1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 291 /// TODO: Can we split off and reuse the shuffle mask detection from 292 /// TargetTransformInfo::getInstructionThroughput? 293 static Optional<TargetTransformInfo::ShuffleKind> 294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 295 auto *EI0 = cast<ExtractElementInst>(VL[0]); 296 unsigned Size = 297 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 298 Value *Vec1 = nullptr; 299 Value *Vec2 = nullptr; 300 enum ShuffleMode { Unknown, Select, Permute }; 301 ShuffleMode CommonShuffleMode = Unknown; 302 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 303 auto *EI = cast<ExtractElementInst>(VL[I]); 304 auto *Vec = EI->getVectorOperand(); 305 // All vector operands must have the same number of vector elements. 306 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 307 return None; 308 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 309 if (!Idx) 310 return None; 311 // Undefined behavior if Idx is negative or >= Size. 312 if (Idx->getValue().uge(Size)) { 313 Mask.push_back(UndefMaskElem); 314 continue; 315 } 316 unsigned IntIdx = Idx->getValue().getZExtValue(); 317 Mask.push_back(IntIdx); 318 // We can extractelement from undef or poison vector. 319 if (isa<UndefValue>(Vec)) 320 continue; 321 // For correct shuffling we have to have at most 2 different vector operands 322 // in all extractelement instructions. 323 if (!Vec1 || Vec1 == Vec) 324 Vec1 = Vec; 325 else if (!Vec2 || Vec2 == Vec) 326 Vec2 = Vec; 327 else 328 return None; 329 if (CommonShuffleMode == Permute) 330 continue; 331 // If the extract index is not the same as the operation number, it is a 332 // permutation. 333 if (IntIdx != I) { 334 CommonShuffleMode = Permute; 335 continue; 336 } 337 CommonShuffleMode = Select; 338 } 339 // If we're not crossing lanes in different vectors, consider it as blending. 340 if (CommonShuffleMode == Select && Vec2) 341 return TargetTransformInfo::SK_Select; 342 // If Vec2 was never used, we have a permutation of a single vector, otherwise 343 // we have permutation of 2 vectors. 344 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 345 : TargetTransformInfo::SK_PermuteSingleSrc; 346 } 347 348 namespace { 349 350 /// Main data required for vectorization of instructions. 351 struct InstructionsState { 352 /// The very first instruction in the list with the main opcode. 353 Value *OpValue = nullptr; 354 355 /// The main/alternate instruction. 356 Instruction *MainOp = nullptr; 357 Instruction *AltOp = nullptr; 358 359 /// The main/alternate opcodes for the list of instructions. 360 unsigned getOpcode() const { 361 return MainOp ? MainOp->getOpcode() : 0; 362 } 363 364 unsigned getAltOpcode() const { 365 return AltOp ? AltOp->getOpcode() : 0; 366 } 367 368 /// Some of the instructions in the list have alternate opcodes. 369 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 370 371 bool isOpcodeOrAlt(Instruction *I) const { 372 unsigned CheckedOpcode = I->getOpcode(); 373 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 374 } 375 376 InstructionsState() = delete; 377 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 378 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 379 }; 380 381 } // end anonymous namespace 382 383 /// Chooses the correct key for scheduling data. If \p Op has the same (or 384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 385 /// OpValue. 386 static Value *isOneOf(const InstructionsState &S, Value *Op) { 387 auto *I = dyn_cast<Instruction>(Op); 388 if (I && S.isOpcodeOrAlt(I)) 389 return Op; 390 return S.OpValue; 391 } 392 393 /// \returns true if \p Opcode is allowed as part of of the main/alternate 394 /// instruction for SLP vectorization. 395 /// 396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 397 /// "shuffled out" lane would result in division by zero. 398 static bool isValidForAlternation(unsigned Opcode) { 399 if (Instruction::isIntDivRem(Opcode)) 400 return false; 401 402 return true; 403 } 404 405 /// \returns analysis of the Instructions in \p VL described in 406 /// InstructionsState, the Opcode that we suppose the whole list 407 /// could be vectorized even if its structure is diverse. 408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 409 unsigned BaseIndex = 0) { 410 // Make sure these are all Instructions. 411 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 412 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 413 414 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 415 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 416 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 417 unsigned AltOpcode = Opcode; 418 unsigned AltIndex = BaseIndex; 419 420 // Check for one alternate opcode from another BinaryOperator. 421 // TODO - generalize to support all operators (types, calls etc.). 422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 423 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 424 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 425 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 426 continue; 427 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 428 isValidForAlternation(Opcode)) { 429 AltOpcode = InstOpcode; 430 AltIndex = Cnt; 431 continue; 432 } 433 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 434 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 435 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 436 if (Ty0 == Ty1) { 437 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 438 continue; 439 if (Opcode == AltOpcode) { 440 assert(isValidForAlternation(Opcode) && 441 isValidForAlternation(InstOpcode) && 442 "Cast isn't safe for alternation, logic needs to be updated!"); 443 AltOpcode = InstOpcode; 444 AltIndex = Cnt; 445 continue; 446 } 447 } 448 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 449 continue; 450 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 451 } 452 453 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 454 cast<Instruction>(VL[AltIndex])); 455 } 456 457 /// \returns true if all of the values in \p VL have the same type or false 458 /// otherwise. 459 static bool allSameType(ArrayRef<Value *> VL) { 460 Type *Ty = VL[0]->getType(); 461 for (int i = 1, e = VL.size(); i < e; i++) 462 if (VL[i]->getType() != Ty) 463 return false; 464 465 return true; 466 } 467 468 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 469 static Optional<unsigned> getExtractIndex(Instruction *E) { 470 unsigned Opcode = E->getOpcode(); 471 assert((Opcode == Instruction::ExtractElement || 472 Opcode == Instruction::ExtractValue) && 473 "Expected extractelement or extractvalue instruction."); 474 if (Opcode == Instruction::ExtractElement) { 475 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 476 if (!CI) 477 return None; 478 return CI->getZExtValue(); 479 } 480 ExtractValueInst *EI = cast<ExtractValueInst>(E); 481 if (EI->getNumIndices() != 1) 482 return None; 483 return *EI->idx_begin(); 484 } 485 486 /// \returns True if in-tree use also needs extract. This refers to 487 /// possible scalar operand in vectorized instruction. 488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 489 TargetLibraryInfo *TLI) { 490 unsigned Opcode = UserInst->getOpcode(); 491 switch (Opcode) { 492 case Instruction::Load: { 493 LoadInst *LI = cast<LoadInst>(UserInst); 494 return (LI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Store: { 497 StoreInst *SI = cast<StoreInst>(UserInst); 498 return (SI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Call: { 501 CallInst *CI = cast<CallInst>(UserInst); 502 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 503 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 504 if (hasVectorInstrinsicScalarOpd(ID, i)) 505 return (CI->getArgOperand(i) == Scalar); 506 } 507 LLVM_FALLTHROUGH; 508 } 509 default: 510 return false; 511 } 512 } 513 514 /// \returns the AA location that is being access by the instruction. 515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 516 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 517 return MemoryLocation::get(SI); 518 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 519 return MemoryLocation::get(LI); 520 return MemoryLocation(); 521 } 522 523 /// \returns True if the instruction is not a volatile or atomic load/store. 524 static bool isSimple(Instruction *I) { 525 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 526 return LI->isSimple(); 527 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 528 return SI->isSimple(); 529 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 530 return !MI->isVolatile(); 531 return true; 532 } 533 534 namespace llvm { 535 536 static void inversePermutation(ArrayRef<unsigned> Indices, 537 SmallVectorImpl<int> &Mask) { 538 Mask.clear(); 539 const unsigned E = Indices.size(); 540 Mask.resize(E, E + 1); 541 for (unsigned I = 0; I < E; ++I) 542 Mask[Indices[I]] = I; 543 } 544 545 namespace slpvectorizer { 546 547 /// Bottom Up SLP Vectorizer. 548 class BoUpSLP { 549 struct TreeEntry; 550 struct ScheduleData; 551 552 public: 553 using ValueList = SmallVector<Value *, 8>; 554 using InstrList = SmallVector<Instruction *, 16>; 555 using ValueSet = SmallPtrSet<Value *, 16>; 556 using StoreList = SmallVector<StoreInst *, 8>; 557 using ExtraValueToDebugLocsMap = 558 MapVector<Value *, SmallVector<Instruction *, 2>>; 559 using OrdersType = SmallVector<unsigned, 4>; 560 561 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 562 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 563 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 564 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 565 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 566 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 567 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 568 // Use the vector register size specified by the target unless overridden 569 // by a command-line option. 570 // TODO: It would be better to limit the vectorization factor based on 571 // data type rather than just register size. For example, x86 AVX has 572 // 256-bit registers, but it does not support integer operations 573 // at that width (that requires AVX2). 574 if (MaxVectorRegSizeOption.getNumOccurrences()) 575 MaxVecRegSize = MaxVectorRegSizeOption; 576 else 577 MaxVecRegSize = 578 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 579 .getFixedSize(); 580 581 if (MinVectorRegSizeOption.getNumOccurrences()) 582 MinVecRegSize = MinVectorRegSizeOption; 583 else 584 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 585 } 586 587 /// Vectorize the tree that starts with the elements in \p VL. 588 /// Returns the vectorized root. 589 Value *vectorizeTree(); 590 591 /// Vectorize the tree but with the list of externally used values \p 592 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 593 /// generated extractvalue instructions. 594 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 595 596 /// \returns the cost incurred by unwanted spills and fills, caused by 597 /// holding live values over call sites. 598 InstructionCost getSpillCost() const; 599 600 /// \returns the vectorization cost of the subtree that starts at \p VL. 601 /// A negative number means that this is profitable. 602 InstructionCost getTreeCost(); 603 604 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 605 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 606 void buildTree(ArrayRef<Value *> Roots, 607 ArrayRef<Value *> UserIgnoreLst = None); 608 609 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 610 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 611 /// into account (and updating it, if required) list of externally used 612 /// values stored in \p ExternallyUsedValues. 613 void buildTree(ArrayRef<Value *> Roots, 614 ExtraValueToDebugLocsMap &ExternallyUsedValues, 615 ArrayRef<Value *> UserIgnoreLst = None); 616 617 /// Clear the internal data structures that are created by 'buildTree'. 618 void deleteTree() { 619 VectorizableTree.clear(); 620 ScalarToTreeEntry.clear(); 621 MustGather.clear(); 622 ExternalUses.clear(); 623 NumOpsWantToKeepOrder.clear(); 624 NumOpsWantToKeepOriginalOrder = 0; 625 for (auto &Iter : BlocksSchedules) { 626 BlockScheduling *BS = Iter.second.get(); 627 BS->clear(); 628 } 629 MinBWs.clear(); 630 InstrElementSize.clear(); 631 } 632 633 unsigned getTreeSize() const { return VectorizableTree.size(); } 634 635 /// Perform LICM and CSE on the newly generated gather sequences. 636 void optimizeGatherSequence(); 637 638 /// \returns The best order of instructions for vectorization. 639 Optional<ArrayRef<unsigned>> bestOrder() const { 640 assert(llvm::all_of( 641 NumOpsWantToKeepOrder, 642 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 643 return D.getFirst().size() == 644 VectorizableTree[0]->Scalars.size(); 645 }) && 646 "All orders must have the same size as number of instructions in " 647 "tree node."); 648 auto I = std::max_element( 649 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 650 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 651 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 652 return D1.second < D2.second; 653 }); 654 if (I == NumOpsWantToKeepOrder.end() || 655 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 656 return None; 657 658 return makeArrayRef(I->getFirst()); 659 } 660 661 /// Builds the correct order for root instructions. 662 /// If some leaves have the same instructions to be vectorized, we may 663 /// incorrectly evaluate the best order for the root node (it is built for the 664 /// vector of instructions without repeated instructions and, thus, has less 665 /// elements than the root node). This function builds the correct order for 666 /// the root node. 667 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 668 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 669 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 670 /// be reordered, the best order will be \<1, 0\>. We need to extend this 671 /// order for the root node. For the root node this order should look like 672 /// \<3, 0, 1, 2\>. This function extends the order for the reused 673 /// instructions. 674 void findRootOrder(OrdersType &Order) { 675 // If the leaf has the same number of instructions to vectorize as the root 676 // - order must be set already. 677 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 678 if (Order.size() == RootSize) 679 return; 680 SmallVector<unsigned, 4> RealOrder(Order.size()); 681 std::swap(Order, RealOrder); 682 SmallVector<int, 4> Mask; 683 inversePermutation(RealOrder, Mask); 684 Order.assign(Mask.begin(), Mask.end()); 685 // The leaf has less number of instructions - need to find the true order of 686 // the root. 687 // Scan the nodes starting from the leaf back to the root. 688 const TreeEntry *PNode = VectorizableTree.back().get(); 689 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 690 SmallPtrSet<const TreeEntry *, 4> Visited; 691 while (!Nodes.empty() && Order.size() != RootSize) { 692 const TreeEntry *PNode = Nodes.pop_back_val(); 693 if (!Visited.insert(PNode).second) 694 continue; 695 const TreeEntry &Node = *PNode; 696 for (const EdgeInfo &EI : Node.UserTreeIndices) 697 if (EI.UserTE) 698 Nodes.push_back(EI.UserTE); 699 if (Node.ReuseShuffleIndices.empty()) 700 continue; 701 // Build the order for the parent node. 702 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 703 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 704 // The algorithm of the order extension is: 705 // 1. Calculate the number of the same instructions for the order. 706 // 2. Calculate the index of the new order: total number of instructions 707 // with order less than the order of the current instruction + reuse 708 // number of the current instruction. 709 // 3. The new order is just the index of the instruction in the original 710 // vector of the instructions. 711 for (unsigned I : Node.ReuseShuffleIndices) 712 ++OrderCounter[Order[I]]; 713 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 714 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 715 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 716 unsigned OrderIdx = Order[ReusedIdx]; 717 unsigned NewIdx = 0; 718 for (unsigned J = 0; J < OrderIdx; ++J) 719 NewIdx += OrderCounter[J]; 720 NewIdx += CurrentCounter[OrderIdx]; 721 ++CurrentCounter[OrderIdx]; 722 assert(NewOrder[NewIdx] == RootSize && 723 "The order index should not be written already."); 724 NewOrder[NewIdx] = I; 725 } 726 std::swap(Order, NewOrder); 727 } 728 assert(Order.size() == RootSize && 729 "Root node is expected or the size of the order must be the same as " 730 "the number of elements in the root node."); 731 assert(llvm::all_of(Order, 732 [RootSize](unsigned Val) { return Val != RootSize; }) && 733 "All indices must be initialized"); 734 } 735 736 /// \return The vector element size in bits to use when vectorizing the 737 /// expression tree ending at \p V. If V is a store, the size is the width of 738 /// the stored value. Otherwise, the size is the width of the largest loaded 739 /// value reaching V. This method is used by the vectorizer to calculate 740 /// vectorization factors. 741 unsigned getVectorElementSize(Value *V); 742 743 /// Compute the minimum type sizes required to represent the entries in a 744 /// vectorizable tree. 745 void computeMinimumValueSizes(); 746 747 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 748 unsigned getMaxVecRegSize() const { 749 return MaxVecRegSize; 750 } 751 752 // \returns minimum vector register size as set by cl::opt. 753 unsigned getMinVecRegSize() const { 754 return MinVecRegSize; 755 } 756 757 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 758 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 759 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 760 return MaxVF ? MaxVF : UINT_MAX; 761 } 762 763 /// Check if homogeneous aggregate is isomorphic to some VectorType. 764 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 765 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 766 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 767 /// 768 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 769 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 770 771 /// \returns True if the VectorizableTree is both tiny and not fully 772 /// vectorizable. We do not vectorize such trees. 773 bool isTreeTinyAndNotFullyVectorizable() const; 774 775 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 776 /// can be load combined in the backend. Load combining may not be allowed in 777 /// the IR optimizer, so we do not want to alter the pattern. For example, 778 /// partially transforming a scalar bswap() pattern into vector code is 779 /// effectively impossible for the backend to undo. 780 /// TODO: If load combining is allowed in the IR optimizer, this analysis 781 /// may not be necessary. 782 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 783 784 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 785 /// can be load combined in the backend. Load combining may not be allowed in 786 /// the IR optimizer, so we do not want to alter the pattern. For example, 787 /// partially transforming a scalar bswap() pattern into vector code is 788 /// effectively impossible for the backend to undo. 789 /// TODO: If load combining is allowed in the IR optimizer, this analysis 790 /// may not be necessary. 791 bool isLoadCombineCandidate() const; 792 793 OptimizationRemarkEmitter *getORE() { return ORE; } 794 795 /// This structure holds any data we need about the edges being traversed 796 /// during buildTree_rec(). We keep track of: 797 /// (i) the user TreeEntry index, and 798 /// (ii) the index of the edge. 799 struct EdgeInfo { 800 EdgeInfo() = default; 801 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 802 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 803 /// The user TreeEntry. 804 TreeEntry *UserTE = nullptr; 805 /// The operand index of the use. 806 unsigned EdgeIdx = UINT_MAX; 807 #ifndef NDEBUG 808 friend inline raw_ostream &operator<<(raw_ostream &OS, 809 const BoUpSLP::EdgeInfo &EI) { 810 EI.dump(OS); 811 return OS; 812 } 813 /// Debug print. 814 void dump(raw_ostream &OS) const { 815 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 816 << " EdgeIdx:" << EdgeIdx << "}"; 817 } 818 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 819 #endif 820 }; 821 822 /// A helper data structure to hold the operands of a vector of instructions. 823 /// This supports a fixed vector length for all operand vectors. 824 class VLOperands { 825 /// For each operand we need (i) the value, and (ii) the opcode that it 826 /// would be attached to if the expression was in a left-linearized form. 827 /// This is required to avoid illegal operand reordering. 828 /// For example: 829 /// \verbatim 830 /// 0 Op1 831 /// |/ 832 /// Op1 Op2 Linearized + Op2 833 /// \ / ----------> |/ 834 /// - - 835 /// 836 /// Op1 - Op2 (0 + Op1) - Op2 837 /// \endverbatim 838 /// 839 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 840 /// 841 /// Another way to think of this is to track all the operations across the 842 /// path from the operand all the way to the root of the tree and to 843 /// calculate the operation that corresponds to this path. For example, the 844 /// path from Op2 to the root crosses the RHS of the '-', therefore the 845 /// corresponding operation is a '-' (which matches the one in the 846 /// linearized tree, as shown above). 847 /// 848 /// For lack of a better term, we refer to this operation as Accumulated 849 /// Path Operation (APO). 850 struct OperandData { 851 OperandData() = default; 852 OperandData(Value *V, bool APO, bool IsUsed) 853 : V(V), APO(APO), IsUsed(IsUsed) {} 854 /// The operand value. 855 Value *V = nullptr; 856 /// TreeEntries only allow a single opcode, or an alternate sequence of 857 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 858 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 859 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 860 /// (e.g., Add/Mul) 861 bool APO = false; 862 /// Helper data for the reordering function. 863 bool IsUsed = false; 864 }; 865 866 /// During operand reordering, we are trying to select the operand at lane 867 /// that matches best with the operand at the neighboring lane. Our 868 /// selection is based on the type of value we are looking for. For example, 869 /// if the neighboring lane has a load, we need to look for a load that is 870 /// accessing a consecutive address. These strategies are summarized in the 871 /// 'ReorderingMode' enumerator. 872 enum class ReorderingMode { 873 Load, ///< Matching loads to consecutive memory addresses 874 Opcode, ///< Matching instructions based on opcode (same or alternate) 875 Constant, ///< Matching constants 876 Splat, ///< Matching the same instruction multiple times (broadcast) 877 Failed, ///< We failed to create a vectorizable group 878 }; 879 880 using OperandDataVec = SmallVector<OperandData, 2>; 881 882 /// A vector of operand vectors. 883 SmallVector<OperandDataVec, 4> OpsVec; 884 885 const DataLayout &DL; 886 ScalarEvolution &SE; 887 const BoUpSLP &R; 888 889 /// \returns the operand data at \p OpIdx and \p Lane. 890 OperandData &getData(unsigned OpIdx, unsigned Lane) { 891 return OpsVec[OpIdx][Lane]; 892 } 893 894 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 895 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 896 return OpsVec[OpIdx][Lane]; 897 } 898 899 /// Clears the used flag for all entries. 900 void clearUsed() { 901 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 902 OpIdx != NumOperands; ++OpIdx) 903 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 904 ++Lane) 905 OpsVec[OpIdx][Lane].IsUsed = false; 906 } 907 908 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 909 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 910 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 911 } 912 913 // The hard-coded scores listed here are not very important. When computing 914 // the scores of matching one sub-tree with another, we are basically 915 // counting the number of values that are matching. So even if all scores 916 // are set to 1, we would still get a decent matching result. 917 // However, sometimes we have to break ties. For example we may have to 918 // choose between matching loads vs matching opcodes. This is what these 919 // scores are helping us with: they provide the order of preference. 920 921 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 922 static const int ScoreConsecutiveLoads = 3; 923 /// ExtractElementInst from same vector and consecutive indexes. 924 static const int ScoreConsecutiveExtracts = 3; 925 /// Constants. 926 static const int ScoreConstants = 2; 927 /// Instructions with the same opcode. 928 static const int ScoreSameOpcode = 2; 929 /// Instructions with alt opcodes (e.g, add + sub). 930 static const int ScoreAltOpcodes = 1; 931 /// Identical instructions (a.k.a. splat or broadcast). 932 static const int ScoreSplat = 1; 933 /// Matching with an undef is preferable to failing. 934 static const int ScoreUndef = 1; 935 /// Score for failing to find a decent match. 936 static const int ScoreFail = 0; 937 /// User exteranl to the vectorized code. 938 static const int ExternalUseCost = 1; 939 /// The user is internal but in a different lane. 940 static const int UserInDiffLaneCost = ExternalUseCost; 941 942 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 943 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 944 ScalarEvolution &SE) { 945 auto *LI1 = dyn_cast<LoadInst>(V1); 946 auto *LI2 = dyn_cast<LoadInst>(V2); 947 if (LI1 && LI2) { 948 if (LI1->getParent() != LI2->getParent()) 949 return VLOperands::ScoreFail; 950 951 Optional<int> Dist = 952 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(), 953 DL, SE, /*StrictCheck=*/true); 954 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 955 : VLOperands::ScoreFail; 956 } 957 958 auto *C1 = dyn_cast<Constant>(V1); 959 auto *C2 = dyn_cast<Constant>(V2); 960 if (C1 && C2) 961 return VLOperands::ScoreConstants; 962 963 // Extracts from consecutive indexes of the same vector better score as 964 // the extracts could be optimized away. 965 Value *EV; 966 ConstantInt *Ex1Idx, *Ex2Idx; 967 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 968 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 969 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 970 return VLOperands::ScoreConsecutiveExtracts; 971 972 auto *I1 = dyn_cast<Instruction>(V1); 973 auto *I2 = dyn_cast<Instruction>(V2); 974 if (I1 && I2) { 975 if (I1 == I2) 976 return VLOperands::ScoreSplat; 977 InstructionsState S = getSameOpcode({I1, I2}); 978 // Note: Only consider instructions with <= 2 operands to avoid 979 // complexity explosion. 980 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 981 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 982 : VLOperands::ScoreSameOpcode; 983 } 984 985 if (isa<UndefValue>(V2)) 986 return VLOperands::ScoreUndef; 987 988 return VLOperands::ScoreFail; 989 } 990 991 /// Holds the values and their lane that are taking part in the look-ahead 992 /// score calculation. This is used in the external uses cost calculation. 993 SmallDenseMap<Value *, int> InLookAheadValues; 994 995 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 996 /// either external to the vectorized code, or require shuffling. 997 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 998 const std::pair<Value *, int> &RHS) { 999 int Cost = 0; 1000 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1001 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1002 Value *V = Values[Idx].first; 1003 if (isa<Constant>(V)) { 1004 // Since this is a function pass, it doesn't make semantic sense to 1005 // walk the users of a subclass of Constant. The users could be in 1006 // another function, or even another module that happens to be in 1007 // the same LLVMContext. 1008 continue; 1009 } 1010 1011 // Calculate the absolute lane, using the minimum relative lane of LHS 1012 // and RHS as base and Idx as the offset. 1013 int Ln = std::min(LHS.second, RHS.second) + Idx; 1014 assert(Ln >= 0 && "Bad lane calculation"); 1015 unsigned UsersBudget = LookAheadUsersBudget; 1016 for (User *U : V->users()) { 1017 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1018 // The user is in the VectorizableTree. Check if we need to insert. 1019 auto It = llvm::find(UserTE->Scalars, U); 1020 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1021 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1022 assert(UserLn >= 0 && "Bad lane"); 1023 if (UserLn != Ln) 1024 Cost += UserInDiffLaneCost; 1025 } else { 1026 // Check if the user is in the look-ahead code. 1027 auto It2 = InLookAheadValues.find(U); 1028 if (It2 != InLookAheadValues.end()) { 1029 // The user is in the look-ahead code. Check the lane. 1030 if (It2->second != Ln) 1031 Cost += UserInDiffLaneCost; 1032 } else { 1033 // The user is neither in SLP tree nor in the look-ahead code. 1034 Cost += ExternalUseCost; 1035 } 1036 } 1037 // Limit the number of visited uses to cap compilation time. 1038 if (--UsersBudget == 0) 1039 break; 1040 } 1041 } 1042 return Cost; 1043 } 1044 1045 /// Go through the operands of \p LHS and \p RHS recursively until \p 1046 /// MaxLevel, and return the cummulative score. For example: 1047 /// \verbatim 1048 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1049 /// \ / \ / \ / \ / 1050 /// + + + + 1051 /// G1 G2 G3 G4 1052 /// \endverbatim 1053 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1054 /// each level recursively, accumulating the score. It starts from matching 1055 /// the additions at level 0, then moves on to the loads (level 1). The 1056 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1057 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1058 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1059 /// Please note that the order of the operands does not matter, as we 1060 /// evaluate the score of all profitable combinations of operands. In 1061 /// other words the score of G1 and G4 is the same as G1 and G2. This 1062 /// heuristic is based on ideas described in: 1063 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1064 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1065 /// Luís F. W. Góes 1066 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1067 const std::pair<Value *, int> &RHS, int CurrLevel, 1068 int MaxLevel) { 1069 1070 Value *V1 = LHS.first; 1071 Value *V2 = RHS.first; 1072 // Get the shallow score of V1 and V2. 1073 int ShallowScoreAtThisLevel = 1074 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1075 getExternalUsesCost(LHS, RHS)); 1076 int Lane1 = LHS.second; 1077 int Lane2 = RHS.second; 1078 1079 // If reached MaxLevel, 1080 // or if V1 and V2 are not instructions, 1081 // or if they are SPLAT, 1082 // or if they are not consecutive, early return the current cost. 1083 auto *I1 = dyn_cast<Instruction>(V1); 1084 auto *I2 = dyn_cast<Instruction>(V2); 1085 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1086 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1087 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1088 return ShallowScoreAtThisLevel; 1089 assert(I1 && I2 && "Should have early exited."); 1090 1091 // Keep track of in-tree values for determining the external-use cost. 1092 InLookAheadValues[V1] = Lane1; 1093 InLookAheadValues[V2] = Lane2; 1094 1095 // Contains the I2 operand indexes that got matched with I1 operands. 1096 SmallSet<unsigned, 4> Op2Used; 1097 1098 // Recursion towards the operands of I1 and I2. We are trying all possbile 1099 // operand pairs, and keeping track of the best score. 1100 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1101 OpIdx1 != NumOperands1; ++OpIdx1) { 1102 // Try to pair op1I with the best operand of I2. 1103 int MaxTmpScore = 0; 1104 unsigned MaxOpIdx2 = 0; 1105 bool FoundBest = false; 1106 // If I2 is commutative try all combinations. 1107 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1108 unsigned ToIdx = isCommutative(I2) 1109 ? I2->getNumOperands() 1110 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1111 assert(FromIdx <= ToIdx && "Bad index"); 1112 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1113 // Skip operands already paired with OpIdx1. 1114 if (Op2Used.count(OpIdx2)) 1115 continue; 1116 // Recursively calculate the cost at each level 1117 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1118 {I2->getOperand(OpIdx2), Lane2}, 1119 CurrLevel + 1, MaxLevel); 1120 // Look for the best score. 1121 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1122 MaxTmpScore = TmpScore; 1123 MaxOpIdx2 = OpIdx2; 1124 FoundBest = true; 1125 } 1126 } 1127 if (FoundBest) { 1128 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1129 Op2Used.insert(MaxOpIdx2); 1130 ShallowScoreAtThisLevel += MaxTmpScore; 1131 } 1132 } 1133 return ShallowScoreAtThisLevel; 1134 } 1135 1136 /// \Returns the look-ahead score, which tells us how much the sub-trees 1137 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1138 /// score. This helps break ties in an informed way when we cannot decide on 1139 /// the order of the operands by just considering the immediate 1140 /// predecessors. 1141 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1142 const std::pair<Value *, int> &RHS) { 1143 InLookAheadValues.clear(); 1144 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1145 } 1146 1147 // Search all operands in Ops[*][Lane] for the one that matches best 1148 // Ops[OpIdx][LastLane] and return its opreand index. 1149 // If no good match can be found, return None. 1150 Optional<unsigned> 1151 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1152 ArrayRef<ReorderingMode> ReorderingModes) { 1153 unsigned NumOperands = getNumOperands(); 1154 1155 // The operand of the previous lane at OpIdx. 1156 Value *OpLastLane = getData(OpIdx, LastLane).V; 1157 1158 // Our strategy mode for OpIdx. 1159 ReorderingMode RMode = ReorderingModes[OpIdx]; 1160 1161 // The linearized opcode of the operand at OpIdx, Lane. 1162 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1163 1164 // The best operand index and its score. 1165 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1166 // are using the score to differentiate between the two. 1167 struct BestOpData { 1168 Optional<unsigned> Idx = None; 1169 unsigned Score = 0; 1170 } BestOp; 1171 1172 // Iterate through all unused operands and look for the best. 1173 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1174 // Get the operand at Idx and Lane. 1175 OperandData &OpData = getData(Idx, Lane); 1176 Value *Op = OpData.V; 1177 bool OpAPO = OpData.APO; 1178 1179 // Skip already selected operands. 1180 if (OpData.IsUsed) 1181 continue; 1182 1183 // Skip if we are trying to move the operand to a position with a 1184 // different opcode in the linearized tree form. This would break the 1185 // semantics. 1186 if (OpAPO != OpIdxAPO) 1187 continue; 1188 1189 // Look for an operand that matches the current mode. 1190 switch (RMode) { 1191 case ReorderingMode::Load: 1192 case ReorderingMode::Constant: 1193 case ReorderingMode::Opcode: { 1194 bool LeftToRight = Lane > LastLane; 1195 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1196 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1197 unsigned Score = 1198 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1199 if (Score > BestOp.Score) { 1200 BestOp.Idx = Idx; 1201 BestOp.Score = Score; 1202 } 1203 break; 1204 } 1205 case ReorderingMode::Splat: 1206 if (Op == OpLastLane) 1207 BestOp.Idx = Idx; 1208 break; 1209 case ReorderingMode::Failed: 1210 return None; 1211 } 1212 } 1213 1214 if (BestOp.Idx) { 1215 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1216 return BestOp.Idx; 1217 } 1218 // If we could not find a good match return None. 1219 return None; 1220 } 1221 1222 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1223 /// reordering from. This is the one which has the least number of operands 1224 /// that can freely move about. 1225 unsigned getBestLaneToStartReordering() const { 1226 unsigned BestLane = 0; 1227 unsigned Min = UINT_MAX; 1228 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1229 ++Lane) { 1230 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1231 if (NumFreeOps < Min) { 1232 Min = NumFreeOps; 1233 BestLane = Lane; 1234 } 1235 } 1236 return BestLane; 1237 } 1238 1239 /// \Returns the maximum number of operands that are allowed to be reordered 1240 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1241 /// start operand reordering. 1242 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1243 unsigned CntTrue = 0; 1244 unsigned NumOperands = getNumOperands(); 1245 // Operands with the same APO can be reordered. We therefore need to count 1246 // how many of them we have for each APO, like this: Cnt[APO] = x. 1247 // Since we only have two APOs, namely true and false, we can avoid using 1248 // a map. Instead we can simply count the number of operands that 1249 // correspond to one of them (in this case the 'true' APO), and calculate 1250 // the other by subtracting it from the total number of operands. 1251 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1252 if (getData(OpIdx, Lane).APO) 1253 ++CntTrue; 1254 unsigned CntFalse = NumOperands - CntTrue; 1255 return std::max(CntTrue, CntFalse); 1256 } 1257 1258 /// Go through the instructions in VL and append their operands. 1259 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1260 assert(!VL.empty() && "Bad VL"); 1261 assert((empty() || VL.size() == getNumLanes()) && 1262 "Expected same number of lanes"); 1263 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1264 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1265 OpsVec.resize(NumOperands); 1266 unsigned NumLanes = VL.size(); 1267 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1268 OpsVec[OpIdx].resize(NumLanes); 1269 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1270 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1271 // Our tree has just 3 nodes: the root and two operands. 1272 // It is therefore trivial to get the APO. We only need to check the 1273 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1274 // RHS operand. The LHS operand of both add and sub is never attached 1275 // to an inversese operation in the linearized form, therefore its APO 1276 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1277 1278 // Since operand reordering is performed on groups of commutative 1279 // operations or alternating sequences (e.g., +, -), we can safely 1280 // tell the inverse operations by checking commutativity. 1281 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1282 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1283 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1284 APO, false}; 1285 } 1286 } 1287 } 1288 1289 /// \returns the number of operands. 1290 unsigned getNumOperands() const { return OpsVec.size(); } 1291 1292 /// \returns the number of lanes. 1293 unsigned getNumLanes() const { return OpsVec[0].size(); } 1294 1295 /// \returns the operand value at \p OpIdx and \p Lane. 1296 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1297 return getData(OpIdx, Lane).V; 1298 } 1299 1300 /// \returns true if the data structure is empty. 1301 bool empty() const { return OpsVec.empty(); } 1302 1303 /// Clears the data. 1304 void clear() { OpsVec.clear(); } 1305 1306 /// \Returns true if there are enough operands identical to \p Op to fill 1307 /// the whole vector. 1308 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1309 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1310 bool OpAPO = getData(OpIdx, Lane).APO; 1311 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1312 if (Ln == Lane) 1313 continue; 1314 // This is set to true if we found a candidate for broadcast at Lane. 1315 bool FoundCandidate = false; 1316 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1317 OperandData &Data = getData(OpI, Ln); 1318 if (Data.APO != OpAPO || Data.IsUsed) 1319 continue; 1320 if (Data.V == Op) { 1321 FoundCandidate = true; 1322 Data.IsUsed = true; 1323 break; 1324 } 1325 } 1326 if (!FoundCandidate) 1327 return false; 1328 } 1329 return true; 1330 } 1331 1332 public: 1333 /// Initialize with all the operands of the instruction vector \p RootVL. 1334 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1335 ScalarEvolution &SE, const BoUpSLP &R) 1336 : DL(DL), SE(SE), R(R) { 1337 // Append all the operands of RootVL. 1338 appendOperandsOfVL(RootVL); 1339 } 1340 1341 /// \Returns a value vector with the operands across all lanes for the 1342 /// opearnd at \p OpIdx. 1343 ValueList getVL(unsigned OpIdx) const { 1344 ValueList OpVL(OpsVec[OpIdx].size()); 1345 assert(OpsVec[OpIdx].size() == getNumLanes() && 1346 "Expected same num of lanes across all operands"); 1347 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1348 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1349 return OpVL; 1350 } 1351 1352 // Performs operand reordering for 2 or more operands. 1353 // The original operands are in OrigOps[OpIdx][Lane]. 1354 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1355 void reorder() { 1356 unsigned NumOperands = getNumOperands(); 1357 unsigned NumLanes = getNumLanes(); 1358 // Each operand has its own mode. We are using this mode to help us select 1359 // the instructions for each lane, so that they match best with the ones 1360 // we have selected so far. 1361 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1362 1363 // This is a greedy single-pass algorithm. We are going over each lane 1364 // once and deciding on the best order right away with no back-tracking. 1365 // However, in order to increase its effectiveness, we start with the lane 1366 // that has operands that can move the least. For example, given the 1367 // following lanes: 1368 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1369 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1370 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1371 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1372 // we will start at Lane 1, since the operands of the subtraction cannot 1373 // be reordered. Then we will visit the rest of the lanes in a circular 1374 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1375 1376 // Find the first lane that we will start our search from. 1377 unsigned FirstLane = getBestLaneToStartReordering(); 1378 1379 // Initialize the modes. 1380 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1381 Value *OpLane0 = getValue(OpIdx, FirstLane); 1382 // Keep track if we have instructions with all the same opcode on one 1383 // side. 1384 if (isa<LoadInst>(OpLane0)) 1385 ReorderingModes[OpIdx] = ReorderingMode::Load; 1386 else if (isa<Instruction>(OpLane0)) { 1387 // Check if OpLane0 should be broadcast. 1388 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1389 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1390 else 1391 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1392 } 1393 else if (isa<Constant>(OpLane0)) 1394 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1395 else if (isa<Argument>(OpLane0)) 1396 // Our best hope is a Splat. It may save some cost in some cases. 1397 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1398 else 1399 // NOTE: This should be unreachable. 1400 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1401 } 1402 1403 // If the initial strategy fails for any of the operand indexes, then we 1404 // perform reordering again in a second pass. This helps avoid assigning 1405 // high priority to the failed strategy, and should improve reordering for 1406 // the non-failed operand indexes. 1407 for (int Pass = 0; Pass != 2; ++Pass) { 1408 // Skip the second pass if the first pass did not fail. 1409 bool StrategyFailed = false; 1410 // Mark all operand data as free to use. 1411 clearUsed(); 1412 // We keep the original operand order for the FirstLane, so reorder the 1413 // rest of the lanes. We are visiting the nodes in a circular fashion, 1414 // using FirstLane as the center point and increasing the radius 1415 // distance. 1416 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1417 // Visit the lane on the right and then the lane on the left. 1418 for (int Direction : {+1, -1}) { 1419 int Lane = FirstLane + Direction * Distance; 1420 if (Lane < 0 || Lane >= (int)NumLanes) 1421 continue; 1422 int LastLane = Lane - Direction; 1423 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1424 "Out of bounds"); 1425 // Look for a good match for each operand. 1426 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1427 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1428 Optional<unsigned> BestIdx = 1429 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1430 // By not selecting a value, we allow the operands that follow to 1431 // select a better matching value. We will get a non-null value in 1432 // the next run of getBestOperand(). 1433 if (BestIdx) { 1434 // Swap the current operand with the one returned by 1435 // getBestOperand(). 1436 swap(OpIdx, BestIdx.getValue(), Lane); 1437 } else { 1438 // We failed to find a best operand, set mode to 'Failed'. 1439 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1440 // Enable the second pass. 1441 StrategyFailed = true; 1442 } 1443 } 1444 } 1445 } 1446 // Skip second pass if the strategy did not fail. 1447 if (!StrategyFailed) 1448 break; 1449 } 1450 } 1451 1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1453 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1454 switch (RMode) { 1455 case ReorderingMode::Load: 1456 return "Load"; 1457 case ReorderingMode::Opcode: 1458 return "Opcode"; 1459 case ReorderingMode::Constant: 1460 return "Constant"; 1461 case ReorderingMode::Splat: 1462 return "Splat"; 1463 case ReorderingMode::Failed: 1464 return "Failed"; 1465 } 1466 llvm_unreachable("Unimplemented Reordering Type"); 1467 } 1468 1469 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1470 raw_ostream &OS) { 1471 return OS << getModeStr(RMode); 1472 } 1473 1474 /// Debug print. 1475 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1476 printMode(RMode, dbgs()); 1477 } 1478 1479 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1480 return printMode(RMode, OS); 1481 } 1482 1483 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1484 const unsigned Indent = 2; 1485 unsigned Cnt = 0; 1486 for (const OperandDataVec &OpDataVec : OpsVec) { 1487 OS << "Operand " << Cnt++ << "\n"; 1488 for (const OperandData &OpData : OpDataVec) { 1489 OS.indent(Indent) << "{"; 1490 if (Value *V = OpData.V) 1491 OS << *V; 1492 else 1493 OS << "null"; 1494 OS << ", APO:" << OpData.APO << "}\n"; 1495 } 1496 OS << "\n"; 1497 } 1498 return OS; 1499 } 1500 1501 /// Debug print. 1502 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1503 #endif 1504 }; 1505 1506 /// Checks if the instruction is marked for deletion. 1507 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1508 1509 /// Marks values operands for later deletion by replacing them with Undefs. 1510 void eraseInstructions(ArrayRef<Value *> AV); 1511 1512 ~BoUpSLP(); 1513 1514 private: 1515 /// Checks if all users of \p I are the part of the vectorization tree. 1516 bool areAllUsersVectorized(Instruction *I) const; 1517 1518 /// \returns the cost of the vectorizable entry. 1519 InstructionCost getEntryCost(TreeEntry *E); 1520 1521 /// This is the recursive part of buildTree. 1522 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1523 const EdgeInfo &EI); 1524 1525 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1526 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1527 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1528 /// returns false, setting \p CurrentOrder to either an empty vector or a 1529 /// non-identity permutation that allows to reuse extract instructions. 1530 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1531 SmallVectorImpl<unsigned> &CurrentOrder) const; 1532 1533 /// Vectorize a single entry in the tree. 1534 Value *vectorizeTree(TreeEntry *E); 1535 1536 /// Vectorize a single entry in the tree, starting in \p VL. 1537 Value *vectorizeTree(ArrayRef<Value *> VL); 1538 1539 /// \returns the scalarization cost for this type. Scalarization in this 1540 /// context means the creation of vectors from a group of scalars. 1541 InstructionCost 1542 getGatherCost(FixedVectorType *Ty, 1543 const DenseSet<unsigned> &ShuffledIndices) const; 1544 1545 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1546 /// tree entries. 1547 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1548 /// previous tree entries. \p Mask is filled with the shuffle mask. 1549 Optional<TargetTransformInfo::ShuffleKind> 1550 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1551 SmallVectorImpl<const TreeEntry *> &Entries); 1552 1553 /// \returns the scalarization cost for this list of values. Assuming that 1554 /// this subtree gets vectorized, we may need to extract the values from the 1555 /// roots. This method calculates the cost of extracting the values. 1556 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1557 1558 /// Set the Builder insert point to one after the last instruction in 1559 /// the bundle 1560 void setInsertPointAfterBundle(TreeEntry *E); 1561 1562 /// \returns a vector from a collection of scalars in \p VL. 1563 Value *gather(ArrayRef<Value *> VL); 1564 1565 /// \returns whether the VectorizableTree is fully vectorizable and will 1566 /// be beneficial even the tree height is tiny. 1567 bool isFullyVectorizableTinyTree() const; 1568 1569 /// Reorder commutative or alt operands to get better probability of 1570 /// generating vectorized code. 1571 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1572 SmallVectorImpl<Value *> &Left, 1573 SmallVectorImpl<Value *> &Right, 1574 const DataLayout &DL, 1575 ScalarEvolution &SE, 1576 const BoUpSLP &R); 1577 struct TreeEntry { 1578 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1579 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1580 1581 /// \returns true if the scalars in VL are equal to this entry. 1582 bool isSame(ArrayRef<Value *> VL) const { 1583 if (VL.size() == Scalars.size()) 1584 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1585 return VL.size() == ReuseShuffleIndices.size() && 1586 std::equal( 1587 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1588 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1589 } 1590 1591 /// A vector of scalars. 1592 ValueList Scalars; 1593 1594 /// The Scalars are vectorized into this value. It is initialized to Null. 1595 Value *VectorizedValue = nullptr; 1596 1597 /// Do we need to gather this sequence or vectorize it 1598 /// (either with vector instruction or with scatter/gather 1599 /// intrinsics for store/load)? 1600 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1601 EntryState State; 1602 1603 /// Does this sequence require some shuffling? 1604 SmallVector<int, 4> ReuseShuffleIndices; 1605 1606 /// Does this entry require reordering? 1607 SmallVector<unsigned, 4> ReorderIndices; 1608 1609 /// Points back to the VectorizableTree. 1610 /// 1611 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1612 /// to be a pointer and needs to be able to initialize the child iterator. 1613 /// Thus we need a reference back to the container to translate the indices 1614 /// to entries. 1615 VecTreeTy &Container; 1616 1617 /// The TreeEntry index containing the user of this entry. We can actually 1618 /// have multiple users so the data structure is not truly a tree. 1619 SmallVector<EdgeInfo, 1> UserTreeIndices; 1620 1621 /// The index of this treeEntry in VectorizableTree. 1622 int Idx = -1; 1623 1624 private: 1625 /// The operands of each instruction in each lane Operands[op_index][lane]. 1626 /// Note: This helps avoid the replication of the code that performs the 1627 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1628 SmallVector<ValueList, 2> Operands; 1629 1630 /// The main/alternate instruction. 1631 Instruction *MainOp = nullptr; 1632 Instruction *AltOp = nullptr; 1633 1634 public: 1635 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1636 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1637 if (Operands.size() < OpIdx + 1) 1638 Operands.resize(OpIdx + 1); 1639 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1640 Operands[OpIdx].resize(Scalars.size()); 1641 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1642 Operands[OpIdx][Lane] = OpVL[Lane]; 1643 } 1644 1645 /// Set the operands of this bundle in their original order. 1646 void setOperandsInOrder() { 1647 assert(Operands.empty() && "Already initialized?"); 1648 auto *I0 = cast<Instruction>(Scalars[0]); 1649 Operands.resize(I0->getNumOperands()); 1650 unsigned NumLanes = Scalars.size(); 1651 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1652 OpIdx != NumOperands; ++OpIdx) { 1653 Operands[OpIdx].resize(NumLanes); 1654 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1655 auto *I = cast<Instruction>(Scalars[Lane]); 1656 assert(I->getNumOperands() == NumOperands && 1657 "Expected same number of operands"); 1658 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1659 } 1660 } 1661 } 1662 1663 /// \returns the \p OpIdx operand of this TreeEntry. 1664 ValueList &getOperand(unsigned OpIdx) { 1665 assert(OpIdx < Operands.size() && "Off bounds"); 1666 return Operands[OpIdx]; 1667 } 1668 1669 /// \returns the number of operands. 1670 unsigned getNumOperands() const { return Operands.size(); } 1671 1672 /// \return the single \p OpIdx operand. 1673 Value *getSingleOperand(unsigned OpIdx) const { 1674 assert(OpIdx < Operands.size() && "Off bounds"); 1675 assert(!Operands[OpIdx].empty() && "No operand available"); 1676 return Operands[OpIdx][0]; 1677 } 1678 1679 /// Some of the instructions in the list have alternate opcodes. 1680 bool isAltShuffle() const { 1681 return getOpcode() != getAltOpcode(); 1682 } 1683 1684 bool isOpcodeOrAlt(Instruction *I) const { 1685 unsigned CheckedOpcode = I->getOpcode(); 1686 return (getOpcode() == CheckedOpcode || 1687 getAltOpcode() == CheckedOpcode); 1688 } 1689 1690 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1691 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1692 /// \p OpValue. 1693 Value *isOneOf(Value *Op) const { 1694 auto *I = dyn_cast<Instruction>(Op); 1695 if (I && isOpcodeOrAlt(I)) 1696 return Op; 1697 return MainOp; 1698 } 1699 1700 void setOperations(const InstructionsState &S) { 1701 MainOp = S.MainOp; 1702 AltOp = S.AltOp; 1703 } 1704 1705 Instruction *getMainOp() const { 1706 return MainOp; 1707 } 1708 1709 Instruction *getAltOp() const { 1710 return AltOp; 1711 } 1712 1713 /// The main/alternate opcodes for the list of instructions. 1714 unsigned getOpcode() const { 1715 return MainOp ? MainOp->getOpcode() : 0; 1716 } 1717 1718 unsigned getAltOpcode() const { 1719 return AltOp ? AltOp->getOpcode() : 0; 1720 } 1721 1722 /// Update operations state of this entry if reorder occurred. 1723 bool updateStateIfReorder() { 1724 if (ReorderIndices.empty()) 1725 return false; 1726 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1727 setOperations(S); 1728 return true; 1729 } 1730 1731 #ifndef NDEBUG 1732 /// Debug printer. 1733 LLVM_DUMP_METHOD void dump() const { 1734 dbgs() << Idx << ".\n"; 1735 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1736 dbgs() << "Operand " << OpI << ":\n"; 1737 for (const Value *V : Operands[OpI]) 1738 dbgs().indent(2) << *V << "\n"; 1739 } 1740 dbgs() << "Scalars: \n"; 1741 for (Value *V : Scalars) 1742 dbgs().indent(2) << *V << "\n"; 1743 dbgs() << "State: "; 1744 switch (State) { 1745 case Vectorize: 1746 dbgs() << "Vectorize\n"; 1747 break; 1748 case ScatterVectorize: 1749 dbgs() << "ScatterVectorize\n"; 1750 break; 1751 case NeedToGather: 1752 dbgs() << "NeedToGather\n"; 1753 break; 1754 } 1755 dbgs() << "MainOp: "; 1756 if (MainOp) 1757 dbgs() << *MainOp << "\n"; 1758 else 1759 dbgs() << "NULL\n"; 1760 dbgs() << "AltOp: "; 1761 if (AltOp) 1762 dbgs() << *AltOp << "\n"; 1763 else 1764 dbgs() << "NULL\n"; 1765 dbgs() << "VectorizedValue: "; 1766 if (VectorizedValue) 1767 dbgs() << *VectorizedValue << "\n"; 1768 else 1769 dbgs() << "NULL\n"; 1770 dbgs() << "ReuseShuffleIndices: "; 1771 if (ReuseShuffleIndices.empty()) 1772 dbgs() << "Empty"; 1773 else 1774 for (unsigned ReuseIdx : ReuseShuffleIndices) 1775 dbgs() << ReuseIdx << ", "; 1776 dbgs() << "\n"; 1777 dbgs() << "ReorderIndices: "; 1778 for (unsigned ReorderIdx : ReorderIndices) 1779 dbgs() << ReorderIdx << ", "; 1780 dbgs() << "\n"; 1781 dbgs() << "UserTreeIndices: "; 1782 for (const auto &EInfo : UserTreeIndices) 1783 dbgs() << EInfo << ", "; 1784 dbgs() << "\n"; 1785 } 1786 #endif 1787 }; 1788 1789 #ifndef NDEBUG 1790 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1791 InstructionCost VecCost, 1792 InstructionCost ScalarCost) const { 1793 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1794 dbgs() << "SLP: Costs:\n"; 1795 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1796 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1797 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1798 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1799 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1800 } 1801 #endif 1802 1803 /// Create a new VectorizableTree entry. 1804 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1805 const InstructionsState &S, 1806 const EdgeInfo &UserTreeIdx, 1807 ArrayRef<unsigned> ReuseShuffleIndices = None, 1808 ArrayRef<unsigned> ReorderIndices = None) { 1809 TreeEntry::EntryState EntryState = 1810 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1811 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1812 ReuseShuffleIndices, ReorderIndices); 1813 } 1814 1815 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1816 TreeEntry::EntryState EntryState, 1817 Optional<ScheduleData *> Bundle, 1818 const InstructionsState &S, 1819 const EdgeInfo &UserTreeIdx, 1820 ArrayRef<unsigned> ReuseShuffleIndices = None, 1821 ArrayRef<unsigned> ReorderIndices = None) { 1822 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1823 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1824 "Need to vectorize gather entry?"); 1825 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1826 TreeEntry *Last = VectorizableTree.back().get(); 1827 Last->Idx = VectorizableTree.size() - 1; 1828 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1829 Last->State = EntryState; 1830 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1831 ReuseShuffleIndices.end()); 1832 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1833 Last->setOperations(S); 1834 if (Last->State != TreeEntry::NeedToGather) { 1835 for (Value *V : VL) { 1836 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1837 ScalarToTreeEntry[V] = Last; 1838 } 1839 // Update the scheduler bundle to point to this TreeEntry. 1840 unsigned Lane = 0; 1841 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1842 BundleMember = BundleMember->NextInBundle) { 1843 BundleMember->TE = Last; 1844 BundleMember->Lane = Lane; 1845 ++Lane; 1846 } 1847 assert((!Bundle.getValue() || Lane == VL.size()) && 1848 "Bundle and VL out of sync"); 1849 } else { 1850 MustGather.insert(VL.begin(), VL.end()); 1851 } 1852 1853 if (UserTreeIdx.UserTE) 1854 Last->UserTreeIndices.push_back(UserTreeIdx); 1855 1856 return Last; 1857 } 1858 1859 /// -- Vectorization State -- 1860 /// Holds all of the tree entries. 1861 TreeEntry::VecTreeTy VectorizableTree; 1862 1863 #ifndef NDEBUG 1864 /// Debug printer. 1865 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1866 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1867 VectorizableTree[Id]->dump(); 1868 dbgs() << "\n"; 1869 } 1870 } 1871 #endif 1872 1873 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1874 1875 const TreeEntry *getTreeEntry(Value *V) const { 1876 return ScalarToTreeEntry.lookup(V); 1877 } 1878 1879 /// Maps a specific scalar to its tree entry. 1880 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1881 1882 /// Maps a value to the proposed vectorizable size. 1883 SmallDenseMap<Value *, unsigned> InstrElementSize; 1884 1885 /// A list of scalars that we found that we need to keep as scalars. 1886 ValueSet MustGather; 1887 1888 /// This POD struct describes one external user in the vectorized tree. 1889 struct ExternalUser { 1890 ExternalUser(Value *S, llvm::User *U, int L) 1891 : Scalar(S), User(U), Lane(L) {} 1892 1893 // Which scalar in our function. 1894 Value *Scalar; 1895 1896 // Which user that uses the scalar. 1897 llvm::User *User; 1898 1899 // Which lane does the scalar belong to. 1900 int Lane; 1901 }; 1902 using UserList = SmallVector<ExternalUser, 16>; 1903 1904 /// Checks if two instructions may access the same memory. 1905 /// 1906 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1907 /// is invariant in the calling loop. 1908 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1909 Instruction *Inst2) { 1910 // First check if the result is already in the cache. 1911 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1912 Optional<bool> &result = AliasCache[key]; 1913 if (result.hasValue()) { 1914 return result.getValue(); 1915 } 1916 MemoryLocation Loc2 = getLocation(Inst2, AA); 1917 bool aliased = true; 1918 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1919 // Do the alias check. 1920 aliased = !AA->isNoAlias(Loc1, Loc2); 1921 } 1922 // Store the result in the cache. 1923 result = aliased; 1924 return aliased; 1925 } 1926 1927 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1928 1929 /// Cache for alias results. 1930 /// TODO: consider moving this to the AliasAnalysis itself. 1931 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1932 1933 /// Removes an instruction from its block and eventually deletes it. 1934 /// It's like Instruction::eraseFromParent() except that the actual deletion 1935 /// is delayed until BoUpSLP is destructed. 1936 /// This is required to ensure that there are no incorrect collisions in the 1937 /// AliasCache, which can happen if a new instruction is allocated at the 1938 /// same address as a previously deleted instruction. 1939 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1940 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1941 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1942 } 1943 1944 /// Temporary store for deleted instructions. Instructions will be deleted 1945 /// eventually when the BoUpSLP is destructed. 1946 DenseMap<Instruction *, bool> DeletedInstructions; 1947 1948 /// A list of values that need to extracted out of the tree. 1949 /// This list holds pairs of (Internal Scalar : External User). External User 1950 /// can be nullptr, it means that this Internal Scalar will be used later, 1951 /// after vectorization. 1952 UserList ExternalUses; 1953 1954 /// Values used only by @llvm.assume calls. 1955 SmallPtrSet<const Value *, 32> EphValues; 1956 1957 /// Holds all of the instructions that we gathered. 1958 SetVector<Instruction *> GatherSeq; 1959 1960 /// A list of blocks that we are going to CSE. 1961 SetVector<BasicBlock *> CSEBlocks; 1962 1963 /// Contains all scheduling relevant data for an instruction. 1964 /// A ScheduleData either represents a single instruction or a member of an 1965 /// instruction bundle (= a group of instructions which is combined into a 1966 /// vector instruction). 1967 struct ScheduleData { 1968 // The initial value for the dependency counters. It means that the 1969 // dependencies are not calculated yet. 1970 enum { InvalidDeps = -1 }; 1971 1972 ScheduleData() = default; 1973 1974 void init(int BlockSchedulingRegionID, Value *OpVal) { 1975 FirstInBundle = this; 1976 NextInBundle = nullptr; 1977 NextLoadStore = nullptr; 1978 IsScheduled = false; 1979 SchedulingRegionID = BlockSchedulingRegionID; 1980 UnscheduledDepsInBundle = UnscheduledDeps; 1981 clearDependencies(); 1982 OpValue = OpVal; 1983 TE = nullptr; 1984 Lane = -1; 1985 } 1986 1987 /// Returns true if the dependency information has been calculated. 1988 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1989 1990 /// Returns true for single instructions and for bundle representatives 1991 /// (= the head of a bundle). 1992 bool isSchedulingEntity() const { return FirstInBundle == this; } 1993 1994 /// Returns true if it represents an instruction bundle and not only a 1995 /// single instruction. 1996 bool isPartOfBundle() const { 1997 return NextInBundle != nullptr || FirstInBundle != this; 1998 } 1999 2000 /// Returns true if it is ready for scheduling, i.e. it has no more 2001 /// unscheduled depending instructions/bundles. 2002 bool isReady() const { 2003 assert(isSchedulingEntity() && 2004 "can't consider non-scheduling entity for ready list"); 2005 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2006 } 2007 2008 /// Modifies the number of unscheduled dependencies, also updating it for 2009 /// the whole bundle. 2010 int incrementUnscheduledDeps(int Incr) { 2011 UnscheduledDeps += Incr; 2012 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2013 } 2014 2015 /// Sets the number of unscheduled dependencies to the number of 2016 /// dependencies. 2017 void resetUnscheduledDeps() { 2018 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2019 } 2020 2021 /// Clears all dependency information. 2022 void clearDependencies() { 2023 Dependencies = InvalidDeps; 2024 resetUnscheduledDeps(); 2025 MemoryDependencies.clear(); 2026 } 2027 2028 void dump(raw_ostream &os) const { 2029 if (!isSchedulingEntity()) { 2030 os << "/ " << *Inst; 2031 } else if (NextInBundle) { 2032 os << '[' << *Inst; 2033 ScheduleData *SD = NextInBundle; 2034 while (SD) { 2035 os << ';' << *SD->Inst; 2036 SD = SD->NextInBundle; 2037 } 2038 os << ']'; 2039 } else { 2040 os << *Inst; 2041 } 2042 } 2043 2044 Instruction *Inst = nullptr; 2045 2046 /// Points to the head in an instruction bundle (and always to this for 2047 /// single instructions). 2048 ScheduleData *FirstInBundle = nullptr; 2049 2050 /// Single linked list of all instructions in a bundle. Null if it is a 2051 /// single instruction. 2052 ScheduleData *NextInBundle = nullptr; 2053 2054 /// Single linked list of all memory instructions (e.g. load, store, call) 2055 /// in the block - until the end of the scheduling region. 2056 ScheduleData *NextLoadStore = nullptr; 2057 2058 /// The dependent memory instructions. 2059 /// This list is derived on demand in calculateDependencies(). 2060 SmallVector<ScheduleData *, 4> MemoryDependencies; 2061 2062 /// This ScheduleData is in the current scheduling region if this matches 2063 /// the current SchedulingRegionID of BlockScheduling. 2064 int SchedulingRegionID = 0; 2065 2066 /// Used for getting a "good" final ordering of instructions. 2067 int SchedulingPriority = 0; 2068 2069 /// The number of dependencies. Constitutes of the number of users of the 2070 /// instruction plus the number of dependent memory instructions (if any). 2071 /// This value is calculated on demand. 2072 /// If InvalidDeps, the number of dependencies is not calculated yet. 2073 int Dependencies = InvalidDeps; 2074 2075 /// The number of dependencies minus the number of dependencies of scheduled 2076 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2077 /// for scheduling. 2078 /// Note that this is negative as long as Dependencies is not calculated. 2079 int UnscheduledDeps = InvalidDeps; 2080 2081 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2082 /// single instructions. 2083 int UnscheduledDepsInBundle = InvalidDeps; 2084 2085 /// True if this instruction is scheduled (or considered as scheduled in the 2086 /// dry-run). 2087 bool IsScheduled = false; 2088 2089 /// Opcode of the current instruction in the schedule data. 2090 Value *OpValue = nullptr; 2091 2092 /// The TreeEntry that this instruction corresponds to. 2093 TreeEntry *TE = nullptr; 2094 2095 /// The lane of this node in the TreeEntry. 2096 int Lane = -1; 2097 }; 2098 2099 #ifndef NDEBUG 2100 friend inline raw_ostream &operator<<(raw_ostream &os, 2101 const BoUpSLP::ScheduleData &SD) { 2102 SD.dump(os); 2103 return os; 2104 } 2105 #endif 2106 2107 friend struct GraphTraits<BoUpSLP *>; 2108 friend struct DOTGraphTraits<BoUpSLP *>; 2109 2110 /// Contains all scheduling data for a basic block. 2111 struct BlockScheduling { 2112 BlockScheduling(BasicBlock *BB) 2113 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2114 2115 void clear() { 2116 ReadyInsts.clear(); 2117 ScheduleStart = nullptr; 2118 ScheduleEnd = nullptr; 2119 FirstLoadStoreInRegion = nullptr; 2120 LastLoadStoreInRegion = nullptr; 2121 2122 // Reduce the maximum schedule region size by the size of the 2123 // previous scheduling run. 2124 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2125 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2126 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2127 ScheduleRegionSize = 0; 2128 2129 // Make a new scheduling region, i.e. all existing ScheduleData is not 2130 // in the new region yet. 2131 ++SchedulingRegionID; 2132 } 2133 2134 ScheduleData *getScheduleData(Value *V) { 2135 ScheduleData *SD = ScheduleDataMap[V]; 2136 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2137 return SD; 2138 return nullptr; 2139 } 2140 2141 ScheduleData *getScheduleData(Value *V, Value *Key) { 2142 if (V == Key) 2143 return getScheduleData(V); 2144 auto I = ExtraScheduleDataMap.find(V); 2145 if (I != ExtraScheduleDataMap.end()) { 2146 ScheduleData *SD = I->second[Key]; 2147 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2148 return SD; 2149 } 2150 return nullptr; 2151 } 2152 2153 bool isInSchedulingRegion(ScheduleData *SD) const { 2154 return SD->SchedulingRegionID == SchedulingRegionID; 2155 } 2156 2157 /// Marks an instruction as scheduled and puts all dependent ready 2158 /// instructions into the ready-list. 2159 template <typename ReadyListType> 2160 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2161 SD->IsScheduled = true; 2162 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2163 2164 ScheduleData *BundleMember = SD; 2165 while (BundleMember) { 2166 if (BundleMember->Inst != BundleMember->OpValue) { 2167 BundleMember = BundleMember->NextInBundle; 2168 continue; 2169 } 2170 // Handle the def-use chain dependencies. 2171 2172 // Decrement the unscheduled counter and insert to ready list if ready. 2173 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2174 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2175 if (OpDef && OpDef->hasValidDependencies() && 2176 OpDef->incrementUnscheduledDeps(-1) == 0) { 2177 // There are no more unscheduled dependencies after 2178 // decrementing, so we can put the dependent instruction 2179 // into the ready list. 2180 ScheduleData *DepBundle = OpDef->FirstInBundle; 2181 assert(!DepBundle->IsScheduled && 2182 "already scheduled bundle gets ready"); 2183 ReadyList.insert(DepBundle); 2184 LLVM_DEBUG(dbgs() 2185 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2186 } 2187 }); 2188 }; 2189 2190 // If BundleMember is a vector bundle, its operands may have been 2191 // reordered duiring buildTree(). We therefore need to get its operands 2192 // through the TreeEntry. 2193 if (TreeEntry *TE = BundleMember->TE) { 2194 int Lane = BundleMember->Lane; 2195 assert(Lane >= 0 && "Lane not set"); 2196 2197 // Since vectorization tree is being built recursively this assertion 2198 // ensures that the tree entry has all operands set before reaching 2199 // this code. Couple of exceptions known at the moment are extracts 2200 // where their second (immediate) operand is not added. Since 2201 // immediates do not affect scheduler behavior this is considered 2202 // okay. 2203 auto *In = TE->getMainOp(); 2204 assert(In && 2205 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2206 In->getNumOperands() == TE->getNumOperands()) && 2207 "Missed TreeEntry operands?"); 2208 (void)In; // fake use to avoid build failure when assertions disabled 2209 2210 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2211 OpIdx != NumOperands; ++OpIdx) 2212 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2213 DecrUnsched(I); 2214 } else { 2215 // If BundleMember is a stand-alone instruction, no operand reordering 2216 // has taken place, so we directly access its operands. 2217 for (Use &U : BundleMember->Inst->operands()) 2218 if (auto *I = dyn_cast<Instruction>(U.get())) 2219 DecrUnsched(I); 2220 } 2221 // Handle the memory dependencies. 2222 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2223 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2224 // There are no more unscheduled dependencies after decrementing, 2225 // so we can put the dependent instruction into the ready list. 2226 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2227 assert(!DepBundle->IsScheduled && 2228 "already scheduled bundle gets ready"); 2229 ReadyList.insert(DepBundle); 2230 LLVM_DEBUG(dbgs() 2231 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2232 } 2233 } 2234 BundleMember = BundleMember->NextInBundle; 2235 } 2236 } 2237 2238 void doForAllOpcodes(Value *V, 2239 function_ref<void(ScheduleData *SD)> Action) { 2240 if (ScheduleData *SD = getScheduleData(V)) 2241 Action(SD); 2242 auto I = ExtraScheduleDataMap.find(V); 2243 if (I != ExtraScheduleDataMap.end()) 2244 for (auto &P : I->second) 2245 if (P.second->SchedulingRegionID == SchedulingRegionID) 2246 Action(P.second); 2247 } 2248 2249 /// Put all instructions into the ReadyList which are ready for scheduling. 2250 template <typename ReadyListType> 2251 void initialFillReadyList(ReadyListType &ReadyList) { 2252 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2253 doForAllOpcodes(I, [&](ScheduleData *SD) { 2254 if (SD->isSchedulingEntity() && SD->isReady()) { 2255 ReadyList.insert(SD); 2256 LLVM_DEBUG(dbgs() 2257 << "SLP: initially in ready list: " << *I << "\n"); 2258 } 2259 }); 2260 } 2261 } 2262 2263 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2264 /// cyclic dependencies. This is only a dry-run, no instructions are 2265 /// actually moved at this stage. 2266 /// \returns the scheduling bundle. The returned Optional value is non-None 2267 /// if \p VL is allowed to be scheduled. 2268 Optional<ScheduleData *> 2269 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2270 const InstructionsState &S); 2271 2272 /// Un-bundles a group of instructions. 2273 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2274 2275 /// Allocates schedule data chunk. 2276 ScheduleData *allocateScheduleDataChunks(); 2277 2278 /// Extends the scheduling region so that V is inside the region. 2279 /// \returns true if the region size is within the limit. 2280 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2281 2282 /// Initialize the ScheduleData structures for new instructions in the 2283 /// scheduling region. 2284 void initScheduleData(Instruction *FromI, Instruction *ToI, 2285 ScheduleData *PrevLoadStore, 2286 ScheduleData *NextLoadStore); 2287 2288 /// Updates the dependency information of a bundle and of all instructions/ 2289 /// bundles which depend on the original bundle. 2290 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2291 BoUpSLP *SLP); 2292 2293 /// Sets all instruction in the scheduling region to un-scheduled. 2294 void resetSchedule(); 2295 2296 BasicBlock *BB; 2297 2298 /// Simple memory allocation for ScheduleData. 2299 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2300 2301 /// The size of a ScheduleData array in ScheduleDataChunks. 2302 int ChunkSize; 2303 2304 /// The allocator position in the current chunk, which is the last entry 2305 /// of ScheduleDataChunks. 2306 int ChunkPos; 2307 2308 /// Attaches ScheduleData to Instruction. 2309 /// Note that the mapping survives during all vectorization iterations, i.e. 2310 /// ScheduleData structures are recycled. 2311 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2312 2313 /// Attaches ScheduleData to Instruction with the leading key. 2314 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2315 ExtraScheduleDataMap; 2316 2317 struct ReadyList : SmallVector<ScheduleData *, 8> { 2318 void insert(ScheduleData *SD) { push_back(SD); } 2319 }; 2320 2321 /// The ready-list for scheduling (only used for the dry-run). 2322 ReadyList ReadyInsts; 2323 2324 /// The first instruction of the scheduling region. 2325 Instruction *ScheduleStart = nullptr; 2326 2327 /// The first instruction _after_ the scheduling region. 2328 Instruction *ScheduleEnd = nullptr; 2329 2330 /// The first memory accessing instruction in the scheduling region 2331 /// (can be null). 2332 ScheduleData *FirstLoadStoreInRegion = nullptr; 2333 2334 /// The last memory accessing instruction in the scheduling region 2335 /// (can be null). 2336 ScheduleData *LastLoadStoreInRegion = nullptr; 2337 2338 /// The current size of the scheduling region. 2339 int ScheduleRegionSize = 0; 2340 2341 /// The maximum size allowed for the scheduling region. 2342 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2343 2344 /// The ID of the scheduling region. For a new vectorization iteration this 2345 /// is incremented which "removes" all ScheduleData from the region. 2346 // Make sure that the initial SchedulingRegionID is greater than the 2347 // initial SchedulingRegionID in ScheduleData (which is 0). 2348 int SchedulingRegionID = 1; 2349 }; 2350 2351 /// Attaches the BlockScheduling structures to basic blocks. 2352 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2353 2354 /// Performs the "real" scheduling. Done before vectorization is actually 2355 /// performed in a basic block. 2356 void scheduleBlock(BlockScheduling *BS); 2357 2358 /// List of users to ignore during scheduling and that don't need extracting. 2359 ArrayRef<Value *> UserIgnoreList; 2360 2361 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2362 /// sorted SmallVectors of unsigned. 2363 struct OrdersTypeDenseMapInfo { 2364 static OrdersType getEmptyKey() { 2365 OrdersType V; 2366 V.push_back(~1U); 2367 return V; 2368 } 2369 2370 static OrdersType getTombstoneKey() { 2371 OrdersType V; 2372 V.push_back(~2U); 2373 return V; 2374 } 2375 2376 static unsigned getHashValue(const OrdersType &V) { 2377 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2378 } 2379 2380 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2381 return LHS == RHS; 2382 } 2383 }; 2384 2385 /// Contains orders of operations along with the number of bundles that have 2386 /// operations in this order. It stores only those orders that require 2387 /// reordering, if reordering is not required it is counted using \a 2388 /// NumOpsWantToKeepOriginalOrder. 2389 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2390 /// Number of bundles that do not require reordering. 2391 unsigned NumOpsWantToKeepOriginalOrder = 0; 2392 2393 // Analysis and block reference. 2394 Function *F; 2395 ScalarEvolution *SE; 2396 TargetTransformInfo *TTI; 2397 TargetLibraryInfo *TLI; 2398 AAResults *AA; 2399 LoopInfo *LI; 2400 DominatorTree *DT; 2401 AssumptionCache *AC; 2402 DemandedBits *DB; 2403 const DataLayout *DL; 2404 OptimizationRemarkEmitter *ORE; 2405 2406 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2407 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2408 2409 /// Instruction builder to construct the vectorized tree. 2410 IRBuilder<> Builder; 2411 2412 /// A map of scalar integer values to the smallest bit width with which they 2413 /// can legally be represented. The values map to (width, signed) pairs, 2414 /// where "width" indicates the minimum bit width and "signed" is True if the 2415 /// value must be signed-extended, rather than zero-extended, back to its 2416 /// original width. 2417 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2418 }; 2419 2420 } // end namespace slpvectorizer 2421 2422 template <> struct GraphTraits<BoUpSLP *> { 2423 using TreeEntry = BoUpSLP::TreeEntry; 2424 2425 /// NodeRef has to be a pointer per the GraphWriter. 2426 using NodeRef = TreeEntry *; 2427 2428 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2429 2430 /// Add the VectorizableTree to the index iterator to be able to return 2431 /// TreeEntry pointers. 2432 struct ChildIteratorType 2433 : public iterator_adaptor_base< 2434 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2435 ContainerTy &VectorizableTree; 2436 2437 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2438 ContainerTy &VT) 2439 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2440 2441 NodeRef operator*() { return I->UserTE; } 2442 }; 2443 2444 static NodeRef getEntryNode(BoUpSLP &R) { 2445 return R.VectorizableTree[0].get(); 2446 } 2447 2448 static ChildIteratorType child_begin(NodeRef N) { 2449 return {N->UserTreeIndices.begin(), N->Container}; 2450 } 2451 2452 static ChildIteratorType child_end(NodeRef N) { 2453 return {N->UserTreeIndices.end(), N->Container}; 2454 } 2455 2456 /// For the node iterator we just need to turn the TreeEntry iterator into a 2457 /// TreeEntry* iterator so that it dereferences to NodeRef. 2458 class nodes_iterator { 2459 using ItTy = ContainerTy::iterator; 2460 ItTy It; 2461 2462 public: 2463 nodes_iterator(const ItTy &It2) : It(It2) {} 2464 NodeRef operator*() { return It->get(); } 2465 nodes_iterator operator++() { 2466 ++It; 2467 return *this; 2468 } 2469 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2470 }; 2471 2472 static nodes_iterator nodes_begin(BoUpSLP *R) { 2473 return nodes_iterator(R->VectorizableTree.begin()); 2474 } 2475 2476 static nodes_iterator nodes_end(BoUpSLP *R) { 2477 return nodes_iterator(R->VectorizableTree.end()); 2478 } 2479 2480 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2481 }; 2482 2483 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2484 using TreeEntry = BoUpSLP::TreeEntry; 2485 2486 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2487 2488 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2489 std::string Str; 2490 raw_string_ostream OS(Str); 2491 if (isSplat(Entry->Scalars)) { 2492 OS << "<splat> " << *Entry->Scalars[0]; 2493 return Str; 2494 } 2495 for (auto V : Entry->Scalars) { 2496 OS << *V; 2497 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2498 return EU.Scalar == V; 2499 })) 2500 OS << " <extract>"; 2501 OS << "\n"; 2502 } 2503 return Str; 2504 } 2505 2506 static std::string getNodeAttributes(const TreeEntry *Entry, 2507 const BoUpSLP *) { 2508 if (Entry->State == TreeEntry::NeedToGather) 2509 return "color=red"; 2510 return ""; 2511 } 2512 }; 2513 2514 } // end namespace llvm 2515 2516 BoUpSLP::~BoUpSLP() { 2517 for (const auto &Pair : DeletedInstructions) { 2518 // Replace operands of ignored instructions with Undefs in case if they were 2519 // marked for deletion. 2520 if (Pair.getSecond()) { 2521 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2522 Pair.getFirst()->replaceAllUsesWith(Undef); 2523 } 2524 Pair.getFirst()->dropAllReferences(); 2525 } 2526 for (const auto &Pair : DeletedInstructions) { 2527 assert(Pair.getFirst()->use_empty() && 2528 "trying to erase instruction with users."); 2529 Pair.getFirst()->eraseFromParent(); 2530 } 2531 #ifdef EXPENSIVE_CHECKS 2532 // If we could guarantee that this call is not extremely slow, we could 2533 // remove the ifdef limitation (see PR47712). 2534 assert(!verifyFunction(*F, &dbgs())); 2535 #endif 2536 } 2537 2538 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2539 for (auto *V : AV) { 2540 if (auto *I = dyn_cast<Instruction>(V)) 2541 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2542 }; 2543 } 2544 2545 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2546 ArrayRef<Value *> UserIgnoreLst) { 2547 ExtraValueToDebugLocsMap ExternallyUsedValues; 2548 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2549 } 2550 2551 static int findLaneForValue(ArrayRef<Value *> Scalars, 2552 ArrayRef<int> ReuseShuffleIndices, Value *V) { 2553 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2554 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2555 if (!ReuseShuffleIndices.empty()) { 2556 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2557 find(ReuseShuffleIndices, FoundLane)); 2558 } 2559 return FoundLane; 2560 } 2561 2562 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2563 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2564 ArrayRef<Value *> UserIgnoreLst) { 2565 deleteTree(); 2566 UserIgnoreList = UserIgnoreLst; 2567 if (!allSameType(Roots)) 2568 return; 2569 buildTree_rec(Roots, 0, EdgeInfo()); 2570 2571 // Collect the values that we need to extract from the tree. 2572 for (auto &TEPtr : VectorizableTree) { 2573 TreeEntry *Entry = TEPtr.get(); 2574 2575 // No need to handle users of gathered values. 2576 if (Entry->State == TreeEntry::NeedToGather) 2577 continue; 2578 2579 // For each lane: 2580 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2581 Value *Scalar = Entry->Scalars[Lane]; 2582 int FoundLane = 2583 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar); 2584 2585 // Check if the scalar is externally used as an extra arg. 2586 auto ExtI = ExternallyUsedValues.find(Scalar); 2587 if (ExtI != ExternallyUsedValues.end()) { 2588 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2589 << Lane << " from " << *Scalar << ".\n"); 2590 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2591 } 2592 for (User *U : Scalar->users()) { 2593 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2594 2595 Instruction *UserInst = dyn_cast<Instruction>(U); 2596 if (!UserInst) 2597 continue; 2598 2599 // Skip in-tree scalars that become vectors 2600 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2601 Value *UseScalar = UseEntry->Scalars[0]; 2602 // Some in-tree scalars will remain as scalar in vectorized 2603 // instructions. If that is the case, the one in Lane 0 will 2604 // be used. 2605 if (UseScalar != U || 2606 UseEntry->State == TreeEntry::ScatterVectorize || 2607 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2608 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2609 << ".\n"); 2610 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2611 continue; 2612 } 2613 } 2614 2615 // Ignore users in the user ignore list. 2616 if (is_contained(UserIgnoreList, UserInst)) 2617 continue; 2618 2619 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2620 << Lane << " from " << *Scalar << ".\n"); 2621 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2622 } 2623 } 2624 } 2625 } 2626 2627 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2628 const EdgeInfo &UserTreeIdx) { 2629 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2630 2631 InstructionsState S = getSameOpcode(VL); 2632 if (Depth == RecursionMaxDepth) { 2633 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2634 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2635 return; 2636 } 2637 2638 // Don't handle vectors. 2639 if (S.OpValue->getType()->isVectorTy()) { 2640 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2642 return; 2643 } 2644 2645 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2646 if (SI->getValueOperand()->getType()->isVectorTy()) { 2647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2649 return; 2650 } 2651 2652 // If all of the operands are identical or constant we have a simple solution. 2653 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2654 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2656 return; 2657 } 2658 2659 // We now know that this is a vector of instructions of the same type from 2660 // the same block. 2661 2662 // Don't vectorize ephemeral values. 2663 for (Value *V : VL) { 2664 if (EphValues.count(V)) { 2665 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2666 << ") is ephemeral.\n"); 2667 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2668 return; 2669 } 2670 } 2671 2672 // Check if this is a duplicate of another entry. 2673 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2674 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2675 if (!E->isSame(VL)) { 2676 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2678 return; 2679 } 2680 // Record the reuse of the tree node. FIXME, currently this is only used to 2681 // properly draw the graph rather than for the actual vectorization. 2682 E->UserTreeIndices.push_back(UserTreeIdx); 2683 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2684 << ".\n"); 2685 return; 2686 } 2687 2688 // Check that none of the instructions in the bundle are already in the tree. 2689 for (Value *V : VL) { 2690 auto *I = dyn_cast<Instruction>(V); 2691 if (!I) 2692 continue; 2693 if (getTreeEntry(I)) { 2694 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2695 << ") is already in tree.\n"); 2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2697 return; 2698 } 2699 } 2700 2701 // If any of the scalars is marked as a value that needs to stay scalar, then 2702 // we need to gather the scalars. 2703 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2704 for (Value *V : VL) { 2705 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2706 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2708 return; 2709 } 2710 } 2711 2712 // Check that all of the users of the scalars that we want to vectorize are 2713 // schedulable. 2714 auto *VL0 = cast<Instruction>(S.OpValue); 2715 BasicBlock *BB = VL0->getParent(); 2716 2717 if (!DT->isReachableFromEntry(BB)) { 2718 // Don't go into unreachable blocks. They may contain instructions with 2719 // dependency cycles which confuse the final scheduling. 2720 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2721 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2722 return; 2723 } 2724 2725 // Check that every instruction appears once in this bundle. 2726 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2727 SmallVector<Value *, 4> UniqueValues; 2728 DenseMap<Value *, unsigned> UniquePositions; 2729 for (Value *V : VL) { 2730 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2731 ReuseShuffleIndicies.emplace_back(Res.first->second); 2732 if (Res.second) 2733 UniqueValues.emplace_back(V); 2734 } 2735 size_t NumUniqueScalarValues = UniqueValues.size(); 2736 if (NumUniqueScalarValues == VL.size()) { 2737 ReuseShuffleIndicies.clear(); 2738 } else { 2739 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2740 if (NumUniqueScalarValues <= 1 || 2741 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2742 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2743 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2744 return; 2745 } 2746 VL = UniqueValues; 2747 } 2748 2749 auto &BSRef = BlocksSchedules[BB]; 2750 if (!BSRef) 2751 BSRef = std::make_unique<BlockScheduling>(BB); 2752 2753 BlockScheduling &BS = *BSRef.get(); 2754 2755 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2756 if (!Bundle) { 2757 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2758 assert((!BS.getScheduleData(VL0) || 2759 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2760 "tryScheduleBundle should cancelScheduling on failure"); 2761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2762 ReuseShuffleIndicies); 2763 return; 2764 } 2765 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2766 2767 unsigned ShuffleOrOp = S.isAltShuffle() ? 2768 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2769 switch (ShuffleOrOp) { 2770 case Instruction::PHI: { 2771 auto *PH = cast<PHINode>(VL0); 2772 2773 // Check for terminator values (e.g. invoke). 2774 for (Value *V : VL) 2775 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2776 Instruction *Term = dyn_cast<Instruction>( 2777 cast<PHINode>(V)->getIncomingValueForBlock( 2778 PH->getIncomingBlock(I))); 2779 if (Term && Term->isTerminator()) { 2780 LLVM_DEBUG(dbgs() 2781 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2782 BS.cancelScheduling(VL, VL0); 2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2784 ReuseShuffleIndicies); 2785 return; 2786 } 2787 } 2788 2789 TreeEntry *TE = 2790 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2791 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2792 2793 // Keeps the reordered operands to avoid code duplication. 2794 SmallVector<ValueList, 2> OperandsVec; 2795 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2796 ValueList Operands; 2797 // Prepare the operand vector. 2798 for (Value *V : VL) 2799 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2800 PH->getIncomingBlock(I))); 2801 TE->setOperand(I, Operands); 2802 OperandsVec.push_back(Operands); 2803 } 2804 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2805 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2806 return; 2807 } 2808 case Instruction::ExtractValue: 2809 case Instruction::ExtractElement: { 2810 OrdersType CurrentOrder; 2811 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2812 if (Reuse) { 2813 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2814 ++NumOpsWantToKeepOriginalOrder; 2815 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2816 ReuseShuffleIndicies); 2817 // This is a special case, as it does not gather, but at the same time 2818 // we are not extending buildTree_rec() towards the operands. 2819 ValueList Op0; 2820 Op0.assign(VL.size(), VL0->getOperand(0)); 2821 VectorizableTree.back()->setOperand(0, Op0); 2822 return; 2823 } 2824 if (!CurrentOrder.empty()) { 2825 LLVM_DEBUG({ 2826 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2827 "with order"; 2828 for (unsigned Idx : CurrentOrder) 2829 dbgs() << " " << Idx; 2830 dbgs() << "\n"; 2831 }); 2832 // Insert new order with initial value 0, if it does not exist, 2833 // otherwise return the iterator to the existing one. 2834 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2835 ReuseShuffleIndicies, CurrentOrder); 2836 findRootOrder(CurrentOrder); 2837 ++NumOpsWantToKeepOrder[CurrentOrder]; 2838 // This is a special case, as it does not gather, but at the same time 2839 // we are not extending buildTree_rec() towards the operands. 2840 ValueList Op0; 2841 Op0.assign(VL.size(), VL0->getOperand(0)); 2842 VectorizableTree.back()->setOperand(0, Op0); 2843 return; 2844 } 2845 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2846 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2847 ReuseShuffleIndicies); 2848 BS.cancelScheduling(VL, VL0); 2849 return; 2850 } 2851 case Instruction::Load: { 2852 // Check that a vectorized load would load the same memory as a scalar 2853 // load. For example, we don't want to vectorize loads that are smaller 2854 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2855 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2856 // from such a struct, we read/write packed bits disagreeing with the 2857 // unvectorized version. 2858 Type *ScalarTy = VL0->getType(); 2859 2860 if (DL->getTypeSizeInBits(ScalarTy) != 2861 DL->getTypeAllocSizeInBits(ScalarTy)) { 2862 BS.cancelScheduling(VL, VL0); 2863 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2864 ReuseShuffleIndicies); 2865 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2866 return; 2867 } 2868 2869 // Make sure all loads in the bundle are simple - we can't vectorize 2870 // atomic or volatile loads. 2871 SmallVector<Value *, 4> PointerOps(VL.size()); 2872 auto POIter = PointerOps.begin(); 2873 for (Value *V : VL) { 2874 auto *L = cast<LoadInst>(V); 2875 if (!L->isSimple()) { 2876 BS.cancelScheduling(VL, VL0); 2877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2878 ReuseShuffleIndicies); 2879 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2880 return; 2881 } 2882 *POIter = L->getPointerOperand(); 2883 ++POIter; 2884 } 2885 2886 OrdersType CurrentOrder; 2887 // Check the order of pointer operands. 2888 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2889 Value *Ptr0; 2890 Value *PtrN; 2891 if (CurrentOrder.empty()) { 2892 Ptr0 = PointerOps.front(); 2893 PtrN = PointerOps.back(); 2894 } else { 2895 Ptr0 = PointerOps[CurrentOrder.front()]; 2896 PtrN = PointerOps[CurrentOrder.back()]; 2897 } 2898 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE); 2899 // Check that the sorted loads are consecutive. 2900 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2901 if (CurrentOrder.empty()) { 2902 // Original loads are consecutive and does not require reordering. 2903 ++NumOpsWantToKeepOriginalOrder; 2904 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2905 UserTreeIdx, ReuseShuffleIndicies); 2906 TE->setOperandsInOrder(); 2907 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2908 } else { 2909 // Need to reorder. 2910 TreeEntry *TE = 2911 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2912 ReuseShuffleIndicies, CurrentOrder); 2913 TE->setOperandsInOrder(); 2914 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2915 findRootOrder(CurrentOrder); 2916 ++NumOpsWantToKeepOrder[CurrentOrder]; 2917 } 2918 return; 2919 } 2920 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2921 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2922 UserTreeIdx, ReuseShuffleIndicies); 2923 TE->setOperandsInOrder(); 2924 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2925 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2926 return; 2927 } 2928 2929 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2930 BS.cancelScheduling(VL, VL0); 2931 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2932 ReuseShuffleIndicies); 2933 return; 2934 } 2935 case Instruction::ZExt: 2936 case Instruction::SExt: 2937 case Instruction::FPToUI: 2938 case Instruction::FPToSI: 2939 case Instruction::FPExt: 2940 case Instruction::PtrToInt: 2941 case Instruction::IntToPtr: 2942 case Instruction::SIToFP: 2943 case Instruction::UIToFP: 2944 case Instruction::Trunc: 2945 case Instruction::FPTrunc: 2946 case Instruction::BitCast: { 2947 Type *SrcTy = VL0->getOperand(0)->getType(); 2948 for (Value *V : VL) { 2949 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2950 if (Ty != SrcTy || !isValidElementType(Ty)) { 2951 BS.cancelScheduling(VL, VL0); 2952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2953 ReuseShuffleIndicies); 2954 LLVM_DEBUG(dbgs() 2955 << "SLP: Gathering casts with different src types.\n"); 2956 return; 2957 } 2958 } 2959 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2960 ReuseShuffleIndicies); 2961 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2962 2963 TE->setOperandsInOrder(); 2964 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2965 ValueList Operands; 2966 // Prepare the operand vector. 2967 for (Value *V : VL) 2968 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2969 2970 buildTree_rec(Operands, Depth + 1, {TE, i}); 2971 } 2972 return; 2973 } 2974 case Instruction::ICmp: 2975 case Instruction::FCmp: { 2976 // Check that all of the compares have the same predicate. 2977 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2978 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2979 Type *ComparedTy = VL0->getOperand(0)->getType(); 2980 for (Value *V : VL) { 2981 CmpInst *Cmp = cast<CmpInst>(V); 2982 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2983 Cmp->getOperand(0)->getType() != ComparedTy) { 2984 BS.cancelScheduling(VL, VL0); 2985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2986 ReuseShuffleIndicies); 2987 LLVM_DEBUG(dbgs() 2988 << "SLP: Gathering cmp with different predicate.\n"); 2989 return; 2990 } 2991 } 2992 2993 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2994 ReuseShuffleIndicies); 2995 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2996 2997 ValueList Left, Right; 2998 if (cast<CmpInst>(VL0)->isCommutative()) { 2999 // Commutative predicate - collect + sort operands of the instructions 3000 // so that each side is more likely to have the same opcode. 3001 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3002 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3003 } else { 3004 // Collect operands - commute if it uses the swapped predicate. 3005 for (Value *V : VL) { 3006 auto *Cmp = cast<CmpInst>(V); 3007 Value *LHS = Cmp->getOperand(0); 3008 Value *RHS = Cmp->getOperand(1); 3009 if (Cmp->getPredicate() != P0) 3010 std::swap(LHS, RHS); 3011 Left.push_back(LHS); 3012 Right.push_back(RHS); 3013 } 3014 } 3015 TE->setOperand(0, Left); 3016 TE->setOperand(1, Right); 3017 buildTree_rec(Left, Depth + 1, {TE, 0}); 3018 buildTree_rec(Right, Depth + 1, {TE, 1}); 3019 return; 3020 } 3021 case Instruction::Select: 3022 case Instruction::FNeg: 3023 case Instruction::Add: 3024 case Instruction::FAdd: 3025 case Instruction::Sub: 3026 case Instruction::FSub: 3027 case Instruction::Mul: 3028 case Instruction::FMul: 3029 case Instruction::UDiv: 3030 case Instruction::SDiv: 3031 case Instruction::FDiv: 3032 case Instruction::URem: 3033 case Instruction::SRem: 3034 case Instruction::FRem: 3035 case Instruction::Shl: 3036 case Instruction::LShr: 3037 case Instruction::AShr: 3038 case Instruction::And: 3039 case Instruction::Or: 3040 case Instruction::Xor: { 3041 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3042 ReuseShuffleIndicies); 3043 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3044 3045 // Sort operands of the instructions so that each side is more likely to 3046 // have the same opcode. 3047 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3048 ValueList Left, Right; 3049 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3050 TE->setOperand(0, Left); 3051 TE->setOperand(1, Right); 3052 buildTree_rec(Left, Depth + 1, {TE, 0}); 3053 buildTree_rec(Right, Depth + 1, {TE, 1}); 3054 return; 3055 } 3056 3057 TE->setOperandsInOrder(); 3058 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3059 ValueList Operands; 3060 // Prepare the operand vector. 3061 for (Value *V : VL) 3062 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3063 3064 buildTree_rec(Operands, Depth + 1, {TE, i}); 3065 } 3066 return; 3067 } 3068 case Instruction::GetElementPtr: { 3069 // We don't combine GEPs with complicated (nested) indexing. 3070 for (Value *V : VL) { 3071 if (cast<Instruction>(V)->getNumOperands() != 2) { 3072 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3073 BS.cancelScheduling(VL, VL0); 3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3075 ReuseShuffleIndicies); 3076 return; 3077 } 3078 } 3079 3080 // We can't combine several GEPs into one vector if they operate on 3081 // different types. 3082 Type *Ty0 = VL0->getOperand(0)->getType(); 3083 for (Value *V : VL) { 3084 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3085 if (Ty0 != CurTy) { 3086 LLVM_DEBUG(dbgs() 3087 << "SLP: not-vectorizable GEP (different types).\n"); 3088 BS.cancelScheduling(VL, VL0); 3089 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3090 ReuseShuffleIndicies); 3091 return; 3092 } 3093 } 3094 3095 // We don't combine GEPs with non-constant indexes. 3096 Type *Ty1 = VL0->getOperand(1)->getType(); 3097 for (Value *V : VL) { 3098 auto Op = cast<Instruction>(V)->getOperand(1); 3099 if (!isa<ConstantInt>(Op) || 3100 (Op->getType() != Ty1 && 3101 Op->getType()->getScalarSizeInBits() > 3102 DL->getIndexSizeInBits( 3103 V->getType()->getPointerAddressSpace()))) { 3104 LLVM_DEBUG(dbgs() 3105 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3106 BS.cancelScheduling(VL, VL0); 3107 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3108 ReuseShuffleIndicies); 3109 return; 3110 } 3111 } 3112 3113 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3114 ReuseShuffleIndicies); 3115 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3116 TE->setOperandsInOrder(); 3117 for (unsigned i = 0, e = 2; i < e; ++i) { 3118 ValueList Operands; 3119 // Prepare the operand vector. 3120 for (Value *V : VL) 3121 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3122 3123 buildTree_rec(Operands, Depth + 1, {TE, i}); 3124 } 3125 return; 3126 } 3127 case Instruction::Store: { 3128 // Check if the stores are consecutive or if we need to swizzle them. 3129 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3130 // Avoid types that are padded when being allocated as scalars, while 3131 // being packed together in a vector (such as i1). 3132 if (DL->getTypeSizeInBits(ScalarTy) != 3133 DL->getTypeAllocSizeInBits(ScalarTy)) { 3134 BS.cancelScheduling(VL, VL0); 3135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3136 ReuseShuffleIndicies); 3137 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3138 return; 3139 } 3140 // Make sure all stores in the bundle are simple - we can't vectorize 3141 // atomic or volatile stores. 3142 SmallVector<Value *, 4> PointerOps(VL.size()); 3143 ValueList Operands(VL.size()); 3144 auto POIter = PointerOps.begin(); 3145 auto OIter = Operands.begin(); 3146 for (Value *V : VL) { 3147 auto *SI = cast<StoreInst>(V); 3148 if (!SI->isSimple()) { 3149 BS.cancelScheduling(VL, VL0); 3150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3151 ReuseShuffleIndicies); 3152 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3153 return; 3154 } 3155 *POIter = SI->getPointerOperand(); 3156 *OIter = SI->getValueOperand(); 3157 ++POIter; 3158 ++OIter; 3159 } 3160 3161 OrdersType CurrentOrder; 3162 // Check the order of pointer operands. 3163 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3164 Value *Ptr0; 3165 Value *PtrN; 3166 if (CurrentOrder.empty()) { 3167 Ptr0 = PointerOps.front(); 3168 PtrN = PointerOps.back(); 3169 } else { 3170 Ptr0 = PointerOps[CurrentOrder.front()]; 3171 PtrN = PointerOps[CurrentOrder.back()]; 3172 } 3173 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE); 3174 // Check that the sorted pointer operands are consecutive. 3175 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3176 if (CurrentOrder.empty()) { 3177 // Original stores are consecutive and does not require reordering. 3178 ++NumOpsWantToKeepOriginalOrder; 3179 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3180 UserTreeIdx, ReuseShuffleIndicies); 3181 TE->setOperandsInOrder(); 3182 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3183 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3184 } else { 3185 TreeEntry *TE = 3186 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3187 ReuseShuffleIndicies, CurrentOrder); 3188 TE->setOperandsInOrder(); 3189 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3190 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3191 findRootOrder(CurrentOrder); 3192 ++NumOpsWantToKeepOrder[CurrentOrder]; 3193 } 3194 return; 3195 } 3196 } 3197 3198 BS.cancelScheduling(VL, VL0); 3199 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3200 ReuseShuffleIndicies); 3201 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3202 return; 3203 } 3204 case Instruction::Call: { 3205 // Check if the calls are all to the same vectorizable intrinsic or 3206 // library function. 3207 CallInst *CI = cast<CallInst>(VL0); 3208 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3209 3210 VFShape Shape = VFShape::get( 3211 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3212 false /*HasGlobalPred*/); 3213 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3214 3215 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3216 BS.cancelScheduling(VL, VL0); 3217 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3218 ReuseShuffleIndicies); 3219 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3220 return; 3221 } 3222 Function *F = CI->getCalledFunction(); 3223 unsigned NumArgs = CI->getNumArgOperands(); 3224 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3225 for (unsigned j = 0; j != NumArgs; ++j) 3226 if (hasVectorInstrinsicScalarOpd(ID, j)) 3227 ScalarArgs[j] = CI->getArgOperand(j); 3228 for (Value *V : VL) { 3229 CallInst *CI2 = dyn_cast<CallInst>(V); 3230 if (!CI2 || CI2->getCalledFunction() != F || 3231 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3232 (VecFunc && 3233 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3234 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3235 BS.cancelScheduling(VL, VL0); 3236 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3237 ReuseShuffleIndicies); 3238 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3239 << "\n"); 3240 return; 3241 } 3242 // Some intrinsics have scalar arguments and should be same in order for 3243 // them to be vectorized. 3244 for (unsigned j = 0; j != NumArgs; ++j) { 3245 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3246 Value *A1J = CI2->getArgOperand(j); 3247 if (ScalarArgs[j] != A1J) { 3248 BS.cancelScheduling(VL, VL0); 3249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3250 ReuseShuffleIndicies); 3251 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3252 << " argument " << ScalarArgs[j] << "!=" << A1J 3253 << "\n"); 3254 return; 3255 } 3256 } 3257 } 3258 // Verify that the bundle operands are identical between the two calls. 3259 if (CI->hasOperandBundles() && 3260 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3261 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3262 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3263 BS.cancelScheduling(VL, VL0); 3264 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3265 ReuseShuffleIndicies); 3266 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3267 << *CI << "!=" << *V << '\n'); 3268 return; 3269 } 3270 } 3271 3272 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3273 ReuseShuffleIndicies); 3274 TE->setOperandsInOrder(); 3275 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3276 ValueList Operands; 3277 // Prepare the operand vector. 3278 for (Value *V : VL) { 3279 auto *CI2 = cast<CallInst>(V); 3280 Operands.push_back(CI2->getArgOperand(i)); 3281 } 3282 buildTree_rec(Operands, Depth + 1, {TE, i}); 3283 } 3284 return; 3285 } 3286 case Instruction::ShuffleVector: { 3287 // If this is not an alternate sequence of opcode like add-sub 3288 // then do not vectorize this instruction. 3289 if (!S.isAltShuffle()) { 3290 BS.cancelScheduling(VL, VL0); 3291 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3292 ReuseShuffleIndicies); 3293 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3294 return; 3295 } 3296 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3297 ReuseShuffleIndicies); 3298 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3299 3300 // Reorder operands if reordering would enable vectorization. 3301 if (isa<BinaryOperator>(VL0)) { 3302 ValueList Left, Right; 3303 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3304 TE->setOperand(0, Left); 3305 TE->setOperand(1, Right); 3306 buildTree_rec(Left, Depth + 1, {TE, 0}); 3307 buildTree_rec(Right, Depth + 1, {TE, 1}); 3308 return; 3309 } 3310 3311 TE->setOperandsInOrder(); 3312 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3313 ValueList Operands; 3314 // Prepare the operand vector. 3315 for (Value *V : VL) 3316 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3317 3318 buildTree_rec(Operands, Depth + 1, {TE, i}); 3319 } 3320 return; 3321 } 3322 default: 3323 BS.cancelScheduling(VL, VL0); 3324 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3325 ReuseShuffleIndicies); 3326 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3327 return; 3328 } 3329 } 3330 3331 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3332 unsigned N = 1; 3333 Type *EltTy = T; 3334 3335 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3336 isa<VectorType>(EltTy)) { 3337 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3338 // Check that struct is homogeneous. 3339 for (const auto *Ty : ST->elements()) 3340 if (Ty != *ST->element_begin()) 3341 return 0; 3342 N *= ST->getNumElements(); 3343 EltTy = *ST->element_begin(); 3344 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3345 N *= AT->getNumElements(); 3346 EltTy = AT->getElementType(); 3347 } else { 3348 auto *VT = cast<FixedVectorType>(EltTy); 3349 N *= VT->getNumElements(); 3350 EltTy = VT->getElementType(); 3351 } 3352 } 3353 3354 if (!isValidElementType(EltTy)) 3355 return 0; 3356 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3357 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3358 return 0; 3359 return N; 3360 } 3361 3362 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3363 SmallVectorImpl<unsigned> &CurrentOrder) const { 3364 Instruction *E0 = cast<Instruction>(OpValue); 3365 assert(E0->getOpcode() == Instruction::ExtractElement || 3366 E0->getOpcode() == Instruction::ExtractValue); 3367 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3368 // Check if all of the extracts come from the same vector and from the 3369 // correct offset. 3370 Value *Vec = E0->getOperand(0); 3371 3372 CurrentOrder.clear(); 3373 3374 // We have to extract from a vector/aggregate with the same number of elements. 3375 unsigned NElts; 3376 if (E0->getOpcode() == Instruction::ExtractValue) { 3377 const DataLayout &DL = E0->getModule()->getDataLayout(); 3378 NElts = canMapToVector(Vec->getType(), DL); 3379 if (!NElts) 3380 return false; 3381 // Check if load can be rewritten as load of vector. 3382 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3383 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3384 return false; 3385 } else { 3386 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3387 } 3388 3389 if (NElts != VL.size()) 3390 return false; 3391 3392 // Check that all of the indices extract from the correct offset. 3393 bool ShouldKeepOrder = true; 3394 unsigned E = VL.size(); 3395 // Assign to all items the initial value E + 1 so we can check if the extract 3396 // instruction index was used already. 3397 // Also, later we can check that all the indices are used and we have a 3398 // consecutive access in the extract instructions, by checking that no 3399 // element of CurrentOrder still has value E + 1. 3400 CurrentOrder.assign(E, E + 1); 3401 unsigned I = 0; 3402 for (; I < E; ++I) { 3403 auto *Inst = cast<Instruction>(VL[I]); 3404 if (Inst->getOperand(0) != Vec) 3405 break; 3406 Optional<unsigned> Idx = getExtractIndex(Inst); 3407 if (!Idx) 3408 break; 3409 const unsigned ExtIdx = *Idx; 3410 if (ExtIdx != I) { 3411 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3412 break; 3413 ShouldKeepOrder = false; 3414 CurrentOrder[ExtIdx] = I; 3415 } else { 3416 if (CurrentOrder[I] != E + 1) 3417 break; 3418 CurrentOrder[I] = I; 3419 } 3420 } 3421 if (I < E) { 3422 CurrentOrder.clear(); 3423 return false; 3424 } 3425 3426 return ShouldKeepOrder; 3427 } 3428 3429 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3430 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3431 return ScalarToTreeEntry.count(U) > 0; 3432 }); 3433 } 3434 3435 static std::pair<InstructionCost, InstructionCost> 3436 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3437 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3438 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3439 3440 // Calculate the cost of the scalar and vector calls. 3441 SmallVector<Type *, 4> VecTys; 3442 for (Use &Arg : CI->args()) 3443 VecTys.push_back( 3444 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3445 FastMathFlags FMF; 3446 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3447 FMF = FPCI->getFastMathFlags(); 3448 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3449 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3450 dyn_cast<IntrinsicInst>(CI)); 3451 auto IntrinsicCost = 3452 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3453 3454 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3455 VecTy->getNumElements())), 3456 false /*HasGlobalPred*/); 3457 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3458 auto LibCost = IntrinsicCost; 3459 if (!CI->isNoBuiltin() && VecFunc) { 3460 // Calculate the cost of the vector library call. 3461 // If the corresponding vector call is cheaper, return its cost. 3462 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3463 TTI::TCK_RecipThroughput); 3464 } 3465 return {IntrinsicCost, LibCost}; 3466 } 3467 3468 /// Compute the cost of creating a vector of type \p VecTy containing the 3469 /// extracted values from \p VL. 3470 static InstructionCost 3471 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3472 TargetTransformInfo::ShuffleKind ShuffleKind, 3473 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3474 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3475 3476 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3477 VecTy->getNumElements() < NumOfParts) 3478 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3479 3480 bool AllConsecutive = true; 3481 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3482 unsigned Idx = -1; 3483 InstructionCost Cost = 0; 3484 3485 // Process extracts in blocks of EltsPerVector to check if the source vector 3486 // operand can be re-used directly. If not, add the cost of creating a shuffle 3487 // to extract the values into a vector register. 3488 for (auto *V : VL) { 3489 ++Idx; 3490 3491 // Reached the start of a new vector registers. 3492 if (Idx % EltsPerVector == 0) { 3493 AllConsecutive = true; 3494 continue; 3495 } 3496 3497 // Check all extracts for a vector register on the target directly 3498 // extract values in order. 3499 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3500 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3501 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3502 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3503 3504 if (AllConsecutive) 3505 continue; 3506 3507 // Skip all indices, except for the last index per vector block. 3508 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3509 continue; 3510 3511 // If we have a series of extracts which are not consecutive and hence 3512 // cannot re-use the source vector register directly, compute the shuffle 3513 // cost to extract the a vector with EltsPerVector elements. 3514 Cost += TTI.getShuffleCost( 3515 TargetTransformInfo::SK_PermuteSingleSrc, 3516 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3517 } 3518 return Cost; 3519 } 3520 3521 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3522 ArrayRef<Value*> VL = E->Scalars; 3523 3524 Type *ScalarTy = VL[0]->getType(); 3525 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3526 ScalarTy = SI->getValueOperand()->getType(); 3527 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3528 ScalarTy = CI->getOperand(0)->getType(); 3529 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3530 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3531 3532 // If we have computed a smaller type for the expression, update VecTy so 3533 // that the costs will be accurate. 3534 if (MinBWs.count(VL[0])) 3535 VecTy = FixedVectorType::get( 3536 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3537 3538 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3539 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3540 InstructionCost ReuseShuffleCost = 0; 3541 if (NeedToShuffleReuses) { 3542 ReuseShuffleCost = 3543 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3544 E->ReuseShuffleIndices); 3545 } 3546 // FIXME: it tries to fix a problem with MSVC buildbots. 3547 TargetTransformInfo &TTIRef = *TTI; 3548 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, 3549 VecTy](InstructionCost &Cost, bool IsGather) { 3550 DenseMap<Value *, int> ExtractVectorsTys; 3551 for (auto *V : VL) { 3552 // If all users of instruction are going to be vectorized and this 3553 // instruction itself is not going to be vectorized, consider this 3554 // instruction as dead and remove its cost from the final cost of the 3555 // vectorized tree. 3556 if (IsGather && (!areAllUsersVectorized(cast<Instruction>(V)) || 3557 ScalarToTreeEntry.count(V))) 3558 continue; 3559 auto *EE = cast<ExtractElementInst>(V); 3560 unsigned Idx = *getExtractIndex(EE); 3561 if (TTIRef.getNumberOfParts(VecTy) != 3562 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 3563 auto It = 3564 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 3565 It->getSecond() = std::min<int>(It->second, Idx); 3566 } 3567 // Take credit for instruction that will become dead. 3568 if (EE->hasOneUse()) { 3569 Instruction *Ext = EE->user_back(); 3570 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3571 all_of(Ext->users(), 3572 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3573 // Use getExtractWithExtendCost() to calculate the cost of 3574 // extractelement/ext pair. 3575 Cost -= 3576 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 3577 EE->getVectorOperandType(), Idx); 3578 // Add back the cost of s|zext which is subtracted separately. 3579 Cost += TTIRef.getCastInstrCost( 3580 Ext->getOpcode(), Ext->getType(), EE->getType(), 3581 TTI::getCastContextHint(Ext), CostKind, Ext); 3582 continue; 3583 } 3584 } 3585 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 3586 EE->getVectorOperandType(), Idx); 3587 } 3588 // Add a cost for subvector extracts/inserts if required. 3589 for (const auto &Data : ExtractVectorsTys) { 3590 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 3591 unsigned NumElts = VecTy->getNumElements(); 3592 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 3593 unsigned Idx = (Data.second / NumElts) * NumElts; 3594 unsigned EENumElts = EEVTy->getNumElements(); 3595 if (Idx + NumElts <= EENumElts) { 3596 Cost += 3597 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3598 EEVTy, None, Idx, VecTy); 3599 } else { 3600 // Need to round up the subvector type vectorization factor to avoid a 3601 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 3602 // <= EENumElts. 3603 auto *SubVT = 3604 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 3605 Cost += 3606 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3607 EEVTy, None, Idx, SubVT); 3608 } 3609 } else { 3610 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 3611 VecTy, None, 0, EEVTy); 3612 } 3613 } 3614 }; 3615 if (E->State == TreeEntry::NeedToGather) { 3616 if (allConstant(VL)) 3617 return 0; 3618 if (isSplat(VL)) { 3619 return ReuseShuffleCost + 3620 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3621 0); 3622 } 3623 if (E->getOpcode() == Instruction::ExtractElement && 3624 allSameType(VL) && allSameBlock(VL)) { 3625 SmallVector<int> Mask; 3626 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3627 isShuffle(VL, Mask); 3628 if (ShuffleKind.hasValue()) { 3629 InstructionCost Cost = 3630 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3631 AdjustExtractsCost(Cost, /*IsGather=*/true); 3632 return ReuseShuffleCost + Cost; 3633 } 3634 } 3635 InstructionCost GatherCost = 0; 3636 SmallVector<int> Mask; 3637 SmallVector<const TreeEntry *> Entries; 3638 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3639 isGatherShuffledEntry(E, Mask, Entries); 3640 if (Shuffle.hasValue()) { 3641 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3642 LLVM_DEBUG( 3643 dbgs() 3644 << "SLP: perfect diamond match for gather bundle that starts with " 3645 << *VL.front() << ".\n"); 3646 } else { 3647 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3648 << " entries for bundle that starts with " 3649 << *VL.front() << ".\n"); 3650 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask); 3651 } 3652 } else { 3653 GatherCost = getGatherCost(VL); 3654 } 3655 return ReuseShuffleCost + GatherCost; 3656 } 3657 assert((E->State == TreeEntry::Vectorize || 3658 E->State == TreeEntry::ScatterVectorize) && 3659 "Unhandled state"); 3660 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3661 Instruction *VL0 = E->getMainOp(); 3662 unsigned ShuffleOrOp = 3663 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3664 switch (ShuffleOrOp) { 3665 case Instruction::PHI: 3666 return 0; 3667 3668 case Instruction::ExtractValue: 3669 case Instruction::ExtractElement: { 3670 // The common cost of removal ExtractElement/ExtractValue instructions + 3671 // the cost of shuffles, if required to resuffle the original vector. 3672 InstructionCost CommonCost = 0; 3673 if (NeedToShuffleReuses) { 3674 unsigned Idx = 0; 3675 for (unsigned I : E->ReuseShuffleIndices) { 3676 if (ShuffleOrOp == Instruction::ExtractElement) { 3677 auto *EE = cast<ExtractElementInst>(VL[I]); 3678 ReuseShuffleCost -= TTI->getVectorInstrCost( 3679 Instruction::ExtractElement, EE->getVectorOperandType(), 3680 *getExtractIndex(EE)); 3681 } else { 3682 ReuseShuffleCost -= TTI->getVectorInstrCost( 3683 Instruction::ExtractElement, VecTy, Idx); 3684 ++Idx; 3685 } 3686 } 3687 Idx = ReuseShuffleNumbers; 3688 for (Value *V : VL) { 3689 if (ShuffleOrOp == Instruction::ExtractElement) { 3690 auto *EE = cast<ExtractElementInst>(V); 3691 ReuseShuffleCost += TTI->getVectorInstrCost( 3692 Instruction::ExtractElement, EE->getVectorOperandType(), 3693 *getExtractIndex(EE)); 3694 } else { 3695 --Idx; 3696 ReuseShuffleCost += TTI->getVectorInstrCost( 3697 Instruction::ExtractElement, VecTy, Idx); 3698 } 3699 } 3700 CommonCost = ReuseShuffleCost; 3701 } else if (!E->ReorderIndices.empty()) { 3702 SmallVector<int> NewMask; 3703 inversePermutation(E->ReorderIndices, NewMask); 3704 CommonCost = TTI->getShuffleCost( 3705 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3706 } 3707 if (ShuffleOrOp == Instruction::ExtractValue) { 3708 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3709 auto *EI = cast<Instruction>(VL[I]); 3710 // Take credit for instruction that will become dead. 3711 if (EI->hasOneUse()) { 3712 Instruction *Ext = EI->user_back(); 3713 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3714 all_of(Ext->users(), 3715 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3716 // Use getExtractWithExtendCost() to calculate the cost of 3717 // extractelement/ext pair. 3718 CommonCost -= TTI->getExtractWithExtendCost( 3719 Ext->getOpcode(), Ext->getType(), VecTy, I); 3720 // Add back the cost of s|zext which is subtracted separately. 3721 CommonCost += TTI->getCastInstrCost( 3722 Ext->getOpcode(), Ext->getType(), EI->getType(), 3723 TTI::getCastContextHint(Ext), CostKind, Ext); 3724 continue; 3725 } 3726 } 3727 CommonCost -= 3728 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3729 } 3730 } else { 3731 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 3732 } 3733 return CommonCost; 3734 } 3735 case Instruction::ZExt: 3736 case Instruction::SExt: 3737 case Instruction::FPToUI: 3738 case Instruction::FPToSI: 3739 case Instruction::FPExt: 3740 case Instruction::PtrToInt: 3741 case Instruction::IntToPtr: 3742 case Instruction::SIToFP: 3743 case Instruction::UIToFP: 3744 case Instruction::Trunc: 3745 case Instruction::FPTrunc: 3746 case Instruction::BitCast: { 3747 Type *SrcTy = VL0->getOperand(0)->getType(); 3748 InstructionCost ScalarEltCost = 3749 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3750 TTI::getCastContextHint(VL0), CostKind, VL0); 3751 if (NeedToShuffleReuses) { 3752 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3753 } 3754 3755 // Calculate the cost of this instruction. 3756 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3757 3758 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3759 InstructionCost VecCost = 0; 3760 // Check if the values are candidates to demote. 3761 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3762 VecCost = 3763 ReuseShuffleCost + 3764 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3765 TTI::getCastContextHint(VL0), CostKind, VL0); 3766 } 3767 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3768 return VecCost - ScalarCost; 3769 } 3770 case Instruction::FCmp: 3771 case Instruction::ICmp: 3772 case Instruction::Select: { 3773 // Calculate the cost of this instruction. 3774 InstructionCost ScalarEltCost = 3775 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3776 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3777 if (NeedToShuffleReuses) { 3778 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3779 } 3780 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3781 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3782 3783 // Check if all entries in VL are either compares or selects with compares 3784 // as condition that have the same predicates. 3785 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3786 bool First = true; 3787 for (auto *V : VL) { 3788 CmpInst::Predicate CurrentPred; 3789 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3790 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3791 !match(V, MatchCmp)) || 3792 (!First && VecPred != CurrentPred)) { 3793 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3794 break; 3795 } 3796 First = false; 3797 VecPred = CurrentPred; 3798 } 3799 3800 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3801 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3802 // Check if it is possible and profitable to use min/max for selects in 3803 // VL. 3804 // 3805 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3806 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3807 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3808 {VecTy, VecTy}); 3809 InstructionCost IntrinsicCost = 3810 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3811 // If the selects are the only uses of the compares, they will be dead 3812 // and we can adjust the cost by removing their cost. 3813 if (IntrinsicAndUse.second) 3814 IntrinsicCost -= 3815 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3816 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3817 VecCost = std::min(VecCost, IntrinsicCost); 3818 } 3819 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3820 return ReuseShuffleCost + VecCost - ScalarCost; 3821 } 3822 case Instruction::FNeg: 3823 case Instruction::Add: 3824 case Instruction::FAdd: 3825 case Instruction::Sub: 3826 case Instruction::FSub: 3827 case Instruction::Mul: 3828 case Instruction::FMul: 3829 case Instruction::UDiv: 3830 case Instruction::SDiv: 3831 case Instruction::FDiv: 3832 case Instruction::URem: 3833 case Instruction::SRem: 3834 case Instruction::FRem: 3835 case Instruction::Shl: 3836 case Instruction::LShr: 3837 case Instruction::AShr: 3838 case Instruction::And: 3839 case Instruction::Or: 3840 case Instruction::Xor: { 3841 // Certain instructions can be cheaper to vectorize if they have a 3842 // constant second vector operand. 3843 TargetTransformInfo::OperandValueKind Op1VK = 3844 TargetTransformInfo::OK_AnyValue; 3845 TargetTransformInfo::OperandValueKind Op2VK = 3846 TargetTransformInfo::OK_UniformConstantValue; 3847 TargetTransformInfo::OperandValueProperties Op1VP = 3848 TargetTransformInfo::OP_None; 3849 TargetTransformInfo::OperandValueProperties Op2VP = 3850 TargetTransformInfo::OP_PowerOf2; 3851 3852 // If all operands are exactly the same ConstantInt then set the 3853 // operand kind to OK_UniformConstantValue. 3854 // If instead not all operands are constants, then set the operand kind 3855 // to OK_AnyValue. If all operands are constants but not the same, 3856 // then set the operand kind to OK_NonUniformConstantValue. 3857 ConstantInt *CInt0 = nullptr; 3858 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3859 const Instruction *I = cast<Instruction>(VL[i]); 3860 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3861 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3862 if (!CInt) { 3863 Op2VK = TargetTransformInfo::OK_AnyValue; 3864 Op2VP = TargetTransformInfo::OP_None; 3865 break; 3866 } 3867 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3868 !CInt->getValue().isPowerOf2()) 3869 Op2VP = TargetTransformInfo::OP_None; 3870 if (i == 0) { 3871 CInt0 = CInt; 3872 continue; 3873 } 3874 if (CInt0 != CInt) 3875 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3876 } 3877 3878 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3879 InstructionCost ScalarEltCost = 3880 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3881 Op2VK, Op1VP, Op2VP, Operands, VL0); 3882 if (NeedToShuffleReuses) { 3883 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3884 } 3885 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3886 InstructionCost VecCost = 3887 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3888 Op2VK, Op1VP, Op2VP, Operands, VL0); 3889 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3890 return ReuseShuffleCost + VecCost - ScalarCost; 3891 } 3892 case Instruction::GetElementPtr: { 3893 TargetTransformInfo::OperandValueKind Op1VK = 3894 TargetTransformInfo::OK_AnyValue; 3895 TargetTransformInfo::OperandValueKind Op2VK = 3896 TargetTransformInfo::OK_UniformConstantValue; 3897 3898 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3899 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3900 if (NeedToShuffleReuses) { 3901 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3902 } 3903 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3904 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3905 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3906 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3907 return ReuseShuffleCost + VecCost - ScalarCost; 3908 } 3909 case Instruction::Load: { 3910 // Cost of wide load - cost of scalar loads. 3911 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3912 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3913 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3914 if (NeedToShuffleReuses) { 3915 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3916 } 3917 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3918 InstructionCost VecLdCost; 3919 if (E->State == TreeEntry::Vectorize) { 3920 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3921 CostKind, VL0); 3922 } else { 3923 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3924 VecLdCost = TTI->getGatherScatterOpCost( 3925 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3926 /*VariableMask=*/false, alignment, CostKind, VL0); 3927 } 3928 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 3929 SmallVector<int> NewMask; 3930 inversePermutation(E->ReorderIndices, NewMask); 3931 VecLdCost += TTI->getShuffleCost( 3932 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3933 } 3934 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3935 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3936 } 3937 case Instruction::Store: { 3938 // We know that we can merge the stores. Calculate the cost. 3939 bool IsReorder = !E->ReorderIndices.empty(); 3940 auto *SI = 3941 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3942 Align Alignment = SI->getAlign(); 3943 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3944 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3945 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3946 InstructionCost VecStCost = TTI->getMemoryOpCost( 3947 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3948 if (IsReorder) { 3949 SmallVector<int> NewMask; 3950 inversePermutation(E->ReorderIndices, NewMask); 3951 VecStCost += TTI->getShuffleCost( 3952 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3953 } 3954 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3955 return VecStCost - ScalarStCost; 3956 } 3957 case Instruction::Call: { 3958 CallInst *CI = cast<CallInst>(VL0); 3959 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3960 3961 // Calculate the cost of the scalar and vector calls. 3962 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 3963 InstructionCost ScalarEltCost = 3964 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3965 if (NeedToShuffleReuses) { 3966 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3967 } 3968 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3969 3970 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3971 InstructionCost VecCallCost = 3972 std::min(VecCallCosts.first, VecCallCosts.second); 3973 3974 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3975 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3976 << " for " << *CI << "\n"); 3977 3978 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3979 } 3980 case Instruction::ShuffleVector: { 3981 assert(E->isAltShuffle() && 3982 ((Instruction::isBinaryOp(E->getOpcode()) && 3983 Instruction::isBinaryOp(E->getAltOpcode())) || 3984 (Instruction::isCast(E->getOpcode()) && 3985 Instruction::isCast(E->getAltOpcode()))) && 3986 "Invalid Shuffle Vector Operand"); 3987 InstructionCost ScalarCost = 0; 3988 if (NeedToShuffleReuses) { 3989 for (unsigned Idx : E->ReuseShuffleIndices) { 3990 Instruction *I = cast<Instruction>(VL[Idx]); 3991 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3992 } 3993 for (Value *V : VL) { 3994 Instruction *I = cast<Instruction>(V); 3995 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3996 } 3997 } 3998 for (Value *V : VL) { 3999 Instruction *I = cast<Instruction>(V); 4000 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4001 ScalarCost += TTI->getInstructionCost(I, CostKind); 4002 } 4003 // VecCost is equal to sum of the cost of creating 2 vectors 4004 // and the cost of creating shuffle. 4005 InstructionCost VecCost = 0; 4006 if (Instruction::isBinaryOp(E->getOpcode())) { 4007 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4008 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4009 CostKind); 4010 } else { 4011 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4012 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4013 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4014 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4015 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4016 TTI::CastContextHint::None, CostKind); 4017 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4018 TTI::CastContextHint::None, CostKind); 4019 } 4020 4021 SmallVector<int> Mask(E->Scalars.size()); 4022 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4023 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4024 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4025 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4026 } 4027 VecCost += 4028 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 4029 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4030 return ReuseShuffleCost + VecCost - ScalarCost; 4031 } 4032 default: 4033 llvm_unreachable("Unknown instruction"); 4034 } 4035 } 4036 4037 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4038 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4039 << VectorizableTree.size() << " is fully vectorizable .\n"); 4040 4041 // We only handle trees of heights 1 and 2. 4042 if (VectorizableTree.size() == 1 && 4043 VectorizableTree[0]->State == TreeEntry::Vectorize) 4044 return true; 4045 4046 if (VectorizableTree.size() != 2) 4047 return false; 4048 4049 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4050 // with the second gather nodes if they have less scalar operands rather than 4051 // the initial tree element (may be profitable to shuffle the second gather). 4052 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4053 (allConstant(VectorizableTree[1]->Scalars) || 4054 isSplat(VectorizableTree[1]->Scalars) || 4055 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4056 VectorizableTree[1]->Scalars.size() < 4057 VectorizableTree[0]->Scalars.size()))) 4058 return true; 4059 4060 // Gathering cost would be too much for tiny trees. 4061 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4062 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4063 return false; 4064 4065 return true; 4066 } 4067 4068 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4069 TargetTransformInfo *TTI) { 4070 // Look past the root to find a source value. Arbitrarily follow the 4071 // path through operand 0 of any 'or'. Also, peek through optional 4072 // shift-left-by-multiple-of-8-bits. 4073 Value *ZextLoad = Root; 4074 const APInt *ShAmtC; 4075 while (!isa<ConstantExpr>(ZextLoad) && 4076 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4077 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4078 ShAmtC->urem(8) == 0))) 4079 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 4080 4081 // Check if the input is an extended load of the required or/shift expression. 4082 Value *LoadPtr; 4083 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4084 return false; 4085 4086 // Require that the total load bit width is a legal integer type. 4087 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4088 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4089 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4090 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4091 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4092 return false; 4093 4094 // Everything matched - assume that we can fold the whole sequence using 4095 // load combining. 4096 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4097 << *(cast<Instruction>(Root)) << "\n"); 4098 4099 return true; 4100 } 4101 4102 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4103 if (RdxKind != RecurKind::Or) 4104 return false; 4105 4106 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4107 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4108 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 4109 } 4110 4111 bool BoUpSLP::isLoadCombineCandidate() const { 4112 // Peek through a final sequence of stores and check if all operations are 4113 // likely to be load-combined. 4114 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4115 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4116 Value *X; 4117 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4118 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 4119 return false; 4120 } 4121 return true; 4122 } 4123 4124 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4125 // We can vectorize the tree if its size is greater than or equal to the 4126 // minimum size specified by the MinTreeSize command line option. 4127 if (VectorizableTree.size() >= MinTreeSize) 4128 return false; 4129 4130 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4131 // can vectorize it if we can prove it fully vectorizable. 4132 if (isFullyVectorizableTinyTree()) 4133 return false; 4134 4135 assert(VectorizableTree.empty() 4136 ? ExternalUses.empty() 4137 : true && "We shouldn't have any external users"); 4138 4139 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4140 // vectorizable. 4141 return true; 4142 } 4143 4144 InstructionCost BoUpSLP::getSpillCost() const { 4145 // Walk from the bottom of the tree to the top, tracking which values are 4146 // live. When we see a call instruction that is not part of our tree, 4147 // query TTI to see if there is a cost to keeping values live over it 4148 // (for example, if spills and fills are required). 4149 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4150 InstructionCost Cost = 0; 4151 4152 SmallPtrSet<Instruction*, 4> LiveValues; 4153 Instruction *PrevInst = nullptr; 4154 4155 // The entries in VectorizableTree are not necessarily ordered by their 4156 // position in basic blocks. Collect them and order them by dominance so later 4157 // instructions are guaranteed to be visited first. For instructions in 4158 // different basic blocks, we only scan to the beginning of the block, so 4159 // their order does not matter, as long as all instructions in a basic block 4160 // are grouped together. Using dominance ensures a deterministic order. 4161 SmallVector<Instruction *, 16> OrderedScalars; 4162 for (const auto &TEPtr : VectorizableTree) { 4163 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4164 if (!Inst) 4165 continue; 4166 OrderedScalars.push_back(Inst); 4167 } 4168 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 4169 return DT->dominates(B, A); 4170 }); 4171 4172 for (Instruction *Inst : OrderedScalars) { 4173 if (!PrevInst) { 4174 PrevInst = Inst; 4175 continue; 4176 } 4177 4178 // Update LiveValues. 4179 LiveValues.erase(PrevInst); 4180 for (auto &J : PrevInst->operands()) { 4181 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4182 LiveValues.insert(cast<Instruction>(&*J)); 4183 } 4184 4185 LLVM_DEBUG({ 4186 dbgs() << "SLP: #LV: " << LiveValues.size(); 4187 for (auto *X : LiveValues) 4188 dbgs() << " " << X->getName(); 4189 dbgs() << ", Looking at "; 4190 Inst->dump(); 4191 }); 4192 4193 // Now find the sequence of instructions between PrevInst and Inst. 4194 unsigned NumCalls = 0; 4195 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4196 PrevInstIt = 4197 PrevInst->getIterator().getReverse(); 4198 while (InstIt != PrevInstIt) { 4199 if (PrevInstIt == PrevInst->getParent()->rend()) { 4200 PrevInstIt = Inst->getParent()->rbegin(); 4201 continue; 4202 } 4203 4204 // Debug information does not impact spill cost. 4205 if ((isa<CallInst>(&*PrevInstIt) && 4206 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4207 &*PrevInstIt != PrevInst) 4208 NumCalls++; 4209 4210 ++PrevInstIt; 4211 } 4212 4213 if (NumCalls) { 4214 SmallVector<Type*, 4> V; 4215 for (auto *II : LiveValues) 4216 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4217 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4218 } 4219 4220 PrevInst = Inst; 4221 } 4222 4223 return Cost; 4224 } 4225 4226 InstructionCost BoUpSLP::getTreeCost() { 4227 InstructionCost Cost = 0; 4228 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4229 << VectorizableTree.size() << ".\n"); 4230 4231 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4232 4233 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4234 TreeEntry &TE = *VectorizableTree[I].get(); 4235 4236 // We create duplicate tree entries for gather sequences that have multiple 4237 // uses. However, we should not compute the cost of duplicate sequences. 4238 // For example, if we have a build vector (i.e., insertelement sequence) 4239 // that is used by more than one vector instruction, we only need to 4240 // compute the cost of the insertelement instructions once. The redundant 4241 // instructions will be eliminated by CSE. 4242 // 4243 // We should consider not creating duplicate tree entries for gather 4244 // sequences, and instead add additional edges to the tree representing 4245 // their uses. Since such an approach results in fewer total entries, 4246 // existing heuristics based on tree size may yield different results. 4247 // 4248 if (TE.State == TreeEntry::NeedToGather && 4249 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4250 VectorizableTree.end(), 4251 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4252 return EntryPtr->State == TreeEntry::NeedToGather && 4253 EntryPtr->isSame(TE.Scalars); 4254 })) 4255 continue; 4256 4257 InstructionCost C = getEntryCost(&TE); 4258 Cost += C; 4259 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4260 << " for bundle that starts with " << *TE.Scalars[0] 4261 << ".\n" 4262 << "SLP: Current total cost = " << Cost << "\n"); 4263 } 4264 4265 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4266 InstructionCost ExtractCost = 0; 4267 for (ExternalUser &EU : ExternalUses) { 4268 // We only add extract cost once for the same scalar. 4269 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4270 continue; 4271 4272 // Uses by ephemeral values are free (because the ephemeral value will be 4273 // removed prior to code generation, and so the extraction will be 4274 // removed as well). 4275 if (EphValues.count(EU.User)) 4276 continue; 4277 4278 // If we plan to rewrite the tree in a smaller type, we will need to sign 4279 // extend the extracted value back to the original type. Here, we account 4280 // for the extract and the added cost of the sign extend if needed. 4281 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4282 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4283 if (MinBWs.count(ScalarRoot)) { 4284 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4285 auto Extend = 4286 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4287 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4288 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4289 VecTy, EU.Lane); 4290 } else { 4291 ExtractCost += 4292 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4293 } 4294 } 4295 4296 InstructionCost SpillCost = getSpillCost(); 4297 Cost += SpillCost + ExtractCost; 4298 4299 #ifndef NDEBUG 4300 SmallString<256> Str; 4301 { 4302 raw_svector_ostream OS(Str); 4303 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4304 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4305 << "SLP: Total Cost = " << Cost << ".\n"; 4306 } 4307 LLVM_DEBUG(dbgs() << Str); 4308 if (ViewSLPTree) 4309 ViewGraph(this, "SLP" + F->getName(), false, Str); 4310 #endif 4311 4312 return Cost; 4313 } 4314 4315 Optional<TargetTransformInfo::ShuffleKind> 4316 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4317 SmallVectorImpl<const TreeEntry *> &Entries) { 4318 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4319 Entries.clear(); 4320 DenseMap<Value *, const TreeEntry *> UsedValuesEntry; 4321 unsigned VF = 0; 4322 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 4323 // landed. 4324 auto &&GetVF = [](const TreeEntry *TE) { 4325 if (!TE->ReuseShuffleIndices.empty()) 4326 return TE->ReuseShuffleIndices.size(); 4327 return TE->Scalars.size(); 4328 }; 4329 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4330 Value *V = TE->Scalars[I]; 4331 if (isa<UndefValue>(V)) 4332 continue; 4333 const TreeEntry *VTE = UsedValuesEntry.lookup(V); 4334 if (!VTE) { 4335 if (Entries.size() == 2) 4336 return None; 4337 VTE = getTreeEntry(V); 4338 if (!VTE || find_if( 4339 VectorizableTree, 4340 [VTE, TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4341 return EntryPtr.get() == VTE || EntryPtr.get() == TE; 4342 })->get() == TE) { 4343 // Check if it is used in one of the gathered entries. 4344 const auto *It = 4345 find_if(VectorizableTree, 4346 [V, TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4347 return EntryPtr.get() == TE || 4348 (EntryPtr->State == TreeEntry::NeedToGather && 4349 is_contained(EntryPtr->Scalars, V)); 4350 }); 4351 // The vector factor of shuffled entries must be the same. 4352 if (It->get() == TE) 4353 return None; 4354 VTE = It->get(); 4355 } 4356 Entries.push_back(VTE); 4357 if (Entries.size() == 1) { 4358 VF = GetVF(VTE); 4359 } else if (VF != GetVF(VTE)) { 4360 assert(Entries.size() == 2 && "Expected shuffle of 1 or 2 entries."); 4361 assert(VF > 0 && "Expected non-zero vector factor."); 4362 return None; 4363 } 4364 for (Value *SV : VTE->Scalars) 4365 UsedValuesEntry.try_emplace(SV, VTE); 4366 } 4367 int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V); 4368 Mask[I] = (Entries.front() == VTE ? 0 : VF) + FoundLane; 4369 // Extra check required by isSingleSourceMaskImpl function (called by 4370 // ShuffleVectorInst::isSingleSourceMask). 4371 if (Mask[I] >= 2 * E) 4372 return None; 4373 } 4374 switch (Entries.size()) { 4375 case 1: 4376 return TargetTransformInfo::SK_PermuteSingleSrc; 4377 case 2: 4378 return TargetTransformInfo::SK_PermuteTwoSrc; 4379 default: 4380 break; 4381 } 4382 return None; 4383 } 4384 4385 InstructionCost 4386 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4387 const DenseSet<unsigned> &ShuffledIndices) const { 4388 unsigned NumElts = Ty->getNumElements(); 4389 APInt DemandedElts = APInt::getNullValue(NumElts); 4390 for (unsigned I = 0; I < NumElts; ++I) 4391 if (!ShuffledIndices.count(I)) 4392 DemandedElts.setBit(I); 4393 InstructionCost Cost = 4394 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4395 /*Extract*/ false); 4396 if (!ShuffledIndices.empty()) 4397 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4398 return Cost; 4399 } 4400 4401 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4402 // Find the type of the operands in VL. 4403 Type *ScalarTy = VL[0]->getType(); 4404 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4405 ScalarTy = SI->getValueOperand()->getType(); 4406 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4407 // Find the cost of inserting/extracting values from the vector. 4408 // Check if the same elements are inserted several times and count them as 4409 // shuffle candidates. 4410 DenseSet<unsigned> ShuffledElements; 4411 DenseSet<Value *> UniqueElements; 4412 // Iterate in reverse order to consider insert elements with the high cost. 4413 for (unsigned I = VL.size(); I > 0; --I) { 4414 unsigned Idx = I - 1; 4415 if (!UniqueElements.insert(VL[Idx]).second) 4416 ShuffledElements.insert(Idx); 4417 } 4418 return getGatherCost(VecTy, ShuffledElements); 4419 } 4420 4421 // Perform operand reordering on the instructions in VL and return the reordered 4422 // operands in Left and Right. 4423 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4424 SmallVectorImpl<Value *> &Left, 4425 SmallVectorImpl<Value *> &Right, 4426 const DataLayout &DL, 4427 ScalarEvolution &SE, 4428 const BoUpSLP &R) { 4429 if (VL.empty()) 4430 return; 4431 VLOperands Ops(VL, DL, SE, R); 4432 // Reorder the operands in place. 4433 Ops.reorder(); 4434 Left = Ops.getVL(0); 4435 Right = Ops.getVL(1); 4436 } 4437 4438 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4439 // Get the basic block this bundle is in. All instructions in the bundle 4440 // should be in this block. 4441 auto *Front = E->getMainOp(); 4442 auto *BB = Front->getParent(); 4443 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4444 auto *I = cast<Instruction>(V); 4445 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4446 })); 4447 4448 // The last instruction in the bundle in program order. 4449 Instruction *LastInst = nullptr; 4450 4451 // Find the last instruction. The common case should be that BB has been 4452 // scheduled, and the last instruction is VL.back(). So we start with 4453 // VL.back() and iterate over schedule data until we reach the end of the 4454 // bundle. The end of the bundle is marked by null ScheduleData. 4455 if (BlocksSchedules.count(BB)) { 4456 auto *Bundle = 4457 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4458 if (Bundle && Bundle->isPartOfBundle()) 4459 for (; Bundle; Bundle = Bundle->NextInBundle) 4460 if (Bundle->OpValue == Bundle->Inst) 4461 LastInst = Bundle->Inst; 4462 } 4463 4464 // LastInst can still be null at this point if there's either not an entry 4465 // for BB in BlocksSchedules or there's no ScheduleData available for 4466 // VL.back(). This can be the case if buildTree_rec aborts for various 4467 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4468 // size is reached, etc.). ScheduleData is initialized in the scheduling 4469 // "dry-run". 4470 // 4471 // If this happens, we can still find the last instruction by brute force. We 4472 // iterate forwards from Front (inclusive) until we either see all 4473 // instructions in the bundle or reach the end of the block. If Front is the 4474 // last instruction in program order, LastInst will be set to Front, and we 4475 // will visit all the remaining instructions in the block. 4476 // 4477 // One of the reasons we exit early from buildTree_rec is to place an upper 4478 // bound on compile-time. Thus, taking an additional compile-time hit here is 4479 // not ideal. However, this should be exceedingly rare since it requires that 4480 // we both exit early from buildTree_rec and that the bundle be out-of-order 4481 // (causing us to iterate all the way to the end of the block). 4482 if (!LastInst) { 4483 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4484 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4485 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4486 LastInst = &I; 4487 if (Bundle.empty()) 4488 break; 4489 } 4490 } 4491 assert(LastInst && "Failed to find last instruction in bundle"); 4492 4493 // Set the insertion point after the last instruction in the bundle. Set the 4494 // debug location to Front. 4495 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4496 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4497 } 4498 4499 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4500 Value *Val0 = 4501 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4502 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4503 Value *Vec = PoisonValue::get(VecTy); 4504 unsigned InsIndex = 0; 4505 for (Value *Val : VL) { 4506 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4507 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4508 if (!InsElt) 4509 continue; 4510 GatherSeq.insert(InsElt); 4511 CSEBlocks.insert(InsElt->getParent()); 4512 // Add to our 'need-to-extract' list. 4513 if (TreeEntry *Entry = getTreeEntry(Val)) { 4514 // Find which lane we need to extract. 4515 int FoundLane = 4516 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val); 4517 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4518 } 4519 } 4520 4521 return Vec; 4522 } 4523 4524 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4525 InstructionsState S = getSameOpcode(VL); 4526 if (S.getOpcode()) { 4527 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4528 if (E->isSame(VL)) { 4529 Value *V = vectorizeTree(E); 4530 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4531 // Reshuffle to get only unique values. 4532 // If some of the scalars are duplicated in the vectorization tree 4533 // entry, we do not vectorize them but instead generate a mask for the 4534 // reuses. But if there are several users of the same entry, they may 4535 // have different vectorization factors. This is especially important 4536 // for PHI nodes. In this case, we need to adapt the resulting 4537 // instruction for the user vectorization factor and have to reshuffle 4538 // it again to take only unique elements of the vector. Without this 4539 // code the function incorrectly returns reduced vector instruction 4540 // with the same elements, not with the unique ones. 4541 // block: 4542 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4543 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4544 // ... (use %2) 4545 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4546 // br %block 4547 SmallVector<int, 4> UniqueIdxs; 4548 SmallSet<int, 4> UsedIdxs; 4549 int Pos = 0; 4550 for (int Idx : E->ReuseShuffleIndices) { 4551 if (UsedIdxs.insert(Idx).second) 4552 UniqueIdxs.emplace_back(Pos); 4553 ++Pos; 4554 } 4555 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4556 } 4557 return V; 4558 } 4559 } 4560 } 4561 4562 // Check that every instruction appears once in this bundle. 4563 SmallVector<int, 4> ReuseShuffleIndicies; 4564 SmallVector<Value *, 4> UniqueValues; 4565 if (VL.size() > 2) { 4566 DenseMap<Value *, unsigned> UniquePositions; 4567 for (Value *V : VL) { 4568 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4569 ReuseShuffleIndicies.emplace_back(Res.first->second); 4570 if (Res.second || isa<Constant>(V)) 4571 UniqueValues.emplace_back(V); 4572 } 4573 // Do not shuffle single element or if number of unique values is not power 4574 // of 2. 4575 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4576 !llvm::isPowerOf2_32(UniqueValues.size())) 4577 ReuseShuffleIndicies.clear(); 4578 else 4579 VL = UniqueValues; 4580 } 4581 4582 Value *Vec = gather(VL); 4583 if (!ReuseShuffleIndicies.empty()) { 4584 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4585 if (auto *I = dyn_cast<Instruction>(Vec)) { 4586 GatherSeq.insert(I); 4587 CSEBlocks.insert(I->getParent()); 4588 } 4589 } 4590 return Vec; 4591 } 4592 4593 namespace { 4594 /// Merges shuffle masks and emits final shuffle instruction, if required. 4595 class ShuffleInstructionBuilder { 4596 IRBuilderBase &Builder; 4597 bool IsFinalized = false; 4598 SmallVector<int, 4> Mask; 4599 4600 public: 4601 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4602 4603 /// Adds a mask, inverting it before applying. 4604 void addInversedMask(ArrayRef<unsigned> SubMask) { 4605 if (SubMask.empty()) 4606 return; 4607 SmallVector<int, 4> NewMask; 4608 inversePermutation(SubMask, NewMask); 4609 addMask(NewMask); 4610 } 4611 4612 /// Functions adds masks, merging them into single one. 4613 void addMask(ArrayRef<unsigned> SubMask) { 4614 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4615 addMask(NewMask); 4616 } 4617 4618 void addMask(ArrayRef<int> SubMask) { 4619 if (SubMask.empty()) 4620 return; 4621 if (Mask.empty()) { 4622 Mask.append(SubMask.begin(), SubMask.end()); 4623 return; 4624 } 4625 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4626 int TermValue = std::min(Mask.size(), SubMask.size()); 4627 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4628 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4629 NewMask[I] = E; 4630 continue; 4631 } 4632 NewMask[I] = Mask[SubMask[I]]; 4633 } 4634 Mask.swap(NewMask); 4635 } 4636 4637 Value *finalize(Value *V) { 4638 IsFinalized = true; 4639 if (Mask.empty()) 4640 return V; 4641 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4642 } 4643 4644 ~ShuffleInstructionBuilder() { 4645 assert((IsFinalized || Mask.empty()) && 4646 "Shuffle construction must be finalized."); 4647 } 4648 }; 4649 } // namespace 4650 4651 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4652 IRBuilder<>::InsertPointGuard Guard(Builder); 4653 4654 if (E->VectorizedValue) { 4655 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4656 return E->VectorizedValue; 4657 } 4658 4659 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4660 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4661 if (E->State == TreeEntry::NeedToGather) { 4662 setInsertPointAfterBundle(E); 4663 Value *Vec; 4664 SmallVector<int> Mask; 4665 SmallVector<const TreeEntry *> Entries; 4666 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4667 isGatherShuffledEntry(E, Mask, Entries); 4668 if (Shuffle.hasValue()) { 4669 assert((Entries.size() == 1 || Entries.size() == 2) && 4670 "Expected shuffle of 1 or 2 entries."); 4671 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 4672 Entries.back()->VectorizedValue, Mask); 4673 } else { 4674 Vec = gather(E->Scalars); 4675 } 4676 if (NeedToShuffleReuses) { 4677 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4678 Vec = ShuffleBuilder.finalize(Vec); 4679 if (auto *I = dyn_cast<Instruction>(Vec)) { 4680 GatherSeq.insert(I); 4681 CSEBlocks.insert(I->getParent()); 4682 } 4683 } 4684 E->VectorizedValue = Vec; 4685 return Vec; 4686 } 4687 4688 assert((E->State == TreeEntry::Vectorize || 4689 E->State == TreeEntry::ScatterVectorize) && 4690 "Unhandled state"); 4691 unsigned ShuffleOrOp = 4692 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4693 Instruction *VL0 = E->getMainOp(); 4694 Type *ScalarTy = VL0->getType(); 4695 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4696 ScalarTy = Store->getValueOperand()->getType(); 4697 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4698 switch (ShuffleOrOp) { 4699 case Instruction::PHI: { 4700 auto *PH = cast<PHINode>(VL0); 4701 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4702 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4703 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4704 Value *V = NewPhi; 4705 if (NeedToShuffleReuses) 4706 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4707 4708 E->VectorizedValue = V; 4709 4710 // PHINodes may have multiple entries from the same block. We want to 4711 // visit every block once. 4712 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4713 4714 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4715 ValueList Operands; 4716 BasicBlock *IBB = PH->getIncomingBlock(i); 4717 4718 if (!VisitedBBs.insert(IBB).second) { 4719 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4720 continue; 4721 } 4722 4723 Builder.SetInsertPoint(IBB->getTerminator()); 4724 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4725 Value *Vec = vectorizeTree(E->getOperand(i)); 4726 NewPhi->addIncoming(Vec, IBB); 4727 } 4728 4729 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4730 "Invalid number of incoming values"); 4731 return V; 4732 } 4733 4734 case Instruction::ExtractElement: { 4735 Value *V = E->getSingleOperand(0); 4736 Builder.SetInsertPoint(VL0); 4737 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4738 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4739 V = ShuffleBuilder.finalize(V); 4740 E->VectorizedValue = V; 4741 return V; 4742 } 4743 case Instruction::ExtractValue: { 4744 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4745 Builder.SetInsertPoint(LI); 4746 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4747 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4748 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4749 Value *NewV = propagateMetadata(V, E->Scalars); 4750 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4751 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4752 NewV = ShuffleBuilder.finalize(NewV); 4753 E->VectorizedValue = NewV; 4754 return NewV; 4755 } 4756 case Instruction::ZExt: 4757 case Instruction::SExt: 4758 case Instruction::FPToUI: 4759 case Instruction::FPToSI: 4760 case Instruction::FPExt: 4761 case Instruction::PtrToInt: 4762 case Instruction::IntToPtr: 4763 case Instruction::SIToFP: 4764 case Instruction::UIToFP: 4765 case Instruction::Trunc: 4766 case Instruction::FPTrunc: 4767 case Instruction::BitCast: { 4768 setInsertPointAfterBundle(E); 4769 4770 Value *InVec = vectorizeTree(E->getOperand(0)); 4771 4772 if (E->VectorizedValue) { 4773 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4774 return E->VectorizedValue; 4775 } 4776 4777 auto *CI = cast<CastInst>(VL0); 4778 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4779 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4780 V = ShuffleBuilder.finalize(V); 4781 4782 E->VectorizedValue = V; 4783 ++NumVectorInstructions; 4784 return V; 4785 } 4786 case Instruction::FCmp: 4787 case Instruction::ICmp: { 4788 setInsertPointAfterBundle(E); 4789 4790 Value *L = vectorizeTree(E->getOperand(0)); 4791 Value *R = vectorizeTree(E->getOperand(1)); 4792 4793 if (E->VectorizedValue) { 4794 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4795 return E->VectorizedValue; 4796 } 4797 4798 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4799 Value *V = Builder.CreateCmp(P0, L, R); 4800 propagateIRFlags(V, E->Scalars, VL0); 4801 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4802 V = ShuffleBuilder.finalize(V); 4803 4804 E->VectorizedValue = V; 4805 ++NumVectorInstructions; 4806 return V; 4807 } 4808 case Instruction::Select: { 4809 setInsertPointAfterBundle(E); 4810 4811 Value *Cond = vectorizeTree(E->getOperand(0)); 4812 Value *True = vectorizeTree(E->getOperand(1)); 4813 Value *False = vectorizeTree(E->getOperand(2)); 4814 4815 if (E->VectorizedValue) { 4816 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4817 return E->VectorizedValue; 4818 } 4819 4820 Value *V = Builder.CreateSelect(Cond, True, False); 4821 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4822 V = ShuffleBuilder.finalize(V); 4823 4824 E->VectorizedValue = V; 4825 ++NumVectorInstructions; 4826 return V; 4827 } 4828 case Instruction::FNeg: { 4829 setInsertPointAfterBundle(E); 4830 4831 Value *Op = vectorizeTree(E->getOperand(0)); 4832 4833 if (E->VectorizedValue) { 4834 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4835 return E->VectorizedValue; 4836 } 4837 4838 Value *V = Builder.CreateUnOp( 4839 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4840 propagateIRFlags(V, E->Scalars, VL0); 4841 if (auto *I = dyn_cast<Instruction>(V)) 4842 V = propagateMetadata(I, E->Scalars); 4843 4844 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4845 V = ShuffleBuilder.finalize(V); 4846 4847 E->VectorizedValue = V; 4848 ++NumVectorInstructions; 4849 4850 return V; 4851 } 4852 case Instruction::Add: 4853 case Instruction::FAdd: 4854 case Instruction::Sub: 4855 case Instruction::FSub: 4856 case Instruction::Mul: 4857 case Instruction::FMul: 4858 case Instruction::UDiv: 4859 case Instruction::SDiv: 4860 case Instruction::FDiv: 4861 case Instruction::URem: 4862 case Instruction::SRem: 4863 case Instruction::FRem: 4864 case Instruction::Shl: 4865 case Instruction::LShr: 4866 case Instruction::AShr: 4867 case Instruction::And: 4868 case Instruction::Or: 4869 case Instruction::Xor: { 4870 setInsertPointAfterBundle(E); 4871 4872 Value *LHS = vectorizeTree(E->getOperand(0)); 4873 Value *RHS = vectorizeTree(E->getOperand(1)); 4874 4875 if (E->VectorizedValue) { 4876 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4877 return E->VectorizedValue; 4878 } 4879 4880 Value *V = Builder.CreateBinOp( 4881 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4882 RHS); 4883 propagateIRFlags(V, E->Scalars, VL0); 4884 if (auto *I = dyn_cast<Instruction>(V)) 4885 V = propagateMetadata(I, E->Scalars); 4886 4887 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4888 V = ShuffleBuilder.finalize(V); 4889 4890 E->VectorizedValue = V; 4891 ++NumVectorInstructions; 4892 4893 return V; 4894 } 4895 case Instruction::Load: { 4896 // Loads are inserted at the head of the tree because we don't want to 4897 // sink them all the way down past store instructions. 4898 bool IsReorder = E->updateStateIfReorder(); 4899 if (IsReorder) 4900 VL0 = E->getMainOp(); 4901 setInsertPointAfterBundle(E); 4902 4903 LoadInst *LI = cast<LoadInst>(VL0); 4904 Instruction *NewLI; 4905 unsigned AS = LI->getPointerAddressSpace(); 4906 Value *PO = LI->getPointerOperand(); 4907 if (E->State == TreeEntry::Vectorize) { 4908 4909 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4910 4911 // The pointer operand uses an in-tree scalar so we add the new BitCast 4912 // to ExternalUses list to make sure that an extract will be generated 4913 // in the future. 4914 if (getTreeEntry(PO)) 4915 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4916 4917 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4918 } else { 4919 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4920 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4921 // Use the minimum alignment of the gathered loads. 4922 Align CommonAlignment = LI->getAlign(); 4923 for (Value *V : E->Scalars) 4924 CommonAlignment = 4925 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4926 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4927 } 4928 Value *V = propagateMetadata(NewLI, E->Scalars); 4929 4930 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4931 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4932 V = ShuffleBuilder.finalize(V); 4933 E->VectorizedValue = V; 4934 ++NumVectorInstructions; 4935 return V; 4936 } 4937 case Instruction::Store: { 4938 bool IsReorder = !E->ReorderIndices.empty(); 4939 auto *SI = cast<StoreInst>( 4940 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4941 unsigned AS = SI->getPointerAddressSpace(); 4942 4943 setInsertPointAfterBundle(E); 4944 4945 Value *VecValue = vectorizeTree(E->getOperand(0)); 4946 ShuffleBuilder.addMask(E->ReorderIndices); 4947 VecValue = ShuffleBuilder.finalize(VecValue); 4948 4949 Value *ScalarPtr = SI->getPointerOperand(); 4950 Value *VecPtr = Builder.CreateBitCast( 4951 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4952 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4953 SI->getAlign()); 4954 4955 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4956 // ExternalUses to make sure that an extract will be generated in the 4957 // future. 4958 if (getTreeEntry(ScalarPtr)) 4959 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4960 4961 Value *V = propagateMetadata(ST, E->Scalars); 4962 4963 E->VectorizedValue = V; 4964 ++NumVectorInstructions; 4965 return V; 4966 } 4967 case Instruction::GetElementPtr: { 4968 setInsertPointAfterBundle(E); 4969 4970 Value *Op0 = vectorizeTree(E->getOperand(0)); 4971 4972 std::vector<Value *> OpVecs; 4973 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4974 ++j) { 4975 ValueList &VL = E->getOperand(j); 4976 // Need to cast all elements to the same type before vectorization to 4977 // avoid crash. 4978 Type *VL0Ty = VL0->getOperand(j)->getType(); 4979 Type *Ty = llvm::all_of( 4980 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4981 ? VL0Ty 4982 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4983 ->getPointerOperandType() 4984 ->getScalarType()); 4985 for (Value *&V : VL) { 4986 auto *CI = cast<ConstantInt>(V); 4987 V = ConstantExpr::getIntegerCast(CI, Ty, 4988 CI->getValue().isSignBitSet()); 4989 } 4990 Value *OpVec = vectorizeTree(VL); 4991 OpVecs.push_back(OpVec); 4992 } 4993 4994 Value *V = Builder.CreateGEP( 4995 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4996 if (Instruction *I = dyn_cast<Instruction>(V)) 4997 V = propagateMetadata(I, E->Scalars); 4998 4999 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5000 V = ShuffleBuilder.finalize(V); 5001 5002 E->VectorizedValue = V; 5003 ++NumVectorInstructions; 5004 5005 return V; 5006 } 5007 case Instruction::Call: { 5008 CallInst *CI = cast<CallInst>(VL0); 5009 setInsertPointAfterBundle(E); 5010 5011 Intrinsic::ID IID = Intrinsic::not_intrinsic; 5012 if (Function *FI = CI->getCalledFunction()) 5013 IID = FI->getIntrinsicID(); 5014 5015 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5016 5017 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5018 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 5019 VecCallCosts.first <= VecCallCosts.second; 5020 5021 Value *ScalarArg = nullptr; 5022 std::vector<Value *> OpVecs; 5023 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 5024 ValueList OpVL; 5025 // Some intrinsics have scalar arguments. This argument should not be 5026 // vectorized. 5027 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 5028 CallInst *CEI = cast<CallInst>(VL0); 5029 ScalarArg = CEI->getArgOperand(j); 5030 OpVecs.push_back(CEI->getArgOperand(j)); 5031 continue; 5032 } 5033 5034 Value *OpVec = vectorizeTree(E->getOperand(j)); 5035 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 5036 OpVecs.push_back(OpVec); 5037 } 5038 5039 Function *CF; 5040 if (!UseIntrinsic) { 5041 VFShape Shape = 5042 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5043 VecTy->getNumElements())), 5044 false /*HasGlobalPred*/); 5045 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 5046 } else { 5047 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 5048 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 5049 } 5050 5051 SmallVector<OperandBundleDef, 1> OpBundles; 5052 CI->getOperandBundlesAsDefs(OpBundles); 5053 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 5054 5055 // The scalar argument uses an in-tree scalar so we add the new vectorized 5056 // call to ExternalUses list to make sure that an extract will be 5057 // generated in the future. 5058 if (ScalarArg && getTreeEntry(ScalarArg)) 5059 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5060 5061 propagateIRFlags(V, E->Scalars, VL0); 5062 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5063 V = ShuffleBuilder.finalize(V); 5064 5065 E->VectorizedValue = V; 5066 ++NumVectorInstructions; 5067 return V; 5068 } 5069 case Instruction::ShuffleVector: { 5070 assert(E->isAltShuffle() && 5071 ((Instruction::isBinaryOp(E->getOpcode()) && 5072 Instruction::isBinaryOp(E->getAltOpcode())) || 5073 (Instruction::isCast(E->getOpcode()) && 5074 Instruction::isCast(E->getAltOpcode()))) && 5075 "Invalid Shuffle Vector Operand"); 5076 5077 Value *LHS = nullptr, *RHS = nullptr; 5078 if (Instruction::isBinaryOp(E->getOpcode())) { 5079 setInsertPointAfterBundle(E); 5080 LHS = vectorizeTree(E->getOperand(0)); 5081 RHS = vectorizeTree(E->getOperand(1)); 5082 } else { 5083 setInsertPointAfterBundle(E); 5084 LHS = vectorizeTree(E->getOperand(0)); 5085 } 5086 5087 if (E->VectorizedValue) { 5088 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5089 return E->VectorizedValue; 5090 } 5091 5092 Value *V0, *V1; 5093 if (Instruction::isBinaryOp(E->getOpcode())) { 5094 V0 = Builder.CreateBinOp( 5095 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5096 V1 = Builder.CreateBinOp( 5097 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5098 } else { 5099 V0 = Builder.CreateCast( 5100 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5101 V1 = Builder.CreateCast( 5102 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5103 } 5104 5105 // Create shuffle to take alternate operations from the vector. 5106 // Also, gather up main and alt scalar ops to propagate IR flags to 5107 // each vector operation. 5108 ValueList OpScalars, AltScalars; 5109 unsigned e = E->Scalars.size(); 5110 SmallVector<int, 8> Mask(e); 5111 for (unsigned i = 0; i < e; ++i) { 5112 auto *OpInst = cast<Instruction>(E->Scalars[i]); 5113 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5114 if (OpInst->getOpcode() == E->getAltOpcode()) { 5115 Mask[i] = e + i; 5116 AltScalars.push_back(E->Scalars[i]); 5117 } else { 5118 Mask[i] = i; 5119 OpScalars.push_back(E->Scalars[i]); 5120 } 5121 } 5122 5123 propagateIRFlags(V0, OpScalars); 5124 propagateIRFlags(V1, AltScalars); 5125 5126 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5127 if (Instruction *I = dyn_cast<Instruction>(V)) 5128 V = propagateMetadata(I, E->Scalars); 5129 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5130 V = ShuffleBuilder.finalize(V); 5131 5132 E->VectorizedValue = V; 5133 ++NumVectorInstructions; 5134 5135 return V; 5136 } 5137 default: 5138 llvm_unreachable("unknown inst"); 5139 } 5140 return nullptr; 5141 } 5142 5143 Value *BoUpSLP::vectorizeTree() { 5144 ExtraValueToDebugLocsMap ExternallyUsedValues; 5145 return vectorizeTree(ExternallyUsedValues); 5146 } 5147 5148 Value * 5149 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5150 // All blocks must be scheduled before any instructions are inserted. 5151 for (auto &BSIter : BlocksSchedules) { 5152 scheduleBlock(BSIter.second.get()); 5153 } 5154 5155 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5156 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5157 5158 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5159 // vectorized root. InstCombine will then rewrite the entire expression. We 5160 // sign extend the extracted values below. 5161 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5162 if (MinBWs.count(ScalarRoot)) { 5163 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5164 // If current instr is a phi and not the last phi, insert it after the 5165 // last phi node. 5166 if (isa<PHINode>(I)) 5167 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5168 else 5169 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5170 } 5171 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5172 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5173 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5174 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5175 VectorizableTree[0]->VectorizedValue = Trunc; 5176 } 5177 5178 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5179 << " values .\n"); 5180 5181 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 5182 // specified by ScalarType. 5183 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 5184 if (!MinBWs.count(ScalarRoot)) 5185 return Ex; 5186 if (MinBWs[ScalarRoot].second) 5187 return Builder.CreateSExt(Ex, ScalarType); 5188 return Builder.CreateZExt(Ex, ScalarType); 5189 }; 5190 5191 // Extract all of the elements with the external uses. 5192 for (const auto &ExternalUse : ExternalUses) { 5193 Value *Scalar = ExternalUse.Scalar; 5194 llvm::User *User = ExternalUse.User; 5195 5196 // Skip users that we already RAUW. This happens when one instruction 5197 // has multiple uses of the same value. 5198 if (User && !is_contained(Scalar->users(), User)) 5199 continue; 5200 TreeEntry *E = getTreeEntry(Scalar); 5201 assert(E && "Invalid scalar"); 5202 assert(E->State != TreeEntry::NeedToGather && 5203 "Extracting from a gather list"); 5204 5205 Value *Vec = E->VectorizedValue; 5206 assert(Vec && "Can't find vectorizable value"); 5207 5208 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5209 // If User == nullptr, the Scalar is used as extra arg. Generate 5210 // ExtractElement instruction and update the record for this scalar in 5211 // ExternallyUsedValues. 5212 if (!User) { 5213 assert(ExternallyUsedValues.count(Scalar) && 5214 "Scalar with nullptr as an external user must be registered in " 5215 "ExternallyUsedValues map"); 5216 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5217 Builder.SetInsertPoint(VecI->getParent(), 5218 std::next(VecI->getIterator())); 5219 } else { 5220 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5221 } 5222 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5223 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5224 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5225 auto &Locs = ExternallyUsedValues[Scalar]; 5226 ExternallyUsedValues.insert({Ex, Locs}); 5227 ExternallyUsedValues.erase(Scalar); 5228 // Required to update internally referenced instructions. 5229 Scalar->replaceAllUsesWith(Ex); 5230 continue; 5231 } 5232 5233 // Generate extracts for out-of-tree users. 5234 // Find the insertion point for the extractelement lane. 5235 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5236 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5237 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5238 if (PH->getIncomingValue(i) == Scalar) { 5239 Instruction *IncomingTerminator = 5240 PH->getIncomingBlock(i)->getTerminator(); 5241 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5242 Builder.SetInsertPoint(VecI->getParent(), 5243 std::next(VecI->getIterator())); 5244 } else { 5245 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5246 } 5247 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5248 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5249 CSEBlocks.insert(PH->getIncomingBlock(i)); 5250 PH->setOperand(i, Ex); 5251 } 5252 } 5253 } else { 5254 Builder.SetInsertPoint(cast<Instruction>(User)); 5255 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5256 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5257 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5258 User->replaceUsesOfWith(Scalar, Ex); 5259 } 5260 } else { 5261 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5262 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5263 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5264 CSEBlocks.insert(&F->getEntryBlock()); 5265 User->replaceUsesOfWith(Scalar, Ex); 5266 } 5267 5268 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5269 } 5270 5271 // For each vectorized value: 5272 for (auto &TEPtr : VectorizableTree) { 5273 TreeEntry *Entry = TEPtr.get(); 5274 5275 // No need to handle users of gathered values. 5276 if (Entry->State == TreeEntry::NeedToGather) 5277 continue; 5278 5279 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5280 5281 // For each lane: 5282 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5283 Value *Scalar = Entry->Scalars[Lane]; 5284 5285 #ifndef NDEBUG 5286 Type *Ty = Scalar->getType(); 5287 if (!Ty->isVoidTy()) { 5288 for (User *U : Scalar->users()) { 5289 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5290 5291 // It is legal to delete users in the ignorelist. 5292 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5293 "Deleting out-of-tree value"); 5294 } 5295 } 5296 #endif 5297 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5298 eraseInstruction(cast<Instruction>(Scalar)); 5299 } 5300 } 5301 5302 Builder.ClearInsertionPoint(); 5303 InstrElementSize.clear(); 5304 5305 return VectorizableTree[0]->VectorizedValue; 5306 } 5307 5308 void BoUpSLP::optimizeGatherSequence() { 5309 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5310 << " gather sequences instructions.\n"); 5311 // LICM InsertElementInst sequences. 5312 for (Instruction *I : GatherSeq) { 5313 if (isDeleted(I)) 5314 continue; 5315 5316 // Check if this block is inside a loop. 5317 Loop *L = LI->getLoopFor(I->getParent()); 5318 if (!L) 5319 continue; 5320 5321 // Check if it has a preheader. 5322 BasicBlock *PreHeader = L->getLoopPreheader(); 5323 if (!PreHeader) 5324 continue; 5325 5326 // If the vector or the element that we insert into it are 5327 // instructions that are defined in this basic block then we can't 5328 // hoist this instruction. 5329 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5330 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5331 if (Op0 && L->contains(Op0)) 5332 continue; 5333 if (Op1 && L->contains(Op1)) 5334 continue; 5335 5336 // We can hoist this instruction. Move it to the pre-header. 5337 I->moveBefore(PreHeader->getTerminator()); 5338 } 5339 5340 // Make a list of all reachable blocks in our CSE queue. 5341 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5342 CSEWorkList.reserve(CSEBlocks.size()); 5343 for (BasicBlock *BB : CSEBlocks) 5344 if (DomTreeNode *N = DT->getNode(BB)) { 5345 assert(DT->isReachableFromEntry(N)); 5346 CSEWorkList.push_back(N); 5347 } 5348 5349 // Sort blocks by domination. This ensures we visit a block after all blocks 5350 // dominating it are visited. 5351 llvm::stable_sort(CSEWorkList, 5352 [this](const DomTreeNode *A, const DomTreeNode *B) { 5353 return DT->properlyDominates(A, B); 5354 }); 5355 5356 // Perform O(N^2) search over the gather sequences and merge identical 5357 // instructions. TODO: We can further optimize this scan if we split the 5358 // instructions into different buckets based on the insert lane. 5359 SmallVector<Instruction *, 16> Visited; 5360 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5361 assert(*I && 5362 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5363 "Worklist not sorted properly!"); 5364 BasicBlock *BB = (*I)->getBlock(); 5365 // For all instructions in blocks containing gather sequences: 5366 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5367 Instruction *In = &*it++; 5368 if (isDeleted(In)) 5369 continue; 5370 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5371 continue; 5372 5373 // Check if we can replace this instruction with any of the 5374 // visited instructions. 5375 for (Instruction *v : Visited) { 5376 if (In->isIdenticalTo(v) && 5377 DT->dominates(v->getParent(), In->getParent())) { 5378 In->replaceAllUsesWith(v); 5379 eraseInstruction(In); 5380 In = nullptr; 5381 break; 5382 } 5383 } 5384 if (In) { 5385 assert(!is_contained(Visited, In)); 5386 Visited.push_back(In); 5387 } 5388 } 5389 } 5390 CSEBlocks.clear(); 5391 GatherSeq.clear(); 5392 } 5393 5394 // Groups the instructions to a bundle (which is then a single scheduling entity) 5395 // and schedules instructions until the bundle gets ready. 5396 Optional<BoUpSLP::ScheduleData *> 5397 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5398 const InstructionsState &S) { 5399 if (isa<PHINode>(S.OpValue)) 5400 return nullptr; 5401 5402 // Initialize the instruction bundle. 5403 Instruction *OldScheduleEnd = ScheduleEnd; 5404 ScheduleData *PrevInBundle = nullptr; 5405 ScheduleData *Bundle = nullptr; 5406 bool ReSchedule = false; 5407 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5408 5409 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5410 ScheduleData *Bundle) { 5411 // The scheduling region got new instructions at the lower end (or it is a 5412 // new region for the first bundle). This makes it necessary to 5413 // recalculate all dependencies. 5414 // It is seldom that this needs to be done a second time after adding the 5415 // initial bundle to the region. 5416 if (ScheduleEnd != OldScheduleEnd) { 5417 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5418 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5419 ReSchedule = true; 5420 } 5421 if (ReSchedule) { 5422 resetSchedule(); 5423 initialFillReadyList(ReadyInsts); 5424 } 5425 if (Bundle) { 5426 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5427 << " in block " << BB->getName() << "\n"); 5428 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5429 } 5430 5431 // Now try to schedule the new bundle or (if no bundle) just calculate 5432 // dependencies. As soon as the bundle is "ready" it means that there are no 5433 // cyclic dependencies and we can schedule it. Note that's important that we 5434 // don't "schedule" the bundle yet (see cancelScheduling). 5435 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5436 !ReadyInsts.empty()) { 5437 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5438 if (Picked->isSchedulingEntity() && Picked->isReady()) 5439 schedule(Picked, ReadyInsts); 5440 } 5441 }; 5442 5443 // Make sure that the scheduling region contains all 5444 // instructions of the bundle. 5445 for (Value *V : VL) { 5446 if (!extendSchedulingRegion(V, S)) { 5447 // If the scheduling region got new instructions at the lower end (or it 5448 // is a new region for the first bundle). This makes it necessary to 5449 // recalculate all dependencies. 5450 // Otherwise the compiler may crash trying to incorrectly calculate 5451 // dependencies and emit instruction in the wrong order at the actual 5452 // scheduling. 5453 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5454 return None; 5455 } 5456 } 5457 5458 for (Value *V : VL) { 5459 ScheduleData *BundleMember = getScheduleData(V); 5460 assert(BundleMember && 5461 "no ScheduleData for bundle member (maybe not in same basic block)"); 5462 if (BundleMember->IsScheduled) { 5463 // A bundle member was scheduled as single instruction before and now 5464 // needs to be scheduled as part of the bundle. We just get rid of the 5465 // existing schedule. 5466 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5467 << " was already scheduled\n"); 5468 ReSchedule = true; 5469 } 5470 assert(BundleMember->isSchedulingEntity() && 5471 "bundle member already part of other bundle"); 5472 if (PrevInBundle) { 5473 PrevInBundle->NextInBundle = BundleMember; 5474 } else { 5475 Bundle = BundleMember; 5476 } 5477 BundleMember->UnscheduledDepsInBundle = 0; 5478 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5479 5480 // Group the instructions to a bundle. 5481 BundleMember->FirstInBundle = Bundle; 5482 PrevInBundle = BundleMember; 5483 } 5484 assert(Bundle && "Failed to find schedule bundle"); 5485 TryScheduleBundle(ReSchedule, Bundle); 5486 if (!Bundle->isReady()) { 5487 cancelScheduling(VL, S.OpValue); 5488 return None; 5489 } 5490 return Bundle; 5491 } 5492 5493 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5494 Value *OpValue) { 5495 if (isa<PHINode>(OpValue)) 5496 return; 5497 5498 ScheduleData *Bundle = getScheduleData(OpValue); 5499 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5500 assert(!Bundle->IsScheduled && 5501 "Can't cancel bundle which is already scheduled"); 5502 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5503 "tried to unbundle something which is not a bundle"); 5504 5505 // Un-bundle: make single instructions out of the bundle. 5506 ScheduleData *BundleMember = Bundle; 5507 while (BundleMember) { 5508 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5509 BundleMember->FirstInBundle = BundleMember; 5510 ScheduleData *Next = BundleMember->NextInBundle; 5511 BundleMember->NextInBundle = nullptr; 5512 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5513 if (BundleMember->UnscheduledDepsInBundle == 0) { 5514 ReadyInsts.insert(BundleMember); 5515 } 5516 BundleMember = Next; 5517 } 5518 } 5519 5520 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5521 // Allocate a new ScheduleData for the instruction. 5522 if (ChunkPos >= ChunkSize) { 5523 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5524 ChunkPos = 0; 5525 } 5526 return &(ScheduleDataChunks.back()[ChunkPos++]); 5527 } 5528 5529 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5530 const InstructionsState &S) { 5531 if (getScheduleData(V, isOneOf(S, V))) 5532 return true; 5533 Instruction *I = dyn_cast<Instruction>(V); 5534 assert(I && "bundle member must be an instruction"); 5535 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5536 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5537 ScheduleData *ISD = getScheduleData(I); 5538 if (!ISD) 5539 return false; 5540 assert(isInSchedulingRegion(ISD) && 5541 "ScheduleData not in scheduling region"); 5542 ScheduleData *SD = allocateScheduleDataChunks(); 5543 SD->Inst = I; 5544 SD->init(SchedulingRegionID, S.OpValue); 5545 ExtraScheduleDataMap[I][S.OpValue] = SD; 5546 return true; 5547 }; 5548 if (CheckSheduleForI(I)) 5549 return true; 5550 if (!ScheduleStart) { 5551 // It's the first instruction in the new region. 5552 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5553 ScheduleStart = I; 5554 ScheduleEnd = I->getNextNode(); 5555 if (isOneOf(S, I) != I) 5556 CheckSheduleForI(I); 5557 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5558 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5559 return true; 5560 } 5561 // Search up and down at the same time, because we don't know if the new 5562 // instruction is above or below the existing scheduling region. 5563 BasicBlock::reverse_iterator UpIter = 5564 ++ScheduleStart->getIterator().getReverse(); 5565 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5566 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5567 BasicBlock::iterator LowerEnd = BB->end(); 5568 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 5569 &*DownIter != I) { 5570 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5571 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5572 return false; 5573 } 5574 5575 ++UpIter; 5576 ++DownIter; 5577 } 5578 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 5579 assert(I->getParent() == ScheduleStart->getParent() && 5580 "Instruction is in wrong basic block."); 5581 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5582 ScheduleStart = I; 5583 if (isOneOf(S, I) != I) 5584 CheckSheduleForI(I); 5585 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5586 << "\n"); 5587 return true; 5588 } 5589 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 5590 "Expected to reach top of the basic block or instruction down the " 5591 "lower end."); 5592 assert(I->getParent() == ScheduleEnd->getParent() && 5593 "Instruction is in wrong basic block."); 5594 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5595 nullptr); 5596 ScheduleEnd = I->getNextNode(); 5597 if (isOneOf(S, I) != I) 5598 CheckSheduleForI(I); 5599 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5600 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 5601 return true; 5602 } 5603 5604 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5605 Instruction *ToI, 5606 ScheduleData *PrevLoadStore, 5607 ScheduleData *NextLoadStore) { 5608 ScheduleData *CurrentLoadStore = PrevLoadStore; 5609 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5610 ScheduleData *SD = ScheduleDataMap[I]; 5611 if (!SD) { 5612 SD = allocateScheduleDataChunks(); 5613 ScheduleDataMap[I] = SD; 5614 SD->Inst = I; 5615 } 5616 assert(!isInSchedulingRegion(SD) && 5617 "new ScheduleData already in scheduling region"); 5618 SD->init(SchedulingRegionID, I); 5619 5620 if (I->mayReadOrWriteMemory() && 5621 (!isa<IntrinsicInst>(I) || 5622 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5623 cast<IntrinsicInst>(I)->getIntrinsicID() != 5624 Intrinsic::pseudoprobe))) { 5625 // Update the linked list of memory accessing instructions. 5626 if (CurrentLoadStore) { 5627 CurrentLoadStore->NextLoadStore = SD; 5628 } else { 5629 FirstLoadStoreInRegion = SD; 5630 } 5631 CurrentLoadStore = SD; 5632 } 5633 } 5634 if (NextLoadStore) { 5635 if (CurrentLoadStore) 5636 CurrentLoadStore->NextLoadStore = NextLoadStore; 5637 } else { 5638 LastLoadStoreInRegion = CurrentLoadStore; 5639 } 5640 } 5641 5642 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5643 bool InsertInReadyList, 5644 BoUpSLP *SLP) { 5645 assert(SD->isSchedulingEntity()); 5646 5647 SmallVector<ScheduleData *, 10> WorkList; 5648 WorkList.push_back(SD); 5649 5650 while (!WorkList.empty()) { 5651 ScheduleData *SD = WorkList.pop_back_val(); 5652 5653 ScheduleData *BundleMember = SD; 5654 while (BundleMember) { 5655 assert(isInSchedulingRegion(BundleMember)); 5656 if (!BundleMember->hasValidDependencies()) { 5657 5658 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5659 << "\n"); 5660 BundleMember->Dependencies = 0; 5661 BundleMember->resetUnscheduledDeps(); 5662 5663 // Handle def-use chain dependencies. 5664 if (BundleMember->OpValue != BundleMember->Inst) { 5665 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5666 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5667 BundleMember->Dependencies++; 5668 ScheduleData *DestBundle = UseSD->FirstInBundle; 5669 if (!DestBundle->IsScheduled) 5670 BundleMember->incrementUnscheduledDeps(1); 5671 if (!DestBundle->hasValidDependencies()) 5672 WorkList.push_back(DestBundle); 5673 } 5674 } else { 5675 for (User *U : BundleMember->Inst->users()) { 5676 if (isa<Instruction>(U)) { 5677 ScheduleData *UseSD = getScheduleData(U); 5678 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5679 BundleMember->Dependencies++; 5680 ScheduleData *DestBundle = UseSD->FirstInBundle; 5681 if (!DestBundle->IsScheduled) 5682 BundleMember->incrementUnscheduledDeps(1); 5683 if (!DestBundle->hasValidDependencies()) 5684 WorkList.push_back(DestBundle); 5685 } 5686 } else { 5687 // I'm not sure if this can ever happen. But we need to be safe. 5688 // This lets the instruction/bundle never be scheduled and 5689 // eventually disable vectorization. 5690 BundleMember->Dependencies++; 5691 BundleMember->incrementUnscheduledDeps(1); 5692 } 5693 } 5694 } 5695 5696 // Handle the memory dependencies. 5697 ScheduleData *DepDest = BundleMember->NextLoadStore; 5698 if (DepDest) { 5699 Instruction *SrcInst = BundleMember->Inst; 5700 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5701 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5702 unsigned numAliased = 0; 5703 unsigned DistToSrc = 1; 5704 5705 while (DepDest) { 5706 assert(isInSchedulingRegion(DepDest)); 5707 5708 // We have two limits to reduce the complexity: 5709 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5710 // SLP->isAliased (which is the expensive part in this loop). 5711 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5712 // the whole loop (even if the loop is fast, it's quadratic). 5713 // It's important for the loop break condition (see below) to 5714 // check this limit even between two read-only instructions. 5715 if (DistToSrc >= MaxMemDepDistance || 5716 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5717 (numAliased >= AliasedCheckLimit || 5718 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5719 5720 // We increment the counter only if the locations are aliased 5721 // (instead of counting all alias checks). This gives a better 5722 // balance between reduced runtime and accurate dependencies. 5723 numAliased++; 5724 5725 DepDest->MemoryDependencies.push_back(BundleMember); 5726 BundleMember->Dependencies++; 5727 ScheduleData *DestBundle = DepDest->FirstInBundle; 5728 if (!DestBundle->IsScheduled) { 5729 BundleMember->incrementUnscheduledDeps(1); 5730 } 5731 if (!DestBundle->hasValidDependencies()) { 5732 WorkList.push_back(DestBundle); 5733 } 5734 } 5735 DepDest = DepDest->NextLoadStore; 5736 5737 // Example, explaining the loop break condition: Let's assume our 5738 // starting instruction is i0 and MaxMemDepDistance = 3. 5739 // 5740 // +--------v--v--v 5741 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5742 // +--------^--^--^ 5743 // 5744 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5745 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5746 // Previously we already added dependencies from i3 to i6,i7,i8 5747 // (because of MaxMemDepDistance). As we added a dependency from 5748 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5749 // and we can abort this loop at i6. 5750 if (DistToSrc >= 2 * MaxMemDepDistance) 5751 break; 5752 DistToSrc++; 5753 } 5754 } 5755 } 5756 BundleMember = BundleMember->NextInBundle; 5757 } 5758 if (InsertInReadyList && SD->isReady()) { 5759 ReadyInsts.push_back(SD); 5760 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5761 << "\n"); 5762 } 5763 } 5764 } 5765 5766 void BoUpSLP::BlockScheduling::resetSchedule() { 5767 assert(ScheduleStart && 5768 "tried to reset schedule on block which has not been scheduled"); 5769 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5770 doForAllOpcodes(I, [&](ScheduleData *SD) { 5771 assert(isInSchedulingRegion(SD) && 5772 "ScheduleData not in scheduling region"); 5773 SD->IsScheduled = false; 5774 SD->resetUnscheduledDeps(); 5775 }); 5776 } 5777 ReadyInsts.clear(); 5778 } 5779 5780 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5781 if (!BS->ScheduleStart) 5782 return; 5783 5784 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5785 5786 BS->resetSchedule(); 5787 5788 // For the real scheduling we use a more sophisticated ready-list: it is 5789 // sorted by the original instruction location. This lets the final schedule 5790 // be as close as possible to the original instruction order. 5791 struct ScheduleDataCompare { 5792 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5793 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5794 } 5795 }; 5796 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5797 5798 // Ensure that all dependency data is updated and fill the ready-list with 5799 // initial instructions. 5800 int Idx = 0; 5801 int NumToSchedule = 0; 5802 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5803 I = I->getNextNode()) { 5804 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5805 assert(SD->isPartOfBundle() == 5806 (getTreeEntry(SD->Inst) != nullptr) && 5807 "scheduler and vectorizer bundle mismatch"); 5808 SD->FirstInBundle->SchedulingPriority = Idx++; 5809 if (SD->isSchedulingEntity()) { 5810 BS->calculateDependencies(SD, false, this); 5811 NumToSchedule++; 5812 } 5813 }); 5814 } 5815 BS->initialFillReadyList(ReadyInsts); 5816 5817 Instruction *LastScheduledInst = BS->ScheduleEnd; 5818 5819 // Do the "real" scheduling. 5820 while (!ReadyInsts.empty()) { 5821 ScheduleData *picked = *ReadyInsts.begin(); 5822 ReadyInsts.erase(ReadyInsts.begin()); 5823 5824 // Move the scheduled instruction(s) to their dedicated places, if not 5825 // there yet. 5826 ScheduleData *BundleMember = picked; 5827 while (BundleMember) { 5828 Instruction *pickedInst = BundleMember->Inst; 5829 if (LastScheduledInst->getNextNode() != pickedInst) { 5830 BS->BB->getInstList().remove(pickedInst); 5831 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5832 pickedInst); 5833 } 5834 LastScheduledInst = pickedInst; 5835 BundleMember = BundleMember->NextInBundle; 5836 } 5837 5838 BS->schedule(picked, ReadyInsts); 5839 NumToSchedule--; 5840 } 5841 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5842 5843 // Avoid duplicate scheduling of the block. 5844 BS->ScheduleStart = nullptr; 5845 } 5846 5847 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5848 // If V is a store, just return the width of the stored value (or value 5849 // truncated just before storing) without traversing the expression tree. 5850 // This is the common case. 5851 if (auto *Store = dyn_cast<StoreInst>(V)) { 5852 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5853 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5854 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5855 } 5856 5857 auto E = InstrElementSize.find(V); 5858 if (E != InstrElementSize.end()) 5859 return E->second; 5860 5861 // If V is not a store, we can traverse the expression tree to find loads 5862 // that feed it. The type of the loaded value may indicate a more suitable 5863 // width than V's type. We want to base the vector element size on the width 5864 // of memory operations where possible. 5865 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 5866 SmallPtrSet<Instruction *, 16> Visited; 5867 if (auto *I = dyn_cast<Instruction>(V)) { 5868 Worklist.emplace_back(I, I->getParent()); 5869 Visited.insert(I); 5870 } 5871 5872 // Traverse the expression tree in bottom-up order looking for loads. If we 5873 // encounter an instruction we don't yet handle, we give up. 5874 auto Width = 0u; 5875 while (!Worklist.empty()) { 5876 Instruction *I; 5877 BasicBlock *Parent; 5878 std::tie(I, Parent) = Worklist.pop_back_val(); 5879 5880 // We should only be looking at scalar instructions here. If the current 5881 // instruction has a vector type, skip. 5882 auto *Ty = I->getType(); 5883 if (isa<VectorType>(Ty)) 5884 continue; 5885 5886 // If the current instruction is a load, update MaxWidth to reflect the 5887 // width of the loaded value. 5888 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 5889 isa<ExtractValueInst>(I)) 5890 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 5891 5892 // Otherwise, we need to visit the operands of the instruction. We only 5893 // handle the interesting cases from buildTree here. If an operand is an 5894 // instruction we haven't yet visited and from the same basic block as the 5895 // user or the use is a PHI node, we add it to the worklist. 5896 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5897 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 5898 isa<UnaryOperator>(I)) { 5899 for (Use &U : I->operands()) 5900 if (auto *J = dyn_cast<Instruction>(U.get())) 5901 if (Visited.insert(J).second && 5902 (isa<PHINode>(I) || J->getParent() == Parent)) 5903 Worklist.emplace_back(J, J->getParent()); 5904 } else { 5905 break; 5906 } 5907 } 5908 5909 // If we didn't encounter a memory access in the expression tree, or if we 5910 // gave up for some reason, just return the width of V. Otherwise, return the 5911 // maximum width we found. 5912 if (!Width) { 5913 if (auto *CI = dyn_cast<CmpInst>(V)) 5914 V = CI->getOperand(0); 5915 Width = DL->getTypeSizeInBits(V->getType()); 5916 } 5917 5918 for (Instruction *I : Visited) 5919 InstrElementSize[I] = Width; 5920 5921 return Width; 5922 } 5923 5924 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5925 // smaller type with a truncation. We collect the values that will be demoted 5926 // in ToDemote and additional roots that require investigating in Roots. 5927 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5928 SmallVectorImpl<Value *> &ToDemote, 5929 SmallVectorImpl<Value *> &Roots) { 5930 // We can always demote constants. 5931 if (isa<Constant>(V)) { 5932 ToDemote.push_back(V); 5933 return true; 5934 } 5935 5936 // If the value is not an instruction in the expression with only one use, it 5937 // cannot be demoted. 5938 auto *I = dyn_cast<Instruction>(V); 5939 if (!I || !I->hasOneUse() || !Expr.count(I)) 5940 return false; 5941 5942 switch (I->getOpcode()) { 5943 5944 // We can always demote truncations and extensions. Since truncations can 5945 // seed additional demotion, we save the truncated value. 5946 case Instruction::Trunc: 5947 Roots.push_back(I->getOperand(0)); 5948 break; 5949 case Instruction::ZExt: 5950 case Instruction::SExt: 5951 break; 5952 5953 // We can demote certain binary operations if we can demote both of their 5954 // operands. 5955 case Instruction::Add: 5956 case Instruction::Sub: 5957 case Instruction::Mul: 5958 case Instruction::And: 5959 case Instruction::Or: 5960 case Instruction::Xor: 5961 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5962 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5963 return false; 5964 break; 5965 5966 // We can demote selects if we can demote their true and false values. 5967 case Instruction::Select: { 5968 SelectInst *SI = cast<SelectInst>(I); 5969 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5970 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5971 return false; 5972 break; 5973 } 5974 5975 // We can demote phis if we can demote all their incoming operands. Note that 5976 // we don't need to worry about cycles since we ensure single use above. 5977 case Instruction::PHI: { 5978 PHINode *PN = cast<PHINode>(I); 5979 for (Value *IncValue : PN->incoming_values()) 5980 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5981 return false; 5982 break; 5983 } 5984 5985 // Otherwise, conservatively give up. 5986 default: 5987 return false; 5988 } 5989 5990 // Record the value that we can demote. 5991 ToDemote.push_back(V); 5992 return true; 5993 } 5994 5995 void BoUpSLP::computeMinimumValueSizes() { 5996 // If there are no external uses, the expression tree must be rooted by a 5997 // store. We can't demote in-memory values, so there is nothing to do here. 5998 if (ExternalUses.empty()) 5999 return; 6000 6001 // We only attempt to truncate integer expressions. 6002 auto &TreeRoot = VectorizableTree[0]->Scalars; 6003 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 6004 if (!TreeRootIT) 6005 return; 6006 6007 // If the expression is not rooted by a store, these roots should have 6008 // external uses. We will rely on InstCombine to rewrite the expression in 6009 // the narrower type. However, InstCombine only rewrites single-use values. 6010 // This means that if a tree entry other than a root is used externally, it 6011 // must have multiple uses and InstCombine will not rewrite it. The code 6012 // below ensures that only the roots are used externally. 6013 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 6014 for (auto &EU : ExternalUses) 6015 if (!Expr.erase(EU.Scalar)) 6016 return; 6017 if (!Expr.empty()) 6018 return; 6019 6020 // Collect the scalar values of the vectorizable expression. We will use this 6021 // context to determine which values can be demoted. If we see a truncation, 6022 // we mark it as seeding another demotion. 6023 for (auto &EntryPtr : VectorizableTree) 6024 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 6025 6026 // Ensure the roots of the vectorizable tree don't form a cycle. They must 6027 // have a single external user that is not in the vectorizable tree. 6028 for (auto *Root : TreeRoot) 6029 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 6030 return; 6031 6032 // Conservatively determine if we can actually truncate the roots of the 6033 // expression. Collect the values that can be demoted in ToDemote and 6034 // additional roots that require investigating in Roots. 6035 SmallVector<Value *, 32> ToDemote; 6036 SmallVector<Value *, 4> Roots; 6037 for (auto *Root : TreeRoot) 6038 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 6039 return; 6040 6041 // The maximum bit width required to represent all the values that can be 6042 // demoted without loss of precision. It would be safe to truncate the roots 6043 // of the expression to this width. 6044 auto MaxBitWidth = 8u; 6045 6046 // We first check if all the bits of the roots are demanded. If they're not, 6047 // we can truncate the roots to this narrower type. 6048 for (auto *Root : TreeRoot) { 6049 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 6050 MaxBitWidth = std::max<unsigned>( 6051 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 6052 } 6053 6054 // True if the roots can be zero-extended back to their original type, rather 6055 // than sign-extended. We know that if the leading bits are not demanded, we 6056 // can safely zero-extend. So we initialize IsKnownPositive to True. 6057 bool IsKnownPositive = true; 6058 6059 // If all the bits of the roots are demanded, we can try a little harder to 6060 // compute a narrower type. This can happen, for example, if the roots are 6061 // getelementptr indices. InstCombine promotes these indices to the pointer 6062 // width. Thus, all their bits are technically demanded even though the 6063 // address computation might be vectorized in a smaller type. 6064 // 6065 // We start by looking at each entry that can be demoted. We compute the 6066 // maximum bit width required to store the scalar by using ValueTracking to 6067 // compute the number of high-order bits we can truncate. 6068 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6069 llvm::all_of(TreeRoot, [](Value *R) { 6070 assert(R->hasOneUse() && "Root should have only one use!"); 6071 return isa<GetElementPtrInst>(R->user_back()); 6072 })) { 6073 MaxBitWidth = 8u; 6074 6075 // Determine if the sign bit of all the roots is known to be zero. If not, 6076 // IsKnownPositive is set to False. 6077 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6078 KnownBits Known = computeKnownBits(R, *DL); 6079 return Known.isNonNegative(); 6080 }); 6081 6082 // Determine the maximum number of bits required to store the scalar 6083 // values. 6084 for (auto *Scalar : ToDemote) { 6085 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6086 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6087 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6088 } 6089 6090 // If we can't prove that the sign bit is zero, we must add one to the 6091 // maximum bit width to account for the unknown sign bit. This preserves 6092 // the existing sign bit so we can safely sign-extend the root back to the 6093 // original type. Otherwise, if we know the sign bit is zero, we will 6094 // zero-extend the root instead. 6095 // 6096 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6097 // one to the maximum bit width will yield a larger-than-necessary 6098 // type. In general, we need to add an extra bit only if we can't 6099 // prove that the upper bit of the original type is equal to the 6100 // upper bit of the proposed smaller type. If these two bits are the 6101 // same (either zero or one) we know that sign-extending from the 6102 // smaller type will result in the same value. Here, since we can't 6103 // yet prove this, we are just making the proposed smaller type 6104 // larger to ensure correctness. 6105 if (!IsKnownPositive) 6106 ++MaxBitWidth; 6107 } 6108 6109 // Round MaxBitWidth up to the next power-of-two. 6110 if (!isPowerOf2_64(MaxBitWidth)) 6111 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6112 6113 // If the maximum bit width we compute is less than the with of the roots' 6114 // type, we can proceed with the narrowing. Otherwise, do nothing. 6115 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6116 return; 6117 6118 // If we can truncate the root, we must collect additional values that might 6119 // be demoted as a result. That is, those seeded by truncations we will 6120 // modify. 6121 while (!Roots.empty()) 6122 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6123 6124 // Finally, map the values we can demote to the maximum bit with we computed. 6125 for (auto *Scalar : ToDemote) 6126 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6127 } 6128 6129 namespace { 6130 6131 /// The SLPVectorizer Pass. 6132 struct SLPVectorizer : public FunctionPass { 6133 SLPVectorizerPass Impl; 6134 6135 /// Pass identification, replacement for typeid 6136 static char ID; 6137 6138 explicit SLPVectorizer() : FunctionPass(ID) { 6139 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6140 } 6141 6142 bool doInitialization(Module &M) override { 6143 return false; 6144 } 6145 6146 bool runOnFunction(Function &F) override { 6147 if (skipFunction(F)) 6148 return false; 6149 6150 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6151 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6152 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6153 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6154 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6155 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6156 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6157 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6158 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6159 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6160 6161 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6162 } 6163 6164 void getAnalysisUsage(AnalysisUsage &AU) const override { 6165 FunctionPass::getAnalysisUsage(AU); 6166 AU.addRequired<AssumptionCacheTracker>(); 6167 AU.addRequired<ScalarEvolutionWrapperPass>(); 6168 AU.addRequired<AAResultsWrapperPass>(); 6169 AU.addRequired<TargetTransformInfoWrapperPass>(); 6170 AU.addRequired<LoopInfoWrapperPass>(); 6171 AU.addRequired<DominatorTreeWrapperPass>(); 6172 AU.addRequired<DemandedBitsWrapperPass>(); 6173 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6174 AU.addRequired<InjectTLIMappingsLegacy>(); 6175 AU.addPreserved<LoopInfoWrapperPass>(); 6176 AU.addPreserved<DominatorTreeWrapperPass>(); 6177 AU.addPreserved<AAResultsWrapperPass>(); 6178 AU.addPreserved<GlobalsAAWrapperPass>(); 6179 AU.setPreservesCFG(); 6180 } 6181 }; 6182 6183 } // end anonymous namespace 6184 6185 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6186 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6187 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6188 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6189 auto *AA = &AM.getResult<AAManager>(F); 6190 auto *LI = &AM.getResult<LoopAnalysis>(F); 6191 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6192 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6193 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6194 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6195 6196 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6197 if (!Changed) 6198 return PreservedAnalyses::all(); 6199 6200 PreservedAnalyses PA; 6201 PA.preserveSet<CFGAnalyses>(); 6202 PA.preserve<AAManager>(); 6203 PA.preserve<GlobalsAA>(); 6204 return PA; 6205 } 6206 6207 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6208 TargetTransformInfo *TTI_, 6209 TargetLibraryInfo *TLI_, AAResults *AA_, 6210 LoopInfo *LI_, DominatorTree *DT_, 6211 AssumptionCache *AC_, DemandedBits *DB_, 6212 OptimizationRemarkEmitter *ORE_) { 6213 if (!RunSLPVectorization) 6214 return false; 6215 SE = SE_; 6216 TTI = TTI_; 6217 TLI = TLI_; 6218 AA = AA_; 6219 LI = LI_; 6220 DT = DT_; 6221 AC = AC_; 6222 DB = DB_; 6223 DL = &F.getParent()->getDataLayout(); 6224 6225 Stores.clear(); 6226 GEPs.clear(); 6227 bool Changed = false; 6228 6229 // If the target claims to have no vector registers don't attempt 6230 // vectorization. 6231 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6232 return false; 6233 6234 // Don't vectorize when the attribute NoImplicitFloat is used. 6235 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6236 return false; 6237 6238 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6239 6240 // Use the bottom up slp vectorizer to construct chains that start with 6241 // store instructions. 6242 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6243 6244 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6245 // delete instructions. 6246 6247 // Scan the blocks in the function in post order. 6248 for (auto BB : post_order(&F.getEntryBlock())) { 6249 collectSeedInstructions(BB); 6250 6251 // Vectorize trees that end at stores. 6252 if (!Stores.empty()) { 6253 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6254 << " underlying objects.\n"); 6255 Changed |= vectorizeStoreChains(R); 6256 } 6257 6258 // Vectorize trees that end at reductions. 6259 Changed |= vectorizeChainsInBlock(BB, R); 6260 6261 // Vectorize the index computations of getelementptr instructions. This 6262 // is primarily intended to catch gather-like idioms ending at 6263 // non-consecutive loads. 6264 if (!GEPs.empty()) { 6265 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6266 << " underlying objects.\n"); 6267 Changed |= vectorizeGEPIndices(BB, R); 6268 } 6269 } 6270 6271 if (Changed) { 6272 R.optimizeGatherSequence(); 6273 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6274 } 6275 return Changed; 6276 } 6277 6278 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6279 unsigned Idx) { 6280 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6281 << "\n"); 6282 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6283 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6284 unsigned VF = Chain.size(); 6285 6286 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6287 return false; 6288 6289 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6290 << "\n"); 6291 6292 R.buildTree(Chain); 6293 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6294 // TODO: Handle orders of size less than number of elements in the vector. 6295 if (Order && Order->size() == Chain.size()) { 6296 // TODO: reorder tree nodes without tree rebuilding. 6297 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6298 llvm::transform(*Order, ReorderedOps.begin(), 6299 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6300 R.buildTree(ReorderedOps); 6301 } 6302 if (R.isTreeTinyAndNotFullyVectorizable()) 6303 return false; 6304 if (R.isLoadCombineCandidate()) 6305 return false; 6306 6307 R.computeMinimumValueSizes(); 6308 6309 InstructionCost Cost = R.getTreeCost(); 6310 6311 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6312 if (Cost < -SLPCostThreshold) { 6313 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6314 6315 using namespace ore; 6316 6317 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6318 cast<StoreInst>(Chain[0])) 6319 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6320 << " and with tree size " 6321 << NV("TreeSize", R.getTreeSize())); 6322 6323 R.vectorizeTree(); 6324 return true; 6325 } 6326 6327 return false; 6328 } 6329 6330 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6331 BoUpSLP &R) { 6332 // We may run into multiple chains that merge into a single chain. We mark the 6333 // stores that we vectorized so that we don't visit the same store twice. 6334 BoUpSLP::ValueSet VectorizedStores; 6335 bool Changed = false; 6336 6337 int E = Stores.size(); 6338 SmallBitVector Tails(E, false); 6339 int MaxIter = MaxStoreLookup.getValue(); 6340 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6341 E, std::make_pair(E, INT_MAX)); 6342 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6343 int IterCnt; 6344 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6345 &CheckedPairs, 6346 &ConsecutiveChain](int K, int Idx) { 6347 if (IterCnt >= MaxIter) 6348 return true; 6349 if (CheckedPairs[Idx].test(K)) 6350 return ConsecutiveChain[K].second == 1 && 6351 ConsecutiveChain[K].first == Idx; 6352 ++IterCnt; 6353 CheckedPairs[Idx].set(K); 6354 CheckedPairs[K].set(Idx); 6355 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(), 6356 Stores[Idx]->getPointerOperand(), *DL, 6357 *SE, /*StrictCheck=*/true); 6358 if (!Diff || *Diff == 0) 6359 return false; 6360 int Val = *Diff; 6361 if (Val < 0) { 6362 if (ConsecutiveChain[Idx].second > -Val) { 6363 Tails.set(K); 6364 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6365 } 6366 return false; 6367 } 6368 if (ConsecutiveChain[K].second <= Val) 6369 return false; 6370 6371 Tails.set(Idx); 6372 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6373 return Val == 1; 6374 }; 6375 // Do a quadratic search on all of the given stores in reverse order and find 6376 // all of the pairs of stores that follow each other. 6377 for (int Idx = E - 1; Idx >= 0; --Idx) { 6378 // If a store has multiple consecutive store candidates, search according 6379 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6380 // This is because usually pairing with immediate succeeding or preceding 6381 // candidate create the best chance to find slp vectorization opportunity. 6382 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6383 IterCnt = 0; 6384 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6385 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6386 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6387 break; 6388 } 6389 6390 // Tracks if we tried to vectorize stores starting from the given tail 6391 // already. 6392 SmallBitVector TriedTails(E, false); 6393 // For stores that start but don't end a link in the chain: 6394 for (int Cnt = E; Cnt > 0; --Cnt) { 6395 int I = Cnt - 1; 6396 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6397 continue; 6398 // We found a store instr that starts a chain. Now follow the chain and try 6399 // to vectorize it. 6400 BoUpSLP::ValueList Operands; 6401 // Collect the chain into a list. 6402 while (I != E && !VectorizedStores.count(Stores[I])) { 6403 Operands.push_back(Stores[I]); 6404 Tails.set(I); 6405 if (ConsecutiveChain[I].second != 1) { 6406 // Mark the new end in the chain and go back, if required. It might be 6407 // required if the original stores come in reversed order, for example. 6408 if (ConsecutiveChain[I].first != E && 6409 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 6410 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6411 TriedTails.set(I); 6412 Tails.reset(ConsecutiveChain[I].first); 6413 if (Cnt < ConsecutiveChain[I].first + 2) 6414 Cnt = ConsecutiveChain[I].first + 2; 6415 } 6416 break; 6417 } 6418 // Move to the next value in the chain. 6419 I = ConsecutiveChain[I].first; 6420 } 6421 assert(!Operands.empty() && "Expected non-empty list of stores."); 6422 6423 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6424 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6425 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6426 6427 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6428 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6429 MaxElts); 6430 6431 // FIXME: Is division-by-2 the correct step? Should we assert that the 6432 // register size is a power-of-2? 6433 unsigned StartIdx = 0; 6434 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6435 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6436 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6437 if (!VectorizedStores.count(Slice.front()) && 6438 !VectorizedStores.count(Slice.back()) && 6439 vectorizeStoreChain(Slice, R, Cnt)) { 6440 // Mark the vectorized stores so that we don't vectorize them again. 6441 VectorizedStores.insert(Slice.begin(), Slice.end()); 6442 Changed = true; 6443 // If we vectorized initial block, no need to try to vectorize it 6444 // again. 6445 if (Cnt == StartIdx) 6446 StartIdx += Size; 6447 Cnt += Size; 6448 continue; 6449 } 6450 ++Cnt; 6451 } 6452 // Check if the whole array was vectorized already - exit. 6453 if (StartIdx >= Operands.size()) 6454 break; 6455 } 6456 } 6457 6458 return Changed; 6459 } 6460 6461 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6462 // Initialize the collections. We will make a single pass over the block. 6463 Stores.clear(); 6464 GEPs.clear(); 6465 6466 // Visit the store and getelementptr instructions in BB and organize them in 6467 // Stores and GEPs according to the underlying objects of their pointer 6468 // operands. 6469 for (Instruction &I : *BB) { 6470 // Ignore store instructions that are volatile or have a pointer operand 6471 // that doesn't point to a scalar type. 6472 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6473 if (!SI->isSimple()) 6474 continue; 6475 if (!isValidElementType(SI->getValueOperand()->getType())) 6476 continue; 6477 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6478 } 6479 6480 // Ignore getelementptr instructions that have more than one index, a 6481 // constant index, or a pointer operand that doesn't point to a scalar 6482 // type. 6483 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6484 auto Idx = GEP->idx_begin()->get(); 6485 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6486 continue; 6487 if (!isValidElementType(Idx->getType())) 6488 continue; 6489 if (GEP->getType()->isVectorTy()) 6490 continue; 6491 GEPs[GEP->getPointerOperand()].push_back(GEP); 6492 } 6493 } 6494 } 6495 6496 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6497 if (!A || !B) 6498 return false; 6499 Value *VL[] = {A, B}; 6500 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6501 } 6502 6503 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6504 bool AllowReorder, 6505 ArrayRef<Value *> InsertUses) { 6506 if (VL.size() < 2) 6507 return false; 6508 6509 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6510 << VL.size() << ".\n"); 6511 6512 // Check that all of the parts are instructions of the same type, 6513 // we permit an alternate opcode via InstructionsState. 6514 InstructionsState S = getSameOpcode(VL); 6515 if (!S.getOpcode()) 6516 return false; 6517 6518 Instruction *I0 = cast<Instruction>(S.OpValue); 6519 // Make sure invalid types (including vector type) are rejected before 6520 // determining vectorization factor for scalar instructions. 6521 for (Value *V : VL) { 6522 Type *Ty = V->getType(); 6523 if (!isValidElementType(Ty)) { 6524 // NOTE: the following will give user internal llvm type name, which may 6525 // not be useful. 6526 R.getORE()->emit([&]() { 6527 std::string type_str; 6528 llvm::raw_string_ostream rso(type_str); 6529 Ty->print(rso); 6530 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6531 << "Cannot SLP vectorize list: type " 6532 << rso.str() + " is unsupported by vectorizer"; 6533 }); 6534 return false; 6535 } 6536 } 6537 6538 unsigned Sz = R.getVectorElementSize(I0); 6539 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6540 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6541 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6542 if (MaxVF < 2) { 6543 R.getORE()->emit([&]() { 6544 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6545 << "Cannot SLP vectorize list: vectorization factor " 6546 << "less than 2 is not supported"; 6547 }); 6548 return false; 6549 } 6550 6551 bool Changed = false; 6552 bool CandidateFound = false; 6553 InstructionCost MinCost = SLPCostThreshold.getValue(); 6554 6555 bool CompensateUseCost = 6556 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6557 return V && isa<InsertElementInst>(V); 6558 }); 6559 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6560 "Each scalar expected to have an associated InsertElement user."); 6561 6562 unsigned NextInst = 0, MaxInst = VL.size(); 6563 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6564 // No actual vectorization should happen, if number of parts is the same as 6565 // provided vectorization factor (i.e. the scalar type is used for vector 6566 // code during codegen). 6567 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6568 if (TTI->getNumberOfParts(VecTy) == VF) 6569 continue; 6570 for (unsigned I = NextInst; I < MaxInst; ++I) { 6571 unsigned OpsWidth = 0; 6572 6573 if (I + VF > MaxInst) 6574 OpsWidth = MaxInst - I; 6575 else 6576 OpsWidth = VF; 6577 6578 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6579 break; 6580 6581 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6582 // Check that a previous iteration of this loop did not delete the Value. 6583 if (llvm::any_of(Ops, [&R](Value *V) { 6584 auto *I = dyn_cast<Instruction>(V); 6585 return I && R.isDeleted(I); 6586 })) 6587 continue; 6588 6589 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6590 << "\n"); 6591 6592 R.buildTree(Ops); 6593 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6594 // TODO: check if we can allow reordering for more cases. 6595 if (AllowReorder && Order) { 6596 // TODO: reorder tree nodes without tree rebuilding. 6597 // Conceptually, there is nothing actually preventing us from trying to 6598 // reorder a larger list. In fact, we do exactly this when vectorizing 6599 // reductions. However, at this point, we only expect to get here when 6600 // there are exactly two operations. 6601 assert(Ops.size() == 2); 6602 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6603 R.buildTree(ReorderedOps, None); 6604 } 6605 if (R.isTreeTinyAndNotFullyVectorizable()) 6606 continue; 6607 6608 R.computeMinimumValueSizes(); 6609 InstructionCost Cost = R.getTreeCost(); 6610 CandidateFound = true; 6611 if (CompensateUseCost) { 6612 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6613 // rather than sum of single inserts as the latter may overestimate 6614 // cost. This work should imply improving cost estimation for extracts 6615 // that added in for external (for vectorization tree) users,i.e. that 6616 // part should also switch to same interface. 6617 // For example, the following case is projected code after SLP: 6618 // %4 = extractelement <4 x i64> %3, i32 0 6619 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6620 // %5 = extractelement <4 x i64> %3, i32 1 6621 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6622 // %6 = extractelement <4 x i64> %3, i32 2 6623 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6624 // %7 = extractelement <4 x i64> %3, i32 3 6625 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6626 // 6627 // Extracts here added by SLP in order to feed users (the inserts) of 6628 // original scalars and contribute to "ExtractCost" at cost evaluation. 6629 // The inserts in turn form sequence to build an aggregate that 6630 // detected by findBuildAggregate routine. 6631 // SLP makes an assumption that such sequence will be optimized away 6632 // later (instcombine) so it tries to compensate ExctractCost with 6633 // cost of insert sequence. 6634 // Current per element cost calculation approach is not quite accurate 6635 // and tends to create bias toward favoring vectorization. 6636 // Switching to the TTI interface might help a bit. 6637 // Alternative solution could be pattern-match to detect a no-op or 6638 // shuffle. 6639 InstructionCost UserCost = 0; 6640 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6641 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6642 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6643 UserCost += TTI->getVectorInstrCost( 6644 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6645 } 6646 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6647 << ".\n"); 6648 Cost -= UserCost; 6649 } 6650 6651 MinCost = std::min(MinCost, Cost); 6652 6653 if (Cost < -SLPCostThreshold) { 6654 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6655 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6656 cast<Instruction>(Ops[0])) 6657 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6658 << " and with tree size " 6659 << ore::NV("TreeSize", R.getTreeSize())); 6660 6661 R.vectorizeTree(); 6662 // Move to the next bundle. 6663 I += VF - 1; 6664 NextInst = I + 1; 6665 Changed = true; 6666 } 6667 } 6668 } 6669 6670 if (!Changed && CandidateFound) { 6671 R.getORE()->emit([&]() { 6672 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6673 << "List vectorization was possible but not beneficial with cost " 6674 << ore::NV("Cost", MinCost) << " >= " 6675 << ore::NV("Treshold", -SLPCostThreshold); 6676 }); 6677 } else if (!Changed) { 6678 R.getORE()->emit([&]() { 6679 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6680 << "Cannot SLP vectorize list: vectorization was impossible" 6681 << " with available vectorization factors"; 6682 }); 6683 } 6684 return Changed; 6685 } 6686 6687 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6688 if (!I) 6689 return false; 6690 6691 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6692 return false; 6693 6694 Value *P = I->getParent(); 6695 6696 // Vectorize in current basic block only. 6697 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6698 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6699 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6700 return false; 6701 6702 // Try to vectorize V. 6703 if (tryToVectorizePair(Op0, Op1, R)) 6704 return true; 6705 6706 auto *A = dyn_cast<BinaryOperator>(Op0); 6707 auto *B = dyn_cast<BinaryOperator>(Op1); 6708 // Try to skip B. 6709 if (B && B->hasOneUse()) { 6710 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6711 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6712 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6713 return true; 6714 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6715 return true; 6716 } 6717 6718 // Try to skip A. 6719 if (A && A->hasOneUse()) { 6720 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6721 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6722 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6723 return true; 6724 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6725 return true; 6726 } 6727 return false; 6728 } 6729 6730 namespace { 6731 6732 /// Model horizontal reductions. 6733 /// 6734 /// A horizontal reduction is a tree of reduction instructions that has values 6735 /// that can be put into a vector as its leaves. For example: 6736 /// 6737 /// mul mul mul mul 6738 /// \ / \ / 6739 /// + + 6740 /// \ / 6741 /// + 6742 /// This tree has "mul" as its leaf values and "+" as its reduction 6743 /// instructions. A reduction can feed into a store or a binary operation 6744 /// feeding a phi. 6745 /// ... 6746 /// \ / 6747 /// + 6748 /// | 6749 /// phi += 6750 /// 6751 /// Or: 6752 /// ... 6753 /// \ / 6754 /// + 6755 /// | 6756 /// *p = 6757 /// 6758 class HorizontalReduction { 6759 using ReductionOpsType = SmallVector<Value *, 16>; 6760 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6761 ReductionOpsListType ReductionOps; 6762 SmallVector<Value *, 32> ReducedVals; 6763 // Use map vector to make stable output. 6764 MapVector<Instruction *, Value *> ExtraArgs; 6765 WeakTrackingVH ReductionRoot; 6766 /// The type of reduction operation. 6767 RecurKind RdxKind; 6768 6769 /// Checks if instruction is associative and can be vectorized. 6770 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6771 if (Kind == RecurKind::None) 6772 return false; 6773 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6774 return true; 6775 6776 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6777 // FP min/max are associative except for NaN and -0.0. We do not 6778 // have to rule out -0.0 here because the intrinsic semantics do not 6779 // specify a fixed result for it. 6780 return I->getFastMathFlags().noNaNs(); 6781 } 6782 6783 return I->isAssociative(); 6784 } 6785 6786 /// Checks if the ParentStackElem.first should be marked as a reduction 6787 /// operation with an extra argument or as extra argument itself. 6788 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6789 Value *ExtraArg) { 6790 if (ExtraArgs.count(ParentStackElem.first)) { 6791 ExtraArgs[ParentStackElem.first] = nullptr; 6792 // We ran into something like: 6793 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6794 // The whole ParentStackElem.first should be considered as an extra value 6795 // in this case. 6796 // Do not perform analysis of remaining operands of ParentStackElem.first 6797 // instruction, this whole instruction is an extra argument. 6798 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 6799 } else { 6800 // We ran into something like: 6801 // ParentStackElem.first += ... + ExtraArg + ... 6802 ExtraArgs[ParentStackElem.first] = ExtraArg; 6803 } 6804 } 6805 6806 /// Creates reduction operation with the current opcode. 6807 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6808 Value *RHS, const Twine &Name, bool UseSelect) { 6809 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6810 switch (Kind) { 6811 case RecurKind::Add: 6812 case RecurKind::Mul: 6813 case RecurKind::Or: 6814 case RecurKind::And: 6815 case RecurKind::Xor: 6816 case RecurKind::FAdd: 6817 case RecurKind::FMul: 6818 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6819 Name); 6820 case RecurKind::FMax: 6821 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6822 case RecurKind::FMin: 6823 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6824 case RecurKind::SMax: 6825 if (UseSelect) { 6826 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6827 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6828 } 6829 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 6830 case RecurKind::SMin: 6831 if (UseSelect) { 6832 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6833 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6834 } 6835 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 6836 case RecurKind::UMax: 6837 if (UseSelect) { 6838 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6839 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6840 } 6841 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 6842 case RecurKind::UMin: 6843 if (UseSelect) { 6844 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6845 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6846 } 6847 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 6848 default: 6849 llvm_unreachable("Unknown reduction operation."); 6850 } 6851 } 6852 6853 /// Creates reduction operation with the current opcode with the IR flags 6854 /// from \p ReductionOps. 6855 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6856 Value *RHS, const Twine &Name, 6857 const ReductionOpsListType &ReductionOps) { 6858 bool UseSelect = ReductionOps.size() == 2; 6859 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 6860 "Expected cmp + select pairs for reduction"); 6861 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 6862 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6863 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6864 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6865 propagateIRFlags(Op, ReductionOps[1]); 6866 return Op; 6867 } 6868 } 6869 propagateIRFlags(Op, ReductionOps[0]); 6870 return Op; 6871 } 6872 6873 /// Creates reduction operation with the current opcode with the IR flags 6874 /// from \p I. 6875 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6876 Value *RHS, const Twine &Name, Instruction *I) { 6877 auto *SelI = dyn_cast<SelectInst>(I); 6878 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 6879 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6880 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6881 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 6882 } 6883 propagateIRFlags(Op, I); 6884 return Op; 6885 } 6886 6887 static RecurKind getRdxKind(Instruction *I) { 6888 assert(I && "Expected instruction for reduction matching"); 6889 TargetTransformInfo::ReductionFlags RdxFlags; 6890 if (match(I, m_Add(m_Value(), m_Value()))) 6891 return RecurKind::Add; 6892 if (match(I, m_Mul(m_Value(), m_Value()))) 6893 return RecurKind::Mul; 6894 if (match(I, m_And(m_Value(), m_Value()))) 6895 return RecurKind::And; 6896 if (match(I, m_Or(m_Value(), m_Value()))) 6897 return RecurKind::Or; 6898 if (match(I, m_Xor(m_Value(), m_Value()))) 6899 return RecurKind::Xor; 6900 if (match(I, m_FAdd(m_Value(), m_Value()))) 6901 return RecurKind::FAdd; 6902 if (match(I, m_FMul(m_Value(), m_Value()))) 6903 return RecurKind::FMul; 6904 6905 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6906 return RecurKind::FMax; 6907 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6908 return RecurKind::FMin; 6909 6910 // This matches either cmp+select or intrinsics. SLP is expected to handle 6911 // either form. 6912 // TODO: If we are canonicalizing to intrinsics, we can remove several 6913 // special-case paths that deal with selects. 6914 if (match(I, m_SMax(m_Value(), m_Value()))) 6915 return RecurKind::SMax; 6916 if (match(I, m_SMin(m_Value(), m_Value()))) 6917 return RecurKind::SMin; 6918 if (match(I, m_UMax(m_Value(), m_Value()))) 6919 return RecurKind::UMax; 6920 if (match(I, m_UMin(m_Value(), m_Value()))) 6921 return RecurKind::UMin; 6922 6923 if (auto *Select = dyn_cast<SelectInst>(I)) { 6924 // Try harder: look for min/max pattern based on instructions producing 6925 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6926 // During the intermediate stages of SLP, it's very common to have 6927 // pattern like this (since optimizeGatherSequence is run only once 6928 // at the end): 6929 // %1 = extractelement <2 x i32> %a, i32 0 6930 // %2 = extractelement <2 x i32> %a, i32 1 6931 // %cond = icmp sgt i32 %1, %2 6932 // %3 = extractelement <2 x i32> %a, i32 0 6933 // %4 = extractelement <2 x i32> %a, i32 1 6934 // %select = select i1 %cond, i32 %3, i32 %4 6935 CmpInst::Predicate Pred; 6936 Instruction *L1; 6937 Instruction *L2; 6938 6939 Value *LHS = Select->getTrueValue(); 6940 Value *RHS = Select->getFalseValue(); 6941 Value *Cond = Select->getCondition(); 6942 6943 // TODO: Support inverse predicates. 6944 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6945 if (!isa<ExtractElementInst>(RHS) || 6946 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6947 return RecurKind::None; 6948 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6949 if (!isa<ExtractElementInst>(LHS) || 6950 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6951 return RecurKind::None; 6952 } else { 6953 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6954 return RecurKind::None; 6955 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6956 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6957 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6958 return RecurKind::None; 6959 } 6960 6961 TargetTransformInfo::ReductionFlags RdxFlags; 6962 switch (Pred) { 6963 default: 6964 return RecurKind::None; 6965 case CmpInst::ICMP_SGT: 6966 case CmpInst::ICMP_SGE: 6967 return RecurKind::SMax; 6968 case CmpInst::ICMP_SLT: 6969 case CmpInst::ICMP_SLE: 6970 return RecurKind::SMin; 6971 case CmpInst::ICMP_UGT: 6972 case CmpInst::ICMP_UGE: 6973 return RecurKind::UMax; 6974 case CmpInst::ICMP_ULT: 6975 case CmpInst::ICMP_ULE: 6976 return RecurKind::UMin; 6977 } 6978 } 6979 return RecurKind::None; 6980 } 6981 6982 /// Get the index of the first operand. 6983 static unsigned getFirstOperandIndex(Instruction *I) { 6984 return isa<SelectInst>(I) ? 1 : 0; 6985 } 6986 6987 /// Total number of operands in the reduction operation. 6988 static unsigned getNumberOfOperands(Instruction *I) { 6989 return isa<SelectInst>(I) ? 3 : 2; 6990 } 6991 6992 /// Checks if the instruction is in basic block \p BB. 6993 /// For a min/max reduction check that both compare and select are in \p BB. 6994 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 6995 auto *Sel = dyn_cast<SelectInst>(I); 6996 if (IsRedOp && Sel) { 6997 auto *Cmp = cast<Instruction>(Sel->getCondition()); 6998 return Sel->getParent() == BB && Cmp->getParent() == BB; 6999 } 7000 return I->getParent() == BB; 7001 } 7002 7003 /// Expected number of uses for reduction operations/reduced values. 7004 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 7005 // SelectInst must be used twice while the condition op must have single 7006 // use only. 7007 if (MatchCmpSel) { 7008 if (auto *Sel = dyn_cast<SelectInst>(I)) 7009 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 7010 return I->hasNUses(2); 7011 } 7012 7013 // Arithmetic reduction operation must be used once only. 7014 return I->hasOneUse(); 7015 } 7016 7017 /// Initializes the list of reduction operations. 7018 void initReductionOps(Instruction *I) { 7019 if (isa<SelectInst>(I)) 7020 ReductionOps.assign(2, ReductionOpsType()); 7021 else 7022 ReductionOps.assign(1, ReductionOpsType()); 7023 } 7024 7025 /// Add all reduction operations for the reduction instruction \p I. 7026 void addReductionOps(Instruction *I) { 7027 if (auto *Sel = dyn_cast<SelectInst>(I)) { 7028 ReductionOps[0].emplace_back(Sel->getCondition()); 7029 ReductionOps[1].emplace_back(Sel); 7030 } else { 7031 ReductionOps[0].emplace_back(I); 7032 } 7033 } 7034 7035 static Value *getLHS(RecurKind Kind, Instruction *I) { 7036 if (Kind == RecurKind::None) 7037 return nullptr; 7038 return I->getOperand(getFirstOperandIndex(I)); 7039 } 7040 static Value *getRHS(RecurKind Kind, Instruction *I) { 7041 if (Kind == RecurKind::None) 7042 return nullptr; 7043 return I->getOperand(getFirstOperandIndex(I) + 1); 7044 } 7045 7046 public: 7047 HorizontalReduction() = default; 7048 7049 /// Try to find a reduction tree. 7050 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 7051 assert((!Phi || is_contained(Phi->operands(), B)) && 7052 "Phi needs to use the binary operator"); 7053 7054 RdxKind = getRdxKind(B); 7055 7056 // We could have a initial reductions that is not an add. 7057 // r *= v1 + v2 + v3 + v4 7058 // In such a case start looking for a tree rooted in the first '+'. 7059 if (Phi) { 7060 if (getLHS(RdxKind, B) == Phi) { 7061 Phi = nullptr; 7062 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 7063 if (!B) 7064 return false; 7065 RdxKind = getRdxKind(B); 7066 } else if (getRHS(RdxKind, B) == Phi) { 7067 Phi = nullptr; 7068 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 7069 if (!B) 7070 return false; 7071 RdxKind = getRdxKind(B); 7072 } 7073 } 7074 7075 if (!isVectorizable(RdxKind, B)) 7076 return false; 7077 7078 // Analyze "regular" integer/FP types for reductions - no target-specific 7079 // types or pointers. 7080 Type *Ty = B->getType(); 7081 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7082 return false; 7083 7084 // Though the ultimate reduction may have multiple uses, its condition must 7085 // have only single use. 7086 if (auto *SI = dyn_cast<SelectInst>(B)) 7087 if (!SI->getCondition()->hasOneUse()) 7088 return false; 7089 7090 ReductionRoot = B; 7091 7092 // The opcode for leaf values that we perform a reduction on. 7093 // For example: load(x) + load(y) + load(z) + fptoui(w) 7094 // The leaf opcode for 'w' does not match, so we don't include it as a 7095 // potential candidate for the reduction. 7096 unsigned LeafOpcode = 0; 7097 7098 // Post order traverse the reduction tree starting at B. We only handle true 7099 // trees containing only binary operators. 7100 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7101 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 7102 initReductionOps(B); 7103 while (!Stack.empty()) { 7104 Instruction *TreeN = Stack.back().first; 7105 unsigned EdgeToVisit = Stack.back().second++; 7106 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7107 bool IsReducedValue = TreeRdxKind != RdxKind; 7108 7109 // Postorder visit. 7110 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 7111 if (IsReducedValue) 7112 ReducedVals.push_back(TreeN); 7113 else { 7114 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7115 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7116 // Check if TreeN is an extra argument of its parent operation. 7117 if (Stack.size() <= 1) { 7118 // TreeN can't be an extra argument as it is a root reduction 7119 // operation. 7120 return false; 7121 } 7122 // Yes, TreeN is an extra argument, do not add it to a list of 7123 // reduction operations. 7124 // Stack[Stack.size() - 2] always points to the parent operation. 7125 markExtraArg(Stack[Stack.size() - 2], TreeN); 7126 ExtraArgs.erase(TreeN); 7127 } else 7128 addReductionOps(TreeN); 7129 } 7130 // Retract. 7131 Stack.pop_back(); 7132 continue; 7133 } 7134 7135 // Visit left or right. 7136 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 7137 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7138 if (!EdgeInst) { 7139 // Edge value is not a reduction instruction or a leaf instruction. 7140 // (It may be a constant, function argument, or something else.) 7141 markExtraArg(Stack.back(), EdgeVal); 7142 continue; 7143 } 7144 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7145 // Continue analysis if the next operand is a reduction operation or 7146 // (possibly) a leaf value. If the leaf value opcode is not set, 7147 // the first met operation != reduction operation is considered as the 7148 // leaf opcode. 7149 // Only handle trees in the current basic block. 7150 // Each tree node needs to have minimal number of users except for the 7151 // ultimate reduction. 7152 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7153 if (EdgeInst != Phi && EdgeInst != B && 7154 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 7155 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 7156 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7157 if (IsRdxInst) { 7158 // We need to be able to reassociate the reduction operations. 7159 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7160 // I is an extra argument for TreeN (its parent operation). 7161 markExtraArg(Stack.back(), EdgeInst); 7162 continue; 7163 } 7164 } else if (!LeafOpcode) { 7165 LeafOpcode = EdgeInst->getOpcode(); 7166 } 7167 Stack.push_back( 7168 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7169 continue; 7170 } 7171 // I is an extra argument for TreeN (its parent operation). 7172 markExtraArg(Stack.back(), EdgeInst); 7173 } 7174 return true; 7175 } 7176 7177 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7178 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7179 // If there are a sufficient number of reduction values, reduce 7180 // to a nearby power-of-2. We can safely generate oversized 7181 // vectors and rely on the backend to split them to legal sizes. 7182 unsigned NumReducedVals = ReducedVals.size(); 7183 if (NumReducedVals < 4) 7184 return false; 7185 7186 // Intersect the fast-math-flags from all reduction operations. 7187 FastMathFlags RdxFMF; 7188 RdxFMF.set(); 7189 for (ReductionOpsType &RdxOp : ReductionOps) { 7190 for (Value *RdxVal : RdxOp) { 7191 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7192 RdxFMF &= FPMO->getFastMathFlags(); 7193 } 7194 } 7195 7196 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7197 Builder.setFastMathFlags(RdxFMF); 7198 7199 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7200 // The same extra argument may be used several times, so log each attempt 7201 // to use it. 7202 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7203 assert(Pair.first && "DebugLoc must be set."); 7204 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7205 } 7206 7207 // The compare instruction of a min/max is the insertion point for new 7208 // instructions and may be replaced with a new compare instruction. 7209 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7210 assert(isa<SelectInst>(RdxRootInst) && 7211 "Expected min/max reduction to have select root instruction"); 7212 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7213 assert(isa<Instruction>(ScalarCond) && 7214 "Expected min/max reduction to have compare condition"); 7215 return cast<Instruction>(ScalarCond); 7216 }; 7217 7218 // The reduction root is used as the insertion point for new instructions, 7219 // so set it as externally used to prevent it from being deleted. 7220 ExternallyUsedValues[ReductionRoot]; 7221 SmallVector<Value *, 16> IgnoreList; 7222 for (ReductionOpsType &RdxOp : ReductionOps) 7223 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7224 7225 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7226 if (NumReducedVals > ReduxWidth) { 7227 // In the loop below, we are building a tree based on a window of 7228 // 'ReduxWidth' values. 7229 // If the operands of those values have common traits (compare predicate, 7230 // constant operand, etc), then we want to group those together to 7231 // minimize the cost of the reduction. 7232 7233 // TODO: This should be extended to count common operands for 7234 // compares and binops. 7235 7236 // Step 1: Count the number of times each compare predicate occurs. 7237 SmallDenseMap<unsigned, unsigned> PredCountMap; 7238 for (Value *RdxVal : ReducedVals) { 7239 CmpInst::Predicate Pred; 7240 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7241 ++PredCountMap[Pred]; 7242 } 7243 // Step 2: Sort the values so the most common predicates come first. 7244 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7245 CmpInst::Predicate PredA, PredB; 7246 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7247 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7248 return PredCountMap[PredA] > PredCountMap[PredB]; 7249 } 7250 return false; 7251 }); 7252 } 7253 7254 Value *VectorizedTree = nullptr; 7255 unsigned i = 0; 7256 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7257 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7258 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7259 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7260 if (Order) { 7261 assert(Order->size() == VL.size() && 7262 "Order size must be the same as number of vectorized " 7263 "instructions."); 7264 // TODO: reorder tree nodes without tree rebuilding. 7265 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7266 llvm::transform(*Order, ReorderedOps.begin(), 7267 [VL](const unsigned Idx) { return VL[Idx]; }); 7268 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7269 } 7270 if (V.isTreeTinyAndNotFullyVectorizable()) 7271 break; 7272 if (V.isLoadCombineReductionCandidate(RdxKind)) 7273 break; 7274 7275 V.computeMinimumValueSizes(); 7276 7277 // Estimate cost. 7278 InstructionCost TreeCost = V.getTreeCost(); 7279 InstructionCost ReductionCost = 7280 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7281 InstructionCost Cost = TreeCost + ReductionCost; 7282 if (!Cost.isValid()) { 7283 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7284 return false; 7285 } 7286 if (Cost >= -SLPCostThreshold) { 7287 V.getORE()->emit([&]() { 7288 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7289 cast<Instruction>(VL[0])) 7290 << "Vectorizing horizontal reduction is possible" 7291 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7292 << " and threshold " 7293 << ore::NV("Threshold", -SLPCostThreshold); 7294 }); 7295 break; 7296 } 7297 7298 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7299 << Cost << ". (HorRdx)\n"); 7300 V.getORE()->emit([&]() { 7301 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7302 cast<Instruction>(VL[0])) 7303 << "Vectorized horizontal reduction with cost " 7304 << ore::NV("Cost", Cost) << " and with tree size " 7305 << ore::NV("TreeSize", V.getTreeSize()); 7306 }); 7307 7308 // Vectorize a tree. 7309 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7310 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7311 7312 // Emit a reduction. If the root is a select (min/max idiom), the insert 7313 // point is the compare condition of that select. 7314 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7315 if (isa<SelectInst>(RdxRootInst)) 7316 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7317 else 7318 Builder.SetInsertPoint(RdxRootInst); 7319 7320 Value *ReducedSubTree = 7321 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7322 7323 if (!VectorizedTree) { 7324 // Initialize the final value in the reduction. 7325 VectorizedTree = ReducedSubTree; 7326 } else { 7327 // Update the final value in the reduction. 7328 Builder.SetCurrentDebugLocation(Loc); 7329 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7330 ReducedSubTree, "op.rdx", ReductionOps); 7331 } 7332 i += ReduxWidth; 7333 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7334 } 7335 7336 if (VectorizedTree) { 7337 // Finish the reduction. 7338 for (; i < NumReducedVals; ++i) { 7339 auto *I = cast<Instruction>(ReducedVals[i]); 7340 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7341 VectorizedTree = 7342 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7343 } 7344 for (auto &Pair : ExternallyUsedValues) { 7345 // Add each externally used value to the final reduction. 7346 for (auto *I : Pair.second) { 7347 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7348 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7349 Pair.first, "op.extra", I); 7350 } 7351 } 7352 7353 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7354 7355 // Mark all scalar reduction ops for deletion, they are replaced by the 7356 // vector reductions. 7357 V.eraseInstructions(IgnoreList); 7358 } 7359 return VectorizedTree != nullptr; 7360 } 7361 7362 unsigned numReductionValues() const { return ReducedVals.size(); } 7363 7364 private: 7365 /// Calculate the cost of a reduction. 7366 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7367 Value *FirstReducedVal, 7368 unsigned ReduxWidth) { 7369 Type *ScalarTy = FirstReducedVal->getType(); 7370 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7371 InstructionCost VectorCost, ScalarCost; 7372 switch (RdxKind) { 7373 case RecurKind::Add: 7374 case RecurKind::Mul: 7375 case RecurKind::Or: 7376 case RecurKind::And: 7377 case RecurKind::Xor: 7378 case RecurKind::FAdd: 7379 case RecurKind::FMul: { 7380 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7381 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7382 /*IsPairwiseForm=*/false); 7383 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7384 break; 7385 } 7386 case RecurKind::FMax: 7387 case RecurKind::FMin: { 7388 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7389 VectorCost = 7390 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7391 /*pairwise=*/false, /*unsigned=*/false); 7392 ScalarCost = 7393 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7394 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7395 CmpInst::makeCmpResultType(ScalarTy)); 7396 break; 7397 } 7398 case RecurKind::SMax: 7399 case RecurKind::SMin: 7400 case RecurKind::UMax: 7401 case RecurKind::UMin: { 7402 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7403 bool IsUnsigned = 7404 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7405 VectorCost = 7406 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7407 /*IsPairwiseForm=*/false, IsUnsigned); 7408 ScalarCost = 7409 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7410 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7411 CmpInst::makeCmpResultType(ScalarTy)); 7412 break; 7413 } 7414 default: 7415 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7416 } 7417 7418 // Scalar cost is repeated for N-1 elements. 7419 ScalarCost *= (ReduxWidth - 1); 7420 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7421 << " for reduction that starts with " << *FirstReducedVal 7422 << " (It is a splitting reduction)\n"); 7423 return VectorCost - ScalarCost; 7424 } 7425 7426 /// Emit a horizontal reduction of the vectorized value. 7427 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7428 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7429 assert(VectorizedValue && "Need to have a vectorized tree node"); 7430 assert(isPowerOf2_32(ReduxWidth) && 7431 "We only handle power-of-two reductions for now"); 7432 7433 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7434 ReductionOps.back()); 7435 } 7436 }; 7437 7438 } // end anonymous namespace 7439 7440 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7441 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7442 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7443 7444 unsigned AggregateSize = 1; 7445 auto *IV = cast<InsertValueInst>(InsertInst); 7446 Type *CurrentType = IV->getType(); 7447 do { 7448 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7449 for (auto *Elt : ST->elements()) 7450 if (Elt != ST->getElementType(0)) // check homogeneity 7451 return None; 7452 AggregateSize *= ST->getNumElements(); 7453 CurrentType = ST->getElementType(0); 7454 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7455 AggregateSize *= AT->getNumElements(); 7456 CurrentType = AT->getElementType(); 7457 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7458 AggregateSize *= VT->getNumElements(); 7459 return AggregateSize; 7460 } else if (CurrentType->isSingleValueType()) { 7461 return AggregateSize; 7462 } else { 7463 return None; 7464 } 7465 } while (true); 7466 } 7467 7468 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7469 unsigned OperandOffset) { 7470 unsigned OperandIndex = OperandOffset; 7471 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7472 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7473 auto *VT = cast<FixedVectorType>(IE->getType()); 7474 OperandIndex *= VT->getNumElements(); 7475 OperandIndex += CI->getZExtValue(); 7476 return OperandIndex; 7477 } 7478 return None; 7479 } 7480 7481 auto *IV = cast<InsertValueInst>(InsertInst); 7482 Type *CurrentType = IV->getType(); 7483 for (unsigned int Index : IV->indices()) { 7484 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7485 OperandIndex *= ST->getNumElements(); 7486 CurrentType = ST->getElementType(Index); 7487 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7488 OperandIndex *= AT->getNumElements(); 7489 CurrentType = AT->getElementType(); 7490 } else { 7491 return None; 7492 } 7493 OperandIndex += Index; 7494 } 7495 return OperandIndex; 7496 } 7497 7498 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7499 TargetTransformInfo *TTI, 7500 SmallVectorImpl<Value *> &BuildVectorOpds, 7501 SmallVectorImpl<Value *> &InsertElts, 7502 unsigned OperandOffset) { 7503 do { 7504 Value *InsertedOperand = LastInsertInst->getOperand(1); 7505 Optional<unsigned> OperandIndex = 7506 getOperandIndex(LastInsertInst, OperandOffset); 7507 if (!OperandIndex) 7508 return false; 7509 if (isa<InsertElementInst>(InsertedOperand) || 7510 isa<InsertValueInst>(InsertedOperand)) { 7511 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7512 BuildVectorOpds, InsertElts, *OperandIndex)) 7513 return false; 7514 } else { 7515 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7516 InsertElts[*OperandIndex] = LastInsertInst; 7517 } 7518 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7519 return true; 7520 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7521 } while (LastInsertInst != nullptr && 7522 (isa<InsertValueInst>(LastInsertInst) || 7523 isa<InsertElementInst>(LastInsertInst)) && 7524 LastInsertInst->hasOneUse()); 7525 return false; 7526 } 7527 7528 /// Recognize construction of vectors like 7529 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7530 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7531 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7532 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7533 /// starting from the last insertelement or insertvalue instruction. 7534 /// 7535 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7536 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7537 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7538 /// 7539 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7540 /// 7541 /// \return true if it matches. 7542 static bool findBuildAggregate(Instruction *LastInsertInst, 7543 TargetTransformInfo *TTI, 7544 SmallVectorImpl<Value *> &BuildVectorOpds, 7545 SmallVectorImpl<Value *> &InsertElts) { 7546 7547 assert((isa<InsertElementInst>(LastInsertInst) || 7548 isa<InsertValueInst>(LastInsertInst)) && 7549 "Expected insertelement or insertvalue instruction!"); 7550 7551 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7552 "Expected empty result vectors!"); 7553 7554 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7555 if (!AggregateSize) 7556 return false; 7557 BuildVectorOpds.resize(*AggregateSize); 7558 InsertElts.resize(*AggregateSize); 7559 7560 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7561 0)) { 7562 llvm::erase_value(BuildVectorOpds, nullptr); 7563 llvm::erase_value(InsertElts, nullptr); 7564 if (BuildVectorOpds.size() >= 2) 7565 return true; 7566 } 7567 7568 return false; 7569 } 7570 7571 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7572 return V->getType() < V2->getType(); 7573 } 7574 7575 /// Try and get a reduction value from a phi node. 7576 /// 7577 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7578 /// if they come from either \p ParentBB or a containing loop latch. 7579 /// 7580 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7581 /// if not possible. 7582 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7583 BasicBlock *ParentBB, LoopInfo *LI) { 7584 // There are situations where the reduction value is not dominated by the 7585 // reduction phi. Vectorizing such cases has been reported to cause 7586 // miscompiles. See PR25787. 7587 auto DominatedReduxValue = [&](Value *R) { 7588 return isa<Instruction>(R) && 7589 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7590 }; 7591 7592 Value *Rdx = nullptr; 7593 7594 // Return the incoming value if it comes from the same BB as the phi node. 7595 if (P->getIncomingBlock(0) == ParentBB) { 7596 Rdx = P->getIncomingValue(0); 7597 } else if (P->getIncomingBlock(1) == ParentBB) { 7598 Rdx = P->getIncomingValue(1); 7599 } 7600 7601 if (Rdx && DominatedReduxValue(Rdx)) 7602 return Rdx; 7603 7604 // Otherwise, check whether we have a loop latch to look at. 7605 Loop *BBL = LI->getLoopFor(ParentBB); 7606 if (!BBL) 7607 return nullptr; 7608 BasicBlock *BBLatch = BBL->getLoopLatch(); 7609 if (!BBLatch) 7610 return nullptr; 7611 7612 // There is a loop latch, return the incoming value if it comes from 7613 // that. This reduction pattern occasionally turns up. 7614 if (P->getIncomingBlock(0) == BBLatch) { 7615 Rdx = P->getIncomingValue(0); 7616 } else if (P->getIncomingBlock(1) == BBLatch) { 7617 Rdx = P->getIncomingValue(1); 7618 } 7619 7620 if (Rdx && DominatedReduxValue(Rdx)) 7621 return Rdx; 7622 7623 return nullptr; 7624 } 7625 7626 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7627 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7628 return true; 7629 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7630 return true; 7631 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7632 return true; 7633 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 7634 return true; 7635 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 7636 return true; 7637 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 7638 return true; 7639 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 7640 return true; 7641 return false; 7642 } 7643 7644 /// Attempt to reduce a horizontal reduction. 7645 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7646 /// with reduction operators \a Root (or one of its operands) in a basic block 7647 /// \a BB, then check if it can be done. If horizontal reduction is not found 7648 /// and root instruction is a binary operation, vectorization of the operands is 7649 /// attempted. 7650 /// \returns true if a horizontal reduction was matched and reduced or operands 7651 /// of one of the binary instruction were vectorized. 7652 /// \returns false if a horizontal reduction was not matched (or not possible) 7653 /// or no vectorization of any binary operation feeding \a Root instruction was 7654 /// performed. 7655 static bool tryToVectorizeHorReductionOrInstOperands( 7656 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7657 TargetTransformInfo *TTI, 7658 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7659 if (!ShouldVectorizeHor) 7660 return false; 7661 7662 if (!Root) 7663 return false; 7664 7665 if (Root->getParent() != BB || isa<PHINode>(Root)) 7666 return false; 7667 // Start analysis starting from Root instruction. If horizontal reduction is 7668 // found, try to vectorize it. If it is not a horizontal reduction or 7669 // vectorization is not possible or not effective, and currently analyzed 7670 // instruction is a binary operation, try to vectorize the operands, using 7671 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7672 // the same procedure considering each operand as a possible root of the 7673 // horizontal reduction. 7674 // Interrupt the process if the Root instruction itself was vectorized or all 7675 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7676 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 7677 // CmpInsts so we can skip extra attempts in 7678 // tryToVectorizeHorReductionOrInstOperands and save compile time. 7679 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7680 SmallPtrSet<Value *, 8> VisitedInstrs; 7681 bool Res = false; 7682 while (!Stack.empty()) { 7683 Instruction *Inst; 7684 unsigned Level; 7685 std::tie(Inst, Level) = Stack.pop_back_val(); 7686 Value *B0, *B1; 7687 bool IsBinop = matchRdxBop(Inst, B0, B1); 7688 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7689 if (IsBinop || IsSelect) { 7690 HorizontalReduction HorRdx; 7691 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7692 if (HorRdx.tryToReduce(R, TTI)) { 7693 Res = true; 7694 // Set P to nullptr to avoid re-analysis of phi node in 7695 // matchAssociativeReduction function unless this is the root node. 7696 P = nullptr; 7697 continue; 7698 } 7699 } 7700 if (P && IsBinop) { 7701 Inst = dyn_cast<Instruction>(B0); 7702 if (Inst == P) 7703 Inst = dyn_cast<Instruction>(B1); 7704 if (!Inst) { 7705 // Set P to nullptr to avoid re-analysis of phi node in 7706 // matchAssociativeReduction function unless this is the root node. 7707 P = nullptr; 7708 continue; 7709 } 7710 } 7711 } 7712 // Set P to nullptr to avoid re-analysis of phi node in 7713 // matchAssociativeReduction function unless this is the root node. 7714 P = nullptr; 7715 // Do not try to vectorize CmpInst operands, this is done separately. 7716 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 7717 Res = true; 7718 continue; 7719 } 7720 7721 // Try to vectorize operands. 7722 // Continue analysis for the instruction from the same basic block only to 7723 // save compile time. 7724 if (++Level < RecursionMaxDepth) 7725 for (auto *Op : Inst->operand_values()) 7726 if (VisitedInstrs.insert(Op).second) 7727 if (auto *I = dyn_cast<Instruction>(Op)) 7728 // Do not try to vectorize CmpInst operands, this is done 7729 // separately. 7730 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 7731 I->getParent() == BB) 7732 Stack.emplace_back(I, Level); 7733 } 7734 return Res; 7735 } 7736 7737 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7738 BasicBlock *BB, BoUpSLP &R, 7739 TargetTransformInfo *TTI) { 7740 auto *I = dyn_cast_or_null<Instruction>(V); 7741 if (!I) 7742 return false; 7743 7744 if (!isa<BinaryOperator>(I)) 7745 P = nullptr; 7746 // Try to match and vectorize a horizontal reduction. 7747 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7748 return tryToVectorize(I, R); 7749 }; 7750 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7751 ExtraVectorization); 7752 } 7753 7754 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7755 BasicBlock *BB, BoUpSLP &R) { 7756 const DataLayout &DL = BB->getModule()->getDataLayout(); 7757 if (!R.canMapToVector(IVI->getType(), DL)) 7758 return false; 7759 7760 SmallVector<Value *, 16> BuildVectorOpds; 7761 SmallVector<Value *, 16> BuildVectorInsts; 7762 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7763 return false; 7764 7765 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7766 // Aggregate value is unlikely to be processed in vector register, we need to 7767 // extract scalars into scalar registers, so NeedExtraction is set true. 7768 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7769 BuildVectorInsts); 7770 } 7771 7772 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7773 BasicBlock *BB, BoUpSLP &R) { 7774 SmallVector<Value *, 16> BuildVectorInsts; 7775 SmallVector<Value *, 16> BuildVectorOpds; 7776 SmallVector<int> Mask; 7777 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7778 (llvm::all_of(BuildVectorOpds, 7779 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7780 isShuffle(BuildVectorOpds, Mask))) 7781 return false; 7782 7783 // Vectorize starting with the build vector operands ignoring the BuildVector 7784 // instructions for the purpose of scheduling and user extraction. 7785 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7786 BuildVectorInsts); 7787 } 7788 7789 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7790 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 7791 bool AtTerminator) { 7792 bool OpsChanged = false; 7793 SmallVector<Instruction *, 4> PostponedCmps; 7794 for (auto *I : reverse(Instructions)) { 7795 if (R.isDeleted(I)) 7796 continue; 7797 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7798 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7799 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7800 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7801 else if (isa<CmpInst>(I)) 7802 PostponedCmps.push_back(I); 7803 } 7804 if (AtTerminator) { 7805 // Try to find reductions first. 7806 for (Instruction *I : PostponedCmps) { 7807 if (R.isDeleted(I)) 7808 continue; 7809 for (Value *Op : I->operands()) 7810 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 7811 } 7812 // Try to vectorize operands as vector bundles. 7813 for (Instruction *I : PostponedCmps) { 7814 if (R.isDeleted(I)) 7815 continue; 7816 OpsChanged |= tryToVectorize(I, R); 7817 } 7818 Instructions.clear(); 7819 } else { 7820 // Insert in reverse order since the PostponedCmps vector was filled in 7821 // reverse order. 7822 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 7823 } 7824 return OpsChanged; 7825 } 7826 7827 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7828 bool Changed = false; 7829 SmallVector<Value *, 4> Incoming; 7830 SmallPtrSet<Value *, 16> VisitedInstrs; 7831 7832 bool HaveVectorizedPhiNodes = true; 7833 while (HaveVectorizedPhiNodes) { 7834 HaveVectorizedPhiNodes = false; 7835 7836 // Collect the incoming values from the PHIs. 7837 Incoming.clear(); 7838 for (Instruction &I : *BB) { 7839 PHINode *P = dyn_cast<PHINode>(&I); 7840 if (!P) 7841 break; 7842 7843 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7844 Incoming.push_back(P); 7845 } 7846 7847 // Sort by type. 7848 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7849 7850 // Try to vectorize elements base on their type. 7851 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7852 E = Incoming.end(); 7853 IncIt != E;) { 7854 7855 // Look for the next elements with the same type. 7856 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7857 while (SameTypeIt != E && 7858 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7859 VisitedInstrs.insert(*SameTypeIt); 7860 ++SameTypeIt; 7861 } 7862 7863 // Try to vectorize them. 7864 unsigned NumElts = (SameTypeIt - IncIt); 7865 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7866 << NumElts << ")\n"); 7867 // The order in which the phi nodes appear in the program does not matter. 7868 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7869 // is done when there are exactly two elements since tryToVectorizeList 7870 // asserts that there are only two values when AllowReorder is true. 7871 bool AllowReorder = NumElts == 2; 7872 if (NumElts > 1 && 7873 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7874 // Success start over because instructions might have been changed. 7875 HaveVectorizedPhiNodes = true; 7876 Changed = true; 7877 break; 7878 } 7879 7880 // Start over at the next instruction of a different type (or the end). 7881 IncIt = SameTypeIt; 7882 } 7883 } 7884 7885 VisitedInstrs.clear(); 7886 7887 SmallVector<Instruction *, 8> PostProcessInstructions; 7888 SmallDenseSet<Instruction *, 4> KeyNodes; 7889 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7890 // Skip instructions with scalable type. The num of elements is unknown at 7891 // compile-time for scalable type. 7892 if (isa<ScalableVectorType>(it->getType())) 7893 continue; 7894 7895 // Skip instructions marked for the deletion. 7896 if (R.isDeleted(&*it)) 7897 continue; 7898 // We may go through BB multiple times so skip the one we have checked. 7899 if (!VisitedInstrs.insert(&*it).second) { 7900 if (it->use_empty() && KeyNodes.contains(&*it) && 7901 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 7902 it->isTerminator())) { 7903 // We would like to start over since some instructions are deleted 7904 // and the iterator may become invalid value. 7905 Changed = true; 7906 it = BB->begin(); 7907 e = BB->end(); 7908 } 7909 continue; 7910 } 7911 7912 if (isa<DbgInfoIntrinsic>(it)) 7913 continue; 7914 7915 // Try to vectorize reductions that use PHINodes. 7916 if (PHINode *P = dyn_cast<PHINode>(it)) { 7917 // Check that the PHI is a reduction PHI. 7918 if (P->getNumIncomingValues() == 2) { 7919 // Try to match and vectorize a horizontal reduction. 7920 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7921 TTI)) { 7922 Changed = true; 7923 it = BB->begin(); 7924 e = BB->end(); 7925 continue; 7926 } 7927 } 7928 // Try to vectorize the incoming values of the PHI, to catch reductions 7929 // that feed into PHIs. 7930 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7931 // Skip if the incoming block is the current BB for now. Also, bypass 7932 // unreachable IR for efficiency and to avoid crashing. 7933 // TODO: Collect the skipped incoming values and try to vectorize them 7934 // after processing BB. 7935 if (BB == P->getIncomingBlock(I) || 7936 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7937 continue; 7938 7939 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7940 P->getIncomingBlock(I), R, TTI); 7941 } 7942 continue; 7943 } 7944 7945 // Ran into an instruction without users, like terminator, or function call 7946 // with ignored return value, store. Ignore unused instructions (basing on 7947 // instruction type, except for CallInst and InvokeInst). 7948 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7949 isa<InvokeInst>(it))) { 7950 KeyNodes.insert(&*it); 7951 bool OpsChanged = false; 7952 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7953 for (auto *V : it->operand_values()) { 7954 // Try to match and vectorize a horizontal reduction. 7955 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7956 } 7957 } 7958 // Start vectorization of post-process list of instructions from the 7959 // top-tree instructions to try to vectorize as many instructions as 7960 // possible. 7961 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 7962 it->isTerminator()); 7963 if (OpsChanged) { 7964 // We would like to start over since some instructions are deleted 7965 // and the iterator may become invalid value. 7966 Changed = true; 7967 it = BB->begin(); 7968 e = BB->end(); 7969 continue; 7970 } 7971 } 7972 7973 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7974 isa<InsertValueInst>(it)) 7975 PostProcessInstructions.push_back(&*it); 7976 } 7977 7978 return Changed; 7979 } 7980 7981 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7982 auto Changed = false; 7983 for (auto &Entry : GEPs) { 7984 // If the getelementptr list has fewer than two elements, there's nothing 7985 // to do. 7986 if (Entry.second.size() < 2) 7987 continue; 7988 7989 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7990 << Entry.second.size() << ".\n"); 7991 7992 // Process the GEP list in chunks suitable for the target's supported 7993 // vector size. If a vector register can't hold 1 element, we are done. We 7994 // are trying to vectorize the index computations, so the maximum number of 7995 // elements is based on the size of the index expression, rather than the 7996 // size of the GEP itself (the target's pointer size). 7997 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7998 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7999 if (MaxVecRegSize < EltSize) 8000 continue; 8001 8002 unsigned MaxElts = MaxVecRegSize / EltSize; 8003 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 8004 auto Len = std::min<unsigned>(BE - BI, MaxElts); 8005 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 8006 8007 // Initialize a set a candidate getelementptrs. Note that we use a 8008 // SetVector here to preserve program order. If the index computations 8009 // are vectorizable and begin with loads, we want to minimize the chance 8010 // of having to reorder them later. 8011 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 8012 8013 // Some of the candidates may have already been vectorized after we 8014 // initially collected them. If so, they are marked as deleted, so remove 8015 // them from the set of candidates. 8016 Candidates.remove_if( 8017 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 8018 8019 // Remove from the set of candidates all pairs of getelementptrs with 8020 // constant differences. Such getelementptrs are likely not good 8021 // candidates for vectorization in a bottom-up phase since one can be 8022 // computed from the other. We also ensure all candidate getelementptr 8023 // indices are unique. 8024 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 8025 auto *GEPI = GEPList[I]; 8026 if (!Candidates.count(GEPI)) 8027 continue; 8028 auto *SCEVI = SE->getSCEV(GEPList[I]); 8029 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 8030 auto *GEPJ = GEPList[J]; 8031 auto *SCEVJ = SE->getSCEV(GEPList[J]); 8032 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 8033 Candidates.remove(GEPI); 8034 Candidates.remove(GEPJ); 8035 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 8036 Candidates.remove(GEPJ); 8037 } 8038 } 8039 } 8040 8041 // We break out of the above computation as soon as we know there are 8042 // fewer than two candidates remaining. 8043 if (Candidates.size() < 2) 8044 continue; 8045 8046 // Add the single, non-constant index of each candidate to the bundle. We 8047 // ensured the indices met these constraints when we originally collected 8048 // the getelementptrs. 8049 SmallVector<Value *, 16> Bundle(Candidates.size()); 8050 auto BundleIndex = 0u; 8051 for (auto *V : Candidates) { 8052 auto *GEP = cast<GetElementPtrInst>(V); 8053 auto *GEPIdx = GEP->idx_begin()->get(); 8054 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 8055 Bundle[BundleIndex++] = GEPIdx; 8056 } 8057 8058 // Try and vectorize the indices. We are currently only interested in 8059 // gather-like cases of the form: 8060 // 8061 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8062 // 8063 // where the loads of "a", the loads of "b", and the subtractions can be 8064 // performed in parallel. It's likely that detecting this pattern in a 8065 // bottom-up phase will be simpler and less costly than building a 8066 // full-blown top-down phase beginning at the consecutive loads. 8067 Changed |= tryToVectorizeList(Bundle, R); 8068 } 8069 } 8070 return Changed; 8071 } 8072 8073 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8074 bool Changed = false; 8075 // Attempt to sort and vectorize each of the store-groups. 8076 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 8077 ++it) { 8078 if (it->second.size() < 2) 8079 continue; 8080 8081 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8082 << it->second.size() << ".\n"); 8083 8084 Changed |= vectorizeStores(it->second, R); 8085 } 8086 return Changed; 8087 } 8088 8089 char SLPVectorizer::ID = 0; 8090 8091 static const char lv_name[] = "SLP Vectorizer"; 8092 8093 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8094 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8095 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8096 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8097 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8098 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8099 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8100 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8101 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8102 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8103 8104 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8105