1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallString.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/iterator.h" 36 #include "llvm/ADT/iterator_range.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/Analysis/CodeMetrics.h" 39 #include "llvm/Analysis/DemandedBits.h" 40 #include "llvm/Analysis/GlobalsModRef.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/Analysis/AssumptionCache.h" 52 #include "llvm/IR/Attributes.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugLoc.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/IRBuilder.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/IntrinsicInst.h" 66 #include "llvm/IR/Intrinsics.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/NoFolder.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PassManager.h" 71 #include "llvm/IR/PatternMatch.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/User.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/IR/ValueHandle.h" 77 #include "llvm/IR/Verifier.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/DOTGraphTraits.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/GraphWriter.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 91 #include "llvm/Transforms/Utils/LoopUtils.h" 92 #include "llvm/Transforms/Vectorize.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <memory> 98 #include <set> 99 #include <string> 100 #include <tuple> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 using namespace slpvectorizer; 107 108 #define SV_NAME "slp-vectorizer" 109 #define DEBUG_TYPE "SLP" 110 111 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 112 113 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 114 cl::desc("Run the SLP vectorization passes")); 115 116 static cl::opt<int> 117 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 118 cl::desc("Only vectorize if you gain more than this " 119 "number ")); 120 121 static cl::opt<bool> 122 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 123 cl::desc("Attempt to vectorize horizontal reductions")); 124 125 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 126 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 127 cl::desc( 128 "Attempt to vectorize horizontal reductions feeding into a store")); 129 130 static cl::opt<int> 131 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 132 cl::desc("Attempt to vectorize for this register size in bits")); 133 134 static cl::opt<int> 135 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 136 cl::desc("Maximum depth of the lookup for consecutive stores.")); 137 138 /// Limits the size of scheduling regions in a block. 139 /// It avoid long compile times for _very_ large blocks where vector 140 /// instructions are spread over a wide range. 141 /// This limit is way higher than needed by real-world functions. 142 static cl::opt<int> 143 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 144 cl::desc("Limit the size of the SLP scheduling region per block")); 145 146 static cl::opt<int> MinVectorRegSizeOption( 147 "slp-min-reg-size", cl::init(128), cl::Hidden, 148 cl::desc("Attempt to vectorize for this register size in bits")); 149 150 static cl::opt<unsigned> RecursionMaxDepth( 151 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 152 cl::desc("Limit the recursion depth when building a vectorizable tree")); 153 154 static cl::opt<unsigned> MinTreeSize( 155 "slp-min-tree-size", cl::init(3), cl::Hidden, 156 cl::desc("Only vectorize small trees if they are fully vectorizable")); 157 158 // The maximum depth that the look-ahead score heuristic will explore. 159 // The higher this value, the higher the compilation time overhead. 160 static cl::opt<int> LookAheadMaxDepth( 161 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 162 cl::desc("The maximum look-ahead depth for operand reordering scores")); 163 164 // The Look-ahead heuristic goes through the users of the bundle to calculate 165 // the users cost in getExternalUsesCost(). To avoid compilation time increase 166 // we limit the number of users visited to this value. 167 static cl::opt<unsigned> LookAheadUsersBudget( 168 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 169 cl::desc("The maximum number of users to visit while visiting the " 170 "predecessors. This prevents compilation time increase.")); 171 172 static cl::opt<bool> 173 ViewSLPTree("view-slp-tree", cl::Hidden, 174 cl::desc("Display the SLP trees with Graphviz")); 175 176 // Limit the number of alias checks. The limit is chosen so that 177 // it has no negative effect on the llvm benchmarks. 178 static const unsigned AliasedCheckLimit = 10; 179 180 // Another limit for the alias checks: The maximum distance between load/store 181 // instructions where alias checks are done. 182 // This limit is useful for very large basic blocks. 183 static const unsigned MaxMemDepDistance = 160; 184 185 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 186 /// regions to be handled. 187 static const int MinScheduleRegionSize = 16; 188 189 /// Predicate for the element types that the SLP vectorizer supports. 190 /// 191 /// The most important thing to filter here are types which are invalid in LLVM 192 /// vectors. We also filter target specific types which have absolutely no 193 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 194 /// avoids spending time checking the cost model and realizing that they will 195 /// be inevitably scalarized. 196 static bool isValidElementType(Type *Ty) { 197 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 198 !Ty->isPPC_FP128Ty(); 199 } 200 201 /// \returns true if all of the instructions in \p VL are in the same block or 202 /// false otherwise. 203 static bool allSameBlock(ArrayRef<Value *> VL) { 204 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 205 if (!I0) 206 return false; 207 BasicBlock *BB = I0->getParent(); 208 for (int i = 1, e = VL.size(); i < e; i++) { 209 Instruction *I = dyn_cast<Instruction>(VL[i]); 210 if (!I) 211 return false; 212 213 if (BB != I->getParent()) 214 return false; 215 } 216 return true; 217 } 218 219 /// \returns True if all of the values in \p VL are constants (but not 220 /// globals/constant expressions). 221 static bool allConstant(ArrayRef<Value *> VL) { 222 // Constant expressions and globals can't be vectorized like normal integer/FP 223 // constants. 224 for (Value *i : VL) 225 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 226 return false; 227 return true; 228 } 229 230 /// \returns True if all of the values in \p VL are identical. 231 static bool isSplat(ArrayRef<Value *> VL) { 232 for (unsigned i = 1, e = VL.size(); i < e; ++i) 233 if (VL[i] != VL[0]) 234 return false; 235 return true; 236 } 237 238 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 239 static bool isCommutative(Instruction *I) { 240 if (auto *IC = dyn_cast<CmpInst>(I)) 241 return IC->isCommutative(); 242 return I->isCommutative(); 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 namespace slpvectorizer { 527 528 /// Bottom Up SLP Vectorizer. 529 class BoUpSLP { 530 struct TreeEntry; 531 struct ScheduleData; 532 533 public: 534 using ValueList = SmallVector<Value *, 8>; 535 using InstrList = SmallVector<Instruction *, 16>; 536 using ValueSet = SmallPtrSet<Value *, 16>; 537 using StoreList = SmallVector<StoreInst *, 8>; 538 using ExtraValueToDebugLocsMap = 539 MapVector<Value *, SmallVector<Instruction *, 2>>; 540 541 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 542 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 543 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 544 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 545 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 546 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 547 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 548 // Use the vector register size specified by the target unless overridden 549 // by a command-line option. 550 // TODO: It would be better to limit the vectorization factor based on 551 // data type rather than just register size. For example, x86 AVX has 552 // 256-bit registers, but it does not support integer operations 553 // at that width (that requires AVX2). 554 if (MaxVectorRegSizeOption.getNumOccurrences()) 555 MaxVecRegSize = MaxVectorRegSizeOption; 556 else 557 MaxVecRegSize = TTI->getRegisterBitWidth(true); 558 559 if (MinVectorRegSizeOption.getNumOccurrences()) 560 MinVecRegSize = MinVectorRegSizeOption; 561 else 562 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 563 } 564 565 /// Vectorize the tree that starts with the elements in \p VL. 566 /// Returns the vectorized root. 567 Value *vectorizeTree(); 568 569 /// Vectorize the tree but with the list of externally used values \p 570 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 571 /// generated extractvalue instructions. 572 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 573 574 /// \returns the cost incurred by unwanted spills and fills, caused by 575 /// holding live values over call sites. 576 int getSpillCost() const; 577 578 /// \returns the vectorization cost of the subtree that starts at \p VL. 579 /// A negative number means that this is profitable. 580 int getTreeCost(); 581 582 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 583 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 584 void buildTree(ArrayRef<Value *> Roots, 585 ArrayRef<Value *> UserIgnoreLst = None); 586 587 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 588 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 589 /// into account (and updating it, if required) list of externally used 590 /// values stored in \p ExternallyUsedValues. 591 void buildTree(ArrayRef<Value *> Roots, 592 ExtraValueToDebugLocsMap &ExternallyUsedValues, 593 ArrayRef<Value *> UserIgnoreLst = None); 594 595 /// Clear the internal data structures that are created by 'buildTree'. 596 void deleteTree() { 597 VectorizableTree.clear(); 598 ScalarToTreeEntry.clear(); 599 MustGather.clear(); 600 ExternalUses.clear(); 601 NumOpsWantToKeepOrder.clear(); 602 NumOpsWantToKeepOriginalOrder = 0; 603 for (auto &Iter : BlocksSchedules) { 604 BlockScheduling *BS = Iter.second.get(); 605 BS->clear(); 606 } 607 MinBWs.clear(); 608 } 609 610 unsigned getTreeSize() const { return VectorizableTree.size(); } 611 612 /// Perform LICM and CSE on the newly generated gather sequences. 613 void optimizeGatherSequence(); 614 615 /// \returns The best order of instructions for vectorization. 616 Optional<ArrayRef<unsigned>> bestOrder() const { 617 auto I = std::max_element( 618 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 619 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 620 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 621 return D1.second < D2.second; 622 }); 623 if (I == NumOpsWantToKeepOrder.end() || 624 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 625 return None; 626 627 return makeArrayRef(I->getFirst()); 628 } 629 630 /// \return The vector element size in bits to use when vectorizing the 631 /// expression tree ending at \p V. If V is a store, the size is the width of 632 /// the stored value. Otherwise, the size is the width of the largest loaded 633 /// value reaching V. This method is used by the vectorizer to calculate 634 /// vectorization factors. 635 unsigned getVectorElementSize(Value *V); 636 637 /// Compute the minimum type sizes required to represent the entries in a 638 /// vectorizable tree. 639 void computeMinimumValueSizes(); 640 641 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 642 unsigned getMaxVecRegSize() const { 643 return MaxVecRegSize; 644 } 645 646 // \returns minimum vector register size as set by cl::opt. 647 unsigned getMinVecRegSize() const { 648 return MinVecRegSize; 649 } 650 651 /// Check if homogeneous aggregate is isomorphic to some VectorType. 652 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 653 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 654 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 655 /// 656 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 657 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 658 659 /// \returns True if the VectorizableTree is both tiny and not fully 660 /// vectorizable. We do not vectorize such trees. 661 bool isTreeTinyAndNotFullyVectorizable() const; 662 663 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 664 /// can be load combined in the backend. Load combining may not be allowed in 665 /// the IR optimizer, so we do not want to alter the pattern. For example, 666 /// partially transforming a scalar bswap() pattern into vector code is 667 /// effectively impossible for the backend to undo. 668 /// TODO: If load combining is allowed in the IR optimizer, this analysis 669 /// may not be necessary. 670 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 671 672 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 673 /// can be load combined in the backend. Load combining may not be allowed in 674 /// the IR optimizer, so we do not want to alter the pattern. For example, 675 /// partially transforming a scalar bswap() pattern into vector code is 676 /// effectively impossible for the backend to undo. 677 /// TODO: If load combining is allowed in the IR optimizer, this analysis 678 /// may not be necessary. 679 bool isLoadCombineCandidate() const; 680 681 OptimizationRemarkEmitter *getORE() { return ORE; } 682 683 /// This structure holds any data we need about the edges being traversed 684 /// during buildTree_rec(). We keep track of: 685 /// (i) the user TreeEntry index, and 686 /// (ii) the index of the edge. 687 struct EdgeInfo { 688 EdgeInfo() = default; 689 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 690 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 691 /// The user TreeEntry. 692 TreeEntry *UserTE = nullptr; 693 /// The operand index of the use. 694 unsigned EdgeIdx = UINT_MAX; 695 #ifndef NDEBUG 696 friend inline raw_ostream &operator<<(raw_ostream &OS, 697 const BoUpSLP::EdgeInfo &EI) { 698 EI.dump(OS); 699 return OS; 700 } 701 /// Debug print. 702 void dump(raw_ostream &OS) const { 703 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 704 << " EdgeIdx:" << EdgeIdx << "}"; 705 } 706 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 707 #endif 708 }; 709 710 /// A helper data structure to hold the operands of a vector of instructions. 711 /// This supports a fixed vector length for all operand vectors. 712 class VLOperands { 713 /// For each operand we need (i) the value, and (ii) the opcode that it 714 /// would be attached to if the expression was in a left-linearized form. 715 /// This is required to avoid illegal operand reordering. 716 /// For example: 717 /// \verbatim 718 /// 0 Op1 719 /// |/ 720 /// Op1 Op2 Linearized + Op2 721 /// \ / ----------> |/ 722 /// - - 723 /// 724 /// Op1 - Op2 (0 + Op1) - Op2 725 /// \endverbatim 726 /// 727 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 728 /// 729 /// Another way to think of this is to track all the operations across the 730 /// path from the operand all the way to the root of the tree and to 731 /// calculate the operation that corresponds to this path. For example, the 732 /// path from Op2 to the root crosses the RHS of the '-', therefore the 733 /// corresponding operation is a '-' (which matches the one in the 734 /// linearized tree, as shown above). 735 /// 736 /// For lack of a better term, we refer to this operation as Accumulated 737 /// Path Operation (APO). 738 struct OperandData { 739 OperandData() = default; 740 OperandData(Value *V, bool APO, bool IsUsed) 741 : V(V), APO(APO), IsUsed(IsUsed) {} 742 /// The operand value. 743 Value *V = nullptr; 744 /// TreeEntries only allow a single opcode, or an alternate sequence of 745 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 746 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 747 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 748 /// (e.g., Add/Mul) 749 bool APO = false; 750 /// Helper data for the reordering function. 751 bool IsUsed = false; 752 }; 753 754 /// During operand reordering, we are trying to select the operand at lane 755 /// that matches best with the operand at the neighboring lane. Our 756 /// selection is based on the type of value we are looking for. For example, 757 /// if the neighboring lane has a load, we need to look for a load that is 758 /// accessing a consecutive address. These strategies are summarized in the 759 /// 'ReorderingMode' enumerator. 760 enum class ReorderingMode { 761 Load, ///< Matching loads to consecutive memory addresses 762 Opcode, ///< Matching instructions based on opcode (same or alternate) 763 Constant, ///< Matching constants 764 Splat, ///< Matching the same instruction multiple times (broadcast) 765 Failed, ///< We failed to create a vectorizable group 766 }; 767 768 using OperandDataVec = SmallVector<OperandData, 2>; 769 770 /// A vector of operand vectors. 771 SmallVector<OperandDataVec, 4> OpsVec; 772 773 const DataLayout &DL; 774 ScalarEvolution &SE; 775 const BoUpSLP &R; 776 777 /// \returns the operand data at \p OpIdx and \p Lane. 778 OperandData &getData(unsigned OpIdx, unsigned Lane) { 779 return OpsVec[OpIdx][Lane]; 780 } 781 782 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 783 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 784 return OpsVec[OpIdx][Lane]; 785 } 786 787 /// Clears the used flag for all entries. 788 void clearUsed() { 789 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 790 OpIdx != NumOperands; ++OpIdx) 791 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 792 ++Lane) 793 OpsVec[OpIdx][Lane].IsUsed = false; 794 } 795 796 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 797 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 798 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 799 } 800 801 // The hard-coded scores listed here are not very important. When computing 802 // the scores of matching one sub-tree with another, we are basically 803 // counting the number of values that are matching. So even if all scores 804 // are set to 1, we would still get a decent matching result. 805 // However, sometimes we have to break ties. For example we may have to 806 // choose between matching loads vs matching opcodes. This is what these 807 // scores are helping us with: they provide the order of preference. 808 809 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 810 static const int ScoreConsecutiveLoads = 3; 811 /// ExtractElementInst from same vector and consecutive indexes. 812 static const int ScoreConsecutiveExtracts = 3; 813 /// Constants. 814 static const int ScoreConstants = 2; 815 /// Instructions with the same opcode. 816 static const int ScoreSameOpcode = 2; 817 /// Instructions with alt opcodes (e.g, add + sub). 818 static const int ScoreAltOpcodes = 1; 819 /// Identical instructions (a.k.a. splat or broadcast). 820 static const int ScoreSplat = 1; 821 /// Matching with an undef is preferable to failing. 822 static const int ScoreUndef = 1; 823 /// Score for failing to find a decent match. 824 static const int ScoreFail = 0; 825 /// User exteranl to the vectorized code. 826 static const int ExternalUseCost = 1; 827 /// The user is internal but in a different lane. 828 static const int UserInDiffLaneCost = ExternalUseCost; 829 830 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 831 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 832 ScalarEvolution &SE) { 833 auto *LI1 = dyn_cast<LoadInst>(V1); 834 auto *LI2 = dyn_cast<LoadInst>(V2); 835 if (LI1 && LI2) 836 return isConsecutiveAccess(LI1, LI2, DL, SE) 837 ? VLOperands::ScoreConsecutiveLoads 838 : VLOperands::ScoreFail; 839 840 auto *C1 = dyn_cast<Constant>(V1); 841 auto *C2 = dyn_cast<Constant>(V2); 842 if (C1 && C2) 843 return VLOperands::ScoreConstants; 844 845 // Extracts from consecutive indexes of the same vector better score as 846 // the extracts could be optimized away. 847 Value *EV; 848 ConstantInt *Ex1Idx, *Ex2Idx; 849 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 850 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 851 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 852 return VLOperands::ScoreConsecutiveExtracts; 853 854 auto *I1 = dyn_cast<Instruction>(V1); 855 auto *I2 = dyn_cast<Instruction>(V2); 856 if (I1 && I2) { 857 if (I1 == I2) 858 return VLOperands::ScoreSplat; 859 InstructionsState S = getSameOpcode({I1, I2}); 860 // Note: Only consider instructions with <= 2 operands to avoid 861 // complexity explosion. 862 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 863 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 864 : VLOperands::ScoreSameOpcode; 865 } 866 867 if (isa<UndefValue>(V2)) 868 return VLOperands::ScoreUndef; 869 870 return VLOperands::ScoreFail; 871 } 872 873 /// Holds the values and their lane that are taking part in the look-ahead 874 /// score calculation. This is used in the external uses cost calculation. 875 SmallDenseMap<Value *, int> InLookAheadValues; 876 877 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 878 /// either external to the vectorized code, or require shuffling. 879 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 880 const std::pair<Value *, int> &RHS) { 881 int Cost = 0; 882 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 883 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 884 Value *V = Values[Idx].first; 885 // Calculate the absolute lane, using the minimum relative lane of LHS 886 // and RHS as base and Idx as the offset. 887 int Ln = std::min(LHS.second, RHS.second) + Idx; 888 assert(Ln >= 0 && "Bad lane calculation"); 889 unsigned UsersBudget = LookAheadUsersBudget; 890 for (User *U : V->users()) { 891 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 892 // The user is in the VectorizableTree. Check if we need to insert. 893 auto It = llvm::find(UserTE->Scalars, U); 894 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 895 int UserLn = std::distance(UserTE->Scalars.begin(), It); 896 assert(UserLn >= 0 && "Bad lane"); 897 if (UserLn != Ln) 898 Cost += UserInDiffLaneCost; 899 } else { 900 // Check if the user is in the look-ahead code. 901 auto It2 = InLookAheadValues.find(U); 902 if (It2 != InLookAheadValues.end()) { 903 // The user is in the look-ahead code. Check the lane. 904 if (It2->second != Ln) 905 Cost += UserInDiffLaneCost; 906 } else { 907 // The user is neither in SLP tree nor in the look-ahead code. 908 Cost += ExternalUseCost; 909 } 910 } 911 // Limit the number of visited uses to cap compilation time. 912 if (--UsersBudget == 0) 913 break; 914 } 915 } 916 return Cost; 917 } 918 919 /// Go through the operands of \p LHS and \p RHS recursively until \p 920 /// MaxLevel, and return the cummulative score. For example: 921 /// \verbatim 922 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 923 /// \ / \ / \ / \ / 924 /// + + + + 925 /// G1 G2 G3 G4 926 /// \endverbatim 927 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 928 /// each level recursively, accumulating the score. It starts from matching 929 /// the additions at level 0, then moves on to the loads (level 1). The 930 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 931 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 932 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 933 /// Please note that the order of the operands does not matter, as we 934 /// evaluate the score of all profitable combinations of operands. In 935 /// other words the score of G1 and G4 is the same as G1 and G2. This 936 /// heuristic is based on ideas described in: 937 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 938 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 939 /// Luís F. W. Góes 940 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 941 const std::pair<Value *, int> &RHS, int CurrLevel, 942 int MaxLevel) { 943 944 Value *V1 = LHS.first; 945 Value *V2 = RHS.first; 946 // Get the shallow score of V1 and V2. 947 int ShallowScoreAtThisLevel = 948 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 949 getExternalUsesCost(LHS, RHS)); 950 int Lane1 = LHS.second; 951 int Lane2 = RHS.second; 952 953 // If reached MaxLevel, 954 // or if V1 and V2 are not instructions, 955 // or if they are SPLAT, 956 // or if they are not consecutive, early return the current cost. 957 auto *I1 = dyn_cast<Instruction>(V1); 958 auto *I2 = dyn_cast<Instruction>(V2); 959 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 960 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 961 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 962 return ShallowScoreAtThisLevel; 963 assert(I1 && I2 && "Should have early exited."); 964 965 // Keep track of in-tree values for determining the external-use cost. 966 InLookAheadValues[V1] = Lane1; 967 InLookAheadValues[V2] = Lane2; 968 969 // Contains the I2 operand indexes that got matched with I1 operands. 970 SmallSet<unsigned, 4> Op2Used; 971 972 // Recursion towards the operands of I1 and I2. We are trying all possbile 973 // operand pairs, and keeping track of the best score. 974 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 975 OpIdx1 != NumOperands1; ++OpIdx1) { 976 // Try to pair op1I with the best operand of I2. 977 int MaxTmpScore = 0; 978 unsigned MaxOpIdx2 = 0; 979 bool FoundBest = false; 980 // If I2 is commutative try all combinations. 981 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 982 unsigned ToIdx = isCommutative(I2) 983 ? I2->getNumOperands() 984 : std::min(I2->getNumOperands(), OpIdx1 + 1); 985 assert(FromIdx <= ToIdx && "Bad index"); 986 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 987 // Skip operands already paired with OpIdx1. 988 if (Op2Used.count(OpIdx2)) 989 continue; 990 // Recursively calculate the cost at each level 991 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 992 {I2->getOperand(OpIdx2), Lane2}, 993 CurrLevel + 1, MaxLevel); 994 // Look for the best score. 995 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 996 MaxTmpScore = TmpScore; 997 MaxOpIdx2 = OpIdx2; 998 FoundBest = true; 999 } 1000 } 1001 if (FoundBest) { 1002 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1003 Op2Used.insert(MaxOpIdx2); 1004 ShallowScoreAtThisLevel += MaxTmpScore; 1005 } 1006 } 1007 return ShallowScoreAtThisLevel; 1008 } 1009 1010 /// \Returns the look-ahead score, which tells us how much the sub-trees 1011 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1012 /// score. This helps break ties in an informed way when we cannot decide on 1013 /// the order of the operands by just considering the immediate 1014 /// predecessors. 1015 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1016 const std::pair<Value *, int> &RHS) { 1017 InLookAheadValues.clear(); 1018 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1019 } 1020 1021 // Search all operands in Ops[*][Lane] for the one that matches best 1022 // Ops[OpIdx][LastLane] and return its opreand index. 1023 // If no good match can be found, return None. 1024 Optional<unsigned> 1025 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1026 ArrayRef<ReorderingMode> ReorderingModes) { 1027 unsigned NumOperands = getNumOperands(); 1028 1029 // The operand of the previous lane at OpIdx. 1030 Value *OpLastLane = getData(OpIdx, LastLane).V; 1031 1032 // Our strategy mode for OpIdx. 1033 ReorderingMode RMode = ReorderingModes[OpIdx]; 1034 1035 // The linearized opcode of the operand at OpIdx, Lane. 1036 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1037 1038 // The best operand index and its score. 1039 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1040 // are using the score to differentiate between the two. 1041 struct BestOpData { 1042 Optional<unsigned> Idx = None; 1043 unsigned Score = 0; 1044 } BestOp; 1045 1046 // Iterate through all unused operands and look for the best. 1047 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1048 // Get the operand at Idx and Lane. 1049 OperandData &OpData = getData(Idx, Lane); 1050 Value *Op = OpData.V; 1051 bool OpAPO = OpData.APO; 1052 1053 // Skip already selected operands. 1054 if (OpData.IsUsed) 1055 continue; 1056 1057 // Skip if we are trying to move the operand to a position with a 1058 // different opcode in the linearized tree form. This would break the 1059 // semantics. 1060 if (OpAPO != OpIdxAPO) 1061 continue; 1062 1063 // Look for an operand that matches the current mode. 1064 switch (RMode) { 1065 case ReorderingMode::Load: 1066 case ReorderingMode::Constant: 1067 case ReorderingMode::Opcode: { 1068 bool LeftToRight = Lane > LastLane; 1069 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1070 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1071 unsigned Score = 1072 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1073 if (Score > BestOp.Score) { 1074 BestOp.Idx = Idx; 1075 BestOp.Score = Score; 1076 } 1077 break; 1078 } 1079 case ReorderingMode::Splat: 1080 if (Op == OpLastLane) 1081 BestOp.Idx = Idx; 1082 break; 1083 case ReorderingMode::Failed: 1084 return None; 1085 } 1086 } 1087 1088 if (BestOp.Idx) { 1089 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1090 return BestOp.Idx; 1091 } 1092 // If we could not find a good match return None. 1093 return None; 1094 } 1095 1096 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1097 /// reordering from. This is the one which has the least number of operands 1098 /// that can freely move about. 1099 unsigned getBestLaneToStartReordering() const { 1100 unsigned BestLane = 0; 1101 unsigned Min = UINT_MAX; 1102 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1103 ++Lane) { 1104 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1105 if (NumFreeOps < Min) { 1106 Min = NumFreeOps; 1107 BestLane = Lane; 1108 } 1109 } 1110 return BestLane; 1111 } 1112 1113 /// \Returns the maximum number of operands that are allowed to be reordered 1114 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1115 /// start operand reordering. 1116 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1117 unsigned CntTrue = 0; 1118 unsigned NumOperands = getNumOperands(); 1119 // Operands with the same APO can be reordered. We therefore need to count 1120 // how many of them we have for each APO, like this: Cnt[APO] = x. 1121 // Since we only have two APOs, namely true and false, we can avoid using 1122 // a map. Instead we can simply count the number of operands that 1123 // correspond to one of them (in this case the 'true' APO), and calculate 1124 // the other by subtracting it from the total number of operands. 1125 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1126 if (getData(OpIdx, Lane).APO) 1127 ++CntTrue; 1128 unsigned CntFalse = NumOperands - CntTrue; 1129 return std::max(CntTrue, CntFalse); 1130 } 1131 1132 /// Go through the instructions in VL and append their operands. 1133 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1134 assert(!VL.empty() && "Bad VL"); 1135 assert((empty() || VL.size() == getNumLanes()) && 1136 "Expected same number of lanes"); 1137 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1138 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1139 OpsVec.resize(NumOperands); 1140 unsigned NumLanes = VL.size(); 1141 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1142 OpsVec[OpIdx].resize(NumLanes); 1143 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1144 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1145 // Our tree has just 3 nodes: the root and two operands. 1146 // It is therefore trivial to get the APO. We only need to check the 1147 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1148 // RHS operand. The LHS operand of both add and sub is never attached 1149 // to an inversese operation in the linearized form, therefore its APO 1150 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1151 1152 // Since operand reordering is performed on groups of commutative 1153 // operations or alternating sequences (e.g., +, -), we can safely 1154 // tell the inverse operations by checking commutativity. 1155 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1156 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1157 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1158 APO, false}; 1159 } 1160 } 1161 } 1162 1163 /// \returns the number of operands. 1164 unsigned getNumOperands() const { return OpsVec.size(); } 1165 1166 /// \returns the number of lanes. 1167 unsigned getNumLanes() const { return OpsVec[0].size(); } 1168 1169 /// \returns the operand value at \p OpIdx and \p Lane. 1170 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1171 return getData(OpIdx, Lane).V; 1172 } 1173 1174 /// \returns true if the data structure is empty. 1175 bool empty() const { return OpsVec.empty(); } 1176 1177 /// Clears the data. 1178 void clear() { OpsVec.clear(); } 1179 1180 /// \Returns true if there are enough operands identical to \p Op to fill 1181 /// the whole vector. 1182 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1183 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1184 bool OpAPO = getData(OpIdx, Lane).APO; 1185 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1186 if (Ln == Lane) 1187 continue; 1188 // This is set to true if we found a candidate for broadcast at Lane. 1189 bool FoundCandidate = false; 1190 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1191 OperandData &Data = getData(OpI, Ln); 1192 if (Data.APO != OpAPO || Data.IsUsed) 1193 continue; 1194 if (Data.V == Op) { 1195 FoundCandidate = true; 1196 Data.IsUsed = true; 1197 break; 1198 } 1199 } 1200 if (!FoundCandidate) 1201 return false; 1202 } 1203 return true; 1204 } 1205 1206 public: 1207 /// Initialize with all the operands of the instruction vector \p RootVL. 1208 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1209 ScalarEvolution &SE, const BoUpSLP &R) 1210 : DL(DL), SE(SE), R(R) { 1211 // Append all the operands of RootVL. 1212 appendOperandsOfVL(RootVL); 1213 } 1214 1215 /// \Returns a value vector with the operands across all lanes for the 1216 /// opearnd at \p OpIdx. 1217 ValueList getVL(unsigned OpIdx) const { 1218 ValueList OpVL(OpsVec[OpIdx].size()); 1219 assert(OpsVec[OpIdx].size() == getNumLanes() && 1220 "Expected same num of lanes across all operands"); 1221 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1222 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1223 return OpVL; 1224 } 1225 1226 // Performs operand reordering for 2 or more operands. 1227 // The original operands are in OrigOps[OpIdx][Lane]. 1228 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1229 void reorder() { 1230 unsigned NumOperands = getNumOperands(); 1231 unsigned NumLanes = getNumLanes(); 1232 // Each operand has its own mode. We are using this mode to help us select 1233 // the instructions for each lane, so that they match best with the ones 1234 // we have selected so far. 1235 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1236 1237 // This is a greedy single-pass algorithm. We are going over each lane 1238 // once and deciding on the best order right away with no back-tracking. 1239 // However, in order to increase its effectiveness, we start with the lane 1240 // that has operands that can move the least. For example, given the 1241 // following lanes: 1242 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1243 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1244 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1245 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1246 // we will start at Lane 1, since the operands of the subtraction cannot 1247 // be reordered. Then we will visit the rest of the lanes in a circular 1248 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1249 1250 // Find the first lane that we will start our search from. 1251 unsigned FirstLane = getBestLaneToStartReordering(); 1252 1253 // Initialize the modes. 1254 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1255 Value *OpLane0 = getValue(OpIdx, FirstLane); 1256 // Keep track if we have instructions with all the same opcode on one 1257 // side. 1258 if (isa<LoadInst>(OpLane0)) 1259 ReorderingModes[OpIdx] = ReorderingMode::Load; 1260 else if (isa<Instruction>(OpLane0)) { 1261 // Check if OpLane0 should be broadcast. 1262 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1263 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1264 else 1265 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1266 } 1267 else if (isa<Constant>(OpLane0)) 1268 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1269 else if (isa<Argument>(OpLane0)) 1270 // Our best hope is a Splat. It may save some cost in some cases. 1271 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1272 else 1273 // NOTE: This should be unreachable. 1274 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1275 } 1276 1277 // If the initial strategy fails for any of the operand indexes, then we 1278 // perform reordering again in a second pass. This helps avoid assigning 1279 // high priority to the failed strategy, and should improve reordering for 1280 // the non-failed operand indexes. 1281 for (int Pass = 0; Pass != 2; ++Pass) { 1282 // Skip the second pass if the first pass did not fail. 1283 bool StrategyFailed = false; 1284 // Mark all operand data as free to use. 1285 clearUsed(); 1286 // We keep the original operand order for the FirstLane, so reorder the 1287 // rest of the lanes. We are visiting the nodes in a circular fashion, 1288 // using FirstLane as the center point and increasing the radius 1289 // distance. 1290 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1291 // Visit the lane on the right and then the lane on the left. 1292 for (int Direction : {+1, -1}) { 1293 int Lane = FirstLane + Direction * Distance; 1294 if (Lane < 0 || Lane >= (int)NumLanes) 1295 continue; 1296 int LastLane = Lane - Direction; 1297 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1298 "Out of bounds"); 1299 // Look for a good match for each operand. 1300 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1301 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1302 Optional<unsigned> BestIdx = 1303 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1304 // By not selecting a value, we allow the operands that follow to 1305 // select a better matching value. We will get a non-null value in 1306 // the next run of getBestOperand(). 1307 if (BestIdx) { 1308 // Swap the current operand with the one returned by 1309 // getBestOperand(). 1310 swap(OpIdx, BestIdx.getValue(), Lane); 1311 } else { 1312 // We failed to find a best operand, set mode to 'Failed'. 1313 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1314 // Enable the second pass. 1315 StrategyFailed = true; 1316 } 1317 } 1318 } 1319 } 1320 // Skip second pass if the strategy did not fail. 1321 if (!StrategyFailed) 1322 break; 1323 } 1324 } 1325 1326 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1327 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1328 switch (RMode) { 1329 case ReorderingMode::Load: 1330 return "Load"; 1331 case ReorderingMode::Opcode: 1332 return "Opcode"; 1333 case ReorderingMode::Constant: 1334 return "Constant"; 1335 case ReorderingMode::Splat: 1336 return "Splat"; 1337 case ReorderingMode::Failed: 1338 return "Failed"; 1339 } 1340 llvm_unreachable("Unimplemented Reordering Type"); 1341 } 1342 1343 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1344 raw_ostream &OS) { 1345 return OS << getModeStr(RMode); 1346 } 1347 1348 /// Debug print. 1349 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1350 printMode(RMode, dbgs()); 1351 } 1352 1353 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1354 return printMode(RMode, OS); 1355 } 1356 1357 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1358 const unsigned Indent = 2; 1359 unsigned Cnt = 0; 1360 for (const OperandDataVec &OpDataVec : OpsVec) { 1361 OS << "Operand " << Cnt++ << "\n"; 1362 for (const OperandData &OpData : OpDataVec) { 1363 OS.indent(Indent) << "{"; 1364 if (Value *V = OpData.V) 1365 OS << *V; 1366 else 1367 OS << "null"; 1368 OS << ", APO:" << OpData.APO << "}\n"; 1369 } 1370 OS << "\n"; 1371 } 1372 return OS; 1373 } 1374 1375 /// Debug print. 1376 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1377 #endif 1378 }; 1379 1380 /// Checks if the instruction is marked for deletion. 1381 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1382 1383 /// Marks values operands for later deletion by replacing them with Undefs. 1384 void eraseInstructions(ArrayRef<Value *> AV); 1385 1386 ~BoUpSLP(); 1387 1388 private: 1389 /// Checks if all users of \p I are the part of the vectorization tree. 1390 bool areAllUsersVectorized(Instruction *I) const; 1391 1392 /// \returns the cost of the vectorizable entry. 1393 int getEntryCost(TreeEntry *E); 1394 1395 /// This is the recursive part of buildTree. 1396 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1397 const EdgeInfo &EI); 1398 1399 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1400 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1401 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1402 /// returns false, setting \p CurrentOrder to either an empty vector or a 1403 /// non-identity permutation that allows to reuse extract instructions. 1404 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1405 SmallVectorImpl<unsigned> &CurrentOrder) const; 1406 1407 /// Vectorize a single entry in the tree. 1408 Value *vectorizeTree(TreeEntry *E); 1409 1410 /// Vectorize a single entry in the tree, starting in \p VL. 1411 Value *vectorizeTree(ArrayRef<Value *> VL); 1412 1413 /// \returns the scalarization cost for this type. Scalarization in this 1414 /// context means the creation of vectors from a group of scalars. 1415 int getGatherCost(FixedVectorType *Ty, 1416 const DenseSet<unsigned> &ShuffledIndices) const; 1417 1418 /// \returns the scalarization cost for this list of values. Assuming that 1419 /// this subtree gets vectorized, we may need to extract the values from the 1420 /// roots. This method calculates the cost of extracting the values. 1421 int getGatherCost(ArrayRef<Value *> VL) const; 1422 1423 /// Set the Builder insert point to one after the last instruction in 1424 /// the bundle 1425 void setInsertPointAfterBundle(TreeEntry *E); 1426 1427 /// \returns a vector from a collection of scalars in \p VL. 1428 Value *Gather(ArrayRef<Value *> VL, FixedVectorType *Ty); 1429 1430 /// \returns whether the VectorizableTree is fully vectorizable and will 1431 /// be beneficial even the tree height is tiny. 1432 bool isFullyVectorizableTinyTree() const; 1433 1434 /// Reorder commutative or alt operands to get better probability of 1435 /// generating vectorized code. 1436 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1437 SmallVectorImpl<Value *> &Left, 1438 SmallVectorImpl<Value *> &Right, 1439 const DataLayout &DL, 1440 ScalarEvolution &SE, 1441 const BoUpSLP &R); 1442 struct TreeEntry { 1443 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1444 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1445 1446 /// \returns true if the scalars in VL are equal to this entry. 1447 bool isSame(ArrayRef<Value *> VL) const { 1448 if (VL.size() == Scalars.size()) 1449 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1450 return VL.size() == ReuseShuffleIndices.size() && 1451 std::equal( 1452 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1453 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1454 } 1455 1456 /// A vector of scalars. 1457 ValueList Scalars; 1458 1459 /// The Scalars are vectorized into this value. It is initialized to Null. 1460 Value *VectorizedValue = nullptr; 1461 1462 /// Do we need to gather this sequence ? 1463 enum EntryState { Vectorize, NeedToGather }; 1464 EntryState State; 1465 1466 /// Does this sequence require some shuffling? 1467 SmallVector<int, 4> ReuseShuffleIndices; 1468 1469 /// Does this entry require reordering? 1470 ArrayRef<unsigned> ReorderIndices; 1471 1472 /// Points back to the VectorizableTree. 1473 /// 1474 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1475 /// to be a pointer and needs to be able to initialize the child iterator. 1476 /// Thus we need a reference back to the container to translate the indices 1477 /// to entries. 1478 VecTreeTy &Container; 1479 1480 /// The TreeEntry index containing the user of this entry. We can actually 1481 /// have multiple users so the data structure is not truly a tree. 1482 SmallVector<EdgeInfo, 1> UserTreeIndices; 1483 1484 /// The index of this treeEntry in VectorizableTree. 1485 int Idx = -1; 1486 1487 private: 1488 /// The operands of each instruction in each lane Operands[op_index][lane]. 1489 /// Note: This helps avoid the replication of the code that performs the 1490 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1491 SmallVector<ValueList, 2> Operands; 1492 1493 /// The main/alternate instruction. 1494 Instruction *MainOp = nullptr; 1495 Instruction *AltOp = nullptr; 1496 1497 public: 1498 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1499 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1500 if (Operands.size() < OpIdx + 1) 1501 Operands.resize(OpIdx + 1); 1502 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1503 Operands[OpIdx].resize(Scalars.size()); 1504 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1505 Operands[OpIdx][Lane] = OpVL[Lane]; 1506 } 1507 1508 /// Set the operands of this bundle in their original order. 1509 void setOperandsInOrder() { 1510 assert(Operands.empty() && "Already initialized?"); 1511 auto *I0 = cast<Instruction>(Scalars[0]); 1512 Operands.resize(I0->getNumOperands()); 1513 unsigned NumLanes = Scalars.size(); 1514 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1515 OpIdx != NumOperands; ++OpIdx) { 1516 Operands[OpIdx].resize(NumLanes); 1517 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1518 auto *I = cast<Instruction>(Scalars[Lane]); 1519 assert(I->getNumOperands() == NumOperands && 1520 "Expected same number of operands"); 1521 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1522 } 1523 } 1524 } 1525 1526 /// \returns the \p OpIdx operand of this TreeEntry. 1527 ValueList &getOperand(unsigned OpIdx) { 1528 assert(OpIdx < Operands.size() && "Off bounds"); 1529 return Operands[OpIdx]; 1530 } 1531 1532 /// \returns the number of operands. 1533 unsigned getNumOperands() const { return Operands.size(); } 1534 1535 /// \return the single \p OpIdx operand. 1536 Value *getSingleOperand(unsigned OpIdx) const { 1537 assert(OpIdx < Operands.size() && "Off bounds"); 1538 assert(!Operands[OpIdx].empty() && "No operand available"); 1539 return Operands[OpIdx][0]; 1540 } 1541 1542 /// Some of the instructions in the list have alternate opcodes. 1543 bool isAltShuffle() const { 1544 return getOpcode() != getAltOpcode(); 1545 } 1546 1547 bool isOpcodeOrAlt(Instruction *I) const { 1548 unsigned CheckedOpcode = I->getOpcode(); 1549 return (getOpcode() == CheckedOpcode || 1550 getAltOpcode() == CheckedOpcode); 1551 } 1552 1553 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1554 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1555 /// \p OpValue. 1556 Value *isOneOf(Value *Op) const { 1557 auto *I = dyn_cast<Instruction>(Op); 1558 if (I && isOpcodeOrAlt(I)) 1559 return Op; 1560 return MainOp; 1561 } 1562 1563 void setOperations(const InstructionsState &S) { 1564 MainOp = S.MainOp; 1565 AltOp = S.AltOp; 1566 } 1567 1568 Instruction *getMainOp() const { 1569 return MainOp; 1570 } 1571 1572 Instruction *getAltOp() const { 1573 return AltOp; 1574 } 1575 1576 /// The main/alternate opcodes for the list of instructions. 1577 unsigned getOpcode() const { 1578 return MainOp ? MainOp->getOpcode() : 0; 1579 } 1580 1581 unsigned getAltOpcode() const { 1582 return AltOp ? AltOp->getOpcode() : 0; 1583 } 1584 1585 /// Update operations state of this entry if reorder occurred. 1586 bool updateStateIfReorder() { 1587 if (ReorderIndices.empty()) 1588 return false; 1589 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1590 setOperations(S); 1591 return true; 1592 } 1593 1594 #ifndef NDEBUG 1595 /// Debug printer. 1596 LLVM_DUMP_METHOD void dump() const { 1597 dbgs() << Idx << ".\n"; 1598 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1599 dbgs() << "Operand " << OpI << ":\n"; 1600 for (const Value *V : Operands[OpI]) 1601 dbgs().indent(2) << *V << "\n"; 1602 } 1603 dbgs() << "Scalars: \n"; 1604 for (Value *V : Scalars) 1605 dbgs().indent(2) << *V << "\n"; 1606 dbgs() << "State: "; 1607 switch (State) { 1608 case Vectorize: 1609 dbgs() << "Vectorize\n"; 1610 break; 1611 case NeedToGather: 1612 dbgs() << "NeedToGather\n"; 1613 break; 1614 } 1615 dbgs() << "MainOp: "; 1616 if (MainOp) 1617 dbgs() << *MainOp << "\n"; 1618 else 1619 dbgs() << "NULL\n"; 1620 dbgs() << "AltOp: "; 1621 if (AltOp) 1622 dbgs() << *AltOp << "\n"; 1623 else 1624 dbgs() << "NULL\n"; 1625 dbgs() << "VectorizedValue: "; 1626 if (VectorizedValue) 1627 dbgs() << *VectorizedValue << "\n"; 1628 else 1629 dbgs() << "NULL\n"; 1630 dbgs() << "ReuseShuffleIndices: "; 1631 if (ReuseShuffleIndices.empty()) 1632 dbgs() << "Emtpy"; 1633 else 1634 for (unsigned ReuseIdx : ReuseShuffleIndices) 1635 dbgs() << ReuseIdx << ", "; 1636 dbgs() << "\n"; 1637 dbgs() << "ReorderIndices: "; 1638 for (unsigned ReorderIdx : ReorderIndices) 1639 dbgs() << ReorderIdx << ", "; 1640 dbgs() << "\n"; 1641 dbgs() << "UserTreeIndices: "; 1642 for (const auto &EInfo : UserTreeIndices) 1643 dbgs() << EInfo << ", "; 1644 dbgs() << "\n"; 1645 } 1646 #endif 1647 }; 1648 1649 /// Create a new VectorizableTree entry. 1650 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1651 const InstructionsState &S, 1652 const EdgeInfo &UserTreeIdx, 1653 ArrayRef<unsigned> ReuseShuffleIndices = None, 1654 ArrayRef<unsigned> ReorderIndices = None) { 1655 bool Vectorized = (bool)Bundle; 1656 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1657 TreeEntry *Last = VectorizableTree.back().get(); 1658 Last->Idx = VectorizableTree.size() - 1; 1659 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1660 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1661 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1662 ReuseShuffleIndices.end()); 1663 Last->ReorderIndices = ReorderIndices; 1664 Last->setOperations(S); 1665 if (Vectorized) { 1666 for (int i = 0, e = VL.size(); i != e; ++i) { 1667 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1668 ScalarToTreeEntry[VL[i]] = Last; 1669 } 1670 // Update the scheduler bundle to point to this TreeEntry. 1671 unsigned Lane = 0; 1672 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1673 BundleMember = BundleMember->NextInBundle) { 1674 BundleMember->TE = Last; 1675 BundleMember->Lane = Lane; 1676 ++Lane; 1677 } 1678 assert((!Bundle.getValue() || Lane == VL.size()) && 1679 "Bundle and VL out of sync"); 1680 } else { 1681 MustGather.insert(VL.begin(), VL.end()); 1682 } 1683 1684 if (UserTreeIdx.UserTE) 1685 Last->UserTreeIndices.push_back(UserTreeIdx); 1686 1687 return Last; 1688 } 1689 1690 /// -- Vectorization State -- 1691 /// Holds all of the tree entries. 1692 TreeEntry::VecTreeTy VectorizableTree; 1693 1694 #ifndef NDEBUG 1695 /// Debug printer. 1696 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1697 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1698 VectorizableTree[Id]->dump(); 1699 dbgs() << "\n"; 1700 } 1701 } 1702 #endif 1703 1704 TreeEntry *getTreeEntry(Value *V) { 1705 auto I = ScalarToTreeEntry.find(V); 1706 if (I != ScalarToTreeEntry.end()) 1707 return I->second; 1708 return nullptr; 1709 } 1710 1711 const TreeEntry *getTreeEntry(Value *V) const { 1712 auto I = ScalarToTreeEntry.find(V); 1713 if (I != ScalarToTreeEntry.end()) 1714 return I->second; 1715 return nullptr; 1716 } 1717 1718 /// Maps a specific scalar to its tree entry. 1719 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1720 1721 /// Maps a value to the proposed vectorizable size. 1722 SmallDenseMap<Value *, unsigned> InstrElementSize; 1723 1724 /// A list of scalars that we found that we need to keep as scalars. 1725 ValueSet MustGather; 1726 1727 /// This POD struct describes one external user in the vectorized tree. 1728 struct ExternalUser { 1729 ExternalUser(Value *S, llvm::User *U, int L) 1730 : Scalar(S), User(U), Lane(L) {} 1731 1732 // Which scalar in our function. 1733 Value *Scalar; 1734 1735 // Which user that uses the scalar. 1736 llvm::User *User; 1737 1738 // Which lane does the scalar belong to. 1739 int Lane; 1740 }; 1741 using UserList = SmallVector<ExternalUser, 16>; 1742 1743 /// Checks if two instructions may access the same memory. 1744 /// 1745 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1746 /// is invariant in the calling loop. 1747 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1748 Instruction *Inst2) { 1749 // First check if the result is already in the cache. 1750 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1751 Optional<bool> &result = AliasCache[key]; 1752 if (result.hasValue()) { 1753 return result.getValue(); 1754 } 1755 MemoryLocation Loc2 = getLocation(Inst2, AA); 1756 bool aliased = true; 1757 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1758 // Do the alias check. 1759 aliased = AA->alias(Loc1, Loc2); 1760 } 1761 // Store the result in the cache. 1762 result = aliased; 1763 return aliased; 1764 } 1765 1766 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1767 1768 /// Cache for alias results. 1769 /// TODO: consider moving this to the AliasAnalysis itself. 1770 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1771 1772 /// Removes an instruction from its block and eventually deletes it. 1773 /// It's like Instruction::eraseFromParent() except that the actual deletion 1774 /// is delayed until BoUpSLP is destructed. 1775 /// This is required to ensure that there are no incorrect collisions in the 1776 /// AliasCache, which can happen if a new instruction is allocated at the 1777 /// same address as a previously deleted instruction. 1778 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1779 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1780 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1781 } 1782 1783 /// Temporary store for deleted instructions. Instructions will be deleted 1784 /// eventually when the BoUpSLP is destructed. 1785 DenseMap<Instruction *, bool> DeletedInstructions; 1786 1787 /// A list of values that need to extracted out of the tree. 1788 /// This list holds pairs of (Internal Scalar : External User). External User 1789 /// can be nullptr, it means that this Internal Scalar will be used later, 1790 /// after vectorization. 1791 UserList ExternalUses; 1792 1793 /// Values used only by @llvm.assume calls. 1794 SmallPtrSet<const Value *, 32> EphValues; 1795 1796 /// Holds all of the instructions that we gathered. 1797 SetVector<Instruction *> GatherSeq; 1798 1799 /// A list of blocks that we are going to CSE. 1800 SetVector<BasicBlock *> CSEBlocks; 1801 1802 /// Contains all scheduling relevant data for an instruction. 1803 /// A ScheduleData either represents a single instruction or a member of an 1804 /// instruction bundle (= a group of instructions which is combined into a 1805 /// vector instruction). 1806 struct ScheduleData { 1807 // The initial value for the dependency counters. It means that the 1808 // dependencies are not calculated yet. 1809 enum { InvalidDeps = -1 }; 1810 1811 ScheduleData() = default; 1812 1813 void init(int BlockSchedulingRegionID, Value *OpVal) { 1814 FirstInBundle = this; 1815 NextInBundle = nullptr; 1816 NextLoadStore = nullptr; 1817 IsScheduled = false; 1818 SchedulingRegionID = BlockSchedulingRegionID; 1819 UnscheduledDepsInBundle = UnscheduledDeps; 1820 clearDependencies(); 1821 OpValue = OpVal; 1822 TE = nullptr; 1823 Lane = -1; 1824 } 1825 1826 /// Returns true if the dependency information has been calculated. 1827 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1828 1829 /// Returns true for single instructions and for bundle representatives 1830 /// (= the head of a bundle). 1831 bool isSchedulingEntity() const { return FirstInBundle == this; } 1832 1833 /// Returns true if it represents an instruction bundle and not only a 1834 /// single instruction. 1835 bool isPartOfBundle() const { 1836 return NextInBundle != nullptr || FirstInBundle != this; 1837 } 1838 1839 /// Returns true if it is ready for scheduling, i.e. it has no more 1840 /// unscheduled depending instructions/bundles. 1841 bool isReady() const { 1842 assert(isSchedulingEntity() && 1843 "can't consider non-scheduling entity for ready list"); 1844 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1845 } 1846 1847 /// Modifies the number of unscheduled dependencies, also updating it for 1848 /// the whole bundle. 1849 int incrementUnscheduledDeps(int Incr) { 1850 UnscheduledDeps += Incr; 1851 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1852 } 1853 1854 /// Sets the number of unscheduled dependencies to the number of 1855 /// dependencies. 1856 void resetUnscheduledDeps() { 1857 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1858 } 1859 1860 /// Clears all dependency information. 1861 void clearDependencies() { 1862 Dependencies = InvalidDeps; 1863 resetUnscheduledDeps(); 1864 MemoryDependencies.clear(); 1865 } 1866 1867 void dump(raw_ostream &os) const { 1868 if (!isSchedulingEntity()) { 1869 os << "/ " << *Inst; 1870 } else if (NextInBundle) { 1871 os << '[' << *Inst; 1872 ScheduleData *SD = NextInBundle; 1873 while (SD) { 1874 os << ';' << *SD->Inst; 1875 SD = SD->NextInBundle; 1876 } 1877 os << ']'; 1878 } else { 1879 os << *Inst; 1880 } 1881 } 1882 1883 Instruction *Inst = nullptr; 1884 1885 /// Points to the head in an instruction bundle (and always to this for 1886 /// single instructions). 1887 ScheduleData *FirstInBundle = nullptr; 1888 1889 /// Single linked list of all instructions in a bundle. Null if it is a 1890 /// single instruction. 1891 ScheduleData *NextInBundle = nullptr; 1892 1893 /// Single linked list of all memory instructions (e.g. load, store, call) 1894 /// in the block - until the end of the scheduling region. 1895 ScheduleData *NextLoadStore = nullptr; 1896 1897 /// The dependent memory instructions. 1898 /// This list is derived on demand in calculateDependencies(). 1899 SmallVector<ScheduleData *, 4> MemoryDependencies; 1900 1901 /// This ScheduleData is in the current scheduling region if this matches 1902 /// the current SchedulingRegionID of BlockScheduling. 1903 int SchedulingRegionID = 0; 1904 1905 /// Used for getting a "good" final ordering of instructions. 1906 int SchedulingPriority = 0; 1907 1908 /// The number of dependencies. Constitutes of the number of users of the 1909 /// instruction plus the number of dependent memory instructions (if any). 1910 /// This value is calculated on demand. 1911 /// If InvalidDeps, the number of dependencies is not calculated yet. 1912 int Dependencies = InvalidDeps; 1913 1914 /// The number of dependencies minus the number of dependencies of scheduled 1915 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1916 /// for scheduling. 1917 /// Note that this is negative as long as Dependencies is not calculated. 1918 int UnscheduledDeps = InvalidDeps; 1919 1920 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1921 /// single instructions. 1922 int UnscheduledDepsInBundle = InvalidDeps; 1923 1924 /// True if this instruction is scheduled (or considered as scheduled in the 1925 /// dry-run). 1926 bool IsScheduled = false; 1927 1928 /// Opcode of the current instruction in the schedule data. 1929 Value *OpValue = nullptr; 1930 1931 /// The TreeEntry that this instruction corresponds to. 1932 TreeEntry *TE = nullptr; 1933 1934 /// The lane of this node in the TreeEntry. 1935 int Lane = -1; 1936 }; 1937 1938 #ifndef NDEBUG 1939 friend inline raw_ostream &operator<<(raw_ostream &os, 1940 const BoUpSLP::ScheduleData &SD) { 1941 SD.dump(os); 1942 return os; 1943 } 1944 #endif 1945 1946 friend struct GraphTraits<BoUpSLP *>; 1947 friend struct DOTGraphTraits<BoUpSLP *>; 1948 1949 /// Contains all scheduling data for a basic block. 1950 struct BlockScheduling { 1951 BlockScheduling(BasicBlock *BB) 1952 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1953 1954 void clear() { 1955 ReadyInsts.clear(); 1956 ScheduleStart = nullptr; 1957 ScheduleEnd = nullptr; 1958 FirstLoadStoreInRegion = nullptr; 1959 LastLoadStoreInRegion = nullptr; 1960 1961 // Reduce the maximum schedule region size by the size of the 1962 // previous scheduling run. 1963 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1964 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1965 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1966 ScheduleRegionSize = 0; 1967 1968 // Make a new scheduling region, i.e. all existing ScheduleData is not 1969 // in the new region yet. 1970 ++SchedulingRegionID; 1971 } 1972 1973 ScheduleData *getScheduleData(Value *V) { 1974 ScheduleData *SD = ScheduleDataMap[V]; 1975 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1976 return SD; 1977 return nullptr; 1978 } 1979 1980 ScheduleData *getScheduleData(Value *V, Value *Key) { 1981 if (V == Key) 1982 return getScheduleData(V); 1983 auto I = ExtraScheduleDataMap.find(V); 1984 if (I != ExtraScheduleDataMap.end()) { 1985 ScheduleData *SD = I->second[Key]; 1986 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1987 return SD; 1988 } 1989 return nullptr; 1990 } 1991 1992 bool isInSchedulingRegion(ScheduleData *SD) const { 1993 return SD->SchedulingRegionID == SchedulingRegionID; 1994 } 1995 1996 /// Marks an instruction as scheduled and puts all dependent ready 1997 /// instructions into the ready-list. 1998 template <typename ReadyListType> 1999 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2000 SD->IsScheduled = true; 2001 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2002 2003 ScheduleData *BundleMember = SD; 2004 while (BundleMember) { 2005 if (BundleMember->Inst != BundleMember->OpValue) { 2006 BundleMember = BundleMember->NextInBundle; 2007 continue; 2008 } 2009 // Handle the def-use chain dependencies. 2010 2011 // Decrement the unscheduled counter and insert to ready list if ready. 2012 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2013 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2014 if (OpDef && OpDef->hasValidDependencies() && 2015 OpDef->incrementUnscheduledDeps(-1) == 0) { 2016 // There are no more unscheduled dependencies after 2017 // decrementing, so we can put the dependent instruction 2018 // into the ready list. 2019 ScheduleData *DepBundle = OpDef->FirstInBundle; 2020 assert(!DepBundle->IsScheduled && 2021 "already scheduled bundle gets ready"); 2022 ReadyList.insert(DepBundle); 2023 LLVM_DEBUG(dbgs() 2024 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2025 } 2026 }); 2027 }; 2028 2029 // If BundleMember is a vector bundle, its operands may have been 2030 // reordered duiring buildTree(). We therefore need to get its operands 2031 // through the TreeEntry. 2032 if (TreeEntry *TE = BundleMember->TE) { 2033 int Lane = BundleMember->Lane; 2034 assert(Lane >= 0 && "Lane not set"); 2035 2036 // Since vectorization tree is being built recursively this assertion 2037 // ensures that the tree entry has all operands set before reaching 2038 // this code. Couple of exceptions known at the moment are extracts 2039 // where their second (immediate) operand is not added. Since 2040 // immediates do not affect scheduler behavior this is considered 2041 // okay. 2042 auto *In = TE->getMainOp(); 2043 assert(In && 2044 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2045 In->getNumOperands() == TE->getNumOperands()) && 2046 "Missed TreeEntry operands?"); 2047 (void)In; // fake use to avoid build failure when assertions disabled 2048 2049 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2050 OpIdx != NumOperands; ++OpIdx) 2051 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2052 DecrUnsched(I); 2053 } else { 2054 // If BundleMember is a stand-alone instruction, no operand reordering 2055 // has taken place, so we directly access its operands. 2056 for (Use &U : BundleMember->Inst->operands()) 2057 if (auto *I = dyn_cast<Instruction>(U.get())) 2058 DecrUnsched(I); 2059 } 2060 // Handle the memory dependencies. 2061 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2062 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2063 // There are no more unscheduled dependencies after decrementing, 2064 // so we can put the dependent instruction into the ready list. 2065 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2066 assert(!DepBundle->IsScheduled && 2067 "already scheduled bundle gets ready"); 2068 ReadyList.insert(DepBundle); 2069 LLVM_DEBUG(dbgs() 2070 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2071 } 2072 } 2073 BundleMember = BundleMember->NextInBundle; 2074 } 2075 } 2076 2077 void doForAllOpcodes(Value *V, 2078 function_ref<void(ScheduleData *SD)> Action) { 2079 if (ScheduleData *SD = getScheduleData(V)) 2080 Action(SD); 2081 auto I = ExtraScheduleDataMap.find(V); 2082 if (I != ExtraScheduleDataMap.end()) 2083 for (auto &P : I->second) 2084 if (P.second->SchedulingRegionID == SchedulingRegionID) 2085 Action(P.second); 2086 } 2087 2088 /// Put all instructions into the ReadyList which are ready for scheduling. 2089 template <typename ReadyListType> 2090 void initialFillReadyList(ReadyListType &ReadyList) { 2091 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2092 doForAllOpcodes(I, [&](ScheduleData *SD) { 2093 if (SD->isSchedulingEntity() && SD->isReady()) { 2094 ReadyList.insert(SD); 2095 LLVM_DEBUG(dbgs() 2096 << "SLP: initially in ready list: " << *I << "\n"); 2097 } 2098 }); 2099 } 2100 } 2101 2102 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2103 /// cyclic dependencies. This is only a dry-run, no instructions are 2104 /// actually moved at this stage. 2105 /// \returns the scheduling bundle. The returned Optional value is non-None 2106 /// if \p VL is allowed to be scheduled. 2107 Optional<ScheduleData *> 2108 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2109 const InstructionsState &S); 2110 2111 /// Un-bundles a group of instructions. 2112 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2113 2114 /// Allocates schedule data chunk. 2115 ScheduleData *allocateScheduleDataChunks(); 2116 2117 /// Extends the scheduling region so that V is inside the region. 2118 /// \returns true if the region size is within the limit. 2119 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2120 2121 /// Initialize the ScheduleData structures for new instructions in the 2122 /// scheduling region. 2123 void initScheduleData(Instruction *FromI, Instruction *ToI, 2124 ScheduleData *PrevLoadStore, 2125 ScheduleData *NextLoadStore); 2126 2127 /// Updates the dependency information of a bundle and of all instructions/ 2128 /// bundles which depend on the original bundle. 2129 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2130 BoUpSLP *SLP); 2131 2132 /// Sets all instruction in the scheduling region to un-scheduled. 2133 void resetSchedule(); 2134 2135 BasicBlock *BB; 2136 2137 /// Simple memory allocation for ScheduleData. 2138 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2139 2140 /// The size of a ScheduleData array in ScheduleDataChunks. 2141 int ChunkSize; 2142 2143 /// The allocator position in the current chunk, which is the last entry 2144 /// of ScheduleDataChunks. 2145 int ChunkPos; 2146 2147 /// Attaches ScheduleData to Instruction. 2148 /// Note that the mapping survives during all vectorization iterations, i.e. 2149 /// ScheduleData structures are recycled. 2150 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2151 2152 /// Attaches ScheduleData to Instruction with the leading key. 2153 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2154 ExtraScheduleDataMap; 2155 2156 struct ReadyList : SmallVector<ScheduleData *, 8> { 2157 void insert(ScheduleData *SD) { push_back(SD); } 2158 }; 2159 2160 /// The ready-list for scheduling (only used for the dry-run). 2161 ReadyList ReadyInsts; 2162 2163 /// The first instruction of the scheduling region. 2164 Instruction *ScheduleStart = nullptr; 2165 2166 /// The first instruction _after_ the scheduling region. 2167 Instruction *ScheduleEnd = nullptr; 2168 2169 /// The first memory accessing instruction in the scheduling region 2170 /// (can be null). 2171 ScheduleData *FirstLoadStoreInRegion = nullptr; 2172 2173 /// The last memory accessing instruction in the scheduling region 2174 /// (can be null). 2175 ScheduleData *LastLoadStoreInRegion = nullptr; 2176 2177 /// The current size of the scheduling region. 2178 int ScheduleRegionSize = 0; 2179 2180 /// The maximum size allowed for the scheduling region. 2181 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2182 2183 /// The ID of the scheduling region. For a new vectorization iteration this 2184 /// is incremented which "removes" all ScheduleData from the region. 2185 // Make sure that the initial SchedulingRegionID is greater than the 2186 // initial SchedulingRegionID in ScheduleData (which is 0). 2187 int SchedulingRegionID = 1; 2188 }; 2189 2190 /// Attaches the BlockScheduling structures to basic blocks. 2191 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2192 2193 /// Performs the "real" scheduling. Done before vectorization is actually 2194 /// performed in a basic block. 2195 void scheduleBlock(BlockScheduling *BS); 2196 2197 /// List of users to ignore during scheduling and that don't need extracting. 2198 ArrayRef<Value *> UserIgnoreList; 2199 2200 using OrdersType = SmallVector<unsigned, 4>; 2201 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2202 /// sorted SmallVectors of unsigned. 2203 struct OrdersTypeDenseMapInfo { 2204 static OrdersType getEmptyKey() { 2205 OrdersType V; 2206 V.push_back(~1U); 2207 return V; 2208 } 2209 2210 static OrdersType getTombstoneKey() { 2211 OrdersType V; 2212 V.push_back(~2U); 2213 return V; 2214 } 2215 2216 static unsigned getHashValue(const OrdersType &V) { 2217 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2218 } 2219 2220 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2221 return LHS == RHS; 2222 } 2223 }; 2224 2225 /// Contains orders of operations along with the number of bundles that have 2226 /// operations in this order. It stores only those orders that require 2227 /// reordering, if reordering is not required it is counted using \a 2228 /// NumOpsWantToKeepOriginalOrder. 2229 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2230 /// Number of bundles that do not require reordering. 2231 unsigned NumOpsWantToKeepOriginalOrder = 0; 2232 2233 // Analysis and block reference. 2234 Function *F; 2235 ScalarEvolution *SE; 2236 TargetTransformInfo *TTI; 2237 TargetLibraryInfo *TLI; 2238 AliasAnalysis *AA; 2239 LoopInfo *LI; 2240 DominatorTree *DT; 2241 AssumptionCache *AC; 2242 DemandedBits *DB; 2243 const DataLayout *DL; 2244 OptimizationRemarkEmitter *ORE; 2245 2246 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2247 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2248 2249 /// Instruction builder to construct the vectorized tree. 2250 IRBuilder<> Builder; 2251 2252 /// A map of scalar integer values to the smallest bit width with which they 2253 /// can legally be represented. The values map to (width, signed) pairs, 2254 /// where "width" indicates the minimum bit width and "signed" is True if the 2255 /// value must be signed-extended, rather than zero-extended, back to its 2256 /// original width. 2257 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2258 }; 2259 2260 } // end namespace slpvectorizer 2261 2262 template <> struct GraphTraits<BoUpSLP *> { 2263 using TreeEntry = BoUpSLP::TreeEntry; 2264 2265 /// NodeRef has to be a pointer per the GraphWriter. 2266 using NodeRef = TreeEntry *; 2267 2268 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2269 2270 /// Add the VectorizableTree to the index iterator to be able to return 2271 /// TreeEntry pointers. 2272 struct ChildIteratorType 2273 : public iterator_adaptor_base< 2274 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2275 ContainerTy &VectorizableTree; 2276 2277 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2278 ContainerTy &VT) 2279 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2280 2281 NodeRef operator*() { return I->UserTE; } 2282 }; 2283 2284 static NodeRef getEntryNode(BoUpSLP &R) { 2285 return R.VectorizableTree[0].get(); 2286 } 2287 2288 static ChildIteratorType child_begin(NodeRef N) { 2289 return {N->UserTreeIndices.begin(), N->Container}; 2290 } 2291 2292 static ChildIteratorType child_end(NodeRef N) { 2293 return {N->UserTreeIndices.end(), N->Container}; 2294 } 2295 2296 /// For the node iterator we just need to turn the TreeEntry iterator into a 2297 /// TreeEntry* iterator so that it dereferences to NodeRef. 2298 class nodes_iterator { 2299 using ItTy = ContainerTy::iterator; 2300 ItTy It; 2301 2302 public: 2303 nodes_iterator(const ItTy &It2) : It(It2) {} 2304 NodeRef operator*() { return It->get(); } 2305 nodes_iterator operator++() { 2306 ++It; 2307 return *this; 2308 } 2309 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2310 }; 2311 2312 static nodes_iterator nodes_begin(BoUpSLP *R) { 2313 return nodes_iterator(R->VectorizableTree.begin()); 2314 } 2315 2316 static nodes_iterator nodes_end(BoUpSLP *R) { 2317 return nodes_iterator(R->VectorizableTree.end()); 2318 } 2319 2320 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2321 }; 2322 2323 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2324 using TreeEntry = BoUpSLP::TreeEntry; 2325 2326 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2327 2328 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2329 std::string Str; 2330 raw_string_ostream OS(Str); 2331 if (isSplat(Entry->Scalars)) { 2332 OS << "<splat> " << *Entry->Scalars[0]; 2333 return Str; 2334 } 2335 for (auto V : Entry->Scalars) { 2336 OS << *V; 2337 if (std::any_of( 2338 R->ExternalUses.begin(), R->ExternalUses.end(), 2339 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2340 OS << " <extract>"; 2341 OS << "\n"; 2342 } 2343 return Str; 2344 } 2345 2346 static std::string getNodeAttributes(const TreeEntry *Entry, 2347 const BoUpSLP *) { 2348 if (Entry->State == TreeEntry::NeedToGather) 2349 return "color=red"; 2350 return ""; 2351 } 2352 }; 2353 2354 } // end namespace llvm 2355 2356 BoUpSLP::~BoUpSLP() { 2357 for (const auto &Pair : DeletedInstructions) { 2358 // Replace operands of ignored instructions with Undefs in case if they were 2359 // marked for deletion. 2360 if (Pair.getSecond()) { 2361 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2362 Pair.getFirst()->replaceAllUsesWith(Undef); 2363 } 2364 Pair.getFirst()->dropAllReferences(); 2365 } 2366 for (const auto &Pair : DeletedInstructions) { 2367 assert(Pair.getFirst()->use_empty() && 2368 "trying to erase instruction with users."); 2369 Pair.getFirst()->eraseFromParent(); 2370 } 2371 assert(!verifyFunction(*F, &dbgs())); 2372 } 2373 2374 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2375 for (auto *V : AV) { 2376 if (auto *I = dyn_cast<Instruction>(V)) 2377 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2378 }; 2379 } 2380 2381 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2382 ArrayRef<Value *> UserIgnoreLst) { 2383 ExtraValueToDebugLocsMap ExternallyUsedValues; 2384 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2385 } 2386 2387 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2388 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2389 ArrayRef<Value *> UserIgnoreLst) { 2390 deleteTree(); 2391 UserIgnoreList = UserIgnoreLst; 2392 if (!allSameType(Roots)) 2393 return; 2394 buildTree_rec(Roots, 0, EdgeInfo()); 2395 2396 // Collect the values that we need to extract from the tree. 2397 for (auto &TEPtr : VectorizableTree) { 2398 TreeEntry *Entry = TEPtr.get(); 2399 2400 // No need to handle users of gathered values. 2401 if (Entry->State == TreeEntry::NeedToGather) 2402 continue; 2403 2404 // For each lane: 2405 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2406 Value *Scalar = Entry->Scalars[Lane]; 2407 int FoundLane = Lane; 2408 if (!Entry->ReuseShuffleIndices.empty()) { 2409 FoundLane = 2410 std::distance(Entry->ReuseShuffleIndices.begin(), 2411 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2412 } 2413 2414 // Check if the scalar is externally used as an extra arg. 2415 auto ExtI = ExternallyUsedValues.find(Scalar); 2416 if (ExtI != ExternallyUsedValues.end()) { 2417 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2418 << Lane << " from " << *Scalar << ".\n"); 2419 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2420 } 2421 for (User *U : Scalar->users()) { 2422 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2423 2424 Instruction *UserInst = dyn_cast<Instruction>(U); 2425 if (!UserInst) 2426 continue; 2427 2428 // Skip in-tree scalars that become vectors 2429 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2430 Value *UseScalar = UseEntry->Scalars[0]; 2431 // Some in-tree scalars will remain as scalar in vectorized 2432 // instructions. If that is the case, the one in Lane 0 will 2433 // be used. 2434 if (UseScalar != U || 2435 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2436 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2437 << ".\n"); 2438 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2439 continue; 2440 } 2441 } 2442 2443 // Ignore users in the user ignore list. 2444 if (is_contained(UserIgnoreList, UserInst)) 2445 continue; 2446 2447 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2448 << Lane << " from " << *Scalar << ".\n"); 2449 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2450 } 2451 } 2452 } 2453 } 2454 2455 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2456 const EdgeInfo &UserTreeIdx) { 2457 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2458 2459 InstructionsState S = getSameOpcode(VL); 2460 if (Depth == RecursionMaxDepth) { 2461 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2462 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2463 return; 2464 } 2465 2466 // Don't handle vectors. 2467 if (S.OpValue->getType()->isVectorTy()) { 2468 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2469 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2470 return; 2471 } 2472 2473 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2474 if (SI->getValueOperand()->getType()->isVectorTy()) { 2475 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2476 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2477 return; 2478 } 2479 2480 // If all of the operands are identical or constant we have a simple solution. 2481 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2482 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2483 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2484 return; 2485 } 2486 2487 // We now know that this is a vector of instructions of the same type from 2488 // the same block. 2489 2490 // Don't vectorize ephemeral values. 2491 for (Value *V : VL) { 2492 if (EphValues.count(V)) { 2493 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2494 << ") is ephemeral.\n"); 2495 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2496 return; 2497 } 2498 } 2499 2500 // Check if this is a duplicate of another entry. 2501 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2502 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2503 if (!E->isSame(VL)) { 2504 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2505 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2506 return; 2507 } 2508 // Record the reuse of the tree node. FIXME, currently this is only used to 2509 // properly draw the graph rather than for the actual vectorization. 2510 E->UserTreeIndices.push_back(UserTreeIdx); 2511 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2512 << ".\n"); 2513 return; 2514 } 2515 2516 // Check that none of the instructions in the bundle are already in the tree. 2517 for (Value *V : VL) { 2518 auto *I = dyn_cast<Instruction>(V); 2519 if (!I) 2520 continue; 2521 if (getTreeEntry(I)) { 2522 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2523 << ") is already in tree.\n"); 2524 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2525 return; 2526 } 2527 } 2528 2529 // If any of the scalars is marked as a value that needs to stay scalar, then 2530 // we need to gather the scalars. 2531 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2532 for (Value *V : VL) { 2533 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2534 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2535 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2536 return; 2537 } 2538 } 2539 2540 // Check that all of the users of the scalars that we want to vectorize are 2541 // schedulable. 2542 auto *VL0 = cast<Instruction>(S.OpValue); 2543 BasicBlock *BB = VL0->getParent(); 2544 2545 if (!DT->isReachableFromEntry(BB)) { 2546 // Don't go into unreachable blocks. They may contain instructions with 2547 // dependency cycles which confuse the final scheduling. 2548 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2549 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2550 return; 2551 } 2552 2553 // Check that every instruction appears once in this bundle. 2554 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2555 SmallVector<Value *, 4> UniqueValues; 2556 DenseMap<Value *, unsigned> UniquePositions; 2557 for (Value *V : VL) { 2558 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2559 ReuseShuffleIndicies.emplace_back(Res.first->second); 2560 if (Res.second) 2561 UniqueValues.emplace_back(V); 2562 } 2563 size_t NumUniqueScalarValues = UniqueValues.size(); 2564 if (NumUniqueScalarValues == VL.size()) { 2565 ReuseShuffleIndicies.clear(); 2566 } else { 2567 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2568 if (NumUniqueScalarValues <= 1 || 2569 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2570 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2571 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2572 return; 2573 } 2574 VL = UniqueValues; 2575 } 2576 2577 auto &BSRef = BlocksSchedules[BB]; 2578 if (!BSRef) 2579 BSRef = std::make_unique<BlockScheduling>(BB); 2580 2581 BlockScheduling &BS = *BSRef.get(); 2582 2583 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2584 if (!Bundle) { 2585 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2586 assert((!BS.getScheduleData(VL0) || 2587 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2588 "tryScheduleBundle should cancelScheduling on failure"); 2589 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2590 ReuseShuffleIndicies); 2591 return; 2592 } 2593 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2594 2595 unsigned ShuffleOrOp = S.isAltShuffle() ? 2596 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2597 switch (ShuffleOrOp) { 2598 case Instruction::PHI: { 2599 auto *PH = cast<PHINode>(VL0); 2600 2601 // Check for terminator values (e.g. invoke). 2602 for (unsigned j = 0; j < VL.size(); ++j) 2603 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2604 Instruction *Term = dyn_cast<Instruction>( 2605 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2606 PH->getIncomingBlock(i))); 2607 if (Term && Term->isTerminator()) { 2608 LLVM_DEBUG(dbgs() 2609 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2610 BS.cancelScheduling(VL, VL0); 2611 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2612 ReuseShuffleIndicies); 2613 return; 2614 } 2615 } 2616 2617 TreeEntry *TE = 2618 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2619 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2620 2621 // Keeps the reordered operands to avoid code duplication. 2622 SmallVector<ValueList, 2> OperandsVec; 2623 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2624 ValueList Operands; 2625 // Prepare the operand vector. 2626 for (Value *j : VL) 2627 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2628 PH->getIncomingBlock(i))); 2629 TE->setOperand(i, Operands); 2630 OperandsVec.push_back(Operands); 2631 } 2632 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2633 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2634 return; 2635 } 2636 case Instruction::ExtractValue: 2637 case Instruction::ExtractElement: { 2638 OrdersType CurrentOrder; 2639 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2640 if (Reuse) { 2641 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2642 ++NumOpsWantToKeepOriginalOrder; 2643 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2644 ReuseShuffleIndicies); 2645 // This is a special case, as it does not gather, but at the same time 2646 // we are not extending buildTree_rec() towards the operands. 2647 ValueList Op0; 2648 Op0.assign(VL.size(), VL0->getOperand(0)); 2649 VectorizableTree.back()->setOperand(0, Op0); 2650 return; 2651 } 2652 if (!CurrentOrder.empty()) { 2653 LLVM_DEBUG({ 2654 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2655 "with order"; 2656 for (unsigned Idx : CurrentOrder) 2657 dbgs() << " " << Idx; 2658 dbgs() << "\n"; 2659 }); 2660 // Insert new order with initial value 0, if it does not exist, 2661 // otherwise return the iterator to the existing one. 2662 auto StoredCurrentOrderAndNum = 2663 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2664 ++StoredCurrentOrderAndNum->getSecond(); 2665 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2666 ReuseShuffleIndicies, 2667 StoredCurrentOrderAndNum->getFirst()); 2668 // This is a special case, as it does not gather, but at the same time 2669 // we are not extending buildTree_rec() towards the operands. 2670 ValueList Op0; 2671 Op0.assign(VL.size(), VL0->getOperand(0)); 2672 VectorizableTree.back()->setOperand(0, Op0); 2673 return; 2674 } 2675 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2676 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2677 ReuseShuffleIndicies); 2678 BS.cancelScheduling(VL, VL0); 2679 return; 2680 } 2681 case Instruction::Load: { 2682 // Check that a vectorized load would load the same memory as a scalar 2683 // load. For example, we don't want to vectorize loads that are smaller 2684 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2685 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2686 // from such a struct, we read/write packed bits disagreeing with the 2687 // unvectorized version. 2688 Type *ScalarTy = VL0->getType(); 2689 2690 if (DL->getTypeSizeInBits(ScalarTy) != 2691 DL->getTypeAllocSizeInBits(ScalarTy)) { 2692 BS.cancelScheduling(VL, VL0); 2693 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2694 ReuseShuffleIndicies); 2695 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2696 return; 2697 } 2698 2699 // Make sure all loads in the bundle are simple - we can't vectorize 2700 // atomic or volatile loads. 2701 SmallVector<Value *, 4> PointerOps(VL.size()); 2702 auto POIter = PointerOps.begin(); 2703 for (Value *V : VL) { 2704 auto *L = cast<LoadInst>(V); 2705 if (!L->isSimple()) { 2706 BS.cancelScheduling(VL, VL0); 2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2708 ReuseShuffleIndicies); 2709 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2710 return; 2711 } 2712 *POIter = L->getPointerOperand(); 2713 ++POIter; 2714 } 2715 2716 OrdersType CurrentOrder; 2717 // Check the order of pointer operands. 2718 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2719 Value *Ptr0; 2720 Value *PtrN; 2721 if (CurrentOrder.empty()) { 2722 Ptr0 = PointerOps.front(); 2723 PtrN = PointerOps.back(); 2724 } else { 2725 Ptr0 = PointerOps[CurrentOrder.front()]; 2726 PtrN = PointerOps[CurrentOrder.back()]; 2727 } 2728 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2729 const SCEV *ScevN = SE->getSCEV(PtrN); 2730 const auto *Diff = 2731 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2732 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2733 // Check that the sorted loads are consecutive. 2734 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2735 if (CurrentOrder.empty()) { 2736 // Original loads are consecutive and does not require reordering. 2737 ++NumOpsWantToKeepOriginalOrder; 2738 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2739 UserTreeIdx, ReuseShuffleIndicies); 2740 TE->setOperandsInOrder(); 2741 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2742 } else { 2743 // Need to reorder. 2744 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2745 ++I->getSecond(); 2746 TreeEntry *TE = 2747 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2748 ReuseShuffleIndicies, I->getFirst()); 2749 TE->setOperandsInOrder(); 2750 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2751 } 2752 return; 2753 } 2754 } 2755 2756 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2757 BS.cancelScheduling(VL, VL0); 2758 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2759 ReuseShuffleIndicies); 2760 return; 2761 } 2762 case Instruction::ZExt: 2763 case Instruction::SExt: 2764 case Instruction::FPToUI: 2765 case Instruction::FPToSI: 2766 case Instruction::FPExt: 2767 case Instruction::PtrToInt: 2768 case Instruction::IntToPtr: 2769 case Instruction::SIToFP: 2770 case Instruction::UIToFP: 2771 case Instruction::Trunc: 2772 case Instruction::FPTrunc: 2773 case Instruction::BitCast: { 2774 Type *SrcTy = VL0->getOperand(0)->getType(); 2775 for (Value *V : VL) { 2776 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2777 if (Ty != SrcTy || !isValidElementType(Ty)) { 2778 BS.cancelScheduling(VL, VL0); 2779 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2780 ReuseShuffleIndicies); 2781 LLVM_DEBUG(dbgs() 2782 << "SLP: Gathering casts with different src types.\n"); 2783 return; 2784 } 2785 } 2786 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2787 ReuseShuffleIndicies); 2788 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2789 2790 TE->setOperandsInOrder(); 2791 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2792 ValueList Operands; 2793 // Prepare the operand vector. 2794 for (Value *V : VL) 2795 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2796 2797 buildTree_rec(Operands, Depth + 1, {TE, i}); 2798 } 2799 return; 2800 } 2801 case Instruction::ICmp: 2802 case Instruction::FCmp: { 2803 // Check that all of the compares have the same predicate. 2804 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2805 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2806 Type *ComparedTy = VL0->getOperand(0)->getType(); 2807 for (Value *V : VL) { 2808 CmpInst *Cmp = cast<CmpInst>(V); 2809 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2810 Cmp->getOperand(0)->getType() != ComparedTy) { 2811 BS.cancelScheduling(VL, VL0); 2812 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2813 ReuseShuffleIndicies); 2814 LLVM_DEBUG(dbgs() 2815 << "SLP: Gathering cmp with different predicate.\n"); 2816 return; 2817 } 2818 } 2819 2820 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2821 ReuseShuffleIndicies); 2822 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2823 2824 ValueList Left, Right; 2825 if (cast<CmpInst>(VL0)->isCommutative()) { 2826 // Commutative predicate - collect + sort operands of the instructions 2827 // so that each side is more likely to have the same opcode. 2828 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2829 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2830 } else { 2831 // Collect operands - commute if it uses the swapped predicate. 2832 for (Value *V : VL) { 2833 auto *Cmp = cast<CmpInst>(V); 2834 Value *LHS = Cmp->getOperand(0); 2835 Value *RHS = Cmp->getOperand(1); 2836 if (Cmp->getPredicate() != P0) 2837 std::swap(LHS, RHS); 2838 Left.push_back(LHS); 2839 Right.push_back(RHS); 2840 } 2841 } 2842 TE->setOperand(0, Left); 2843 TE->setOperand(1, Right); 2844 buildTree_rec(Left, Depth + 1, {TE, 0}); 2845 buildTree_rec(Right, Depth + 1, {TE, 1}); 2846 return; 2847 } 2848 case Instruction::Select: 2849 case Instruction::FNeg: 2850 case Instruction::Add: 2851 case Instruction::FAdd: 2852 case Instruction::Sub: 2853 case Instruction::FSub: 2854 case Instruction::Mul: 2855 case Instruction::FMul: 2856 case Instruction::UDiv: 2857 case Instruction::SDiv: 2858 case Instruction::FDiv: 2859 case Instruction::URem: 2860 case Instruction::SRem: 2861 case Instruction::FRem: 2862 case Instruction::Shl: 2863 case Instruction::LShr: 2864 case Instruction::AShr: 2865 case Instruction::And: 2866 case Instruction::Or: 2867 case Instruction::Xor: { 2868 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2869 ReuseShuffleIndicies); 2870 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2871 2872 // Sort operands of the instructions so that each side is more likely to 2873 // have the same opcode. 2874 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2875 ValueList Left, Right; 2876 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2877 TE->setOperand(0, Left); 2878 TE->setOperand(1, Right); 2879 buildTree_rec(Left, Depth + 1, {TE, 0}); 2880 buildTree_rec(Right, Depth + 1, {TE, 1}); 2881 return; 2882 } 2883 2884 TE->setOperandsInOrder(); 2885 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2886 ValueList Operands; 2887 // Prepare the operand vector. 2888 for (Value *j : VL) 2889 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2890 2891 buildTree_rec(Operands, Depth + 1, {TE, i}); 2892 } 2893 return; 2894 } 2895 case Instruction::GetElementPtr: { 2896 // We don't combine GEPs with complicated (nested) indexing. 2897 for (Value *V : VL) { 2898 if (cast<Instruction>(V)->getNumOperands() != 2) { 2899 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2900 BS.cancelScheduling(VL, VL0); 2901 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2902 ReuseShuffleIndicies); 2903 return; 2904 } 2905 } 2906 2907 // We can't combine several GEPs into one vector if they operate on 2908 // different types. 2909 Type *Ty0 = VL0->getOperand(0)->getType(); 2910 for (Value *V : VL) { 2911 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2912 if (Ty0 != CurTy) { 2913 LLVM_DEBUG(dbgs() 2914 << "SLP: not-vectorizable GEP (different types).\n"); 2915 BS.cancelScheduling(VL, VL0); 2916 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2917 ReuseShuffleIndicies); 2918 return; 2919 } 2920 } 2921 2922 // We don't combine GEPs with non-constant indexes. 2923 Type *Ty1 = VL0->getOperand(1)->getType(); 2924 for (Value *V : VL) { 2925 auto Op = cast<Instruction>(V)->getOperand(1); 2926 if (!isa<ConstantInt>(Op) || 2927 (Op->getType() != Ty1 && 2928 Op->getType()->getScalarSizeInBits() > 2929 DL->getIndexSizeInBits( 2930 V->getType()->getPointerAddressSpace()))) { 2931 LLVM_DEBUG(dbgs() 2932 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2933 BS.cancelScheduling(VL, VL0); 2934 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2935 ReuseShuffleIndicies); 2936 return; 2937 } 2938 } 2939 2940 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2941 ReuseShuffleIndicies); 2942 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2943 TE->setOperandsInOrder(); 2944 for (unsigned i = 0, e = 2; i < e; ++i) { 2945 ValueList Operands; 2946 // Prepare the operand vector. 2947 for (Value *V : VL) 2948 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2949 2950 buildTree_rec(Operands, Depth + 1, {TE, i}); 2951 } 2952 return; 2953 } 2954 case Instruction::Store: { 2955 // Check if the stores are consecutive or if we need to swizzle them. 2956 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2957 // Make sure all stores in the bundle are simple - we can't vectorize 2958 // atomic or volatile stores. 2959 SmallVector<Value *, 4> PointerOps(VL.size()); 2960 ValueList Operands(VL.size()); 2961 auto POIter = PointerOps.begin(); 2962 auto OIter = Operands.begin(); 2963 for (Value *V : VL) { 2964 auto *SI = cast<StoreInst>(V); 2965 if (!SI->isSimple()) { 2966 BS.cancelScheduling(VL, VL0); 2967 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2968 ReuseShuffleIndicies); 2969 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2970 return; 2971 } 2972 *POIter = SI->getPointerOperand(); 2973 *OIter = SI->getValueOperand(); 2974 ++POIter; 2975 ++OIter; 2976 } 2977 2978 OrdersType CurrentOrder; 2979 // Check the order of pointer operands. 2980 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2981 Value *Ptr0; 2982 Value *PtrN; 2983 if (CurrentOrder.empty()) { 2984 Ptr0 = PointerOps.front(); 2985 PtrN = PointerOps.back(); 2986 } else { 2987 Ptr0 = PointerOps[CurrentOrder.front()]; 2988 PtrN = PointerOps[CurrentOrder.back()]; 2989 } 2990 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2991 const SCEV *ScevN = SE->getSCEV(PtrN); 2992 const auto *Diff = 2993 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2994 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2995 // Check that the sorted pointer operands are consecutive. 2996 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2997 if (CurrentOrder.empty()) { 2998 // Original stores are consecutive and does not require reordering. 2999 ++NumOpsWantToKeepOriginalOrder; 3000 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3001 UserTreeIdx, ReuseShuffleIndicies); 3002 TE->setOperandsInOrder(); 3003 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3004 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3005 } else { 3006 // Need to reorder. 3007 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 3008 ++(I->getSecond()); 3009 TreeEntry *TE = 3010 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3011 ReuseShuffleIndicies, I->getFirst()); 3012 TE->setOperandsInOrder(); 3013 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3014 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3015 } 3016 return; 3017 } 3018 } 3019 3020 BS.cancelScheduling(VL, VL0); 3021 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3022 ReuseShuffleIndicies); 3023 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3024 return; 3025 } 3026 case Instruction::Call: { 3027 // Check if the calls are all to the same vectorizable intrinsic or 3028 // library function. 3029 CallInst *CI = cast<CallInst>(VL0); 3030 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3031 3032 VFShape Shape = VFShape::get( 3033 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3034 false /*HasGlobalPred*/); 3035 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3036 3037 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3038 BS.cancelScheduling(VL, VL0); 3039 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3040 ReuseShuffleIndicies); 3041 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3042 return; 3043 } 3044 Function *F = CI->getCalledFunction(); 3045 unsigned NumArgs = CI->getNumArgOperands(); 3046 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3047 for (unsigned j = 0; j != NumArgs; ++j) 3048 if (hasVectorInstrinsicScalarOpd(ID, j)) 3049 ScalarArgs[j] = CI->getArgOperand(j); 3050 for (Value *V : VL) { 3051 CallInst *CI2 = dyn_cast<CallInst>(V); 3052 if (!CI2 || CI2->getCalledFunction() != F || 3053 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3054 (VecFunc && 3055 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3056 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3057 BS.cancelScheduling(VL, VL0); 3058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3059 ReuseShuffleIndicies); 3060 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3061 << "\n"); 3062 return; 3063 } 3064 // Some intrinsics have scalar arguments and should be same in order for 3065 // them to be vectorized. 3066 for (unsigned j = 0; j != NumArgs; ++j) { 3067 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3068 Value *A1J = CI2->getArgOperand(j); 3069 if (ScalarArgs[j] != A1J) { 3070 BS.cancelScheduling(VL, VL0); 3071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3072 ReuseShuffleIndicies); 3073 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3074 << " argument " << ScalarArgs[j] << "!=" << A1J 3075 << "\n"); 3076 return; 3077 } 3078 } 3079 } 3080 // Verify that the bundle operands are identical between the two calls. 3081 if (CI->hasOperandBundles() && 3082 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3083 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3084 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3085 BS.cancelScheduling(VL, VL0); 3086 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3087 ReuseShuffleIndicies); 3088 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3089 << *CI << "!=" << *V << '\n'); 3090 return; 3091 } 3092 } 3093 3094 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3095 ReuseShuffleIndicies); 3096 TE->setOperandsInOrder(); 3097 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3098 ValueList Operands; 3099 // Prepare the operand vector. 3100 for (Value *V : VL) { 3101 auto *CI2 = cast<CallInst>(V); 3102 Operands.push_back(CI2->getArgOperand(i)); 3103 } 3104 buildTree_rec(Operands, Depth + 1, {TE, i}); 3105 } 3106 return; 3107 } 3108 case Instruction::ShuffleVector: { 3109 // If this is not an alternate sequence of opcode like add-sub 3110 // then do not vectorize this instruction. 3111 if (!S.isAltShuffle()) { 3112 BS.cancelScheduling(VL, VL0); 3113 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3114 ReuseShuffleIndicies); 3115 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3116 return; 3117 } 3118 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3119 ReuseShuffleIndicies); 3120 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3121 3122 // Reorder operands if reordering would enable vectorization. 3123 if (isa<BinaryOperator>(VL0)) { 3124 ValueList Left, Right; 3125 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3126 TE->setOperand(0, Left); 3127 TE->setOperand(1, Right); 3128 buildTree_rec(Left, Depth + 1, {TE, 0}); 3129 buildTree_rec(Right, Depth + 1, {TE, 1}); 3130 return; 3131 } 3132 3133 TE->setOperandsInOrder(); 3134 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3135 ValueList Operands; 3136 // Prepare the operand vector. 3137 for (Value *V : VL) 3138 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3139 3140 buildTree_rec(Operands, Depth + 1, {TE, i}); 3141 } 3142 return; 3143 } 3144 default: 3145 BS.cancelScheduling(VL, VL0); 3146 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3147 ReuseShuffleIndicies); 3148 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3149 return; 3150 } 3151 } 3152 3153 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3154 unsigned N = 1; 3155 Type *EltTy = T; 3156 3157 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3158 isa<VectorType>(EltTy)) { 3159 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3160 // Check that struct is homogeneous. 3161 for (const auto *Ty : ST->elements()) 3162 if (Ty != *ST->element_begin()) 3163 return 0; 3164 N *= ST->getNumElements(); 3165 EltTy = *ST->element_begin(); 3166 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3167 N *= AT->getNumElements(); 3168 EltTy = AT->getElementType(); 3169 } else { 3170 auto *VT = cast<FixedVectorType>(EltTy); 3171 N *= VT->getNumElements(); 3172 EltTy = VT->getElementType(); 3173 } 3174 } 3175 3176 if (!isValidElementType(EltTy)) 3177 return 0; 3178 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3179 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3180 return 0; 3181 return N; 3182 } 3183 3184 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3185 SmallVectorImpl<unsigned> &CurrentOrder) const { 3186 Instruction *E0 = cast<Instruction>(OpValue); 3187 assert(E0->getOpcode() == Instruction::ExtractElement || 3188 E0->getOpcode() == Instruction::ExtractValue); 3189 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3190 // Check if all of the extracts come from the same vector and from the 3191 // correct offset. 3192 Value *Vec = E0->getOperand(0); 3193 3194 CurrentOrder.clear(); 3195 3196 // We have to extract from a vector/aggregate with the same number of elements. 3197 unsigned NElts; 3198 if (E0->getOpcode() == Instruction::ExtractValue) { 3199 const DataLayout &DL = E0->getModule()->getDataLayout(); 3200 NElts = canMapToVector(Vec->getType(), DL); 3201 if (!NElts) 3202 return false; 3203 // Check if load can be rewritten as load of vector. 3204 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3205 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3206 return false; 3207 } else { 3208 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3209 } 3210 3211 if (NElts != VL.size()) 3212 return false; 3213 3214 // Check that all of the indices extract from the correct offset. 3215 bool ShouldKeepOrder = true; 3216 unsigned E = VL.size(); 3217 // Assign to all items the initial value E + 1 so we can check if the extract 3218 // instruction index was used already. 3219 // Also, later we can check that all the indices are used and we have a 3220 // consecutive access in the extract instructions, by checking that no 3221 // element of CurrentOrder still has value E + 1. 3222 CurrentOrder.assign(E, E + 1); 3223 unsigned I = 0; 3224 for (; I < E; ++I) { 3225 auto *Inst = cast<Instruction>(VL[I]); 3226 if (Inst->getOperand(0) != Vec) 3227 break; 3228 Optional<unsigned> Idx = getExtractIndex(Inst); 3229 if (!Idx) 3230 break; 3231 const unsigned ExtIdx = *Idx; 3232 if (ExtIdx != I) { 3233 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3234 break; 3235 ShouldKeepOrder = false; 3236 CurrentOrder[ExtIdx] = I; 3237 } else { 3238 if (CurrentOrder[I] != E + 1) 3239 break; 3240 CurrentOrder[I] = I; 3241 } 3242 } 3243 if (I < E) { 3244 CurrentOrder.clear(); 3245 return false; 3246 } 3247 3248 return ShouldKeepOrder; 3249 } 3250 3251 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3252 return I->hasOneUse() || 3253 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3254 return ScalarToTreeEntry.count(U) > 0; 3255 }); 3256 } 3257 3258 static std::pair<unsigned, unsigned> 3259 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3260 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3261 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3262 3263 // Calculate the cost of the scalar and vector calls. 3264 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3265 int IntrinsicCost = 3266 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3267 3268 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3269 VecTy->getNumElements())), 3270 false /*HasGlobalPred*/); 3271 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3272 int LibCost = IntrinsicCost; 3273 if (!CI->isNoBuiltin() && VecFunc) { 3274 // Calculate the cost of the vector library call. 3275 SmallVector<Type *, 4> VecTys; 3276 for (Use &Arg : CI->args()) 3277 VecTys.push_back( 3278 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3279 3280 // If the corresponding vector call is cheaper, return its cost. 3281 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3282 TTI::TCK_RecipThroughput); 3283 } 3284 return {IntrinsicCost, LibCost}; 3285 } 3286 3287 int BoUpSLP::getEntryCost(TreeEntry *E) { 3288 ArrayRef<Value*> VL = E->Scalars; 3289 3290 Type *ScalarTy = VL[0]->getType(); 3291 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3292 ScalarTy = SI->getValueOperand()->getType(); 3293 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3294 ScalarTy = CI->getOperand(0)->getType(); 3295 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3296 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3297 3298 // If we have computed a smaller type for the expression, update VecTy so 3299 // that the costs will be accurate. 3300 if (MinBWs.count(VL[0])) 3301 VecTy = FixedVectorType::get( 3302 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3303 3304 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3305 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3306 int ReuseShuffleCost = 0; 3307 if (NeedToShuffleReuses) { 3308 ReuseShuffleCost = 3309 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3310 } 3311 if (E->State == TreeEntry::NeedToGather) { 3312 if (allConstant(VL)) 3313 return 0; 3314 if (isSplat(VL)) { 3315 return ReuseShuffleCost + 3316 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3317 } 3318 if (E->getOpcode() == Instruction::ExtractElement && 3319 allSameType(VL) && allSameBlock(VL)) { 3320 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3321 if (ShuffleKind.hasValue()) { 3322 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3323 for (auto *V : VL) { 3324 // If all users of instruction are going to be vectorized and this 3325 // instruction itself is not going to be vectorized, consider this 3326 // instruction as dead and remove its cost from the final cost of the 3327 // vectorized tree. 3328 if (areAllUsersVectorized(cast<Instruction>(V)) && 3329 !ScalarToTreeEntry.count(V)) { 3330 auto *IO = cast<ConstantInt>( 3331 cast<ExtractElementInst>(V)->getIndexOperand()); 3332 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3333 IO->getZExtValue()); 3334 } 3335 } 3336 return ReuseShuffleCost + Cost; 3337 } 3338 } 3339 return ReuseShuffleCost + getGatherCost(VL); 3340 } 3341 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3342 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3343 Instruction *VL0 = E->getMainOp(); 3344 unsigned ShuffleOrOp = 3345 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3346 switch (ShuffleOrOp) { 3347 case Instruction::PHI: 3348 return 0; 3349 3350 case Instruction::ExtractValue: 3351 case Instruction::ExtractElement: { 3352 if (NeedToShuffleReuses) { 3353 unsigned Idx = 0; 3354 for (unsigned I : E->ReuseShuffleIndices) { 3355 if (ShuffleOrOp == Instruction::ExtractElement) { 3356 auto *IO = cast<ConstantInt>( 3357 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3358 Idx = IO->getZExtValue(); 3359 ReuseShuffleCost -= TTI->getVectorInstrCost( 3360 Instruction::ExtractElement, VecTy, Idx); 3361 } else { 3362 ReuseShuffleCost -= TTI->getVectorInstrCost( 3363 Instruction::ExtractElement, VecTy, Idx); 3364 ++Idx; 3365 } 3366 } 3367 Idx = ReuseShuffleNumbers; 3368 for (Value *V : VL) { 3369 if (ShuffleOrOp == Instruction::ExtractElement) { 3370 auto *IO = cast<ConstantInt>( 3371 cast<ExtractElementInst>(V)->getIndexOperand()); 3372 Idx = IO->getZExtValue(); 3373 } else { 3374 --Idx; 3375 } 3376 ReuseShuffleCost += 3377 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3378 } 3379 } 3380 int DeadCost = ReuseShuffleCost; 3381 if (!E->ReorderIndices.empty()) { 3382 // TODO: Merge this shuffle with the ReuseShuffleCost. 3383 DeadCost += TTI->getShuffleCost( 3384 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3385 } 3386 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3387 Instruction *E = cast<Instruction>(VL[i]); 3388 // If all users are going to be vectorized, instruction can be 3389 // considered as dead. 3390 // The same, if have only one user, it will be vectorized for sure. 3391 if (areAllUsersVectorized(E)) { 3392 // Take credit for instruction that will become dead. 3393 if (E->hasOneUse()) { 3394 Instruction *Ext = E->user_back(); 3395 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3396 all_of(Ext->users(), 3397 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3398 // Use getExtractWithExtendCost() to calculate the cost of 3399 // extractelement/ext pair. 3400 DeadCost -= TTI->getExtractWithExtendCost( 3401 Ext->getOpcode(), Ext->getType(), VecTy, i); 3402 // Add back the cost of s|zext which is subtracted separately. 3403 DeadCost += TTI->getCastInstrCost( 3404 Ext->getOpcode(), Ext->getType(), E->getType(), 3405 TTI::getCastContextHint(Ext), CostKind, Ext); 3406 continue; 3407 } 3408 } 3409 DeadCost -= 3410 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3411 } 3412 } 3413 return DeadCost; 3414 } 3415 case Instruction::ZExt: 3416 case Instruction::SExt: 3417 case Instruction::FPToUI: 3418 case Instruction::FPToSI: 3419 case Instruction::FPExt: 3420 case Instruction::PtrToInt: 3421 case Instruction::IntToPtr: 3422 case Instruction::SIToFP: 3423 case Instruction::UIToFP: 3424 case Instruction::Trunc: 3425 case Instruction::FPTrunc: 3426 case Instruction::BitCast: { 3427 Type *SrcTy = VL0->getOperand(0)->getType(); 3428 int ScalarEltCost = 3429 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3430 TTI::getCastContextHint(VL0), CostKind, VL0); 3431 if (NeedToShuffleReuses) { 3432 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3433 } 3434 3435 // Calculate the cost of this instruction. 3436 int ScalarCost = VL.size() * ScalarEltCost; 3437 3438 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3439 int VecCost = 0; 3440 // Check if the values are candidates to demote. 3441 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3442 VecCost = 3443 ReuseShuffleCost + 3444 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3445 TTI::getCastContextHint(VL0), CostKind, VL0); 3446 } 3447 return VecCost - ScalarCost; 3448 } 3449 case Instruction::FCmp: 3450 case Instruction::ICmp: 3451 case Instruction::Select: { 3452 // Calculate the cost of this instruction. 3453 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3454 Builder.getInt1Ty(), 3455 CostKind, VL0); 3456 if (NeedToShuffleReuses) { 3457 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3458 } 3459 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3460 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3461 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3462 CostKind, VL0); 3463 return ReuseShuffleCost + VecCost - ScalarCost; 3464 } 3465 case Instruction::FNeg: 3466 case Instruction::Add: 3467 case Instruction::FAdd: 3468 case Instruction::Sub: 3469 case Instruction::FSub: 3470 case Instruction::Mul: 3471 case Instruction::FMul: 3472 case Instruction::UDiv: 3473 case Instruction::SDiv: 3474 case Instruction::FDiv: 3475 case Instruction::URem: 3476 case Instruction::SRem: 3477 case Instruction::FRem: 3478 case Instruction::Shl: 3479 case Instruction::LShr: 3480 case Instruction::AShr: 3481 case Instruction::And: 3482 case Instruction::Or: 3483 case Instruction::Xor: { 3484 // Certain instructions can be cheaper to vectorize if they have a 3485 // constant second vector operand. 3486 TargetTransformInfo::OperandValueKind Op1VK = 3487 TargetTransformInfo::OK_AnyValue; 3488 TargetTransformInfo::OperandValueKind Op2VK = 3489 TargetTransformInfo::OK_UniformConstantValue; 3490 TargetTransformInfo::OperandValueProperties Op1VP = 3491 TargetTransformInfo::OP_None; 3492 TargetTransformInfo::OperandValueProperties Op2VP = 3493 TargetTransformInfo::OP_PowerOf2; 3494 3495 // If all operands are exactly the same ConstantInt then set the 3496 // operand kind to OK_UniformConstantValue. 3497 // If instead not all operands are constants, then set the operand kind 3498 // to OK_AnyValue. If all operands are constants but not the same, 3499 // then set the operand kind to OK_NonUniformConstantValue. 3500 ConstantInt *CInt0 = nullptr; 3501 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3502 const Instruction *I = cast<Instruction>(VL[i]); 3503 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3504 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3505 if (!CInt) { 3506 Op2VK = TargetTransformInfo::OK_AnyValue; 3507 Op2VP = TargetTransformInfo::OP_None; 3508 break; 3509 } 3510 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3511 !CInt->getValue().isPowerOf2()) 3512 Op2VP = TargetTransformInfo::OP_None; 3513 if (i == 0) { 3514 CInt0 = CInt; 3515 continue; 3516 } 3517 if (CInt0 != CInt) 3518 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3519 } 3520 3521 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3522 int ScalarEltCost = TTI->getArithmeticInstrCost( 3523 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3524 Operands, VL0); 3525 if (NeedToShuffleReuses) { 3526 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3527 } 3528 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3529 int VecCost = TTI->getArithmeticInstrCost( 3530 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3531 Operands, VL0); 3532 return ReuseShuffleCost + VecCost - ScalarCost; 3533 } 3534 case Instruction::GetElementPtr: { 3535 TargetTransformInfo::OperandValueKind Op1VK = 3536 TargetTransformInfo::OK_AnyValue; 3537 TargetTransformInfo::OperandValueKind Op2VK = 3538 TargetTransformInfo::OK_UniformConstantValue; 3539 3540 int ScalarEltCost = 3541 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3542 Op1VK, Op2VK); 3543 if (NeedToShuffleReuses) { 3544 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3545 } 3546 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3547 int VecCost = 3548 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3549 Op1VK, Op2VK); 3550 return ReuseShuffleCost + VecCost - ScalarCost; 3551 } 3552 case Instruction::Load: { 3553 // Cost of wide load - cost of scalar loads. 3554 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3555 int ScalarEltCost = 3556 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3557 CostKind, VL0); 3558 if (NeedToShuffleReuses) { 3559 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3560 } 3561 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3562 int VecLdCost = 3563 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3564 CostKind, VL0); 3565 if (!E->ReorderIndices.empty()) { 3566 // TODO: Merge this shuffle with the ReuseShuffleCost. 3567 VecLdCost += TTI->getShuffleCost( 3568 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3569 } 3570 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3571 } 3572 case Instruction::Store: { 3573 // We know that we can merge the stores. Calculate the cost. 3574 bool IsReorder = !E->ReorderIndices.empty(); 3575 auto *SI = 3576 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3577 Align Alignment = SI->getAlign(); 3578 int ScalarEltCost = 3579 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3580 CostKind, VL0); 3581 if (NeedToShuffleReuses) 3582 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3583 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3584 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3585 VecTy, Alignment, 0, CostKind, VL0); 3586 if (IsReorder) { 3587 // TODO: Merge this shuffle with the ReuseShuffleCost. 3588 VecStCost += TTI->getShuffleCost( 3589 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3590 } 3591 return ReuseShuffleCost + VecStCost - ScalarStCost; 3592 } 3593 case Instruction::Call: { 3594 CallInst *CI = cast<CallInst>(VL0); 3595 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3596 3597 // Calculate the cost of the scalar and vector calls. 3598 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3599 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3600 if (NeedToShuffleReuses) { 3601 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3602 } 3603 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3604 3605 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3606 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3607 3608 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3609 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3610 << " for " << *CI << "\n"); 3611 3612 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3613 } 3614 case Instruction::ShuffleVector: { 3615 assert(E->isAltShuffle() && 3616 ((Instruction::isBinaryOp(E->getOpcode()) && 3617 Instruction::isBinaryOp(E->getAltOpcode())) || 3618 (Instruction::isCast(E->getOpcode()) && 3619 Instruction::isCast(E->getAltOpcode()))) && 3620 "Invalid Shuffle Vector Operand"); 3621 int ScalarCost = 0; 3622 if (NeedToShuffleReuses) { 3623 for (unsigned Idx : E->ReuseShuffleIndices) { 3624 Instruction *I = cast<Instruction>(VL[Idx]); 3625 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3626 } 3627 for (Value *V : VL) { 3628 Instruction *I = cast<Instruction>(V); 3629 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3630 } 3631 } 3632 for (Value *V : VL) { 3633 Instruction *I = cast<Instruction>(V); 3634 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3635 ScalarCost += TTI->getInstructionCost(I, CostKind); 3636 } 3637 // VecCost is equal to sum of the cost of creating 2 vectors 3638 // and the cost of creating shuffle. 3639 int VecCost = 0; 3640 if (Instruction::isBinaryOp(E->getOpcode())) { 3641 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3642 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3643 CostKind); 3644 } else { 3645 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3646 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3647 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3648 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3649 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3650 TTI::CastContextHint::None, CostKind); 3651 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3652 TTI::CastContextHint::None, CostKind); 3653 } 3654 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3655 return ReuseShuffleCost + VecCost - ScalarCost; 3656 } 3657 default: 3658 llvm_unreachable("Unknown instruction"); 3659 } 3660 } 3661 3662 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3663 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3664 << VectorizableTree.size() << " is fully vectorizable .\n"); 3665 3666 // We only handle trees of heights 1 and 2. 3667 if (VectorizableTree.size() == 1 && 3668 VectorizableTree[0]->State == TreeEntry::Vectorize) 3669 return true; 3670 3671 if (VectorizableTree.size() != 2) 3672 return false; 3673 3674 // Handle splat and all-constants stores. 3675 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3676 (allConstant(VectorizableTree[1]->Scalars) || 3677 isSplat(VectorizableTree[1]->Scalars))) 3678 return true; 3679 3680 // Gathering cost would be too much for tiny trees. 3681 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3682 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3683 return false; 3684 3685 return true; 3686 } 3687 3688 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3689 TargetTransformInfo *TTI) { 3690 // Look past the root to find a source value. Arbitrarily follow the 3691 // path through operand 0 of any 'or'. Also, peek through optional 3692 // shift-left-by-constant. 3693 Value *ZextLoad = Root; 3694 while (!isa<ConstantExpr>(ZextLoad) && 3695 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3696 match(ZextLoad, m_Shl(m_Value(), m_Constant())))) 3697 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3698 3699 // Check if the input is an extended load of the required or/shift expression. 3700 Value *LoadPtr; 3701 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3702 return false; 3703 3704 // Require that the total load bit width is a legal integer type. 3705 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3706 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3707 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3708 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3709 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3710 return false; 3711 3712 // Everything matched - assume that we can fold the whole sequence using 3713 // load combining. 3714 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3715 << *(cast<Instruction>(Root)) << "\n"); 3716 3717 return true; 3718 } 3719 3720 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3721 if (RdxOpcode != Instruction::Or) 3722 return false; 3723 3724 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3725 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3726 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3727 } 3728 3729 bool BoUpSLP::isLoadCombineCandidate() const { 3730 // Peek through a final sequence of stores and check if all operations are 3731 // likely to be load-combined. 3732 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3733 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3734 Value *X; 3735 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3736 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3737 return false; 3738 } 3739 return true; 3740 } 3741 3742 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3743 // We can vectorize the tree if its size is greater than or equal to the 3744 // minimum size specified by the MinTreeSize command line option. 3745 if (VectorizableTree.size() >= MinTreeSize) 3746 return false; 3747 3748 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3749 // can vectorize it if we can prove it fully vectorizable. 3750 if (isFullyVectorizableTinyTree()) 3751 return false; 3752 3753 assert(VectorizableTree.empty() 3754 ? ExternalUses.empty() 3755 : true && "We shouldn't have any external users"); 3756 3757 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3758 // vectorizable. 3759 return true; 3760 } 3761 3762 int BoUpSLP::getSpillCost() const { 3763 // Walk from the bottom of the tree to the top, tracking which values are 3764 // live. When we see a call instruction that is not part of our tree, 3765 // query TTI to see if there is a cost to keeping values live over it 3766 // (for example, if spills and fills are required). 3767 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3768 int Cost = 0; 3769 3770 SmallPtrSet<Instruction*, 4> LiveValues; 3771 Instruction *PrevInst = nullptr; 3772 3773 // The entries in VectorizableTree are not necessarily ordered by their 3774 // position in basic blocks. Collect them and order them by dominance so later 3775 // instructions are guaranteed to be visited first. For instructions in 3776 // different basic blocks, we only scan to the beginning of the block, so 3777 // their order does not matter, as long as all instructions in a basic block 3778 // are grouped together. Using dominance ensures a deterministic order. 3779 SmallVector<Instruction *, 16> OrderedScalars; 3780 for (const auto &TEPtr : VectorizableTree) { 3781 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3782 if (!Inst) 3783 continue; 3784 OrderedScalars.push_back(Inst); 3785 } 3786 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3787 return DT->dominates(B, A); 3788 }); 3789 3790 for (Instruction *Inst : OrderedScalars) { 3791 if (!PrevInst) { 3792 PrevInst = Inst; 3793 continue; 3794 } 3795 3796 // Update LiveValues. 3797 LiveValues.erase(PrevInst); 3798 for (auto &J : PrevInst->operands()) { 3799 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3800 LiveValues.insert(cast<Instruction>(&*J)); 3801 } 3802 3803 LLVM_DEBUG({ 3804 dbgs() << "SLP: #LV: " << LiveValues.size(); 3805 for (auto *X : LiveValues) 3806 dbgs() << " " << X->getName(); 3807 dbgs() << ", Looking at "; 3808 Inst->dump(); 3809 }); 3810 3811 // Now find the sequence of instructions between PrevInst and Inst. 3812 unsigned NumCalls = 0; 3813 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3814 PrevInstIt = 3815 PrevInst->getIterator().getReverse(); 3816 while (InstIt != PrevInstIt) { 3817 if (PrevInstIt == PrevInst->getParent()->rend()) { 3818 PrevInstIt = Inst->getParent()->rbegin(); 3819 continue; 3820 } 3821 3822 // Debug information does not impact spill cost. 3823 if ((isa<CallInst>(&*PrevInstIt) && 3824 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3825 &*PrevInstIt != PrevInst) 3826 NumCalls++; 3827 3828 ++PrevInstIt; 3829 } 3830 3831 if (NumCalls) { 3832 SmallVector<Type*, 4> V; 3833 for (auto *II : LiveValues) 3834 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3835 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3836 } 3837 3838 PrevInst = Inst; 3839 } 3840 3841 return Cost; 3842 } 3843 3844 int BoUpSLP::getTreeCost() { 3845 int Cost = 0; 3846 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3847 << VectorizableTree.size() << ".\n"); 3848 3849 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3850 3851 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3852 TreeEntry &TE = *VectorizableTree[I].get(); 3853 3854 // We create duplicate tree entries for gather sequences that have multiple 3855 // uses. However, we should not compute the cost of duplicate sequences. 3856 // For example, if we have a build vector (i.e., insertelement sequence) 3857 // that is used by more than one vector instruction, we only need to 3858 // compute the cost of the insertelement instructions once. The redundant 3859 // instructions will be eliminated by CSE. 3860 // 3861 // We should consider not creating duplicate tree entries for gather 3862 // sequences, and instead add additional edges to the tree representing 3863 // their uses. Since such an approach results in fewer total entries, 3864 // existing heuristics based on tree size may yield different results. 3865 // 3866 if (TE.State == TreeEntry::NeedToGather && 3867 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3868 VectorizableTree.end(), 3869 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3870 return EntryPtr->State == TreeEntry::NeedToGather && 3871 EntryPtr->isSame(TE.Scalars); 3872 })) 3873 continue; 3874 3875 int C = getEntryCost(&TE); 3876 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3877 << " for bundle that starts with " << *TE.Scalars[0] 3878 << ".\n"); 3879 Cost += C; 3880 } 3881 3882 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3883 int ExtractCost = 0; 3884 for (ExternalUser &EU : ExternalUses) { 3885 // We only add extract cost once for the same scalar. 3886 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3887 continue; 3888 3889 // Uses by ephemeral values are free (because the ephemeral value will be 3890 // removed prior to code generation, and so the extraction will be 3891 // removed as well). 3892 if (EphValues.count(EU.User)) 3893 continue; 3894 3895 // If we plan to rewrite the tree in a smaller type, we will need to sign 3896 // extend the extracted value back to the original type. Here, we account 3897 // for the extract and the added cost of the sign extend if needed. 3898 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 3899 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3900 if (MinBWs.count(ScalarRoot)) { 3901 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3902 auto Extend = 3903 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3904 VecTy = FixedVectorType::get(MinTy, BundleWidth); 3905 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3906 VecTy, EU.Lane); 3907 } else { 3908 ExtractCost += 3909 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3910 } 3911 } 3912 3913 int SpillCost = getSpillCost(); 3914 Cost += SpillCost + ExtractCost; 3915 3916 #ifndef NDEBUG 3917 SmallString<256> Str; 3918 { 3919 raw_svector_ostream OS(Str); 3920 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3921 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3922 << "SLP: Total Cost = " << Cost << ".\n"; 3923 } 3924 LLVM_DEBUG(dbgs() << Str); 3925 if (ViewSLPTree) 3926 ViewGraph(this, "SLP" + F->getName(), false, Str); 3927 #endif 3928 3929 return Cost; 3930 } 3931 3932 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 3933 const DenseSet<unsigned> &ShuffledIndices) const { 3934 unsigned NumElts = Ty->getNumElements(); 3935 APInt DemandedElts = APInt::getNullValue(NumElts); 3936 for (unsigned i = 0; i < NumElts; ++i) 3937 if (!ShuffledIndices.count(i)) 3938 DemandedElts.setBit(i); 3939 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 3940 /*Extract*/ false); 3941 if (!ShuffledIndices.empty()) 3942 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3943 return Cost; 3944 } 3945 3946 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3947 // Find the type of the operands in VL. 3948 Type *ScalarTy = VL[0]->getType(); 3949 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3950 ScalarTy = SI->getValueOperand()->getType(); 3951 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3952 // Find the cost of inserting/extracting values from the vector. 3953 // Check if the same elements are inserted several times and count them as 3954 // shuffle candidates. 3955 DenseSet<unsigned> ShuffledElements; 3956 DenseSet<Value *> UniqueElements; 3957 // Iterate in reverse order to consider insert elements with the high cost. 3958 for (unsigned I = VL.size(); I > 0; --I) { 3959 unsigned Idx = I - 1; 3960 if (!UniqueElements.insert(VL[Idx]).second) 3961 ShuffledElements.insert(Idx); 3962 } 3963 return getGatherCost(VecTy, ShuffledElements); 3964 } 3965 3966 // Perform operand reordering on the instructions in VL and return the reordered 3967 // operands in Left and Right. 3968 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3969 SmallVectorImpl<Value *> &Left, 3970 SmallVectorImpl<Value *> &Right, 3971 const DataLayout &DL, 3972 ScalarEvolution &SE, 3973 const BoUpSLP &R) { 3974 if (VL.empty()) 3975 return; 3976 VLOperands Ops(VL, DL, SE, R); 3977 // Reorder the operands in place. 3978 Ops.reorder(); 3979 Left = Ops.getVL(0); 3980 Right = Ops.getVL(1); 3981 } 3982 3983 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3984 // Get the basic block this bundle is in. All instructions in the bundle 3985 // should be in this block. 3986 auto *Front = E->getMainOp(); 3987 auto *BB = Front->getParent(); 3988 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3989 [=](Value *V) -> bool { 3990 auto *I = cast<Instruction>(V); 3991 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3992 })); 3993 3994 // The last instruction in the bundle in program order. 3995 Instruction *LastInst = nullptr; 3996 3997 // Find the last instruction. The common case should be that BB has been 3998 // scheduled, and the last instruction is VL.back(). So we start with 3999 // VL.back() and iterate over schedule data until we reach the end of the 4000 // bundle. The end of the bundle is marked by null ScheduleData. 4001 if (BlocksSchedules.count(BB)) { 4002 auto *Bundle = 4003 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4004 if (Bundle && Bundle->isPartOfBundle()) 4005 for (; Bundle; Bundle = Bundle->NextInBundle) 4006 if (Bundle->OpValue == Bundle->Inst) 4007 LastInst = Bundle->Inst; 4008 } 4009 4010 // LastInst can still be null at this point if there's either not an entry 4011 // for BB in BlocksSchedules or there's no ScheduleData available for 4012 // VL.back(). This can be the case if buildTree_rec aborts for various 4013 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4014 // size is reached, etc.). ScheduleData is initialized in the scheduling 4015 // "dry-run". 4016 // 4017 // If this happens, we can still find the last instruction by brute force. We 4018 // iterate forwards from Front (inclusive) until we either see all 4019 // instructions in the bundle or reach the end of the block. If Front is the 4020 // last instruction in program order, LastInst will be set to Front, and we 4021 // will visit all the remaining instructions in the block. 4022 // 4023 // One of the reasons we exit early from buildTree_rec is to place an upper 4024 // bound on compile-time. Thus, taking an additional compile-time hit here is 4025 // not ideal. However, this should be exceedingly rare since it requires that 4026 // we both exit early from buildTree_rec and that the bundle be out-of-order 4027 // (causing us to iterate all the way to the end of the block). 4028 if (!LastInst) { 4029 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4030 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4031 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4032 LastInst = &I; 4033 if (Bundle.empty()) 4034 break; 4035 } 4036 } 4037 assert(LastInst && "Failed to find last instruction in bundle"); 4038 4039 // Set the insertion point after the last instruction in the bundle. Set the 4040 // debug location to Front. 4041 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4042 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4043 } 4044 4045 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, FixedVectorType *Ty) { 4046 Value *Vec = UndefValue::get(Ty); 4047 // Generate the 'InsertElement' instruction. 4048 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 4049 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 4050 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 4051 GatherSeq.insert(Insrt); 4052 CSEBlocks.insert(Insrt->getParent()); 4053 4054 // Add to our 'need-to-extract' list. 4055 if (TreeEntry *E = getTreeEntry(VL[i])) { 4056 // Find which lane we need to extract. 4057 int FoundLane = -1; 4058 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 4059 // Is this the lane of the scalar that we are looking for ? 4060 if (E->Scalars[Lane] == VL[i]) { 4061 FoundLane = Lane; 4062 break; 4063 } 4064 } 4065 assert(FoundLane >= 0 && "Could not find the correct lane"); 4066 if (!E->ReuseShuffleIndices.empty()) { 4067 FoundLane = 4068 std::distance(E->ReuseShuffleIndices.begin(), 4069 llvm::find(E->ReuseShuffleIndices, FoundLane)); 4070 } 4071 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 4072 } 4073 } 4074 } 4075 4076 return Vec; 4077 } 4078 4079 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4080 InstructionsState S = getSameOpcode(VL); 4081 if (S.getOpcode()) { 4082 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4083 if (E->isSame(VL)) { 4084 Value *V = vectorizeTree(E); 4085 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4086 // We need to get the vectorized value but without shuffle. 4087 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4088 V = SV->getOperand(0); 4089 } else { 4090 // Reshuffle to get only unique values. 4091 SmallVector<int, 4> UniqueIdxs; 4092 SmallSet<int, 4> UsedIdxs; 4093 for (int Idx : E->ReuseShuffleIndices) 4094 if (UsedIdxs.insert(Idx).second) 4095 UniqueIdxs.emplace_back(Idx); 4096 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4097 UniqueIdxs); 4098 } 4099 } 4100 return V; 4101 } 4102 } 4103 } 4104 4105 Type *ScalarTy = S.OpValue->getType(); 4106 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4107 ScalarTy = SI->getValueOperand()->getType(); 4108 4109 // Check that every instruction appears once in this bundle. 4110 SmallVector<int, 4> ReuseShuffleIndicies; 4111 SmallVector<Value *, 4> UniqueValues; 4112 if (VL.size() > 2) { 4113 DenseMap<Value *, unsigned> UniquePositions; 4114 for (Value *V : VL) { 4115 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4116 ReuseShuffleIndicies.emplace_back(Res.first->second); 4117 if (Res.second || isa<Constant>(V)) 4118 UniqueValues.emplace_back(V); 4119 } 4120 // Do not shuffle single element or if number of unique values is not power 4121 // of 2. 4122 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4123 !llvm::isPowerOf2_32(UniqueValues.size())) 4124 ReuseShuffleIndicies.clear(); 4125 else 4126 VL = UniqueValues; 4127 } 4128 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4129 4130 Value *V = Gather(VL, VecTy); 4131 if (!ReuseShuffleIndicies.empty()) { 4132 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4133 ReuseShuffleIndicies, "shuffle"); 4134 if (auto *I = dyn_cast<Instruction>(V)) { 4135 GatherSeq.insert(I); 4136 CSEBlocks.insert(I->getParent()); 4137 } 4138 } 4139 return V; 4140 } 4141 4142 static void inversePermutation(ArrayRef<unsigned> Indices, 4143 SmallVectorImpl<int> &Mask) { 4144 Mask.clear(); 4145 const unsigned E = Indices.size(); 4146 Mask.resize(E); 4147 for (unsigned I = 0; I < E; ++I) 4148 Mask[Indices[I]] = I; 4149 } 4150 4151 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4152 IRBuilder<>::InsertPointGuard Guard(Builder); 4153 4154 if (E->VectorizedValue) { 4155 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4156 return E->VectorizedValue; 4157 } 4158 4159 Instruction *VL0 = E->getMainOp(); 4160 Type *ScalarTy = VL0->getType(); 4161 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4162 ScalarTy = SI->getValueOperand()->getType(); 4163 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4164 4165 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4166 4167 if (E->State == TreeEntry::NeedToGather) { 4168 setInsertPointAfterBundle(E); 4169 auto *V = Gather(E->Scalars, VecTy); 4170 if (NeedToShuffleReuses) { 4171 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4172 E->ReuseShuffleIndices, "shuffle"); 4173 if (auto *I = dyn_cast<Instruction>(V)) { 4174 GatherSeq.insert(I); 4175 CSEBlocks.insert(I->getParent()); 4176 } 4177 } 4178 E->VectorizedValue = V; 4179 return V; 4180 } 4181 4182 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4183 unsigned ShuffleOrOp = 4184 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4185 switch (ShuffleOrOp) { 4186 case Instruction::PHI: { 4187 auto *PH = cast<PHINode>(VL0); 4188 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4189 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4190 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4191 Value *V = NewPhi; 4192 if (NeedToShuffleReuses) { 4193 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4194 E->ReuseShuffleIndices, "shuffle"); 4195 } 4196 E->VectorizedValue = V; 4197 4198 // PHINodes may have multiple entries from the same block. We want to 4199 // visit every block once. 4200 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4201 4202 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4203 ValueList Operands; 4204 BasicBlock *IBB = PH->getIncomingBlock(i); 4205 4206 if (!VisitedBBs.insert(IBB).second) { 4207 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4208 continue; 4209 } 4210 4211 Builder.SetInsertPoint(IBB->getTerminator()); 4212 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4213 Value *Vec = vectorizeTree(E->getOperand(i)); 4214 NewPhi->addIncoming(Vec, IBB); 4215 } 4216 4217 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4218 "Invalid number of incoming values"); 4219 return V; 4220 } 4221 4222 case Instruction::ExtractElement: { 4223 Value *V = E->getSingleOperand(0); 4224 if (!E->ReorderIndices.empty()) { 4225 SmallVector<int, 4> Mask; 4226 inversePermutation(E->ReorderIndices, Mask); 4227 Builder.SetInsertPoint(VL0); 4228 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4229 "reorder_shuffle"); 4230 } 4231 if (NeedToShuffleReuses) { 4232 // TODO: Merge this shuffle with the ReorderShuffleMask. 4233 if (E->ReorderIndices.empty()) 4234 Builder.SetInsertPoint(VL0); 4235 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4236 E->ReuseShuffleIndices, "shuffle"); 4237 } 4238 E->VectorizedValue = V; 4239 return V; 4240 } 4241 case Instruction::ExtractValue: { 4242 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4243 Builder.SetInsertPoint(LI); 4244 PointerType *PtrTy = 4245 PointerType::get(VecTy, LI->getPointerAddressSpace()); 4246 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4247 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4248 Value *NewV = propagateMetadata(V, E->Scalars); 4249 if (!E->ReorderIndices.empty()) { 4250 SmallVector<int, 4> Mask; 4251 inversePermutation(E->ReorderIndices, Mask); 4252 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4253 "reorder_shuffle"); 4254 } 4255 if (NeedToShuffleReuses) { 4256 // TODO: Merge this shuffle with the ReorderShuffleMask. 4257 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), 4258 E->ReuseShuffleIndices, "shuffle"); 4259 } 4260 E->VectorizedValue = NewV; 4261 return NewV; 4262 } 4263 case Instruction::ZExt: 4264 case Instruction::SExt: 4265 case Instruction::FPToUI: 4266 case Instruction::FPToSI: 4267 case Instruction::FPExt: 4268 case Instruction::PtrToInt: 4269 case Instruction::IntToPtr: 4270 case Instruction::SIToFP: 4271 case Instruction::UIToFP: 4272 case Instruction::Trunc: 4273 case Instruction::FPTrunc: 4274 case Instruction::BitCast: { 4275 setInsertPointAfterBundle(E); 4276 4277 Value *InVec = vectorizeTree(E->getOperand(0)); 4278 4279 if (E->VectorizedValue) { 4280 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4281 return E->VectorizedValue; 4282 } 4283 4284 auto *CI = cast<CastInst>(VL0); 4285 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4286 if (NeedToShuffleReuses) { 4287 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4288 E->ReuseShuffleIndices, "shuffle"); 4289 } 4290 E->VectorizedValue = V; 4291 ++NumVectorInstructions; 4292 return V; 4293 } 4294 case Instruction::FCmp: 4295 case Instruction::ICmp: { 4296 setInsertPointAfterBundle(E); 4297 4298 Value *L = vectorizeTree(E->getOperand(0)); 4299 Value *R = vectorizeTree(E->getOperand(1)); 4300 4301 if (E->VectorizedValue) { 4302 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4303 return E->VectorizedValue; 4304 } 4305 4306 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4307 Value *V = Builder.CreateCmp(P0, L, R); 4308 propagateIRFlags(V, E->Scalars, VL0); 4309 if (NeedToShuffleReuses) { 4310 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4311 E->ReuseShuffleIndices, "shuffle"); 4312 } 4313 E->VectorizedValue = V; 4314 ++NumVectorInstructions; 4315 return V; 4316 } 4317 case Instruction::Select: { 4318 setInsertPointAfterBundle(E); 4319 4320 Value *Cond = vectorizeTree(E->getOperand(0)); 4321 Value *True = vectorizeTree(E->getOperand(1)); 4322 Value *False = vectorizeTree(E->getOperand(2)); 4323 4324 if (E->VectorizedValue) { 4325 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4326 return E->VectorizedValue; 4327 } 4328 4329 Value *V = Builder.CreateSelect(Cond, True, False); 4330 if (NeedToShuffleReuses) { 4331 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4332 E->ReuseShuffleIndices, "shuffle"); 4333 } 4334 E->VectorizedValue = V; 4335 ++NumVectorInstructions; 4336 return V; 4337 } 4338 case Instruction::FNeg: { 4339 setInsertPointAfterBundle(E); 4340 4341 Value *Op = vectorizeTree(E->getOperand(0)); 4342 4343 if (E->VectorizedValue) { 4344 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4345 return E->VectorizedValue; 4346 } 4347 4348 Value *V = Builder.CreateUnOp( 4349 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4350 propagateIRFlags(V, E->Scalars, VL0); 4351 if (auto *I = dyn_cast<Instruction>(V)) 4352 V = propagateMetadata(I, E->Scalars); 4353 4354 if (NeedToShuffleReuses) { 4355 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4356 E->ReuseShuffleIndices, "shuffle"); 4357 } 4358 E->VectorizedValue = V; 4359 ++NumVectorInstructions; 4360 4361 return V; 4362 } 4363 case Instruction::Add: 4364 case Instruction::FAdd: 4365 case Instruction::Sub: 4366 case Instruction::FSub: 4367 case Instruction::Mul: 4368 case Instruction::FMul: 4369 case Instruction::UDiv: 4370 case Instruction::SDiv: 4371 case Instruction::FDiv: 4372 case Instruction::URem: 4373 case Instruction::SRem: 4374 case Instruction::FRem: 4375 case Instruction::Shl: 4376 case Instruction::LShr: 4377 case Instruction::AShr: 4378 case Instruction::And: 4379 case Instruction::Or: 4380 case Instruction::Xor: { 4381 setInsertPointAfterBundle(E); 4382 4383 Value *LHS = vectorizeTree(E->getOperand(0)); 4384 Value *RHS = vectorizeTree(E->getOperand(1)); 4385 4386 if (E->VectorizedValue) { 4387 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4388 return E->VectorizedValue; 4389 } 4390 4391 Value *V = Builder.CreateBinOp( 4392 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4393 RHS); 4394 propagateIRFlags(V, E->Scalars, VL0); 4395 if (auto *I = dyn_cast<Instruction>(V)) 4396 V = propagateMetadata(I, E->Scalars); 4397 4398 if (NeedToShuffleReuses) { 4399 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4400 E->ReuseShuffleIndices, "shuffle"); 4401 } 4402 E->VectorizedValue = V; 4403 ++NumVectorInstructions; 4404 4405 return V; 4406 } 4407 case Instruction::Load: { 4408 // Loads are inserted at the head of the tree because we don't want to 4409 // sink them all the way down past store instructions. 4410 bool IsReorder = E->updateStateIfReorder(); 4411 if (IsReorder) 4412 VL0 = E->getMainOp(); 4413 setInsertPointAfterBundle(E); 4414 4415 LoadInst *LI = cast<LoadInst>(VL0); 4416 unsigned AS = LI->getPointerAddressSpace(); 4417 4418 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4419 VecTy->getPointerTo(AS)); 4420 4421 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4422 // ExternalUses list to make sure that an extract will be generated in the 4423 // future. 4424 Value *PO = LI->getPointerOperand(); 4425 if (getTreeEntry(PO)) 4426 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4427 4428 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4429 Value *V = propagateMetadata(LI, E->Scalars); 4430 if (IsReorder) { 4431 SmallVector<int, 4> Mask; 4432 inversePermutation(E->ReorderIndices, Mask); 4433 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4434 Mask, "reorder_shuffle"); 4435 } 4436 if (NeedToShuffleReuses) { 4437 // TODO: Merge this shuffle with the ReorderShuffleMask. 4438 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4439 E->ReuseShuffleIndices, "shuffle"); 4440 } 4441 E->VectorizedValue = V; 4442 ++NumVectorInstructions; 4443 return V; 4444 } 4445 case Instruction::Store: { 4446 bool IsReorder = !E->ReorderIndices.empty(); 4447 auto *SI = cast<StoreInst>( 4448 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4449 unsigned AS = SI->getPointerAddressSpace(); 4450 4451 setInsertPointAfterBundle(E); 4452 4453 Value *VecValue = vectorizeTree(E->getOperand(0)); 4454 if (IsReorder) { 4455 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4456 E->ReorderIndices.end()); 4457 VecValue = Builder.CreateShuffleVector( 4458 VecValue, UndefValue::get(VecValue->getType()), Mask, 4459 "reorder_shuffle"); 4460 } 4461 Value *ScalarPtr = SI->getPointerOperand(); 4462 Value *VecPtr = Builder.CreateBitCast( 4463 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4464 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4465 SI->getAlign()); 4466 4467 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4468 // ExternalUses to make sure that an extract will be generated in the 4469 // future. 4470 if (getTreeEntry(ScalarPtr)) 4471 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4472 4473 Value *V = propagateMetadata(ST, E->Scalars); 4474 if (NeedToShuffleReuses) { 4475 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4476 E->ReuseShuffleIndices, "shuffle"); 4477 } 4478 E->VectorizedValue = V; 4479 ++NumVectorInstructions; 4480 return V; 4481 } 4482 case Instruction::GetElementPtr: { 4483 setInsertPointAfterBundle(E); 4484 4485 Value *Op0 = vectorizeTree(E->getOperand(0)); 4486 4487 std::vector<Value *> OpVecs; 4488 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4489 ++j) { 4490 ValueList &VL = E->getOperand(j); 4491 // Need to cast all elements to the same type before vectorization to 4492 // avoid crash. 4493 Type *VL0Ty = VL0->getOperand(j)->getType(); 4494 Type *Ty = llvm::all_of( 4495 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4496 ? VL0Ty 4497 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4498 ->getPointerOperandType() 4499 ->getScalarType()); 4500 for (Value *&V : VL) { 4501 auto *CI = cast<ConstantInt>(V); 4502 V = ConstantExpr::getIntegerCast(CI, Ty, 4503 CI->getValue().isSignBitSet()); 4504 } 4505 Value *OpVec = vectorizeTree(VL); 4506 OpVecs.push_back(OpVec); 4507 } 4508 4509 Value *V = Builder.CreateGEP( 4510 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4511 if (Instruction *I = dyn_cast<Instruction>(V)) 4512 V = propagateMetadata(I, E->Scalars); 4513 4514 if (NeedToShuffleReuses) { 4515 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4516 E->ReuseShuffleIndices, "shuffle"); 4517 } 4518 E->VectorizedValue = V; 4519 ++NumVectorInstructions; 4520 4521 return V; 4522 } 4523 case Instruction::Call: { 4524 CallInst *CI = cast<CallInst>(VL0); 4525 setInsertPointAfterBundle(E); 4526 4527 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4528 if (Function *FI = CI->getCalledFunction()) 4529 IID = FI->getIntrinsicID(); 4530 4531 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4532 4533 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4534 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4535 VecCallCosts.first <= VecCallCosts.second; 4536 4537 Value *ScalarArg = nullptr; 4538 std::vector<Value *> OpVecs; 4539 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4540 ValueList OpVL; 4541 // Some intrinsics have scalar arguments. This argument should not be 4542 // vectorized. 4543 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4544 CallInst *CEI = cast<CallInst>(VL0); 4545 ScalarArg = CEI->getArgOperand(j); 4546 OpVecs.push_back(CEI->getArgOperand(j)); 4547 continue; 4548 } 4549 4550 Value *OpVec = vectorizeTree(E->getOperand(j)); 4551 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4552 OpVecs.push_back(OpVec); 4553 } 4554 4555 Function *CF; 4556 if (!UseIntrinsic) { 4557 VFShape Shape = 4558 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4559 VecTy->getNumElements())), 4560 false /*HasGlobalPred*/); 4561 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4562 } else { 4563 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4564 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4565 } 4566 4567 SmallVector<OperandBundleDef, 1> OpBundles; 4568 CI->getOperandBundlesAsDefs(OpBundles); 4569 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4570 4571 // The scalar argument uses an in-tree scalar so we add the new vectorized 4572 // call to ExternalUses list to make sure that an extract will be 4573 // generated in the future. 4574 if (ScalarArg && getTreeEntry(ScalarArg)) 4575 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4576 4577 propagateIRFlags(V, E->Scalars, VL0); 4578 if (NeedToShuffleReuses) { 4579 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4580 E->ReuseShuffleIndices, "shuffle"); 4581 } 4582 E->VectorizedValue = V; 4583 ++NumVectorInstructions; 4584 return V; 4585 } 4586 case Instruction::ShuffleVector: { 4587 assert(E->isAltShuffle() && 4588 ((Instruction::isBinaryOp(E->getOpcode()) && 4589 Instruction::isBinaryOp(E->getAltOpcode())) || 4590 (Instruction::isCast(E->getOpcode()) && 4591 Instruction::isCast(E->getAltOpcode()))) && 4592 "Invalid Shuffle Vector Operand"); 4593 4594 Value *LHS = nullptr, *RHS = nullptr; 4595 if (Instruction::isBinaryOp(E->getOpcode())) { 4596 setInsertPointAfterBundle(E); 4597 LHS = vectorizeTree(E->getOperand(0)); 4598 RHS = vectorizeTree(E->getOperand(1)); 4599 } else { 4600 setInsertPointAfterBundle(E); 4601 LHS = vectorizeTree(E->getOperand(0)); 4602 } 4603 4604 if (E->VectorizedValue) { 4605 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4606 return E->VectorizedValue; 4607 } 4608 4609 Value *V0, *V1; 4610 if (Instruction::isBinaryOp(E->getOpcode())) { 4611 V0 = Builder.CreateBinOp( 4612 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4613 V1 = Builder.CreateBinOp( 4614 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4615 } else { 4616 V0 = Builder.CreateCast( 4617 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4618 V1 = Builder.CreateCast( 4619 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4620 } 4621 4622 // Create shuffle to take alternate operations from the vector. 4623 // Also, gather up main and alt scalar ops to propagate IR flags to 4624 // each vector operation. 4625 ValueList OpScalars, AltScalars; 4626 unsigned e = E->Scalars.size(); 4627 SmallVector<int, 8> Mask(e); 4628 for (unsigned i = 0; i < e; ++i) { 4629 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4630 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4631 if (OpInst->getOpcode() == E->getAltOpcode()) { 4632 Mask[i] = e + i; 4633 AltScalars.push_back(E->Scalars[i]); 4634 } else { 4635 Mask[i] = i; 4636 OpScalars.push_back(E->Scalars[i]); 4637 } 4638 } 4639 4640 propagateIRFlags(V0, OpScalars); 4641 propagateIRFlags(V1, AltScalars); 4642 4643 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4644 if (Instruction *I = dyn_cast<Instruction>(V)) 4645 V = propagateMetadata(I, E->Scalars); 4646 if (NeedToShuffleReuses) { 4647 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4648 E->ReuseShuffleIndices, "shuffle"); 4649 } 4650 E->VectorizedValue = V; 4651 ++NumVectorInstructions; 4652 4653 return V; 4654 } 4655 default: 4656 llvm_unreachable("unknown inst"); 4657 } 4658 return nullptr; 4659 } 4660 4661 Value *BoUpSLP::vectorizeTree() { 4662 ExtraValueToDebugLocsMap ExternallyUsedValues; 4663 return vectorizeTree(ExternallyUsedValues); 4664 } 4665 4666 Value * 4667 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4668 // All blocks must be scheduled before any instructions are inserted. 4669 for (auto &BSIter : BlocksSchedules) { 4670 scheduleBlock(BSIter.second.get()); 4671 } 4672 4673 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4674 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4675 4676 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4677 // vectorized root. InstCombine will then rewrite the entire expression. We 4678 // sign extend the extracted values below. 4679 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4680 if (MinBWs.count(ScalarRoot)) { 4681 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4682 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4683 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4684 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4685 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4686 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4687 VectorizableTree[0]->VectorizedValue = Trunc; 4688 } 4689 4690 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4691 << " values .\n"); 4692 4693 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4694 // specified by ScalarType. 4695 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4696 if (!MinBWs.count(ScalarRoot)) 4697 return Ex; 4698 if (MinBWs[ScalarRoot].second) 4699 return Builder.CreateSExt(Ex, ScalarType); 4700 return Builder.CreateZExt(Ex, ScalarType); 4701 }; 4702 4703 // Extract all of the elements with the external uses. 4704 for (const auto &ExternalUse : ExternalUses) { 4705 Value *Scalar = ExternalUse.Scalar; 4706 llvm::User *User = ExternalUse.User; 4707 4708 // Skip users that we already RAUW. This happens when one instruction 4709 // has multiple uses of the same value. 4710 if (User && !is_contained(Scalar->users(), User)) 4711 continue; 4712 TreeEntry *E = getTreeEntry(Scalar); 4713 assert(E && "Invalid scalar"); 4714 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4715 4716 Value *Vec = E->VectorizedValue; 4717 assert(Vec && "Can't find vectorizable value"); 4718 4719 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4720 // If User == nullptr, the Scalar is used as extra arg. Generate 4721 // ExtractElement instruction and update the record for this scalar in 4722 // ExternallyUsedValues. 4723 if (!User) { 4724 assert(ExternallyUsedValues.count(Scalar) && 4725 "Scalar with nullptr as an external user must be registered in " 4726 "ExternallyUsedValues map"); 4727 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4728 Builder.SetInsertPoint(VecI->getParent(), 4729 std::next(VecI->getIterator())); 4730 } else { 4731 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4732 } 4733 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4734 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4735 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4736 auto &Locs = ExternallyUsedValues[Scalar]; 4737 ExternallyUsedValues.insert({Ex, Locs}); 4738 ExternallyUsedValues.erase(Scalar); 4739 // Required to update internally referenced instructions. 4740 Scalar->replaceAllUsesWith(Ex); 4741 continue; 4742 } 4743 4744 // Generate extracts for out-of-tree users. 4745 // Find the insertion point for the extractelement lane. 4746 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4747 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4748 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4749 if (PH->getIncomingValue(i) == Scalar) { 4750 Instruction *IncomingTerminator = 4751 PH->getIncomingBlock(i)->getTerminator(); 4752 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4753 Builder.SetInsertPoint(VecI->getParent(), 4754 std::next(VecI->getIterator())); 4755 } else { 4756 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4757 } 4758 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4759 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4760 CSEBlocks.insert(PH->getIncomingBlock(i)); 4761 PH->setOperand(i, Ex); 4762 } 4763 } 4764 } else { 4765 Builder.SetInsertPoint(cast<Instruction>(User)); 4766 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4767 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4768 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4769 User->replaceUsesOfWith(Scalar, Ex); 4770 } 4771 } else { 4772 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4773 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4774 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4775 CSEBlocks.insert(&F->getEntryBlock()); 4776 User->replaceUsesOfWith(Scalar, Ex); 4777 } 4778 4779 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4780 } 4781 4782 // For each vectorized value: 4783 for (auto &TEPtr : VectorizableTree) { 4784 TreeEntry *Entry = TEPtr.get(); 4785 4786 // No need to handle users of gathered values. 4787 if (Entry->State == TreeEntry::NeedToGather) 4788 continue; 4789 4790 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4791 4792 // For each lane: 4793 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4794 Value *Scalar = Entry->Scalars[Lane]; 4795 4796 #ifndef NDEBUG 4797 Type *Ty = Scalar->getType(); 4798 if (!Ty->isVoidTy()) { 4799 for (User *U : Scalar->users()) { 4800 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4801 4802 // It is legal to delete users in the ignorelist. 4803 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4804 "Deleting out-of-tree value"); 4805 } 4806 } 4807 #endif 4808 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4809 eraseInstruction(cast<Instruction>(Scalar)); 4810 } 4811 } 4812 4813 Builder.ClearInsertionPoint(); 4814 InstrElementSize.clear(); 4815 4816 return VectorizableTree[0]->VectorizedValue; 4817 } 4818 4819 void BoUpSLP::optimizeGatherSequence() { 4820 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4821 << " gather sequences instructions.\n"); 4822 // LICM InsertElementInst sequences. 4823 for (Instruction *I : GatherSeq) { 4824 if (isDeleted(I)) 4825 continue; 4826 4827 // Check if this block is inside a loop. 4828 Loop *L = LI->getLoopFor(I->getParent()); 4829 if (!L) 4830 continue; 4831 4832 // Check if it has a preheader. 4833 BasicBlock *PreHeader = L->getLoopPreheader(); 4834 if (!PreHeader) 4835 continue; 4836 4837 // If the vector or the element that we insert into it are 4838 // instructions that are defined in this basic block then we can't 4839 // hoist this instruction. 4840 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4841 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4842 if (Op0 && L->contains(Op0)) 4843 continue; 4844 if (Op1 && L->contains(Op1)) 4845 continue; 4846 4847 // We can hoist this instruction. Move it to the pre-header. 4848 I->moveBefore(PreHeader->getTerminator()); 4849 } 4850 4851 // Make a list of all reachable blocks in our CSE queue. 4852 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4853 CSEWorkList.reserve(CSEBlocks.size()); 4854 for (BasicBlock *BB : CSEBlocks) 4855 if (DomTreeNode *N = DT->getNode(BB)) { 4856 assert(DT->isReachableFromEntry(N)); 4857 CSEWorkList.push_back(N); 4858 } 4859 4860 // Sort blocks by domination. This ensures we visit a block after all blocks 4861 // dominating it are visited. 4862 llvm::stable_sort(CSEWorkList, 4863 [this](const DomTreeNode *A, const DomTreeNode *B) { 4864 return DT->properlyDominates(A, B); 4865 }); 4866 4867 // Perform O(N^2) search over the gather sequences and merge identical 4868 // instructions. TODO: We can further optimize this scan if we split the 4869 // instructions into different buckets based on the insert lane. 4870 SmallVector<Instruction *, 16> Visited; 4871 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4872 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4873 "Worklist not sorted properly!"); 4874 BasicBlock *BB = (*I)->getBlock(); 4875 // For all instructions in blocks containing gather sequences: 4876 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4877 Instruction *In = &*it++; 4878 if (isDeleted(In)) 4879 continue; 4880 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4881 continue; 4882 4883 // Check if we can replace this instruction with any of the 4884 // visited instructions. 4885 for (Instruction *v : Visited) { 4886 if (In->isIdenticalTo(v) && 4887 DT->dominates(v->getParent(), In->getParent())) { 4888 In->replaceAllUsesWith(v); 4889 eraseInstruction(In); 4890 In = nullptr; 4891 break; 4892 } 4893 } 4894 if (In) { 4895 assert(!is_contained(Visited, In)); 4896 Visited.push_back(In); 4897 } 4898 } 4899 } 4900 CSEBlocks.clear(); 4901 GatherSeq.clear(); 4902 } 4903 4904 // Groups the instructions to a bundle (which is then a single scheduling entity) 4905 // and schedules instructions until the bundle gets ready. 4906 Optional<BoUpSLP::ScheduleData *> 4907 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4908 const InstructionsState &S) { 4909 if (isa<PHINode>(S.OpValue)) 4910 return nullptr; 4911 4912 // Initialize the instruction bundle. 4913 Instruction *OldScheduleEnd = ScheduleEnd; 4914 ScheduleData *PrevInBundle = nullptr; 4915 ScheduleData *Bundle = nullptr; 4916 bool ReSchedule = false; 4917 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4918 4919 // Make sure that the scheduling region contains all 4920 // instructions of the bundle. 4921 for (Value *V : VL) { 4922 if (!extendSchedulingRegion(V, S)) 4923 return None; 4924 } 4925 4926 for (Value *V : VL) { 4927 ScheduleData *BundleMember = getScheduleData(V); 4928 assert(BundleMember && 4929 "no ScheduleData for bundle member (maybe not in same basic block)"); 4930 if (BundleMember->IsScheduled) { 4931 // A bundle member was scheduled as single instruction before and now 4932 // needs to be scheduled as part of the bundle. We just get rid of the 4933 // existing schedule. 4934 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4935 << " was already scheduled\n"); 4936 ReSchedule = true; 4937 } 4938 assert(BundleMember->isSchedulingEntity() && 4939 "bundle member already part of other bundle"); 4940 if (PrevInBundle) { 4941 PrevInBundle->NextInBundle = BundleMember; 4942 } else { 4943 Bundle = BundleMember; 4944 } 4945 BundleMember->UnscheduledDepsInBundle = 0; 4946 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4947 4948 // Group the instructions to a bundle. 4949 BundleMember->FirstInBundle = Bundle; 4950 PrevInBundle = BundleMember; 4951 } 4952 if (ScheduleEnd != OldScheduleEnd) { 4953 // The scheduling region got new instructions at the lower end (or it is a 4954 // new region for the first bundle). This makes it necessary to 4955 // recalculate all dependencies. 4956 // It is seldom that this needs to be done a second time after adding the 4957 // initial bundle to the region. 4958 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4959 doForAllOpcodes(I, [](ScheduleData *SD) { 4960 SD->clearDependencies(); 4961 }); 4962 } 4963 ReSchedule = true; 4964 } 4965 if (ReSchedule) { 4966 resetSchedule(); 4967 initialFillReadyList(ReadyInsts); 4968 } 4969 assert(Bundle && "Failed to find schedule bundle"); 4970 4971 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4972 << BB->getName() << "\n"); 4973 4974 calculateDependencies(Bundle, true, SLP); 4975 4976 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4977 // means that there are no cyclic dependencies and we can schedule it. 4978 // Note that's important that we don't "schedule" the bundle yet (see 4979 // cancelScheduling). 4980 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4981 4982 ScheduleData *pickedSD = ReadyInsts.back(); 4983 ReadyInsts.pop_back(); 4984 4985 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4986 schedule(pickedSD, ReadyInsts); 4987 } 4988 } 4989 if (!Bundle->isReady()) { 4990 cancelScheduling(VL, S.OpValue); 4991 return None; 4992 } 4993 return Bundle; 4994 } 4995 4996 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4997 Value *OpValue) { 4998 if (isa<PHINode>(OpValue)) 4999 return; 5000 5001 ScheduleData *Bundle = getScheduleData(OpValue); 5002 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5003 assert(!Bundle->IsScheduled && 5004 "Can't cancel bundle which is already scheduled"); 5005 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5006 "tried to unbundle something which is not a bundle"); 5007 5008 // Un-bundle: make single instructions out of the bundle. 5009 ScheduleData *BundleMember = Bundle; 5010 while (BundleMember) { 5011 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5012 BundleMember->FirstInBundle = BundleMember; 5013 ScheduleData *Next = BundleMember->NextInBundle; 5014 BundleMember->NextInBundle = nullptr; 5015 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5016 if (BundleMember->UnscheduledDepsInBundle == 0) { 5017 ReadyInsts.insert(BundleMember); 5018 } 5019 BundleMember = Next; 5020 } 5021 } 5022 5023 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5024 // Allocate a new ScheduleData for the instruction. 5025 if (ChunkPos >= ChunkSize) { 5026 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5027 ChunkPos = 0; 5028 } 5029 return &(ScheduleDataChunks.back()[ChunkPos++]); 5030 } 5031 5032 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5033 const InstructionsState &S) { 5034 if (getScheduleData(V, isOneOf(S, V))) 5035 return true; 5036 Instruction *I = dyn_cast<Instruction>(V); 5037 assert(I && "bundle member must be an instruction"); 5038 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5039 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5040 ScheduleData *ISD = getScheduleData(I); 5041 if (!ISD) 5042 return false; 5043 assert(isInSchedulingRegion(ISD) && 5044 "ScheduleData not in scheduling region"); 5045 ScheduleData *SD = allocateScheduleDataChunks(); 5046 SD->Inst = I; 5047 SD->init(SchedulingRegionID, S.OpValue); 5048 ExtraScheduleDataMap[I][S.OpValue] = SD; 5049 return true; 5050 }; 5051 if (CheckSheduleForI(I)) 5052 return true; 5053 if (!ScheduleStart) { 5054 // It's the first instruction in the new region. 5055 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5056 ScheduleStart = I; 5057 ScheduleEnd = I->getNextNode(); 5058 if (isOneOf(S, I) != I) 5059 CheckSheduleForI(I); 5060 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5061 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5062 return true; 5063 } 5064 // Search up and down at the same time, because we don't know if the new 5065 // instruction is above or below the existing scheduling region. 5066 BasicBlock::reverse_iterator UpIter = 5067 ++ScheduleStart->getIterator().getReverse(); 5068 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5069 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5070 BasicBlock::iterator LowerEnd = BB->end(); 5071 while (true) { 5072 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5073 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5074 return false; 5075 } 5076 5077 if (UpIter != UpperEnd) { 5078 if (&*UpIter == I) { 5079 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5080 ScheduleStart = I; 5081 if (isOneOf(S, I) != I) 5082 CheckSheduleForI(I); 5083 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5084 << "\n"); 5085 return true; 5086 } 5087 ++UpIter; 5088 } 5089 if (DownIter != LowerEnd) { 5090 if (&*DownIter == I) { 5091 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5092 nullptr); 5093 ScheduleEnd = I->getNextNode(); 5094 if (isOneOf(S, I) != I) 5095 CheckSheduleForI(I); 5096 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5097 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5098 << "\n"); 5099 return true; 5100 } 5101 ++DownIter; 5102 } 5103 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5104 "instruction not found in block"); 5105 } 5106 return true; 5107 } 5108 5109 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5110 Instruction *ToI, 5111 ScheduleData *PrevLoadStore, 5112 ScheduleData *NextLoadStore) { 5113 ScheduleData *CurrentLoadStore = PrevLoadStore; 5114 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5115 ScheduleData *SD = ScheduleDataMap[I]; 5116 if (!SD) { 5117 SD = allocateScheduleDataChunks(); 5118 ScheduleDataMap[I] = SD; 5119 SD->Inst = I; 5120 } 5121 assert(!isInSchedulingRegion(SD) && 5122 "new ScheduleData already in scheduling region"); 5123 SD->init(SchedulingRegionID, I); 5124 5125 if (I->mayReadOrWriteMemory() && 5126 (!isa<IntrinsicInst>(I) || 5127 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5128 // Update the linked list of memory accessing instructions. 5129 if (CurrentLoadStore) { 5130 CurrentLoadStore->NextLoadStore = SD; 5131 } else { 5132 FirstLoadStoreInRegion = SD; 5133 } 5134 CurrentLoadStore = SD; 5135 } 5136 } 5137 if (NextLoadStore) { 5138 if (CurrentLoadStore) 5139 CurrentLoadStore->NextLoadStore = NextLoadStore; 5140 } else { 5141 LastLoadStoreInRegion = CurrentLoadStore; 5142 } 5143 } 5144 5145 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5146 bool InsertInReadyList, 5147 BoUpSLP *SLP) { 5148 assert(SD->isSchedulingEntity()); 5149 5150 SmallVector<ScheduleData *, 10> WorkList; 5151 WorkList.push_back(SD); 5152 5153 while (!WorkList.empty()) { 5154 ScheduleData *SD = WorkList.back(); 5155 WorkList.pop_back(); 5156 5157 ScheduleData *BundleMember = SD; 5158 while (BundleMember) { 5159 assert(isInSchedulingRegion(BundleMember)); 5160 if (!BundleMember->hasValidDependencies()) { 5161 5162 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5163 << "\n"); 5164 BundleMember->Dependencies = 0; 5165 BundleMember->resetUnscheduledDeps(); 5166 5167 // Handle def-use chain dependencies. 5168 if (BundleMember->OpValue != BundleMember->Inst) { 5169 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5170 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5171 BundleMember->Dependencies++; 5172 ScheduleData *DestBundle = UseSD->FirstInBundle; 5173 if (!DestBundle->IsScheduled) 5174 BundleMember->incrementUnscheduledDeps(1); 5175 if (!DestBundle->hasValidDependencies()) 5176 WorkList.push_back(DestBundle); 5177 } 5178 } else { 5179 for (User *U : BundleMember->Inst->users()) { 5180 if (isa<Instruction>(U)) { 5181 ScheduleData *UseSD = getScheduleData(U); 5182 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5183 BundleMember->Dependencies++; 5184 ScheduleData *DestBundle = UseSD->FirstInBundle; 5185 if (!DestBundle->IsScheduled) 5186 BundleMember->incrementUnscheduledDeps(1); 5187 if (!DestBundle->hasValidDependencies()) 5188 WorkList.push_back(DestBundle); 5189 } 5190 } else { 5191 // I'm not sure if this can ever happen. But we need to be safe. 5192 // This lets the instruction/bundle never be scheduled and 5193 // eventually disable vectorization. 5194 BundleMember->Dependencies++; 5195 BundleMember->incrementUnscheduledDeps(1); 5196 } 5197 } 5198 } 5199 5200 // Handle the memory dependencies. 5201 ScheduleData *DepDest = BundleMember->NextLoadStore; 5202 if (DepDest) { 5203 Instruction *SrcInst = BundleMember->Inst; 5204 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5205 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5206 unsigned numAliased = 0; 5207 unsigned DistToSrc = 1; 5208 5209 while (DepDest) { 5210 assert(isInSchedulingRegion(DepDest)); 5211 5212 // We have two limits to reduce the complexity: 5213 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5214 // SLP->isAliased (which is the expensive part in this loop). 5215 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5216 // the whole loop (even if the loop is fast, it's quadratic). 5217 // It's important for the loop break condition (see below) to 5218 // check this limit even between two read-only instructions. 5219 if (DistToSrc >= MaxMemDepDistance || 5220 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5221 (numAliased >= AliasedCheckLimit || 5222 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5223 5224 // We increment the counter only if the locations are aliased 5225 // (instead of counting all alias checks). This gives a better 5226 // balance between reduced runtime and accurate dependencies. 5227 numAliased++; 5228 5229 DepDest->MemoryDependencies.push_back(BundleMember); 5230 BundleMember->Dependencies++; 5231 ScheduleData *DestBundle = DepDest->FirstInBundle; 5232 if (!DestBundle->IsScheduled) { 5233 BundleMember->incrementUnscheduledDeps(1); 5234 } 5235 if (!DestBundle->hasValidDependencies()) { 5236 WorkList.push_back(DestBundle); 5237 } 5238 } 5239 DepDest = DepDest->NextLoadStore; 5240 5241 // Example, explaining the loop break condition: Let's assume our 5242 // starting instruction is i0 and MaxMemDepDistance = 3. 5243 // 5244 // +--------v--v--v 5245 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5246 // +--------^--^--^ 5247 // 5248 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5249 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5250 // Previously we already added dependencies from i3 to i6,i7,i8 5251 // (because of MaxMemDepDistance). As we added a dependency from 5252 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5253 // and we can abort this loop at i6. 5254 if (DistToSrc >= 2 * MaxMemDepDistance) 5255 break; 5256 DistToSrc++; 5257 } 5258 } 5259 } 5260 BundleMember = BundleMember->NextInBundle; 5261 } 5262 if (InsertInReadyList && SD->isReady()) { 5263 ReadyInsts.push_back(SD); 5264 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5265 << "\n"); 5266 } 5267 } 5268 } 5269 5270 void BoUpSLP::BlockScheduling::resetSchedule() { 5271 assert(ScheduleStart && 5272 "tried to reset schedule on block which has not been scheduled"); 5273 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5274 doForAllOpcodes(I, [&](ScheduleData *SD) { 5275 assert(isInSchedulingRegion(SD) && 5276 "ScheduleData not in scheduling region"); 5277 SD->IsScheduled = false; 5278 SD->resetUnscheduledDeps(); 5279 }); 5280 } 5281 ReadyInsts.clear(); 5282 } 5283 5284 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5285 if (!BS->ScheduleStart) 5286 return; 5287 5288 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5289 5290 BS->resetSchedule(); 5291 5292 // For the real scheduling we use a more sophisticated ready-list: it is 5293 // sorted by the original instruction location. This lets the final schedule 5294 // be as close as possible to the original instruction order. 5295 struct ScheduleDataCompare { 5296 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5297 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5298 } 5299 }; 5300 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5301 5302 // Ensure that all dependency data is updated and fill the ready-list with 5303 // initial instructions. 5304 int Idx = 0; 5305 int NumToSchedule = 0; 5306 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5307 I = I->getNextNode()) { 5308 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5309 assert(SD->isPartOfBundle() == 5310 (getTreeEntry(SD->Inst) != nullptr) && 5311 "scheduler and vectorizer bundle mismatch"); 5312 SD->FirstInBundle->SchedulingPriority = Idx++; 5313 if (SD->isSchedulingEntity()) { 5314 BS->calculateDependencies(SD, false, this); 5315 NumToSchedule++; 5316 } 5317 }); 5318 } 5319 BS->initialFillReadyList(ReadyInsts); 5320 5321 Instruction *LastScheduledInst = BS->ScheduleEnd; 5322 5323 // Do the "real" scheduling. 5324 while (!ReadyInsts.empty()) { 5325 ScheduleData *picked = *ReadyInsts.begin(); 5326 ReadyInsts.erase(ReadyInsts.begin()); 5327 5328 // Move the scheduled instruction(s) to their dedicated places, if not 5329 // there yet. 5330 ScheduleData *BundleMember = picked; 5331 while (BundleMember) { 5332 Instruction *pickedInst = BundleMember->Inst; 5333 if (LastScheduledInst->getNextNode() != pickedInst) { 5334 BS->BB->getInstList().remove(pickedInst); 5335 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5336 pickedInst); 5337 } 5338 LastScheduledInst = pickedInst; 5339 BundleMember = BundleMember->NextInBundle; 5340 } 5341 5342 BS->schedule(picked, ReadyInsts); 5343 NumToSchedule--; 5344 } 5345 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5346 5347 // Avoid duplicate scheduling of the block. 5348 BS->ScheduleStart = nullptr; 5349 } 5350 5351 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5352 // If V is a store, just return the width of the stored value without 5353 // traversing the expression tree. This is the common case. 5354 if (auto *Store = dyn_cast<StoreInst>(V)) 5355 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5356 5357 auto E = InstrElementSize.find(V); 5358 if (E != InstrElementSize.end()) 5359 return E->second; 5360 5361 // If V is not a store, we can traverse the expression tree to find loads 5362 // that feed it. The type of the loaded value may indicate a more suitable 5363 // width than V's type. We want to base the vector element size on the width 5364 // of memory operations where possible. 5365 SmallVector<Instruction *, 16> Worklist; 5366 SmallPtrSet<Instruction *, 16> Visited; 5367 if (auto *I = dyn_cast<Instruction>(V)) { 5368 Worklist.push_back(I); 5369 Visited.insert(I); 5370 } 5371 5372 // Traverse the expression tree in bottom-up order looking for loads. If we 5373 // encounter an instruction we don't yet handle, we give up. 5374 auto MaxWidth = 0u; 5375 auto FoundUnknownInst = false; 5376 while (!Worklist.empty() && !FoundUnknownInst) { 5377 auto *I = Worklist.pop_back_val(); 5378 5379 // We should only be looking at scalar instructions here. If the current 5380 // instruction has a vector type, give up. 5381 auto *Ty = I->getType(); 5382 if (isa<VectorType>(Ty)) 5383 FoundUnknownInst = true; 5384 5385 // If the current instruction is a load, update MaxWidth to reflect the 5386 // width of the loaded value. 5387 else if (isa<LoadInst>(I)) 5388 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5389 5390 // Otherwise, we need to visit the operands of the instruction. We only 5391 // handle the interesting cases from buildTree here. If an operand is an 5392 // instruction we haven't yet visited, we add it to the worklist. 5393 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5394 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5395 for (Use &U : I->operands()) 5396 if (auto *J = dyn_cast<Instruction>(U.get())) 5397 if (Visited.insert(J).second) 5398 Worklist.push_back(J); 5399 } 5400 5401 // If we don't yet handle the instruction, give up. 5402 else 5403 FoundUnknownInst = true; 5404 } 5405 5406 int Width = MaxWidth; 5407 // If we didn't encounter a memory access in the expression tree, or if we 5408 // gave up for some reason, just return the width of V. Otherwise, return the 5409 // maximum width we found. 5410 if (!MaxWidth || FoundUnknownInst) 5411 Width = DL->getTypeSizeInBits(V->getType()); 5412 5413 for (Instruction *I : Visited) 5414 InstrElementSize[I] = Width; 5415 5416 return Width; 5417 } 5418 5419 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5420 // smaller type with a truncation. We collect the values that will be demoted 5421 // in ToDemote and additional roots that require investigating in Roots. 5422 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5423 SmallVectorImpl<Value *> &ToDemote, 5424 SmallVectorImpl<Value *> &Roots) { 5425 // We can always demote constants. 5426 if (isa<Constant>(V)) { 5427 ToDemote.push_back(V); 5428 return true; 5429 } 5430 5431 // If the value is not an instruction in the expression with only one use, it 5432 // cannot be demoted. 5433 auto *I = dyn_cast<Instruction>(V); 5434 if (!I || !I->hasOneUse() || !Expr.count(I)) 5435 return false; 5436 5437 switch (I->getOpcode()) { 5438 5439 // We can always demote truncations and extensions. Since truncations can 5440 // seed additional demotion, we save the truncated value. 5441 case Instruction::Trunc: 5442 Roots.push_back(I->getOperand(0)); 5443 break; 5444 case Instruction::ZExt: 5445 case Instruction::SExt: 5446 break; 5447 5448 // We can demote certain binary operations if we can demote both of their 5449 // operands. 5450 case Instruction::Add: 5451 case Instruction::Sub: 5452 case Instruction::Mul: 5453 case Instruction::And: 5454 case Instruction::Or: 5455 case Instruction::Xor: 5456 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5457 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5458 return false; 5459 break; 5460 5461 // We can demote selects if we can demote their true and false values. 5462 case Instruction::Select: { 5463 SelectInst *SI = cast<SelectInst>(I); 5464 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5465 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5466 return false; 5467 break; 5468 } 5469 5470 // We can demote phis if we can demote all their incoming operands. Note that 5471 // we don't need to worry about cycles since we ensure single use above. 5472 case Instruction::PHI: { 5473 PHINode *PN = cast<PHINode>(I); 5474 for (Value *IncValue : PN->incoming_values()) 5475 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5476 return false; 5477 break; 5478 } 5479 5480 // Otherwise, conservatively give up. 5481 default: 5482 return false; 5483 } 5484 5485 // Record the value that we can demote. 5486 ToDemote.push_back(V); 5487 return true; 5488 } 5489 5490 void BoUpSLP::computeMinimumValueSizes() { 5491 // If there are no external uses, the expression tree must be rooted by a 5492 // store. We can't demote in-memory values, so there is nothing to do here. 5493 if (ExternalUses.empty()) 5494 return; 5495 5496 // We only attempt to truncate integer expressions. 5497 auto &TreeRoot = VectorizableTree[0]->Scalars; 5498 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5499 if (!TreeRootIT) 5500 return; 5501 5502 // If the expression is not rooted by a store, these roots should have 5503 // external uses. We will rely on InstCombine to rewrite the expression in 5504 // the narrower type. However, InstCombine only rewrites single-use values. 5505 // This means that if a tree entry other than a root is used externally, it 5506 // must have multiple uses and InstCombine will not rewrite it. The code 5507 // below ensures that only the roots are used externally. 5508 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5509 for (auto &EU : ExternalUses) 5510 if (!Expr.erase(EU.Scalar)) 5511 return; 5512 if (!Expr.empty()) 5513 return; 5514 5515 // Collect the scalar values of the vectorizable expression. We will use this 5516 // context to determine which values can be demoted. If we see a truncation, 5517 // we mark it as seeding another demotion. 5518 for (auto &EntryPtr : VectorizableTree) 5519 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5520 5521 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5522 // have a single external user that is not in the vectorizable tree. 5523 for (auto *Root : TreeRoot) 5524 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5525 return; 5526 5527 // Conservatively determine if we can actually truncate the roots of the 5528 // expression. Collect the values that can be demoted in ToDemote and 5529 // additional roots that require investigating in Roots. 5530 SmallVector<Value *, 32> ToDemote; 5531 SmallVector<Value *, 4> Roots; 5532 for (auto *Root : TreeRoot) 5533 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5534 return; 5535 5536 // The maximum bit width required to represent all the values that can be 5537 // demoted without loss of precision. It would be safe to truncate the roots 5538 // of the expression to this width. 5539 auto MaxBitWidth = 8u; 5540 5541 // We first check if all the bits of the roots are demanded. If they're not, 5542 // we can truncate the roots to this narrower type. 5543 for (auto *Root : TreeRoot) { 5544 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5545 MaxBitWidth = std::max<unsigned>( 5546 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5547 } 5548 5549 // True if the roots can be zero-extended back to their original type, rather 5550 // than sign-extended. We know that if the leading bits are not demanded, we 5551 // can safely zero-extend. So we initialize IsKnownPositive to True. 5552 bool IsKnownPositive = true; 5553 5554 // If all the bits of the roots are demanded, we can try a little harder to 5555 // compute a narrower type. This can happen, for example, if the roots are 5556 // getelementptr indices. InstCombine promotes these indices to the pointer 5557 // width. Thus, all their bits are technically demanded even though the 5558 // address computation might be vectorized in a smaller type. 5559 // 5560 // We start by looking at each entry that can be demoted. We compute the 5561 // maximum bit width required to store the scalar by using ValueTracking to 5562 // compute the number of high-order bits we can truncate. 5563 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5564 llvm::all_of(TreeRoot, [](Value *R) { 5565 assert(R->hasOneUse() && "Root should have only one use!"); 5566 return isa<GetElementPtrInst>(R->user_back()); 5567 })) { 5568 MaxBitWidth = 8u; 5569 5570 // Determine if the sign bit of all the roots is known to be zero. If not, 5571 // IsKnownPositive is set to False. 5572 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5573 KnownBits Known = computeKnownBits(R, *DL); 5574 return Known.isNonNegative(); 5575 }); 5576 5577 // Determine the maximum number of bits required to store the scalar 5578 // values. 5579 for (auto *Scalar : ToDemote) { 5580 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5581 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5582 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5583 } 5584 5585 // If we can't prove that the sign bit is zero, we must add one to the 5586 // maximum bit width to account for the unknown sign bit. This preserves 5587 // the existing sign bit so we can safely sign-extend the root back to the 5588 // original type. Otherwise, if we know the sign bit is zero, we will 5589 // zero-extend the root instead. 5590 // 5591 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5592 // one to the maximum bit width will yield a larger-than-necessary 5593 // type. In general, we need to add an extra bit only if we can't 5594 // prove that the upper bit of the original type is equal to the 5595 // upper bit of the proposed smaller type. If these two bits are the 5596 // same (either zero or one) we know that sign-extending from the 5597 // smaller type will result in the same value. Here, since we can't 5598 // yet prove this, we are just making the proposed smaller type 5599 // larger to ensure correctness. 5600 if (!IsKnownPositive) 5601 ++MaxBitWidth; 5602 } 5603 5604 // Round MaxBitWidth up to the next power-of-two. 5605 if (!isPowerOf2_64(MaxBitWidth)) 5606 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5607 5608 // If the maximum bit width we compute is less than the with of the roots' 5609 // type, we can proceed with the narrowing. Otherwise, do nothing. 5610 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5611 return; 5612 5613 // If we can truncate the root, we must collect additional values that might 5614 // be demoted as a result. That is, those seeded by truncations we will 5615 // modify. 5616 while (!Roots.empty()) 5617 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5618 5619 // Finally, map the values we can demote to the maximum bit with we computed. 5620 for (auto *Scalar : ToDemote) 5621 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5622 } 5623 5624 namespace { 5625 5626 /// The SLPVectorizer Pass. 5627 struct SLPVectorizer : public FunctionPass { 5628 SLPVectorizerPass Impl; 5629 5630 /// Pass identification, replacement for typeid 5631 static char ID; 5632 5633 explicit SLPVectorizer() : FunctionPass(ID) { 5634 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5635 } 5636 5637 bool doInitialization(Module &M) override { 5638 return false; 5639 } 5640 5641 bool runOnFunction(Function &F) override { 5642 if (skipFunction(F)) 5643 return false; 5644 5645 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5646 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5647 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5648 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5649 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5650 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5651 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5652 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5653 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5654 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5655 5656 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5657 } 5658 5659 void getAnalysisUsage(AnalysisUsage &AU) const override { 5660 FunctionPass::getAnalysisUsage(AU); 5661 AU.addRequired<AssumptionCacheTracker>(); 5662 AU.addRequired<ScalarEvolutionWrapperPass>(); 5663 AU.addRequired<AAResultsWrapperPass>(); 5664 AU.addRequired<TargetTransformInfoWrapperPass>(); 5665 AU.addRequired<LoopInfoWrapperPass>(); 5666 AU.addRequired<DominatorTreeWrapperPass>(); 5667 AU.addRequired<DemandedBitsWrapperPass>(); 5668 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5669 AU.addRequired<InjectTLIMappingsLegacy>(); 5670 AU.addPreserved<LoopInfoWrapperPass>(); 5671 AU.addPreserved<DominatorTreeWrapperPass>(); 5672 AU.addPreserved<AAResultsWrapperPass>(); 5673 AU.addPreserved<GlobalsAAWrapperPass>(); 5674 AU.setPreservesCFG(); 5675 } 5676 }; 5677 5678 } // end anonymous namespace 5679 5680 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5681 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5682 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5683 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5684 auto *AA = &AM.getResult<AAManager>(F); 5685 auto *LI = &AM.getResult<LoopAnalysis>(F); 5686 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5687 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5688 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5689 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5690 5691 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5692 if (!Changed) 5693 return PreservedAnalyses::all(); 5694 5695 PreservedAnalyses PA; 5696 PA.preserveSet<CFGAnalyses>(); 5697 PA.preserve<AAManager>(); 5698 PA.preserve<GlobalsAA>(); 5699 return PA; 5700 } 5701 5702 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5703 TargetTransformInfo *TTI_, 5704 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5705 LoopInfo *LI_, DominatorTree *DT_, 5706 AssumptionCache *AC_, DemandedBits *DB_, 5707 OptimizationRemarkEmitter *ORE_) { 5708 if (!RunSLPVectorization) 5709 return false; 5710 SE = SE_; 5711 TTI = TTI_; 5712 TLI = TLI_; 5713 AA = AA_; 5714 LI = LI_; 5715 DT = DT_; 5716 AC = AC_; 5717 DB = DB_; 5718 DL = &F.getParent()->getDataLayout(); 5719 5720 Stores.clear(); 5721 GEPs.clear(); 5722 bool Changed = false; 5723 5724 // If the target claims to have no vector registers don't attempt 5725 // vectorization. 5726 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5727 return false; 5728 5729 // Don't vectorize when the attribute NoImplicitFloat is used. 5730 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5731 return false; 5732 5733 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5734 5735 // Use the bottom up slp vectorizer to construct chains that start with 5736 // store instructions. 5737 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5738 5739 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5740 // delete instructions. 5741 5742 // Scan the blocks in the function in post order. 5743 for (auto BB : post_order(&F.getEntryBlock())) { 5744 collectSeedInstructions(BB); 5745 5746 // Vectorize trees that end at stores. 5747 if (!Stores.empty()) { 5748 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5749 << " underlying objects.\n"); 5750 Changed |= vectorizeStoreChains(R); 5751 } 5752 5753 // Vectorize trees that end at reductions. 5754 Changed |= vectorizeChainsInBlock(BB, R); 5755 5756 // Vectorize the index computations of getelementptr instructions. This 5757 // is primarily intended to catch gather-like idioms ending at 5758 // non-consecutive loads. 5759 if (!GEPs.empty()) { 5760 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5761 << " underlying objects.\n"); 5762 Changed |= vectorizeGEPIndices(BB, R); 5763 } 5764 } 5765 5766 if (Changed) { 5767 R.optimizeGatherSequence(); 5768 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5769 } 5770 return Changed; 5771 } 5772 5773 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5774 unsigned Idx) { 5775 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5776 << "\n"); 5777 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5778 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5779 unsigned VF = Chain.size(); 5780 5781 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5782 return false; 5783 5784 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5785 << "\n"); 5786 5787 R.buildTree(Chain); 5788 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5789 // TODO: Handle orders of size less than number of elements in the vector. 5790 if (Order && Order->size() == Chain.size()) { 5791 // TODO: reorder tree nodes without tree rebuilding. 5792 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5793 llvm::transform(*Order, ReorderedOps.begin(), 5794 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5795 R.buildTree(ReorderedOps); 5796 } 5797 if (R.isTreeTinyAndNotFullyVectorizable()) 5798 return false; 5799 if (R.isLoadCombineCandidate()) 5800 return false; 5801 5802 R.computeMinimumValueSizes(); 5803 5804 int Cost = R.getTreeCost(); 5805 5806 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5807 if (Cost < -SLPCostThreshold) { 5808 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5809 5810 using namespace ore; 5811 5812 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5813 cast<StoreInst>(Chain[0])) 5814 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5815 << " and with tree size " 5816 << NV("TreeSize", R.getTreeSize())); 5817 5818 R.vectorizeTree(); 5819 return true; 5820 } 5821 5822 return false; 5823 } 5824 5825 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5826 BoUpSLP &R) { 5827 // We may run into multiple chains that merge into a single chain. We mark the 5828 // stores that we vectorized so that we don't visit the same store twice. 5829 BoUpSLP::ValueSet VectorizedStores; 5830 bool Changed = false; 5831 5832 int E = Stores.size(); 5833 SmallBitVector Tails(E, false); 5834 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5835 int MaxIter = MaxStoreLookup.getValue(); 5836 int IterCnt; 5837 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5838 &ConsecutiveChain](int K, int Idx) { 5839 if (IterCnt >= MaxIter) 5840 return true; 5841 ++IterCnt; 5842 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5843 return false; 5844 5845 Tails.set(Idx); 5846 ConsecutiveChain[K] = Idx; 5847 return true; 5848 }; 5849 // Do a quadratic search on all of the given stores in reverse order and find 5850 // all of the pairs of stores that follow each other. 5851 for (int Idx = E - 1; Idx >= 0; --Idx) { 5852 // If a store has multiple consecutive store candidates, search according 5853 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5854 // This is because usually pairing with immediate succeeding or preceding 5855 // candidate create the best chance to find slp vectorization opportunity. 5856 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5857 IterCnt = 0; 5858 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5859 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5860 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5861 break; 5862 } 5863 5864 // For stores that start but don't end a link in the chain: 5865 for (int Cnt = E; Cnt > 0; --Cnt) { 5866 int I = Cnt - 1; 5867 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5868 continue; 5869 // We found a store instr that starts a chain. Now follow the chain and try 5870 // to vectorize it. 5871 BoUpSLP::ValueList Operands; 5872 // Collect the chain into a list. 5873 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5874 Operands.push_back(Stores[I]); 5875 // Move to the next value in the chain. 5876 I = ConsecutiveChain[I]; 5877 } 5878 5879 // If a vector register can't hold 1 element, we are done. 5880 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5881 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5882 if (MaxVecRegSize % EltSize != 0) 5883 continue; 5884 5885 unsigned MaxElts = MaxVecRegSize / EltSize; 5886 // FIXME: Is division-by-2 the correct step? Should we assert that the 5887 // register size is a power-of-2? 5888 unsigned StartIdx = 0; 5889 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5890 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5891 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5892 if (!VectorizedStores.count(Slice.front()) && 5893 !VectorizedStores.count(Slice.back()) && 5894 vectorizeStoreChain(Slice, R, Cnt)) { 5895 // Mark the vectorized stores so that we don't vectorize them again. 5896 VectorizedStores.insert(Slice.begin(), Slice.end()); 5897 Changed = true; 5898 // If we vectorized initial block, no need to try to vectorize it 5899 // again. 5900 if (Cnt == StartIdx) 5901 StartIdx += Size; 5902 Cnt += Size; 5903 continue; 5904 } 5905 ++Cnt; 5906 } 5907 // Check if the whole array was vectorized already - exit. 5908 if (StartIdx >= Operands.size()) 5909 break; 5910 } 5911 } 5912 5913 return Changed; 5914 } 5915 5916 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5917 // Initialize the collections. We will make a single pass over the block. 5918 Stores.clear(); 5919 GEPs.clear(); 5920 5921 // Visit the store and getelementptr instructions in BB and organize them in 5922 // Stores and GEPs according to the underlying objects of their pointer 5923 // operands. 5924 for (Instruction &I : *BB) { 5925 // Ignore store instructions that are volatile or have a pointer operand 5926 // that doesn't point to a scalar type. 5927 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5928 if (!SI->isSimple()) 5929 continue; 5930 if (!isValidElementType(SI->getValueOperand()->getType())) 5931 continue; 5932 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 5933 } 5934 5935 // Ignore getelementptr instructions that have more than one index, a 5936 // constant index, or a pointer operand that doesn't point to a scalar 5937 // type. 5938 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5939 auto Idx = GEP->idx_begin()->get(); 5940 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5941 continue; 5942 if (!isValidElementType(Idx->getType())) 5943 continue; 5944 if (GEP->getType()->isVectorTy()) 5945 continue; 5946 GEPs[GEP->getPointerOperand()].push_back(GEP); 5947 } 5948 } 5949 } 5950 5951 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5952 if (!A || !B) 5953 return false; 5954 Value *VL[] = {A, B}; 5955 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 5956 } 5957 5958 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5959 bool AllowReorder, 5960 ArrayRef<Value *> InsertUses) { 5961 if (VL.size() < 2) 5962 return false; 5963 5964 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5965 << VL.size() << ".\n"); 5966 5967 // Check that all of the parts are instructions of the same type, 5968 // we permit an alternate opcode via InstructionsState. 5969 InstructionsState S = getSameOpcode(VL); 5970 if (!S.getOpcode()) 5971 return false; 5972 5973 Instruction *I0 = cast<Instruction>(S.OpValue); 5974 // Make sure invalid types (including vector type) are rejected before 5975 // determining vectorization factor for scalar instructions. 5976 for (Value *V : VL) { 5977 Type *Ty = V->getType(); 5978 if (!isValidElementType(Ty)) { 5979 // NOTE: the following will give user internal llvm type name, which may 5980 // not be useful. 5981 R.getORE()->emit([&]() { 5982 std::string type_str; 5983 llvm::raw_string_ostream rso(type_str); 5984 Ty->print(rso); 5985 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5986 << "Cannot SLP vectorize list: type " 5987 << rso.str() + " is unsupported by vectorizer"; 5988 }); 5989 return false; 5990 } 5991 } 5992 5993 unsigned Sz = R.getVectorElementSize(I0); 5994 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5995 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5996 if (MaxVF < 2) { 5997 R.getORE()->emit([&]() { 5998 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5999 << "Cannot SLP vectorize list: vectorization factor " 6000 << "less than 2 is not supported"; 6001 }); 6002 return false; 6003 } 6004 6005 bool Changed = false; 6006 bool CandidateFound = false; 6007 int MinCost = SLPCostThreshold; 6008 6009 bool CompensateUseCost = 6010 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6011 return V && isa<InsertElementInst>(V); 6012 }); 6013 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6014 "Each scalar expected to have an associated InsertElement user."); 6015 6016 unsigned NextInst = 0, MaxInst = VL.size(); 6017 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6018 // No actual vectorization should happen, if number of parts is the same as 6019 // provided vectorization factor (i.e. the scalar type is used for vector 6020 // code during codegen). 6021 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6022 if (TTI->getNumberOfParts(VecTy) == VF) 6023 continue; 6024 for (unsigned I = NextInst; I < MaxInst; ++I) { 6025 unsigned OpsWidth = 0; 6026 6027 if (I + VF > MaxInst) 6028 OpsWidth = MaxInst - I; 6029 else 6030 OpsWidth = VF; 6031 6032 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6033 break; 6034 6035 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6036 // Check that a previous iteration of this loop did not delete the Value. 6037 if (llvm::any_of(Ops, [&R](Value *V) { 6038 auto *I = dyn_cast<Instruction>(V); 6039 return I && R.isDeleted(I); 6040 })) 6041 continue; 6042 6043 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6044 << "\n"); 6045 6046 R.buildTree(Ops); 6047 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6048 // TODO: check if we can allow reordering for more cases. 6049 if (AllowReorder && Order) { 6050 // TODO: reorder tree nodes without tree rebuilding. 6051 // Conceptually, there is nothing actually preventing us from trying to 6052 // reorder a larger list. In fact, we do exactly this when vectorizing 6053 // reductions. However, at this point, we only expect to get here when 6054 // there are exactly two operations. 6055 assert(Ops.size() == 2); 6056 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6057 R.buildTree(ReorderedOps, None); 6058 } 6059 if (R.isTreeTinyAndNotFullyVectorizable()) 6060 continue; 6061 6062 R.computeMinimumValueSizes(); 6063 int Cost = R.getTreeCost(); 6064 CandidateFound = true; 6065 if (CompensateUseCost) { 6066 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6067 // rather than sum of single inserts as the latter may overestimate 6068 // cost. This work should imply improving cost estimation for extracts 6069 // that added in for external (for vectorization tree) users,i.e. that 6070 // part should also switch to same interface. 6071 // For example, the following case is projected code after SLP: 6072 // %4 = extractelement <4 x i64> %3, i32 0 6073 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6074 // %5 = extractelement <4 x i64> %3, i32 1 6075 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6076 // %6 = extractelement <4 x i64> %3, i32 2 6077 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6078 // %7 = extractelement <4 x i64> %3, i32 3 6079 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6080 // 6081 // Extracts here added by SLP in order to feed users (the inserts) of 6082 // original scalars and contribute to "ExtractCost" at cost evaluation. 6083 // The inserts in turn form sequence to build an aggregate that 6084 // detected by findBuildAggregate routine. 6085 // SLP makes an assumption that such sequence will be optimized away 6086 // later (instcombine) so it tries to compensate ExctractCost with 6087 // cost of insert sequence. 6088 // Current per element cost calculation approach is not quite accurate 6089 // and tends to create bias toward favoring vectorization. 6090 // Switching to the TTI interface might help a bit. 6091 // Alternative solution could be pattern-match to detect a no-op or 6092 // shuffle. 6093 unsigned UserCost = 0; 6094 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6095 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6096 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6097 UserCost += TTI->getVectorInstrCost( 6098 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6099 } 6100 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6101 << ".\n"); 6102 Cost -= UserCost; 6103 } 6104 6105 MinCost = std::min(MinCost, Cost); 6106 6107 if (Cost < -SLPCostThreshold) { 6108 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6109 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6110 cast<Instruction>(Ops[0])) 6111 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6112 << " and with tree size " 6113 << ore::NV("TreeSize", R.getTreeSize())); 6114 6115 R.vectorizeTree(); 6116 // Move to the next bundle. 6117 I += VF - 1; 6118 NextInst = I + 1; 6119 Changed = true; 6120 } 6121 } 6122 } 6123 6124 if (!Changed && CandidateFound) { 6125 R.getORE()->emit([&]() { 6126 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6127 << "List vectorization was possible but not beneficial with cost " 6128 << ore::NV("Cost", MinCost) << " >= " 6129 << ore::NV("Treshold", -SLPCostThreshold); 6130 }); 6131 } else if (!Changed) { 6132 R.getORE()->emit([&]() { 6133 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6134 << "Cannot SLP vectorize list: vectorization was impossible" 6135 << " with available vectorization factors"; 6136 }); 6137 } 6138 return Changed; 6139 } 6140 6141 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6142 if (!I) 6143 return false; 6144 6145 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6146 return false; 6147 6148 Value *P = I->getParent(); 6149 6150 // Vectorize in current basic block only. 6151 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6152 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6153 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6154 return false; 6155 6156 // Try to vectorize V. 6157 if (tryToVectorizePair(Op0, Op1, R)) 6158 return true; 6159 6160 auto *A = dyn_cast<BinaryOperator>(Op0); 6161 auto *B = dyn_cast<BinaryOperator>(Op1); 6162 // Try to skip B. 6163 if (B && B->hasOneUse()) { 6164 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6165 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6166 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6167 return true; 6168 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6169 return true; 6170 } 6171 6172 // Try to skip A. 6173 if (A && A->hasOneUse()) { 6174 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6175 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6176 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6177 return true; 6178 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6179 return true; 6180 } 6181 return false; 6182 } 6183 6184 /// Generate a shuffle mask to be used in a reduction tree. 6185 /// 6186 /// \param VecLen The length of the vector to be reduced. 6187 /// \param NumEltsToRdx The number of elements that should be reduced in the 6188 /// vector. 6189 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6190 /// reduction. A pairwise reduction will generate a mask of 6191 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6192 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6193 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6194 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6195 unsigned NumEltsToRdx, 6196 bool IsPairwise, bool IsLeft) { 6197 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6198 6199 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6200 6201 if (IsPairwise) 6202 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6203 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6204 ShuffleMask[i] = 2 * i + !IsLeft; 6205 else 6206 // Move the upper half of the vector to the lower half. 6207 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6208 ShuffleMask[i] = NumEltsToRdx + i; 6209 6210 return ShuffleMask; 6211 } 6212 6213 namespace { 6214 6215 /// Model horizontal reductions. 6216 /// 6217 /// A horizontal reduction is a tree of reduction operations (currently add and 6218 /// fadd) that has operations that can be put into a vector as its leaf. 6219 /// For example, this tree: 6220 /// 6221 /// mul mul mul mul 6222 /// \ / \ / 6223 /// + + 6224 /// \ / 6225 /// + 6226 /// This tree has "mul" as its reduced values and "+" as its reduction 6227 /// operations. A reduction might be feeding into a store or a binary operation 6228 /// feeding a phi. 6229 /// ... 6230 /// \ / 6231 /// + 6232 /// | 6233 /// phi += 6234 /// 6235 /// Or: 6236 /// ... 6237 /// \ / 6238 /// + 6239 /// | 6240 /// *p = 6241 /// 6242 class HorizontalReduction { 6243 using ReductionOpsType = SmallVector<Value *, 16>; 6244 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6245 ReductionOpsListType ReductionOps; 6246 SmallVector<Value *, 32> ReducedVals; 6247 // Use map vector to make stable output. 6248 MapVector<Instruction *, Value *> ExtraArgs; 6249 6250 /// Kind of the reduction data. 6251 enum ReductionKind { 6252 RK_None, /// Not a reduction. 6253 RK_Arithmetic, /// Binary reduction data. 6254 RK_Min, /// Minimum reduction data. 6255 RK_UMin, /// Unsigned minimum reduction data. 6256 RK_Max, /// Maximum reduction data. 6257 RK_UMax, /// Unsigned maximum reduction data. 6258 }; 6259 6260 /// Contains info about operation, like its opcode, left and right operands. 6261 class OperationData { 6262 /// Opcode of the instruction. 6263 unsigned Opcode = 0; 6264 6265 /// Left operand of the reduction operation. 6266 Value *LHS = nullptr; 6267 6268 /// Right operand of the reduction operation. 6269 Value *RHS = nullptr; 6270 6271 /// Kind of the reduction operation. 6272 ReductionKind Kind = RK_None; 6273 6274 /// True if float point min/max reduction has no NaNs. 6275 bool NoNaN = false; 6276 6277 /// Checks if the reduction operation can be vectorized. 6278 bool isVectorizable() const { 6279 return LHS && RHS && 6280 // We currently only support add/mul/logical && min/max reductions. 6281 ((Kind == RK_Arithmetic && 6282 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6283 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6284 Opcode == Instruction::And || Opcode == Instruction::Or || 6285 Opcode == Instruction::Xor)) || 6286 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6287 (Kind == RK_Min || Kind == RK_Max)) || 6288 (Opcode == Instruction::ICmp && 6289 (Kind == RK_UMin || Kind == RK_UMax))); 6290 } 6291 6292 /// Creates reduction operation with the current opcode. 6293 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6294 assert(isVectorizable() && 6295 "Expected add|fadd or min/max reduction operation."); 6296 Value *Cmp = nullptr; 6297 switch (Kind) { 6298 case RK_Arithmetic: 6299 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6300 Name); 6301 case RK_Min: 6302 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6303 : Builder.CreateFCmpOLT(LHS, RHS); 6304 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6305 case RK_Max: 6306 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6307 : Builder.CreateFCmpOGT(LHS, RHS); 6308 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6309 case RK_UMin: 6310 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6311 Cmp = Builder.CreateICmpULT(LHS, RHS); 6312 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6313 case RK_UMax: 6314 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6315 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6316 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6317 case RK_None: 6318 break; 6319 } 6320 llvm_unreachable("Unknown reduction operation."); 6321 } 6322 6323 public: 6324 explicit OperationData() = default; 6325 6326 /// Construction for reduced values. They are identified by opcode only and 6327 /// don't have associated LHS/RHS values. 6328 explicit OperationData(Value *V) { 6329 if (auto *I = dyn_cast<Instruction>(V)) 6330 Opcode = I->getOpcode(); 6331 } 6332 6333 /// Constructor for reduction operations with opcode and its left and 6334 /// right operands. 6335 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6336 bool NoNaN = false) 6337 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6338 assert(Kind != RK_None && "One of the reduction operations is expected."); 6339 } 6340 6341 explicit operator bool() const { return Opcode; } 6342 6343 /// Return true if this operation is any kind of minimum or maximum. 6344 bool isMinMax() const { 6345 switch (Kind) { 6346 case RK_Arithmetic: 6347 return false; 6348 case RK_Min: 6349 case RK_Max: 6350 case RK_UMin: 6351 case RK_UMax: 6352 return true; 6353 case RK_None: 6354 break; 6355 } 6356 llvm_unreachable("Reduction kind is not set"); 6357 } 6358 6359 /// Get the index of the first operand. 6360 unsigned getFirstOperandIndex() const { 6361 assert(!!*this && "The opcode is not set."); 6362 // We allow calling this before 'Kind' is set, so handle that specially. 6363 if (Kind == RK_None) 6364 return 0; 6365 return isMinMax() ? 1 : 0; 6366 } 6367 6368 /// Total number of operands in the reduction operation. 6369 unsigned getNumberOfOperands() const { 6370 assert(Kind != RK_None && !!*this && LHS && RHS && 6371 "Expected reduction operation."); 6372 return isMinMax() ? 3 : 2; 6373 } 6374 6375 /// Checks if the operation has the same parent as \p P. 6376 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6377 assert(Kind != RK_None && !!*this && LHS && RHS && 6378 "Expected reduction operation."); 6379 if (!IsRedOp) 6380 return I->getParent() == P; 6381 if (isMinMax()) { 6382 // SelectInst must be used twice while the condition op must have single 6383 // use only. 6384 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6385 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6386 } 6387 // Arithmetic reduction operation must be used once only. 6388 return I->getParent() == P; 6389 } 6390 6391 /// Expected number of uses for reduction operations/reduced values. 6392 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6393 assert(Kind != RK_None && !!*this && LHS && RHS && 6394 "Expected reduction operation."); 6395 if (isMinMax()) 6396 return I->hasNUses(2) && 6397 (!IsReductionOp || 6398 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6399 return I->hasOneUse(); 6400 } 6401 6402 /// Initializes the list of reduction operations. 6403 void initReductionOps(ReductionOpsListType &ReductionOps) { 6404 assert(Kind != RK_None && !!*this && LHS && RHS && 6405 "Expected reduction operation."); 6406 if (isMinMax()) 6407 ReductionOps.assign(2, ReductionOpsType()); 6408 else 6409 ReductionOps.assign(1, ReductionOpsType()); 6410 } 6411 6412 /// Add all reduction operations for the reduction instruction \p I. 6413 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6414 assert(Kind != RK_None && !!*this && LHS && RHS && 6415 "Expected reduction operation."); 6416 if (isMinMax()) { 6417 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6418 ReductionOps[1].emplace_back(I); 6419 } else { 6420 ReductionOps[0].emplace_back(I); 6421 } 6422 } 6423 6424 /// Checks if instruction is associative and can be vectorized. 6425 bool isAssociative(Instruction *I) const { 6426 assert(Kind != RK_None && *this && LHS && RHS && 6427 "Expected reduction operation."); 6428 switch (Kind) { 6429 case RK_Arithmetic: 6430 return I->isAssociative(); 6431 case RK_Min: 6432 case RK_Max: 6433 return Opcode == Instruction::ICmp || 6434 cast<Instruction>(I->getOperand(0))->isFast(); 6435 case RK_UMin: 6436 case RK_UMax: 6437 assert(Opcode == Instruction::ICmp && 6438 "Only integer compare operation is expected."); 6439 return true; 6440 case RK_None: 6441 break; 6442 } 6443 llvm_unreachable("Reduction kind is not set"); 6444 } 6445 6446 /// Checks if the reduction operation can be vectorized. 6447 bool isVectorizable(Instruction *I) const { 6448 return isVectorizable() && isAssociative(I); 6449 } 6450 6451 /// Checks if two operation data are both a reduction op or both a reduced 6452 /// value. 6453 bool operator==(const OperationData &OD) const { 6454 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6455 "One of the comparing operations is incorrect."); 6456 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6457 } 6458 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6459 void clear() { 6460 Opcode = 0; 6461 LHS = nullptr; 6462 RHS = nullptr; 6463 Kind = RK_None; 6464 NoNaN = false; 6465 } 6466 6467 /// Get the opcode of the reduction operation. 6468 unsigned getOpcode() const { 6469 assert(isVectorizable() && "Expected vectorizable operation."); 6470 return Opcode; 6471 } 6472 6473 /// Get kind of reduction data. 6474 ReductionKind getKind() const { return Kind; } 6475 Value *getLHS() const { return LHS; } 6476 Value *getRHS() const { return RHS; } 6477 Type *getConditionType() const { 6478 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6479 } 6480 6481 /// Creates reduction operation with the current opcode with the IR flags 6482 /// from \p ReductionOps. 6483 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6484 const ReductionOpsListType &ReductionOps) const { 6485 assert(isVectorizable() && 6486 "Expected add|fadd or min/max reduction operation."); 6487 auto *Op = createOp(Builder, Name); 6488 switch (Kind) { 6489 case RK_Arithmetic: 6490 propagateIRFlags(Op, ReductionOps[0]); 6491 return Op; 6492 case RK_Min: 6493 case RK_Max: 6494 case RK_UMin: 6495 case RK_UMax: 6496 if (auto *SI = dyn_cast<SelectInst>(Op)) 6497 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6498 propagateIRFlags(Op, ReductionOps[1]); 6499 return Op; 6500 case RK_None: 6501 break; 6502 } 6503 llvm_unreachable("Unknown reduction operation."); 6504 } 6505 /// Creates reduction operation with the current opcode with the IR flags 6506 /// from \p I. 6507 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6508 Instruction *I) const { 6509 assert(isVectorizable() && 6510 "Expected add|fadd or min/max reduction operation."); 6511 auto *Op = createOp(Builder, Name); 6512 switch (Kind) { 6513 case RK_Arithmetic: 6514 propagateIRFlags(Op, I); 6515 return Op; 6516 case RK_Min: 6517 case RK_Max: 6518 case RK_UMin: 6519 case RK_UMax: 6520 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6521 propagateIRFlags(SI->getCondition(), 6522 cast<SelectInst>(I)->getCondition()); 6523 } 6524 propagateIRFlags(Op, I); 6525 return Op; 6526 case RK_None: 6527 break; 6528 } 6529 llvm_unreachable("Unknown reduction operation."); 6530 } 6531 6532 TargetTransformInfo::ReductionFlags getFlags() const { 6533 TargetTransformInfo::ReductionFlags Flags; 6534 Flags.NoNaN = NoNaN; 6535 switch (Kind) { 6536 case RK_Arithmetic: 6537 break; 6538 case RK_Min: 6539 Flags.IsSigned = Opcode == Instruction::ICmp; 6540 Flags.IsMaxOp = false; 6541 break; 6542 case RK_Max: 6543 Flags.IsSigned = Opcode == Instruction::ICmp; 6544 Flags.IsMaxOp = true; 6545 break; 6546 case RK_UMin: 6547 Flags.IsSigned = false; 6548 Flags.IsMaxOp = false; 6549 break; 6550 case RK_UMax: 6551 Flags.IsSigned = false; 6552 Flags.IsMaxOp = true; 6553 break; 6554 case RK_None: 6555 llvm_unreachable("Reduction kind is not set"); 6556 } 6557 return Flags; 6558 } 6559 }; 6560 6561 WeakTrackingVH ReductionRoot; 6562 6563 /// The operation data of the reduction operation. 6564 OperationData ReductionData; 6565 6566 /// The operation data of the values we perform a reduction on. 6567 OperationData ReducedValueData; 6568 6569 /// Should we model this reduction as a pairwise reduction tree or a tree that 6570 /// splits the vector in halves and adds those halves. 6571 bool IsPairwiseReduction = false; 6572 6573 /// Checks if the ParentStackElem.first should be marked as a reduction 6574 /// operation with an extra argument or as extra argument itself. 6575 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6576 Value *ExtraArg) { 6577 if (ExtraArgs.count(ParentStackElem.first)) { 6578 ExtraArgs[ParentStackElem.first] = nullptr; 6579 // We ran into something like: 6580 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6581 // The whole ParentStackElem.first should be considered as an extra value 6582 // in this case. 6583 // Do not perform analysis of remaining operands of ParentStackElem.first 6584 // instruction, this whole instruction is an extra argument. 6585 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6586 } else { 6587 // We ran into something like: 6588 // ParentStackElem.first += ... + ExtraArg + ... 6589 ExtraArgs[ParentStackElem.first] = ExtraArg; 6590 } 6591 } 6592 6593 static OperationData getOperationData(Value *V) { 6594 if (!V) 6595 return OperationData(); 6596 6597 Value *LHS; 6598 Value *RHS; 6599 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6600 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6601 RK_Arithmetic); 6602 } 6603 if (auto *Select = dyn_cast<SelectInst>(V)) { 6604 // Look for a min/max pattern. 6605 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6606 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6607 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6608 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6609 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6610 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6611 return OperationData( 6612 Instruction::FCmp, LHS, RHS, RK_Min, 6613 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6614 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6615 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6616 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6617 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6618 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6619 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6620 return OperationData( 6621 Instruction::FCmp, LHS, RHS, RK_Max, 6622 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6623 } else { 6624 // Try harder: look for min/max pattern based on instructions producing 6625 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6626 // During the intermediate stages of SLP, it's very common to have 6627 // pattern like this (since optimizeGatherSequence is run only once 6628 // at the end): 6629 // %1 = extractelement <2 x i32> %a, i32 0 6630 // %2 = extractelement <2 x i32> %a, i32 1 6631 // %cond = icmp sgt i32 %1, %2 6632 // %3 = extractelement <2 x i32> %a, i32 0 6633 // %4 = extractelement <2 x i32> %a, i32 1 6634 // %select = select i1 %cond, i32 %3, i32 %4 6635 CmpInst::Predicate Pred; 6636 Instruction *L1; 6637 Instruction *L2; 6638 6639 LHS = Select->getTrueValue(); 6640 RHS = Select->getFalseValue(); 6641 Value *Cond = Select->getCondition(); 6642 6643 // TODO: Support inverse predicates. 6644 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6645 if (!isa<ExtractElementInst>(RHS) || 6646 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6647 return OperationData(V); 6648 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6649 if (!isa<ExtractElementInst>(LHS) || 6650 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6651 return OperationData(V); 6652 } else { 6653 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6654 return OperationData(V); 6655 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6656 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6657 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6658 return OperationData(V); 6659 } 6660 switch (Pred) { 6661 default: 6662 return OperationData(V); 6663 6664 case CmpInst::ICMP_ULT: 6665 case CmpInst::ICMP_ULE: 6666 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6667 6668 case CmpInst::ICMP_SLT: 6669 case CmpInst::ICMP_SLE: 6670 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6671 6672 case CmpInst::FCMP_OLT: 6673 case CmpInst::FCMP_OLE: 6674 case CmpInst::FCMP_ULT: 6675 case CmpInst::FCMP_ULE: 6676 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6677 cast<Instruction>(Cond)->hasNoNaNs()); 6678 6679 case CmpInst::ICMP_UGT: 6680 case CmpInst::ICMP_UGE: 6681 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6682 6683 case CmpInst::ICMP_SGT: 6684 case CmpInst::ICMP_SGE: 6685 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6686 6687 case CmpInst::FCMP_OGT: 6688 case CmpInst::FCMP_OGE: 6689 case CmpInst::FCMP_UGT: 6690 case CmpInst::FCMP_UGE: 6691 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6692 cast<Instruction>(Cond)->hasNoNaNs()); 6693 } 6694 } 6695 } 6696 return OperationData(V); 6697 } 6698 6699 public: 6700 HorizontalReduction() = default; 6701 6702 /// Try to find a reduction tree. 6703 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6704 assert((!Phi || is_contained(Phi->operands(), B)) && 6705 "Thi phi needs to use the binary operator"); 6706 6707 ReductionData = getOperationData(B); 6708 6709 // We could have a initial reductions that is not an add. 6710 // r *= v1 + v2 + v3 + v4 6711 // In such a case start looking for a tree rooted in the first '+'. 6712 if (Phi) { 6713 if (ReductionData.getLHS() == Phi) { 6714 Phi = nullptr; 6715 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6716 ReductionData = getOperationData(B); 6717 } else if (ReductionData.getRHS() == Phi) { 6718 Phi = nullptr; 6719 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6720 ReductionData = getOperationData(B); 6721 } 6722 } 6723 6724 if (!ReductionData.isVectorizable(B)) 6725 return false; 6726 6727 Type *Ty = B->getType(); 6728 if (!isValidElementType(Ty)) 6729 return false; 6730 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6731 return false; 6732 6733 ReducedValueData.clear(); 6734 ReductionRoot = B; 6735 6736 // Post order traverse the reduction tree starting at B. We only handle true 6737 // trees containing only binary operators. 6738 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6739 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6740 ReductionData.initReductionOps(ReductionOps); 6741 while (!Stack.empty()) { 6742 Instruction *TreeN = Stack.back().first; 6743 unsigned EdgeToVist = Stack.back().second++; 6744 OperationData OpData = getOperationData(TreeN); 6745 bool IsReducedValue = OpData != ReductionData; 6746 6747 // Postorder vist. 6748 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6749 if (IsReducedValue) 6750 ReducedVals.push_back(TreeN); 6751 else { 6752 auto I = ExtraArgs.find(TreeN); 6753 if (I != ExtraArgs.end() && !I->second) { 6754 // Check if TreeN is an extra argument of its parent operation. 6755 if (Stack.size() <= 1) { 6756 // TreeN can't be an extra argument as it is a root reduction 6757 // operation. 6758 return false; 6759 } 6760 // Yes, TreeN is an extra argument, do not add it to a list of 6761 // reduction operations. 6762 // Stack[Stack.size() - 2] always points to the parent operation. 6763 markExtraArg(Stack[Stack.size() - 2], TreeN); 6764 ExtraArgs.erase(TreeN); 6765 } else 6766 ReductionData.addReductionOps(TreeN, ReductionOps); 6767 } 6768 // Retract. 6769 Stack.pop_back(); 6770 continue; 6771 } 6772 6773 // Visit left or right. 6774 Value *NextV = TreeN->getOperand(EdgeToVist); 6775 if (NextV != Phi) { 6776 auto *I = dyn_cast<Instruction>(NextV); 6777 OpData = getOperationData(I); 6778 // Continue analysis if the next operand is a reduction operation or 6779 // (possibly) a reduced value. If the reduced value opcode is not set, 6780 // the first met operation != reduction operation is considered as the 6781 // reduced value class. 6782 if (I && (!ReducedValueData || OpData == ReducedValueData || 6783 OpData == ReductionData)) { 6784 const bool IsReductionOperation = OpData == ReductionData; 6785 // Only handle trees in the current basic block. 6786 if (!ReductionData.hasSameParent(I, B->getParent(), 6787 IsReductionOperation)) { 6788 // I is an extra argument for TreeN (its parent operation). 6789 markExtraArg(Stack.back(), I); 6790 continue; 6791 } 6792 6793 // Each tree node needs to have minimal number of users except for the 6794 // ultimate reduction. 6795 if (!ReductionData.hasRequiredNumberOfUses(I, 6796 OpData == ReductionData) && 6797 I != B) { 6798 // I is an extra argument for TreeN (its parent operation). 6799 markExtraArg(Stack.back(), I); 6800 continue; 6801 } 6802 6803 if (IsReductionOperation) { 6804 // We need to be able to reassociate the reduction operations. 6805 if (!OpData.isAssociative(I)) { 6806 // I is an extra argument for TreeN (its parent operation). 6807 markExtraArg(Stack.back(), I); 6808 continue; 6809 } 6810 } else if (ReducedValueData && 6811 ReducedValueData != OpData) { 6812 // Make sure that the opcodes of the operations that we are going to 6813 // reduce match. 6814 // I is an extra argument for TreeN (its parent operation). 6815 markExtraArg(Stack.back(), I); 6816 continue; 6817 } else if (!ReducedValueData) 6818 ReducedValueData = OpData; 6819 6820 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6821 continue; 6822 } 6823 } 6824 // NextV is an extra argument for TreeN (its parent operation). 6825 markExtraArg(Stack.back(), NextV); 6826 } 6827 return true; 6828 } 6829 6830 /// Attempt to vectorize the tree found by 6831 /// matchAssociativeReduction. 6832 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6833 if (ReducedVals.empty()) 6834 return false; 6835 6836 // If there is a sufficient number of reduction values, reduce 6837 // to a nearby power-of-2. Can safely generate oversized 6838 // vectors and rely on the backend to split them to legal sizes. 6839 unsigned NumReducedVals = ReducedVals.size(); 6840 if (NumReducedVals < 4) 6841 return false; 6842 6843 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6844 6845 Value *VectorizedTree = nullptr; 6846 6847 // FIXME: Fast-math-flags should be set based on the instructions in the 6848 // reduction (not all of 'fast' are required). 6849 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6850 FastMathFlags Unsafe; 6851 Unsafe.setFast(); 6852 Builder.setFastMathFlags(Unsafe); 6853 unsigned i = 0; 6854 6855 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6856 // The same extra argument may be used several time, so log each attempt 6857 // to use it. 6858 for (auto &Pair : ExtraArgs) { 6859 assert(Pair.first && "DebugLoc must be set."); 6860 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6861 } 6862 6863 // The compare instruction of a min/max is the insertion point for new 6864 // instructions and may be replaced with a new compare instruction. 6865 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6866 assert(isa<SelectInst>(RdxRootInst) && 6867 "Expected min/max reduction to have select root instruction"); 6868 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6869 assert(isa<Instruction>(ScalarCond) && 6870 "Expected min/max reduction to have compare condition"); 6871 return cast<Instruction>(ScalarCond); 6872 }; 6873 6874 // The reduction root is used as the insertion point for new instructions, 6875 // so set it as externally used to prevent it from being deleted. 6876 ExternallyUsedValues[ReductionRoot]; 6877 SmallVector<Value *, 16> IgnoreList; 6878 for (auto &V : ReductionOps) 6879 IgnoreList.append(V.begin(), V.end()); 6880 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6881 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6882 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6883 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6884 // TODO: Handle orders of size less than number of elements in the vector. 6885 if (Order && Order->size() == VL.size()) { 6886 // TODO: reorder tree nodes without tree rebuilding. 6887 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6888 llvm::transform(*Order, ReorderedOps.begin(), 6889 [VL](const unsigned Idx) { return VL[Idx]; }); 6890 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6891 } 6892 if (V.isTreeTinyAndNotFullyVectorizable()) 6893 break; 6894 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6895 break; 6896 6897 V.computeMinimumValueSizes(); 6898 6899 // Estimate cost. 6900 int TreeCost = V.getTreeCost(); 6901 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6902 int Cost = TreeCost + ReductionCost; 6903 if (Cost >= -SLPCostThreshold) { 6904 V.getORE()->emit([&]() { 6905 return OptimizationRemarkMissed( 6906 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6907 << "Vectorizing horizontal reduction is possible" 6908 << "but not beneficial with cost " 6909 << ore::NV("Cost", Cost) << " and threshold " 6910 << ore::NV("Threshold", -SLPCostThreshold); 6911 }); 6912 break; 6913 } 6914 6915 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6916 << Cost << ". (HorRdx)\n"); 6917 V.getORE()->emit([&]() { 6918 return OptimizationRemark( 6919 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6920 << "Vectorized horizontal reduction with cost " 6921 << ore::NV("Cost", Cost) << " and with tree size " 6922 << ore::NV("TreeSize", V.getTreeSize()); 6923 }); 6924 6925 // Vectorize a tree. 6926 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6927 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6928 6929 // Emit a reduction. For min/max, the root is a select, but the insertion 6930 // point is the compare condition of that select. 6931 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6932 if (ReductionData.isMinMax()) 6933 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6934 else 6935 Builder.SetInsertPoint(RdxRootInst); 6936 6937 Value *ReducedSubTree = 6938 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6939 if (VectorizedTree) { 6940 Builder.SetCurrentDebugLocation(Loc); 6941 OperationData VectReductionData(ReductionData.getOpcode(), 6942 VectorizedTree, ReducedSubTree, 6943 ReductionData.getKind()); 6944 VectorizedTree = 6945 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6946 } else 6947 VectorizedTree = ReducedSubTree; 6948 i += ReduxWidth; 6949 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6950 } 6951 6952 if (VectorizedTree) { 6953 // Finish the reduction. 6954 for (; i < NumReducedVals; ++i) { 6955 auto *I = cast<Instruction>(ReducedVals[i]); 6956 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6957 OperationData VectReductionData(ReductionData.getOpcode(), 6958 VectorizedTree, I, 6959 ReductionData.getKind()); 6960 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6961 } 6962 for (auto &Pair : ExternallyUsedValues) { 6963 // Add each externally used value to the final reduction. 6964 for (auto *I : Pair.second) { 6965 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6966 OperationData VectReductionData(ReductionData.getOpcode(), 6967 VectorizedTree, Pair.first, 6968 ReductionData.getKind()); 6969 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6970 } 6971 } 6972 6973 // Update users. For a min/max reduction that ends with a compare and 6974 // select, we also have to RAUW for the compare instruction feeding the 6975 // reduction root. That's because the original compare may have extra uses 6976 // besides the final select of the reduction. 6977 if (ReductionData.isMinMax()) { 6978 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6979 Instruction *ScalarCmp = 6980 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6981 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6982 } 6983 } 6984 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6985 6986 // Mark all scalar reduction ops for deletion, they are replaced by the 6987 // vector reductions. 6988 V.eraseInstructions(IgnoreList); 6989 } 6990 return VectorizedTree != nullptr; 6991 } 6992 6993 unsigned numReductionValues() const { 6994 return ReducedVals.size(); 6995 } 6996 6997 private: 6998 /// Calculate the cost of a reduction. 6999 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7000 unsigned ReduxWidth) { 7001 Type *ScalarTy = FirstReducedVal->getType(); 7002 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7003 7004 int PairwiseRdxCost; 7005 int SplittingRdxCost; 7006 switch (ReductionData.getKind()) { 7007 case RK_Arithmetic: 7008 PairwiseRdxCost = 7009 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7010 /*IsPairwiseForm=*/true); 7011 SplittingRdxCost = 7012 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7013 /*IsPairwiseForm=*/false); 7014 break; 7015 case RK_Min: 7016 case RK_Max: 7017 case RK_UMin: 7018 case RK_UMax: { 7019 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7020 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7021 ReductionData.getKind() == RK_UMax; 7022 PairwiseRdxCost = 7023 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7024 /*IsPairwiseForm=*/true, IsUnsigned); 7025 SplittingRdxCost = 7026 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7027 /*IsPairwiseForm=*/false, IsUnsigned); 7028 break; 7029 } 7030 case RK_None: 7031 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7032 } 7033 7034 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7035 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7036 7037 int ScalarReduxCost = 0; 7038 switch (ReductionData.getKind()) { 7039 case RK_Arithmetic: 7040 ScalarReduxCost = 7041 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7042 break; 7043 case RK_Min: 7044 case RK_Max: 7045 case RK_UMin: 7046 case RK_UMax: 7047 ScalarReduxCost = 7048 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7049 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7050 CmpInst::makeCmpResultType(ScalarTy)); 7051 break; 7052 case RK_None: 7053 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7054 } 7055 ScalarReduxCost *= (ReduxWidth - 1); 7056 7057 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7058 << " for reduction that starts with " << *FirstReducedVal 7059 << " (It is a " 7060 << (IsPairwiseReduction ? "pairwise" : "splitting") 7061 << " reduction)\n"); 7062 7063 return VecReduxCost - ScalarReduxCost; 7064 } 7065 7066 /// Emit a horizontal reduction of the vectorized value. 7067 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7068 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7069 assert(VectorizedValue && "Need to have a vectorized tree node"); 7070 assert(isPowerOf2_32(ReduxWidth) && 7071 "We only handle power-of-two reductions for now"); 7072 7073 if (!IsPairwiseReduction) { 7074 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7075 // to 'fast'. 7076 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7077 return createSimpleTargetReduction( 7078 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7079 ReductionData.getFlags(), ReductionOps.back()); 7080 } 7081 7082 Value *TmpVec = VectorizedValue; 7083 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7084 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7085 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7086 7087 Value *LeftShuf = Builder.CreateShuffleVector( 7088 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 7089 Value *RightShuf = Builder.CreateShuffleVector( 7090 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 7091 "rdx.shuf.r"); 7092 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 7093 RightShuf, ReductionData.getKind()); 7094 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 7095 } 7096 7097 // The result is in the first element of the vector. 7098 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7099 } 7100 }; 7101 7102 } // end anonymous namespace 7103 7104 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7105 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7106 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7107 7108 unsigned AggregateSize = 1; 7109 auto *IV = cast<InsertValueInst>(InsertInst); 7110 Type *CurrentType = IV->getType(); 7111 do { 7112 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7113 for (auto *Elt : ST->elements()) 7114 if (Elt != ST->getElementType(0)) // check homogeneity 7115 return None; 7116 AggregateSize *= ST->getNumElements(); 7117 CurrentType = ST->getElementType(0); 7118 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7119 AggregateSize *= AT->getNumElements(); 7120 CurrentType = AT->getElementType(); 7121 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7122 AggregateSize *= VT->getNumElements(); 7123 return AggregateSize; 7124 } else if (CurrentType->isSingleValueType()) { 7125 return AggregateSize; 7126 } else { 7127 return None; 7128 } 7129 } while (true); 7130 } 7131 7132 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7133 unsigned OperandOffset) { 7134 unsigned OperandIndex = OperandOffset; 7135 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7136 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7137 auto *VT = cast<FixedVectorType>(IE->getType()); 7138 OperandIndex *= VT->getNumElements(); 7139 OperandIndex += CI->getZExtValue(); 7140 return OperandIndex; 7141 } 7142 return None; 7143 } 7144 7145 auto *IV = cast<InsertValueInst>(InsertInst); 7146 Type *CurrentType = IV->getType(); 7147 for (unsigned int Index : IV->indices()) { 7148 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7149 OperandIndex *= ST->getNumElements(); 7150 CurrentType = ST->getElementType(Index); 7151 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7152 OperandIndex *= AT->getNumElements(); 7153 CurrentType = AT->getElementType(); 7154 } else { 7155 return None; 7156 } 7157 OperandIndex += Index; 7158 } 7159 return OperandIndex; 7160 } 7161 7162 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7163 TargetTransformInfo *TTI, 7164 SmallVectorImpl<Value *> &BuildVectorOpds, 7165 SmallVectorImpl<Value *> &InsertElts, 7166 unsigned OperandOffset) { 7167 do { 7168 Value *InsertedOperand = LastInsertInst->getOperand(1); 7169 Optional<unsigned> OperandIndex = 7170 getOperandIndex(LastInsertInst, OperandOffset); 7171 if (!OperandIndex) 7172 return false; 7173 if (isa<InsertElementInst>(InsertedOperand) || 7174 isa<InsertValueInst>(InsertedOperand)) { 7175 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7176 BuildVectorOpds, InsertElts, *OperandIndex)) 7177 return false; 7178 } else { 7179 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7180 InsertElts[*OperandIndex] = LastInsertInst; 7181 } 7182 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7183 return true; 7184 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7185 } while (LastInsertInst != nullptr && 7186 (isa<InsertValueInst>(LastInsertInst) || 7187 isa<InsertElementInst>(LastInsertInst)) && 7188 LastInsertInst->hasOneUse()); 7189 return false; 7190 } 7191 7192 /// Recognize construction of vectors like 7193 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7194 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7195 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7196 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7197 /// starting from the last insertelement or insertvalue instruction. 7198 /// 7199 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7200 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7201 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7202 /// 7203 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7204 /// 7205 /// \return true if it matches. 7206 static bool findBuildAggregate(Instruction *LastInsertInst, 7207 TargetTransformInfo *TTI, 7208 SmallVectorImpl<Value *> &BuildVectorOpds, 7209 SmallVectorImpl<Value *> &InsertElts) { 7210 7211 assert((isa<InsertElementInst>(LastInsertInst) || 7212 isa<InsertValueInst>(LastInsertInst)) && 7213 "Expected insertelement or insertvalue instruction!"); 7214 7215 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7216 "Expected empty result vectors!"); 7217 7218 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7219 if (!AggregateSize) 7220 return false; 7221 BuildVectorOpds.resize(*AggregateSize); 7222 InsertElts.resize(*AggregateSize); 7223 7224 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7225 0)) { 7226 llvm::erase_if(BuildVectorOpds, 7227 [](const Value *V) { return V == nullptr; }); 7228 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7229 if (BuildVectorOpds.size() >= 2) 7230 return true; 7231 } 7232 7233 return false; 7234 } 7235 7236 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7237 return V->getType() < V2->getType(); 7238 } 7239 7240 /// Try and get a reduction value from a phi node. 7241 /// 7242 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7243 /// if they come from either \p ParentBB or a containing loop latch. 7244 /// 7245 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7246 /// if not possible. 7247 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7248 BasicBlock *ParentBB, LoopInfo *LI) { 7249 // There are situations where the reduction value is not dominated by the 7250 // reduction phi. Vectorizing such cases has been reported to cause 7251 // miscompiles. See PR25787. 7252 auto DominatedReduxValue = [&](Value *R) { 7253 return isa<Instruction>(R) && 7254 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7255 }; 7256 7257 Value *Rdx = nullptr; 7258 7259 // Return the incoming value if it comes from the same BB as the phi node. 7260 if (P->getIncomingBlock(0) == ParentBB) { 7261 Rdx = P->getIncomingValue(0); 7262 } else if (P->getIncomingBlock(1) == ParentBB) { 7263 Rdx = P->getIncomingValue(1); 7264 } 7265 7266 if (Rdx && DominatedReduxValue(Rdx)) 7267 return Rdx; 7268 7269 // Otherwise, check whether we have a loop latch to look at. 7270 Loop *BBL = LI->getLoopFor(ParentBB); 7271 if (!BBL) 7272 return nullptr; 7273 BasicBlock *BBLatch = BBL->getLoopLatch(); 7274 if (!BBLatch) 7275 return nullptr; 7276 7277 // There is a loop latch, return the incoming value if it comes from 7278 // that. This reduction pattern occasionally turns up. 7279 if (P->getIncomingBlock(0) == BBLatch) { 7280 Rdx = P->getIncomingValue(0); 7281 } else if (P->getIncomingBlock(1) == BBLatch) { 7282 Rdx = P->getIncomingValue(1); 7283 } 7284 7285 if (Rdx && DominatedReduxValue(Rdx)) 7286 return Rdx; 7287 7288 return nullptr; 7289 } 7290 7291 /// Attempt to reduce a horizontal reduction. 7292 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7293 /// with reduction operators \a Root (or one of its operands) in a basic block 7294 /// \a BB, then check if it can be done. If horizontal reduction is not found 7295 /// and root instruction is a binary operation, vectorization of the operands is 7296 /// attempted. 7297 /// \returns true if a horizontal reduction was matched and reduced or operands 7298 /// of one of the binary instruction were vectorized. 7299 /// \returns false if a horizontal reduction was not matched (or not possible) 7300 /// or no vectorization of any binary operation feeding \a Root instruction was 7301 /// performed. 7302 static bool tryToVectorizeHorReductionOrInstOperands( 7303 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7304 TargetTransformInfo *TTI, 7305 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7306 if (!ShouldVectorizeHor) 7307 return false; 7308 7309 if (!Root) 7310 return false; 7311 7312 if (Root->getParent() != BB || isa<PHINode>(Root)) 7313 return false; 7314 // Start analysis starting from Root instruction. If horizontal reduction is 7315 // found, try to vectorize it. If it is not a horizontal reduction or 7316 // vectorization is not possible or not effective, and currently analyzed 7317 // instruction is a binary operation, try to vectorize the operands, using 7318 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7319 // the same procedure considering each operand as a possible root of the 7320 // horizontal reduction. 7321 // Interrupt the process if the Root instruction itself was vectorized or all 7322 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7323 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7324 SmallPtrSet<Value *, 8> VisitedInstrs; 7325 bool Res = false; 7326 while (!Stack.empty()) { 7327 Instruction *Inst; 7328 unsigned Level; 7329 std::tie(Inst, Level) = Stack.pop_back_val(); 7330 auto *BI = dyn_cast<BinaryOperator>(Inst); 7331 auto *SI = dyn_cast<SelectInst>(Inst); 7332 if (BI || SI) { 7333 HorizontalReduction HorRdx; 7334 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7335 if (HorRdx.tryToReduce(R, TTI)) { 7336 Res = true; 7337 // Set P to nullptr to avoid re-analysis of phi node in 7338 // matchAssociativeReduction function unless this is the root node. 7339 P = nullptr; 7340 continue; 7341 } 7342 } 7343 if (P && BI) { 7344 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7345 if (Inst == P) 7346 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7347 if (!Inst) { 7348 // Set P to nullptr to avoid re-analysis of phi node in 7349 // matchAssociativeReduction function unless this is the root node. 7350 P = nullptr; 7351 continue; 7352 } 7353 } 7354 } 7355 // Set P to nullptr to avoid re-analysis of phi node in 7356 // matchAssociativeReduction function unless this is the root node. 7357 P = nullptr; 7358 if (Vectorize(Inst, R)) { 7359 Res = true; 7360 continue; 7361 } 7362 7363 // Try to vectorize operands. 7364 // Continue analysis for the instruction from the same basic block only to 7365 // save compile time. 7366 if (++Level < RecursionMaxDepth) 7367 for (auto *Op : Inst->operand_values()) 7368 if (VisitedInstrs.insert(Op).second) 7369 if (auto *I = dyn_cast<Instruction>(Op)) 7370 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7371 Stack.emplace_back(I, Level); 7372 } 7373 return Res; 7374 } 7375 7376 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7377 BasicBlock *BB, BoUpSLP &R, 7378 TargetTransformInfo *TTI) { 7379 if (!V) 7380 return false; 7381 auto *I = dyn_cast<Instruction>(V); 7382 if (!I) 7383 return false; 7384 7385 if (!isa<BinaryOperator>(I)) 7386 P = nullptr; 7387 // Try to match and vectorize a horizontal reduction. 7388 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7389 return tryToVectorize(I, R); 7390 }; 7391 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7392 ExtraVectorization); 7393 } 7394 7395 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7396 BasicBlock *BB, BoUpSLP &R) { 7397 const DataLayout &DL = BB->getModule()->getDataLayout(); 7398 if (!R.canMapToVector(IVI->getType(), DL)) 7399 return false; 7400 7401 SmallVector<Value *, 16> BuildVectorOpds; 7402 SmallVector<Value *, 16> BuildVectorInsts; 7403 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7404 return false; 7405 7406 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7407 // Aggregate value is unlikely to be processed in vector register, we need to 7408 // extract scalars into scalar registers, so NeedExtraction is set true. 7409 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7410 BuildVectorInsts); 7411 } 7412 7413 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7414 BasicBlock *BB, BoUpSLP &R) { 7415 SmallVector<Value *, 16> BuildVectorInsts; 7416 SmallVector<Value *, 16> BuildVectorOpds; 7417 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7418 (llvm::all_of(BuildVectorOpds, 7419 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7420 isShuffle(BuildVectorOpds))) 7421 return false; 7422 7423 // Vectorize starting with the build vector operands ignoring the BuildVector 7424 // instructions for the purpose of scheduling and user extraction. 7425 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7426 BuildVectorInsts); 7427 } 7428 7429 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7430 BoUpSLP &R) { 7431 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7432 return true; 7433 7434 bool OpsChanged = false; 7435 for (int Idx = 0; Idx < 2; ++Idx) { 7436 OpsChanged |= 7437 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7438 } 7439 return OpsChanged; 7440 } 7441 7442 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7443 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7444 bool OpsChanged = false; 7445 for (auto *I : reverse(Instructions)) { 7446 if (R.isDeleted(I)) 7447 continue; 7448 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7449 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7450 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7451 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7452 else if (auto *CI = dyn_cast<CmpInst>(I)) 7453 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7454 } 7455 Instructions.clear(); 7456 return OpsChanged; 7457 } 7458 7459 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7460 bool Changed = false; 7461 SmallVector<Value *, 4> Incoming; 7462 SmallPtrSet<Value *, 16> VisitedInstrs; 7463 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7464 7465 bool HaveVectorizedPhiNodes = true; 7466 while (HaveVectorizedPhiNodes) { 7467 HaveVectorizedPhiNodes = false; 7468 7469 // Collect the incoming values from the PHIs. 7470 Incoming.clear(); 7471 for (Instruction &I : *BB) { 7472 PHINode *P = dyn_cast<PHINode>(&I); 7473 if (!P) 7474 break; 7475 7476 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7477 Incoming.push_back(P); 7478 } 7479 7480 // Sort by type. 7481 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7482 7483 // Try to vectorize elements base on their type. 7484 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7485 E = Incoming.end(); 7486 IncIt != E;) { 7487 7488 // Look for the next elements with the same type. 7489 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7490 Type *EltTy = (*IncIt)->getType(); 7491 7492 assert(EltTy->isSized() && 7493 "Instructions should all be sized at this point"); 7494 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7495 if (EltTS.isScalable()) { 7496 // For now, just ignore vectorizing scalable types. 7497 ++IncIt; 7498 continue; 7499 } 7500 7501 unsigned EltSize = EltTS.getFixedSize(); 7502 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7503 if (MaxNumElts < 2) { 7504 ++IncIt; 7505 continue; 7506 } 7507 7508 while (SameTypeIt != E && 7509 (*SameTypeIt)->getType() == EltTy && 7510 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7511 VisitedInstrs.insert(*SameTypeIt); 7512 ++SameTypeIt; 7513 } 7514 7515 // Try to vectorize them. 7516 unsigned NumElts = (SameTypeIt - IncIt); 7517 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7518 << NumElts << ")\n"); 7519 // The order in which the phi nodes appear in the program does not matter. 7520 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7521 // is done when there are exactly two elements since tryToVectorizeList 7522 // asserts that there are only two values when AllowReorder is true. 7523 bool AllowReorder = NumElts == 2; 7524 if (NumElts > 1 && 7525 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7526 // Success start over because instructions might have been changed. 7527 HaveVectorizedPhiNodes = true; 7528 Changed = true; 7529 break; 7530 } 7531 7532 // Start over at the next instruction of a different type (or the end). 7533 IncIt = SameTypeIt; 7534 } 7535 } 7536 7537 VisitedInstrs.clear(); 7538 7539 SmallVector<Instruction *, 8> PostProcessInstructions; 7540 SmallDenseSet<Instruction *, 4> KeyNodes; 7541 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7542 // Skip instructions marked for the deletion. 7543 if (R.isDeleted(&*it)) 7544 continue; 7545 // We may go through BB multiple times so skip the one we have checked. 7546 if (!VisitedInstrs.insert(&*it).second) { 7547 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7548 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7549 // We would like to start over since some instructions are deleted 7550 // and the iterator may become invalid value. 7551 Changed = true; 7552 it = BB->begin(); 7553 e = BB->end(); 7554 } 7555 continue; 7556 } 7557 7558 if (isa<DbgInfoIntrinsic>(it)) 7559 continue; 7560 7561 // Try to vectorize reductions that use PHINodes. 7562 if (PHINode *P = dyn_cast<PHINode>(it)) { 7563 // Check that the PHI is a reduction PHI. 7564 if (P->getNumIncomingValues() != 2) 7565 return Changed; 7566 7567 // Try to match and vectorize a horizontal reduction. 7568 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7569 TTI)) { 7570 Changed = true; 7571 it = BB->begin(); 7572 e = BB->end(); 7573 continue; 7574 } 7575 continue; 7576 } 7577 7578 // Ran into an instruction without users, like terminator, or function call 7579 // with ignored return value, store. Ignore unused instructions (basing on 7580 // instruction type, except for CallInst and InvokeInst). 7581 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7582 isa<InvokeInst>(it))) { 7583 KeyNodes.insert(&*it); 7584 bool OpsChanged = false; 7585 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7586 for (auto *V : it->operand_values()) { 7587 // Try to match and vectorize a horizontal reduction. 7588 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7589 } 7590 } 7591 // Start vectorization of post-process list of instructions from the 7592 // top-tree instructions to try to vectorize as many instructions as 7593 // possible. 7594 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7595 if (OpsChanged) { 7596 // We would like to start over since some instructions are deleted 7597 // and the iterator may become invalid value. 7598 Changed = true; 7599 it = BB->begin(); 7600 e = BB->end(); 7601 continue; 7602 } 7603 } 7604 7605 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7606 isa<InsertValueInst>(it)) 7607 PostProcessInstructions.push_back(&*it); 7608 } 7609 7610 return Changed; 7611 } 7612 7613 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7614 auto Changed = false; 7615 for (auto &Entry : GEPs) { 7616 // If the getelementptr list has fewer than two elements, there's nothing 7617 // to do. 7618 if (Entry.second.size() < 2) 7619 continue; 7620 7621 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7622 << Entry.second.size() << ".\n"); 7623 7624 // Process the GEP list in chunks suitable for the target's supported 7625 // vector size. If a vector register can't hold 1 element, we are done. We 7626 // are trying to vectorize the index computations, so the maximum number of 7627 // elements is based on the size of the index expression, rather than the 7628 // size of the GEP itself (the target's pointer size). 7629 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7630 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7631 if (MaxVecRegSize < EltSize) 7632 continue; 7633 7634 unsigned MaxElts = MaxVecRegSize / EltSize; 7635 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7636 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7637 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7638 7639 // Initialize a set a candidate getelementptrs. Note that we use a 7640 // SetVector here to preserve program order. If the index computations 7641 // are vectorizable and begin with loads, we want to minimize the chance 7642 // of having to reorder them later. 7643 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7644 7645 // Some of the candidates may have already been vectorized after we 7646 // initially collected them. If so, they are marked as deleted, so remove 7647 // them from the set of candidates. 7648 Candidates.remove_if( 7649 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7650 7651 // Remove from the set of candidates all pairs of getelementptrs with 7652 // constant differences. Such getelementptrs are likely not good 7653 // candidates for vectorization in a bottom-up phase since one can be 7654 // computed from the other. We also ensure all candidate getelementptr 7655 // indices are unique. 7656 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7657 auto *GEPI = GEPList[I]; 7658 if (!Candidates.count(GEPI)) 7659 continue; 7660 auto *SCEVI = SE->getSCEV(GEPList[I]); 7661 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7662 auto *GEPJ = GEPList[J]; 7663 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7664 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7665 Candidates.remove(GEPI); 7666 Candidates.remove(GEPJ); 7667 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7668 Candidates.remove(GEPJ); 7669 } 7670 } 7671 } 7672 7673 // We break out of the above computation as soon as we know there are 7674 // fewer than two candidates remaining. 7675 if (Candidates.size() < 2) 7676 continue; 7677 7678 // Add the single, non-constant index of each candidate to the bundle. We 7679 // ensured the indices met these constraints when we originally collected 7680 // the getelementptrs. 7681 SmallVector<Value *, 16> Bundle(Candidates.size()); 7682 auto BundleIndex = 0u; 7683 for (auto *V : Candidates) { 7684 auto *GEP = cast<GetElementPtrInst>(V); 7685 auto *GEPIdx = GEP->idx_begin()->get(); 7686 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7687 Bundle[BundleIndex++] = GEPIdx; 7688 } 7689 7690 // Try and vectorize the indices. We are currently only interested in 7691 // gather-like cases of the form: 7692 // 7693 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7694 // 7695 // where the loads of "a", the loads of "b", and the subtractions can be 7696 // performed in parallel. It's likely that detecting this pattern in a 7697 // bottom-up phase will be simpler and less costly than building a 7698 // full-blown top-down phase beginning at the consecutive loads. 7699 Changed |= tryToVectorizeList(Bundle, R); 7700 } 7701 } 7702 return Changed; 7703 } 7704 7705 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7706 bool Changed = false; 7707 // Attempt to sort and vectorize each of the store-groups. 7708 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7709 ++it) { 7710 if (it->second.size() < 2) 7711 continue; 7712 7713 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7714 << it->second.size() << ".\n"); 7715 7716 Changed |= vectorizeStores(it->second, R); 7717 } 7718 return Changed; 7719 } 7720 7721 char SLPVectorizer::ID = 0; 7722 7723 static const char lv_name[] = "SLP Vectorizer"; 7724 7725 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7726 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7727 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7728 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7729 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7730 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7731 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7732 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7733 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7734 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7735 7736 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7737