1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<unsigned> 133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 134 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 135 136 static cl::opt<int> 137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 138 cl::desc("Maximum depth of the lookup for consecutive stores.")); 139 140 /// Limits the size of scheduling regions in a block. 141 /// It avoid long compile times for _very_ large blocks where vector 142 /// instructions are spread over a wide range. 143 /// This limit is way higher than needed by real-world functions. 144 static cl::opt<int> 145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 146 cl::desc("Limit the size of the SLP scheduling region per block")); 147 148 static cl::opt<int> MinVectorRegSizeOption( 149 "slp-min-reg-size", cl::init(128), cl::Hidden, 150 cl::desc("Attempt to vectorize for this register size in bits")); 151 152 static cl::opt<unsigned> RecursionMaxDepth( 153 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 154 cl::desc("Limit the recursion depth when building a vectorizable tree")); 155 156 static cl::opt<unsigned> MinTreeSize( 157 "slp-min-tree-size", cl::init(3), cl::Hidden, 158 cl::desc("Only vectorize small trees if they are fully vectorizable")); 159 160 // The maximum depth that the look-ahead score heuristic will explore. 161 // The higher this value, the higher the compilation time overhead. 162 static cl::opt<int> LookAheadMaxDepth( 163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 164 cl::desc("The maximum look-ahead depth for operand reordering scores")); 165 166 // The Look-ahead heuristic goes through the users of the bundle to calculate 167 // the users cost in getExternalUsesCost(). To avoid compilation time increase 168 // we limit the number of users visited to this value. 169 static cl::opt<unsigned> LookAheadUsersBudget( 170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 171 cl::desc("The maximum number of users to visit while visiting the " 172 "predecessors. This prevents compilation time increase.")); 173 174 static cl::opt<bool> 175 ViewSLPTree("view-slp-tree", cl::Hidden, 176 cl::desc("Display the SLP trees with Graphviz")); 177 178 // Limit the number of alias checks. The limit is chosen so that 179 // it has no negative effect on the llvm benchmarks. 180 static const unsigned AliasedCheckLimit = 10; 181 182 // Another limit for the alias checks: The maximum distance between load/store 183 // instructions where alias checks are done. 184 // This limit is useful for very large basic blocks. 185 static const unsigned MaxMemDepDistance = 160; 186 187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 188 /// regions to be handled. 189 static const int MinScheduleRegionSize = 16; 190 191 /// Predicate for the element types that the SLP vectorizer supports. 192 /// 193 /// The most important thing to filter here are types which are invalid in LLVM 194 /// vectors. We also filter target specific types which have absolutely no 195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 196 /// avoids spending time checking the cost model and realizing that they will 197 /// be inevitably scalarized. 198 static bool isValidElementType(Type *Ty) { 199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 200 !Ty->isPPC_FP128Ty(); 201 } 202 203 /// \returns true if all of the instructions in \p VL are in the same block or 204 /// false otherwise. 205 static bool allSameBlock(ArrayRef<Value *> VL) { 206 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 207 if (!I0) 208 return false; 209 BasicBlock *BB = I0->getParent(); 210 for (int I = 1, E = VL.size(); I < E; I++) { 211 auto *II = dyn_cast<Instruction>(VL[I]); 212 if (!II) 213 return false; 214 215 if (BB != II->getParent()) 216 return false; 217 } 218 return true; 219 } 220 221 /// \returns True if the value is a constant (but not globals/constant 222 /// expressions). 223 static bool isConstant(Value *V) { 224 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 225 } 226 227 /// \returns True if all of the values in \p VL are constants (but not 228 /// globals/constant expressions). 229 static bool allConstant(ArrayRef<Value *> VL) { 230 // Constant expressions and globals can't be vectorized like normal integer/FP 231 // constants. 232 return all_of(VL, isConstant); 233 } 234 235 /// \returns True if all of the values in \p VL are identical. 236 static bool isSplat(ArrayRef<Value *> VL) { 237 for (unsigned i = 1, e = VL.size(); i < e; ++i) 238 if (VL[i] != VL[0]) 239 return false; 240 return true; 241 } 242 243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 244 static bool isCommutative(Instruction *I) { 245 if (auto *Cmp = dyn_cast<CmpInst>(I)) 246 return Cmp->isCommutative(); 247 if (auto *BO = dyn_cast<BinaryOperator>(I)) 248 return BO->isCommutative(); 249 // TODO: This should check for generic Instruction::isCommutative(), but 250 // we need to confirm that the caller code correctly handles Intrinsics 251 // for example (does not have 2 operands). 252 return false; 253 } 254 255 /// Checks if the vector of instructions can be represented as a shuffle, like: 256 /// %x0 = extractelement <4 x i8> %x, i32 0 257 /// %x3 = extractelement <4 x i8> %x, i32 3 258 /// %y1 = extractelement <4 x i8> %y, i32 1 259 /// %y2 = extractelement <4 x i8> %y, i32 2 260 /// %x0x0 = mul i8 %x0, %x0 261 /// %x3x3 = mul i8 %x3, %x3 262 /// %y1y1 = mul i8 %y1, %y1 263 /// %y2y2 = mul i8 %y2, %y2 264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 268 /// ret <4 x i8> %ins4 269 /// can be transformed into: 270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 271 /// i32 6> 272 /// %2 = mul <4 x i8> %1, %1 273 /// ret <4 x i8> %2 274 /// We convert this initially to something like: 275 /// %x0 = extractelement <4 x i8> %x, i32 0 276 /// %x3 = extractelement <4 x i8> %x, i32 3 277 /// %y1 = extractelement <4 x i8> %y, i32 1 278 /// %y2 = extractelement <4 x i8> %y, i32 2 279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 283 /// %5 = mul <4 x i8> %4, %4 284 /// %6 = extractelement <4 x i8> %5, i32 0 285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 286 /// %7 = extractelement <4 x i8> %5, i32 1 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 288 /// %8 = extractelement <4 x i8> %5, i32 2 289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 290 /// %9 = extractelement <4 x i8> %5, i32 3 291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 292 /// ret <4 x i8> %ins4 293 /// InstCombiner transforms this into a shuffle and vector mul 294 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 295 /// TODO: Can we split off and reuse the shuffle mask detection from 296 /// TargetTransformInfo::getInstructionThroughput? 297 static Optional<TargetTransformInfo::ShuffleKind> 298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 299 auto *EI0 = cast<ExtractElementInst>(VL[0]); 300 unsigned Size = 301 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 302 Value *Vec1 = nullptr; 303 Value *Vec2 = nullptr; 304 enum ShuffleMode { Unknown, Select, Permute }; 305 ShuffleMode CommonShuffleMode = Unknown; 306 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 307 auto *EI = cast<ExtractElementInst>(VL[I]); 308 auto *Vec = EI->getVectorOperand(); 309 // All vector operands must have the same number of vector elements. 310 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 311 return None; 312 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 313 if (!Idx) 314 return None; 315 // Undefined behavior if Idx is negative or >= Size. 316 if (Idx->getValue().uge(Size)) { 317 Mask.push_back(UndefMaskElem); 318 continue; 319 } 320 unsigned IntIdx = Idx->getValue().getZExtValue(); 321 Mask.push_back(IntIdx); 322 // We can extractelement from undef or poison vector. 323 if (isa<UndefValue>(Vec)) 324 continue; 325 // For correct shuffling we have to have at most 2 different vector operands 326 // in all extractelement instructions. 327 if (!Vec1 || Vec1 == Vec) 328 Vec1 = Vec; 329 else if (!Vec2 || Vec2 == Vec) 330 Vec2 = Vec; 331 else 332 return None; 333 if (CommonShuffleMode == Permute) 334 continue; 335 // If the extract index is not the same as the operation number, it is a 336 // permutation. 337 if (IntIdx != I) { 338 CommonShuffleMode = Permute; 339 continue; 340 } 341 CommonShuffleMode = Select; 342 } 343 // If we're not crossing lanes in different vectors, consider it as blending. 344 if (CommonShuffleMode == Select && Vec2) 345 return TargetTransformInfo::SK_Select; 346 // If Vec2 was never used, we have a permutation of a single vector, otherwise 347 // we have permutation of 2 vectors. 348 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 349 : TargetTransformInfo::SK_PermuteSingleSrc; 350 } 351 352 namespace { 353 354 /// Main data required for vectorization of instructions. 355 struct InstructionsState { 356 /// The very first instruction in the list with the main opcode. 357 Value *OpValue = nullptr; 358 359 /// The main/alternate instruction. 360 Instruction *MainOp = nullptr; 361 Instruction *AltOp = nullptr; 362 363 /// The main/alternate opcodes for the list of instructions. 364 unsigned getOpcode() const { 365 return MainOp ? MainOp->getOpcode() : 0; 366 } 367 368 unsigned getAltOpcode() const { 369 return AltOp ? AltOp->getOpcode() : 0; 370 } 371 372 /// Some of the instructions in the list have alternate opcodes. 373 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 374 375 bool isOpcodeOrAlt(Instruction *I) const { 376 unsigned CheckedOpcode = I->getOpcode(); 377 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 378 } 379 380 InstructionsState() = delete; 381 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 382 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 383 }; 384 385 } // end anonymous namespace 386 387 /// Chooses the correct key for scheduling data. If \p Op has the same (or 388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 389 /// OpValue. 390 static Value *isOneOf(const InstructionsState &S, Value *Op) { 391 auto *I = dyn_cast<Instruction>(Op); 392 if (I && S.isOpcodeOrAlt(I)) 393 return Op; 394 return S.OpValue; 395 } 396 397 /// \returns true if \p Opcode is allowed as part of of the main/alternate 398 /// instruction for SLP vectorization. 399 /// 400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 401 /// "shuffled out" lane would result in division by zero. 402 static bool isValidForAlternation(unsigned Opcode) { 403 if (Instruction::isIntDivRem(Opcode)) 404 return false; 405 406 return true; 407 } 408 409 /// \returns analysis of the Instructions in \p VL described in 410 /// InstructionsState, the Opcode that we suppose the whole list 411 /// could be vectorized even if its structure is diverse. 412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 413 unsigned BaseIndex = 0) { 414 // Make sure these are all Instructions. 415 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 416 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 417 418 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 419 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 420 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 421 unsigned AltOpcode = Opcode; 422 unsigned AltIndex = BaseIndex; 423 424 // Check for one alternate opcode from another BinaryOperator. 425 // TODO - generalize to support all operators (types, calls etc.). 426 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 427 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 428 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 429 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 430 continue; 431 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 432 isValidForAlternation(Opcode)) { 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 438 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 439 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 440 if (Ty0 == Ty1) { 441 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 442 continue; 443 if (Opcode == AltOpcode) { 444 assert(isValidForAlternation(Opcode) && 445 isValidForAlternation(InstOpcode) && 446 "Cast isn't safe for alternation, logic needs to be updated!"); 447 AltOpcode = InstOpcode; 448 AltIndex = Cnt; 449 continue; 450 } 451 } 452 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 453 continue; 454 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 455 } 456 457 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 458 cast<Instruction>(VL[AltIndex])); 459 } 460 461 /// \returns true if all of the values in \p VL have the same type or false 462 /// otherwise. 463 static bool allSameType(ArrayRef<Value *> VL) { 464 Type *Ty = VL[0]->getType(); 465 for (int i = 1, e = VL.size(); i < e; i++) 466 if (VL[i]->getType() != Ty) 467 return false; 468 469 return true; 470 } 471 472 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 473 static Optional<unsigned> getExtractIndex(Instruction *E) { 474 unsigned Opcode = E->getOpcode(); 475 assert((Opcode == Instruction::ExtractElement || 476 Opcode == Instruction::ExtractValue) && 477 "Expected extractelement or extractvalue instruction."); 478 if (Opcode == Instruction::ExtractElement) { 479 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 480 if (!CI) 481 return None; 482 return CI->getZExtValue(); 483 } 484 ExtractValueInst *EI = cast<ExtractValueInst>(E); 485 if (EI->getNumIndices() != 1) 486 return None; 487 return *EI->idx_begin(); 488 } 489 490 /// \returns True if in-tree use also needs extract. This refers to 491 /// possible scalar operand in vectorized instruction. 492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 493 TargetLibraryInfo *TLI) { 494 unsigned Opcode = UserInst->getOpcode(); 495 switch (Opcode) { 496 case Instruction::Load: { 497 LoadInst *LI = cast<LoadInst>(UserInst); 498 return (LI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Store: { 501 StoreInst *SI = cast<StoreInst>(UserInst); 502 return (SI->getPointerOperand() == Scalar); 503 } 504 case Instruction::Call: { 505 CallInst *CI = cast<CallInst>(UserInst); 506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 507 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 508 if (hasVectorInstrinsicScalarOpd(ID, i)) 509 return (CI->getArgOperand(i) == Scalar); 510 } 511 LLVM_FALLTHROUGH; 512 } 513 default: 514 return false; 515 } 516 } 517 518 /// \returns the AA location that is being access by the instruction. 519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 520 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 521 return MemoryLocation::get(SI); 522 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 523 return MemoryLocation::get(LI); 524 return MemoryLocation(); 525 } 526 527 /// \returns True if the instruction is not a volatile or atomic load/store. 528 static bool isSimple(Instruction *I) { 529 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 530 return LI->isSimple(); 531 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 532 return SI->isSimple(); 533 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 534 return !MI->isVolatile(); 535 return true; 536 } 537 538 namespace llvm { 539 540 static void inversePermutation(ArrayRef<unsigned> Indices, 541 SmallVectorImpl<int> &Mask) { 542 Mask.clear(); 543 const unsigned E = Indices.size(); 544 Mask.resize(E, E + 1); 545 for (unsigned I = 0; I < E; ++I) 546 Mask[Indices[I]] = I; 547 } 548 549 /// \returns inserting index of InsertElement or InsertValue instruction, 550 /// using Offset as base offset for index. 551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 552 int Index = Offset; 553 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 554 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 555 auto *VT = cast<FixedVectorType>(IE->getType()); 556 if (CI->getValue().uge(VT->getNumElements())) 557 return UndefMaskElem; 558 Index *= VT->getNumElements(); 559 Index += CI->getZExtValue(); 560 return Index; 561 } 562 if (isa<UndefValue>(IE->getOperand(2))) 563 return UndefMaskElem; 564 return None; 565 } 566 567 auto *IV = cast<InsertValueInst>(InsertInst); 568 Type *CurrentType = IV->getType(); 569 for (unsigned I : IV->indices()) { 570 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 571 Index *= ST->getNumElements(); 572 CurrentType = ST->getElementType(I); 573 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 574 Index *= AT->getNumElements(); 575 CurrentType = AT->getElementType(); 576 } else { 577 return None; 578 } 579 Index += I; 580 } 581 return Index; 582 } 583 584 /// Reorders the list of scalars in accordance with the given \p Order and then 585 /// the \p Mask. \p Order - is the original order of the scalars, need to 586 /// reorder scalars into an unordered state at first according to the given 587 /// order. Then the ordered scalars are shuffled once again in accordance with 588 /// the provided mask. 589 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 590 ArrayRef<unsigned> Order, ArrayRef<int> Mask) { 591 assert(!Mask.empty() && "Expected non-empty mask."); 592 SmallVector<Value *> Prev(Scalars.size(), 593 UndefValue::get(Scalars.front()->getType())); 594 Prev.swap(Scalars); 595 if (Order.empty()) { 596 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 597 if (Mask[I] != UndefMaskElem) 598 Scalars[Mask[I]] = Prev[I]; 599 } else { 600 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 601 if (Mask[Order[I]] != UndefMaskElem) 602 Scalars[Mask[Order[I]]] = Prev[Order[I]]; 603 } 604 } 605 606 namespace slpvectorizer { 607 608 /// Bottom Up SLP Vectorizer. 609 class BoUpSLP { 610 struct TreeEntry; 611 struct ScheduleData; 612 613 public: 614 using ValueList = SmallVector<Value *, 8>; 615 using InstrList = SmallVector<Instruction *, 16>; 616 using ValueSet = SmallPtrSet<Value *, 16>; 617 using StoreList = SmallVector<StoreInst *, 8>; 618 using ExtraValueToDebugLocsMap = 619 MapVector<Value *, SmallVector<Instruction *, 2>>; 620 using OrdersType = SmallVector<unsigned, 4>; 621 622 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 623 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 624 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 625 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 626 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 627 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 628 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 629 // Use the vector register size specified by the target unless overridden 630 // by a command-line option. 631 // TODO: It would be better to limit the vectorization factor based on 632 // data type rather than just register size. For example, x86 AVX has 633 // 256-bit registers, but it does not support integer operations 634 // at that width (that requires AVX2). 635 if (MaxVectorRegSizeOption.getNumOccurrences()) 636 MaxVecRegSize = MaxVectorRegSizeOption; 637 else 638 MaxVecRegSize = 639 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 640 .getFixedSize(); 641 642 if (MinVectorRegSizeOption.getNumOccurrences()) 643 MinVecRegSize = MinVectorRegSizeOption; 644 else 645 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 646 } 647 648 /// Vectorize the tree that starts with the elements in \p VL. 649 /// Returns the vectorized root. 650 Value *vectorizeTree(); 651 652 /// Vectorize the tree but with the list of externally used values \p 653 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 654 /// generated extractvalue instructions. 655 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 656 657 /// \returns the cost incurred by unwanted spills and fills, caused by 658 /// holding live values over call sites. 659 InstructionCost getSpillCost() const; 660 661 /// \returns the vectorization cost of the subtree that starts at \p VL. 662 /// A negative number means that this is profitable. 663 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 664 665 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 666 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 667 void buildTree(ArrayRef<Value *> Roots, 668 ArrayRef<Value *> UserIgnoreLst = None); 669 670 /// Builds external uses of the vectorized scalars, i.e. the list of 671 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 672 /// ExternallyUsedValues contains additional list of external uses to handle 673 /// vectorization of reductions. 674 void 675 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 676 677 /// Clear the internal data structures that are created by 'buildTree'. 678 void deleteTree() { 679 VectorizableTree.clear(); 680 ScalarToTreeEntry.clear(); 681 MustGather.clear(); 682 ExternalUses.clear(); 683 for (auto &Iter : BlocksSchedules) { 684 BlockScheduling *BS = Iter.second.get(); 685 BS->clear(); 686 } 687 MinBWs.clear(); 688 InstrElementSize.clear(); 689 } 690 691 unsigned getTreeSize() const { return VectorizableTree.size(); } 692 693 /// Perform LICM and CSE on the newly generated gather sequences. 694 void optimizeGatherSequence(); 695 696 /// Reorders the current graph to the most profitable order starting from the 697 /// root node to the leaf nodes. The best order is chosen only from the nodes 698 /// of the same size (vectorization factor). Smaller nodes are considered 699 /// parts of subgraph with smaller VF and they are reordered independently. We 700 /// can make it because we still need to extend smaller nodes to the wider VF 701 /// and we can merge reordering shuffles with the widening shuffles. If \p 702 /// FreeReorder is true, the reordering of the root node is considered free 703 /// and we don't need to shuffle it to restore its order. 704 void reorderTopToBottom(bool FreeReorder); 705 706 /// Reorders the current graph to the most profitable order starting from 707 /// leaves to the root. It allows to rotate small subgraphs and reduce the 708 /// number of reshuffles if the leaf nodes use the same order. In this case we 709 /// can merge the orders and just shuffle user node instead of shuffling its 710 /// operands. Plus, even the leaf nodes have different orders, it allows to 711 /// sink reordering in the graph closer to the root node and merge it later 712 /// during analysis. If \p FreeReorder is true, it means that the root node of 713 /// the graph is free to reorder and no need to restore its original order. 714 void reorderBottomToTop(bool FreeReorder); 715 716 /// \return The vector element size in bits to use when vectorizing the 717 /// expression tree ending at \p V. If V is a store, the size is the width of 718 /// the stored value. Otherwise, the size is the width of the largest loaded 719 /// value reaching V. This method is used by the vectorizer to calculate 720 /// vectorization factors. 721 unsigned getVectorElementSize(Value *V); 722 723 /// Compute the minimum type sizes required to represent the entries in a 724 /// vectorizable tree. 725 void computeMinimumValueSizes(); 726 727 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 728 unsigned getMaxVecRegSize() const { 729 return MaxVecRegSize; 730 } 731 732 // \returns minimum vector register size as set by cl::opt. 733 unsigned getMinVecRegSize() const { 734 return MinVecRegSize; 735 } 736 737 unsigned getMinVF(unsigned Sz) const { 738 return std::max(2U, getMinVecRegSize() / Sz); 739 } 740 741 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 742 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 743 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 744 return MaxVF ? MaxVF : UINT_MAX; 745 } 746 747 /// Check if homogeneous aggregate is isomorphic to some VectorType. 748 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 749 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 750 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 751 /// 752 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 753 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 754 755 /// \returns True if the VectorizableTree is both tiny and not fully 756 /// vectorizable. We do not vectorize such trees. 757 bool isTreeTinyAndNotFullyVectorizable() const; 758 759 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 760 /// can be load combined in the backend. Load combining may not be allowed in 761 /// the IR optimizer, so we do not want to alter the pattern. For example, 762 /// partially transforming a scalar bswap() pattern into vector code is 763 /// effectively impossible for the backend to undo. 764 /// TODO: If load combining is allowed in the IR optimizer, this analysis 765 /// may not be necessary. 766 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 767 768 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 769 /// can be load combined in the backend. Load combining may not be allowed in 770 /// the IR optimizer, so we do not want to alter the pattern. For example, 771 /// partially transforming a scalar bswap() pattern into vector code is 772 /// effectively impossible for the backend to undo. 773 /// TODO: If load combining is allowed in the IR optimizer, this analysis 774 /// may not be necessary. 775 bool isLoadCombineCandidate() const; 776 777 OptimizationRemarkEmitter *getORE() { return ORE; } 778 779 /// This structure holds any data we need about the edges being traversed 780 /// during buildTree_rec(). We keep track of: 781 /// (i) the user TreeEntry index, and 782 /// (ii) the index of the edge. 783 struct EdgeInfo { 784 EdgeInfo() = default; 785 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 786 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 787 /// The user TreeEntry. 788 TreeEntry *UserTE = nullptr; 789 /// The operand index of the use. 790 unsigned EdgeIdx = UINT_MAX; 791 #ifndef NDEBUG 792 friend inline raw_ostream &operator<<(raw_ostream &OS, 793 const BoUpSLP::EdgeInfo &EI) { 794 EI.dump(OS); 795 return OS; 796 } 797 /// Debug print. 798 void dump(raw_ostream &OS) const { 799 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 800 << " EdgeIdx:" << EdgeIdx << "}"; 801 } 802 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 803 #endif 804 }; 805 806 /// A helper data structure to hold the operands of a vector of instructions. 807 /// This supports a fixed vector length for all operand vectors. 808 class VLOperands { 809 /// For each operand we need (i) the value, and (ii) the opcode that it 810 /// would be attached to if the expression was in a left-linearized form. 811 /// This is required to avoid illegal operand reordering. 812 /// For example: 813 /// \verbatim 814 /// 0 Op1 815 /// |/ 816 /// Op1 Op2 Linearized + Op2 817 /// \ / ----------> |/ 818 /// - - 819 /// 820 /// Op1 - Op2 (0 + Op1) - Op2 821 /// \endverbatim 822 /// 823 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 824 /// 825 /// Another way to think of this is to track all the operations across the 826 /// path from the operand all the way to the root of the tree and to 827 /// calculate the operation that corresponds to this path. For example, the 828 /// path from Op2 to the root crosses the RHS of the '-', therefore the 829 /// corresponding operation is a '-' (which matches the one in the 830 /// linearized tree, as shown above). 831 /// 832 /// For lack of a better term, we refer to this operation as Accumulated 833 /// Path Operation (APO). 834 struct OperandData { 835 OperandData() = default; 836 OperandData(Value *V, bool APO, bool IsUsed) 837 : V(V), APO(APO), IsUsed(IsUsed) {} 838 /// The operand value. 839 Value *V = nullptr; 840 /// TreeEntries only allow a single opcode, or an alternate sequence of 841 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 842 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 843 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 844 /// (e.g., Add/Mul) 845 bool APO = false; 846 /// Helper data for the reordering function. 847 bool IsUsed = false; 848 }; 849 850 /// During operand reordering, we are trying to select the operand at lane 851 /// that matches best with the operand at the neighboring lane. Our 852 /// selection is based on the type of value we are looking for. For example, 853 /// if the neighboring lane has a load, we need to look for a load that is 854 /// accessing a consecutive address. These strategies are summarized in the 855 /// 'ReorderingMode' enumerator. 856 enum class ReorderingMode { 857 Load, ///< Matching loads to consecutive memory addresses 858 Opcode, ///< Matching instructions based on opcode (same or alternate) 859 Constant, ///< Matching constants 860 Splat, ///< Matching the same instruction multiple times (broadcast) 861 Failed, ///< We failed to create a vectorizable group 862 }; 863 864 using OperandDataVec = SmallVector<OperandData, 2>; 865 866 /// A vector of operand vectors. 867 SmallVector<OperandDataVec, 4> OpsVec; 868 869 const DataLayout &DL; 870 ScalarEvolution &SE; 871 const BoUpSLP &R; 872 873 /// \returns the operand data at \p OpIdx and \p Lane. 874 OperandData &getData(unsigned OpIdx, unsigned Lane) { 875 return OpsVec[OpIdx][Lane]; 876 } 877 878 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 879 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 880 return OpsVec[OpIdx][Lane]; 881 } 882 883 /// Clears the used flag for all entries. 884 void clearUsed() { 885 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 886 OpIdx != NumOperands; ++OpIdx) 887 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 888 ++Lane) 889 OpsVec[OpIdx][Lane].IsUsed = false; 890 } 891 892 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 893 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 894 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 895 } 896 897 // The hard-coded scores listed here are not very important. When computing 898 // the scores of matching one sub-tree with another, we are basically 899 // counting the number of values that are matching. So even if all scores 900 // are set to 1, we would still get a decent matching result. 901 // However, sometimes we have to break ties. For example we may have to 902 // choose between matching loads vs matching opcodes. This is what these 903 // scores are helping us with: they provide the order of preference. 904 905 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 906 static const int ScoreConsecutiveLoads = 3; 907 /// ExtractElementInst from same vector and consecutive indexes. 908 static const int ScoreConsecutiveExtracts = 3; 909 /// Constants. 910 static const int ScoreConstants = 2; 911 /// Instructions with the same opcode. 912 static const int ScoreSameOpcode = 2; 913 /// Instructions with alt opcodes (e.g, add + sub). 914 static const int ScoreAltOpcodes = 1; 915 /// Identical instructions (a.k.a. splat or broadcast). 916 static const int ScoreSplat = 1; 917 /// Matching with an undef is preferable to failing. 918 static const int ScoreUndef = 1; 919 /// Score for failing to find a decent match. 920 static const int ScoreFail = 0; 921 /// User exteranl to the vectorized code. 922 static const int ExternalUseCost = 1; 923 /// The user is internal but in a different lane. 924 static const int UserInDiffLaneCost = ExternalUseCost; 925 926 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 927 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 928 ScalarEvolution &SE) { 929 auto *LI1 = dyn_cast<LoadInst>(V1); 930 auto *LI2 = dyn_cast<LoadInst>(V2); 931 if (LI1 && LI2) { 932 if (LI1->getParent() != LI2->getParent()) 933 return VLOperands::ScoreFail; 934 935 Optional<int> Dist = getPointersDiff( 936 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 937 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 938 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 939 : VLOperands::ScoreFail; 940 } 941 942 auto *C1 = dyn_cast<Constant>(V1); 943 auto *C2 = dyn_cast<Constant>(V2); 944 if (C1 && C2) 945 return VLOperands::ScoreConstants; 946 947 // Extracts from consecutive indexes of the same vector better score as 948 // the extracts could be optimized away. 949 Value *EV; 950 ConstantInt *Ex1Idx, *Ex2Idx; 951 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 952 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 953 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 954 return VLOperands::ScoreConsecutiveExtracts; 955 956 auto *I1 = dyn_cast<Instruction>(V1); 957 auto *I2 = dyn_cast<Instruction>(V2); 958 if (I1 && I2) { 959 if (I1 == I2) 960 return VLOperands::ScoreSplat; 961 InstructionsState S = getSameOpcode({I1, I2}); 962 // Note: Only consider instructions with <= 2 operands to avoid 963 // complexity explosion. 964 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 965 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 966 : VLOperands::ScoreSameOpcode; 967 } 968 969 if (isa<UndefValue>(V2)) 970 return VLOperands::ScoreUndef; 971 972 return VLOperands::ScoreFail; 973 } 974 975 /// Holds the values and their lane that are taking part in the look-ahead 976 /// score calculation. This is used in the external uses cost calculation. 977 SmallDenseMap<Value *, int> InLookAheadValues; 978 979 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 980 /// either external to the vectorized code, or require shuffling. 981 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 982 const std::pair<Value *, int> &RHS) { 983 int Cost = 0; 984 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 985 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 986 Value *V = Values[Idx].first; 987 if (isa<Constant>(V)) { 988 // Since this is a function pass, it doesn't make semantic sense to 989 // walk the users of a subclass of Constant. The users could be in 990 // another function, or even another module that happens to be in 991 // the same LLVMContext. 992 continue; 993 } 994 995 // Calculate the absolute lane, using the minimum relative lane of LHS 996 // and RHS as base and Idx as the offset. 997 int Ln = std::min(LHS.second, RHS.second) + Idx; 998 assert(Ln >= 0 && "Bad lane calculation"); 999 unsigned UsersBudget = LookAheadUsersBudget; 1000 for (User *U : V->users()) { 1001 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1002 // The user is in the VectorizableTree. Check if we need to insert. 1003 auto It = llvm::find(UserTE->Scalars, U); 1004 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1005 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1006 assert(UserLn >= 0 && "Bad lane"); 1007 if (UserLn != Ln) 1008 Cost += UserInDiffLaneCost; 1009 } else { 1010 // Check if the user is in the look-ahead code. 1011 auto It2 = InLookAheadValues.find(U); 1012 if (It2 != InLookAheadValues.end()) { 1013 // The user is in the look-ahead code. Check the lane. 1014 if (It2->second != Ln) 1015 Cost += UserInDiffLaneCost; 1016 } else { 1017 // The user is neither in SLP tree nor in the look-ahead code. 1018 Cost += ExternalUseCost; 1019 } 1020 } 1021 // Limit the number of visited uses to cap compilation time. 1022 if (--UsersBudget == 0) 1023 break; 1024 } 1025 } 1026 return Cost; 1027 } 1028 1029 /// Go through the operands of \p LHS and \p RHS recursively until \p 1030 /// MaxLevel, and return the cummulative score. For example: 1031 /// \verbatim 1032 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1033 /// \ / \ / \ / \ / 1034 /// + + + + 1035 /// G1 G2 G3 G4 1036 /// \endverbatim 1037 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1038 /// each level recursively, accumulating the score. It starts from matching 1039 /// the additions at level 0, then moves on to the loads (level 1). The 1040 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1041 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1042 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1043 /// Please note that the order of the operands does not matter, as we 1044 /// evaluate the score of all profitable combinations of operands. In 1045 /// other words the score of G1 and G4 is the same as G1 and G2. This 1046 /// heuristic is based on ideas described in: 1047 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1048 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1049 /// Luís F. W. Góes 1050 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1051 const std::pair<Value *, int> &RHS, int CurrLevel, 1052 int MaxLevel) { 1053 1054 Value *V1 = LHS.first; 1055 Value *V2 = RHS.first; 1056 // Get the shallow score of V1 and V2. 1057 int ShallowScoreAtThisLevel = 1058 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1059 getExternalUsesCost(LHS, RHS)); 1060 int Lane1 = LHS.second; 1061 int Lane2 = RHS.second; 1062 1063 // If reached MaxLevel, 1064 // or if V1 and V2 are not instructions, 1065 // or if they are SPLAT, 1066 // or if they are not consecutive, early return the current cost. 1067 auto *I1 = dyn_cast<Instruction>(V1); 1068 auto *I2 = dyn_cast<Instruction>(V2); 1069 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1070 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1071 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1072 return ShallowScoreAtThisLevel; 1073 assert(I1 && I2 && "Should have early exited."); 1074 1075 // Keep track of in-tree values for determining the external-use cost. 1076 InLookAheadValues[V1] = Lane1; 1077 InLookAheadValues[V2] = Lane2; 1078 1079 // Contains the I2 operand indexes that got matched with I1 operands. 1080 SmallSet<unsigned, 4> Op2Used; 1081 1082 // Recursion towards the operands of I1 and I2. We are trying all possbile 1083 // operand pairs, and keeping track of the best score. 1084 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1085 OpIdx1 != NumOperands1; ++OpIdx1) { 1086 // Try to pair op1I with the best operand of I2. 1087 int MaxTmpScore = 0; 1088 unsigned MaxOpIdx2 = 0; 1089 bool FoundBest = false; 1090 // If I2 is commutative try all combinations. 1091 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1092 unsigned ToIdx = isCommutative(I2) 1093 ? I2->getNumOperands() 1094 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1095 assert(FromIdx <= ToIdx && "Bad index"); 1096 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1097 // Skip operands already paired with OpIdx1. 1098 if (Op2Used.count(OpIdx2)) 1099 continue; 1100 // Recursively calculate the cost at each level 1101 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1102 {I2->getOperand(OpIdx2), Lane2}, 1103 CurrLevel + 1, MaxLevel); 1104 // Look for the best score. 1105 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1106 MaxTmpScore = TmpScore; 1107 MaxOpIdx2 = OpIdx2; 1108 FoundBest = true; 1109 } 1110 } 1111 if (FoundBest) { 1112 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1113 Op2Used.insert(MaxOpIdx2); 1114 ShallowScoreAtThisLevel += MaxTmpScore; 1115 } 1116 } 1117 return ShallowScoreAtThisLevel; 1118 } 1119 1120 /// \Returns the look-ahead score, which tells us how much the sub-trees 1121 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1122 /// score. This helps break ties in an informed way when we cannot decide on 1123 /// the order of the operands by just considering the immediate 1124 /// predecessors. 1125 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1126 const std::pair<Value *, int> &RHS) { 1127 InLookAheadValues.clear(); 1128 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1129 } 1130 1131 // Search all operands in Ops[*][Lane] for the one that matches best 1132 // Ops[OpIdx][LastLane] and return its opreand index. 1133 // If no good match can be found, return None. 1134 Optional<unsigned> 1135 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1136 ArrayRef<ReorderingMode> ReorderingModes) { 1137 unsigned NumOperands = getNumOperands(); 1138 1139 // The operand of the previous lane at OpIdx. 1140 Value *OpLastLane = getData(OpIdx, LastLane).V; 1141 1142 // Our strategy mode for OpIdx. 1143 ReorderingMode RMode = ReorderingModes[OpIdx]; 1144 1145 // The linearized opcode of the operand at OpIdx, Lane. 1146 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1147 1148 // The best operand index and its score. 1149 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1150 // are using the score to differentiate between the two. 1151 struct BestOpData { 1152 Optional<unsigned> Idx = None; 1153 unsigned Score = 0; 1154 } BestOp; 1155 1156 // Iterate through all unused operands and look for the best. 1157 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1158 // Get the operand at Idx and Lane. 1159 OperandData &OpData = getData(Idx, Lane); 1160 Value *Op = OpData.V; 1161 bool OpAPO = OpData.APO; 1162 1163 // Skip already selected operands. 1164 if (OpData.IsUsed) 1165 continue; 1166 1167 // Skip if we are trying to move the operand to a position with a 1168 // different opcode in the linearized tree form. This would break the 1169 // semantics. 1170 if (OpAPO != OpIdxAPO) 1171 continue; 1172 1173 // Look for an operand that matches the current mode. 1174 switch (RMode) { 1175 case ReorderingMode::Load: 1176 case ReorderingMode::Constant: 1177 case ReorderingMode::Opcode: { 1178 bool LeftToRight = Lane > LastLane; 1179 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1180 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1181 unsigned Score = 1182 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1183 if (Score > BestOp.Score) { 1184 BestOp.Idx = Idx; 1185 BestOp.Score = Score; 1186 } 1187 break; 1188 } 1189 case ReorderingMode::Splat: 1190 if (Op == OpLastLane) 1191 BestOp.Idx = Idx; 1192 break; 1193 case ReorderingMode::Failed: 1194 return None; 1195 } 1196 } 1197 1198 if (BestOp.Idx) { 1199 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1200 return BestOp.Idx; 1201 } 1202 // If we could not find a good match return None. 1203 return None; 1204 } 1205 1206 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1207 /// reordering from. This is the one which has the least number of operands 1208 /// that can freely move about. 1209 unsigned getBestLaneToStartReordering() const { 1210 unsigned BestLane = 0; 1211 unsigned Min = UINT_MAX; 1212 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1213 ++Lane) { 1214 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1215 if (NumFreeOps < Min) { 1216 Min = NumFreeOps; 1217 BestLane = Lane; 1218 } 1219 } 1220 return BestLane; 1221 } 1222 1223 /// \Returns the maximum number of operands that are allowed to be reordered 1224 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1225 /// start operand reordering. 1226 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1227 unsigned CntTrue = 0; 1228 unsigned NumOperands = getNumOperands(); 1229 // Operands with the same APO can be reordered. We therefore need to count 1230 // how many of them we have for each APO, like this: Cnt[APO] = x. 1231 // Since we only have two APOs, namely true and false, we can avoid using 1232 // a map. Instead we can simply count the number of operands that 1233 // correspond to one of them (in this case the 'true' APO), and calculate 1234 // the other by subtracting it from the total number of operands. 1235 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1236 if (getData(OpIdx, Lane).APO) 1237 ++CntTrue; 1238 unsigned CntFalse = NumOperands - CntTrue; 1239 return std::max(CntTrue, CntFalse); 1240 } 1241 1242 /// Go through the instructions in VL and append their operands. 1243 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1244 assert(!VL.empty() && "Bad VL"); 1245 assert((empty() || VL.size() == getNumLanes()) && 1246 "Expected same number of lanes"); 1247 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1248 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1249 OpsVec.resize(NumOperands); 1250 unsigned NumLanes = VL.size(); 1251 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1252 OpsVec[OpIdx].resize(NumLanes); 1253 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1254 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1255 // Our tree has just 3 nodes: the root and two operands. 1256 // It is therefore trivial to get the APO. We only need to check the 1257 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1258 // RHS operand. The LHS operand of both add and sub is never attached 1259 // to an inversese operation in the linearized form, therefore its APO 1260 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1261 1262 // Since operand reordering is performed on groups of commutative 1263 // operations or alternating sequences (e.g., +, -), we can safely 1264 // tell the inverse operations by checking commutativity. 1265 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1266 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1267 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1268 APO, false}; 1269 } 1270 } 1271 } 1272 1273 /// \returns the number of operands. 1274 unsigned getNumOperands() const { return OpsVec.size(); } 1275 1276 /// \returns the number of lanes. 1277 unsigned getNumLanes() const { return OpsVec[0].size(); } 1278 1279 /// \returns the operand value at \p OpIdx and \p Lane. 1280 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1281 return getData(OpIdx, Lane).V; 1282 } 1283 1284 /// \returns true if the data structure is empty. 1285 bool empty() const { return OpsVec.empty(); } 1286 1287 /// Clears the data. 1288 void clear() { OpsVec.clear(); } 1289 1290 /// \Returns true if there are enough operands identical to \p Op to fill 1291 /// the whole vector. 1292 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1293 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1294 bool OpAPO = getData(OpIdx, Lane).APO; 1295 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1296 if (Ln == Lane) 1297 continue; 1298 // This is set to true if we found a candidate for broadcast at Lane. 1299 bool FoundCandidate = false; 1300 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1301 OperandData &Data = getData(OpI, Ln); 1302 if (Data.APO != OpAPO || Data.IsUsed) 1303 continue; 1304 if (Data.V == Op) { 1305 FoundCandidate = true; 1306 Data.IsUsed = true; 1307 break; 1308 } 1309 } 1310 if (!FoundCandidate) 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 public: 1317 /// Initialize with all the operands of the instruction vector \p RootVL. 1318 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1319 ScalarEvolution &SE, const BoUpSLP &R) 1320 : DL(DL), SE(SE), R(R) { 1321 // Append all the operands of RootVL. 1322 appendOperandsOfVL(RootVL); 1323 } 1324 1325 /// \Returns a value vector with the operands across all lanes for the 1326 /// opearnd at \p OpIdx. 1327 ValueList getVL(unsigned OpIdx) const { 1328 ValueList OpVL(OpsVec[OpIdx].size()); 1329 assert(OpsVec[OpIdx].size() == getNumLanes() && 1330 "Expected same num of lanes across all operands"); 1331 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1332 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1333 return OpVL; 1334 } 1335 1336 // Performs operand reordering for 2 or more operands. 1337 // The original operands are in OrigOps[OpIdx][Lane]. 1338 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1339 void reorder() { 1340 unsigned NumOperands = getNumOperands(); 1341 unsigned NumLanes = getNumLanes(); 1342 // Each operand has its own mode. We are using this mode to help us select 1343 // the instructions for each lane, so that they match best with the ones 1344 // we have selected so far. 1345 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1346 1347 // This is a greedy single-pass algorithm. We are going over each lane 1348 // once and deciding on the best order right away with no back-tracking. 1349 // However, in order to increase its effectiveness, we start with the lane 1350 // that has operands that can move the least. For example, given the 1351 // following lanes: 1352 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1353 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1354 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1355 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1356 // we will start at Lane 1, since the operands of the subtraction cannot 1357 // be reordered. Then we will visit the rest of the lanes in a circular 1358 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1359 1360 // Find the first lane that we will start our search from. 1361 unsigned FirstLane = getBestLaneToStartReordering(); 1362 1363 // Initialize the modes. 1364 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1365 Value *OpLane0 = getValue(OpIdx, FirstLane); 1366 // Keep track if we have instructions with all the same opcode on one 1367 // side. 1368 if (isa<LoadInst>(OpLane0)) 1369 ReorderingModes[OpIdx] = ReorderingMode::Load; 1370 else if (isa<Instruction>(OpLane0)) { 1371 // Check if OpLane0 should be broadcast. 1372 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1373 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1374 else 1375 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1376 } 1377 else if (isa<Constant>(OpLane0)) 1378 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1379 else if (isa<Argument>(OpLane0)) 1380 // Our best hope is a Splat. It may save some cost in some cases. 1381 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1382 else 1383 // NOTE: This should be unreachable. 1384 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1385 } 1386 1387 // If the initial strategy fails for any of the operand indexes, then we 1388 // perform reordering again in a second pass. This helps avoid assigning 1389 // high priority to the failed strategy, and should improve reordering for 1390 // the non-failed operand indexes. 1391 for (int Pass = 0; Pass != 2; ++Pass) { 1392 // Skip the second pass if the first pass did not fail. 1393 bool StrategyFailed = false; 1394 // Mark all operand data as free to use. 1395 clearUsed(); 1396 // We keep the original operand order for the FirstLane, so reorder the 1397 // rest of the lanes. We are visiting the nodes in a circular fashion, 1398 // using FirstLane as the center point and increasing the radius 1399 // distance. 1400 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1401 // Visit the lane on the right and then the lane on the left. 1402 for (int Direction : {+1, -1}) { 1403 int Lane = FirstLane + Direction * Distance; 1404 if (Lane < 0 || Lane >= (int)NumLanes) 1405 continue; 1406 int LastLane = Lane - Direction; 1407 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1408 "Out of bounds"); 1409 // Look for a good match for each operand. 1410 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1411 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1412 Optional<unsigned> BestIdx = 1413 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1414 // By not selecting a value, we allow the operands that follow to 1415 // select a better matching value. We will get a non-null value in 1416 // the next run of getBestOperand(). 1417 if (BestIdx) { 1418 // Swap the current operand with the one returned by 1419 // getBestOperand(). 1420 swap(OpIdx, BestIdx.getValue(), Lane); 1421 } else { 1422 // We failed to find a best operand, set mode to 'Failed'. 1423 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1424 // Enable the second pass. 1425 StrategyFailed = true; 1426 } 1427 } 1428 } 1429 } 1430 // Skip second pass if the strategy did not fail. 1431 if (!StrategyFailed) 1432 break; 1433 } 1434 } 1435 1436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1437 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1438 switch (RMode) { 1439 case ReorderingMode::Load: 1440 return "Load"; 1441 case ReorderingMode::Opcode: 1442 return "Opcode"; 1443 case ReorderingMode::Constant: 1444 return "Constant"; 1445 case ReorderingMode::Splat: 1446 return "Splat"; 1447 case ReorderingMode::Failed: 1448 return "Failed"; 1449 } 1450 llvm_unreachable("Unimplemented Reordering Type"); 1451 } 1452 1453 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1454 raw_ostream &OS) { 1455 return OS << getModeStr(RMode); 1456 } 1457 1458 /// Debug print. 1459 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1460 printMode(RMode, dbgs()); 1461 } 1462 1463 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1464 return printMode(RMode, OS); 1465 } 1466 1467 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1468 const unsigned Indent = 2; 1469 unsigned Cnt = 0; 1470 for (const OperandDataVec &OpDataVec : OpsVec) { 1471 OS << "Operand " << Cnt++ << "\n"; 1472 for (const OperandData &OpData : OpDataVec) { 1473 OS.indent(Indent) << "{"; 1474 if (Value *V = OpData.V) 1475 OS << *V; 1476 else 1477 OS << "null"; 1478 OS << ", APO:" << OpData.APO << "}\n"; 1479 } 1480 OS << "\n"; 1481 } 1482 return OS; 1483 } 1484 1485 /// Debug print. 1486 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1487 #endif 1488 }; 1489 1490 /// Checks if the instruction is marked for deletion. 1491 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1492 1493 /// Marks values operands for later deletion by replacing them with Undefs. 1494 void eraseInstructions(ArrayRef<Value *> AV); 1495 1496 ~BoUpSLP(); 1497 1498 private: 1499 /// Checks if all users of \p I are the part of the vectorization tree. 1500 bool areAllUsersVectorized(Instruction *I, 1501 ArrayRef<Value *> VectorizedVals) const; 1502 1503 /// \returns the cost of the vectorizable entry. 1504 InstructionCost getEntryCost(const TreeEntry *E, 1505 ArrayRef<Value *> VectorizedVals); 1506 1507 /// This is the recursive part of buildTree. 1508 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1509 const EdgeInfo &EI); 1510 1511 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1512 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1513 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1514 /// returns false, setting \p CurrentOrder to either an empty vector or a 1515 /// non-identity permutation that allows to reuse extract instructions. 1516 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1517 SmallVectorImpl<unsigned> &CurrentOrder) const; 1518 1519 /// Vectorize a single entry in the tree. 1520 Value *vectorizeTree(TreeEntry *E); 1521 1522 /// Vectorize a single entry in the tree, starting in \p VL. 1523 Value *vectorizeTree(ArrayRef<Value *> VL); 1524 1525 /// \returns the scalarization cost for this type. Scalarization in this 1526 /// context means the creation of vectors from a group of scalars. 1527 InstructionCost 1528 getGatherCost(FixedVectorType *Ty, 1529 const DenseSet<unsigned> &ShuffledIndices) const; 1530 1531 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1532 /// tree entries. 1533 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1534 /// previous tree entries. \p Mask is filled with the shuffle mask. 1535 Optional<TargetTransformInfo::ShuffleKind> 1536 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1537 SmallVectorImpl<const TreeEntry *> &Entries); 1538 1539 /// \returns the scalarization cost for this list of values. Assuming that 1540 /// this subtree gets vectorized, we may need to extract the values from the 1541 /// roots. This method calculates the cost of extracting the values. 1542 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1543 1544 /// Set the Builder insert point to one after the last instruction in 1545 /// the bundle 1546 void setInsertPointAfterBundle(const TreeEntry *E); 1547 1548 /// \returns a vector from a collection of scalars in \p VL. 1549 Value *gather(ArrayRef<Value *> VL); 1550 1551 /// \returns whether the VectorizableTree is fully vectorizable and will 1552 /// be beneficial even the tree height is tiny. 1553 bool isFullyVectorizableTinyTree() const; 1554 1555 /// Reorder commutative or alt operands to get better probability of 1556 /// generating vectorized code. 1557 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1558 SmallVectorImpl<Value *> &Left, 1559 SmallVectorImpl<Value *> &Right, 1560 const DataLayout &DL, 1561 ScalarEvolution &SE, 1562 const BoUpSLP &R); 1563 struct TreeEntry { 1564 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1565 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1566 1567 /// \returns true if the scalars in VL are equal to this entry. 1568 bool isSame(ArrayRef<Value *> VL) const { 1569 if (VL.size() == Scalars.size()) 1570 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1571 return VL.size() == ReuseShuffleIndices.size() && 1572 std::equal( 1573 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1574 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1575 } 1576 1577 /// A vector of scalars. 1578 ValueList Scalars; 1579 1580 /// The Scalars are vectorized into this value. It is initialized to Null. 1581 Value *VectorizedValue = nullptr; 1582 1583 /// Do we need to gather this sequence or vectorize it 1584 /// (either with vector instruction or with scatter/gather 1585 /// intrinsics for store/load)? 1586 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1587 EntryState State; 1588 1589 /// Does this sequence require some shuffling? 1590 SmallVector<int, 4> ReuseShuffleIndices; 1591 1592 /// Does this entry require reordering? 1593 SmallVector<unsigned, 4> ReorderIndices; 1594 1595 /// Points back to the VectorizableTree. 1596 /// 1597 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1598 /// to be a pointer and needs to be able to initialize the child iterator. 1599 /// Thus we need a reference back to the container to translate the indices 1600 /// to entries. 1601 VecTreeTy &Container; 1602 1603 /// The TreeEntry index containing the user of this entry. We can actually 1604 /// have multiple users so the data structure is not truly a tree. 1605 SmallVector<EdgeInfo, 1> UserTreeIndices; 1606 1607 /// The index of this treeEntry in VectorizableTree. 1608 int Idx = -1; 1609 1610 private: 1611 /// The operands of each instruction in each lane Operands[op_index][lane]. 1612 /// Note: This helps avoid the replication of the code that performs the 1613 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1614 SmallVector<ValueList, 2> Operands; 1615 1616 /// The main/alternate instruction. 1617 Instruction *MainOp = nullptr; 1618 Instruction *AltOp = nullptr; 1619 1620 public: 1621 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1622 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1623 if (Operands.size() < OpIdx + 1) 1624 Operands.resize(OpIdx + 1); 1625 assert(Operands[OpIdx].empty() && "Already resized?"); 1626 Operands[OpIdx].resize(Scalars.size()); 1627 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1628 Operands[OpIdx][Lane] = OpVL[Lane]; 1629 } 1630 1631 /// Set the operands of this bundle in their original order. 1632 void setOperandsInOrder() { 1633 assert(Operands.empty() && "Already initialized?"); 1634 auto *I0 = cast<Instruction>(Scalars[0]); 1635 Operands.resize(I0->getNumOperands()); 1636 unsigned NumLanes = Scalars.size(); 1637 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1638 OpIdx != NumOperands; ++OpIdx) { 1639 Operands[OpIdx].resize(NumLanes); 1640 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1641 auto *I = cast<Instruction>(Scalars[Lane]); 1642 assert(I->getNumOperands() == NumOperands && 1643 "Expected same number of operands"); 1644 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1645 } 1646 } 1647 } 1648 1649 /// Reorders operands of the node to the given mask \p Mask. 1650 void reorderOperands(ArrayRef<int> Mask) { 1651 for (ValueList &Operand : Operands) 1652 reorderScalars(Operand, ReorderIndices, Mask); 1653 } 1654 1655 /// \returns the \p OpIdx operand of this TreeEntry. 1656 ValueList &getOperand(unsigned OpIdx) { 1657 assert(OpIdx < Operands.size() && "Off bounds"); 1658 return Operands[OpIdx]; 1659 } 1660 1661 /// \returns the number of operands. 1662 unsigned getNumOperands() const { return Operands.size(); } 1663 1664 /// \return the single \p OpIdx operand. 1665 Value *getSingleOperand(unsigned OpIdx) const { 1666 assert(OpIdx < Operands.size() && "Off bounds"); 1667 assert(!Operands[OpIdx].empty() && "No operand available"); 1668 return Operands[OpIdx][0]; 1669 } 1670 1671 /// Some of the instructions in the list have alternate opcodes. 1672 bool isAltShuffle() const { 1673 return getOpcode() != getAltOpcode(); 1674 } 1675 1676 bool isOpcodeOrAlt(Instruction *I) const { 1677 unsigned CheckedOpcode = I->getOpcode(); 1678 return (getOpcode() == CheckedOpcode || 1679 getAltOpcode() == CheckedOpcode); 1680 } 1681 1682 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1683 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1684 /// \p OpValue. 1685 Value *isOneOf(Value *Op) const { 1686 auto *I = dyn_cast<Instruction>(Op); 1687 if (I && isOpcodeOrAlt(I)) 1688 return Op; 1689 return MainOp; 1690 } 1691 1692 void setOperations(const InstructionsState &S) { 1693 MainOp = S.MainOp; 1694 AltOp = S.AltOp; 1695 } 1696 1697 Instruction *getMainOp() const { 1698 return MainOp; 1699 } 1700 1701 Instruction *getAltOp() const { 1702 return AltOp; 1703 } 1704 1705 /// The main/alternate opcodes for the list of instructions. 1706 unsigned getOpcode() const { 1707 return MainOp ? MainOp->getOpcode() : 0; 1708 } 1709 1710 unsigned getAltOpcode() const { 1711 return AltOp ? AltOp->getOpcode() : 0; 1712 } 1713 1714 /// Update operations state of this entry if reorder occurred. 1715 bool updateStateIfReorder() { 1716 if (ReorderIndices.empty()) 1717 return false; 1718 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1719 setOperations(S); 1720 return true; 1721 } 1722 /// When ReuseShuffleIndices is empty it just returns position of \p V 1723 /// within vector of Scalars. Otherwise, try to remap on its reuse index. 1724 int findLaneForValue(Value *V) const { 1725 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1726 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1727 if (!ReuseShuffleIndices.empty()) { 1728 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1729 find(ReuseShuffleIndices, FoundLane)); 1730 } 1731 return FoundLane; 1732 } 1733 1734 #ifndef NDEBUG 1735 /// Debug printer. 1736 LLVM_DUMP_METHOD void dump() const { 1737 dbgs() << Idx << ".\n"; 1738 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1739 dbgs() << "Operand " << OpI << ":\n"; 1740 for (const Value *V : Operands[OpI]) 1741 dbgs().indent(2) << *V << "\n"; 1742 } 1743 dbgs() << "Scalars: \n"; 1744 for (Value *V : Scalars) 1745 dbgs().indent(2) << *V << "\n"; 1746 dbgs() << "State: "; 1747 switch (State) { 1748 case Vectorize: 1749 dbgs() << "Vectorize\n"; 1750 break; 1751 case ScatterVectorize: 1752 dbgs() << "ScatterVectorize\n"; 1753 break; 1754 case NeedToGather: 1755 dbgs() << "NeedToGather\n"; 1756 break; 1757 } 1758 dbgs() << "MainOp: "; 1759 if (MainOp) 1760 dbgs() << *MainOp << "\n"; 1761 else 1762 dbgs() << "NULL\n"; 1763 dbgs() << "AltOp: "; 1764 if (AltOp) 1765 dbgs() << *AltOp << "\n"; 1766 else 1767 dbgs() << "NULL\n"; 1768 dbgs() << "VectorizedValue: "; 1769 if (VectorizedValue) 1770 dbgs() << *VectorizedValue << "\n"; 1771 else 1772 dbgs() << "NULL\n"; 1773 dbgs() << "ReuseShuffleIndices: "; 1774 if (ReuseShuffleIndices.empty()) 1775 dbgs() << "Empty"; 1776 else 1777 for (unsigned ReuseIdx : ReuseShuffleIndices) 1778 dbgs() << ReuseIdx << ", "; 1779 dbgs() << "\n"; 1780 dbgs() << "ReorderIndices: "; 1781 for (unsigned ReorderIdx : ReorderIndices) 1782 dbgs() << ReorderIdx << ", "; 1783 dbgs() << "\n"; 1784 dbgs() << "UserTreeIndices: "; 1785 for (const auto &EInfo : UserTreeIndices) 1786 dbgs() << EInfo << ", "; 1787 dbgs() << "\n"; 1788 } 1789 #endif 1790 }; 1791 1792 #ifndef NDEBUG 1793 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1794 InstructionCost VecCost, 1795 InstructionCost ScalarCost) const { 1796 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1797 dbgs() << "SLP: Costs:\n"; 1798 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1799 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1800 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1801 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1802 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1803 } 1804 #endif 1805 1806 /// Create a new VectorizableTree entry. 1807 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1808 const InstructionsState &S, 1809 const EdgeInfo &UserTreeIdx, 1810 ArrayRef<unsigned> ReuseShuffleIndices = None, 1811 ArrayRef<unsigned> ReorderIndices = None) { 1812 TreeEntry::EntryState EntryState = 1813 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1814 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1815 ReuseShuffleIndices, ReorderIndices); 1816 } 1817 1818 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1819 TreeEntry::EntryState EntryState, 1820 Optional<ScheduleData *> Bundle, 1821 const InstructionsState &S, 1822 const EdgeInfo &UserTreeIdx, 1823 ArrayRef<unsigned> ReuseShuffleIndices = None, 1824 ArrayRef<unsigned> ReorderIndices = None) { 1825 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1826 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1827 "Need to vectorize gather entry?"); 1828 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1829 TreeEntry *Last = VectorizableTree.back().get(); 1830 Last->Idx = VectorizableTree.size() - 1; 1831 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1832 Last->State = EntryState; 1833 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1834 ReuseShuffleIndices.end()); 1835 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1836 Last->setOperations(S); 1837 if (Last->State != TreeEntry::NeedToGather) { 1838 for (Value *V : VL) { 1839 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1840 ScalarToTreeEntry[V] = Last; 1841 } 1842 // Update the scheduler bundle to point to this TreeEntry. 1843 unsigned Lane = 0; 1844 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1845 BundleMember = BundleMember->NextInBundle) { 1846 BundleMember->TE = Last; 1847 BundleMember->Lane = Lane; 1848 ++Lane; 1849 } 1850 assert((!Bundle.getValue() || Lane == VL.size()) && 1851 "Bundle and VL out of sync"); 1852 } else { 1853 MustGather.insert(VL.begin(), VL.end()); 1854 } 1855 1856 if (UserTreeIdx.UserTE) 1857 Last->UserTreeIndices.push_back(UserTreeIdx); 1858 1859 return Last; 1860 } 1861 1862 /// -- Vectorization State -- 1863 /// Holds all of the tree entries. 1864 TreeEntry::VecTreeTy VectorizableTree; 1865 1866 #ifndef NDEBUG 1867 /// Debug printer. 1868 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1869 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1870 VectorizableTree[Id]->dump(); 1871 dbgs() << "\n"; 1872 } 1873 } 1874 #endif 1875 1876 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1877 1878 const TreeEntry *getTreeEntry(Value *V) const { 1879 return ScalarToTreeEntry.lookup(V); 1880 } 1881 1882 /// Maps a specific scalar to its tree entry. 1883 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1884 1885 /// Maps a value to the proposed vectorizable size. 1886 SmallDenseMap<Value *, unsigned> InstrElementSize; 1887 1888 /// A list of scalars that we found that we need to keep as scalars. 1889 ValueSet MustGather; 1890 1891 /// This POD struct describes one external user in the vectorized tree. 1892 struct ExternalUser { 1893 ExternalUser(Value *S, llvm::User *U, int L) 1894 : Scalar(S), User(U), Lane(L) {} 1895 1896 // Which scalar in our function. 1897 Value *Scalar; 1898 1899 // Which user that uses the scalar. 1900 llvm::User *User; 1901 1902 // Which lane does the scalar belong to. 1903 int Lane; 1904 }; 1905 using UserList = SmallVector<ExternalUser, 16>; 1906 1907 /// Checks if two instructions may access the same memory. 1908 /// 1909 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1910 /// is invariant in the calling loop. 1911 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1912 Instruction *Inst2) { 1913 // First check if the result is already in the cache. 1914 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1915 Optional<bool> &result = AliasCache[key]; 1916 if (result.hasValue()) { 1917 return result.getValue(); 1918 } 1919 MemoryLocation Loc2 = getLocation(Inst2, AA); 1920 bool aliased = true; 1921 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1922 // Do the alias check. 1923 aliased = !AA->isNoAlias(Loc1, Loc2); 1924 } 1925 // Store the result in the cache. 1926 result = aliased; 1927 return aliased; 1928 } 1929 1930 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1931 1932 /// Cache for alias results. 1933 /// TODO: consider moving this to the AliasAnalysis itself. 1934 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1935 1936 /// Removes an instruction from its block and eventually deletes it. 1937 /// It's like Instruction::eraseFromParent() except that the actual deletion 1938 /// is delayed until BoUpSLP is destructed. 1939 /// This is required to ensure that there are no incorrect collisions in the 1940 /// AliasCache, which can happen if a new instruction is allocated at the 1941 /// same address as a previously deleted instruction. 1942 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1943 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1944 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1945 } 1946 1947 /// Temporary store for deleted instructions. Instructions will be deleted 1948 /// eventually when the BoUpSLP is destructed. 1949 DenseMap<Instruction *, bool> DeletedInstructions; 1950 1951 /// A list of values that need to extracted out of the tree. 1952 /// This list holds pairs of (Internal Scalar : External User). External User 1953 /// can be nullptr, it means that this Internal Scalar will be used later, 1954 /// after vectorization. 1955 UserList ExternalUses; 1956 1957 /// Values used only by @llvm.assume calls. 1958 SmallPtrSet<const Value *, 32> EphValues; 1959 1960 /// Holds all of the instructions that we gathered. 1961 SetVector<Instruction *> GatherSeq; 1962 1963 /// A list of blocks that we are going to CSE. 1964 SetVector<BasicBlock *> CSEBlocks; 1965 1966 /// Contains all scheduling relevant data for an instruction. 1967 /// A ScheduleData either represents a single instruction or a member of an 1968 /// instruction bundle (= a group of instructions which is combined into a 1969 /// vector instruction). 1970 struct ScheduleData { 1971 // The initial value for the dependency counters. It means that the 1972 // dependencies are not calculated yet. 1973 enum { InvalidDeps = -1 }; 1974 1975 ScheduleData() = default; 1976 1977 void init(int BlockSchedulingRegionID, Value *OpVal) { 1978 FirstInBundle = this; 1979 NextInBundle = nullptr; 1980 NextLoadStore = nullptr; 1981 IsScheduled = false; 1982 SchedulingRegionID = BlockSchedulingRegionID; 1983 UnscheduledDepsInBundle = UnscheduledDeps; 1984 clearDependencies(); 1985 OpValue = OpVal; 1986 TE = nullptr; 1987 Lane = -1; 1988 } 1989 1990 /// Returns true if the dependency information has been calculated. 1991 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1992 1993 /// Returns true for single instructions and for bundle representatives 1994 /// (= the head of a bundle). 1995 bool isSchedulingEntity() const { return FirstInBundle == this; } 1996 1997 /// Returns true if it represents an instruction bundle and not only a 1998 /// single instruction. 1999 bool isPartOfBundle() const { 2000 return NextInBundle != nullptr || FirstInBundle != this; 2001 } 2002 2003 /// Returns true if it is ready for scheduling, i.e. it has no more 2004 /// unscheduled depending instructions/bundles. 2005 bool isReady() const { 2006 assert(isSchedulingEntity() && 2007 "can't consider non-scheduling entity for ready list"); 2008 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2009 } 2010 2011 /// Modifies the number of unscheduled dependencies, also updating it for 2012 /// the whole bundle. 2013 int incrementUnscheduledDeps(int Incr) { 2014 UnscheduledDeps += Incr; 2015 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2016 } 2017 2018 /// Sets the number of unscheduled dependencies to the number of 2019 /// dependencies. 2020 void resetUnscheduledDeps() { 2021 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2022 } 2023 2024 /// Clears all dependency information. 2025 void clearDependencies() { 2026 Dependencies = InvalidDeps; 2027 resetUnscheduledDeps(); 2028 MemoryDependencies.clear(); 2029 } 2030 2031 void dump(raw_ostream &os) const { 2032 if (!isSchedulingEntity()) { 2033 os << "/ " << *Inst; 2034 } else if (NextInBundle) { 2035 os << '[' << *Inst; 2036 ScheduleData *SD = NextInBundle; 2037 while (SD) { 2038 os << ';' << *SD->Inst; 2039 SD = SD->NextInBundle; 2040 } 2041 os << ']'; 2042 } else { 2043 os << *Inst; 2044 } 2045 } 2046 2047 Instruction *Inst = nullptr; 2048 2049 /// Points to the head in an instruction bundle (and always to this for 2050 /// single instructions). 2051 ScheduleData *FirstInBundle = nullptr; 2052 2053 /// Single linked list of all instructions in a bundle. Null if it is a 2054 /// single instruction. 2055 ScheduleData *NextInBundle = nullptr; 2056 2057 /// Single linked list of all memory instructions (e.g. load, store, call) 2058 /// in the block - until the end of the scheduling region. 2059 ScheduleData *NextLoadStore = nullptr; 2060 2061 /// The dependent memory instructions. 2062 /// This list is derived on demand in calculateDependencies(). 2063 SmallVector<ScheduleData *, 4> MemoryDependencies; 2064 2065 /// This ScheduleData is in the current scheduling region if this matches 2066 /// the current SchedulingRegionID of BlockScheduling. 2067 int SchedulingRegionID = 0; 2068 2069 /// Used for getting a "good" final ordering of instructions. 2070 int SchedulingPriority = 0; 2071 2072 /// The number of dependencies. Constitutes of the number of users of the 2073 /// instruction plus the number of dependent memory instructions (if any). 2074 /// This value is calculated on demand. 2075 /// If InvalidDeps, the number of dependencies is not calculated yet. 2076 int Dependencies = InvalidDeps; 2077 2078 /// The number of dependencies minus the number of dependencies of scheduled 2079 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2080 /// for scheduling. 2081 /// Note that this is negative as long as Dependencies is not calculated. 2082 int UnscheduledDeps = InvalidDeps; 2083 2084 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2085 /// single instructions. 2086 int UnscheduledDepsInBundle = InvalidDeps; 2087 2088 /// True if this instruction is scheduled (or considered as scheduled in the 2089 /// dry-run). 2090 bool IsScheduled = false; 2091 2092 /// Opcode of the current instruction in the schedule data. 2093 Value *OpValue = nullptr; 2094 2095 /// The TreeEntry that this instruction corresponds to. 2096 TreeEntry *TE = nullptr; 2097 2098 /// The lane of this node in the TreeEntry. 2099 int Lane = -1; 2100 }; 2101 2102 #ifndef NDEBUG 2103 friend inline raw_ostream &operator<<(raw_ostream &os, 2104 const BoUpSLP::ScheduleData &SD) { 2105 SD.dump(os); 2106 return os; 2107 } 2108 #endif 2109 2110 friend struct GraphTraits<BoUpSLP *>; 2111 friend struct DOTGraphTraits<BoUpSLP *>; 2112 2113 /// Contains all scheduling data for a basic block. 2114 struct BlockScheduling { 2115 BlockScheduling(BasicBlock *BB) 2116 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2117 2118 void clear() { 2119 ReadyInsts.clear(); 2120 ScheduleStart = nullptr; 2121 ScheduleEnd = nullptr; 2122 FirstLoadStoreInRegion = nullptr; 2123 LastLoadStoreInRegion = nullptr; 2124 2125 // Reduce the maximum schedule region size by the size of the 2126 // previous scheduling run. 2127 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2128 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2129 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2130 ScheduleRegionSize = 0; 2131 2132 // Make a new scheduling region, i.e. all existing ScheduleData is not 2133 // in the new region yet. 2134 ++SchedulingRegionID; 2135 } 2136 2137 ScheduleData *getScheduleData(Value *V) { 2138 ScheduleData *SD = ScheduleDataMap[V]; 2139 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2140 return SD; 2141 return nullptr; 2142 } 2143 2144 ScheduleData *getScheduleData(Value *V, Value *Key) { 2145 if (V == Key) 2146 return getScheduleData(V); 2147 auto I = ExtraScheduleDataMap.find(V); 2148 if (I != ExtraScheduleDataMap.end()) { 2149 ScheduleData *SD = I->second[Key]; 2150 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2151 return SD; 2152 } 2153 return nullptr; 2154 } 2155 2156 bool isInSchedulingRegion(ScheduleData *SD) const { 2157 return SD->SchedulingRegionID == SchedulingRegionID; 2158 } 2159 2160 /// Marks an instruction as scheduled and puts all dependent ready 2161 /// instructions into the ready-list. 2162 template <typename ReadyListType> 2163 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2164 SD->IsScheduled = true; 2165 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2166 2167 ScheduleData *BundleMember = SD; 2168 while (BundleMember) { 2169 if (BundleMember->Inst != BundleMember->OpValue) { 2170 BundleMember = BundleMember->NextInBundle; 2171 continue; 2172 } 2173 // Handle the def-use chain dependencies. 2174 2175 // Decrement the unscheduled counter and insert to ready list if ready. 2176 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2177 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2178 if (OpDef && OpDef->hasValidDependencies() && 2179 OpDef->incrementUnscheduledDeps(-1) == 0) { 2180 // There are no more unscheduled dependencies after 2181 // decrementing, so we can put the dependent instruction 2182 // into the ready list. 2183 ScheduleData *DepBundle = OpDef->FirstInBundle; 2184 assert(!DepBundle->IsScheduled && 2185 "already scheduled bundle gets ready"); 2186 ReadyList.insert(DepBundle); 2187 LLVM_DEBUG(dbgs() 2188 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2189 } 2190 }); 2191 }; 2192 2193 // If BundleMember is a vector bundle, its operands may have been 2194 // reordered duiring buildTree(). We therefore need to get its operands 2195 // through the TreeEntry. 2196 if (TreeEntry *TE = BundleMember->TE) { 2197 int Lane = BundleMember->Lane; 2198 assert(Lane >= 0 && "Lane not set"); 2199 2200 // Since vectorization tree is being built recursively this assertion 2201 // ensures that the tree entry has all operands set before reaching 2202 // this code. Couple of exceptions known at the moment are extracts 2203 // where their second (immediate) operand is not added. Since 2204 // immediates do not affect scheduler behavior this is considered 2205 // okay. 2206 auto *In = TE->getMainOp(); 2207 assert(In && 2208 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2209 In->getNumOperands() == TE->getNumOperands()) && 2210 "Missed TreeEntry operands?"); 2211 (void)In; // fake use to avoid build failure when assertions disabled 2212 2213 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2214 OpIdx != NumOperands; ++OpIdx) 2215 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2216 DecrUnsched(I); 2217 } else { 2218 // If BundleMember is a stand-alone instruction, no operand reordering 2219 // has taken place, so we directly access its operands. 2220 for (Use &U : BundleMember->Inst->operands()) 2221 if (auto *I = dyn_cast<Instruction>(U.get())) 2222 DecrUnsched(I); 2223 } 2224 // Handle the memory dependencies. 2225 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2226 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2227 // There are no more unscheduled dependencies after decrementing, 2228 // so we can put the dependent instruction into the ready list. 2229 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2230 assert(!DepBundle->IsScheduled && 2231 "already scheduled bundle gets ready"); 2232 ReadyList.insert(DepBundle); 2233 LLVM_DEBUG(dbgs() 2234 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2235 } 2236 } 2237 BundleMember = BundleMember->NextInBundle; 2238 } 2239 } 2240 2241 void doForAllOpcodes(Value *V, 2242 function_ref<void(ScheduleData *SD)> Action) { 2243 if (ScheduleData *SD = getScheduleData(V)) 2244 Action(SD); 2245 auto I = ExtraScheduleDataMap.find(V); 2246 if (I != ExtraScheduleDataMap.end()) 2247 for (auto &P : I->second) 2248 if (P.second->SchedulingRegionID == SchedulingRegionID) 2249 Action(P.second); 2250 } 2251 2252 /// Put all instructions into the ReadyList which are ready for scheduling. 2253 template <typename ReadyListType> 2254 void initialFillReadyList(ReadyListType &ReadyList) { 2255 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2256 doForAllOpcodes(I, [&](ScheduleData *SD) { 2257 if (SD->isSchedulingEntity() && SD->isReady()) { 2258 ReadyList.insert(SD); 2259 LLVM_DEBUG(dbgs() 2260 << "SLP: initially in ready list: " << *I << "\n"); 2261 } 2262 }); 2263 } 2264 } 2265 2266 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2267 /// cyclic dependencies. This is only a dry-run, no instructions are 2268 /// actually moved at this stage. 2269 /// \returns the scheduling bundle. The returned Optional value is non-None 2270 /// if \p VL is allowed to be scheduled. 2271 Optional<ScheduleData *> 2272 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2273 const InstructionsState &S); 2274 2275 /// Un-bundles a group of instructions. 2276 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2277 2278 /// Allocates schedule data chunk. 2279 ScheduleData *allocateScheduleDataChunks(); 2280 2281 /// Extends the scheduling region so that V is inside the region. 2282 /// \returns true if the region size is within the limit. 2283 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2284 2285 /// Initialize the ScheduleData structures for new instructions in the 2286 /// scheduling region. 2287 void initScheduleData(Instruction *FromI, Instruction *ToI, 2288 ScheduleData *PrevLoadStore, 2289 ScheduleData *NextLoadStore); 2290 2291 /// Updates the dependency information of a bundle and of all instructions/ 2292 /// bundles which depend on the original bundle. 2293 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2294 BoUpSLP *SLP); 2295 2296 /// Sets all instruction in the scheduling region to un-scheduled. 2297 void resetSchedule(); 2298 2299 BasicBlock *BB; 2300 2301 /// Simple memory allocation for ScheduleData. 2302 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2303 2304 /// The size of a ScheduleData array in ScheduleDataChunks. 2305 int ChunkSize; 2306 2307 /// The allocator position in the current chunk, which is the last entry 2308 /// of ScheduleDataChunks. 2309 int ChunkPos; 2310 2311 /// Attaches ScheduleData to Instruction. 2312 /// Note that the mapping survives during all vectorization iterations, i.e. 2313 /// ScheduleData structures are recycled. 2314 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2315 2316 /// Attaches ScheduleData to Instruction with the leading key. 2317 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2318 ExtraScheduleDataMap; 2319 2320 struct ReadyList : SmallVector<ScheduleData *, 8> { 2321 void insert(ScheduleData *SD) { push_back(SD); } 2322 }; 2323 2324 /// The ready-list for scheduling (only used for the dry-run). 2325 ReadyList ReadyInsts; 2326 2327 /// The first instruction of the scheduling region. 2328 Instruction *ScheduleStart = nullptr; 2329 2330 /// The first instruction _after_ the scheduling region. 2331 Instruction *ScheduleEnd = nullptr; 2332 2333 /// The first memory accessing instruction in the scheduling region 2334 /// (can be null). 2335 ScheduleData *FirstLoadStoreInRegion = nullptr; 2336 2337 /// The last memory accessing instruction in the scheduling region 2338 /// (can be null). 2339 ScheduleData *LastLoadStoreInRegion = nullptr; 2340 2341 /// The current size of the scheduling region. 2342 int ScheduleRegionSize = 0; 2343 2344 /// The maximum size allowed for the scheduling region. 2345 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2346 2347 /// The ID of the scheduling region. For a new vectorization iteration this 2348 /// is incremented which "removes" all ScheduleData from the region. 2349 // Make sure that the initial SchedulingRegionID is greater than the 2350 // initial SchedulingRegionID in ScheduleData (which is 0). 2351 int SchedulingRegionID = 1; 2352 }; 2353 2354 /// Attaches the BlockScheduling structures to basic blocks. 2355 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2356 2357 /// Performs the "real" scheduling. Done before vectorization is actually 2358 /// performed in a basic block. 2359 void scheduleBlock(BlockScheduling *BS); 2360 2361 /// List of users to ignore during scheduling and that don't need extracting. 2362 ArrayRef<Value *> UserIgnoreList; 2363 2364 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2365 /// sorted SmallVectors of unsigned. 2366 struct OrdersTypeDenseMapInfo { 2367 static OrdersType getEmptyKey() { 2368 OrdersType V; 2369 V.push_back(~1U); 2370 return V; 2371 } 2372 2373 static OrdersType getTombstoneKey() { 2374 OrdersType V; 2375 V.push_back(~2U); 2376 return V; 2377 } 2378 2379 static unsigned getHashValue(const OrdersType &V) { 2380 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2381 } 2382 2383 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2384 return LHS == RHS; 2385 } 2386 }; 2387 2388 // Analysis and block reference. 2389 Function *F; 2390 ScalarEvolution *SE; 2391 TargetTransformInfo *TTI; 2392 TargetLibraryInfo *TLI; 2393 AAResults *AA; 2394 LoopInfo *LI; 2395 DominatorTree *DT; 2396 AssumptionCache *AC; 2397 DemandedBits *DB; 2398 const DataLayout *DL; 2399 OptimizationRemarkEmitter *ORE; 2400 2401 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2402 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2403 2404 /// Instruction builder to construct the vectorized tree. 2405 IRBuilder<> Builder; 2406 2407 /// A map of scalar integer values to the smallest bit width with which they 2408 /// can legally be represented. The values map to (width, signed) pairs, 2409 /// where "width" indicates the minimum bit width and "signed" is True if the 2410 /// value must be signed-extended, rather than zero-extended, back to its 2411 /// original width. 2412 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2413 }; 2414 2415 } // end namespace slpvectorizer 2416 2417 template <> struct GraphTraits<BoUpSLP *> { 2418 using TreeEntry = BoUpSLP::TreeEntry; 2419 2420 /// NodeRef has to be a pointer per the GraphWriter. 2421 using NodeRef = TreeEntry *; 2422 2423 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2424 2425 /// Add the VectorizableTree to the index iterator to be able to return 2426 /// TreeEntry pointers. 2427 struct ChildIteratorType 2428 : public iterator_adaptor_base< 2429 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2430 ContainerTy &VectorizableTree; 2431 2432 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2433 ContainerTy &VT) 2434 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2435 2436 NodeRef operator*() { return I->UserTE; } 2437 }; 2438 2439 static NodeRef getEntryNode(BoUpSLP &R) { 2440 return R.VectorizableTree[0].get(); 2441 } 2442 2443 static ChildIteratorType child_begin(NodeRef N) { 2444 return {N->UserTreeIndices.begin(), N->Container}; 2445 } 2446 2447 static ChildIteratorType child_end(NodeRef N) { 2448 return {N->UserTreeIndices.end(), N->Container}; 2449 } 2450 2451 /// For the node iterator we just need to turn the TreeEntry iterator into a 2452 /// TreeEntry* iterator so that it dereferences to NodeRef. 2453 class nodes_iterator { 2454 using ItTy = ContainerTy::iterator; 2455 ItTy It; 2456 2457 public: 2458 nodes_iterator(const ItTy &It2) : It(It2) {} 2459 NodeRef operator*() { return It->get(); } 2460 nodes_iterator operator++() { 2461 ++It; 2462 return *this; 2463 } 2464 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2465 }; 2466 2467 static nodes_iterator nodes_begin(BoUpSLP *R) { 2468 return nodes_iterator(R->VectorizableTree.begin()); 2469 } 2470 2471 static nodes_iterator nodes_end(BoUpSLP *R) { 2472 return nodes_iterator(R->VectorizableTree.end()); 2473 } 2474 2475 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2476 }; 2477 2478 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2479 using TreeEntry = BoUpSLP::TreeEntry; 2480 2481 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2482 2483 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2484 std::string Str; 2485 raw_string_ostream OS(Str); 2486 if (isSplat(Entry->Scalars)) { 2487 OS << "<splat> " << *Entry->Scalars[0]; 2488 return Str; 2489 } 2490 for (auto V : Entry->Scalars) { 2491 OS << *V; 2492 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2493 return EU.Scalar == V; 2494 })) 2495 OS << " <extract>"; 2496 OS << "\n"; 2497 } 2498 return Str; 2499 } 2500 2501 static std::string getNodeAttributes(const TreeEntry *Entry, 2502 const BoUpSLP *) { 2503 if (Entry->State == TreeEntry::NeedToGather) 2504 return "color=red"; 2505 return ""; 2506 } 2507 }; 2508 2509 } // end namespace llvm 2510 2511 BoUpSLP::~BoUpSLP() { 2512 for (const auto &Pair : DeletedInstructions) { 2513 // Replace operands of ignored instructions with Undefs in case if they were 2514 // marked for deletion. 2515 if (Pair.getSecond()) { 2516 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2517 Pair.getFirst()->replaceAllUsesWith(Undef); 2518 } 2519 Pair.getFirst()->dropAllReferences(); 2520 } 2521 for (const auto &Pair : DeletedInstructions) { 2522 assert(Pair.getFirst()->use_empty() && 2523 "trying to erase instruction with users."); 2524 Pair.getFirst()->eraseFromParent(); 2525 } 2526 #ifdef EXPENSIVE_CHECKS 2527 // If we could guarantee that this call is not extremely slow, we could 2528 // remove the ifdef limitation (see PR47712). 2529 assert(!verifyFunction(*F, &dbgs())); 2530 #endif 2531 } 2532 2533 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2534 for (auto *V : AV) { 2535 if (auto *I = dyn_cast<Instruction>(V)) 2536 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2537 }; 2538 } 2539 2540 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2541 /// the original order of the scalars. Procedure transforms the provided order 2542 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2543 /// identity order, \p Order is cleared. 2544 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2545 assert(!Mask.empty() && "Expected non-empty mask."); 2546 if (Order.empty()) { 2547 Order.resize(Mask.size()); 2548 std::iota(Order.begin(), Order.end(), 0); 2549 } 2550 SmallVector<unsigned> Prev(Order.size(), Order.size()); 2551 Prev.swap(Order); 2552 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2553 if (Mask[Prev[I]] != UndefMaskElem) 2554 Order[Mask[Prev[I]]] = I; 2555 auto &&IsIdentity = [](ArrayRef<unsigned> Order) { 2556 for (unsigned I = 0, E = Order.size(); I < E; ++I) { 2557 if (Order[I] != I) 2558 return false; 2559 } 2560 return true; 2561 }; 2562 if (IsIdentity(Order)) 2563 Order.clear(); 2564 } 2565 2566 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2567 /// contains original mask for the scalars reused in the node. Procedure 2568 /// transform this mask in accordance with the given \p Mask. 2569 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2570 assert(!Reuses.empty() && !Mask.empty() && 2571 "Expected non-empty mask and reuses mask."); 2572 SmallVector<int> Prev(Reuses.size(), UndefMaskElem); 2573 Prev.swap(Reuses); 2574 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2575 if (Mask[I] != UndefMaskElem) 2576 Reuses[Mask[I]] = Prev[I]; 2577 } 2578 2579 void BoUpSLP::reorderTopToBottom(bool FreeReorder) { 2580 // Maps VF to the graph nodes. 2581 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2582 // ExtractElement gather nodes which can be vectorized and need to handle 2583 // their ordering. 2584 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2585 // Find all reorderable nodes with the given VF. 2586 // Currently the are vectorized loads,extracts + some gathering of extracts. 2587 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2588 const std::unique_ptr<TreeEntry> &TE) { 2589 if (TE->State == TreeEntry::Vectorize && 2590 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp())) { 2591 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2592 } else if (TE->State == TreeEntry::NeedToGather && 2593 TE->getOpcode() == Instruction::ExtractElement && 2594 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2595 ->getVectorOperandType()) && 2596 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2597 // Check that gather of extractelements can be represented as 2598 // just a shuffle of a single vector. 2599 OrdersType CurrentOrder; 2600 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2601 if (Reuse || !CurrentOrder.empty()) { 2602 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2603 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2604 } 2605 } 2606 }); 2607 2608 // Reorder the graph nodes according to their vectorization factor. 2609 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2610 VF /= 2) { 2611 auto It = VFToOrderedEntries.find(VF); 2612 if (It == VFToOrderedEntries.end()) 2613 continue; 2614 // Try to find the most profitable order. We just are looking for the most 2615 // used order and reorder scalar elements in the nodes according to this 2616 // mostly used order. 2617 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2618 // All operands are reordered and used only in this node - propagate the 2619 // most used order to the user node. 2620 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2621 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2622 for (const TreeEntry *OpTE : OrderedEntries) { 2623 // No need to reorder this nodes, still need to extend and to use shuffle, 2624 // just need to merge reordering shuffle and the reuse shuffle. 2625 if (!OpTE->ReuseShuffleIndices.empty()) 2626 continue; 2627 // Count number of orders uses. 2628 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2629 if (OpTE->State == TreeEntry::NeedToGather) 2630 return GathersToOrders.find(OpTE)->second; 2631 return OpTE->ReorderIndices; 2632 }(); 2633 ++OrdersUses.try_emplace(Order).first->getSecond(); 2634 } 2635 // Set order of the user node. 2636 if (OrdersUses.empty()) 2637 continue; 2638 // If need to reorder the root node, it means it also requires to keep its 2639 // original order. 2640 if (VF == VectorizableTree.front()->Scalars.size() && !FreeReorder) 2641 ++OrdersUses[VectorizableTree.front()->ReorderIndices]; 2642 // Choose the most used order. 2643 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2644 unsigned Cnt = OrdersUses.begin()->second; 2645 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2646 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2647 BestOrder = Pair.first; 2648 Cnt = Pair.second; 2649 } 2650 } 2651 // Set order of the user node. 2652 if (BestOrder.empty()) 2653 continue; 2654 SmallVector<int> Mask; 2655 inversePermutation(BestOrder, Mask); 2656 SmallPtrSet<TreeEntry *, 4> SmallOperandsToReorder; 2657 // Do an actual reordering, if profitable. 2658 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2659 // Just do the reordering for the nodes with the given VF. 2660 if (TE->Scalars.size() != VF) { 2661 if (TE->ReuseShuffleIndices.size() == VF) { 2662 // Need to reorder the reuses masks of the operands with smaller VF to 2663 // be able to find the match between the graph nodes and scalar 2664 // operands of the given node during vectorization/cost estimation. 2665 // Build a list of such operands for future reordering. 2666 assert(all_of(TE->UserTreeIndices, 2667 [VF, &TE](const EdgeInfo &EI) { 2668 return EI.UserTE->Scalars.size() == VF || 2669 EI.UserTE->Scalars.size() == 2670 TE->Scalars.size(); 2671 }) && 2672 "All users must be of VF size."); 2673 SmallOperandsToReorder.insert(TE.get()); 2674 } 2675 continue; 2676 } 2677 // Reorder the node and its operands. 2678 TE->updateStateIfReorder(); 2679 TE->reorderOperands(Mask); 2680 if (TE->ReuseShuffleIndices.empty()) { 2681 reorderScalars(TE->Scalars, TE->ReorderIndices, Mask); 2682 if (TE->State == TreeEntry::Vectorize && 2683 (TE.get() != VectorizableTree.front().get() || !FreeReorder) && 2684 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst>( 2685 TE->getMainOp())) { 2686 // Build correct orders for extract{element,value}, loads and stores. 2687 reorderOrder(TE->ReorderIndices, Mask); 2688 // For stores the order is actually a mask. 2689 if (isa<StoreInst>(TE->getMainOp()) && !TE->ReorderIndices.empty()) { 2690 SmallVector<int> StoreOrder; 2691 inversePermutation(TE->ReorderIndices, StoreOrder); 2692 copy(StoreOrder, TE->ReorderIndices.begin()); 2693 } 2694 } else { 2695 TE->ReorderIndices.clear(); 2696 } 2697 } else { 2698 // Build correct order for nodes with reused shuffles. 2699 reorderOrder(TE->ReorderIndices, Mask); 2700 } 2701 } 2702 // Update ordering of the operands with the smaller VF than the given one. 2703 for (TreeEntry *TE : SmallOperandsToReorder) 2704 reorderReuses(TE->ReuseShuffleIndices, Mask); 2705 } 2706 } 2707 2708 void BoUpSLP::reorderBottomToTop(bool FreeReorder) { 2709 SetVector<TreeEntry *> OrderedEntries; 2710 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2711 // Find all reorderable nodes with the given VF. 2712 // Currently the are vectorized loads,extracts without alternate operands + 2713 // some gathering of extracts. 2714 SmallVector<TreeEntry *> NonVectorized; 2715 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2716 &NonVectorized]( 2717 const std::unique_ptr<TreeEntry> &TE) { 2718 if (TE->State == TreeEntry::Vectorize && 2719 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp())) { 2720 OrderedEntries.insert(TE.get()); 2721 } else if (TE->State == TreeEntry::NeedToGather && 2722 TE->getOpcode() == Instruction::ExtractElement && 2723 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2724 ->getVectorOperandType()) && 2725 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2726 // Check that gather of extractelements can be represented as 2727 // just a shuffle of a single vector with a single user only. 2728 OrdersType CurrentOrder; 2729 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2730 if ((Reuse || !CurrentOrder.empty()) && 2731 !any_of( 2732 VectorizableTree, [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2733 return Entry->State == TreeEntry::NeedToGather && 2734 Entry.get() != TE.get() && Entry->isSame(TE->Scalars); 2735 })) { 2736 OrderedEntries.insert(TE.get()); 2737 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2738 } 2739 } 2740 if (TE->State != TreeEntry::Vectorize) 2741 NonVectorized.push_back(TE.get()); 2742 }); 2743 2744 // Checks if the operands of the users are reordarable and have only single 2745 // use. 2746 auto &&CheckOperands = 2747 [this, &NonVectorized](const auto &Data, 2748 SmallVectorImpl<TreeEntry *> &GatherOps) { 2749 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2750 if (any_of(Data.second, 2751 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2752 return OpData.first == I; 2753 })) 2754 continue; 2755 ArrayRef<Value *> VL = Data.first->getOperand(I); 2756 const TreeEntry *TE = nullptr; 2757 const auto *It = find_if(VL, [this, &TE](Value *V) { 2758 TE = getTreeEntry(V); 2759 return TE; 2760 }); 2761 if (It != VL.end() && TE->isSame(VL)) 2762 return false; 2763 TreeEntry *Gather = nullptr; 2764 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2765 assert(TE->State != TreeEntry::Vectorize && 2766 "Only non-vectorized nodes are expected."); 2767 if (TE->isSame(VL)) { 2768 Gather = TE; 2769 return true; 2770 } 2771 return false; 2772 }) != 1) 2773 return false; 2774 GatherOps.push_back(Gather); 2775 } 2776 return true; 2777 }; 2778 // 1. Propagate order to the graph nodes, which use only reordered nodes. 2779 // I.e., if the node has operands, that are reordered, try to make at least 2780 // one operand order in the natural order and reorder others + reorder the 2781 // user node itself. 2782 SmallPtrSet<const TreeEntry *, 4> Visited; 2783 while (!OrderedEntries.empty()) { 2784 // 1. Filter out only reordered nodes. 2785 // 2. If the entry has multiple uses - skip it and jump to the next node. 2786 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 2787 SmallVector<TreeEntry *> Filtered; 2788 for (TreeEntry *TE : OrderedEntries) { 2789 if (!(TE->State == TreeEntry::Vectorize || 2790 (TE->State == TreeEntry::NeedToGather && 2791 TE->getOpcode() == Instruction::ExtractElement)) || 2792 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 2793 !all_of(drop_begin(TE->UserTreeIndices), 2794 [TE](const EdgeInfo &EI) { 2795 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 2796 }) || 2797 !Visited.insert(TE).second) { 2798 Filtered.push_back(TE); 2799 continue; 2800 } 2801 // Build a map between user nodes and their operands order to speedup 2802 // search. The graph currently does not provide this dependency directly. 2803 for (EdgeInfo &EI : TE->UserTreeIndices) { 2804 TreeEntry *UserTE = EI.UserTE; 2805 auto It = Users.find(UserTE); 2806 if (It == Users.end()) 2807 It = Users.insert({UserTE, {}}).first; 2808 It->second.emplace_back(EI.EdgeIdx, TE); 2809 } 2810 } 2811 // Erase filtered entries. 2812 for_each(Filtered, 2813 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 2814 for (const auto &Data : Users) { 2815 // Check that operands are used only in the User node. 2816 SmallVector<TreeEntry *> GatherOps; 2817 if (!CheckOperands(Data, GatherOps)) { 2818 for_each(Data.second, 2819 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2820 OrderedEntries.remove(Op.second); 2821 }); 2822 continue; 2823 } 2824 // All operands are reordered and used only in this node - propagate the 2825 // most used order to the user node. 2826 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2827 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2828 for (const auto &Op : Data.second) { 2829 TreeEntry *OpTE = Op.second; 2830 if (!OpTE->ReuseShuffleIndices.empty()) 2831 continue; 2832 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2833 if (OpTE->State == TreeEntry::NeedToGather) 2834 return GathersToOrders.find(OpTE)->second; 2835 return OpTE->ReorderIndices; 2836 }(); 2837 ++OrdersUses.try_emplace(Order).first->getSecond(); 2838 if (VisitedOps.insert(OpTE).second) 2839 OrdersUses.try_emplace({}, 0).first->getSecond() += 2840 OpTE->UserTreeIndices.size(); 2841 --OrdersUses[{}]; 2842 } 2843 // If no orders - skip current nodes and jump to the next one, if any. 2844 if (OrdersUses.empty()) { 2845 for_each(Data.second, 2846 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2847 OrderedEntries.remove(Op.second); 2848 }); 2849 continue; 2850 } 2851 // Choose the best order. 2852 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2853 unsigned Cnt = OrdersUses.begin()->second; 2854 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2855 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2856 BestOrder = Pair.first; 2857 Cnt = Pair.second; 2858 } 2859 } 2860 // Set order of the user node (reordering of operands and user nodes). 2861 if (BestOrder.empty()) { 2862 for_each(Data.second, 2863 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2864 OrderedEntries.remove(Op.second); 2865 }); 2866 continue; 2867 } 2868 // Erase operands from OrderedEntries list and adjust their orders. 2869 VisitedOps.clear(); 2870 SmallVector<int> Mask; 2871 inversePermutation(BestOrder, Mask); 2872 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 2873 TreeEntry *TE = Op.second; 2874 OrderedEntries.remove(TE); 2875 if (!VisitedOps.insert(TE).second) 2876 continue; 2877 if (!TE->ReuseShuffleIndices.empty()) { 2878 // Just reorder reuses indices. 2879 reorderReuses(TE->ReuseShuffleIndices, Mask); 2880 continue; 2881 } 2882 // Gathers are processed separately. 2883 if (TE->State != TreeEntry::Vectorize) 2884 continue; 2885 assert((BestOrder.size() == TE->ReorderIndices.size() || 2886 TE->ReorderIndices.empty()) && 2887 "Non-matching sizes of user/operand entries."); 2888 TE->updateStateIfReorder(); 2889 reorderScalars(TE->Scalars, TE->ReorderIndices, Mask); 2890 reorderOrder(TE->ReorderIndices, Mask); 2891 } 2892 // For gathers just need to reorder its scalars. 2893 for (TreeEntry *Gather : GatherOps) { 2894 if (!Gather->ReuseShuffleIndices.empty()) 2895 continue; 2896 reorderScalars(Gather->Scalars, None, Mask); 2897 OrderedEntries.remove(Gather); 2898 } 2899 // Reorder operands of the user node and set the ordering for the user 2900 // node itself. 2901 Data.first->updateStateIfReorder(); 2902 Data.first->reorderOperands(Mask); 2903 if (!FreeReorder || Data.first != VectorizableTree.front().get()) { 2904 reorderOrder(Data.first->ReorderIndices, Mask); 2905 // For stores the order is actually a mask. 2906 if (isa<StoreInst>(Data.first->getMainOp()) && 2907 !Data.first->ReorderIndices.empty()) { 2908 SmallVector<int> StoreOrder; 2909 inversePermutation(Data.first->ReorderIndices, StoreOrder); 2910 copy(StoreOrder, Data.first->ReorderIndices.begin()); 2911 } 2912 // Insert user node to the list to try to sink reordering deeper in the 2913 // graph. 2914 OrderedEntries.insert(Data.first); 2915 } else { 2916 reorderScalars(Data.first->Scalars, Data.first->ReorderIndices, Mask); 2917 } 2918 } 2919 } 2920 } 2921 2922 void BoUpSLP::buildExternalUses( 2923 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 2924 // Collect the values that we need to extract from the tree. 2925 for (auto &TEPtr : VectorizableTree) { 2926 TreeEntry *Entry = TEPtr.get(); 2927 2928 // No need to handle users of gathered values. 2929 if (Entry->State == TreeEntry::NeedToGather) 2930 continue; 2931 2932 // For each lane: 2933 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2934 Value *Scalar = Entry->Scalars[Lane]; 2935 int FoundLane = Entry->findLaneForValue(Scalar); 2936 2937 // Check if the scalar is externally used as an extra arg. 2938 auto ExtI = ExternallyUsedValues.find(Scalar); 2939 if (ExtI != ExternallyUsedValues.end()) { 2940 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2941 << Lane << " from " << *Scalar << ".\n"); 2942 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2943 } 2944 for (User *U : Scalar->users()) { 2945 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2946 2947 Instruction *UserInst = dyn_cast<Instruction>(U); 2948 if (!UserInst) 2949 continue; 2950 2951 if (isDeleted(UserInst)) 2952 continue; 2953 2954 // Skip in-tree scalars that become vectors 2955 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2956 Value *UseScalar = UseEntry->Scalars[0]; 2957 // Some in-tree scalars will remain as scalar in vectorized 2958 // instructions. If that is the case, the one in Lane 0 will 2959 // be used. 2960 if (UseScalar != U || 2961 UseEntry->State == TreeEntry::ScatterVectorize || 2962 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2963 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2964 << ".\n"); 2965 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2966 continue; 2967 } 2968 } 2969 2970 // Ignore users in the user ignore list. 2971 if (is_contained(UserIgnoreList, UserInst)) 2972 continue; 2973 2974 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2975 << Lane << " from " << *Scalar << ".\n"); 2976 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2977 } 2978 } 2979 } 2980 } 2981 2982 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2983 ArrayRef<Value *> UserIgnoreLst) { 2984 deleteTree(); 2985 UserIgnoreList = UserIgnoreLst; 2986 if (!allSameType(Roots)) 2987 return; 2988 buildTree_rec(Roots, 0, EdgeInfo()); 2989 } 2990 2991 namespace { 2992 /// Tracks the state we can represent the loads in the given sequence. 2993 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 2994 } // anonymous namespace 2995 2996 /// Checks if the given array of loads can be represented as a vectorized, 2997 /// scatter or just simple gather. 2998 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 2999 const TargetTransformInfo &TTI, 3000 const DataLayout &DL, ScalarEvolution &SE, 3001 SmallVectorImpl<unsigned> &Order, 3002 SmallVectorImpl<Value *> &PointerOps) { 3003 // Check that a vectorized load would load the same memory as a scalar 3004 // load. For example, we don't want to vectorize loads that are smaller 3005 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3006 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3007 // from such a struct, we read/write packed bits disagreeing with the 3008 // unvectorized version. 3009 Type *ScalarTy = VL0->getType(); 3010 3011 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3012 return LoadsState::Gather; 3013 3014 // Make sure all loads in the bundle are simple - we can't vectorize 3015 // atomic or volatile loads. 3016 PointerOps.clear(); 3017 PointerOps.resize(VL.size()); 3018 auto *POIter = PointerOps.begin(); 3019 for (Value *V : VL) { 3020 auto *L = cast<LoadInst>(V); 3021 if (!L->isSimple()) 3022 return LoadsState::Gather; 3023 *POIter = L->getPointerOperand(); 3024 ++POIter; 3025 } 3026 3027 Order.clear(); 3028 // Check the order of pointer operands. 3029 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3030 Value *Ptr0; 3031 Value *PtrN; 3032 if (Order.empty()) { 3033 Ptr0 = PointerOps.front(); 3034 PtrN = PointerOps.back(); 3035 } else { 3036 Ptr0 = PointerOps[Order.front()]; 3037 PtrN = PointerOps[Order.back()]; 3038 } 3039 Optional<int> Diff = 3040 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3041 // Check that the sorted loads are consecutive. 3042 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3043 return LoadsState::Vectorize; 3044 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3045 for (Value *V : VL) 3046 CommonAlignment = 3047 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3048 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3049 CommonAlignment)) 3050 return LoadsState::ScatterVectorize; 3051 } 3052 3053 return LoadsState::Gather; 3054 } 3055 3056 /// Order may have elements assigned special value (size) which is out of 3057 /// bounds. Such indices only appear on places which correspond to undef values 3058 /// (see canReuseExtract for details) and used in order to avoid undef values 3059 /// have effect on operands ordering. 3060 /// The first loop below simply finds all unused indices and then the next loop 3061 /// nest assigns these indices for undef values positions. 3062 /// As an example below Order has two undef positions and they have assigned 3063 /// values 3 and 7 respectively: 3064 /// before: 6 9 5 4 9 2 1 0 3065 /// after: 6 3 5 4 7 2 1 0 3066 /// \returns Fixed ordering. 3067 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 3068 const unsigned Sz = Order.size(); 3069 SmallBitVector UsedIndices(Sz); 3070 SmallVector<int> MaskedIndices; 3071 for (unsigned I = 0; I < Sz; ++I) { 3072 if (Order[I] < Sz) 3073 UsedIndices.set(Order[I]); 3074 else 3075 MaskedIndices.push_back(I); 3076 } 3077 if (MaskedIndices.empty()) 3078 return; 3079 SmallVector<int> AvailableIndices(MaskedIndices.size()); 3080 unsigned Cnt = 0; 3081 int Idx = UsedIndices.find_first(); 3082 do { 3083 AvailableIndices[Cnt] = Idx; 3084 Idx = UsedIndices.find_next(Idx); 3085 ++Cnt; 3086 } while (Idx > 0); 3087 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 3088 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 3089 Order[MaskedIndices[I]] = AvailableIndices[I]; 3090 } 3091 3092 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3093 const EdgeInfo &UserTreeIdx) { 3094 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3095 3096 InstructionsState S = getSameOpcode(VL); 3097 if (Depth == RecursionMaxDepth) { 3098 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3100 return; 3101 } 3102 3103 // Don't handle scalable vectors 3104 if (S.getOpcode() == Instruction::ExtractElement && 3105 isa<ScalableVectorType>( 3106 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3107 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3108 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3109 return; 3110 } 3111 3112 // Don't handle vectors. 3113 if (S.OpValue->getType()->isVectorTy() && 3114 !isa<InsertElementInst>(S.OpValue)) { 3115 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3116 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3117 return; 3118 } 3119 3120 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3121 if (SI->getValueOperand()->getType()->isVectorTy()) { 3122 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3123 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3124 return; 3125 } 3126 3127 // If all of the operands are identical or constant we have a simple solution. 3128 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 3129 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3130 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3131 return; 3132 } 3133 3134 // We now know that this is a vector of instructions of the same type from 3135 // the same block. 3136 3137 // Don't vectorize ephemeral values. 3138 for (Value *V : VL) { 3139 if (EphValues.count(V)) { 3140 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3141 << ") is ephemeral.\n"); 3142 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3143 return; 3144 } 3145 } 3146 3147 // Check if this is a duplicate of another entry. 3148 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3149 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3150 if (!E->isSame(VL)) { 3151 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3152 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3153 return; 3154 } 3155 // Record the reuse of the tree node. FIXME, currently this is only used to 3156 // properly draw the graph rather than for the actual vectorization. 3157 E->UserTreeIndices.push_back(UserTreeIdx); 3158 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3159 << ".\n"); 3160 return; 3161 } 3162 3163 // Check that none of the instructions in the bundle are already in the tree. 3164 for (Value *V : VL) { 3165 auto *I = dyn_cast<Instruction>(V); 3166 if (!I) 3167 continue; 3168 if (getTreeEntry(I)) { 3169 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3170 << ") is already in tree.\n"); 3171 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3172 return; 3173 } 3174 } 3175 3176 // If any of the scalars is marked as a value that needs to stay scalar, then 3177 // we need to gather the scalars. 3178 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3179 for (Value *V : VL) { 3180 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3181 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3183 return; 3184 } 3185 } 3186 3187 // Check that all of the users of the scalars that we want to vectorize are 3188 // schedulable. 3189 auto *VL0 = cast<Instruction>(S.OpValue); 3190 BasicBlock *BB = VL0->getParent(); 3191 3192 if (!DT->isReachableFromEntry(BB)) { 3193 // Don't go into unreachable blocks. They may contain instructions with 3194 // dependency cycles which confuse the final scheduling. 3195 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3196 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3197 return; 3198 } 3199 3200 // Check that every instruction appears once in this bundle. 3201 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3202 SmallVector<Value *, 4> UniqueValues; 3203 DenseMap<Value *, unsigned> UniquePositions; 3204 for (Value *V : VL) { 3205 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3206 ReuseShuffleIndicies.emplace_back(Res.first->second); 3207 if (Res.second) 3208 UniqueValues.emplace_back(V); 3209 } 3210 size_t NumUniqueScalarValues = UniqueValues.size(); 3211 if (NumUniqueScalarValues == VL.size()) { 3212 ReuseShuffleIndicies.clear(); 3213 } else { 3214 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3215 if (NumUniqueScalarValues <= 1 || 3216 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3217 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3218 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3219 return; 3220 } 3221 VL = UniqueValues; 3222 } 3223 3224 auto &BSRef = BlocksSchedules[BB]; 3225 if (!BSRef) 3226 BSRef = std::make_unique<BlockScheduling>(BB); 3227 3228 BlockScheduling &BS = *BSRef.get(); 3229 3230 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3231 if (!Bundle) { 3232 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3233 assert((!BS.getScheduleData(VL0) || 3234 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3235 "tryScheduleBundle should cancelScheduling on failure"); 3236 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3237 ReuseShuffleIndicies); 3238 return; 3239 } 3240 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3241 3242 unsigned ShuffleOrOp = S.isAltShuffle() ? 3243 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3244 switch (ShuffleOrOp) { 3245 case Instruction::PHI: { 3246 auto *PH = cast<PHINode>(VL0); 3247 3248 // Check for terminator values (e.g. invoke). 3249 for (Value *V : VL) 3250 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3251 Instruction *Term = dyn_cast<Instruction>( 3252 cast<PHINode>(V)->getIncomingValueForBlock( 3253 PH->getIncomingBlock(I))); 3254 if (Term && Term->isTerminator()) { 3255 LLVM_DEBUG(dbgs() 3256 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3257 BS.cancelScheduling(VL, VL0); 3258 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3259 ReuseShuffleIndicies); 3260 return; 3261 } 3262 } 3263 3264 TreeEntry *TE = 3265 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3266 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3267 3268 // Keeps the reordered operands to avoid code duplication. 3269 SmallVector<ValueList, 2> OperandsVec; 3270 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3271 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3272 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3273 TE->setOperand(I, Operands); 3274 OperandsVec.push_back(Operands); 3275 continue; 3276 } 3277 ValueList Operands; 3278 // Prepare the operand vector. 3279 for (Value *V : VL) 3280 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3281 PH->getIncomingBlock(I))); 3282 TE->setOperand(I, Operands); 3283 OperandsVec.push_back(Operands); 3284 } 3285 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3286 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3287 return; 3288 } 3289 case Instruction::ExtractValue: 3290 case Instruction::ExtractElement: { 3291 OrdersType CurrentOrder; 3292 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3293 if (Reuse) { 3294 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3295 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3296 ReuseShuffleIndicies); 3297 // This is a special case, as it does not gather, but at the same time 3298 // we are not extending buildTree_rec() towards the operands. 3299 ValueList Op0; 3300 Op0.assign(VL.size(), VL0->getOperand(0)); 3301 VectorizableTree.back()->setOperand(0, Op0); 3302 return; 3303 } 3304 if (!CurrentOrder.empty()) { 3305 LLVM_DEBUG({ 3306 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3307 "with order"; 3308 for (unsigned Idx : CurrentOrder) 3309 dbgs() << " " << Idx; 3310 dbgs() << "\n"; 3311 }); 3312 fixupOrderingIndices(CurrentOrder); 3313 // Insert new order with initial value 0, if it does not exist, 3314 // otherwise return the iterator to the existing one. 3315 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3316 ReuseShuffleIndicies, CurrentOrder); 3317 // This is a special case, as it does not gather, but at the same time 3318 // we are not extending buildTree_rec() towards the operands. 3319 ValueList Op0; 3320 Op0.assign(VL.size(), VL0->getOperand(0)); 3321 VectorizableTree.back()->setOperand(0, Op0); 3322 return; 3323 } 3324 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3325 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3326 ReuseShuffleIndicies); 3327 BS.cancelScheduling(VL, VL0); 3328 return; 3329 } 3330 case Instruction::InsertElement: { 3331 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3332 3333 // Check that we have a buildvector and not a shuffle of 2 or more 3334 // different vectors. 3335 ValueSet SourceVectors; 3336 for (Value *V : VL) 3337 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3338 3339 if (count_if(VL, [&SourceVectors](Value *V) { 3340 return !SourceVectors.contains(V); 3341 }) >= 2) { 3342 // Found 2nd source vector - cancel. 3343 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3344 "different source vectors.\n"); 3345 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3346 ReuseShuffleIndicies); 3347 BS.cancelScheduling(VL, VL0); 3348 return; 3349 } 3350 3351 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx); 3352 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3353 3354 constexpr int NumOps = 2; 3355 ValueList VectorOperands[NumOps]; 3356 for (int I = 0; I < NumOps; ++I) { 3357 for (Value *V : VL) 3358 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3359 3360 TE->setOperand(I, VectorOperands[I]); 3361 } 3362 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0}); 3363 return; 3364 } 3365 case Instruction::Load: { 3366 // Check that a vectorized load would load the same memory as a scalar 3367 // load. For example, we don't want to vectorize loads that are smaller 3368 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3369 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3370 // from such a struct, we read/write packed bits disagreeing with the 3371 // unvectorized version. 3372 SmallVector<Value *> PointerOps; 3373 OrdersType CurrentOrder; 3374 TreeEntry *TE = nullptr; 3375 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3376 PointerOps)) { 3377 case LoadsState::Vectorize: 3378 if (CurrentOrder.empty()) { 3379 // Original loads are consecutive and does not require reordering. 3380 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3381 ReuseShuffleIndicies); 3382 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3383 } else { 3384 fixupOrderingIndices(CurrentOrder); 3385 // Need to reorder. 3386 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3387 ReuseShuffleIndicies, CurrentOrder); 3388 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3389 } 3390 TE->setOperandsInOrder(); 3391 break; 3392 case LoadsState::ScatterVectorize: 3393 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3394 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3395 UserTreeIdx, ReuseShuffleIndicies); 3396 TE->setOperandsInOrder(); 3397 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3398 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3399 break; 3400 case LoadsState::Gather: 3401 BS.cancelScheduling(VL, VL0); 3402 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3403 ReuseShuffleIndicies); 3404 #ifndef NDEBUG 3405 Type *ScalarTy = VL0->getType(); 3406 if (DL->getTypeSizeInBits(ScalarTy) != 3407 DL->getTypeAllocSizeInBits(ScalarTy)) 3408 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3409 else if (any_of(VL, [](Value *V) { 3410 return !cast<LoadInst>(V)->isSimple(); 3411 })) 3412 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3413 else 3414 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3415 #endif // NDEBUG 3416 break; 3417 } 3418 return; 3419 } 3420 case Instruction::ZExt: 3421 case Instruction::SExt: 3422 case Instruction::FPToUI: 3423 case Instruction::FPToSI: 3424 case Instruction::FPExt: 3425 case Instruction::PtrToInt: 3426 case Instruction::IntToPtr: 3427 case Instruction::SIToFP: 3428 case Instruction::UIToFP: 3429 case Instruction::Trunc: 3430 case Instruction::FPTrunc: 3431 case Instruction::BitCast: { 3432 Type *SrcTy = VL0->getOperand(0)->getType(); 3433 for (Value *V : VL) { 3434 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3435 if (Ty != SrcTy || !isValidElementType(Ty)) { 3436 BS.cancelScheduling(VL, VL0); 3437 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3438 ReuseShuffleIndicies); 3439 LLVM_DEBUG(dbgs() 3440 << "SLP: Gathering casts with different src types.\n"); 3441 return; 3442 } 3443 } 3444 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3445 ReuseShuffleIndicies); 3446 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3447 3448 TE->setOperandsInOrder(); 3449 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3450 ValueList Operands; 3451 // Prepare the operand vector. 3452 for (Value *V : VL) 3453 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3454 3455 buildTree_rec(Operands, Depth + 1, {TE, i}); 3456 } 3457 return; 3458 } 3459 case Instruction::ICmp: 3460 case Instruction::FCmp: { 3461 // Check that all of the compares have the same predicate. 3462 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3463 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3464 Type *ComparedTy = VL0->getOperand(0)->getType(); 3465 for (Value *V : VL) { 3466 CmpInst *Cmp = cast<CmpInst>(V); 3467 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3468 Cmp->getOperand(0)->getType() != ComparedTy) { 3469 BS.cancelScheduling(VL, VL0); 3470 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3471 ReuseShuffleIndicies); 3472 LLVM_DEBUG(dbgs() 3473 << "SLP: Gathering cmp with different predicate.\n"); 3474 return; 3475 } 3476 } 3477 3478 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3479 ReuseShuffleIndicies); 3480 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3481 3482 ValueList Left, Right; 3483 if (cast<CmpInst>(VL0)->isCommutative()) { 3484 // Commutative predicate - collect + sort operands of the instructions 3485 // so that each side is more likely to have the same opcode. 3486 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3487 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3488 } else { 3489 // Collect operands - commute if it uses the swapped predicate. 3490 for (Value *V : VL) { 3491 auto *Cmp = cast<CmpInst>(V); 3492 Value *LHS = Cmp->getOperand(0); 3493 Value *RHS = Cmp->getOperand(1); 3494 if (Cmp->getPredicate() != P0) 3495 std::swap(LHS, RHS); 3496 Left.push_back(LHS); 3497 Right.push_back(RHS); 3498 } 3499 } 3500 TE->setOperand(0, Left); 3501 TE->setOperand(1, Right); 3502 buildTree_rec(Left, Depth + 1, {TE, 0}); 3503 buildTree_rec(Right, Depth + 1, {TE, 1}); 3504 return; 3505 } 3506 case Instruction::Select: 3507 case Instruction::FNeg: 3508 case Instruction::Add: 3509 case Instruction::FAdd: 3510 case Instruction::Sub: 3511 case Instruction::FSub: 3512 case Instruction::Mul: 3513 case Instruction::FMul: 3514 case Instruction::UDiv: 3515 case Instruction::SDiv: 3516 case Instruction::FDiv: 3517 case Instruction::URem: 3518 case Instruction::SRem: 3519 case Instruction::FRem: 3520 case Instruction::Shl: 3521 case Instruction::LShr: 3522 case Instruction::AShr: 3523 case Instruction::And: 3524 case Instruction::Or: 3525 case Instruction::Xor: { 3526 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3527 ReuseShuffleIndicies); 3528 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3529 3530 // Sort operands of the instructions so that each side is more likely to 3531 // have the same opcode. 3532 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3533 ValueList Left, Right; 3534 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3535 TE->setOperand(0, Left); 3536 TE->setOperand(1, Right); 3537 buildTree_rec(Left, Depth + 1, {TE, 0}); 3538 buildTree_rec(Right, Depth + 1, {TE, 1}); 3539 return; 3540 } 3541 3542 TE->setOperandsInOrder(); 3543 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3544 ValueList Operands; 3545 // Prepare the operand vector. 3546 for (Value *V : VL) 3547 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3548 3549 buildTree_rec(Operands, Depth + 1, {TE, i}); 3550 } 3551 return; 3552 } 3553 case Instruction::GetElementPtr: { 3554 // We don't combine GEPs with complicated (nested) indexing. 3555 for (Value *V : VL) { 3556 if (cast<Instruction>(V)->getNumOperands() != 2) { 3557 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3558 BS.cancelScheduling(VL, VL0); 3559 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3560 ReuseShuffleIndicies); 3561 return; 3562 } 3563 } 3564 3565 // We can't combine several GEPs into one vector if they operate on 3566 // different types. 3567 Type *Ty0 = VL0->getOperand(0)->getType(); 3568 for (Value *V : VL) { 3569 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3570 if (Ty0 != CurTy) { 3571 LLVM_DEBUG(dbgs() 3572 << "SLP: not-vectorizable GEP (different types).\n"); 3573 BS.cancelScheduling(VL, VL0); 3574 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3575 ReuseShuffleIndicies); 3576 return; 3577 } 3578 } 3579 3580 // We don't combine GEPs with non-constant indexes. 3581 Type *Ty1 = VL0->getOperand(1)->getType(); 3582 for (Value *V : VL) { 3583 auto Op = cast<Instruction>(V)->getOperand(1); 3584 if (!isa<ConstantInt>(Op) || 3585 (Op->getType() != Ty1 && 3586 Op->getType()->getScalarSizeInBits() > 3587 DL->getIndexSizeInBits( 3588 V->getType()->getPointerAddressSpace()))) { 3589 LLVM_DEBUG(dbgs() 3590 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3591 BS.cancelScheduling(VL, VL0); 3592 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3593 ReuseShuffleIndicies); 3594 return; 3595 } 3596 } 3597 3598 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3599 ReuseShuffleIndicies); 3600 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3601 TE->setOperandsInOrder(); 3602 for (unsigned i = 0, e = 2; i < e; ++i) { 3603 ValueList Operands; 3604 // Prepare the operand vector. 3605 for (Value *V : VL) 3606 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3607 3608 buildTree_rec(Operands, Depth + 1, {TE, i}); 3609 } 3610 return; 3611 } 3612 case Instruction::Store: { 3613 // Check if the stores are consecutive or if we need to swizzle them. 3614 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3615 // Avoid types that are padded when being allocated as scalars, while 3616 // being packed together in a vector (such as i1). 3617 if (DL->getTypeSizeInBits(ScalarTy) != 3618 DL->getTypeAllocSizeInBits(ScalarTy)) { 3619 BS.cancelScheduling(VL, VL0); 3620 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3621 ReuseShuffleIndicies); 3622 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3623 return; 3624 } 3625 // Make sure all stores in the bundle are simple - we can't vectorize 3626 // atomic or volatile stores. 3627 SmallVector<Value *, 4> PointerOps(VL.size()); 3628 ValueList Operands(VL.size()); 3629 auto POIter = PointerOps.begin(); 3630 auto OIter = Operands.begin(); 3631 for (Value *V : VL) { 3632 auto *SI = cast<StoreInst>(V); 3633 if (!SI->isSimple()) { 3634 BS.cancelScheduling(VL, VL0); 3635 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3636 ReuseShuffleIndicies); 3637 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3638 return; 3639 } 3640 *POIter = SI->getPointerOperand(); 3641 *OIter = SI->getValueOperand(); 3642 ++POIter; 3643 ++OIter; 3644 } 3645 3646 OrdersType CurrentOrder; 3647 // Check the order of pointer operands. 3648 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3649 Value *Ptr0; 3650 Value *PtrN; 3651 if (CurrentOrder.empty()) { 3652 Ptr0 = PointerOps.front(); 3653 PtrN = PointerOps.back(); 3654 } else { 3655 Ptr0 = PointerOps[CurrentOrder.front()]; 3656 PtrN = PointerOps[CurrentOrder.back()]; 3657 } 3658 Optional<int> Dist = 3659 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3660 // Check that the sorted pointer operands are consecutive. 3661 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3662 if (CurrentOrder.empty()) { 3663 // Original stores are consecutive and does not require reordering. 3664 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3665 UserTreeIdx, ReuseShuffleIndicies); 3666 TE->setOperandsInOrder(); 3667 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3668 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3669 } else { 3670 fixupOrderingIndices(CurrentOrder); 3671 TreeEntry *TE = 3672 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3673 ReuseShuffleIndicies, CurrentOrder); 3674 TE->setOperandsInOrder(); 3675 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3676 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3677 } 3678 return; 3679 } 3680 } 3681 3682 BS.cancelScheduling(VL, VL0); 3683 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3684 ReuseShuffleIndicies); 3685 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3686 return; 3687 } 3688 case Instruction::Call: { 3689 // Check if the calls are all to the same vectorizable intrinsic or 3690 // library function. 3691 CallInst *CI = cast<CallInst>(VL0); 3692 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3693 3694 VFShape Shape = VFShape::get( 3695 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3696 false /*HasGlobalPred*/); 3697 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3698 3699 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3700 BS.cancelScheduling(VL, VL0); 3701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3702 ReuseShuffleIndicies); 3703 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3704 return; 3705 } 3706 Function *F = CI->getCalledFunction(); 3707 unsigned NumArgs = CI->getNumArgOperands(); 3708 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3709 for (unsigned j = 0; j != NumArgs; ++j) 3710 if (hasVectorInstrinsicScalarOpd(ID, j)) 3711 ScalarArgs[j] = CI->getArgOperand(j); 3712 for (Value *V : VL) { 3713 CallInst *CI2 = dyn_cast<CallInst>(V); 3714 if (!CI2 || CI2->getCalledFunction() != F || 3715 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3716 (VecFunc && 3717 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3718 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3719 BS.cancelScheduling(VL, VL0); 3720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3721 ReuseShuffleIndicies); 3722 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3723 << "\n"); 3724 return; 3725 } 3726 // Some intrinsics have scalar arguments and should be same in order for 3727 // them to be vectorized. 3728 for (unsigned j = 0; j != NumArgs; ++j) { 3729 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3730 Value *A1J = CI2->getArgOperand(j); 3731 if (ScalarArgs[j] != A1J) { 3732 BS.cancelScheduling(VL, VL0); 3733 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3734 ReuseShuffleIndicies); 3735 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3736 << " argument " << ScalarArgs[j] << "!=" << A1J 3737 << "\n"); 3738 return; 3739 } 3740 } 3741 } 3742 // Verify that the bundle operands are identical between the two calls. 3743 if (CI->hasOperandBundles() && 3744 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3745 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3746 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3747 BS.cancelScheduling(VL, VL0); 3748 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3749 ReuseShuffleIndicies); 3750 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3751 << *CI << "!=" << *V << '\n'); 3752 return; 3753 } 3754 } 3755 3756 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3757 ReuseShuffleIndicies); 3758 TE->setOperandsInOrder(); 3759 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3760 ValueList Operands; 3761 // Prepare the operand vector. 3762 for (Value *V : VL) { 3763 auto *CI2 = cast<CallInst>(V); 3764 Operands.push_back(CI2->getArgOperand(i)); 3765 } 3766 buildTree_rec(Operands, Depth + 1, {TE, i}); 3767 } 3768 return; 3769 } 3770 case Instruction::ShuffleVector: { 3771 // If this is not an alternate sequence of opcode like add-sub 3772 // then do not vectorize this instruction. 3773 if (!S.isAltShuffle()) { 3774 BS.cancelScheduling(VL, VL0); 3775 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3776 ReuseShuffleIndicies); 3777 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3778 return; 3779 } 3780 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3781 ReuseShuffleIndicies); 3782 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3783 3784 // Reorder operands if reordering would enable vectorization. 3785 if (isa<BinaryOperator>(VL0)) { 3786 ValueList Left, Right; 3787 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3788 TE->setOperand(0, Left); 3789 TE->setOperand(1, Right); 3790 buildTree_rec(Left, Depth + 1, {TE, 0}); 3791 buildTree_rec(Right, Depth + 1, {TE, 1}); 3792 return; 3793 } 3794 3795 TE->setOperandsInOrder(); 3796 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3797 ValueList Operands; 3798 // Prepare the operand vector. 3799 for (Value *V : VL) 3800 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3801 3802 buildTree_rec(Operands, Depth + 1, {TE, i}); 3803 } 3804 return; 3805 } 3806 default: 3807 BS.cancelScheduling(VL, VL0); 3808 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3809 ReuseShuffleIndicies); 3810 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3811 return; 3812 } 3813 } 3814 3815 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3816 unsigned N = 1; 3817 Type *EltTy = T; 3818 3819 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3820 isa<VectorType>(EltTy)) { 3821 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3822 // Check that struct is homogeneous. 3823 for (const auto *Ty : ST->elements()) 3824 if (Ty != *ST->element_begin()) 3825 return 0; 3826 N *= ST->getNumElements(); 3827 EltTy = *ST->element_begin(); 3828 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3829 N *= AT->getNumElements(); 3830 EltTy = AT->getElementType(); 3831 } else { 3832 auto *VT = cast<FixedVectorType>(EltTy); 3833 N *= VT->getNumElements(); 3834 EltTy = VT->getElementType(); 3835 } 3836 } 3837 3838 if (!isValidElementType(EltTy)) 3839 return 0; 3840 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3841 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3842 return 0; 3843 return N; 3844 } 3845 3846 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3847 SmallVectorImpl<unsigned> &CurrentOrder) const { 3848 Instruction *E0 = cast<Instruction>(OpValue); 3849 assert(E0->getOpcode() == Instruction::ExtractElement || 3850 E0->getOpcode() == Instruction::ExtractValue); 3851 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3852 // Check if all of the extracts come from the same vector and from the 3853 // correct offset. 3854 Value *Vec = E0->getOperand(0); 3855 3856 CurrentOrder.clear(); 3857 3858 // We have to extract from a vector/aggregate with the same number of elements. 3859 unsigned NElts; 3860 if (E0->getOpcode() == Instruction::ExtractValue) { 3861 const DataLayout &DL = E0->getModule()->getDataLayout(); 3862 NElts = canMapToVector(Vec->getType(), DL); 3863 if (!NElts) 3864 return false; 3865 // Check if load can be rewritten as load of vector. 3866 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3867 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3868 return false; 3869 } else { 3870 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3871 } 3872 3873 if (NElts != VL.size()) 3874 return false; 3875 3876 // Check that all of the indices extract from the correct offset. 3877 bool ShouldKeepOrder = true; 3878 unsigned E = VL.size(); 3879 // Assign to all items the initial value E + 1 so we can check if the extract 3880 // instruction index was used already. 3881 // Also, later we can check that all the indices are used and we have a 3882 // consecutive access in the extract instructions, by checking that no 3883 // element of CurrentOrder still has value E + 1. 3884 CurrentOrder.assign(E, E + 1); 3885 unsigned I = 0; 3886 for (; I < E; ++I) { 3887 auto *Inst = cast<Instruction>(VL[I]); 3888 if (Inst->getOperand(0) != Vec) 3889 break; 3890 Optional<unsigned> Idx = getExtractIndex(Inst); 3891 if (!Idx) 3892 break; 3893 const unsigned ExtIdx = *Idx; 3894 if (ExtIdx != I) { 3895 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3896 break; 3897 ShouldKeepOrder = false; 3898 CurrentOrder[ExtIdx] = I; 3899 } else { 3900 if (CurrentOrder[I] != E + 1) 3901 break; 3902 CurrentOrder[I] = I; 3903 } 3904 } 3905 if (I < E) { 3906 CurrentOrder.clear(); 3907 return false; 3908 } 3909 3910 return ShouldKeepOrder; 3911 } 3912 3913 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 3914 ArrayRef<Value *> VectorizedVals) const { 3915 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 3916 llvm::all_of(I->users(), [this](User *U) { 3917 return ScalarToTreeEntry.count(U) > 0; 3918 }); 3919 } 3920 3921 static std::pair<InstructionCost, InstructionCost> 3922 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3923 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3924 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3925 3926 // Calculate the cost of the scalar and vector calls. 3927 SmallVector<Type *, 4> VecTys; 3928 for (Use &Arg : CI->args()) 3929 VecTys.push_back( 3930 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3931 FastMathFlags FMF; 3932 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3933 FMF = FPCI->getFastMathFlags(); 3934 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3935 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3936 dyn_cast<IntrinsicInst>(CI)); 3937 auto IntrinsicCost = 3938 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3939 3940 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3941 VecTy->getNumElements())), 3942 false /*HasGlobalPred*/); 3943 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3944 auto LibCost = IntrinsicCost; 3945 if (!CI->isNoBuiltin() && VecFunc) { 3946 // Calculate the cost of the vector library call. 3947 // If the corresponding vector call is cheaper, return its cost. 3948 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3949 TTI::TCK_RecipThroughput); 3950 } 3951 return {IntrinsicCost, LibCost}; 3952 } 3953 3954 /// Compute the cost of creating a vector of type \p VecTy containing the 3955 /// extracted values from \p VL. 3956 static InstructionCost 3957 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3958 TargetTransformInfo::ShuffleKind ShuffleKind, 3959 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3960 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3961 3962 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3963 VecTy->getNumElements() < NumOfParts) 3964 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3965 3966 bool AllConsecutive = true; 3967 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3968 unsigned Idx = -1; 3969 InstructionCost Cost = 0; 3970 3971 // Process extracts in blocks of EltsPerVector to check if the source vector 3972 // operand can be re-used directly. If not, add the cost of creating a shuffle 3973 // to extract the values into a vector register. 3974 for (auto *V : VL) { 3975 ++Idx; 3976 3977 // Reached the start of a new vector registers. 3978 if (Idx % EltsPerVector == 0) { 3979 AllConsecutive = true; 3980 continue; 3981 } 3982 3983 // Check all extracts for a vector register on the target directly 3984 // extract values in order. 3985 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3986 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3987 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3988 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3989 3990 if (AllConsecutive) 3991 continue; 3992 3993 // Skip all indices, except for the last index per vector block. 3994 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3995 continue; 3996 3997 // If we have a series of extracts which are not consecutive and hence 3998 // cannot re-use the source vector register directly, compute the shuffle 3999 // cost to extract the a vector with EltsPerVector elements. 4000 Cost += TTI.getShuffleCost( 4001 TargetTransformInfo::SK_PermuteSingleSrc, 4002 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4003 } 4004 return Cost; 4005 } 4006 4007 /// Shuffles \p Mask in accordance with the given \p SubMask. 4008 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 4009 if (SubMask.empty()) 4010 return; 4011 if (Mask.empty()) { 4012 Mask.append(SubMask.begin(), SubMask.end()); 4013 return; 4014 } 4015 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4016 int TermValue = std::min(Mask.size(), SubMask.size()); 4017 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4018 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 4019 Mask[SubMask[I]] >= TermValue) { 4020 NewMask[I] = UndefMaskElem; 4021 continue; 4022 } 4023 NewMask[I] = Mask[SubMask[I]]; 4024 } 4025 Mask.swap(NewMask); 4026 } 4027 4028 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4029 ArrayRef<Value *> VectorizedVals) { 4030 ArrayRef<Value*> VL = E->Scalars; 4031 4032 Type *ScalarTy = VL[0]->getType(); 4033 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4034 ScalarTy = SI->getValueOperand()->getType(); 4035 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4036 ScalarTy = CI->getOperand(0)->getType(); 4037 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4038 ScalarTy = IE->getOperand(1)->getType(); 4039 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4040 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4041 4042 // If we have computed a smaller type for the expression, update VecTy so 4043 // that the costs will be accurate. 4044 if (MinBWs.count(VL[0])) 4045 VecTy = FixedVectorType::get( 4046 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4047 auto *FinalVecTy = VecTy; 4048 4049 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4050 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4051 if (NeedToShuffleReuses) 4052 FinalVecTy = 4053 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4054 // FIXME: it tries to fix a problem with MSVC buildbots. 4055 TargetTransformInfo &TTIRef = *TTI; 4056 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4057 VectorizedVals](InstructionCost &Cost, 4058 bool IsGather) { 4059 DenseMap<Value *, int> ExtractVectorsTys; 4060 for (auto *V : VL) { 4061 // If all users of instruction are going to be vectorized and this 4062 // instruction itself is not going to be vectorized, consider this 4063 // instruction as dead and remove its cost from the final cost of the 4064 // vectorized tree. 4065 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4066 (IsGather && ScalarToTreeEntry.count(V))) 4067 continue; 4068 auto *EE = cast<ExtractElementInst>(V); 4069 unsigned Idx = *getExtractIndex(EE); 4070 if (TTIRef.getNumberOfParts(VecTy) != 4071 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4072 auto It = 4073 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4074 It->getSecond() = std::min<int>(It->second, Idx); 4075 } 4076 // Take credit for instruction that will become dead. 4077 if (EE->hasOneUse()) { 4078 Instruction *Ext = EE->user_back(); 4079 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4080 all_of(Ext->users(), 4081 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4082 // Use getExtractWithExtendCost() to calculate the cost of 4083 // extractelement/ext pair. 4084 Cost -= 4085 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4086 EE->getVectorOperandType(), Idx); 4087 // Add back the cost of s|zext which is subtracted separately. 4088 Cost += TTIRef.getCastInstrCost( 4089 Ext->getOpcode(), Ext->getType(), EE->getType(), 4090 TTI::getCastContextHint(Ext), CostKind, Ext); 4091 continue; 4092 } 4093 } 4094 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4095 EE->getVectorOperandType(), Idx); 4096 } 4097 // Add a cost for subvector extracts/inserts if required. 4098 for (const auto &Data : ExtractVectorsTys) { 4099 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4100 unsigned NumElts = VecTy->getNumElements(); 4101 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4102 unsigned Idx = (Data.second / NumElts) * NumElts; 4103 unsigned EENumElts = EEVTy->getNumElements(); 4104 if (Idx + NumElts <= EENumElts) { 4105 Cost += 4106 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4107 EEVTy, None, Idx, VecTy); 4108 } else { 4109 // Need to round up the subvector type vectorization factor to avoid a 4110 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4111 // <= EENumElts. 4112 auto *SubVT = 4113 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4114 Cost += 4115 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4116 EEVTy, None, Idx, SubVT); 4117 } 4118 } else { 4119 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4120 VecTy, None, 0, EEVTy); 4121 } 4122 } 4123 }; 4124 if (E->State == TreeEntry::NeedToGather) { 4125 if (allConstant(VL)) 4126 return 0; 4127 if (isa<InsertElementInst>(VL[0])) 4128 return InstructionCost::getInvalid(); 4129 SmallVector<int> Mask; 4130 SmallVector<const TreeEntry *> Entries; 4131 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4132 isGatherShuffledEntry(E, Mask, Entries); 4133 if (Shuffle.hasValue()) { 4134 InstructionCost GatherCost = 0; 4135 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4136 // Perfect match in the graph, will reuse the previously vectorized 4137 // node. Cost is 0. 4138 LLVM_DEBUG( 4139 dbgs() 4140 << "SLP: perfect diamond match for gather bundle that starts with " 4141 << *VL.front() << ".\n"); 4142 if (NeedToShuffleReuses) 4143 GatherCost = 4144 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4145 FinalVecTy, E->ReuseShuffleIndices); 4146 } else { 4147 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4148 << " entries for bundle that starts with " 4149 << *VL.front() << ".\n"); 4150 // Detected that instead of gather we can emit a shuffle of single/two 4151 // previously vectorized nodes. Add the cost of the permutation rather 4152 // than gather. 4153 ::addMask(Mask, E->ReuseShuffleIndices); 4154 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4155 } 4156 return GatherCost; 4157 } 4158 if (isSplat(VL)) { 4159 // Found the broadcasting of the single scalar, calculate the cost as the 4160 // broadcast. 4161 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4162 } 4163 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4164 allSameBlock(VL) && 4165 !isa<ScalableVectorType>( 4166 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4167 // Check that gather of extractelements can be represented as just a 4168 // shuffle of a single/two vectors the scalars are extracted from. 4169 SmallVector<int> Mask; 4170 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4171 isShuffle(VL, Mask); 4172 if (ShuffleKind.hasValue()) { 4173 // Found the bunch of extractelement instructions that must be gathered 4174 // into a vector and can be represented as a permutation elements in a 4175 // single input vector or of 2 input vectors. 4176 InstructionCost Cost = 4177 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4178 AdjustExtractsCost(Cost, /*IsGather=*/true); 4179 if (NeedToShuffleReuses) 4180 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4181 FinalVecTy, E->ReuseShuffleIndices); 4182 return Cost; 4183 } 4184 } 4185 InstructionCost ReuseShuffleCost = 0; 4186 if (NeedToShuffleReuses) 4187 ReuseShuffleCost = TTI->getShuffleCost( 4188 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4189 // Improve gather cost for gather of loads, if we can group some of the 4190 // loads into vector loads. 4191 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4192 !E->isAltShuffle()) { 4193 BoUpSLP::ValueSet VectorizedLoads; 4194 unsigned StartIdx = 0; 4195 unsigned VF = VL.size() / 2; 4196 unsigned VectorizedCnt = 0; 4197 unsigned ScatterVectorizeCnt = 0; 4198 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4199 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4200 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4201 Cnt += VF) { 4202 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4203 if (!VectorizedLoads.count(Slice.front()) && 4204 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4205 SmallVector<Value *> PointerOps; 4206 OrdersType CurrentOrder; 4207 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4208 *SE, CurrentOrder, PointerOps); 4209 switch (LS) { 4210 case LoadsState::Vectorize: 4211 case LoadsState::ScatterVectorize: 4212 // Mark the vectorized loads so that we don't vectorize them 4213 // again. 4214 if (LS == LoadsState::Vectorize) 4215 ++VectorizedCnt; 4216 else 4217 ++ScatterVectorizeCnt; 4218 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4219 // If we vectorized initial block, no need to try to vectorize it 4220 // again. 4221 if (Cnt == StartIdx) 4222 StartIdx += VF; 4223 break; 4224 case LoadsState::Gather: 4225 break; 4226 } 4227 } 4228 } 4229 // Check if the whole array was vectorized already - exit. 4230 if (StartIdx >= VL.size()) 4231 break; 4232 // Found vectorizable parts - exit. 4233 if (!VectorizedLoads.empty()) 4234 break; 4235 } 4236 if (!VectorizedLoads.empty()) { 4237 InstructionCost GatherCost = 0; 4238 // Get the cost for gathered loads. 4239 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4240 if (VectorizedLoads.contains(VL[I])) 4241 continue; 4242 GatherCost += getGatherCost(VL.slice(I, VF)); 4243 } 4244 // The cost for vectorized loads. 4245 InstructionCost ScalarsCost = 0; 4246 for (Value *V : VectorizedLoads) { 4247 auto *LI = cast<LoadInst>(V); 4248 ScalarsCost += TTI->getMemoryOpCost( 4249 Instruction::Load, LI->getType(), LI->getAlign(), 4250 LI->getPointerAddressSpace(), CostKind, LI); 4251 } 4252 auto *LI = cast<LoadInst>(E->getMainOp()); 4253 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4254 Align Alignment = LI->getAlign(); 4255 GatherCost += 4256 VectorizedCnt * 4257 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4258 LI->getPointerAddressSpace(), CostKind, LI); 4259 GatherCost += ScatterVectorizeCnt * 4260 TTI->getGatherScatterOpCost( 4261 Instruction::Load, LoadTy, LI->getPointerOperand(), 4262 /*VariableMask=*/false, Alignment, CostKind, LI); 4263 // Add the cost for the subvectors shuffling. 4264 GatherCost += ((VL.size() - VF) / VF) * 4265 TTI->getShuffleCost(TTI::SK_Select, VecTy); 4266 return ReuseShuffleCost + GatherCost - ScalarsCost; 4267 } 4268 } 4269 return ReuseShuffleCost + getGatherCost(VL); 4270 } 4271 InstructionCost CommonCost = 0; 4272 SmallVector<int> Mask; 4273 if (!E->ReorderIndices.empty()) { 4274 SmallVector<int> NewMask; 4275 if (E->getOpcode() == Instruction::Store) { 4276 // For stores the order is actually a mask. 4277 NewMask.resize(E->ReorderIndices.size()); 4278 copy(E->ReorderIndices, NewMask.begin()); 4279 } else { 4280 inversePermutation(E->ReorderIndices, NewMask); 4281 } 4282 ::addMask(Mask, NewMask); 4283 } 4284 if (NeedToShuffleReuses) 4285 ::addMask(Mask, E->ReuseShuffleIndices); 4286 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4287 CommonCost = 4288 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4289 assert((E->State == TreeEntry::Vectorize || 4290 E->State == TreeEntry::ScatterVectorize) && 4291 "Unhandled state"); 4292 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4293 Instruction *VL0 = E->getMainOp(); 4294 unsigned ShuffleOrOp = 4295 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4296 switch (ShuffleOrOp) { 4297 case Instruction::PHI: 4298 return 0; 4299 4300 case Instruction::ExtractValue: 4301 case Instruction::ExtractElement: { 4302 // The common cost of removal ExtractElement/ExtractValue instructions + 4303 // the cost of shuffles, if required to resuffle the original vector. 4304 if (NeedToShuffleReuses) { 4305 unsigned Idx = 0; 4306 for (unsigned I : E->ReuseShuffleIndices) { 4307 if (ShuffleOrOp == Instruction::ExtractElement) { 4308 auto *EE = cast<ExtractElementInst>(VL[I]); 4309 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4310 EE->getVectorOperandType(), 4311 *getExtractIndex(EE)); 4312 } else { 4313 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4314 VecTy, Idx); 4315 ++Idx; 4316 } 4317 } 4318 Idx = ReuseShuffleNumbers; 4319 for (Value *V : VL) { 4320 if (ShuffleOrOp == Instruction::ExtractElement) { 4321 auto *EE = cast<ExtractElementInst>(V); 4322 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4323 EE->getVectorOperandType(), 4324 *getExtractIndex(EE)); 4325 } else { 4326 --Idx; 4327 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4328 VecTy, Idx); 4329 } 4330 } 4331 } 4332 if (ShuffleOrOp == Instruction::ExtractValue) { 4333 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4334 auto *EI = cast<Instruction>(VL[I]); 4335 // Take credit for instruction that will become dead. 4336 if (EI->hasOneUse()) { 4337 Instruction *Ext = EI->user_back(); 4338 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4339 all_of(Ext->users(), 4340 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4341 // Use getExtractWithExtendCost() to calculate the cost of 4342 // extractelement/ext pair. 4343 CommonCost -= TTI->getExtractWithExtendCost( 4344 Ext->getOpcode(), Ext->getType(), VecTy, I); 4345 // Add back the cost of s|zext which is subtracted separately. 4346 CommonCost += TTI->getCastInstrCost( 4347 Ext->getOpcode(), Ext->getType(), EI->getType(), 4348 TTI::getCastContextHint(Ext), CostKind, Ext); 4349 continue; 4350 } 4351 } 4352 CommonCost -= 4353 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4354 } 4355 } else { 4356 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4357 } 4358 return CommonCost; 4359 } 4360 case Instruction::InsertElement: { 4361 assert(E->ReuseShuffleIndices.empty() && 4362 "Unique insertelements only are expected."); 4363 assert(E->ReorderIndices.empty() && 4364 "No reordering expected for insertelements."); 4365 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4366 4367 unsigned const NumElts = SrcVecTy->getNumElements(); 4368 unsigned const NumScalars = VL.size(); 4369 APInt DemandedElts = APInt::getNullValue(NumElts); 4370 // TODO: Add support for Instruction::InsertValue. 4371 unsigned Offset = UINT_MAX; 4372 bool IsIdentity = true; 4373 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem); 4374 for (unsigned I = 0; I < NumScalars; ++I) { 4375 Optional<int> InsertIdx = getInsertIndex(VL[I], 0); 4376 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4377 continue; 4378 unsigned Idx = *InsertIdx; 4379 DemandedElts.setBit(Idx); 4380 if (Idx < Offset) { 4381 Offset = Idx; 4382 IsIdentity &= I == 0; 4383 } else { 4384 assert(Idx >= Offset && "Failed to find vector index offset"); 4385 IsIdentity &= Idx - Offset == I; 4386 } 4387 ShuffleMask[Idx] = I; 4388 } 4389 assert(Offset < NumElts && "Failed to find vector index offset"); 4390 4391 InstructionCost Cost = 0; 4392 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4393 /*Insert*/ true, /*Extract*/ false); 4394 4395 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4396 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4397 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4398 Cost += TTI->getShuffleCost( 4399 TargetTransformInfo::SK_PermuteSingleSrc, 4400 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4401 } else if (!IsIdentity) { 4402 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, 4403 ShuffleMask); 4404 } 4405 4406 return Cost; 4407 } 4408 case Instruction::ZExt: 4409 case Instruction::SExt: 4410 case Instruction::FPToUI: 4411 case Instruction::FPToSI: 4412 case Instruction::FPExt: 4413 case Instruction::PtrToInt: 4414 case Instruction::IntToPtr: 4415 case Instruction::SIToFP: 4416 case Instruction::UIToFP: 4417 case Instruction::Trunc: 4418 case Instruction::FPTrunc: 4419 case Instruction::BitCast: { 4420 Type *SrcTy = VL0->getOperand(0)->getType(); 4421 InstructionCost ScalarEltCost = 4422 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4423 TTI::getCastContextHint(VL0), CostKind, VL0); 4424 if (NeedToShuffleReuses) { 4425 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4426 } 4427 4428 // Calculate the cost of this instruction. 4429 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4430 4431 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4432 InstructionCost VecCost = 0; 4433 // Check if the values are candidates to demote. 4434 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4435 VecCost = CommonCost + TTI->getCastInstrCost( 4436 E->getOpcode(), VecTy, SrcVecTy, 4437 TTI::getCastContextHint(VL0), CostKind, VL0); 4438 } 4439 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4440 return VecCost - ScalarCost; 4441 } 4442 case Instruction::FCmp: 4443 case Instruction::ICmp: 4444 case Instruction::Select: { 4445 // Calculate the cost of this instruction. 4446 InstructionCost ScalarEltCost = 4447 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4448 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4449 if (NeedToShuffleReuses) { 4450 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4451 } 4452 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4453 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4454 4455 // Check if all entries in VL are either compares or selects with compares 4456 // as condition that have the same predicates. 4457 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4458 bool First = true; 4459 for (auto *V : VL) { 4460 CmpInst::Predicate CurrentPred; 4461 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4462 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4463 !match(V, MatchCmp)) || 4464 (!First && VecPred != CurrentPred)) { 4465 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4466 break; 4467 } 4468 First = false; 4469 VecPred = CurrentPred; 4470 } 4471 4472 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4473 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4474 // Check if it is possible and profitable to use min/max for selects in 4475 // VL. 4476 // 4477 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4478 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4479 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4480 {VecTy, VecTy}); 4481 InstructionCost IntrinsicCost = 4482 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4483 // If the selects are the only uses of the compares, they will be dead 4484 // and we can adjust the cost by removing their cost. 4485 if (IntrinsicAndUse.second) 4486 IntrinsicCost -= 4487 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4488 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4489 VecCost = std::min(VecCost, IntrinsicCost); 4490 } 4491 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4492 return CommonCost + VecCost - ScalarCost; 4493 } 4494 case Instruction::FNeg: 4495 case Instruction::Add: 4496 case Instruction::FAdd: 4497 case Instruction::Sub: 4498 case Instruction::FSub: 4499 case Instruction::Mul: 4500 case Instruction::FMul: 4501 case Instruction::UDiv: 4502 case Instruction::SDiv: 4503 case Instruction::FDiv: 4504 case Instruction::URem: 4505 case Instruction::SRem: 4506 case Instruction::FRem: 4507 case Instruction::Shl: 4508 case Instruction::LShr: 4509 case Instruction::AShr: 4510 case Instruction::And: 4511 case Instruction::Or: 4512 case Instruction::Xor: { 4513 // Certain instructions can be cheaper to vectorize if they have a 4514 // constant second vector operand. 4515 TargetTransformInfo::OperandValueKind Op1VK = 4516 TargetTransformInfo::OK_AnyValue; 4517 TargetTransformInfo::OperandValueKind Op2VK = 4518 TargetTransformInfo::OK_UniformConstantValue; 4519 TargetTransformInfo::OperandValueProperties Op1VP = 4520 TargetTransformInfo::OP_None; 4521 TargetTransformInfo::OperandValueProperties Op2VP = 4522 TargetTransformInfo::OP_PowerOf2; 4523 4524 // If all operands are exactly the same ConstantInt then set the 4525 // operand kind to OK_UniformConstantValue. 4526 // If instead not all operands are constants, then set the operand kind 4527 // to OK_AnyValue. If all operands are constants but not the same, 4528 // then set the operand kind to OK_NonUniformConstantValue. 4529 ConstantInt *CInt0 = nullptr; 4530 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4531 const Instruction *I = cast<Instruction>(VL[i]); 4532 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4533 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4534 if (!CInt) { 4535 Op2VK = TargetTransformInfo::OK_AnyValue; 4536 Op2VP = TargetTransformInfo::OP_None; 4537 break; 4538 } 4539 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4540 !CInt->getValue().isPowerOf2()) 4541 Op2VP = TargetTransformInfo::OP_None; 4542 if (i == 0) { 4543 CInt0 = CInt; 4544 continue; 4545 } 4546 if (CInt0 != CInt) 4547 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4548 } 4549 4550 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4551 InstructionCost ScalarEltCost = 4552 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4553 Op2VK, Op1VP, Op2VP, Operands, VL0); 4554 if (NeedToShuffleReuses) { 4555 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4556 } 4557 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4558 InstructionCost VecCost = 4559 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4560 Op2VK, Op1VP, Op2VP, Operands, VL0); 4561 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4562 return CommonCost + VecCost - ScalarCost; 4563 } 4564 case Instruction::GetElementPtr: { 4565 TargetTransformInfo::OperandValueKind Op1VK = 4566 TargetTransformInfo::OK_AnyValue; 4567 TargetTransformInfo::OperandValueKind Op2VK = 4568 TargetTransformInfo::OK_UniformConstantValue; 4569 4570 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4571 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4572 if (NeedToShuffleReuses) { 4573 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4574 } 4575 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4576 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4577 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4578 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4579 return CommonCost + VecCost - ScalarCost; 4580 } 4581 case Instruction::Load: { 4582 // Cost of wide load - cost of scalar loads. 4583 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4584 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4585 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4586 if (NeedToShuffleReuses) { 4587 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4588 } 4589 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4590 InstructionCost VecLdCost; 4591 if (E->State == TreeEntry::Vectorize) { 4592 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4593 CostKind, VL0); 4594 } else { 4595 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4596 Align CommonAlignment = Alignment; 4597 for (Value *V : VL) 4598 CommonAlignment = 4599 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4600 VecLdCost = TTI->getGatherScatterOpCost( 4601 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4602 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4603 } 4604 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4605 return CommonCost + VecLdCost - ScalarLdCost; 4606 } 4607 case Instruction::Store: { 4608 // We know that we can merge the stores. Calculate the cost. 4609 bool IsReorder = !E->ReorderIndices.empty(); 4610 auto *SI = 4611 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4612 Align Alignment = SI->getAlign(); 4613 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4614 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4615 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4616 InstructionCost VecStCost = TTI->getMemoryOpCost( 4617 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4618 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4619 return CommonCost + VecStCost - ScalarStCost; 4620 } 4621 case Instruction::Call: { 4622 CallInst *CI = cast<CallInst>(VL0); 4623 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4624 4625 // Calculate the cost of the scalar and vector calls. 4626 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4627 InstructionCost ScalarEltCost = 4628 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4629 if (NeedToShuffleReuses) { 4630 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4631 } 4632 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4633 4634 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4635 InstructionCost VecCallCost = 4636 std::min(VecCallCosts.first, VecCallCosts.second); 4637 4638 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4639 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4640 << " for " << *CI << "\n"); 4641 4642 return CommonCost + VecCallCost - ScalarCallCost; 4643 } 4644 case Instruction::ShuffleVector: { 4645 assert(E->isAltShuffle() && 4646 ((Instruction::isBinaryOp(E->getOpcode()) && 4647 Instruction::isBinaryOp(E->getAltOpcode())) || 4648 (Instruction::isCast(E->getOpcode()) && 4649 Instruction::isCast(E->getAltOpcode()))) && 4650 "Invalid Shuffle Vector Operand"); 4651 InstructionCost ScalarCost = 0; 4652 if (NeedToShuffleReuses) { 4653 for (unsigned Idx : E->ReuseShuffleIndices) { 4654 Instruction *I = cast<Instruction>(VL[Idx]); 4655 CommonCost -= TTI->getInstructionCost(I, CostKind); 4656 } 4657 for (Value *V : VL) { 4658 Instruction *I = cast<Instruction>(V); 4659 CommonCost += TTI->getInstructionCost(I, CostKind); 4660 } 4661 } 4662 for (Value *V : VL) { 4663 Instruction *I = cast<Instruction>(V); 4664 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4665 ScalarCost += TTI->getInstructionCost(I, CostKind); 4666 } 4667 // VecCost is equal to sum of the cost of creating 2 vectors 4668 // and the cost of creating shuffle. 4669 InstructionCost VecCost = 0; 4670 if (Instruction::isBinaryOp(E->getOpcode())) { 4671 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4672 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4673 CostKind); 4674 } else { 4675 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4676 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4677 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4678 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4679 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4680 TTI::CastContextHint::None, CostKind); 4681 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4682 TTI::CastContextHint::None, CostKind); 4683 } 4684 4685 SmallVector<int> Mask(E->Scalars.size()); 4686 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4687 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4688 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4689 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4690 } 4691 if (!E->ReorderIndices.empty()) { 4692 SmallVector<int> NewMask; 4693 inversePermutation(E->ReorderIndices, NewMask); 4694 ::addMask(Mask, NewMask); 4695 } 4696 if (NeedToShuffleReuses) 4697 ::addMask(Mask, E->ReuseShuffleIndices); 4698 CommonCost = 4699 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 4700 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4701 return CommonCost + VecCost - ScalarCost; 4702 } 4703 default: 4704 llvm_unreachable("Unknown instruction"); 4705 } 4706 } 4707 4708 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4709 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4710 << VectorizableTree.size() << " is fully vectorizable .\n"); 4711 4712 // We only handle trees of heights 1 and 2. 4713 if (VectorizableTree.size() == 1 && 4714 VectorizableTree[0]->State == TreeEntry::Vectorize) 4715 return true; 4716 4717 if (VectorizableTree.size() != 2) 4718 return false; 4719 4720 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4721 // with the second gather nodes if they have less scalar operands rather than 4722 // the initial tree element (may be profitable to shuffle the second gather) 4723 // or they are extractelements, which form shuffle. 4724 SmallVector<int> Mask; 4725 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4726 (allConstant(VectorizableTree[1]->Scalars) || 4727 isSplat(VectorizableTree[1]->Scalars) || 4728 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4729 VectorizableTree[1]->Scalars.size() < 4730 VectorizableTree[0]->Scalars.size()) || 4731 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4732 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4733 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4734 return true; 4735 4736 // Gathering cost would be too much for tiny trees. 4737 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4738 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4739 return false; 4740 4741 return true; 4742 } 4743 4744 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4745 TargetTransformInfo *TTI, 4746 bool MustMatchOrInst) { 4747 // Look past the root to find a source value. Arbitrarily follow the 4748 // path through operand 0 of any 'or'. Also, peek through optional 4749 // shift-left-by-multiple-of-8-bits. 4750 Value *ZextLoad = Root; 4751 const APInt *ShAmtC; 4752 bool FoundOr = false; 4753 while (!isa<ConstantExpr>(ZextLoad) && 4754 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4755 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4756 ShAmtC->urem(8) == 0))) { 4757 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4758 ZextLoad = BinOp->getOperand(0); 4759 if (BinOp->getOpcode() == Instruction::Or) 4760 FoundOr = true; 4761 } 4762 // Check if the input is an extended load of the required or/shift expression. 4763 Value *LoadPtr; 4764 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4765 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4766 return false; 4767 4768 // Require that the total load bit width is a legal integer type. 4769 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4770 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4771 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4772 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4773 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4774 return false; 4775 4776 // Everything matched - assume that we can fold the whole sequence using 4777 // load combining. 4778 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4779 << *(cast<Instruction>(Root)) << "\n"); 4780 4781 return true; 4782 } 4783 4784 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4785 if (RdxKind != RecurKind::Or) 4786 return false; 4787 4788 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4789 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4790 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4791 /* MatchOr */ false); 4792 } 4793 4794 bool BoUpSLP::isLoadCombineCandidate() const { 4795 // Peek through a final sequence of stores and check if all operations are 4796 // likely to be load-combined. 4797 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4798 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4799 Value *X; 4800 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4801 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4802 return false; 4803 } 4804 return true; 4805 } 4806 4807 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4808 // No need to vectorize inserts of gathered values. 4809 if (VectorizableTree.size() == 2 && 4810 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4811 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4812 return true; 4813 4814 // We can vectorize the tree if its size is greater than or equal to the 4815 // minimum size specified by the MinTreeSize command line option. 4816 if (VectorizableTree.size() >= MinTreeSize) 4817 return false; 4818 4819 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4820 // can vectorize it if we can prove it fully vectorizable. 4821 if (isFullyVectorizableTinyTree()) 4822 return false; 4823 4824 assert(VectorizableTree.empty() 4825 ? ExternalUses.empty() 4826 : true && "We shouldn't have any external users"); 4827 4828 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4829 // vectorizable. 4830 return true; 4831 } 4832 4833 InstructionCost BoUpSLP::getSpillCost() const { 4834 // Walk from the bottom of the tree to the top, tracking which values are 4835 // live. When we see a call instruction that is not part of our tree, 4836 // query TTI to see if there is a cost to keeping values live over it 4837 // (for example, if spills and fills are required). 4838 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4839 InstructionCost Cost = 0; 4840 4841 SmallPtrSet<Instruction*, 4> LiveValues; 4842 Instruction *PrevInst = nullptr; 4843 4844 // The entries in VectorizableTree are not necessarily ordered by their 4845 // position in basic blocks. Collect them and order them by dominance so later 4846 // instructions are guaranteed to be visited first. For instructions in 4847 // different basic blocks, we only scan to the beginning of the block, so 4848 // their order does not matter, as long as all instructions in a basic block 4849 // are grouped together. Using dominance ensures a deterministic order. 4850 SmallVector<Instruction *, 16> OrderedScalars; 4851 for (const auto &TEPtr : VectorizableTree) { 4852 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4853 if (!Inst) 4854 continue; 4855 OrderedScalars.push_back(Inst); 4856 } 4857 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 4858 auto *NodeA = DT->getNode(A->getParent()); 4859 auto *NodeB = DT->getNode(B->getParent()); 4860 assert(NodeA && "Should only process reachable instructions"); 4861 assert(NodeB && "Should only process reachable instructions"); 4862 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 4863 "Different nodes should have different DFS numbers"); 4864 if (NodeA != NodeB) 4865 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 4866 return B->comesBefore(A); 4867 }); 4868 4869 for (Instruction *Inst : OrderedScalars) { 4870 if (!PrevInst) { 4871 PrevInst = Inst; 4872 continue; 4873 } 4874 4875 // Update LiveValues. 4876 LiveValues.erase(PrevInst); 4877 for (auto &J : PrevInst->operands()) { 4878 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4879 LiveValues.insert(cast<Instruction>(&*J)); 4880 } 4881 4882 LLVM_DEBUG({ 4883 dbgs() << "SLP: #LV: " << LiveValues.size(); 4884 for (auto *X : LiveValues) 4885 dbgs() << " " << X->getName(); 4886 dbgs() << ", Looking at "; 4887 Inst->dump(); 4888 }); 4889 4890 // Now find the sequence of instructions between PrevInst and Inst. 4891 unsigned NumCalls = 0; 4892 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4893 PrevInstIt = 4894 PrevInst->getIterator().getReverse(); 4895 while (InstIt != PrevInstIt) { 4896 if (PrevInstIt == PrevInst->getParent()->rend()) { 4897 PrevInstIt = Inst->getParent()->rbegin(); 4898 continue; 4899 } 4900 4901 // Debug information does not impact spill cost. 4902 if ((isa<CallInst>(&*PrevInstIt) && 4903 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4904 &*PrevInstIt != PrevInst) 4905 NumCalls++; 4906 4907 ++PrevInstIt; 4908 } 4909 4910 if (NumCalls) { 4911 SmallVector<Type*, 4> V; 4912 for (auto *II : LiveValues) { 4913 auto *ScalarTy = II->getType(); 4914 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 4915 ScalarTy = VectorTy->getElementType(); 4916 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 4917 } 4918 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4919 } 4920 4921 PrevInst = Inst; 4922 } 4923 4924 return Cost; 4925 } 4926 4927 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 4928 InstructionCost Cost = 0; 4929 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4930 << VectorizableTree.size() << ".\n"); 4931 4932 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4933 4934 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4935 TreeEntry &TE = *VectorizableTree[I].get(); 4936 4937 InstructionCost C = getEntryCost(&TE, VectorizedVals); 4938 Cost += C; 4939 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4940 << " for bundle that starts with " << *TE.Scalars[0] 4941 << ".\n" 4942 << "SLP: Current total cost = " << Cost << "\n"); 4943 } 4944 4945 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4946 InstructionCost ExtractCost = 0; 4947 SmallVector<unsigned> VF; 4948 SmallVector<SmallVector<int>> ShuffleMask; 4949 SmallVector<Value *> FirstUsers; 4950 SmallVector<APInt> DemandedElts; 4951 for (ExternalUser &EU : ExternalUses) { 4952 // We only add extract cost once for the same scalar. 4953 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4954 continue; 4955 4956 // Uses by ephemeral values are free (because the ephemeral value will be 4957 // removed prior to code generation, and so the extraction will be 4958 // removed as well). 4959 if (EphValues.count(EU.User)) 4960 continue; 4961 4962 // No extract cost for vector "scalar" 4963 if (isa<FixedVectorType>(EU.Scalar->getType())) 4964 continue; 4965 4966 // Already counted the cost for external uses when tried to adjust the cost 4967 // for extractelements, no need to add it again. 4968 if (isa<ExtractElementInst>(EU.Scalar)) 4969 continue; 4970 4971 // If found user is an insertelement, do not calculate extract cost but try 4972 // to detect it as a final shuffled/identity match. 4973 if (EU.User && isa<InsertElementInst>(EU.User)) { 4974 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 4975 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 4976 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4977 continue; 4978 Value *VU = EU.User; 4979 auto *It = find_if(FirstUsers, [VU](Value *V) { 4980 // Checks if 2 insertelements are from the same buildvector. 4981 if (VU->getType() != V->getType()) 4982 return false; 4983 auto *IE1 = cast<InsertElementInst>(VU); 4984 auto *IE2 = cast<InsertElementInst>(V); 4985 // Go though of insertelement instructions trying to find either VU as 4986 // the original vector for IE2 or V as the original vector for IE1. 4987 do { 4988 if (IE1 == VU || IE2 == V) 4989 return true; 4990 if (IE1) 4991 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 4992 if (IE2) 4993 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 4994 } while (IE1 || IE2); 4995 return false; 4996 }); 4997 int VecId = -1; 4998 if (It == FirstUsers.end()) { 4999 VF.push_back(FTy->getNumElements()); 5000 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5001 FirstUsers.push_back(EU.User); 5002 DemandedElts.push_back(APInt::getNullValue(VF.back())); 5003 VecId = FirstUsers.size() - 1; 5004 } else { 5005 VecId = std::distance(FirstUsers.begin(), It); 5006 } 5007 int Idx = *InsertIdx; 5008 ShuffleMask[VecId][Idx] = EU.Lane; 5009 DemandedElts[VecId].setBit(Idx); 5010 } 5011 } 5012 5013 // If we plan to rewrite the tree in a smaller type, we will need to sign 5014 // extend the extracted value back to the original type. Here, we account 5015 // for the extract and the added cost of the sign extend if needed. 5016 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5017 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5018 if (MinBWs.count(ScalarRoot)) { 5019 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5020 auto Extend = 5021 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5022 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5023 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5024 VecTy, EU.Lane); 5025 } else { 5026 ExtractCost += 5027 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5028 } 5029 } 5030 5031 InstructionCost SpillCost = getSpillCost(); 5032 Cost += SpillCost + ExtractCost; 5033 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5034 // For the very first element - simple shuffle of the source vector. 5035 int Limit = ShuffleMask[I].size() * 2; 5036 if (I == 0 && 5037 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5038 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5039 InstructionCost C = TTI->getShuffleCost( 5040 TTI::SK_PermuteSingleSrc, 5041 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5042 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5043 << " for final shuffle of insertelement external users " 5044 << *VectorizableTree.front()->Scalars.front() << ".\n" 5045 << "SLP: Current total cost = " << Cost << "\n"); 5046 Cost += C; 5047 continue; 5048 } 5049 // Other elements - permutation of 2 vectors (the initial one and the next 5050 // Ith incoming vector). 5051 unsigned VF = ShuffleMask[I].size(); 5052 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5053 int &Mask = ShuffleMask[I][Idx]; 5054 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5055 } 5056 InstructionCost C = TTI->getShuffleCost( 5057 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5058 ShuffleMask[I]); 5059 LLVM_DEBUG( 5060 dbgs() 5061 << "SLP: Adding cost " << C 5062 << " for final shuffle of vector node and external insertelement users " 5063 << *VectorizableTree.front()->Scalars.front() << ".\n" 5064 << "SLP: Current total cost = " << Cost << "\n"); 5065 Cost += C; 5066 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5067 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5068 /*Insert*/ true, 5069 /*Extract*/ false); 5070 Cost -= InsertCost; 5071 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5072 << " for insertelements gather.\n" 5073 << "SLP: Current total cost = " << Cost << "\n"); 5074 } 5075 5076 #ifndef NDEBUG 5077 SmallString<256> Str; 5078 { 5079 raw_svector_ostream OS(Str); 5080 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5081 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5082 << "SLP: Total Cost = " << Cost << ".\n"; 5083 } 5084 LLVM_DEBUG(dbgs() << Str); 5085 if (ViewSLPTree) 5086 ViewGraph(this, "SLP" + F->getName(), false, Str); 5087 #endif 5088 5089 return Cost; 5090 } 5091 5092 Optional<TargetTransformInfo::ShuffleKind> 5093 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5094 SmallVectorImpl<const TreeEntry *> &Entries) { 5095 // TODO: currently checking only for Scalars in the tree entry, need to count 5096 // reused elements too for better cost estimation. 5097 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5098 Entries.clear(); 5099 // Build a lists of values to tree entries. 5100 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5101 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5102 if (EntryPtr.get() == TE) 5103 break; 5104 if (EntryPtr->State != TreeEntry::NeedToGather) 5105 continue; 5106 for (Value *V : EntryPtr->Scalars) 5107 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5108 } 5109 // Find all tree entries used by the gathered values. If no common entries 5110 // found - not a shuffle. 5111 // Here we build a set of tree nodes for each gathered value and trying to 5112 // find the intersection between these sets. If we have at least one common 5113 // tree node for each gathered value - we have just a permutation of the 5114 // single vector. If we have 2 different sets, we're in situation where we 5115 // have a permutation of 2 input vectors. 5116 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5117 DenseMap<Value *, int> UsedValuesEntry; 5118 for (Value *V : TE->Scalars) { 5119 if (isa<UndefValue>(V)) 5120 continue; 5121 // Build a list of tree entries where V is used. 5122 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5123 auto It = ValueToTEs.find(V); 5124 if (It != ValueToTEs.end()) 5125 VToTEs = It->second; 5126 if (const TreeEntry *VTE = getTreeEntry(V)) 5127 VToTEs.insert(VTE); 5128 if (VToTEs.empty()) 5129 return None; 5130 if (UsedTEs.empty()) { 5131 // The first iteration, just insert the list of nodes to vector. 5132 UsedTEs.push_back(VToTEs); 5133 } else { 5134 // Need to check if there are any previously used tree nodes which use V. 5135 // If there are no such nodes, consider that we have another one input 5136 // vector. 5137 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5138 unsigned Idx = 0; 5139 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5140 // Do we have a non-empty intersection of previously listed tree entries 5141 // and tree entries using current V? 5142 set_intersect(VToTEs, Set); 5143 if (!VToTEs.empty()) { 5144 // Yes, write the new subset and continue analysis for the next 5145 // scalar. 5146 Set.swap(VToTEs); 5147 break; 5148 } 5149 VToTEs = SavedVToTEs; 5150 ++Idx; 5151 } 5152 // No non-empty intersection found - need to add a second set of possible 5153 // source vectors. 5154 if (Idx == UsedTEs.size()) { 5155 // If the number of input vectors is greater than 2 - not a permutation, 5156 // fallback to the regular gather. 5157 if (UsedTEs.size() == 2) 5158 return None; 5159 UsedTEs.push_back(SavedVToTEs); 5160 Idx = UsedTEs.size() - 1; 5161 } 5162 UsedValuesEntry.try_emplace(V, Idx); 5163 } 5164 } 5165 5166 unsigned VF = 0; 5167 if (UsedTEs.size() == 1) { 5168 // Try to find the perfect match in another gather node at first. 5169 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5170 return EntryPtr->isSame(TE->Scalars); 5171 }); 5172 if (It != UsedTEs.front().end()) { 5173 Entries.push_back(*It); 5174 std::iota(Mask.begin(), Mask.end(), 0); 5175 return TargetTransformInfo::SK_PermuteSingleSrc; 5176 } 5177 // No perfect match, just shuffle, so choose the first tree node. 5178 Entries.push_back(*UsedTEs.front().begin()); 5179 } else { 5180 // Try to find nodes with the same vector factor. 5181 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5182 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5183 // landed. 5184 auto &&GetVF = [](const TreeEntry *TE) { 5185 if (!TE->ReuseShuffleIndices.empty()) 5186 return TE->ReuseShuffleIndices.size(); 5187 return TE->Scalars.size(); 5188 }; 5189 DenseMap<int, const TreeEntry *> VFToTE; 5190 for (const TreeEntry *TE : UsedTEs.front()) 5191 VFToTE.try_emplace(GetVF(TE), TE); 5192 for (const TreeEntry *TE : UsedTEs.back()) { 5193 auto It = VFToTE.find(GetVF(TE)); 5194 if (It != VFToTE.end()) { 5195 VF = It->first; 5196 Entries.push_back(It->second); 5197 Entries.push_back(TE); 5198 break; 5199 } 5200 } 5201 // No 2 source vectors with the same vector factor - give up and do regular 5202 // gather. 5203 if (Entries.empty()) 5204 return None; 5205 } 5206 5207 // Build a shuffle mask for better cost estimation and vector emission. 5208 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5209 Value *V = TE->Scalars[I]; 5210 if (isa<UndefValue>(V)) 5211 continue; 5212 unsigned Idx = UsedValuesEntry.lookup(V); 5213 const TreeEntry *VTE = Entries[Idx]; 5214 int FoundLane = VTE->findLaneForValue(V); 5215 Mask[I] = Idx * VF + FoundLane; 5216 // Extra check required by isSingleSourceMaskImpl function (called by 5217 // ShuffleVectorInst::isSingleSourceMask). 5218 if (Mask[I] >= 2 * E) 5219 return None; 5220 } 5221 switch (Entries.size()) { 5222 case 1: 5223 return TargetTransformInfo::SK_PermuteSingleSrc; 5224 case 2: 5225 return TargetTransformInfo::SK_PermuteTwoSrc; 5226 default: 5227 break; 5228 } 5229 return None; 5230 } 5231 5232 InstructionCost 5233 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5234 const DenseSet<unsigned> &ShuffledIndices) const { 5235 unsigned NumElts = Ty->getNumElements(); 5236 APInt DemandedElts = APInt::getNullValue(NumElts); 5237 for (unsigned I = 0; I < NumElts; ++I) 5238 if (!ShuffledIndices.count(I)) 5239 DemandedElts.setBit(I); 5240 InstructionCost Cost = 5241 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5242 /*Extract*/ false); 5243 if (!ShuffledIndices.empty()) 5244 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5245 return Cost; 5246 } 5247 5248 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5249 // Find the type of the operands in VL. 5250 Type *ScalarTy = VL[0]->getType(); 5251 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5252 ScalarTy = SI->getValueOperand()->getType(); 5253 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5254 // Find the cost of inserting/extracting values from the vector. 5255 // Check if the same elements are inserted several times and count them as 5256 // shuffle candidates. 5257 DenseSet<unsigned> ShuffledElements; 5258 DenseSet<Value *> UniqueElements; 5259 // Iterate in reverse order to consider insert elements with the high cost. 5260 for (unsigned I = VL.size(); I > 0; --I) { 5261 unsigned Idx = I - 1; 5262 if (isConstant(VL[Idx])) 5263 continue; 5264 if (!UniqueElements.insert(VL[Idx]).second) 5265 ShuffledElements.insert(Idx); 5266 } 5267 return getGatherCost(VecTy, ShuffledElements); 5268 } 5269 5270 // Perform operand reordering on the instructions in VL and return the reordered 5271 // operands in Left and Right. 5272 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5273 SmallVectorImpl<Value *> &Left, 5274 SmallVectorImpl<Value *> &Right, 5275 const DataLayout &DL, 5276 ScalarEvolution &SE, 5277 const BoUpSLP &R) { 5278 if (VL.empty()) 5279 return; 5280 VLOperands Ops(VL, DL, SE, R); 5281 // Reorder the operands in place. 5282 Ops.reorder(); 5283 Left = Ops.getVL(0); 5284 Right = Ops.getVL(1); 5285 } 5286 5287 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5288 // Get the basic block this bundle is in. All instructions in the bundle 5289 // should be in this block. 5290 auto *Front = E->getMainOp(); 5291 auto *BB = Front->getParent(); 5292 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5293 auto *I = cast<Instruction>(V); 5294 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5295 })); 5296 5297 // The last instruction in the bundle in program order. 5298 Instruction *LastInst = nullptr; 5299 5300 // Find the last instruction. The common case should be that BB has been 5301 // scheduled, and the last instruction is VL.back(). So we start with 5302 // VL.back() and iterate over schedule data until we reach the end of the 5303 // bundle. The end of the bundle is marked by null ScheduleData. 5304 if (BlocksSchedules.count(BB)) { 5305 auto *Bundle = 5306 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5307 if (Bundle && Bundle->isPartOfBundle()) 5308 for (; Bundle; Bundle = Bundle->NextInBundle) 5309 if (Bundle->OpValue == Bundle->Inst) 5310 LastInst = Bundle->Inst; 5311 } 5312 5313 // LastInst can still be null at this point if there's either not an entry 5314 // for BB in BlocksSchedules or there's no ScheduleData available for 5315 // VL.back(). This can be the case if buildTree_rec aborts for various 5316 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5317 // size is reached, etc.). ScheduleData is initialized in the scheduling 5318 // "dry-run". 5319 // 5320 // If this happens, we can still find the last instruction by brute force. We 5321 // iterate forwards from Front (inclusive) until we either see all 5322 // instructions in the bundle or reach the end of the block. If Front is the 5323 // last instruction in program order, LastInst will be set to Front, and we 5324 // will visit all the remaining instructions in the block. 5325 // 5326 // One of the reasons we exit early from buildTree_rec is to place an upper 5327 // bound on compile-time. Thus, taking an additional compile-time hit here is 5328 // not ideal. However, this should be exceedingly rare since it requires that 5329 // we both exit early from buildTree_rec and that the bundle be out-of-order 5330 // (causing us to iterate all the way to the end of the block). 5331 if (!LastInst) { 5332 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5333 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5334 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5335 LastInst = &I; 5336 if (Bundle.empty()) 5337 break; 5338 } 5339 } 5340 assert(LastInst && "Failed to find last instruction in bundle"); 5341 5342 // Set the insertion point after the last instruction in the bundle. Set the 5343 // debug location to Front. 5344 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5345 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5346 } 5347 5348 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5349 // List of instructions/lanes from current block and/or the blocks which are 5350 // part of the current loop. These instructions will be inserted at the end to 5351 // make it possible to optimize loops and hoist invariant instructions out of 5352 // the loops body with better chances for success. 5353 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5354 SmallSet<int, 4> PostponedIndices; 5355 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5356 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5357 SmallPtrSet<BasicBlock *, 4> Visited; 5358 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5359 InsertBB = InsertBB->getSinglePredecessor(); 5360 return InsertBB && InsertBB == InstBB; 5361 }; 5362 for (int I = 0, E = VL.size(); I < E; ++I) { 5363 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5364 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5365 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5366 PostponedIndices.insert(I).second) 5367 PostponedInsts.emplace_back(Inst, I); 5368 } 5369 5370 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5371 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5372 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5373 if (!InsElt) 5374 return Vec; 5375 GatherSeq.insert(InsElt); 5376 CSEBlocks.insert(InsElt->getParent()); 5377 // Add to our 'need-to-extract' list. 5378 if (TreeEntry *Entry = getTreeEntry(V)) { 5379 // Find which lane we need to extract. 5380 unsigned FoundLane = Entry->findLaneForValue(V); 5381 ExternalUses.emplace_back(V, InsElt, FoundLane); 5382 } 5383 return Vec; 5384 }; 5385 Value *Val0 = 5386 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5387 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5388 Value *Vec = PoisonValue::get(VecTy); 5389 SmallVector<int> NonConsts; 5390 // Insert constant values at first. 5391 for (int I = 0, E = VL.size(); I < E; ++I) { 5392 if (PostponedIndices.contains(I)) 5393 continue; 5394 if (!isConstant(VL[I])) { 5395 NonConsts.push_back(I); 5396 continue; 5397 } 5398 Vec = CreateInsertElement(Vec, VL[I], I); 5399 } 5400 // Insert non-constant values. 5401 for (int I : NonConsts) 5402 Vec = CreateInsertElement(Vec, VL[I], I); 5403 // Append instructions, which are/may be part of the loop, in the end to make 5404 // it possible to hoist non-loop-based instructions. 5405 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5406 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5407 5408 return Vec; 5409 } 5410 5411 namespace { 5412 /// Merges shuffle masks and emits final shuffle instruction, if required. 5413 class ShuffleInstructionBuilder { 5414 IRBuilderBase &Builder; 5415 const unsigned VF = 0; 5416 bool IsFinalized = false; 5417 SmallVector<int, 4> Mask; 5418 5419 public: 5420 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5421 : Builder(Builder), VF(VF) {} 5422 5423 /// Adds a mask, inverting it before applying. 5424 void addInversedMask(ArrayRef<unsigned> SubMask) { 5425 if (SubMask.empty()) 5426 return; 5427 SmallVector<int, 4> NewMask; 5428 inversePermutation(SubMask, NewMask); 5429 addMask(NewMask); 5430 } 5431 5432 /// Functions adds masks, merging them into single one. 5433 void addMask(ArrayRef<unsigned> SubMask) { 5434 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5435 addMask(NewMask); 5436 } 5437 5438 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5439 5440 Value *finalize(Value *V) { 5441 IsFinalized = true; 5442 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5443 if (VF == ValueVF && Mask.empty()) 5444 return V; 5445 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5446 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5447 addMask(NormalizedMask); 5448 5449 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5450 return V; 5451 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5452 } 5453 5454 ~ShuffleInstructionBuilder() { 5455 assert((IsFinalized || Mask.empty()) && 5456 "Shuffle construction must be finalized."); 5457 } 5458 }; 5459 } // namespace 5460 5461 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5462 unsigned VF = VL.size(); 5463 InstructionsState S = getSameOpcode(VL); 5464 if (S.getOpcode()) { 5465 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5466 if (E->isSame(VL)) { 5467 Value *V = vectorizeTree(E); 5468 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5469 if (!E->ReuseShuffleIndices.empty()) { 5470 // Reshuffle to get only unique values. 5471 // If some of the scalars are duplicated in the vectorization tree 5472 // entry, we do not vectorize them but instead generate a mask for 5473 // the reuses. But if there are several users of the same entry, 5474 // they may have different vectorization factors. This is especially 5475 // important for PHI nodes. In this case, we need to adapt the 5476 // resulting instruction for the user vectorization factor and have 5477 // to reshuffle it again to take only unique elements of the vector. 5478 // Without this code the function incorrectly returns reduced vector 5479 // instruction with the same elements, not with the unique ones. 5480 5481 // block: 5482 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5483 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 5484 // ... (use %2) 5485 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 5486 // br %block 5487 SmallVector<int> UniqueIdxs; 5488 SmallSet<int, 4> UsedIdxs; 5489 int Pos = 0; 5490 int Sz = VL.size(); 5491 for (int Idx : E->ReuseShuffleIndices) { 5492 if (Idx != Sz && UsedIdxs.insert(Idx).second) 5493 UniqueIdxs.emplace_back(Pos); 5494 ++Pos; 5495 } 5496 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5497 "less than original vector size."); 5498 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5499 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5500 } else { 5501 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5502 "Expected vectorization factor less " 5503 "than original vector size."); 5504 SmallVector<int> UniformMask(VF, 0); 5505 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5506 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5507 } 5508 } 5509 return V; 5510 } 5511 } 5512 5513 // Check that every instruction appears once in this bundle. 5514 SmallVector<int> ReuseShuffleIndicies; 5515 SmallVector<Value *> UniqueValues; 5516 if (VL.size() > 2) { 5517 DenseMap<Value *, unsigned> UniquePositions; 5518 unsigned NumValues = 5519 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5520 return !isa<UndefValue>(V); 5521 }).base()); 5522 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5523 int UniqueVals = 0; 5524 for (Value *V : VL.drop_back(VL.size() - VF)) { 5525 if (isa<UndefValue>(V)) { 5526 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5527 continue; 5528 } 5529 if (isConstant(V)) { 5530 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5531 UniqueValues.emplace_back(V); 5532 continue; 5533 } 5534 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5535 ReuseShuffleIndicies.emplace_back(Res.first->second); 5536 if (Res.second) { 5537 UniqueValues.emplace_back(V); 5538 ++UniqueVals; 5539 } 5540 } 5541 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5542 // Emit pure splat vector. 5543 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5544 UndefMaskElem); 5545 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5546 ReuseShuffleIndicies.clear(); 5547 UniqueValues.clear(); 5548 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5549 } 5550 UniqueValues.append(VF - UniqueValues.size(), 5551 PoisonValue::get(VL[0]->getType())); 5552 VL = UniqueValues; 5553 } 5554 5555 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5556 Value *Vec = gather(VL); 5557 if (!ReuseShuffleIndicies.empty()) { 5558 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5559 Vec = ShuffleBuilder.finalize(Vec); 5560 if (auto *I = dyn_cast<Instruction>(Vec)) { 5561 GatherSeq.insert(I); 5562 CSEBlocks.insert(I->getParent()); 5563 } 5564 } 5565 return Vec; 5566 } 5567 5568 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5569 IRBuilder<>::InsertPointGuard Guard(Builder); 5570 5571 if (E->VectorizedValue) { 5572 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5573 return E->VectorizedValue; 5574 } 5575 5576 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5577 unsigned VF = E->Scalars.size(); 5578 if (NeedToShuffleReuses) 5579 VF = E->ReuseShuffleIndices.size(); 5580 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5581 if (E->State == TreeEntry::NeedToGather) { 5582 setInsertPointAfterBundle(E); 5583 Value *Vec; 5584 SmallVector<int> Mask; 5585 SmallVector<const TreeEntry *> Entries; 5586 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5587 isGatherShuffledEntry(E, Mask, Entries); 5588 if (Shuffle.hasValue()) { 5589 assert((Entries.size() == 1 || Entries.size() == 2) && 5590 "Expected shuffle of 1 or 2 entries."); 5591 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5592 Entries.back()->VectorizedValue, Mask); 5593 } else { 5594 Vec = gather(E->Scalars); 5595 } 5596 if (NeedToShuffleReuses) { 5597 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5598 Vec = ShuffleBuilder.finalize(Vec); 5599 if (auto *I = dyn_cast<Instruction>(Vec)) { 5600 GatherSeq.insert(I); 5601 CSEBlocks.insert(I->getParent()); 5602 } 5603 } 5604 E->VectorizedValue = Vec; 5605 return Vec; 5606 } 5607 5608 assert((E->State == TreeEntry::Vectorize || 5609 E->State == TreeEntry::ScatterVectorize) && 5610 "Unhandled state"); 5611 unsigned ShuffleOrOp = 5612 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5613 Instruction *VL0 = E->getMainOp(); 5614 Type *ScalarTy = VL0->getType(); 5615 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5616 ScalarTy = Store->getValueOperand()->getType(); 5617 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5618 ScalarTy = IE->getOperand(1)->getType(); 5619 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5620 switch (ShuffleOrOp) { 5621 case Instruction::PHI: { 5622 assert( 5623 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5624 "PHI reordering is free."); 5625 auto *PH = cast<PHINode>(VL0); 5626 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5627 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5628 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5629 Value *V = NewPhi; 5630 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5631 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5632 V = ShuffleBuilder.finalize(V); 5633 5634 E->VectorizedValue = V; 5635 5636 // PHINodes may have multiple entries from the same block. We want to 5637 // visit every block once. 5638 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5639 5640 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5641 ValueList Operands; 5642 BasicBlock *IBB = PH->getIncomingBlock(i); 5643 5644 if (!VisitedBBs.insert(IBB).second) { 5645 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5646 continue; 5647 } 5648 5649 Builder.SetInsertPoint(IBB->getTerminator()); 5650 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5651 Value *Vec = vectorizeTree(E->getOperand(i)); 5652 NewPhi->addIncoming(Vec, IBB); 5653 } 5654 5655 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5656 "Invalid number of incoming values"); 5657 return V; 5658 } 5659 5660 case Instruction::ExtractElement: { 5661 Value *V = E->getSingleOperand(0); 5662 Builder.SetInsertPoint(VL0); 5663 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5664 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5665 V = ShuffleBuilder.finalize(V); 5666 E->VectorizedValue = V; 5667 return V; 5668 } 5669 case Instruction::ExtractValue: { 5670 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5671 Builder.SetInsertPoint(LI); 5672 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5673 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5674 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5675 Value *NewV = propagateMetadata(V, E->Scalars); 5676 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5677 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5678 NewV = ShuffleBuilder.finalize(NewV); 5679 E->VectorizedValue = NewV; 5680 return NewV; 5681 } 5682 case Instruction::InsertElement: { 5683 assert(E->ReorderIndices.empty() && "InsertElements reordering is free."); 5684 Builder.SetInsertPoint(VL0); 5685 Value *V = vectorizeTree(E->getOperand(1)); 5686 5687 const unsigned NumElts = 5688 cast<FixedVectorType>(VL0->getType())->getNumElements(); 5689 const unsigned NumScalars = E->Scalars.size(); 5690 5691 // Create InsertVector shuffle if necessary 5692 Instruction *FirstInsert = nullptr; 5693 bool IsIdentity = true; 5694 unsigned Offset = UINT_MAX; 5695 for (unsigned I = 0; I < NumScalars; ++I) { 5696 Value *Scalar = E->Scalars[I]; 5697 if (!FirstInsert && 5698 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0))) 5699 FirstInsert = cast<Instruction>(Scalar); 5700 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5701 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5702 continue; 5703 unsigned Idx = *InsertIdx; 5704 if (Idx < Offset) { 5705 Offset = Idx; 5706 IsIdentity &= I == 0; 5707 } else { 5708 assert(Idx >= Offset && "Failed to find vector index offset"); 5709 IsIdentity &= Idx - Offset == I; 5710 } 5711 } 5712 assert(Offset < NumElts && "Failed to find vector index offset"); 5713 5714 // Create shuffle to resize vector 5715 SmallVector<int> Mask(NumElts, UndefMaskElem); 5716 if (!IsIdentity) { 5717 for (unsigned I = 0; I < NumScalars; ++I) { 5718 Value *Scalar = E->Scalars[I]; 5719 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5720 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5721 continue; 5722 Mask[*InsertIdx - Offset] = I; 5723 } 5724 } else { 5725 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5726 } 5727 if (!IsIdentity || NumElts != NumScalars) 5728 V = Builder.CreateShuffleVector(V, Mask); 5729 5730 if (NumElts != NumScalars) { 5731 SmallVector<int> InsertMask(NumElts); 5732 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5733 for (unsigned I = 0; I < NumElts; I++) { 5734 if (Mask[I] != UndefMaskElem) 5735 InsertMask[Offset + I] = NumElts + I; 5736 } 5737 5738 V = Builder.CreateShuffleVector( 5739 FirstInsert->getOperand(0), V, InsertMask, 5740 cast<Instruction>(E->Scalars.back())->getName()); 5741 } 5742 5743 ++NumVectorInstructions; 5744 E->VectorizedValue = V; 5745 return V; 5746 } 5747 case Instruction::ZExt: 5748 case Instruction::SExt: 5749 case Instruction::FPToUI: 5750 case Instruction::FPToSI: 5751 case Instruction::FPExt: 5752 case Instruction::PtrToInt: 5753 case Instruction::IntToPtr: 5754 case Instruction::SIToFP: 5755 case Instruction::UIToFP: 5756 case Instruction::Trunc: 5757 case Instruction::FPTrunc: 5758 case Instruction::BitCast: { 5759 setInsertPointAfterBundle(E); 5760 5761 Value *InVec = vectorizeTree(E->getOperand(0)); 5762 5763 if (E->VectorizedValue) { 5764 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5765 return E->VectorizedValue; 5766 } 5767 5768 auto *CI = cast<CastInst>(VL0); 5769 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5770 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5771 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5772 V = ShuffleBuilder.finalize(V); 5773 5774 E->VectorizedValue = V; 5775 ++NumVectorInstructions; 5776 return V; 5777 } 5778 case Instruction::FCmp: 5779 case Instruction::ICmp: { 5780 setInsertPointAfterBundle(E); 5781 5782 Value *L = vectorizeTree(E->getOperand(0)); 5783 Value *R = vectorizeTree(E->getOperand(1)); 5784 5785 if (E->VectorizedValue) { 5786 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5787 return E->VectorizedValue; 5788 } 5789 5790 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5791 Value *V = Builder.CreateCmp(P0, L, R); 5792 propagateIRFlags(V, E->Scalars, VL0); 5793 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5794 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5795 V = ShuffleBuilder.finalize(V); 5796 5797 E->VectorizedValue = V; 5798 ++NumVectorInstructions; 5799 return V; 5800 } 5801 case Instruction::Select: { 5802 setInsertPointAfterBundle(E); 5803 5804 Value *Cond = vectorizeTree(E->getOperand(0)); 5805 Value *True = vectorizeTree(E->getOperand(1)); 5806 Value *False = vectorizeTree(E->getOperand(2)); 5807 5808 if (E->VectorizedValue) { 5809 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5810 return E->VectorizedValue; 5811 } 5812 5813 Value *V = Builder.CreateSelect(Cond, True, False); 5814 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5815 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5816 V = ShuffleBuilder.finalize(V); 5817 5818 E->VectorizedValue = V; 5819 ++NumVectorInstructions; 5820 return V; 5821 } 5822 case Instruction::FNeg: { 5823 setInsertPointAfterBundle(E); 5824 5825 Value *Op = vectorizeTree(E->getOperand(0)); 5826 5827 if (E->VectorizedValue) { 5828 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5829 return E->VectorizedValue; 5830 } 5831 5832 Value *V = Builder.CreateUnOp( 5833 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5834 propagateIRFlags(V, E->Scalars, VL0); 5835 if (auto *I = dyn_cast<Instruction>(V)) 5836 V = propagateMetadata(I, E->Scalars); 5837 5838 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5839 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5840 V = ShuffleBuilder.finalize(V); 5841 5842 E->VectorizedValue = V; 5843 ++NumVectorInstructions; 5844 5845 return V; 5846 } 5847 case Instruction::Add: 5848 case Instruction::FAdd: 5849 case Instruction::Sub: 5850 case Instruction::FSub: 5851 case Instruction::Mul: 5852 case Instruction::FMul: 5853 case Instruction::UDiv: 5854 case Instruction::SDiv: 5855 case Instruction::FDiv: 5856 case Instruction::URem: 5857 case Instruction::SRem: 5858 case Instruction::FRem: 5859 case Instruction::Shl: 5860 case Instruction::LShr: 5861 case Instruction::AShr: 5862 case Instruction::And: 5863 case Instruction::Or: 5864 case Instruction::Xor: { 5865 setInsertPointAfterBundle(E); 5866 5867 Value *LHS = vectorizeTree(E->getOperand(0)); 5868 Value *RHS = vectorizeTree(E->getOperand(1)); 5869 5870 if (E->VectorizedValue) { 5871 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5872 return E->VectorizedValue; 5873 } 5874 5875 Value *V = Builder.CreateBinOp( 5876 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 5877 RHS); 5878 propagateIRFlags(V, E->Scalars, VL0); 5879 if (auto *I = dyn_cast<Instruction>(V)) 5880 V = propagateMetadata(I, E->Scalars); 5881 5882 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5883 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5884 V = ShuffleBuilder.finalize(V); 5885 5886 E->VectorizedValue = V; 5887 ++NumVectorInstructions; 5888 5889 return V; 5890 } 5891 case Instruction::Load: { 5892 // Loads are inserted at the head of the tree because we don't want to 5893 // sink them all the way down past store instructions. 5894 bool IsReorder = E->updateStateIfReorder(); 5895 if (IsReorder) 5896 VL0 = E->getMainOp(); 5897 setInsertPointAfterBundle(E); 5898 5899 LoadInst *LI = cast<LoadInst>(VL0); 5900 Instruction *NewLI; 5901 unsigned AS = LI->getPointerAddressSpace(); 5902 Value *PO = LI->getPointerOperand(); 5903 if (E->State == TreeEntry::Vectorize) { 5904 5905 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 5906 5907 // The pointer operand uses an in-tree scalar so we add the new BitCast 5908 // to ExternalUses list to make sure that an extract will be generated 5909 // in the future. 5910 if (getTreeEntry(PO)) 5911 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 5912 5913 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 5914 } else { 5915 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 5916 Value *VecPtr = vectorizeTree(E->getOperand(0)); 5917 // Use the minimum alignment of the gathered loads. 5918 Align CommonAlignment = LI->getAlign(); 5919 for (Value *V : E->Scalars) 5920 CommonAlignment = 5921 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5922 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 5923 } 5924 Value *V = propagateMetadata(NewLI, E->Scalars); 5925 5926 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5927 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5928 V = ShuffleBuilder.finalize(V); 5929 E->VectorizedValue = V; 5930 ++NumVectorInstructions; 5931 return V; 5932 } 5933 case Instruction::Store: { 5934 bool IsReorder = !E->ReorderIndices.empty(); 5935 auto *SI = cast<StoreInst>( 5936 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 5937 unsigned AS = SI->getPointerAddressSpace(); 5938 5939 setInsertPointAfterBundle(E); 5940 5941 Value *VecValue = vectorizeTree(E->getOperand(0)); 5942 ShuffleBuilder.addMask(E->ReorderIndices); 5943 VecValue = ShuffleBuilder.finalize(VecValue); 5944 5945 Value *ScalarPtr = SI->getPointerOperand(); 5946 Value *VecPtr = Builder.CreateBitCast( 5947 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 5948 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 5949 SI->getAlign()); 5950 5951 // The pointer operand uses an in-tree scalar, so add the new BitCast to 5952 // ExternalUses to make sure that an extract will be generated in the 5953 // future. 5954 if (getTreeEntry(ScalarPtr)) 5955 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 5956 5957 Value *V = propagateMetadata(ST, E->Scalars); 5958 5959 E->VectorizedValue = V; 5960 ++NumVectorInstructions; 5961 return V; 5962 } 5963 case Instruction::GetElementPtr: { 5964 setInsertPointAfterBundle(E); 5965 5966 Value *Op0 = vectorizeTree(E->getOperand(0)); 5967 5968 std::vector<Value *> OpVecs; 5969 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 5970 ++j) { 5971 ValueList &VL = E->getOperand(j); 5972 // Need to cast all elements to the same type before vectorization to 5973 // avoid crash. 5974 Type *VL0Ty = VL0->getOperand(j)->getType(); 5975 Type *Ty = llvm::all_of( 5976 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 5977 ? VL0Ty 5978 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5979 ->getPointerOperandType() 5980 ->getScalarType()); 5981 for (Value *&V : VL) { 5982 auto *CI = cast<ConstantInt>(V); 5983 V = ConstantExpr::getIntegerCast(CI, Ty, 5984 CI->getValue().isSignBitSet()); 5985 } 5986 Value *OpVec = vectorizeTree(VL); 5987 OpVecs.push_back(OpVec); 5988 } 5989 5990 Value *V = Builder.CreateGEP( 5991 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 5992 if (Instruction *I = dyn_cast<Instruction>(V)) 5993 V = propagateMetadata(I, E->Scalars); 5994 5995 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5996 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5997 V = ShuffleBuilder.finalize(V); 5998 5999 E->VectorizedValue = V; 6000 ++NumVectorInstructions; 6001 6002 return V; 6003 } 6004 case Instruction::Call: { 6005 CallInst *CI = cast<CallInst>(VL0); 6006 setInsertPointAfterBundle(E); 6007 6008 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6009 if (Function *FI = CI->getCalledFunction()) 6010 IID = FI->getIntrinsicID(); 6011 6012 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6013 6014 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6015 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6016 VecCallCosts.first <= VecCallCosts.second; 6017 6018 Value *ScalarArg = nullptr; 6019 std::vector<Value *> OpVecs; 6020 SmallVector<Type *, 2> TysForDecl = 6021 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6022 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 6023 ValueList OpVL; 6024 // Some intrinsics have scalar arguments. This argument should not be 6025 // vectorized. 6026 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6027 CallInst *CEI = cast<CallInst>(VL0); 6028 ScalarArg = CEI->getArgOperand(j); 6029 OpVecs.push_back(CEI->getArgOperand(j)); 6030 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6031 TysForDecl.push_back(ScalarArg->getType()); 6032 continue; 6033 } 6034 6035 Value *OpVec = vectorizeTree(E->getOperand(j)); 6036 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6037 OpVecs.push_back(OpVec); 6038 } 6039 6040 Function *CF; 6041 if (!UseIntrinsic) { 6042 VFShape Shape = 6043 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6044 VecTy->getNumElements())), 6045 false /*HasGlobalPred*/); 6046 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6047 } else { 6048 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6049 } 6050 6051 SmallVector<OperandBundleDef, 1> OpBundles; 6052 CI->getOperandBundlesAsDefs(OpBundles); 6053 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6054 6055 // The scalar argument uses an in-tree scalar so we add the new vectorized 6056 // call to ExternalUses list to make sure that an extract will be 6057 // generated in the future. 6058 if (ScalarArg && getTreeEntry(ScalarArg)) 6059 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 6060 6061 propagateIRFlags(V, E->Scalars, VL0); 6062 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6063 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6064 V = ShuffleBuilder.finalize(V); 6065 6066 E->VectorizedValue = V; 6067 ++NumVectorInstructions; 6068 return V; 6069 } 6070 case Instruction::ShuffleVector: { 6071 assert(E->isAltShuffle() && 6072 ((Instruction::isBinaryOp(E->getOpcode()) && 6073 Instruction::isBinaryOp(E->getAltOpcode())) || 6074 (Instruction::isCast(E->getOpcode()) && 6075 Instruction::isCast(E->getAltOpcode()))) && 6076 "Invalid Shuffle Vector Operand"); 6077 6078 Value *LHS = nullptr, *RHS = nullptr; 6079 if (Instruction::isBinaryOp(E->getOpcode())) { 6080 setInsertPointAfterBundle(E); 6081 LHS = vectorizeTree(E->getOperand(0)); 6082 RHS = vectorizeTree(E->getOperand(1)); 6083 } else { 6084 setInsertPointAfterBundle(E); 6085 LHS = vectorizeTree(E->getOperand(0)); 6086 } 6087 6088 if (E->VectorizedValue) { 6089 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6090 return E->VectorizedValue; 6091 } 6092 6093 Value *V0, *V1; 6094 if (Instruction::isBinaryOp(E->getOpcode())) { 6095 V0 = Builder.CreateBinOp( 6096 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6097 V1 = Builder.CreateBinOp( 6098 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6099 } else { 6100 V0 = Builder.CreateCast( 6101 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6102 V1 = Builder.CreateCast( 6103 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6104 } 6105 6106 // Create shuffle to take alternate operations from the vector. 6107 // Also, gather up main and alt scalar ops to propagate IR flags to 6108 // each vector operation. 6109 ValueList OpScalars, AltScalars; 6110 unsigned Sz = E->Scalars.size(); 6111 SmallVector<int> Mask(Sz); 6112 for (unsigned I = 0; I < Sz; ++I) { 6113 unsigned Idx = I; 6114 if (!E->ReorderIndices.empty()) 6115 Idx = E->ReorderIndices[I]; 6116 auto *OpInst = cast<Instruction>(E->Scalars[Idx]); 6117 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 6118 if (OpInst->getOpcode() == E->getAltOpcode()) { 6119 Mask[Idx] = Sz + I; 6120 AltScalars.push_back(OpInst); 6121 } else { 6122 Mask[Idx] = I; 6123 OpScalars.push_back(OpInst); 6124 } 6125 } 6126 if (!E->ReuseShuffleIndices.empty()) { 6127 SmallVector<int> NewMask(E->ReuseShuffleIndices.size()); 6128 transform(E->ReuseShuffleIndices, NewMask.begin(), 6129 [&Mask](int Idx) { return Mask[Idx]; }); 6130 Mask.swap(NewMask); 6131 } 6132 6133 propagateIRFlags(V0, OpScalars); 6134 propagateIRFlags(V1, AltScalars); 6135 6136 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6137 if (Instruction *I = dyn_cast<Instruction>(V)) 6138 V = propagateMetadata(I, E->Scalars); 6139 V = ShuffleBuilder.finalize(V); 6140 6141 E->VectorizedValue = V; 6142 ++NumVectorInstructions; 6143 6144 return V; 6145 } 6146 default: 6147 llvm_unreachable("unknown inst"); 6148 } 6149 return nullptr; 6150 } 6151 6152 Value *BoUpSLP::vectorizeTree() { 6153 ExtraValueToDebugLocsMap ExternallyUsedValues; 6154 return vectorizeTree(ExternallyUsedValues); 6155 } 6156 6157 Value * 6158 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6159 // All blocks must be scheduled before any instructions are inserted. 6160 for (auto &BSIter : BlocksSchedules) { 6161 scheduleBlock(BSIter.second.get()); 6162 } 6163 6164 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6165 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6166 6167 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6168 // vectorized root. InstCombine will then rewrite the entire expression. We 6169 // sign extend the extracted values below. 6170 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6171 if (MinBWs.count(ScalarRoot)) { 6172 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6173 // If current instr is a phi and not the last phi, insert it after the 6174 // last phi node. 6175 if (isa<PHINode>(I)) 6176 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6177 else 6178 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6179 } 6180 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6181 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6182 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6183 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6184 VectorizableTree[0]->VectorizedValue = Trunc; 6185 } 6186 6187 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6188 << " values .\n"); 6189 6190 // Extract all of the elements with the external uses. 6191 for (const auto &ExternalUse : ExternalUses) { 6192 Value *Scalar = ExternalUse.Scalar; 6193 llvm::User *User = ExternalUse.User; 6194 6195 // Skip users that we already RAUW. This happens when one instruction 6196 // has multiple uses of the same value. 6197 if (User && !is_contained(Scalar->users(), User)) 6198 continue; 6199 TreeEntry *E = getTreeEntry(Scalar); 6200 assert(E && "Invalid scalar"); 6201 assert(E->State != TreeEntry::NeedToGather && 6202 "Extracting from a gather list"); 6203 6204 Value *Vec = E->VectorizedValue; 6205 assert(Vec && "Can't find vectorizable value"); 6206 6207 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6208 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6209 if (Scalar->getType() != Vec->getType()) { 6210 Value *Ex; 6211 // "Reuse" the existing extract to improve final codegen. 6212 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6213 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6214 ES->getOperand(1)); 6215 } else { 6216 Ex = Builder.CreateExtractElement(Vec, Lane); 6217 } 6218 // If necessary, sign-extend or zero-extend ScalarRoot 6219 // to the larger type. 6220 if (!MinBWs.count(ScalarRoot)) 6221 return Ex; 6222 if (MinBWs[ScalarRoot].second) 6223 return Builder.CreateSExt(Ex, Scalar->getType()); 6224 return Builder.CreateZExt(Ex, Scalar->getType()); 6225 } 6226 assert(isa<FixedVectorType>(Scalar->getType()) && 6227 isa<InsertElementInst>(Scalar) && 6228 "In-tree scalar of vector type is not insertelement?"); 6229 return Vec; 6230 }; 6231 // If User == nullptr, the Scalar is used as extra arg. Generate 6232 // ExtractElement instruction and update the record for this scalar in 6233 // ExternallyUsedValues. 6234 if (!User) { 6235 assert(ExternallyUsedValues.count(Scalar) && 6236 "Scalar with nullptr as an external user must be registered in " 6237 "ExternallyUsedValues map"); 6238 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6239 Builder.SetInsertPoint(VecI->getParent(), 6240 std::next(VecI->getIterator())); 6241 } else { 6242 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6243 } 6244 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6245 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6246 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6247 auto It = ExternallyUsedValues.find(Scalar); 6248 assert(It != ExternallyUsedValues.end() && 6249 "Externally used scalar is not found in ExternallyUsedValues"); 6250 NewInstLocs.append(It->second); 6251 ExternallyUsedValues.erase(Scalar); 6252 // Required to update internally referenced instructions. 6253 Scalar->replaceAllUsesWith(NewInst); 6254 continue; 6255 } 6256 6257 // Generate extracts for out-of-tree users. 6258 // Find the insertion point for the extractelement lane. 6259 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6260 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6261 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6262 if (PH->getIncomingValue(i) == Scalar) { 6263 Instruction *IncomingTerminator = 6264 PH->getIncomingBlock(i)->getTerminator(); 6265 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6266 Builder.SetInsertPoint(VecI->getParent(), 6267 std::next(VecI->getIterator())); 6268 } else { 6269 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6270 } 6271 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6272 CSEBlocks.insert(PH->getIncomingBlock(i)); 6273 PH->setOperand(i, NewInst); 6274 } 6275 } 6276 } else { 6277 Builder.SetInsertPoint(cast<Instruction>(User)); 6278 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6279 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6280 User->replaceUsesOfWith(Scalar, NewInst); 6281 } 6282 } else { 6283 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6284 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6285 CSEBlocks.insert(&F->getEntryBlock()); 6286 User->replaceUsesOfWith(Scalar, NewInst); 6287 } 6288 6289 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6290 } 6291 6292 // For each vectorized value: 6293 for (auto &TEPtr : VectorizableTree) { 6294 TreeEntry *Entry = TEPtr.get(); 6295 6296 // No need to handle users of gathered values. 6297 if (Entry->State == TreeEntry::NeedToGather) 6298 continue; 6299 6300 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6301 6302 // For each lane: 6303 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6304 Value *Scalar = Entry->Scalars[Lane]; 6305 6306 #ifndef NDEBUG 6307 Type *Ty = Scalar->getType(); 6308 if (!Ty->isVoidTy()) { 6309 for (User *U : Scalar->users()) { 6310 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6311 6312 // It is legal to delete users in the ignorelist. 6313 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6314 (isa_and_nonnull<Instruction>(U) && 6315 isDeleted(cast<Instruction>(U)))) && 6316 "Deleting out-of-tree value"); 6317 } 6318 } 6319 #endif 6320 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6321 eraseInstruction(cast<Instruction>(Scalar)); 6322 } 6323 } 6324 6325 Builder.ClearInsertionPoint(); 6326 InstrElementSize.clear(); 6327 6328 return VectorizableTree[0]->VectorizedValue; 6329 } 6330 6331 void BoUpSLP::optimizeGatherSequence() { 6332 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6333 << " gather sequences instructions.\n"); 6334 // LICM InsertElementInst sequences. 6335 for (Instruction *I : GatherSeq) { 6336 if (isDeleted(I)) 6337 continue; 6338 6339 // Check if this block is inside a loop. 6340 Loop *L = LI->getLoopFor(I->getParent()); 6341 if (!L) 6342 continue; 6343 6344 // Check if it has a preheader. 6345 BasicBlock *PreHeader = L->getLoopPreheader(); 6346 if (!PreHeader) 6347 continue; 6348 6349 // If the vector or the element that we insert into it are 6350 // instructions that are defined in this basic block then we can't 6351 // hoist this instruction. 6352 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6353 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6354 if (Op0 && L->contains(Op0)) 6355 continue; 6356 if (Op1 && L->contains(Op1)) 6357 continue; 6358 6359 // We can hoist this instruction. Move it to the pre-header. 6360 I->moveBefore(PreHeader->getTerminator()); 6361 } 6362 6363 // Make a list of all reachable blocks in our CSE queue. 6364 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6365 CSEWorkList.reserve(CSEBlocks.size()); 6366 for (BasicBlock *BB : CSEBlocks) 6367 if (DomTreeNode *N = DT->getNode(BB)) { 6368 assert(DT->isReachableFromEntry(N)); 6369 CSEWorkList.push_back(N); 6370 } 6371 6372 // Sort blocks by domination. This ensures we visit a block after all blocks 6373 // dominating it are visited. 6374 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6375 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6376 "Different nodes should have different DFS numbers"); 6377 return A->getDFSNumIn() < B->getDFSNumIn(); 6378 }); 6379 6380 // Perform O(N^2) search over the gather sequences and merge identical 6381 // instructions. TODO: We can further optimize this scan if we split the 6382 // instructions into different buckets based on the insert lane. 6383 SmallVector<Instruction *, 16> Visited; 6384 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6385 assert(*I && 6386 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6387 "Worklist not sorted properly!"); 6388 BasicBlock *BB = (*I)->getBlock(); 6389 // For all instructions in blocks containing gather sequences: 6390 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 6391 Instruction *In = &*it++; 6392 if (isDeleted(In)) 6393 continue; 6394 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In) && 6395 !isa<ShuffleVectorInst>(In)) 6396 continue; 6397 6398 // Check if we can replace this instruction with any of the 6399 // visited instructions. 6400 for (Instruction *v : Visited) { 6401 if (In->isIdenticalTo(v) && 6402 DT->dominates(v->getParent(), In->getParent())) { 6403 In->replaceAllUsesWith(v); 6404 eraseInstruction(In); 6405 In = nullptr; 6406 break; 6407 } 6408 } 6409 if (In) { 6410 assert(!is_contained(Visited, In)); 6411 Visited.push_back(In); 6412 } 6413 } 6414 } 6415 CSEBlocks.clear(); 6416 GatherSeq.clear(); 6417 } 6418 6419 // Groups the instructions to a bundle (which is then a single scheduling entity) 6420 // and schedules instructions until the bundle gets ready. 6421 Optional<BoUpSLP::ScheduleData *> 6422 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6423 const InstructionsState &S) { 6424 if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue)) 6425 return nullptr; 6426 6427 // Initialize the instruction bundle. 6428 Instruction *OldScheduleEnd = ScheduleEnd; 6429 ScheduleData *PrevInBundle = nullptr; 6430 ScheduleData *Bundle = nullptr; 6431 bool ReSchedule = false; 6432 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6433 6434 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6435 ScheduleData *Bundle) { 6436 // The scheduling region got new instructions at the lower end (or it is a 6437 // new region for the first bundle). This makes it necessary to 6438 // recalculate all dependencies. 6439 // It is seldom that this needs to be done a second time after adding the 6440 // initial bundle to the region. 6441 if (ScheduleEnd != OldScheduleEnd) { 6442 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6443 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6444 ReSchedule = true; 6445 } 6446 if (ReSchedule) { 6447 resetSchedule(); 6448 initialFillReadyList(ReadyInsts); 6449 } 6450 if (Bundle) { 6451 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6452 << " in block " << BB->getName() << "\n"); 6453 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6454 } 6455 6456 // Now try to schedule the new bundle or (if no bundle) just calculate 6457 // dependencies. As soon as the bundle is "ready" it means that there are no 6458 // cyclic dependencies and we can schedule it. Note that's important that we 6459 // don't "schedule" the bundle yet (see cancelScheduling). 6460 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6461 !ReadyInsts.empty()) { 6462 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6463 if (Picked->isSchedulingEntity() && Picked->isReady()) 6464 schedule(Picked, ReadyInsts); 6465 } 6466 }; 6467 6468 // Make sure that the scheduling region contains all 6469 // instructions of the bundle. 6470 for (Value *V : VL) { 6471 if (!extendSchedulingRegion(V, S)) { 6472 // If the scheduling region got new instructions at the lower end (or it 6473 // is a new region for the first bundle). This makes it necessary to 6474 // recalculate all dependencies. 6475 // Otherwise the compiler may crash trying to incorrectly calculate 6476 // dependencies and emit instruction in the wrong order at the actual 6477 // scheduling. 6478 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6479 return None; 6480 } 6481 } 6482 6483 for (Value *V : VL) { 6484 ScheduleData *BundleMember = getScheduleData(V); 6485 assert(BundleMember && 6486 "no ScheduleData for bundle member (maybe not in same basic block)"); 6487 if (BundleMember->IsScheduled) { 6488 // A bundle member was scheduled as single instruction before and now 6489 // needs to be scheduled as part of the bundle. We just get rid of the 6490 // existing schedule. 6491 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6492 << " was already scheduled\n"); 6493 ReSchedule = true; 6494 } 6495 assert(BundleMember->isSchedulingEntity() && 6496 "bundle member already part of other bundle"); 6497 if (PrevInBundle) { 6498 PrevInBundle->NextInBundle = BundleMember; 6499 } else { 6500 Bundle = BundleMember; 6501 } 6502 BundleMember->UnscheduledDepsInBundle = 0; 6503 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6504 6505 // Group the instructions to a bundle. 6506 BundleMember->FirstInBundle = Bundle; 6507 PrevInBundle = BundleMember; 6508 } 6509 assert(Bundle && "Failed to find schedule bundle"); 6510 TryScheduleBundle(ReSchedule, Bundle); 6511 if (!Bundle->isReady()) { 6512 cancelScheduling(VL, S.OpValue); 6513 return None; 6514 } 6515 return Bundle; 6516 } 6517 6518 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6519 Value *OpValue) { 6520 if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue)) 6521 return; 6522 6523 ScheduleData *Bundle = getScheduleData(OpValue); 6524 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6525 assert(!Bundle->IsScheduled && 6526 "Can't cancel bundle which is already scheduled"); 6527 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6528 "tried to unbundle something which is not a bundle"); 6529 6530 // Un-bundle: make single instructions out of the bundle. 6531 ScheduleData *BundleMember = Bundle; 6532 while (BundleMember) { 6533 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6534 BundleMember->FirstInBundle = BundleMember; 6535 ScheduleData *Next = BundleMember->NextInBundle; 6536 BundleMember->NextInBundle = nullptr; 6537 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6538 if (BundleMember->UnscheduledDepsInBundle == 0) { 6539 ReadyInsts.insert(BundleMember); 6540 } 6541 BundleMember = Next; 6542 } 6543 } 6544 6545 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6546 // Allocate a new ScheduleData for the instruction. 6547 if (ChunkPos >= ChunkSize) { 6548 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6549 ChunkPos = 0; 6550 } 6551 return &(ScheduleDataChunks.back()[ChunkPos++]); 6552 } 6553 6554 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6555 const InstructionsState &S) { 6556 if (getScheduleData(V, isOneOf(S, V))) 6557 return true; 6558 Instruction *I = dyn_cast<Instruction>(V); 6559 assert(I && "bundle member must be an instruction"); 6560 assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) && 6561 "phi nodes/insertelements don't need to be scheduled"); 6562 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6563 ScheduleData *ISD = getScheduleData(I); 6564 if (!ISD) 6565 return false; 6566 assert(isInSchedulingRegion(ISD) && 6567 "ScheduleData not in scheduling region"); 6568 ScheduleData *SD = allocateScheduleDataChunks(); 6569 SD->Inst = I; 6570 SD->init(SchedulingRegionID, S.OpValue); 6571 ExtraScheduleDataMap[I][S.OpValue] = SD; 6572 return true; 6573 }; 6574 if (CheckSheduleForI(I)) 6575 return true; 6576 if (!ScheduleStart) { 6577 // It's the first instruction in the new region. 6578 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6579 ScheduleStart = I; 6580 ScheduleEnd = I->getNextNode(); 6581 if (isOneOf(S, I) != I) 6582 CheckSheduleForI(I); 6583 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6584 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6585 return true; 6586 } 6587 // Search up and down at the same time, because we don't know if the new 6588 // instruction is above or below the existing scheduling region. 6589 BasicBlock::reverse_iterator UpIter = 6590 ++ScheduleStart->getIterator().getReverse(); 6591 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6592 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6593 BasicBlock::iterator LowerEnd = BB->end(); 6594 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6595 &*DownIter != I) { 6596 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6597 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6598 return false; 6599 } 6600 6601 ++UpIter; 6602 ++DownIter; 6603 } 6604 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6605 assert(I->getParent() == ScheduleStart->getParent() && 6606 "Instruction is in wrong basic block."); 6607 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6608 ScheduleStart = I; 6609 if (isOneOf(S, I) != I) 6610 CheckSheduleForI(I); 6611 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6612 << "\n"); 6613 return true; 6614 } 6615 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6616 "Expected to reach top of the basic block or instruction down the " 6617 "lower end."); 6618 assert(I->getParent() == ScheduleEnd->getParent() && 6619 "Instruction is in wrong basic block."); 6620 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6621 nullptr); 6622 ScheduleEnd = I->getNextNode(); 6623 if (isOneOf(S, I) != I) 6624 CheckSheduleForI(I); 6625 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6626 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6627 return true; 6628 } 6629 6630 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6631 Instruction *ToI, 6632 ScheduleData *PrevLoadStore, 6633 ScheduleData *NextLoadStore) { 6634 ScheduleData *CurrentLoadStore = PrevLoadStore; 6635 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6636 ScheduleData *SD = ScheduleDataMap[I]; 6637 if (!SD) { 6638 SD = allocateScheduleDataChunks(); 6639 ScheduleDataMap[I] = SD; 6640 SD->Inst = I; 6641 } 6642 assert(!isInSchedulingRegion(SD) && 6643 "new ScheduleData already in scheduling region"); 6644 SD->init(SchedulingRegionID, I); 6645 6646 if (I->mayReadOrWriteMemory() && 6647 (!isa<IntrinsicInst>(I) || 6648 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6649 cast<IntrinsicInst>(I)->getIntrinsicID() != 6650 Intrinsic::pseudoprobe))) { 6651 // Update the linked list of memory accessing instructions. 6652 if (CurrentLoadStore) { 6653 CurrentLoadStore->NextLoadStore = SD; 6654 } else { 6655 FirstLoadStoreInRegion = SD; 6656 } 6657 CurrentLoadStore = SD; 6658 } 6659 } 6660 if (NextLoadStore) { 6661 if (CurrentLoadStore) 6662 CurrentLoadStore->NextLoadStore = NextLoadStore; 6663 } else { 6664 LastLoadStoreInRegion = CurrentLoadStore; 6665 } 6666 } 6667 6668 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6669 bool InsertInReadyList, 6670 BoUpSLP *SLP) { 6671 assert(SD->isSchedulingEntity()); 6672 6673 SmallVector<ScheduleData *, 10> WorkList; 6674 WorkList.push_back(SD); 6675 6676 while (!WorkList.empty()) { 6677 ScheduleData *SD = WorkList.pop_back_val(); 6678 6679 ScheduleData *BundleMember = SD; 6680 while (BundleMember) { 6681 assert(isInSchedulingRegion(BundleMember)); 6682 if (!BundleMember->hasValidDependencies()) { 6683 6684 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6685 << "\n"); 6686 BundleMember->Dependencies = 0; 6687 BundleMember->resetUnscheduledDeps(); 6688 6689 // Handle def-use chain dependencies. 6690 if (BundleMember->OpValue != BundleMember->Inst) { 6691 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6692 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6693 BundleMember->Dependencies++; 6694 ScheduleData *DestBundle = UseSD->FirstInBundle; 6695 if (!DestBundle->IsScheduled) 6696 BundleMember->incrementUnscheduledDeps(1); 6697 if (!DestBundle->hasValidDependencies()) 6698 WorkList.push_back(DestBundle); 6699 } 6700 } else { 6701 for (User *U : BundleMember->Inst->users()) { 6702 if (isa<Instruction>(U)) { 6703 ScheduleData *UseSD = getScheduleData(U); 6704 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6705 BundleMember->Dependencies++; 6706 ScheduleData *DestBundle = UseSD->FirstInBundle; 6707 if (!DestBundle->IsScheduled) 6708 BundleMember->incrementUnscheduledDeps(1); 6709 if (!DestBundle->hasValidDependencies()) 6710 WorkList.push_back(DestBundle); 6711 } 6712 } else { 6713 // I'm not sure if this can ever happen. But we need to be safe. 6714 // This lets the instruction/bundle never be scheduled and 6715 // eventually disable vectorization. 6716 BundleMember->Dependencies++; 6717 BundleMember->incrementUnscheduledDeps(1); 6718 } 6719 } 6720 } 6721 6722 // Handle the memory dependencies. 6723 ScheduleData *DepDest = BundleMember->NextLoadStore; 6724 if (DepDest) { 6725 Instruction *SrcInst = BundleMember->Inst; 6726 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6727 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6728 unsigned numAliased = 0; 6729 unsigned DistToSrc = 1; 6730 6731 while (DepDest) { 6732 assert(isInSchedulingRegion(DepDest)); 6733 6734 // We have two limits to reduce the complexity: 6735 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6736 // SLP->isAliased (which is the expensive part in this loop). 6737 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6738 // the whole loop (even if the loop is fast, it's quadratic). 6739 // It's important for the loop break condition (see below) to 6740 // check this limit even between two read-only instructions. 6741 if (DistToSrc >= MaxMemDepDistance || 6742 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6743 (numAliased >= AliasedCheckLimit || 6744 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6745 6746 // We increment the counter only if the locations are aliased 6747 // (instead of counting all alias checks). This gives a better 6748 // balance between reduced runtime and accurate dependencies. 6749 numAliased++; 6750 6751 DepDest->MemoryDependencies.push_back(BundleMember); 6752 BundleMember->Dependencies++; 6753 ScheduleData *DestBundle = DepDest->FirstInBundle; 6754 if (!DestBundle->IsScheduled) { 6755 BundleMember->incrementUnscheduledDeps(1); 6756 } 6757 if (!DestBundle->hasValidDependencies()) { 6758 WorkList.push_back(DestBundle); 6759 } 6760 } 6761 DepDest = DepDest->NextLoadStore; 6762 6763 // Example, explaining the loop break condition: Let's assume our 6764 // starting instruction is i0 and MaxMemDepDistance = 3. 6765 // 6766 // +--------v--v--v 6767 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6768 // +--------^--^--^ 6769 // 6770 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6771 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6772 // Previously we already added dependencies from i3 to i6,i7,i8 6773 // (because of MaxMemDepDistance). As we added a dependency from 6774 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6775 // and we can abort this loop at i6. 6776 if (DistToSrc >= 2 * MaxMemDepDistance) 6777 break; 6778 DistToSrc++; 6779 } 6780 } 6781 } 6782 BundleMember = BundleMember->NextInBundle; 6783 } 6784 if (InsertInReadyList && SD->isReady()) { 6785 ReadyInsts.push_back(SD); 6786 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6787 << "\n"); 6788 } 6789 } 6790 } 6791 6792 void BoUpSLP::BlockScheduling::resetSchedule() { 6793 assert(ScheduleStart && 6794 "tried to reset schedule on block which has not been scheduled"); 6795 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6796 doForAllOpcodes(I, [&](ScheduleData *SD) { 6797 assert(isInSchedulingRegion(SD) && 6798 "ScheduleData not in scheduling region"); 6799 SD->IsScheduled = false; 6800 SD->resetUnscheduledDeps(); 6801 }); 6802 } 6803 ReadyInsts.clear(); 6804 } 6805 6806 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6807 if (!BS->ScheduleStart) 6808 return; 6809 6810 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6811 6812 BS->resetSchedule(); 6813 6814 // For the real scheduling we use a more sophisticated ready-list: it is 6815 // sorted by the original instruction location. This lets the final schedule 6816 // be as close as possible to the original instruction order. 6817 struct ScheduleDataCompare { 6818 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6819 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6820 } 6821 }; 6822 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6823 6824 // Ensure that all dependency data is updated and fill the ready-list with 6825 // initial instructions. 6826 int Idx = 0; 6827 int NumToSchedule = 0; 6828 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6829 I = I->getNextNode()) { 6830 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6831 assert((isa<InsertElementInst>(SD->Inst) || 6832 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 6833 "scheduler and vectorizer bundle mismatch"); 6834 SD->FirstInBundle->SchedulingPriority = Idx++; 6835 if (SD->isSchedulingEntity()) { 6836 BS->calculateDependencies(SD, false, this); 6837 NumToSchedule++; 6838 } 6839 }); 6840 } 6841 BS->initialFillReadyList(ReadyInsts); 6842 6843 Instruction *LastScheduledInst = BS->ScheduleEnd; 6844 6845 // Do the "real" scheduling. 6846 while (!ReadyInsts.empty()) { 6847 ScheduleData *picked = *ReadyInsts.begin(); 6848 ReadyInsts.erase(ReadyInsts.begin()); 6849 6850 // Move the scheduled instruction(s) to their dedicated places, if not 6851 // there yet. 6852 ScheduleData *BundleMember = picked; 6853 while (BundleMember) { 6854 Instruction *pickedInst = BundleMember->Inst; 6855 if (pickedInst->getNextNode() != LastScheduledInst) { 6856 BS->BB->getInstList().remove(pickedInst); 6857 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6858 pickedInst); 6859 } 6860 LastScheduledInst = pickedInst; 6861 BundleMember = BundleMember->NextInBundle; 6862 } 6863 6864 BS->schedule(picked, ReadyInsts); 6865 NumToSchedule--; 6866 } 6867 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6868 6869 // Avoid duplicate scheduling of the block. 6870 BS->ScheduleStart = nullptr; 6871 } 6872 6873 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6874 // If V is a store, just return the width of the stored value (or value 6875 // truncated just before storing) without traversing the expression tree. 6876 // This is the common case. 6877 if (auto *Store = dyn_cast<StoreInst>(V)) { 6878 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 6879 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 6880 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 6881 } 6882 6883 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 6884 return getVectorElementSize(IEI->getOperand(1)); 6885 6886 auto E = InstrElementSize.find(V); 6887 if (E != InstrElementSize.end()) 6888 return E->second; 6889 6890 // If V is not a store, we can traverse the expression tree to find loads 6891 // that feed it. The type of the loaded value may indicate a more suitable 6892 // width than V's type. We want to base the vector element size on the width 6893 // of memory operations where possible. 6894 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 6895 SmallPtrSet<Instruction *, 16> Visited; 6896 if (auto *I = dyn_cast<Instruction>(V)) { 6897 Worklist.emplace_back(I, I->getParent()); 6898 Visited.insert(I); 6899 } 6900 6901 // Traverse the expression tree in bottom-up order looking for loads. If we 6902 // encounter an instruction we don't yet handle, we give up. 6903 auto Width = 0u; 6904 while (!Worklist.empty()) { 6905 Instruction *I; 6906 BasicBlock *Parent; 6907 std::tie(I, Parent) = Worklist.pop_back_val(); 6908 6909 // We should only be looking at scalar instructions here. If the current 6910 // instruction has a vector type, skip. 6911 auto *Ty = I->getType(); 6912 if (isa<VectorType>(Ty)) 6913 continue; 6914 6915 // If the current instruction is a load, update MaxWidth to reflect the 6916 // width of the loaded value. 6917 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 6918 isa<ExtractValueInst>(I)) 6919 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 6920 6921 // Otherwise, we need to visit the operands of the instruction. We only 6922 // handle the interesting cases from buildTree here. If an operand is an 6923 // instruction we haven't yet visited and from the same basic block as the 6924 // user or the use is a PHI node, we add it to the worklist. 6925 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6926 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 6927 isa<UnaryOperator>(I)) { 6928 for (Use &U : I->operands()) 6929 if (auto *J = dyn_cast<Instruction>(U.get())) 6930 if (Visited.insert(J).second && 6931 (isa<PHINode>(I) || J->getParent() == Parent)) 6932 Worklist.emplace_back(J, J->getParent()); 6933 } else { 6934 break; 6935 } 6936 } 6937 6938 // If we didn't encounter a memory access in the expression tree, or if we 6939 // gave up for some reason, just return the width of V. Otherwise, return the 6940 // maximum width we found. 6941 if (!Width) { 6942 if (auto *CI = dyn_cast<CmpInst>(V)) 6943 V = CI->getOperand(0); 6944 Width = DL->getTypeSizeInBits(V->getType()); 6945 } 6946 6947 for (Instruction *I : Visited) 6948 InstrElementSize[I] = Width; 6949 6950 return Width; 6951 } 6952 6953 // Determine if a value V in a vectorizable expression Expr can be demoted to a 6954 // smaller type with a truncation. We collect the values that will be demoted 6955 // in ToDemote and additional roots that require investigating in Roots. 6956 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 6957 SmallVectorImpl<Value *> &ToDemote, 6958 SmallVectorImpl<Value *> &Roots) { 6959 // We can always demote constants. 6960 if (isa<Constant>(V)) { 6961 ToDemote.push_back(V); 6962 return true; 6963 } 6964 6965 // If the value is not an instruction in the expression with only one use, it 6966 // cannot be demoted. 6967 auto *I = dyn_cast<Instruction>(V); 6968 if (!I || !I->hasOneUse() || !Expr.count(I)) 6969 return false; 6970 6971 switch (I->getOpcode()) { 6972 6973 // We can always demote truncations and extensions. Since truncations can 6974 // seed additional demotion, we save the truncated value. 6975 case Instruction::Trunc: 6976 Roots.push_back(I->getOperand(0)); 6977 break; 6978 case Instruction::ZExt: 6979 case Instruction::SExt: 6980 if (isa<ExtractElementInst>(I->getOperand(0)) || 6981 isa<InsertElementInst>(I->getOperand(0))) 6982 return false; 6983 break; 6984 6985 // We can demote certain binary operations if we can demote both of their 6986 // operands. 6987 case Instruction::Add: 6988 case Instruction::Sub: 6989 case Instruction::Mul: 6990 case Instruction::And: 6991 case Instruction::Or: 6992 case Instruction::Xor: 6993 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 6994 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 6995 return false; 6996 break; 6997 6998 // We can demote selects if we can demote their true and false values. 6999 case Instruction::Select: { 7000 SelectInst *SI = cast<SelectInst>(I); 7001 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7002 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7003 return false; 7004 break; 7005 } 7006 7007 // We can demote phis if we can demote all their incoming operands. Note that 7008 // we don't need to worry about cycles since we ensure single use above. 7009 case Instruction::PHI: { 7010 PHINode *PN = cast<PHINode>(I); 7011 for (Value *IncValue : PN->incoming_values()) 7012 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7013 return false; 7014 break; 7015 } 7016 7017 // Otherwise, conservatively give up. 7018 default: 7019 return false; 7020 } 7021 7022 // Record the value that we can demote. 7023 ToDemote.push_back(V); 7024 return true; 7025 } 7026 7027 void BoUpSLP::computeMinimumValueSizes() { 7028 // If there are no external uses, the expression tree must be rooted by a 7029 // store. We can't demote in-memory values, so there is nothing to do here. 7030 if (ExternalUses.empty()) 7031 return; 7032 7033 // We only attempt to truncate integer expressions. 7034 auto &TreeRoot = VectorizableTree[0]->Scalars; 7035 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7036 if (!TreeRootIT) 7037 return; 7038 7039 // If the expression is not rooted by a store, these roots should have 7040 // external uses. We will rely on InstCombine to rewrite the expression in 7041 // the narrower type. However, InstCombine only rewrites single-use values. 7042 // This means that if a tree entry other than a root is used externally, it 7043 // must have multiple uses and InstCombine will not rewrite it. The code 7044 // below ensures that only the roots are used externally. 7045 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7046 for (auto &EU : ExternalUses) 7047 if (!Expr.erase(EU.Scalar)) 7048 return; 7049 if (!Expr.empty()) 7050 return; 7051 7052 // Collect the scalar values of the vectorizable expression. We will use this 7053 // context to determine which values can be demoted. If we see a truncation, 7054 // we mark it as seeding another demotion. 7055 for (auto &EntryPtr : VectorizableTree) 7056 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7057 7058 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7059 // have a single external user that is not in the vectorizable tree. 7060 for (auto *Root : TreeRoot) 7061 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7062 return; 7063 7064 // Conservatively determine if we can actually truncate the roots of the 7065 // expression. Collect the values that can be demoted in ToDemote and 7066 // additional roots that require investigating in Roots. 7067 SmallVector<Value *, 32> ToDemote; 7068 SmallVector<Value *, 4> Roots; 7069 for (auto *Root : TreeRoot) 7070 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7071 return; 7072 7073 // The maximum bit width required to represent all the values that can be 7074 // demoted without loss of precision. It would be safe to truncate the roots 7075 // of the expression to this width. 7076 auto MaxBitWidth = 8u; 7077 7078 // We first check if all the bits of the roots are demanded. If they're not, 7079 // we can truncate the roots to this narrower type. 7080 for (auto *Root : TreeRoot) { 7081 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7082 MaxBitWidth = std::max<unsigned>( 7083 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7084 } 7085 7086 // True if the roots can be zero-extended back to their original type, rather 7087 // than sign-extended. We know that if the leading bits are not demanded, we 7088 // can safely zero-extend. So we initialize IsKnownPositive to True. 7089 bool IsKnownPositive = true; 7090 7091 // If all the bits of the roots are demanded, we can try a little harder to 7092 // compute a narrower type. This can happen, for example, if the roots are 7093 // getelementptr indices. InstCombine promotes these indices to the pointer 7094 // width. Thus, all their bits are technically demanded even though the 7095 // address computation might be vectorized in a smaller type. 7096 // 7097 // We start by looking at each entry that can be demoted. We compute the 7098 // maximum bit width required to store the scalar by using ValueTracking to 7099 // compute the number of high-order bits we can truncate. 7100 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7101 llvm::all_of(TreeRoot, [](Value *R) { 7102 assert(R->hasOneUse() && "Root should have only one use!"); 7103 return isa<GetElementPtrInst>(R->user_back()); 7104 })) { 7105 MaxBitWidth = 8u; 7106 7107 // Determine if the sign bit of all the roots is known to be zero. If not, 7108 // IsKnownPositive is set to False. 7109 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7110 KnownBits Known = computeKnownBits(R, *DL); 7111 return Known.isNonNegative(); 7112 }); 7113 7114 // Determine the maximum number of bits required to store the scalar 7115 // values. 7116 for (auto *Scalar : ToDemote) { 7117 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7118 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7119 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7120 } 7121 7122 // If we can't prove that the sign bit is zero, we must add one to the 7123 // maximum bit width to account for the unknown sign bit. This preserves 7124 // the existing sign bit so we can safely sign-extend the root back to the 7125 // original type. Otherwise, if we know the sign bit is zero, we will 7126 // zero-extend the root instead. 7127 // 7128 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7129 // one to the maximum bit width will yield a larger-than-necessary 7130 // type. In general, we need to add an extra bit only if we can't 7131 // prove that the upper bit of the original type is equal to the 7132 // upper bit of the proposed smaller type. If these two bits are the 7133 // same (either zero or one) we know that sign-extending from the 7134 // smaller type will result in the same value. Here, since we can't 7135 // yet prove this, we are just making the proposed smaller type 7136 // larger to ensure correctness. 7137 if (!IsKnownPositive) 7138 ++MaxBitWidth; 7139 } 7140 7141 // Round MaxBitWidth up to the next power-of-two. 7142 if (!isPowerOf2_64(MaxBitWidth)) 7143 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7144 7145 // If the maximum bit width we compute is less than the with of the roots' 7146 // type, we can proceed with the narrowing. Otherwise, do nothing. 7147 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7148 return; 7149 7150 // If we can truncate the root, we must collect additional values that might 7151 // be demoted as a result. That is, those seeded by truncations we will 7152 // modify. 7153 while (!Roots.empty()) 7154 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7155 7156 // Finally, map the values we can demote to the maximum bit with we computed. 7157 for (auto *Scalar : ToDemote) 7158 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7159 } 7160 7161 namespace { 7162 7163 /// The SLPVectorizer Pass. 7164 struct SLPVectorizer : public FunctionPass { 7165 SLPVectorizerPass Impl; 7166 7167 /// Pass identification, replacement for typeid 7168 static char ID; 7169 7170 explicit SLPVectorizer() : FunctionPass(ID) { 7171 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7172 } 7173 7174 bool doInitialization(Module &M) override { 7175 return false; 7176 } 7177 7178 bool runOnFunction(Function &F) override { 7179 if (skipFunction(F)) 7180 return false; 7181 7182 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7183 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7184 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7185 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7186 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7187 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7188 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7189 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7190 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7191 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7192 7193 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7194 } 7195 7196 void getAnalysisUsage(AnalysisUsage &AU) const override { 7197 FunctionPass::getAnalysisUsage(AU); 7198 AU.addRequired<AssumptionCacheTracker>(); 7199 AU.addRequired<ScalarEvolutionWrapperPass>(); 7200 AU.addRequired<AAResultsWrapperPass>(); 7201 AU.addRequired<TargetTransformInfoWrapperPass>(); 7202 AU.addRequired<LoopInfoWrapperPass>(); 7203 AU.addRequired<DominatorTreeWrapperPass>(); 7204 AU.addRequired<DemandedBitsWrapperPass>(); 7205 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7206 AU.addRequired<InjectTLIMappingsLegacy>(); 7207 AU.addPreserved<LoopInfoWrapperPass>(); 7208 AU.addPreserved<DominatorTreeWrapperPass>(); 7209 AU.addPreserved<AAResultsWrapperPass>(); 7210 AU.addPreserved<GlobalsAAWrapperPass>(); 7211 AU.setPreservesCFG(); 7212 } 7213 }; 7214 7215 } // end anonymous namespace 7216 7217 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7218 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7219 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7220 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7221 auto *AA = &AM.getResult<AAManager>(F); 7222 auto *LI = &AM.getResult<LoopAnalysis>(F); 7223 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7224 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7225 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7226 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7227 7228 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7229 if (!Changed) 7230 return PreservedAnalyses::all(); 7231 7232 PreservedAnalyses PA; 7233 PA.preserveSet<CFGAnalyses>(); 7234 return PA; 7235 } 7236 7237 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7238 TargetTransformInfo *TTI_, 7239 TargetLibraryInfo *TLI_, AAResults *AA_, 7240 LoopInfo *LI_, DominatorTree *DT_, 7241 AssumptionCache *AC_, DemandedBits *DB_, 7242 OptimizationRemarkEmitter *ORE_) { 7243 if (!RunSLPVectorization) 7244 return false; 7245 SE = SE_; 7246 TTI = TTI_; 7247 TLI = TLI_; 7248 AA = AA_; 7249 LI = LI_; 7250 DT = DT_; 7251 AC = AC_; 7252 DB = DB_; 7253 DL = &F.getParent()->getDataLayout(); 7254 7255 Stores.clear(); 7256 GEPs.clear(); 7257 bool Changed = false; 7258 7259 // If the target claims to have no vector registers don't attempt 7260 // vectorization. 7261 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7262 return false; 7263 7264 // Don't vectorize when the attribute NoImplicitFloat is used. 7265 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7266 return false; 7267 7268 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7269 7270 // Use the bottom up slp vectorizer to construct chains that start with 7271 // store instructions. 7272 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7273 7274 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7275 // delete instructions. 7276 7277 // Update DFS numbers now so that we can use them for ordering. 7278 DT->updateDFSNumbers(); 7279 7280 // Scan the blocks in the function in post order. 7281 for (auto BB : post_order(&F.getEntryBlock())) { 7282 collectSeedInstructions(BB); 7283 7284 // Vectorize trees that end at stores. 7285 if (!Stores.empty()) { 7286 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7287 << " underlying objects.\n"); 7288 Changed |= vectorizeStoreChains(R); 7289 } 7290 7291 // Vectorize trees that end at reductions. 7292 Changed |= vectorizeChainsInBlock(BB, R); 7293 7294 // Vectorize the index computations of getelementptr instructions. This 7295 // is primarily intended to catch gather-like idioms ending at 7296 // non-consecutive loads. 7297 if (!GEPs.empty()) { 7298 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7299 << " underlying objects.\n"); 7300 Changed |= vectorizeGEPIndices(BB, R); 7301 } 7302 } 7303 7304 if (Changed) { 7305 R.optimizeGatherSequence(); 7306 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7307 } 7308 return Changed; 7309 } 7310 7311 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7312 unsigned Idx) { 7313 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7314 << "\n"); 7315 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7316 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7317 unsigned VF = Chain.size(); 7318 7319 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7320 return false; 7321 7322 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7323 << "\n"); 7324 7325 R.buildTree(Chain); 7326 if (R.isTreeTinyAndNotFullyVectorizable()) 7327 return false; 7328 if (R.isLoadCombineCandidate()) 7329 return false; 7330 R.reorderTopToBottom(/*FreeReorder=*/false); 7331 R.reorderBottomToTop(/*FreeReorder=*/false); 7332 R.buildExternalUses(); 7333 7334 R.computeMinimumValueSizes(); 7335 7336 InstructionCost Cost = R.getTreeCost(); 7337 7338 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7339 if (Cost < -SLPCostThreshold) { 7340 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7341 7342 using namespace ore; 7343 7344 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7345 cast<StoreInst>(Chain[0])) 7346 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7347 << " and with tree size " 7348 << NV("TreeSize", R.getTreeSize())); 7349 7350 R.vectorizeTree(); 7351 return true; 7352 } 7353 7354 return false; 7355 } 7356 7357 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7358 BoUpSLP &R) { 7359 // We may run into multiple chains that merge into a single chain. We mark the 7360 // stores that we vectorized so that we don't visit the same store twice. 7361 BoUpSLP::ValueSet VectorizedStores; 7362 bool Changed = false; 7363 7364 int E = Stores.size(); 7365 SmallBitVector Tails(E, false); 7366 int MaxIter = MaxStoreLookup.getValue(); 7367 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7368 E, std::make_pair(E, INT_MAX)); 7369 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7370 int IterCnt; 7371 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7372 &CheckedPairs, 7373 &ConsecutiveChain](int K, int Idx) { 7374 if (IterCnt >= MaxIter) 7375 return true; 7376 if (CheckedPairs[Idx].test(K)) 7377 return ConsecutiveChain[K].second == 1 && 7378 ConsecutiveChain[K].first == Idx; 7379 ++IterCnt; 7380 CheckedPairs[Idx].set(K); 7381 CheckedPairs[K].set(Idx); 7382 Optional<int> Diff = getPointersDiff( 7383 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7384 Stores[Idx]->getValueOperand()->getType(), 7385 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7386 if (!Diff || *Diff == 0) 7387 return false; 7388 int Val = *Diff; 7389 if (Val < 0) { 7390 if (ConsecutiveChain[Idx].second > -Val) { 7391 Tails.set(K); 7392 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7393 } 7394 return false; 7395 } 7396 if (ConsecutiveChain[K].second <= Val) 7397 return false; 7398 7399 Tails.set(Idx); 7400 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7401 return Val == 1; 7402 }; 7403 // Do a quadratic search on all of the given stores in reverse order and find 7404 // all of the pairs of stores that follow each other. 7405 for (int Idx = E - 1; Idx >= 0; --Idx) { 7406 // If a store has multiple consecutive store candidates, search according 7407 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7408 // This is because usually pairing with immediate succeeding or preceding 7409 // candidate create the best chance to find slp vectorization opportunity. 7410 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7411 IterCnt = 0; 7412 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7413 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7414 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7415 break; 7416 } 7417 7418 // Tracks if we tried to vectorize stores starting from the given tail 7419 // already. 7420 SmallBitVector TriedTails(E, false); 7421 // For stores that start but don't end a link in the chain: 7422 for (int Cnt = E; Cnt > 0; --Cnt) { 7423 int I = Cnt - 1; 7424 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7425 continue; 7426 // We found a store instr that starts a chain. Now follow the chain and try 7427 // to vectorize it. 7428 BoUpSLP::ValueList Operands; 7429 // Collect the chain into a list. 7430 while (I != E && !VectorizedStores.count(Stores[I])) { 7431 Operands.push_back(Stores[I]); 7432 Tails.set(I); 7433 if (ConsecutiveChain[I].second != 1) { 7434 // Mark the new end in the chain and go back, if required. It might be 7435 // required if the original stores come in reversed order, for example. 7436 if (ConsecutiveChain[I].first != E && 7437 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7438 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7439 TriedTails.set(I); 7440 Tails.reset(ConsecutiveChain[I].first); 7441 if (Cnt < ConsecutiveChain[I].first + 2) 7442 Cnt = ConsecutiveChain[I].first + 2; 7443 } 7444 break; 7445 } 7446 // Move to the next value in the chain. 7447 I = ConsecutiveChain[I].first; 7448 } 7449 assert(!Operands.empty() && "Expected non-empty list of stores."); 7450 7451 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7452 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7453 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7454 7455 unsigned MinVF = R.getMinVF(EltSize); 7456 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7457 MaxElts); 7458 7459 // FIXME: Is division-by-2 the correct step? Should we assert that the 7460 // register size is a power-of-2? 7461 unsigned StartIdx = 0; 7462 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7463 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7464 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7465 if (!VectorizedStores.count(Slice.front()) && 7466 !VectorizedStores.count(Slice.back()) && 7467 vectorizeStoreChain(Slice, R, Cnt)) { 7468 // Mark the vectorized stores so that we don't vectorize them again. 7469 VectorizedStores.insert(Slice.begin(), Slice.end()); 7470 Changed = true; 7471 // If we vectorized initial block, no need to try to vectorize it 7472 // again. 7473 if (Cnt == StartIdx) 7474 StartIdx += Size; 7475 Cnt += Size; 7476 continue; 7477 } 7478 ++Cnt; 7479 } 7480 // Check if the whole array was vectorized already - exit. 7481 if (StartIdx >= Operands.size()) 7482 break; 7483 } 7484 } 7485 7486 return Changed; 7487 } 7488 7489 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7490 // Initialize the collections. We will make a single pass over the block. 7491 Stores.clear(); 7492 GEPs.clear(); 7493 7494 // Visit the store and getelementptr instructions in BB and organize them in 7495 // Stores and GEPs according to the underlying objects of their pointer 7496 // operands. 7497 for (Instruction &I : *BB) { 7498 // Ignore store instructions that are volatile or have a pointer operand 7499 // that doesn't point to a scalar type. 7500 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7501 if (!SI->isSimple()) 7502 continue; 7503 if (!isValidElementType(SI->getValueOperand()->getType())) 7504 continue; 7505 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7506 } 7507 7508 // Ignore getelementptr instructions that have more than one index, a 7509 // constant index, or a pointer operand that doesn't point to a scalar 7510 // type. 7511 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7512 auto Idx = GEP->idx_begin()->get(); 7513 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7514 continue; 7515 if (!isValidElementType(Idx->getType())) 7516 continue; 7517 if (GEP->getType()->isVectorTy()) 7518 continue; 7519 GEPs[GEP->getPointerOperand()].push_back(GEP); 7520 } 7521 } 7522 } 7523 7524 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7525 if (!A || !B) 7526 return false; 7527 Value *VL[] = {A, B}; 7528 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 7529 } 7530 7531 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7532 bool AllowReorder) { 7533 if (VL.size() < 2) 7534 return false; 7535 7536 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7537 << VL.size() << ".\n"); 7538 7539 // Check that all of the parts are instructions of the same type, 7540 // we permit an alternate opcode via InstructionsState. 7541 InstructionsState S = getSameOpcode(VL); 7542 if (!S.getOpcode()) 7543 return false; 7544 7545 Instruction *I0 = cast<Instruction>(S.OpValue); 7546 // Make sure invalid types (including vector type) are rejected before 7547 // determining vectorization factor for scalar instructions. 7548 for (Value *V : VL) { 7549 Type *Ty = V->getType(); 7550 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7551 // NOTE: the following will give user internal llvm type name, which may 7552 // not be useful. 7553 R.getORE()->emit([&]() { 7554 std::string type_str; 7555 llvm::raw_string_ostream rso(type_str); 7556 Ty->print(rso); 7557 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7558 << "Cannot SLP vectorize list: type " 7559 << rso.str() + " is unsupported by vectorizer"; 7560 }); 7561 return false; 7562 } 7563 } 7564 7565 unsigned Sz = R.getVectorElementSize(I0); 7566 unsigned MinVF = R.getMinVF(Sz); 7567 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7568 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7569 if (MaxVF < 2) { 7570 R.getORE()->emit([&]() { 7571 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7572 << "Cannot SLP vectorize list: vectorization factor " 7573 << "less than 2 is not supported"; 7574 }); 7575 return false; 7576 } 7577 7578 bool Changed = false; 7579 bool CandidateFound = false; 7580 InstructionCost MinCost = SLPCostThreshold.getValue(); 7581 Type *ScalarTy = VL[0]->getType(); 7582 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7583 ScalarTy = IE->getOperand(1)->getType(); 7584 7585 unsigned NextInst = 0, MaxInst = VL.size(); 7586 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7587 // No actual vectorization should happen, if number of parts is the same as 7588 // provided vectorization factor (i.e. the scalar type is used for vector 7589 // code during codegen). 7590 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7591 if (TTI->getNumberOfParts(VecTy) == VF) 7592 continue; 7593 for (unsigned I = NextInst; I < MaxInst; ++I) { 7594 unsigned OpsWidth = 0; 7595 7596 if (I + VF > MaxInst) 7597 OpsWidth = MaxInst - I; 7598 else 7599 OpsWidth = VF; 7600 7601 if (!isPowerOf2_32(OpsWidth)) 7602 continue; 7603 7604 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7605 break; 7606 7607 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7608 // Check that a previous iteration of this loop did not delete the Value. 7609 if (llvm::any_of(Ops, [&R](Value *V) { 7610 auto *I = dyn_cast<Instruction>(V); 7611 return I && R.isDeleted(I); 7612 })) 7613 continue; 7614 7615 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7616 << "\n"); 7617 7618 R.buildTree(Ops); 7619 if (R.isTreeTinyAndNotFullyVectorizable()) 7620 continue; 7621 R.reorderTopToBottom(AllowReorder); 7622 R.reorderBottomToTop(AllowReorder); 7623 R.buildExternalUses(); 7624 7625 R.computeMinimumValueSizes(); 7626 InstructionCost Cost = R.getTreeCost(); 7627 CandidateFound = true; 7628 MinCost = std::min(MinCost, Cost); 7629 7630 if (Cost < -SLPCostThreshold) { 7631 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7632 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7633 cast<Instruction>(Ops[0])) 7634 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7635 << " and with tree size " 7636 << ore::NV("TreeSize", R.getTreeSize())); 7637 7638 R.vectorizeTree(); 7639 // Move to the next bundle. 7640 I += VF - 1; 7641 NextInst = I + 1; 7642 Changed = true; 7643 } 7644 } 7645 } 7646 7647 if (!Changed && CandidateFound) { 7648 R.getORE()->emit([&]() { 7649 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7650 << "List vectorization was possible but not beneficial with cost " 7651 << ore::NV("Cost", MinCost) << " >= " 7652 << ore::NV("Treshold", -SLPCostThreshold); 7653 }); 7654 } else if (!Changed) { 7655 R.getORE()->emit([&]() { 7656 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7657 << "Cannot SLP vectorize list: vectorization was impossible" 7658 << " with available vectorization factors"; 7659 }); 7660 } 7661 return Changed; 7662 } 7663 7664 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7665 if (!I) 7666 return false; 7667 7668 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7669 return false; 7670 7671 Value *P = I->getParent(); 7672 7673 // Vectorize in current basic block only. 7674 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7675 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7676 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7677 return false; 7678 7679 // Try to vectorize V. 7680 if (tryToVectorizePair(Op0, Op1, R)) 7681 return true; 7682 7683 auto *A = dyn_cast<BinaryOperator>(Op0); 7684 auto *B = dyn_cast<BinaryOperator>(Op1); 7685 // Try to skip B. 7686 if (B && B->hasOneUse()) { 7687 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7688 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7689 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7690 return true; 7691 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7692 return true; 7693 } 7694 7695 // Try to skip A. 7696 if (A && A->hasOneUse()) { 7697 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7698 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7699 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7700 return true; 7701 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7702 return true; 7703 } 7704 return false; 7705 } 7706 7707 namespace { 7708 7709 /// Model horizontal reductions. 7710 /// 7711 /// A horizontal reduction is a tree of reduction instructions that has values 7712 /// that can be put into a vector as its leaves. For example: 7713 /// 7714 /// mul mul mul mul 7715 /// \ / \ / 7716 /// + + 7717 /// \ / 7718 /// + 7719 /// This tree has "mul" as its leaf values and "+" as its reduction 7720 /// instructions. A reduction can feed into a store or a binary operation 7721 /// feeding a phi. 7722 /// ... 7723 /// \ / 7724 /// + 7725 /// | 7726 /// phi += 7727 /// 7728 /// Or: 7729 /// ... 7730 /// \ / 7731 /// + 7732 /// | 7733 /// *p = 7734 /// 7735 class HorizontalReduction { 7736 using ReductionOpsType = SmallVector<Value *, 16>; 7737 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7738 ReductionOpsListType ReductionOps; 7739 SmallVector<Value *, 32> ReducedVals; 7740 // Use map vector to make stable output. 7741 MapVector<Instruction *, Value *> ExtraArgs; 7742 WeakTrackingVH ReductionRoot; 7743 /// The type of reduction operation. 7744 RecurKind RdxKind; 7745 7746 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 7747 7748 static bool isCmpSelMinMax(Instruction *I) { 7749 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 7750 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 7751 } 7752 7753 // And/or are potentially poison-safe logical patterns like: 7754 // select x, y, false 7755 // select x, true, y 7756 static bool isBoolLogicOp(Instruction *I) { 7757 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 7758 match(I, m_LogicalOr(m_Value(), m_Value())); 7759 } 7760 7761 /// Checks if instruction is associative and can be vectorized. 7762 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7763 if (Kind == RecurKind::None) 7764 return false; 7765 7766 // Integer ops that map to select instructions or intrinsics are fine. 7767 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 7768 isBoolLogicOp(I)) 7769 return true; 7770 7771 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7772 // FP min/max are associative except for NaN and -0.0. We do not 7773 // have to rule out -0.0 here because the intrinsic semantics do not 7774 // specify a fixed result for it. 7775 return I->getFastMathFlags().noNaNs(); 7776 } 7777 7778 return I->isAssociative(); 7779 } 7780 7781 static Value *getRdxOperand(Instruction *I, unsigned Index) { 7782 // Poison-safe 'or' takes the form: select X, true, Y 7783 // To make that work with the normal operand processing, we skip the 7784 // true value operand. 7785 // TODO: Change the code and data structures to handle this without a hack. 7786 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 7787 return I->getOperand(2); 7788 return I->getOperand(Index); 7789 } 7790 7791 /// Checks if the ParentStackElem.first should be marked as a reduction 7792 /// operation with an extra argument or as extra argument itself. 7793 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7794 Value *ExtraArg) { 7795 if (ExtraArgs.count(ParentStackElem.first)) { 7796 ExtraArgs[ParentStackElem.first] = nullptr; 7797 // We ran into something like: 7798 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7799 // The whole ParentStackElem.first should be considered as an extra value 7800 // in this case. 7801 // Do not perform analysis of remaining operands of ParentStackElem.first 7802 // instruction, this whole instruction is an extra argument. 7803 ParentStackElem.second = INVALID_OPERAND_INDEX; 7804 } else { 7805 // We ran into something like: 7806 // ParentStackElem.first += ... + ExtraArg + ... 7807 ExtraArgs[ParentStackElem.first] = ExtraArg; 7808 } 7809 } 7810 7811 /// Creates reduction operation with the current opcode. 7812 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7813 Value *RHS, const Twine &Name, bool UseSelect) { 7814 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7815 switch (Kind) { 7816 case RecurKind::Add: 7817 case RecurKind::Mul: 7818 case RecurKind::Or: 7819 case RecurKind::And: 7820 case RecurKind::Xor: 7821 case RecurKind::FAdd: 7822 case RecurKind::FMul: 7823 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7824 Name); 7825 case RecurKind::FMax: 7826 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7827 case RecurKind::FMin: 7828 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7829 case RecurKind::SMax: 7830 if (UseSelect) { 7831 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7832 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7833 } 7834 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7835 case RecurKind::SMin: 7836 if (UseSelect) { 7837 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7838 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7839 } 7840 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7841 case RecurKind::UMax: 7842 if (UseSelect) { 7843 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7844 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7845 } 7846 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7847 case RecurKind::UMin: 7848 if (UseSelect) { 7849 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7850 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7851 } 7852 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7853 default: 7854 llvm_unreachable("Unknown reduction operation."); 7855 } 7856 } 7857 7858 /// Creates reduction operation with the current opcode with the IR flags 7859 /// from \p ReductionOps. 7860 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7861 Value *RHS, const Twine &Name, 7862 const ReductionOpsListType &ReductionOps) { 7863 bool UseSelect = ReductionOps.size() == 2; 7864 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7865 "Expected cmp + select pairs for reduction"); 7866 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7867 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7868 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7869 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7870 propagateIRFlags(Op, ReductionOps[1]); 7871 return Op; 7872 } 7873 } 7874 propagateIRFlags(Op, ReductionOps[0]); 7875 return Op; 7876 } 7877 7878 /// Creates reduction operation with the current opcode with the IR flags 7879 /// from \p I. 7880 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7881 Value *RHS, const Twine &Name, Instruction *I) { 7882 auto *SelI = dyn_cast<SelectInst>(I); 7883 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 7884 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7885 if (auto *Sel = dyn_cast<SelectInst>(Op)) 7886 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 7887 } 7888 propagateIRFlags(Op, I); 7889 return Op; 7890 } 7891 7892 static RecurKind getRdxKind(Instruction *I) { 7893 assert(I && "Expected instruction for reduction matching"); 7894 TargetTransformInfo::ReductionFlags RdxFlags; 7895 if (match(I, m_Add(m_Value(), m_Value()))) 7896 return RecurKind::Add; 7897 if (match(I, m_Mul(m_Value(), m_Value()))) 7898 return RecurKind::Mul; 7899 if (match(I, m_And(m_Value(), m_Value())) || 7900 match(I, m_LogicalAnd(m_Value(), m_Value()))) 7901 return RecurKind::And; 7902 if (match(I, m_Or(m_Value(), m_Value())) || 7903 match(I, m_LogicalOr(m_Value(), m_Value()))) 7904 return RecurKind::Or; 7905 if (match(I, m_Xor(m_Value(), m_Value()))) 7906 return RecurKind::Xor; 7907 if (match(I, m_FAdd(m_Value(), m_Value()))) 7908 return RecurKind::FAdd; 7909 if (match(I, m_FMul(m_Value(), m_Value()))) 7910 return RecurKind::FMul; 7911 7912 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 7913 return RecurKind::FMax; 7914 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 7915 return RecurKind::FMin; 7916 7917 // This matches either cmp+select or intrinsics. SLP is expected to handle 7918 // either form. 7919 // TODO: If we are canonicalizing to intrinsics, we can remove several 7920 // special-case paths that deal with selects. 7921 if (match(I, m_SMax(m_Value(), m_Value()))) 7922 return RecurKind::SMax; 7923 if (match(I, m_SMin(m_Value(), m_Value()))) 7924 return RecurKind::SMin; 7925 if (match(I, m_UMax(m_Value(), m_Value()))) 7926 return RecurKind::UMax; 7927 if (match(I, m_UMin(m_Value(), m_Value()))) 7928 return RecurKind::UMin; 7929 7930 if (auto *Select = dyn_cast<SelectInst>(I)) { 7931 // Try harder: look for min/max pattern based on instructions producing 7932 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 7933 // During the intermediate stages of SLP, it's very common to have 7934 // pattern like this (since optimizeGatherSequence is run only once 7935 // at the end): 7936 // %1 = extractelement <2 x i32> %a, i32 0 7937 // %2 = extractelement <2 x i32> %a, i32 1 7938 // %cond = icmp sgt i32 %1, %2 7939 // %3 = extractelement <2 x i32> %a, i32 0 7940 // %4 = extractelement <2 x i32> %a, i32 1 7941 // %select = select i1 %cond, i32 %3, i32 %4 7942 CmpInst::Predicate Pred; 7943 Instruction *L1; 7944 Instruction *L2; 7945 7946 Value *LHS = Select->getTrueValue(); 7947 Value *RHS = Select->getFalseValue(); 7948 Value *Cond = Select->getCondition(); 7949 7950 // TODO: Support inverse predicates. 7951 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 7952 if (!isa<ExtractElementInst>(RHS) || 7953 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7954 return RecurKind::None; 7955 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 7956 if (!isa<ExtractElementInst>(LHS) || 7957 !L1->isIdenticalTo(cast<Instruction>(LHS))) 7958 return RecurKind::None; 7959 } else { 7960 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 7961 return RecurKind::None; 7962 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 7963 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 7964 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7965 return RecurKind::None; 7966 } 7967 7968 TargetTransformInfo::ReductionFlags RdxFlags; 7969 switch (Pred) { 7970 default: 7971 return RecurKind::None; 7972 case CmpInst::ICMP_SGT: 7973 case CmpInst::ICMP_SGE: 7974 return RecurKind::SMax; 7975 case CmpInst::ICMP_SLT: 7976 case CmpInst::ICMP_SLE: 7977 return RecurKind::SMin; 7978 case CmpInst::ICMP_UGT: 7979 case CmpInst::ICMP_UGE: 7980 return RecurKind::UMax; 7981 case CmpInst::ICMP_ULT: 7982 case CmpInst::ICMP_ULE: 7983 return RecurKind::UMin; 7984 } 7985 } 7986 return RecurKind::None; 7987 } 7988 7989 /// Get the index of the first operand. 7990 static unsigned getFirstOperandIndex(Instruction *I) { 7991 return isCmpSelMinMax(I) ? 1 : 0; 7992 } 7993 7994 /// Total number of operands in the reduction operation. 7995 static unsigned getNumberOfOperands(Instruction *I) { 7996 return isCmpSelMinMax(I) ? 3 : 2; 7997 } 7998 7999 /// Checks if the instruction is in basic block \p BB. 8000 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8001 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8002 if (isCmpSelMinMax(I)) { 8003 auto *Sel = cast<SelectInst>(I); 8004 auto *Cmp = cast<Instruction>(Sel->getCondition()); 8005 return Sel->getParent() == BB && Cmp->getParent() == BB; 8006 } 8007 return I->getParent() == BB; 8008 } 8009 8010 /// Expected number of uses for reduction operations/reduced values. 8011 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8012 if (IsCmpSelMinMax) { 8013 // SelectInst must be used twice while the condition op must have single 8014 // use only. 8015 if (auto *Sel = dyn_cast<SelectInst>(I)) 8016 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8017 return I->hasNUses(2); 8018 } 8019 8020 // Arithmetic reduction operation must be used once only. 8021 return I->hasOneUse(); 8022 } 8023 8024 /// Initializes the list of reduction operations. 8025 void initReductionOps(Instruction *I) { 8026 if (isCmpSelMinMax(I)) 8027 ReductionOps.assign(2, ReductionOpsType()); 8028 else 8029 ReductionOps.assign(1, ReductionOpsType()); 8030 } 8031 8032 /// Add all reduction operations for the reduction instruction \p I. 8033 void addReductionOps(Instruction *I) { 8034 if (isCmpSelMinMax(I)) { 8035 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8036 ReductionOps[1].emplace_back(I); 8037 } else { 8038 ReductionOps[0].emplace_back(I); 8039 } 8040 } 8041 8042 static Value *getLHS(RecurKind Kind, Instruction *I) { 8043 if (Kind == RecurKind::None) 8044 return nullptr; 8045 return I->getOperand(getFirstOperandIndex(I)); 8046 } 8047 static Value *getRHS(RecurKind Kind, Instruction *I) { 8048 if (Kind == RecurKind::None) 8049 return nullptr; 8050 return I->getOperand(getFirstOperandIndex(I) + 1); 8051 } 8052 8053 public: 8054 HorizontalReduction() = default; 8055 8056 /// Try to find a reduction tree. 8057 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8058 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8059 "Phi needs to use the binary operator"); 8060 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8061 isa<IntrinsicInst>(Inst)) && 8062 "Expected binop, select, or intrinsic for reduction matching"); 8063 RdxKind = getRdxKind(Inst); 8064 8065 // We could have a initial reductions that is not an add. 8066 // r *= v1 + v2 + v3 + v4 8067 // In such a case start looking for a tree rooted in the first '+'. 8068 if (Phi) { 8069 if (getLHS(RdxKind, Inst) == Phi) { 8070 Phi = nullptr; 8071 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8072 if (!Inst) 8073 return false; 8074 RdxKind = getRdxKind(Inst); 8075 } else if (getRHS(RdxKind, Inst) == Phi) { 8076 Phi = nullptr; 8077 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8078 if (!Inst) 8079 return false; 8080 RdxKind = getRdxKind(Inst); 8081 } 8082 } 8083 8084 if (!isVectorizable(RdxKind, Inst)) 8085 return false; 8086 8087 // Analyze "regular" integer/FP types for reductions - no target-specific 8088 // types or pointers. 8089 Type *Ty = Inst->getType(); 8090 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8091 return false; 8092 8093 // Though the ultimate reduction may have multiple uses, its condition must 8094 // have only single use. 8095 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8096 if (!Sel->getCondition()->hasOneUse()) 8097 return false; 8098 8099 ReductionRoot = Inst; 8100 8101 // The opcode for leaf values that we perform a reduction on. 8102 // For example: load(x) + load(y) + load(z) + fptoui(w) 8103 // The leaf opcode for 'w' does not match, so we don't include it as a 8104 // potential candidate for the reduction. 8105 unsigned LeafOpcode = 0; 8106 8107 // Post-order traverse the reduction tree starting at Inst. We only handle 8108 // true trees containing binary operators or selects. 8109 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8110 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8111 initReductionOps(Inst); 8112 while (!Stack.empty()) { 8113 Instruction *TreeN = Stack.back().first; 8114 unsigned EdgeToVisit = Stack.back().second++; 8115 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8116 bool IsReducedValue = TreeRdxKind != RdxKind; 8117 8118 // Postorder visit. 8119 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8120 if (IsReducedValue) 8121 ReducedVals.push_back(TreeN); 8122 else { 8123 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8124 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8125 // Check if TreeN is an extra argument of its parent operation. 8126 if (Stack.size() <= 1) { 8127 // TreeN can't be an extra argument as it is a root reduction 8128 // operation. 8129 return false; 8130 } 8131 // Yes, TreeN is an extra argument, do not add it to a list of 8132 // reduction operations. 8133 // Stack[Stack.size() - 2] always points to the parent operation. 8134 markExtraArg(Stack[Stack.size() - 2], TreeN); 8135 ExtraArgs.erase(TreeN); 8136 } else 8137 addReductionOps(TreeN); 8138 } 8139 // Retract. 8140 Stack.pop_back(); 8141 continue; 8142 } 8143 8144 // Visit operands. 8145 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8146 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8147 if (!EdgeInst) { 8148 // Edge value is not a reduction instruction or a leaf instruction. 8149 // (It may be a constant, function argument, or something else.) 8150 markExtraArg(Stack.back(), EdgeVal); 8151 continue; 8152 } 8153 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8154 // Continue analysis if the next operand is a reduction operation or 8155 // (possibly) a leaf value. If the leaf value opcode is not set, 8156 // the first met operation != reduction operation is considered as the 8157 // leaf opcode. 8158 // Only handle trees in the current basic block. 8159 // Each tree node needs to have minimal number of users except for the 8160 // ultimate reduction. 8161 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8162 if (EdgeInst != Phi && EdgeInst != Inst && 8163 hasSameParent(EdgeInst, Inst->getParent()) && 8164 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8165 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8166 if (IsRdxInst) { 8167 // We need to be able to reassociate the reduction operations. 8168 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8169 // I is an extra argument for TreeN (its parent operation). 8170 markExtraArg(Stack.back(), EdgeInst); 8171 continue; 8172 } 8173 } else if (!LeafOpcode) { 8174 LeafOpcode = EdgeInst->getOpcode(); 8175 } 8176 Stack.push_back( 8177 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8178 continue; 8179 } 8180 // I is an extra argument for TreeN (its parent operation). 8181 markExtraArg(Stack.back(), EdgeInst); 8182 } 8183 return true; 8184 } 8185 8186 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8187 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8188 // If there are a sufficient number of reduction values, reduce 8189 // to a nearby power-of-2. We can safely generate oversized 8190 // vectors and rely on the backend to split them to legal sizes. 8191 unsigned NumReducedVals = ReducedVals.size(); 8192 if (NumReducedVals < 4) 8193 return false; 8194 8195 // Intersect the fast-math-flags from all reduction operations. 8196 FastMathFlags RdxFMF; 8197 RdxFMF.set(); 8198 for (ReductionOpsType &RdxOp : ReductionOps) { 8199 for (Value *RdxVal : RdxOp) { 8200 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8201 RdxFMF &= FPMO->getFastMathFlags(); 8202 } 8203 } 8204 8205 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8206 Builder.setFastMathFlags(RdxFMF); 8207 8208 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8209 // The same extra argument may be used several times, so log each attempt 8210 // to use it. 8211 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8212 assert(Pair.first && "DebugLoc must be set."); 8213 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8214 } 8215 8216 // The compare instruction of a min/max is the insertion point for new 8217 // instructions and may be replaced with a new compare instruction. 8218 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8219 assert(isa<SelectInst>(RdxRootInst) && 8220 "Expected min/max reduction to have select root instruction"); 8221 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8222 assert(isa<Instruction>(ScalarCond) && 8223 "Expected min/max reduction to have compare condition"); 8224 return cast<Instruction>(ScalarCond); 8225 }; 8226 8227 // The reduction root is used as the insertion point for new instructions, 8228 // so set it as externally used to prevent it from being deleted. 8229 ExternallyUsedValues[ReductionRoot]; 8230 SmallVector<Value *, 16> IgnoreList; 8231 for (ReductionOpsType &RdxOp : ReductionOps) 8232 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8233 8234 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8235 if (NumReducedVals > ReduxWidth) { 8236 // In the loop below, we are building a tree based on a window of 8237 // 'ReduxWidth' values. 8238 // If the operands of those values have common traits (compare predicate, 8239 // constant operand, etc), then we want to group those together to 8240 // minimize the cost of the reduction. 8241 8242 // TODO: This should be extended to count common operands for 8243 // compares and binops. 8244 8245 // Step 1: Count the number of times each compare predicate occurs. 8246 SmallDenseMap<unsigned, unsigned> PredCountMap; 8247 for (Value *RdxVal : ReducedVals) { 8248 CmpInst::Predicate Pred; 8249 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8250 ++PredCountMap[Pred]; 8251 } 8252 // Step 2: Sort the values so the most common predicates come first. 8253 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8254 CmpInst::Predicate PredA, PredB; 8255 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8256 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8257 return PredCountMap[PredA] > PredCountMap[PredB]; 8258 } 8259 return false; 8260 }); 8261 } 8262 8263 Value *VectorizedTree = nullptr; 8264 unsigned i = 0; 8265 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8266 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8267 V.buildTree(VL, IgnoreList); 8268 if (V.isTreeTinyAndNotFullyVectorizable()) 8269 break; 8270 if (V.isLoadCombineReductionCandidate(RdxKind)) 8271 break; 8272 V.reorderTopToBottom(/*FreeReorder=*/true); 8273 V.reorderBottomToTop(/*FreeReorder=*/true); 8274 V.buildExternalUses(ExternallyUsedValues); 8275 8276 // For a poison-safe boolean logic reduction, do not replace select 8277 // instructions with logic ops. All reduced values will be frozen (see 8278 // below) to prevent leaking poison. 8279 if (isa<SelectInst>(ReductionRoot) && 8280 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8281 NumReducedVals != ReduxWidth) 8282 break; 8283 8284 V.computeMinimumValueSizes(); 8285 8286 // Estimate cost. 8287 InstructionCost TreeCost = 8288 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8289 InstructionCost ReductionCost = 8290 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8291 InstructionCost Cost = TreeCost + ReductionCost; 8292 if (!Cost.isValid()) { 8293 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8294 return false; 8295 } 8296 if (Cost >= -SLPCostThreshold) { 8297 V.getORE()->emit([&]() { 8298 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8299 cast<Instruction>(VL[0])) 8300 << "Vectorizing horizontal reduction is possible" 8301 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8302 << " and threshold " 8303 << ore::NV("Threshold", -SLPCostThreshold); 8304 }); 8305 break; 8306 } 8307 8308 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8309 << Cost << ". (HorRdx)\n"); 8310 V.getORE()->emit([&]() { 8311 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8312 cast<Instruction>(VL[0])) 8313 << "Vectorized horizontal reduction with cost " 8314 << ore::NV("Cost", Cost) << " and with tree size " 8315 << ore::NV("TreeSize", V.getTreeSize()); 8316 }); 8317 8318 // Vectorize a tree. 8319 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8320 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8321 8322 // Emit a reduction. If the root is a select (min/max idiom), the insert 8323 // point is the compare condition of that select. 8324 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8325 if (isCmpSelMinMax(RdxRootInst)) 8326 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8327 else 8328 Builder.SetInsertPoint(RdxRootInst); 8329 8330 // To prevent poison from leaking across what used to be sequential, safe, 8331 // scalar boolean logic operations, the reduction operand must be frozen. 8332 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8333 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8334 8335 Value *ReducedSubTree = 8336 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8337 8338 if (!VectorizedTree) { 8339 // Initialize the final value in the reduction. 8340 VectorizedTree = ReducedSubTree; 8341 } else { 8342 // Update the final value in the reduction. 8343 Builder.SetCurrentDebugLocation(Loc); 8344 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8345 ReducedSubTree, "op.rdx", ReductionOps); 8346 } 8347 i += ReduxWidth; 8348 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8349 } 8350 8351 if (VectorizedTree) { 8352 // Finish the reduction. 8353 for (; i < NumReducedVals; ++i) { 8354 auto *I = cast<Instruction>(ReducedVals[i]); 8355 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8356 VectorizedTree = 8357 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8358 } 8359 for (auto &Pair : ExternallyUsedValues) { 8360 // Add each externally used value to the final reduction. 8361 for (auto *I : Pair.second) { 8362 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8363 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8364 Pair.first, "op.extra", I); 8365 } 8366 } 8367 8368 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8369 8370 // Mark all scalar reduction ops for deletion, they are replaced by the 8371 // vector reductions. 8372 V.eraseInstructions(IgnoreList); 8373 } 8374 return VectorizedTree != nullptr; 8375 } 8376 8377 unsigned numReductionValues() const { return ReducedVals.size(); } 8378 8379 private: 8380 /// Calculate the cost of a reduction. 8381 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8382 Value *FirstReducedVal, unsigned ReduxWidth, 8383 FastMathFlags FMF) { 8384 Type *ScalarTy = FirstReducedVal->getType(); 8385 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8386 InstructionCost VectorCost, ScalarCost; 8387 switch (RdxKind) { 8388 case RecurKind::Add: 8389 case RecurKind::Mul: 8390 case RecurKind::Or: 8391 case RecurKind::And: 8392 case RecurKind::Xor: 8393 case RecurKind::FAdd: 8394 case RecurKind::FMul: { 8395 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8396 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF); 8397 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 8398 break; 8399 } 8400 case RecurKind::FMax: 8401 case RecurKind::FMin: { 8402 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8403 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8404 /*unsigned=*/false); 8405 ScalarCost = 8406 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 8407 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8408 CmpInst::makeCmpResultType(ScalarTy)); 8409 break; 8410 } 8411 case RecurKind::SMax: 8412 case RecurKind::SMin: 8413 case RecurKind::UMax: 8414 case RecurKind::UMin: { 8415 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8416 bool IsUnsigned = 8417 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8418 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned); 8419 ScalarCost = 8420 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 8421 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8422 CmpInst::makeCmpResultType(ScalarTy)); 8423 break; 8424 } 8425 default: 8426 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8427 } 8428 8429 // Scalar cost is repeated for N-1 elements. 8430 ScalarCost *= (ReduxWidth - 1); 8431 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8432 << " for reduction that starts with " << *FirstReducedVal 8433 << " (It is a splitting reduction)\n"); 8434 return VectorCost - ScalarCost; 8435 } 8436 8437 /// Emit a horizontal reduction of the vectorized value. 8438 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8439 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8440 assert(VectorizedValue && "Need to have a vectorized tree node"); 8441 assert(isPowerOf2_32(ReduxWidth) && 8442 "We only handle power-of-two reductions for now"); 8443 8444 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8445 ReductionOps.back()); 8446 } 8447 }; 8448 8449 } // end anonymous namespace 8450 8451 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8452 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8453 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8454 8455 unsigned AggregateSize = 1; 8456 auto *IV = cast<InsertValueInst>(InsertInst); 8457 Type *CurrentType = IV->getType(); 8458 do { 8459 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8460 for (auto *Elt : ST->elements()) 8461 if (Elt != ST->getElementType(0)) // check homogeneity 8462 return None; 8463 AggregateSize *= ST->getNumElements(); 8464 CurrentType = ST->getElementType(0); 8465 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8466 AggregateSize *= AT->getNumElements(); 8467 CurrentType = AT->getElementType(); 8468 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8469 AggregateSize *= VT->getNumElements(); 8470 return AggregateSize; 8471 } else if (CurrentType->isSingleValueType()) { 8472 return AggregateSize; 8473 } else { 8474 return None; 8475 } 8476 } while (true); 8477 } 8478 8479 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8480 TargetTransformInfo *TTI, 8481 SmallVectorImpl<Value *> &BuildVectorOpds, 8482 SmallVectorImpl<Value *> &InsertElts, 8483 unsigned OperandOffset) { 8484 do { 8485 Value *InsertedOperand = LastInsertInst->getOperand(1); 8486 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8487 if (!OperandIndex) 8488 return false; 8489 if (isa<InsertElementInst>(InsertedOperand) || 8490 isa<InsertValueInst>(InsertedOperand)) { 8491 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8492 BuildVectorOpds, InsertElts, *OperandIndex)) 8493 return false; 8494 } else { 8495 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8496 InsertElts[*OperandIndex] = LastInsertInst; 8497 } 8498 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8499 } while (LastInsertInst != nullptr && 8500 (isa<InsertValueInst>(LastInsertInst) || 8501 isa<InsertElementInst>(LastInsertInst)) && 8502 LastInsertInst->hasOneUse()); 8503 return true; 8504 } 8505 8506 /// Recognize construction of vectors like 8507 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8508 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8509 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8510 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8511 /// starting from the last insertelement or insertvalue instruction. 8512 /// 8513 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8514 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8515 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8516 /// 8517 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8518 /// 8519 /// \return true if it matches. 8520 static bool findBuildAggregate(Instruction *LastInsertInst, 8521 TargetTransformInfo *TTI, 8522 SmallVectorImpl<Value *> &BuildVectorOpds, 8523 SmallVectorImpl<Value *> &InsertElts) { 8524 8525 assert((isa<InsertElementInst>(LastInsertInst) || 8526 isa<InsertValueInst>(LastInsertInst)) && 8527 "Expected insertelement or insertvalue instruction!"); 8528 8529 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8530 "Expected empty result vectors!"); 8531 8532 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8533 if (!AggregateSize) 8534 return false; 8535 BuildVectorOpds.resize(*AggregateSize); 8536 InsertElts.resize(*AggregateSize); 8537 8538 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8539 0)) { 8540 llvm::erase_value(BuildVectorOpds, nullptr); 8541 llvm::erase_value(InsertElts, nullptr); 8542 if (BuildVectorOpds.size() >= 2) 8543 return true; 8544 } 8545 8546 return false; 8547 } 8548 8549 /// Try and get a reduction value from a phi node. 8550 /// 8551 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8552 /// if they come from either \p ParentBB or a containing loop latch. 8553 /// 8554 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8555 /// if not possible. 8556 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8557 BasicBlock *ParentBB, LoopInfo *LI) { 8558 // There are situations where the reduction value is not dominated by the 8559 // reduction phi. Vectorizing such cases has been reported to cause 8560 // miscompiles. See PR25787. 8561 auto DominatedReduxValue = [&](Value *R) { 8562 return isa<Instruction>(R) && 8563 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8564 }; 8565 8566 Value *Rdx = nullptr; 8567 8568 // Return the incoming value if it comes from the same BB as the phi node. 8569 if (P->getIncomingBlock(0) == ParentBB) { 8570 Rdx = P->getIncomingValue(0); 8571 } else if (P->getIncomingBlock(1) == ParentBB) { 8572 Rdx = P->getIncomingValue(1); 8573 } 8574 8575 if (Rdx && DominatedReduxValue(Rdx)) 8576 return Rdx; 8577 8578 // Otherwise, check whether we have a loop latch to look at. 8579 Loop *BBL = LI->getLoopFor(ParentBB); 8580 if (!BBL) 8581 return nullptr; 8582 BasicBlock *BBLatch = BBL->getLoopLatch(); 8583 if (!BBLatch) 8584 return nullptr; 8585 8586 // There is a loop latch, return the incoming value if it comes from 8587 // that. This reduction pattern occasionally turns up. 8588 if (P->getIncomingBlock(0) == BBLatch) { 8589 Rdx = P->getIncomingValue(0); 8590 } else if (P->getIncomingBlock(1) == BBLatch) { 8591 Rdx = P->getIncomingValue(1); 8592 } 8593 8594 if (Rdx && DominatedReduxValue(Rdx)) 8595 return Rdx; 8596 8597 return nullptr; 8598 } 8599 8600 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8601 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8602 return true; 8603 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8604 return true; 8605 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8606 return true; 8607 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8608 return true; 8609 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8610 return true; 8611 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8612 return true; 8613 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8614 return true; 8615 return false; 8616 } 8617 8618 /// Attempt to reduce a horizontal reduction. 8619 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8620 /// with reduction operators \a Root (or one of its operands) in a basic block 8621 /// \a BB, then check if it can be done. If horizontal reduction is not found 8622 /// and root instruction is a binary operation, vectorization of the operands is 8623 /// attempted. 8624 /// \returns true if a horizontal reduction was matched and reduced or operands 8625 /// of one of the binary instruction were vectorized. 8626 /// \returns false if a horizontal reduction was not matched (or not possible) 8627 /// or no vectorization of any binary operation feeding \a Root instruction was 8628 /// performed. 8629 static bool tryToVectorizeHorReductionOrInstOperands( 8630 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8631 TargetTransformInfo *TTI, 8632 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8633 if (!ShouldVectorizeHor) 8634 return false; 8635 8636 if (!Root) 8637 return false; 8638 8639 if (Root->getParent() != BB || isa<PHINode>(Root)) 8640 return false; 8641 // Start analysis starting from Root instruction. If horizontal reduction is 8642 // found, try to vectorize it. If it is not a horizontal reduction or 8643 // vectorization is not possible or not effective, and currently analyzed 8644 // instruction is a binary operation, try to vectorize the operands, using 8645 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8646 // the same procedure considering each operand as a possible root of the 8647 // horizontal reduction. 8648 // Interrupt the process if the Root instruction itself was vectorized or all 8649 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8650 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8651 // CmpInsts so we can skip extra attempts in 8652 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8653 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8654 SmallPtrSet<Value *, 8> VisitedInstrs; 8655 bool Res = false; 8656 while (!Stack.empty()) { 8657 Instruction *Inst; 8658 unsigned Level; 8659 std::tie(Inst, Level) = Stack.pop_back_val(); 8660 // Do not try to analyze instruction that has already been vectorized. 8661 // This may happen when we vectorize instruction operands on a previous 8662 // iteration while stack was populated before that happened. 8663 if (R.isDeleted(Inst)) 8664 continue; 8665 Value *B0, *B1; 8666 bool IsBinop = matchRdxBop(Inst, B0, B1); 8667 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8668 if (IsBinop || IsSelect) { 8669 HorizontalReduction HorRdx; 8670 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8671 if (HorRdx.tryToReduce(R, TTI)) { 8672 Res = true; 8673 // Set P to nullptr to avoid re-analysis of phi node in 8674 // matchAssociativeReduction function unless this is the root node. 8675 P = nullptr; 8676 continue; 8677 } 8678 } 8679 if (P && IsBinop) { 8680 Inst = dyn_cast<Instruction>(B0); 8681 if (Inst == P) 8682 Inst = dyn_cast<Instruction>(B1); 8683 if (!Inst) { 8684 // Set P to nullptr to avoid re-analysis of phi node in 8685 // matchAssociativeReduction function unless this is the root node. 8686 P = nullptr; 8687 continue; 8688 } 8689 } 8690 } 8691 // Set P to nullptr to avoid re-analysis of phi node in 8692 // matchAssociativeReduction function unless this is the root node. 8693 P = nullptr; 8694 // Do not try to vectorize CmpInst operands, this is done separately. 8695 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8696 Res = true; 8697 continue; 8698 } 8699 8700 // Try to vectorize operands. 8701 // Continue analysis for the instruction from the same basic block only to 8702 // save compile time. 8703 if (++Level < RecursionMaxDepth) 8704 for (auto *Op : Inst->operand_values()) 8705 if (VisitedInstrs.insert(Op).second) 8706 if (auto *I = dyn_cast<Instruction>(Op)) 8707 // Do not try to vectorize CmpInst operands, this is done 8708 // separately. 8709 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8710 I->getParent() == BB) 8711 Stack.emplace_back(I, Level); 8712 } 8713 return Res; 8714 } 8715 8716 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8717 BasicBlock *BB, BoUpSLP &R, 8718 TargetTransformInfo *TTI) { 8719 auto *I = dyn_cast_or_null<Instruction>(V); 8720 if (!I) 8721 return false; 8722 8723 if (!isa<BinaryOperator>(I)) 8724 P = nullptr; 8725 // Try to match and vectorize a horizontal reduction. 8726 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8727 return tryToVectorize(I, R); 8728 }; 8729 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8730 ExtraVectorization); 8731 } 8732 8733 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8734 BasicBlock *BB, BoUpSLP &R) { 8735 const DataLayout &DL = BB->getModule()->getDataLayout(); 8736 if (!R.canMapToVector(IVI->getType(), DL)) 8737 return false; 8738 8739 SmallVector<Value *, 16> BuildVectorOpds; 8740 SmallVector<Value *, 16> BuildVectorInsts; 8741 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8742 return false; 8743 8744 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8745 // Aggregate value is unlikely to be processed in vector register, we need to 8746 // extract scalars into scalar registers, so NeedExtraction is set true. 8747 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/true); 8748 } 8749 8750 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8751 BasicBlock *BB, BoUpSLP &R) { 8752 SmallVector<Value *, 16> BuildVectorInsts; 8753 SmallVector<Value *, 16> BuildVectorOpds; 8754 SmallVector<int> Mask; 8755 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8756 (llvm::all_of(BuildVectorOpds, 8757 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8758 isShuffle(BuildVectorOpds, Mask))) 8759 return false; 8760 8761 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8762 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true); 8763 } 8764 8765 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8766 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8767 bool AtTerminator) { 8768 bool OpsChanged = false; 8769 SmallVector<Instruction *, 4> PostponedCmps; 8770 for (auto *I : reverse(Instructions)) { 8771 if (R.isDeleted(I)) 8772 continue; 8773 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8774 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8775 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8776 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8777 else if (isa<CmpInst>(I)) 8778 PostponedCmps.push_back(I); 8779 } 8780 if (AtTerminator) { 8781 // Try to find reductions first. 8782 for (Instruction *I : PostponedCmps) { 8783 if (R.isDeleted(I)) 8784 continue; 8785 for (Value *Op : I->operands()) 8786 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8787 } 8788 // Try to vectorize operands as vector bundles. 8789 for (Instruction *I : PostponedCmps) { 8790 if (R.isDeleted(I)) 8791 continue; 8792 OpsChanged |= tryToVectorize(I, R); 8793 } 8794 Instructions.clear(); 8795 } else { 8796 // Insert in reverse order since the PostponedCmps vector was filled in 8797 // reverse order. 8798 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8799 } 8800 return OpsChanged; 8801 } 8802 8803 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8804 bool Changed = false; 8805 SmallVector<Value *, 4> Incoming; 8806 SmallPtrSet<Value *, 16> VisitedInstrs; 8807 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 8808 // node. Allows better to identify the chains that can be vectorized in the 8809 // better way. 8810 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 8811 8812 bool HaveVectorizedPhiNodes = true; 8813 while (HaveVectorizedPhiNodes) { 8814 HaveVectorizedPhiNodes = false; 8815 8816 // Collect the incoming values from the PHIs. 8817 Incoming.clear(); 8818 for (Instruction &I : *BB) { 8819 PHINode *P = dyn_cast<PHINode>(&I); 8820 if (!P) 8821 break; 8822 8823 // No need to analyze deleted, vectorized and non-vectorizable 8824 // instructions. 8825 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 8826 isValidElementType(P->getType())) 8827 Incoming.push_back(P); 8828 } 8829 8830 // Find the corresponding non-phi nodes for better matching when trying to 8831 // build the tree. 8832 for (Value *V : Incoming) { 8833 SmallVectorImpl<Value *> &Opcodes = 8834 PHIToOpcodes.try_emplace(V).first->getSecond(); 8835 if (!Opcodes.empty()) 8836 continue; 8837 SmallVector<Value *, 4> Nodes(1, V); 8838 SmallPtrSet<Value *, 4> Visited; 8839 while (!Nodes.empty()) { 8840 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 8841 if (!Visited.insert(PHI).second) 8842 continue; 8843 for (Value *V : PHI->incoming_values()) { 8844 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 8845 Nodes.push_back(PHI1); 8846 continue; 8847 } 8848 Opcodes.emplace_back(V); 8849 } 8850 } 8851 } 8852 8853 // Sort by type, parent, operands. 8854 stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) { 8855 assert(isValidElementType(V1->getType()) && 8856 isValidElementType(V2->getType()) && 8857 "Expected vectorizable types only."); 8858 // It is fine to compare type IDs here, since we expect only vectorizable 8859 // types, like ints, floats and pointers, we don't care about other type. 8860 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 8861 return true; 8862 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 8863 return false; 8864 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8865 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8866 if (Opcodes1.size() < Opcodes2.size()) 8867 return true; 8868 if (Opcodes1.size() > Opcodes2.size()) 8869 return false; 8870 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8871 // Undefs are compatible with any other value. 8872 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8873 continue; 8874 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8875 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8876 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 8877 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 8878 if (!NodeI1) 8879 return NodeI2 != nullptr; 8880 if (!NodeI2) 8881 return false; 8882 assert((NodeI1 == NodeI2) == 8883 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 8884 "Different nodes should have different DFS numbers"); 8885 if (NodeI1 != NodeI2) 8886 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 8887 InstructionsState S = getSameOpcode({I1, I2}); 8888 if (S.getOpcode()) 8889 continue; 8890 return I1->getOpcode() < I2->getOpcode(); 8891 } 8892 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8893 continue; 8894 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 8895 return true; 8896 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 8897 return false; 8898 } 8899 return false; 8900 }); 8901 8902 auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 8903 if (V1 == V2) 8904 return true; 8905 if (V1->getType() != V2->getType()) 8906 return false; 8907 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8908 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8909 if (Opcodes1.size() != Opcodes2.size()) 8910 return false; 8911 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8912 // Undefs are compatible with any other value. 8913 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8914 continue; 8915 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8916 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8917 if (I1->getParent() != I2->getParent()) 8918 return false; 8919 InstructionsState S = getSameOpcode({I1, I2}); 8920 if (S.getOpcode()) 8921 continue; 8922 return false; 8923 } 8924 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8925 continue; 8926 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 8927 return false; 8928 } 8929 return true; 8930 }; 8931 8932 // Try to vectorize elements base on their type. 8933 SmallVector<Value *, 4> Candidates; 8934 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 8935 E = Incoming.end(); 8936 IncIt != E;) { 8937 8938 // Look for the next elements with the same type, parent and operand 8939 // kinds. 8940 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 8941 while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) { 8942 VisitedInstrs.insert(*SameTypeIt); 8943 ++SameTypeIt; 8944 } 8945 8946 // Try to vectorize them. 8947 unsigned NumElts = (SameTypeIt - IncIt); 8948 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 8949 << NumElts << ")\n"); 8950 // The order in which the phi nodes appear in the program does not matter. 8951 // So allow tryToVectorizeList to reorder them if it is beneficial. This 8952 // is done when there are exactly two elements since tryToVectorizeList 8953 // asserts that there are only two values when AllowReorder is true. 8954 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 8955 /*AllowReorder=*/true)) { 8956 // Success start over because instructions might have been changed. 8957 HaveVectorizedPhiNodes = true; 8958 Changed = true; 8959 } else if (NumElts < 4 && 8960 (Candidates.empty() || 8961 Candidates.front()->getType() == (*IncIt)->getType())) { 8962 Candidates.append(IncIt, std::next(IncIt, NumElts)); 8963 } 8964 // Final attempt to vectorize phis with the same types. 8965 if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) { 8966 if (Candidates.size() > 1 && 8967 tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) { 8968 // Success start over because instructions might have been changed. 8969 HaveVectorizedPhiNodes = true; 8970 Changed = true; 8971 } 8972 Candidates.clear(); 8973 } 8974 8975 // Start over at the next instruction of a different type (or the end). 8976 IncIt = SameTypeIt; 8977 } 8978 } 8979 8980 VisitedInstrs.clear(); 8981 8982 SmallVector<Instruction *, 8> PostProcessInstructions; 8983 SmallDenseSet<Instruction *, 4> KeyNodes; 8984 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 8985 // Skip instructions with scalable type. The num of elements is unknown at 8986 // compile-time for scalable type. 8987 if (isa<ScalableVectorType>(it->getType())) 8988 continue; 8989 8990 // Skip instructions marked for the deletion. 8991 if (R.isDeleted(&*it)) 8992 continue; 8993 // We may go through BB multiple times so skip the one we have checked. 8994 if (!VisitedInstrs.insert(&*it).second) { 8995 if (it->use_empty() && KeyNodes.contains(&*it) && 8996 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8997 it->isTerminator())) { 8998 // We would like to start over since some instructions are deleted 8999 // and the iterator may become invalid value. 9000 Changed = true; 9001 it = BB->begin(); 9002 e = BB->end(); 9003 } 9004 continue; 9005 } 9006 9007 if (isa<DbgInfoIntrinsic>(it)) 9008 continue; 9009 9010 // Try to vectorize reductions that use PHINodes. 9011 if (PHINode *P = dyn_cast<PHINode>(it)) { 9012 // Check that the PHI is a reduction PHI. 9013 if (P->getNumIncomingValues() == 2) { 9014 // Try to match and vectorize a horizontal reduction. 9015 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9016 TTI)) { 9017 Changed = true; 9018 it = BB->begin(); 9019 e = BB->end(); 9020 continue; 9021 } 9022 } 9023 // Try to vectorize the incoming values of the PHI, to catch reductions 9024 // that feed into PHIs. 9025 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9026 // Skip if the incoming block is the current BB for now. Also, bypass 9027 // unreachable IR for efficiency and to avoid crashing. 9028 // TODO: Collect the skipped incoming values and try to vectorize them 9029 // after processing BB. 9030 if (BB == P->getIncomingBlock(I) || 9031 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9032 continue; 9033 9034 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9035 P->getIncomingBlock(I), R, TTI); 9036 } 9037 continue; 9038 } 9039 9040 // Ran into an instruction without users, like terminator, or function call 9041 // with ignored return value, store. Ignore unused instructions (basing on 9042 // instruction type, except for CallInst and InvokeInst). 9043 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9044 isa<InvokeInst>(it))) { 9045 KeyNodes.insert(&*it); 9046 bool OpsChanged = false; 9047 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9048 for (auto *V : it->operand_values()) { 9049 // Try to match and vectorize a horizontal reduction. 9050 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9051 } 9052 } 9053 // Start vectorization of post-process list of instructions from the 9054 // top-tree instructions to try to vectorize as many instructions as 9055 // possible. 9056 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9057 it->isTerminator()); 9058 if (OpsChanged) { 9059 // We would like to start over since some instructions are deleted 9060 // and the iterator may become invalid value. 9061 Changed = true; 9062 it = BB->begin(); 9063 e = BB->end(); 9064 continue; 9065 } 9066 } 9067 9068 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9069 isa<InsertValueInst>(it)) 9070 PostProcessInstructions.push_back(&*it); 9071 } 9072 9073 return Changed; 9074 } 9075 9076 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9077 auto Changed = false; 9078 for (auto &Entry : GEPs) { 9079 // If the getelementptr list has fewer than two elements, there's nothing 9080 // to do. 9081 if (Entry.second.size() < 2) 9082 continue; 9083 9084 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9085 << Entry.second.size() << ".\n"); 9086 9087 // Process the GEP list in chunks suitable for the target's supported 9088 // vector size. If a vector register can't hold 1 element, we are done. We 9089 // are trying to vectorize the index computations, so the maximum number of 9090 // elements is based on the size of the index expression, rather than the 9091 // size of the GEP itself (the target's pointer size). 9092 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9093 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9094 if (MaxVecRegSize < EltSize) 9095 continue; 9096 9097 unsigned MaxElts = MaxVecRegSize / EltSize; 9098 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9099 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9100 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9101 9102 // Initialize a set a candidate getelementptrs. Note that we use a 9103 // SetVector here to preserve program order. If the index computations 9104 // are vectorizable and begin with loads, we want to minimize the chance 9105 // of having to reorder them later. 9106 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9107 9108 // Some of the candidates may have already been vectorized after we 9109 // initially collected them. If so, they are marked as deleted, so remove 9110 // them from the set of candidates. 9111 Candidates.remove_if( 9112 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9113 9114 // Remove from the set of candidates all pairs of getelementptrs with 9115 // constant differences. Such getelementptrs are likely not good 9116 // candidates for vectorization in a bottom-up phase since one can be 9117 // computed from the other. We also ensure all candidate getelementptr 9118 // indices are unique. 9119 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9120 auto *GEPI = GEPList[I]; 9121 if (!Candidates.count(GEPI)) 9122 continue; 9123 auto *SCEVI = SE->getSCEV(GEPList[I]); 9124 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9125 auto *GEPJ = GEPList[J]; 9126 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9127 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9128 Candidates.remove(GEPI); 9129 Candidates.remove(GEPJ); 9130 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9131 Candidates.remove(GEPJ); 9132 } 9133 } 9134 } 9135 9136 // We break out of the above computation as soon as we know there are 9137 // fewer than two candidates remaining. 9138 if (Candidates.size() < 2) 9139 continue; 9140 9141 // Add the single, non-constant index of each candidate to the bundle. We 9142 // ensured the indices met these constraints when we originally collected 9143 // the getelementptrs. 9144 SmallVector<Value *, 16> Bundle(Candidates.size()); 9145 auto BundleIndex = 0u; 9146 for (auto *V : Candidates) { 9147 auto *GEP = cast<GetElementPtrInst>(V); 9148 auto *GEPIdx = GEP->idx_begin()->get(); 9149 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9150 Bundle[BundleIndex++] = GEPIdx; 9151 } 9152 9153 // Try and vectorize the indices. We are currently only interested in 9154 // gather-like cases of the form: 9155 // 9156 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9157 // 9158 // where the loads of "a", the loads of "b", and the subtractions can be 9159 // performed in parallel. It's likely that detecting this pattern in a 9160 // bottom-up phase will be simpler and less costly than building a 9161 // full-blown top-down phase beginning at the consecutive loads. 9162 Changed |= tryToVectorizeList(Bundle, R); 9163 } 9164 } 9165 return Changed; 9166 } 9167 9168 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9169 bool Changed = false; 9170 // Sort by type, base pointers and values operand. Value operands must be 9171 // compatible (have the same opcode, same parent), otherwise it is 9172 // definitely not profitable to try to vectorize them. 9173 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9174 if (V->getPointerOperandType()->getTypeID() < 9175 V2->getPointerOperandType()->getTypeID()) 9176 return true; 9177 if (V->getPointerOperandType()->getTypeID() > 9178 V2->getPointerOperandType()->getTypeID()) 9179 return false; 9180 // UndefValues are compatible with all other values. 9181 if (isa<UndefValue>(V->getValueOperand()) || 9182 isa<UndefValue>(V2->getValueOperand())) 9183 return false; 9184 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9185 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9186 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9187 DT->getNode(I1->getParent()); 9188 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9189 DT->getNode(I2->getParent()); 9190 assert(NodeI1 && "Should only process reachable instructions"); 9191 assert(NodeI1 && "Should only process reachable instructions"); 9192 assert((NodeI1 == NodeI2) == 9193 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9194 "Different nodes should have different DFS numbers"); 9195 if (NodeI1 != NodeI2) 9196 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9197 InstructionsState S = getSameOpcode({I1, I2}); 9198 if (S.getOpcode()) 9199 return false; 9200 return I1->getOpcode() < I2->getOpcode(); 9201 } 9202 if (isa<Constant>(V->getValueOperand()) && 9203 isa<Constant>(V2->getValueOperand())) 9204 return false; 9205 return V->getValueOperand()->getValueID() < 9206 V2->getValueOperand()->getValueID(); 9207 }; 9208 9209 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9210 if (V1 == V2) 9211 return true; 9212 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9213 return false; 9214 // Undefs are compatible with any other value. 9215 if (isa<UndefValue>(V1->getValueOperand()) || 9216 isa<UndefValue>(V2->getValueOperand())) 9217 return true; 9218 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9219 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9220 if (I1->getParent() != I2->getParent()) 9221 return false; 9222 InstructionsState S = getSameOpcode({I1, I2}); 9223 return S.getOpcode() > 0; 9224 } 9225 if (isa<Constant>(V1->getValueOperand()) && 9226 isa<Constant>(V2->getValueOperand())) 9227 return true; 9228 return V1->getValueOperand()->getValueID() == 9229 V2->getValueOperand()->getValueID(); 9230 }; 9231 9232 // Attempt to sort and vectorize each of the store-groups. 9233 for (auto &Pair : Stores) { 9234 if (Pair.second.size() < 2) 9235 continue; 9236 9237 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9238 << Pair.second.size() << ".\n"); 9239 9240 stable_sort(Pair.second, StoreSorter); 9241 9242 // Try to vectorize elements based on their compatibility. 9243 for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(), 9244 E = Pair.second.end(); 9245 IncIt != E;) { 9246 9247 // Look for the next elements with the same type. 9248 ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt; 9249 Type *EltTy = (*IncIt)->getPointerOperand()->getType(); 9250 9251 while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt)) 9252 ++SameTypeIt; 9253 9254 // Try to vectorize them. 9255 unsigned NumElts = (SameTypeIt - IncIt); 9256 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores (" 9257 << NumElts << ")\n"); 9258 if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() && 9259 vectorizeStores(makeArrayRef(IncIt, NumElts), R)) { 9260 // Success start over because instructions might have been changed. 9261 Changed = true; 9262 } 9263 9264 // Start over at the next instruction of a different type (or the end). 9265 IncIt = SameTypeIt; 9266 } 9267 } 9268 return Changed; 9269 } 9270 9271 char SLPVectorizer::ID = 0; 9272 9273 static const char lv_name[] = "SLP Vectorizer"; 9274 9275 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9276 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9277 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9278 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9279 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9280 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9281 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9282 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9283 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9284 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9285 9286 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9287