const TreeEntry *> Entries; 5186 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5187 isGatherShuffledEntry(E, Mask, Entries); 5188 if (Shuffle.hasValue()) { 5189 InstructionCost GatherCost = 0; 5190 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5191 // Perfect match in the graph, will reuse the previously vectorized 5192 // node. Cost is 0. 5193 LLVM_DEBUG( 5194 dbgs() 5195 << "SLP: perfect diamond match for gather bundle that starts with " 5196 << *VL.front() << ".\n"); 5197 if (NeedToShuffleReuses) 5198 GatherCost = 5199 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5200 FinalVecTy, E->ReuseShuffleIndices); 5201 } else { 5202 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5203 << " entries for bundle that starts with " 5204 << *VL.front() << ".\n"); 5205 // Detected that instead of gather we can emit a shuffle of single/two 5206 // previously vectorized nodes. Add the cost of the permutation rather 5207 // than gather. 5208 ::addMask(Mask, E->ReuseShuffleIndices); 5209 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5210 } 5211 return GatherCost; 5212 } 5213 if ((E->getOpcode() == Instruction::ExtractElement || 5214 all_of(E->Scalars, 5215 [](Value *V) { 5216 return isa<ExtractElementInst, UndefValue>(V); 5217 })) && 5218 allSameType(VL)) { 5219 // Check that gather of extractelements can be represented as just a 5220 // shuffle of a single/two vectors the scalars are extracted from. 5221 SmallVector<int> Mask; 5222 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5223 isFixedVectorShuffle(VL, Mask); 5224 if (ShuffleKind.hasValue()) { 5225 // Found the bunch of extractelement instructions that must be gathered 5226 // into a vector and can be represented as a permutation elements in a 5227 // single input vector or of 2 input vectors. 5228 InstructionCost Cost = 5229 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5230 AdjustExtractsCost(Cost); 5231 if (NeedToShuffleReuses) 5232 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5233 FinalVecTy, E->ReuseShuffleIndices); 5234 return Cost; 5235 } 5236 } 5237 if (isSplat(VL)) { 5238 // Found the broadcasting of the single scalar, calculate the cost as the 5239 // broadcast. 5240 assert(VecTy == FinalVecTy && 5241 "No reused scalars expected for broadcast."); 5242 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5243 } 5244 InstructionCost ReuseShuffleCost = 0; 5245 if (NeedToShuffleReuses) 5246 ReuseShuffleCost = TTI->getShuffleCost( 5247 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5248 // Improve gather cost for gather of loads, if we can group some of the 5249 // loads into vector loads. 5250 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5251 !E->isAltShuffle()) { 5252 BoUpSLP::ValueSet VectorizedLoads; 5253 unsigned StartIdx = 0; 5254 unsigned VF = VL.size() / 2; 5255 unsigned VectorizedCnt = 0; 5256 unsigned ScatterVectorizeCnt = 0; 5257 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5258 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5259 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5260 Cnt += VF) { 5261 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5262 if (!VectorizedLoads.count(Slice.front()) && 5263 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5264 SmallVector<Value *> PointerOps; 5265 OrdersType CurrentOrder; 5266 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5267 *SE, CurrentOrder, PointerOps); 5268 switch (LS) { 5269 case LoadsState::Vectorize: 5270 case LoadsState::ScatterVectorize: 5271 // Mark the vectorized loads so that we don't vectorize them 5272 // again. 5273 if (LS == LoadsState::Vectorize) 5274 ++VectorizedCnt; 5275 else 5276 ++ScatterVectorizeCnt; 5277 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5278 // If we vectorized initial block, no need to try to vectorize it 5279 // again. 5280 if (Cnt == StartIdx) 5281 StartIdx += VF; 5282 break; 5283 case LoadsState::Gather: 5284 break; 5285 } 5286 } 5287 } 5288 // Check if the whole array was vectorized already - exit. 5289 if (StartIdx >= VL.size()) 5290 break; 5291 // Found vectorizable parts - exit. 5292 if (!VectorizedLoads.empty()) 5293 break; 5294 } 5295 if (!VectorizedLoads.empty()) { 5296 InstructionCost GatherCost = 0; 5297 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5298 bool NeedInsertSubvectorAnalysis = 5299 !NumParts || (VL.size() / VF) > NumParts; 5300 // Get the cost for gathered loads. 5301 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5302 if (VectorizedLoads.contains(VL[I])) 5303 continue; 5304 GatherCost += getGatherCost(VL.slice(I, VF)); 5305 } 5306 // The cost for vectorized loads. 5307 InstructionCost ScalarsCost = 0; 5308 for (Value *V : VectorizedLoads) { 5309 auto *LI = cast<LoadInst>(V); 5310 ScalarsCost += TTI->getMemoryOpCost( 5311 Instruction::Load, LI->getType(), LI->getAlign(), 5312 LI->getPointerAddressSpace(), CostKind, LI); 5313 } 5314 auto *LI = cast<LoadInst>(E->getMainOp()); 5315 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5316 Align Alignment = LI->getAlign(); 5317 GatherCost += 5318 VectorizedCnt * 5319 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5320 LI->getPointerAddressSpace(), CostKind, LI); 5321 GatherCost += ScatterVectorizeCnt * 5322 TTI->getGatherScatterOpCost( 5323 Instruction::Load, LoadTy, LI->getPointerOperand(), 5324 /*VariableMask=*/false, Alignment, CostKind, LI); 5325 if (NeedInsertSubvectorAnalysis) { 5326 // Add the cost for the subvectors insert. 5327 for (int I = VF, E = VL.size(); I < E; I += VF) 5328 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5329 None, I, LoadTy); 5330 } 5331 return ReuseShuffleCost + GatherCost - ScalarsCost; 5332 } 5333 } 5334 return ReuseShuffleCost + getGatherCost(VL); 5335 } 5336 InstructionCost CommonCost = 0; 5337 SmallVector<int> Mask; 5338 if (!E->ReorderIndices.empty()) { 5339 SmallVector<int> NewMask; 5340 if (E->getOpcode() == Instruction::Store) { 5341 // For stores the order is actually a mask. 5342 NewMask.resize(E->ReorderIndices.size()); 5343 copy(E->ReorderIndices, NewMask.begin()); 5344 } else { 5345 inversePermutation(E->ReorderIndices, NewMask); 5346 } 5347 ::addMask(Mask, NewMask); 5348 } 5349 if (NeedToShuffleReuses) 5350 ::addMask(Mask, E->ReuseShuffleIndices); 5351 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5352 CommonCost = 5353 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5354 assert((E->State == TreeEntry::Vectorize || 5355 E->State == TreeEntry::ScatterVectorize) && 5356 "Unhandled state"); 5357 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5358 Instruction *VL0 = E->getMainOp(); 5359 unsigned ShuffleOrOp = 5360 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5361 switch (ShuffleOrOp) { 5362 case Instruction::PHI: 5363 return 0; 5364 5365 case Instruction::ExtractValue: 5366 case Instruction::ExtractElement: { 5367 // The common cost of removal ExtractElement/ExtractValue instructions + 5368 // the cost of shuffles, if required to resuffle the original vector. 5369 if (NeedToShuffleReuses) { 5370 unsigned Idx = 0; 5371 for (unsigned I : E->ReuseShuffleIndices) { 5372 if (ShuffleOrOp == Instruction::ExtractElement) { 5373 auto *EE = cast<ExtractElementInst>(VL[I]); 5374 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5375 EE->getVectorOperandType(), 5376 *getExtractIndex(EE)); 5377 } else { 5378 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5379 VecTy, Idx); 5380 ++Idx; 5381 } 5382 } 5383 Idx = EntryVF; 5384 for (Value *V : VL) { 5385 if (ShuffleOrOp == Instruction::ExtractElement) { 5386 auto *EE = cast<ExtractElementInst>(V); 5387 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5388 EE->getVectorOperandType(), 5389 *getExtractIndex(EE)); 5390 } else { 5391 --Idx; 5392 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5393 VecTy, Idx); 5394 } 5395 } 5396 } 5397 if (ShuffleOrOp == Instruction::ExtractValue) { 5398 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5399 auto *EI = cast<Instruction>(VL[I]); 5400 // Take credit for instruction that will become dead. 5401 if (EI->hasOneUse()) { 5402 Instruction *Ext = EI->user_back(); 5403 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5404 all_of(Ext->users(), 5405 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5406 // Use getExtractWithExtendCost() to calculate the cost of 5407 // extractelement/ext pair. 5408 CommonCost -= TTI->getExtractWithExtendCost( 5409 Ext->getOpcode(), Ext->getType(), VecTy, I); 5410 // Add back the cost of s|zext which is subtracted separately. 5411 CommonCost += TTI->getCastInstrCost( 5412 Ext->getOpcode(), Ext->getType(), EI->getType(), 5413 TTI::getCastContextHint(Ext), CostKind, Ext); 5414 continue; 5415 } 5416 } 5417 CommonCost -= 5418 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5419 } 5420 } else { 5421 AdjustExtractsCost(CommonCost); 5422 } 5423 return CommonCost; 5424 } 5425 case Instruction::InsertElement: { 5426 assert(E->ReuseShuffleIndices.empty() && 5427 "Unique insertelements only are expected."); 5428 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5429 5430 unsigned const NumElts = SrcVecTy->getNumElements(); 5431 unsigned const NumScalars = VL.size(); 5432 APInt DemandedElts = APInt::getZero(NumElts); 5433 // TODO: Add support for Instruction::InsertValue. 5434 SmallVector<int> Mask; 5435 if (!E->ReorderIndices.empty()) { 5436 inversePermutation(E->ReorderIndices, Mask); 5437 Mask.append(NumElts - NumScalars, UndefMaskElem); 5438 } else { 5439 Mask.assign(NumElts, UndefMaskElem); 5440 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5441 } 5442 unsigned Offset = *getInsertIndex(VL0); 5443 bool IsIdentity = true; 5444 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5445 Mask.swap(PrevMask); 5446 for (unsigned I = 0; I < NumScalars; ++I) { 5447 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5448 DemandedElts.setBit(InsertIdx); 5449 IsIdentity &= InsertIdx - Offset == I; 5450 Mask[InsertIdx - Offset] = I; 5451 } 5452 assert(Offset < NumElts && "Failed to find vector index offset"); 5453 5454 InstructionCost Cost = 0; 5455 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5456 /*Insert*/ true, /*Extract*/ false); 5457 5458 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5459 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5460 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5461 Cost += TTI->getShuffleCost( 5462 TargetTransformInfo::SK_PermuteSingleSrc, 5463 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5464 } else if (!IsIdentity) { 5465 auto *FirstInsert = 5466 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5467 return !is_contained(E->Scalars, 5468 cast<Instruction>(V)->getOperand(0)); 5469 })); 5470 if (isUndefVector(FirstInsert->getOperand(0))) { 5471 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5472 } else { 5473 SmallVector<int> InsertMask(NumElts); 5474 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5475 for (unsigned I = 0; I < NumElts; I++) { 5476 if (Mask[I] != UndefMaskElem) 5477 InsertMask[Offset + I] = NumElts + I; 5478 } 5479 Cost += 5480 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5481 } 5482 } 5483 5484 return Cost; 5485 } 5486 case Instruction::ZExt: 5487 case Instruction::SExt: 5488 case Instruction::FPToUI: 5489 case Instruction::FPToSI: 5490 case Instruction::FPExt: 5491 case Instruction::PtrToInt: 5492 case Instruction::IntToPtr: 5493 case Instruction::SIToFP: 5494 case Instruction::UIToFP: 5495 case Instruction::Trunc: 5496 case Instruction::FPTrunc: 5497 case Instruction::BitCast: { 5498 Type *SrcTy = VL0->getOperand(0)->getType(); 5499 InstructionCost ScalarEltCost = 5500 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5501 TTI::getCastContextHint(VL0), CostKind, VL0); 5502 if (NeedToShuffleReuses) { 5503 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5504 } 5505 5506 // Calculate the cost of this instruction. 5507 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5508 5509 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5510 InstructionCost VecCost = 0; 5511 // Check if the values are candidates to demote. 5512 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5513 VecCost = CommonCost + TTI->getCastInstrCost( 5514 E->getOpcode(), VecTy, SrcVecTy, 5515 TTI::getCastContextHint(VL0), CostKind, VL0); 5516 } 5517 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5518 return VecCost - ScalarCost; 5519 } 5520 case Instruction::FCmp: 5521 case Instruction::ICmp: 5522 case Instruction::Select: { 5523 // Calculate the cost of this instruction. 5524 InstructionCost ScalarEltCost = 5525 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5526 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5527 if (NeedToShuffleReuses) { 5528 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5529 } 5530 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5531 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5532 5533 // Check if all entries in VL are either compares or selects with compares 5534 // as condition that have the same predicates. 5535 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5536 bool First = true; 5537 for (auto *V : VL) { 5538 CmpInst::Predicate CurrentPred; 5539 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5540 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5541 !match(V, MatchCmp)) || 5542 (!First && VecPred != CurrentPred)) { 5543 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5544 break; 5545 } 5546 First = false; 5547 VecPred = CurrentPred; 5548 } 5549 5550 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5551 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5552 // Check if it is possible and profitable to use min/max for selects in 5553 // VL. 5554 // 5555 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5556 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5557 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5558 {VecTy, VecTy}); 5559 InstructionCost IntrinsicCost = 5560 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5561 // If the selects are the only uses of the compares, they will be dead 5562 // and we can adjust the cost by removing their cost. 5563 if (IntrinsicAndUse.second) 5564 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5565 MaskTy, VecPred, CostKind); 5566 VecCost = std::min(VecCost, IntrinsicCost); 5567 } 5568 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5569 return CommonCost + VecCost - ScalarCost; 5570 } 5571 case Instruction::FNeg: 5572 case Instruction::Add: 5573 case Instruction::FAdd: 5574 case Instruction::Sub: 5575 case Instruction::FSub: 5576 case Instruction::Mul: 5577 case Instruction::FMul: 5578 case Instruction::UDiv: 5579 case Instruction::SDiv: 5580 case Instruction::FDiv: 5581 case Instruction::URem: 5582 case Instruction::SRem: 5583 case Instruction::FRem: 5584 case Instruction::Shl: 5585 case Instruction::LShr: 5586 case Instruction::AShr: 5587 case Instruction::And: 5588 case Instruction::Or: 5589 case Instruction::Xor: { 5590 // Certain instructions can be cheaper to vectorize if they have a 5591 // constant second vector operand. 5592 TargetTransformInfo::OperandValueKind Op1VK = 5593 TargetTransformInfo::OK_AnyValue; 5594 TargetTransformInfo::OperandValueKind Op2VK = 5595 TargetTransformInfo::OK_UniformConstantValue; 5596 TargetTransformInfo::OperandValueProperties Op1VP = 5597 TargetTransformInfo::OP_None; 5598 TargetTransformInfo::OperandValueProperties Op2VP = 5599 TargetTransformInfo::OP_PowerOf2; 5600 5601 // If all operands are exactly the same ConstantInt then set the 5602 // operand kind to OK_UniformConstantValue. 5603 // If instead not all operands are constants, then set the operand kind 5604 // to OK_AnyValue. If all operands are constants but not the same, 5605 // then set the operand kind to OK_NonUniformConstantValue. 5606 ConstantInt *CInt0 = nullptr; 5607 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5608 const Instruction *I = cast<Instruction>(VL[i]); 5609 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5610 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5611 if (!CInt) { 5612 Op2VK = TargetTransformInfo::OK_AnyValue; 5613 Op2VP = TargetTransformInfo::OP_None; 5614 break; 5615 } 5616 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5617 !CInt->getValue().isPowerOf2()) 5618 Op2VP = TargetTransformInfo::OP_None; 5619 if (i == 0) { 5620 CInt0 = CInt; 5621 continue; 5622 } 5623 if (CInt0 != CInt) 5624 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5625 } 5626 5627 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5628 InstructionCost ScalarEltCost = 5629 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5630 Op2VK, Op1VP, Op2VP, Operands, VL0); 5631 if (NeedToShuffleReuses) { 5632 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5633 } 5634 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5635 InstructionCost VecCost = 5636 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5637 Op2VK, Op1VP, Op2VP, Operands, VL0); 5638 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5639 return CommonCost + VecCost - ScalarCost; 5640 } 5641 case Instruction::GetElementPtr: { 5642 TargetTransformInfo::OperandValueKind Op1VK = 5643 TargetTransformInfo::OK_AnyValue; 5644 TargetTransformInfo::OperandValueKind Op2VK = 5645 TargetTransformInfo::OK_UniformConstantValue; 5646 5647 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5648 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5649 if (NeedToShuffleReuses) { 5650 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5651 } 5652 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5653 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5654 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5655 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5656 return CommonCost + VecCost - ScalarCost; 5657 } 5658 case Instruction::Load: { 5659 // Cost of wide load - cost of scalar loads. 5660 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5661 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5662 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5663 if (NeedToShuffleReuses) { 5664 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5665 } 5666 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5667 InstructionCost VecLdCost; 5668 if (E->State == TreeEntry::Vectorize) { 5669 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5670 CostKind, VL0); 5671 } else { 5672 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5673 Align CommonAlignment = Alignment; 5674 for (Value *V : VL) 5675 CommonAlignment = 5676 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5677 VecLdCost = TTI->getGatherScatterOpCost( 5678 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5679 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5680 } 5681 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5682 return CommonCost + VecLdCost - ScalarLdCost; 5683 } 5684 case Instruction::Store: { 5685 // We know that we can merge the stores. Calculate the cost. 5686 bool IsReorder = !E->ReorderIndices.empty(); 5687 auto *SI = 5688 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5689 Align Alignment = SI->getAlign(); 5690 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5691 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5692 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5693 InstructionCost VecStCost = TTI->getMemoryOpCost( 5694 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5695 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5696 return CommonCost + VecStCost - ScalarStCost; 5697 } 5698 case Instruction::Call: { 5699 CallInst *CI = cast<CallInst>(VL0); 5700 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5701 5702 // Calculate the cost of the scalar and vector calls. 5703 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5704 InstructionCost ScalarEltCost = 5705 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5706 if (NeedToShuffleReuses) { 5707 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5708 } 5709 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5710 5711 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5712 InstructionCost VecCallCost = 5713 std::min(VecCallCosts.first, VecCallCosts.second); 5714 5715 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5716 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5717 << " for " << *CI << "\n"); 5718 5719 return CommonCost + VecCallCost - ScalarCallCost; 5720 } 5721 case Instruction::ShuffleVector: { 5722 assert(E->isAltShuffle() && 5723 ((Instruction::isBinaryOp(E->getOpcode()) && 5724 Instruction::isBinaryOp(E->getAltOpcode())) || 5725 (Instruction::isCast(E->getOpcode()) && 5726 Instruction::isCast(E->getAltOpcode())) || 5727 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5728 "Invalid Shuffle Vector Operand"); 5729 InstructionCost ScalarCost = 0; 5730 if (NeedToShuffleReuses) { 5731 for (unsigned Idx : E->ReuseShuffleIndices) { 5732 Instruction *I = cast<Instruction>(VL[Idx]); 5733 CommonCost -= TTI->getInstructionCost(I, CostKind); 5734 } 5735 for (Value *V : VL) { 5736 Instruction *I = cast<Instruction>(V); 5737 CommonCost += TTI->getInstructionCost(I, CostKind); 5738 } 5739 } 5740 for (Value *V : VL) { 5741 Instruction *I = cast<Instruction>(V); 5742 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5743 ScalarCost += TTI->getInstructionCost(I, CostKind); 5744 } 5745 // VecCost is equal to sum of the cost of creating 2 vectors 5746 // and the cost of creating shuffle. 5747 InstructionCost VecCost = 0; 5748 // Try to find the previous shuffle node with the same operands and same 5749 // main/alternate ops. 5750 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5751 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5752 if (TE.get() == E) 5753 break; 5754 if (TE->isAltShuffle() && 5755 ((TE->getOpcode() == E->getOpcode() && 5756 TE->getAltOpcode() == E->getAltOpcode()) || 5757 (TE->getOpcode() == E->getAltOpcode() && 5758 TE->getAltOpcode() == E->getOpcode())) && 5759 TE->hasEqualOperands(*E)) 5760 return true; 5761 } 5762 return false; 5763 }; 5764 if (TryFindNodeWithEqualOperands()) { 5765 LLVM_DEBUG({ 5766 dbgs() << "SLP: diamond match for alternate node found.\n"; 5767 E->dump(); 5768 }); 5769 // No need to add new vector costs here since we're going to reuse 5770 // same main/alternate vector ops, just do different shuffling. 5771 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5772 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5773 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5774 CostKind); 5775 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5776 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5777 Builder.getInt1Ty(), 5778 CI0->getPredicate(), CostKind, VL0); 5779 VecCost += TTI->getCmpSelInstrCost( 5780 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5781 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5782 E->getAltOp()); 5783 } else { 5784 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5785 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5786 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5787 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5788 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5789 TTI::CastContextHint::None, CostKind); 5790 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5791 TTI::CastContextHint::None, CostKind); 5792 } 5793 5794 SmallVector<int> Mask; 5795 buildShuffleEntryMask( 5796 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5797 [E](Instruction *I) { 5798 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5799 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5800 }, 5801 Mask); 5802 CommonCost = 5803 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5804 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5805 return CommonCost + VecCost - ScalarCost; 5806 } 5807 default: 5808 llvm_unreachable("Unknown instruction"); 5809 } 5810 } 5811 5812 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5813 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5814 << VectorizableTree.size() << " is fully vectorizable .\n"); 5815 5816 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5817 SmallVector<int> Mask; 5818 return TE->State == TreeEntry::NeedToGather && 5819 !any_of(TE->Scalars, 5820 [this](Value *V) { return EphValues.contains(V); }) && 5821 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5822 TE->Scalars.size() < Limit || 5823 ((TE->getOpcode() == Instruction::ExtractElement || 5824 all_of(TE->Scalars, 5825 [](Value *V) { 5826 return isa<ExtractElementInst, UndefValue>(V); 5827 })) && 5828 isFixedVectorShuffle(TE->Scalars, Mask)) || 5829 (TE->State == TreeEntry::NeedToGather && 5830 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5831 }; 5832 5833 // We only handle trees of heights 1 and 2. 5834 if (VectorizableTree.size() == 1 && 5835 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5836 (ForReduction && 5837 AreVectorizableGathers(VectorizableTree[0].get(), 5838 VectorizableTree[0]->Scalars.size()) && 5839 VectorizableTree[0]->getVectorFactor() > 2))) 5840 return true; 5841 5842 if (VectorizableTree.size() != 2) 5843 return false; 5844 5845 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5846 // with the second gather nodes if they have less scalar operands rather than 5847 // the initial tree element (may be profitable to shuffle the second gather) 5848 // or they are extractelements, which form shuffle. 5849 SmallVector<int> Mask; 5850 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5851 AreVectorizableGathers(VectorizableTree[1].get(), 5852 VectorizableTree[0]->Scalars.size())) 5853 return true; 5854 5855 // Gathering cost would be too much for tiny trees. 5856 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5857 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5858 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5859 return false; 5860 5861 return true; 5862 } 5863 5864 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5865 TargetTransformInfo *TTI, 5866 bool MustMatchOrInst) { 5867 // Look past the root to find a source value. Arbitrarily follow the 5868 // path through operand 0 of any 'or'. Also, peek through optional 5869 // shift-left-by-multiple-of-8-bits. 5870 Value *ZextLoad = Root; 5871 const APInt *ShAmtC; 5872 bool FoundOr = false; 5873 while (!isa<ConstantExpr>(ZextLoad) && 5874 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5875 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5876 ShAmtC->urem(8) == 0))) { 5877 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5878 ZextLoad = BinOp->getOperand(0); 5879 if (BinOp->getOpcode() == Instruction::Or) 5880 FoundOr = true; 5881 } 5882 // Check if the input is an extended load of the required or/shift expression. 5883 Value *Load; 5884 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5885 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5886 return false; 5887 5888 // Require that the total load bit width is a legal integer type. 5889 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5890 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5891 Type *SrcTy = Load->getType(); 5892 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5893 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5894 return false; 5895 5896 // Everything matched - assume that we can fold the whole sequence using 5897 // load combining. 5898 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5899 << *(cast<Instruction>(Root)) << "\n"); 5900 5901 return true; 5902 } 5903 5904 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5905 if (RdxKind != RecurKind::Or) 5906 return false; 5907 5908 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5909 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5910 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5911 /* MatchOr */ false); 5912 } 5913 5914 bool BoUpSLP::isLoadCombineCandidate() const { 5915 // Peek through a final sequence of stores and check if all operations are 5916 // likely to be load-combined. 5917 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5918 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5919 Value *X; 5920 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5921 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5922 return false; 5923 } 5924 return true; 5925 } 5926 5927 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5928 // No need to vectorize inserts of gathered values. 5929 if (VectorizableTree.size() == 2 && 5930 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5931 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5932 return true; 5933 5934 // We can vectorize the tree if its size is greater than or equal to the 5935 // minimum size specified by the MinTreeSize command line option. 5936 if (VectorizableTree.size() >= MinTreeSize) 5937 return false; 5938 5939 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5940 // can vectorize it if we can prove it fully vectorizable. 5941 if (isFullyVectorizableTinyTree(ForReduction)) 5942 return false; 5943 5944 assert(VectorizableTree.empty() 5945 ? ExternalUses.empty() 5946 : true && "We shouldn't have any external users"); 5947 5948 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5949 // vectorizable. 5950 return true; 5951 } 5952 5953 InstructionCost BoUpSLP::getSpillCost() const { 5954 // Walk from the bottom of the tree to the top, tracking which values are 5955 // live. When we see a call instruction that is not part of our tree, 5956 // query TTI to see if there is a cost to keeping values live over it 5957 // (for example, if spills and fills are required). 5958 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5959 InstructionCost Cost = 0; 5960 5961 SmallPtrSet<Instruction*, 4> LiveValues; 5962 Instruction *PrevInst = nullptr; 5963 5964 // The entries in VectorizableTree are not necessarily ordered by their 5965 // position in basic blocks. Collect them and order them by dominance so later 5966 // instructions are guaranteed to be visited first. For instructions in 5967 // different basic blocks, we only scan to the beginning of the block, so 5968 // their order does not matter, as long as all instructions in a basic block 5969 // are grouped together. Using dominance ensures a deterministic order. 5970 SmallVector<Instruction *, 16> OrderedScalars; 5971 for (const auto &TEPtr : VectorizableTree) { 5972 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5973 if (!Inst) 5974 continue; 5975 OrderedScalars.push_back(Inst); 5976 } 5977 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5978 auto *NodeA = DT->getNode(A->getParent()); 5979 auto *NodeB = DT->getNode(B->getParent()); 5980 assert(NodeA && "Should only process reachable instructions"); 5981 assert(NodeB && "Should only process reachable instructions"); 5982 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5983 "Different nodes should have different DFS numbers"); 5984 if (NodeA != NodeB) 5985 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5986 return B->comesBefore(A); 5987 }); 5988 5989 for (Instruction *Inst : OrderedScalars) { 5990 if (!PrevInst) { 5991 PrevInst = Inst; 5992 continue; 5993 } 5994 5995 // Update LiveValues. 5996 LiveValues.erase(PrevInst); 5997 for (auto &J : PrevInst->operands()) { 5998 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5999 LiveValues.insert(cast<Instruction>(&*J)); 6000 } 6001 6002 LLVM_DEBUG({ 6003 dbgs() << "SLP: #LV: " << LiveValues.size(); 6004 for (auto *X : LiveValues) 6005 dbgs() << " " << X->getName(); 6006 dbgs() << ", Looking at "; 6007 Inst->dump(); 6008 }); 6009 6010 // Now find the sequence of instructions between PrevInst and Inst. 6011 unsigned NumCalls = 0; 6012 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6013 PrevInstIt = 6014 PrevInst->getIterator().getReverse(); 6015 while (InstIt != PrevInstIt) { 6016 if (PrevInstIt == PrevInst->getParent()->rend()) { 6017 PrevInstIt = Inst->getParent()->rbegin(); 6018 continue; 6019 } 6020 6021 // Debug information does not impact spill cost. 6022 if ((isa<CallInst>(&*PrevInstIt) && 6023 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6024 &*PrevInstIt != PrevInst) 6025 NumCalls++; 6026 6027 ++PrevInstIt; 6028 } 6029 6030 if (NumCalls) { 6031 SmallVector<Type*, 4> V; 6032 for (auto *II : LiveValues) { 6033 auto *ScalarTy = II->getType(); 6034 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6035 ScalarTy = VectorTy->getElementType(); 6036 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6037 } 6038 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6039 } 6040 6041 PrevInst = Inst; 6042 } 6043 6044 return Cost; 6045 } 6046 6047 /// Check if two insertelement instructions are from the same buildvector. 6048 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6049 InsertElementInst *V) { 6050 // Instructions must be from the same basic blocks. 6051 if (VU->getParent() != V->getParent()) 6052 return false; 6053 // Checks if 2 insertelements are from the same buildvector. 6054 if (VU->getType() != V->getType()) 6055 return false; 6056 // Multiple used inserts are separate nodes. 6057 if (!VU->hasOneUse() && !V->hasOneUse()) 6058 return false; 6059 auto *IE1 = VU; 6060 auto *IE2 = V; 6061 // Go through the vector operand of insertelement instructions trying to find 6062 // either VU as the original vector for IE2 or V as the original vector for 6063 // IE1. 6064 do { 6065 if (IE2 == VU || IE1 == V) 6066 return true; 6067 if (IE1) { 6068 if (IE1 != VU && !IE1->hasOneUse()) 6069 IE1 = nullptr; 6070 else 6071 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6072 } 6073 if (IE2) { 6074 if (IE2 != V && !IE2->hasOneUse()) 6075 IE2 = nullptr; 6076 else 6077 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6078 } 6079 } while (IE1 || IE2); 6080 return false; 6081 } 6082 6083 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6084 InstructionCost Cost = 0; 6085 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6086 << VectorizableTree.size() << ".\n"); 6087 6088 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6089 6090 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6091 TreeEntry &TE = *VectorizableTree[I]; 6092 6093 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6094 Cost += C; 6095 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6096 << " for bundle that starts with " << *TE.Scalars[0] 6097 << ".\n" 6098 << "SLP: Current total cost = " << Cost << "\n"); 6099 } 6100 6101 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6102 InstructionCost ExtractCost = 0; 6103 SmallVector<unsigned> VF; 6104 SmallVector<SmallVector<int>> ShuffleMask; 6105 SmallVector<Value *> FirstUsers; 6106 SmallVector<APInt> DemandedElts; 6107 for (ExternalUser &EU : ExternalUses) { 6108 // We only add extract cost once for the same scalar. 6109 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6110 !ExtractCostCalculated.insert(EU.Scalar).second) 6111 continue; 6112 6113 // Uses by ephemeral values are free (because the ephemeral value will be 6114 // removed prior to code generation, and so the extraction will be 6115 // removed as well). 6116 if (EphValues.count(EU.User)) 6117 continue; 6118 6119 // No extract cost for vector "scalar" 6120 if (isa<FixedVectorType>(EU.Scalar->getType())) 6121 continue; 6122 6123 // Already counted the cost for external uses when tried to adjust the cost 6124 // for extractelements, no need to add it again. 6125 if (isa<ExtractElementInst>(EU.Scalar)) 6126 continue; 6127 6128 // If found user is an insertelement, do not calculate extract cost but try 6129 // to detect it as a final shuffled/identity match. 6130 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6131 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6132 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6133 if (InsertIdx) { 6134 auto *It = find_if(FirstUsers, [VU](Value *V) { 6135 return areTwoInsertFromSameBuildVector(VU, 6136 cast<InsertElementInst>(V)); 6137 }); 6138 int VecId = -1; 6139 if (It == FirstUsers.end()) { 6140 VF.push_back(FTy->getNumElements()); 6141 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6142 // Find the insertvector, vectorized in tree, if any. 6143 Value *Base = VU; 6144 while (isa<InsertElementInst>(Base)) { 6145 // Build the mask for the vectorized insertelement instructions. 6146 if (const TreeEntry *E = getTreeEntry(Base)) { 6147 VU = cast<InsertElementInst>(Base); 6148 do { 6149 int Idx = E->findLaneForValue(Base); 6150 ShuffleMask.back()[Idx] = Idx; 6151 Base = cast<InsertElementInst>(Base)->getOperand(0); 6152 } while (E == getTreeEntry(Base)); 6153 break; 6154 } 6155 Base = cast<InsertElementInst>(Base)->getOperand(0); 6156 } 6157 FirstUsers.push_back(VU); 6158 DemandedElts.push_back(APInt::getZero(VF.back())); 6159 VecId = FirstUsers.size() - 1; 6160 } else { 6161 VecId = std::distance(FirstUsers.begin(), It); 6162 } 6163 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6164 DemandedElts[VecId].setBit(*InsertIdx); 6165 continue; 6166 } 6167 } 6168 } 6169 6170 // If we plan to rewrite the tree in a smaller type, we will need to sign 6171 // extend the extracted value back to the original type. Here, we account 6172 // for the extract and the added cost of the sign extend if needed. 6173 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6174 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6175 if (MinBWs.count(ScalarRoot)) { 6176 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6177 auto Extend = 6178 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6179 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6180 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6181 VecTy, EU.Lane); 6182 } else { 6183 ExtractCost += 6184 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6185 } 6186 } 6187 6188 InstructionCost SpillCost = getSpillCost(); 6189 Cost += SpillCost + ExtractCost; 6190 if (FirstUsers.size() == 1) { 6191 int Limit = ShuffleMask.front().size() * 2; 6192 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6193 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6194 InstructionCost C = TTI->getShuffleCost( 6195 TTI::SK_PermuteSingleSrc, 6196 cast<FixedVectorType>(FirstUsers.front()->getType()), 6197 ShuffleMask.front()); 6198 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6199 << " for final shuffle of insertelement external users " 6200 << *VectorizableTree.front()->Scalars.front() << ".\n" 6201 << "SLP: Current total cost = " << Cost << "\n"); 6202 Cost += C; 6203 } 6204 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6205 cast<FixedVectorType>(FirstUsers.front()->getType()), 6206 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6207 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6208 << " for insertelements gather.\n" 6209 << "SLP: Current total cost = " << Cost << "\n"); 6210 Cost -= InsertCost; 6211 } else if (FirstUsers.size() >= 2) { 6212 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6213 // Combined masks of the first 2 vectors. 6214 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6215 copy(ShuffleMask.front(), CombinedMask.begin()); 6216 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6217 auto *VecTy = FixedVectorType::get( 6218 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6219 MaxVF); 6220 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6221 if (ShuffleMask[1][I] != UndefMaskElem) { 6222 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6223 CombinedDemandedElts.setBit(I); 6224 } 6225 } 6226 InstructionCost C = 6227 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6228 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6229 << " for final shuffle of vector node and external " 6230 "insertelement users " 6231 << *VectorizableTree.front()->Scalars.front() << ".\n" 6232 << "SLP: Current total cost = " << Cost << "\n"); 6233 Cost += C; 6234 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6235 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6236 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6237 << " for insertelements gather.\n" 6238 << "SLP: Current total cost = " << Cost << "\n"); 6239 Cost -= InsertCost; 6240 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6241 // Other elements - permutation of 2 vectors (the initial one and the 6242 // next Ith incoming vector). 6243 unsigned VF = ShuffleMask[I].size(); 6244 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6245 int Mask = ShuffleMask[I][Idx]; 6246 if (Mask != UndefMaskElem) 6247 CombinedMask[Idx] = MaxVF + Mask; 6248 else if (CombinedMask[Idx] != UndefMaskElem) 6249 CombinedMask[Idx] = Idx; 6250 } 6251 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6252 if (CombinedMask[Idx] != UndefMaskElem) 6253 CombinedMask[Idx] = Idx; 6254 InstructionCost C = 6255 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6256 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6257 << " for final shuffle of vector node and external " 6258 "insertelement users " 6259 << *VectorizableTree.front()->Scalars.front() << ".\n" 6260 << "SLP: Current total cost = " << Cost << "\n"); 6261 Cost += C; 6262 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6263 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6264 /*Insert*/ true, /*Extract*/ false); 6265 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6266 << " for insertelements gather.\n" 6267 << "SLP: Current total cost = " << Cost << "\n"); 6268 Cost -= InsertCost; 6269 } 6270 } 6271 6272 #ifndef NDEBUG 6273 SmallString<256> Str; 6274 { 6275 raw_svector_ostream OS(Str); 6276 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6277 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6278 << "SLP: Total Cost = " << Cost << ".\n"; 6279 } 6280 LLVM_DEBUG(dbgs() << Str); 6281 if (ViewSLPTree) 6282 ViewGraph(this, "SLP" + F->getName(), false, Str); 6283 #endif 6284 6285 return Cost; 6286 } 6287 6288 Optional<TargetTransformInfo::ShuffleKind> 6289 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6290 SmallVectorImpl<const TreeEntry *> &Entries) { 6291 // TODO: currently checking only for Scalars in the tree entry, need to count 6292 // reused elements too for better cost estimation. 6293 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6294 Entries.clear(); 6295 // Build a lists of values to tree entries. 6296 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6297 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6298 if (EntryPtr.get() == TE) 6299 break; 6300 if (EntryPtr->State != TreeEntry::NeedToGather) 6301 continue; 6302 for (Value *V : EntryPtr->Scalars) 6303 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6304 } 6305 // Find all tree entries used by the gathered values. If no common entries 6306 // found - not a shuffle. 6307 // Here we build a set of tree nodes for each gathered value and trying to 6308 // find the intersection between these sets. If we have at least one common 6309 // tree node for each gathered value - we have just a permutation of the 6310 // single vector. If we have 2 different sets, we're in situation where we 6311 // have a permutation of 2 input vectors. 6312 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6313 DenseMap<Value *, int> UsedValuesEntry; 6314 for (Value *V : TE->Scalars) { 6315 if (isa<UndefValue>(V)) 6316 continue; 6317 // Build a list of tree entries where V is used. 6318 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6319 auto It = ValueToTEs.find(V); 6320 if (It != ValueToTEs.end()) 6321 VToTEs = It->second; 6322 if (const TreeEntry *VTE = getTreeEntry(V)) 6323 VToTEs.insert(VTE); 6324 if (VToTEs.empty()) 6325 return None; 6326 if (UsedTEs.empty()) { 6327 // The first iteration, just insert the list of nodes to vector. 6328 UsedTEs.push_back(VToTEs); 6329 } else { 6330 // Need to check if there are any previously used tree nodes which use V. 6331 // If there are no such nodes, consider that we have another one input 6332 // vector. 6333 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6334 unsigned Idx = 0; 6335 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6336 // Do we have a non-empty intersection of previously listed tree entries 6337 // and tree entries using current V? 6338 set_intersect(VToTEs, Set); 6339 if (!VToTEs.empty()) { 6340 // Yes, write the new subset and continue analysis for the next 6341 // scalar. 6342 Set.swap(VToTEs); 6343 break; 6344 } 6345 VToTEs = SavedVToTEs; 6346 ++Idx; 6347 } 6348 // No non-empty intersection found - need to add a second set of possible 6349 // source vectors. 6350 if (Idx == UsedTEs.size()) { 6351 // If the number of input vectors is greater than 2 - not a permutation, 6352 // fallback to the regular gather. 6353 if (UsedTEs.size() == 2) 6354 return None; 6355 UsedTEs.push_back(SavedVToTEs); 6356 Idx = UsedTEs.size() - 1; 6357 } 6358 UsedValuesEntry.try_emplace(V, Idx); 6359 } 6360 } 6361 6362 unsigned VF = 0; 6363 if (UsedTEs.size() == 1) { 6364 // Try to find the perfect match in another gather node at first. 6365 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6366 return EntryPtr->isSame(TE->Scalars); 6367 }); 6368 if (It != UsedTEs.front().end()) { 6369 Entries.push_back(*It); 6370 std::iota(Mask.begin(), Mask.end(), 0); 6371 return TargetTransformInfo::SK_PermuteSingleSrc; 6372 } 6373 // No perfect match, just shuffle, so choose the first tree node. 6374 Entries.push_back(*UsedTEs.front().begin()); 6375 } else { 6376 // Try to find nodes with the same vector factor. 6377 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6378 DenseMap<int, const TreeEntry *> VFToTE; 6379 for (const TreeEntry *TE : UsedTEs.front()) 6380 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6381 for (const TreeEntry *TE : UsedTEs.back()) { 6382 auto It = VFToTE.find(TE->getVectorFactor()); 6383 if (It != VFToTE.end()) { 6384 VF = It->first; 6385 Entries.push_back(It->second); 6386 Entries.push_back(TE); 6387 break; 6388 } 6389 } 6390 // No 2 source vectors with the same vector factor - give up and do regular 6391 // gather. 6392 if (Entries.empty()) 6393 return None; 6394 } 6395 6396 // Build a shuffle mask for better cost estimation and vector emission. 6397 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6398 Value *V = TE->Scalars[I]; 6399 if (isa<UndefValue>(V)) 6400 continue; 6401 unsigned Idx = UsedValuesEntry.lookup(V); 6402 const TreeEntry *VTE = Entries[Idx]; 6403 int FoundLane = VTE->findLaneForValue(V); 6404 Mask[I] = Idx * VF + FoundLane; 6405 // Extra check required by isSingleSourceMaskImpl function (called by 6406 // ShuffleVectorInst::isSingleSourceMask). 6407 if (Mask[I] >= 2 * E) 6408 return None; 6409 } 6410 switch (Entries.size()) { 6411 case 1: 6412 return TargetTransformInfo::SK_PermuteSingleSrc; 6413 case 2: 6414 return TargetTransformInfo::SK_PermuteTwoSrc; 6415 default: 6416 break; 6417 } 6418 return None; 6419 } 6420 6421 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6422 const APInt &ShuffledIndices, 6423 bool NeedToShuffle) const { 6424 InstructionCost Cost = 6425 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6426 /*Extract*/ false); 6427 if (NeedToShuffle) 6428 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6429 return Cost; 6430 } 6431 6432 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6433 // Find the type of the operands in VL. 6434 Type *ScalarTy = VL[0]->getType(); 6435 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6436 ScalarTy = SI->getValueOperand()->getType(); 6437 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6438 bool DuplicateNonConst = false; 6439 // Find the cost of inserting/extracting values from the vector. 6440 // Check if the same elements are inserted several times and count them as 6441 // shuffle candidates. 6442 APInt ShuffledElements = APInt::getZero(VL.size()); 6443 DenseSet<Value *> UniqueElements; 6444 // Iterate in reverse order to consider insert elements with the high cost. 6445 for (unsigned I = VL.size(); I > 0; --I) { 6446 unsigned Idx = I - 1; 6447 // No need to shuffle duplicates for constants. 6448 if (isConstant(VL[Idx])) { 6449 ShuffledElements.setBit(Idx); 6450 continue; 6451 } 6452 if (!UniqueElements.insert(VL[Idx]).second) { 6453 DuplicateNonConst = true; 6454 ShuffledElements.setBit(Idx); 6455 } 6456 } 6457 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6458 } 6459 6460 // Perform operand reordering on the instructions in VL and return the reordered 6461 // operands in Left and Right. 6462 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6463 SmallVectorImpl<Value *> &Left, 6464 SmallVectorImpl<Value *> &Right, 6465 const DataLayout &DL, 6466 ScalarEvolution &SE, 6467 const BoUpSLP &R) { 6468 if (VL.empty()) 6469 return; 6470 VLOperands Ops(VL, DL, SE, R); 6471 // Reorder the operands in place. 6472 Ops.reorder(); 6473 Left = Ops.getVL(0); 6474 Right = Ops.getVL(1); 6475 } 6476 6477 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6478 // Get the basic block this bundle is in. All instructions in the bundle 6479 // should be in this block. 6480 auto *Front = E->getMainOp(); 6481 auto *BB = Front->getParent(); 6482 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6483 auto *I = cast<Instruction>(V); 6484 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6485 })); 6486 6487 auto &&FindLastInst = [E, Front]() { 6488 Instruction *LastInst = Front; 6489 for (Value *V : E->Scalars) { 6490 auto *I = dyn_cast<Instruction>(V); 6491 if (!I) 6492 continue; 6493 if (LastInst->comesBefore(I)) 6494 LastInst = I; 6495 } 6496 return LastInst; 6497 }; 6498 6499 auto &&FindFirstInst = [E, Front]() { 6500 Instruction *FirstInst = Front; 6501 for (Value *V : E->Scalars) { 6502 auto *I = dyn_cast<Instruction>(V); 6503 if (!I) 6504 continue; 6505 if (I->comesBefore(FirstInst)) 6506 FirstInst = I; 6507 } 6508 return FirstInst; 6509 }; 6510 6511 // Set the insert point to the beginning of the basic block if the entry 6512 // should not be scheduled. 6513 if (E->State != TreeEntry::NeedToGather && 6514 doesNotNeedToSchedule(E->Scalars)) { 6515 BasicBlock::iterator InsertPt; 6516 if (all_of(E->Scalars, isUsedOutsideBlock)) 6517 InsertPt = FindLastInst()->getIterator(); 6518 else 6519 InsertPt = FindFirstInst()->getIterator(); 6520 Builder.SetInsertPoint(BB, InsertPt); 6521 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6522 return; 6523 } 6524 6525 // The last instruction in the bundle in program order. 6526 Instruction *LastInst = nullptr; 6527 6528 // Find the last instruction. The common case should be that BB has been 6529 // scheduled, and the last instruction is VL.back(). So we start with 6530 // VL.back() and iterate over schedule data until we reach the end of the 6531 // bundle. The end of the bundle is marked by null ScheduleData. 6532 if (BlocksSchedules.count(BB)) { 6533 Value *V = E->isOneOf(E->Scalars.back()); 6534 if (doesNotNeedToBeScheduled(V)) 6535 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6536 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6537 if (Bundle && Bundle->isPartOfBundle()) 6538 for (; Bundle; Bundle = Bundle->NextInBundle) 6539 if (Bundle->OpValue == Bundle->Inst) 6540 LastInst = Bundle->Inst; 6541 } 6542 6543 // LastInst can still be null at this point if there's either not an entry 6544 // for BB in BlocksSchedules or there's no ScheduleData available for 6545 // VL.back(). This can be the case if buildTree_rec aborts for various 6546 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6547 // size is reached, etc.). ScheduleData is initialized in the scheduling 6548 // "dry-run". 6549 // 6550 // If this happens, we can still find the last instruction by brute force. We 6551 // iterate forwards from Front (inclusive) until we either see all 6552 // instructions in the bundle or reach the end of the block. If Front is the 6553 // last instruction in program order, LastInst will be set to Front, and we 6554 // will visit all the remaining instructions in the block. 6555 // 6556 // One of the reasons we exit early from buildTree_rec is to place an upper 6557 // bound on compile-time. Thus, taking an additional compile-time hit here is 6558 // not ideal. However, this should be exceedingly rare since it requires that 6559 // we both exit early from buildTree_rec and that the bundle be out-of-order 6560 // (causing us to iterate all the way to the end of the block). 6561 if (!LastInst) 6562 LastInst = FindLastInst(); 6563 assert(LastInst && "Failed to find last instruction in bundle"); 6564 6565 // Set the insertion point after the last instruction in the bundle. Set the 6566 // debug location to Front. 6567 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6568 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6569 } 6570 6571 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6572 // List of instructions/lanes from current block and/or the blocks which are 6573 // part of the current loop. These instructions will be inserted at the end to 6574 // make it possible to optimize loops and hoist invariant instructions out of 6575 // the loops body with better chances for success. 6576 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6577 SmallSet<int, 4> PostponedIndices; 6578 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6579 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6580 SmallPtrSet<BasicBlock *, 4> Visited; 6581 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6582 InsertBB = InsertBB->getSinglePredecessor(); 6583 return InsertBB && InsertBB == InstBB; 6584 }; 6585 for (int I = 0, E = VL.size(); I < E; ++I) { 6586 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6587 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6588 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6589 PostponedIndices.insert(I).second) 6590 PostponedInsts.emplace_back(Inst, I); 6591 } 6592 6593 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6594 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6595 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6596 if (!InsElt) 6597 return Vec; 6598 GatherShuffleSeq.insert(InsElt); 6599 CSEBlocks.insert(InsElt->getParent()); 6600 // Add to our 'need-to-extract' list. 6601 if (TreeEntry *Entry = getTreeEntry(V)) { 6602 // Find which lane we need to extract. 6603 unsigned FoundLane = Entry->findLaneForValue(V); 6604 ExternalUses.emplace_back(V, InsElt, FoundLane); 6605 } 6606 return Vec; 6607 }; 6608 Value *Val0 = 6609 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6610 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6611 Value *Vec = PoisonValue::get(VecTy); 6612 SmallVector<int> NonConsts; 6613 // Insert constant values at first. 6614 for (int I = 0, E = VL.size(); I < E; ++I) { 6615 if (PostponedIndices.contains(I)) 6616 continue; 6617 if (!isConstant(VL[I])) { 6618 NonConsts.push_back(I); 6619 continue; 6620 } 6621 Vec = CreateInsertElement(Vec, VL[I], I); 6622 } 6623 // Insert non-constant values. 6624 for (int I : NonConsts) 6625 Vec = CreateInsertElement(Vec, VL[I], I); 6626 // Append instructions, which are/may be part of the loop, in the end to make 6627 // it possible to hoist non-loop-based instructions. 6628 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6629 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6630 6631 return Vec; 6632 } 6633 6634 namespace { 6635 /// Merges shuffle masks and emits final shuffle instruction, if required. 6636 class ShuffleInstructionBuilder { 6637 IRBuilderBase &Builder; 6638 const unsigned VF = 0; 6639 bool IsFinalized = false; 6640 SmallVector<int, 4> Mask; 6641 /// Holds all of the instructions that we gathered. 6642 SetVector<Instruction *> &GatherShuffleSeq; 6643 /// A list of blocks that we are going to CSE. 6644 SetVector<BasicBlock *> &CSEBlocks; 6645 6646 public: 6647 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6648 SetVector<Instruction *> &GatherShuffleSeq, 6649 SetVector<BasicBlock *> &CSEBlocks) 6650 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6651 CSEBlocks(CSEBlocks) {} 6652 6653 /// Adds a mask, inverting it before applying. 6654 void addInversedMask(ArrayRef<unsigned> SubMask) { 6655 if (SubMask.empty()) 6656 return; 6657 SmallVector<int, 4> NewMask; 6658 inversePermutation(SubMask, NewMask); 6659 addMask(NewMask); 6660 } 6661 6662 /// Functions adds masks, merging them into single one. 6663 void addMask(ArrayRef<unsigned> SubMask) { 6664 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6665 addMask(NewMask); 6666 } 6667 6668 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6669 6670 Value *finalize(Value *V) { 6671 IsFinalized = true; 6672 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6673 if (VF == ValueVF && Mask.empty()) 6674 return V; 6675 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6676 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6677 addMask(NormalizedMask); 6678 6679 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6680 return V; 6681 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6682 if (auto *I = dyn_cast<Instruction>(Vec)) { 6683 GatherShuffleSeq.insert(I); 6684 CSEBlocks.insert(I->getParent()); 6685 } 6686 return Vec; 6687 } 6688 6689 ~ShuffleInstructionBuilder() { 6690 assert((IsFinalized || Mask.empty()) && 6691 "Shuffle construction must be finalized."); 6692 } 6693 }; 6694 } // namespace 6695 6696 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6697 const unsigned VF = VL.size(); 6698 InstructionsState S = getSameOpcode(VL); 6699 if (S.getOpcode()) { 6700 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6701 if (E->isSame(VL)) { 6702 Value *V = vectorizeTree(E); 6703 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6704 if (!E->ReuseShuffleIndices.empty()) { 6705 // Reshuffle to get only unique values. 6706 // If some of the scalars are duplicated in the vectorization tree 6707 // entry, we do not vectorize them but instead generate a mask for 6708 // the reuses. But if there are several users of the same entry, 6709 // they may have different vectorization factors. This is especially 6710 // important for PHI nodes. In this case, we need to adapt the 6711 // resulting instruction for the user vectorization factor and have 6712 // to reshuffle it again to take only unique elements of the vector. 6713 // Without this code the function incorrectly returns reduced vector 6714 // instruction with the same elements, not with the unique ones. 6715 6716 // block: 6717 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6718 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6719 // ... (use %2) 6720 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6721 // br %block 6722 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6723 SmallSet<int, 4> UsedIdxs; 6724 int Pos = 0; 6725 int Sz = VL.size(); 6726 for (int Idx : E->ReuseShuffleIndices) { 6727 if (Idx != Sz && Idx != UndefMaskElem && 6728 UsedIdxs.insert(Idx).second) 6729 UniqueIdxs[Idx] = Pos; 6730 ++Pos; 6731 } 6732 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6733 "less than original vector size."); 6734 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6735 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6736 } else { 6737 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6738 "Expected vectorization factor less " 6739 "than original vector size."); 6740 SmallVector<int> UniformMask(VF, 0); 6741 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6742 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6743 } 6744 if (auto *I = dyn_cast<Instruction>(V)) { 6745 GatherShuffleSeq.insert(I); 6746 CSEBlocks.insert(I->getParent()); 6747 } 6748 } 6749 return V; 6750 } 6751 } 6752 6753 // Can't vectorize this, so simply build a new vector with each lane 6754 // corresponding to the requested value. 6755 return createBuildVector(VL); 6756 } 6757 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6758 unsigned VF = VL.size(); 6759 // Exploit possible reuse of values across lanes. 6760 SmallVector<int> ReuseShuffleIndicies; 6761 SmallVector<Value *> UniqueValues; 6762 if (VL.size() > 2) { 6763 DenseMap<Value *, unsigned> UniquePositions; 6764 unsigned NumValues = 6765 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6766 return !isa<UndefValue>(V); 6767 }).base()); 6768 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6769 int UniqueVals = 0; 6770 for (Value *V : VL.drop_back(VL.size() - VF)) { 6771 if (isa<UndefValue>(V)) { 6772 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6773 continue; 6774 } 6775 if (isConstant(V)) { 6776 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6777 UniqueValues.emplace_back(V); 6778 continue; 6779 } 6780 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6781 ReuseShuffleIndicies.emplace_back(Res.first->second); 6782 if (Res.second) { 6783 UniqueValues.emplace_back(V); 6784 ++UniqueVals; 6785 } 6786 } 6787 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6788 // Emit pure splat vector. 6789 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6790 UndefMaskElem); 6791 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6792 ReuseShuffleIndicies.clear(); 6793 UniqueValues.clear(); 6794 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6795 } 6796 UniqueValues.append(VF - UniqueValues.size(), 6797 PoisonValue::get(VL[0]->getType())); 6798 VL = UniqueValues; 6799 } 6800 6801 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6802 CSEBlocks); 6803 Value *Vec = gather(VL); 6804 if (!ReuseShuffleIndicies.empty()) { 6805 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6806 Vec = ShuffleBuilder.finalize(Vec); 6807 } 6808 return Vec; 6809 } 6810 6811 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6812 IRBuilder<>::InsertPointGuard Guard(Builder); 6813 6814 if (E->VectorizedValue) { 6815 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6816 return E->VectorizedValue; 6817 } 6818 6819 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6820 unsigned VF = E->getVectorFactor(); 6821 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6822 CSEBlocks); 6823 if (E->State == TreeEntry::NeedToGather) { 6824 if (E->getMainOp()) 6825 setInsertPointAfterBundle(E); 6826 Value *Vec; 6827 SmallVector<int> Mask; 6828 SmallVector<const TreeEntry *> Entries; 6829 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6830 isGatherShuffledEntry(E, Mask, Entries); 6831 if (Shuffle.hasValue()) { 6832 assert((Entries.size() == 1 || Entries.size() == 2) && 6833 "Expected shuffle of 1 or 2 entries."); 6834 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6835 Entries.back()->VectorizedValue, Mask); 6836 if (auto *I = dyn_cast<Instruction>(Vec)) { 6837 GatherShuffleSeq.insert(I); 6838 CSEBlocks.insert(I->getParent()); 6839 } 6840 } else { 6841 Vec = gather(E->Scalars); 6842 } 6843 if (NeedToShuffleReuses) { 6844 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6845 Vec = ShuffleBuilder.finalize(Vec); 6846 } 6847 E->VectorizedValue = Vec; 6848 return Vec; 6849 } 6850 6851 assert((E->State == TreeEntry::Vectorize || 6852 E->State == TreeEntry::ScatterVectorize) && 6853 "Unhandled state"); 6854 unsigned ShuffleOrOp = 6855 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6856 Instruction *VL0 = E->getMainOp(); 6857 Type *ScalarTy = VL0->getType(); 6858 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6859 ScalarTy = Store->getValueOperand()->getType(); 6860 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6861 ScalarTy = IE->getOperand(1)->getType(); 6862 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6863 switch (ShuffleOrOp) { 6864 case Instruction::PHI: { 6865 assert( 6866 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6867 "PHI reordering is free."); 6868 auto *PH = cast<PHINode>(VL0); 6869 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6870 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6871 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6872 Value *V = NewPhi; 6873 6874 // Adjust insertion point once all PHI's have been generated. 6875 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6876 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6877 6878 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6879 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6880 V = ShuffleBuilder.finalize(V); 6881 6882 E->VectorizedValue = V; 6883 6884 // PHINodes may have multiple entries from the same block. We want to 6885 // visit every block once. 6886 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6887 6888 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6889 ValueList Operands; 6890 BasicBlock *IBB = PH->getIncomingBlock(i); 6891 6892 if (!VisitedBBs.insert(IBB).second) { 6893 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6894 continue; 6895 } 6896 6897 Builder.SetInsertPoint(IBB->getTerminator()); 6898 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6899 Value *Vec = vectorizeTree(E->getOperand(i)); 6900 NewPhi->addIncoming(Vec, IBB); 6901 } 6902 6903 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6904 "Invalid number of incoming values"); 6905 return V; 6906 } 6907 6908 case Instruction::ExtractElement: { 6909 Value *V = E->getSingleOperand(0); 6910 Builder.SetInsertPoint(VL0); 6911 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6912 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6913 V = ShuffleBuilder.finalize(V); 6914 E->VectorizedValue = V; 6915 return V; 6916 } 6917 case Instruction::ExtractValue: { 6918 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6919 Builder.SetInsertPoint(LI); 6920 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6921 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6922 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6923 Value *NewV = propagateMetadata(V, E->Scalars); 6924 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6925 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6926 NewV = ShuffleBuilder.finalize(NewV); 6927 E->VectorizedValue = NewV; 6928 return NewV; 6929 } 6930 case Instruction::InsertElement: { 6931 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6932 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6933 Value *V = vectorizeTree(E->getOperand(1)); 6934 6935 // Create InsertVector shuffle if necessary 6936 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6937 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6938 })); 6939 const unsigned NumElts = 6940 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6941 const unsigned NumScalars = E->Scalars.size(); 6942 6943 unsigned Offset = *getInsertIndex(VL0); 6944 assert(Offset < NumElts && "Failed to find vector index offset"); 6945 6946 // Create shuffle to resize vector 6947 SmallVector<int> Mask; 6948 if (!E->ReorderIndices.empty()) { 6949 inversePermutation(E->ReorderIndices, Mask); 6950 Mask.append(NumElts - NumScalars, UndefMaskElem); 6951 } else { 6952 Mask.assign(NumElts, UndefMaskElem); 6953 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6954 } 6955 // Create InsertVector shuffle if necessary 6956 bool IsIdentity = true; 6957 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6958 Mask.swap(PrevMask); 6959 for (unsigned I = 0; I < NumScalars; ++I) { 6960 Value *Scalar = E->Scalars[PrevMask[I]]; 6961 unsigned InsertIdx = *getInsertIndex(Scalar); 6962 IsIdentity &= InsertIdx - Offset == I; 6963 Mask[InsertIdx - Offset] = I; 6964 } 6965 if (!IsIdentity || NumElts != NumScalars) { 6966 V = Builder.CreateShuffleVector(V, Mask); 6967 if (auto *I = dyn_cast<Instruction>(V)) { 6968 GatherShuffleSeq.insert(I); 6969 CSEBlocks.insert(I->getParent()); 6970 } 6971 } 6972 6973 if ((!IsIdentity || Offset != 0 || 6974 !isUndefVector(FirstInsert->getOperand(0))) && 6975 NumElts != NumScalars) { 6976 SmallVector<int> InsertMask(NumElts); 6977 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6978 for (unsigned I = 0; I < NumElts; I++) { 6979 if (Mask[I] != UndefMaskElem) 6980 InsertMask[Offset + I] = NumElts + I; 6981 } 6982 6983 V = Builder.CreateShuffleVector( 6984 FirstInsert->getOperand(0), V, InsertMask, 6985 cast<Instruction>(E->Scalars.back())->getName()); 6986 if (auto *I = dyn_cast<Instruction>(V)) { 6987 GatherShuffleSeq.insert(I); 6988 CSEBlocks.insert(I->getParent()); 6989 } 6990 } 6991 6992 ++NumVectorInstructions; 6993 E->VectorizedValue = V; 6994 return V; 6995 } 6996 case Instruction::ZExt: 6997 case Instruction::SExt: 6998 case Instruction::FPToUI: 6999 case Instruction::FPToSI: 7000 case Instruction::FPExt: 7001 case Instruction::PtrToInt: 7002 case Instruction::IntToPtr: 7003 case Instruction::SIToFP: 7004 case Instruction::UIToFP: 7005 case Instruction::Trunc: 7006 case Instruction::FPTrunc: 7007 case Instruction::BitCast: { 7008 setInsertPointAfterBundle(E); 7009 7010 Value *InVec = vectorizeTree(E->getOperand(0)); 7011 7012 if (E->VectorizedValue) { 7013 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7014 return E->VectorizedValue; 7015 } 7016 7017 auto *CI = cast<CastInst>(VL0); 7018 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7019 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7020 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7021 V = ShuffleBuilder.finalize(V); 7022 7023 E->VectorizedValue = V; 7024 ++NumVectorInstructions; 7025 return V; 7026 } 7027 case Instruction::FCmp: 7028 case Instruction::ICmp: { 7029 setInsertPointAfterBundle(E); 7030 7031 Value *L = vectorizeTree(E->getOperand(0)); 7032 Value *R = vectorizeTree(E->getOperand(1)); 7033 7034 if (E->VectorizedValue) { 7035 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7036 return E->VectorizedValue; 7037 } 7038 7039 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7040 Value *V = Builder.CreateCmp(P0, L, R); 7041 propagateIRFlags(V, E->Scalars, VL0); 7042 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7043 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7044 V = ShuffleBuilder.finalize(V); 7045 7046 E->VectorizedValue = V; 7047 ++NumVectorInstructions; 7048 return V; 7049 } 7050 case Instruction::Select: { 7051 setInsertPointAfterBundle(E); 7052 7053 Value *Cond = vectorizeTree(E->getOperand(0)); 7054 Value *True = vectorizeTree(E->getOperand(1)); 7055 Value *False = vectorizeTree(E->getOperand(2)); 7056 7057 if (E->VectorizedValue) { 7058 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7059 return E->VectorizedValue; 7060 } 7061 7062 Value *V = Builder.CreateSelect(Cond, True, False); 7063 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7064 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7065 V = ShuffleBuilder.finalize(V); 7066 7067 E->VectorizedValue = V; 7068 ++NumVectorInstructions; 7069 return V; 7070 } 7071 case Instruction::FNeg: { 7072 setInsertPointAfterBundle(E); 7073 7074 Value *Op = vectorizeTree(E->getOperand(0)); 7075 7076 if (E->VectorizedValue) { 7077 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7078 return E->VectorizedValue; 7079 } 7080 7081 Value *V = Builder.CreateUnOp( 7082 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7083 propagateIRFlags(V, E->Scalars, VL0); 7084 if (auto *I = dyn_cast<Instruction>(V)) 7085 V = propagateMetadata(I, E->Scalars); 7086 7087 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7088 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7089 V = ShuffleBuilder.finalize(V); 7090 7091 E->VectorizedValue = V; 7092 ++NumVectorInstructions; 7093 7094 return V; 7095 } 7096 case Instruction::Add: 7097 case Instruction::FAdd: 7098 case Instruction::Sub: 7099 case Instruction::FSub: 7100 case Instruction::Mul: 7101 case Instruction::FMul: 7102 case Instruction::UDiv: 7103 case Instruction::SDiv: 7104 case Instruction::FDiv: 7105 case Instruction::URem: 7106 case Instruction::SRem: 7107 case Instruction::FRem: 7108 case Instruction::Shl: 7109 case Instruction::LShr: 7110 case Instruction::AShr: 7111 case Instruction::And: 7112 case Instruction::Or: 7113 case Instruction::Xor: { 7114 setInsertPointAfterBundle(E); 7115 7116 Value *LHS = vectorizeTree(E->getOperand(0)); 7117 Value *RHS = vectorizeTree(E->getOperand(1)); 7118 7119 if (E->VectorizedValue) { 7120 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7121 return E->VectorizedValue; 7122 } 7123 7124 Value *V = Builder.CreateBinOp( 7125 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7126 RHS); 7127 propagateIRFlags(V, E->Scalars, VL0); 7128 if (auto *I = dyn_cast<Instruction>(V)) 7129 V = propagateMetadata(I, E->Scalars); 7130 7131 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7132 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7133 V = ShuffleBuilder.finalize(V); 7134 7135 E->VectorizedValue = V; 7136 ++NumVectorInstructions; 7137 7138 return V; 7139 } 7140 case Instruction::Load: { 7141 // Loads are inserted at the head of the tree because we don't want to 7142 // sink them all the way down past store instructions. 7143 setInsertPointAfterBundle(E); 7144 7145 LoadInst *LI = cast<LoadInst>(VL0); 7146 Instruction *NewLI; 7147 unsigned AS = LI->getPointerAddressSpace(); 7148 Value *PO = LI->getPointerOperand(); 7149 if (E->State == TreeEntry::Vectorize) { 7150 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7151 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7152 7153 // The pointer operand uses an in-tree scalar so we add the new BitCast 7154 // or LoadInst to ExternalUses list to make sure that an extract will 7155 // be generated in the future. 7156 if (TreeEntry *Entry = getTreeEntry(PO)) { 7157 // Find which lane we need to extract. 7158 unsigned FoundLane = Entry->findLaneForValue(PO); 7159 ExternalUses.emplace_back( 7160 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7161 } 7162 } else { 7163 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7164 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7165 // Use the minimum alignment of the gathered loads. 7166 Align CommonAlignment = LI->getAlign(); 7167 for (Value *V : E->Scalars) 7168 CommonAlignment = 7169 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7170 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7171 } 7172 Value *V = propagateMetadata(NewLI, E->Scalars); 7173 7174 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7175 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7176 V = ShuffleBuilder.finalize(V); 7177 E->VectorizedValue = V; 7178 ++NumVectorInstructions; 7179 return V; 7180 } 7181 case Instruction::Store: { 7182 auto *SI = cast<StoreInst>(VL0); 7183 unsigned AS = SI->getPointerAddressSpace(); 7184 7185 setInsertPointAfterBundle(E); 7186 7187 Value *VecValue = vectorizeTree(E->getOperand(0)); 7188 ShuffleBuilder.addMask(E->ReorderIndices); 7189 VecValue = ShuffleBuilder.finalize(VecValue); 7190 7191 Value *ScalarPtr = SI->getPointerOperand(); 7192 Value *VecPtr = Builder.CreateBitCast( 7193 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7194 StoreInst *ST = 7195 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7196 7197 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7198 // StoreInst to ExternalUses to make sure that an extract will be 7199 // generated in the future. 7200 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7201 // Find which lane we need to extract. 7202 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7203 ExternalUses.push_back(ExternalUser( 7204 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7205 FoundLane)); 7206 } 7207 7208 Value *V = propagateMetadata(ST, E->Scalars); 7209 7210 E->VectorizedValue = V; 7211 ++NumVectorInstructions; 7212 return V; 7213 } 7214 case Instruction::GetElementPtr: { 7215 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7216 setInsertPointAfterBundle(E); 7217 7218 Value *Op0 = vectorizeTree(E->getOperand(0)); 7219 7220 SmallVector<Value *> OpVecs; 7221 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7222 Value *OpVec = vectorizeTree(E->getOperand(J)); 7223 OpVecs.push_back(OpVec); 7224 } 7225 7226 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7227 if (Instruction *I = dyn_cast<Instruction>(V)) 7228 V = propagateMetadata(I, E->Scalars); 7229 7230 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7231 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7232 V = ShuffleBuilder.finalize(V); 7233 7234 E->VectorizedValue = V; 7235 ++NumVectorInstructions; 7236 7237 return V; 7238 } 7239 case Instruction::Call: { 7240 CallInst *CI = cast<CallInst>(VL0); 7241 setInsertPointAfterBundle(E); 7242 7243 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7244 if (Function *FI = CI->getCalledFunction()) 7245 IID = FI->getIntrinsicID(); 7246 7247 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7248 7249 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7250 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7251 VecCallCosts.first <= VecCallCosts.second; 7252 7253 Value *ScalarArg = nullptr; 7254 std::vector<Value *> OpVecs; 7255 SmallVector<Type *, 2> TysForDecl = 7256 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7257 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7258 ValueList OpVL; 7259 // Some intrinsics have scalar arguments. This argument should not be 7260 // vectorized. 7261 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7262 CallInst *CEI = cast<CallInst>(VL0); 7263 ScalarArg = CEI->getArgOperand(j); 7264 OpVecs.push_back(CEI->getArgOperand(j)); 7265 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7266 TysForDecl.push_back(ScalarArg->getType()); 7267 continue; 7268 } 7269 7270 Value *OpVec = vectorizeTree(E->getOperand(j)); 7271 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7272 OpVecs.push_back(OpVec); 7273 } 7274 7275 Function *CF; 7276 if (!UseIntrinsic) { 7277 VFShape Shape = 7278 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7279 VecTy->getNumElements())), 7280 false /*HasGlobalPred*/); 7281 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7282 } else { 7283 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7284 } 7285 7286 SmallVector<OperandBundleDef, 1> OpBundles; 7287 CI->getOperandBundlesAsDefs(OpBundles); 7288 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7289 7290 // The scalar argument uses an in-tree scalar so we add the new vectorized 7291 // call to ExternalUses list to make sure that an extract will be 7292 // generated in the future. 7293 if (ScalarArg) { 7294 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7295 // Find which lane we need to extract. 7296 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7297 ExternalUses.push_back( 7298 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7299 } 7300 } 7301 7302 propagateIRFlags(V, E->Scalars, VL0); 7303 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7304 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7305 V = ShuffleBuilder.finalize(V); 7306 7307 E->VectorizedValue = V; 7308 ++NumVectorInstructions; 7309 return V; 7310 } 7311 case Instruction::ShuffleVector: { 7312 assert(E->isAltShuffle() && 7313 ((Instruction::isBinaryOp(E->getOpcode()) && 7314 Instruction::isBinaryOp(E->getAltOpcode())) || 7315 (Instruction::isCast(E->getOpcode()) && 7316 Instruction::isCast(E->getAltOpcode())) || 7317 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7318 "Invalid Shuffle Vector Operand"); 7319 7320 Value *LHS = nullptr, *RHS = nullptr; 7321 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7322 setInsertPointAfterBundle(E); 7323 LHS = vectorizeTree(E->getOperand(0)); 7324 RHS = vectorizeTree(E->getOperand(1)); 7325 } else { 7326 setInsertPointAfterBundle(E); 7327 LHS = vectorizeTree(E->getOperand(0)); 7328 } 7329 7330 if (E->VectorizedValue) { 7331 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7332 return E->VectorizedValue; 7333 } 7334 7335 Value *V0, *V1; 7336 if (Instruction::isBinaryOp(E->getOpcode())) { 7337 V0 = Builder.CreateBinOp( 7338 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7339 V1 = Builder.CreateBinOp( 7340 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7341 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7342 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7343 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7344 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7345 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7346 } else { 7347 V0 = Builder.CreateCast( 7348 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7349 V1 = Builder.CreateCast( 7350 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7351 } 7352 // Add V0 and V1 to later analysis to try to find and remove matching 7353 // instruction, if any. 7354 for (Value *V : {V0, V1}) { 7355 if (auto *I = dyn_cast<Instruction>(V)) { 7356 GatherShuffleSeq.insert(I); 7357 CSEBlocks.insert(I->getParent()); 7358 } 7359 } 7360 7361 // Create shuffle to take alternate operations from the vector. 7362 // Also, gather up main and alt scalar ops to propagate IR flags to 7363 // each vector operation. 7364 ValueList OpScalars, AltScalars; 7365 SmallVector<int> Mask; 7366 buildShuffleEntryMask( 7367 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7368 [E](Instruction *I) { 7369 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7370 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7371 }, 7372 Mask, &OpScalars, &AltScalars); 7373 7374 propagateIRFlags(V0, OpScalars); 7375 propagateIRFlags(V1, AltScalars); 7376 7377 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7378 if (auto *I = dyn_cast<Instruction>(V)) { 7379 V = propagateMetadata(I, E->Scalars); 7380 GatherShuffleSeq.insert(I); 7381 CSEBlocks.insert(I->getParent()); 7382 } 7383 V = ShuffleBuilder.finalize(V); 7384 7385 E->VectorizedValue = V; 7386 ++NumVectorInstructions; 7387 7388 return V; 7389 } 7390 default: 7391 llvm_unreachable("unknown inst"); 7392 } 7393 return nullptr; 7394 } 7395 7396 Value *BoUpSLP::vectorizeTree() { 7397 ExtraValueToDebugLocsMap ExternallyUsedValues; 7398 return vectorizeTree(ExternallyUsedValues); 7399 } 7400 7401 Value * 7402 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7403 // All blocks must be scheduled before any instructions are inserted. 7404 for (auto &BSIter : BlocksSchedules) { 7405 scheduleBlock(BSIter.second.get()); 7406 } 7407 7408 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7409 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7410 7411 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7412 // vectorized root. InstCombine will then rewrite the entire expression. We 7413 // sign extend the extracted values below. 7414 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7415 if (MinBWs.count(ScalarRoot)) { 7416 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7417 // If current instr is a phi and not the last phi, insert it after the 7418 // last phi node. 7419 if (isa<PHINode>(I)) 7420 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7421 else 7422 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7423 } 7424 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7425 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7426 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7427 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7428 VectorizableTree[0]->VectorizedValue = Trunc; 7429 } 7430 7431 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7432 << " values .\n"); 7433 7434 // Extract all of the elements with the external uses. 7435 for (const auto &ExternalUse : ExternalUses) { 7436 Value *Scalar = ExternalUse.Scalar; 7437 llvm::User *User = ExternalUse.User; 7438 7439 // Skip users that we already RAUW. This happens when one instruction 7440 // has multiple uses of the same value. 7441 if (User && !is_contained(Scalar->users(), User)) 7442 continue; 7443 TreeEntry *E = getTreeEntry(Scalar); 7444 assert(E && "Invalid scalar"); 7445 assert(E->State != TreeEntry::NeedToGather && 7446 "Extracting from a gather list"); 7447 7448 Value *Vec = E->VectorizedValue; 7449 assert(Vec && "Can't find vectorizable value"); 7450 7451 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7452 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7453 if (Scalar->getType() != Vec->getType()) { 7454 Value *Ex; 7455 // "Reuse" the existing extract to improve final codegen. 7456 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7457 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7458 ES->getOperand(1)); 7459 } else { 7460 Ex = Builder.CreateExtractElement(Vec, Lane); 7461 } 7462 // If necessary, sign-extend or zero-extend ScalarRoot 7463 // to the larger type. 7464 if (!MinBWs.count(ScalarRoot)) 7465 return Ex; 7466 if (MinBWs[ScalarRoot].second) 7467 return Builder.CreateSExt(Ex, Scalar->getType()); 7468 return Builder.CreateZExt(Ex, Scalar->getType()); 7469 } 7470 assert(isa<FixedVectorType>(Scalar->getType()) && 7471 isa<InsertElementInst>(Scalar) && 7472 "In-tree scalar of vector type is not insertelement?"); 7473 return Vec; 7474 }; 7475 // If User == nullptr, the Scalar is used as extra arg. Generate 7476 // ExtractElement instruction and update the record for this scalar in 7477 // ExternallyUsedValues. 7478 if (!User) { 7479 assert(ExternallyUsedValues.count(Scalar) && 7480 "Scalar with nullptr as an external user must be registered in " 7481 "ExternallyUsedValues map"); 7482 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7483 Builder.SetInsertPoint(VecI->getParent(), 7484 std::next(VecI->getIterator())); 7485 } else { 7486 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7487 } 7488 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7489 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7490 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7491 auto It = ExternallyUsedValues.find(Scalar); 7492 assert(It != ExternallyUsedValues.end() && 7493 "Externally used scalar is not found in ExternallyUsedValues"); 7494 NewInstLocs.append(It->second); 7495 ExternallyUsedValues.erase(Scalar); 7496 // Required to update internally referenced instructions. 7497 Scalar->replaceAllUsesWith(NewInst); 7498 continue; 7499 } 7500 7501 // Generate extracts for out-of-tree users. 7502 // Find the insertion point for the extractelement lane. 7503 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7504 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7505 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7506 if (PH->getIncomingValue(i) == Scalar) { 7507 Instruction *IncomingTerminator = 7508 PH->getIncomingBlock(i)->getTerminator(); 7509 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7510 Builder.SetInsertPoint(VecI->getParent(), 7511 std::next(VecI->getIterator())); 7512 } else { 7513 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7514 } 7515 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7516 CSEBlocks.insert(PH->getIncomingBlock(i)); 7517 PH->setOperand(i, NewInst); 7518 } 7519 } 7520 } else { 7521 Builder.SetInsertPoint(cast<Instruction>(User)); 7522 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7523 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7524 User->replaceUsesOfWith(Scalar, NewInst); 7525 } 7526 } else { 7527 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7528 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7529 CSEBlocks.insert(&F->getEntryBlock()); 7530 User->replaceUsesOfWith(Scalar, NewInst); 7531 } 7532 7533 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7534 } 7535 7536 // For each vectorized value: 7537 for (auto &TEPtr : VectorizableTree) { 7538 TreeEntry *Entry = TEPtr.get(); 7539 7540 // No need to handle users of gathered values. 7541 if (Entry->State == TreeEntry::NeedToGather) 7542 continue; 7543 7544 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7545 7546 // For each lane: 7547 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7548 Value *Scalar = Entry->Scalars[Lane]; 7549 7550 #ifndef NDEBUG 7551 Type *Ty = Scalar->getType(); 7552 if (!Ty->isVoidTy()) { 7553 for (User *U : Scalar->users()) { 7554 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7555 7556 // It is legal to delete users in the ignorelist. 7557 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7558 (isa_and_nonnull<Instruction>(U) && 7559 isDeleted(cast<Instruction>(U)))) && 7560 "Deleting out-of-tree value"); 7561 } 7562 } 7563 #endif 7564 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7565 eraseInstruction(cast<Instruction>(Scalar)); 7566 } 7567 } 7568 7569 Builder.ClearInsertionPoint(); 7570 InstrElementSize.clear(); 7571 7572 return VectorizableTree[0]->VectorizedValue; 7573 } 7574 7575 void BoUpSLP::optimizeGatherSequence() { 7576 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7577 << " gather sequences instructions.\n"); 7578 // LICM InsertElementInst sequences. 7579 for (Instruction *I : GatherShuffleSeq) { 7580 if (isDeleted(I)) 7581 continue; 7582 7583 // Check if this block is inside a loop. 7584 Loop *L = LI->getLoopFor(I->getParent()); 7585 if (!L) 7586 continue; 7587 7588 // Check if it has a preheader. 7589 BasicBlock *PreHeader = L->getLoopPreheader(); 7590 if (!PreHeader) 7591 continue; 7592 7593 // If the vector or the element that we insert into it are 7594 // instructions that are defined in this basic block then we can't 7595 // hoist this instruction. 7596 if (any_of(I->operands(), [L](Value *V) { 7597 auto *OpI = dyn_cast<Instruction>(V); 7598 return OpI && L->contains(OpI); 7599 })) 7600 continue; 7601 7602 // We can hoist this instruction. Move it to the pre-header. 7603 I->moveBefore(PreHeader->getTerminator()); 7604 } 7605 7606 // Make a list of all reachable blocks in our CSE queue. 7607 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7608 CSEWorkList.reserve(CSEBlocks.size()); 7609 for (BasicBlock *BB : CSEBlocks) 7610 if (DomTreeNode *N = DT->getNode(BB)) { 7611 assert(DT->isReachableFromEntry(N)); 7612 CSEWorkList.push_back(N); 7613 } 7614 7615 // Sort blocks by domination. This ensures we visit a block after all blocks 7616 // dominating it are visited. 7617 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7618 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7619 "Different nodes should have different DFS numbers"); 7620 return A->getDFSNumIn() < B->getDFSNumIn(); 7621 }); 7622 7623 // Less defined shuffles can be replaced by the more defined copies. 7624 // Between two shuffles one is less defined if it has the same vector operands 7625 // and its mask indeces are the same as in the first one or undefs. E.g. 7626 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7627 // poison, <0, 0, 0, 0>. 7628 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7629 SmallVectorImpl<int> &NewMask) { 7630 if (I1->getType() != I2->getType()) 7631 return false; 7632 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7633 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7634 if (!SI1 || !SI2) 7635 return I1->isIdenticalTo(I2); 7636 if (SI1->isIdenticalTo(SI2)) 7637 return true; 7638 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7639 if (SI1->getOperand(I) != SI2->getOperand(I)) 7640 return false; 7641 // Check if the second instruction is more defined than the first one. 7642 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7643 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7644 // Count trailing undefs in the mask to check the final number of used 7645 // registers. 7646 unsigned LastUndefsCnt = 0; 7647 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7648 if (SM1[I] == UndefMaskElem) 7649 ++LastUndefsCnt; 7650 else 7651 LastUndefsCnt = 0; 7652 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7653 NewMask[I] != SM1[I]) 7654 return false; 7655 if (NewMask[I] == UndefMaskElem) 7656 NewMask[I] = SM1[I]; 7657 } 7658 // Check if the last undefs actually change the final number of used vector 7659 // registers. 7660 return SM1.size() - LastUndefsCnt > 1 && 7661 TTI->getNumberOfParts(SI1->getType()) == 7662 TTI->getNumberOfParts( 7663 FixedVectorType::get(SI1->getType()->getElementType(), 7664 SM1.size() - LastUndefsCnt)); 7665 }; 7666 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7667 // instructions. TODO: We can further optimize this scan if we split the 7668 // instructions into different buckets based on the insert lane. 7669 SmallVector<Instruction *, 16> Visited; 7670 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7671 assert(*I && 7672 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7673 "Worklist not sorted properly!"); 7674 BasicBlock *BB = (*I)->getBlock(); 7675 // For all instructions in blocks containing gather sequences: 7676 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7677 if (isDeleted(&In)) 7678 continue; 7679 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7680 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7681 continue; 7682 7683 // Check if we can replace this instruction with any of the 7684 // visited instructions. 7685 bool Replaced = false; 7686 for (Instruction *&V : Visited) { 7687 SmallVector<int> NewMask; 7688 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7689 DT->dominates(V->getParent(), In.getParent())) { 7690 In.replaceAllUsesWith(V); 7691 eraseInstruction(&In); 7692 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7693 if (!NewMask.empty()) 7694 SI->setShuffleMask(NewMask); 7695 Replaced = true; 7696 break; 7697 } 7698 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7699 GatherShuffleSeq.contains(V) && 7700 IsIdenticalOrLessDefined(V, &In, NewMask) && 7701 DT->dominates(In.getParent(), V->getParent())) { 7702 In.moveAfter(V); 7703 V->replaceAllUsesWith(&In); 7704 eraseInstruction(V); 7705 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7706 if (!NewMask.empty()) 7707 SI->setShuffleMask(NewMask); 7708 V = &In; 7709 Replaced = true; 7710 break; 7711 } 7712 } 7713 if (!Replaced) { 7714 assert(!is_contained(Visited, &In)); 7715 Visited.push_back(&In); 7716 } 7717 } 7718 } 7719 CSEBlocks.clear(); 7720 GatherShuffleSeq.clear(); 7721 } 7722 7723 BoUpSLP::ScheduleData * 7724 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7725 ScheduleData *Bundle = nullptr; 7726 ScheduleData *PrevInBundle = nullptr; 7727 for (Value *V : VL) { 7728 if (doesNotNeedToBeScheduled(V)) 7729 continue; 7730 ScheduleData *BundleMember = getScheduleData(V); 7731 assert(BundleMember && 7732 "no ScheduleData for bundle member " 7733 "(maybe not in same basic block)"); 7734 assert(BundleMember->isSchedulingEntity() && 7735 "bundle member already part of other bundle"); 7736 if (PrevInBundle) { 7737 PrevInBundle->NextInBundle = BundleMember; 7738 } else { 7739 Bundle = BundleMember; 7740 } 7741 7742 // Group the instructions to a bundle. 7743 BundleMember->FirstInBundle = Bundle; 7744 PrevInBundle = BundleMember; 7745 } 7746 assert(Bundle && "Failed to find schedule bundle"); 7747 return Bundle; 7748 } 7749 7750 // Groups the instructions to a bundle (which is then a single scheduling entity) 7751 // and schedules instructions until the bundle gets ready. 7752 Optional<BoUpSLP::ScheduleData *> 7753 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7754 const InstructionsState &S) { 7755 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7756 // instructions. 7757 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7758 doesNotNeedToSchedule(VL)) 7759 return nullptr; 7760 7761 // Initialize the instruction bundle. 7762 Instruction *OldScheduleEnd = ScheduleEnd; 7763 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7764 7765 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7766 ScheduleData *Bundle) { 7767 // The scheduling region got new instructions at the lower end (or it is a 7768 // new region for the first bundle). This makes it necessary to 7769 // recalculate all dependencies. 7770 // It is seldom that this needs to be done a second time after adding the 7771 // initial bundle to the region. 7772 if (ScheduleEnd != OldScheduleEnd) { 7773 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7774 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7775 ReSchedule = true; 7776 } 7777 if (Bundle) { 7778 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7779 << " in block " << BB->getName() << "\n"); 7780 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7781 } 7782 7783 if (ReSchedule) { 7784 resetSchedule(); 7785 initialFillReadyList(ReadyInsts); 7786 } 7787 7788 // Now try to schedule the new bundle or (if no bundle) just calculate 7789 // dependencies. As soon as the bundle is "ready" it means that there are no 7790 // cyclic dependencies and we can schedule it. Note that's important that we 7791 // don't "schedule" the bundle yet (see cancelScheduling). 7792 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7793 !ReadyInsts.empty()) { 7794 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7795 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7796 "must be ready to schedule"); 7797 schedule(Picked, ReadyInsts); 7798 } 7799 }; 7800 7801 // Make sure that the scheduling region contains all 7802 // instructions of the bundle. 7803 for (Value *V : VL) { 7804 if (doesNotNeedToBeScheduled(V)) 7805 continue; 7806 if (!extendSchedulingRegion(V, S)) { 7807 // If the scheduling region got new instructions at the lower end (or it 7808 // is a new region for the first bundle). This makes it necessary to 7809 // recalculate all dependencies. 7810 // Otherwise the compiler may crash trying to incorrectly calculate 7811 // dependencies and emit instruction in the wrong order at the actual 7812 // scheduling. 7813 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7814 return None; 7815 } 7816 } 7817 7818 bool ReSchedule = false; 7819 for (Value *V : VL) { 7820 if (doesNotNeedToBeScheduled(V)) 7821 continue; 7822 ScheduleData *BundleMember = getScheduleData(V); 7823 assert(BundleMember && 7824 "no ScheduleData for bundle member (maybe not in same basic block)"); 7825 7826 // Make sure we don't leave the pieces of the bundle in the ready list when 7827 // whole bundle might not be ready. 7828 ReadyInsts.remove(BundleMember); 7829 7830 if (!BundleMember->IsScheduled) 7831 continue; 7832 // A bundle member was scheduled as single instruction before and now 7833 // needs to be scheduled as part of the bundle. We just get rid of the 7834 // existing schedule. 7835 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7836 << " was already scheduled\n"); 7837 ReSchedule = true; 7838 } 7839 7840 auto *Bundle = buildBundle(VL); 7841 TryScheduleBundleImpl(ReSchedule, Bundle); 7842 if (!Bundle->isReady()) { 7843 cancelScheduling(VL, S.OpValue); 7844 return None; 7845 } 7846 return Bundle; 7847 } 7848 7849 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7850 Value *OpValue) { 7851 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7852 doesNotNeedToSchedule(VL)) 7853 return; 7854 7855 if (doesNotNeedToBeScheduled(OpValue)) 7856 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7857 ScheduleData *Bundle = getScheduleData(OpValue); 7858 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7859 assert(!Bundle->IsScheduled && 7860 "Can't cancel bundle which is already scheduled"); 7861 assert(Bundle->isSchedulingEntity() && 7862 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7863 "tried to unbundle something which is not a bundle"); 7864 7865 // Remove the bundle from the ready list. 7866 if (Bundle->isReady()) 7867 ReadyInsts.remove(Bundle); 7868 7869 // Un-bundle: make single instructions out of the bundle. 7870 ScheduleData *BundleMember = Bundle; 7871 while (BundleMember) { 7872 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7873 BundleMember->FirstInBundle = BundleMember; 7874 ScheduleData *Next = BundleMember->NextInBundle; 7875 BundleMember->NextInBundle = nullptr; 7876 BundleMember->TE = nullptr; 7877 if (BundleMember->unscheduledDepsInBundle() == 0) { 7878 ReadyInsts.insert(BundleMember); 7879 } 7880 BundleMember = Next; 7881 } 7882 } 7883 7884 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7885 // Allocate a new ScheduleData for the instruction. 7886 if (ChunkPos >= ChunkSize) { 7887 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7888 ChunkPos = 0; 7889 } 7890 return &(ScheduleDataChunks.back()[ChunkPos++]); 7891 } 7892 7893 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7894 const InstructionsState &S) { 7895 if (getScheduleData(V, isOneOf(S, V))) 7896 return true; 7897 Instruction *I = dyn_cast<Instruction>(V); 7898 assert(I && "bundle member must be an instruction"); 7899 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7900 !doesNotNeedToBeScheduled(I) && 7901 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7902 "be scheduled"); 7903 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7904 ScheduleData *ISD = getScheduleData(I); 7905 if (!ISD) 7906 return false; 7907 assert(isInSchedulingRegion(ISD) && 7908 "ScheduleData not in scheduling region"); 7909 ScheduleData *SD = allocateScheduleDataChunks(); 7910 SD->Inst = I; 7911 SD->init(SchedulingRegionID, S.OpValue); 7912 ExtraScheduleDataMap[I][S.OpValue] = SD; 7913 return true; 7914 }; 7915 if (CheckScheduleForI(I)) 7916 return true; 7917 if (!ScheduleStart) { 7918 // It's the first instruction in the new region. 7919 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7920 ScheduleStart = I; 7921 ScheduleEnd = I->getNextNode(); 7922 if (isOneOf(S, I) != I) 7923 CheckScheduleForI(I); 7924 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7925 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7926 return true; 7927 } 7928 // Search up and down at the same time, because we don't know if the new 7929 // instruction is above or below the existing scheduling region. 7930 BasicBlock::reverse_iterator UpIter = 7931 ++ScheduleStart->getIterator().getReverse(); 7932 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7933 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7934 BasicBlock::iterator LowerEnd = BB->end(); 7935 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7936 &*DownIter != I) { 7937 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7938 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7939 return false; 7940 } 7941 7942 ++UpIter; 7943 ++DownIter; 7944 } 7945 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7946 assert(I->getParent() == ScheduleStart->getParent() && 7947 "Instruction is in wrong basic block."); 7948 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7949 ScheduleStart = I; 7950 if (isOneOf(S, I) != I) 7951 CheckScheduleForI(I); 7952 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7953 << "\n"); 7954 return true; 7955 } 7956 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7957 "Expected to reach top of the basic block or instruction down the " 7958 "lower end."); 7959 assert(I->getParent() == ScheduleEnd->getParent() && 7960 "Instruction is in wrong basic block."); 7961 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7962 nullptr); 7963 ScheduleEnd = I->getNextNode(); 7964 if (isOneOf(S, I) != I) 7965 CheckScheduleForI(I); 7966 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7967 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7968 return true; 7969 } 7970 7971 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7972 Instruction *ToI, 7973 ScheduleData *PrevLoadStore, 7974 ScheduleData *NextLoadStore) { 7975 ScheduleData *CurrentLoadStore = PrevLoadStore; 7976 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7977 // No need to allocate data for non-schedulable instructions. 7978 if (doesNotNeedToBeScheduled(I)) 7979 continue; 7980 ScheduleData *SD = ScheduleDataMap.lookup(I); 7981 if (!SD) { 7982 SD = allocateScheduleDataChunks(); 7983 ScheduleDataMap[I] = SD; 7984 SD->Inst = I; 7985 } 7986 assert(!isInSchedulingRegion(SD) && 7987 "new ScheduleData already in scheduling region"); 7988 SD->init(SchedulingRegionID, I); 7989 7990 if (I->mayReadOrWriteMemory() && 7991 (!isa<IntrinsicInst>(I) || 7992 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7993 cast<IntrinsicInst>(I)->getIntrinsicID() != 7994 Intrinsic::pseudoprobe))) { 7995 // Update the linked list of memory accessing instructions. 7996 if (CurrentLoadStore) { 7997 CurrentLoadStore->NextLoadStore = SD; 7998 } else { 7999 FirstLoadStoreInRegion = SD; 8000 } 8001 CurrentLoadStore = SD; 8002 } 8003 } 8004 if (NextLoadStore) { 8005 if (CurrentLoadStore) 8006 CurrentLoadStore->NextLoadStore = NextLoadStore; 8007 } else { 8008 LastLoadStoreInRegion = CurrentLoadStore; 8009 } 8010 } 8011 8012 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8013 bool InsertInReadyList, 8014 BoUpSLP *SLP) { 8015 assert(SD->isSchedulingEntity()); 8016 8017 SmallVector<ScheduleData *, 10> WorkList; 8018 WorkList.push_back(SD); 8019 8020 while (!WorkList.empty()) { 8021 ScheduleData *SD = WorkList.pop_back_val(); 8022 for (ScheduleData *BundleMember = SD; BundleMember; 8023 BundleMember = BundleMember->NextInBundle) { 8024 assert(isInSchedulingRegion(BundleMember)); 8025 if (BundleMember->hasValidDependencies()) 8026 continue; 8027 8028 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8029 << "\n"); 8030 BundleMember->Dependencies = 0; 8031 BundleMember->resetUnscheduledDeps(); 8032 8033 // Handle def-use chain dependencies. 8034 if (BundleMember->OpValue != BundleMember->Inst) { 8035 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8036 BundleMember->Dependencies++; 8037 ScheduleData *DestBundle = UseSD->FirstInBundle; 8038 if (!DestBundle->IsScheduled) 8039 BundleMember->incrementUnscheduledDeps(1); 8040 if (!DestBundle->hasValidDependencies()) 8041 WorkList.push_back(DestBundle); 8042 } 8043 } else { 8044 for (User *U : BundleMember->Inst->users()) { 8045 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8046 BundleMember->Dependencies++; 8047 ScheduleData *DestBundle = UseSD->FirstInBundle; 8048 if (!DestBundle->IsScheduled) 8049 BundleMember->incrementUnscheduledDeps(1); 8050 if (!DestBundle->hasValidDependencies()) 8051 WorkList.push_back(DestBundle); 8052 } 8053 } 8054 } 8055 8056 // Any instruction which isn't safe to speculate at the begining of the 8057 // block is control dependend on any early exit or non-willreturn call 8058 // which proceeds it. 8059 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8060 for (Instruction *I = BundleMember->Inst->getNextNode(); 8061 I != ScheduleEnd; I = I->getNextNode()) { 8062 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8063 continue; 8064 8065 // Add the dependency 8066 auto *DepDest = getScheduleData(I); 8067 assert(DepDest && "must be in schedule window"); 8068 DepDest->ControlDependencies.push_back(BundleMember); 8069 BundleMember->Dependencies++; 8070 ScheduleData *DestBundle = DepDest->FirstInBundle; 8071 if (!DestBundle->IsScheduled) 8072 BundleMember->incrementUnscheduledDeps(1); 8073 if (!DestBundle->hasValidDependencies()) 8074 WorkList.push_back(DestBundle); 8075 8076 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8077 // Everything past here must be control dependent on I. 8078 break; 8079 } 8080 } 8081 8082 // If we have an inalloc alloca instruction, it needs to be scheduled 8083 // after any preceeding stacksave. 8084 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>())) { 8085 for (Instruction *I = BundleMember->Inst->getNextNode(); 8086 I != ScheduleEnd; I = I->getNextNode()) { 8087 if (match(I, m_Intrinsic<Intrinsic::stacksave>())) 8088 // Any allocas past here must be control dependent on I, and I 8089 // must be memory dependend on BundleMember->Inst. 8090 break; 8091 8092 if (!isa<AllocaInst>(I)) 8093 continue; 8094 8095 // Add the dependency 8096 auto *DepDest = getScheduleData(I); 8097 assert(DepDest && "must be in schedule window"); 8098 DepDest->ControlDependencies.push_back(BundleMember); 8099 BundleMember->Dependencies++; 8100 ScheduleData *DestBundle = DepDest->FirstInBundle; 8101 if (!DestBundle->IsScheduled) 8102 BundleMember->incrementUnscheduledDeps(1); 8103 if (!DestBundle->hasValidDependencies()) 8104 WorkList.push_back(DestBundle); 8105 } 8106 } 8107 8108 8109 // Handle the memory dependencies (if any). 8110 ScheduleData *DepDest = BundleMember->NextLoadStore; 8111 if (!DepDest) 8112 continue; 8113 Instruction *SrcInst = BundleMember->Inst; 8114 assert(SrcInst->mayReadOrWriteMemory() && 8115 "NextLoadStore list for non memory effecting bundle?"); 8116 MemoryLocation SrcLoc = getLocation(SrcInst); 8117 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8118 unsigned numAliased = 0; 8119 unsigned DistToSrc = 1; 8120 8121 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8122 assert(isInSchedulingRegion(DepDest)); 8123 8124 // We have two limits to reduce the complexity: 8125 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8126 // SLP->isAliased (which is the expensive part in this loop). 8127 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8128 // the whole loop (even if the loop is fast, it's quadratic). 8129 // It's important for the loop break condition (see below) to 8130 // check this limit even between two read-only instructions. 8131 if (DistToSrc >= MaxMemDepDistance || 8132 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8133 (numAliased >= AliasedCheckLimit || 8134 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8135 8136 // We increment the counter only if the locations are aliased 8137 // (instead of counting all alias checks). This gives a better 8138 // balance between reduced runtime and accurate dependencies. 8139 numAliased++; 8140 8141 DepDest->MemoryDependencies.push_back(BundleMember); 8142 BundleMember->Dependencies++; 8143 ScheduleData *DestBundle = DepDest->FirstInBundle; 8144 if (!DestBundle->IsScheduled) { 8145 BundleMember->incrementUnscheduledDeps(1); 8146 } 8147 if (!DestBundle->hasValidDependencies()) { 8148 WorkList.push_back(DestBundle); 8149 } 8150 } 8151 8152 // Example, explaining the loop break condition: Let's assume our 8153 // starting instruction is i0 and MaxMemDepDistance = 3. 8154 // 8155 // +--------v--v--v 8156 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8157 // +--------^--^--^ 8158 // 8159 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8160 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8161 // Previously we already added dependencies from i3 to i6,i7,i8 8162 // (because of MaxMemDepDistance). As we added a dependency from 8163 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8164 // and we can abort this loop at i6. 8165 if (DistToSrc >= 2 * MaxMemDepDistance) 8166 break; 8167 DistToSrc++; 8168 } 8169 } 8170 if (InsertInReadyList && SD->isReady()) { 8171 ReadyInsts.insert(SD); 8172 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8173 << "\n"); 8174 } 8175 } 8176 } 8177 8178 void BoUpSLP::BlockScheduling::resetSchedule() { 8179 assert(ScheduleStart && 8180 "tried to reset schedule on block which has not been scheduled"); 8181 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8182 doForAllOpcodes(I, [&](ScheduleData *SD) { 8183 assert(isInSchedulingRegion(SD) && 8184 "ScheduleData not in scheduling region"); 8185 SD->IsScheduled = false; 8186 SD->resetUnscheduledDeps(); 8187 }); 8188 } 8189 ReadyInsts.clear(); 8190 } 8191 8192 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8193 if (!BS->ScheduleStart) 8194 return; 8195 8196 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8197 8198 BS->resetSchedule(); 8199 8200 // For the real scheduling we use a more sophisticated ready-list: it is 8201 // sorted by the original instruction location. This lets the final schedule 8202 // be as close as possible to the original instruction order. 8203 // WARNING: If changing this order causes a correctness issue, that means 8204 // there is some missing dependence edge in the schedule data graph. 8205 struct ScheduleDataCompare { 8206 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8207 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8208 } 8209 }; 8210 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8211 8212 // Ensure that all dependency data is updated and fill the ready-list with 8213 // initial instructions. 8214 int Idx = 0; 8215 int NumToSchedule = 0; 8216 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8217 I = I->getNextNode()) { 8218 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8219 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8220 (void)SDTE; 8221 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8222 SD->isPartOfBundle() == 8223 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8224 "scheduler and vectorizer bundle mismatch"); 8225 SD->FirstInBundle->SchedulingPriority = Idx++; 8226 if (SD->isSchedulingEntity()) { 8227 BS->calculateDependencies(SD, false, this); 8228 NumToSchedule++; 8229 } 8230 }); 8231 } 8232 BS->initialFillReadyList(ReadyInsts); 8233 8234 Instruction *LastScheduledInst = BS->ScheduleEnd; 8235 8236 // Do the "real" scheduling. 8237 while (!ReadyInsts.empty()) { 8238 ScheduleData *picked = *ReadyInsts.begin(); 8239 ReadyInsts.erase(ReadyInsts.begin()); 8240 8241 // Move the scheduled instruction(s) to their dedicated places, if not 8242 // there yet. 8243 for (ScheduleData *BundleMember = picked; BundleMember; 8244 BundleMember = BundleMember->NextInBundle) { 8245 Instruction *pickedInst = BundleMember->Inst; 8246 if (pickedInst->getNextNode() != LastScheduledInst) 8247 pickedInst->moveBefore(LastScheduledInst); 8248 LastScheduledInst = pickedInst; 8249 } 8250 8251 BS->schedule(picked, ReadyInsts); 8252 NumToSchedule--; 8253 } 8254 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8255 8256 // Check that we didn't break any of our invariants. 8257 #ifdef EXPENSIVE_CHECKS 8258 BS->verify(); 8259 #endif 8260 8261 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8262 // Check that all schedulable entities got scheduled 8263 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8264 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8265 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8266 assert(SD->IsScheduled && "must be scheduled at this point"); 8267 } 8268 }); 8269 } 8270 #endif 8271 8272 // Avoid duplicate scheduling of the block. 8273 BS->ScheduleStart = nullptr; 8274 } 8275 8276 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8277 // If V is a store, just return the width of the stored value (or value 8278 // truncated just before storing) without traversing the expression tree. 8279 // This is the common case. 8280 if (auto *Store = dyn_cast<StoreInst>(V)) { 8281 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8282 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8283 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8284 } 8285 8286 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8287 return getVectorElementSize(IEI->getOperand(1)); 8288 8289 auto E = InstrElementSize.find(V); 8290 if (E != InstrElementSize.end()) 8291 return E->second; 8292 8293 // If V is not a store, we can traverse the expression tree to find loads 8294 // that feed it. The type of the loaded value may indicate a more suitable 8295 // width than V's type. We want to base the vector element size on the width 8296 // of memory operations where possible. 8297 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8298 SmallPtrSet<Instruction *, 16> Visited; 8299 if (auto *I = dyn_cast<Instruction>(V)) { 8300 Worklist.emplace_back(I, I->getParent()); 8301 Visited.insert(I); 8302 } 8303 8304 // Traverse the expression tree in bottom-up order looking for loads. If we 8305 // encounter an instruction we don't yet handle, we give up. 8306 auto Width = 0u; 8307 while (!Worklist.empty()) { 8308 Instruction *I; 8309 BasicBlock *Parent; 8310 std::tie(I, Parent) = Worklist.pop_back_val(); 8311 8312 // We should only be looking at scalar instructions here. If the current 8313 // instruction has a vector type, skip. 8314 auto *Ty = I->getType(); 8315 if (isa<VectorType>(Ty)) 8316 continue; 8317 8318 // If the current instruction is a load, update MaxWidth to reflect the 8319 // width of the loaded value. 8320 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8321 isa<ExtractValueInst>(I)) 8322 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8323 8324 // Otherwise, we need to visit the operands of the instruction. We only 8325 // handle the interesting cases from buildTree here. If an operand is an 8326 // instruction we haven't yet visited and from the same basic block as the 8327 // user or the use is a PHI node, we add it to the worklist. 8328 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8329 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8330 isa<UnaryOperator>(I)) { 8331 for (Use &U : I->operands()) 8332 if (auto *J = dyn_cast<Instruction>(U.get())) 8333 if (Visited.insert(J).second && 8334 (isa<PHINode>(I) || J->getParent() == Parent)) 8335 Worklist.emplace_back(J, J->getParent()); 8336 } else { 8337 break; 8338 } 8339 } 8340 8341 // If we didn't encounter a memory access in the expression tree, or if we 8342 // gave up for some reason, just return the width of V. Otherwise, return the 8343 // maximum width we found. 8344 if (!Width) { 8345 if (auto *CI = dyn_cast<CmpInst>(V)) 8346 V = CI->getOperand(0); 8347 Width = DL->getTypeSizeInBits(V->getType()); 8348 } 8349 8350 for (Instruction *I : Visited) 8351 InstrElementSize[I] = Width; 8352 8353 return Width; 8354 } 8355 8356 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8357 // smaller type with a truncation. We collect the values that will be demoted 8358 // in ToDemote and additional roots that require investigating in Roots. 8359 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8360 SmallVectorImpl<Value *> &ToDemote, 8361 SmallVectorImpl<Value *> &Roots) { 8362 // We can always demote constants. 8363 if (isa<Constant>(V)) { 8364 ToDemote.push_back(V); 8365 return true; 8366 } 8367 8368 // If the value is not an instruction in the expression with only one use, it 8369 // cannot be demoted. 8370 auto *I = dyn_cast<Instruction>(V); 8371 if (!I || !I->hasOneUse() || !Expr.count(I)) 8372 return false; 8373 8374 switch (I->getOpcode()) { 8375 8376 // We can always demote truncations and extensions. Since truncations can 8377 // seed additional demotion, we save the truncated value. 8378 case Instruction::Trunc: 8379 Roots.push_back(I->getOperand(0)); 8380 break; 8381 case Instruction::ZExt: 8382 case Instruction::SExt: 8383 if (isa<ExtractElementInst>(I->getOperand(0)) || 8384 isa<InsertElementInst>(I->getOperand(0))) 8385 return false; 8386 break; 8387 8388 // We can demote certain binary operations if we can demote both of their 8389 // operands. 8390 case Instruction::Add: 8391 case Instruction::Sub: 8392 case Instruction::Mul: 8393 case Instruction::And: 8394 case Instruction::Or: 8395 case Instruction::Xor: 8396 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8397 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8398 return false; 8399 break; 8400 8401 // We can demote selects if we can demote their true and false values. 8402 case Instruction::Select: { 8403 SelectInst *SI = cast<SelectInst>(I); 8404 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8405 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8406 return false; 8407 break; 8408 } 8409 8410 // We can demote phis if we can demote all their incoming operands. Note that 8411 // we don't need to worry about cycles since we ensure single use above. 8412 case Instruction::PHI: { 8413 PHINode *PN = cast<PHINode>(I); 8414 for (Value *IncValue : PN->incoming_values()) 8415 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8416 return false; 8417 break; 8418 } 8419 8420 // Otherwise, conservatively give up. 8421 default: 8422 return false; 8423 } 8424 8425 // Record the value that we can demote. 8426 ToDemote.push_back(V); 8427 return true; 8428 } 8429 8430 void BoUpSLP::computeMinimumValueSizes() { 8431 // If there are no external uses, the expression tree must be rooted by a 8432 // store. We can't demote in-memory values, so there is nothing to do here. 8433 if (ExternalUses.empty()) 8434 return; 8435 8436 // We only attempt to truncate integer expressions. 8437 auto &TreeRoot = VectorizableTree[0]->Scalars; 8438 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8439 if (!TreeRootIT) 8440 return; 8441 8442 // If the expression is not rooted by a store, these roots should have 8443 // external uses. We will rely on InstCombine to rewrite the expression in 8444 // the narrower type. However, InstCombine only rewrites single-use values. 8445 // This means that if a tree entry other than a root is used externally, it 8446 // must have multiple uses and InstCombine will not rewrite it. The code 8447 // below ensures that only the roots are used externally. 8448 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8449 for (auto &EU : ExternalUses) 8450 if (!Expr.erase(EU.Scalar)) 8451 return; 8452 if (!Expr.empty()) 8453 return; 8454 8455 // Collect the scalar values of the vectorizable expression. We will use this 8456 // context to determine which values can be demoted. If we see a truncation, 8457 // we mark it as seeding another demotion. 8458 for (auto &EntryPtr : VectorizableTree) 8459 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8460 8461 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8462 // have a single external user that is not in the vectorizable tree. 8463 for (auto *Root : TreeRoot) 8464 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8465 return; 8466 8467 // Conservatively determine if we can actually truncate the roots of the 8468 // expression. Collect the values that can be demoted in ToDemote and 8469 // additional roots that require investigating in Roots. 8470 SmallVector<Value *, 32> ToDemote; 8471 SmallVector<Value *, 4> Roots; 8472 for (auto *Root : TreeRoot) 8473 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8474 return; 8475 8476 // The maximum bit width required to represent all the values that can be 8477 // demoted without loss of precision. It would be safe to truncate the roots 8478 // of the expression to this width. 8479 auto MaxBitWidth = 8u; 8480 8481 // We first check if all the bits of the roots are demanded. If they're not, 8482 // we can truncate the roots to this narrower type. 8483 for (auto *Root : TreeRoot) { 8484 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8485 MaxBitWidth = std::max<unsigned>( 8486 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8487 } 8488 8489 // True if the roots can be zero-extended back to their original type, rather 8490 // than sign-extended. We know that if the leading bits are not demanded, we 8491 // can safely zero-extend. So we initialize IsKnownPositive to True. 8492 bool IsKnownPositive = true; 8493 8494 // If all the bits of the roots are demanded, we can try a little harder to 8495 // compute a narrower type. This can happen, for example, if the roots are 8496 // getelementptr indices. InstCombine promotes these indices to the pointer 8497 // width. Thus, all their bits are technically demanded even though the 8498 // address computation might be vectorized in a smaller type. 8499 // 8500 // We start by looking at each entry that can be demoted. We compute the 8501 // maximum bit width required to store the scalar by using ValueTracking to 8502 // compute the number of high-order bits we can truncate. 8503 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8504 llvm::all_of(TreeRoot, [](Value *R) { 8505 assert(R->hasOneUse() && "Root should have only one use!"); 8506 return isa<GetElementPtrInst>(R->user_back()); 8507 })) { 8508 MaxBitWidth = 8u; 8509 8510 // Determine if the sign bit of all the roots is known to be zero. If not, 8511 // IsKnownPositive is set to False. 8512 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8513 KnownBits Known = computeKnownBits(R, *DL); 8514 return Known.isNonNegative(); 8515 }); 8516 8517 // Determine the maximum number of bits required to store the scalar 8518 // values. 8519 for (auto *Scalar : ToDemote) { 8520 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8521 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8522 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8523 } 8524 8525 // If we can't prove that the sign bit is zero, we must add one to the 8526 // maximum bit width to account for the unknown sign bit. This preserves 8527 // the existing sign bit so we can safely sign-extend the root back to the 8528 // original type. Otherwise, if we know the sign bit is zero, we will 8529 // zero-extend the root instead. 8530 // 8531 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8532 // one to the maximum bit width will yield a larger-than-necessary 8533 // type. In general, we need to add an extra bit only if we can't 8534 // prove that the upper bit of the original type is equal to the 8535 // upper bit of the proposed smaller type. If these two bits are the 8536 // same (either zero or one) we know that sign-extending from the 8537 // smaller type will result in the same value. Here, since we can't 8538 // yet prove this, we are just making the proposed smaller type 8539 // larger to ensure correctness. 8540 if (!IsKnownPositive) 8541 ++MaxBitWidth; 8542 } 8543 8544 // Round MaxBitWidth up to the next power-of-two. 8545 if (!isPowerOf2_64(MaxBitWidth)) 8546 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8547 8548 // If the maximum bit width we compute is less than the with of the roots' 8549 // type, we can proceed with the narrowing. Otherwise, do nothing. 8550 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8551 return; 8552 8553 // If we can truncate the root, we must collect additional values that might 8554 // be demoted as a result. That is, those seeded by truncations we will 8555 // modify. 8556 while (!Roots.empty()) 8557 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8558 8559 // Finally, map the values we can demote to the maximum bit with we computed. 8560 for (auto *Scalar : ToDemote) 8561 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8562 } 8563 8564 namespace { 8565 8566 /// The SLPVectorizer Pass. 8567 struct SLPVectorizer : public FunctionPass { 8568 SLPVectorizerPass Impl; 8569 8570 /// Pass identification, replacement for typeid 8571 static char ID; 8572 8573 explicit SLPVectorizer() : FunctionPass(ID) { 8574 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8575 } 8576 8577 bool doInitialization(Module &M) override { return false; } 8578 8579 bool runOnFunction(Function &F) override { 8580 if (skipFunction(F)) 8581 return false; 8582 8583 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8584 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8585 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8586 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8587 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8588 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8589 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8590 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8591 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8592 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8593 8594 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8595 } 8596 8597 void getAnalysisUsage(AnalysisUsage &AU) const override { 8598 FunctionPass::getAnalysisUsage(AU); 8599 AU.addRequired<AssumptionCacheTracker>(); 8600 AU.addRequired<ScalarEvolutionWrapperPass>(); 8601 AU.addRequired<AAResultsWrapperPass>(); 8602 AU.addRequired<TargetTransformInfoWrapperPass>(); 8603 AU.addRequired<LoopInfoWrapperPass>(); 8604 AU.addRequired<DominatorTreeWrapperPass>(); 8605 AU.addRequired<DemandedBitsWrapperPass>(); 8606 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8607 AU.addRequired<InjectTLIMappingsLegacy>(); 8608 AU.addPreserved<LoopInfoWrapperPass>(); 8609 AU.addPreserved<DominatorTreeWrapperPass>(); 8610 AU.addPreserved<AAResultsWrapperPass>(); 8611 AU.addPreserved<GlobalsAAWrapperPass>(); 8612 AU.setPreservesCFG(); 8613 } 8614 }; 8615 8616 } // end anonymous namespace 8617 8618 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8619 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8620 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8621 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8622 auto *AA = &AM.getResult<AAManager>(F); 8623 auto *LI = &AM.getResult<LoopAnalysis>(F); 8624 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8625 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8626 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8627 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8628 8629 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8630 if (!Changed) 8631 return PreservedAnalyses::all(); 8632 8633 PreservedAnalyses PA; 8634 PA.preserveSet<CFGAnalyses>(); 8635 return PA; 8636 } 8637 8638 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8639 TargetTransformInfo *TTI_, 8640 TargetLibraryInfo *TLI_, AAResults *AA_, 8641 LoopInfo *LI_, DominatorTree *DT_, 8642 AssumptionCache *AC_, DemandedBits *DB_, 8643 OptimizationRemarkEmitter *ORE_) { 8644 if (!RunSLPVectorization) 8645 return false; 8646 SE = SE_; 8647 TTI = TTI_; 8648 TLI = TLI_; 8649 AA = AA_; 8650 LI = LI_; 8651 DT = DT_; 8652 AC = AC_; 8653 DB = DB_; 8654 DL = &F.getParent()->getDataLayout(); 8655 8656 Stores.clear(); 8657 GEPs.clear(); 8658 bool Changed = false; 8659 8660 // If the target claims to have no vector registers don't attempt 8661 // vectorization. 8662 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8663 LLVM_DEBUG( 8664 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8665 return false; 8666 } 8667 8668 // Don't vectorize when the attribute NoImplicitFloat is used. 8669 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8670 return false; 8671 8672 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8673 8674 // Use the bottom up slp vectorizer to construct chains that start with 8675 // store instructions. 8676 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8677 8678 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8679 // delete instructions. 8680 8681 // Update DFS numbers now so that we can use them for ordering. 8682 DT->updateDFSNumbers(); 8683 8684 // Scan the blocks in the function in post order. 8685 for (auto BB : post_order(&F.getEntryBlock())) { 8686 collectSeedInstructions(BB); 8687 8688 // Vectorize trees that end at stores. 8689 if (!Stores.empty()) { 8690 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8691 << " underlying objects.\n"); 8692 Changed |= vectorizeStoreChains(R); 8693 } 8694 8695 // Vectorize trees that end at reductions. 8696 Changed |= vectorizeChainsInBlock(BB, R); 8697 8698 // Vectorize the index computations of getelementptr instructions. This 8699 // is primarily intended to catch gather-like idioms ending at 8700 // non-consecutive loads. 8701 if (!GEPs.empty()) { 8702 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8703 << " underlying objects.\n"); 8704 Changed |= vectorizeGEPIndices(BB, R); 8705 } 8706 } 8707 8708 if (Changed) { 8709 R.optimizeGatherSequence(); 8710 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8711 } 8712 return Changed; 8713 } 8714 8715 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8716 unsigned Idx) { 8717 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8718 << "\n"); 8719 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8720 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8721 unsigned VF = Chain.size(); 8722 8723 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8724 return false; 8725 8726 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8727 << "\n"); 8728 8729 R.buildTree(Chain); 8730 if (R.isTreeTinyAndNotFullyVectorizable()) 8731 return false; 8732 if (R.isLoadCombineCandidate()) 8733 return false; 8734 R.reorderTopToBottom(); 8735 R.reorderBottomToTop(); 8736 R.buildExternalUses(); 8737 8738 R.computeMinimumValueSizes(); 8739 8740 InstructionCost Cost = R.getTreeCost(); 8741 8742 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8743 if (Cost < -SLPCostThreshold) { 8744 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8745 8746 using namespace ore; 8747 8748 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8749 cast<StoreInst>(Chain[0])) 8750 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8751 << " and with tree size " 8752 << NV("TreeSize", R.getTreeSize())); 8753 8754 R.vectorizeTree(); 8755 return true; 8756 } 8757 8758 return false; 8759 } 8760 8761 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8762 BoUpSLP &R) { 8763 // We may run into multiple chains that merge into a single chain. We mark the 8764 // stores that we vectorized so that we don't visit the same store twice. 8765 BoUpSLP::ValueSet VectorizedStores; 8766 bool Changed = false; 8767 8768 int E = Stores.size(); 8769 SmallBitVector Tails(E, false); 8770 int MaxIter = MaxStoreLookup.getValue(); 8771 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8772 E, std::make_pair(E, INT_MAX)); 8773 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8774 int IterCnt; 8775 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8776 &CheckedPairs, 8777 &ConsecutiveChain](int K, int Idx) { 8778 if (IterCnt >= MaxIter) 8779 return true; 8780 if (CheckedPairs[Idx].test(K)) 8781 return ConsecutiveChain[K].second == 1 && 8782 ConsecutiveChain[K].first == Idx; 8783 ++IterCnt; 8784 CheckedPairs[Idx].set(K); 8785 CheckedPairs[K].set(Idx); 8786 Optional<int> Diff = getPointersDiff( 8787 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8788 Stores[Idx]->getValueOperand()->getType(), 8789 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8790 if (!Diff || *Diff == 0) 8791 return false; 8792 int Val = *Diff; 8793 if (Val < 0) { 8794 if (ConsecutiveChain[Idx].second > -Val) { 8795 Tails.set(K); 8796 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8797 } 8798 return false; 8799 } 8800 if (ConsecutiveChain[K].second <= Val) 8801 return false; 8802 8803 Tails.set(Idx); 8804 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8805 return Val == 1; 8806 }; 8807 // Do a quadratic search on all of the given stores in reverse order and find 8808 // all of the pairs of stores that follow each other. 8809 for (int Idx = E - 1; Idx >= 0; --Idx) { 8810 // If a store has multiple consecutive store candidates, search according 8811 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8812 // This is because usually pairing with immediate succeeding or preceding 8813 // candidate create the best chance to find slp vectorization opportunity. 8814 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8815 IterCnt = 0; 8816 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8817 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8818 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8819 break; 8820 } 8821 8822 // Tracks if we tried to vectorize stores starting from the given tail 8823 // already. 8824 SmallBitVector TriedTails(E, false); 8825 // For stores that start but don't end a link in the chain: 8826 for (int Cnt = E; Cnt > 0; --Cnt) { 8827 int I = Cnt - 1; 8828 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8829 continue; 8830 // We found a store instr that starts a chain. Now follow the chain and try 8831 // to vectorize it. 8832 BoUpSLP::ValueList Operands; 8833 // Collect the chain into a list. 8834 while (I != E && !VectorizedStores.count(Stores[I])) { 8835 Operands.push_back(Stores[I]); 8836 Tails.set(I); 8837 if (ConsecutiveChain[I].second != 1) { 8838 // Mark the new end in the chain and go back, if required. It might be 8839 // required if the original stores come in reversed order, for example. 8840 if (ConsecutiveChain[I].first != E && 8841 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8842 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8843 TriedTails.set(I); 8844 Tails.reset(ConsecutiveChain[I].first); 8845 if (Cnt < ConsecutiveChain[I].first + 2) 8846 Cnt = ConsecutiveChain[I].first + 2; 8847 } 8848 break; 8849 } 8850 // Move to the next value in the chain. 8851 I = ConsecutiveChain[I].first; 8852 } 8853 assert(!Operands.empty() && "Expected non-empty list of stores."); 8854 8855 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8856 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8857 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8858 8859 unsigned MinVF = R.getMinVF(EltSize); 8860 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8861 MaxElts); 8862 8863 // FIXME: Is division-by-2 the correct step? Should we assert that the 8864 // register size is a power-of-2? 8865 unsigned StartIdx = 0; 8866 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8867 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8868 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8869 if (!VectorizedStores.count(Slice.front()) && 8870 !VectorizedStores.count(Slice.back()) && 8871 vectorizeStoreChain(Slice, R, Cnt)) { 8872 // Mark the vectorized stores so that we don't vectorize them again. 8873 VectorizedStores.insert(Slice.begin(), Slice.end()); 8874 Changed = true; 8875 // If we vectorized initial block, no need to try to vectorize it 8876 // again. 8877 if (Cnt == StartIdx) 8878 StartIdx += Size; 8879 Cnt += Size; 8880 continue; 8881 } 8882 ++Cnt; 8883 } 8884 // Check if the whole array was vectorized already - exit. 8885 if (StartIdx >= Operands.size()) 8886 break; 8887 } 8888 } 8889 8890 return Changed; 8891 } 8892 8893 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8894 // Initialize the collections. We will make a single pass over the block. 8895 Stores.clear(); 8896 GEPs.clear(); 8897 8898 // Visit the store and getelementptr instructions in BB and organize them in 8899 // Stores and GEPs according to the underlying objects of their pointer 8900 // operands. 8901 for (Instruction &I : *BB) { 8902 // Ignore store instructions that are volatile or have a pointer operand 8903 // that doesn't point to a scalar type. 8904 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8905 if (!SI->isSimple()) 8906 continue; 8907 if (!isValidElementType(SI->getValueOperand()->getType())) 8908 continue; 8909 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8910 } 8911 8912 // Ignore getelementptr instructions that have more than one index, a 8913 // constant index, or a pointer operand that doesn't point to a scalar 8914 // type. 8915 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8916 auto Idx = GEP->idx_begin()->get(); 8917 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8918 continue; 8919 if (!isValidElementType(Idx->getType())) 8920 continue; 8921 if (GEP->getType()->isVectorTy()) 8922 continue; 8923 GEPs[GEP->getPointerOperand()].push_back(GEP); 8924 } 8925 } 8926 } 8927 8928 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8929 if (!A || !B) 8930 return false; 8931 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8932 return false; 8933 Value *VL[] = {A, B}; 8934 return tryToVectorizeList(VL, R); 8935 } 8936 8937 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8938 bool LimitForRegisterSize) { 8939 if (VL.size() < 2) 8940 return false; 8941 8942 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8943 << VL.size() << ".\n"); 8944 8945 // Check that all of the parts are instructions of the same type, 8946 // we permit an alternate opcode via InstructionsState. 8947 InstructionsState S = getSameOpcode(VL); 8948 if (!S.getOpcode()) 8949 return false; 8950 8951 Instruction *I0 = cast<Instruction>(S.OpValue); 8952 // Make sure invalid types (including vector type) are rejected before 8953 // determining vectorization factor for scalar instructions. 8954 for (Value *V : VL) { 8955 Type *Ty = V->getType(); 8956 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8957 // NOTE: the following will give user internal llvm type name, which may 8958 // not be useful. 8959 R.getORE()->emit([&]() { 8960 std::string type_str; 8961 llvm::raw_string_ostream rso(type_str); 8962 Ty->print(rso); 8963 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8964 << "Cannot SLP vectorize list: type " 8965 << rso.str() + " is unsupported by vectorizer"; 8966 }); 8967 return false; 8968 } 8969 } 8970 8971 unsigned Sz = R.getVectorElementSize(I0); 8972 unsigned MinVF = R.getMinVF(Sz); 8973 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8974 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8975 if (MaxVF < 2) { 8976 R.getORE()->emit([&]() { 8977 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8978 << "Cannot SLP vectorize list: vectorization factor " 8979 << "less than 2 is not supported"; 8980 }); 8981 return false; 8982 } 8983 8984 bool Changed = false; 8985 bool CandidateFound = false; 8986 InstructionCost MinCost = SLPCostThreshold.getValue(); 8987 Type *ScalarTy = VL[0]->getType(); 8988 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8989 ScalarTy = IE->getOperand(1)->getType(); 8990 8991 unsigned NextInst = 0, MaxInst = VL.size(); 8992 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8993 // No actual vectorization should happen, if number of parts is the same as 8994 // provided vectorization factor (i.e. the scalar type is used for vector 8995 // code during codegen). 8996 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8997 if (TTI->getNumberOfParts(VecTy) == VF) 8998 continue; 8999 for (unsigned I = NextInst; I < MaxInst; ++I) { 9000 unsigned OpsWidth = 0; 9001 9002 if (I + VF > MaxInst) 9003 OpsWidth = MaxInst - I; 9004 else 9005 OpsWidth = VF; 9006 9007 if (!isPowerOf2_32(OpsWidth)) 9008 continue; 9009 9010 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9011 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9012 break; 9013 9014 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9015 // Check that a previous iteration of this loop did not delete the Value. 9016 if (llvm::any_of(Ops, [&R](Value *V) { 9017 auto *I = dyn_cast<Instruction>(V); 9018 return I && R.isDeleted(I); 9019 })) 9020 continue; 9021 9022 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9023 << "\n"); 9024 9025 R.buildTree(Ops); 9026 if (R.isTreeTinyAndNotFullyVectorizable()) 9027 continue; 9028 R.reorderTopToBottom(); 9029 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9030 R.buildExternalUses(); 9031 9032 R.computeMinimumValueSizes(); 9033 InstructionCost Cost = R.getTreeCost(); 9034 CandidateFound = true; 9035 MinCost = std::min(MinCost, Cost); 9036 9037 if (Cost < -SLPCostThreshold) { 9038 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9039 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9040 cast<Instruction>(Ops[0])) 9041 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9042 << " and with tree size " 9043 << ore::NV("TreeSize", R.getTreeSize())); 9044 9045 R.vectorizeTree(); 9046 // Move to the next bundle. 9047 I += VF - 1; 9048 NextInst = I + 1; 9049 Changed = true; 9050 } 9051 } 9052 } 9053 9054 if (!Changed && CandidateFound) { 9055 R.getORE()->emit([&]() { 9056 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9057 << "List vectorization was possible but not beneficial with cost " 9058 << ore::NV("Cost", MinCost) << " >= " 9059 << ore::NV("Treshold", -SLPCostThreshold); 9060 }); 9061 } else if (!Changed) { 9062 R.getORE()->emit([&]() { 9063 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9064 << "Cannot SLP vectorize list: vectorization was impossible" 9065 << " with available vectorization factors"; 9066 }); 9067 } 9068 return Changed; 9069 } 9070 9071 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9072 if (!I) 9073 return false; 9074 9075 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9076 return false; 9077 9078 Value *P = I->getParent(); 9079 9080 // Vectorize in current basic block only. 9081 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9082 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9083 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9084 return false; 9085 9086 // Try to vectorize V. 9087 if (tryToVectorizePair(Op0, Op1, R)) 9088 return true; 9089 9090 auto *A = dyn_cast<BinaryOperator>(Op0); 9091 auto *B = dyn_cast<BinaryOperator>(Op1); 9092 // Try to skip B. 9093 if (B && B->hasOneUse()) { 9094 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9095 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9096 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9097 return true; 9098 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9099 return true; 9100 } 9101 9102 // Try to skip A. 9103 if (A && A->hasOneUse()) { 9104 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9105 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9106 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9107 return true; 9108 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9109 return true; 9110 } 9111 return false; 9112 } 9113 9114 namespace { 9115 9116 /// Model horizontal reductions. 9117 /// 9118 /// A horizontal reduction is a tree of reduction instructions that has values 9119 /// that can be put into a vector as its leaves. For example: 9120 /// 9121 /// mul mul mul mul 9122 /// \ / \ / 9123 /// + + 9124 /// \ / 9125 /// + 9126 /// This tree has "mul" as its leaf values and "+" as its reduction 9127 /// instructions. A reduction can feed into a store or a binary operation 9128 /// feeding a phi. 9129 /// ... 9130 /// \ / 9131 /// + 9132 /// | 9133 /// phi += 9134 /// 9135 /// Or: 9136 /// ... 9137 /// \ / 9138 /// + 9139 /// | 9140 /// *p = 9141 /// 9142 class HorizontalReduction { 9143 using ReductionOpsType = SmallVector<Value *, 16>; 9144 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9145 ReductionOpsListType ReductionOps; 9146 SmallVector<Value *, 32> ReducedVals; 9147 // Use map vector to make stable output. 9148 MapVector<Instruction *, Value *> ExtraArgs; 9149 WeakTrackingVH ReductionRoot; 9150 /// The type of reduction operation. 9151 RecurKind RdxKind; 9152 9153 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9154 9155 static bool isCmpSelMinMax(Instruction *I) { 9156 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9157 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9158 } 9159 9160 // And/or are potentially poison-safe logical patterns like: 9161 // select x, y, false 9162 // select x, true, y 9163 static bool isBoolLogicOp(Instruction *I) { 9164 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9165 match(I, m_LogicalOr(m_Value(), m_Value())); 9166 } 9167 9168 /// Checks if instruction is associative and can be vectorized. 9169 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9170 if (Kind == RecurKind::None) 9171 return false; 9172 9173 // Integer ops that map to select instructions or intrinsics are fine. 9174 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9175 isBoolLogicOp(I)) 9176 return true; 9177 9178 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9179 // FP min/max are associative except for NaN and -0.0. We do not 9180 // have to rule out -0.0 here because the intrinsic semantics do not 9181 // specify a fixed result for it. 9182 return I->getFastMathFlags().noNaNs(); 9183 } 9184 9185 return I->isAssociative(); 9186 } 9187 9188 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9189 // Poison-safe 'or' takes the form: select X, true, Y 9190 // To make that work with the normal operand processing, we skip the 9191 // true value operand. 9192 // TODO: Change the code and data structures to handle this without a hack. 9193 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9194 return I->getOperand(2); 9195 return I->getOperand(Index); 9196 } 9197 9198 /// Checks if the ParentStackElem.first should be marked as a reduction 9199 /// operation with an extra argument or as extra argument itself. 9200 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9201 Value *ExtraArg) { 9202 if (ExtraArgs.count(ParentStackElem.first)) { 9203 ExtraArgs[ParentStackElem.first] = nullptr; 9204 // We ran into something like: 9205 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9206 // The whole ParentStackElem.first should be considered as an extra value 9207 // in this case. 9208 // Do not perform analysis of remaining operands of ParentStackElem.first 9209 // instruction, this whole instruction is an extra argument. 9210 ParentStackElem.second = INVALID_OPERAND_INDEX; 9211 } else { 9212 // We ran into something like: 9213 // ParentStackElem.first += ... + ExtraArg + ... 9214 ExtraArgs[ParentStackElem.first] = ExtraArg; 9215 } 9216 } 9217 9218 /// Creates reduction operation with the current opcode. 9219 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9220 Value *RHS, const Twine &Name, bool UseSelect) { 9221 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9222 switch (Kind) { 9223 case RecurKind::Or: 9224 if (UseSelect && 9225 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9226 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9227 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9228 Name); 9229 case RecurKind::And: 9230 if (UseSelect && 9231 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9232 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9233 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9234 Name); 9235 case RecurKind::Add: 9236 case RecurKind::Mul: 9237 case RecurKind::Xor: 9238 case RecurKind::FAdd: 9239 case RecurKind::FMul: 9240 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9241 Name); 9242 case RecurKind::FMax: 9243 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9244 case RecurKind::FMin: 9245 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9246 case RecurKind::SMax: 9247 if (UseSelect) { 9248 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9249 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9250 } 9251 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9252 case RecurKind::SMin: 9253 if (UseSelect) { 9254 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9255 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9256 } 9257 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9258 case RecurKind::UMax: 9259 if (UseSelect) { 9260 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9261 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9262 } 9263 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9264 case RecurKind::UMin: 9265 if (UseSelect) { 9266 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9267 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9268 } 9269 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9270 default: 9271 llvm_unreachable("Unknown reduction operation."); 9272 } 9273 } 9274 9275 /// Creates reduction operation with the current opcode with the IR flags 9276 /// from \p ReductionOps. 9277 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9278 Value *RHS, const Twine &Name, 9279 const ReductionOpsListType &ReductionOps) { 9280 bool UseSelect = ReductionOps.size() == 2 || 9281 // Logical or/and. 9282 (ReductionOps.size() == 1 && 9283 isa<SelectInst>(ReductionOps.front().front())); 9284 assert((!UseSelect || ReductionOps.size() != 2 || 9285 isa<SelectInst>(ReductionOps[1][0])) && 9286 "Expected cmp + select pairs for reduction"); 9287 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9288 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9289 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9290 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9291 propagateIRFlags(Op, ReductionOps[1]); 9292 return Op; 9293 } 9294 } 9295 propagateIRFlags(Op, ReductionOps[0]); 9296 return Op; 9297 } 9298 9299 /// Creates reduction operation with the current opcode with the IR flags 9300 /// from \p I. 9301 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9302 Value *RHS, const Twine &Name, Instruction *I) { 9303 auto *SelI = dyn_cast<SelectInst>(I); 9304 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9305 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9306 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9307 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9308 } 9309 propagateIRFlags(Op, I); 9310 return Op; 9311 } 9312 9313 static RecurKind getRdxKind(Instruction *I) { 9314 assert(I && "Expected instruction for reduction matching"); 9315 if (match(I, m_Add(m_Value(), m_Value()))) 9316 return RecurKind::Add; 9317 if (match(I, m_Mul(m_Value(), m_Value()))) 9318 return RecurKind::Mul; 9319 if (match(I, m_And(m_Value(), m_Value())) || 9320 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9321 return RecurKind::And; 9322 if (match(I, m_Or(m_Value(), m_Value())) || 9323 match(I, m_LogicalOr(m_Value(), m_Value()))) 9324 return RecurKind::Or; 9325 if (match(I, m_Xor(m_Value(), m_Value()))) 9326 return RecurKind::Xor; 9327 if (match(I, m_FAdd(m_Value(), m_Value()))) 9328 return RecurKind::FAdd; 9329 if (match(I, m_FMul(m_Value(), m_Value()))) 9330 return RecurKind::FMul; 9331 9332 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9333 return RecurKind::FMax; 9334 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9335 return RecurKind::FMin; 9336 9337 // This matches either cmp+select or intrinsics. SLP is expected to handle 9338 // either form. 9339 // TODO: If we are canonicalizing to intrinsics, we can remove several 9340 // special-case paths that deal with selects. 9341 if (match(I, m_SMax(m_Value(), m_Value()))) 9342 return RecurKind::SMax; 9343 if (match(I, m_SMin(m_Value(), m_Value()))) 9344 return RecurKind::SMin; 9345 if (match(I, m_UMax(m_Value(), m_Value()))) 9346 return RecurKind::UMax; 9347 if (match(I, m_UMin(m_Value(), m_Value()))) 9348 return RecurKind::UMin; 9349 9350 if (auto *Select = dyn_cast<SelectInst>(I)) { 9351 // Try harder: look for min/max pattern based on instructions producing 9352 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9353 // During the intermediate stages of SLP, it's very common to have 9354 // pattern like this (since optimizeGatherSequence is run only once 9355 // at the end): 9356 // %1 = extractelement <2 x i32> %a, i32 0 9357 // %2 = extractelement <2 x i32> %a, i32 1 9358 // %cond = icmp sgt i32 %1, %2 9359 // %3 = extractelement <2 x i32> %a, i32 0 9360 // %4 = extractelement <2 x i32> %a, i32 1 9361 // %select = select i1 %cond, i32 %3, i32 %4 9362 CmpInst::Predicate Pred; 9363 Instruction *L1; 9364 Instruction *L2; 9365 9366 Value *LHS = Select->getTrueValue(); 9367 Value *RHS = Select->getFalseValue(); 9368 Value *Cond = Select->getCondition(); 9369 9370 // TODO: Support inverse predicates. 9371 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9372 if (!isa<ExtractElementInst>(RHS) || 9373 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9374 return RecurKind::None; 9375 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9376 if (!isa<ExtractElementInst>(LHS) || 9377 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9378 return RecurKind::None; 9379 } else { 9380 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9381 return RecurKind::None; 9382 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9383 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9384 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9385 return RecurKind::None; 9386 } 9387 9388 switch (Pred) { 9389 default: 9390 return RecurKind::None; 9391 case CmpInst::ICMP_SGT: 9392 case CmpInst::ICMP_SGE: 9393 return RecurKind::SMax; 9394 case CmpInst::ICMP_SLT: 9395 case CmpInst::ICMP_SLE: 9396 return RecurKind::SMin; 9397 case CmpInst::ICMP_UGT: 9398 case CmpInst::ICMP_UGE: 9399 return RecurKind::UMax; 9400 case CmpInst::ICMP_ULT: 9401 case CmpInst::ICMP_ULE: 9402 return RecurKind::UMin; 9403 } 9404 } 9405 return RecurKind::None; 9406 } 9407 9408 /// Get the index of the first operand. 9409 static unsigned getFirstOperandIndex(Instruction *I) { 9410 return isCmpSelMinMax(I) ? 1 : 0; 9411 } 9412 9413 /// Total number of operands in the reduction operation. 9414 static unsigned getNumberOfOperands(Instruction *I) { 9415 return isCmpSelMinMax(I) ? 3 : 2; 9416 } 9417 9418 /// Checks if the instruction is in basic block \p BB. 9419 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9420 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9421 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9422 auto *Sel = cast<SelectInst>(I); 9423 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9424 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9425 } 9426 return I->getParent() == BB; 9427 } 9428 9429 /// Expected number of uses for reduction operations/reduced values. 9430 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9431 if (IsCmpSelMinMax) { 9432 // SelectInst must be used twice while the condition op must have single 9433 // use only. 9434 if (auto *Sel = dyn_cast<SelectInst>(I)) 9435 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9436 return I->hasNUses(2); 9437 } 9438 9439 // Arithmetic reduction operation must be used once only. 9440 return I->hasOneUse(); 9441 } 9442 9443 /// Initializes the list of reduction operations. 9444 void initReductionOps(Instruction *I) { 9445 if (isCmpSelMinMax(I)) 9446 ReductionOps.assign(2, ReductionOpsType()); 9447 else 9448 ReductionOps.assign(1, ReductionOpsType()); 9449 } 9450 9451 /// Add all reduction operations for the reduction instruction \p I. 9452 void addReductionOps(Instruction *I) { 9453 if (isCmpSelMinMax(I)) { 9454 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9455 ReductionOps[1].emplace_back(I); 9456 } else { 9457 ReductionOps[0].emplace_back(I); 9458 } 9459 } 9460 9461 static Value *getLHS(RecurKind Kind, Instruction *I) { 9462 if (Kind == RecurKind::None) 9463 return nullptr; 9464 return I->getOperand(getFirstOperandIndex(I)); 9465 } 9466 static Value *getRHS(RecurKind Kind, Instruction *I) { 9467 if (Kind == RecurKind::None) 9468 return nullptr; 9469 return I->getOperand(getFirstOperandIndex(I) + 1); 9470 } 9471 9472 public: 9473 HorizontalReduction() = default; 9474 9475 /// Try to find a reduction tree. 9476 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9477 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9478 "Phi needs to use the binary operator"); 9479 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9480 isa<IntrinsicInst>(Inst)) && 9481 "Expected binop, select, or intrinsic for reduction matching"); 9482 RdxKind = getRdxKind(Inst); 9483 9484 // We could have a initial reductions that is not an add. 9485 // r *= v1 + v2 + v3 + v4 9486 // In such a case start looking for a tree rooted in the first '+'. 9487 if (Phi) { 9488 if (getLHS(RdxKind, Inst) == Phi) { 9489 Phi = nullptr; 9490 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9491 if (!Inst) 9492 return false; 9493 RdxKind = getRdxKind(Inst); 9494 } else if (getRHS(RdxKind, Inst) == Phi) { 9495 Phi = nullptr; 9496 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9497 if (!Inst) 9498 return false; 9499 RdxKind = getRdxKind(Inst); 9500 } 9501 } 9502 9503 if (!isVectorizable(RdxKind, Inst)) 9504 return false; 9505 9506 // Analyze "regular" integer/FP types for reductions - no target-specific 9507 // types or pointers. 9508 Type *Ty = Inst->getType(); 9509 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9510 return false; 9511 9512 // Though the ultimate reduction may have multiple uses, its condition must 9513 // have only single use. 9514 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9515 if (!Sel->getCondition()->hasOneUse()) 9516 return false; 9517 9518 ReductionRoot = Inst; 9519 9520 // The opcode for leaf values that we perform a reduction on. 9521 // For example: load(x) + load(y) + load(z) + fptoui(w) 9522 // The leaf opcode for 'w' does not match, so we don't include it as a 9523 // potential candidate for the reduction. 9524 unsigned LeafOpcode = 0; 9525 9526 // Post-order traverse the reduction tree starting at Inst. We only handle 9527 // true trees containing binary operators or selects. 9528 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9529 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9530 initReductionOps(Inst); 9531 while (!Stack.empty()) { 9532 Instruction *TreeN = Stack.back().first; 9533 unsigned EdgeToVisit = Stack.back().second++; 9534 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9535 bool IsReducedValue = TreeRdxKind != RdxKind; 9536 9537 // Postorder visit. 9538 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9539 if (IsReducedValue) 9540 ReducedVals.push_back(TreeN); 9541 else { 9542 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9543 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9544 // Check if TreeN is an extra argument of its parent operation. 9545 if (Stack.size() <= 1) { 9546 // TreeN can't be an extra argument as it is a root reduction 9547 // operation. 9548 return false; 9549 } 9550 // Yes, TreeN is an extra argument, do not add it to a list of 9551 // reduction operations. 9552 // Stack[Stack.size() - 2] always points to the parent operation. 9553 markExtraArg(Stack[Stack.size() - 2], TreeN); 9554 ExtraArgs.erase(TreeN); 9555 } else 9556 addReductionOps(TreeN); 9557 } 9558 // Retract. 9559 Stack.pop_back(); 9560 continue; 9561 } 9562 9563 // Visit operands. 9564 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9565 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9566 if (!EdgeInst) { 9567 // Edge value is not a reduction instruction or a leaf instruction. 9568 // (It may be a constant, function argument, or something else.) 9569 markExtraArg(Stack.back(), EdgeVal); 9570 continue; 9571 } 9572 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9573 // Continue analysis if the next operand is a reduction operation or 9574 // (possibly) a leaf value. If the leaf value opcode is not set, 9575 // the first met operation != reduction operation is considered as the 9576 // leaf opcode. 9577 // Only handle trees in the current basic block. 9578 // Each tree node needs to have minimal number of users except for the 9579 // ultimate reduction. 9580 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9581 if (EdgeInst != Phi && EdgeInst != Inst && 9582 hasSameParent(EdgeInst, Inst->getParent()) && 9583 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9584 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9585 if (IsRdxInst) { 9586 // We need to be able to reassociate the reduction operations. 9587 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9588 // I is an extra argument for TreeN (its parent operation). 9589 markExtraArg(Stack.back(), EdgeInst); 9590 continue; 9591 } 9592 } else if (!LeafOpcode) { 9593 LeafOpcode = EdgeInst->getOpcode(); 9594 } 9595 Stack.push_back( 9596 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9597 continue; 9598 } 9599 // I is an extra argument for TreeN (its parent operation). 9600 markExtraArg(Stack.back(), EdgeInst); 9601 } 9602 return true; 9603 } 9604 9605 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9606 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9607 // If there are a sufficient number of reduction values, reduce 9608 // to a nearby power-of-2. We can safely generate oversized 9609 // vectors and rely on the backend to split them to legal sizes. 9610 unsigned NumReducedVals = ReducedVals.size(); 9611 if (NumReducedVals < 4) 9612 return nullptr; 9613 9614 // Intersect the fast-math-flags from all reduction operations. 9615 FastMathFlags RdxFMF; 9616 RdxFMF.set(); 9617 for (ReductionOpsType &RdxOp : ReductionOps) { 9618 for (Value *RdxVal : RdxOp) { 9619 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9620 RdxFMF &= FPMO->getFastMathFlags(); 9621 } 9622 } 9623 9624 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9625 Builder.setFastMathFlags(RdxFMF); 9626 9627 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9628 // The same extra argument may be used several times, so log each attempt 9629 // to use it. 9630 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9631 assert(Pair.first && "DebugLoc must be set."); 9632 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9633 } 9634 9635 // The compare instruction of a min/max is the insertion point for new 9636 // instructions and may be replaced with a new compare instruction. 9637 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9638 assert(isa<SelectInst>(RdxRootInst) && 9639 "Expected min/max reduction to have select root instruction"); 9640 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9641 assert(isa<Instruction>(ScalarCond) && 9642 "Expected min/max reduction to have compare condition"); 9643 return cast<Instruction>(ScalarCond); 9644 }; 9645 9646 // The reduction root is used as the insertion point for new instructions, 9647 // so set it as externally used to prevent it from being deleted. 9648 ExternallyUsedValues[ReductionRoot]; 9649 SmallVector<Value *, 16> IgnoreList; 9650 for (ReductionOpsType &RdxOp : ReductionOps) 9651 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9652 9653 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9654 if (NumReducedVals > ReduxWidth) { 9655 // In the loop below, we are building a tree based on a window of 9656 // 'ReduxWidth' values. 9657 // If the operands of those values have common traits (compare predicate, 9658 // constant operand, etc), then we want to group those together to 9659 // minimize the cost of the reduction. 9660 9661 // TODO: This should be extended to count common operands for 9662 // compares and binops. 9663 9664 // Step 1: Count the number of times each compare predicate occurs. 9665 SmallDenseMap<unsigned, unsigned> PredCountMap; 9666 for (Value *RdxVal : ReducedVals) { 9667 CmpInst::Predicate Pred; 9668 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9669 ++PredCountMap[Pred]; 9670 } 9671 // Step 2: Sort the values so the most common predicates come first. 9672 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9673 CmpInst::Predicate PredA, PredB; 9674 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9675 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9676 return PredCountMap[PredA] > PredCountMap[PredB]; 9677 } 9678 return false; 9679 }); 9680 } 9681 9682 Value *VectorizedTree = nullptr; 9683 unsigned i = 0; 9684 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9685 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9686 V.buildTree(VL, IgnoreList); 9687 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9688 break; 9689 if (V.isLoadCombineReductionCandidate(RdxKind)) 9690 break; 9691 V.reorderTopToBottom(); 9692 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9693 V.buildExternalUses(ExternallyUsedValues); 9694 9695 // For a poison-safe boolean logic reduction, do not replace select 9696 // instructions with logic ops. All reduced values will be frozen (see 9697 // below) to prevent leaking poison. 9698 if (isa<SelectInst>(ReductionRoot) && 9699 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9700 NumReducedVals != ReduxWidth) 9701 break; 9702 9703 V.computeMinimumValueSizes(); 9704 9705 // Estimate cost. 9706 InstructionCost TreeCost = 9707 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9708 InstructionCost ReductionCost = 9709 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9710 InstructionCost Cost = TreeCost + ReductionCost; 9711 if (!Cost.isValid()) { 9712 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9713 return nullptr; 9714 } 9715 if (Cost >= -SLPCostThreshold) { 9716 V.getORE()->emit([&]() { 9717 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9718 cast<Instruction>(VL[0])) 9719 << "Vectorizing horizontal reduction is possible" 9720 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9721 << " and threshold " 9722 << ore::NV("Threshold", -SLPCostThreshold); 9723 }); 9724 break; 9725 } 9726 9727 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9728 << Cost << ". (HorRdx)\n"); 9729 V.getORE()->emit([&]() { 9730 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9731 cast<Instruction>(VL[0])) 9732 << "Vectorized horizontal reduction with cost " 9733 << ore::NV("Cost", Cost) << " and with tree size " 9734 << ore::NV("TreeSize", V.getTreeSize()); 9735 }); 9736 9737 // Vectorize a tree. 9738 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9739 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9740 9741 // Emit a reduction. If the root is a select (min/max idiom), the insert 9742 // point is the compare condition of that select. 9743 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9744 if (isCmpSelMinMax(RdxRootInst)) 9745 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9746 else 9747 Builder.SetInsertPoint(RdxRootInst); 9748 9749 // To prevent poison from leaking across what used to be sequential, safe, 9750 // scalar boolean logic operations, the reduction operand must be frozen. 9751 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9752 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9753 9754 Value *ReducedSubTree = 9755 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9756 9757 if (!VectorizedTree) { 9758 // Initialize the final value in the reduction. 9759 VectorizedTree = ReducedSubTree; 9760 } else { 9761 // Update the final value in the reduction. 9762 Builder.SetCurrentDebugLocation(Loc); 9763 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9764 ReducedSubTree, "op.rdx", ReductionOps); 9765 } 9766 i += ReduxWidth; 9767 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9768 } 9769 9770 if (VectorizedTree) { 9771 // Finish the reduction. 9772 for (; i < NumReducedVals; ++i) { 9773 auto *I = cast<Instruction>(ReducedVals[i]); 9774 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9775 VectorizedTree = 9776 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9777 } 9778 for (auto &Pair : ExternallyUsedValues) { 9779 // Add each externally used value to the final reduction. 9780 for (auto *I : Pair.second) { 9781 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9782 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9783 Pair.first, "op.extra", I); 9784 } 9785 } 9786 9787 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9788 9789 // Mark all scalar reduction ops for deletion, they are replaced by the 9790 // vector reductions. 9791 V.eraseInstructions(IgnoreList); 9792 } 9793 return VectorizedTree; 9794 } 9795 9796 unsigned numReductionValues() const { return ReducedVals.size(); } 9797 9798 private: 9799 /// Calculate the cost of a reduction. 9800 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9801 Value *FirstReducedVal, unsigned ReduxWidth, 9802 FastMathFlags FMF) { 9803 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9804 Type *ScalarTy = FirstReducedVal->getType(); 9805 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9806 InstructionCost VectorCost, ScalarCost; 9807 switch (RdxKind) { 9808 case RecurKind::Add: 9809 case RecurKind::Mul: 9810 case RecurKind::Or: 9811 case RecurKind::And: 9812 case RecurKind::Xor: 9813 case RecurKind::FAdd: 9814 case RecurKind::FMul: { 9815 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9816 VectorCost = 9817 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9818 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9819 break; 9820 } 9821 case RecurKind::FMax: 9822 case RecurKind::FMin: { 9823 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9824 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9825 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9826 /*IsUnsigned=*/false, CostKind); 9827 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9828 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9829 SclCondTy, RdxPred, CostKind) + 9830 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9831 SclCondTy, RdxPred, CostKind); 9832 break; 9833 } 9834 case RecurKind::SMax: 9835 case RecurKind::SMin: 9836 case RecurKind::UMax: 9837 case RecurKind::UMin: { 9838 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9839 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9840 bool IsUnsigned = 9841 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9842 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9843 CostKind); 9844 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9845 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9846 SclCondTy, RdxPred, CostKind) + 9847 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9848 SclCondTy, RdxPred, CostKind); 9849 break; 9850 } 9851 default: 9852 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9853 } 9854 9855 // Scalar cost is repeated for N-1 elements. 9856 ScalarCost *= (ReduxWidth - 1); 9857 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9858 << " for reduction that starts with " << *FirstReducedVal 9859 << " (It is a splitting reduction)\n"); 9860 return VectorCost - ScalarCost; 9861 } 9862 9863 /// Emit a horizontal reduction of the vectorized value. 9864 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9865 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9866 assert(VectorizedValue && "Need to have a vectorized tree node"); 9867 assert(isPowerOf2_32(ReduxWidth) && 9868 "We only handle power-of-two reductions for now"); 9869 assert(RdxKind != RecurKind::FMulAdd && 9870 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9871 9872 ++NumVectorInstructions; 9873 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9874 } 9875 }; 9876 9877 } // end anonymous namespace 9878 9879 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9880 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9881 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9882 9883 unsigned AggregateSize = 1; 9884 auto *IV = cast<InsertValueInst>(InsertInst); 9885 Type *CurrentType = IV->getType(); 9886 do { 9887 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9888 for (auto *Elt : ST->elements()) 9889 if (Elt != ST->getElementType(0)) // check homogeneity 9890 return None; 9891 AggregateSize *= ST->getNumElements(); 9892 CurrentType = ST->getElementType(0); 9893 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9894 AggregateSize *= AT->getNumElements(); 9895 CurrentType = AT->getElementType(); 9896 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9897 AggregateSize *= VT->getNumElements(); 9898 return AggregateSize; 9899 } else if (CurrentType->isSingleValueType()) { 9900 return AggregateSize; 9901 } else { 9902 return None; 9903 } 9904 } while (true); 9905 } 9906 9907 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9908 TargetTransformInfo *TTI, 9909 SmallVectorImpl<Value *> &BuildVectorOpds, 9910 SmallVectorImpl<Value *> &InsertElts, 9911 unsigned OperandOffset) { 9912 do { 9913 Value *InsertedOperand = LastInsertInst->getOperand(1); 9914 Optional<unsigned> OperandIndex = 9915 getInsertIndex(LastInsertInst, OperandOffset); 9916 if (!OperandIndex) 9917 return; 9918 if (isa<InsertElementInst>(InsertedOperand) || 9919 isa<InsertValueInst>(InsertedOperand)) { 9920 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9921 BuildVectorOpds, InsertElts, *OperandIndex); 9922 9923 } else { 9924 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9925 InsertElts[*OperandIndex] = LastInsertInst; 9926 } 9927 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9928 } while (LastInsertInst != nullptr && 9929 (isa<InsertValueInst>(LastInsertInst) || 9930 isa<InsertElementInst>(LastInsertInst)) && 9931 LastInsertInst->hasOneUse()); 9932 } 9933 9934 /// Recognize construction of vectors like 9935 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9936 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9937 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9938 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9939 /// starting from the last insertelement or insertvalue instruction. 9940 /// 9941 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9942 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9943 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9944 /// 9945 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9946 /// 9947 /// \return true if it matches. 9948 static bool findBuildAggregate(Instruction *LastInsertInst, 9949 TargetTransformInfo *TTI, 9950 SmallVectorImpl<Value *> &BuildVectorOpds, 9951 SmallVectorImpl<Value *> &InsertElts) { 9952 9953 assert((isa<InsertElementInst>(LastInsertInst) || 9954 isa<InsertValueInst>(LastInsertInst)) && 9955 "Expected insertelement or insertvalue instruction!"); 9956 9957 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9958 "Expected empty result vectors!"); 9959 9960 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9961 if (!AggregateSize) 9962 return false; 9963 BuildVectorOpds.resize(*AggregateSize); 9964 InsertElts.resize(*AggregateSize); 9965 9966 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9967 llvm::erase_value(BuildVectorOpds, nullptr); 9968 llvm::erase_value(InsertElts, nullptr); 9969 if (BuildVectorOpds.size() >= 2) 9970 return true; 9971 9972 return false; 9973 } 9974 9975 /// Try and get a reduction value from a phi node. 9976 /// 9977 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9978 /// if they come from either \p ParentBB or a containing loop latch. 9979 /// 9980 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9981 /// if not possible. 9982 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9983 BasicBlock *ParentBB, LoopInfo *LI) { 9984 // There are situations where the reduction value is not dominated by the 9985 // reduction phi. Vectorizing such cases has been reported to cause 9986 // miscompiles. See PR25787. 9987 auto DominatedReduxValue = [&](Value *R) { 9988 return isa<Instruction>(R) && 9989 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9990 }; 9991 9992 Value *Rdx = nullptr; 9993 9994 // Return the incoming value if it comes from the same BB as the phi node. 9995 if (P->getIncomingBlock(0) == ParentBB) { 9996 Rdx = P->getIncomingValue(0); 9997 } else if (P->getIncomingBlock(1) == ParentBB) { 9998 Rdx = P->getIncomingValue(1); 9999 } 10000 10001 if (Rdx && DominatedReduxValue(Rdx)) 10002 return Rdx; 10003 10004 // Otherwise, check whether we have a loop latch to look at. 10005 Loop *BBL = LI->getLoopFor(ParentBB); 10006 if (!BBL) 10007 return nullptr; 10008 BasicBlock *BBLatch = BBL->getLoopLatch(); 10009 if (!BBLatch) 10010 return nullptr; 10011 10012 // There is a loop latch, return the incoming value if it comes from 10013 // that. This reduction pattern occasionally turns up. 10014 if (P->getIncomingBlock(0) == BBLatch) { 10015 Rdx = P->getIncomingValue(0); 10016 } else if (P->getIncomingBlock(1) == BBLatch) { 10017 Rdx = P->getIncomingValue(1); 10018 } 10019 10020 if (Rdx && DominatedReduxValue(Rdx)) 10021 return Rdx; 10022 10023 return nullptr; 10024 } 10025 10026 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10027 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10028 return true; 10029 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10030 return true; 10031 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10032 return true; 10033 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10034 return true; 10035 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10036 return true; 10037 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10038 return true; 10039 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10040 return true; 10041 return false; 10042 } 10043 10044 /// Attempt to reduce a horizontal reduction. 10045 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10046 /// with reduction operators \a Root (or one of its operands) in a basic block 10047 /// \a BB, then check if it can be done. If horizontal reduction is not found 10048 /// and root instruction is a binary operation, vectorization of the operands is 10049 /// attempted. 10050 /// \returns true if a horizontal reduction was matched and reduced or operands 10051 /// of one of the binary instruction were vectorized. 10052 /// \returns false if a horizontal reduction was not matched (or not possible) 10053 /// or no vectorization of any binary operation feeding \a Root instruction was 10054 /// performed. 10055 static bool tryToVectorizeHorReductionOrInstOperands( 10056 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10057 TargetTransformInfo *TTI, 10058 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10059 if (!ShouldVectorizeHor) 10060 return false; 10061 10062 if (!Root) 10063 return false; 10064 10065 if (Root->getParent() != BB || isa<PHINode>(Root)) 10066 return false; 10067 // Start analysis starting from Root instruction. If horizontal reduction is 10068 // found, try to vectorize it. If it is not a horizontal reduction or 10069 // vectorization is not possible or not effective, and currently analyzed 10070 // instruction is a binary operation, try to vectorize the operands, using 10071 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10072 // the same procedure considering each operand as a possible root of the 10073 // horizontal reduction. 10074 // Interrupt the process if the Root instruction itself was vectorized or all 10075 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10076 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10077 // CmpInsts so we can skip extra attempts in 10078 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10079 std::queue<std::pair<Instruction *, unsigned>> Stack; 10080 Stack.emplace(Root, 0); 10081 SmallPtrSet<Value *, 8> VisitedInstrs; 10082 SmallVector<WeakTrackingVH> PostponedInsts; 10083 bool Res = false; 10084 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10085 Value *&B1) -> Value * { 10086 bool IsBinop = matchRdxBop(Inst, B0, B1); 10087 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10088 if (IsBinop || IsSelect) { 10089 HorizontalReduction HorRdx; 10090 if (HorRdx.matchAssociativeReduction(P, Inst)) 10091 return HorRdx.tryToReduce(R, TTI); 10092 } 10093 return nullptr; 10094 }; 10095 while (!Stack.empty()) { 10096 Instruction *Inst; 10097 unsigned Level; 10098 std::tie(Inst, Level) = Stack.front(); 10099 Stack.pop(); 10100 // Do not try to analyze instruction that has already been vectorized. 10101 // This may happen when we vectorize instruction operands on a previous 10102 // iteration while stack was populated before that happened. 10103 if (R.isDeleted(Inst)) 10104 continue; 10105 Value *B0 = nullptr, *B1 = nullptr; 10106 if (Value *V = TryToReduce(Inst, B0, B1)) { 10107 Res = true; 10108 // Set P to nullptr to avoid re-analysis of phi node in 10109 // matchAssociativeReduction function unless this is the root node. 10110 P = nullptr; 10111 if (auto *I = dyn_cast<Instruction>(V)) { 10112 // Try to find another reduction. 10113 Stack.emplace(I, Level); 10114 continue; 10115 } 10116 } else { 10117 bool IsBinop = B0 && B1; 10118 if (P && IsBinop) { 10119 Inst = dyn_cast<Instruction>(B0); 10120 if (Inst == P) 10121 Inst = dyn_cast<Instruction>(B1); 10122 if (!Inst) { 10123 // Set P to nullptr to avoid re-analysis of phi node in 10124 // matchAssociativeReduction function unless this is the root node. 10125 P = nullptr; 10126 continue; 10127 } 10128 } 10129 // Set P to nullptr to avoid re-analysis of phi node in 10130 // matchAssociativeReduction function unless this is the root node. 10131 P = nullptr; 10132 // Do not try to vectorize CmpInst operands, this is done separately. 10133 // Final attempt for binop args vectorization should happen after the loop 10134 // to try to find reductions. 10135 if (!isa<CmpInst>(Inst)) 10136 PostponedInsts.push_back(Inst); 10137 } 10138 10139 // Try to vectorize operands. 10140 // Continue analysis for the instruction from the same basic block only to 10141 // save compile time. 10142 if (++Level < RecursionMaxDepth) 10143 for (auto *Op : Inst->operand_values()) 10144 if (VisitedInstrs.insert(Op).second) 10145 if (auto *I = dyn_cast<Instruction>(Op)) 10146 // Do not try to vectorize CmpInst operands, this is done 10147 // separately. 10148 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10149 I->getParent() == BB) 10150 Stack.emplace(I, Level); 10151 } 10152 // Try to vectorized binops where reductions were not found. 10153 for (Value *V : PostponedInsts) 10154 if (auto *Inst = dyn_cast<Instruction>(V)) 10155 if (!R.isDeleted(Inst)) 10156 Res |= Vectorize(Inst, R); 10157 return Res; 10158 } 10159 10160 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10161 BasicBlock *BB, BoUpSLP &R, 10162 TargetTransformInfo *TTI) { 10163 auto *I = dyn_cast_or_null<Instruction>(V); 10164 if (!I) 10165 return false; 10166 10167 if (!isa<BinaryOperator>(I)) 10168 P = nullptr; 10169 // Try to match and vectorize a horizontal reduction. 10170 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10171 return tryToVectorize(I, R); 10172 }; 10173 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10174 ExtraVectorization); 10175 } 10176 10177 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10178 BasicBlock *BB, BoUpSLP &R) { 10179 const DataLayout &DL = BB->getModule()->getDataLayout(); 10180 if (!R.canMapToVector(IVI->getType(), DL)) 10181 return false; 10182 10183 SmallVector<Value *, 16> BuildVectorOpds; 10184 SmallVector<Value *, 16> BuildVectorInsts; 10185 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10186 return false; 10187 10188 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10189 // Aggregate value is unlikely to be processed in vector register. 10190 return tryToVectorizeList(BuildVectorOpds, R); 10191 } 10192 10193 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10194 BasicBlock *BB, BoUpSLP &R) { 10195 SmallVector<Value *, 16> BuildVectorInsts; 10196 SmallVector<Value *, 16> BuildVectorOpds; 10197 SmallVector<int> Mask; 10198 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10199 (llvm::all_of( 10200 BuildVectorOpds, 10201 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10202 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10203 return false; 10204 10205 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10206 return tryToVectorizeList(BuildVectorInsts, R); 10207 } 10208 10209 template <typename T> 10210 static bool 10211 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10212 function_ref<unsigned(T *)> Limit, 10213 function_ref<bool(T *, T *)> Comparator, 10214 function_ref<bool(T *, T *)> AreCompatible, 10215 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10216 bool LimitForRegisterSize) { 10217 bool Changed = false; 10218 // Sort by type, parent, operands. 10219 stable_sort(Incoming, Comparator); 10220 10221 // Try to vectorize elements base on their type. 10222 SmallVector<T *> Candidates; 10223 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10224 // Look for the next elements with the same type, parent and operand 10225 // kinds. 10226 auto *SameTypeIt = IncIt; 10227 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10228 ++SameTypeIt; 10229 10230 // Try to vectorize them. 10231 unsigned NumElts = (SameTypeIt - IncIt); 10232 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10233 << NumElts << ")\n"); 10234 // The vectorization is a 3-state attempt: 10235 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10236 // size of maximal register at first. 10237 // 2. Try to vectorize remaining instructions with the same type, if 10238 // possible. This may result in the better vectorization results rather than 10239 // if we try just to vectorize instructions with the same/alternate opcodes. 10240 // 3. Final attempt to try to vectorize all instructions with the 10241 // same/alternate ops only, this may result in some extra final 10242 // vectorization. 10243 if (NumElts > 1 && 10244 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10245 // Success start over because instructions might have been changed. 10246 Changed = true; 10247 } else if (NumElts < Limit(*IncIt) && 10248 (Candidates.empty() || 10249 Candidates.front()->getType() == (*IncIt)->getType())) { 10250 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10251 } 10252 // Final attempt to vectorize instructions with the same types. 10253 if (Candidates.size() > 1 && 10254 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10255 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10256 // Success start over because instructions might have been changed. 10257 Changed = true; 10258 } else if (LimitForRegisterSize) { 10259 // Try to vectorize using small vectors. 10260 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10261 It != End;) { 10262 auto *SameTypeIt = It; 10263 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10264 ++SameTypeIt; 10265 unsigned NumElts = (SameTypeIt - It); 10266 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10267 /*LimitForRegisterSize=*/false)) 10268 Changed = true; 10269 It = SameTypeIt; 10270 } 10271 } 10272 Candidates.clear(); 10273 } 10274 10275 // Start over at the next instruction of a different type (or the end). 10276 IncIt = SameTypeIt; 10277 } 10278 return Changed; 10279 } 10280 10281 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10282 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10283 /// operands. If IsCompatibility is false, function implements strict weak 10284 /// ordering relation between two cmp instructions, returning true if the first 10285 /// instruction is "less" than the second, i.e. its predicate is less than the 10286 /// predicate of the second or the operands IDs are less than the operands IDs 10287 /// of the second cmp instruction. 10288 template <bool IsCompatibility> 10289 static bool compareCmp(Value *V, Value *V2, 10290 function_ref<bool(Instruction *)> IsDeleted) { 10291 auto *CI1 = cast<CmpInst>(V); 10292 auto *CI2 = cast<CmpInst>(V2); 10293 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10294 return false; 10295 if (CI1->getOperand(0)->getType()->getTypeID() < 10296 CI2->getOperand(0)->getType()->getTypeID()) 10297 return !IsCompatibility; 10298 if (CI1->getOperand(0)->getType()->getTypeID() > 10299 CI2->getOperand(0)->getType()->getTypeID()) 10300 return false; 10301 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10302 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10303 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10304 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10305 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10306 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10307 if (BasePred1 < BasePred2) 10308 return !IsCompatibility; 10309 if (BasePred1 > BasePred2) 10310 return false; 10311 // Compare operands. 10312 bool LEPreds = Pred1 <= Pred2; 10313 bool GEPreds = Pred1 >= Pred2; 10314 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10315 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10316 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10317 if (Op1->getValueID() < Op2->getValueID()) 10318 return !IsCompatibility; 10319 if (Op1->getValueID() > Op2->getValueID()) 10320 return false; 10321 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10322 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10323 if (I1->getParent() != I2->getParent()) 10324 return false; 10325 InstructionsState S = getSameOpcode({I1, I2}); 10326 if (S.getOpcode()) 10327 continue; 10328 return false; 10329 } 10330 } 10331 return IsCompatibility; 10332 } 10333 10334 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10335 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10336 bool AtTerminator) { 10337 bool OpsChanged = false; 10338 SmallVector<Instruction *, 4> PostponedCmps; 10339 for (auto *I : reverse(Instructions)) { 10340 if (R.isDeleted(I)) 10341 continue; 10342 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10343 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10344 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10345 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10346 else if (isa<CmpInst>(I)) 10347 PostponedCmps.push_back(I); 10348 } 10349 if (AtTerminator) { 10350 // Try to find reductions first. 10351 for (Instruction *I : PostponedCmps) { 10352 if (R.isDeleted(I)) 10353 continue; 10354 for (Value *Op : I->operands()) 10355 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10356 } 10357 // Try to vectorize operands as vector bundles. 10358 for (Instruction *I : PostponedCmps) { 10359 if (R.isDeleted(I)) 10360 continue; 10361 OpsChanged |= tryToVectorize(I, R); 10362 } 10363 // Try to vectorize list of compares. 10364 // Sort by type, compare predicate, etc. 10365 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10366 return compareCmp<false>(V, V2, 10367 [&R](Instruction *I) { return R.isDeleted(I); }); 10368 }; 10369 10370 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10371 if (V1 == V2) 10372 return true; 10373 return compareCmp<true>(V1, V2, 10374 [&R](Instruction *I) { return R.isDeleted(I); }); 10375 }; 10376 auto Limit = [&R](Value *V) { 10377 unsigned EltSize = R.getVectorElementSize(V); 10378 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10379 }; 10380 10381 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10382 OpsChanged |= tryToVectorizeSequence<Value>( 10383 Vals, Limit, CompareSorter, AreCompatibleCompares, 10384 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10385 // Exclude possible reductions from other blocks. 10386 bool ArePossiblyReducedInOtherBlock = 10387 any_of(Candidates, [](Value *V) { 10388 return any_of(V->users(), [V](User *U) { 10389 return isa<SelectInst>(U) && 10390 cast<SelectInst>(U)->getParent() != 10391 cast<Instruction>(V)->getParent(); 10392 }); 10393 }); 10394 if (ArePossiblyReducedInOtherBlock) 10395 return false; 10396 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10397 }, 10398 /*LimitForRegisterSize=*/true); 10399 Instructions.clear(); 10400 } else { 10401 // Insert in reverse order since the PostponedCmps vector was filled in 10402 // reverse order. 10403 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10404 } 10405 return OpsChanged; 10406 } 10407 10408 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10409 bool Changed = false; 10410 SmallVector<Value *, 4> Incoming; 10411 SmallPtrSet<Value *, 16> VisitedInstrs; 10412 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10413 // node. Allows better to identify the chains that can be vectorized in the 10414 // better way. 10415 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10416 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10417 assert(isValidElementType(V1->getType()) && 10418 isValidElementType(V2->getType()) && 10419 "Expected vectorizable types only."); 10420 // It is fine to compare type IDs here, since we expect only vectorizable 10421 // types, like ints, floats and pointers, we don't care about other type. 10422 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10423 return true; 10424 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10425 return false; 10426 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10427 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10428 if (Opcodes1.size() < Opcodes2.size()) 10429 return true; 10430 if (Opcodes1.size() > Opcodes2.size()) 10431 return false; 10432 Optional<bool> ConstOrder; 10433 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10434 // Undefs are compatible with any other value. 10435 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10436 if (!ConstOrder) 10437 ConstOrder = 10438 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10439 continue; 10440 } 10441 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10442 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10443 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10444 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10445 if (!NodeI1) 10446 return NodeI2 != nullptr; 10447 if (!NodeI2) 10448 return false; 10449 assert((NodeI1 == NodeI2) == 10450 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10451 "Different nodes should have different DFS numbers"); 10452 if (NodeI1 != NodeI2) 10453 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10454 InstructionsState S = getSameOpcode({I1, I2}); 10455 if (S.getOpcode()) 10456 continue; 10457 return I1->getOpcode() < I2->getOpcode(); 10458 } 10459 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10460 if (!ConstOrder) 10461 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10462 continue; 10463 } 10464 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10465 return true; 10466 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10467 return false; 10468 } 10469 return ConstOrder && *ConstOrder; 10470 }; 10471 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10472 if (V1 == V2) 10473 return true; 10474 if (V1->getType() != V2->getType()) 10475 return false; 10476 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10477 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10478 if (Opcodes1.size() != Opcodes2.size()) 10479 return false; 10480 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10481 // Undefs are compatible with any other value. 10482 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10483 continue; 10484 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10485 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10486 if (I1->getParent() != I2->getParent()) 10487 return false; 10488 InstructionsState S = getSameOpcode({I1, I2}); 10489 if (S.getOpcode()) 10490 continue; 10491 return false; 10492 } 10493 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10494 continue; 10495 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10496 return false; 10497 } 10498 return true; 10499 }; 10500 auto Limit = [&R](Value *V) { 10501 unsigned EltSize = R.getVectorElementSize(V); 10502 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10503 }; 10504 10505 bool HaveVectorizedPhiNodes = false; 10506 do { 10507 // Collect the incoming values from the PHIs. 10508 Incoming.clear(); 10509 for (Instruction &I : *BB) { 10510 PHINode *P = dyn_cast<PHINode>(&I); 10511 if (!P) 10512 break; 10513 10514 // No need to analyze deleted, vectorized and non-vectorizable 10515 // instructions. 10516 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10517 isValidElementType(P->getType())) 10518 Incoming.push_back(P); 10519 } 10520 10521 // Find the corresponding non-phi nodes for better matching when trying to 10522 // build the tree. 10523 for (Value *V : Incoming) { 10524 SmallVectorImpl<Value *> &Opcodes = 10525 PHIToOpcodes.try_emplace(V).first->getSecond(); 10526 if (!Opcodes.empty()) 10527 continue; 10528 SmallVector<Value *, 4> Nodes(1, V); 10529 SmallPtrSet<Value *, 4> Visited; 10530 while (!Nodes.empty()) { 10531 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10532 if (!Visited.insert(PHI).second) 10533 continue; 10534 for (Value *V : PHI->incoming_values()) { 10535 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10536 Nodes.push_back(PHI1); 10537 continue; 10538 } 10539 Opcodes.emplace_back(V); 10540 } 10541 } 10542 } 10543 10544 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10545 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10546 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10547 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10548 }, 10549 /*LimitForRegisterSize=*/true); 10550 Changed |= HaveVectorizedPhiNodes; 10551 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10552 } while (HaveVectorizedPhiNodes); 10553 10554 VisitedInstrs.clear(); 10555 10556 SmallVector<Instruction *, 8> PostProcessInstructions; 10557 SmallDenseSet<Instruction *, 4> KeyNodes; 10558 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10559 // Skip instructions with scalable type. The num of elements is unknown at 10560 // compile-time for scalable type. 10561 if (isa<ScalableVectorType>(it->getType())) 10562 continue; 10563 10564 // Skip instructions marked for the deletion. 10565 if (R.isDeleted(&*it)) 10566 continue; 10567 // We may go through BB multiple times so skip the one we have checked. 10568 if (!VisitedInstrs.insert(&*it).second) { 10569 if (it->use_empty() && KeyNodes.contains(&*it) && 10570 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10571 it->isTerminator())) { 10572 // We would like to start over since some instructions are deleted 10573 // and the iterator may become invalid value. 10574 Changed = true; 10575 it = BB->begin(); 10576 e = BB->end(); 10577 } 10578 continue; 10579 } 10580 10581 if (isa<DbgInfoIntrinsic>(it)) 10582 continue; 10583 10584 // Try to vectorize reductions that use PHINodes. 10585 if (PHINode *P = dyn_cast<PHINode>(it)) { 10586 // Check that the PHI is a reduction PHI. 10587 if (P->getNumIncomingValues() == 2) { 10588 // Try to match and vectorize a horizontal reduction. 10589 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10590 TTI)) { 10591 Changed = true; 10592 it = BB->begin(); 10593 e = BB->end(); 10594 continue; 10595 } 10596 } 10597 // Try to vectorize the incoming values of the PHI, to catch reductions 10598 // that feed into PHIs. 10599 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10600 // Skip if the incoming block is the current BB for now. Also, bypass 10601 // unreachable IR for efficiency and to avoid crashing. 10602 // TODO: Collect the skipped incoming values and try to vectorize them 10603 // after processing BB. 10604 if (BB == P->getIncomingBlock(I) || 10605 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10606 continue; 10607 10608 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10609 P->getIncomingBlock(I), R, TTI); 10610 } 10611 continue; 10612 } 10613 10614 // Ran into an instruction without users, like terminator, or function call 10615 // with ignored return value, store. Ignore unused instructions (basing on 10616 // instruction type, except for CallInst and InvokeInst). 10617 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10618 isa<InvokeInst>(it))) { 10619 KeyNodes.insert(&*it); 10620 bool OpsChanged = false; 10621 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10622 for (auto *V : it->operand_values()) { 10623 // Try to match and vectorize a horizontal reduction. 10624 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10625 } 10626 } 10627 // Start vectorization of post-process list of instructions from the 10628 // top-tree instructions to try to vectorize as many instructions as 10629 // possible. 10630 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10631 it->isTerminator()); 10632 if (OpsChanged) { 10633 // We would like to start over since some instructions are deleted 10634 // and the iterator may become invalid value. 10635 Changed = true; 10636 it = BB->begin(); 10637 e = BB->end(); 10638 continue; 10639 } 10640 } 10641 10642 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10643 isa<InsertValueInst>(it)) 10644 PostProcessInstructions.push_back(&*it); 10645 } 10646 10647 return Changed; 10648 } 10649 10650 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10651 auto Changed = false; 10652 for (auto &Entry : GEPs) { 10653 // If the getelementptr list has fewer than two elements, there's nothing 10654 // to do. 10655 if (Entry.second.size() < 2) 10656 continue; 10657 10658 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10659 << Entry.second.size() << ".\n"); 10660 10661 // Process the GEP list in chunks suitable for the target's supported 10662 // vector size. If a vector register can't hold 1 element, we are done. We 10663 // are trying to vectorize the index computations, so the maximum number of 10664 // elements is based on the size of the index expression, rather than the 10665 // size of the GEP itself (the target's pointer size). 10666 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10667 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10668 if (MaxVecRegSize < EltSize) 10669 continue; 10670 10671 unsigned MaxElts = MaxVecRegSize / EltSize; 10672 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10673 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10674 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10675 10676 // Initialize a set a candidate getelementptrs. Note that we use a 10677 // SetVector here to preserve program order. If the index computations 10678 // are vectorizable and begin with loads, we want to minimize the chance 10679 // of having to reorder them later. 10680 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10681 10682 // Some of the candidates may have already been vectorized after we 10683 // initially collected them. If so, they are marked as deleted, so remove 10684 // them from the set of candidates. 10685 Candidates.remove_if( 10686 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10687 10688 // Remove from the set of candidates all pairs of getelementptrs with 10689 // constant differences. Such getelementptrs are likely not good 10690 // candidates for vectorization in a bottom-up phase since one can be 10691 // computed from the other. We also ensure all candidate getelementptr 10692 // indices are unique. 10693 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10694 auto *GEPI = GEPList[I]; 10695 if (!Candidates.count(GEPI)) 10696 continue; 10697 auto *SCEVI = SE->getSCEV(GEPList[I]); 10698 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10699 auto *GEPJ = GEPList[J]; 10700 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10701 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10702 Candidates.remove(GEPI); 10703 Candidates.remove(GEPJ); 10704 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10705 Candidates.remove(GEPJ); 10706 } 10707 } 10708 } 10709 10710 // We break out of the above computation as soon as we know there are 10711 // fewer than two candidates remaining. 10712 if (Candidates.size() < 2) 10713 continue; 10714 10715 // Add the single, non-constant index of each candidate to the bundle. We 10716 // ensured the indices met these constraints when we originally collected 10717 // the getelementptrs. 10718 SmallVector<Value *, 16> Bundle(Candidates.size()); 10719 auto BundleIndex = 0u; 10720 for (auto *V : Candidates) { 10721 auto *GEP = cast<GetElementPtrInst>(V); 10722 auto *GEPIdx = GEP->idx_begin()->get(); 10723 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10724 Bundle[BundleIndex++] = GEPIdx; 10725 } 10726 10727 // Try and vectorize the indices. We are currently only interested in 10728 // gather-like cases of the form: 10729 // 10730 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10731 // 10732 // where the loads of "a", the loads of "b", and the subtractions can be 10733 // performed in parallel. It's likely that detecting this pattern in a 10734 // bottom-up phase will be simpler and less costly than building a 10735 // full-blown top-down phase beginning at the consecutive loads. 10736 Changed |= tryToVectorizeList(Bundle, R); 10737 } 10738 } 10739 return Changed; 10740 } 10741 10742 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10743 bool Changed = false; 10744 // Sort by type, base pointers and values operand. Value operands must be 10745 // compatible (have the same opcode, same parent), otherwise it is 10746 // definitely not profitable to try to vectorize them. 10747 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10748 if (V->getPointerOperandType()->getTypeID() < 10749 V2->getPointerOperandType()->getTypeID()) 10750 return true; 10751 if (V->getPointerOperandType()->getTypeID() > 10752 V2->getPointerOperandType()->getTypeID()) 10753 return false; 10754 // UndefValues are compatible with all other values. 10755 if (isa<UndefValue>(V->getValueOperand()) || 10756 isa<UndefValue>(V2->getValueOperand())) 10757 return false; 10758 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10759 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10760 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10761 DT->getNode(I1->getParent()); 10762 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10763 DT->getNode(I2->getParent()); 10764 assert(NodeI1 && "Should only process reachable instructions"); 10765 assert(NodeI1 && "Should only process reachable instructions"); 10766 assert((NodeI1 == NodeI2) == 10767 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10768 "Different nodes should have different DFS numbers"); 10769 if (NodeI1 != NodeI2) 10770 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10771 InstructionsState S = getSameOpcode({I1, I2}); 10772 if (S.getOpcode()) 10773 return false; 10774 return I1->getOpcode() < I2->getOpcode(); 10775 } 10776 if (isa<Constant>(V->getValueOperand()) && 10777 isa<Constant>(V2->getValueOperand())) 10778 return false; 10779 return V->getValueOperand()->getValueID() < 10780 V2->getValueOperand()->getValueID(); 10781 }; 10782 10783 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10784 if (V1 == V2) 10785 return true; 10786 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10787 return false; 10788 // Undefs are compatible with any other value. 10789 if (isa<UndefValue>(V1->getValueOperand()) || 10790 isa<UndefValue>(V2->getValueOperand())) 10791 return true; 10792 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10793 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10794 if (I1->getParent() != I2->getParent()) 10795 return false; 10796 InstructionsState S = getSameOpcode({I1, I2}); 10797 return S.getOpcode() > 0; 10798 } 10799 if (isa<Constant>(V1->getValueOperand()) && 10800 isa<Constant>(V2->getValueOperand())) 10801 return true; 10802 return V1->getValueOperand()->getValueID() == 10803 V2->getValueOperand()->getValueID(); 10804 }; 10805 auto Limit = [&R, this](StoreInst *SI) { 10806 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10807 return R.getMinVF(EltSize); 10808 }; 10809 10810 // Attempt to sort and vectorize each of the store-groups. 10811 for (auto &Pair : Stores) { 10812 if (Pair.second.size() < 2) 10813 continue; 10814 10815 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10816 << Pair.second.size() << ".\n"); 10817 10818 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10819 continue; 10820 10821 Changed |= tryToVectorizeSequence<StoreInst>( 10822 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10823 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10824 return vectorizeStores(Candidates, R); 10825 }, 10826 /*LimitForRegisterSize=*/false); 10827 } 10828 return Changed; 10829 } 10830 10831 char SLPVectorizer::ID = 0; 10832 10833 static const char lv_name[] = "SLP Vectorizer"; 10834 10835 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10836 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10837 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10838 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10839 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10840 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10841 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10842 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10843 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10844 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10845 10846 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10847