1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #define SV_NAME "slp-vectorizer" 19 #define DEBUG_TYPE "SLP" 20 21 #include "llvm/Transforms/Vectorize.h" 22 #include "llvm/ADT/MapVector.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/Verifier.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <map> 45 46 using namespace llvm; 47 48 static cl::opt<int> 49 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 50 cl::desc("Only vectorize if you gain more than this " 51 "number ")); 52 namespace { 53 54 static const unsigned MinVecRegSize = 128; 55 56 static const unsigned RecursionMaxDepth = 12; 57 58 /// RAII pattern to save the insertion point of the IR builder. 59 class BuilderLocGuard { 60 public: 61 BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()) {} 62 ~BuilderLocGuard() { if (Loc) Builder.SetInsertPoint(Loc); } 63 64 private: 65 // Prevent copying. 66 BuilderLocGuard(const BuilderLocGuard &); 67 BuilderLocGuard &operator=(const BuilderLocGuard &); 68 IRBuilder<> &Builder; 69 AssertingVH<Instruction> Loc; 70 }; 71 72 /// A helper class for numbering instructions in multible blocks. 73 /// Numbers starts at zero for each basic block. 74 struct BlockNumbering { 75 76 BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {} 77 78 BlockNumbering() : BB(0), Valid(false) {} 79 80 void numberInstructions() { 81 unsigned Loc = 0; 82 InstrIdx.clear(); 83 InstrVec.clear(); 84 // Number the instructions in the block. 85 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 86 InstrIdx[it] = Loc++; 87 InstrVec.push_back(it); 88 assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation"); 89 } 90 Valid = true; 91 } 92 93 int getIndex(Instruction *I) { 94 assert(I->getParent() == BB && "Invalid instruction"); 95 if (!Valid) 96 numberInstructions(); 97 assert(InstrIdx.count(I) && "Unknown instruction"); 98 return InstrIdx[I]; 99 } 100 101 Instruction *getInstruction(unsigned loc) { 102 if (!Valid) 103 numberInstructions(); 104 assert(InstrVec.size() > loc && "Invalid Index"); 105 return InstrVec[loc]; 106 } 107 108 void forget() { Valid = false; } 109 110 private: 111 /// The block we are numbering. 112 BasicBlock *BB; 113 /// Is the block numbered. 114 bool Valid; 115 /// Maps instructions to numbers and back. 116 SmallDenseMap<Instruction *, int> InstrIdx; 117 /// Maps integers to Instructions. 118 SmallVector<Instruction *, 32> InstrVec; 119 }; 120 121 /// \returns the parent basic block if all of the instructions in \p VL 122 /// are in the same block or null otherwise. 123 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 124 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 125 if (!I0) 126 return 0; 127 BasicBlock *BB = I0->getParent(); 128 for (int i = 1, e = VL.size(); i < e; i++) { 129 Instruction *I = dyn_cast<Instruction>(VL[i]); 130 if (!I) 131 return 0; 132 133 if (BB != I->getParent()) 134 return 0; 135 } 136 return BB; 137 } 138 139 /// \returns True if all of the values in \p VL are constants. 140 static bool allConstant(ArrayRef<Value *> VL) { 141 for (unsigned i = 0, e = VL.size(); i < e; ++i) 142 if (!isa<Constant>(VL[i])) 143 return false; 144 return true; 145 } 146 147 /// \returns True if all of the values in \p VL are identical. 148 static bool isSplat(ArrayRef<Value *> VL) { 149 for (unsigned i = 1, e = VL.size(); i < e; ++i) 150 if (VL[i] != VL[0]) 151 return false; 152 return true; 153 } 154 155 /// \returns The opcode if all of the Instructions in \p VL have the same 156 /// opcode, or zero. 157 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 158 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 159 if (!I0) 160 return 0; 161 unsigned Opcode = I0->getOpcode(); 162 for (int i = 1, e = VL.size(); i < e; i++) { 163 Instruction *I = dyn_cast<Instruction>(VL[i]); 164 if (!I || Opcode != I->getOpcode()) 165 return 0; 166 } 167 return Opcode; 168 } 169 170 /// \returns The type that all of the values in \p VL have or null if there 171 /// are different types. 172 static Type* getSameType(ArrayRef<Value *> VL) { 173 Type *Ty = VL[0]->getType(); 174 for (int i = 1, e = VL.size(); i < e; i++) 175 if (VL[i]->getType() != Ty) 176 return 0; 177 178 return Ty; 179 } 180 181 /// \returns True if the ExtractElement instructions in VL can be vectorized 182 /// to use the original vector. 183 static bool CanReuseExtract(ArrayRef<Value *> VL) { 184 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 185 // Check if all of the extracts come from the same vector and from the 186 // correct offset. 187 Value *VL0 = VL[0]; 188 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 189 Value *Vec = E0->getOperand(0); 190 191 // We have to extract from the same vector type. 192 unsigned NElts = Vec->getType()->getVectorNumElements(); 193 194 if (NElts != VL.size()) 195 return false; 196 197 // Check that all of the indices extract from the correct offset. 198 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 199 if (!CI || CI->getZExtValue()) 200 return false; 201 202 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 203 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 204 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 205 206 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 207 return false; 208 } 209 210 return true; 211 } 212 213 /// Bottom Up SLP Vectorizer. 214 class BoUpSLP { 215 public: 216 typedef SmallVector<Value *, 8> ValueList; 217 typedef SmallVector<Instruction *, 16> InstrList; 218 typedef SmallPtrSet<Value *, 16> ValueSet; 219 typedef SmallVector<StoreInst *, 8> StoreList; 220 221 BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl, 222 TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li, 223 DominatorTree *Dt) : 224 F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt), 225 Builder(Se->getContext()) { 226 // Setup the block numbering utility for all of the blocks in the 227 // function. 228 for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { 229 BasicBlock *BB = it; 230 BlocksNumbers[BB] = BlockNumbering(BB); 231 } 232 } 233 234 /// \brief Vectorize the tree that starts with the elements in \p VL. 235 void vectorizeTree(); 236 237 /// \returns the vectorization cost of the subtree that starts at \p VL. 238 /// A negative number means that this is profitable. 239 int getTreeCost(); 240 241 /// Construct a vectorizable tree that starts at \p Roots. 242 void buildTree(ArrayRef<Value *> Roots); 243 244 /// Clear the internal data structures that are created by 'buildTree'. 245 void deleteTree() { 246 VectorizableTree.clear(); 247 ScalarToTreeEntry.clear(); 248 MustGather.clear(); 249 ExternalUses.clear(); 250 MemBarrierIgnoreList.clear(); 251 } 252 253 /// \returns true if the memory operations A and B are consecutive. 254 bool isConsecutiveAccess(Value *A, Value *B); 255 256 /// \brief Perform LICM and CSE on the newly generated gather sequences. 257 void optimizeGatherSequence(); 258 private: 259 struct TreeEntry; 260 261 /// \returns the cost of the vectorizable entry. 262 int getEntryCost(TreeEntry *E); 263 264 /// This is the recursive part of buildTree. 265 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 266 267 /// Vectorize a single entry in the tree. 268 Value *vectorizeTree(TreeEntry *E); 269 270 /// Vectorize a single entry in the tree, starting in \p VL. 271 Value *vectorizeTree(ArrayRef<Value *> VL); 272 273 /// \returns the pointer to the vectorized value if \p VL is already 274 /// vectorized, or NULL. They may happen in cycles. 275 Value *alreadyVectorized(ArrayRef<Value *> VL); 276 277 /// \brief Take the pointer operand from the Load/Store instruction. 278 /// \returns NULL if this is not a valid Load/Store instruction. 279 static Value *getPointerOperand(Value *I); 280 281 /// \brief Take the address space operand from the Load/Store instruction. 282 /// \returns -1 if this is not a valid Load/Store instruction. 283 static unsigned getAddressSpaceOperand(Value *I); 284 285 /// \returns the scalarization cost for this type. Scalarization in this 286 /// context means the creation of vectors from a group of scalars. 287 int getGatherCost(Type *Ty); 288 289 /// \returns the scalarization cost for this list of values. Assuming that 290 /// this subtree gets vectorized, we may need to extract the values from the 291 /// roots. This method calculates the cost of extracting the values. 292 int getGatherCost(ArrayRef<Value *> VL); 293 294 /// \returns the AA location that is being access by the instruction. 295 AliasAnalysis::Location getLocation(Instruction *I); 296 297 /// \brief Checks if it is possible to sink an instruction from 298 /// \p Src to \p Dst. 299 /// \returns the pointer to the barrier instruction if we can't sink. 300 Value *getSinkBarrier(Instruction *Src, Instruction *Dst); 301 302 /// \returns the index of the last instrucion in the BB from \p VL. 303 int getLastIndex(ArrayRef<Value *> VL); 304 305 /// \returns the Instrucion in the bundle \p VL. 306 Instruction *getLastInstruction(ArrayRef<Value *> VL); 307 308 /// \returns a vector from a collection of scalars in \p VL. 309 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 310 311 struct TreeEntry { 312 TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0), 313 NeedToGather(0) {} 314 315 /// \returns true if the scalars in VL are equal to this entry. 316 bool isSame(ArrayRef<Value *> VL) { 317 assert(VL.size() == Scalars.size() && "Invalid size"); 318 for (int i = 0, e = VL.size(); i != e; ++i) 319 if (VL[i] != Scalars[i]) 320 return false; 321 return true; 322 } 323 324 /// A vector of scalars. 325 ValueList Scalars; 326 327 /// The Scalars are vectorized into this value. It is initialized to Null. 328 Value *VectorizedValue; 329 330 /// The index in the basic block of the last scalar. 331 int LastScalarIndex; 332 333 /// Do we need to gather this sequence ? 334 bool NeedToGather; 335 }; 336 337 /// Create a new VectorizableTree entry. 338 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 339 VectorizableTree.push_back(TreeEntry()); 340 int idx = VectorizableTree.size() - 1; 341 TreeEntry *Last = &VectorizableTree[idx]; 342 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 343 Last->NeedToGather = !Vectorized; 344 if (Vectorized) { 345 Last->LastScalarIndex = getLastIndex(VL); 346 for (int i = 0, e = VL.size(); i != e; ++i) { 347 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 348 ScalarToTreeEntry[VL[i]] = idx; 349 } 350 } else { 351 Last->LastScalarIndex = 0; 352 MustGather.insert(VL.begin(), VL.end()); 353 } 354 return Last; 355 } 356 357 /// -- Vectorization State -- 358 /// Holds all of the tree entries. 359 std::vector<TreeEntry> VectorizableTree; 360 361 /// Maps a specific scalar to its tree entry. 362 SmallDenseMap<Value*, int> ScalarToTreeEntry; 363 364 /// A list of scalars that we found that we need to keep as scalars. 365 ValueSet MustGather; 366 367 /// This POD struct describes one external user in the vectorized tree. 368 struct ExternalUser { 369 ExternalUser (Value *S, llvm::User *U, int L) : 370 Scalar(S), User(U), Lane(L){}; 371 // Which scalar in our function. 372 Value *Scalar; 373 // Which user that uses the scalar. 374 llvm::User *User; 375 // Which lane does the scalar belong to. 376 int Lane; 377 }; 378 typedef SmallVector<ExternalUser, 16> UserList; 379 380 /// A list of values that need to extracted out of the tree. 381 /// This list holds pairs of (Internal Scalar : External User). 382 UserList ExternalUses; 383 384 /// A list of instructions to ignore while sinking 385 /// memory instructions. This map must be reset between runs of getCost. 386 ValueSet MemBarrierIgnoreList; 387 388 /// Holds all of the instructions that we gathered. 389 SetVector<Instruction *> GatherSeq; 390 391 /// Numbers instructions in different blocks. 392 DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers; 393 394 // Analysis and block reference. 395 Function *F; 396 ScalarEvolution *SE; 397 DataLayout *DL; 398 TargetTransformInfo *TTI; 399 AliasAnalysis *AA; 400 LoopInfo *LI; 401 DominatorTree *DT; 402 /// Instruction builder to construct the vectorized tree. 403 IRBuilder<> Builder; 404 }; 405 406 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { 407 deleteTree(); 408 if (!getSameType(Roots)) 409 return; 410 buildTree_rec(Roots, 0); 411 412 // Collect the values that we need to extract from the tree. 413 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 414 TreeEntry *Entry = &VectorizableTree[EIdx]; 415 416 // For each lane: 417 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 418 Value *Scalar = Entry->Scalars[Lane]; 419 420 // No need to handle users of gathered values. 421 if (Entry->NeedToGather) 422 continue; 423 424 for (Value::use_iterator User = Scalar->use_begin(), 425 UE = Scalar->use_end(); User != UE; ++User) { 426 DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n"); 427 428 bool Gathered = MustGather.count(*User); 429 430 // Skip in-tree scalars that become vectors. 431 if (ScalarToTreeEntry.count(*User) && !Gathered) { 432 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << 433 **User << ".\n"); 434 int Idx = ScalarToTreeEntry[*User]; (void) Idx; 435 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 436 continue; 437 } 438 439 if (!isa<Instruction>(*User)) 440 continue; 441 442 DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " << 443 Lane << " from " << *Scalar << ".\n"); 444 ExternalUses.push_back(ExternalUser(Scalar, *User, Lane)); 445 } 446 } 447 } 448 } 449 450 451 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 452 bool SameTy = getSameType(VL); (void)SameTy; 453 assert(SameTy && "Invalid types!"); 454 455 if (Depth == RecursionMaxDepth) { 456 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 457 newTreeEntry(VL, false); 458 return; 459 } 460 461 // Don't handle vectors. 462 if (VL[0]->getType()->isVectorTy()) { 463 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 464 newTreeEntry(VL, false); 465 return; 466 } 467 468 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 469 if (SI->getValueOperand()->getType()->isVectorTy()) { 470 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 471 newTreeEntry(VL, false); 472 return; 473 } 474 475 // If all of the operands are identical or constant we have a simple solution. 476 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || 477 !getSameOpcode(VL)) { 478 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 479 newTreeEntry(VL, false); 480 return; 481 } 482 483 // We now know that this is a vector of instructions of the same type from 484 // the same block. 485 486 // Check if this is a duplicate of another entry. 487 if (ScalarToTreeEntry.count(VL[0])) { 488 int Idx = ScalarToTreeEntry[VL[0]]; 489 TreeEntry *E = &VectorizableTree[Idx]; 490 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 491 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 492 if (E->Scalars[i] != VL[i]) { 493 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 494 newTreeEntry(VL, false); 495 return; 496 } 497 } 498 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 499 return; 500 } 501 502 // Check that none of the instructions in the bundle are already in the tree. 503 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 504 if (ScalarToTreeEntry.count(VL[i])) { 505 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 506 ") is already in tree.\n"); 507 newTreeEntry(VL, false); 508 return; 509 } 510 } 511 512 // If any of the scalars appears in the table OR it is marked as a value that 513 // needs to stat scalar then we need to gather the scalars. 514 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 515 if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { 516 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); 517 newTreeEntry(VL, false); 518 return; 519 } 520 } 521 522 // Check that all of the users of the scalars that we want to vectorize are 523 // schedulable. 524 Instruction *VL0 = cast<Instruction>(VL[0]); 525 int MyLastIndex = getLastIndex(VL); 526 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 527 528 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 529 Instruction *Scalar = cast<Instruction>(VL[i]); 530 DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n"); 531 for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end(); 532 U != UE; ++U) { 533 DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n"); 534 Instruction *User = dyn_cast<Instruction>(*U); 535 if (!User) { 536 DEBUG(dbgs() << "SLP: Gathering due unknown user. \n"); 537 newTreeEntry(VL, false); 538 return; 539 } 540 541 // We don't care if the user is in a different basic block. 542 BasicBlock *UserBlock = User->getParent(); 543 if (UserBlock != BB) { 544 DEBUG(dbgs() << "SLP: User from a different basic block " 545 << *User << ". \n"); 546 continue; 547 } 548 549 // If this is a PHINode within this basic block then we can place the 550 // extract wherever we want. 551 if (isa<PHINode>(*User)) { 552 DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n"); 553 continue; 554 } 555 556 // Check if this is a safe in-tree user. 557 if (ScalarToTreeEntry.count(User)) { 558 int Idx = ScalarToTreeEntry[User]; 559 int VecLocation = VectorizableTree[Idx].LastScalarIndex; 560 if (VecLocation <= MyLastIndex) { 561 DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n"); 562 newTreeEntry(VL, false); 563 return; 564 } 565 DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" << 566 VecLocation << " vector value (" << *Scalar << ") at #" 567 << MyLastIndex << ".\n"); 568 continue; 569 } 570 571 // Make sure that we can schedule this unknown user. 572 BlockNumbering &BN = BlocksNumbers[BB]; 573 int UserIndex = BN.getIndex(User); 574 if (UserIndex < MyLastIndex) { 575 576 DEBUG(dbgs() << "SLP: Can't schedule extractelement for " 577 << *User << ". \n"); 578 newTreeEntry(VL, false); 579 return; 580 } 581 } 582 } 583 584 // Check that every instructions appears once in this bundle. 585 for (unsigned i = 0, e = VL.size(); i < e; ++i) 586 for (unsigned j = i+1; j < e; ++j) 587 if (VL[i] == VL[j]) { 588 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 589 newTreeEntry(VL, false); 590 return; 591 } 592 593 // Check that instructions in this bundle don't reference other instructions. 594 // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4. 595 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 596 for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end(); 597 U != UE; ++U) { 598 for (unsigned j = 0; j < e; ++j) { 599 if (i != j && *U == VL[j]) { 600 DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n"); 601 newTreeEntry(VL, false); 602 return; 603 } 604 } 605 } 606 } 607 608 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 609 610 unsigned Opcode = getSameOpcode(VL); 611 612 // Check if it is safe to sink the loads or the stores. 613 if (Opcode == Instruction::Load || Opcode == Instruction::Store) { 614 Instruction *Last = getLastInstruction(VL); 615 616 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 617 if (VL[i] == Last) 618 continue; 619 Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last); 620 if (Barrier) { 621 DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last 622 << "\n because of " << *Barrier << ". Gathering.\n"); 623 newTreeEntry(VL, false); 624 return; 625 } 626 } 627 } 628 629 switch (Opcode) { 630 case Instruction::PHI: { 631 PHINode *PH = dyn_cast<PHINode>(VL0); 632 newTreeEntry(VL, true); 633 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 634 635 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 636 ValueList Operands; 637 // Prepare the operand vector. 638 for (unsigned j = 0; j < VL.size(); ++j) 639 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i)); 640 641 buildTree_rec(Operands, Depth + 1); 642 } 643 return; 644 } 645 case Instruction::ExtractElement: { 646 bool Reuse = CanReuseExtract(VL); 647 if (Reuse) { 648 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 649 } 650 newTreeEntry(VL, Reuse); 651 return; 652 } 653 case Instruction::Load: { 654 // Check if the loads are consecutive or of we need to swizzle them. 655 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 656 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 657 newTreeEntry(VL, false); 658 DEBUG(dbgs() << "SLP: Need to swizzle loads.\n"); 659 return; 660 } 661 662 newTreeEntry(VL, true); 663 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 664 return; 665 } 666 case Instruction::ZExt: 667 case Instruction::SExt: 668 case Instruction::FPToUI: 669 case Instruction::FPToSI: 670 case Instruction::FPExt: 671 case Instruction::PtrToInt: 672 case Instruction::IntToPtr: 673 case Instruction::SIToFP: 674 case Instruction::UIToFP: 675 case Instruction::Trunc: 676 case Instruction::FPTrunc: 677 case Instruction::BitCast: { 678 Type *SrcTy = VL0->getOperand(0)->getType(); 679 for (unsigned i = 0; i < VL.size(); ++i) { 680 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 681 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { 682 newTreeEntry(VL, false); 683 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 684 return; 685 } 686 } 687 newTreeEntry(VL, true); 688 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 689 690 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 691 ValueList Operands; 692 // Prepare the operand vector. 693 for (unsigned j = 0; j < VL.size(); ++j) 694 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 695 696 buildTree_rec(Operands, Depth+1); 697 } 698 return; 699 } 700 case Instruction::ICmp: 701 case Instruction::FCmp: { 702 // Check that all of the compares have the same predicate. 703 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 704 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 705 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 706 CmpInst *Cmp = cast<CmpInst>(VL[i]); 707 if (Cmp->getPredicate() != P0 || 708 Cmp->getOperand(0)->getType() != ComparedTy) { 709 newTreeEntry(VL, false); 710 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 711 return; 712 } 713 } 714 715 newTreeEntry(VL, true); 716 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 717 718 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 719 ValueList Operands; 720 // Prepare the operand vector. 721 for (unsigned j = 0; j < VL.size(); ++j) 722 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 723 724 buildTree_rec(Operands, Depth+1); 725 } 726 return; 727 } 728 case Instruction::Select: 729 case Instruction::Add: 730 case Instruction::FAdd: 731 case Instruction::Sub: 732 case Instruction::FSub: 733 case Instruction::Mul: 734 case Instruction::FMul: 735 case Instruction::UDiv: 736 case Instruction::SDiv: 737 case Instruction::FDiv: 738 case Instruction::URem: 739 case Instruction::SRem: 740 case Instruction::FRem: 741 case Instruction::Shl: 742 case Instruction::LShr: 743 case Instruction::AShr: 744 case Instruction::And: 745 case Instruction::Or: 746 case Instruction::Xor: { 747 newTreeEntry(VL, true); 748 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 749 750 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 751 ValueList Operands; 752 // Prepare the operand vector. 753 for (unsigned j = 0; j < VL.size(); ++j) 754 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 755 756 buildTree_rec(Operands, Depth+1); 757 } 758 return; 759 } 760 case Instruction::Store: { 761 // Check if the stores are consecutive or of we need to swizzle them. 762 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 763 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 764 newTreeEntry(VL, false); 765 DEBUG(dbgs() << "SLP: Non consecutive store.\n"); 766 return; 767 } 768 769 newTreeEntry(VL, true); 770 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 771 772 ValueList Operands; 773 for (unsigned j = 0; j < VL.size(); ++j) 774 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 775 776 // We can ignore these values because we are sinking them down. 777 MemBarrierIgnoreList.insert(VL.begin(), VL.end()); 778 buildTree_rec(Operands, Depth + 1); 779 return; 780 } 781 default: 782 newTreeEntry(VL, false); 783 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 784 return; 785 } 786 } 787 788 int BoUpSLP::getEntryCost(TreeEntry *E) { 789 ArrayRef<Value*> VL = E->Scalars; 790 791 Type *ScalarTy = VL[0]->getType(); 792 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 793 ScalarTy = SI->getValueOperand()->getType(); 794 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 795 796 if (E->NeedToGather) { 797 if (allConstant(VL)) 798 return 0; 799 if (isSplat(VL)) { 800 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 801 } 802 return getGatherCost(E->Scalars); 803 } 804 805 assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) && 806 "Invalid VL"); 807 Instruction *VL0 = cast<Instruction>(VL[0]); 808 unsigned Opcode = VL0->getOpcode(); 809 switch (Opcode) { 810 case Instruction::PHI: { 811 return 0; 812 } 813 case Instruction::ExtractElement: { 814 if (CanReuseExtract(VL)) 815 return 0; 816 return getGatherCost(VecTy); 817 } 818 case Instruction::ZExt: 819 case Instruction::SExt: 820 case Instruction::FPToUI: 821 case Instruction::FPToSI: 822 case Instruction::FPExt: 823 case Instruction::PtrToInt: 824 case Instruction::IntToPtr: 825 case Instruction::SIToFP: 826 case Instruction::UIToFP: 827 case Instruction::Trunc: 828 case Instruction::FPTrunc: 829 case Instruction::BitCast: { 830 Type *SrcTy = VL0->getOperand(0)->getType(); 831 832 // Calculate the cost of this instruction. 833 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 834 VL0->getType(), SrcTy); 835 836 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 837 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 838 return VecCost - ScalarCost; 839 } 840 case Instruction::FCmp: 841 case Instruction::ICmp: 842 case Instruction::Select: 843 case Instruction::Add: 844 case Instruction::FAdd: 845 case Instruction::Sub: 846 case Instruction::FSub: 847 case Instruction::Mul: 848 case Instruction::FMul: 849 case Instruction::UDiv: 850 case Instruction::SDiv: 851 case Instruction::FDiv: 852 case Instruction::URem: 853 case Instruction::SRem: 854 case Instruction::FRem: 855 case Instruction::Shl: 856 case Instruction::LShr: 857 case Instruction::AShr: 858 case Instruction::And: 859 case Instruction::Or: 860 case Instruction::Xor: { 861 // Calculate the cost of this instruction. 862 int ScalarCost = 0; 863 int VecCost = 0; 864 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 865 Opcode == Instruction::Select) { 866 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 867 ScalarCost = VecTy->getNumElements() * 868 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 869 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 870 } else { 871 ScalarCost = VecTy->getNumElements() * 872 TTI->getArithmeticInstrCost(Opcode, ScalarTy); 873 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy); 874 } 875 return VecCost - ScalarCost; 876 } 877 case Instruction::Load: { 878 // Cost of wide load - cost of scalar loads. 879 int ScalarLdCost = VecTy->getNumElements() * 880 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 881 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 882 return VecLdCost - ScalarLdCost; 883 } 884 case Instruction::Store: { 885 // We know that we can merge the stores. Calculate the cost. 886 int ScalarStCost = VecTy->getNumElements() * 887 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 888 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 889 return VecStCost - ScalarStCost; 890 } 891 default: 892 llvm_unreachable("Unknown instruction"); 893 } 894 } 895 896 int BoUpSLP::getTreeCost() { 897 int Cost = 0; 898 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 899 VectorizableTree.size() << ".\n"); 900 901 if (!VectorizableTree.size()) { 902 assert(!ExternalUses.size() && "We should not have any external users"); 903 return 0; 904 } 905 906 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 907 908 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 909 int C = getEntryCost(&VectorizableTree[i]); 910 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 911 << *VectorizableTree[i].Scalars[0] << " .\n"); 912 Cost += C; 913 } 914 915 int ExtractCost = 0; 916 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 917 I != E; ++I) { 918 919 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 920 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 921 I->Lane); 922 } 923 924 925 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 926 return Cost + ExtractCost; 927 } 928 929 int BoUpSLP::getGatherCost(Type *Ty) { 930 int Cost = 0; 931 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 932 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 933 return Cost; 934 } 935 936 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 937 // Find the type of the operands in VL. 938 Type *ScalarTy = VL[0]->getType(); 939 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 940 ScalarTy = SI->getValueOperand()->getType(); 941 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 942 // Find the cost of inserting/extracting values from the vector. 943 return getGatherCost(VecTy); 944 } 945 946 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) { 947 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 948 return AA->getLocation(SI); 949 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 950 return AA->getLocation(LI); 951 return AliasAnalysis::Location(); 952 } 953 954 Value *BoUpSLP::getPointerOperand(Value *I) { 955 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 956 return LI->getPointerOperand(); 957 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 958 return SI->getPointerOperand(); 959 return 0; 960 } 961 962 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 963 if (LoadInst *L = dyn_cast<LoadInst>(I)) 964 return L->getPointerAddressSpace(); 965 if (StoreInst *S = dyn_cast<StoreInst>(I)) 966 return S->getPointerAddressSpace(); 967 return -1; 968 } 969 970 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 971 Value *PtrA = getPointerOperand(A); 972 Value *PtrB = getPointerOperand(B); 973 unsigned ASA = getAddressSpaceOperand(A); 974 unsigned ASB = getAddressSpaceOperand(B); 975 976 // Check that the address spaces match and that the pointers are valid. 977 if (!PtrA || !PtrB || (ASA != ASB)) 978 return false; 979 980 // Make sure that A and B are different pointers of the same type. 981 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 982 return false; 983 984 // Calculate a constant offset from the base pointer without using SCEV 985 // in the supported cases. 986 // TODO: Add support for the case where one of the pointers is a GEP that 987 // uses the other pointer. 988 GetElementPtrInst *GepA = dyn_cast<GetElementPtrInst>(PtrA); 989 GetElementPtrInst *GepB = dyn_cast<GetElementPtrInst>(PtrB); 990 991 unsigned BW = DL->getPointerSizeInBits(ASA); 992 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 993 int64_t Sz = DL->getTypeStoreSize(Ty); 994 995 // Check if PtrA is the base and PtrB is a constant offset. 996 if (GepB && GepB->getPointerOperand() == PtrA) { 997 APInt Offset(BW, 0); 998 if (GepB->accumulateConstantOffset(*DL, Offset)) 999 return Offset.getSExtValue() == Sz; 1000 return false; 1001 } 1002 1003 // Check if PtrB is the base and PtrA is a constant offset. 1004 if (GepA && GepA->getPointerOperand() == PtrB) { 1005 APInt Offset(BW, 0); 1006 if (GepA->accumulateConstantOffset(*DL, Offset)) 1007 return Offset.getSExtValue() == -Sz; 1008 return false; 1009 } 1010 1011 // If both pointers are GEPs: 1012 if (GepA && GepB) { 1013 // Check that they have the same base pointer and number of indices. 1014 if (GepA->getPointerOperand() != GepB->getPointerOperand() || 1015 GepA->getNumIndices() != GepB->getNumIndices()) 1016 return false; 1017 1018 // Try to strip the geps. This makes SCEV faster. 1019 // Make sure that all of the indices except for the last are identical. 1020 int LastIdx = GepA->getNumIndices(); 1021 for (int i = 0; i < LastIdx - 1; i++) { 1022 if (GepA->getOperand(i+1) != GepB->getOperand(i+1)) 1023 return false; 1024 } 1025 1026 PtrA = GepA->getOperand(LastIdx); 1027 PtrB = GepB->getOperand(LastIdx); 1028 Sz = 1; 1029 } 1030 1031 ConstantInt *CA = dyn_cast<ConstantInt>(PtrA); 1032 ConstantInt *CB = dyn_cast<ConstantInt>(PtrB); 1033 if (CA && CB) { 1034 return (CA->getSExtValue() + Sz == CB->getSExtValue()); 1035 } 1036 1037 // Calculate the distance. 1038 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1039 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1040 const SCEV *C = SE->getConstant(PtrSCEVA->getType(), Sz); 1041 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1042 return X == PtrSCEVB; 1043 } 1044 1045 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) { 1046 assert(Src->getParent() == Dst->getParent() && "Not the same BB"); 1047 BasicBlock::iterator I = Src, E = Dst; 1048 /// Scan all of the instruction from SRC to DST and check if 1049 /// the source may alias. 1050 for (++I; I != E; ++I) { 1051 // Ignore store instructions that are marked as 'ignore'. 1052 if (MemBarrierIgnoreList.count(I)) 1053 continue; 1054 if (Src->mayWriteToMemory()) /* Write */ { 1055 if (!I->mayReadOrWriteMemory()) 1056 continue; 1057 } else /* Read */ { 1058 if (!I->mayWriteToMemory()) 1059 continue; 1060 } 1061 AliasAnalysis::Location A = getLocation(&*I); 1062 AliasAnalysis::Location B = getLocation(Src); 1063 1064 if (!A.Ptr || !B.Ptr || AA->alias(A, B)) 1065 return I; 1066 } 1067 return 0; 1068 } 1069 1070 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) { 1071 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1072 assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); 1073 BlockNumbering &BN = BlocksNumbers[BB]; 1074 1075 int MaxIdx = BN.getIndex(BB->getFirstNonPHI()); 1076 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1077 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1078 return MaxIdx; 1079 } 1080 1081 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) { 1082 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1083 assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); 1084 BlockNumbering &BN = BlocksNumbers[BB]; 1085 1086 int MaxIdx = BN.getIndex(cast<Instruction>(VL[0])); 1087 for (unsigned i = 1, e = VL.size(); i < e; ++i) 1088 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1089 Instruction *I = BN.getInstruction(MaxIdx); 1090 assert(I && "bad location"); 1091 return I; 1092 } 1093 1094 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1095 Value *Vec = UndefValue::get(Ty); 1096 // Generate the 'InsertElement' instruction. 1097 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1098 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1099 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1100 GatherSeq.insert(Insrt); 1101 1102 // Add to our 'need-to-extract' list. 1103 if (ScalarToTreeEntry.count(VL[i])) { 1104 int Idx = ScalarToTreeEntry[VL[i]]; 1105 TreeEntry *E = &VectorizableTree[Idx]; 1106 // Find which lane we need to extract. 1107 int FoundLane = -1; 1108 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1109 // Is this the lane of the scalar that we are looking for ? 1110 if (E->Scalars[Lane] == VL[i]) { 1111 FoundLane = Lane; 1112 break; 1113 } 1114 } 1115 assert(FoundLane >= 0 && "Could not find the correct lane"); 1116 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1117 } 1118 } 1119 } 1120 1121 return Vec; 1122 } 1123 1124 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) { 1125 if (ScalarToTreeEntry.count(VL[0])) { 1126 int Idx = ScalarToTreeEntry[VL[0]]; 1127 TreeEntry *En = &VectorizableTree[Idx]; 1128 if (En->isSame(VL) && En->VectorizedValue) 1129 return En->VectorizedValue; 1130 } 1131 return 0; 1132 } 1133 1134 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1135 if (ScalarToTreeEntry.count(VL[0])) { 1136 int Idx = ScalarToTreeEntry[VL[0]]; 1137 TreeEntry *E = &VectorizableTree[Idx]; 1138 if (E->isSame(VL)) 1139 return vectorizeTree(E); 1140 } 1141 1142 Type *ScalarTy = VL[0]->getType(); 1143 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1144 ScalarTy = SI->getValueOperand()->getType(); 1145 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1146 1147 return Gather(VL, VecTy); 1148 } 1149 1150 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1151 BuilderLocGuard Guard(Builder); 1152 1153 if (E->VectorizedValue) { 1154 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1155 return E->VectorizedValue; 1156 } 1157 1158 Type *ScalarTy = E->Scalars[0]->getType(); 1159 if (StoreInst *SI = dyn_cast<StoreInst>(E->Scalars[0])) 1160 ScalarTy = SI->getValueOperand()->getType(); 1161 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1162 1163 if (E->NeedToGather) { 1164 return Gather(E->Scalars, VecTy); 1165 } 1166 1167 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1168 unsigned Opcode = VL0->getOpcode(); 1169 assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode"); 1170 1171 switch (Opcode) { 1172 case Instruction::PHI: { 1173 PHINode *PH = dyn_cast<PHINode>(VL0); 1174 Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt()); 1175 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1176 E->VectorizedValue = NewPhi; 1177 1178 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1179 ValueList Operands; 1180 BasicBlock *IBB = PH->getIncomingBlock(i); 1181 1182 // Prepare the operand vector. 1183 for (unsigned j = 0; j < E->Scalars.size(); ++j) 1184 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 1185 getIncomingValueForBlock(IBB)); 1186 1187 Builder.SetInsertPoint(IBB->getTerminator()); 1188 Value *Vec = vectorizeTree(Operands); 1189 NewPhi->addIncoming(Vec, IBB); 1190 } 1191 1192 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 1193 "Invalid number of incoming values"); 1194 return NewPhi; 1195 } 1196 1197 case Instruction::ExtractElement: { 1198 if (CanReuseExtract(E->Scalars)) { 1199 Value *V = VL0->getOperand(0); 1200 E->VectorizedValue = V; 1201 return V; 1202 } 1203 return Gather(E->Scalars, VecTy); 1204 } 1205 case Instruction::ZExt: 1206 case Instruction::SExt: 1207 case Instruction::FPToUI: 1208 case Instruction::FPToSI: 1209 case Instruction::FPExt: 1210 case Instruction::PtrToInt: 1211 case Instruction::IntToPtr: 1212 case Instruction::SIToFP: 1213 case Instruction::UIToFP: 1214 case Instruction::Trunc: 1215 case Instruction::FPTrunc: 1216 case Instruction::BitCast: { 1217 ValueList INVL; 1218 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1219 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1220 1221 Builder.SetInsertPoint(getLastInstruction(E->Scalars)); 1222 Value *InVec = vectorizeTree(INVL); 1223 1224 if (Value *V = alreadyVectorized(E->Scalars)) 1225 return V; 1226 1227 CastInst *CI = dyn_cast<CastInst>(VL0); 1228 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 1229 E->VectorizedValue = V; 1230 return V; 1231 } 1232 case Instruction::FCmp: 1233 case Instruction::ICmp: { 1234 ValueList LHSV, RHSV; 1235 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1236 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1237 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1238 } 1239 1240 Builder.SetInsertPoint(getLastInstruction(E->Scalars)); 1241 Value *L = vectorizeTree(LHSV); 1242 Value *R = vectorizeTree(RHSV); 1243 1244 if (Value *V = alreadyVectorized(E->Scalars)) 1245 return V; 1246 1247 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1248 Value *V; 1249 if (Opcode == Instruction::FCmp) 1250 V = Builder.CreateFCmp(P0, L, R); 1251 else 1252 V = Builder.CreateICmp(P0, L, R); 1253 1254 E->VectorizedValue = V; 1255 return V; 1256 } 1257 case Instruction::Select: { 1258 ValueList TrueVec, FalseVec, CondVec; 1259 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1260 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1261 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1262 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 1263 } 1264 1265 Builder.SetInsertPoint(getLastInstruction(E->Scalars)); 1266 Value *Cond = vectorizeTree(CondVec); 1267 Value *True = vectorizeTree(TrueVec); 1268 Value *False = vectorizeTree(FalseVec); 1269 1270 if (Value *V = alreadyVectorized(E->Scalars)) 1271 return V; 1272 1273 Value *V = Builder.CreateSelect(Cond, True, False); 1274 E->VectorizedValue = V; 1275 return V; 1276 } 1277 case Instruction::Add: 1278 case Instruction::FAdd: 1279 case Instruction::Sub: 1280 case Instruction::FSub: 1281 case Instruction::Mul: 1282 case Instruction::FMul: 1283 case Instruction::UDiv: 1284 case Instruction::SDiv: 1285 case Instruction::FDiv: 1286 case Instruction::URem: 1287 case Instruction::SRem: 1288 case Instruction::FRem: 1289 case Instruction::Shl: 1290 case Instruction::LShr: 1291 case Instruction::AShr: 1292 case Instruction::And: 1293 case Instruction::Or: 1294 case Instruction::Xor: { 1295 ValueList LHSVL, RHSVL; 1296 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1297 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1298 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1299 } 1300 1301 Builder.SetInsertPoint(getLastInstruction(E->Scalars)); 1302 Value *LHS = vectorizeTree(LHSVL); 1303 Value *RHS = vectorizeTree(RHSVL); 1304 1305 if (LHS == RHS && isa<Instruction>(LHS)) { 1306 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 1307 } 1308 1309 if (Value *V = alreadyVectorized(E->Scalars)) 1310 return V; 1311 1312 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 1313 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 1314 E->VectorizedValue = V; 1315 return V; 1316 } 1317 case Instruction::Load: { 1318 // Loads are inserted at the head of the tree because we don't want to 1319 // sink them all the way down past store instructions. 1320 Builder.SetInsertPoint(getLastInstruction(E->Scalars)); 1321 LoadInst *LI = cast<LoadInst>(VL0); 1322 Value *VecPtr = 1323 Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo()); 1324 unsigned Alignment = LI->getAlignment(); 1325 LI = Builder.CreateLoad(VecPtr); 1326 LI->setAlignment(Alignment); 1327 E->VectorizedValue = LI; 1328 return LI; 1329 } 1330 case Instruction::Store: { 1331 StoreInst *SI = cast<StoreInst>(VL0); 1332 unsigned Alignment = SI->getAlignment(); 1333 1334 ValueList ValueOp; 1335 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1336 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 1337 1338 Builder.SetInsertPoint(getLastInstruction(E->Scalars)); 1339 Value *VecValue = vectorizeTree(ValueOp); 1340 Value *VecPtr = 1341 Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo()); 1342 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 1343 S->setAlignment(Alignment); 1344 E->VectorizedValue = S; 1345 return S; 1346 } 1347 default: 1348 llvm_unreachable("unknown inst"); 1349 } 1350 return 0; 1351 } 1352 1353 void BoUpSLP::vectorizeTree() { 1354 Builder.SetInsertPoint(F->getEntryBlock().begin()); 1355 vectorizeTree(&VectorizableTree[0]); 1356 1357 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 1358 1359 // Extract all of the elements with the external uses. 1360 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 1361 it != e; ++it) { 1362 Value *Scalar = it->Scalar; 1363 llvm::User *User = it->User; 1364 1365 // Skip users that we already RAUW. This happens when one instruction 1366 // has multiple uses of the same value. 1367 if (std::find(Scalar->use_begin(), Scalar->use_end(), User) == 1368 Scalar->use_end()) 1369 continue; 1370 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 1371 1372 int Idx = ScalarToTreeEntry[Scalar]; 1373 TreeEntry *E = &VectorizableTree[Idx]; 1374 assert(!E->NeedToGather && "Extracting from a gather list"); 1375 1376 Value *Vec = E->VectorizedValue; 1377 assert(Vec && "Can't find vectorizable value"); 1378 1379 // Generate extracts for out-of-tree users. 1380 // Find the insertion point for the extractelement lane. 1381 Instruction *Loc = 0; 1382 if (PHINode *PN = dyn_cast<PHINode>(Vec)) { 1383 Loc = PN->getParent()->getFirstInsertionPt(); 1384 } else if (isa<Instruction>(Vec)){ 1385 if (PHINode *PH = dyn_cast<PHINode>(User)) { 1386 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 1387 if (PH->getIncomingValue(i) == Scalar) { 1388 Loc = PH->getIncomingBlock(i)->getTerminator(); 1389 break; 1390 } 1391 } 1392 assert(Loc && "Unable to find incoming value for the PHI"); 1393 } else { 1394 Loc = cast<Instruction>(User); 1395 } 1396 } else { 1397 Loc = F->getEntryBlock().begin(); 1398 } 1399 1400 Builder.SetInsertPoint(Loc); 1401 Value *Ex = Builder.CreateExtractElement(Vec, Builder.getInt32(it->Lane)); 1402 User->replaceUsesOfWith(Scalar, Ex); 1403 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 1404 } 1405 1406 // For each vectorized value: 1407 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 1408 TreeEntry *Entry = &VectorizableTree[EIdx]; 1409 1410 // For each lane: 1411 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1412 Value *Scalar = Entry->Scalars[Lane]; 1413 1414 // No need to handle users of gathered values. 1415 if (Entry->NeedToGather) 1416 continue; 1417 1418 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 1419 1420 Type *Ty = Scalar->getType(); 1421 if (!Ty->isVoidTy()) { 1422 for (Value::use_iterator User = Scalar->use_begin(), 1423 UE = Scalar->use_end(); User != UE; ++User) { 1424 DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n"); 1425 assert(!MustGather.count(*User) && 1426 "Replacing gathered value with undef"); 1427 assert(ScalarToTreeEntry.count(*User) && 1428 "Replacing out-of-tree value with undef"); 1429 } 1430 Value *Undef = UndefValue::get(Ty); 1431 Scalar->replaceAllUsesWith(Undef); 1432 } 1433 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 1434 cast<Instruction>(Scalar)->eraseFromParent(); 1435 } 1436 } 1437 1438 for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { 1439 BlocksNumbers[it].forget(); 1440 } 1441 Builder.ClearInsertionPoint(); 1442 } 1443 1444 void BoUpSLP::optimizeGatherSequence() { 1445 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 1446 << " gather sequences instructions.\n"); 1447 // LICM InsertElementInst sequences. 1448 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 1449 e = GatherSeq.end(); it != e; ++it) { 1450 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 1451 1452 if (!Insert) 1453 continue; 1454 1455 // Check if this block is inside a loop. 1456 Loop *L = LI->getLoopFor(Insert->getParent()); 1457 if (!L) 1458 continue; 1459 1460 // Check if it has a preheader. 1461 BasicBlock *PreHeader = L->getLoopPreheader(); 1462 if (!PreHeader) 1463 continue; 1464 1465 // If the vector or the element that we insert into it are 1466 // instructions that are defined in this basic block then we can't 1467 // hoist this instruction. 1468 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 1469 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 1470 if (CurrVec && L->contains(CurrVec)) 1471 continue; 1472 if (NewElem && L->contains(NewElem)) 1473 continue; 1474 1475 // We can hoist this instruction. Move it to the pre-header. 1476 Insert->moveBefore(PreHeader->getTerminator()); 1477 } 1478 1479 // Perform O(N^2) search over the gather sequences and merge identical 1480 // instructions. TODO: We can further optimize this scan if we split the 1481 // instructions into different buckets based on the insert lane. 1482 SmallPtrSet<Instruction*, 16> Visited; 1483 SmallVector<Instruction*, 16> ToRemove; 1484 ReversePostOrderTraversal<Function*> RPOT(F); 1485 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 1486 E = RPOT.end(); I != E; ++I) { 1487 BasicBlock *BB = *I; 1488 // For all instructions in the function: 1489 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 1490 Instruction *In = it; 1491 if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) || 1492 !GatherSeq.count(In)) 1493 continue; 1494 1495 // Check if we can replace this instruction with any of the 1496 // visited instructions. 1497 for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(), 1498 ve = Visited.end(); v != ve; ++v) { 1499 if (In->isIdenticalTo(*v) && 1500 DT->dominates((*v)->getParent(), In->getParent())) { 1501 In->replaceAllUsesWith(*v); 1502 ToRemove.push_back(In); 1503 In = 0; 1504 break; 1505 } 1506 } 1507 if (In) 1508 Visited.insert(In); 1509 } 1510 } 1511 1512 // Erase all of the instructions that we RAUWed. 1513 for (SmallVectorImpl<Instruction *>::iterator v = ToRemove.begin(), 1514 ve = ToRemove.end(); v != ve; ++v) { 1515 assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses"); 1516 (*v)->eraseFromParent(); 1517 } 1518 } 1519 1520 /// The SLPVectorizer Pass. 1521 struct SLPVectorizer : public FunctionPass { 1522 typedef SmallVector<StoreInst *, 8> StoreList; 1523 typedef MapVector<Value *, StoreList> StoreListMap; 1524 1525 /// Pass identification, replacement for typeid 1526 static char ID; 1527 1528 explicit SLPVectorizer() : FunctionPass(ID) { 1529 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 1530 } 1531 1532 ScalarEvolution *SE; 1533 DataLayout *DL; 1534 TargetTransformInfo *TTI; 1535 AliasAnalysis *AA; 1536 LoopInfo *LI; 1537 DominatorTree *DT; 1538 1539 virtual bool runOnFunction(Function &F) { 1540 SE = &getAnalysis<ScalarEvolution>(); 1541 DL = getAnalysisIfAvailable<DataLayout>(); 1542 TTI = &getAnalysis<TargetTransformInfo>(); 1543 AA = &getAnalysis<AliasAnalysis>(); 1544 LI = &getAnalysis<LoopInfo>(); 1545 DT = &getAnalysis<DominatorTree>(); 1546 1547 StoreRefs.clear(); 1548 bool Changed = false; 1549 1550 // Must have DataLayout. We can't require it because some tests run w/o 1551 // triple. 1552 if (!DL) 1553 return false; 1554 1555 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 1556 1557 // Use the bollom up slp vectorizer to construct chains that start with 1558 // he store instructions. 1559 BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT); 1560 1561 // Scan the blocks in the function in post order. 1562 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 1563 e = po_end(&F.getEntryBlock()); it != e; ++it) { 1564 BasicBlock *BB = *it; 1565 1566 // Vectorize trees that end at stores. 1567 if (unsigned count = collectStores(BB, R)) { 1568 (void)count; 1569 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 1570 Changed |= vectorizeStoreChains(R); 1571 } 1572 1573 // Vectorize trees that end at reductions. 1574 Changed |= vectorizeChainsInBlock(BB, R); 1575 } 1576 1577 if (Changed) { 1578 R.optimizeGatherSequence(); 1579 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 1580 DEBUG(verifyFunction(F)); 1581 } 1582 return Changed; 1583 } 1584 1585 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1586 FunctionPass::getAnalysisUsage(AU); 1587 AU.addRequired<ScalarEvolution>(); 1588 AU.addRequired<AliasAnalysis>(); 1589 AU.addRequired<TargetTransformInfo>(); 1590 AU.addRequired<LoopInfo>(); 1591 AU.addRequired<DominatorTree>(); 1592 AU.addPreserved<LoopInfo>(); 1593 AU.addPreserved<DominatorTree>(); 1594 AU.setPreservesCFG(); 1595 } 1596 1597 private: 1598 1599 /// \brief Collect memory references and sort them according to their base 1600 /// object. We sort the stores to their base objects to reduce the cost of the 1601 /// quadratic search on the stores. TODO: We can further reduce this cost 1602 /// if we flush the chain creation every time we run into a memory barrier. 1603 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 1604 1605 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 1606 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 1607 1608 /// \brief Try to vectorize a list of operands. 1609 /// \returns true if a value was vectorized. 1610 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R); 1611 1612 /// \brief Try to vectorize a chain that may start at the operands of \V; 1613 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 1614 1615 /// \brief Vectorize the stores that were collected in StoreRefs. 1616 bool vectorizeStoreChains(BoUpSLP &R); 1617 1618 /// \brief Scan the basic block and look for patterns that are likely to start 1619 /// a vectorization chain. 1620 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 1621 1622 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 1623 BoUpSLP &R); 1624 1625 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 1626 BoUpSLP &R); 1627 private: 1628 StoreListMap StoreRefs; 1629 }; 1630 1631 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 1632 int CostThreshold, BoUpSLP &R) { 1633 unsigned ChainLen = Chain.size(); 1634 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 1635 << "\n"); 1636 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 1637 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 1638 unsigned VF = MinVecRegSize / Sz; 1639 1640 if (!isPowerOf2_32(Sz) || VF < 2) 1641 return false; 1642 1643 bool Changed = false; 1644 // Look for profitable vectorizable trees at all offsets, starting at zero. 1645 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 1646 if (i + VF > e) 1647 break; 1648 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 1649 << "\n"); 1650 ArrayRef<Value *> Operands = Chain.slice(i, VF); 1651 1652 R.buildTree(Operands); 1653 1654 int Cost = R.getTreeCost(); 1655 1656 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 1657 if (Cost < CostThreshold) { 1658 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 1659 R.vectorizeTree(); 1660 1661 // Move to the next bundle. 1662 i += VF - 1; 1663 Changed = true; 1664 } 1665 } 1666 1667 if (Changed || ChainLen > VF) 1668 return Changed; 1669 1670 // Handle short chains. This helps us catch types such as <3 x float> that 1671 // are smaller than vector size. 1672 R.buildTree(Chain); 1673 1674 int Cost = R.getTreeCost(); 1675 1676 if (Cost < CostThreshold) { 1677 DEBUG(dbgs() << "SLP: Found store chain cost = " << Cost 1678 << " for size = " << ChainLen << "\n"); 1679 R.vectorizeTree(); 1680 return true; 1681 } 1682 1683 return false; 1684 } 1685 1686 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 1687 int costThreshold, BoUpSLP &R) { 1688 SetVector<Value *> Heads, Tails; 1689 SmallDenseMap<Value *, Value *> ConsecutiveChain; 1690 1691 // We may run into multiple chains that merge into a single chain. We mark the 1692 // stores that we vectorized so that we don't visit the same store twice. 1693 BoUpSLP::ValueSet VectorizedStores; 1694 bool Changed = false; 1695 1696 // Do a quadratic search on all of the given stores and find 1697 // all of the pairs of stores that follow each other. 1698 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 1699 for (unsigned j = 0; j < e; ++j) { 1700 if (i == j) 1701 continue; 1702 1703 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 1704 Tails.insert(Stores[j]); 1705 Heads.insert(Stores[i]); 1706 ConsecutiveChain[Stores[i]] = Stores[j]; 1707 } 1708 } 1709 } 1710 1711 // For stores that start but don't end a link in the chain: 1712 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 1713 it != e; ++it) { 1714 if (Tails.count(*it)) 1715 continue; 1716 1717 // We found a store instr that starts a chain. Now follow the chain and try 1718 // to vectorize it. 1719 BoUpSLP::ValueList Operands; 1720 Value *I = *it; 1721 // Collect the chain into a list. 1722 while (Tails.count(I) || Heads.count(I)) { 1723 if (VectorizedStores.count(I)) 1724 break; 1725 Operands.push_back(I); 1726 // Move to the next value in the chain. 1727 I = ConsecutiveChain[I]; 1728 } 1729 1730 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 1731 1732 // Mark the vectorized stores so that we don't vectorize them again. 1733 if (Vectorized) 1734 VectorizedStores.insert(Operands.begin(), Operands.end()); 1735 Changed |= Vectorized; 1736 } 1737 1738 return Changed; 1739 } 1740 1741 1742 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 1743 unsigned count = 0; 1744 StoreRefs.clear(); 1745 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 1746 StoreInst *SI = dyn_cast<StoreInst>(it); 1747 if (!SI) 1748 continue; 1749 1750 // Check that the pointer points to scalars. 1751 Type *Ty = SI->getValueOperand()->getType(); 1752 if (Ty->isAggregateType() || Ty->isVectorTy()) 1753 return 0; 1754 1755 // Find the base of the GEP. 1756 Value *Ptr = SI->getPointerOperand(); 1757 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1758 Ptr = GEP->getPointerOperand(); 1759 1760 // Save the store locations. 1761 StoreRefs[Ptr].push_back(SI); 1762 count++; 1763 } 1764 return count; 1765 } 1766 1767 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 1768 if (!A || !B) 1769 return false; 1770 Value *VL[] = { A, B }; 1771 return tryToVectorizeList(VL, R); 1772 } 1773 1774 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) { 1775 if (VL.size() < 2) 1776 return false; 1777 1778 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 1779 1780 // Check that all of the parts are scalar instructions of the same type. 1781 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1782 if (!I0) 1783 return 0; 1784 1785 unsigned Opcode0 = I0->getOpcode(); 1786 1787 for (int i = 0, e = VL.size(); i < e; ++i) { 1788 Type *Ty = VL[i]->getType(); 1789 if (Ty->isAggregateType() || Ty->isVectorTy()) 1790 return 0; 1791 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 1792 if (!Inst || Inst->getOpcode() != Opcode0) 1793 return 0; 1794 } 1795 1796 R.buildTree(VL); 1797 int Cost = R.getTreeCost(); 1798 1799 if (Cost >= -SLPCostThreshold) 1800 return false; 1801 1802 DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n"); 1803 R.vectorizeTree(); 1804 return true; 1805 } 1806 1807 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 1808 if (!V) 1809 return false; 1810 1811 // Try to vectorize V. 1812 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 1813 return true; 1814 1815 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 1816 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 1817 // Try to skip B. 1818 if (B && B->hasOneUse()) { 1819 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 1820 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 1821 if (tryToVectorizePair(A, B0, R)) { 1822 B->moveBefore(V); 1823 return true; 1824 } 1825 if (tryToVectorizePair(A, B1, R)) { 1826 B->moveBefore(V); 1827 return true; 1828 } 1829 } 1830 1831 // Try to skip A. 1832 if (A && A->hasOneUse()) { 1833 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 1834 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 1835 if (tryToVectorizePair(A0, B, R)) { 1836 A->moveBefore(V); 1837 return true; 1838 } 1839 if (tryToVectorizePair(A1, B, R)) { 1840 A->moveBefore(V); 1841 return true; 1842 } 1843 } 1844 return 0; 1845 } 1846 1847 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 1848 bool Changed = false; 1849 SmallVector<Value *, 4> Incoming; 1850 // Collect the incoming values from the PHIs. 1851 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 1852 ++instr) { 1853 PHINode *P = dyn_cast<PHINode>(instr); 1854 1855 if (!P) 1856 break; 1857 1858 // Stop constructing the list when you reach a different type. 1859 if (Incoming.size() && P->getType() != Incoming[0]->getType()) { 1860 Changed |= tryToVectorizeList(Incoming, R); 1861 Incoming.clear(); 1862 } 1863 1864 Incoming.push_back(P); 1865 } 1866 1867 if (Incoming.size() > 1) 1868 Changed |= tryToVectorizeList(Incoming, R); 1869 1870 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 1871 if (isa<DbgInfoIntrinsic>(it)) 1872 continue; 1873 1874 // Try to vectorize reductions that use PHINodes. 1875 if (PHINode *P = dyn_cast<PHINode>(it)) { 1876 // Check that the PHI is a reduction PHI. 1877 if (P->getNumIncomingValues() != 2) 1878 return Changed; 1879 Value *Rdx = 1880 (P->getIncomingBlock(0) == BB 1881 ? (P->getIncomingValue(0)) 1882 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0)); 1883 // Check if this is a Binary Operator. 1884 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 1885 if (!BI) 1886 continue; 1887 1888 Value *Inst = BI->getOperand(0); 1889 if (Inst == P) 1890 Inst = BI->getOperand(1); 1891 1892 Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R); 1893 continue; 1894 } 1895 1896 // Try to vectorize trees that start at compare instructions. 1897 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 1898 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 1899 Changed |= true; 1900 continue; 1901 } 1902 for (int i = 0; i < 2; ++i) 1903 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) 1904 Changed |= 1905 tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R); 1906 continue; 1907 } 1908 } 1909 1910 return Changed; 1911 } 1912 1913 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 1914 bool Changed = false; 1915 // Attempt to sort and vectorize each of the store-groups. 1916 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 1917 it != e; ++it) { 1918 if (it->second.size() < 2) 1919 continue; 1920 1921 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 1922 << it->second.size() << ".\n"); 1923 1924 // Process the stores in chunks of 16. 1925 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 1926 unsigned Len = std::min<unsigned>(CE - CI, 16); 1927 ArrayRef<StoreInst *> Chunk(&it->second[CI], Len); 1928 Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); 1929 } 1930 } 1931 return Changed; 1932 } 1933 1934 } // end anonymous namespace 1935 1936 char SLPVectorizer::ID = 0; 1937 static const char lv_name[] = "SLP Vectorizer"; 1938 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 1939 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 1940 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 1941 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 1942 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1943 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 1944 1945 namespace llvm { 1946 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 1947 } 1948