1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallString.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/iterator.h" 36 #include "llvm/ADT/iterator_range.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/Analysis/CodeMetrics.h" 39 #include "llvm/Analysis/DemandedBits.h" 40 #include "llvm/Analysis/GlobalsModRef.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/Analysis/AssumptionCache.h" 52 #include "llvm/IR/Attributes.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugLoc.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/IRBuilder.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/IntrinsicInst.h" 66 #include "llvm/IR/Intrinsics.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/NoFolder.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PassManager.h" 71 #include "llvm/IR/PatternMatch.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/User.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/IR/ValueHandle.h" 77 #include "llvm/IR/Verifier.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/DOTGraphTraits.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/GraphWriter.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 91 #include "llvm/Transforms/Utils/LoopUtils.h" 92 #include "llvm/Transforms/Vectorize.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <memory> 98 #include <set> 99 #include <string> 100 #include <tuple> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 using namespace slpvectorizer; 107 108 #define SV_NAME "slp-vectorizer" 109 #define DEBUG_TYPE "SLP" 110 111 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 112 113 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 114 cl::desc("Run the SLP vectorization passes")); 115 116 static cl::opt<int> 117 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 118 cl::desc("Only vectorize if you gain more than this " 119 "number ")); 120 121 static cl::opt<bool> 122 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 123 cl::desc("Attempt to vectorize horizontal reductions")); 124 125 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 126 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 127 cl::desc( 128 "Attempt to vectorize horizontal reductions feeding into a store")); 129 130 static cl::opt<int> 131 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 132 cl::desc("Attempt to vectorize for this register size in bits")); 133 134 static cl::opt<int> 135 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 136 cl::desc("Maximum depth of the lookup for consecutive stores.")); 137 138 /// Limits the size of scheduling regions in a block. 139 /// It avoid long compile times for _very_ large blocks where vector 140 /// instructions are spread over a wide range. 141 /// This limit is way higher than needed by real-world functions. 142 static cl::opt<int> 143 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 144 cl::desc("Limit the size of the SLP scheduling region per block")); 145 146 static cl::opt<int> MinVectorRegSizeOption( 147 "slp-min-reg-size", cl::init(128), cl::Hidden, 148 cl::desc("Attempt to vectorize for this register size in bits")); 149 150 static cl::opt<unsigned> RecursionMaxDepth( 151 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 152 cl::desc("Limit the recursion depth when building a vectorizable tree")); 153 154 static cl::opt<unsigned> MinTreeSize( 155 "slp-min-tree-size", cl::init(3), cl::Hidden, 156 cl::desc("Only vectorize small trees if they are fully vectorizable")); 157 158 // The maximum depth that the look-ahead score heuristic will explore. 159 // The higher this value, the higher the compilation time overhead. 160 static cl::opt<int> LookAheadMaxDepth( 161 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 162 cl::desc("The maximum look-ahead depth for operand reordering scores")); 163 164 // The Look-ahead heuristic goes through the users of the bundle to calculate 165 // the users cost in getExternalUsesCost(). To avoid compilation time increase 166 // we limit the number of users visited to this value. 167 static cl::opt<unsigned> LookAheadUsersBudget( 168 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 169 cl::desc("The maximum number of users to visit while visiting the " 170 "predecessors. This prevents compilation time increase.")); 171 172 static cl::opt<bool> 173 ViewSLPTree("view-slp-tree", cl::Hidden, 174 cl::desc("Display the SLP trees with Graphviz")); 175 176 // Limit the number of alias checks. The limit is chosen so that 177 // it has no negative effect on the llvm benchmarks. 178 static const unsigned AliasedCheckLimit = 10; 179 180 // Another limit for the alias checks: The maximum distance between load/store 181 // instructions where alias checks are done. 182 // This limit is useful for very large basic blocks. 183 static const unsigned MaxMemDepDistance = 160; 184 185 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 186 /// regions to be handled. 187 static const int MinScheduleRegionSize = 16; 188 189 /// Predicate for the element types that the SLP vectorizer supports. 190 /// 191 /// The most important thing to filter here are types which are invalid in LLVM 192 /// vectors. We also filter target specific types which have absolutely no 193 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 194 /// avoids spending time checking the cost model and realizing that they will 195 /// be inevitably scalarized. 196 static bool isValidElementType(Type *Ty) { 197 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 198 !Ty->isPPC_FP128Ty(); 199 } 200 201 /// \returns true if all of the instructions in \p VL are in the same block or 202 /// false otherwise. 203 static bool allSameBlock(ArrayRef<Value *> VL) { 204 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 205 if (!I0) 206 return false; 207 BasicBlock *BB = I0->getParent(); 208 for (int i = 1, e = VL.size(); i < e; i++) { 209 Instruction *I = dyn_cast<Instruction>(VL[i]); 210 if (!I) 211 return false; 212 213 if (BB != I->getParent()) 214 return false; 215 } 216 return true; 217 } 218 219 /// \returns True if all of the values in \p VL are constants (but not 220 /// globals/constant expressions). 221 static bool allConstant(ArrayRef<Value *> VL) { 222 // Constant expressions and globals can't be vectorized like normal integer/FP 223 // constants. 224 for (Value *i : VL) 225 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 226 return false; 227 return true; 228 } 229 230 /// \returns True if all of the values in \p VL are identical. 231 static bool isSplat(ArrayRef<Value *> VL) { 232 for (unsigned i = 1, e = VL.size(); i < e; ++i) 233 if (VL[i] != VL[0]) 234 return false; 235 return true; 236 } 237 238 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 239 static bool isCommutative(Instruction *I) { 240 if (auto *IC = dyn_cast<CmpInst>(I)) 241 return IC->isCommutative(); 242 return I->isCommutative(); 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = EI0->getVectorOperandType()->getNumElements(); 290 Value *Vec1 = nullptr; 291 Value *Vec2 = nullptr; 292 enum ShuffleMode { Unknown, Select, Permute }; 293 ShuffleMode CommonShuffleMode = Unknown; 294 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 295 auto *EI = cast<ExtractElementInst>(VL[I]); 296 auto *Vec = EI->getVectorOperand(); 297 // All vector operands must have the same number of vector elements. 298 if (cast<VectorType>(Vec->getType())->getNumElements() != Size) 299 return None; 300 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 301 if (!Idx) 302 return None; 303 // Undefined behavior if Idx is negative or >= Size. 304 if (Idx->getValue().uge(Size)) 305 continue; 306 unsigned IntIdx = Idx->getValue().getZExtValue(); 307 // We can extractelement from undef vector. 308 if (isa<UndefValue>(Vec)) 309 continue; 310 // For correct shuffling we have to have at most 2 different vector operands 311 // in all extractelement instructions. 312 if (!Vec1 || Vec1 == Vec) 313 Vec1 = Vec; 314 else if (!Vec2 || Vec2 == Vec) 315 Vec2 = Vec; 316 else 317 return None; 318 if (CommonShuffleMode == Permute) 319 continue; 320 // If the extract index is not the same as the operation number, it is a 321 // permutation. 322 if (IntIdx != I) { 323 CommonShuffleMode = Permute; 324 continue; 325 } 326 CommonShuffleMode = Select; 327 } 328 // If we're not crossing lanes in different vectors, consider it as blending. 329 if (CommonShuffleMode == Select && Vec2) 330 return TargetTransformInfo::SK_Select; 331 // If Vec2 was never used, we have a permutation of a single vector, otherwise 332 // we have permutation of 2 vectors. 333 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 334 : TargetTransformInfo::SK_PermuteSingleSrc; 335 } 336 337 namespace { 338 339 /// Main data required for vectorization of instructions. 340 struct InstructionsState { 341 /// The very first instruction in the list with the main opcode. 342 Value *OpValue = nullptr; 343 344 /// The main/alternate instruction. 345 Instruction *MainOp = nullptr; 346 Instruction *AltOp = nullptr; 347 348 /// The main/alternate opcodes for the list of instructions. 349 unsigned getOpcode() const { 350 return MainOp ? MainOp->getOpcode() : 0; 351 } 352 353 unsigned getAltOpcode() const { 354 return AltOp ? AltOp->getOpcode() : 0; 355 } 356 357 /// Some of the instructions in the list have alternate opcodes. 358 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 359 360 bool isOpcodeOrAlt(Instruction *I) const { 361 unsigned CheckedOpcode = I->getOpcode(); 362 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 363 } 364 365 InstructionsState() = delete; 366 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 367 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 368 }; 369 370 } // end anonymous namespace 371 372 /// Chooses the correct key for scheduling data. If \p Op has the same (or 373 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 374 /// OpValue. 375 static Value *isOneOf(const InstructionsState &S, Value *Op) { 376 auto *I = dyn_cast<Instruction>(Op); 377 if (I && S.isOpcodeOrAlt(I)) 378 return Op; 379 return S.OpValue; 380 } 381 382 /// \returns true if \p Opcode is allowed as part of of the main/alternate 383 /// instruction for SLP vectorization. 384 /// 385 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 386 /// "shuffled out" lane would result in division by zero. 387 static bool isValidForAlternation(unsigned Opcode) { 388 if (Instruction::isIntDivRem(Opcode)) 389 return false; 390 391 return true; 392 } 393 394 /// \returns analysis of the Instructions in \p VL described in 395 /// InstructionsState, the Opcode that we suppose the whole list 396 /// could be vectorized even if its structure is diverse. 397 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 398 unsigned BaseIndex = 0) { 399 // Make sure these are all Instructions. 400 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 401 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 402 403 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 404 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 405 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 406 unsigned AltOpcode = Opcode; 407 unsigned AltIndex = BaseIndex; 408 409 // Check for one alternate opcode from another BinaryOperator. 410 // TODO - generalize to support all operators (types, calls etc.). 411 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 412 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 413 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 414 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 415 continue; 416 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 417 isValidForAlternation(Opcode)) { 418 AltOpcode = InstOpcode; 419 AltIndex = Cnt; 420 continue; 421 } 422 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 423 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 424 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 425 if (Ty0 == Ty1) { 426 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 427 continue; 428 if (Opcode == AltOpcode) { 429 assert(isValidForAlternation(Opcode) && 430 isValidForAlternation(InstOpcode) && 431 "Cast isn't safe for alternation, logic needs to be updated!"); 432 AltOpcode = InstOpcode; 433 AltIndex = Cnt; 434 continue; 435 } 436 } 437 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 438 continue; 439 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 440 } 441 442 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 443 cast<Instruction>(VL[AltIndex])); 444 } 445 446 /// \returns true if all of the values in \p VL have the same type or false 447 /// otherwise. 448 static bool allSameType(ArrayRef<Value *> VL) { 449 Type *Ty = VL[0]->getType(); 450 for (int i = 1, e = VL.size(); i < e; i++) 451 if (VL[i]->getType() != Ty) 452 return false; 453 454 return true; 455 } 456 457 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 458 static Optional<unsigned> getExtractIndex(Instruction *E) { 459 unsigned Opcode = E->getOpcode(); 460 assert((Opcode == Instruction::ExtractElement || 461 Opcode == Instruction::ExtractValue) && 462 "Expected extractelement or extractvalue instruction."); 463 if (Opcode == Instruction::ExtractElement) { 464 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 465 if (!CI) 466 return None; 467 return CI->getZExtValue(); 468 } 469 ExtractValueInst *EI = cast<ExtractValueInst>(E); 470 if (EI->getNumIndices() != 1) 471 return None; 472 return *EI->idx_begin(); 473 } 474 475 /// \returns True if in-tree use also needs extract. This refers to 476 /// possible scalar operand in vectorized instruction. 477 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 478 TargetLibraryInfo *TLI) { 479 unsigned Opcode = UserInst->getOpcode(); 480 switch (Opcode) { 481 case Instruction::Load: { 482 LoadInst *LI = cast<LoadInst>(UserInst); 483 return (LI->getPointerOperand() == Scalar); 484 } 485 case Instruction::Store: { 486 StoreInst *SI = cast<StoreInst>(UserInst); 487 return (SI->getPointerOperand() == Scalar); 488 } 489 case Instruction::Call: { 490 CallInst *CI = cast<CallInst>(UserInst); 491 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 492 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 493 if (hasVectorInstrinsicScalarOpd(ID, i)) 494 return (CI->getArgOperand(i) == Scalar); 495 } 496 LLVM_FALLTHROUGH; 497 } 498 default: 499 return false; 500 } 501 } 502 503 /// \returns the AA location that is being access by the instruction. 504 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 505 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 506 return MemoryLocation::get(SI); 507 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 508 return MemoryLocation::get(LI); 509 return MemoryLocation(); 510 } 511 512 /// \returns True if the instruction is not a volatile or atomic load/store. 513 static bool isSimple(Instruction *I) { 514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 515 return LI->isSimple(); 516 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 517 return SI->isSimple(); 518 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 519 return !MI->isVolatile(); 520 return true; 521 } 522 523 namespace llvm { 524 525 namespace slpvectorizer { 526 527 /// Bottom Up SLP Vectorizer. 528 class BoUpSLP { 529 struct TreeEntry; 530 struct ScheduleData; 531 532 public: 533 using ValueList = SmallVector<Value *, 8>; 534 using InstrList = SmallVector<Instruction *, 16>; 535 using ValueSet = SmallPtrSet<Value *, 16>; 536 using StoreList = SmallVector<StoreInst *, 8>; 537 using ExtraValueToDebugLocsMap = 538 MapVector<Value *, SmallVector<Instruction *, 2>>; 539 540 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 541 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 542 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 543 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 544 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 545 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 546 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 547 // Use the vector register size specified by the target unless overridden 548 // by a command-line option. 549 // TODO: It would be better to limit the vectorization factor based on 550 // data type rather than just register size. For example, x86 AVX has 551 // 256-bit registers, but it does not support integer operations 552 // at that width (that requires AVX2). 553 if (MaxVectorRegSizeOption.getNumOccurrences()) 554 MaxVecRegSize = MaxVectorRegSizeOption; 555 else 556 MaxVecRegSize = TTI->getRegisterBitWidth(true); 557 558 if (MinVectorRegSizeOption.getNumOccurrences()) 559 MinVecRegSize = MinVectorRegSizeOption; 560 else 561 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 562 } 563 564 /// Vectorize the tree that starts with the elements in \p VL. 565 /// Returns the vectorized root. 566 Value *vectorizeTree(); 567 568 /// Vectorize the tree but with the list of externally used values \p 569 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 570 /// generated extractvalue instructions. 571 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 572 573 /// \returns the cost incurred by unwanted spills and fills, caused by 574 /// holding live values over call sites. 575 int getSpillCost() const; 576 577 /// \returns the vectorization cost of the subtree that starts at \p VL. 578 /// A negative number means that this is profitable. 579 int getTreeCost(); 580 581 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 582 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 583 void buildTree(ArrayRef<Value *> Roots, 584 ArrayRef<Value *> UserIgnoreLst = None); 585 586 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 587 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 588 /// into account (and updating it, if required) list of externally used 589 /// values stored in \p ExternallyUsedValues. 590 void buildTree(ArrayRef<Value *> Roots, 591 ExtraValueToDebugLocsMap &ExternallyUsedValues, 592 ArrayRef<Value *> UserIgnoreLst = None); 593 594 /// Clear the internal data structures that are created by 'buildTree'. 595 void deleteTree() { 596 VectorizableTree.clear(); 597 ScalarToTreeEntry.clear(); 598 MustGather.clear(); 599 ExternalUses.clear(); 600 NumOpsWantToKeepOrder.clear(); 601 NumOpsWantToKeepOriginalOrder = 0; 602 for (auto &Iter : BlocksSchedules) { 603 BlockScheduling *BS = Iter.second.get(); 604 BS->clear(); 605 } 606 MinBWs.clear(); 607 } 608 609 unsigned getTreeSize() const { return VectorizableTree.size(); } 610 611 /// Perform LICM and CSE on the newly generated gather sequences. 612 void optimizeGatherSequence(); 613 614 /// \returns The best order of instructions for vectorization. 615 Optional<ArrayRef<unsigned>> bestOrder() const { 616 auto I = std::max_element( 617 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 618 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 619 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 620 return D1.second < D2.second; 621 }); 622 if (I == NumOpsWantToKeepOrder.end() || 623 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 624 return None; 625 626 return makeArrayRef(I->getFirst()); 627 } 628 629 /// \return The vector element size in bits to use when vectorizing the 630 /// expression tree ending at \p V. If V is a store, the size is the width of 631 /// the stored value. Otherwise, the size is the width of the largest loaded 632 /// value reaching V. This method is used by the vectorizer to calculate 633 /// vectorization factors. 634 unsigned getVectorElementSize(Value *V); 635 636 /// Compute the minimum type sizes required to represent the entries in a 637 /// vectorizable tree. 638 void computeMinimumValueSizes(); 639 640 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 641 unsigned getMaxVecRegSize() const { 642 return MaxVecRegSize; 643 } 644 645 // \returns minimum vector register size as set by cl::opt. 646 unsigned getMinVecRegSize() const { 647 return MinVecRegSize; 648 } 649 650 /// Check if homogeneous aggregate is isomorphic to some VectorType. 651 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 652 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 653 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 654 /// 655 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 656 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 657 658 /// \returns True if the VectorizableTree is both tiny and not fully 659 /// vectorizable. We do not vectorize such trees. 660 bool isTreeTinyAndNotFullyVectorizable() const; 661 662 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 663 /// can be load combined in the backend. Load combining may not be allowed in 664 /// the IR optimizer, so we do not want to alter the pattern. For example, 665 /// partially transforming a scalar bswap() pattern into vector code is 666 /// effectively impossible for the backend to undo. 667 /// TODO: If load combining is allowed in the IR optimizer, this analysis 668 /// may not be necessary. 669 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 670 671 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 672 /// can be load combined in the backend. Load combining may not be allowed in 673 /// the IR optimizer, so we do not want to alter the pattern. For example, 674 /// partially transforming a scalar bswap() pattern into vector code is 675 /// effectively impossible for the backend to undo. 676 /// TODO: If load combining is allowed in the IR optimizer, this analysis 677 /// may not be necessary. 678 bool isLoadCombineCandidate() const; 679 680 OptimizationRemarkEmitter *getORE() { return ORE; } 681 682 /// This structure holds any data we need about the edges being traversed 683 /// during buildTree_rec(). We keep track of: 684 /// (i) the user TreeEntry index, and 685 /// (ii) the index of the edge. 686 struct EdgeInfo { 687 EdgeInfo() = default; 688 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 689 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 690 /// The user TreeEntry. 691 TreeEntry *UserTE = nullptr; 692 /// The operand index of the use. 693 unsigned EdgeIdx = UINT_MAX; 694 #ifndef NDEBUG 695 friend inline raw_ostream &operator<<(raw_ostream &OS, 696 const BoUpSLP::EdgeInfo &EI) { 697 EI.dump(OS); 698 return OS; 699 } 700 /// Debug print. 701 void dump(raw_ostream &OS) const { 702 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 703 << " EdgeIdx:" << EdgeIdx << "}"; 704 } 705 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 706 #endif 707 }; 708 709 /// A helper data structure to hold the operands of a vector of instructions. 710 /// This supports a fixed vector length for all operand vectors. 711 class VLOperands { 712 /// For each operand we need (i) the value, and (ii) the opcode that it 713 /// would be attached to if the expression was in a left-linearized form. 714 /// This is required to avoid illegal operand reordering. 715 /// For example: 716 /// \verbatim 717 /// 0 Op1 718 /// |/ 719 /// Op1 Op2 Linearized + Op2 720 /// \ / ----------> |/ 721 /// - - 722 /// 723 /// Op1 - Op2 (0 + Op1) - Op2 724 /// \endverbatim 725 /// 726 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 727 /// 728 /// Another way to think of this is to track all the operations across the 729 /// path from the operand all the way to the root of the tree and to 730 /// calculate the operation that corresponds to this path. For example, the 731 /// path from Op2 to the root crosses the RHS of the '-', therefore the 732 /// corresponding operation is a '-' (which matches the one in the 733 /// linearized tree, as shown above). 734 /// 735 /// For lack of a better term, we refer to this operation as Accumulated 736 /// Path Operation (APO). 737 struct OperandData { 738 OperandData() = default; 739 OperandData(Value *V, bool APO, bool IsUsed) 740 : V(V), APO(APO), IsUsed(IsUsed) {} 741 /// The operand value. 742 Value *V = nullptr; 743 /// TreeEntries only allow a single opcode, or an alternate sequence of 744 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 745 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 746 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 747 /// (e.g., Add/Mul) 748 bool APO = false; 749 /// Helper data for the reordering function. 750 bool IsUsed = false; 751 }; 752 753 /// During operand reordering, we are trying to select the operand at lane 754 /// that matches best with the operand at the neighboring lane. Our 755 /// selection is based on the type of value we are looking for. For example, 756 /// if the neighboring lane has a load, we need to look for a load that is 757 /// accessing a consecutive address. These strategies are summarized in the 758 /// 'ReorderingMode' enumerator. 759 enum class ReorderingMode { 760 Load, ///< Matching loads to consecutive memory addresses 761 Opcode, ///< Matching instructions based on opcode (same or alternate) 762 Constant, ///< Matching constants 763 Splat, ///< Matching the same instruction multiple times (broadcast) 764 Failed, ///< We failed to create a vectorizable group 765 }; 766 767 using OperandDataVec = SmallVector<OperandData, 2>; 768 769 /// A vector of operand vectors. 770 SmallVector<OperandDataVec, 4> OpsVec; 771 772 const DataLayout &DL; 773 ScalarEvolution &SE; 774 const BoUpSLP &R; 775 776 /// \returns the operand data at \p OpIdx and \p Lane. 777 OperandData &getData(unsigned OpIdx, unsigned Lane) { 778 return OpsVec[OpIdx][Lane]; 779 } 780 781 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 782 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 783 return OpsVec[OpIdx][Lane]; 784 } 785 786 /// Clears the used flag for all entries. 787 void clearUsed() { 788 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 789 OpIdx != NumOperands; ++OpIdx) 790 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 791 ++Lane) 792 OpsVec[OpIdx][Lane].IsUsed = false; 793 } 794 795 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 796 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 797 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 798 } 799 800 // The hard-coded scores listed here are not very important. When computing 801 // the scores of matching one sub-tree with another, we are basically 802 // counting the number of values that are matching. So even if all scores 803 // are set to 1, we would still get a decent matching result. 804 // However, sometimes we have to break ties. For example we may have to 805 // choose between matching loads vs matching opcodes. This is what these 806 // scores are helping us with: they provide the order of preference. 807 808 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 809 static const int ScoreConsecutiveLoads = 3; 810 /// ExtractElementInst from same vector and consecutive indexes. 811 static const int ScoreConsecutiveExtracts = 3; 812 /// Constants. 813 static const int ScoreConstants = 2; 814 /// Instructions with the same opcode. 815 static const int ScoreSameOpcode = 2; 816 /// Instructions with alt opcodes (e.g, add + sub). 817 static const int ScoreAltOpcodes = 1; 818 /// Identical instructions (a.k.a. splat or broadcast). 819 static const int ScoreSplat = 1; 820 /// Matching with an undef is preferable to failing. 821 static const int ScoreUndef = 1; 822 /// Score for failing to find a decent match. 823 static const int ScoreFail = 0; 824 /// User exteranl to the vectorized code. 825 static const int ExternalUseCost = 1; 826 /// The user is internal but in a different lane. 827 static const int UserInDiffLaneCost = ExternalUseCost; 828 829 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 830 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 831 ScalarEvolution &SE) { 832 auto *LI1 = dyn_cast<LoadInst>(V1); 833 auto *LI2 = dyn_cast<LoadInst>(V2); 834 if (LI1 && LI2) 835 return isConsecutiveAccess(LI1, LI2, DL, SE) 836 ? VLOperands::ScoreConsecutiveLoads 837 : VLOperands::ScoreFail; 838 839 auto *C1 = dyn_cast<Constant>(V1); 840 auto *C2 = dyn_cast<Constant>(V2); 841 if (C1 && C2) 842 return VLOperands::ScoreConstants; 843 844 // Extracts from consecutive indexes of the same vector better score as 845 // the extracts could be optimized away. 846 Value *EV; 847 ConstantInt *Ex1Idx, *Ex2Idx; 848 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 849 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 850 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 851 return VLOperands::ScoreConsecutiveExtracts; 852 853 auto *I1 = dyn_cast<Instruction>(V1); 854 auto *I2 = dyn_cast<Instruction>(V2); 855 if (I1 && I2) { 856 if (I1 == I2) 857 return VLOperands::ScoreSplat; 858 InstructionsState S = getSameOpcode({I1, I2}); 859 // Note: Only consider instructions with <= 2 operands to avoid 860 // complexity explosion. 861 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 862 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 863 : VLOperands::ScoreSameOpcode; 864 } 865 866 if (isa<UndefValue>(V2)) 867 return VLOperands::ScoreUndef; 868 869 return VLOperands::ScoreFail; 870 } 871 872 /// Holds the values and their lane that are taking part in the look-ahead 873 /// score calculation. This is used in the external uses cost calculation. 874 SmallDenseMap<Value *, int> InLookAheadValues; 875 876 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 877 /// either external to the vectorized code, or require shuffling. 878 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 879 const std::pair<Value *, int> &RHS) { 880 int Cost = 0; 881 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 882 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 883 Value *V = Values[Idx].first; 884 // Calculate the absolute lane, using the minimum relative lane of LHS 885 // and RHS as base and Idx as the offset. 886 int Ln = std::min(LHS.second, RHS.second) + Idx; 887 assert(Ln >= 0 && "Bad lane calculation"); 888 unsigned UsersBudget = LookAheadUsersBudget; 889 for (User *U : V->users()) { 890 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 891 // The user is in the VectorizableTree. Check if we need to insert. 892 auto It = llvm::find(UserTE->Scalars, U); 893 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 894 int UserLn = std::distance(UserTE->Scalars.begin(), It); 895 assert(UserLn >= 0 && "Bad lane"); 896 if (UserLn != Ln) 897 Cost += UserInDiffLaneCost; 898 } else { 899 // Check if the user is in the look-ahead code. 900 auto It2 = InLookAheadValues.find(U); 901 if (It2 != InLookAheadValues.end()) { 902 // The user is in the look-ahead code. Check the lane. 903 if (It2->second != Ln) 904 Cost += UserInDiffLaneCost; 905 } else { 906 // The user is neither in SLP tree nor in the look-ahead code. 907 Cost += ExternalUseCost; 908 } 909 } 910 // Limit the number of visited uses to cap compilation time. 911 if (--UsersBudget == 0) 912 break; 913 } 914 } 915 return Cost; 916 } 917 918 /// Go through the operands of \p LHS and \p RHS recursively until \p 919 /// MaxLevel, and return the cummulative score. For example: 920 /// \verbatim 921 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 922 /// \ / \ / \ / \ / 923 /// + + + + 924 /// G1 G2 G3 G4 925 /// \endverbatim 926 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 927 /// each level recursively, accumulating the score. It starts from matching 928 /// the additions at level 0, then moves on to the loads (level 1). The 929 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 930 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 931 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 932 /// Please note that the order of the operands does not matter, as we 933 /// evaluate the score of all profitable combinations of operands. In 934 /// other words the score of G1 and G4 is the same as G1 and G2. This 935 /// heuristic is based on ideas described in: 936 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 937 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 938 /// Luís F. W. Góes 939 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 940 const std::pair<Value *, int> &RHS, int CurrLevel, 941 int MaxLevel) { 942 943 Value *V1 = LHS.first; 944 Value *V2 = RHS.first; 945 // Get the shallow score of V1 and V2. 946 int ShallowScoreAtThisLevel = 947 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 948 getExternalUsesCost(LHS, RHS)); 949 int Lane1 = LHS.second; 950 int Lane2 = RHS.second; 951 952 // If reached MaxLevel, 953 // or if V1 and V2 are not instructions, 954 // or if they are SPLAT, 955 // or if they are not consecutive, early return the current cost. 956 auto *I1 = dyn_cast<Instruction>(V1); 957 auto *I2 = dyn_cast<Instruction>(V2); 958 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 959 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 960 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 961 return ShallowScoreAtThisLevel; 962 assert(I1 && I2 && "Should have early exited."); 963 964 // Keep track of in-tree values for determining the external-use cost. 965 InLookAheadValues[V1] = Lane1; 966 InLookAheadValues[V2] = Lane2; 967 968 // Contains the I2 operand indexes that got matched with I1 operands. 969 SmallSet<unsigned, 4> Op2Used; 970 971 // Recursion towards the operands of I1 and I2. We are trying all possbile 972 // operand pairs, and keeping track of the best score. 973 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 974 OpIdx1 != NumOperands1; ++OpIdx1) { 975 // Try to pair op1I with the best operand of I2. 976 int MaxTmpScore = 0; 977 unsigned MaxOpIdx2 = 0; 978 bool FoundBest = false; 979 // If I2 is commutative try all combinations. 980 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 981 unsigned ToIdx = isCommutative(I2) 982 ? I2->getNumOperands() 983 : std::min(I2->getNumOperands(), OpIdx1 + 1); 984 assert(FromIdx <= ToIdx && "Bad index"); 985 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 986 // Skip operands already paired with OpIdx1. 987 if (Op2Used.count(OpIdx2)) 988 continue; 989 // Recursively calculate the cost at each level 990 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 991 {I2->getOperand(OpIdx2), Lane2}, 992 CurrLevel + 1, MaxLevel); 993 // Look for the best score. 994 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 995 MaxTmpScore = TmpScore; 996 MaxOpIdx2 = OpIdx2; 997 FoundBest = true; 998 } 999 } 1000 if (FoundBest) { 1001 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1002 Op2Used.insert(MaxOpIdx2); 1003 ShallowScoreAtThisLevel += MaxTmpScore; 1004 } 1005 } 1006 return ShallowScoreAtThisLevel; 1007 } 1008 1009 /// \Returns the look-ahead score, which tells us how much the sub-trees 1010 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1011 /// score. This helps break ties in an informed way when we cannot decide on 1012 /// the order of the operands by just considering the immediate 1013 /// predecessors. 1014 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1015 const std::pair<Value *, int> &RHS) { 1016 InLookAheadValues.clear(); 1017 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1018 } 1019 1020 // Search all operands in Ops[*][Lane] for the one that matches best 1021 // Ops[OpIdx][LastLane] and return its opreand index. 1022 // If no good match can be found, return None. 1023 Optional<unsigned> 1024 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1025 ArrayRef<ReorderingMode> ReorderingModes) { 1026 unsigned NumOperands = getNumOperands(); 1027 1028 // The operand of the previous lane at OpIdx. 1029 Value *OpLastLane = getData(OpIdx, LastLane).V; 1030 1031 // Our strategy mode for OpIdx. 1032 ReorderingMode RMode = ReorderingModes[OpIdx]; 1033 1034 // The linearized opcode of the operand at OpIdx, Lane. 1035 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1036 1037 // The best operand index and its score. 1038 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1039 // are using the score to differentiate between the two. 1040 struct BestOpData { 1041 Optional<unsigned> Idx = None; 1042 unsigned Score = 0; 1043 } BestOp; 1044 1045 // Iterate through all unused operands and look for the best. 1046 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1047 // Get the operand at Idx and Lane. 1048 OperandData &OpData = getData(Idx, Lane); 1049 Value *Op = OpData.V; 1050 bool OpAPO = OpData.APO; 1051 1052 // Skip already selected operands. 1053 if (OpData.IsUsed) 1054 continue; 1055 1056 // Skip if we are trying to move the operand to a position with a 1057 // different opcode in the linearized tree form. This would break the 1058 // semantics. 1059 if (OpAPO != OpIdxAPO) 1060 continue; 1061 1062 // Look for an operand that matches the current mode. 1063 switch (RMode) { 1064 case ReorderingMode::Load: 1065 case ReorderingMode::Constant: 1066 case ReorderingMode::Opcode: { 1067 bool LeftToRight = Lane > LastLane; 1068 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1069 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1070 unsigned Score = 1071 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1072 if (Score > BestOp.Score) { 1073 BestOp.Idx = Idx; 1074 BestOp.Score = Score; 1075 } 1076 break; 1077 } 1078 case ReorderingMode::Splat: 1079 if (Op == OpLastLane) 1080 BestOp.Idx = Idx; 1081 break; 1082 case ReorderingMode::Failed: 1083 return None; 1084 } 1085 } 1086 1087 if (BestOp.Idx) { 1088 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1089 return BestOp.Idx; 1090 } 1091 // If we could not find a good match return None. 1092 return None; 1093 } 1094 1095 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1096 /// reordering from. This is the one which has the least number of operands 1097 /// that can freely move about. 1098 unsigned getBestLaneToStartReordering() const { 1099 unsigned BestLane = 0; 1100 unsigned Min = UINT_MAX; 1101 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1102 ++Lane) { 1103 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1104 if (NumFreeOps < Min) { 1105 Min = NumFreeOps; 1106 BestLane = Lane; 1107 } 1108 } 1109 return BestLane; 1110 } 1111 1112 /// \Returns the maximum number of operands that are allowed to be reordered 1113 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1114 /// start operand reordering. 1115 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1116 unsigned CntTrue = 0; 1117 unsigned NumOperands = getNumOperands(); 1118 // Operands with the same APO can be reordered. We therefore need to count 1119 // how many of them we have for each APO, like this: Cnt[APO] = x. 1120 // Since we only have two APOs, namely true and false, we can avoid using 1121 // a map. Instead we can simply count the number of operands that 1122 // correspond to one of them (in this case the 'true' APO), and calculate 1123 // the other by subtracting it from the total number of operands. 1124 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1125 if (getData(OpIdx, Lane).APO) 1126 ++CntTrue; 1127 unsigned CntFalse = NumOperands - CntTrue; 1128 return std::max(CntTrue, CntFalse); 1129 } 1130 1131 /// Go through the instructions in VL and append their operands. 1132 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1133 assert(!VL.empty() && "Bad VL"); 1134 assert((empty() || VL.size() == getNumLanes()) && 1135 "Expected same number of lanes"); 1136 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1137 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1138 OpsVec.resize(NumOperands); 1139 unsigned NumLanes = VL.size(); 1140 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1141 OpsVec[OpIdx].resize(NumLanes); 1142 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1143 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1144 // Our tree has just 3 nodes: the root and two operands. 1145 // It is therefore trivial to get the APO. We only need to check the 1146 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1147 // RHS operand. The LHS operand of both add and sub is never attached 1148 // to an inversese operation in the linearized form, therefore its APO 1149 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1150 1151 // Since operand reordering is performed on groups of commutative 1152 // operations or alternating sequences (e.g., +, -), we can safely 1153 // tell the inverse operations by checking commutativity. 1154 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1155 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1156 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1157 APO, false}; 1158 } 1159 } 1160 } 1161 1162 /// \returns the number of operands. 1163 unsigned getNumOperands() const { return OpsVec.size(); } 1164 1165 /// \returns the number of lanes. 1166 unsigned getNumLanes() const { return OpsVec[0].size(); } 1167 1168 /// \returns the operand value at \p OpIdx and \p Lane. 1169 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1170 return getData(OpIdx, Lane).V; 1171 } 1172 1173 /// \returns true if the data structure is empty. 1174 bool empty() const { return OpsVec.empty(); } 1175 1176 /// Clears the data. 1177 void clear() { OpsVec.clear(); } 1178 1179 /// \Returns true if there are enough operands identical to \p Op to fill 1180 /// the whole vector. 1181 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1182 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1183 bool OpAPO = getData(OpIdx, Lane).APO; 1184 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1185 if (Ln == Lane) 1186 continue; 1187 // This is set to true if we found a candidate for broadcast at Lane. 1188 bool FoundCandidate = false; 1189 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1190 OperandData &Data = getData(OpI, Ln); 1191 if (Data.APO != OpAPO || Data.IsUsed) 1192 continue; 1193 if (Data.V == Op) { 1194 FoundCandidate = true; 1195 Data.IsUsed = true; 1196 break; 1197 } 1198 } 1199 if (!FoundCandidate) 1200 return false; 1201 } 1202 return true; 1203 } 1204 1205 public: 1206 /// Initialize with all the operands of the instruction vector \p RootVL. 1207 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1208 ScalarEvolution &SE, const BoUpSLP &R) 1209 : DL(DL), SE(SE), R(R) { 1210 // Append all the operands of RootVL. 1211 appendOperandsOfVL(RootVL); 1212 } 1213 1214 /// \Returns a value vector with the operands across all lanes for the 1215 /// opearnd at \p OpIdx. 1216 ValueList getVL(unsigned OpIdx) const { 1217 ValueList OpVL(OpsVec[OpIdx].size()); 1218 assert(OpsVec[OpIdx].size() == getNumLanes() && 1219 "Expected same num of lanes across all operands"); 1220 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1221 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1222 return OpVL; 1223 } 1224 1225 // Performs operand reordering for 2 or more operands. 1226 // The original operands are in OrigOps[OpIdx][Lane]. 1227 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1228 void reorder() { 1229 unsigned NumOperands = getNumOperands(); 1230 unsigned NumLanes = getNumLanes(); 1231 // Each operand has its own mode. We are using this mode to help us select 1232 // the instructions for each lane, so that they match best with the ones 1233 // we have selected so far. 1234 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1235 1236 // This is a greedy single-pass algorithm. We are going over each lane 1237 // once and deciding on the best order right away with no back-tracking. 1238 // However, in order to increase its effectiveness, we start with the lane 1239 // that has operands that can move the least. For example, given the 1240 // following lanes: 1241 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1242 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1243 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1244 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1245 // we will start at Lane 1, since the operands of the subtraction cannot 1246 // be reordered. Then we will visit the rest of the lanes in a circular 1247 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1248 1249 // Find the first lane that we will start our search from. 1250 unsigned FirstLane = getBestLaneToStartReordering(); 1251 1252 // Initialize the modes. 1253 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1254 Value *OpLane0 = getValue(OpIdx, FirstLane); 1255 // Keep track if we have instructions with all the same opcode on one 1256 // side. 1257 if (isa<LoadInst>(OpLane0)) 1258 ReorderingModes[OpIdx] = ReorderingMode::Load; 1259 else if (isa<Instruction>(OpLane0)) { 1260 // Check if OpLane0 should be broadcast. 1261 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1262 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1263 else 1264 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1265 } 1266 else if (isa<Constant>(OpLane0)) 1267 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1268 else if (isa<Argument>(OpLane0)) 1269 // Our best hope is a Splat. It may save some cost in some cases. 1270 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1271 else 1272 // NOTE: This should be unreachable. 1273 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1274 } 1275 1276 // If the initial strategy fails for any of the operand indexes, then we 1277 // perform reordering again in a second pass. This helps avoid assigning 1278 // high priority to the failed strategy, and should improve reordering for 1279 // the non-failed operand indexes. 1280 for (int Pass = 0; Pass != 2; ++Pass) { 1281 // Skip the second pass if the first pass did not fail. 1282 bool StrategyFailed = false; 1283 // Mark all operand data as free to use. 1284 clearUsed(); 1285 // We keep the original operand order for the FirstLane, so reorder the 1286 // rest of the lanes. We are visiting the nodes in a circular fashion, 1287 // using FirstLane as the center point and increasing the radius 1288 // distance. 1289 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1290 // Visit the lane on the right and then the lane on the left. 1291 for (int Direction : {+1, -1}) { 1292 int Lane = FirstLane + Direction * Distance; 1293 if (Lane < 0 || Lane >= (int)NumLanes) 1294 continue; 1295 int LastLane = Lane - Direction; 1296 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1297 "Out of bounds"); 1298 // Look for a good match for each operand. 1299 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1300 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1301 Optional<unsigned> BestIdx = 1302 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1303 // By not selecting a value, we allow the operands that follow to 1304 // select a better matching value. We will get a non-null value in 1305 // the next run of getBestOperand(). 1306 if (BestIdx) { 1307 // Swap the current operand with the one returned by 1308 // getBestOperand(). 1309 swap(OpIdx, BestIdx.getValue(), Lane); 1310 } else { 1311 // We failed to find a best operand, set mode to 'Failed'. 1312 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1313 // Enable the second pass. 1314 StrategyFailed = true; 1315 } 1316 } 1317 } 1318 } 1319 // Skip second pass if the strategy did not fail. 1320 if (!StrategyFailed) 1321 break; 1322 } 1323 } 1324 1325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1326 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1327 switch (RMode) { 1328 case ReorderingMode::Load: 1329 return "Load"; 1330 case ReorderingMode::Opcode: 1331 return "Opcode"; 1332 case ReorderingMode::Constant: 1333 return "Constant"; 1334 case ReorderingMode::Splat: 1335 return "Splat"; 1336 case ReorderingMode::Failed: 1337 return "Failed"; 1338 } 1339 llvm_unreachable("Unimplemented Reordering Type"); 1340 } 1341 1342 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1343 raw_ostream &OS) { 1344 return OS << getModeStr(RMode); 1345 } 1346 1347 /// Debug print. 1348 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1349 printMode(RMode, dbgs()); 1350 } 1351 1352 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1353 return printMode(RMode, OS); 1354 } 1355 1356 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1357 const unsigned Indent = 2; 1358 unsigned Cnt = 0; 1359 for (const OperandDataVec &OpDataVec : OpsVec) { 1360 OS << "Operand " << Cnt++ << "\n"; 1361 for (const OperandData &OpData : OpDataVec) { 1362 OS.indent(Indent) << "{"; 1363 if (Value *V = OpData.V) 1364 OS << *V; 1365 else 1366 OS << "null"; 1367 OS << ", APO:" << OpData.APO << "}\n"; 1368 } 1369 OS << "\n"; 1370 } 1371 return OS; 1372 } 1373 1374 /// Debug print. 1375 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1376 #endif 1377 }; 1378 1379 /// Checks if the instruction is marked for deletion. 1380 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1381 1382 /// Marks values operands for later deletion by replacing them with Undefs. 1383 void eraseInstructions(ArrayRef<Value *> AV); 1384 1385 ~BoUpSLP(); 1386 1387 private: 1388 /// Checks if all users of \p I are the part of the vectorization tree. 1389 bool areAllUsersVectorized(Instruction *I) const; 1390 1391 /// \returns the cost of the vectorizable entry. 1392 int getEntryCost(TreeEntry *E); 1393 1394 /// This is the recursive part of buildTree. 1395 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1396 const EdgeInfo &EI); 1397 1398 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1399 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1400 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1401 /// returns false, setting \p CurrentOrder to either an empty vector or a 1402 /// non-identity permutation that allows to reuse extract instructions. 1403 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1404 SmallVectorImpl<unsigned> &CurrentOrder) const; 1405 1406 /// Vectorize a single entry in the tree. 1407 Value *vectorizeTree(TreeEntry *E); 1408 1409 /// Vectorize a single entry in the tree, starting in \p VL. 1410 Value *vectorizeTree(ArrayRef<Value *> VL); 1411 1412 /// \returns the scalarization cost for this type. Scalarization in this 1413 /// context means the creation of vectors from a group of scalars. 1414 int getGatherCost(VectorType *Ty, 1415 const DenseSet<unsigned> &ShuffledIndices) const; 1416 1417 /// \returns the scalarization cost for this list of values. Assuming that 1418 /// this subtree gets vectorized, we may need to extract the values from the 1419 /// roots. This method calculates the cost of extracting the values. 1420 int getGatherCost(ArrayRef<Value *> VL) const; 1421 1422 /// Set the Builder insert point to one after the last instruction in 1423 /// the bundle 1424 void setInsertPointAfterBundle(TreeEntry *E); 1425 1426 /// \returns a vector from a collection of scalars in \p VL. 1427 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1428 1429 /// \returns whether the VectorizableTree is fully vectorizable and will 1430 /// be beneficial even the tree height is tiny. 1431 bool isFullyVectorizableTinyTree() const; 1432 1433 /// Reorder commutative or alt operands to get better probability of 1434 /// generating vectorized code. 1435 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1436 SmallVectorImpl<Value *> &Left, 1437 SmallVectorImpl<Value *> &Right, 1438 const DataLayout &DL, 1439 ScalarEvolution &SE, 1440 const BoUpSLP &R); 1441 struct TreeEntry { 1442 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1443 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1444 1445 /// \returns true if the scalars in VL are equal to this entry. 1446 bool isSame(ArrayRef<Value *> VL) const { 1447 if (VL.size() == Scalars.size()) 1448 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1449 return VL.size() == ReuseShuffleIndices.size() && 1450 std::equal( 1451 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1452 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1453 } 1454 1455 /// A vector of scalars. 1456 ValueList Scalars; 1457 1458 /// The Scalars are vectorized into this value. It is initialized to Null. 1459 Value *VectorizedValue = nullptr; 1460 1461 /// Do we need to gather this sequence ? 1462 enum EntryState { Vectorize, NeedToGather }; 1463 EntryState State; 1464 1465 /// Does this sequence require some shuffling? 1466 SmallVector<int, 4> ReuseShuffleIndices; 1467 1468 /// Does this entry require reordering? 1469 ArrayRef<unsigned> ReorderIndices; 1470 1471 /// Points back to the VectorizableTree. 1472 /// 1473 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1474 /// to be a pointer and needs to be able to initialize the child iterator. 1475 /// Thus we need a reference back to the container to translate the indices 1476 /// to entries. 1477 VecTreeTy &Container; 1478 1479 /// The TreeEntry index containing the user of this entry. We can actually 1480 /// have multiple users so the data structure is not truly a tree. 1481 SmallVector<EdgeInfo, 1> UserTreeIndices; 1482 1483 /// The index of this treeEntry in VectorizableTree. 1484 int Idx = -1; 1485 1486 private: 1487 /// The operands of each instruction in each lane Operands[op_index][lane]. 1488 /// Note: This helps avoid the replication of the code that performs the 1489 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1490 SmallVector<ValueList, 2> Operands; 1491 1492 /// The main/alternate instruction. 1493 Instruction *MainOp = nullptr; 1494 Instruction *AltOp = nullptr; 1495 1496 public: 1497 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1498 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1499 if (Operands.size() < OpIdx + 1) 1500 Operands.resize(OpIdx + 1); 1501 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1502 Operands[OpIdx].resize(Scalars.size()); 1503 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1504 Operands[OpIdx][Lane] = OpVL[Lane]; 1505 } 1506 1507 /// Set the operands of this bundle in their original order. 1508 void setOperandsInOrder() { 1509 assert(Operands.empty() && "Already initialized?"); 1510 auto *I0 = cast<Instruction>(Scalars[0]); 1511 Operands.resize(I0->getNumOperands()); 1512 unsigned NumLanes = Scalars.size(); 1513 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1514 OpIdx != NumOperands; ++OpIdx) { 1515 Operands[OpIdx].resize(NumLanes); 1516 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1517 auto *I = cast<Instruction>(Scalars[Lane]); 1518 assert(I->getNumOperands() == NumOperands && 1519 "Expected same number of operands"); 1520 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1521 } 1522 } 1523 } 1524 1525 /// \returns the \p OpIdx operand of this TreeEntry. 1526 ValueList &getOperand(unsigned OpIdx) { 1527 assert(OpIdx < Operands.size() && "Off bounds"); 1528 return Operands[OpIdx]; 1529 } 1530 1531 /// \returns the number of operands. 1532 unsigned getNumOperands() const { return Operands.size(); } 1533 1534 /// \return the single \p OpIdx operand. 1535 Value *getSingleOperand(unsigned OpIdx) const { 1536 assert(OpIdx < Operands.size() && "Off bounds"); 1537 assert(!Operands[OpIdx].empty() && "No operand available"); 1538 return Operands[OpIdx][0]; 1539 } 1540 1541 /// Some of the instructions in the list have alternate opcodes. 1542 bool isAltShuffle() const { 1543 return getOpcode() != getAltOpcode(); 1544 } 1545 1546 bool isOpcodeOrAlt(Instruction *I) const { 1547 unsigned CheckedOpcode = I->getOpcode(); 1548 return (getOpcode() == CheckedOpcode || 1549 getAltOpcode() == CheckedOpcode); 1550 } 1551 1552 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1553 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1554 /// \p OpValue. 1555 Value *isOneOf(Value *Op) const { 1556 auto *I = dyn_cast<Instruction>(Op); 1557 if (I && isOpcodeOrAlt(I)) 1558 return Op; 1559 return MainOp; 1560 } 1561 1562 void setOperations(const InstructionsState &S) { 1563 MainOp = S.MainOp; 1564 AltOp = S.AltOp; 1565 } 1566 1567 Instruction *getMainOp() const { 1568 return MainOp; 1569 } 1570 1571 Instruction *getAltOp() const { 1572 return AltOp; 1573 } 1574 1575 /// The main/alternate opcodes for the list of instructions. 1576 unsigned getOpcode() const { 1577 return MainOp ? MainOp->getOpcode() : 0; 1578 } 1579 1580 unsigned getAltOpcode() const { 1581 return AltOp ? AltOp->getOpcode() : 0; 1582 } 1583 1584 /// Update operations state of this entry if reorder occurred. 1585 bool updateStateIfReorder() { 1586 if (ReorderIndices.empty()) 1587 return false; 1588 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1589 setOperations(S); 1590 return true; 1591 } 1592 1593 #ifndef NDEBUG 1594 /// Debug printer. 1595 LLVM_DUMP_METHOD void dump() const { 1596 dbgs() << Idx << ".\n"; 1597 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1598 dbgs() << "Operand " << OpI << ":\n"; 1599 for (const Value *V : Operands[OpI]) 1600 dbgs().indent(2) << *V << "\n"; 1601 } 1602 dbgs() << "Scalars: \n"; 1603 for (Value *V : Scalars) 1604 dbgs().indent(2) << *V << "\n"; 1605 dbgs() << "State: "; 1606 switch (State) { 1607 case Vectorize: 1608 dbgs() << "Vectorize\n"; 1609 break; 1610 case NeedToGather: 1611 dbgs() << "NeedToGather\n"; 1612 break; 1613 } 1614 dbgs() << "MainOp: "; 1615 if (MainOp) 1616 dbgs() << *MainOp << "\n"; 1617 else 1618 dbgs() << "NULL\n"; 1619 dbgs() << "AltOp: "; 1620 if (AltOp) 1621 dbgs() << *AltOp << "\n"; 1622 else 1623 dbgs() << "NULL\n"; 1624 dbgs() << "VectorizedValue: "; 1625 if (VectorizedValue) 1626 dbgs() << *VectorizedValue << "\n"; 1627 else 1628 dbgs() << "NULL\n"; 1629 dbgs() << "ReuseShuffleIndices: "; 1630 if (ReuseShuffleIndices.empty()) 1631 dbgs() << "Emtpy"; 1632 else 1633 for (unsigned ReuseIdx : ReuseShuffleIndices) 1634 dbgs() << ReuseIdx << ", "; 1635 dbgs() << "\n"; 1636 dbgs() << "ReorderIndices: "; 1637 for (unsigned ReorderIdx : ReorderIndices) 1638 dbgs() << ReorderIdx << ", "; 1639 dbgs() << "\n"; 1640 dbgs() << "UserTreeIndices: "; 1641 for (const auto &EInfo : UserTreeIndices) 1642 dbgs() << EInfo << ", "; 1643 dbgs() << "\n"; 1644 } 1645 #endif 1646 }; 1647 1648 /// Create a new VectorizableTree entry. 1649 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1650 const InstructionsState &S, 1651 const EdgeInfo &UserTreeIdx, 1652 ArrayRef<unsigned> ReuseShuffleIndices = None, 1653 ArrayRef<unsigned> ReorderIndices = None) { 1654 bool Vectorized = (bool)Bundle; 1655 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1656 TreeEntry *Last = VectorizableTree.back().get(); 1657 Last->Idx = VectorizableTree.size() - 1; 1658 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1659 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1660 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1661 ReuseShuffleIndices.end()); 1662 Last->ReorderIndices = ReorderIndices; 1663 Last->setOperations(S); 1664 if (Vectorized) { 1665 for (int i = 0, e = VL.size(); i != e; ++i) { 1666 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1667 ScalarToTreeEntry[VL[i]] = Last; 1668 } 1669 // Update the scheduler bundle to point to this TreeEntry. 1670 unsigned Lane = 0; 1671 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1672 BundleMember = BundleMember->NextInBundle) { 1673 BundleMember->TE = Last; 1674 BundleMember->Lane = Lane; 1675 ++Lane; 1676 } 1677 assert((!Bundle.getValue() || Lane == VL.size()) && 1678 "Bundle and VL out of sync"); 1679 } else { 1680 MustGather.insert(VL.begin(), VL.end()); 1681 } 1682 1683 if (UserTreeIdx.UserTE) 1684 Last->UserTreeIndices.push_back(UserTreeIdx); 1685 1686 return Last; 1687 } 1688 1689 /// -- Vectorization State -- 1690 /// Holds all of the tree entries. 1691 TreeEntry::VecTreeTy VectorizableTree; 1692 1693 #ifndef NDEBUG 1694 /// Debug printer. 1695 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1696 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1697 VectorizableTree[Id]->dump(); 1698 dbgs() << "\n"; 1699 } 1700 } 1701 #endif 1702 1703 TreeEntry *getTreeEntry(Value *V) { 1704 auto I = ScalarToTreeEntry.find(V); 1705 if (I != ScalarToTreeEntry.end()) 1706 return I->second; 1707 return nullptr; 1708 } 1709 1710 const TreeEntry *getTreeEntry(Value *V) const { 1711 auto I = ScalarToTreeEntry.find(V); 1712 if (I != ScalarToTreeEntry.end()) 1713 return I->second; 1714 return nullptr; 1715 } 1716 1717 /// Maps a specific scalar to its tree entry. 1718 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1719 1720 /// Maps a value to the proposed vectorizable size. 1721 SmallDenseMap<Value *, unsigned> InstrElementSize; 1722 1723 /// A list of scalars that we found that we need to keep as scalars. 1724 ValueSet MustGather; 1725 1726 /// This POD struct describes one external user in the vectorized tree. 1727 struct ExternalUser { 1728 ExternalUser(Value *S, llvm::User *U, int L) 1729 : Scalar(S), User(U), Lane(L) {} 1730 1731 // Which scalar in our function. 1732 Value *Scalar; 1733 1734 // Which user that uses the scalar. 1735 llvm::User *User; 1736 1737 // Which lane does the scalar belong to. 1738 int Lane; 1739 }; 1740 using UserList = SmallVector<ExternalUser, 16>; 1741 1742 /// Checks if two instructions may access the same memory. 1743 /// 1744 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1745 /// is invariant in the calling loop. 1746 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1747 Instruction *Inst2) { 1748 // First check if the result is already in the cache. 1749 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1750 Optional<bool> &result = AliasCache[key]; 1751 if (result.hasValue()) { 1752 return result.getValue(); 1753 } 1754 MemoryLocation Loc2 = getLocation(Inst2, AA); 1755 bool aliased = true; 1756 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1757 // Do the alias check. 1758 aliased = AA->alias(Loc1, Loc2); 1759 } 1760 // Store the result in the cache. 1761 result = aliased; 1762 return aliased; 1763 } 1764 1765 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1766 1767 /// Cache for alias results. 1768 /// TODO: consider moving this to the AliasAnalysis itself. 1769 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1770 1771 /// Removes an instruction from its block and eventually deletes it. 1772 /// It's like Instruction::eraseFromParent() except that the actual deletion 1773 /// is delayed until BoUpSLP is destructed. 1774 /// This is required to ensure that there are no incorrect collisions in the 1775 /// AliasCache, which can happen if a new instruction is allocated at the 1776 /// same address as a previously deleted instruction. 1777 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1778 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1779 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1780 } 1781 1782 /// Temporary store for deleted instructions. Instructions will be deleted 1783 /// eventually when the BoUpSLP is destructed. 1784 DenseMap<Instruction *, bool> DeletedInstructions; 1785 1786 /// A list of values that need to extracted out of the tree. 1787 /// This list holds pairs of (Internal Scalar : External User). External User 1788 /// can be nullptr, it means that this Internal Scalar will be used later, 1789 /// after vectorization. 1790 UserList ExternalUses; 1791 1792 /// Values used only by @llvm.assume calls. 1793 SmallPtrSet<const Value *, 32> EphValues; 1794 1795 /// Holds all of the instructions that we gathered. 1796 SetVector<Instruction *> GatherSeq; 1797 1798 /// A list of blocks that we are going to CSE. 1799 SetVector<BasicBlock *> CSEBlocks; 1800 1801 /// Contains all scheduling relevant data for an instruction. 1802 /// A ScheduleData either represents a single instruction or a member of an 1803 /// instruction bundle (= a group of instructions which is combined into a 1804 /// vector instruction). 1805 struct ScheduleData { 1806 // The initial value for the dependency counters. It means that the 1807 // dependencies are not calculated yet. 1808 enum { InvalidDeps = -1 }; 1809 1810 ScheduleData() = default; 1811 1812 void init(int BlockSchedulingRegionID, Value *OpVal) { 1813 FirstInBundle = this; 1814 NextInBundle = nullptr; 1815 NextLoadStore = nullptr; 1816 IsScheduled = false; 1817 SchedulingRegionID = BlockSchedulingRegionID; 1818 UnscheduledDepsInBundle = UnscheduledDeps; 1819 clearDependencies(); 1820 OpValue = OpVal; 1821 TE = nullptr; 1822 Lane = -1; 1823 } 1824 1825 /// Returns true if the dependency information has been calculated. 1826 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1827 1828 /// Returns true for single instructions and for bundle representatives 1829 /// (= the head of a bundle). 1830 bool isSchedulingEntity() const { return FirstInBundle == this; } 1831 1832 /// Returns true if it represents an instruction bundle and not only a 1833 /// single instruction. 1834 bool isPartOfBundle() const { 1835 return NextInBundle != nullptr || FirstInBundle != this; 1836 } 1837 1838 /// Returns true if it is ready for scheduling, i.e. it has no more 1839 /// unscheduled depending instructions/bundles. 1840 bool isReady() const { 1841 assert(isSchedulingEntity() && 1842 "can't consider non-scheduling entity for ready list"); 1843 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1844 } 1845 1846 /// Modifies the number of unscheduled dependencies, also updating it for 1847 /// the whole bundle. 1848 int incrementUnscheduledDeps(int Incr) { 1849 UnscheduledDeps += Incr; 1850 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1851 } 1852 1853 /// Sets the number of unscheduled dependencies to the number of 1854 /// dependencies. 1855 void resetUnscheduledDeps() { 1856 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1857 } 1858 1859 /// Clears all dependency information. 1860 void clearDependencies() { 1861 Dependencies = InvalidDeps; 1862 resetUnscheduledDeps(); 1863 MemoryDependencies.clear(); 1864 } 1865 1866 void dump(raw_ostream &os) const { 1867 if (!isSchedulingEntity()) { 1868 os << "/ " << *Inst; 1869 } else if (NextInBundle) { 1870 os << '[' << *Inst; 1871 ScheduleData *SD = NextInBundle; 1872 while (SD) { 1873 os << ';' << *SD->Inst; 1874 SD = SD->NextInBundle; 1875 } 1876 os << ']'; 1877 } else { 1878 os << *Inst; 1879 } 1880 } 1881 1882 Instruction *Inst = nullptr; 1883 1884 /// Points to the head in an instruction bundle (and always to this for 1885 /// single instructions). 1886 ScheduleData *FirstInBundle = nullptr; 1887 1888 /// Single linked list of all instructions in a bundle. Null if it is a 1889 /// single instruction. 1890 ScheduleData *NextInBundle = nullptr; 1891 1892 /// Single linked list of all memory instructions (e.g. load, store, call) 1893 /// in the block - until the end of the scheduling region. 1894 ScheduleData *NextLoadStore = nullptr; 1895 1896 /// The dependent memory instructions. 1897 /// This list is derived on demand in calculateDependencies(). 1898 SmallVector<ScheduleData *, 4> MemoryDependencies; 1899 1900 /// This ScheduleData is in the current scheduling region if this matches 1901 /// the current SchedulingRegionID of BlockScheduling. 1902 int SchedulingRegionID = 0; 1903 1904 /// Used for getting a "good" final ordering of instructions. 1905 int SchedulingPriority = 0; 1906 1907 /// The number of dependencies. Constitutes of the number of users of the 1908 /// instruction plus the number of dependent memory instructions (if any). 1909 /// This value is calculated on demand. 1910 /// If InvalidDeps, the number of dependencies is not calculated yet. 1911 int Dependencies = InvalidDeps; 1912 1913 /// The number of dependencies minus the number of dependencies of scheduled 1914 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1915 /// for scheduling. 1916 /// Note that this is negative as long as Dependencies is not calculated. 1917 int UnscheduledDeps = InvalidDeps; 1918 1919 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1920 /// single instructions. 1921 int UnscheduledDepsInBundle = InvalidDeps; 1922 1923 /// True if this instruction is scheduled (or considered as scheduled in the 1924 /// dry-run). 1925 bool IsScheduled = false; 1926 1927 /// Opcode of the current instruction in the schedule data. 1928 Value *OpValue = nullptr; 1929 1930 /// The TreeEntry that this instruction corresponds to. 1931 TreeEntry *TE = nullptr; 1932 1933 /// The lane of this node in the TreeEntry. 1934 int Lane = -1; 1935 }; 1936 1937 #ifndef NDEBUG 1938 friend inline raw_ostream &operator<<(raw_ostream &os, 1939 const BoUpSLP::ScheduleData &SD) { 1940 SD.dump(os); 1941 return os; 1942 } 1943 #endif 1944 1945 friend struct GraphTraits<BoUpSLP *>; 1946 friend struct DOTGraphTraits<BoUpSLP *>; 1947 1948 /// Contains all scheduling data for a basic block. 1949 struct BlockScheduling { 1950 BlockScheduling(BasicBlock *BB) 1951 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1952 1953 void clear() { 1954 ReadyInsts.clear(); 1955 ScheduleStart = nullptr; 1956 ScheduleEnd = nullptr; 1957 FirstLoadStoreInRegion = nullptr; 1958 LastLoadStoreInRegion = nullptr; 1959 1960 // Reduce the maximum schedule region size by the size of the 1961 // previous scheduling run. 1962 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1963 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1964 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1965 ScheduleRegionSize = 0; 1966 1967 // Make a new scheduling region, i.e. all existing ScheduleData is not 1968 // in the new region yet. 1969 ++SchedulingRegionID; 1970 } 1971 1972 ScheduleData *getScheduleData(Value *V) { 1973 ScheduleData *SD = ScheduleDataMap[V]; 1974 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1975 return SD; 1976 return nullptr; 1977 } 1978 1979 ScheduleData *getScheduleData(Value *V, Value *Key) { 1980 if (V == Key) 1981 return getScheduleData(V); 1982 auto I = ExtraScheduleDataMap.find(V); 1983 if (I != ExtraScheduleDataMap.end()) { 1984 ScheduleData *SD = I->second[Key]; 1985 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1986 return SD; 1987 } 1988 return nullptr; 1989 } 1990 1991 bool isInSchedulingRegion(ScheduleData *SD) const { 1992 return SD->SchedulingRegionID == SchedulingRegionID; 1993 } 1994 1995 /// Marks an instruction as scheduled and puts all dependent ready 1996 /// instructions into the ready-list. 1997 template <typename ReadyListType> 1998 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1999 SD->IsScheduled = true; 2000 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2001 2002 ScheduleData *BundleMember = SD; 2003 while (BundleMember) { 2004 if (BundleMember->Inst != BundleMember->OpValue) { 2005 BundleMember = BundleMember->NextInBundle; 2006 continue; 2007 } 2008 // Handle the def-use chain dependencies. 2009 2010 // Decrement the unscheduled counter and insert to ready list if ready. 2011 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2012 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2013 if (OpDef && OpDef->hasValidDependencies() && 2014 OpDef->incrementUnscheduledDeps(-1) == 0) { 2015 // There are no more unscheduled dependencies after 2016 // decrementing, so we can put the dependent instruction 2017 // into the ready list. 2018 ScheduleData *DepBundle = OpDef->FirstInBundle; 2019 assert(!DepBundle->IsScheduled && 2020 "already scheduled bundle gets ready"); 2021 ReadyList.insert(DepBundle); 2022 LLVM_DEBUG(dbgs() 2023 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2024 } 2025 }); 2026 }; 2027 2028 // If BundleMember is a vector bundle, its operands may have been 2029 // reordered duiring buildTree(). We therefore need to get its operands 2030 // through the TreeEntry. 2031 if (TreeEntry *TE = BundleMember->TE) { 2032 int Lane = BundleMember->Lane; 2033 assert(Lane >= 0 && "Lane not set"); 2034 2035 // Since vectorization tree is being built recursively this assertion 2036 // ensures that the tree entry has all operands set before reaching 2037 // this code. Couple of exceptions known at the moment are extracts 2038 // where their second (immediate) operand is not added. Since 2039 // immediates do not affect scheduler behavior this is considered 2040 // okay. 2041 auto *In = TE->getMainOp(); 2042 assert(In && 2043 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2044 In->getNumOperands() == TE->getNumOperands()) && 2045 "Missed TreeEntry operands?"); 2046 (void)In; // fake use to avoid build failure when assertions disabled 2047 2048 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2049 OpIdx != NumOperands; ++OpIdx) 2050 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2051 DecrUnsched(I); 2052 } else { 2053 // If BundleMember is a stand-alone instruction, no operand reordering 2054 // has taken place, so we directly access its operands. 2055 for (Use &U : BundleMember->Inst->operands()) 2056 if (auto *I = dyn_cast<Instruction>(U.get())) 2057 DecrUnsched(I); 2058 } 2059 // Handle the memory dependencies. 2060 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2061 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2062 // There are no more unscheduled dependencies after decrementing, 2063 // so we can put the dependent instruction into the ready list. 2064 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2065 assert(!DepBundle->IsScheduled && 2066 "already scheduled bundle gets ready"); 2067 ReadyList.insert(DepBundle); 2068 LLVM_DEBUG(dbgs() 2069 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2070 } 2071 } 2072 BundleMember = BundleMember->NextInBundle; 2073 } 2074 } 2075 2076 void doForAllOpcodes(Value *V, 2077 function_ref<void(ScheduleData *SD)> Action) { 2078 if (ScheduleData *SD = getScheduleData(V)) 2079 Action(SD); 2080 auto I = ExtraScheduleDataMap.find(V); 2081 if (I != ExtraScheduleDataMap.end()) 2082 for (auto &P : I->second) 2083 if (P.second->SchedulingRegionID == SchedulingRegionID) 2084 Action(P.second); 2085 } 2086 2087 /// Put all instructions into the ReadyList which are ready for scheduling. 2088 template <typename ReadyListType> 2089 void initialFillReadyList(ReadyListType &ReadyList) { 2090 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2091 doForAllOpcodes(I, [&](ScheduleData *SD) { 2092 if (SD->isSchedulingEntity() && SD->isReady()) { 2093 ReadyList.insert(SD); 2094 LLVM_DEBUG(dbgs() 2095 << "SLP: initially in ready list: " << *I << "\n"); 2096 } 2097 }); 2098 } 2099 } 2100 2101 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2102 /// cyclic dependencies. This is only a dry-run, no instructions are 2103 /// actually moved at this stage. 2104 /// \returns the scheduling bundle. The returned Optional value is non-None 2105 /// if \p VL is allowed to be scheduled. 2106 Optional<ScheduleData *> 2107 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2108 const InstructionsState &S); 2109 2110 /// Un-bundles a group of instructions. 2111 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2112 2113 /// Allocates schedule data chunk. 2114 ScheduleData *allocateScheduleDataChunks(); 2115 2116 /// Extends the scheduling region so that V is inside the region. 2117 /// \returns true if the region size is within the limit. 2118 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2119 2120 /// Initialize the ScheduleData structures for new instructions in the 2121 /// scheduling region. 2122 void initScheduleData(Instruction *FromI, Instruction *ToI, 2123 ScheduleData *PrevLoadStore, 2124 ScheduleData *NextLoadStore); 2125 2126 /// Updates the dependency information of a bundle and of all instructions/ 2127 /// bundles which depend on the original bundle. 2128 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2129 BoUpSLP *SLP); 2130 2131 /// Sets all instruction in the scheduling region to un-scheduled. 2132 void resetSchedule(); 2133 2134 BasicBlock *BB; 2135 2136 /// Simple memory allocation for ScheduleData. 2137 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2138 2139 /// The size of a ScheduleData array in ScheduleDataChunks. 2140 int ChunkSize; 2141 2142 /// The allocator position in the current chunk, which is the last entry 2143 /// of ScheduleDataChunks. 2144 int ChunkPos; 2145 2146 /// Attaches ScheduleData to Instruction. 2147 /// Note that the mapping survives during all vectorization iterations, i.e. 2148 /// ScheduleData structures are recycled. 2149 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2150 2151 /// Attaches ScheduleData to Instruction with the leading key. 2152 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2153 ExtraScheduleDataMap; 2154 2155 struct ReadyList : SmallVector<ScheduleData *, 8> { 2156 void insert(ScheduleData *SD) { push_back(SD); } 2157 }; 2158 2159 /// The ready-list for scheduling (only used for the dry-run). 2160 ReadyList ReadyInsts; 2161 2162 /// The first instruction of the scheduling region. 2163 Instruction *ScheduleStart = nullptr; 2164 2165 /// The first instruction _after_ the scheduling region. 2166 Instruction *ScheduleEnd = nullptr; 2167 2168 /// The first memory accessing instruction in the scheduling region 2169 /// (can be null). 2170 ScheduleData *FirstLoadStoreInRegion = nullptr; 2171 2172 /// The last memory accessing instruction in the scheduling region 2173 /// (can be null). 2174 ScheduleData *LastLoadStoreInRegion = nullptr; 2175 2176 /// The current size of the scheduling region. 2177 int ScheduleRegionSize = 0; 2178 2179 /// The maximum size allowed for the scheduling region. 2180 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2181 2182 /// The ID of the scheduling region. For a new vectorization iteration this 2183 /// is incremented which "removes" all ScheduleData from the region. 2184 // Make sure that the initial SchedulingRegionID is greater than the 2185 // initial SchedulingRegionID in ScheduleData (which is 0). 2186 int SchedulingRegionID = 1; 2187 }; 2188 2189 /// Attaches the BlockScheduling structures to basic blocks. 2190 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2191 2192 /// Performs the "real" scheduling. Done before vectorization is actually 2193 /// performed in a basic block. 2194 void scheduleBlock(BlockScheduling *BS); 2195 2196 /// List of users to ignore during scheduling and that don't need extracting. 2197 ArrayRef<Value *> UserIgnoreList; 2198 2199 using OrdersType = SmallVector<unsigned, 4>; 2200 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2201 /// sorted SmallVectors of unsigned. 2202 struct OrdersTypeDenseMapInfo { 2203 static OrdersType getEmptyKey() { 2204 OrdersType V; 2205 V.push_back(~1U); 2206 return V; 2207 } 2208 2209 static OrdersType getTombstoneKey() { 2210 OrdersType V; 2211 V.push_back(~2U); 2212 return V; 2213 } 2214 2215 static unsigned getHashValue(const OrdersType &V) { 2216 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2217 } 2218 2219 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2220 return LHS == RHS; 2221 } 2222 }; 2223 2224 /// Contains orders of operations along with the number of bundles that have 2225 /// operations in this order. It stores only those orders that require 2226 /// reordering, if reordering is not required it is counted using \a 2227 /// NumOpsWantToKeepOriginalOrder. 2228 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2229 /// Number of bundles that do not require reordering. 2230 unsigned NumOpsWantToKeepOriginalOrder = 0; 2231 2232 // Analysis and block reference. 2233 Function *F; 2234 ScalarEvolution *SE; 2235 TargetTransformInfo *TTI; 2236 TargetLibraryInfo *TLI; 2237 AliasAnalysis *AA; 2238 LoopInfo *LI; 2239 DominatorTree *DT; 2240 AssumptionCache *AC; 2241 DemandedBits *DB; 2242 const DataLayout *DL; 2243 OptimizationRemarkEmitter *ORE; 2244 2245 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2246 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2247 2248 /// Instruction builder to construct the vectorized tree. 2249 IRBuilder<> Builder; 2250 2251 /// A map of scalar integer values to the smallest bit width with which they 2252 /// can legally be represented. The values map to (width, signed) pairs, 2253 /// where "width" indicates the minimum bit width and "signed" is True if the 2254 /// value must be signed-extended, rather than zero-extended, back to its 2255 /// original width. 2256 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2257 }; 2258 2259 } // end namespace slpvectorizer 2260 2261 template <> struct GraphTraits<BoUpSLP *> { 2262 using TreeEntry = BoUpSLP::TreeEntry; 2263 2264 /// NodeRef has to be a pointer per the GraphWriter. 2265 using NodeRef = TreeEntry *; 2266 2267 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2268 2269 /// Add the VectorizableTree to the index iterator to be able to return 2270 /// TreeEntry pointers. 2271 struct ChildIteratorType 2272 : public iterator_adaptor_base< 2273 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2274 ContainerTy &VectorizableTree; 2275 2276 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2277 ContainerTy &VT) 2278 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2279 2280 NodeRef operator*() { return I->UserTE; } 2281 }; 2282 2283 static NodeRef getEntryNode(BoUpSLP &R) { 2284 return R.VectorizableTree[0].get(); 2285 } 2286 2287 static ChildIteratorType child_begin(NodeRef N) { 2288 return {N->UserTreeIndices.begin(), N->Container}; 2289 } 2290 2291 static ChildIteratorType child_end(NodeRef N) { 2292 return {N->UserTreeIndices.end(), N->Container}; 2293 } 2294 2295 /// For the node iterator we just need to turn the TreeEntry iterator into a 2296 /// TreeEntry* iterator so that it dereferences to NodeRef. 2297 class nodes_iterator { 2298 using ItTy = ContainerTy::iterator; 2299 ItTy It; 2300 2301 public: 2302 nodes_iterator(const ItTy &It2) : It(It2) {} 2303 NodeRef operator*() { return It->get(); } 2304 nodes_iterator operator++() { 2305 ++It; 2306 return *this; 2307 } 2308 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2309 }; 2310 2311 static nodes_iterator nodes_begin(BoUpSLP *R) { 2312 return nodes_iterator(R->VectorizableTree.begin()); 2313 } 2314 2315 static nodes_iterator nodes_end(BoUpSLP *R) { 2316 return nodes_iterator(R->VectorizableTree.end()); 2317 } 2318 2319 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2320 }; 2321 2322 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2323 using TreeEntry = BoUpSLP::TreeEntry; 2324 2325 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2326 2327 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2328 std::string Str; 2329 raw_string_ostream OS(Str); 2330 if (isSplat(Entry->Scalars)) { 2331 OS << "<splat> " << *Entry->Scalars[0]; 2332 return Str; 2333 } 2334 for (auto V : Entry->Scalars) { 2335 OS << *V; 2336 if (std::any_of( 2337 R->ExternalUses.begin(), R->ExternalUses.end(), 2338 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2339 OS << " <extract>"; 2340 OS << "\n"; 2341 } 2342 return Str; 2343 } 2344 2345 static std::string getNodeAttributes(const TreeEntry *Entry, 2346 const BoUpSLP *) { 2347 if (Entry->State == TreeEntry::NeedToGather) 2348 return "color=red"; 2349 return ""; 2350 } 2351 }; 2352 2353 } // end namespace llvm 2354 2355 BoUpSLP::~BoUpSLP() { 2356 for (const auto &Pair : DeletedInstructions) { 2357 // Replace operands of ignored instructions with Undefs in case if they were 2358 // marked for deletion. 2359 if (Pair.getSecond()) { 2360 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2361 Pair.getFirst()->replaceAllUsesWith(Undef); 2362 } 2363 Pair.getFirst()->dropAllReferences(); 2364 } 2365 for (const auto &Pair : DeletedInstructions) { 2366 assert(Pair.getFirst()->use_empty() && 2367 "trying to erase instruction with users."); 2368 Pair.getFirst()->eraseFromParent(); 2369 } 2370 assert(!verifyFunction(*F, &dbgs())); 2371 } 2372 2373 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2374 for (auto *V : AV) { 2375 if (auto *I = dyn_cast<Instruction>(V)) 2376 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2377 }; 2378 } 2379 2380 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2381 ArrayRef<Value *> UserIgnoreLst) { 2382 ExtraValueToDebugLocsMap ExternallyUsedValues; 2383 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2384 } 2385 2386 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2387 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2388 ArrayRef<Value *> UserIgnoreLst) { 2389 deleteTree(); 2390 UserIgnoreList = UserIgnoreLst; 2391 if (!allSameType(Roots)) 2392 return; 2393 buildTree_rec(Roots, 0, EdgeInfo()); 2394 2395 // Collect the values that we need to extract from the tree. 2396 for (auto &TEPtr : VectorizableTree) { 2397 TreeEntry *Entry = TEPtr.get(); 2398 2399 // No need to handle users of gathered values. 2400 if (Entry->State == TreeEntry::NeedToGather) 2401 continue; 2402 2403 // For each lane: 2404 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2405 Value *Scalar = Entry->Scalars[Lane]; 2406 int FoundLane = Lane; 2407 if (!Entry->ReuseShuffleIndices.empty()) { 2408 FoundLane = 2409 std::distance(Entry->ReuseShuffleIndices.begin(), 2410 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2411 } 2412 2413 // Check if the scalar is externally used as an extra arg. 2414 auto ExtI = ExternallyUsedValues.find(Scalar); 2415 if (ExtI != ExternallyUsedValues.end()) { 2416 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2417 << Lane << " from " << *Scalar << ".\n"); 2418 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2419 } 2420 for (User *U : Scalar->users()) { 2421 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2422 2423 Instruction *UserInst = dyn_cast<Instruction>(U); 2424 if (!UserInst) 2425 continue; 2426 2427 // Skip in-tree scalars that become vectors 2428 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2429 Value *UseScalar = UseEntry->Scalars[0]; 2430 // Some in-tree scalars will remain as scalar in vectorized 2431 // instructions. If that is the case, the one in Lane 0 will 2432 // be used. 2433 if (UseScalar != U || 2434 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2435 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2436 << ".\n"); 2437 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2438 continue; 2439 } 2440 } 2441 2442 // Ignore users in the user ignore list. 2443 if (is_contained(UserIgnoreList, UserInst)) 2444 continue; 2445 2446 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2447 << Lane << " from " << *Scalar << ".\n"); 2448 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2449 } 2450 } 2451 } 2452 } 2453 2454 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2455 const EdgeInfo &UserTreeIdx) { 2456 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2457 2458 InstructionsState S = getSameOpcode(VL); 2459 if (Depth == RecursionMaxDepth) { 2460 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2461 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2462 return; 2463 } 2464 2465 // Don't handle vectors. 2466 if (S.OpValue->getType()->isVectorTy()) { 2467 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2468 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2469 return; 2470 } 2471 2472 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2473 if (SI->getValueOperand()->getType()->isVectorTy()) { 2474 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2475 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2476 return; 2477 } 2478 2479 // If all of the operands are identical or constant we have a simple solution. 2480 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2481 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2482 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2483 return; 2484 } 2485 2486 // We now know that this is a vector of instructions of the same type from 2487 // the same block. 2488 2489 // Don't vectorize ephemeral values. 2490 for (Value *V : VL) { 2491 if (EphValues.count(V)) { 2492 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2493 << ") is ephemeral.\n"); 2494 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2495 return; 2496 } 2497 } 2498 2499 // Check if this is a duplicate of another entry. 2500 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2501 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2502 if (!E->isSame(VL)) { 2503 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2504 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2505 return; 2506 } 2507 // Record the reuse of the tree node. FIXME, currently this is only used to 2508 // properly draw the graph rather than for the actual vectorization. 2509 E->UserTreeIndices.push_back(UserTreeIdx); 2510 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2511 << ".\n"); 2512 return; 2513 } 2514 2515 // Check that none of the instructions in the bundle are already in the tree. 2516 for (Value *V : VL) { 2517 auto *I = dyn_cast<Instruction>(V); 2518 if (!I) 2519 continue; 2520 if (getTreeEntry(I)) { 2521 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2522 << ") is already in tree.\n"); 2523 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2524 return; 2525 } 2526 } 2527 2528 // If any of the scalars is marked as a value that needs to stay scalar, then 2529 // we need to gather the scalars. 2530 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2531 for (Value *V : VL) { 2532 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2533 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2534 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2535 return; 2536 } 2537 } 2538 2539 // Check that all of the users of the scalars that we want to vectorize are 2540 // schedulable. 2541 auto *VL0 = cast<Instruction>(S.OpValue); 2542 BasicBlock *BB = VL0->getParent(); 2543 2544 if (!DT->isReachableFromEntry(BB)) { 2545 // Don't go into unreachable blocks. They may contain instructions with 2546 // dependency cycles which confuse the final scheduling. 2547 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2548 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2549 return; 2550 } 2551 2552 // Check that every instruction appears once in this bundle. 2553 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2554 SmallVector<Value *, 4> UniqueValues; 2555 DenseMap<Value *, unsigned> UniquePositions; 2556 for (Value *V : VL) { 2557 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2558 ReuseShuffleIndicies.emplace_back(Res.first->second); 2559 if (Res.second) 2560 UniqueValues.emplace_back(V); 2561 } 2562 size_t NumUniqueScalarValues = UniqueValues.size(); 2563 if (NumUniqueScalarValues == VL.size()) { 2564 ReuseShuffleIndicies.clear(); 2565 } else { 2566 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2567 if (NumUniqueScalarValues <= 1 || 2568 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2569 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2570 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2571 return; 2572 } 2573 VL = UniqueValues; 2574 } 2575 2576 auto &BSRef = BlocksSchedules[BB]; 2577 if (!BSRef) 2578 BSRef = std::make_unique<BlockScheduling>(BB); 2579 2580 BlockScheduling &BS = *BSRef.get(); 2581 2582 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2583 if (!Bundle) { 2584 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2585 assert((!BS.getScheduleData(VL0) || 2586 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2587 "tryScheduleBundle should cancelScheduling on failure"); 2588 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2589 ReuseShuffleIndicies); 2590 return; 2591 } 2592 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2593 2594 unsigned ShuffleOrOp = S.isAltShuffle() ? 2595 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2596 switch (ShuffleOrOp) { 2597 case Instruction::PHI: { 2598 auto *PH = cast<PHINode>(VL0); 2599 2600 // Check for terminator values (e.g. invoke). 2601 for (unsigned j = 0; j < VL.size(); ++j) 2602 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2603 Instruction *Term = dyn_cast<Instruction>( 2604 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2605 PH->getIncomingBlock(i))); 2606 if (Term && Term->isTerminator()) { 2607 LLVM_DEBUG(dbgs() 2608 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2609 BS.cancelScheduling(VL, VL0); 2610 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2611 ReuseShuffleIndicies); 2612 return; 2613 } 2614 } 2615 2616 TreeEntry *TE = 2617 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2618 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2619 2620 // Keeps the reordered operands to avoid code duplication. 2621 SmallVector<ValueList, 2> OperandsVec; 2622 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2623 ValueList Operands; 2624 // Prepare the operand vector. 2625 for (Value *j : VL) 2626 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2627 PH->getIncomingBlock(i))); 2628 TE->setOperand(i, Operands); 2629 OperandsVec.push_back(Operands); 2630 } 2631 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2632 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2633 return; 2634 } 2635 case Instruction::ExtractValue: 2636 case Instruction::ExtractElement: { 2637 OrdersType CurrentOrder; 2638 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2639 if (Reuse) { 2640 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2641 ++NumOpsWantToKeepOriginalOrder; 2642 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2643 ReuseShuffleIndicies); 2644 // This is a special case, as it does not gather, but at the same time 2645 // we are not extending buildTree_rec() towards the operands. 2646 ValueList Op0; 2647 Op0.assign(VL.size(), VL0->getOperand(0)); 2648 VectorizableTree.back()->setOperand(0, Op0); 2649 return; 2650 } 2651 if (!CurrentOrder.empty()) { 2652 LLVM_DEBUG({ 2653 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2654 "with order"; 2655 for (unsigned Idx : CurrentOrder) 2656 dbgs() << " " << Idx; 2657 dbgs() << "\n"; 2658 }); 2659 // Insert new order with initial value 0, if it does not exist, 2660 // otherwise return the iterator to the existing one. 2661 auto StoredCurrentOrderAndNum = 2662 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2663 ++StoredCurrentOrderAndNum->getSecond(); 2664 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2665 ReuseShuffleIndicies, 2666 StoredCurrentOrderAndNum->getFirst()); 2667 // This is a special case, as it does not gather, but at the same time 2668 // we are not extending buildTree_rec() towards the operands. 2669 ValueList Op0; 2670 Op0.assign(VL.size(), VL0->getOperand(0)); 2671 VectorizableTree.back()->setOperand(0, Op0); 2672 return; 2673 } 2674 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2675 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2676 ReuseShuffleIndicies); 2677 BS.cancelScheduling(VL, VL0); 2678 return; 2679 } 2680 case Instruction::Load: { 2681 // Check that a vectorized load would load the same memory as a scalar 2682 // load. For example, we don't want to vectorize loads that are smaller 2683 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2684 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2685 // from such a struct, we read/write packed bits disagreeing with the 2686 // unvectorized version. 2687 Type *ScalarTy = VL0->getType(); 2688 2689 if (DL->getTypeSizeInBits(ScalarTy) != 2690 DL->getTypeAllocSizeInBits(ScalarTy)) { 2691 BS.cancelScheduling(VL, VL0); 2692 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2693 ReuseShuffleIndicies); 2694 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2695 return; 2696 } 2697 2698 // Make sure all loads in the bundle are simple - we can't vectorize 2699 // atomic or volatile loads. 2700 SmallVector<Value *, 4> PointerOps(VL.size()); 2701 auto POIter = PointerOps.begin(); 2702 for (Value *V : VL) { 2703 auto *L = cast<LoadInst>(V); 2704 if (!L->isSimple()) { 2705 BS.cancelScheduling(VL, VL0); 2706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2707 ReuseShuffleIndicies); 2708 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2709 return; 2710 } 2711 *POIter = L->getPointerOperand(); 2712 ++POIter; 2713 } 2714 2715 OrdersType CurrentOrder; 2716 // Check the order of pointer operands. 2717 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2718 Value *Ptr0; 2719 Value *PtrN; 2720 if (CurrentOrder.empty()) { 2721 Ptr0 = PointerOps.front(); 2722 PtrN = PointerOps.back(); 2723 } else { 2724 Ptr0 = PointerOps[CurrentOrder.front()]; 2725 PtrN = PointerOps[CurrentOrder.back()]; 2726 } 2727 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2728 const SCEV *ScevN = SE->getSCEV(PtrN); 2729 const auto *Diff = 2730 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2731 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2732 // Check that the sorted loads are consecutive. 2733 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2734 if (CurrentOrder.empty()) { 2735 // Original loads are consecutive and does not require reordering. 2736 ++NumOpsWantToKeepOriginalOrder; 2737 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2738 UserTreeIdx, ReuseShuffleIndicies); 2739 TE->setOperandsInOrder(); 2740 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2741 } else { 2742 // Need to reorder. 2743 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2744 ++I->getSecond(); 2745 TreeEntry *TE = 2746 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2747 ReuseShuffleIndicies, I->getFirst()); 2748 TE->setOperandsInOrder(); 2749 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2750 } 2751 return; 2752 } 2753 } 2754 2755 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2756 BS.cancelScheduling(VL, VL0); 2757 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2758 ReuseShuffleIndicies); 2759 return; 2760 } 2761 case Instruction::ZExt: 2762 case Instruction::SExt: 2763 case Instruction::FPToUI: 2764 case Instruction::FPToSI: 2765 case Instruction::FPExt: 2766 case Instruction::PtrToInt: 2767 case Instruction::IntToPtr: 2768 case Instruction::SIToFP: 2769 case Instruction::UIToFP: 2770 case Instruction::Trunc: 2771 case Instruction::FPTrunc: 2772 case Instruction::BitCast: { 2773 Type *SrcTy = VL0->getOperand(0)->getType(); 2774 for (Value *V : VL) { 2775 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2776 if (Ty != SrcTy || !isValidElementType(Ty)) { 2777 BS.cancelScheduling(VL, VL0); 2778 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2779 ReuseShuffleIndicies); 2780 LLVM_DEBUG(dbgs() 2781 << "SLP: Gathering casts with different src types.\n"); 2782 return; 2783 } 2784 } 2785 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2786 ReuseShuffleIndicies); 2787 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2788 2789 TE->setOperandsInOrder(); 2790 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2791 ValueList Operands; 2792 // Prepare the operand vector. 2793 for (Value *V : VL) 2794 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2795 2796 buildTree_rec(Operands, Depth + 1, {TE, i}); 2797 } 2798 return; 2799 } 2800 case Instruction::ICmp: 2801 case Instruction::FCmp: { 2802 // Check that all of the compares have the same predicate. 2803 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2804 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2805 Type *ComparedTy = VL0->getOperand(0)->getType(); 2806 for (Value *V : VL) { 2807 CmpInst *Cmp = cast<CmpInst>(V); 2808 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2809 Cmp->getOperand(0)->getType() != ComparedTy) { 2810 BS.cancelScheduling(VL, VL0); 2811 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2812 ReuseShuffleIndicies); 2813 LLVM_DEBUG(dbgs() 2814 << "SLP: Gathering cmp with different predicate.\n"); 2815 return; 2816 } 2817 } 2818 2819 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2820 ReuseShuffleIndicies); 2821 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2822 2823 ValueList Left, Right; 2824 if (cast<CmpInst>(VL0)->isCommutative()) { 2825 // Commutative predicate - collect + sort operands of the instructions 2826 // so that each side is more likely to have the same opcode. 2827 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2828 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2829 } else { 2830 // Collect operands - commute if it uses the swapped predicate. 2831 for (Value *V : VL) { 2832 auto *Cmp = cast<CmpInst>(V); 2833 Value *LHS = Cmp->getOperand(0); 2834 Value *RHS = Cmp->getOperand(1); 2835 if (Cmp->getPredicate() != P0) 2836 std::swap(LHS, RHS); 2837 Left.push_back(LHS); 2838 Right.push_back(RHS); 2839 } 2840 } 2841 TE->setOperand(0, Left); 2842 TE->setOperand(1, Right); 2843 buildTree_rec(Left, Depth + 1, {TE, 0}); 2844 buildTree_rec(Right, Depth + 1, {TE, 1}); 2845 return; 2846 } 2847 case Instruction::Select: 2848 case Instruction::FNeg: 2849 case Instruction::Add: 2850 case Instruction::FAdd: 2851 case Instruction::Sub: 2852 case Instruction::FSub: 2853 case Instruction::Mul: 2854 case Instruction::FMul: 2855 case Instruction::UDiv: 2856 case Instruction::SDiv: 2857 case Instruction::FDiv: 2858 case Instruction::URem: 2859 case Instruction::SRem: 2860 case Instruction::FRem: 2861 case Instruction::Shl: 2862 case Instruction::LShr: 2863 case Instruction::AShr: 2864 case Instruction::And: 2865 case Instruction::Or: 2866 case Instruction::Xor: { 2867 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2868 ReuseShuffleIndicies); 2869 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2870 2871 // Sort operands of the instructions so that each side is more likely to 2872 // have the same opcode. 2873 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2874 ValueList Left, Right; 2875 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2876 TE->setOperand(0, Left); 2877 TE->setOperand(1, Right); 2878 buildTree_rec(Left, Depth + 1, {TE, 0}); 2879 buildTree_rec(Right, Depth + 1, {TE, 1}); 2880 return; 2881 } 2882 2883 TE->setOperandsInOrder(); 2884 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2885 ValueList Operands; 2886 // Prepare the operand vector. 2887 for (Value *j : VL) 2888 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2889 2890 buildTree_rec(Operands, Depth + 1, {TE, i}); 2891 } 2892 return; 2893 } 2894 case Instruction::GetElementPtr: { 2895 // We don't combine GEPs with complicated (nested) indexing. 2896 for (Value *V : VL) { 2897 if (cast<Instruction>(V)->getNumOperands() != 2) { 2898 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2899 BS.cancelScheduling(VL, VL0); 2900 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2901 ReuseShuffleIndicies); 2902 return; 2903 } 2904 } 2905 2906 // We can't combine several GEPs into one vector if they operate on 2907 // different types. 2908 Type *Ty0 = VL0->getOperand(0)->getType(); 2909 for (Value *V : VL) { 2910 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2911 if (Ty0 != CurTy) { 2912 LLVM_DEBUG(dbgs() 2913 << "SLP: not-vectorizable GEP (different types).\n"); 2914 BS.cancelScheduling(VL, VL0); 2915 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2916 ReuseShuffleIndicies); 2917 return; 2918 } 2919 } 2920 2921 // We don't combine GEPs with non-constant indexes. 2922 Type *Ty1 = VL0->getOperand(1)->getType(); 2923 for (Value *V : VL) { 2924 auto Op = cast<Instruction>(V)->getOperand(1); 2925 if (!isa<ConstantInt>(Op) || 2926 (Op->getType() != Ty1 && 2927 Op->getType()->getScalarSizeInBits() > 2928 DL->getIndexSizeInBits( 2929 V->getType()->getPointerAddressSpace()))) { 2930 LLVM_DEBUG(dbgs() 2931 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2932 BS.cancelScheduling(VL, VL0); 2933 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2934 ReuseShuffleIndicies); 2935 return; 2936 } 2937 } 2938 2939 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2940 ReuseShuffleIndicies); 2941 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2942 TE->setOperandsInOrder(); 2943 for (unsigned i = 0, e = 2; i < e; ++i) { 2944 ValueList Operands; 2945 // Prepare the operand vector. 2946 for (Value *V : VL) 2947 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2948 2949 buildTree_rec(Operands, Depth + 1, {TE, i}); 2950 } 2951 return; 2952 } 2953 case Instruction::Store: { 2954 // Check if the stores are consecutive or if we need to swizzle them. 2955 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2956 // Make sure all stores in the bundle are simple - we can't vectorize 2957 // atomic or volatile stores. 2958 SmallVector<Value *, 4> PointerOps(VL.size()); 2959 ValueList Operands(VL.size()); 2960 auto POIter = PointerOps.begin(); 2961 auto OIter = Operands.begin(); 2962 for (Value *V : VL) { 2963 auto *SI = cast<StoreInst>(V); 2964 if (!SI->isSimple()) { 2965 BS.cancelScheduling(VL, VL0); 2966 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2967 ReuseShuffleIndicies); 2968 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2969 return; 2970 } 2971 *POIter = SI->getPointerOperand(); 2972 *OIter = SI->getValueOperand(); 2973 ++POIter; 2974 ++OIter; 2975 } 2976 2977 OrdersType CurrentOrder; 2978 // Check the order of pointer operands. 2979 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2980 Value *Ptr0; 2981 Value *PtrN; 2982 if (CurrentOrder.empty()) { 2983 Ptr0 = PointerOps.front(); 2984 PtrN = PointerOps.back(); 2985 } else { 2986 Ptr0 = PointerOps[CurrentOrder.front()]; 2987 PtrN = PointerOps[CurrentOrder.back()]; 2988 } 2989 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2990 const SCEV *ScevN = SE->getSCEV(PtrN); 2991 const auto *Diff = 2992 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2993 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2994 // Check that the sorted pointer operands are consecutive. 2995 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2996 if (CurrentOrder.empty()) { 2997 // Original stores are consecutive and does not require reordering. 2998 ++NumOpsWantToKeepOriginalOrder; 2999 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3000 UserTreeIdx, ReuseShuffleIndicies); 3001 TE->setOperandsInOrder(); 3002 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3003 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3004 } else { 3005 // Need to reorder. 3006 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 3007 ++(I->getSecond()); 3008 TreeEntry *TE = 3009 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3010 ReuseShuffleIndicies, I->getFirst()); 3011 TE->setOperandsInOrder(); 3012 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3013 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3014 } 3015 return; 3016 } 3017 } 3018 3019 BS.cancelScheduling(VL, VL0); 3020 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3021 ReuseShuffleIndicies); 3022 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3023 return; 3024 } 3025 case Instruction::Call: { 3026 // Check if the calls are all to the same vectorizable intrinsic or 3027 // library function. 3028 CallInst *CI = cast<CallInst>(VL0); 3029 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3030 3031 VFShape Shape = VFShape::get( 3032 *CI, {static_cast<unsigned int>(VL.size()), false /*Scalable*/}, 3033 false /*HasGlobalPred*/); 3034 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3035 3036 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3037 BS.cancelScheduling(VL, VL0); 3038 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3039 ReuseShuffleIndicies); 3040 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3041 return; 3042 } 3043 Function *F = CI->getCalledFunction(); 3044 unsigned NumArgs = CI->getNumArgOperands(); 3045 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3046 for (unsigned j = 0; j != NumArgs; ++j) 3047 if (hasVectorInstrinsicScalarOpd(ID, j)) 3048 ScalarArgs[j] = CI->getArgOperand(j); 3049 for (Value *V : VL) { 3050 CallInst *CI2 = dyn_cast<CallInst>(V); 3051 if (!CI2 || CI2->getCalledFunction() != F || 3052 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3053 (VecFunc && 3054 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3055 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3056 BS.cancelScheduling(VL, VL0); 3057 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3058 ReuseShuffleIndicies); 3059 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3060 << "\n"); 3061 return; 3062 } 3063 // Some intrinsics have scalar arguments and should be same in order for 3064 // them to be vectorized. 3065 for (unsigned j = 0; j != NumArgs; ++j) { 3066 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3067 Value *A1J = CI2->getArgOperand(j); 3068 if (ScalarArgs[j] != A1J) { 3069 BS.cancelScheduling(VL, VL0); 3070 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3071 ReuseShuffleIndicies); 3072 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3073 << " argument " << ScalarArgs[j] << "!=" << A1J 3074 << "\n"); 3075 return; 3076 } 3077 } 3078 } 3079 // Verify that the bundle operands are identical between the two calls. 3080 if (CI->hasOperandBundles() && 3081 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3082 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3083 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3084 BS.cancelScheduling(VL, VL0); 3085 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3086 ReuseShuffleIndicies); 3087 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3088 << *CI << "!=" << *V << '\n'); 3089 return; 3090 } 3091 } 3092 3093 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3094 ReuseShuffleIndicies); 3095 TE->setOperandsInOrder(); 3096 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3097 ValueList Operands; 3098 // Prepare the operand vector. 3099 for (Value *V : VL) { 3100 auto *CI2 = cast<CallInst>(V); 3101 Operands.push_back(CI2->getArgOperand(i)); 3102 } 3103 buildTree_rec(Operands, Depth + 1, {TE, i}); 3104 } 3105 return; 3106 } 3107 case Instruction::ShuffleVector: { 3108 // If this is not an alternate sequence of opcode like add-sub 3109 // then do not vectorize this instruction. 3110 if (!S.isAltShuffle()) { 3111 BS.cancelScheduling(VL, VL0); 3112 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3113 ReuseShuffleIndicies); 3114 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3115 return; 3116 } 3117 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3118 ReuseShuffleIndicies); 3119 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3120 3121 // Reorder operands if reordering would enable vectorization. 3122 if (isa<BinaryOperator>(VL0)) { 3123 ValueList Left, Right; 3124 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3125 TE->setOperand(0, Left); 3126 TE->setOperand(1, Right); 3127 buildTree_rec(Left, Depth + 1, {TE, 0}); 3128 buildTree_rec(Right, Depth + 1, {TE, 1}); 3129 return; 3130 } 3131 3132 TE->setOperandsInOrder(); 3133 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3134 ValueList Operands; 3135 // Prepare the operand vector. 3136 for (Value *V : VL) 3137 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3138 3139 buildTree_rec(Operands, Depth + 1, {TE, i}); 3140 } 3141 return; 3142 } 3143 default: 3144 BS.cancelScheduling(VL, VL0); 3145 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3146 ReuseShuffleIndicies); 3147 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3148 return; 3149 } 3150 } 3151 3152 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3153 unsigned N = 1; 3154 Type *EltTy = T; 3155 3156 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3157 isa<VectorType>(EltTy)) { 3158 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3159 // Check that struct is homogeneous. 3160 for (const auto *Ty : ST->elements()) 3161 if (Ty != *ST->element_begin()) 3162 return 0; 3163 N *= ST->getNumElements(); 3164 EltTy = *ST->element_begin(); 3165 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3166 N *= AT->getNumElements(); 3167 EltTy = AT->getElementType(); 3168 } else { 3169 auto *VT = cast<VectorType>(EltTy); 3170 N *= VT->getNumElements(); 3171 EltTy = VT->getElementType(); 3172 } 3173 } 3174 3175 if (!isValidElementType(EltTy)) 3176 return 0; 3177 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3178 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3179 return 0; 3180 return N; 3181 } 3182 3183 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3184 SmallVectorImpl<unsigned> &CurrentOrder) const { 3185 Instruction *E0 = cast<Instruction>(OpValue); 3186 assert(E0->getOpcode() == Instruction::ExtractElement || 3187 E0->getOpcode() == Instruction::ExtractValue); 3188 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3189 // Check if all of the extracts come from the same vector and from the 3190 // correct offset. 3191 Value *Vec = E0->getOperand(0); 3192 3193 CurrentOrder.clear(); 3194 3195 // We have to extract from a vector/aggregate with the same number of elements. 3196 unsigned NElts; 3197 if (E0->getOpcode() == Instruction::ExtractValue) { 3198 const DataLayout &DL = E0->getModule()->getDataLayout(); 3199 NElts = canMapToVector(Vec->getType(), DL); 3200 if (!NElts) 3201 return false; 3202 // Check if load can be rewritten as load of vector. 3203 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3204 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3205 return false; 3206 } else { 3207 NElts = cast<VectorType>(Vec->getType())->getNumElements(); 3208 } 3209 3210 if (NElts != VL.size()) 3211 return false; 3212 3213 // Check that all of the indices extract from the correct offset. 3214 bool ShouldKeepOrder = true; 3215 unsigned E = VL.size(); 3216 // Assign to all items the initial value E + 1 so we can check if the extract 3217 // instruction index was used already. 3218 // Also, later we can check that all the indices are used and we have a 3219 // consecutive access in the extract instructions, by checking that no 3220 // element of CurrentOrder still has value E + 1. 3221 CurrentOrder.assign(E, E + 1); 3222 unsigned I = 0; 3223 for (; I < E; ++I) { 3224 auto *Inst = cast<Instruction>(VL[I]); 3225 if (Inst->getOperand(0) != Vec) 3226 break; 3227 Optional<unsigned> Idx = getExtractIndex(Inst); 3228 if (!Idx) 3229 break; 3230 const unsigned ExtIdx = *Idx; 3231 if (ExtIdx != I) { 3232 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3233 break; 3234 ShouldKeepOrder = false; 3235 CurrentOrder[ExtIdx] = I; 3236 } else { 3237 if (CurrentOrder[I] != E + 1) 3238 break; 3239 CurrentOrder[I] = I; 3240 } 3241 } 3242 if (I < E) { 3243 CurrentOrder.clear(); 3244 return false; 3245 } 3246 3247 return ShouldKeepOrder; 3248 } 3249 3250 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3251 return I->hasOneUse() || 3252 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3253 return ScalarToTreeEntry.count(U) > 0; 3254 }); 3255 } 3256 3257 static std::pair<unsigned, unsigned> 3258 getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI, 3259 TargetLibraryInfo *TLI) { 3260 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3261 3262 // Calculate the cost of the scalar and vector calls. 3263 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3264 int IntrinsicCost = 3265 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3266 3267 auto Shape = 3268 VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 3269 false /*HasGlobalPred*/); 3270 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3271 int LibCost = IntrinsicCost; 3272 if (!CI->isNoBuiltin() && VecFunc) { 3273 // Calculate the cost of the vector library call. 3274 SmallVector<Type *, 4> VecTys; 3275 for (Use &Arg : CI->args()) 3276 VecTys.push_back( 3277 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3278 3279 // If the corresponding vector call is cheaper, return its cost. 3280 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3281 TTI::TCK_RecipThroughput); 3282 } 3283 return {IntrinsicCost, LibCost}; 3284 } 3285 3286 int BoUpSLP::getEntryCost(TreeEntry *E) { 3287 ArrayRef<Value*> VL = E->Scalars; 3288 3289 Type *ScalarTy = VL[0]->getType(); 3290 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3291 ScalarTy = SI->getValueOperand()->getType(); 3292 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3293 ScalarTy = CI->getOperand(0)->getType(); 3294 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3295 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3296 3297 // If we have computed a smaller type for the expression, update VecTy so 3298 // that the costs will be accurate. 3299 if (MinBWs.count(VL[0])) 3300 VecTy = FixedVectorType::get( 3301 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3302 3303 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3304 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3305 int ReuseShuffleCost = 0; 3306 if (NeedToShuffleReuses) { 3307 ReuseShuffleCost = 3308 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3309 } 3310 if (E->State == TreeEntry::NeedToGather) { 3311 if (allConstant(VL)) 3312 return 0; 3313 if (isSplat(VL)) { 3314 return ReuseShuffleCost + 3315 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3316 } 3317 if (E->getOpcode() == Instruction::ExtractElement && 3318 allSameType(VL) && allSameBlock(VL)) { 3319 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3320 if (ShuffleKind.hasValue()) { 3321 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3322 for (auto *V : VL) { 3323 // If all users of instruction are going to be vectorized and this 3324 // instruction itself is not going to be vectorized, consider this 3325 // instruction as dead and remove its cost from the final cost of the 3326 // vectorized tree. 3327 if (areAllUsersVectorized(cast<Instruction>(V)) && 3328 !ScalarToTreeEntry.count(V)) { 3329 auto *IO = cast<ConstantInt>( 3330 cast<ExtractElementInst>(V)->getIndexOperand()); 3331 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3332 IO->getZExtValue()); 3333 } 3334 } 3335 return ReuseShuffleCost + Cost; 3336 } 3337 } 3338 return ReuseShuffleCost + getGatherCost(VL); 3339 } 3340 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3341 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3342 Instruction *VL0 = E->getMainOp(); 3343 unsigned ShuffleOrOp = 3344 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3345 switch (ShuffleOrOp) { 3346 case Instruction::PHI: 3347 return 0; 3348 3349 case Instruction::ExtractValue: 3350 case Instruction::ExtractElement: { 3351 if (NeedToShuffleReuses) { 3352 unsigned Idx = 0; 3353 for (unsigned I : E->ReuseShuffleIndices) { 3354 if (ShuffleOrOp == Instruction::ExtractElement) { 3355 auto *IO = cast<ConstantInt>( 3356 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3357 Idx = IO->getZExtValue(); 3358 ReuseShuffleCost -= TTI->getVectorInstrCost( 3359 Instruction::ExtractElement, VecTy, Idx); 3360 } else { 3361 ReuseShuffleCost -= TTI->getVectorInstrCost( 3362 Instruction::ExtractElement, VecTy, Idx); 3363 ++Idx; 3364 } 3365 } 3366 Idx = ReuseShuffleNumbers; 3367 for (Value *V : VL) { 3368 if (ShuffleOrOp == Instruction::ExtractElement) { 3369 auto *IO = cast<ConstantInt>( 3370 cast<ExtractElementInst>(V)->getIndexOperand()); 3371 Idx = IO->getZExtValue(); 3372 } else { 3373 --Idx; 3374 } 3375 ReuseShuffleCost += 3376 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3377 } 3378 } 3379 int DeadCost = ReuseShuffleCost; 3380 if (!E->ReorderIndices.empty()) { 3381 // TODO: Merge this shuffle with the ReuseShuffleCost. 3382 DeadCost += TTI->getShuffleCost( 3383 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3384 } 3385 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3386 Instruction *E = cast<Instruction>(VL[i]); 3387 // If all users are going to be vectorized, instruction can be 3388 // considered as dead. 3389 // The same, if have only one user, it will be vectorized for sure. 3390 if (areAllUsersVectorized(E)) { 3391 // Take credit for instruction that will become dead. 3392 if (E->hasOneUse()) { 3393 Instruction *Ext = E->user_back(); 3394 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3395 all_of(Ext->users(), 3396 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3397 // Use getExtractWithExtendCost() to calculate the cost of 3398 // extractelement/ext pair. 3399 DeadCost -= TTI->getExtractWithExtendCost( 3400 Ext->getOpcode(), Ext->getType(), VecTy, i); 3401 // Add back the cost of s|zext which is subtracted separately. 3402 DeadCost += TTI->getCastInstrCost( 3403 Ext->getOpcode(), Ext->getType(), E->getType(), 3404 TTI::getCastContextHint(Ext), CostKind, Ext); 3405 continue; 3406 } 3407 } 3408 DeadCost -= 3409 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3410 } 3411 } 3412 return DeadCost; 3413 } 3414 case Instruction::ZExt: 3415 case Instruction::SExt: 3416 case Instruction::FPToUI: 3417 case Instruction::FPToSI: 3418 case Instruction::FPExt: 3419 case Instruction::PtrToInt: 3420 case Instruction::IntToPtr: 3421 case Instruction::SIToFP: 3422 case Instruction::UIToFP: 3423 case Instruction::Trunc: 3424 case Instruction::FPTrunc: 3425 case Instruction::BitCast: { 3426 Type *SrcTy = VL0->getOperand(0)->getType(); 3427 int ScalarEltCost = 3428 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3429 TTI::getCastContextHint(VL0), CostKind, VL0); 3430 if (NeedToShuffleReuses) { 3431 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3432 } 3433 3434 // Calculate the cost of this instruction. 3435 int ScalarCost = VL.size() * ScalarEltCost; 3436 3437 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3438 int VecCost = 0; 3439 // Check if the values are candidates to demote. 3440 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3441 VecCost = 3442 ReuseShuffleCost + 3443 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3444 TTI::getCastContextHint(VL0), CostKind, VL0); 3445 } 3446 return VecCost - ScalarCost; 3447 } 3448 case Instruction::FCmp: 3449 case Instruction::ICmp: 3450 case Instruction::Select: { 3451 // Calculate the cost of this instruction. 3452 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3453 Builder.getInt1Ty(), 3454 CostKind, VL0); 3455 if (NeedToShuffleReuses) { 3456 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3457 } 3458 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3459 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3460 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3461 CostKind, VL0); 3462 return ReuseShuffleCost + VecCost - ScalarCost; 3463 } 3464 case Instruction::FNeg: 3465 case Instruction::Add: 3466 case Instruction::FAdd: 3467 case Instruction::Sub: 3468 case Instruction::FSub: 3469 case Instruction::Mul: 3470 case Instruction::FMul: 3471 case Instruction::UDiv: 3472 case Instruction::SDiv: 3473 case Instruction::FDiv: 3474 case Instruction::URem: 3475 case Instruction::SRem: 3476 case Instruction::FRem: 3477 case Instruction::Shl: 3478 case Instruction::LShr: 3479 case Instruction::AShr: 3480 case Instruction::And: 3481 case Instruction::Or: 3482 case Instruction::Xor: { 3483 // Certain instructions can be cheaper to vectorize if they have a 3484 // constant second vector operand. 3485 TargetTransformInfo::OperandValueKind Op1VK = 3486 TargetTransformInfo::OK_AnyValue; 3487 TargetTransformInfo::OperandValueKind Op2VK = 3488 TargetTransformInfo::OK_UniformConstantValue; 3489 TargetTransformInfo::OperandValueProperties Op1VP = 3490 TargetTransformInfo::OP_None; 3491 TargetTransformInfo::OperandValueProperties Op2VP = 3492 TargetTransformInfo::OP_PowerOf2; 3493 3494 // If all operands are exactly the same ConstantInt then set the 3495 // operand kind to OK_UniformConstantValue. 3496 // If instead not all operands are constants, then set the operand kind 3497 // to OK_AnyValue. If all operands are constants but not the same, 3498 // then set the operand kind to OK_NonUniformConstantValue. 3499 ConstantInt *CInt0 = nullptr; 3500 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3501 const Instruction *I = cast<Instruction>(VL[i]); 3502 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3503 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3504 if (!CInt) { 3505 Op2VK = TargetTransformInfo::OK_AnyValue; 3506 Op2VP = TargetTransformInfo::OP_None; 3507 break; 3508 } 3509 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3510 !CInt->getValue().isPowerOf2()) 3511 Op2VP = TargetTransformInfo::OP_None; 3512 if (i == 0) { 3513 CInt0 = CInt; 3514 continue; 3515 } 3516 if (CInt0 != CInt) 3517 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3518 } 3519 3520 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3521 int ScalarEltCost = TTI->getArithmeticInstrCost( 3522 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3523 Operands, VL0); 3524 if (NeedToShuffleReuses) { 3525 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3526 } 3527 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3528 int VecCost = TTI->getArithmeticInstrCost( 3529 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3530 Operands, VL0); 3531 return ReuseShuffleCost + VecCost - ScalarCost; 3532 } 3533 case Instruction::GetElementPtr: { 3534 TargetTransformInfo::OperandValueKind Op1VK = 3535 TargetTransformInfo::OK_AnyValue; 3536 TargetTransformInfo::OperandValueKind Op2VK = 3537 TargetTransformInfo::OK_UniformConstantValue; 3538 3539 int ScalarEltCost = 3540 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3541 Op1VK, Op2VK); 3542 if (NeedToShuffleReuses) { 3543 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3544 } 3545 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3546 int VecCost = 3547 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3548 Op1VK, Op2VK); 3549 return ReuseShuffleCost + VecCost - ScalarCost; 3550 } 3551 case Instruction::Load: { 3552 // Cost of wide load - cost of scalar loads. 3553 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3554 int ScalarEltCost = 3555 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3556 CostKind, VL0); 3557 if (NeedToShuffleReuses) { 3558 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3559 } 3560 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3561 int VecLdCost = 3562 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3563 CostKind, VL0); 3564 if (!E->ReorderIndices.empty()) { 3565 // TODO: Merge this shuffle with the ReuseShuffleCost. 3566 VecLdCost += TTI->getShuffleCost( 3567 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3568 } 3569 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3570 } 3571 case Instruction::Store: { 3572 // We know that we can merge the stores. Calculate the cost. 3573 bool IsReorder = !E->ReorderIndices.empty(); 3574 auto *SI = 3575 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3576 Align Alignment = SI->getAlign(); 3577 int ScalarEltCost = 3578 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3579 CostKind, VL0); 3580 if (NeedToShuffleReuses) 3581 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3582 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3583 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3584 VecTy, Alignment, 0, CostKind, VL0); 3585 if (IsReorder) { 3586 // TODO: Merge this shuffle with the ReuseShuffleCost. 3587 VecStCost += TTI->getShuffleCost( 3588 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3589 } 3590 return ReuseShuffleCost + VecStCost - ScalarStCost; 3591 } 3592 case Instruction::Call: { 3593 CallInst *CI = cast<CallInst>(VL0); 3594 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3595 3596 // Calculate the cost of the scalar and vector calls. 3597 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3598 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3599 if (NeedToShuffleReuses) { 3600 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3601 } 3602 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3603 3604 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3605 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3606 3607 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3608 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3609 << " for " << *CI << "\n"); 3610 3611 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3612 } 3613 case Instruction::ShuffleVector: { 3614 assert(E->isAltShuffle() && 3615 ((Instruction::isBinaryOp(E->getOpcode()) && 3616 Instruction::isBinaryOp(E->getAltOpcode())) || 3617 (Instruction::isCast(E->getOpcode()) && 3618 Instruction::isCast(E->getAltOpcode()))) && 3619 "Invalid Shuffle Vector Operand"); 3620 int ScalarCost = 0; 3621 if (NeedToShuffleReuses) { 3622 for (unsigned Idx : E->ReuseShuffleIndices) { 3623 Instruction *I = cast<Instruction>(VL[Idx]); 3624 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3625 } 3626 for (Value *V : VL) { 3627 Instruction *I = cast<Instruction>(V); 3628 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3629 } 3630 } 3631 for (Value *V : VL) { 3632 Instruction *I = cast<Instruction>(V); 3633 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3634 ScalarCost += TTI->getInstructionCost(I, CostKind); 3635 } 3636 // VecCost is equal to sum of the cost of creating 2 vectors 3637 // and the cost of creating shuffle. 3638 int VecCost = 0; 3639 if (Instruction::isBinaryOp(E->getOpcode())) { 3640 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3641 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3642 CostKind); 3643 } else { 3644 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3645 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3646 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3647 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3648 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3649 TTI::CastContextHint::None, CostKind); 3650 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3651 TTI::CastContextHint::None, CostKind); 3652 } 3653 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3654 return ReuseShuffleCost + VecCost - ScalarCost; 3655 } 3656 default: 3657 llvm_unreachable("Unknown instruction"); 3658 } 3659 } 3660 3661 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3662 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3663 << VectorizableTree.size() << " is fully vectorizable .\n"); 3664 3665 // We only handle trees of heights 1 and 2. 3666 if (VectorizableTree.size() == 1 && 3667 VectorizableTree[0]->State == TreeEntry::Vectorize) 3668 return true; 3669 3670 if (VectorizableTree.size() != 2) 3671 return false; 3672 3673 // Handle splat and all-constants stores. 3674 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3675 (allConstant(VectorizableTree[1]->Scalars) || 3676 isSplat(VectorizableTree[1]->Scalars))) 3677 return true; 3678 3679 // Gathering cost would be too much for tiny trees. 3680 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3681 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3682 return false; 3683 3684 return true; 3685 } 3686 3687 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3688 TargetTransformInfo *TTI) { 3689 // Look past the root to find a source value. Arbitrarily follow the 3690 // path through operand 0 of any 'or'. Also, peek through optional 3691 // shift-left-by-constant. 3692 Value *ZextLoad = Root; 3693 while (!isa<ConstantExpr>(ZextLoad) && 3694 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3695 match(ZextLoad, m_Shl(m_Value(), m_Constant())))) 3696 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3697 3698 // Check if the input is an extended load of the required or/shift expression. 3699 Value *LoadPtr; 3700 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3701 return false; 3702 3703 // Require that the total load bit width is a legal integer type. 3704 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3705 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3706 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3707 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3708 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3709 return false; 3710 3711 // Everything matched - assume that we can fold the whole sequence using 3712 // load combining. 3713 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3714 << *(cast<Instruction>(Root)) << "\n"); 3715 3716 return true; 3717 } 3718 3719 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3720 if (RdxOpcode != Instruction::Or) 3721 return false; 3722 3723 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3724 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3725 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3726 } 3727 3728 bool BoUpSLP::isLoadCombineCandidate() const { 3729 // Peek through a final sequence of stores and check if all operations are 3730 // likely to be load-combined. 3731 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3732 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3733 Value *X; 3734 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3735 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3736 return false; 3737 } 3738 return true; 3739 } 3740 3741 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3742 // We can vectorize the tree if its size is greater than or equal to the 3743 // minimum size specified by the MinTreeSize command line option. 3744 if (VectorizableTree.size() >= MinTreeSize) 3745 return false; 3746 3747 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3748 // can vectorize it if we can prove it fully vectorizable. 3749 if (isFullyVectorizableTinyTree()) 3750 return false; 3751 3752 assert(VectorizableTree.empty() 3753 ? ExternalUses.empty() 3754 : true && "We shouldn't have any external users"); 3755 3756 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3757 // vectorizable. 3758 return true; 3759 } 3760 3761 int BoUpSLP::getSpillCost() const { 3762 // Walk from the bottom of the tree to the top, tracking which values are 3763 // live. When we see a call instruction that is not part of our tree, 3764 // query TTI to see if there is a cost to keeping values live over it 3765 // (for example, if spills and fills are required). 3766 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3767 int Cost = 0; 3768 3769 SmallPtrSet<Instruction*, 4> LiveValues; 3770 Instruction *PrevInst = nullptr; 3771 3772 // The entries in VectorizableTree are not necessarily ordered by their 3773 // position in basic blocks. Collect them and order them by dominance so later 3774 // instructions are guaranteed to be visited first. For instructions in 3775 // different basic blocks, we only scan to the beginning of the block, so 3776 // their order does not matter, as long as all instructions in a basic block 3777 // are grouped together. Using dominance ensures a deterministic order. 3778 SmallVector<Instruction *, 16> OrderedScalars; 3779 for (const auto &TEPtr : VectorizableTree) { 3780 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3781 if (!Inst) 3782 continue; 3783 OrderedScalars.push_back(Inst); 3784 } 3785 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3786 return DT->dominates(B, A); 3787 }); 3788 3789 for (Instruction *Inst : OrderedScalars) { 3790 if (!PrevInst) { 3791 PrevInst = Inst; 3792 continue; 3793 } 3794 3795 // Update LiveValues. 3796 LiveValues.erase(PrevInst); 3797 for (auto &J : PrevInst->operands()) { 3798 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3799 LiveValues.insert(cast<Instruction>(&*J)); 3800 } 3801 3802 LLVM_DEBUG({ 3803 dbgs() << "SLP: #LV: " << LiveValues.size(); 3804 for (auto *X : LiveValues) 3805 dbgs() << " " << X->getName(); 3806 dbgs() << ", Looking at "; 3807 Inst->dump(); 3808 }); 3809 3810 // Now find the sequence of instructions between PrevInst and Inst. 3811 unsigned NumCalls = 0; 3812 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3813 PrevInstIt = 3814 PrevInst->getIterator().getReverse(); 3815 while (InstIt != PrevInstIt) { 3816 if (PrevInstIt == PrevInst->getParent()->rend()) { 3817 PrevInstIt = Inst->getParent()->rbegin(); 3818 continue; 3819 } 3820 3821 // Debug information does not impact spill cost. 3822 if ((isa<CallInst>(&*PrevInstIt) && 3823 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3824 &*PrevInstIt != PrevInst) 3825 NumCalls++; 3826 3827 ++PrevInstIt; 3828 } 3829 3830 if (NumCalls) { 3831 SmallVector<Type*, 4> V; 3832 for (auto *II : LiveValues) 3833 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3834 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3835 } 3836 3837 PrevInst = Inst; 3838 } 3839 3840 return Cost; 3841 } 3842 3843 int BoUpSLP::getTreeCost() { 3844 int Cost = 0; 3845 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3846 << VectorizableTree.size() << ".\n"); 3847 3848 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3849 3850 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3851 TreeEntry &TE = *VectorizableTree[I].get(); 3852 3853 // We create duplicate tree entries for gather sequences that have multiple 3854 // uses. However, we should not compute the cost of duplicate sequences. 3855 // For example, if we have a build vector (i.e., insertelement sequence) 3856 // that is used by more than one vector instruction, we only need to 3857 // compute the cost of the insertelement instructions once. The redundant 3858 // instructions will be eliminated by CSE. 3859 // 3860 // We should consider not creating duplicate tree entries for gather 3861 // sequences, and instead add additional edges to the tree representing 3862 // their uses. Since such an approach results in fewer total entries, 3863 // existing heuristics based on tree size may yield different results. 3864 // 3865 if (TE.State == TreeEntry::NeedToGather && 3866 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3867 VectorizableTree.end(), 3868 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3869 return EntryPtr->State == TreeEntry::NeedToGather && 3870 EntryPtr->isSame(TE.Scalars); 3871 })) 3872 continue; 3873 3874 int C = getEntryCost(&TE); 3875 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3876 << " for bundle that starts with " << *TE.Scalars[0] 3877 << ".\n"); 3878 Cost += C; 3879 } 3880 3881 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3882 int ExtractCost = 0; 3883 for (ExternalUser &EU : ExternalUses) { 3884 // We only add extract cost once for the same scalar. 3885 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3886 continue; 3887 3888 // Uses by ephemeral values are free (because the ephemeral value will be 3889 // removed prior to code generation, and so the extraction will be 3890 // removed as well). 3891 if (EphValues.count(EU.User)) 3892 continue; 3893 3894 // If we plan to rewrite the tree in a smaller type, we will need to sign 3895 // extend the extracted value back to the original type. Here, we account 3896 // for the extract and the added cost of the sign extend if needed. 3897 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 3898 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3899 if (MinBWs.count(ScalarRoot)) { 3900 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3901 auto Extend = 3902 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3903 VecTy = FixedVectorType::get(MinTy, BundleWidth); 3904 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3905 VecTy, EU.Lane); 3906 } else { 3907 ExtractCost += 3908 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3909 } 3910 } 3911 3912 int SpillCost = getSpillCost(); 3913 Cost += SpillCost + ExtractCost; 3914 3915 #ifndef NDEBUG 3916 SmallString<256> Str; 3917 { 3918 raw_svector_ostream OS(Str); 3919 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3920 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3921 << "SLP: Total Cost = " << Cost << ".\n"; 3922 } 3923 LLVM_DEBUG(dbgs() << Str); 3924 if (ViewSLPTree) 3925 ViewGraph(this, "SLP" + F->getName(), false, Str); 3926 #endif 3927 3928 return Cost; 3929 } 3930 3931 int BoUpSLP::getGatherCost(VectorType *Ty, 3932 const DenseSet<unsigned> &ShuffledIndices) const { 3933 unsigned NumElts = Ty->getNumElements(); 3934 APInt DemandedElts = APInt::getNullValue(NumElts); 3935 for (unsigned i = 0; i < NumElts; ++i) 3936 if (!ShuffledIndices.count(i)) 3937 DemandedElts.setBit(i); 3938 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 3939 /*Extract*/ false); 3940 if (!ShuffledIndices.empty()) 3941 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3942 return Cost; 3943 } 3944 3945 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3946 // Find the type of the operands in VL. 3947 Type *ScalarTy = VL[0]->getType(); 3948 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3949 ScalarTy = SI->getValueOperand()->getType(); 3950 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3951 // Find the cost of inserting/extracting values from the vector. 3952 // Check if the same elements are inserted several times and count them as 3953 // shuffle candidates. 3954 DenseSet<unsigned> ShuffledElements; 3955 DenseSet<Value *> UniqueElements; 3956 // Iterate in reverse order to consider insert elements with the high cost. 3957 for (unsigned I = VL.size(); I > 0; --I) { 3958 unsigned Idx = I - 1; 3959 if (!UniqueElements.insert(VL[Idx]).second) 3960 ShuffledElements.insert(Idx); 3961 } 3962 return getGatherCost(VecTy, ShuffledElements); 3963 } 3964 3965 // Perform operand reordering on the instructions in VL and return the reordered 3966 // operands in Left and Right. 3967 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3968 SmallVectorImpl<Value *> &Left, 3969 SmallVectorImpl<Value *> &Right, 3970 const DataLayout &DL, 3971 ScalarEvolution &SE, 3972 const BoUpSLP &R) { 3973 if (VL.empty()) 3974 return; 3975 VLOperands Ops(VL, DL, SE, R); 3976 // Reorder the operands in place. 3977 Ops.reorder(); 3978 Left = Ops.getVL(0); 3979 Right = Ops.getVL(1); 3980 } 3981 3982 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3983 // Get the basic block this bundle is in. All instructions in the bundle 3984 // should be in this block. 3985 auto *Front = E->getMainOp(); 3986 auto *BB = Front->getParent(); 3987 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3988 [=](Value *V) -> bool { 3989 auto *I = cast<Instruction>(V); 3990 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3991 })); 3992 3993 // The last instruction in the bundle in program order. 3994 Instruction *LastInst = nullptr; 3995 3996 // Find the last instruction. The common case should be that BB has been 3997 // scheduled, and the last instruction is VL.back(). So we start with 3998 // VL.back() and iterate over schedule data until we reach the end of the 3999 // bundle. The end of the bundle is marked by null ScheduleData. 4000 if (BlocksSchedules.count(BB)) { 4001 auto *Bundle = 4002 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4003 if (Bundle && Bundle->isPartOfBundle()) 4004 for (; Bundle; Bundle = Bundle->NextInBundle) 4005 if (Bundle->OpValue == Bundle->Inst) 4006 LastInst = Bundle->Inst; 4007 } 4008 4009 // LastInst can still be null at this point if there's either not an entry 4010 // for BB in BlocksSchedules or there's no ScheduleData available for 4011 // VL.back(). This can be the case if buildTree_rec aborts for various 4012 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4013 // size is reached, etc.). ScheduleData is initialized in the scheduling 4014 // "dry-run". 4015 // 4016 // If this happens, we can still find the last instruction by brute force. We 4017 // iterate forwards from Front (inclusive) until we either see all 4018 // instructions in the bundle or reach the end of the block. If Front is the 4019 // last instruction in program order, LastInst will be set to Front, and we 4020 // will visit all the remaining instructions in the block. 4021 // 4022 // One of the reasons we exit early from buildTree_rec is to place an upper 4023 // bound on compile-time. Thus, taking an additional compile-time hit here is 4024 // not ideal. However, this should be exceedingly rare since it requires that 4025 // we both exit early from buildTree_rec and that the bundle be out-of-order 4026 // (causing us to iterate all the way to the end of the block). 4027 if (!LastInst) { 4028 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4029 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4030 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4031 LastInst = &I; 4032 if (Bundle.empty()) 4033 break; 4034 } 4035 } 4036 assert(LastInst && "Failed to find last instruction in bundle"); 4037 4038 // Set the insertion point after the last instruction in the bundle. Set the 4039 // debug location to Front. 4040 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4041 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4042 } 4043 4044 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 4045 Value *Vec = UndefValue::get(Ty); 4046 // Generate the 'InsertElement' instruction. 4047 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 4048 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 4049 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 4050 GatherSeq.insert(Insrt); 4051 CSEBlocks.insert(Insrt->getParent()); 4052 4053 // Add to our 'need-to-extract' list. 4054 if (TreeEntry *E = getTreeEntry(VL[i])) { 4055 // Find which lane we need to extract. 4056 int FoundLane = -1; 4057 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 4058 // Is this the lane of the scalar that we are looking for ? 4059 if (E->Scalars[Lane] == VL[i]) { 4060 FoundLane = Lane; 4061 break; 4062 } 4063 } 4064 assert(FoundLane >= 0 && "Could not find the correct lane"); 4065 if (!E->ReuseShuffleIndices.empty()) { 4066 FoundLane = 4067 std::distance(E->ReuseShuffleIndices.begin(), 4068 llvm::find(E->ReuseShuffleIndices, FoundLane)); 4069 } 4070 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 4071 } 4072 } 4073 } 4074 4075 return Vec; 4076 } 4077 4078 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4079 InstructionsState S = getSameOpcode(VL); 4080 if (S.getOpcode()) { 4081 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4082 if (E->isSame(VL)) { 4083 Value *V = vectorizeTree(E); 4084 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4085 // We need to get the vectorized value but without shuffle. 4086 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4087 V = SV->getOperand(0); 4088 } else { 4089 // Reshuffle to get only unique values. 4090 SmallVector<int, 4> UniqueIdxs; 4091 SmallSet<int, 4> UsedIdxs; 4092 for (int Idx : E->ReuseShuffleIndices) 4093 if (UsedIdxs.insert(Idx).second) 4094 UniqueIdxs.emplace_back(Idx); 4095 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4096 UniqueIdxs); 4097 } 4098 } 4099 return V; 4100 } 4101 } 4102 } 4103 4104 Type *ScalarTy = S.OpValue->getType(); 4105 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4106 ScalarTy = SI->getValueOperand()->getType(); 4107 4108 // Check that every instruction appears once in this bundle. 4109 SmallVector<int, 4> ReuseShuffleIndicies; 4110 SmallVector<Value *, 4> UniqueValues; 4111 if (VL.size() > 2) { 4112 DenseMap<Value *, unsigned> UniquePositions; 4113 for (Value *V : VL) { 4114 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4115 ReuseShuffleIndicies.emplace_back(Res.first->second); 4116 if (Res.second || isa<Constant>(V)) 4117 UniqueValues.emplace_back(V); 4118 } 4119 // Do not shuffle single element or if number of unique values is not power 4120 // of 2. 4121 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4122 !llvm::isPowerOf2_32(UniqueValues.size())) 4123 ReuseShuffleIndicies.clear(); 4124 else 4125 VL = UniqueValues; 4126 } 4127 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4128 4129 Value *V = Gather(VL, VecTy); 4130 if (!ReuseShuffleIndicies.empty()) { 4131 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4132 ReuseShuffleIndicies, "shuffle"); 4133 if (auto *I = dyn_cast<Instruction>(V)) { 4134 GatherSeq.insert(I); 4135 CSEBlocks.insert(I->getParent()); 4136 } 4137 } 4138 return V; 4139 } 4140 4141 static void inversePermutation(ArrayRef<unsigned> Indices, 4142 SmallVectorImpl<int> &Mask) { 4143 Mask.clear(); 4144 const unsigned E = Indices.size(); 4145 Mask.resize(E); 4146 for (unsigned I = 0; I < E; ++I) 4147 Mask[Indices[I]] = I; 4148 } 4149 4150 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4151 IRBuilder<>::InsertPointGuard Guard(Builder); 4152 4153 if (E->VectorizedValue) { 4154 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4155 return E->VectorizedValue; 4156 } 4157 4158 Instruction *VL0 = E->getMainOp(); 4159 Type *ScalarTy = VL0->getType(); 4160 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4161 ScalarTy = SI->getValueOperand()->getType(); 4162 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4163 4164 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4165 4166 if (E->State == TreeEntry::NeedToGather) { 4167 setInsertPointAfterBundle(E); 4168 auto *V = Gather(E->Scalars, VecTy); 4169 if (NeedToShuffleReuses) { 4170 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4171 E->ReuseShuffleIndices, "shuffle"); 4172 if (auto *I = dyn_cast<Instruction>(V)) { 4173 GatherSeq.insert(I); 4174 CSEBlocks.insert(I->getParent()); 4175 } 4176 } 4177 E->VectorizedValue = V; 4178 return V; 4179 } 4180 4181 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4182 unsigned ShuffleOrOp = 4183 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4184 switch (ShuffleOrOp) { 4185 case Instruction::PHI: { 4186 auto *PH = cast<PHINode>(VL0); 4187 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4188 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4189 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4190 Value *V = NewPhi; 4191 if (NeedToShuffleReuses) { 4192 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4193 E->ReuseShuffleIndices, "shuffle"); 4194 } 4195 E->VectorizedValue = V; 4196 4197 // PHINodes may have multiple entries from the same block. We want to 4198 // visit every block once. 4199 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4200 4201 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4202 ValueList Operands; 4203 BasicBlock *IBB = PH->getIncomingBlock(i); 4204 4205 if (!VisitedBBs.insert(IBB).second) { 4206 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4207 continue; 4208 } 4209 4210 Builder.SetInsertPoint(IBB->getTerminator()); 4211 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4212 Value *Vec = vectorizeTree(E->getOperand(i)); 4213 NewPhi->addIncoming(Vec, IBB); 4214 } 4215 4216 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4217 "Invalid number of incoming values"); 4218 return V; 4219 } 4220 4221 case Instruction::ExtractElement: { 4222 Value *V = E->getSingleOperand(0); 4223 if (!E->ReorderIndices.empty()) { 4224 SmallVector<int, 4> Mask; 4225 inversePermutation(E->ReorderIndices, Mask); 4226 Builder.SetInsertPoint(VL0); 4227 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4228 "reorder_shuffle"); 4229 } 4230 if (NeedToShuffleReuses) { 4231 // TODO: Merge this shuffle with the ReorderShuffleMask. 4232 if (E->ReorderIndices.empty()) 4233 Builder.SetInsertPoint(VL0); 4234 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4235 E->ReuseShuffleIndices, "shuffle"); 4236 } 4237 E->VectorizedValue = V; 4238 return V; 4239 } 4240 case Instruction::ExtractValue: { 4241 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4242 Builder.SetInsertPoint(LI); 4243 PointerType *PtrTy = 4244 PointerType::get(VecTy, LI->getPointerAddressSpace()); 4245 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4246 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4247 Value *NewV = propagateMetadata(V, E->Scalars); 4248 if (!E->ReorderIndices.empty()) { 4249 SmallVector<int, 4> Mask; 4250 inversePermutation(E->ReorderIndices, Mask); 4251 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4252 "reorder_shuffle"); 4253 } 4254 if (NeedToShuffleReuses) { 4255 // TODO: Merge this shuffle with the ReorderShuffleMask. 4256 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), 4257 E->ReuseShuffleIndices, "shuffle"); 4258 } 4259 E->VectorizedValue = NewV; 4260 return NewV; 4261 } 4262 case Instruction::ZExt: 4263 case Instruction::SExt: 4264 case Instruction::FPToUI: 4265 case Instruction::FPToSI: 4266 case Instruction::FPExt: 4267 case Instruction::PtrToInt: 4268 case Instruction::IntToPtr: 4269 case Instruction::SIToFP: 4270 case Instruction::UIToFP: 4271 case Instruction::Trunc: 4272 case Instruction::FPTrunc: 4273 case Instruction::BitCast: { 4274 setInsertPointAfterBundle(E); 4275 4276 Value *InVec = vectorizeTree(E->getOperand(0)); 4277 4278 if (E->VectorizedValue) { 4279 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4280 return E->VectorizedValue; 4281 } 4282 4283 auto *CI = cast<CastInst>(VL0); 4284 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4285 if (NeedToShuffleReuses) { 4286 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4287 E->ReuseShuffleIndices, "shuffle"); 4288 } 4289 E->VectorizedValue = V; 4290 ++NumVectorInstructions; 4291 return V; 4292 } 4293 case Instruction::FCmp: 4294 case Instruction::ICmp: { 4295 setInsertPointAfterBundle(E); 4296 4297 Value *L = vectorizeTree(E->getOperand(0)); 4298 Value *R = vectorizeTree(E->getOperand(1)); 4299 4300 if (E->VectorizedValue) { 4301 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4302 return E->VectorizedValue; 4303 } 4304 4305 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4306 Value *V = Builder.CreateCmp(P0, L, R); 4307 propagateIRFlags(V, E->Scalars, VL0); 4308 if (NeedToShuffleReuses) { 4309 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4310 E->ReuseShuffleIndices, "shuffle"); 4311 } 4312 E->VectorizedValue = V; 4313 ++NumVectorInstructions; 4314 return V; 4315 } 4316 case Instruction::Select: { 4317 setInsertPointAfterBundle(E); 4318 4319 Value *Cond = vectorizeTree(E->getOperand(0)); 4320 Value *True = vectorizeTree(E->getOperand(1)); 4321 Value *False = vectorizeTree(E->getOperand(2)); 4322 4323 if (E->VectorizedValue) { 4324 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4325 return E->VectorizedValue; 4326 } 4327 4328 Value *V = Builder.CreateSelect(Cond, True, False); 4329 if (NeedToShuffleReuses) { 4330 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4331 E->ReuseShuffleIndices, "shuffle"); 4332 } 4333 E->VectorizedValue = V; 4334 ++NumVectorInstructions; 4335 return V; 4336 } 4337 case Instruction::FNeg: { 4338 setInsertPointAfterBundle(E); 4339 4340 Value *Op = vectorizeTree(E->getOperand(0)); 4341 4342 if (E->VectorizedValue) { 4343 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4344 return E->VectorizedValue; 4345 } 4346 4347 Value *V = Builder.CreateUnOp( 4348 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4349 propagateIRFlags(V, E->Scalars, VL0); 4350 if (auto *I = dyn_cast<Instruction>(V)) 4351 V = propagateMetadata(I, E->Scalars); 4352 4353 if (NeedToShuffleReuses) { 4354 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4355 E->ReuseShuffleIndices, "shuffle"); 4356 } 4357 E->VectorizedValue = V; 4358 ++NumVectorInstructions; 4359 4360 return V; 4361 } 4362 case Instruction::Add: 4363 case Instruction::FAdd: 4364 case Instruction::Sub: 4365 case Instruction::FSub: 4366 case Instruction::Mul: 4367 case Instruction::FMul: 4368 case Instruction::UDiv: 4369 case Instruction::SDiv: 4370 case Instruction::FDiv: 4371 case Instruction::URem: 4372 case Instruction::SRem: 4373 case Instruction::FRem: 4374 case Instruction::Shl: 4375 case Instruction::LShr: 4376 case Instruction::AShr: 4377 case Instruction::And: 4378 case Instruction::Or: 4379 case Instruction::Xor: { 4380 setInsertPointAfterBundle(E); 4381 4382 Value *LHS = vectorizeTree(E->getOperand(0)); 4383 Value *RHS = vectorizeTree(E->getOperand(1)); 4384 4385 if (E->VectorizedValue) { 4386 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4387 return E->VectorizedValue; 4388 } 4389 4390 Value *V = Builder.CreateBinOp( 4391 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4392 RHS); 4393 propagateIRFlags(V, E->Scalars, VL0); 4394 if (auto *I = dyn_cast<Instruction>(V)) 4395 V = propagateMetadata(I, E->Scalars); 4396 4397 if (NeedToShuffleReuses) { 4398 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4399 E->ReuseShuffleIndices, "shuffle"); 4400 } 4401 E->VectorizedValue = V; 4402 ++NumVectorInstructions; 4403 4404 return V; 4405 } 4406 case Instruction::Load: { 4407 // Loads are inserted at the head of the tree because we don't want to 4408 // sink them all the way down past store instructions. 4409 bool IsReorder = E->updateStateIfReorder(); 4410 if (IsReorder) 4411 VL0 = E->getMainOp(); 4412 setInsertPointAfterBundle(E); 4413 4414 LoadInst *LI = cast<LoadInst>(VL0); 4415 unsigned AS = LI->getPointerAddressSpace(); 4416 4417 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4418 VecTy->getPointerTo(AS)); 4419 4420 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4421 // ExternalUses list to make sure that an extract will be generated in the 4422 // future. 4423 Value *PO = LI->getPointerOperand(); 4424 if (getTreeEntry(PO)) 4425 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4426 4427 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4428 Value *V = propagateMetadata(LI, E->Scalars); 4429 if (IsReorder) { 4430 SmallVector<int, 4> Mask; 4431 inversePermutation(E->ReorderIndices, Mask); 4432 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4433 Mask, "reorder_shuffle"); 4434 } 4435 if (NeedToShuffleReuses) { 4436 // TODO: Merge this shuffle with the ReorderShuffleMask. 4437 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4438 E->ReuseShuffleIndices, "shuffle"); 4439 } 4440 E->VectorizedValue = V; 4441 ++NumVectorInstructions; 4442 return V; 4443 } 4444 case Instruction::Store: { 4445 bool IsReorder = !E->ReorderIndices.empty(); 4446 auto *SI = cast<StoreInst>( 4447 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4448 unsigned AS = SI->getPointerAddressSpace(); 4449 4450 setInsertPointAfterBundle(E); 4451 4452 Value *VecValue = vectorizeTree(E->getOperand(0)); 4453 if (IsReorder) { 4454 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4455 E->ReorderIndices.end()); 4456 VecValue = Builder.CreateShuffleVector( 4457 VecValue, UndefValue::get(VecValue->getType()), Mask, 4458 "reorder_shuffle"); 4459 } 4460 Value *ScalarPtr = SI->getPointerOperand(); 4461 Value *VecPtr = Builder.CreateBitCast( 4462 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4463 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4464 SI->getAlign()); 4465 4466 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4467 // ExternalUses to make sure that an extract will be generated in the 4468 // future. 4469 if (getTreeEntry(ScalarPtr)) 4470 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4471 4472 Value *V = propagateMetadata(ST, E->Scalars); 4473 if (NeedToShuffleReuses) { 4474 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4475 E->ReuseShuffleIndices, "shuffle"); 4476 } 4477 E->VectorizedValue = V; 4478 ++NumVectorInstructions; 4479 return V; 4480 } 4481 case Instruction::GetElementPtr: { 4482 setInsertPointAfterBundle(E); 4483 4484 Value *Op0 = vectorizeTree(E->getOperand(0)); 4485 4486 std::vector<Value *> OpVecs; 4487 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4488 ++j) { 4489 ValueList &VL = E->getOperand(j); 4490 // Need to cast all elements to the same type before vectorization to 4491 // avoid crash. 4492 Type *VL0Ty = VL0->getOperand(j)->getType(); 4493 Type *Ty = llvm::all_of( 4494 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4495 ? VL0Ty 4496 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4497 ->getPointerOperandType() 4498 ->getScalarType()); 4499 for (Value *&V : VL) { 4500 auto *CI = cast<ConstantInt>(V); 4501 V = ConstantExpr::getIntegerCast(CI, Ty, 4502 CI->getValue().isSignBitSet()); 4503 } 4504 Value *OpVec = vectorizeTree(VL); 4505 OpVecs.push_back(OpVec); 4506 } 4507 4508 Value *V = Builder.CreateGEP( 4509 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4510 if (Instruction *I = dyn_cast<Instruction>(V)) 4511 V = propagateMetadata(I, E->Scalars); 4512 4513 if (NeedToShuffleReuses) { 4514 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4515 E->ReuseShuffleIndices, "shuffle"); 4516 } 4517 E->VectorizedValue = V; 4518 ++NumVectorInstructions; 4519 4520 return V; 4521 } 4522 case Instruction::Call: { 4523 CallInst *CI = cast<CallInst>(VL0); 4524 setInsertPointAfterBundle(E); 4525 4526 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4527 if (Function *FI = CI->getCalledFunction()) 4528 IID = FI->getIntrinsicID(); 4529 4530 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4531 4532 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4533 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4534 VecCallCosts.first <= VecCallCosts.second; 4535 4536 Value *ScalarArg = nullptr; 4537 std::vector<Value *> OpVecs; 4538 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4539 ValueList OpVL; 4540 // Some intrinsics have scalar arguments. This argument should not be 4541 // vectorized. 4542 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4543 CallInst *CEI = cast<CallInst>(VL0); 4544 ScalarArg = CEI->getArgOperand(j); 4545 OpVecs.push_back(CEI->getArgOperand(j)); 4546 continue; 4547 } 4548 4549 Value *OpVec = vectorizeTree(E->getOperand(j)); 4550 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4551 OpVecs.push_back(OpVec); 4552 } 4553 4554 Function *CF; 4555 if (!UseIntrinsic) { 4556 VFShape Shape = VFShape::get( 4557 *CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 4558 false /*HasGlobalPred*/); 4559 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4560 } else { 4561 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4562 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4563 } 4564 4565 SmallVector<OperandBundleDef, 1> OpBundles; 4566 CI->getOperandBundlesAsDefs(OpBundles); 4567 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4568 4569 // The scalar argument uses an in-tree scalar so we add the new vectorized 4570 // call to ExternalUses list to make sure that an extract will be 4571 // generated in the future. 4572 if (ScalarArg && getTreeEntry(ScalarArg)) 4573 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4574 4575 propagateIRFlags(V, E->Scalars, VL0); 4576 if (NeedToShuffleReuses) { 4577 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4578 E->ReuseShuffleIndices, "shuffle"); 4579 } 4580 E->VectorizedValue = V; 4581 ++NumVectorInstructions; 4582 return V; 4583 } 4584 case Instruction::ShuffleVector: { 4585 assert(E->isAltShuffle() && 4586 ((Instruction::isBinaryOp(E->getOpcode()) && 4587 Instruction::isBinaryOp(E->getAltOpcode())) || 4588 (Instruction::isCast(E->getOpcode()) && 4589 Instruction::isCast(E->getAltOpcode()))) && 4590 "Invalid Shuffle Vector Operand"); 4591 4592 Value *LHS = nullptr, *RHS = nullptr; 4593 if (Instruction::isBinaryOp(E->getOpcode())) { 4594 setInsertPointAfterBundle(E); 4595 LHS = vectorizeTree(E->getOperand(0)); 4596 RHS = vectorizeTree(E->getOperand(1)); 4597 } else { 4598 setInsertPointAfterBundle(E); 4599 LHS = vectorizeTree(E->getOperand(0)); 4600 } 4601 4602 if (E->VectorizedValue) { 4603 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4604 return E->VectorizedValue; 4605 } 4606 4607 Value *V0, *V1; 4608 if (Instruction::isBinaryOp(E->getOpcode())) { 4609 V0 = Builder.CreateBinOp( 4610 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4611 V1 = Builder.CreateBinOp( 4612 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4613 } else { 4614 V0 = Builder.CreateCast( 4615 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4616 V1 = Builder.CreateCast( 4617 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4618 } 4619 4620 // Create shuffle to take alternate operations from the vector. 4621 // Also, gather up main and alt scalar ops to propagate IR flags to 4622 // each vector operation. 4623 ValueList OpScalars, AltScalars; 4624 unsigned e = E->Scalars.size(); 4625 SmallVector<int, 8> Mask(e); 4626 for (unsigned i = 0; i < e; ++i) { 4627 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4628 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4629 if (OpInst->getOpcode() == E->getAltOpcode()) { 4630 Mask[i] = e + i; 4631 AltScalars.push_back(E->Scalars[i]); 4632 } else { 4633 Mask[i] = i; 4634 OpScalars.push_back(E->Scalars[i]); 4635 } 4636 } 4637 4638 propagateIRFlags(V0, OpScalars); 4639 propagateIRFlags(V1, AltScalars); 4640 4641 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4642 if (Instruction *I = dyn_cast<Instruction>(V)) 4643 V = propagateMetadata(I, E->Scalars); 4644 if (NeedToShuffleReuses) { 4645 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4646 E->ReuseShuffleIndices, "shuffle"); 4647 } 4648 E->VectorizedValue = V; 4649 ++NumVectorInstructions; 4650 4651 return V; 4652 } 4653 default: 4654 llvm_unreachable("unknown inst"); 4655 } 4656 return nullptr; 4657 } 4658 4659 Value *BoUpSLP::vectorizeTree() { 4660 ExtraValueToDebugLocsMap ExternallyUsedValues; 4661 return vectorizeTree(ExternallyUsedValues); 4662 } 4663 4664 Value * 4665 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4666 // All blocks must be scheduled before any instructions are inserted. 4667 for (auto &BSIter : BlocksSchedules) { 4668 scheduleBlock(BSIter.second.get()); 4669 } 4670 4671 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4672 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4673 4674 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4675 // vectorized root. InstCombine will then rewrite the entire expression. We 4676 // sign extend the extracted values below. 4677 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4678 if (MinBWs.count(ScalarRoot)) { 4679 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4680 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4681 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4682 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4683 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4684 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4685 VectorizableTree[0]->VectorizedValue = Trunc; 4686 } 4687 4688 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4689 << " values .\n"); 4690 4691 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4692 // specified by ScalarType. 4693 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4694 if (!MinBWs.count(ScalarRoot)) 4695 return Ex; 4696 if (MinBWs[ScalarRoot].second) 4697 return Builder.CreateSExt(Ex, ScalarType); 4698 return Builder.CreateZExt(Ex, ScalarType); 4699 }; 4700 4701 // Extract all of the elements with the external uses. 4702 for (const auto &ExternalUse : ExternalUses) { 4703 Value *Scalar = ExternalUse.Scalar; 4704 llvm::User *User = ExternalUse.User; 4705 4706 // Skip users that we already RAUW. This happens when one instruction 4707 // has multiple uses of the same value. 4708 if (User && !is_contained(Scalar->users(), User)) 4709 continue; 4710 TreeEntry *E = getTreeEntry(Scalar); 4711 assert(E && "Invalid scalar"); 4712 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4713 4714 Value *Vec = E->VectorizedValue; 4715 assert(Vec && "Can't find vectorizable value"); 4716 4717 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4718 // If User == nullptr, the Scalar is used as extra arg. Generate 4719 // ExtractElement instruction and update the record for this scalar in 4720 // ExternallyUsedValues. 4721 if (!User) { 4722 assert(ExternallyUsedValues.count(Scalar) && 4723 "Scalar with nullptr as an external user must be registered in " 4724 "ExternallyUsedValues map"); 4725 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4726 Builder.SetInsertPoint(VecI->getParent(), 4727 std::next(VecI->getIterator())); 4728 } else { 4729 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4730 } 4731 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4732 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4733 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4734 auto &Locs = ExternallyUsedValues[Scalar]; 4735 ExternallyUsedValues.insert({Ex, Locs}); 4736 ExternallyUsedValues.erase(Scalar); 4737 // Required to update internally referenced instructions. 4738 Scalar->replaceAllUsesWith(Ex); 4739 continue; 4740 } 4741 4742 // Generate extracts for out-of-tree users. 4743 // Find the insertion point for the extractelement lane. 4744 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4745 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4746 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4747 if (PH->getIncomingValue(i) == Scalar) { 4748 Instruction *IncomingTerminator = 4749 PH->getIncomingBlock(i)->getTerminator(); 4750 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4751 Builder.SetInsertPoint(VecI->getParent(), 4752 std::next(VecI->getIterator())); 4753 } else { 4754 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4755 } 4756 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4757 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4758 CSEBlocks.insert(PH->getIncomingBlock(i)); 4759 PH->setOperand(i, Ex); 4760 } 4761 } 4762 } else { 4763 Builder.SetInsertPoint(cast<Instruction>(User)); 4764 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4765 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4766 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4767 User->replaceUsesOfWith(Scalar, Ex); 4768 } 4769 } else { 4770 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4771 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4772 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4773 CSEBlocks.insert(&F->getEntryBlock()); 4774 User->replaceUsesOfWith(Scalar, Ex); 4775 } 4776 4777 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4778 } 4779 4780 // For each vectorized value: 4781 for (auto &TEPtr : VectorizableTree) { 4782 TreeEntry *Entry = TEPtr.get(); 4783 4784 // No need to handle users of gathered values. 4785 if (Entry->State == TreeEntry::NeedToGather) 4786 continue; 4787 4788 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4789 4790 // For each lane: 4791 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4792 Value *Scalar = Entry->Scalars[Lane]; 4793 4794 #ifndef NDEBUG 4795 Type *Ty = Scalar->getType(); 4796 if (!Ty->isVoidTy()) { 4797 for (User *U : Scalar->users()) { 4798 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4799 4800 // It is legal to delete users in the ignorelist. 4801 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4802 "Deleting out-of-tree value"); 4803 } 4804 } 4805 #endif 4806 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4807 eraseInstruction(cast<Instruction>(Scalar)); 4808 } 4809 } 4810 4811 Builder.ClearInsertionPoint(); 4812 InstrElementSize.clear(); 4813 4814 return VectorizableTree[0]->VectorizedValue; 4815 } 4816 4817 void BoUpSLP::optimizeGatherSequence() { 4818 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4819 << " gather sequences instructions.\n"); 4820 // LICM InsertElementInst sequences. 4821 for (Instruction *I : GatherSeq) { 4822 if (isDeleted(I)) 4823 continue; 4824 4825 // Check if this block is inside a loop. 4826 Loop *L = LI->getLoopFor(I->getParent()); 4827 if (!L) 4828 continue; 4829 4830 // Check if it has a preheader. 4831 BasicBlock *PreHeader = L->getLoopPreheader(); 4832 if (!PreHeader) 4833 continue; 4834 4835 // If the vector or the element that we insert into it are 4836 // instructions that are defined in this basic block then we can't 4837 // hoist this instruction. 4838 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4839 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4840 if (Op0 && L->contains(Op0)) 4841 continue; 4842 if (Op1 && L->contains(Op1)) 4843 continue; 4844 4845 // We can hoist this instruction. Move it to the pre-header. 4846 I->moveBefore(PreHeader->getTerminator()); 4847 } 4848 4849 // Make a list of all reachable blocks in our CSE queue. 4850 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4851 CSEWorkList.reserve(CSEBlocks.size()); 4852 for (BasicBlock *BB : CSEBlocks) 4853 if (DomTreeNode *N = DT->getNode(BB)) { 4854 assert(DT->isReachableFromEntry(N)); 4855 CSEWorkList.push_back(N); 4856 } 4857 4858 // Sort blocks by domination. This ensures we visit a block after all blocks 4859 // dominating it are visited. 4860 llvm::stable_sort(CSEWorkList, 4861 [this](const DomTreeNode *A, const DomTreeNode *B) { 4862 return DT->properlyDominates(A, B); 4863 }); 4864 4865 // Perform O(N^2) search over the gather sequences and merge identical 4866 // instructions. TODO: We can further optimize this scan if we split the 4867 // instructions into different buckets based on the insert lane. 4868 SmallVector<Instruction *, 16> Visited; 4869 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4870 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4871 "Worklist not sorted properly!"); 4872 BasicBlock *BB = (*I)->getBlock(); 4873 // For all instructions in blocks containing gather sequences: 4874 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4875 Instruction *In = &*it++; 4876 if (isDeleted(In)) 4877 continue; 4878 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4879 continue; 4880 4881 // Check if we can replace this instruction with any of the 4882 // visited instructions. 4883 for (Instruction *v : Visited) { 4884 if (In->isIdenticalTo(v) && 4885 DT->dominates(v->getParent(), In->getParent())) { 4886 In->replaceAllUsesWith(v); 4887 eraseInstruction(In); 4888 In = nullptr; 4889 break; 4890 } 4891 } 4892 if (In) { 4893 assert(!is_contained(Visited, In)); 4894 Visited.push_back(In); 4895 } 4896 } 4897 } 4898 CSEBlocks.clear(); 4899 GatherSeq.clear(); 4900 } 4901 4902 // Groups the instructions to a bundle (which is then a single scheduling entity) 4903 // and schedules instructions until the bundle gets ready. 4904 Optional<BoUpSLP::ScheduleData *> 4905 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4906 const InstructionsState &S) { 4907 if (isa<PHINode>(S.OpValue)) 4908 return nullptr; 4909 4910 // Initialize the instruction bundle. 4911 Instruction *OldScheduleEnd = ScheduleEnd; 4912 ScheduleData *PrevInBundle = nullptr; 4913 ScheduleData *Bundle = nullptr; 4914 bool ReSchedule = false; 4915 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4916 4917 // Make sure that the scheduling region contains all 4918 // instructions of the bundle. 4919 for (Value *V : VL) { 4920 if (!extendSchedulingRegion(V, S)) 4921 return None; 4922 } 4923 4924 for (Value *V : VL) { 4925 ScheduleData *BundleMember = getScheduleData(V); 4926 assert(BundleMember && 4927 "no ScheduleData for bundle member (maybe not in same basic block)"); 4928 if (BundleMember->IsScheduled) { 4929 // A bundle member was scheduled as single instruction before and now 4930 // needs to be scheduled as part of the bundle. We just get rid of the 4931 // existing schedule. 4932 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4933 << " was already scheduled\n"); 4934 ReSchedule = true; 4935 } 4936 assert(BundleMember->isSchedulingEntity() && 4937 "bundle member already part of other bundle"); 4938 if (PrevInBundle) { 4939 PrevInBundle->NextInBundle = BundleMember; 4940 } else { 4941 Bundle = BundleMember; 4942 } 4943 BundleMember->UnscheduledDepsInBundle = 0; 4944 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4945 4946 // Group the instructions to a bundle. 4947 BundleMember->FirstInBundle = Bundle; 4948 PrevInBundle = BundleMember; 4949 } 4950 if (ScheduleEnd != OldScheduleEnd) { 4951 // The scheduling region got new instructions at the lower end (or it is a 4952 // new region for the first bundle). This makes it necessary to 4953 // recalculate all dependencies. 4954 // It is seldom that this needs to be done a second time after adding the 4955 // initial bundle to the region. 4956 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4957 doForAllOpcodes(I, [](ScheduleData *SD) { 4958 SD->clearDependencies(); 4959 }); 4960 } 4961 ReSchedule = true; 4962 } 4963 if (ReSchedule) { 4964 resetSchedule(); 4965 initialFillReadyList(ReadyInsts); 4966 } 4967 assert(Bundle && "Failed to find schedule bundle"); 4968 4969 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4970 << BB->getName() << "\n"); 4971 4972 calculateDependencies(Bundle, true, SLP); 4973 4974 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4975 // means that there are no cyclic dependencies and we can schedule it. 4976 // Note that's important that we don't "schedule" the bundle yet (see 4977 // cancelScheduling). 4978 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4979 4980 ScheduleData *pickedSD = ReadyInsts.back(); 4981 ReadyInsts.pop_back(); 4982 4983 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4984 schedule(pickedSD, ReadyInsts); 4985 } 4986 } 4987 if (!Bundle->isReady()) { 4988 cancelScheduling(VL, S.OpValue); 4989 return None; 4990 } 4991 return Bundle; 4992 } 4993 4994 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4995 Value *OpValue) { 4996 if (isa<PHINode>(OpValue)) 4997 return; 4998 4999 ScheduleData *Bundle = getScheduleData(OpValue); 5000 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5001 assert(!Bundle->IsScheduled && 5002 "Can't cancel bundle which is already scheduled"); 5003 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5004 "tried to unbundle something which is not a bundle"); 5005 5006 // Un-bundle: make single instructions out of the bundle. 5007 ScheduleData *BundleMember = Bundle; 5008 while (BundleMember) { 5009 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5010 BundleMember->FirstInBundle = BundleMember; 5011 ScheduleData *Next = BundleMember->NextInBundle; 5012 BundleMember->NextInBundle = nullptr; 5013 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5014 if (BundleMember->UnscheduledDepsInBundle == 0) { 5015 ReadyInsts.insert(BundleMember); 5016 } 5017 BundleMember = Next; 5018 } 5019 } 5020 5021 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5022 // Allocate a new ScheduleData for the instruction. 5023 if (ChunkPos >= ChunkSize) { 5024 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5025 ChunkPos = 0; 5026 } 5027 return &(ScheduleDataChunks.back()[ChunkPos++]); 5028 } 5029 5030 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5031 const InstructionsState &S) { 5032 if (getScheduleData(V, isOneOf(S, V))) 5033 return true; 5034 Instruction *I = dyn_cast<Instruction>(V); 5035 assert(I && "bundle member must be an instruction"); 5036 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5037 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5038 ScheduleData *ISD = getScheduleData(I); 5039 if (!ISD) 5040 return false; 5041 assert(isInSchedulingRegion(ISD) && 5042 "ScheduleData not in scheduling region"); 5043 ScheduleData *SD = allocateScheduleDataChunks(); 5044 SD->Inst = I; 5045 SD->init(SchedulingRegionID, S.OpValue); 5046 ExtraScheduleDataMap[I][S.OpValue] = SD; 5047 return true; 5048 }; 5049 if (CheckSheduleForI(I)) 5050 return true; 5051 if (!ScheduleStart) { 5052 // It's the first instruction in the new region. 5053 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5054 ScheduleStart = I; 5055 ScheduleEnd = I->getNextNode(); 5056 if (isOneOf(S, I) != I) 5057 CheckSheduleForI(I); 5058 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5059 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5060 return true; 5061 } 5062 // Search up and down at the same time, because we don't know if the new 5063 // instruction is above or below the existing scheduling region. 5064 BasicBlock::reverse_iterator UpIter = 5065 ++ScheduleStart->getIterator().getReverse(); 5066 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5067 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5068 BasicBlock::iterator LowerEnd = BB->end(); 5069 while (true) { 5070 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5071 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5072 return false; 5073 } 5074 5075 if (UpIter != UpperEnd) { 5076 if (&*UpIter == I) { 5077 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5078 ScheduleStart = I; 5079 if (isOneOf(S, I) != I) 5080 CheckSheduleForI(I); 5081 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5082 << "\n"); 5083 return true; 5084 } 5085 ++UpIter; 5086 } 5087 if (DownIter != LowerEnd) { 5088 if (&*DownIter == I) { 5089 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5090 nullptr); 5091 ScheduleEnd = I->getNextNode(); 5092 if (isOneOf(S, I) != I) 5093 CheckSheduleForI(I); 5094 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5095 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5096 << "\n"); 5097 return true; 5098 } 5099 ++DownIter; 5100 } 5101 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5102 "instruction not found in block"); 5103 } 5104 return true; 5105 } 5106 5107 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5108 Instruction *ToI, 5109 ScheduleData *PrevLoadStore, 5110 ScheduleData *NextLoadStore) { 5111 ScheduleData *CurrentLoadStore = PrevLoadStore; 5112 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5113 ScheduleData *SD = ScheduleDataMap[I]; 5114 if (!SD) { 5115 SD = allocateScheduleDataChunks(); 5116 ScheduleDataMap[I] = SD; 5117 SD->Inst = I; 5118 } 5119 assert(!isInSchedulingRegion(SD) && 5120 "new ScheduleData already in scheduling region"); 5121 SD->init(SchedulingRegionID, I); 5122 5123 if (I->mayReadOrWriteMemory() && 5124 (!isa<IntrinsicInst>(I) || 5125 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5126 // Update the linked list of memory accessing instructions. 5127 if (CurrentLoadStore) { 5128 CurrentLoadStore->NextLoadStore = SD; 5129 } else { 5130 FirstLoadStoreInRegion = SD; 5131 } 5132 CurrentLoadStore = SD; 5133 } 5134 } 5135 if (NextLoadStore) { 5136 if (CurrentLoadStore) 5137 CurrentLoadStore->NextLoadStore = NextLoadStore; 5138 } else { 5139 LastLoadStoreInRegion = CurrentLoadStore; 5140 } 5141 } 5142 5143 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5144 bool InsertInReadyList, 5145 BoUpSLP *SLP) { 5146 assert(SD->isSchedulingEntity()); 5147 5148 SmallVector<ScheduleData *, 10> WorkList; 5149 WorkList.push_back(SD); 5150 5151 while (!WorkList.empty()) { 5152 ScheduleData *SD = WorkList.back(); 5153 WorkList.pop_back(); 5154 5155 ScheduleData *BundleMember = SD; 5156 while (BundleMember) { 5157 assert(isInSchedulingRegion(BundleMember)); 5158 if (!BundleMember->hasValidDependencies()) { 5159 5160 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5161 << "\n"); 5162 BundleMember->Dependencies = 0; 5163 BundleMember->resetUnscheduledDeps(); 5164 5165 // Handle def-use chain dependencies. 5166 if (BundleMember->OpValue != BundleMember->Inst) { 5167 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5168 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5169 BundleMember->Dependencies++; 5170 ScheduleData *DestBundle = UseSD->FirstInBundle; 5171 if (!DestBundle->IsScheduled) 5172 BundleMember->incrementUnscheduledDeps(1); 5173 if (!DestBundle->hasValidDependencies()) 5174 WorkList.push_back(DestBundle); 5175 } 5176 } else { 5177 for (User *U : BundleMember->Inst->users()) { 5178 if (isa<Instruction>(U)) { 5179 ScheduleData *UseSD = getScheduleData(U); 5180 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5181 BundleMember->Dependencies++; 5182 ScheduleData *DestBundle = UseSD->FirstInBundle; 5183 if (!DestBundle->IsScheduled) 5184 BundleMember->incrementUnscheduledDeps(1); 5185 if (!DestBundle->hasValidDependencies()) 5186 WorkList.push_back(DestBundle); 5187 } 5188 } else { 5189 // I'm not sure if this can ever happen. But we need to be safe. 5190 // This lets the instruction/bundle never be scheduled and 5191 // eventually disable vectorization. 5192 BundleMember->Dependencies++; 5193 BundleMember->incrementUnscheduledDeps(1); 5194 } 5195 } 5196 } 5197 5198 // Handle the memory dependencies. 5199 ScheduleData *DepDest = BundleMember->NextLoadStore; 5200 if (DepDest) { 5201 Instruction *SrcInst = BundleMember->Inst; 5202 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5203 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5204 unsigned numAliased = 0; 5205 unsigned DistToSrc = 1; 5206 5207 while (DepDest) { 5208 assert(isInSchedulingRegion(DepDest)); 5209 5210 // We have two limits to reduce the complexity: 5211 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5212 // SLP->isAliased (which is the expensive part in this loop). 5213 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5214 // the whole loop (even if the loop is fast, it's quadratic). 5215 // It's important for the loop break condition (see below) to 5216 // check this limit even between two read-only instructions. 5217 if (DistToSrc >= MaxMemDepDistance || 5218 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5219 (numAliased >= AliasedCheckLimit || 5220 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5221 5222 // We increment the counter only if the locations are aliased 5223 // (instead of counting all alias checks). This gives a better 5224 // balance between reduced runtime and accurate dependencies. 5225 numAliased++; 5226 5227 DepDest->MemoryDependencies.push_back(BundleMember); 5228 BundleMember->Dependencies++; 5229 ScheduleData *DestBundle = DepDest->FirstInBundle; 5230 if (!DestBundle->IsScheduled) { 5231 BundleMember->incrementUnscheduledDeps(1); 5232 } 5233 if (!DestBundle->hasValidDependencies()) { 5234 WorkList.push_back(DestBundle); 5235 } 5236 } 5237 DepDest = DepDest->NextLoadStore; 5238 5239 // Example, explaining the loop break condition: Let's assume our 5240 // starting instruction is i0 and MaxMemDepDistance = 3. 5241 // 5242 // +--------v--v--v 5243 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5244 // +--------^--^--^ 5245 // 5246 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5247 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5248 // Previously we already added dependencies from i3 to i6,i7,i8 5249 // (because of MaxMemDepDistance). As we added a dependency from 5250 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5251 // and we can abort this loop at i6. 5252 if (DistToSrc >= 2 * MaxMemDepDistance) 5253 break; 5254 DistToSrc++; 5255 } 5256 } 5257 } 5258 BundleMember = BundleMember->NextInBundle; 5259 } 5260 if (InsertInReadyList && SD->isReady()) { 5261 ReadyInsts.push_back(SD); 5262 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5263 << "\n"); 5264 } 5265 } 5266 } 5267 5268 void BoUpSLP::BlockScheduling::resetSchedule() { 5269 assert(ScheduleStart && 5270 "tried to reset schedule on block which has not been scheduled"); 5271 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5272 doForAllOpcodes(I, [&](ScheduleData *SD) { 5273 assert(isInSchedulingRegion(SD) && 5274 "ScheduleData not in scheduling region"); 5275 SD->IsScheduled = false; 5276 SD->resetUnscheduledDeps(); 5277 }); 5278 } 5279 ReadyInsts.clear(); 5280 } 5281 5282 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5283 if (!BS->ScheduleStart) 5284 return; 5285 5286 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5287 5288 BS->resetSchedule(); 5289 5290 // For the real scheduling we use a more sophisticated ready-list: it is 5291 // sorted by the original instruction location. This lets the final schedule 5292 // be as close as possible to the original instruction order. 5293 struct ScheduleDataCompare { 5294 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5295 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5296 } 5297 }; 5298 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5299 5300 // Ensure that all dependency data is updated and fill the ready-list with 5301 // initial instructions. 5302 int Idx = 0; 5303 int NumToSchedule = 0; 5304 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5305 I = I->getNextNode()) { 5306 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5307 assert(SD->isPartOfBundle() == 5308 (getTreeEntry(SD->Inst) != nullptr) && 5309 "scheduler and vectorizer bundle mismatch"); 5310 SD->FirstInBundle->SchedulingPriority = Idx++; 5311 if (SD->isSchedulingEntity()) { 5312 BS->calculateDependencies(SD, false, this); 5313 NumToSchedule++; 5314 } 5315 }); 5316 } 5317 BS->initialFillReadyList(ReadyInsts); 5318 5319 Instruction *LastScheduledInst = BS->ScheduleEnd; 5320 5321 // Do the "real" scheduling. 5322 while (!ReadyInsts.empty()) { 5323 ScheduleData *picked = *ReadyInsts.begin(); 5324 ReadyInsts.erase(ReadyInsts.begin()); 5325 5326 // Move the scheduled instruction(s) to their dedicated places, if not 5327 // there yet. 5328 ScheduleData *BundleMember = picked; 5329 while (BundleMember) { 5330 Instruction *pickedInst = BundleMember->Inst; 5331 if (LastScheduledInst->getNextNode() != pickedInst) { 5332 BS->BB->getInstList().remove(pickedInst); 5333 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5334 pickedInst); 5335 } 5336 LastScheduledInst = pickedInst; 5337 BundleMember = BundleMember->NextInBundle; 5338 } 5339 5340 BS->schedule(picked, ReadyInsts); 5341 NumToSchedule--; 5342 } 5343 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5344 5345 // Avoid duplicate scheduling of the block. 5346 BS->ScheduleStart = nullptr; 5347 } 5348 5349 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5350 // If V is a store, just return the width of the stored value without 5351 // traversing the expression tree. This is the common case. 5352 if (auto *Store = dyn_cast<StoreInst>(V)) 5353 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5354 5355 auto E = InstrElementSize.find(V); 5356 if (E != InstrElementSize.end()) 5357 return E->second; 5358 5359 // If V is not a store, we can traverse the expression tree to find loads 5360 // that feed it. The type of the loaded value may indicate a more suitable 5361 // width than V's type. We want to base the vector element size on the width 5362 // of memory operations where possible. 5363 SmallVector<Instruction *, 16> Worklist; 5364 SmallPtrSet<Instruction *, 16> Visited; 5365 if (auto *I = dyn_cast<Instruction>(V)) { 5366 Worklist.push_back(I); 5367 Visited.insert(I); 5368 } 5369 5370 // Traverse the expression tree in bottom-up order looking for loads. If we 5371 // encounter an instruction we don't yet handle, we give up. 5372 auto MaxWidth = 0u; 5373 auto FoundUnknownInst = false; 5374 while (!Worklist.empty() && !FoundUnknownInst) { 5375 auto *I = Worklist.pop_back_val(); 5376 5377 // We should only be looking at scalar instructions here. If the current 5378 // instruction has a vector type, give up. 5379 auto *Ty = I->getType(); 5380 if (isa<VectorType>(Ty)) 5381 FoundUnknownInst = true; 5382 5383 // If the current instruction is a load, update MaxWidth to reflect the 5384 // width of the loaded value. 5385 else if (isa<LoadInst>(I)) 5386 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5387 5388 // Otherwise, we need to visit the operands of the instruction. We only 5389 // handle the interesting cases from buildTree here. If an operand is an 5390 // instruction we haven't yet visited, we add it to the worklist. 5391 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5392 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5393 for (Use &U : I->operands()) 5394 if (auto *J = dyn_cast<Instruction>(U.get())) 5395 if (Visited.insert(J).second) 5396 Worklist.push_back(J); 5397 } 5398 5399 // If we don't yet handle the instruction, give up. 5400 else 5401 FoundUnknownInst = true; 5402 } 5403 5404 int Width = MaxWidth; 5405 // If we didn't encounter a memory access in the expression tree, or if we 5406 // gave up for some reason, just return the width of V. Otherwise, return the 5407 // maximum width we found. 5408 if (!MaxWidth || FoundUnknownInst) 5409 Width = DL->getTypeSizeInBits(V->getType()); 5410 5411 for (Instruction *I : Visited) 5412 InstrElementSize[I] = Width; 5413 5414 return Width; 5415 } 5416 5417 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5418 // smaller type with a truncation. We collect the values that will be demoted 5419 // in ToDemote and additional roots that require investigating in Roots. 5420 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5421 SmallVectorImpl<Value *> &ToDemote, 5422 SmallVectorImpl<Value *> &Roots) { 5423 // We can always demote constants. 5424 if (isa<Constant>(V)) { 5425 ToDemote.push_back(V); 5426 return true; 5427 } 5428 5429 // If the value is not an instruction in the expression with only one use, it 5430 // cannot be demoted. 5431 auto *I = dyn_cast<Instruction>(V); 5432 if (!I || !I->hasOneUse() || !Expr.count(I)) 5433 return false; 5434 5435 switch (I->getOpcode()) { 5436 5437 // We can always demote truncations and extensions. Since truncations can 5438 // seed additional demotion, we save the truncated value. 5439 case Instruction::Trunc: 5440 Roots.push_back(I->getOperand(0)); 5441 break; 5442 case Instruction::ZExt: 5443 case Instruction::SExt: 5444 break; 5445 5446 // We can demote certain binary operations if we can demote both of their 5447 // operands. 5448 case Instruction::Add: 5449 case Instruction::Sub: 5450 case Instruction::Mul: 5451 case Instruction::And: 5452 case Instruction::Or: 5453 case Instruction::Xor: 5454 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5455 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5456 return false; 5457 break; 5458 5459 // We can demote selects if we can demote their true and false values. 5460 case Instruction::Select: { 5461 SelectInst *SI = cast<SelectInst>(I); 5462 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5463 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5464 return false; 5465 break; 5466 } 5467 5468 // We can demote phis if we can demote all their incoming operands. Note that 5469 // we don't need to worry about cycles since we ensure single use above. 5470 case Instruction::PHI: { 5471 PHINode *PN = cast<PHINode>(I); 5472 for (Value *IncValue : PN->incoming_values()) 5473 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5474 return false; 5475 break; 5476 } 5477 5478 // Otherwise, conservatively give up. 5479 default: 5480 return false; 5481 } 5482 5483 // Record the value that we can demote. 5484 ToDemote.push_back(V); 5485 return true; 5486 } 5487 5488 void BoUpSLP::computeMinimumValueSizes() { 5489 // If there are no external uses, the expression tree must be rooted by a 5490 // store. We can't demote in-memory values, so there is nothing to do here. 5491 if (ExternalUses.empty()) 5492 return; 5493 5494 // We only attempt to truncate integer expressions. 5495 auto &TreeRoot = VectorizableTree[0]->Scalars; 5496 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5497 if (!TreeRootIT) 5498 return; 5499 5500 // If the expression is not rooted by a store, these roots should have 5501 // external uses. We will rely on InstCombine to rewrite the expression in 5502 // the narrower type. However, InstCombine only rewrites single-use values. 5503 // This means that if a tree entry other than a root is used externally, it 5504 // must have multiple uses and InstCombine will not rewrite it. The code 5505 // below ensures that only the roots are used externally. 5506 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5507 for (auto &EU : ExternalUses) 5508 if (!Expr.erase(EU.Scalar)) 5509 return; 5510 if (!Expr.empty()) 5511 return; 5512 5513 // Collect the scalar values of the vectorizable expression. We will use this 5514 // context to determine which values can be demoted. If we see a truncation, 5515 // we mark it as seeding another demotion. 5516 for (auto &EntryPtr : VectorizableTree) 5517 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5518 5519 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5520 // have a single external user that is not in the vectorizable tree. 5521 for (auto *Root : TreeRoot) 5522 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5523 return; 5524 5525 // Conservatively determine if we can actually truncate the roots of the 5526 // expression. Collect the values that can be demoted in ToDemote and 5527 // additional roots that require investigating in Roots. 5528 SmallVector<Value *, 32> ToDemote; 5529 SmallVector<Value *, 4> Roots; 5530 for (auto *Root : TreeRoot) 5531 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5532 return; 5533 5534 // The maximum bit width required to represent all the values that can be 5535 // demoted without loss of precision. It would be safe to truncate the roots 5536 // of the expression to this width. 5537 auto MaxBitWidth = 8u; 5538 5539 // We first check if all the bits of the roots are demanded. If they're not, 5540 // we can truncate the roots to this narrower type. 5541 for (auto *Root : TreeRoot) { 5542 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5543 MaxBitWidth = std::max<unsigned>( 5544 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5545 } 5546 5547 // True if the roots can be zero-extended back to their original type, rather 5548 // than sign-extended. We know that if the leading bits are not demanded, we 5549 // can safely zero-extend. So we initialize IsKnownPositive to True. 5550 bool IsKnownPositive = true; 5551 5552 // If all the bits of the roots are demanded, we can try a little harder to 5553 // compute a narrower type. This can happen, for example, if the roots are 5554 // getelementptr indices. InstCombine promotes these indices to the pointer 5555 // width. Thus, all their bits are technically demanded even though the 5556 // address computation might be vectorized in a smaller type. 5557 // 5558 // We start by looking at each entry that can be demoted. We compute the 5559 // maximum bit width required to store the scalar by using ValueTracking to 5560 // compute the number of high-order bits we can truncate. 5561 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5562 llvm::all_of(TreeRoot, [](Value *R) { 5563 assert(R->hasOneUse() && "Root should have only one use!"); 5564 return isa<GetElementPtrInst>(R->user_back()); 5565 })) { 5566 MaxBitWidth = 8u; 5567 5568 // Determine if the sign bit of all the roots is known to be zero. If not, 5569 // IsKnownPositive is set to False. 5570 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5571 KnownBits Known = computeKnownBits(R, *DL); 5572 return Known.isNonNegative(); 5573 }); 5574 5575 // Determine the maximum number of bits required to store the scalar 5576 // values. 5577 for (auto *Scalar : ToDemote) { 5578 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5579 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5580 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5581 } 5582 5583 // If we can't prove that the sign bit is zero, we must add one to the 5584 // maximum bit width to account for the unknown sign bit. This preserves 5585 // the existing sign bit so we can safely sign-extend the root back to the 5586 // original type. Otherwise, if we know the sign bit is zero, we will 5587 // zero-extend the root instead. 5588 // 5589 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5590 // one to the maximum bit width will yield a larger-than-necessary 5591 // type. In general, we need to add an extra bit only if we can't 5592 // prove that the upper bit of the original type is equal to the 5593 // upper bit of the proposed smaller type. If these two bits are the 5594 // same (either zero or one) we know that sign-extending from the 5595 // smaller type will result in the same value. Here, since we can't 5596 // yet prove this, we are just making the proposed smaller type 5597 // larger to ensure correctness. 5598 if (!IsKnownPositive) 5599 ++MaxBitWidth; 5600 } 5601 5602 // Round MaxBitWidth up to the next power-of-two. 5603 if (!isPowerOf2_64(MaxBitWidth)) 5604 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5605 5606 // If the maximum bit width we compute is less than the with of the roots' 5607 // type, we can proceed with the narrowing. Otherwise, do nothing. 5608 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5609 return; 5610 5611 // If we can truncate the root, we must collect additional values that might 5612 // be demoted as a result. That is, those seeded by truncations we will 5613 // modify. 5614 while (!Roots.empty()) 5615 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5616 5617 // Finally, map the values we can demote to the maximum bit with we computed. 5618 for (auto *Scalar : ToDemote) 5619 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5620 } 5621 5622 namespace { 5623 5624 /// The SLPVectorizer Pass. 5625 struct SLPVectorizer : public FunctionPass { 5626 SLPVectorizerPass Impl; 5627 5628 /// Pass identification, replacement for typeid 5629 static char ID; 5630 5631 explicit SLPVectorizer() : FunctionPass(ID) { 5632 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5633 } 5634 5635 bool doInitialization(Module &M) override { 5636 return false; 5637 } 5638 5639 bool runOnFunction(Function &F) override { 5640 if (skipFunction(F)) 5641 return false; 5642 5643 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5644 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5645 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5646 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5647 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5648 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5649 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5650 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5651 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5652 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5653 5654 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5655 } 5656 5657 void getAnalysisUsage(AnalysisUsage &AU) const override { 5658 FunctionPass::getAnalysisUsage(AU); 5659 AU.addRequired<AssumptionCacheTracker>(); 5660 AU.addRequired<ScalarEvolutionWrapperPass>(); 5661 AU.addRequired<AAResultsWrapperPass>(); 5662 AU.addRequired<TargetTransformInfoWrapperPass>(); 5663 AU.addRequired<LoopInfoWrapperPass>(); 5664 AU.addRequired<DominatorTreeWrapperPass>(); 5665 AU.addRequired<DemandedBitsWrapperPass>(); 5666 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5667 AU.addRequired<InjectTLIMappingsLegacy>(); 5668 AU.addPreserved<LoopInfoWrapperPass>(); 5669 AU.addPreserved<DominatorTreeWrapperPass>(); 5670 AU.addPreserved<AAResultsWrapperPass>(); 5671 AU.addPreserved<GlobalsAAWrapperPass>(); 5672 AU.setPreservesCFG(); 5673 } 5674 }; 5675 5676 } // end anonymous namespace 5677 5678 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5679 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5680 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5681 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5682 auto *AA = &AM.getResult<AAManager>(F); 5683 auto *LI = &AM.getResult<LoopAnalysis>(F); 5684 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5685 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5686 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5687 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5688 5689 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5690 if (!Changed) 5691 return PreservedAnalyses::all(); 5692 5693 PreservedAnalyses PA; 5694 PA.preserveSet<CFGAnalyses>(); 5695 PA.preserve<AAManager>(); 5696 PA.preserve<GlobalsAA>(); 5697 return PA; 5698 } 5699 5700 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5701 TargetTransformInfo *TTI_, 5702 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5703 LoopInfo *LI_, DominatorTree *DT_, 5704 AssumptionCache *AC_, DemandedBits *DB_, 5705 OptimizationRemarkEmitter *ORE_) { 5706 if (!RunSLPVectorization) 5707 return false; 5708 SE = SE_; 5709 TTI = TTI_; 5710 TLI = TLI_; 5711 AA = AA_; 5712 LI = LI_; 5713 DT = DT_; 5714 AC = AC_; 5715 DB = DB_; 5716 DL = &F.getParent()->getDataLayout(); 5717 5718 Stores.clear(); 5719 GEPs.clear(); 5720 bool Changed = false; 5721 5722 // If the target claims to have no vector registers don't attempt 5723 // vectorization. 5724 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5725 return false; 5726 5727 // Don't vectorize when the attribute NoImplicitFloat is used. 5728 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5729 return false; 5730 5731 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5732 5733 // Use the bottom up slp vectorizer to construct chains that start with 5734 // store instructions. 5735 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5736 5737 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5738 // delete instructions. 5739 5740 // Scan the blocks in the function in post order. 5741 for (auto BB : post_order(&F.getEntryBlock())) { 5742 collectSeedInstructions(BB); 5743 5744 // Vectorize trees that end at stores. 5745 if (!Stores.empty()) { 5746 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5747 << " underlying objects.\n"); 5748 Changed |= vectorizeStoreChains(R); 5749 } 5750 5751 // Vectorize trees that end at reductions. 5752 Changed |= vectorizeChainsInBlock(BB, R); 5753 5754 // Vectorize the index computations of getelementptr instructions. This 5755 // is primarily intended to catch gather-like idioms ending at 5756 // non-consecutive loads. 5757 if (!GEPs.empty()) { 5758 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5759 << " underlying objects.\n"); 5760 Changed |= vectorizeGEPIndices(BB, R); 5761 } 5762 } 5763 5764 if (Changed) { 5765 R.optimizeGatherSequence(); 5766 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5767 } 5768 return Changed; 5769 } 5770 5771 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5772 unsigned Idx) { 5773 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5774 << "\n"); 5775 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5776 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5777 unsigned VF = Chain.size(); 5778 5779 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5780 return false; 5781 5782 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5783 << "\n"); 5784 5785 R.buildTree(Chain); 5786 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5787 // TODO: Handle orders of size less than number of elements in the vector. 5788 if (Order && Order->size() == Chain.size()) { 5789 // TODO: reorder tree nodes without tree rebuilding. 5790 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5791 llvm::transform(*Order, ReorderedOps.begin(), 5792 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5793 R.buildTree(ReorderedOps); 5794 } 5795 if (R.isTreeTinyAndNotFullyVectorizable()) 5796 return false; 5797 if (R.isLoadCombineCandidate()) 5798 return false; 5799 5800 R.computeMinimumValueSizes(); 5801 5802 int Cost = R.getTreeCost(); 5803 5804 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5805 if (Cost < -SLPCostThreshold) { 5806 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5807 5808 using namespace ore; 5809 5810 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5811 cast<StoreInst>(Chain[0])) 5812 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5813 << " and with tree size " 5814 << NV("TreeSize", R.getTreeSize())); 5815 5816 R.vectorizeTree(); 5817 return true; 5818 } 5819 5820 return false; 5821 } 5822 5823 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5824 BoUpSLP &R) { 5825 // We may run into multiple chains that merge into a single chain. We mark the 5826 // stores that we vectorized so that we don't visit the same store twice. 5827 BoUpSLP::ValueSet VectorizedStores; 5828 bool Changed = false; 5829 5830 int E = Stores.size(); 5831 SmallBitVector Tails(E, false); 5832 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5833 int MaxIter = MaxStoreLookup.getValue(); 5834 int IterCnt; 5835 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5836 &ConsecutiveChain](int K, int Idx) { 5837 if (IterCnt >= MaxIter) 5838 return true; 5839 ++IterCnt; 5840 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5841 return false; 5842 5843 Tails.set(Idx); 5844 ConsecutiveChain[K] = Idx; 5845 return true; 5846 }; 5847 // Do a quadratic search on all of the given stores in reverse order and find 5848 // all of the pairs of stores that follow each other. 5849 for (int Idx = E - 1; Idx >= 0; --Idx) { 5850 // If a store has multiple consecutive store candidates, search according 5851 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5852 // This is because usually pairing with immediate succeeding or preceding 5853 // candidate create the best chance to find slp vectorization opportunity. 5854 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5855 IterCnt = 0; 5856 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5857 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5858 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5859 break; 5860 } 5861 5862 // For stores that start but don't end a link in the chain: 5863 for (int Cnt = E; Cnt > 0; --Cnt) { 5864 int I = Cnt - 1; 5865 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5866 continue; 5867 // We found a store instr that starts a chain. Now follow the chain and try 5868 // to vectorize it. 5869 BoUpSLP::ValueList Operands; 5870 // Collect the chain into a list. 5871 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5872 Operands.push_back(Stores[I]); 5873 // Move to the next value in the chain. 5874 I = ConsecutiveChain[I]; 5875 } 5876 5877 // If a vector register can't hold 1 element, we are done. 5878 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5879 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5880 if (MaxVecRegSize % EltSize != 0) 5881 continue; 5882 5883 unsigned MaxElts = MaxVecRegSize / EltSize; 5884 // FIXME: Is division-by-2 the correct step? Should we assert that the 5885 // register size is a power-of-2? 5886 unsigned StartIdx = 0; 5887 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5888 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5889 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5890 if (!VectorizedStores.count(Slice.front()) && 5891 !VectorizedStores.count(Slice.back()) && 5892 vectorizeStoreChain(Slice, R, Cnt)) { 5893 // Mark the vectorized stores so that we don't vectorize them again. 5894 VectorizedStores.insert(Slice.begin(), Slice.end()); 5895 Changed = true; 5896 // If we vectorized initial block, no need to try to vectorize it 5897 // again. 5898 if (Cnt == StartIdx) 5899 StartIdx += Size; 5900 Cnt += Size; 5901 continue; 5902 } 5903 ++Cnt; 5904 } 5905 // Check if the whole array was vectorized already - exit. 5906 if (StartIdx >= Operands.size()) 5907 break; 5908 } 5909 } 5910 5911 return Changed; 5912 } 5913 5914 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5915 // Initialize the collections. We will make a single pass over the block. 5916 Stores.clear(); 5917 GEPs.clear(); 5918 5919 // Visit the store and getelementptr instructions in BB and organize them in 5920 // Stores and GEPs according to the underlying objects of their pointer 5921 // operands. 5922 for (Instruction &I : *BB) { 5923 // Ignore store instructions that are volatile or have a pointer operand 5924 // that doesn't point to a scalar type. 5925 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5926 if (!SI->isSimple()) 5927 continue; 5928 if (!isValidElementType(SI->getValueOperand()->getType())) 5929 continue; 5930 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 5931 } 5932 5933 // Ignore getelementptr instructions that have more than one index, a 5934 // constant index, or a pointer operand that doesn't point to a scalar 5935 // type. 5936 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5937 auto Idx = GEP->idx_begin()->get(); 5938 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5939 continue; 5940 if (!isValidElementType(Idx->getType())) 5941 continue; 5942 if (GEP->getType()->isVectorTy()) 5943 continue; 5944 GEPs[GEP->getPointerOperand()].push_back(GEP); 5945 } 5946 } 5947 } 5948 5949 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5950 if (!A || !B) 5951 return false; 5952 Value *VL[] = {A, B}; 5953 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 5954 } 5955 5956 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5957 bool AllowReorder, 5958 ArrayRef<Value *> InsertUses) { 5959 if (VL.size() < 2) 5960 return false; 5961 5962 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5963 << VL.size() << ".\n"); 5964 5965 // Check that all of the parts are instructions of the same type, 5966 // we permit an alternate opcode via InstructionsState. 5967 InstructionsState S = getSameOpcode(VL); 5968 if (!S.getOpcode()) 5969 return false; 5970 5971 Instruction *I0 = cast<Instruction>(S.OpValue); 5972 // Make sure invalid types (including vector type) are rejected before 5973 // determining vectorization factor for scalar instructions. 5974 for (Value *V : VL) { 5975 Type *Ty = V->getType(); 5976 if (!isValidElementType(Ty)) { 5977 // NOTE: the following will give user internal llvm type name, which may 5978 // not be useful. 5979 R.getORE()->emit([&]() { 5980 std::string type_str; 5981 llvm::raw_string_ostream rso(type_str); 5982 Ty->print(rso); 5983 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5984 << "Cannot SLP vectorize list: type " 5985 << rso.str() + " is unsupported by vectorizer"; 5986 }); 5987 return false; 5988 } 5989 } 5990 5991 unsigned Sz = R.getVectorElementSize(I0); 5992 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5993 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5994 if (MaxVF < 2) { 5995 R.getORE()->emit([&]() { 5996 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5997 << "Cannot SLP vectorize list: vectorization factor " 5998 << "less than 2 is not supported"; 5999 }); 6000 return false; 6001 } 6002 6003 bool Changed = false; 6004 bool CandidateFound = false; 6005 int MinCost = SLPCostThreshold; 6006 6007 bool CompensateUseCost = 6008 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6009 return V && isa<InsertElementInst>(V); 6010 }); 6011 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6012 "Each scalar expected to have an associated InsertElement user."); 6013 6014 unsigned NextInst = 0, MaxInst = VL.size(); 6015 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6016 // No actual vectorization should happen, if number of parts is the same as 6017 // provided vectorization factor (i.e. the scalar type is used for vector 6018 // code during codegen). 6019 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6020 if (TTI->getNumberOfParts(VecTy) == VF) 6021 continue; 6022 for (unsigned I = NextInst; I < MaxInst; ++I) { 6023 unsigned OpsWidth = 0; 6024 6025 if (I + VF > MaxInst) 6026 OpsWidth = MaxInst - I; 6027 else 6028 OpsWidth = VF; 6029 6030 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6031 break; 6032 6033 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6034 // Check that a previous iteration of this loop did not delete the Value. 6035 if (llvm::any_of(Ops, [&R](Value *V) { 6036 auto *I = dyn_cast<Instruction>(V); 6037 return I && R.isDeleted(I); 6038 })) 6039 continue; 6040 6041 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6042 << "\n"); 6043 6044 R.buildTree(Ops); 6045 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6046 // TODO: check if we can allow reordering for more cases. 6047 if (AllowReorder && Order) { 6048 // TODO: reorder tree nodes without tree rebuilding. 6049 // Conceptually, there is nothing actually preventing us from trying to 6050 // reorder a larger list. In fact, we do exactly this when vectorizing 6051 // reductions. However, at this point, we only expect to get here when 6052 // there are exactly two operations. 6053 assert(Ops.size() == 2); 6054 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6055 R.buildTree(ReorderedOps, None); 6056 } 6057 if (R.isTreeTinyAndNotFullyVectorizable()) 6058 continue; 6059 6060 R.computeMinimumValueSizes(); 6061 int Cost = R.getTreeCost(); 6062 CandidateFound = true; 6063 if (CompensateUseCost) { 6064 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6065 // rather than sum of single inserts as the latter may overestimate 6066 // cost. This work should imply improving cost estimation for extracts 6067 // that added in for external (for vectorization tree) users,i.e. that 6068 // part should also switch to same interface. 6069 // For example, the following case is projected code after SLP: 6070 // %4 = extractelement <4 x i64> %3, i32 0 6071 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6072 // %5 = extractelement <4 x i64> %3, i32 1 6073 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6074 // %6 = extractelement <4 x i64> %3, i32 2 6075 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6076 // %7 = extractelement <4 x i64> %3, i32 3 6077 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6078 // 6079 // Extracts here added by SLP in order to feed users (the inserts) of 6080 // original scalars and contribute to "ExtractCost" at cost evaluation. 6081 // The inserts in turn form sequence to build an aggregate that 6082 // detected by findBuildAggregate routine. 6083 // SLP makes an assumption that such sequence will be optimized away 6084 // later (instcombine) so it tries to compensate ExctractCost with 6085 // cost of insert sequence. 6086 // Current per element cost calculation approach is not quite accurate 6087 // and tends to create bias toward favoring vectorization. 6088 // Switching to the TTI interface might help a bit. 6089 // Alternative solution could be pattern-match to detect a no-op or 6090 // shuffle. 6091 unsigned UserCost = 0; 6092 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6093 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6094 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6095 UserCost += TTI->getVectorInstrCost( 6096 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6097 } 6098 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6099 << ".\n"); 6100 Cost -= UserCost; 6101 } 6102 6103 MinCost = std::min(MinCost, Cost); 6104 6105 if (Cost < -SLPCostThreshold) { 6106 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6107 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6108 cast<Instruction>(Ops[0])) 6109 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6110 << " and with tree size " 6111 << ore::NV("TreeSize", R.getTreeSize())); 6112 6113 R.vectorizeTree(); 6114 // Move to the next bundle. 6115 I += VF - 1; 6116 NextInst = I + 1; 6117 Changed = true; 6118 } 6119 } 6120 } 6121 6122 if (!Changed && CandidateFound) { 6123 R.getORE()->emit([&]() { 6124 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6125 << "List vectorization was possible but not beneficial with cost " 6126 << ore::NV("Cost", MinCost) << " >= " 6127 << ore::NV("Treshold", -SLPCostThreshold); 6128 }); 6129 } else if (!Changed) { 6130 R.getORE()->emit([&]() { 6131 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6132 << "Cannot SLP vectorize list: vectorization was impossible" 6133 << " with available vectorization factors"; 6134 }); 6135 } 6136 return Changed; 6137 } 6138 6139 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6140 if (!I) 6141 return false; 6142 6143 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6144 return false; 6145 6146 Value *P = I->getParent(); 6147 6148 // Vectorize in current basic block only. 6149 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6150 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6151 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6152 return false; 6153 6154 // Try to vectorize V. 6155 if (tryToVectorizePair(Op0, Op1, R)) 6156 return true; 6157 6158 auto *A = dyn_cast<BinaryOperator>(Op0); 6159 auto *B = dyn_cast<BinaryOperator>(Op1); 6160 // Try to skip B. 6161 if (B && B->hasOneUse()) { 6162 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6163 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6164 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6165 return true; 6166 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6167 return true; 6168 } 6169 6170 // Try to skip A. 6171 if (A && A->hasOneUse()) { 6172 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6173 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6174 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6175 return true; 6176 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6177 return true; 6178 } 6179 return false; 6180 } 6181 6182 /// Generate a shuffle mask to be used in a reduction tree. 6183 /// 6184 /// \param VecLen The length of the vector to be reduced. 6185 /// \param NumEltsToRdx The number of elements that should be reduced in the 6186 /// vector. 6187 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6188 /// reduction. A pairwise reduction will generate a mask of 6189 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6190 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6191 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6192 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6193 unsigned NumEltsToRdx, 6194 bool IsPairwise, bool IsLeft) { 6195 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6196 6197 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6198 6199 if (IsPairwise) 6200 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6201 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6202 ShuffleMask[i] = 2 * i + !IsLeft; 6203 else 6204 // Move the upper half of the vector to the lower half. 6205 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6206 ShuffleMask[i] = NumEltsToRdx + i; 6207 6208 return ShuffleMask; 6209 } 6210 6211 namespace { 6212 6213 /// Model horizontal reductions. 6214 /// 6215 /// A horizontal reduction is a tree of reduction operations (currently add and 6216 /// fadd) that has operations that can be put into a vector as its leaf. 6217 /// For example, this tree: 6218 /// 6219 /// mul mul mul mul 6220 /// \ / \ / 6221 /// + + 6222 /// \ / 6223 /// + 6224 /// This tree has "mul" as its reduced values and "+" as its reduction 6225 /// operations. A reduction might be feeding into a store or a binary operation 6226 /// feeding a phi. 6227 /// ... 6228 /// \ / 6229 /// + 6230 /// | 6231 /// phi += 6232 /// 6233 /// Or: 6234 /// ... 6235 /// \ / 6236 /// + 6237 /// | 6238 /// *p = 6239 /// 6240 class HorizontalReduction { 6241 using ReductionOpsType = SmallVector<Value *, 16>; 6242 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6243 ReductionOpsListType ReductionOps; 6244 SmallVector<Value *, 32> ReducedVals; 6245 // Use map vector to make stable output. 6246 MapVector<Instruction *, Value *> ExtraArgs; 6247 6248 /// Kind of the reduction data. 6249 enum ReductionKind { 6250 RK_None, /// Not a reduction. 6251 RK_Arithmetic, /// Binary reduction data. 6252 RK_Min, /// Minimum reduction data. 6253 RK_UMin, /// Unsigned minimum reduction data. 6254 RK_Max, /// Maximum reduction data. 6255 RK_UMax, /// Unsigned maximum reduction data. 6256 }; 6257 6258 /// Contains info about operation, like its opcode, left and right operands. 6259 class OperationData { 6260 /// Opcode of the instruction. 6261 unsigned Opcode = 0; 6262 6263 /// Left operand of the reduction operation. 6264 Value *LHS = nullptr; 6265 6266 /// Right operand of the reduction operation. 6267 Value *RHS = nullptr; 6268 6269 /// Kind of the reduction operation. 6270 ReductionKind Kind = RK_None; 6271 6272 /// True if float point min/max reduction has no NaNs. 6273 bool NoNaN = false; 6274 6275 /// Checks if the reduction operation can be vectorized. 6276 bool isVectorizable() const { 6277 return LHS && RHS && 6278 // We currently only support add/mul/logical && min/max reductions. 6279 ((Kind == RK_Arithmetic && 6280 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6281 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6282 Opcode == Instruction::And || Opcode == Instruction::Or || 6283 Opcode == Instruction::Xor)) || 6284 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6285 (Kind == RK_Min || Kind == RK_Max)) || 6286 (Opcode == Instruction::ICmp && 6287 (Kind == RK_UMin || Kind == RK_UMax))); 6288 } 6289 6290 /// Creates reduction operation with the current opcode. 6291 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6292 assert(isVectorizable() && 6293 "Expected add|fadd or min/max reduction operation."); 6294 Value *Cmp = nullptr; 6295 switch (Kind) { 6296 case RK_Arithmetic: 6297 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6298 Name); 6299 case RK_Min: 6300 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6301 : Builder.CreateFCmpOLT(LHS, RHS); 6302 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6303 case RK_Max: 6304 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6305 : Builder.CreateFCmpOGT(LHS, RHS); 6306 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6307 case RK_UMin: 6308 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6309 Cmp = Builder.CreateICmpULT(LHS, RHS); 6310 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6311 case RK_UMax: 6312 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6313 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6314 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6315 case RK_None: 6316 break; 6317 } 6318 llvm_unreachable("Unknown reduction operation."); 6319 } 6320 6321 public: 6322 explicit OperationData() = default; 6323 6324 /// Construction for reduced values. They are identified by opcode only and 6325 /// don't have associated LHS/RHS values. 6326 explicit OperationData(Value *V) { 6327 if (auto *I = dyn_cast<Instruction>(V)) 6328 Opcode = I->getOpcode(); 6329 } 6330 6331 /// Constructor for reduction operations with opcode and its left and 6332 /// right operands. 6333 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6334 bool NoNaN = false) 6335 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6336 assert(Kind != RK_None && "One of the reduction operations is expected."); 6337 } 6338 6339 explicit operator bool() const { return Opcode; } 6340 6341 /// Return true if this operation is any kind of minimum or maximum. 6342 bool isMinMax() const { 6343 switch (Kind) { 6344 case RK_Arithmetic: 6345 return false; 6346 case RK_Min: 6347 case RK_Max: 6348 case RK_UMin: 6349 case RK_UMax: 6350 return true; 6351 case RK_None: 6352 break; 6353 } 6354 llvm_unreachable("Reduction kind is not set"); 6355 } 6356 6357 /// Get the index of the first operand. 6358 unsigned getFirstOperandIndex() const { 6359 assert(!!*this && "The opcode is not set."); 6360 // We allow calling this before 'Kind' is set, so handle that specially. 6361 if (Kind == RK_None) 6362 return 0; 6363 return isMinMax() ? 1 : 0; 6364 } 6365 6366 /// Total number of operands in the reduction operation. 6367 unsigned getNumberOfOperands() const { 6368 assert(Kind != RK_None && !!*this && LHS && RHS && 6369 "Expected reduction operation."); 6370 return isMinMax() ? 3 : 2; 6371 } 6372 6373 /// Checks if the operation has the same parent as \p P. 6374 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6375 assert(Kind != RK_None && !!*this && LHS && RHS && 6376 "Expected reduction operation."); 6377 if (!IsRedOp) 6378 return I->getParent() == P; 6379 if (isMinMax()) { 6380 // SelectInst must be used twice while the condition op must have single 6381 // use only. 6382 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6383 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6384 } 6385 // Arithmetic reduction operation must be used once only. 6386 return I->getParent() == P; 6387 } 6388 6389 /// Expected number of uses for reduction operations/reduced values. 6390 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6391 assert(Kind != RK_None && !!*this && LHS && RHS && 6392 "Expected reduction operation."); 6393 if (isMinMax()) 6394 return I->hasNUses(2) && 6395 (!IsReductionOp || 6396 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6397 return I->hasOneUse(); 6398 } 6399 6400 /// Initializes the list of reduction operations. 6401 void initReductionOps(ReductionOpsListType &ReductionOps) { 6402 assert(Kind != RK_None && !!*this && LHS && RHS && 6403 "Expected reduction operation."); 6404 if (isMinMax()) 6405 ReductionOps.assign(2, ReductionOpsType()); 6406 else 6407 ReductionOps.assign(1, ReductionOpsType()); 6408 } 6409 6410 /// Add all reduction operations for the reduction instruction \p I. 6411 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6412 assert(Kind != RK_None && !!*this && LHS && RHS && 6413 "Expected reduction operation."); 6414 if (isMinMax()) { 6415 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6416 ReductionOps[1].emplace_back(I); 6417 } else { 6418 ReductionOps[0].emplace_back(I); 6419 } 6420 } 6421 6422 /// Checks if instruction is associative and can be vectorized. 6423 bool isAssociative(Instruction *I) const { 6424 assert(Kind != RK_None && *this && LHS && RHS && 6425 "Expected reduction operation."); 6426 switch (Kind) { 6427 case RK_Arithmetic: 6428 return I->isAssociative(); 6429 case RK_Min: 6430 case RK_Max: 6431 return Opcode == Instruction::ICmp || 6432 cast<Instruction>(I->getOperand(0))->isFast(); 6433 case RK_UMin: 6434 case RK_UMax: 6435 assert(Opcode == Instruction::ICmp && 6436 "Only integer compare operation is expected."); 6437 return true; 6438 case RK_None: 6439 break; 6440 } 6441 llvm_unreachable("Reduction kind is not set"); 6442 } 6443 6444 /// Checks if the reduction operation can be vectorized. 6445 bool isVectorizable(Instruction *I) const { 6446 return isVectorizable() && isAssociative(I); 6447 } 6448 6449 /// Checks if two operation data are both a reduction op or both a reduced 6450 /// value. 6451 bool operator==(const OperationData &OD) const { 6452 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6453 "One of the comparing operations is incorrect."); 6454 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6455 } 6456 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6457 void clear() { 6458 Opcode = 0; 6459 LHS = nullptr; 6460 RHS = nullptr; 6461 Kind = RK_None; 6462 NoNaN = false; 6463 } 6464 6465 /// Get the opcode of the reduction operation. 6466 unsigned getOpcode() const { 6467 assert(isVectorizable() && "Expected vectorizable operation."); 6468 return Opcode; 6469 } 6470 6471 /// Get kind of reduction data. 6472 ReductionKind getKind() const { return Kind; } 6473 Value *getLHS() const { return LHS; } 6474 Value *getRHS() const { return RHS; } 6475 Type *getConditionType() const { 6476 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6477 } 6478 6479 /// Creates reduction operation with the current opcode with the IR flags 6480 /// from \p ReductionOps. 6481 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6482 const ReductionOpsListType &ReductionOps) const { 6483 assert(isVectorizable() && 6484 "Expected add|fadd or min/max reduction operation."); 6485 auto *Op = createOp(Builder, Name); 6486 switch (Kind) { 6487 case RK_Arithmetic: 6488 propagateIRFlags(Op, ReductionOps[0]); 6489 return Op; 6490 case RK_Min: 6491 case RK_Max: 6492 case RK_UMin: 6493 case RK_UMax: 6494 if (auto *SI = dyn_cast<SelectInst>(Op)) 6495 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6496 propagateIRFlags(Op, ReductionOps[1]); 6497 return Op; 6498 case RK_None: 6499 break; 6500 } 6501 llvm_unreachable("Unknown reduction operation."); 6502 } 6503 /// Creates reduction operation with the current opcode with the IR flags 6504 /// from \p I. 6505 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6506 Instruction *I) const { 6507 assert(isVectorizable() && 6508 "Expected add|fadd or min/max reduction operation."); 6509 auto *Op = createOp(Builder, Name); 6510 switch (Kind) { 6511 case RK_Arithmetic: 6512 propagateIRFlags(Op, I); 6513 return Op; 6514 case RK_Min: 6515 case RK_Max: 6516 case RK_UMin: 6517 case RK_UMax: 6518 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6519 propagateIRFlags(SI->getCondition(), 6520 cast<SelectInst>(I)->getCondition()); 6521 } 6522 propagateIRFlags(Op, I); 6523 return Op; 6524 case RK_None: 6525 break; 6526 } 6527 llvm_unreachable("Unknown reduction operation."); 6528 } 6529 6530 TargetTransformInfo::ReductionFlags getFlags() const { 6531 TargetTransformInfo::ReductionFlags Flags; 6532 Flags.NoNaN = NoNaN; 6533 switch (Kind) { 6534 case RK_Arithmetic: 6535 break; 6536 case RK_Min: 6537 Flags.IsSigned = Opcode == Instruction::ICmp; 6538 Flags.IsMaxOp = false; 6539 break; 6540 case RK_Max: 6541 Flags.IsSigned = Opcode == Instruction::ICmp; 6542 Flags.IsMaxOp = true; 6543 break; 6544 case RK_UMin: 6545 Flags.IsSigned = false; 6546 Flags.IsMaxOp = false; 6547 break; 6548 case RK_UMax: 6549 Flags.IsSigned = false; 6550 Flags.IsMaxOp = true; 6551 break; 6552 case RK_None: 6553 llvm_unreachable("Reduction kind is not set"); 6554 } 6555 return Flags; 6556 } 6557 }; 6558 6559 WeakTrackingVH ReductionRoot; 6560 6561 /// The operation data of the reduction operation. 6562 OperationData ReductionData; 6563 6564 /// The operation data of the values we perform a reduction on. 6565 OperationData ReducedValueData; 6566 6567 /// Should we model this reduction as a pairwise reduction tree or a tree that 6568 /// splits the vector in halves and adds those halves. 6569 bool IsPairwiseReduction = false; 6570 6571 /// Checks if the ParentStackElem.first should be marked as a reduction 6572 /// operation with an extra argument or as extra argument itself. 6573 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6574 Value *ExtraArg) { 6575 if (ExtraArgs.count(ParentStackElem.first)) { 6576 ExtraArgs[ParentStackElem.first] = nullptr; 6577 // We ran into something like: 6578 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6579 // The whole ParentStackElem.first should be considered as an extra value 6580 // in this case. 6581 // Do not perform analysis of remaining operands of ParentStackElem.first 6582 // instruction, this whole instruction is an extra argument. 6583 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6584 } else { 6585 // We ran into something like: 6586 // ParentStackElem.first += ... + ExtraArg + ... 6587 ExtraArgs[ParentStackElem.first] = ExtraArg; 6588 } 6589 } 6590 6591 static OperationData getOperationData(Value *V) { 6592 if (!V) 6593 return OperationData(); 6594 6595 Value *LHS; 6596 Value *RHS; 6597 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6598 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6599 RK_Arithmetic); 6600 } 6601 if (auto *Select = dyn_cast<SelectInst>(V)) { 6602 // Look for a min/max pattern. 6603 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6604 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6605 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6606 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6607 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6608 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6609 return OperationData( 6610 Instruction::FCmp, LHS, RHS, RK_Min, 6611 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6612 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6613 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6614 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6615 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6616 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6617 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6618 return OperationData( 6619 Instruction::FCmp, LHS, RHS, RK_Max, 6620 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6621 } else { 6622 // Try harder: look for min/max pattern based on instructions producing 6623 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6624 // During the intermediate stages of SLP, it's very common to have 6625 // pattern like this (since optimizeGatherSequence is run only once 6626 // at the end): 6627 // %1 = extractelement <2 x i32> %a, i32 0 6628 // %2 = extractelement <2 x i32> %a, i32 1 6629 // %cond = icmp sgt i32 %1, %2 6630 // %3 = extractelement <2 x i32> %a, i32 0 6631 // %4 = extractelement <2 x i32> %a, i32 1 6632 // %select = select i1 %cond, i32 %3, i32 %4 6633 CmpInst::Predicate Pred; 6634 Instruction *L1; 6635 Instruction *L2; 6636 6637 LHS = Select->getTrueValue(); 6638 RHS = Select->getFalseValue(); 6639 Value *Cond = Select->getCondition(); 6640 6641 // TODO: Support inverse predicates. 6642 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6643 if (!isa<ExtractElementInst>(RHS) || 6644 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6645 return OperationData(V); 6646 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6647 if (!isa<ExtractElementInst>(LHS) || 6648 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6649 return OperationData(V); 6650 } else { 6651 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6652 return OperationData(V); 6653 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6654 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6655 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6656 return OperationData(V); 6657 } 6658 switch (Pred) { 6659 default: 6660 return OperationData(V); 6661 6662 case CmpInst::ICMP_ULT: 6663 case CmpInst::ICMP_ULE: 6664 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6665 6666 case CmpInst::ICMP_SLT: 6667 case CmpInst::ICMP_SLE: 6668 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6669 6670 case CmpInst::FCMP_OLT: 6671 case CmpInst::FCMP_OLE: 6672 case CmpInst::FCMP_ULT: 6673 case CmpInst::FCMP_ULE: 6674 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6675 cast<Instruction>(Cond)->hasNoNaNs()); 6676 6677 case CmpInst::ICMP_UGT: 6678 case CmpInst::ICMP_UGE: 6679 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6680 6681 case CmpInst::ICMP_SGT: 6682 case CmpInst::ICMP_SGE: 6683 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6684 6685 case CmpInst::FCMP_OGT: 6686 case CmpInst::FCMP_OGE: 6687 case CmpInst::FCMP_UGT: 6688 case CmpInst::FCMP_UGE: 6689 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6690 cast<Instruction>(Cond)->hasNoNaNs()); 6691 } 6692 } 6693 } 6694 return OperationData(V); 6695 } 6696 6697 public: 6698 HorizontalReduction() = default; 6699 6700 /// Try to find a reduction tree. 6701 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6702 assert((!Phi || is_contained(Phi->operands(), B)) && 6703 "Thi phi needs to use the binary operator"); 6704 6705 ReductionData = getOperationData(B); 6706 6707 // We could have a initial reductions that is not an add. 6708 // r *= v1 + v2 + v3 + v4 6709 // In such a case start looking for a tree rooted in the first '+'. 6710 if (Phi) { 6711 if (ReductionData.getLHS() == Phi) { 6712 Phi = nullptr; 6713 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6714 ReductionData = getOperationData(B); 6715 } else if (ReductionData.getRHS() == Phi) { 6716 Phi = nullptr; 6717 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6718 ReductionData = getOperationData(B); 6719 } 6720 } 6721 6722 if (!ReductionData.isVectorizable(B)) 6723 return false; 6724 6725 Type *Ty = B->getType(); 6726 if (!isValidElementType(Ty)) 6727 return false; 6728 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6729 return false; 6730 6731 ReducedValueData.clear(); 6732 ReductionRoot = B; 6733 6734 // Post order traverse the reduction tree starting at B. We only handle true 6735 // trees containing only binary operators. 6736 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6737 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6738 ReductionData.initReductionOps(ReductionOps); 6739 while (!Stack.empty()) { 6740 Instruction *TreeN = Stack.back().first; 6741 unsigned EdgeToVist = Stack.back().second++; 6742 OperationData OpData = getOperationData(TreeN); 6743 bool IsReducedValue = OpData != ReductionData; 6744 6745 // Postorder vist. 6746 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6747 if (IsReducedValue) 6748 ReducedVals.push_back(TreeN); 6749 else { 6750 auto I = ExtraArgs.find(TreeN); 6751 if (I != ExtraArgs.end() && !I->second) { 6752 // Check if TreeN is an extra argument of its parent operation. 6753 if (Stack.size() <= 1) { 6754 // TreeN can't be an extra argument as it is a root reduction 6755 // operation. 6756 return false; 6757 } 6758 // Yes, TreeN is an extra argument, do not add it to a list of 6759 // reduction operations. 6760 // Stack[Stack.size() - 2] always points to the parent operation. 6761 markExtraArg(Stack[Stack.size() - 2], TreeN); 6762 ExtraArgs.erase(TreeN); 6763 } else 6764 ReductionData.addReductionOps(TreeN, ReductionOps); 6765 } 6766 // Retract. 6767 Stack.pop_back(); 6768 continue; 6769 } 6770 6771 // Visit left or right. 6772 Value *NextV = TreeN->getOperand(EdgeToVist); 6773 if (NextV != Phi) { 6774 auto *I = dyn_cast<Instruction>(NextV); 6775 OpData = getOperationData(I); 6776 // Continue analysis if the next operand is a reduction operation or 6777 // (possibly) a reduced value. If the reduced value opcode is not set, 6778 // the first met operation != reduction operation is considered as the 6779 // reduced value class. 6780 if (I && (!ReducedValueData || OpData == ReducedValueData || 6781 OpData == ReductionData)) { 6782 const bool IsReductionOperation = OpData == ReductionData; 6783 // Only handle trees in the current basic block. 6784 if (!ReductionData.hasSameParent(I, B->getParent(), 6785 IsReductionOperation)) { 6786 // I is an extra argument for TreeN (its parent operation). 6787 markExtraArg(Stack.back(), I); 6788 continue; 6789 } 6790 6791 // Each tree node needs to have minimal number of users except for the 6792 // ultimate reduction. 6793 if (!ReductionData.hasRequiredNumberOfUses(I, 6794 OpData == ReductionData) && 6795 I != B) { 6796 // I is an extra argument for TreeN (its parent operation). 6797 markExtraArg(Stack.back(), I); 6798 continue; 6799 } 6800 6801 if (IsReductionOperation) { 6802 // We need to be able to reassociate the reduction operations. 6803 if (!OpData.isAssociative(I)) { 6804 // I is an extra argument for TreeN (its parent operation). 6805 markExtraArg(Stack.back(), I); 6806 continue; 6807 } 6808 } else if (ReducedValueData && 6809 ReducedValueData != OpData) { 6810 // Make sure that the opcodes of the operations that we are going to 6811 // reduce match. 6812 // I is an extra argument for TreeN (its parent operation). 6813 markExtraArg(Stack.back(), I); 6814 continue; 6815 } else if (!ReducedValueData) 6816 ReducedValueData = OpData; 6817 6818 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6819 continue; 6820 } 6821 } 6822 // NextV is an extra argument for TreeN (its parent operation). 6823 markExtraArg(Stack.back(), NextV); 6824 } 6825 return true; 6826 } 6827 6828 /// Attempt to vectorize the tree found by 6829 /// matchAssociativeReduction. 6830 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6831 if (ReducedVals.empty()) 6832 return false; 6833 6834 // If there is a sufficient number of reduction values, reduce 6835 // to a nearby power-of-2. Can safely generate oversized 6836 // vectors and rely on the backend to split them to legal sizes. 6837 unsigned NumReducedVals = ReducedVals.size(); 6838 if (NumReducedVals < 4) 6839 return false; 6840 6841 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6842 6843 Value *VectorizedTree = nullptr; 6844 6845 // FIXME: Fast-math-flags should be set based on the instructions in the 6846 // reduction (not all of 'fast' are required). 6847 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6848 FastMathFlags Unsafe; 6849 Unsafe.setFast(); 6850 Builder.setFastMathFlags(Unsafe); 6851 unsigned i = 0; 6852 6853 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6854 // The same extra argument may be used several time, so log each attempt 6855 // to use it. 6856 for (auto &Pair : ExtraArgs) { 6857 assert(Pair.first && "DebugLoc must be set."); 6858 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6859 } 6860 6861 // The compare instruction of a min/max is the insertion point for new 6862 // instructions and may be replaced with a new compare instruction. 6863 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6864 assert(isa<SelectInst>(RdxRootInst) && 6865 "Expected min/max reduction to have select root instruction"); 6866 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6867 assert(isa<Instruction>(ScalarCond) && 6868 "Expected min/max reduction to have compare condition"); 6869 return cast<Instruction>(ScalarCond); 6870 }; 6871 6872 // The reduction root is used as the insertion point for new instructions, 6873 // so set it as externally used to prevent it from being deleted. 6874 ExternallyUsedValues[ReductionRoot]; 6875 SmallVector<Value *, 16> IgnoreList; 6876 for (auto &V : ReductionOps) 6877 IgnoreList.append(V.begin(), V.end()); 6878 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6879 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6880 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6881 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6882 // TODO: Handle orders of size less than number of elements in the vector. 6883 if (Order && Order->size() == VL.size()) { 6884 // TODO: reorder tree nodes without tree rebuilding. 6885 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6886 llvm::transform(*Order, ReorderedOps.begin(), 6887 [VL](const unsigned Idx) { return VL[Idx]; }); 6888 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6889 } 6890 if (V.isTreeTinyAndNotFullyVectorizable()) 6891 break; 6892 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6893 break; 6894 6895 V.computeMinimumValueSizes(); 6896 6897 // Estimate cost. 6898 int TreeCost = V.getTreeCost(); 6899 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6900 int Cost = TreeCost + ReductionCost; 6901 if (Cost >= -SLPCostThreshold) { 6902 V.getORE()->emit([&]() { 6903 return OptimizationRemarkMissed( 6904 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6905 << "Vectorizing horizontal reduction is possible" 6906 << "but not beneficial with cost " 6907 << ore::NV("Cost", Cost) << " and threshold " 6908 << ore::NV("Threshold", -SLPCostThreshold); 6909 }); 6910 break; 6911 } 6912 6913 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6914 << Cost << ". (HorRdx)\n"); 6915 V.getORE()->emit([&]() { 6916 return OptimizationRemark( 6917 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6918 << "Vectorized horizontal reduction with cost " 6919 << ore::NV("Cost", Cost) << " and with tree size " 6920 << ore::NV("TreeSize", V.getTreeSize()); 6921 }); 6922 6923 // Vectorize a tree. 6924 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6925 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6926 6927 // Emit a reduction. For min/max, the root is a select, but the insertion 6928 // point is the compare condition of that select. 6929 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6930 if (ReductionData.isMinMax()) 6931 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6932 else 6933 Builder.SetInsertPoint(RdxRootInst); 6934 6935 Value *ReducedSubTree = 6936 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6937 if (VectorizedTree) { 6938 Builder.SetCurrentDebugLocation(Loc); 6939 OperationData VectReductionData(ReductionData.getOpcode(), 6940 VectorizedTree, ReducedSubTree, 6941 ReductionData.getKind()); 6942 VectorizedTree = 6943 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6944 } else 6945 VectorizedTree = ReducedSubTree; 6946 i += ReduxWidth; 6947 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6948 } 6949 6950 if (VectorizedTree) { 6951 // Finish the reduction. 6952 for (; i < NumReducedVals; ++i) { 6953 auto *I = cast<Instruction>(ReducedVals[i]); 6954 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6955 OperationData VectReductionData(ReductionData.getOpcode(), 6956 VectorizedTree, I, 6957 ReductionData.getKind()); 6958 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6959 } 6960 for (auto &Pair : ExternallyUsedValues) { 6961 // Add each externally used value to the final reduction. 6962 for (auto *I : Pair.second) { 6963 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6964 OperationData VectReductionData(ReductionData.getOpcode(), 6965 VectorizedTree, Pair.first, 6966 ReductionData.getKind()); 6967 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6968 } 6969 } 6970 6971 // Update users. For a min/max reduction that ends with a compare and 6972 // select, we also have to RAUW for the compare instruction feeding the 6973 // reduction root. That's because the original compare may have extra uses 6974 // besides the final select of the reduction. 6975 if (ReductionData.isMinMax()) { 6976 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6977 Instruction *ScalarCmp = 6978 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6979 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6980 } 6981 } 6982 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6983 6984 // Mark all scalar reduction ops for deletion, they are replaced by the 6985 // vector reductions. 6986 V.eraseInstructions(IgnoreList); 6987 } 6988 return VectorizedTree != nullptr; 6989 } 6990 6991 unsigned numReductionValues() const { 6992 return ReducedVals.size(); 6993 } 6994 6995 private: 6996 /// Calculate the cost of a reduction. 6997 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6998 unsigned ReduxWidth) { 6999 Type *ScalarTy = FirstReducedVal->getType(); 7000 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7001 7002 int PairwiseRdxCost; 7003 int SplittingRdxCost; 7004 switch (ReductionData.getKind()) { 7005 case RK_Arithmetic: 7006 PairwiseRdxCost = 7007 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7008 /*IsPairwiseForm=*/true); 7009 SplittingRdxCost = 7010 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7011 /*IsPairwiseForm=*/false); 7012 break; 7013 case RK_Min: 7014 case RK_Max: 7015 case RK_UMin: 7016 case RK_UMax: { 7017 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7018 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7019 ReductionData.getKind() == RK_UMax; 7020 PairwiseRdxCost = 7021 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7022 /*IsPairwiseForm=*/true, IsUnsigned); 7023 SplittingRdxCost = 7024 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7025 /*IsPairwiseForm=*/false, IsUnsigned); 7026 break; 7027 } 7028 case RK_None: 7029 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7030 } 7031 7032 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7033 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7034 7035 int ScalarReduxCost = 0; 7036 switch (ReductionData.getKind()) { 7037 case RK_Arithmetic: 7038 ScalarReduxCost = 7039 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7040 break; 7041 case RK_Min: 7042 case RK_Max: 7043 case RK_UMin: 7044 case RK_UMax: 7045 ScalarReduxCost = 7046 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7047 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7048 CmpInst::makeCmpResultType(ScalarTy)); 7049 break; 7050 case RK_None: 7051 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7052 } 7053 ScalarReduxCost *= (ReduxWidth - 1); 7054 7055 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7056 << " for reduction that starts with " << *FirstReducedVal 7057 << " (It is a " 7058 << (IsPairwiseReduction ? "pairwise" : "splitting") 7059 << " reduction)\n"); 7060 7061 return VecReduxCost - ScalarReduxCost; 7062 } 7063 7064 /// Emit a horizontal reduction of the vectorized value. 7065 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7066 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7067 assert(VectorizedValue && "Need to have a vectorized tree node"); 7068 assert(isPowerOf2_32(ReduxWidth) && 7069 "We only handle power-of-two reductions for now"); 7070 7071 if (!IsPairwiseReduction) { 7072 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7073 // to 'fast'. 7074 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7075 return createSimpleTargetReduction( 7076 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7077 ReductionData.getFlags(), ReductionOps.back()); 7078 } 7079 7080 Value *TmpVec = VectorizedValue; 7081 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7082 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7083 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7084 7085 Value *LeftShuf = Builder.CreateShuffleVector( 7086 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 7087 Value *RightShuf = Builder.CreateShuffleVector( 7088 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 7089 "rdx.shuf.r"); 7090 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 7091 RightShuf, ReductionData.getKind()); 7092 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 7093 } 7094 7095 // The result is in the first element of the vector. 7096 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7097 } 7098 }; 7099 7100 } // end anonymous namespace 7101 7102 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7103 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7104 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7105 7106 unsigned AggregateSize = 1; 7107 auto *IV = cast<InsertValueInst>(InsertInst); 7108 Type *CurrentType = IV->getType(); 7109 do { 7110 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7111 for (auto *Elt : ST->elements()) 7112 if (Elt != ST->getElementType(0)) // check homogeneity 7113 return None; 7114 AggregateSize *= ST->getNumElements(); 7115 CurrentType = ST->getElementType(0); 7116 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7117 AggregateSize *= AT->getNumElements(); 7118 CurrentType = AT->getElementType(); 7119 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7120 AggregateSize *= VT->getNumElements(); 7121 return AggregateSize; 7122 } else if (CurrentType->isSingleValueType()) { 7123 return AggregateSize; 7124 } else { 7125 return None; 7126 } 7127 } while (true); 7128 } 7129 7130 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7131 unsigned OperandOffset) { 7132 unsigned OperandIndex = OperandOffset; 7133 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7134 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7135 auto *VT = cast<FixedVectorType>(IE->getType()); 7136 OperandIndex *= VT->getNumElements(); 7137 OperandIndex += CI->getZExtValue(); 7138 return OperandIndex; 7139 } 7140 return None; 7141 } 7142 7143 auto *IV = cast<InsertValueInst>(InsertInst); 7144 Type *CurrentType = IV->getType(); 7145 for (unsigned int Index : IV->indices()) { 7146 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7147 OperandIndex *= ST->getNumElements(); 7148 CurrentType = ST->getElementType(Index); 7149 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7150 OperandIndex *= AT->getNumElements(); 7151 CurrentType = AT->getElementType(); 7152 } else { 7153 return None; 7154 } 7155 OperandIndex += Index; 7156 } 7157 return OperandIndex; 7158 } 7159 7160 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7161 TargetTransformInfo *TTI, 7162 SmallVectorImpl<Value *> &BuildVectorOpds, 7163 SmallVectorImpl<Value *> &InsertElts, 7164 unsigned OperandOffset) { 7165 do { 7166 Value *InsertedOperand = LastInsertInst->getOperand(1); 7167 Optional<unsigned> OperandIndex = 7168 getOperandIndex(LastInsertInst, OperandOffset); 7169 if (!OperandIndex) 7170 return false; 7171 if (isa<InsertElementInst>(InsertedOperand) || 7172 isa<InsertValueInst>(InsertedOperand)) { 7173 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7174 BuildVectorOpds, InsertElts, *OperandIndex)) 7175 return false; 7176 } else { 7177 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7178 InsertElts[*OperandIndex] = LastInsertInst; 7179 } 7180 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7181 return true; 7182 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7183 } while (LastInsertInst != nullptr && 7184 (isa<InsertValueInst>(LastInsertInst) || 7185 isa<InsertElementInst>(LastInsertInst)) && 7186 LastInsertInst->hasOneUse()); 7187 return false; 7188 } 7189 7190 /// Recognize construction of vectors like 7191 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7192 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7193 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7194 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7195 /// starting from the last insertelement or insertvalue instruction. 7196 /// 7197 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7198 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7199 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7200 /// 7201 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7202 /// 7203 /// \return true if it matches. 7204 static bool findBuildAggregate(Instruction *LastInsertInst, 7205 TargetTransformInfo *TTI, 7206 SmallVectorImpl<Value *> &BuildVectorOpds, 7207 SmallVectorImpl<Value *> &InsertElts) { 7208 7209 assert((isa<InsertElementInst>(LastInsertInst) || 7210 isa<InsertValueInst>(LastInsertInst)) && 7211 "Expected insertelement or insertvalue instruction!"); 7212 7213 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7214 "Expected empty result vectors!"); 7215 7216 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7217 if (!AggregateSize) 7218 return false; 7219 BuildVectorOpds.resize(*AggregateSize); 7220 InsertElts.resize(*AggregateSize); 7221 7222 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7223 0)) { 7224 llvm::erase_if(BuildVectorOpds, 7225 [](const Value *V) { return V == nullptr; }); 7226 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7227 if (BuildVectorOpds.size() >= 2) 7228 return true; 7229 } 7230 7231 return false; 7232 } 7233 7234 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7235 return V->getType() < V2->getType(); 7236 } 7237 7238 /// Try and get a reduction value from a phi node. 7239 /// 7240 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7241 /// if they come from either \p ParentBB or a containing loop latch. 7242 /// 7243 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7244 /// if not possible. 7245 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7246 BasicBlock *ParentBB, LoopInfo *LI) { 7247 // There are situations where the reduction value is not dominated by the 7248 // reduction phi. Vectorizing such cases has been reported to cause 7249 // miscompiles. See PR25787. 7250 auto DominatedReduxValue = [&](Value *R) { 7251 return isa<Instruction>(R) && 7252 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7253 }; 7254 7255 Value *Rdx = nullptr; 7256 7257 // Return the incoming value if it comes from the same BB as the phi node. 7258 if (P->getIncomingBlock(0) == ParentBB) { 7259 Rdx = P->getIncomingValue(0); 7260 } else if (P->getIncomingBlock(1) == ParentBB) { 7261 Rdx = P->getIncomingValue(1); 7262 } 7263 7264 if (Rdx && DominatedReduxValue(Rdx)) 7265 return Rdx; 7266 7267 // Otherwise, check whether we have a loop latch to look at. 7268 Loop *BBL = LI->getLoopFor(ParentBB); 7269 if (!BBL) 7270 return nullptr; 7271 BasicBlock *BBLatch = BBL->getLoopLatch(); 7272 if (!BBLatch) 7273 return nullptr; 7274 7275 // There is a loop latch, return the incoming value if it comes from 7276 // that. This reduction pattern occasionally turns up. 7277 if (P->getIncomingBlock(0) == BBLatch) { 7278 Rdx = P->getIncomingValue(0); 7279 } else if (P->getIncomingBlock(1) == BBLatch) { 7280 Rdx = P->getIncomingValue(1); 7281 } 7282 7283 if (Rdx && DominatedReduxValue(Rdx)) 7284 return Rdx; 7285 7286 return nullptr; 7287 } 7288 7289 /// Attempt to reduce a horizontal reduction. 7290 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7291 /// with reduction operators \a Root (or one of its operands) in a basic block 7292 /// \a BB, then check if it can be done. If horizontal reduction is not found 7293 /// and root instruction is a binary operation, vectorization of the operands is 7294 /// attempted. 7295 /// \returns true if a horizontal reduction was matched and reduced or operands 7296 /// of one of the binary instruction were vectorized. 7297 /// \returns false if a horizontal reduction was not matched (or not possible) 7298 /// or no vectorization of any binary operation feeding \a Root instruction was 7299 /// performed. 7300 static bool tryToVectorizeHorReductionOrInstOperands( 7301 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7302 TargetTransformInfo *TTI, 7303 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7304 if (!ShouldVectorizeHor) 7305 return false; 7306 7307 if (!Root) 7308 return false; 7309 7310 if (Root->getParent() != BB || isa<PHINode>(Root)) 7311 return false; 7312 // Start analysis starting from Root instruction. If horizontal reduction is 7313 // found, try to vectorize it. If it is not a horizontal reduction or 7314 // vectorization is not possible or not effective, and currently analyzed 7315 // instruction is a binary operation, try to vectorize the operands, using 7316 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7317 // the same procedure considering each operand as a possible root of the 7318 // horizontal reduction. 7319 // Interrupt the process if the Root instruction itself was vectorized or all 7320 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7321 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7322 SmallPtrSet<Value *, 8> VisitedInstrs; 7323 bool Res = false; 7324 while (!Stack.empty()) { 7325 Instruction *Inst; 7326 unsigned Level; 7327 std::tie(Inst, Level) = Stack.pop_back_val(); 7328 auto *BI = dyn_cast<BinaryOperator>(Inst); 7329 auto *SI = dyn_cast<SelectInst>(Inst); 7330 if (BI || SI) { 7331 HorizontalReduction HorRdx; 7332 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7333 if (HorRdx.tryToReduce(R, TTI)) { 7334 Res = true; 7335 // Set P to nullptr to avoid re-analysis of phi node in 7336 // matchAssociativeReduction function unless this is the root node. 7337 P = nullptr; 7338 continue; 7339 } 7340 } 7341 if (P && BI) { 7342 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7343 if (Inst == P) 7344 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7345 if (!Inst) { 7346 // Set P to nullptr to avoid re-analysis of phi node in 7347 // matchAssociativeReduction function unless this is the root node. 7348 P = nullptr; 7349 continue; 7350 } 7351 } 7352 } 7353 // Set P to nullptr to avoid re-analysis of phi node in 7354 // matchAssociativeReduction function unless this is the root node. 7355 P = nullptr; 7356 if (Vectorize(Inst, R)) { 7357 Res = true; 7358 continue; 7359 } 7360 7361 // Try to vectorize operands. 7362 // Continue analysis for the instruction from the same basic block only to 7363 // save compile time. 7364 if (++Level < RecursionMaxDepth) 7365 for (auto *Op : Inst->operand_values()) 7366 if (VisitedInstrs.insert(Op).second) 7367 if (auto *I = dyn_cast<Instruction>(Op)) 7368 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7369 Stack.emplace_back(I, Level); 7370 } 7371 return Res; 7372 } 7373 7374 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7375 BasicBlock *BB, BoUpSLP &R, 7376 TargetTransformInfo *TTI) { 7377 if (!V) 7378 return false; 7379 auto *I = dyn_cast<Instruction>(V); 7380 if (!I) 7381 return false; 7382 7383 if (!isa<BinaryOperator>(I)) 7384 P = nullptr; 7385 // Try to match and vectorize a horizontal reduction. 7386 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7387 return tryToVectorize(I, R); 7388 }; 7389 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7390 ExtraVectorization); 7391 } 7392 7393 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7394 BasicBlock *BB, BoUpSLP &R) { 7395 const DataLayout &DL = BB->getModule()->getDataLayout(); 7396 if (!R.canMapToVector(IVI->getType(), DL)) 7397 return false; 7398 7399 SmallVector<Value *, 16> BuildVectorOpds; 7400 SmallVector<Value *, 16> BuildVectorInsts; 7401 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7402 return false; 7403 7404 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7405 // Aggregate value is unlikely to be processed in vector register, we need to 7406 // extract scalars into scalar registers, so NeedExtraction is set true. 7407 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7408 BuildVectorInsts); 7409 } 7410 7411 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7412 BasicBlock *BB, BoUpSLP &R) { 7413 SmallVector<Value *, 16> BuildVectorInsts; 7414 SmallVector<Value *, 16> BuildVectorOpds; 7415 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7416 (llvm::all_of(BuildVectorOpds, 7417 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7418 isShuffle(BuildVectorOpds))) 7419 return false; 7420 7421 // Vectorize starting with the build vector operands ignoring the BuildVector 7422 // instructions for the purpose of scheduling and user extraction. 7423 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7424 BuildVectorInsts); 7425 } 7426 7427 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7428 BoUpSLP &R) { 7429 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7430 return true; 7431 7432 bool OpsChanged = false; 7433 for (int Idx = 0; Idx < 2; ++Idx) { 7434 OpsChanged |= 7435 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7436 } 7437 return OpsChanged; 7438 } 7439 7440 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7441 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7442 bool OpsChanged = false; 7443 for (auto *I : reverse(Instructions)) { 7444 if (R.isDeleted(I)) 7445 continue; 7446 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7447 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7448 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7449 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7450 else if (auto *CI = dyn_cast<CmpInst>(I)) 7451 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7452 } 7453 Instructions.clear(); 7454 return OpsChanged; 7455 } 7456 7457 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7458 bool Changed = false; 7459 SmallVector<Value *, 4> Incoming; 7460 SmallPtrSet<Value *, 16> VisitedInstrs; 7461 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7462 7463 bool HaveVectorizedPhiNodes = true; 7464 while (HaveVectorizedPhiNodes) { 7465 HaveVectorizedPhiNodes = false; 7466 7467 // Collect the incoming values from the PHIs. 7468 Incoming.clear(); 7469 for (Instruction &I : *BB) { 7470 PHINode *P = dyn_cast<PHINode>(&I); 7471 if (!P) 7472 break; 7473 7474 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7475 Incoming.push_back(P); 7476 } 7477 7478 // Sort by type. 7479 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7480 7481 // Try to vectorize elements base on their type. 7482 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7483 E = Incoming.end(); 7484 IncIt != E;) { 7485 7486 // Look for the next elements with the same type. 7487 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7488 Type *EltTy = (*IncIt)->getType(); 7489 7490 assert(EltTy->isSized() && 7491 "Instructions should all be sized at this point"); 7492 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7493 if (EltTS.isScalable()) { 7494 // For now, just ignore vectorizing scalable types. 7495 ++IncIt; 7496 continue; 7497 } 7498 7499 unsigned EltSize = EltTS.getFixedSize(); 7500 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7501 if (MaxNumElts < 2) { 7502 ++IncIt; 7503 continue; 7504 } 7505 7506 while (SameTypeIt != E && 7507 (*SameTypeIt)->getType() == EltTy && 7508 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7509 VisitedInstrs.insert(*SameTypeIt); 7510 ++SameTypeIt; 7511 } 7512 7513 // Try to vectorize them. 7514 unsigned NumElts = (SameTypeIt - IncIt); 7515 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7516 << NumElts << ")\n"); 7517 // The order in which the phi nodes appear in the program does not matter. 7518 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7519 // is done when there are exactly two elements since tryToVectorizeList 7520 // asserts that there are only two values when AllowReorder is true. 7521 bool AllowReorder = NumElts == 2; 7522 if (NumElts > 1 && 7523 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7524 // Success start over because instructions might have been changed. 7525 HaveVectorizedPhiNodes = true; 7526 Changed = true; 7527 break; 7528 } 7529 7530 // Start over at the next instruction of a different type (or the end). 7531 IncIt = SameTypeIt; 7532 } 7533 } 7534 7535 VisitedInstrs.clear(); 7536 7537 SmallVector<Instruction *, 8> PostProcessInstructions; 7538 SmallDenseSet<Instruction *, 4> KeyNodes; 7539 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7540 // Skip instructions marked for the deletion. 7541 if (R.isDeleted(&*it)) 7542 continue; 7543 // We may go through BB multiple times so skip the one we have checked. 7544 if (!VisitedInstrs.insert(&*it).second) { 7545 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7546 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7547 // We would like to start over since some instructions are deleted 7548 // and the iterator may become invalid value. 7549 Changed = true; 7550 it = BB->begin(); 7551 e = BB->end(); 7552 } 7553 continue; 7554 } 7555 7556 if (isa<DbgInfoIntrinsic>(it)) 7557 continue; 7558 7559 // Try to vectorize reductions that use PHINodes. 7560 if (PHINode *P = dyn_cast<PHINode>(it)) { 7561 // Check that the PHI is a reduction PHI. 7562 if (P->getNumIncomingValues() != 2) 7563 return Changed; 7564 7565 // Try to match and vectorize a horizontal reduction. 7566 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7567 TTI)) { 7568 Changed = true; 7569 it = BB->begin(); 7570 e = BB->end(); 7571 continue; 7572 } 7573 continue; 7574 } 7575 7576 // Ran into an instruction without users, like terminator, or function call 7577 // with ignored return value, store. Ignore unused instructions (basing on 7578 // instruction type, except for CallInst and InvokeInst). 7579 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7580 isa<InvokeInst>(it))) { 7581 KeyNodes.insert(&*it); 7582 bool OpsChanged = false; 7583 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7584 for (auto *V : it->operand_values()) { 7585 // Try to match and vectorize a horizontal reduction. 7586 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7587 } 7588 } 7589 // Start vectorization of post-process list of instructions from the 7590 // top-tree instructions to try to vectorize as many instructions as 7591 // possible. 7592 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7593 if (OpsChanged) { 7594 // We would like to start over since some instructions are deleted 7595 // and the iterator may become invalid value. 7596 Changed = true; 7597 it = BB->begin(); 7598 e = BB->end(); 7599 continue; 7600 } 7601 } 7602 7603 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7604 isa<InsertValueInst>(it)) 7605 PostProcessInstructions.push_back(&*it); 7606 } 7607 7608 return Changed; 7609 } 7610 7611 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7612 auto Changed = false; 7613 for (auto &Entry : GEPs) { 7614 // If the getelementptr list has fewer than two elements, there's nothing 7615 // to do. 7616 if (Entry.second.size() < 2) 7617 continue; 7618 7619 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7620 << Entry.second.size() << ".\n"); 7621 7622 // Process the GEP list in chunks suitable for the target's supported 7623 // vector size. If a vector register can't hold 1 element, we are done. We 7624 // are trying to vectorize the index computations, so the maximum number of 7625 // elements is based on the size of the index expression, rather than the 7626 // size of the GEP itself (the target's pointer size). 7627 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7628 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7629 if (MaxVecRegSize < EltSize) 7630 continue; 7631 7632 unsigned MaxElts = MaxVecRegSize / EltSize; 7633 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7634 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7635 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7636 7637 // Initialize a set a candidate getelementptrs. Note that we use a 7638 // SetVector here to preserve program order. If the index computations 7639 // are vectorizable and begin with loads, we want to minimize the chance 7640 // of having to reorder them later. 7641 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7642 7643 // Some of the candidates may have already been vectorized after we 7644 // initially collected them. If so, they are marked as deleted, so remove 7645 // them from the set of candidates. 7646 Candidates.remove_if( 7647 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7648 7649 // Remove from the set of candidates all pairs of getelementptrs with 7650 // constant differences. Such getelementptrs are likely not good 7651 // candidates for vectorization in a bottom-up phase since one can be 7652 // computed from the other. We also ensure all candidate getelementptr 7653 // indices are unique. 7654 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7655 auto *GEPI = GEPList[I]; 7656 if (!Candidates.count(GEPI)) 7657 continue; 7658 auto *SCEVI = SE->getSCEV(GEPList[I]); 7659 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7660 auto *GEPJ = GEPList[J]; 7661 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7662 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7663 Candidates.remove(GEPI); 7664 Candidates.remove(GEPJ); 7665 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7666 Candidates.remove(GEPJ); 7667 } 7668 } 7669 } 7670 7671 // We break out of the above computation as soon as we know there are 7672 // fewer than two candidates remaining. 7673 if (Candidates.size() < 2) 7674 continue; 7675 7676 // Add the single, non-constant index of each candidate to the bundle. We 7677 // ensured the indices met these constraints when we originally collected 7678 // the getelementptrs. 7679 SmallVector<Value *, 16> Bundle(Candidates.size()); 7680 auto BundleIndex = 0u; 7681 for (auto *V : Candidates) { 7682 auto *GEP = cast<GetElementPtrInst>(V); 7683 auto *GEPIdx = GEP->idx_begin()->get(); 7684 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7685 Bundle[BundleIndex++] = GEPIdx; 7686 } 7687 7688 // Try and vectorize the indices. We are currently only interested in 7689 // gather-like cases of the form: 7690 // 7691 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7692 // 7693 // where the loads of "a", the loads of "b", and the subtractions can be 7694 // performed in parallel. It's likely that detecting this pattern in a 7695 // bottom-up phase will be simpler and less costly than building a 7696 // full-blown top-down phase beginning at the consecutive loads. 7697 Changed |= tryToVectorizeList(Bundle, R); 7698 } 7699 } 7700 return Changed; 7701 } 7702 7703 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7704 bool Changed = false; 7705 // Attempt to sort and vectorize each of the store-groups. 7706 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7707 ++it) { 7708 if (it->second.size() < 2) 7709 continue; 7710 7711 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7712 << it->second.size() << ".\n"); 7713 7714 Changed |= vectorizeStores(it->second, R); 7715 } 7716 return Changed; 7717 } 7718 7719 char SLPVectorizer::ID = 0; 7720 7721 static const char lv_name[] = "SLP Vectorizer"; 7722 7723 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7724 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7725 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7726 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7727 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7728 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7729 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7730 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7731 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7732 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7733 7734 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7735