1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 291 /// TODO: Can we split off and reuse the shuffle mask detection from 292 /// TargetTransformInfo::getInstructionThroughput? 293 static Optional<TargetTransformInfo::ShuffleKind> 294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 295 auto *EI0 = cast<ExtractElementInst>(VL[0]); 296 unsigned Size = 297 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 298 Value *Vec1 = nullptr; 299 Value *Vec2 = nullptr; 300 enum ShuffleMode { Unknown, Select, Permute }; 301 ShuffleMode CommonShuffleMode = Unknown; 302 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 303 auto *EI = cast<ExtractElementInst>(VL[I]); 304 auto *Vec = EI->getVectorOperand(); 305 // All vector operands must have the same number of vector elements. 306 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 307 return None; 308 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 309 if (!Idx) 310 return None; 311 // Undefined behavior if Idx is negative or >= Size. 312 if (Idx->getValue().uge(Size)) { 313 Mask.push_back(UndefMaskElem); 314 continue; 315 } 316 unsigned IntIdx = Idx->getValue().getZExtValue(); 317 Mask.push_back(IntIdx); 318 // We can extractelement from undef or poison vector. 319 if (isa<UndefValue>(Vec)) 320 continue; 321 // For correct shuffling we have to have at most 2 different vector operands 322 // in all extractelement instructions. 323 if (!Vec1 || Vec1 == Vec) 324 Vec1 = Vec; 325 else if (!Vec2 || Vec2 == Vec) 326 Vec2 = Vec; 327 else 328 return None; 329 if (CommonShuffleMode == Permute) 330 continue; 331 // If the extract index is not the same as the operation number, it is a 332 // permutation. 333 if (IntIdx != I) { 334 CommonShuffleMode = Permute; 335 continue; 336 } 337 CommonShuffleMode = Select; 338 } 339 // If we're not crossing lanes in different vectors, consider it as blending. 340 if (CommonShuffleMode == Select && Vec2) 341 return TargetTransformInfo::SK_Select; 342 // If Vec2 was never used, we have a permutation of a single vector, otherwise 343 // we have permutation of 2 vectors. 344 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 345 : TargetTransformInfo::SK_PermuteSingleSrc; 346 } 347 348 namespace { 349 350 /// Main data required for vectorization of instructions. 351 struct InstructionsState { 352 /// The very first instruction in the list with the main opcode. 353 Value *OpValue = nullptr; 354 355 /// The main/alternate instruction. 356 Instruction *MainOp = nullptr; 357 Instruction *AltOp = nullptr; 358 359 /// The main/alternate opcodes for the list of instructions. 360 unsigned getOpcode() const { 361 return MainOp ? MainOp->getOpcode() : 0; 362 } 363 364 unsigned getAltOpcode() const { 365 return AltOp ? AltOp->getOpcode() : 0; 366 } 367 368 /// Some of the instructions in the list have alternate opcodes. 369 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 370 371 bool isOpcodeOrAlt(Instruction *I) const { 372 unsigned CheckedOpcode = I->getOpcode(); 373 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 374 } 375 376 InstructionsState() = delete; 377 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 378 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 379 }; 380 381 } // end anonymous namespace 382 383 /// Chooses the correct key for scheduling data. If \p Op has the same (or 384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 385 /// OpValue. 386 static Value *isOneOf(const InstructionsState &S, Value *Op) { 387 auto *I = dyn_cast<Instruction>(Op); 388 if (I && S.isOpcodeOrAlt(I)) 389 return Op; 390 return S.OpValue; 391 } 392 393 /// \returns true if \p Opcode is allowed as part of of the main/alternate 394 /// instruction for SLP vectorization. 395 /// 396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 397 /// "shuffled out" lane would result in division by zero. 398 static bool isValidForAlternation(unsigned Opcode) { 399 if (Instruction::isIntDivRem(Opcode)) 400 return false; 401 402 return true; 403 } 404 405 /// \returns analysis of the Instructions in \p VL described in 406 /// InstructionsState, the Opcode that we suppose the whole list 407 /// could be vectorized even if its structure is diverse. 408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 409 unsigned BaseIndex = 0) { 410 // Make sure these are all Instructions. 411 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 412 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 413 414 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 415 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 416 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 417 unsigned AltOpcode = Opcode; 418 unsigned AltIndex = BaseIndex; 419 420 // Check for one alternate opcode from another BinaryOperator. 421 // TODO - generalize to support all operators (types, calls etc.). 422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 423 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 424 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 425 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 426 continue; 427 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 428 isValidForAlternation(Opcode)) { 429 AltOpcode = InstOpcode; 430 AltIndex = Cnt; 431 continue; 432 } 433 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 434 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 435 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 436 if (Ty0 == Ty1) { 437 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 438 continue; 439 if (Opcode == AltOpcode) { 440 assert(isValidForAlternation(Opcode) && 441 isValidForAlternation(InstOpcode) && 442 "Cast isn't safe for alternation, logic needs to be updated!"); 443 AltOpcode = InstOpcode; 444 AltIndex = Cnt; 445 continue; 446 } 447 } 448 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 449 continue; 450 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 451 } 452 453 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 454 cast<Instruction>(VL[AltIndex])); 455 } 456 457 /// \returns true if all of the values in \p VL have the same type or false 458 /// otherwise. 459 static bool allSameType(ArrayRef<Value *> VL) { 460 Type *Ty = VL[0]->getType(); 461 for (int i = 1, e = VL.size(); i < e; i++) 462 if (VL[i]->getType() != Ty) 463 return false; 464 465 return true; 466 } 467 468 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 469 static Optional<unsigned> getExtractIndex(Instruction *E) { 470 unsigned Opcode = E->getOpcode(); 471 assert((Opcode == Instruction::ExtractElement || 472 Opcode == Instruction::ExtractValue) && 473 "Expected extractelement or extractvalue instruction."); 474 if (Opcode == Instruction::ExtractElement) { 475 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 476 if (!CI) 477 return None; 478 return CI->getZExtValue(); 479 } 480 ExtractValueInst *EI = cast<ExtractValueInst>(E); 481 if (EI->getNumIndices() != 1) 482 return None; 483 return *EI->idx_begin(); 484 } 485 486 /// \returns True if in-tree use also needs extract. This refers to 487 /// possible scalar operand in vectorized instruction. 488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 489 TargetLibraryInfo *TLI) { 490 unsigned Opcode = UserInst->getOpcode(); 491 switch (Opcode) { 492 case Instruction::Load: { 493 LoadInst *LI = cast<LoadInst>(UserInst); 494 return (LI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Store: { 497 StoreInst *SI = cast<StoreInst>(UserInst); 498 return (SI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Call: { 501 CallInst *CI = cast<CallInst>(UserInst); 502 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 503 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 504 if (hasVectorInstrinsicScalarOpd(ID, i)) 505 return (CI->getArgOperand(i) == Scalar); 506 } 507 LLVM_FALLTHROUGH; 508 } 509 default: 510 return false; 511 } 512 } 513 514 /// \returns the AA location that is being access by the instruction. 515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 516 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 517 return MemoryLocation::get(SI); 518 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 519 return MemoryLocation::get(LI); 520 return MemoryLocation(); 521 } 522 523 /// \returns True if the instruction is not a volatile or atomic load/store. 524 static bool isSimple(Instruction *I) { 525 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 526 return LI->isSimple(); 527 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 528 return SI->isSimple(); 529 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 530 return !MI->isVolatile(); 531 return true; 532 } 533 534 namespace llvm { 535 536 static void inversePermutation(ArrayRef<unsigned> Indices, 537 SmallVectorImpl<int> &Mask) { 538 Mask.clear(); 539 const unsigned E = Indices.size(); 540 Mask.resize(E, E + 1); 541 for (unsigned I = 0; I < E; ++I) 542 Mask[Indices[I]] = I; 543 } 544 545 namespace slpvectorizer { 546 547 /// Bottom Up SLP Vectorizer. 548 class BoUpSLP { 549 struct TreeEntry; 550 struct ScheduleData; 551 552 public: 553 using ValueList = SmallVector<Value *, 8>; 554 using InstrList = SmallVector<Instruction *, 16>; 555 using ValueSet = SmallPtrSet<Value *, 16>; 556 using StoreList = SmallVector<StoreInst *, 8>; 557 using ExtraValueToDebugLocsMap = 558 MapVector<Value *, SmallVector<Instruction *, 2>>; 559 using OrdersType = SmallVector<unsigned, 4>; 560 561 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 562 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 563 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 564 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 565 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 566 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 567 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 568 // Use the vector register size specified by the target unless overridden 569 // by a command-line option. 570 // TODO: It would be better to limit the vectorization factor based on 571 // data type rather than just register size. For example, x86 AVX has 572 // 256-bit registers, but it does not support integer operations 573 // at that width (that requires AVX2). 574 if (MaxVectorRegSizeOption.getNumOccurrences()) 575 MaxVecRegSize = MaxVectorRegSizeOption; 576 else 577 MaxVecRegSize = 578 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 579 .getFixedSize(); 580 581 if (MinVectorRegSizeOption.getNumOccurrences()) 582 MinVecRegSize = MinVectorRegSizeOption; 583 else 584 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 585 } 586 587 /// Vectorize the tree that starts with the elements in \p VL. 588 /// Returns the vectorized root. 589 Value *vectorizeTree(); 590 591 /// Vectorize the tree but with the list of externally used values \p 592 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 593 /// generated extractvalue instructions. 594 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 595 596 /// \returns the cost incurred by unwanted spills and fills, caused by 597 /// holding live values over call sites. 598 InstructionCost getSpillCost() const; 599 600 /// \returns the vectorization cost of the subtree that starts at \p VL. 601 /// A negative number means that this is profitable. 602 InstructionCost getTreeCost(); 603 604 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 605 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 606 void buildTree(ArrayRef<Value *> Roots, 607 ArrayRef<Value *> UserIgnoreLst = None); 608 609 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 610 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 611 /// into account (and updating it, if required) list of externally used 612 /// values stored in \p ExternallyUsedValues. 613 void buildTree(ArrayRef<Value *> Roots, 614 ExtraValueToDebugLocsMap &ExternallyUsedValues, 615 ArrayRef<Value *> UserIgnoreLst = None); 616 617 /// Clear the internal data structures that are created by 'buildTree'. 618 void deleteTree() { 619 VectorizableTree.clear(); 620 ScalarToTreeEntry.clear(); 621 MustGather.clear(); 622 ExternalUses.clear(); 623 NumOpsWantToKeepOrder.clear(); 624 NumOpsWantToKeepOriginalOrder = 0; 625 for (auto &Iter : BlocksSchedules) { 626 BlockScheduling *BS = Iter.second.get(); 627 BS->clear(); 628 } 629 MinBWs.clear(); 630 InstrElementSize.clear(); 631 } 632 633 unsigned getTreeSize() const { return VectorizableTree.size(); } 634 635 /// Perform LICM and CSE on the newly generated gather sequences. 636 void optimizeGatherSequence(); 637 638 /// \returns The best order of instructions for vectorization. 639 Optional<ArrayRef<unsigned>> bestOrder() const { 640 assert(llvm::all_of( 641 NumOpsWantToKeepOrder, 642 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 643 return D.getFirst().size() == 644 VectorizableTree[0]->Scalars.size(); 645 }) && 646 "All orders must have the same size as number of instructions in " 647 "tree node."); 648 auto I = std::max_element( 649 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 650 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 651 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 652 return D1.second < D2.second; 653 }); 654 if (I == NumOpsWantToKeepOrder.end() || 655 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 656 return None; 657 658 return makeArrayRef(I->getFirst()); 659 } 660 661 /// Builds the correct order for root instructions. 662 /// If some leaves have the same instructions to be vectorized, we may 663 /// incorrectly evaluate the best order for the root node (it is built for the 664 /// vector of instructions without repeated instructions and, thus, has less 665 /// elements than the root node). This function builds the correct order for 666 /// the root node. 667 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 668 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 669 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 670 /// be reordered, the best order will be \<1, 0\>. We need to extend this 671 /// order for the root node. For the root node this order should look like 672 /// \<3, 0, 1, 2\>. This function extends the order for the reused 673 /// instructions. 674 void findRootOrder(OrdersType &Order) { 675 // If the leaf has the same number of instructions to vectorize as the root 676 // - order must be set already. 677 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 678 if (Order.size() == RootSize) 679 return; 680 SmallVector<unsigned, 4> RealOrder(Order.size()); 681 std::swap(Order, RealOrder); 682 SmallVector<int, 4> Mask; 683 inversePermutation(RealOrder, Mask); 684 Order.assign(Mask.begin(), Mask.end()); 685 // The leaf has less number of instructions - need to find the true order of 686 // the root. 687 // Scan the nodes starting from the leaf back to the root. 688 const TreeEntry *PNode = VectorizableTree.back().get(); 689 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 690 SmallPtrSet<const TreeEntry *, 4> Visited; 691 while (!Nodes.empty() && Order.size() != RootSize) { 692 const TreeEntry *PNode = Nodes.pop_back_val(); 693 if (!Visited.insert(PNode).second) 694 continue; 695 const TreeEntry &Node = *PNode; 696 for (const EdgeInfo &EI : Node.UserTreeIndices) 697 if (EI.UserTE) 698 Nodes.push_back(EI.UserTE); 699 if (Node.ReuseShuffleIndices.empty()) 700 continue; 701 // Build the order for the parent node. 702 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 703 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 704 // The algorithm of the order extension is: 705 // 1. Calculate the number of the same instructions for the order. 706 // 2. Calculate the index of the new order: total number of instructions 707 // with order less than the order of the current instruction + reuse 708 // number of the current instruction. 709 // 3. The new order is just the index of the instruction in the original 710 // vector of the instructions. 711 for (unsigned I : Node.ReuseShuffleIndices) 712 ++OrderCounter[Order[I]]; 713 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 714 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 715 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 716 unsigned OrderIdx = Order[ReusedIdx]; 717 unsigned NewIdx = 0; 718 for (unsigned J = 0; J < OrderIdx; ++J) 719 NewIdx += OrderCounter[J]; 720 NewIdx += CurrentCounter[OrderIdx]; 721 ++CurrentCounter[OrderIdx]; 722 assert(NewOrder[NewIdx] == RootSize && 723 "The order index should not be written already."); 724 NewOrder[NewIdx] = I; 725 } 726 std::swap(Order, NewOrder); 727 } 728 assert(Order.size() == RootSize && 729 "Root node is expected or the size of the order must be the same as " 730 "the number of elements in the root node."); 731 assert(llvm::all_of(Order, 732 [RootSize](unsigned Val) { return Val != RootSize; }) && 733 "All indices must be initialized"); 734 } 735 736 /// \return The vector element size in bits to use when vectorizing the 737 /// expression tree ending at \p V. If V is a store, the size is the width of 738 /// the stored value. Otherwise, the size is the width of the largest loaded 739 /// value reaching V. This method is used by the vectorizer to calculate 740 /// vectorization factors. 741 unsigned getVectorElementSize(Value *V); 742 743 /// Compute the minimum type sizes required to represent the entries in a 744 /// vectorizable tree. 745 void computeMinimumValueSizes(); 746 747 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 748 unsigned getMaxVecRegSize() const { 749 return MaxVecRegSize; 750 } 751 752 // \returns minimum vector register size as set by cl::opt. 753 unsigned getMinVecRegSize() const { 754 return MinVecRegSize; 755 } 756 757 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 758 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 759 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 760 return MaxVF ? MaxVF : UINT_MAX; 761 } 762 763 /// Check if homogeneous aggregate is isomorphic to some VectorType. 764 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 765 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 766 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 767 /// 768 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 769 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 770 771 /// \returns True if the VectorizableTree is both tiny and not fully 772 /// vectorizable. We do not vectorize such trees. 773 bool isTreeTinyAndNotFullyVectorizable() const; 774 775 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 776 /// can be load combined in the backend. Load combining may not be allowed in 777 /// the IR optimizer, so we do not want to alter the pattern. For example, 778 /// partially transforming a scalar bswap() pattern into vector code is 779 /// effectively impossible for the backend to undo. 780 /// TODO: If load combining is allowed in the IR optimizer, this analysis 781 /// may not be necessary. 782 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 783 784 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 785 /// can be load combined in the backend. Load combining may not be allowed in 786 /// the IR optimizer, so we do not want to alter the pattern. For example, 787 /// partially transforming a scalar bswap() pattern into vector code is 788 /// effectively impossible for the backend to undo. 789 /// TODO: If load combining is allowed in the IR optimizer, this analysis 790 /// may not be necessary. 791 bool isLoadCombineCandidate() const; 792 793 OptimizationRemarkEmitter *getORE() { return ORE; } 794 795 /// This structure holds any data we need about the edges being traversed 796 /// during buildTree_rec(). We keep track of: 797 /// (i) the user TreeEntry index, and 798 /// (ii) the index of the edge. 799 struct EdgeInfo { 800 EdgeInfo() = default; 801 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 802 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 803 /// The user TreeEntry. 804 TreeEntry *UserTE = nullptr; 805 /// The operand index of the use. 806 unsigned EdgeIdx = UINT_MAX; 807 #ifndef NDEBUG 808 friend inline raw_ostream &operator<<(raw_ostream &OS, 809 const BoUpSLP::EdgeInfo &EI) { 810 EI.dump(OS); 811 return OS; 812 } 813 /// Debug print. 814 void dump(raw_ostream &OS) const { 815 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 816 << " EdgeIdx:" << EdgeIdx << "}"; 817 } 818 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 819 #endif 820 }; 821 822 /// A helper data structure to hold the operands of a vector of instructions. 823 /// This supports a fixed vector length for all operand vectors. 824 class VLOperands { 825 /// For each operand we need (i) the value, and (ii) the opcode that it 826 /// would be attached to if the expression was in a left-linearized form. 827 /// This is required to avoid illegal operand reordering. 828 /// For example: 829 /// \verbatim 830 /// 0 Op1 831 /// |/ 832 /// Op1 Op2 Linearized + Op2 833 /// \ / ----------> |/ 834 /// - - 835 /// 836 /// Op1 - Op2 (0 + Op1) - Op2 837 /// \endverbatim 838 /// 839 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 840 /// 841 /// Another way to think of this is to track all the operations across the 842 /// path from the operand all the way to the root of the tree and to 843 /// calculate the operation that corresponds to this path. For example, the 844 /// path from Op2 to the root crosses the RHS of the '-', therefore the 845 /// corresponding operation is a '-' (which matches the one in the 846 /// linearized tree, as shown above). 847 /// 848 /// For lack of a better term, we refer to this operation as Accumulated 849 /// Path Operation (APO). 850 struct OperandData { 851 OperandData() = default; 852 OperandData(Value *V, bool APO, bool IsUsed) 853 : V(V), APO(APO), IsUsed(IsUsed) {} 854 /// The operand value. 855 Value *V = nullptr; 856 /// TreeEntries only allow a single opcode, or an alternate sequence of 857 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 858 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 859 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 860 /// (e.g., Add/Mul) 861 bool APO = false; 862 /// Helper data for the reordering function. 863 bool IsUsed = false; 864 }; 865 866 /// During operand reordering, we are trying to select the operand at lane 867 /// that matches best with the operand at the neighboring lane. Our 868 /// selection is based on the type of value we are looking for. For example, 869 /// if the neighboring lane has a load, we need to look for a load that is 870 /// accessing a consecutive address. These strategies are summarized in the 871 /// 'ReorderingMode' enumerator. 872 enum class ReorderingMode { 873 Load, ///< Matching loads to consecutive memory addresses 874 Opcode, ///< Matching instructions based on opcode (same or alternate) 875 Constant, ///< Matching constants 876 Splat, ///< Matching the same instruction multiple times (broadcast) 877 Failed, ///< We failed to create a vectorizable group 878 }; 879 880 using OperandDataVec = SmallVector<OperandData, 2>; 881 882 /// A vector of operand vectors. 883 SmallVector<OperandDataVec, 4> OpsVec; 884 885 const DataLayout &DL; 886 ScalarEvolution &SE; 887 const BoUpSLP &R; 888 889 /// \returns the operand data at \p OpIdx and \p Lane. 890 OperandData &getData(unsigned OpIdx, unsigned Lane) { 891 return OpsVec[OpIdx][Lane]; 892 } 893 894 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 895 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 896 return OpsVec[OpIdx][Lane]; 897 } 898 899 /// Clears the used flag for all entries. 900 void clearUsed() { 901 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 902 OpIdx != NumOperands; ++OpIdx) 903 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 904 ++Lane) 905 OpsVec[OpIdx][Lane].IsUsed = false; 906 } 907 908 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 909 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 910 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 911 } 912 913 // The hard-coded scores listed here are not very important. When computing 914 // the scores of matching one sub-tree with another, we are basically 915 // counting the number of values that are matching. So even if all scores 916 // are set to 1, we would still get a decent matching result. 917 // However, sometimes we have to break ties. For example we may have to 918 // choose between matching loads vs matching opcodes. This is what these 919 // scores are helping us with: they provide the order of preference. 920 921 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 922 static const int ScoreConsecutiveLoads = 3; 923 /// ExtractElementInst from same vector and consecutive indexes. 924 static const int ScoreConsecutiveExtracts = 3; 925 /// Constants. 926 static const int ScoreConstants = 2; 927 /// Instructions with the same opcode. 928 static const int ScoreSameOpcode = 2; 929 /// Instructions with alt opcodes (e.g, add + sub). 930 static const int ScoreAltOpcodes = 1; 931 /// Identical instructions (a.k.a. splat or broadcast). 932 static const int ScoreSplat = 1; 933 /// Matching with an undef is preferable to failing. 934 static const int ScoreUndef = 1; 935 /// Score for failing to find a decent match. 936 static const int ScoreFail = 0; 937 /// User exteranl to the vectorized code. 938 static const int ExternalUseCost = 1; 939 /// The user is internal but in a different lane. 940 static const int UserInDiffLaneCost = ExternalUseCost; 941 942 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 943 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 944 ScalarEvolution &SE) { 945 auto *LI1 = dyn_cast<LoadInst>(V1); 946 auto *LI2 = dyn_cast<LoadInst>(V2); 947 if (LI1 && LI2) { 948 if (LI1->getParent() != LI2->getParent()) 949 return VLOperands::ScoreFail; 950 951 Optional<int> Dist = 952 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(), 953 DL, SE, /*StrictCheck=*/true); 954 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 955 : VLOperands::ScoreFail; 956 } 957 958 auto *C1 = dyn_cast<Constant>(V1); 959 auto *C2 = dyn_cast<Constant>(V2); 960 if (C1 && C2) 961 return VLOperands::ScoreConstants; 962 963 // Extracts from consecutive indexes of the same vector better score as 964 // the extracts could be optimized away. 965 Value *EV; 966 ConstantInt *Ex1Idx, *Ex2Idx; 967 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 968 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 969 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 970 return VLOperands::ScoreConsecutiveExtracts; 971 972 auto *I1 = dyn_cast<Instruction>(V1); 973 auto *I2 = dyn_cast<Instruction>(V2); 974 if (I1 && I2) { 975 if (I1 == I2) 976 return VLOperands::ScoreSplat; 977 InstructionsState S = getSameOpcode({I1, I2}); 978 // Note: Only consider instructions with <= 2 operands to avoid 979 // complexity explosion. 980 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 981 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 982 : VLOperands::ScoreSameOpcode; 983 } 984 985 if (isa<UndefValue>(V2)) 986 return VLOperands::ScoreUndef; 987 988 return VLOperands::ScoreFail; 989 } 990 991 /// Holds the values and their lane that are taking part in the look-ahead 992 /// score calculation. This is used in the external uses cost calculation. 993 SmallDenseMap<Value *, int> InLookAheadValues; 994 995 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 996 /// either external to the vectorized code, or require shuffling. 997 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 998 const std::pair<Value *, int> &RHS) { 999 int Cost = 0; 1000 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1001 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1002 Value *V = Values[Idx].first; 1003 if (isa<Constant>(V)) { 1004 // Since this is a function pass, it doesn't make semantic sense to 1005 // walk the users of a subclass of Constant. The users could be in 1006 // another function, or even another module that happens to be in 1007 // the same LLVMContext. 1008 continue; 1009 } 1010 1011 // Calculate the absolute lane, using the minimum relative lane of LHS 1012 // and RHS as base and Idx as the offset. 1013 int Ln = std::min(LHS.second, RHS.second) + Idx; 1014 assert(Ln >= 0 && "Bad lane calculation"); 1015 unsigned UsersBudget = LookAheadUsersBudget; 1016 for (User *U : V->users()) { 1017 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1018 // The user is in the VectorizableTree. Check if we need to insert. 1019 auto It = llvm::find(UserTE->Scalars, U); 1020 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1021 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1022 assert(UserLn >= 0 && "Bad lane"); 1023 if (UserLn != Ln) 1024 Cost += UserInDiffLaneCost; 1025 } else { 1026 // Check if the user is in the look-ahead code. 1027 auto It2 = InLookAheadValues.find(U); 1028 if (It2 != InLookAheadValues.end()) { 1029 // The user is in the look-ahead code. Check the lane. 1030 if (It2->second != Ln) 1031 Cost += UserInDiffLaneCost; 1032 } else { 1033 // The user is neither in SLP tree nor in the look-ahead code. 1034 Cost += ExternalUseCost; 1035 } 1036 } 1037 // Limit the number of visited uses to cap compilation time. 1038 if (--UsersBudget == 0) 1039 break; 1040 } 1041 } 1042 return Cost; 1043 } 1044 1045 /// Go through the operands of \p LHS and \p RHS recursively until \p 1046 /// MaxLevel, and return the cummulative score. For example: 1047 /// \verbatim 1048 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1049 /// \ / \ / \ / \ / 1050 /// + + + + 1051 /// G1 G2 G3 G4 1052 /// \endverbatim 1053 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1054 /// each level recursively, accumulating the score. It starts from matching 1055 /// the additions at level 0, then moves on to the loads (level 1). The 1056 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1057 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1058 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1059 /// Please note that the order of the operands does not matter, as we 1060 /// evaluate the score of all profitable combinations of operands. In 1061 /// other words the score of G1 and G4 is the same as G1 and G2. This 1062 /// heuristic is based on ideas described in: 1063 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1064 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1065 /// Luís F. W. Góes 1066 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1067 const std::pair<Value *, int> &RHS, int CurrLevel, 1068 int MaxLevel) { 1069 1070 Value *V1 = LHS.first; 1071 Value *V2 = RHS.first; 1072 // Get the shallow score of V1 and V2. 1073 int ShallowScoreAtThisLevel = 1074 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1075 getExternalUsesCost(LHS, RHS)); 1076 int Lane1 = LHS.second; 1077 int Lane2 = RHS.second; 1078 1079 // If reached MaxLevel, 1080 // or if V1 and V2 are not instructions, 1081 // or if they are SPLAT, 1082 // or if they are not consecutive, early return the current cost. 1083 auto *I1 = dyn_cast<Instruction>(V1); 1084 auto *I2 = dyn_cast<Instruction>(V2); 1085 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1086 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1087 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1088 return ShallowScoreAtThisLevel; 1089 assert(I1 && I2 && "Should have early exited."); 1090 1091 // Keep track of in-tree values for determining the external-use cost. 1092 InLookAheadValues[V1] = Lane1; 1093 InLookAheadValues[V2] = Lane2; 1094 1095 // Contains the I2 operand indexes that got matched with I1 operands. 1096 SmallSet<unsigned, 4> Op2Used; 1097 1098 // Recursion towards the operands of I1 and I2. We are trying all possbile 1099 // operand pairs, and keeping track of the best score. 1100 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1101 OpIdx1 != NumOperands1; ++OpIdx1) { 1102 // Try to pair op1I with the best operand of I2. 1103 int MaxTmpScore = 0; 1104 unsigned MaxOpIdx2 = 0; 1105 bool FoundBest = false; 1106 // If I2 is commutative try all combinations. 1107 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1108 unsigned ToIdx = isCommutative(I2) 1109 ? I2->getNumOperands() 1110 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1111 assert(FromIdx <= ToIdx && "Bad index"); 1112 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1113 // Skip operands already paired with OpIdx1. 1114 if (Op2Used.count(OpIdx2)) 1115 continue; 1116 // Recursively calculate the cost at each level 1117 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1118 {I2->getOperand(OpIdx2), Lane2}, 1119 CurrLevel + 1, MaxLevel); 1120 // Look for the best score. 1121 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1122 MaxTmpScore = TmpScore; 1123 MaxOpIdx2 = OpIdx2; 1124 FoundBest = true; 1125 } 1126 } 1127 if (FoundBest) { 1128 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1129 Op2Used.insert(MaxOpIdx2); 1130 ShallowScoreAtThisLevel += MaxTmpScore; 1131 } 1132 } 1133 return ShallowScoreAtThisLevel; 1134 } 1135 1136 /// \Returns the look-ahead score, which tells us how much the sub-trees 1137 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1138 /// score. This helps break ties in an informed way when we cannot decide on 1139 /// the order of the operands by just considering the immediate 1140 /// predecessors. 1141 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1142 const std::pair<Value *, int> &RHS) { 1143 InLookAheadValues.clear(); 1144 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1145 } 1146 1147 // Search all operands in Ops[*][Lane] for the one that matches best 1148 // Ops[OpIdx][LastLane] and return its opreand index. 1149 // If no good match can be found, return None. 1150 Optional<unsigned> 1151 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1152 ArrayRef<ReorderingMode> ReorderingModes) { 1153 unsigned NumOperands = getNumOperands(); 1154 1155 // The operand of the previous lane at OpIdx. 1156 Value *OpLastLane = getData(OpIdx, LastLane).V; 1157 1158 // Our strategy mode for OpIdx. 1159 ReorderingMode RMode = ReorderingModes[OpIdx]; 1160 1161 // The linearized opcode of the operand at OpIdx, Lane. 1162 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1163 1164 // The best operand index and its score. 1165 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1166 // are using the score to differentiate between the two. 1167 struct BestOpData { 1168 Optional<unsigned> Idx = None; 1169 unsigned Score = 0; 1170 } BestOp; 1171 1172 // Iterate through all unused operands and look for the best. 1173 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1174 // Get the operand at Idx and Lane. 1175 OperandData &OpData = getData(Idx, Lane); 1176 Value *Op = OpData.V; 1177 bool OpAPO = OpData.APO; 1178 1179 // Skip already selected operands. 1180 if (OpData.IsUsed) 1181 continue; 1182 1183 // Skip if we are trying to move the operand to a position with a 1184 // different opcode in the linearized tree form. This would break the 1185 // semantics. 1186 if (OpAPO != OpIdxAPO) 1187 continue; 1188 1189 // Look for an operand that matches the current mode. 1190 switch (RMode) { 1191 case ReorderingMode::Load: 1192 case ReorderingMode::Constant: 1193 case ReorderingMode::Opcode: { 1194 bool LeftToRight = Lane > LastLane; 1195 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1196 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1197 unsigned Score = 1198 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1199 if (Score > BestOp.Score) { 1200 BestOp.Idx = Idx; 1201 BestOp.Score = Score; 1202 } 1203 break; 1204 } 1205 case ReorderingMode::Splat: 1206 if (Op == OpLastLane) 1207 BestOp.Idx = Idx; 1208 break; 1209 case ReorderingMode::Failed: 1210 return None; 1211 } 1212 } 1213 1214 if (BestOp.Idx) { 1215 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1216 return BestOp.Idx; 1217 } 1218 // If we could not find a good match return None. 1219 return None; 1220 } 1221 1222 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1223 /// reordering from. This is the one which has the least number of operands 1224 /// that can freely move about. 1225 unsigned getBestLaneToStartReordering() const { 1226 unsigned BestLane = 0; 1227 unsigned Min = UINT_MAX; 1228 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1229 ++Lane) { 1230 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1231 if (NumFreeOps < Min) { 1232 Min = NumFreeOps; 1233 BestLane = Lane; 1234 } 1235 } 1236 return BestLane; 1237 } 1238 1239 /// \Returns the maximum number of operands that are allowed to be reordered 1240 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1241 /// start operand reordering. 1242 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1243 unsigned CntTrue = 0; 1244 unsigned NumOperands = getNumOperands(); 1245 // Operands with the same APO can be reordered. We therefore need to count 1246 // how many of them we have for each APO, like this: Cnt[APO] = x. 1247 // Since we only have two APOs, namely true and false, we can avoid using 1248 // a map. Instead we can simply count the number of operands that 1249 // correspond to one of them (in this case the 'true' APO), and calculate 1250 // the other by subtracting it from the total number of operands. 1251 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1252 if (getData(OpIdx, Lane).APO) 1253 ++CntTrue; 1254 unsigned CntFalse = NumOperands - CntTrue; 1255 return std::max(CntTrue, CntFalse); 1256 } 1257 1258 /// Go through the instructions in VL and append their operands. 1259 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1260 assert(!VL.empty() && "Bad VL"); 1261 assert((empty() || VL.size() == getNumLanes()) && 1262 "Expected same number of lanes"); 1263 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1264 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1265 OpsVec.resize(NumOperands); 1266 unsigned NumLanes = VL.size(); 1267 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1268 OpsVec[OpIdx].resize(NumLanes); 1269 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1270 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1271 // Our tree has just 3 nodes: the root and two operands. 1272 // It is therefore trivial to get the APO. We only need to check the 1273 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1274 // RHS operand. The LHS operand of both add and sub is never attached 1275 // to an inversese operation in the linearized form, therefore its APO 1276 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1277 1278 // Since operand reordering is performed on groups of commutative 1279 // operations or alternating sequences (e.g., +, -), we can safely 1280 // tell the inverse operations by checking commutativity. 1281 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1282 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1283 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1284 APO, false}; 1285 } 1286 } 1287 } 1288 1289 /// \returns the number of operands. 1290 unsigned getNumOperands() const { return OpsVec.size(); } 1291 1292 /// \returns the number of lanes. 1293 unsigned getNumLanes() const { return OpsVec[0].size(); } 1294 1295 /// \returns the operand value at \p OpIdx and \p Lane. 1296 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1297 return getData(OpIdx, Lane).V; 1298 } 1299 1300 /// \returns true if the data structure is empty. 1301 bool empty() const { return OpsVec.empty(); } 1302 1303 /// Clears the data. 1304 void clear() { OpsVec.clear(); } 1305 1306 /// \Returns true if there are enough operands identical to \p Op to fill 1307 /// the whole vector. 1308 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1309 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1310 bool OpAPO = getData(OpIdx, Lane).APO; 1311 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1312 if (Ln == Lane) 1313 continue; 1314 // This is set to true if we found a candidate for broadcast at Lane. 1315 bool FoundCandidate = false; 1316 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1317 OperandData &Data = getData(OpI, Ln); 1318 if (Data.APO != OpAPO || Data.IsUsed) 1319 continue; 1320 if (Data.V == Op) { 1321 FoundCandidate = true; 1322 Data.IsUsed = true; 1323 break; 1324 } 1325 } 1326 if (!FoundCandidate) 1327 return false; 1328 } 1329 return true; 1330 } 1331 1332 public: 1333 /// Initialize with all the operands of the instruction vector \p RootVL. 1334 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1335 ScalarEvolution &SE, const BoUpSLP &R) 1336 : DL(DL), SE(SE), R(R) { 1337 // Append all the operands of RootVL. 1338 appendOperandsOfVL(RootVL); 1339 } 1340 1341 /// \Returns a value vector with the operands across all lanes for the 1342 /// opearnd at \p OpIdx. 1343 ValueList getVL(unsigned OpIdx) const { 1344 ValueList OpVL(OpsVec[OpIdx].size()); 1345 assert(OpsVec[OpIdx].size() == getNumLanes() && 1346 "Expected same num of lanes across all operands"); 1347 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1348 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1349 return OpVL; 1350 } 1351 1352 // Performs operand reordering for 2 or more operands. 1353 // The original operands are in OrigOps[OpIdx][Lane]. 1354 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1355 void reorder() { 1356 unsigned NumOperands = getNumOperands(); 1357 unsigned NumLanes = getNumLanes(); 1358 // Each operand has its own mode. We are using this mode to help us select 1359 // the instructions for each lane, so that they match best with the ones 1360 // we have selected so far. 1361 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1362 1363 // This is a greedy single-pass algorithm. We are going over each lane 1364 // once and deciding on the best order right away with no back-tracking. 1365 // However, in order to increase its effectiveness, we start with the lane 1366 // that has operands that can move the least. For example, given the 1367 // following lanes: 1368 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1369 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1370 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1371 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1372 // we will start at Lane 1, since the operands of the subtraction cannot 1373 // be reordered. Then we will visit the rest of the lanes in a circular 1374 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1375 1376 // Find the first lane that we will start our search from. 1377 unsigned FirstLane = getBestLaneToStartReordering(); 1378 1379 // Initialize the modes. 1380 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1381 Value *OpLane0 = getValue(OpIdx, FirstLane); 1382 // Keep track if we have instructions with all the same opcode on one 1383 // side. 1384 if (isa<LoadInst>(OpLane0)) 1385 ReorderingModes[OpIdx] = ReorderingMode::Load; 1386 else if (isa<Instruction>(OpLane0)) { 1387 // Check if OpLane0 should be broadcast. 1388 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1389 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1390 else 1391 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1392 } 1393 else if (isa<Constant>(OpLane0)) 1394 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1395 else if (isa<Argument>(OpLane0)) 1396 // Our best hope is a Splat. It may save some cost in some cases. 1397 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1398 else 1399 // NOTE: This should be unreachable. 1400 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1401 } 1402 1403 // If the initial strategy fails for any of the operand indexes, then we 1404 // perform reordering again in a second pass. This helps avoid assigning 1405 // high priority to the failed strategy, and should improve reordering for 1406 // the non-failed operand indexes. 1407 for (int Pass = 0; Pass != 2; ++Pass) { 1408 // Skip the second pass if the first pass did not fail. 1409 bool StrategyFailed = false; 1410 // Mark all operand data as free to use. 1411 clearUsed(); 1412 // We keep the original operand order for the FirstLane, so reorder the 1413 // rest of the lanes. We are visiting the nodes in a circular fashion, 1414 // using FirstLane as the center point and increasing the radius 1415 // distance. 1416 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1417 // Visit the lane on the right and then the lane on the left. 1418 for (int Direction : {+1, -1}) { 1419 int Lane = FirstLane + Direction * Distance; 1420 if (Lane < 0 || Lane >= (int)NumLanes) 1421 continue; 1422 int LastLane = Lane - Direction; 1423 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1424 "Out of bounds"); 1425 // Look for a good match for each operand. 1426 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1427 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1428 Optional<unsigned> BestIdx = 1429 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1430 // By not selecting a value, we allow the operands that follow to 1431 // select a better matching value. We will get a non-null value in 1432 // the next run of getBestOperand(). 1433 if (BestIdx) { 1434 // Swap the current operand with the one returned by 1435 // getBestOperand(). 1436 swap(OpIdx, BestIdx.getValue(), Lane); 1437 } else { 1438 // We failed to find a best operand, set mode to 'Failed'. 1439 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1440 // Enable the second pass. 1441 StrategyFailed = true; 1442 } 1443 } 1444 } 1445 } 1446 // Skip second pass if the strategy did not fail. 1447 if (!StrategyFailed) 1448 break; 1449 } 1450 } 1451 1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1453 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1454 switch (RMode) { 1455 case ReorderingMode::Load: 1456 return "Load"; 1457 case ReorderingMode::Opcode: 1458 return "Opcode"; 1459 case ReorderingMode::Constant: 1460 return "Constant"; 1461 case ReorderingMode::Splat: 1462 return "Splat"; 1463 case ReorderingMode::Failed: 1464 return "Failed"; 1465 } 1466 llvm_unreachable("Unimplemented Reordering Type"); 1467 } 1468 1469 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1470 raw_ostream &OS) { 1471 return OS << getModeStr(RMode); 1472 } 1473 1474 /// Debug print. 1475 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1476 printMode(RMode, dbgs()); 1477 } 1478 1479 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1480 return printMode(RMode, OS); 1481 } 1482 1483 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1484 const unsigned Indent = 2; 1485 unsigned Cnt = 0; 1486 for (const OperandDataVec &OpDataVec : OpsVec) { 1487 OS << "Operand " << Cnt++ << "\n"; 1488 for (const OperandData &OpData : OpDataVec) { 1489 OS.indent(Indent) << "{"; 1490 if (Value *V = OpData.V) 1491 OS << *V; 1492 else 1493 OS << "null"; 1494 OS << ", APO:" << OpData.APO << "}\n"; 1495 } 1496 OS << "\n"; 1497 } 1498 return OS; 1499 } 1500 1501 /// Debug print. 1502 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1503 #endif 1504 }; 1505 1506 /// Checks if the instruction is marked for deletion. 1507 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1508 1509 /// Marks values operands for later deletion by replacing them with Undefs. 1510 void eraseInstructions(ArrayRef<Value *> AV); 1511 1512 ~BoUpSLP(); 1513 1514 private: 1515 /// Checks if all users of \p I are the part of the vectorization tree. 1516 bool areAllUsersVectorized(Instruction *I) const; 1517 1518 /// \returns the cost of the vectorizable entry. 1519 InstructionCost getEntryCost(TreeEntry *E); 1520 1521 /// This is the recursive part of buildTree. 1522 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1523 const EdgeInfo &EI); 1524 1525 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1526 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1527 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1528 /// returns false, setting \p CurrentOrder to either an empty vector or a 1529 /// non-identity permutation that allows to reuse extract instructions. 1530 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1531 SmallVectorImpl<unsigned> &CurrentOrder) const; 1532 1533 /// Vectorize a single entry in the tree. 1534 Value *vectorizeTree(TreeEntry *E); 1535 1536 /// Vectorize a single entry in the tree, starting in \p VL. 1537 Value *vectorizeTree(ArrayRef<Value *> VL); 1538 1539 /// \returns the scalarization cost for this type. Scalarization in this 1540 /// context means the creation of vectors from a group of scalars. 1541 InstructionCost 1542 getGatherCost(FixedVectorType *Ty, 1543 const DenseSet<unsigned> &ShuffledIndices) const; 1544 1545 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1546 /// tree entries. 1547 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1548 /// previous tree entries. \p Mask is filled with the shuffle mask. 1549 Optional<TargetTransformInfo::ShuffleKind> 1550 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1551 SmallVectorImpl<const TreeEntry *> &Entries); 1552 1553 /// \returns the scalarization cost for this list of values. Assuming that 1554 /// this subtree gets vectorized, we may need to extract the values from the 1555 /// roots. This method calculates the cost of extracting the values. 1556 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1557 1558 /// Set the Builder insert point to one after the last instruction in 1559 /// the bundle 1560 void setInsertPointAfterBundle(TreeEntry *E); 1561 1562 /// \returns a vector from a collection of scalars in \p VL. 1563 Value *gather(ArrayRef<Value *> VL); 1564 1565 /// \returns whether the VectorizableTree is fully vectorizable and will 1566 /// be beneficial even the tree height is tiny. 1567 bool isFullyVectorizableTinyTree() const; 1568 1569 /// Reorder commutative or alt operands to get better probability of 1570 /// generating vectorized code. 1571 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1572 SmallVectorImpl<Value *> &Left, 1573 SmallVectorImpl<Value *> &Right, 1574 const DataLayout &DL, 1575 ScalarEvolution &SE, 1576 const BoUpSLP &R); 1577 struct TreeEntry { 1578 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1579 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1580 1581 /// \returns true if the scalars in VL are equal to this entry. 1582 bool isSame(ArrayRef<Value *> VL) const { 1583 if (VL.size() == Scalars.size()) 1584 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1585 return VL.size() == ReuseShuffleIndices.size() && 1586 std::equal( 1587 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1588 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1589 } 1590 1591 /// A vector of scalars. 1592 ValueList Scalars; 1593 1594 /// The Scalars are vectorized into this value. It is initialized to Null. 1595 Value *VectorizedValue = nullptr; 1596 1597 /// Do we need to gather this sequence or vectorize it 1598 /// (either with vector instruction or with scatter/gather 1599 /// intrinsics for store/load)? 1600 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1601 EntryState State; 1602 1603 /// Does this sequence require some shuffling? 1604 SmallVector<int, 4> ReuseShuffleIndices; 1605 1606 /// Does this entry require reordering? 1607 SmallVector<unsigned, 4> ReorderIndices; 1608 1609 /// Points back to the VectorizableTree. 1610 /// 1611 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1612 /// to be a pointer and needs to be able to initialize the child iterator. 1613 /// Thus we need a reference back to the container to translate the indices 1614 /// to entries. 1615 VecTreeTy &Container; 1616 1617 /// The TreeEntry index containing the user of this entry. We can actually 1618 /// have multiple users so the data structure is not truly a tree. 1619 SmallVector<EdgeInfo, 1> UserTreeIndices; 1620 1621 /// The index of this treeEntry in VectorizableTree. 1622 int Idx = -1; 1623 1624 private: 1625 /// The operands of each instruction in each lane Operands[op_index][lane]. 1626 /// Note: This helps avoid the replication of the code that performs the 1627 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1628 SmallVector<ValueList, 2> Operands; 1629 1630 /// The main/alternate instruction. 1631 Instruction *MainOp = nullptr; 1632 Instruction *AltOp = nullptr; 1633 1634 public: 1635 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1636 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1637 if (Operands.size() < OpIdx + 1) 1638 Operands.resize(OpIdx + 1); 1639 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1640 Operands[OpIdx].resize(Scalars.size()); 1641 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1642 Operands[OpIdx][Lane] = OpVL[Lane]; 1643 } 1644 1645 /// Set the operands of this bundle in their original order. 1646 void setOperandsInOrder() { 1647 assert(Operands.empty() && "Already initialized?"); 1648 auto *I0 = cast<Instruction>(Scalars[0]); 1649 Operands.resize(I0->getNumOperands()); 1650 unsigned NumLanes = Scalars.size(); 1651 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1652 OpIdx != NumOperands; ++OpIdx) { 1653 Operands[OpIdx].resize(NumLanes); 1654 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1655 auto *I = cast<Instruction>(Scalars[Lane]); 1656 assert(I->getNumOperands() == NumOperands && 1657 "Expected same number of operands"); 1658 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1659 } 1660 } 1661 } 1662 1663 /// \returns the \p OpIdx operand of this TreeEntry. 1664 ValueList &getOperand(unsigned OpIdx) { 1665 assert(OpIdx < Operands.size() && "Off bounds"); 1666 return Operands[OpIdx]; 1667 } 1668 1669 /// \returns the number of operands. 1670 unsigned getNumOperands() const { return Operands.size(); } 1671 1672 /// \return the single \p OpIdx operand. 1673 Value *getSingleOperand(unsigned OpIdx) const { 1674 assert(OpIdx < Operands.size() && "Off bounds"); 1675 assert(!Operands[OpIdx].empty() && "No operand available"); 1676 return Operands[OpIdx][0]; 1677 } 1678 1679 /// Some of the instructions in the list have alternate opcodes. 1680 bool isAltShuffle() const { 1681 return getOpcode() != getAltOpcode(); 1682 } 1683 1684 bool isOpcodeOrAlt(Instruction *I) const { 1685 unsigned CheckedOpcode = I->getOpcode(); 1686 return (getOpcode() == CheckedOpcode || 1687 getAltOpcode() == CheckedOpcode); 1688 } 1689 1690 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1691 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1692 /// \p OpValue. 1693 Value *isOneOf(Value *Op) const { 1694 auto *I = dyn_cast<Instruction>(Op); 1695 if (I && isOpcodeOrAlt(I)) 1696 return Op; 1697 return MainOp; 1698 } 1699 1700 void setOperations(const InstructionsState &S) { 1701 MainOp = S.MainOp; 1702 AltOp = S.AltOp; 1703 } 1704 1705 Instruction *getMainOp() const { 1706 return MainOp; 1707 } 1708 1709 Instruction *getAltOp() const { 1710 return AltOp; 1711 } 1712 1713 /// The main/alternate opcodes for the list of instructions. 1714 unsigned getOpcode() const { 1715 return MainOp ? MainOp->getOpcode() : 0; 1716 } 1717 1718 unsigned getAltOpcode() const { 1719 return AltOp ? AltOp->getOpcode() : 0; 1720 } 1721 1722 /// Update operations state of this entry if reorder occurred. 1723 bool updateStateIfReorder() { 1724 if (ReorderIndices.empty()) 1725 return false; 1726 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1727 setOperations(S); 1728 return true; 1729 } 1730 1731 #ifndef NDEBUG 1732 /// Debug printer. 1733 LLVM_DUMP_METHOD void dump() const { 1734 dbgs() << Idx << ".\n"; 1735 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1736 dbgs() << "Operand " << OpI << ":\n"; 1737 for (const Value *V : Operands[OpI]) 1738 dbgs().indent(2) << *V << "\n"; 1739 } 1740 dbgs() << "Scalars: \n"; 1741 for (Value *V : Scalars) 1742 dbgs().indent(2) << *V << "\n"; 1743 dbgs() << "State: "; 1744 switch (State) { 1745 case Vectorize: 1746 dbgs() << "Vectorize\n"; 1747 break; 1748 case ScatterVectorize: 1749 dbgs() << "ScatterVectorize\n"; 1750 break; 1751 case NeedToGather: 1752 dbgs() << "NeedToGather\n"; 1753 break; 1754 } 1755 dbgs() << "MainOp: "; 1756 if (MainOp) 1757 dbgs() << *MainOp << "\n"; 1758 else 1759 dbgs() << "NULL\n"; 1760 dbgs() << "AltOp: "; 1761 if (AltOp) 1762 dbgs() << *AltOp << "\n"; 1763 else 1764 dbgs() << "NULL\n"; 1765 dbgs() << "VectorizedValue: "; 1766 if (VectorizedValue) 1767 dbgs() << *VectorizedValue << "\n"; 1768 else 1769 dbgs() << "NULL\n"; 1770 dbgs() << "ReuseShuffleIndices: "; 1771 if (ReuseShuffleIndices.empty()) 1772 dbgs() << "Empty"; 1773 else 1774 for (unsigned ReuseIdx : ReuseShuffleIndices) 1775 dbgs() << ReuseIdx << ", "; 1776 dbgs() << "\n"; 1777 dbgs() << "ReorderIndices: "; 1778 for (unsigned ReorderIdx : ReorderIndices) 1779 dbgs() << ReorderIdx << ", "; 1780 dbgs() << "\n"; 1781 dbgs() << "UserTreeIndices: "; 1782 for (const auto &EInfo : UserTreeIndices) 1783 dbgs() << EInfo << ", "; 1784 dbgs() << "\n"; 1785 } 1786 #endif 1787 }; 1788 1789 #ifndef NDEBUG 1790 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1791 InstructionCost VecCost, 1792 InstructionCost ScalarCost) const { 1793 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1794 dbgs() << "SLP: Costs:\n"; 1795 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1796 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1797 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1798 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1799 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1800 } 1801 #endif 1802 1803 /// Create a new VectorizableTree entry. 1804 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1805 const InstructionsState &S, 1806 const EdgeInfo &UserTreeIdx, 1807 ArrayRef<unsigned> ReuseShuffleIndices = None, 1808 ArrayRef<unsigned> ReorderIndices = None) { 1809 TreeEntry::EntryState EntryState = 1810 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1811 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1812 ReuseShuffleIndices, ReorderIndices); 1813 } 1814 1815 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1816 TreeEntry::EntryState EntryState, 1817 Optional<ScheduleData *> Bundle, 1818 const InstructionsState &S, 1819 const EdgeInfo &UserTreeIdx, 1820 ArrayRef<unsigned> ReuseShuffleIndices = None, 1821 ArrayRef<unsigned> ReorderIndices = None) { 1822 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1823 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1824 "Need to vectorize gather entry?"); 1825 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1826 TreeEntry *Last = VectorizableTree.back().get(); 1827 Last->Idx = VectorizableTree.size() - 1; 1828 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1829 Last->State = EntryState; 1830 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1831 ReuseShuffleIndices.end()); 1832 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1833 Last->setOperations(S); 1834 if (Last->State != TreeEntry::NeedToGather) { 1835 for (Value *V : VL) { 1836 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1837 ScalarToTreeEntry[V] = Last; 1838 } 1839 // Update the scheduler bundle to point to this TreeEntry. 1840 unsigned Lane = 0; 1841 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1842 BundleMember = BundleMember->NextInBundle) { 1843 BundleMember->TE = Last; 1844 BundleMember->Lane = Lane; 1845 ++Lane; 1846 } 1847 assert((!Bundle.getValue() || Lane == VL.size()) && 1848 "Bundle and VL out of sync"); 1849 } else { 1850 MustGather.insert(VL.begin(), VL.end()); 1851 } 1852 1853 if (UserTreeIdx.UserTE) 1854 Last->UserTreeIndices.push_back(UserTreeIdx); 1855 1856 return Last; 1857 } 1858 1859 /// -- Vectorization State -- 1860 /// Holds all of the tree entries. 1861 TreeEntry::VecTreeTy VectorizableTree; 1862 1863 #ifndef NDEBUG 1864 /// Debug printer. 1865 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1866 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1867 VectorizableTree[Id]->dump(); 1868 dbgs() << "\n"; 1869 } 1870 } 1871 #endif 1872 1873 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1874 1875 const TreeEntry *getTreeEntry(Value *V) const { 1876 return ScalarToTreeEntry.lookup(V); 1877 } 1878 1879 /// Maps a specific scalar to its tree entry. 1880 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1881 1882 /// Maps a value to the proposed vectorizable size. 1883 SmallDenseMap<Value *, unsigned> InstrElementSize; 1884 1885 /// A list of scalars that we found that we need to keep as scalars. 1886 ValueSet MustGather; 1887 1888 /// This POD struct describes one external user in the vectorized tree. 1889 struct ExternalUser { 1890 ExternalUser(Value *S, llvm::User *U, int L) 1891 : Scalar(S), User(U), Lane(L) {} 1892 1893 // Which scalar in our function. 1894 Value *Scalar; 1895 1896 // Which user that uses the scalar. 1897 llvm::User *User; 1898 1899 // Which lane does the scalar belong to. 1900 int Lane; 1901 }; 1902 using UserList = SmallVector<ExternalUser, 16>; 1903 1904 /// Checks if two instructions may access the same memory. 1905 /// 1906 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1907 /// is invariant in the calling loop. 1908 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1909 Instruction *Inst2) { 1910 // First check if the result is already in the cache. 1911 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1912 Optional<bool> &result = AliasCache[key]; 1913 if (result.hasValue()) { 1914 return result.getValue(); 1915 } 1916 MemoryLocation Loc2 = getLocation(Inst2, AA); 1917 bool aliased = true; 1918 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1919 // Do the alias check. 1920 aliased = !AA->isNoAlias(Loc1, Loc2); 1921 } 1922 // Store the result in the cache. 1923 result = aliased; 1924 return aliased; 1925 } 1926 1927 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1928 1929 /// Cache for alias results. 1930 /// TODO: consider moving this to the AliasAnalysis itself. 1931 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1932 1933 /// Removes an instruction from its block and eventually deletes it. 1934 /// It's like Instruction::eraseFromParent() except that the actual deletion 1935 /// is delayed until BoUpSLP is destructed. 1936 /// This is required to ensure that there are no incorrect collisions in the 1937 /// AliasCache, which can happen if a new instruction is allocated at the 1938 /// same address as a previously deleted instruction. 1939 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1940 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1941 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1942 } 1943 1944 /// Temporary store for deleted instructions. Instructions will be deleted 1945 /// eventually when the BoUpSLP is destructed. 1946 DenseMap<Instruction *, bool> DeletedInstructions; 1947 1948 /// A list of values that need to extracted out of the tree. 1949 /// This list holds pairs of (Internal Scalar : External User). External User 1950 /// can be nullptr, it means that this Internal Scalar will be used later, 1951 /// after vectorization. 1952 UserList ExternalUses; 1953 1954 /// Values used only by @llvm.assume calls. 1955 SmallPtrSet<const Value *, 32> EphValues; 1956 1957 /// Holds all of the instructions that we gathered. 1958 SetVector<Instruction *> GatherSeq; 1959 1960 /// A list of blocks that we are going to CSE. 1961 SetVector<BasicBlock *> CSEBlocks; 1962 1963 /// Contains all scheduling relevant data for an instruction. 1964 /// A ScheduleData either represents a single instruction or a member of an 1965 /// instruction bundle (= a group of instructions which is combined into a 1966 /// vector instruction). 1967 struct ScheduleData { 1968 // The initial value for the dependency counters. It means that the 1969 // dependencies are not calculated yet. 1970 enum { InvalidDeps = -1 }; 1971 1972 ScheduleData() = default; 1973 1974 void init(int BlockSchedulingRegionID, Value *OpVal) { 1975 FirstInBundle = this; 1976 NextInBundle = nullptr; 1977 NextLoadStore = nullptr; 1978 IsScheduled = false; 1979 SchedulingRegionID = BlockSchedulingRegionID; 1980 UnscheduledDepsInBundle = UnscheduledDeps; 1981 clearDependencies(); 1982 OpValue = OpVal; 1983 TE = nullptr; 1984 Lane = -1; 1985 } 1986 1987 /// Returns true if the dependency information has been calculated. 1988 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1989 1990 /// Returns true for single instructions and for bundle representatives 1991 /// (= the head of a bundle). 1992 bool isSchedulingEntity() const { return FirstInBundle == this; } 1993 1994 /// Returns true if it represents an instruction bundle and not only a 1995 /// single instruction. 1996 bool isPartOfBundle() const { 1997 return NextInBundle != nullptr || FirstInBundle != this; 1998 } 1999 2000 /// Returns true if it is ready for scheduling, i.e. it has no more 2001 /// unscheduled depending instructions/bundles. 2002 bool isReady() const { 2003 assert(isSchedulingEntity() && 2004 "can't consider non-scheduling entity for ready list"); 2005 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2006 } 2007 2008 /// Modifies the number of unscheduled dependencies, also updating it for 2009 /// the whole bundle. 2010 int incrementUnscheduledDeps(int Incr) { 2011 UnscheduledDeps += Incr; 2012 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2013 } 2014 2015 /// Sets the number of unscheduled dependencies to the number of 2016 /// dependencies. 2017 void resetUnscheduledDeps() { 2018 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2019 } 2020 2021 /// Clears all dependency information. 2022 void clearDependencies() { 2023 Dependencies = InvalidDeps; 2024 resetUnscheduledDeps(); 2025 MemoryDependencies.clear(); 2026 } 2027 2028 void dump(raw_ostream &os) const { 2029 if (!isSchedulingEntity()) { 2030 os << "/ " << *Inst; 2031 } else if (NextInBundle) { 2032 os << '[' << *Inst; 2033 ScheduleData *SD = NextInBundle; 2034 while (SD) { 2035 os << ';' << *SD->Inst; 2036 SD = SD->NextInBundle; 2037 } 2038 os << ']'; 2039 } else { 2040 os << *Inst; 2041 } 2042 } 2043 2044 Instruction *Inst = nullptr; 2045 2046 /// Points to the head in an instruction bundle (and always to this for 2047 /// single instructions). 2048 ScheduleData *FirstInBundle = nullptr; 2049 2050 /// Single linked list of all instructions in a bundle. Null if it is a 2051 /// single instruction. 2052 ScheduleData *NextInBundle = nullptr; 2053 2054 /// Single linked list of all memory instructions (e.g. load, store, call) 2055 /// in the block - until the end of the scheduling region. 2056 ScheduleData *NextLoadStore = nullptr; 2057 2058 /// The dependent memory instructions. 2059 /// This list is derived on demand in calculateDependencies(). 2060 SmallVector<ScheduleData *, 4> MemoryDependencies; 2061 2062 /// This ScheduleData is in the current scheduling region if this matches 2063 /// the current SchedulingRegionID of BlockScheduling. 2064 int SchedulingRegionID = 0; 2065 2066 /// Used for getting a "good" final ordering of instructions. 2067 int SchedulingPriority = 0; 2068 2069 /// The number of dependencies. Constitutes of the number of users of the 2070 /// instruction plus the number of dependent memory instructions (if any). 2071 /// This value is calculated on demand. 2072 /// If InvalidDeps, the number of dependencies is not calculated yet. 2073 int Dependencies = InvalidDeps; 2074 2075 /// The number of dependencies minus the number of dependencies of scheduled 2076 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2077 /// for scheduling. 2078 /// Note that this is negative as long as Dependencies is not calculated. 2079 int UnscheduledDeps = InvalidDeps; 2080 2081 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2082 /// single instructions. 2083 int UnscheduledDepsInBundle = InvalidDeps; 2084 2085 /// True if this instruction is scheduled (or considered as scheduled in the 2086 /// dry-run). 2087 bool IsScheduled = false; 2088 2089 /// Opcode of the current instruction in the schedule data. 2090 Value *OpValue = nullptr; 2091 2092 /// The TreeEntry that this instruction corresponds to. 2093 TreeEntry *TE = nullptr; 2094 2095 /// The lane of this node in the TreeEntry. 2096 int Lane = -1; 2097 }; 2098 2099 #ifndef NDEBUG 2100 friend inline raw_ostream &operator<<(raw_ostream &os, 2101 const BoUpSLP::ScheduleData &SD) { 2102 SD.dump(os); 2103 return os; 2104 } 2105 #endif 2106 2107 friend struct GraphTraits<BoUpSLP *>; 2108 friend struct DOTGraphTraits<BoUpSLP *>; 2109 2110 /// Contains all scheduling data for a basic block. 2111 struct BlockScheduling { 2112 BlockScheduling(BasicBlock *BB) 2113 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2114 2115 void clear() { 2116 ReadyInsts.clear(); 2117 ScheduleStart = nullptr; 2118 ScheduleEnd = nullptr; 2119 FirstLoadStoreInRegion = nullptr; 2120 LastLoadStoreInRegion = nullptr; 2121 2122 // Reduce the maximum schedule region size by the size of the 2123 // previous scheduling run. 2124 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2125 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2126 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2127 ScheduleRegionSize = 0; 2128 2129 // Make a new scheduling region, i.e. all existing ScheduleData is not 2130 // in the new region yet. 2131 ++SchedulingRegionID; 2132 } 2133 2134 ScheduleData *getScheduleData(Value *V) { 2135 ScheduleData *SD = ScheduleDataMap[V]; 2136 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2137 return SD; 2138 return nullptr; 2139 } 2140 2141 ScheduleData *getScheduleData(Value *V, Value *Key) { 2142 if (V == Key) 2143 return getScheduleData(V); 2144 auto I = ExtraScheduleDataMap.find(V); 2145 if (I != ExtraScheduleDataMap.end()) { 2146 ScheduleData *SD = I->second[Key]; 2147 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2148 return SD; 2149 } 2150 return nullptr; 2151 } 2152 2153 bool isInSchedulingRegion(ScheduleData *SD) const { 2154 return SD->SchedulingRegionID == SchedulingRegionID; 2155 } 2156 2157 /// Marks an instruction as scheduled and puts all dependent ready 2158 /// instructions into the ready-list. 2159 template <typename ReadyListType> 2160 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2161 SD->IsScheduled = true; 2162 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2163 2164 ScheduleData *BundleMember = SD; 2165 while (BundleMember) { 2166 if (BundleMember->Inst != BundleMember->OpValue) { 2167 BundleMember = BundleMember->NextInBundle; 2168 continue; 2169 } 2170 // Handle the def-use chain dependencies. 2171 2172 // Decrement the unscheduled counter and insert to ready list if ready. 2173 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2174 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2175 if (OpDef && OpDef->hasValidDependencies() && 2176 OpDef->incrementUnscheduledDeps(-1) == 0) { 2177 // There are no more unscheduled dependencies after 2178 // decrementing, so we can put the dependent instruction 2179 // into the ready list. 2180 ScheduleData *DepBundle = OpDef->FirstInBundle; 2181 assert(!DepBundle->IsScheduled && 2182 "already scheduled bundle gets ready"); 2183 ReadyList.insert(DepBundle); 2184 LLVM_DEBUG(dbgs() 2185 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2186 } 2187 }); 2188 }; 2189 2190 // If BundleMember is a vector bundle, its operands may have been 2191 // reordered duiring buildTree(). We therefore need to get its operands 2192 // through the TreeEntry. 2193 if (TreeEntry *TE = BundleMember->TE) { 2194 int Lane = BundleMember->Lane; 2195 assert(Lane >= 0 && "Lane not set"); 2196 2197 // Since vectorization tree is being built recursively this assertion 2198 // ensures that the tree entry has all operands set before reaching 2199 // this code. Couple of exceptions known at the moment are extracts 2200 // where their second (immediate) operand is not added. Since 2201 // immediates do not affect scheduler behavior this is considered 2202 // okay. 2203 auto *In = TE->getMainOp(); 2204 assert(In && 2205 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2206 In->getNumOperands() == TE->getNumOperands()) && 2207 "Missed TreeEntry operands?"); 2208 (void)In; // fake use to avoid build failure when assertions disabled 2209 2210 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2211 OpIdx != NumOperands; ++OpIdx) 2212 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2213 DecrUnsched(I); 2214 } else { 2215 // If BundleMember is a stand-alone instruction, no operand reordering 2216 // has taken place, so we directly access its operands. 2217 for (Use &U : BundleMember->Inst->operands()) 2218 if (auto *I = dyn_cast<Instruction>(U.get())) 2219 DecrUnsched(I); 2220 } 2221 // Handle the memory dependencies. 2222 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2223 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2224 // There are no more unscheduled dependencies after decrementing, 2225 // so we can put the dependent instruction into the ready list. 2226 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2227 assert(!DepBundle->IsScheduled && 2228 "already scheduled bundle gets ready"); 2229 ReadyList.insert(DepBundle); 2230 LLVM_DEBUG(dbgs() 2231 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2232 } 2233 } 2234 BundleMember = BundleMember->NextInBundle; 2235 } 2236 } 2237 2238 void doForAllOpcodes(Value *V, 2239 function_ref<void(ScheduleData *SD)> Action) { 2240 if (ScheduleData *SD = getScheduleData(V)) 2241 Action(SD); 2242 auto I = ExtraScheduleDataMap.find(V); 2243 if (I != ExtraScheduleDataMap.end()) 2244 for (auto &P : I->second) 2245 if (P.second->SchedulingRegionID == SchedulingRegionID) 2246 Action(P.second); 2247 } 2248 2249 /// Put all instructions into the ReadyList which are ready for scheduling. 2250 template <typename ReadyListType> 2251 void initialFillReadyList(ReadyListType &ReadyList) { 2252 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2253 doForAllOpcodes(I, [&](ScheduleData *SD) { 2254 if (SD->isSchedulingEntity() && SD->isReady()) { 2255 ReadyList.insert(SD); 2256 LLVM_DEBUG(dbgs() 2257 << "SLP: initially in ready list: " << *I << "\n"); 2258 } 2259 }); 2260 } 2261 } 2262 2263 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2264 /// cyclic dependencies. This is only a dry-run, no instructions are 2265 /// actually moved at this stage. 2266 /// \returns the scheduling bundle. The returned Optional value is non-None 2267 /// if \p VL is allowed to be scheduled. 2268 Optional<ScheduleData *> 2269 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2270 const InstructionsState &S); 2271 2272 /// Un-bundles a group of instructions. 2273 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2274 2275 /// Allocates schedule data chunk. 2276 ScheduleData *allocateScheduleDataChunks(); 2277 2278 /// Extends the scheduling region so that V is inside the region. 2279 /// \returns true if the region size is within the limit. 2280 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2281 2282 /// Initialize the ScheduleData structures for new instructions in the 2283 /// scheduling region. 2284 void initScheduleData(Instruction *FromI, Instruction *ToI, 2285 ScheduleData *PrevLoadStore, 2286 ScheduleData *NextLoadStore); 2287 2288 /// Updates the dependency information of a bundle and of all instructions/ 2289 /// bundles which depend on the original bundle. 2290 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2291 BoUpSLP *SLP); 2292 2293 /// Sets all instruction in the scheduling region to un-scheduled. 2294 void resetSchedule(); 2295 2296 BasicBlock *BB; 2297 2298 /// Simple memory allocation for ScheduleData. 2299 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2300 2301 /// The size of a ScheduleData array in ScheduleDataChunks. 2302 int ChunkSize; 2303 2304 /// The allocator position in the current chunk, which is the last entry 2305 /// of ScheduleDataChunks. 2306 int ChunkPos; 2307 2308 /// Attaches ScheduleData to Instruction. 2309 /// Note that the mapping survives during all vectorization iterations, i.e. 2310 /// ScheduleData structures are recycled. 2311 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2312 2313 /// Attaches ScheduleData to Instruction with the leading key. 2314 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2315 ExtraScheduleDataMap; 2316 2317 struct ReadyList : SmallVector<ScheduleData *, 8> { 2318 void insert(ScheduleData *SD) { push_back(SD); } 2319 }; 2320 2321 /// The ready-list for scheduling (only used for the dry-run). 2322 ReadyList ReadyInsts; 2323 2324 /// The first instruction of the scheduling region. 2325 Instruction *ScheduleStart = nullptr; 2326 2327 /// The first instruction _after_ the scheduling region. 2328 Instruction *ScheduleEnd = nullptr; 2329 2330 /// The first memory accessing instruction in the scheduling region 2331 /// (can be null). 2332 ScheduleData *FirstLoadStoreInRegion = nullptr; 2333 2334 /// The last memory accessing instruction in the scheduling region 2335 /// (can be null). 2336 ScheduleData *LastLoadStoreInRegion = nullptr; 2337 2338 /// The current size of the scheduling region. 2339 int ScheduleRegionSize = 0; 2340 2341 /// The maximum size allowed for the scheduling region. 2342 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2343 2344 /// The ID of the scheduling region. For a new vectorization iteration this 2345 /// is incremented which "removes" all ScheduleData from the region. 2346 // Make sure that the initial SchedulingRegionID is greater than the 2347 // initial SchedulingRegionID in ScheduleData (which is 0). 2348 int SchedulingRegionID = 1; 2349 }; 2350 2351 /// Attaches the BlockScheduling structures to basic blocks. 2352 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2353 2354 /// Performs the "real" scheduling. Done before vectorization is actually 2355 /// performed in a basic block. 2356 void scheduleBlock(BlockScheduling *BS); 2357 2358 /// List of users to ignore during scheduling and that don't need extracting. 2359 ArrayRef<Value *> UserIgnoreList; 2360 2361 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2362 /// sorted SmallVectors of unsigned. 2363 struct OrdersTypeDenseMapInfo { 2364 static OrdersType getEmptyKey() { 2365 OrdersType V; 2366 V.push_back(~1U); 2367 return V; 2368 } 2369 2370 static OrdersType getTombstoneKey() { 2371 OrdersType V; 2372 V.push_back(~2U); 2373 return V; 2374 } 2375 2376 static unsigned getHashValue(const OrdersType &V) { 2377 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2378 } 2379 2380 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2381 return LHS == RHS; 2382 } 2383 }; 2384 2385 /// Contains orders of operations along with the number of bundles that have 2386 /// operations in this order. It stores only those orders that require 2387 /// reordering, if reordering is not required it is counted using \a 2388 /// NumOpsWantToKeepOriginalOrder. 2389 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2390 /// Number of bundles that do not require reordering. 2391 unsigned NumOpsWantToKeepOriginalOrder = 0; 2392 2393 // Analysis and block reference. 2394 Function *F; 2395 ScalarEvolution *SE; 2396 TargetTransformInfo *TTI; 2397 TargetLibraryInfo *TLI; 2398 AAResults *AA; 2399 LoopInfo *LI; 2400 DominatorTree *DT; 2401 AssumptionCache *AC; 2402 DemandedBits *DB; 2403 const DataLayout *DL; 2404 OptimizationRemarkEmitter *ORE; 2405 2406 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2407 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2408 2409 /// Instruction builder to construct the vectorized tree. 2410 IRBuilder<> Builder; 2411 2412 /// A map of scalar integer values to the smallest bit width with which they 2413 /// can legally be represented. The values map to (width, signed) pairs, 2414 /// where "width" indicates the minimum bit width and "signed" is True if the 2415 /// value must be signed-extended, rather than zero-extended, back to its 2416 /// original width. 2417 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2418 }; 2419 2420 } // end namespace slpvectorizer 2421 2422 template <> struct GraphTraits<BoUpSLP *> { 2423 using TreeEntry = BoUpSLP::TreeEntry; 2424 2425 /// NodeRef has to be a pointer per the GraphWriter. 2426 using NodeRef = TreeEntry *; 2427 2428 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2429 2430 /// Add the VectorizableTree to the index iterator to be able to return 2431 /// TreeEntry pointers. 2432 struct ChildIteratorType 2433 : public iterator_adaptor_base< 2434 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2435 ContainerTy &VectorizableTree; 2436 2437 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2438 ContainerTy &VT) 2439 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2440 2441 NodeRef operator*() { return I->UserTE; } 2442 }; 2443 2444 static NodeRef getEntryNode(BoUpSLP &R) { 2445 return R.VectorizableTree[0].get(); 2446 } 2447 2448 static ChildIteratorType child_begin(NodeRef N) { 2449 return {N->UserTreeIndices.begin(), N->Container}; 2450 } 2451 2452 static ChildIteratorType child_end(NodeRef N) { 2453 return {N->UserTreeIndices.end(), N->Container}; 2454 } 2455 2456 /// For the node iterator we just need to turn the TreeEntry iterator into a 2457 /// TreeEntry* iterator so that it dereferences to NodeRef. 2458 class nodes_iterator { 2459 using ItTy = ContainerTy::iterator; 2460 ItTy It; 2461 2462 public: 2463 nodes_iterator(const ItTy &It2) : It(It2) {} 2464 NodeRef operator*() { return It->get(); } 2465 nodes_iterator operator++() { 2466 ++It; 2467 return *this; 2468 } 2469 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2470 }; 2471 2472 static nodes_iterator nodes_begin(BoUpSLP *R) { 2473 return nodes_iterator(R->VectorizableTree.begin()); 2474 } 2475 2476 static nodes_iterator nodes_end(BoUpSLP *R) { 2477 return nodes_iterator(R->VectorizableTree.end()); 2478 } 2479 2480 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2481 }; 2482 2483 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2484 using TreeEntry = BoUpSLP::TreeEntry; 2485 2486 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2487 2488 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2489 std::string Str; 2490 raw_string_ostream OS(Str); 2491 if (isSplat(Entry->Scalars)) { 2492 OS << "<splat> " << *Entry->Scalars[0]; 2493 return Str; 2494 } 2495 for (auto V : Entry->Scalars) { 2496 OS << *V; 2497 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2498 return EU.Scalar == V; 2499 })) 2500 OS << " <extract>"; 2501 OS << "\n"; 2502 } 2503 return Str; 2504 } 2505 2506 static std::string getNodeAttributes(const TreeEntry *Entry, 2507 const BoUpSLP *) { 2508 if (Entry->State == TreeEntry::NeedToGather) 2509 return "color=red"; 2510 return ""; 2511 } 2512 }; 2513 2514 } // end namespace llvm 2515 2516 BoUpSLP::~BoUpSLP() { 2517 for (const auto &Pair : DeletedInstructions) { 2518 // Replace operands of ignored instructions with Undefs in case if they were 2519 // marked for deletion. 2520 if (Pair.getSecond()) { 2521 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2522 Pair.getFirst()->replaceAllUsesWith(Undef); 2523 } 2524 Pair.getFirst()->dropAllReferences(); 2525 } 2526 for (const auto &Pair : DeletedInstructions) { 2527 assert(Pair.getFirst()->use_empty() && 2528 "trying to erase instruction with users."); 2529 Pair.getFirst()->eraseFromParent(); 2530 } 2531 #ifdef EXPENSIVE_CHECKS 2532 // If we could guarantee that this call is not extremely slow, we could 2533 // remove the ifdef limitation (see PR47712). 2534 assert(!verifyFunction(*F, &dbgs())); 2535 #endif 2536 } 2537 2538 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2539 for (auto *V : AV) { 2540 if (auto *I = dyn_cast<Instruction>(V)) 2541 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2542 }; 2543 } 2544 2545 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2546 ArrayRef<Value *> UserIgnoreLst) { 2547 ExtraValueToDebugLocsMap ExternallyUsedValues; 2548 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2549 } 2550 2551 static int findLaneForValue(ArrayRef<Value *> Scalars, 2552 ArrayRef<int> ReuseShuffleIndices, Value *V) { 2553 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2554 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2555 if (!ReuseShuffleIndices.empty()) { 2556 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2557 find(ReuseShuffleIndices, FoundLane)); 2558 } 2559 return FoundLane; 2560 } 2561 2562 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2563 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2564 ArrayRef<Value *> UserIgnoreLst) { 2565 deleteTree(); 2566 UserIgnoreList = UserIgnoreLst; 2567 if (!allSameType(Roots)) 2568 return; 2569 buildTree_rec(Roots, 0, EdgeInfo()); 2570 2571 // Collect the values that we need to extract from the tree. 2572 for (auto &TEPtr : VectorizableTree) { 2573 TreeEntry *Entry = TEPtr.get(); 2574 2575 // No need to handle users of gathered values. 2576 if (Entry->State == TreeEntry::NeedToGather) 2577 continue; 2578 2579 // For each lane: 2580 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2581 Value *Scalar = Entry->Scalars[Lane]; 2582 int FoundLane = 2583 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar); 2584 2585 // Check if the scalar is externally used as an extra arg. 2586 auto ExtI = ExternallyUsedValues.find(Scalar); 2587 if (ExtI != ExternallyUsedValues.end()) { 2588 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2589 << Lane << " from " << *Scalar << ".\n"); 2590 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2591 } 2592 for (User *U : Scalar->users()) { 2593 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2594 2595 Instruction *UserInst = dyn_cast<Instruction>(U); 2596 if (!UserInst) 2597 continue; 2598 2599 // Skip in-tree scalars that become vectors 2600 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2601 Value *UseScalar = UseEntry->Scalars[0]; 2602 // Some in-tree scalars will remain as scalar in vectorized 2603 // instructions. If that is the case, the one in Lane 0 will 2604 // be used. 2605 if (UseScalar != U || 2606 UseEntry->State == TreeEntry::ScatterVectorize || 2607 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2608 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2609 << ".\n"); 2610 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2611 continue; 2612 } 2613 } 2614 2615 // Ignore users in the user ignore list. 2616 if (is_contained(UserIgnoreList, UserInst)) 2617 continue; 2618 2619 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2620 << Lane << " from " << *Scalar << ".\n"); 2621 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2622 } 2623 } 2624 } 2625 } 2626 2627 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2628 const EdgeInfo &UserTreeIdx) { 2629 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2630 2631 InstructionsState S = getSameOpcode(VL); 2632 if (Depth == RecursionMaxDepth) { 2633 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2634 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2635 return; 2636 } 2637 2638 // Don't handle vectors. 2639 if (S.OpValue->getType()->isVectorTy()) { 2640 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2642 return; 2643 } 2644 2645 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2646 if (SI->getValueOperand()->getType()->isVectorTy()) { 2647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2649 return; 2650 } 2651 2652 // If all of the operands are identical or constant we have a simple solution. 2653 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2654 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2656 return; 2657 } 2658 2659 // We now know that this is a vector of instructions of the same type from 2660 // the same block. 2661 2662 // Don't vectorize ephemeral values. 2663 for (Value *V : VL) { 2664 if (EphValues.count(V)) { 2665 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2666 << ") is ephemeral.\n"); 2667 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2668 return; 2669 } 2670 } 2671 2672 // Check if this is a duplicate of another entry. 2673 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2674 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2675 if (!E->isSame(VL)) { 2676 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2678 return; 2679 } 2680 // Record the reuse of the tree node. FIXME, currently this is only used to 2681 // properly draw the graph rather than for the actual vectorization. 2682 E->UserTreeIndices.push_back(UserTreeIdx); 2683 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2684 << ".\n"); 2685 return; 2686 } 2687 2688 // Check that none of the instructions in the bundle are already in the tree. 2689 for (Value *V : VL) { 2690 auto *I = dyn_cast<Instruction>(V); 2691 if (!I) 2692 continue; 2693 if (getTreeEntry(I)) { 2694 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2695 << ") is already in tree.\n"); 2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2697 return; 2698 } 2699 } 2700 2701 // If any of the scalars is marked as a value that needs to stay scalar, then 2702 // we need to gather the scalars. 2703 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2704 for (Value *V : VL) { 2705 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2706 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2708 return; 2709 } 2710 } 2711 2712 // Check that all of the users of the scalars that we want to vectorize are 2713 // schedulable. 2714 auto *VL0 = cast<Instruction>(S.OpValue); 2715 BasicBlock *BB = VL0->getParent(); 2716 2717 if (!DT->isReachableFromEntry(BB)) { 2718 // Don't go into unreachable blocks. They may contain instructions with 2719 // dependency cycles which confuse the final scheduling. 2720 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2721 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2722 return; 2723 } 2724 2725 // Check that every instruction appears once in this bundle. 2726 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2727 SmallVector<Value *, 4> UniqueValues; 2728 DenseMap<Value *, unsigned> UniquePositions; 2729 for (Value *V : VL) { 2730 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2731 ReuseShuffleIndicies.emplace_back(Res.first->second); 2732 if (Res.second) 2733 UniqueValues.emplace_back(V); 2734 } 2735 size_t NumUniqueScalarValues = UniqueValues.size(); 2736 if (NumUniqueScalarValues == VL.size()) { 2737 ReuseShuffleIndicies.clear(); 2738 } else { 2739 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2740 if (NumUniqueScalarValues <= 1 || 2741 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2742 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2743 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2744 return; 2745 } 2746 VL = UniqueValues; 2747 } 2748 2749 auto &BSRef = BlocksSchedules[BB]; 2750 if (!BSRef) 2751 BSRef = std::make_unique<BlockScheduling>(BB); 2752 2753 BlockScheduling &BS = *BSRef.get(); 2754 2755 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2756 if (!Bundle) { 2757 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2758 assert((!BS.getScheduleData(VL0) || 2759 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2760 "tryScheduleBundle should cancelScheduling on failure"); 2761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2762 ReuseShuffleIndicies); 2763 return; 2764 } 2765 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2766 2767 unsigned ShuffleOrOp = S.isAltShuffle() ? 2768 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2769 switch (ShuffleOrOp) { 2770 case Instruction::PHI: { 2771 auto *PH = cast<PHINode>(VL0); 2772 2773 // Check for terminator values (e.g. invoke). 2774 for (Value *V : VL) 2775 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2776 Instruction *Term = dyn_cast<Instruction>( 2777 cast<PHINode>(V)->getIncomingValueForBlock( 2778 PH->getIncomingBlock(I))); 2779 if (Term && Term->isTerminator()) { 2780 LLVM_DEBUG(dbgs() 2781 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2782 BS.cancelScheduling(VL, VL0); 2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2784 ReuseShuffleIndicies); 2785 return; 2786 } 2787 } 2788 2789 TreeEntry *TE = 2790 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2791 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2792 2793 // Keeps the reordered operands to avoid code duplication. 2794 SmallVector<ValueList, 2> OperandsVec; 2795 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2796 ValueList Operands; 2797 // Prepare the operand vector. 2798 for (Value *V : VL) 2799 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2800 PH->getIncomingBlock(I))); 2801 TE->setOperand(I, Operands); 2802 OperandsVec.push_back(Operands); 2803 } 2804 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2805 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2806 return; 2807 } 2808 case Instruction::ExtractValue: 2809 case Instruction::ExtractElement: { 2810 OrdersType CurrentOrder; 2811 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2812 if (Reuse) { 2813 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2814 ++NumOpsWantToKeepOriginalOrder; 2815 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2816 ReuseShuffleIndicies); 2817 // This is a special case, as it does not gather, but at the same time 2818 // we are not extending buildTree_rec() towards the operands. 2819 ValueList Op0; 2820 Op0.assign(VL.size(), VL0->getOperand(0)); 2821 VectorizableTree.back()->setOperand(0, Op0); 2822 return; 2823 } 2824 if (!CurrentOrder.empty()) { 2825 LLVM_DEBUG({ 2826 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2827 "with order"; 2828 for (unsigned Idx : CurrentOrder) 2829 dbgs() << " " << Idx; 2830 dbgs() << "\n"; 2831 }); 2832 // Insert new order with initial value 0, if it does not exist, 2833 // otherwise return the iterator to the existing one. 2834 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2835 ReuseShuffleIndicies, CurrentOrder); 2836 findRootOrder(CurrentOrder); 2837 ++NumOpsWantToKeepOrder[CurrentOrder]; 2838 // This is a special case, as it does not gather, but at the same time 2839 // we are not extending buildTree_rec() towards the operands. 2840 ValueList Op0; 2841 Op0.assign(VL.size(), VL0->getOperand(0)); 2842 VectorizableTree.back()->setOperand(0, Op0); 2843 return; 2844 } 2845 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2846 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2847 ReuseShuffleIndicies); 2848 BS.cancelScheduling(VL, VL0); 2849 return; 2850 } 2851 case Instruction::Load: { 2852 // Check that a vectorized load would load the same memory as a scalar 2853 // load. For example, we don't want to vectorize loads that are smaller 2854 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2855 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2856 // from such a struct, we read/write packed bits disagreeing with the 2857 // unvectorized version. 2858 Type *ScalarTy = VL0->getType(); 2859 2860 if (DL->getTypeSizeInBits(ScalarTy) != 2861 DL->getTypeAllocSizeInBits(ScalarTy)) { 2862 BS.cancelScheduling(VL, VL0); 2863 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2864 ReuseShuffleIndicies); 2865 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2866 return; 2867 } 2868 2869 // Make sure all loads in the bundle are simple - we can't vectorize 2870 // atomic or volatile loads. 2871 SmallVector<Value *, 4> PointerOps(VL.size()); 2872 auto POIter = PointerOps.begin(); 2873 for (Value *V : VL) { 2874 auto *L = cast<LoadInst>(V); 2875 if (!L->isSimple()) { 2876 BS.cancelScheduling(VL, VL0); 2877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2878 ReuseShuffleIndicies); 2879 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2880 return; 2881 } 2882 *POIter = L->getPointerOperand(); 2883 ++POIter; 2884 } 2885 2886 OrdersType CurrentOrder; 2887 // Check the order of pointer operands. 2888 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2889 Value *Ptr0; 2890 Value *PtrN; 2891 if (CurrentOrder.empty()) { 2892 Ptr0 = PointerOps.front(); 2893 PtrN = PointerOps.back(); 2894 } else { 2895 Ptr0 = PointerOps[CurrentOrder.front()]; 2896 PtrN = PointerOps[CurrentOrder.back()]; 2897 } 2898 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE); 2899 // Check that the sorted loads are consecutive. 2900 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2901 if (CurrentOrder.empty()) { 2902 // Original loads are consecutive and does not require reordering. 2903 ++NumOpsWantToKeepOriginalOrder; 2904 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2905 UserTreeIdx, ReuseShuffleIndicies); 2906 TE->setOperandsInOrder(); 2907 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2908 } else { 2909 // Need to reorder. 2910 TreeEntry *TE = 2911 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2912 ReuseShuffleIndicies, CurrentOrder); 2913 TE->setOperandsInOrder(); 2914 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2915 findRootOrder(CurrentOrder); 2916 ++NumOpsWantToKeepOrder[CurrentOrder]; 2917 } 2918 return; 2919 } 2920 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2921 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2922 UserTreeIdx, ReuseShuffleIndicies); 2923 TE->setOperandsInOrder(); 2924 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2925 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2926 return; 2927 } 2928 2929 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2930 BS.cancelScheduling(VL, VL0); 2931 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2932 ReuseShuffleIndicies); 2933 return; 2934 } 2935 case Instruction::ZExt: 2936 case Instruction::SExt: 2937 case Instruction::FPToUI: 2938 case Instruction::FPToSI: 2939 case Instruction::FPExt: 2940 case Instruction::PtrToInt: 2941 case Instruction::IntToPtr: 2942 case Instruction::SIToFP: 2943 case Instruction::UIToFP: 2944 case Instruction::Trunc: 2945 case Instruction::FPTrunc: 2946 case Instruction::BitCast: { 2947 Type *SrcTy = VL0->getOperand(0)->getType(); 2948 for (Value *V : VL) { 2949 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2950 if (Ty != SrcTy || !isValidElementType(Ty)) { 2951 BS.cancelScheduling(VL, VL0); 2952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2953 ReuseShuffleIndicies); 2954 LLVM_DEBUG(dbgs() 2955 << "SLP: Gathering casts with different src types.\n"); 2956 return; 2957 } 2958 } 2959 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2960 ReuseShuffleIndicies); 2961 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2962 2963 TE->setOperandsInOrder(); 2964 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2965 ValueList Operands; 2966 // Prepare the operand vector. 2967 for (Value *V : VL) 2968 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2969 2970 buildTree_rec(Operands, Depth + 1, {TE, i}); 2971 } 2972 return; 2973 } 2974 case Instruction::ICmp: 2975 case Instruction::FCmp: { 2976 // Check that all of the compares have the same predicate. 2977 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2978 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2979 Type *ComparedTy = VL0->getOperand(0)->getType(); 2980 for (Value *V : VL) { 2981 CmpInst *Cmp = cast<CmpInst>(V); 2982 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2983 Cmp->getOperand(0)->getType() != ComparedTy) { 2984 BS.cancelScheduling(VL, VL0); 2985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2986 ReuseShuffleIndicies); 2987 LLVM_DEBUG(dbgs() 2988 << "SLP: Gathering cmp with different predicate.\n"); 2989 return; 2990 } 2991 } 2992 2993 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2994 ReuseShuffleIndicies); 2995 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2996 2997 ValueList Left, Right; 2998 if (cast<CmpInst>(VL0)->isCommutative()) { 2999 // Commutative predicate - collect + sort operands of the instructions 3000 // so that each side is more likely to have the same opcode. 3001 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3002 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3003 } else { 3004 // Collect operands - commute if it uses the swapped predicate. 3005 for (Value *V : VL) { 3006 auto *Cmp = cast<CmpInst>(V); 3007 Value *LHS = Cmp->getOperand(0); 3008 Value *RHS = Cmp->getOperand(1); 3009 if (Cmp->getPredicate() != P0) 3010 std::swap(LHS, RHS); 3011 Left.push_back(LHS); 3012 Right.push_back(RHS); 3013 } 3014 } 3015 TE->setOperand(0, Left); 3016 TE->setOperand(1, Right); 3017 buildTree_rec(Left, Depth + 1, {TE, 0}); 3018 buildTree_rec(Right, Depth + 1, {TE, 1}); 3019 return; 3020 } 3021 case Instruction::Select: 3022 case Instruction::FNeg: 3023 case Instruction::Add: 3024 case Instruction::FAdd: 3025 case Instruction::Sub: 3026 case Instruction::FSub: 3027 case Instruction::Mul: 3028 case Instruction::FMul: 3029 case Instruction::UDiv: 3030 case Instruction::SDiv: 3031 case Instruction::FDiv: 3032 case Instruction::URem: 3033 case Instruction::SRem: 3034 case Instruction::FRem: 3035 case Instruction::Shl: 3036 case Instruction::LShr: 3037 case Instruction::AShr: 3038 case Instruction::And: 3039 case Instruction::Or: 3040 case Instruction::Xor: { 3041 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3042 ReuseShuffleIndicies); 3043 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3044 3045 // Sort operands of the instructions so that each side is more likely to 3046 // have the same opcode. 3047 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3048 ValueList Left, Right; 3049 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3050 TE->setOperand(0, Left); 3051 TE->setOperand(1, Right); 3052 buildTree_rec(Left, Depth + 1, {TE, 0}); 3053 buildTree_rec(Right, Depth + 1, {TE, 1}); 3054 return; 3055 } 3056 3057 TE->setOperandsInOrder(); 3058 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3059 ValueList Operands; 3060 // Prepare the operand vector. 3061 for (Value *V : VL) 3062 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3063 3064 buildTree_rec(Operands, Depth + 1, {TE, i}); 3065 } 3066 return; 3067 } 3068 case Instruction::GetElementPtr: { 3069 // We don't combine GEPs with complicated (nested) indexing. 3070 for (Value *V : VL) { 3071 if (cast<Instruction>(V)->getNumOperands() != 2) { 3072 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3073 BS.cancelScheduling(VL, VL0); 3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3075 ReuseShuffleIndicies); 3076 return; 3077 } 3078 } 3079 3080 // We can't combine several GEPs into one vector if they operate on 3081 // different types. 3082 Type *Ty0 = VL0->getOperand(0)->getType(); 3083 for (Value *V : VL) { 3084 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3085 if (Ty0 != CurTy) { 3086 LLVM_DEBUG(dbgs() 3087 << "SLP: not-vectorizable GEP (different types).\n"); 3088 BS.cancelScheduling(VL, VL0); 3089 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3090 ReuseShuffleIndicies); 3091 return; 3092 } 3093 } 3094 3095 // We don't combine GEPs with non-constant indexes. 3096 Type *Ty1 = VL0->getOperand(1)->getType(); 3097 for (Value *V : VL) { 3098 auto Op = cast<Instruction>(V)->getOperand(1); 3099 if (!isa<ConstantInt>(Op) || 3100 (Op->getType() != Ty1 && 3101 Op->getType()->getScalarSizeInBits() > 3102 DL->getIndexSizeInBits( 3103 V->getType()->getPointerAddressSpace()))) { 3104 LLVM_DEBUG(dbgs() 3105 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3106 BS.cancelScheduling(VL, VL0); 3107 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3108 ReuseShuffleIndicies); 3109 return; 3110 } 3111 } 3112 3113 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3114 ReuseShuffleIndicies); 3115 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3116 TE->setOperandsInOrder(); 3117 for (unsigned i = 0, e = 2; i < e; ++i) { 3118 ValueList Operands; 3119 // Prepare the operand vector. 3120 for (Value *V : VL) 3121 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3122 3123 buildTree_rec(Operands, Depth + 1, {TE, i}); 3124 } 3125 return; 3126 } 3127 case Instruction::Store: { 3128 // Check if the stores are consecutive or if we need to swizzle them. 3129 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3130 // Avoid types that are padded when being allocated as scalars, while 3131 // being packed together in a vector (such as i1). 3132 if (DL->getTypeSizeInBits(ScalarTy) != 3133 DL->getTypeAllocSizeInBits(ScalarTy)) { 3134 BS.cancelScheduling(VL, VL0); 3135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3136 ReuseShuffleIndicies); 3137 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3138 return; 3139 } 3140 // Make sure all stores in the bundle are simple - we can't vectorize 3141 // atomic or volatile stores. 3142 SmallVector<Value *, 4> PointerOps(VL.size()); 3143 ValueList Operands(VL.size()); 3144 auto POIter = PointerOps.begin(); 3145 auto OIter = Operands.begin(); 3146 for (Value *V : VL) { 3147 auto *SI = cast<StoreInst>(V); 3148 if (!SI->isSimple()) { 3149 BS.cancelScheduling(VL, VL0); 3150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3151 ReuseShuffleIndicies); 3152 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3153 return; 3154 } 3155 *POIter = SI->getPointerOperand(); 3156 *OIter = SI->getValueOperand(); 3157 ++POIter; 3158 ++OIter; 3159 } 3160 3161 OrdersType CurrentOrder; 3162 // Check the order of pointer operands. 3163 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3164 Value *Ptr0; 3165 Value *PtrN; 3166 if (CurrentOrder.empty()) { 3167 Ptr0 = PointerOps.front(); 3168 PtrN = PointerOps.back(); 3169 } else { 3170 Ptr0 = PointerOps[CurrentOrder.front()]; 3171 PtrN = PointerOps[CurrentOrder.back()]; 3172 } 3173 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE); 3174 // Check that the sorted pointer operands are consecutive. 3175 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3176 if (CurrentOrder.empty()) { 3177 // Original stores are consecutive and does not require reordering. 3178 ++NumOpsWantToKeepOriginalOrder; 3179 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3180 UserTreeIdx, ReuseShuffleIndicies); 3181 TE->setOperandsInOrder(); 3182 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3183 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3184 } else { 3185 TreeEntry *TE = 3186 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3187 ReuseShuffleIndicies, CurrentOrder); 3188 TE->setOperandsInOrder(); 3189 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3190 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3191 findRootOrder(CurrentOrder); 3192 ++NumOpsWantToKeepOrder[CurrentOrder]; 3193 } 3194 return; 3195 } 3196 } 3197 3198 BS.cancelScheduling(VL, VL0); 3199 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3200 ReuseShuffleIndicies); 3201 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3202 return; 3203 } 3204 case Instruction::Call: { 3205 // Check if the calls are all to the same vectorizable intrinsic or 3206 // library function. 3207 CallInst *CI = cast<CallInst>(VL0); 3208 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3209 3210 VFShape Shape = VFShape::get( 3211 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3212 false /*HasGlobalPred*/); 3213 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3214 3215 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3216 BS.cancelScheduling(VL, VL0); 3217 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3218 ReuseShuffleIndicies); 3219 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3220 return; 3221 } 3222 Function *F = CI->getCalledFunction(); 3223 unsigned NumArgs = CI->getNumArgOperands(); 3224 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3225 for (unsigned j = 0; j != NumArgs; ++j) 3226 if (hasVectorInstrinsicScalarOpd(ID, j)) 3227 ScalarArgs[j] = CI->getArgOperand(j); 3228 for (Value *V : VL) { 3229 CallInst *CI2 = dyn_cast<CallInst>(V); 3230 if (!CI2 || CI2->getCalledFunction() != F || 3231 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3232 (VecFunc && 3233 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3234 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3235 BS.cancelScheduling(VL, VL0); 3236 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3237 ReuseShuffleIndicies); 3238 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3239 << "\n"); 3240 return; 3241 } 3242 // Some intrinsics have scalar arguments and should be same in order for 3243 // them to be vectorized. 3244 for (unsigned j = 0; j != NumArgs; ++j) { 3245 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3246 Value *A1J = CI2->getArgOperand(j); 3247 if (ScalarArgs[j] != A1J) { 3248 BS.cancelScheduling(VL, VL0); 3249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3250 ReuseShuffleIndicies); 3251 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3252 << " argument " << ScalarArgs[j] << "!=" << A1J 3253 << "\n"); 3254 return; 3255 } 3256 } 3257 } 3258 // Verify that the bundle operands are identical between the two calls. 3259 if (CI->hasOperandBundles() && 3260 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3261 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3262 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3263 BS.cancelScheduling(VL, VL0); 3264 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3265 ReuseShuffleIndicies); 3266 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3267 << *CI << "!=" << *V << '\n'); 3268 return; 3269 } 3270 } 3271 3272 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3273 ReuseShuffleIndicies); 3274 TE->setOperandsInOrder(); 3275 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3276 ValueList Operands; 3277 // Prepare the operand vector. 3278 for (Value *V : VL) { 3279 auto *CI2 = cast<CallInst>(V); 3280 Operands.push_back(CI2->getArgOperand(i)); 3281 } 3282 buildTree_rec(Operands, Depth + 1, {TE, i}); 3283 } 3284 return; 3285 } 3286 case Instruction::ShuffleVector: { 3287 // If this is not an alternate sequence of opcode like add-sub 3288 // then do not vectorize this instruction. 3289 if (!S.isAltShuffle()) { 3290 BS.cancelScheduling(VL, VL0); 3291 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3292 ReuseShuffleIndicies); 3293 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3294 return; 3295 } 3296 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3297 ReuseShuffleIndicies); 3298 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3299 3300 // Reorder operands if reordering would enable vectorization. 3301 if (isa<BinaryOperator>(VL0)) { 3302 ValueList Left, Right; 3303 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3304 TE->setOperand(0, Left); 3305 TE->setOperand(1, Right); 3306 buildTree_rec(Left, Depth + 1, {TE, 0}); 3307 buildTree_rec(Right, Depth + 1, {TE, 1}); 3308 return; 3309 } 3310 3311 TE->setOperandsInOrder(); 3312 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3313 ValueList Operands; 3314 // Prepare the operand vector. 3315 for (Value *V : VL) 3316 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3317 3318 buildTree_rec(Operands, Depth + 1, {TE, i}); 3319 } 3320 return; 3321 } 3322 default: 3323 BS.cancelScheduling(VL, VL0); 3324 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3325 ReuseShuffleIndicies); 3326 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3327 return; 3328 } 3329 } 3330 3331 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3332 unsigned N = 1; 3333 Type *EltTy = T; 3334 3335 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3336 isa<VectorType>(EltTy)) { 3337 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3338 // Check that struct is homogeneous. 3339 for (const auto *Ty : ST->elements()) 3340 if (Ty != *ST->element_begin()) 3341 return 0; 3342 N *= ST->getNumElements(); 3343 EltTy = *ST->element_begin(); 3344 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3345 N *= AT->getNumElements(); 3346 EltTy = AT->getElementType(); 3347 } else { 3348 auto *VT = cast<FixedVectorType>(EltTy); 3349 N *= VT->getNumElements(); 3350 EltTy = VT->getElementType(); 3351 } 3352 } 3353 3354 if (!isValidElementType(EltTy)) 3355 return 0; 3356 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3357 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3358 return 0; 3359 return N; 3360 } 3361 3362 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3363 SmallVectorImpl<unsigned> &CurrentOrder) const { 3364 Instruction *E0 = cast<Instruction>(OpValue); 3365 assert(E0->getOpcode() == Instruction::ExtractElement || 3366 E0->getOpcode() == Instruction::ExtractValue); 3367 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3368 // Check if all of the extracts come from the same vector and from the 3369 // correct offset. 3370 Value *Vec = E0->getOperand(0); 3371 3372 CurrentOrder.clear(); 3373 3374 // We have to extract from a vector/aggregate with the same number of elements. 3375 unsigned NElts; 3376 if (E0->getOpcode() == Instruction::ExtractValue) { 3377 const DataLayout &DL = E0->getModule()->getDataLayout(); 3378 NElts = canMapToVector(Vec->getType(), DL); 3379 if (!NElts) 3380 return false; 3381 // Check if load can be rewritten as load of vector. 3382 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3383 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3384 return false; 3385 } else { 3386 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3387 } 3388 3389 if (NElts != VL.size()) 3390 return false; 3391 3392 // Check that all of the indices extract from the correct offset. 3393 bool ShouldKeepOrder = true; 3394 unsigned E = VL.size(); 3395 // Assign to all items the initial value E + 1 so we can check if the extract 3396 // instruction index was used already. 3397 // Also, later we can check that all the indices are used and we have a 3398 // consecutive access in the extract instructions, by checking that no 3399 // element of CurrentOrder still has value E + 1. 3400 CurrentOrder.assign(E, E + 1); 3401 unsigned I = 0; 3402 for (; I < E; ++I) { 3403 auto *Inst = cast<Instruction>(VL[I]); 3404 if (Inst->getOperand(0) != Vec) 3405 break; 3406 Optional<unsigned> Idx = getExtractIndex(Inst); 3407 if (!Idx) 3408 break; 3409 const unsigned ExtIdx = *Idx; 3410 if (ExtIdx != I) { 3411 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3412 break; 3413 ShouldKeepOrder = false; 3414 CurrentOrder[ExtIdx] = I; 3415 } else { 3416 if (CurrentOrder[I] != E + 1) 3417 break; 3418 CurrentOrder[I] = I; 3419 } 3420 } 3421 if (I < E) { 3422 CurrentOrder.clear(); 3423 return false; 3424 } 3425 3426 return ShouldKeepOrder; 3427 } 3428 3429 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3430 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3431 return ScalarToTreeEntry.count(U) > 0; 3432 }); 3433 } 3434 3435 static std::pair<InstructionCost, InstructionCost> 3436 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3437 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3438 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3439 3440 // Calculate the cost of the scalar and vector calls. 3441 SmallVector<Type *, 4> VecTys; 3442 for (Use &Arg : CI->args()) 3443 VecTys.push_back( 3444 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3445 FastMathFlags FMF; 3446 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3447 FMF = FPCI->getFastMathFlags(); 3448 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3449 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3450 dyn_cast<IntrinsicInst>(CI)); 3451 auto IntrinsicCost = 3452 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3453 3454 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3455 VecTy->getNumElements())), 3456 false /*HasGlobalPred*/); 3457 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3458 auto LibCost = IntrinsicCost; 3459 if (!CI->isNoBuiltin() && VecFunc) { 3460 // Calculate the cost of the vector library call. 3461 // If the corresponding vector call is cheaper, return its cost. 3462 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3463 TTI::TCK_RecipThroughput); 3464 } 3465 return {IntrinsicCost, LibCost}; 3466 } 3467 3468 /// Compute the cost of creating a vector of type \p VecTy containing the 3469 /// extracted values from \p VL. 3470 static InstructionCost 3471 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3472 TargetTransformInfo::ShuffleKind ShuffleKind, 3473 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3474 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3475 3476 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3477 VecTy->getNumElements() < NumOfParts) 3478 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3479 3480 bool AllConsecutive = true; 3481 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3482 unsigned Idx = -1; 3483 InstructionCost Cost = 0; 3484 3485 // Process extracts in blocks of EltsPerVector to check if the source vector 3486 // operand can be re-used directly. If not, add the cost of creating a shuffle 3487 // to extract the values into a vector register. 3488 for (auto *V : VL) { 3489 ++Idx; 3490 3491 // Reached the start of a new vector registers. 3492 if (Idx % EltsPerVector == 0) { 3493 AllConsecutive = true; 3494 continue; 3495 } 3496 3497 // Check all extracts for a vector register on the target directly 3498 // extract values in order. 3499 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3500 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3501 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3502 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3503 3504 if (AllConsecutive) 3505 continue; 3506 3507 // Skip all indices, except for the last index per vector block. 3508 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3509 continue; 3510 3511 // If we have a series of extracts which are not consecutive and hence 3512 // cannot re-use the source vector register directly, compute the shuffle 3513 // cost to extract the a vector with EltsPerVector elements. 3514 Cost += TTI.getShuffleCost( 3515 TargetTransformInfo::SK_PermuteSingleSrc, 3516 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3517 } 3518 return Cost; 3519 } 3520 3521 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3522 ArrayRef<Value*> VL = E->Scalars; 3523 3524 Type *ScalarTy = VL[0]->getType(); 3525 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3526 ScalarTy = SI->getValueOperand()->getType(); 3527 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3528 ScalarTy = CI->getOperand(0)->getType(); 3529 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3530 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3531 3532 // If we have computed a smaller type for the expression, update VecTy so 3533 // that the costs will be accurate. 3534 if (MinBWs.count(VL[0])) 3535 VecTy = FixedVectorType::get( 3536 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3537 3538 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3539 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3540 InstructionCost ReuseShuffleCost = 0; 3541 if (NeedToShuffleReuses) { 3542 ReuseShuffleCost = 3543 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3544 E->ReuseShuffleIndices); 3545 } 3546 // FIXME: it tries to fix a problem with MSVC buildbots. 3547 TargetTransformInfo &TTIRef = *TTI; 3548 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, 3549 VecTy](InstructionCost &Cost, bool IsGather) { 3550 DenseMap<Value *, int> ExtractVectorsTys; 3551 for (auto *V : VL) { 3552 // If all users of instruction are going to be vectorized and this 3553 // instruction itself is not going to be vectorized, consider this 3554 // instruction as dead and remove its cost from the final cost of the 3555 // vectorized tree. 3556 if (IsGather && (!areAllUsersVectorized(cast<Instruction>(V)) || 3557 ScalarToTreeEntry.count(V))) 3558 continue; 3559 auto *EE = cast<ExtractElementInst>(V); 3560 unsigned Idx = *getExtractIndex(EE); 3561 if (TTIRef.getNumberOfParts(VecTy) != 3562 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 3563 auto It = 3564 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 3565 It->getSecond() = std::min<int>(It->second, Idx); 3566 } 3567 // Take credit for instruction that will become dead. 3568 if (EE->hasOneUse()) { 3569 Instruction *Ext = EE->user_back(); 3570 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3571 all_of(Ext->users(), 3572 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3573 // Use getExtractWithExtendCost() to calculate the cost of 3574 // extractelement/ext pair. 3575 Cost -= 3576 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 3577 EE->getVectorOperandType(), Idx); 3578 // Add back the cost of s|zext which is subtracted separately. 3579 Cost += TTIRef.getCastInstrCost( 3580 Ext->getOpcode(), Ext->getType(), EE->getType(), 3581 TTI::getCastContextHint(Ext), CostKind, Ext); 3582 continue; 3583 } 3584 } 3585 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 3586 EE->getVectorOperandType(), Idx); 3587 } 3588 // Add a cost for subvector extracts/inserts if required. 3589 for (const auto &Data : ExtractVectorsTys) { 3590 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 3591 unsigned NumElts = VecTy->getNumElements(); 3592 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) 3593 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3594 EEVTy, None, 3595 (Data.second / NumElts) * NumElts, VecTy); 3596 else 3597 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 3598 VecTy, None, 0, EEVTy); 3599 } 3600 }; 3601 if (E->State == TreeEntry::NeedToGather) { 3602 if (allConstant(VL)) 3603 return 0; 3604 if (isSplat(VL)) { 3605 return ReuseShuffleCost + 3606 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3607 0); 3608 } 3609 if (E->getOpcode() == Instruction::ExtractElement && 3610 allSameType(VL) && allSameBlock(VL)) { 3611 SmallVector<int> Mask; 3612 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3613 isShuffle(VL, Mask); 3614 if (ShuffleKind.hasValue()) { 3615 InstructionCost Cost = 3616 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3617 AdjustExtractsCost(Cost, /*IsGather=*/true); 3618 return ReuseShuffleCost + Cost; 3619 } 3620 } 3621 InstructionCost GatherCost = 0; 3622 SmallVector<int> Mask; 3623 SmallVector<const TreeEntry *> Entries; 3624 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3625 isGatherShuffledEntry(E, Mask, Entries); 3626 if (Shuffle.hasValue()) { 3627 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3628 LLVM_DEBUG( 3629 dbgs() 3630 << "SLP: perfect diamond match for gather bundle that starts with " 3631 << *VL.front() << ".\n"); 3632 } else { 3633 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3634 << " entries for bundle that starts with " 3635 << *VL.front() << ".\n"); 3636 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask); 3637 } 3638 } else { 3639 GatherCost = getGatherCost(VL); 3640 } 3641 return ReuseShuffleCost + GatherCost; 3642 } 3643 assert((E->State == TreeEntry::Vectorize || 3644 E->State == TreeEntry::ScatterVectorize) && 3645 "Unhandled state"); 3646 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3647 Instruction *VL0 = E->getMainOp(); 3648 unsigned ShuffleOrOp = 3649 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3650 switch (ShuffleOrOp) { 3651 case Instruction::PHI: 3652 return 0; 3653 3654 case Instruction::ExtractValue: 3655 case Instruction::ExtractElement: { 3656 // The common cost of removal ExtractElement/ExtractValue instructions + 3657 // the cost of shuffles, if required to resuffle the original vector. 3658 InstructionCost CommonCost = 0; 3659 if (NeedToShuffleReuses) { 3660 unsigned Idx = 0; 3661 for (unsigned I : E->ReuseShuffleIndices) { 3662 if (ShuffleOrOp == Instruction::ExtractElement) { 3663 auto *EE = cast<ExtractElementInst>(VL[I]); 3664 ReuseShuffleCost -= TTI->getVectorInstrCost( 3665 Instruction::ExtractElement, EE->getVectorOperandType(), 3666 *getExtractIndex(EE)); 3667 } else { 3668 ReuseShuffleCost -= TTI->getVectorInstrCost( 3669 Instruction::ExtractElement, VecTy, Idx); 3670 ++Idx; 3671 } 3672 } 3673 Idx = ReuseShuffleNumbers; 3674 for (Value *V : VL) { 3675 if (ShuffleOrOp == Instruction::ExtractElement) { 3676 auto *EE = cast<ExtractElementInst>(V); 3677 ReuseShuffleCost += TTI->getVectorInstrCost( 3678 Instruction::ExtractElement, EE->getVectorOperandType(), 3679 *getExtractIndex(EE)); 3680 } else { 3681 --Idx; 3682 ReuseShuffleCost += TTI->getVectorInstrCost( 3683 Instruction::ExtractElement, VecTy, Idx); 3684 } 3685 } 3686 CommonCost = ReuseShuffleCost; 3687 } else if (!E->ReorderIndices.empty()) { 3688 SmallVector<int> NewMask; 3689 inversePermutation(E->ReorderIndices, NewMask); 3690 CommonCost = TTI->getShuffleCost( 3691 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3692 } 3693 if (ShuffleOrOp == Instruction::ExtractValue) { 3694 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3695 auto *EI = cast<Instruction>(VL[I]); 3696 // Take credit for instruction that will become dead. 3697 if (EI->hasOneUse()) { 3698 Instruction *Ext = EI->user_back(); 3699 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3700 all_of(Ext->users(), 3701 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3702 // Use getExtractWithExtendCost() to calculate the cost of 3703 // extractelement/ext pair. 3704 CommonCost -= TTI->getExtractWithExtendCost( 3705 Ext->getOpcode(), Ext->getType(), VecTy, I); 3706 // Add back the cost of s|zext which is subtracted separately. 3707 CommonCost += TTI->getCastInstrCost( 3708 Ext->getOpcode(), Ext->getType(), EI->getType(), 3709 TTI::getCastContextHint(Ext), CostKind, Ext); 3710 continue; 3711 } 3712 } 3713 CommonCost -= 3714 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3715 } 3716 } else { 3717 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 3718 } 3719 return CommonCost; 3720 } 3721 case Instruction::ZExt: 3722 case Instruction::SExt: 3723 case Instruction::FPToUI: 3724 case Instruction::FPToSI: 3725 case Instruction::FPExt: 3726 case Instruction::PtrToInt: 3727 case Instruction::IntToPtr: 3728 case Instruction::SIToFP: 3729 case Instruction::UIToFP: 3730 case Instruction::Trunc: 3731 case Instruction::FPTrunc: 3732 case Instruction::BitCast: { 3733 Type *SrcTy = VL0->getOperand(0)->getType(); 3734 InstructionCost ScalarEltCost = 3735 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3736 TTI::getCastContextHint(VL0), CostKind, VL0); 3737 if (NeedToShuffleReuses) { 3738 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3739 } 3740 3741 // Calculate the cost of this instruction. 3742 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3743 3744 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3745 InstructionCost VecCost = 0; 3746 // Check if the values are candidates to demote. 3747 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3748 VecCost = 3749 ReuseShuffleCost + 3750 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3751 TTI::getCastContextHint(VL0), CostKind, VL0); 3752 } 3753 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3754 return VecCost - ScalarCost; 3755 } 3756 case Instruction::FCmp: 3757 case Instruction::ICmp: 3758 case Instruction::Select: { 3759 // Calculate the cost of this instruction. 3760 InstructionCost ScalarEltCost = 3761 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3762 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3763 if (NeedToShuffleReuses) { 3764 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3765 } 3766 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3767 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3768 3769 // Check if all entries in VL are either compares or selects with compares 3770 // as condition that have the same predicates. 3771 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3772 bool First = true; 3773 for (auto *V : VL) { 3774 CmpInst::Predicate CurrentPred; 3775 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3776 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3777 !match(V, MatchCmp)) || 3778 (!First && VecPred != CurrentPred)) { 3779 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3780 break; 3781 } 3782 First = false; 3783 VecPred = CurrentPred; 3784 } 3785 3786 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3787 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3788 // Check if it is possible and profitable to use min/max for selects in 3789 // VL. 3790 // 3791 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3792 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3793 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3794 {VecTy, VecTy}); 3795 InstructionCost IntrinsicCost = 3796 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3797 // If the selects are the only uses of the compares, they will be dead 3798 // and we can adjust the cost by removing their cost. 3799 if (IntrinsicAndUse.second) 3800 IntrinsicCost -= 3801 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3802 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3803 VecCost = std::min(VecCost, IntrinsicCost); 3804 } 3805 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3806 return ReuseShuffleCost + VecCost - ScalarCost; 3807 } 3808 case Instruction::FNeg: 3809 case Instruction::Add: 3810 case Instruction::FAdd: 3811 case Instruction::Sub: 3812 case Instruction::FSub: 3813 case Instruction::Mul: 3814 case Instruction::FMul: 3815 case Instruction::UDiv: 3816 case Instruction::SDiv: 3817 case Instruction::FDiv: 3818 case Instruction::URem: 3819 case Instruction::SRem: 3820 case Instruction::FRem: 3821 case Instruction::Shl: 3822 case Instruction::LShr: 3823 case Instruction::AShr: 3824 case Instruction::And: 3825 case Instruction::Or: 3826 case Instruction::Xor: { 3827 // Certain instructions can be cheaper to vectorize if they have a 3828 // constant second vector operand. 3829 TargetTransformInfo::OperandValueKind Op1VK = 3830 TargetTransformInfo::OK_AnyValue; 3831 TargetTransformInfo::OperandValueKind Op2VK = 3832 TargetTransformInfo::OK_UniformConstantValue; 3833 TargetTransformInfo::OperandValueProperties Op1VP = 3834 TargetTransformInfo::OP_None; 3835 TargetTransformInfo::OperandValueProperties Op2VP = 3836 TargetTransformInfo::OP_PowerOf2; 3837 3838 // If all operands are exactly the same ConstantInt then set the 3839 // operand kind to OK_UniformConstantValue. 3840 // If instead not all operands are constants, then set the operand kind 3841 // to OK_AnyValue. If all operands are constants but not the same, 3842 // then set the operand kind to OK_NonUniformConstantValue. 3843 ConstantInt *CInt0 = nullptr; 3844 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3845 const Instruction *I = cast<Instruction>(VL[i]); 3846 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3847 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3848 if (!CInt) { 3849 Op2VK = TargetTransformInfo::OK_AnyValue; 3850 Op2VP = TargetTransformInfo::OP_None; 3851 break; 3852 } 3853 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3854 !CInt->getValue().isPowerOf2()) 3855 Op2VP = TargetTransformInfo::OP_None; 3856 if (i == 0) { 3857 CInt0 = CInt; 3858 continue; 3859 } 3860 if (CInt0 != CInt) 3861 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3862 } 3863 3864 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3865 InstructionCost ScalarEltCost = 3866 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3867 Op2VK, Op1VP, Op2VP, Operands, VL0); 3868 if (NeedToShuffleReuses) { 3869 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3870 } 3871 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3872 InstructionCost VecCost = 3873 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3874 Op2VK, Op1VP, Op2VP, Operands, VL0); 3875 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3876 return ReuseShuffleCost + VecCost - ScalarCost; 3877 } 3878 case Instruction::GetElementPtr: { 3879 TargetTransformInfo::OperandValueKind Op1VK = 3880 TargetTransformInfo::OK_AnyValue; 3881 TargetTransformInfo::OperandValueKind Op2VK = 3882 TargetTransformInfo::OK_UniformConstantValue; 3883 3884 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3885 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3886 if (NeedToShuffleReuses) { 3887 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3888 } 3889 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3890 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3891 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3892 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3893 return ReuseShuffleCost + VecCost - ScalarCost; 3894 } 3895 case Instruction::Load: { 3896 // Cost of wide load - cost of scalar loads. 3897 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3898 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3899 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3900 if (NeedToShuffleReuses) { 3901 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3902 } 3903 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3904 InstructionCost VecLdCost; 3905 if (E->State == TreeEntry::Vectorize) { 3906 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3907 CostKind, VL0); 3908 } else { 3909 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3910 VecLdCost = TTI->getGatherScatterOpCost( 3911 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3912 /*VariableMask=*/false, alignment, CostKind, VL0); 3913 } 3914 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 3915 SmallVector<int> NewMask; 3916 inversePermutation(E->ReorderIndices, NewMask); 3917 VecLdCost += TTI->getShuffleCost( 3918 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3919 } 3920 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3921 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3922 } 3923 case Instruction::Store: { 3924 // We know that we can merge the stores. Calculate the cost. 3925 bool IsReorder = !E->ReorderIndices.empty(); 3926 auto *SI = 3927 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3928 Align Alignment = SI->getAlign(); 3929 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3930 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3931 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3932 InstructionCost VecStCost = TTI->getMemoryOpCost( 3933 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3934 if (IsReorder) { 3935 SmallVector<int> NewMask; 3936 inversePermutation(E->ReorderIndices, NewMask); 3937 VecStCost += TTI->getShuffleCost( 3938 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3939 } 3940 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3941 return VecStCost - ScalarStCost; 3942 } 3943 case Instruction::Call: { 3944 CallInst *CI = cast<CallInst>(VL0); 3945 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3946 3947 // Calculate the cost of the scalar and vector calls. 3948 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 3949 InstructionCost ScalarEltCost = 3950 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3951 if (NeedToShuffleReuses) { 3952 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3953 } 3954 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3955 3956 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3957 InstructionCost VecCallCost = 3958 std::min(VecCallCosts.first, VecCallCosts.second); 3959 3960 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3961 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3962 << " for " << *CI << "\n"); 3963 3964 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3965 } 3966 case Instruction::ShuffleVector: { 3967 assert(E->isAltShuffle() && 3968 ((Instruction::isBinaryOp(E->getOpcode()) && 3969 Instruction::isBinaryOp(E->getAltOpcode())) || 3970 (Instruction::isCast(E->getOpcode()) && 3971 Instruction::isCast(E->getAltOpcode()))) && 3972 "Invalid Shuffle Vector Operand"); 3973 InstructionCost ScalarCost = 0; 3974 if (NeedToShuffleReuses) { 3975 for (unsigned Idx : E->ReuseShuffleIndices) { 3976 Instruction *I = cast<Instruction>(VL[Idx]); 3977 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3978 } 3979 for (Value *V : VL) { 3980 Instruction *I = cast<Instruction>(V); 3981 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3982 } 3983 } 3984 for (Value *V : VL) { 3985 Instruction *I = cast<Instruction>(V); 3986 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3987 ScalarCost += TTI->getInstructionCost(I, CostKind); 3988 } 3989 // VecCost is equal to sum of the cost of creating 2 vectors 3990 // and the cost of creating shuffle. 3991 InstructionCost VecCost = 0; 3992 if (Instruction::isBinaryOp(E->getOpcode())) { 3993 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3994 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3995 CostKind); 3996 } else { 3997 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3998 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3999 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4000 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4001 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4002 TTI::CastContextHint::None, CostKind); 4003 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4004 TTI::CastContextHint::None, CostKind); 4005 } 4006 4007 SmallVector<int> Mask(E->Scalars.size()); 4008 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4009 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4010 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4011 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4012 } 4013 VecCost += 4014 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 4015 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4016 return ReuseShuffleCost + VecCost - ScalarCost; 4017 } 4018 default: 4019 llvm_unreachable("Unknown instruction"); 4020 } 4021 } 4022 4023 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4024 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4025 << VectorizableTree.size() << " is fully vectorizable .\n"); 4026 4027 // We only handle trees of heights 1 and 2. 4028 if (VectorizableTree.size() == 1 && 4029 VectorizableTree[0]->State == TreeEntry::Vectorize) 4030 return true; 4031 4032 if (VectorizableTree.size() != 2) 4033 return false; 4034 4035 // Handle splat and all-constants stores. 4036 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4037 (allConstant(VectorizableTree[1]->Scalars) || 4038 isSplat(VectorizableTree[1]->Scalars))) 4039 return true; 4040 4041 // Gathering cost would be too much for tiny trees. 4042 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4043 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4044 return false; 4045 4046 return true; 4047 } 4048 4049 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4050 TargetTransformInfo *TTI) { 4051 // Look past the root to find a source value. Arbitrarily follow the 4052 // path through operand 0 of any 'or'. Also, peek through optional 4053 // shift-left-by-multiple-of-8-bits. 4054 Value *ZextLoad = Root; 4055 const APInt *ShAmtC; 4056 while (!isa<ConstantExpr>(ZextLoad) && 4057 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4058 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4059 ShAmtC->urem(8) == 0))) 4060 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 4061 4062 // Check if the input is an extended load of the required or/shift expression. 4063 Value *LoadPtr; 4064 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4065 return false; 4066 4067 // Require that the total load bit width is a legal integer type. 4068 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4069 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4070 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4071 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4072 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4073 return false; 4074 4075 // Everything matched - assume that we can fold the whole sequence using 4076 // load combining. 4077 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4078 << *(cast<Instruction>(Root)) << "\n"); 4079 4080 return true; 4081 } 4082 4083 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4084 if (RdxKind != RecurKind::Or) 4085 return false; 4086 4087 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4088 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4089 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 4090 } 4091 4092 bool BoUpSLP::isLoadCombineCandidate() const { 4093 // Peek through a final sequence of stores and check if all operations are 4094 // likely to be load-combined. 4095 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4096 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4097 Value *X; 4098 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4099 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 4100 return false; 4101 } 4102 return true; 4103 } 4104 4105 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4106 // We can vectorize the tree if its size is greater than or equal to the 4107 // minimum size specified by the MinTreeSize command line option. 4108 if (VectorizableTree.size() >= MinTreeSize) 4109 return false; 4110 4111 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4112 // can vectorize it if we can prove it fully vectorizable. 4113 if (isFullyVectorizableTinyTree()) 4114 return false; 4115 4116 assert(VectorizableTree.empty() 4117 ? ExternalUses.empty() 4118 : true && "We shouldn't have any external users"); 4119 4120 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4121 // vectorizable. 4122 return true; 4123 } 4124 4125 InstructionCost BoUpSLP::getSpillCost() const { 4126 // Walk from the bottom of the tree to the top, tracking which values are 4127 // live. When we see a call instruction that is not part of our tree, 4128 // query TTI to see if there is a cost to keeping values live over it 4129 // (for example, if spills and fills are required). 4130 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4131 InstructionCost Cost = 0; 4132 4133 SmallPtrSet<Instruction*, 4> LiveValues; 4134 Instruction *PrevInst = nullptr; 4135 4136 // The entries in VectorizableTree are not necessarily ordered by their 4137 // position in basic blocks. Collect them and order them by dominance so later 4138 // instructions are guaranteed to be visited first. For instructions in 4139 // different basic blocks, we only scan to the beginning of the block, so 4140 // their order does not matter, as long as all instructions in a basic block 4141 // are grouped together. Using dominance ensures a deterministic order. 4142 SmallVector<Instruction *, 16> OrderedScalars; 4143 for (const auto &TEPtr : VectorizableTree) { 4144 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4145 if (!Inst) 4146 continue; 4147 OrderedScalars.push_back(Inst); 4148 } 4149 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 4150 return DT->dominates(B, A); 4151 }); 4152 4153 for (Instruction *Inst : OrderedScalars) { 4154 if (!PrevInst) { 4155 PrevInst = Inst; 4156 continue; 4157 } 4158 4159 // Update LiveValues. 4160 LiveValues.erase(PrevInst); 4161 for (auto &J : PrevInst->operands()) { 4162 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4163 LiveValues.insert(cast<Instruction>(&*J)); 4164 } 4165 4166 LLVM_DEBUG({ 4167 dbgs() << "SLP: #LV: " << LiveValues.size(); 4168 for (auto *X : LiveValues) 4169 dbgs() << " " << X->getName(); 4170 dbgs() << ", Looking at "; 4171 Inst->dump(); 4172 }); 4173 4174 // Now find the sequence of instructions between PrevInst and Inst. 4175 unsigned NumCalls = 0; 4176 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4177 PrevInstIt = 4178 PrevInst->getIterator().getReverse(); 4179 while (InstIt != PrevInstIt) { 4180 if (PrevInstIt == PrevInst->getParent()->rend()) { 4181 PrevInstIt = Inst->getParent()->rbegin(); 4182 continue; 4183 } 4184 4185 // Debug information does not impact spill cost. 4186 if ((isa<CallInst>(&*PrevInstIt) && 4187 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4188 &*PrevInstIt != PrevInst) 4189 NumCalls++; 4190 4191 ++PrevInstIt; 4192 } 4193 4194 if (NumCalls) { 4195 SmallVector<Type*, 4> V; 4196 for (auto *II : LiveValues) 4197 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4198 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4199 } 4200 4201 PrevInst = Inst; 4202 } 4203 4204 return Cost; 4205 } 4206 4207 InstructionCost BoUpSLP::getTreeCost() { 4208 InstructionCost Cost = 0; 4209 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4210 << VectorizableTree.size() << ".\n"); 4211 4212 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4213 4214 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4215 TreeEntry &TE = *VectorizableTree[I].get(); 4216 4217 // We create duplicate tree entries for gather sequences that have multiple 4218 // uses. However, we should not compute the cost of duplicate sequences. 4219 // For example, if we have a build vector (i.e., insertelement sequence) 4220 // that is used by more than one vector instruction, we only need to 4221 // compute the cost of the insertelement instructions once. The redundant 4222 // instructions will be eliminated by CSE. 4223 // 4224 // We should consider not creating duplicate tree entries for gather 4225 // sequences, and instead add additional edges to the tree representing 4226 // their uses. Since such an approach results in fewer total entries, 4227 // existing heuristics based on tree size may yield different results. 4228 // 4229 if (TE.State == TreeEntry::NeedToGather && 4230 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4231 VectorizableTree.end(), 4232 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4233 return EntryPtr->State == TreeEntry::NeedToGather && 4234 EntryPtr->isSame(TE.Scalars); 4235 })) 4236 continue; 4237 4238 InstructionCost C = getEntryCost(&TE); 4239 Cost += C; 4240 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4241 << " for bundle that starts with " << *TE.Scalars[0] 4242 << ".\n" 4243 << "SLP: Current total cost = " << Cost << "\n"); 4244 } 4245 4246 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4247 InstructionCost ExtractCost = 0; 4248 for (ExternalUser &EU : ExternalUses) { 4249 // We only add extract cost once for the same scalar. 4250 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4251 continue; 4252 4253 // Uses by ephemeral values are free (because the ephemeral value will be 4254 // removed prior to code generation, and so the extraction will be 4255 // removed as well). 4256 if (EphValues.count(EU.User)) 4257 continue; 4258 4259 // If we plan to rewrite the tree in a smaller type, we will need to sign 4260 // extend the extracted value back to the original type. Here, we account 4261 // for the extract and the added cost of the sign extend if needed. 4262 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4263 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4264 if (MinBWs.count(ScalarRoot)) { 4265 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4266 auto Extend = 4267 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4268 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4269 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4270 VecTy, EU.Lane); 4271 } else { 4272 ExtractCost += 4273 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4274 } 4275 } 4276 4277 InstructionCost SpillCost = getSpillCost(); 4278 Cost += SpillCost + ExtractCost; 4279 4280 #ifndef NDEBUG 4281 SmallString<256> Str; 4282 { 4283 raw_svector_ostream OS(Str); 4284 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4285 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4286 << "SLP: Total Cost = " << Cost << ".\n"; 4287 } 4288 LLVM_DEBUG(dbgs() << Str); 4289 if (ViewSLPTree) 4290 ViewGraph(this, "SLP" + F->getName(), false, Str); 4291 #endif 4292 4293 return Cost; 4294 } 4295 4296 Optional<TargetTransformInfo::ShuffleKind> 4297 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4298 SmallVectorImpl<const TreeEntry *> &Entries) { 4299 auto *VLIt = find_if(VectorizableTree, 4300 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4301 return EntryPtr.get() == TE; 4302 }); 4303 assert(VLIt != VectorizableTree.end() && 4304 "Gathered values should be in the tree."); 4305 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4306 Entries.clear(); 4307 DenseMap<const TreeEntry *, int> Used; 4308 int NumShuffles = 0; 4309 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4310 Value *V = TE->Scalars[I]; 4311 if (isa<UndefValue>(V)) 4312 continue; 4313 const TreeEntry *VTE = getTreeEntry(V); 4314 if (!VTE) { 4315 // Check if it is used in one of the gathered entries. 4316 const auto *It = 4317 find_if(make_range(VectorizableTree.begin(), VLIt), 4318 [V](const std::unique_ptr<TreeEntry> &EntryPtr) { 4319 return EntryPtr->State == TreeEntry::NeedToGather && 4320 is_contained(EntryPtr->Scalars, V); 4321 }); 4322 if (It != VLIt) 4323 VTE = It->get(); 4324 } 4325 if (VTE) { 4326 auto Res = Used.try_emplace(VTE, NumShuffles); 4327 if (Res.second) { 4328 Entries.push_back(VTE); 4329 ++NumShuffles; 4330 if (NumShuffles > 2) 4331 return None; 4332 if (NumShuffles == 2) { 4333 unsigned FirstSz = Entries.front()->Scalars.size(); 4334 if (!Entries.front()->ReuseShuffleIndices.empty()) 4335 FirstSz = Entries.front()->ReuseShuffleIndices.size(); 4336 unsigned SecondSz = Entries.back()->Scalars.size(); 4337 if (!Entries.back()->ReuseShuffleIndices.empty()) 4338 SecondSz = Entries.back()->ReuseShuffleIndices.size(); 4339 if (FirstSz != SecondSz) 4340 return None; 4341 } 4342 } 4343 int FoundLane = 4344 findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V); 4345 unsigned Sz = VTE->Scalars.size(); 4346 if (!VTE->ReuseShuffleIndices.empty()) 4347 Sz = VTE->ReuseShuffleIndices.size(); 4348 Mask[I] = Res.first->second * Sz + FoundLane; 4349 // Extra check required by isSingleSourceMaskImpl function (called by 4350 // ShuffleVectorInst::isSingleSourceMask). 4351 if (Mask[I] >= 2 * E) 4352 return None; 4353 continue; 4354 } 4355 return None; 4356 } 4357 if (NumShuffles == 1) { 4358 if (ShuffleVectorInst::isReverseMask(Mask)) 4359 return TargetTransformInfo::SK_Reverse; 4360 return TargetTransformInfo::SK_PermuteSingleSrc; 4361 } 4362 if (NumShuffles == 2) { 4363 if (ShuffleVectorInst::isSelectMask(Mask)) 4364 return TargetTransformInfo::SK_Select; 4365 if (ShuffleVectorInst::isTransposeMask(Mask)) 4366 return TargetTransformInfo::SK_Transpose; 4367 return TargetTransformInfo::SK_PermuteTwoSrc; 4368 } 4369 return None; 4370 } 4371 4372 InstructionCost 4373 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4374 const DenseSet<unsigned> &ShuffledIndices) const { 4375 unsigned NumElts = Ty->getNumElements(); 4376 APInt DemandedElts = APInt::getNullValue(NumElts); 4377 for (unsigned I = 0; I < NumElts; ++I) 4378 if (!ShuffledIndices.count(I)) 4379 DemandedElts.setBit(I); 4380 InstructionCost Cost = 4381 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4382 /*Extract*/ false); 4383 if (!ShuffledIndices.empty()) 4384 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4385 return Cost; 4386 } 4387 4388 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4389 // Find the type of the operands in VL. 4390 Type *ScalarTy = VL[0]->getType(); 4391 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4392 ScalarTy = SI->getValueOperand()->getType(); 4393 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4394 // Find the cost of inserting/extracting values from the vector. 4395 // Check if the same elements are inserted several times and count them as 4396 // shuffle candidates. 4397 DenseSet<unsigned> ShuffledElements; 4398 DenseSet<Value *> UniqueElements; 4399 // Iterate in reverse order to consider insert elements with the high cost. 4400 for (unsigned I = VL.size(); I > 0; --I) { 4401 unsigned Idx = I - 1; 4402 if (!UniqueElements.insert(VL[Idx]).second) 4403 ShuffledElements.insert(Idx); 4404 } 4405 return getGatherCost(VecTy, ShuffledElements); 4406 } 4407 4408 // Perform operand reordering on the instructions in VL and return the reordered 4409 // operands in Left and Right. 4410 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4411 SmallVectorImpl<Value *> &Left, 4412 SmallVectorImpl<Value *> &Right, 4413 const DataLayout &DL, 4414 ScalarEvolution &SE, 4415 const BoUpSLP &R) { 4416 if (VL.empty()) 4417 return; 4418 VLOperands Ops(VL, DL, SE, R); 4419 // Reorder the operands in place. 4420 Ops.reorder(); 4421 Left = Ops.getVL(0); 4422 Right = Ops.getVL(1); 4423 } 4424 4425 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4426 // Get the basic block this bundle is in. All instructions in the bundle 4427 // should be in this block. 4428 auto *Front = E->getMainOp(); 4429 auto *BB = Front->getParent(); 4430 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4431 auto *I = cast<Instruction>(V); 4432 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4433 })); 4434 4435 // The last instruction in the bundle in program order. 4436 Instruction *LastInst = nullptr; 4437 4438 // Find the last instruction. The common case should be that BB has been 4439 // scheduled, and the last instruction is VL.back(). So we start with 4440 // VL.back() and iterate over schedule data until we reach the end of the 4441 // bundle. The end of the bundle is marked by null ScheduleData. 4442 if (BlocksSchedules.count(BB)) { 4443 auto *Bundle = 4444 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4445 if (Bundle && Bundle->isPartOfBundle()) 4446 for (; Bundle; Bundle = Bundle->NextInBundle) 4447 if (Bundle->OpValue == Bundle->Inst) 4448 LastInst = Bundle->Inst; 4449 } 4450 4451 // LastInst can still be null at this point if there's either not an entry 4452 // for BB in BlocksSchedules or there's no ScheduleData available for 4453 // VL.back(). This can be the case if buildTree_rec aborts for various 4454 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4455 // size is reached, etc.). ScheduleData is initialized in the scheduling 4456 // "dry-run". 4457 // 4458 // If this happens, we can still find the last instruction by brute force. We 4459 // iterate forwards from Front (inclusive) until we either see all 4460 // instructions in the bundle or reach the end of the block. If Front is the 4461 // last instruction in program order, LastInst will be set to Front, and we 4462 // will visit all the remaining instructions in the block. 4463 // 4464 // One of the reasons we exit early from buildTree_rec is to place an upper 4465 // bound on compile-time. Thus, taking an additional compile-time hit here is 4466 // not ideal. However, this should be exceedingly rare since it requires that 4467 // we both exit early from buildTree_rec and that the bundle be out-of-order 4468 // (causing us to iterate all the way to the end of the block). 4469 if (!LastInst) { 4470 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4471 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4472 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4473 LastInst = &I; 4474 if (Bundle.empty()) 4475 break; 4476 } 4477 } 4478 assert(LastInst && "Failed to find last instruction in bundle"); 4479 4480 // Set the insertion point after the last instruction in the bundle. Set the 4481 // debug location to Front. 4482 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4483 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4484 } 4485 4486 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4487 Value *Val0 = 4488 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4489 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4490 Value *Vec = PoisonValue::get(VecTy); 4491 unsigned InsIndex = 0; 4492 for (Value *Val : VL) { 4493 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4494 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4495 if (!InsElt) 4496 continue; 4497 GatherSeq.insert(InsElt); 4498 CSEBlocks.insert(InsElt->getParent()); 4499 // Add to our 'need-to-extract' list. 4500 if (TreeEntry *Entry = getTreeEntry(Val)) { 4501 // Find which lane we need to extract. 4502 int FoundLane = 4503 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val); 4504 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4505 } 4506 } 4507 4508 return Vec; 4509 } 4510 4511 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4512 InstructionsState S = getSameOpcode(VL); 4513 if (S.getOpcode()) { 4514 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4515 if (E->isSame(VL)) { 4516 Value *V = vectorizeTree(E); 4517 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4518 // Reshuffle to get only unique values. 4519 // If some of the scalars are duplicated in the vectorization tree 4520 // entry, we do not vectorize them but instead generate a mask for the 4521 // reuses. But if there are several users of the same entry, they may 4522 // have different vectorization factors. This is especially important 4523 // for PHI nodes. In this case, we need to adapt the resulting 4524 // instruction for the user vectorization factor and have to reshuffle 4525 // it again to take only unique elements of the vector. Without this 4526 // code the function incorrectly returns reduced vector instruction 4527 // with the same elements, not with the unique ones. 4528 // block: 4529 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4530 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4531 // ... (use %2) 4532 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4533 // br %block 4534 SmallVector<int, 4> UniqueIdxs; 4535 SmallSet<int, 4> UsedIdxs; 4536 int Pos = 0; 4537 for (int Idx : E->ReuseShuffleIndices) { 4538 if (UsedIdxs.insert(Idx).second) 4539 UniqueIdxs.emplace_back(Pos); 4540 ++Pos; 4541 } 4542 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4543 } 4544 return V; 4545 } 4546 } 4547 } 4548 4549 // Check that every instruction appears once in this bundle. 4550 SmallVector<int, 4> ReuseShuffleIndicies; 4551 SmallVector<Value *, 4> UniqueValues; 4552 if (VL.size() > 2) { 4553 DenseMap<Value *, unsigned> UniquePositions; 4554 for (Value *V : VL) { 4555 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4556 ReuseShuffleIndicies.emplace_back(Res.first->second); 4557 if (Res.second || isa<Constant>(V)) 4558 UniqueValues.emplace_back(V); 4559 } 4560 // Do not shuffle single element or if number of unique values is not power 4561 // of 2. 4562 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4563 !llvm::isPowerOf2_32(UniqueValues.size())) 4564 ReuseShuffleIndicies.clear(); 4565 else 4566 VL = UniqueValues; 4567 } 4568 4569 Value *Vec = gather(VL); 4570 if (!ReuseShuffleIndicies.empty()) { 4571 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4572 if (auto *I = dyn_cast<Instruction>(Vec)) { 4573 GatherSeq.insert(I); 4574 CSEBlocks.insert(I->getParent()); 4575 } 4576 } 4577 return Vec; 4578 } 4579 4580 namespace { 4581 /// Merges shuffle masks and emits final shuffle instruction, if required. 4582 class ShuffleInstructionBuilder { 4583 IRBuilderBase &Builder; 4584 bool IsFinalized = false; 4585 SmallVector<int, 4> Mask; 4586 4587 public: 4588 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4589 4590 /// Adds a mask, inverting it before applying. 4591 void addInversedMask(ArrayRef<unsigned> SubMask) { 4592 if (SubMask.empty()) 4593 return; 4594 SmallVector<int, 4> NewMask; 4595 inversePermutation(SubMask, NewMask); 4596 addMask(NewMask); 4597 } 4598 4599 /// Functions adds masks, merging them into single one. 4600 void addMask(ArrayRef<unsigned> SubMask) { 4601 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4602 addMask(NewMask); 4603 } 4604 4605 void addMask(ArrayRef<int> SubMask) { 4606 if (SubMask.empty()) 4607 return; 4608 if (Mask.empty()) { 4609 Mask.append(SubMask.begin(), SubMask.end()); 4610 return; 4611 } 4612 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4613 int TermValue = std::min(Mask.size(), SubMask.size()); 4614 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4615 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4616 NewMask[I] = E; 4617 continue; 4618 } 4619 NewMask[I] = Mask[SubMask[I]]; 4620 } 4621 Mask.swap(NewMask); 4622 } 4623 4624 Value *finalize(Value *V) { 4625 IsFinalized = true; 4626 if (Mask.empty()) 4627 return V; 4628 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4629 } 4630 4631 ~ShuffleInstructionBuilder() { 4632 assert((IsFinalized || Mask.empty()) && 4633 "Shuffle construction must be finalized."); 4634 } 4635 }; 4636 } // namespace 4637 4638 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4639 IRBuilder<>::InsertPointGuard Guard(Builder); 4640 4641 if (E->VectorizedValue) { 4642 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4643 return E->VectorizedValue; 4644 } 4645 4646 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4647 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4648 if (E->State == TreeEntry::NeedToGather) { 4649 setInsertPointAfterBundle(E); 4650 Value *Vec; 4651 SmallVector<int> Mask; 4652 SmallVector<const TreeEntry *> Entries; 4653 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4654 isGatherShuffledEntry(E, Mask, Entries); 4655 if (Shuffle.hasValue()) { 4656 assert((Entries.size() == 1 || Entries.size() == 2) && 4657 "Expected shuffle of 1 or 2 entries."); 4658 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 4659 Entries.back()->VectorizedValue, Mask); 4660 } else { 4661 Vec = gather(E->Scalars); 4662 } 4663 if (NeedToShuffleReuses) { 4664 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4665 Vec = ShuffleBuilder.finalize(Vec); 4666 if (auto *I = dyn_cast<Instruction>(Vec)) { 4667 GatherSeq.insert(I); 4668 CSEBlocks.insert(I->getParent()); 4669 } 4670 } 4671 E->VectorizedValue = Vec; 4672 return Vec; 4673 } 4674 4675 assert((E->State == TreeEntry::Vectorize || 4676 E->State == TreeEntry::ScatterVectorize) && 4677 "Unhandled state"); 4678 unsigned ShuffleOrOp = 4679 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4680 Instruction *VL0 = E->getMainOp(); 4681 Type *ScalarTy = VL0->getType(); 4682 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4683 ScalarTy = Store->getValueOperand()->getType(); 4684 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4685 switch (ShuffleOrOp) { 4686 case Instruction::PHI: { 4687 auto *PH = cast<PHINode>(VL0); 4688 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4689 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4690 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4691 Value *V = NewPhi; 4692 if (NeedToShuffleReuses) 4693 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4694 4695 E->VectorizedValue = V; 4696 4697 // PHINodes may have multiple entries from the same block. We want to 4698 // visit every block once. 4699 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4700 4701 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4702 ValueList Operands; 4703 BasicBlock *IBB = PH->getIncomingBlock(i); 4704 4705 if (!VisitedBBs.insert(IBB).second) { 4706 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4707 continue; 4708 } 4709 4710 Builder.SetInsertPoint(IBB->getTerminator()); 4711 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4712 Value *Vec = vectorizeTree(E->getOperand(i)); 4713 NewPhi->addIncoming(Vec, IBB); 4714 } 4715 4716 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4717 "Invalid number of incoming values"); 4718 return V; 4719 } 4720 4721 case Instruction::ExtractElement: { 4722 Value *V = E->getSingleOperand(0); 4723 Builder.SetInsertPoint(VL0); 4724 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4725 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4726 V = ShuffleBuilder.finalize(V); 4727 E->VectorizedValue = V; 4728 return V; 4729 } 4730 case Instruction::ExtractValue: { 4731 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4732 Builder.SetInsertPoint(LI); 4733 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4734 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4735 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4736 Value *NewV = propagateMetadata(V, E->Scalars); 4737 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4738 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4739 NewV = ShuffleBuilder.finalize(NewV); 4740 E->VectorizedValue = NewV; 4741 return NewV; 4742 } 4743 case Instruction::ZExt: 4744 case Instruction::SExt: 4745 case Instruction::FPToUI: 4746 case Instruction::FPToSI: 4747 case Instruction::FPExt: 4748 case Instruction::PtrToInt: 4749 case Instruction::IntToPtr: 4750 case Instruction::SIToFP: 4751 case Instruction::UIToFP: 4752 case Instruction::Trunc: 4753 case Instruction::FPTrunc: 4754 case Instruction::BitCast: { 4755 setInsertPointAfterBundle(E); 4756 4757 Value *InVec = vectorizeTree(E->getOperand(0)); 4758 4759 if (E->VectorizedValue) { 4760 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4761 return E->VectorizedValue; 4762 } 4763 4764 auto *CI = cast<CastInst>(VL0); 4765 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4766 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4767 V = ShuffleBuilder.finalize(V); 4768 4769 E->VectorizedValue = V; 4770 ++NumVectorInstructions; 4771 return V; 4772 } 4773 case Instruction::FCmp: 4774 case Instruction::ICmp: { 4775 setInsertPointAfterBundle(E); 4776 4777 Value *L = vectorizeTree(E->getOperand(0)); 4778 Value *R = vectorizeTree(E->getOperand(1)); 4779 4780 if (E->VectorizedValue) { 4781 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4782 return E->VectorizedValue; 4783 } 4784 4785 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4786 Value *V = Builder.CreateCmp(P0, L, R); 4787 propagateIRFlags(V, E->Scalars, VL0); 4788 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4789 V = ShuffleBuilder.finalize(V); 4790 4791 E->VectorizedValue = V; 4792 ++NumVectorInstructions; 4793 return V; 4794 } 4795 case Instruction::Select: { 4796 setInsertPointAfterBundle(E); 4797 4798 Value *Cond = vectorizeTree(E->getOperand(0)); 4799 Value *True = vectorizeTree(E->getOperand(1)); 4800 Value *False = vectorizeTree(E->getOperand(2)); 4801 4802 if (E->VectorizedValue) { 4803 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4804 return E->VectorizedValue; 4805 } 4806 4807 Value *V = Builder.CreateSelect(Cond, True, False); 4808 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4809 V = ShuffleBuilder.finalize(V); 4810 4811 E->VectorizedValue = V; 4812 ++NumVectorInstructions; 4813 return V; 4814 } 4815 case Instruction::FNeg: { 4816 setInsertPointAfterBundle(E); 4817 4818 Value *Op = vectorizeTree(E->getOperand(0)); 4819 4820 if (E->VectorizedValue) { 4821 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4822 return E->VectorizedValue; 4823 } 4824 4825 Value *V = Builder.CreateUnOp( 4826 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4827 propagateIRFlags(V, E->Scalars, VL0); 4828 if (auto *I = dyn_cast<Instruction>(V)) 4829 V = propagateMetadata(I, E->Scalars); 4830 4831 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4832 V = ShuffleBuilder.finalize(V); 4833 4834 E->VectorizedValue = V; 4835 ++NumVectorInstructions; 4836 4837 return V; 4838 } 4839 case Instruction::Add: 4840 case Instruction::FAdd: 4841 case Instruction::Sub: 4842 case Instruction::FSub: 4843 case Instruction::Mul: 4844 case Instruction::FMul: 4845 case Instruction::UDiv: 4846 case Instruction::SDiv: 4847 case Instruction::FDiv: 4848 case Instruction::URem: 4849 case Instruction::SRem: 4850 case Instruction::FRem: 4851 case Instruction::Shl: 4852 case Instruction::LShr: 4853 case Instruction::AShr: 4854 case Instruction::And: 4855 case Instruction::Or: 4856 case Instruction::Xor: { 4857 setInsertPointAfterBundle(E); 4858 4859 Value *LHS = vectorizeTree(E->getOperand(0)); 4860 Value *RHS = vectorizeTree(E->getOperand(1)); 4861 4862 if (E->VectorizedValue) { 4863 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4864 return E->VectorizedValue; 4865 } 4866 4867 Value *V = Builder.CreateBinOp( 4868 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4869 RHS); 4870 propagateIRFlags(V, E->Scalars, VL0); 4871 if (auto *I = dyn_cast<Instruction>(V)) 4872 V = propagateMetadata(I, E->Scalars); 4873 4874 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4875 V = ShuffleBuilder.finalize(V); 4876 4877 E->VectorizedValue = V; 4878 ++NumVectorInstructions; 4879 4880 return V; 4881 } 4882 case Instruction::Load: { 4883 // Loads are inserted at the head of the tree because we don't want to 4884 // sink them all the way down past store instructions. 4885 bool IsReorder = E->updateStateIfReorder(); 4886 if (IsReorder) 4887 VL0 = E->getMainOp(); 4888 setInsertPointAfterBundle(E); 4889 4890 LoadInst *LI = cast<LoadInst>(VL0); 4891 Instruction *NewLI; 4892 unsigned AS = LI->getPointerAddressSpace(); 4893 Value *PO = LI->getPointerOperand(); 4894 if (E->State == TreeEntry::Vectorize) { 4895 4896 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4897 4898 // The pointer operand uses an in-tree scalar so we add the new BitCast 4899 // to ExternalUses list to make sure that an extract will be generated 4900 // in the future. 4901 if (getTreeEntry(PO)) 4902 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4903 4904 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4905 } else { 4906 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4907 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4908 // Use the minimum alignment of the gathered loads. 4909 Align CommonAlignment = LI->getAlign(); 4910 for (Value *V : E->Scalars) 4911 CommonAlignment = 4912 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4913 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4914 } 4915 Value *V = propagateMetadata(NewLI, E->Scalars); 4916 4917 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4918 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4919 V = ShuffleBuilder.finalize(V); 4920 E->VectorizedValue = V; 4921 ++NumVectorInstructions; 4922 return V; 4923 } 4924 case Instruction::Store: { 4925 bool IsReorder = !E->ReorderIndices.empty(); 4926 auto *SI = cast<StoreInst>( 4927 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4928 unsigned AS = SI->getPointerAddressSpace(); 4929 4930 setInsertPointAfterBundle(E); 4931 4932 Value *VecValue = vectorizeTree(E->getOperand(0)); 4933 ShuffleBuilder.addMask(E->ReorderIndices); 4934 VecValue = ShuffleBuilder.finalize(VecValue); 4935 4936 Value *ScalarPtr = SI->getPointerOperand(); 4937 Value *VecPtr = Builder.CreateBitCast( 4938 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4939 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4940 SI->getAlign()); 4941 4942 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4943 // ExternalUses to make sure that an extract will be generated in the 4944 // future. 4945 if (getTreeEntry(ScalarPtr)) 4946 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4947 4948 Value *V = propagateMetadata(ST, E->Scalars); 4949 4950 E->VectorizedValue = V; 4951 ++NumVectorInstructions; 4952 return V; 4953 } 4954 case Instruction::GetElementPtr: { 4955 setInsertPointAfterBundle(E); 4956 4957 Value *Op0 = vectorizeTree(E->getOperand(0)); 4958 4959 std::vector<Value *> OpVecs; 4960 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4961 ++j) { 4962 ValueList &VL = E->getOperand(j); 4963 // Need to cast all elements to the same type before vectorization to 4964 // avoid crash. 4965 Type *VL0Ty = VL0->getOperand(j)->getType(); 4966 Type *Ty = llvm::all_of( 4967 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4968 ? VL0Ty 4969 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4970 ->getPointerOperandType() 4971 ->getScalarType()); 4972 for (Value *&V : VL) { 4973 auto *CI = cast<ConstantInt>(V); 4974 V = ConstantExpr::getIntegerCast(CI, Ty, 4975 CI->getValue().isSignBitSet()); 4976 } 4977 Value *OpVec = vectorizeTree(VL); 4978 OpVecs.push_back(OpVec); 4979 } 4980 4981 Value *V = Builder.CreateGEP( 4982 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4983 if (Instruction *I = dyn_cast<Instruction>(V)) 4984 V = propagateMetadata(I, E->Scalars); 4985 4986 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4987 V = ShuffleBuilder.finalize(V); 4988 4989 E->VectorizedValue = V; 4990 ++NumVectorInstructions; 4991 4992 return V; 4993 } 4994 case Instruction::Call: { 4995 CallInst *CI = cast<CallInst>(VL0); 4996 setInsertPointAfterBundle(E); 4997 4998 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4999 if (Function *FI = CI->getCalledFunction()) 5000 IID = FI->getIntrinsicID(); 5001 5002 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5003 5004 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5005 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 5006 VecCallCosts.first <= VecCallCosts.second; 5007 5008 Value *ScalarArg = nullptr; 5009 std::vector<Value *> OpVecs; 5010 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 5011 ValueList OpVL; 5012 // Some intrinsics have scalar arguments. This argument should not be 5013 // vectorized. 5014 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 5015 CallInst *CEI = cast<CallInst>(VL0); 5016 ScalarArg = CEI->getArgOperand(j); 5017 OpVecs.push_back(CEI->getArgOperand(j)); 5018 continue; 5019 } 5020 5021 Value *OpVec = vectorizeTree(E->getOperand(j)); 5022 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 5023 OpVecs.push_back(OpVec); 5024 } 5025 5026 Function *CF; 5027 if (!UseIntrinsic) { 5028 VFShape Shape = 5029 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5030 VecTy->getNumElements())), 5031 false /*HasGlobalPred*/); 5032 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 5033 } else { 5034 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 5035 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 5036 } 5037 5038 SmallVector<OperandBundleDef, 1> OpBundles; 5039 CI->getOperandBundlesAsDefs(OpBundles); 5040 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 5041 5042 // The scalar argument uses an in-tree scalar so we add the new vectorized 5043 // call to ExternalUses list to make sure that an extract will be 5044 // generated in the future. 5045 if (ScalarArg && getTreeEntry(ScalarArg)) 5046 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5047 5048 propagateIRFlags(V, E->Scalars, VL0); 5049 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5050 V = ShuffleBuilder.finalize(V); 5051 5052 E->VectorizedValue = V; 5053 ++NumVectorInstructions; 5054 return V; 5055 } 5056 case Instruction::ShuffleVector: { 5057 assert(E->isAltShuffle() && 5058 ((Instruction::isBinaryOp(E->getOpcode()) && 5059 Instruction::isBinaryOp(E->getAltOpcode())) || 5060 (Instruction::isCast(E->getOpcode()) && 5061 Instruction::isCast(E->getAltOpcode()))) && 5062 "Invalid Shuffle Vector Operand"); 5063 5064 Value *LHS = nullptr, *RHS = nullptr; 5065 if (Instruction::isBinaryOp(E->getOpcode())) { 5066 setInsertPointAfterBundle(E); 5067 LHS = vectorizeTree(E->getOperand(0)); 5068 RHS = vectorizeTree(E->getOperand(1)); 5069 } else { 5070 setInsertPointAfterBundle(E); 5071 LHS = vectorizeTree(E->getOperand(0)); 5072 } 5073 5074 if (E->VectorizedValue) { 5075 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5076 return E->VectorizedValue; 5077 } 5078 5079 Value *V0, *V1; 5080 if (Instruction::isBinaryOp(E->getOpcode())) { 5081 V0 = Builder.CreateBinOp( 5082 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5083 V1 = Builder.CreateBinOp( 5084 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5085 } else { 5086 V0 = Builder.CreateCast( 5087 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5088 V1 = Builder.CreateCast( 5089 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5090 } 5091 5092 // Create shuffle to take alternate operations from the vector. 5093 // Also, gather up main and alt scalar ops to propagate IR flags to 5094 // each vector operation. 5095 ValueList OpScalars, AltScalars; 5096 unsigned e = E->Scalars.size(); 5097 SmallVector<int, 8> Mask(e); 5098 for (unsigned i = 0; i < e; ++i) { 5099 auto *OpInst = cast<Instruction>(E->Scalars[i]); 5100 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5101 if (OpInst->getOpcode() == E->getAltOpcode()) { 5102 Mask[i] = e + i; 5103 AltScalars.push_back(E->Scalars[i]); 5104 } else { 5105 Mask[i] = i; 5106 OpScalars.push_back(E->Scalars[i]); 5107 } 5108 } 5109 5110 propagateIRFlags(V0, OpScalars); 5111 propagateIRFlags(V1, AltScalars); 5112 5113 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5114 if (Instruction *I = dyn_cast<Instruction>(V)) 5115 V = propagateMetadata(I, E->Scalars); 5116 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5117 V = ShuffleBuilder.finalize(V); 5118 5119 E->VectorizedValue = V; 5120 ++NumVectorInstructions; 5121 5122 return V; 5123 } 5124 default: 5125 llvm_unreachable("unknown inst"); 5126 } 5127 return nullptr; 5128 } 5129 5130 Value *BoUpSLP::vectorizeTree() { 5131 ExtraValueToDebugLocsMap ExternallyUsedValues; 5132 return vectorizeTree(ExternallyUsedValues); 5133 } 5134 5135 Value * 5136 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5137 // All blocks must be scheduled before any instructions are inserted. 5138 for (auto &BSIter : BlocksSchedules) { 5139 scheduleBlock(BSIter.second.get()); 5140 } 5141 5142 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5143 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5144 5145 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5146 // vectorized root. InstCombine will then rewrite the entire expression. We 5147 // sign extend the extracted values below. 5148 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5149 if (MinBWs.count(ScalarRoot)) { 5150 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5151 // If current instr is a phi and not the last phi, insert it after the 5152 // last phi node. 5153 if (isa<PHINode>(I)) 5154 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5155 else 5156 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5157 } 5158 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5159 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5160 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5161 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5162 VectorizableTree[0]->VectorizedValue = Trunc; 5163 } 5164 5165 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5166 << " values .\n"); 5167 5168 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 5169 // specified by ScalarType. 5170 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 5171 if (!MinBWs.count(ScalarRoot)) 5172 return Ex; 5173 if (MinBWs[ScalarRoot].second) 5174 return Builder.CreateSExt(Ex, ScalarType); 5175 return Builder.CreateZExt(Ex, ScalarType); 5176 }; 5177 5178 // Extract all of the elements with the external uses. 5179 for (const auto &ExternalUse : ExternalUses) { 5180 Value *Scalar = ExternalUse.Scalar; 5181 llvm::User *User = ExternalUse.User; 5182 5183 // Skip users that we already RAUW. This happens when one instruction 5184 // has multiple uses of the same value. 5185 if (User && !is_contained(Scalar->users(), User)) 5186 continue; 5187 TreeEntry *E = getTreeEntry(Scalar); 5188 assert(E && "Invalid scalar"); 5189 assert(E->State != TreeEntry::NeedToGather && 5190 "Extracting from a gather list"); 5191 5192 Value *Vec = E->VectorizedValue; 5193 assert(Vec && "Can't find vectorizable value"); 5194 5195 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5196 // If User == nullptr, the Scalar is used as extra arg. Generate 5197 // ExtractElement instruction and update the record for this scalar in 5198 // ExternallyUsedValues. 5199 if (!User) { 5200 assert(ExternallyUsedValues.count(Scalar) && 5201 "Scalar with nullptr as an external user must be registered in " 5202 "ExternallyUsedValues map"); 5203 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5204 Builder.SetInsertPoint(VecI->getParent(), 5205 std::next(VecI->getIterator())); 5206 } else { 5207 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5208 } 5209 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5210 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5211 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5212 auto &Locs = ExternallyUsedValues[Scalar]; 5213 ExternallyUsedValues.insert({Ex, Locs}); 5214 ExternallyUsedValues.erase(Scalar); 5215 // Required to update internally referenced instructions. 5216 Scalar->replaceAllUsesWith(Ex); 5217 continue; 5218 } 5219 5220 // Generate extracts for out-of-tree users. 5221 // Find the insertion point for the extractelement lane. 5222 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5223 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5224 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5225 if (PH->getIncomingValue(i) == Scalar) { 5226 Instruction *IncomingTerminator = 5227 PH->getIncomingBlock(i)->getTerminator(); 5228 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5229 Builder.SetInsertPoint(VecI->getParent(), 5230 std::next(VecI->getIterator())); 5231 } else { 5232 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5233 } 5234 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5235 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5236 CSEBlocks.insert(PH->getIncomingBlock(i)); 5237 PH->setOperand(i, Ex); 5238 } 5239 } 5240 } else { 5241 Builder.SetInsertPoint(cast<Instruction>(User)); 5242 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5243 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5244 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5245 User->replaceUsesOfWith(Scalar, Ex); 5246 } 5247 } else { 5248 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5249 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5250 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5251 CSEBlocks.insert(&F->getEntryBlock()); 5252 User->replaceUsesOfWith(Scalar, Ex); 5253 } 5254 5255 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5256 } 5257 5258 // For each vectorized value: 5259 for (auto &TEPtr : VectorizableTree) { 5260 TreeEntry *Entry = TEPtr.get(); 5261 5262 // No need to handle users of gathered values. 5263 if (Entry->State == TreeEntry::NeedToGather) 5264 continue; 5265 5266 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5267 5268 // For each lane: 5269 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5270 Value *Scalar = Entry->Scalars[Lane]; 5271 5272 #ifndef NDEBUG 5273 Type *Ty = Scalar->getType(); 5274 if (!Ty->isVoidTy()) { 5275 for (User *U : Scalar->users()) { 5276 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5277 5278 // It is legal to delete users in the ignorelist. 5279 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5280 "Deleting out-of-tree value"); 5281 } 5282 } 5283 #endif 5284 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5285 eraseInstruction(cast<Instruction>(Scalar)); 5286 } 5287 } 5288 5289 Builder.ClearInsertionPoint(); 5290 InstrElementSize.clear(); 5291 5292 return VectorizableTree[0]->VectorizedValue; 5293 } 5294 5295 void BoUpSLP::optimizeGatherSequence() { 5296 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5297 << " gather sequences instructions.\n"); 5298 // LICM InsertElementInst sequences. 5299 for (Instruction *I : GatherSeq) { 5300 if (isDeleted(I)) 5301 continue; 5302 5303 // Check if this block is inside a loop. 5304 Loop *L = LI->getLoopFor(I->getParent()); 5305 if (!L) 5306 continue; 5307 5308 // Check if it has a preheader. 5309 BasicBlock *PreHeader = L->getLoopPreheader(); 5310 if (!PreHeader) 5311 continue; 5312 5313 // If the vector or the element that we insert into it are 5314 // instructions that are defined in this basic block then we can't 5315 // hoist this instruction. 5316 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5317 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5318 if (Op0 && L->contains(Op0)) 5319 continue; 5320 if (Op1 && L->contains(Op1)) 5321 continue; 5322 5323 // We can hoist this instruction. Move it to the pre-header. 5324 I->moveBefore(PreHeader->getTerminator()); 5325 } 5326 5327 // Make a list of all reachable blocks in our CSE queue. 5328 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5329 CSEWorkList.reserve(CSEBlocks.size()); 5330 for (BasicBlock *BB : CSEBlocks) 5331 if (DomTreeNode *N = DT->getNode(BB)) { 5332 assert(DT->isReachableFromEntry(N)); 5333 CSEWorkList.push_back(N); 5334 } 5335 5336 // Sort blocks by domination. This ensures we visit a block after all blocks 5337 // dominating it are visited. 5338 llvm::stable_sort(CSEWorkList, 5339 [this](const DomTreeNode *A, const DomTreeNode *B) { 5340 return DT->properlyDominates(A, B); 5341 }); 5342 5343 // Perform O(N^2) search over the gather sequences and merge identical 5344 // instructions. TODO: We can further optimize this scan if we split the 5345 // instructions into different buckets based on the insert lane. 5346 SmallVector<Instruction *, 16> Visited; 5347 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5348 assert(*I && 5349 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5350 "Worklist not sorted properly!"); 5351 BasicBlock *BB = (*I)->getBlock(); 5352 // For all instructions in blocks containing gather sequences: 5353 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5354 Instruction *In = &*it++; 5355 if (isDeleted(In)) 5356 continue; 5357 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5358 continue; 5359 5360 // Check if we can replace this instruction with any of the 5361 // visited instructions. 5362 for (Instruction *v : Visited) { 5363 if (In->isIdenticalTo(v) && 5364 DT->dominates(v->getParent(), In->getParent())) { 5365 In->replaceAllUsesWith(v); 5366 eraseInstruction(In); 5367 In = nullptr; 5368 break; 5369 } 5370 } 5371 if (In) { 5372 assert(!is_contained(Visited, In)); 5373 Visited.push_back(In); 5374 } 5375 } 5376 } 5377 CSEBlocks.clear(); 5378 GatherSeq.clear(); 5379 } 5380 5381 // Groups the instructions to a bundle (which is then a single scheduling entity) 5382 // and schedules instructions until the bundle gets ready. 5383 Optional<BoUpSLP::ScheduleData *> 5384 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5385 const InstructionsState &S) { 5386 if (isa<PHINode>(S.OpValue)) 5387 return nullptr; 5388 5389 // Initialize the instruction bundle. 5390 Instruction *OldScheduleEnd = ScheduleEnd; 5391 ScheduleData *PrevInBundle = nullptr; 5392 ScheduleData *Bundle = nullptr; 5393 bool ReSchedule = false; 5394 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5395 5396 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5397 ScheduleData *Bundle) { 5398 // The scheduling region got new instructions at the lower end (or it is a 5399 // new region for the first bundle). This makes it necessary to 5400 // recalculate all dependencies. 5401 // It is seldom that this needs to be done a second time after adding the 5402 // initial bundle to the region. 5403 if (ScheduleEnd != OldScheduleEnd) { 5404 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5405 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5406 ReSchedule = true; 5407 } 5408 if (ReSchedule) { 5409 resetSchedule(); 5410 initialFillReadyList(ReadyInsts); 5411 } 5412 if (Bundle) { 5413 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5414 << " in block " << BB->getName() << "\n"); 5415 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5416 } 5417 5418 // Now try to schedule the new bundle or (if no bundle) just calculate 5419 // dependencies. As soon as the bundle is "ready" it means that there are no 5420 // cyclic dependencies and we can schedule it. Note that's important that we 5421 // don't "schedule" the bundle yet (see cancelScheduling). 5422 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5423 !ReadyInsts.empty()) { 5424 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5425 if (Picked->isSchedulingEntity() && Picked->isReady()) 5426 schedule(Picked, ReadyInsts); 5427 } 5428 }; 5429 5430 // Make sure that the scheduling region contains all 5431 // instructions of the bundle. 5432 for (Value *V : VL) { 5433 if (!extendSchedulingRegion(V, S)) { 5434 // If the scheduling region got new instructions at the lower end (or it 5435 // is a new region for the first bundle). This makes it necessary to 5436 // recalculate all dependencies. 5437 // Otherwise the compiler may crash trying to incorrectly calculate 5438 // dependencies and emit instruction in the wrong order at the actual 5439 // scheduling. 5440 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5441 return None; 5442 } 5443 } 5444 5445 for (Value *V : VL) { 5446 ScheduleData *BundleMember = getScheduleData(V); 5447 assert(BundleMember && 5448 "no ScheduleData for bundle member (maybe not in same basic block)"); 5449 if (BundleMember->IsScheduled) { 5450 // A bundle member was scheduled as single instruction before and now 5451 // needs to be scheduled as part of the bundle. We just get rid of the 5452 // existing schedule. 5453 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5454 << " was already scheduled\n"); 5455 ReSchedule = true; 5456 } 5457 assert(BundleMember->isSchedulingEntity() && 5458 "bundle member already part of other bundle"); 5459 if (PrevInBundle) { 5460 PrevInBundle->NextInBundle = BundleMember; 5461 } else { 5462 Bundle = BundleMember; 5463 } 5464 BundleMember->UnscheduledDepsInBundle = 0; 5465 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5466 5467 // Group the instructions to a bundle. 5468 BundleMember->FirstInBundle = Bundle; 5469 PrevInBundle = BundleMember; 5470 } 5471 assert(Bundle && "Failed to find schedule bundle"); 5472 TryScheduleBundle(ReSchedule, Bundle); 5473 if (!Bundle->isReady()) { 5474 cancelScheduling(VL, S.OpValue); 5475 return None; 5476 } 5477 return Bundle; 5478 } 5479 5480 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5481 Value *OpValue) { 5482 if (isa<PHINode>(OpValue)) 5483 return; 5484 5485 ScheduleData *Bundle = getScheduleData(OpValue); 5486 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5487 assert(!Bundle->IsScheduled && 5488 "Can't cancel bundle which is already scheduled"); 5489 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5490 "tried to unbundle something which is not a bundle"); 5491 5492 // Un-bundle: make single instructions out of the bundle. 5493 ScheduleData *BundleMember = Bundle; 5494 while (BundleMember) { 5495 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5496 BundleMember->FirstInBundle = BundleMember; 5497 ScheduleData *Next = BundleMember->NextInBundle; 5498 BundleMember->NextInBundle = nullptr; 5499 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5500 if (BundleMember->UnscheduledDepsInBundle == 0) { 5501 ReadyInsts.insert(BundleMember); 5502 } 5503 BundleMember = Next; 5504 } 5505 } 5506 5507 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5508 // Allocate a new ScheduleData for the instruction. 5509 if (ChunkPos >= ChunkSize) { 5510 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5511 ChunkPos = 0; 5512 } 5513 return &(ScheduleDataChunks.back()[ChunkPos++]); 5514 } 5515 5516 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5517 const InstructionsState &S) { 5518 if (getScheduleData(V, isOneOf(S, V))) 5519 return true; 5520 Instruction *I = dyn_cast<Instruction>(V); 5521 assert(I && "bundle member must be an instruction"); 5522 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5523 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5524 ScheduleData *ISD = getScheduleData(I); 5525 if (!ISD) 5526 return false; 5527 assert(isInSchedulingRegion(ISD) && 5528 "ScheduleData not in scheduling region"); 5529 ScheduleData *SD = allocateScheduleDataChunks(); 5530 SD->Inst = I; 5531 SD->init(SchedulingRegionID, S.OpValue); 5532 ExtraScheduleDataMap[I][S.OpValue] = SD; 5533 return true; 5534 }; 5535 if (CheckSheduleForI(I)) 5536 return true; 5537 if (!ScheduleStart) { 5538 // It's the first instruction in the new region. 5539 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5540 ScheduleStart = I; 5541 ScheduleEnd = I->getNextNode(); 5542 if (isOneOf(S, I) != I) 5543 CheckSheduleForI(I); 5544 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5545 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5546 return true; 5547 } 5548 // Search up and down at the same time, because we don't know if the new 5549 // instruction is above or below the existing scheduling region. 5550 BasicBlock::reverse_iterator UpIter = 5551 ++ScheduleStart->getIterator().getReverse(); 5552 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5553 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5554 BasicBlock::iterator LowerEnd = BB->end(); 5555 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 5556 &*DownIter != I) { 5557 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5558 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5559 return false; 5560 } 5561 5562 ++UpIter; 5563 ++DownIter; 5564 } 5565 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 5566 assert(I->getParent() == ScheduleStart->getParent() && 5567 "Instruction is in wrong basic block."); 5568 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5569 ScheduleStart = I; 5570 if (isOneOf(S, I) != I) 5571 CheckSheduleForI(I); 5572 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5573 << "\n"); 5574 return true; 5575 } 5576 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 5577 "Expected to reach top of the basic block or instruction down the " 5578 "lower end."); 5579 assert(I->getParent() == ScheduleEnd->getParent() && 5580 "Instruction is in wrong basic block."); 5581 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5582 nullptr); 5583 ScheduleEnd = I->getNextNode(); 5584 if (isOneOf(S, I) != I) 5585 CheckSheduleForI(I); 5586 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5587 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 5588 return true; 5589 } 5590 5591 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5592 Instruction *ToI, 5593 ScheduleData *PrevLoadStore, 5594 ScheduleData *NextLoadStore) { 5595 ScheduleData *CurrentLoadStore = PrevLoadStore; 5596 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5597 ScheduleData *SD = ScheduleDataMap[I]; 5598 if (!SD) { 5599 SD = allocateScheduleDataChunks(); 5600 ScheduleDataMap[I] = SD; 5601 SD->Inst = I; 5602 } 5603 assert(!isInSchedulingRegion(SD) && 5604 "new ScheduleData already in scheduling region"); 5605 SD->init(SchedulingRegionID, I); 5606 5607 if (I->mayReadOrWriteMemory() && 5608 (!isa<IntrinsicInst>(I) || 5609 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5610 cast<IntrinsicInst>(I)->getIntrinsicID() != 5611 Intrinsic::pseudoprobe))) { 5612 // Update the linked list of memory accessing instructions. 5613 if (CurrentLoadStore) { 5614 CurrentLoadStore->NextLoadStore = SD; 5615 } else { 5616 FirstLoadStoreInRegion = SD; 5617 } 5618 CurrentLoadStore = SD; 5619 } 5620 } 5621 if (NextLoadStore) { 5622 if (CurrentLoadStore) 5623 CurrentLoadStore->NextLoadStore = NextLoadStore; 5624 } else { 5625 LastLoadStoreInRegion = CurrentLoadStore; 5626 } 5627 } 5628 5629 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5630 bool InsertInReadyList, 5631 BoUpSLP *SLP) { 5632 assert(SD->isSchedulingEntity()); 5633 5634 SmallVector<ScheduleData *, 10> WorkList; 5635 WorkList.push_back(SD); 5636 5637 while (!WorkList.empty()) { 5638 ScheduleData *SD = WorkList.pop_back_val(); 5639 5640 ScheduleData *BundleMember = SD; 5641 while (BundleMember) { 5642 assert(isInSchedulingRegion(BundleMember)); 5643 if (!BundleMember->hasValidDependencies()) { 5644 5645 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5646 << "\n"); 5647 BundleMember->Dependencies = 0; 5648 BundleMember->resetUnscheduledDeps(); 5649 5650 // Handle def-use chain dependencies. 5651 if (BundleMember->OpValue != BundleMember->Inst) { 5652 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5653 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5654 BundleMember->Dependencies++; 5655 ScheduleData *DestBundle = UseSD->FirstInBundle; 5656 if (!DestBundle->IsScheduled) 5657 BundleMember->incrementUnscheduledDeps(1); 5658 if (!DestBundle->hasValidDependencies()) 5659 WorkList.push_back(DestBundle); 5660 } 5661 } else { 5662 for (User *U : BundleMember->Inst->users()) { 5663 if (isa<Instruction>(U)) { 5664 ScheduleData *UseSD = getScheduleData(U); 5665 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5666 BundleMember->Dependencies++; 5667 ScheduleData *DestBundle = UseSD->FirstInBundle; 5668 if (!DestBundle->IsScheduled) 5669 BundleMember->incrementUnscheduledDeps(1); 5670 if (!DestBundle->hasValidDependencies()) 5671 WorkList.push_back(DestBundle); 5672 } 5673 } else { 5674 // I'm not sure if this can ever happen. But we need to be safe. 5675 // This lets the instruction/bundle never be scheduled and 5676 // eventually disable vectorization. 5677 BundleMember->Dependencies++; 5678 BundleMember->incrementUnscheduledDeps(1); 5679 } 5680 } 5681 } 5682 5683 // Handle the memory dependencies. 5684 ScheduleData *DepDest = BundleMember->NextLoadStore; 5685 if (DepDest) { 5686 Instruction *SrcInst = BundleMember->Inst; 5687 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5688 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5689 unsigned numAliased = 0; 5690 unsigned DistToSrc = 1; 5691 5692 while (DepDest) { 5693 assert(isInSchedulingRegion(DepDest)); 5694 5695 // We have two limits to reduce the complexity: 5696 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5697 // SLP->isAliased (which is the expensive part in this loop). 5698 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5699 // the whole loop (even if the loop is fast, it's quadratic). 5700 // It's important for the loop break condition (see below) to 5701 // check this limit even between two read-only instructions. 5702 if (DistToSrc >= MaxMemDepDistance || 5703 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5704 (numAliased >= AliasedCheckLimit || 5705 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5706 5707 // We increment the counter only if the locations are aliased 5708 // (instead of counting all alias checks). This gives a better 5709 // balance between reduced runtime and accurate dependencies. 5710 numAliased++; 5711 5712 DepDest->MemoryDependencies.push_back(BundleMember); 5713 BundleMember->Dependencies++; 5714 ScheduleData *DestBundle = DepDest->FirstInBundle; 5715 if (!DestBundle->IsScheduled) { 5716 BundleMember->incrementUnscheduledDeps(1); 5717 } 5718 if (!DestBundle->hasValidDependencies()) { 5719 WorkList.push_back(DestBundle); 5720 } 5721 } 5722 DepDest = DepDest->NextLoadStore; 5723 5724 // Example, explaining the loop break condition: Let's assume our 5725 // starting instruction is i0 and MaxMemDepDistance = 3. 5726 // 5727 // +--------v--v--v 5728 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5729 // +--------^--^--^ 5730 // 5731 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5732 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5733 // Previously we already added dependencies from i3 to i6,i7,i8 5734 // (because of MaxMemDepDistance). As we added a dependency from 5735 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5736 // and we can abort this loop at i6. 5737 if (DistToSrc >= 2 * MaxMemDepDistance) 5738 break; 5739 DistToSrc++; 5740 } 5741 } 5742 } 5743 BundleMember = BundleMember->NextInBundle; 5744 } 5745 if (InsertInReadyList && SD->isReady()) { 5746 ReadyInsts.push_back(SD); 5747 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5748 << "\n"); 5749 } 5750 } 5751 } 5752 5753 void BoUpSLP::BlockScheduling::resetSchedule() { 5754 assert(ScheduleStart && 5755 "tried to reset schedule on block which has not been scheduled"); 5756 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5757 doForAllOpcodes(I, [&](ScheduleData *SD) { 5758 assert(isInSchedulingRegion(SD) && 5759 "ScheduleData not in scheduling region"); 5760 SD->IsScheduled = false; 5761 SD->resetUnscheduledDeps(); 5762 }); 5763 } 5764 ReadyInsts.clear(); 5765 } 5766 5767 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5768 if (!BS->ScheduleStart) 5769 return; 5770 5771 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5772 5773 BS->resetSchedule(); 5774 5775 // For the real scheduling we use a more sophisticated ready-list: it is 5776 // sorted by the original instruction location. This lets the final schedule 5777 // be as close as possible to the original instruction order. 5778 struct ScheduleDataCompare { 5779 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5780 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5781 } 5782 }; 5783 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5784 5785 // Ensure that all dependency data is updated and fill the ready-list with 5786 // initial instructions. 5787 int Idx = 0; 5788 int NumToSchedule = 0; 5789 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5790 I = I->getNextNode()) { 5791 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5792 assert(SD->isPartOfBundle() == 5793 (getTreeEntry(SD->Inst) != nullptr) && 5794 "scheduler and vectorizer bundle mismatch"); 5795 SD->FirstInBundle->SchedulingPriority = Idx++; 5796 if (SD->isSchedulingEntity()) { 5797 BS->calculateDependencies(SD, false, this); 5798 NumToSchedule++; 5799 } 5800 }); 5801 } 5802 BS->initialFillReadyList(ReadyInsts); 5803 5804 Instruction *LastScheduledInst = BS->ScheduleEnd; 5805 5806 // Do the "real" scheduling. 5807 while (!ReadyInsts.empty()) { 5808 ScheduleData *picked = *ReadyInsts.begin(); 5809 ReadyInsts.erase(ReadyInsts.begin()); 5810 5811 // Move the scheduled instruction(s) to their dedicated places, if not 5812 // there yet. 5813 ScheduleData *BundleMember = picked; 5814 while (BundleMember) { 5815 Instruction *pickedInst = BundleMember->Inst; 5816 if (LastScheduledInst->getNextNode() != pickedInst) { 5817 BS->BB->getInstList().remove(pickedInst); 5818 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5819 pickedInst); 5820 } 5821 LastScheduledInst = pickedInst; 5822 BundleMember = BundleMember->NextInBundle; 5823 } 5824 5825 BS->schedule(picked, ReadyInsts); 5826 NumToSchedule--; 5827 } 5828 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5829 5830 // Avoid duplicate scheduling of the block. 5831 BS->ScheduleStart = nullptr; 5832 } 5833 5834 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5835 // If V is a store, just return the width of the stored value (or value 5836 // truncated just before storing) without traversing the expression tree. 5837 // This is the common case. 5838 if (auto *Store = dyn_cast<StoreInst>(V)) { 5839 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5840 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5841 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5842 } 5843 5844 auto E = InstrElementSize.find(V); 5845 if (E != InstrElementSize.end()) 5846 return E->second; 5847 5848 // If V is not a store, we can traverse the expression tree to find loads 5849 // that feed it. The type of the loaded value may indicate a more suitable 5850 // width than V's type. We want to base the vector element size on the width 5851 // of memory operations where possible. 5852 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 5853 SmallPtrSet<Instruction *, 16> Visited; 5854 if (auto *I = dyn_cast<Instruction>(V)) { 5855 Worklist.emplace_back(I, I->getParent()); 5856 Visited.insert(I); 5857 } 5858 5859 // Traverse the expression tree in bottom-up order looking for loads. If we 5860 // encounter an instruction we don't yet handle, we give up. 5861 auto Width = 0u; 5862 while (!Worklist.empty()) { 5863 Instruction *I; 5864 BasicBlock *Parent; 5865 std::tie(I, Parent) = Worklist.pop_back_val(); 5866 5867 // We should only be looking at scalar instructions here. If the current 5868 // instruction has a vector type, skip. 5869 auto *Ty = I->getType(); 5870 if (isa<VectorType>(Ty)) 5871 continue; 5872 5873 // If the current instruction is a load, update MaxWidth to reflect the 5874 // width of the loaded value. 5875 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 5876 isa<ExtractValueInst>(I)) 5877 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 5878 5879 // Otherwise, we need to visit the operands of the instruction. We only 5880 // handle the interesting cases from buildTree here. If an operand is an 5881 // instruction we haven't yet visited and from the same basic block as the 5882 // user or the use is a PHI node, we add it to the worklist. 5883 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5884 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 5885 isa<UnaryOperator>(I)) { 5886 for (Use &U : I->operands()) 5887 if (auto *J = dyn_cast<Instruction>(U.get())) 5888 if (Visited.insert(J).second && 5889 (isa<PHINode>(I) || J->getParent() == Parent)) 5890 Worklist.emplace_back(J, J->getParent()); 5891 } else { 5892 break; 5893 } 5894 } 5895 5896 // If we didn't encounter a memory access in the expression tree, or if we 5897 // gave up for some reason, just return the width of V. Otherwise, return the 5898 // maximum width we found. 5899 if (!Width) { 5900 if (auto *CI = dyn_cast<CmpInst>(V)) 5901 V = CI->getOperand(0); 5902 Width = DL->getTypeSizeInBits(V->getType()); 5903 } 5904 5905 for (Instruction *I : Visited) 5906 InstrElementSize[I] = Width; 5907 5908 return Width; 5909 } 5910 5911 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5912 // smaller type with a truncation. We collect the values that will be demoted 5913 // in ToDemote and additional roots that require investigating in Roots. 5914 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5915 SmallVectorImpl<Value *> &ToDemote, 5916 SmallVectorImpl<Value *> &Roots) { 5917 // We can always demote constants. 5918 if (isa<Constant>(V)) { 5919 ToDemote.push_back(V); 5920 return true; 5921 } 5922 5923 // If the value is not an instruction in the expression with only one use, it 5924 // cannot be demoted. 5925 auto *I = dyn_cast<Instruction>(V); 5926 if (!I || !I->hasOneUse() || !Expr.count(I)) 5927 return false; 5928 5929 switch (I->getOpcode()) { 5930 5931 // We can always demote truncations and extensions. Since truncations can 5932 // seed additional demotion, we save the truncated value. 5933 case Instruction::Trunc: 5934 Roots.push_back(I->getOperand(0)); 5935 break; 5936 case Instruction::ZExt: 5937 case Instruction::SExt: 5938 break; 5939 5940 // We can demote certain binary operations if we can demote both of their 5941 // operands. 5942 case Instruction::Add: 5943 case Instruction::Sub: 5944 case Instruction::Mul: 5945 case Instruction::And: 5946 case Instruction::Or: 5947 case Instruction::Xor: 5948 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5949 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5950 return false; 5951 break; 5952 5953 // We can demote selects if we can demote their true and false values. 5954 case Instruction::Select: { 5955 SelectInst *SI = cast<SelectInst>(I); 5956 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5957 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5958 return false; 5959 break; 5960 } 5961 5962 // We can demote phis if we can demote all their incoming operands. Note that 5963 // we don't need to worry about cycles since we ensure single use above. 5964 case Instruction::PHI: { 5965 PHINode *PN = cast<PHINode>(I); 5966 for (Value *IncValue : PN->incoming_values()) 5967 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5968 return false; 5969 break; 5970 } 5971 5972 // Otherwise, conservatively give up. 5973 default: 5974 return false; 5975 } 5976 5977 // Record the value that we can demote. 5978 ToDemote.push_back(V); 5979 return true; 5980 } 5981 5982 void BoUpSLP::computeMinimumValueSizes() { 5983 // If there are no external uses, the expression tree must be rooted by a 5984 // store. We can't demote in-memory values, so there is nothing to do here. 5985 if (ExternalUses.empty()) 5986 return; 5987 5988 // We only attempt to truncate integer expressions. 5989 auto &TreeRoot = VectorizableTree[0]->Scalars; 5990 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5991 if (!TreeRootIT) 5992 return; 5993 5994 // If the expression is not rooted by a store, these roots should have 5995 // external uses. We will rely on InstCombine to rewrite the expression in 5996 // the narrower type. However, InstCombine only rewrites single-use values. 5997 // This means that if a tree entry other than a root is used externally, it 5998 // must have multiple uses and InstCombine will not rewrite it. The code 5999 // below ensures that only the roots are used externally. 6000 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 6001 for (auto &EU : ExternalUses) 6002 if (!Expr.erase(EU.Scalar)) 6003 return; 6004 if (!Expr.empty()) 6005 return; 6006 6007 // Collect the scalar values of the vectorizable expression. We will use this 6008 // context to determine which values can be demoted. If we see a truncation, 6009 // we mark it as seeding another demotion. 6010 for (auto &EntryPtr : VectorizableTree) 6011 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 6012 6013 // Ensure the roots of the vectorizable tree don't form a cycle. They must 6014 // have a single external user that is not in the vectorizable tree. 6015 for (auto *Root : TreeRoot) 6016 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 6017 return; 6018 6019 // Conservatively determine if we can actually truncate the roots of the 6020 // expression. Collect the values that can be demoted in ToDemote and 6021 // additional roots that require investigating in Roots. 6022 SmallVector<Value *, 32> ToDemote; 6023 SmallVector<Value *, 4> Roots; 6024 for (auto *Root : TreeRoot) 6025 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 6026 return; 6027 6028 // The maximum bit width required to represent all the values that can be 6029 // demoted without loss of precision. It would be safe to truncate the roots 6030 // of the expression to this width. 6031 auto MaxBitWidth = 8u; 6032 6033 // We first check if all the bits of the roots are demanded. If they're not, 6034 // we can truncate the roots to this narrower type. 6035 for (auto *Root : TreeRoot) { 6036 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 6037 MaxBitWidth = std::max<unsigned>( 6038 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 6039 } 6040 6041 // True if the roots can be zero-extended back to their original type, rather 6042 // than sign-extended. We know that if the leading bits are not demanded, we 6043 // can safely zero-extend. So we initialize IsKnownPositive to True. 6044 bool IsKnownPositive = true; 6045 6046 // If all the bits of the roots are demanded, we can try a little harder to 6047 // compute a narrower type. This can happen, for example, if the roots are 6048 // getelementptr indices. InstCombine promotes these indices to the pointer 6049 // width. Thus, all their bits are technically demanded even though the 6050 // address computation might be vectorized in a smaller type. 6051 // 6052 // We start by looking at each entry that can be demoted. We compute the 6053 // maximum bit width required to store the scalar by using ValueTracking to 6054 // compute the number of high-order bits we can truncate. 6055 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6056 llvm::all_of(TreeRoot, [](Value *R) { 6057 assert(R->hasOneUse() && "Root should have only one use!"); 6058 return isa<GetElementPtrInst>(R->user_back()); 6059 })) { 6060 MaxBitWidth = 8u; 6061 6062 // Determine if the sign bit of all the roots is known to be zero. If not, 6063 // IsKnownPositive is set to False. 6064 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6065 KnownBits Known = computeKnownBits(R, *DL); 6066 return Known.isNonNegative(); 6067 }); 6068 6069 // Determine the maximum number of bits required to store the scalar 6070 // values. 6071 for (auto *Scalar : ToDemote) { 6072 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6073 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6074 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6075 } 6076 6077 // If we can't prove that the sign bit is zero, we must add one to the 6078 // maximum bit width to account for the unknown sign bit. This preserves 6079 // the existing sign bit so we can safely sign-extend the root back to the 6080 // original type. Otherwise, if we know the sign bit is zero, we will 6081 // zero-extend the root instead. 6082 // 6083 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6084 // one to the maximum bit width will yield a larger-than-necessary 6085 // type. In general, we need to add an extra bit only if we can't 6086 // prove that the upper bit of the original type is equal to the 6087 // upper bit of the proposed smaller type. If these two bits are the 6088 // same (either zero or one) we know that sign-extending from the 6089 // smaller type will result in the same value. Here, since we can't 6090 // yet prove this, we are just making the proposed smaller type 6091 // larger to ensure correctness. 6092 if (!IsKnownPositive) 6093 ++MaxBitWidth; 6094 } 6095 6096 // Round MaxBitWidth up to the next power-of-two. 6097 if (!isPowerOf2_64(MaxBitWidth)) 6098 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6099 6100 // If the maximum bit width we compute is less than the with of the roots' 6101 // type, we can proceed with the narrowing. Otherwise, do nothing. 6102 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6103 return; 6104 6105 // If we can truncate the root, we must collect additional values that might 6106 // be demoted as a result. That is, those seeded by truncations we will 6107 // modify. 6108 while (!Roots.empty()) 6109 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6110 6111 // Finally, map the values we can demote to the maximum bit with we computed. 6112 for (auto *Scalar : ToDemote) 6113 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6114 } 6115 6116 namespace { 6117 6118 /// The SLPVectorizer Pass. 6119 struct SLPVectorizer : public FunctionPass { 6120 SLPVectorizerPass Impl; 6121 6122 /// Pass identification, replacement for typeid 6123 static char ID; 6124 6125 explicit SLPVectorizer() : FunctionPass(ID) { 6126 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6127 } 6128 6129 bool doInitialization(Module &M) override { 6130 return false; 6131 } 6132 6133 bool runOnFunction(Function &F) override { 6134 if (skipFunction(F)) 6135 return false; 6136 6137 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6138 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6139 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6140 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6141 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6142 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6143 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6144 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6145 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6146 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6147 6148 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6149 } 6150 6151 void getAnalysisUsage(AnalysisUsage &AU) const override { 6152 FunctionPass::getAnalysisUsage(AU); 6153 AU.addRequired<AssumptionCacheTracker>(); 6154 AU.addRequired<ScalarEvolutionWrapperPass>(); 6155 AU.addRequired<AAResultsWrapperPass>(); 6156 AU.addRequired<TargetTransformInfoWrapperPass>(); 6157 AU.addRequired<LoopInfoWrapperPass>(); 6158 AU.addRequired<DominatorTreeWrapperPass>(); 6159 AU.addRequired<DemandedBitsWrapperPass>(); 6160 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6161 AU.addRequired<InjectTLIMappingsLegacy>(); 6162 AU.addPreserved<LoopInfoWrapperPass>(); 6163 AU.addPreserved<DominatorTreeWrapperPass>(); 6164 AU.addPreserved<AAResultsWrapperPass>(); 6165 AU.addPreserved<GlobalsAAWrapperPass>(); 6166 AU.setPreservesCFG(); 6167 } 6168 }; 6169 6170 } // end anonymous namespace 6171 6172 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6173 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6174 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6175 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6176 auto *AA = &AM.getResult<AAManager>(F); 6177 auto *LI = &AM.getResult<LoopAnalysis>(F); 6178 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6179 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6180 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6181 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6182 6183 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6184 if (!Changed) 6185 return PreservedAnalyses::all(); 6186 6187 PreservedAnalyses PA; 6188 PA.preserveSet<CFGAnalyses>(); 6189 PA.preserve<AAManager>(); 6190 PA.preserve<GlobalsAA>(); 6191 return PA; 6192 } 6193 6194 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6195 TargetTransformInfo *TTI_, 6196 TargetLibraryInfo *TLI_, AAResults *AA_, 6197 LoopInfo *LI_, DominatorTree *DT_, 6198 AssumptionCache *AC_, DemandedBits *DB_, 6199 OptimizationRemarkEmitter *ORE_) { 6200 if (!RunSLPVectorization) 6201 return false; 6202 SE = SE_; 6203 TTI = TTI_; 6204 TLI = TLI_; 6205 AA = AA_; 6206 LI = LI_; 6207 DT = DT_; 6208 AC = AC_; 6209 DB = DB_; 6210 DL = &F.getParent()->getDataLayout(); 6211 6212 Stores.clear(); 6213 GEPs.clear(); 6214 bool Changed = false; 6215 6216 // If the target claims to have no vector registers don't attempt 6217 // vectorization. 6218 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6219 return false; 6220 6221 // Don't vectorize when the attribute NoImplicitFloat is used. 6222 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6223 return false; 6224 6225 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6226 6227 // Use the bottom up slp vectorizer to construct chains that start with 6228 // store instructions. 6229 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6230 6231 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6232 // delete instructions. 6233 6234 // Scan the blocks in the function in post order. 6235 for (auto BB : post_order(&F.getEntryBlock())) { 6236 collectSeedInstructions(BB); 6237 6238 // Vectorize trees that end at stores. 6239 if (!Stores.empty()) { 6240 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6241 << " underlying objects.\n"); 6242 Changed |= vectorizeStoreChains(R); 6243 } 6244 6245 // Vectorize trees that end at reductions. 6246 Changed |= vectorizeChainsInBlock(BB, R); 6247 6248 // Vectorize the index computations of getelementptr instructions. This 6249 // is primarily intended to catch gather-like idioms ending at 6250 // non-consecutive loads. 6251 if (!GEPs.empty()) { 6252 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6253 << " underlying objects.\n"); 6254 Changed |= vectorizeGEPIndices(BB, R); 6255 } 6256 } 6257 6258 if (Changed) { 6259 R.optimizeGatherSequence(); 6260 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6261 } 6262 return Changed; 6263 } 6264 6265 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6266 unsigned Idx) { 6267 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6268 << "\n"); 6269 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6270 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6271 unsigned VF = Chain.size(); 6272 6273 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6274 return false; 6275 6276 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6277 << "\n"); 6278 6279 R.buildTree(Chain); 6280 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6281 // TODO: Handle orders of size less than number of elements in the vector. 6282 if (Order && Order->size() == Chain.size()) { 6283 // TODO: reorder tree nodes without tree rebuilding. 6284 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6285 llvm::transform(*Order, ReorderedOps.begin(), 6286 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6287 R.buildTree(ReorderedOps); 6288 } 6289 if (R.isTreeTinyAndNotFullyVectorizable()) 6290 return false; 6291 if (R.isLoadCombineCandidate()) 6292 return false; 6293 6294 R.computeMinimumValueSizes(); 6295 6296 InstructionCost Cost = R.getTreeCost(); 6297 6298 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6299 if (Cost < -SLPCostThreshold) { 6300 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6301 6302 using namespace ore; 6303 6304 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6305 cast<StoreInst>(Chain[0])) 6306 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6307 << " and with tree size " 6308 << NV("TreeSize", R.getTreeSize())); 6309 6310 R.vectorizeTree(); 6311 return true; 6312 } 6313 6314 return false; 6315 } 6316 6317 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6318 BoUpSLP &R) { 6319 // We may run into multiple chains that merge into a single chain. We mark the 6320 // stores that we vectorized so that we don't visit the same store twice. 6321 BoUpSLP::ValueSet VectorizedStores; 6322 bool Changed = false; 6323 6324 int E = Stores.size(); 6325 SmallBitVector Tails(E, false); 6326 int MaxIter = MaxStoreLookup.getValue(); 6327 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6328 E, std::make_pair(E, INT_MAX)); 6329 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6330 int IterCnt; 6331 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6332 &CheckedPairs, 6333 &ConsecutiveChain](int K, int Idx) { 6334 if (IterCnt >= MaxIter) 6335 return true; 6336 if (CheckedPairs[Idx].test(K)) 6337 return ConsecutiveChain[K].second == 1 && 6338 ConsecutiveChain[K].first == Idx; 6339 ++IterCnt; 6340 CheckedPairs[Idx].set(K); 6341 CheckedPairs[K].set(Idx); 6342 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(), 6343 Stores[Idx]->getPointerOperand(), *DL, 6344 *SE, /*StrictCheck=*/true); 6345 if (!Diff || *Diff == 0) 6346 return false; 6347 int Val = *Diff; 6348 if (Val < 0) { 6349 if (ConsecutiveChain[Idx].second > -Val) { 6350 Tails.set(K); 6351 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6352 } 6353 return false; 6354 } 6355 if (ConsecutiveChain[K].second <= Val) 6356 return false; 6357 6358 Tails.set(Idx); 6359 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6360 return Val == 1; 6361 }; 6362 // Do a quadratic search on all of the given stores in reverse order and find 6363 // all of the pairs of stores that follow each other. 6364 for (int Idx = E - 1; Idx >= 0; --Idx) { 6365 // If a store has multiple consecutive store candidates, search according 6366 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6367 // This is because usually pairing with immediate succeeding or preceding 6368 // candidate create the best chance to find slp vectorization opportunity. 6369 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6370 IterCnt = 0; 6371 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6372 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6373 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6374 break; 6375 } 6376 6377 // Tracks if we tried to vectorize stores starting from the given tail 6378 // already. 6379 SmallBitVector TriedTails(E, false); 6380 // For stores that start but don't end a link in the chain: 6381 for (int Cnt = E; Cnt > 0; --Cnt) { 6382 int I = Cnt - 1; 6383 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6384 continue; 6385 // We found a store instr that starts a chain. Now follow the chain and try 6386 // to vectorize it. 6387 BoUpSLP::ValueList Operands; 6388 // Collect the chain into a list. 6389 while (I != E && !VectorizedStores.count(Stores[I])) { 6390 Operands.push_back(Stores[I]); 6391 Tails.set(I); 6392 if (ConsecutiveChain[I].second != 1) { 6393 // Mark the new end in the chain and go back, if required. It might be 6394 // required if the original stores come in reversed order, for example. 6395 if (ConsecutiveChain[I].first != E && 6396 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 6397 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6398 TriedTails.set(I); 6399 Tails.reset(ConsecutiveChain[I].first); 6400 if (Cnt < ConsecutiveChain[I].first + 2) 6401 Cnt = ConsecutiveChain[I].first + 2; 6402 } 6403 break; 6404 } 6405 // Move to the next value in the chain. 6406 I = ConsecutiveChain[I].first; 6407 } 6408 assert(!Operands.empty() && "Expected non-empty list of stores."); 6409 6410 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6411 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6412 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6413 6414 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6415 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6416 MaxElts); 6417 6418 // FIXME: Is division-by-2 the correct step? Should we assert that the 6419 // register size is a power-of-2? 6420 unsigned StartIdx = 0; 6421 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6422 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6423 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6424 if (!VectorizedStores.count(Slice.front()) && 6425 !VectorizedStores.count(Slice.back()) && 6426 vectorizeStoreChain(Slice, R, Cnt)) { 6427 // Mark the vectorized stores so that we don't vectorize them again. 6428 VectorizedStores.insert(Slice.begin(), Slice.end()); 6429 Changed = true; 6430 // If we vectorized initial block, no need to try to vectorize it 6431 // again. 6432 if (Cnt == StartIdx) 6433 StartIdx += Size; 6434 Cnt += Size; 6435 continue; 6436 } 6437 ++Cnt; 6438 } 6439 // Check if the whole array was vectorized already - exit. 6440 if (StartIdx >= Operands.size()) 6441 break; 6442 } 6443 } 6444 6445 return Changed; 6446 } 6447 6448 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6449 // Initialize the collections. We will make a single pass over the block. 6450 Stores.clear(); 6451 GEPs.clear(); 6452 6453 // Visit the store and getelementptr instructions in BB and organize them in 6454 // Stores and GEPs according to the underlying objects of their pointer 6455 // operands. 6456 for (Instruction &I : *BB) { 6457 // Ignore store instructions that are volatile or have a pointer operand 6458 // that doesn't point to a scalar type. 6459 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6460 if (!SI->isSimple()) 6461 continue; 6462 if (!isValidElementType(SI->getValueOperand()->getType())) 6463 continue; 6464 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6465 } 6466 6467 // Ignore getelementptr instructions that have more than one index, a 6468 // constant index, or a pointer operand that doesn't point to a scalar 6469 // type. 6470 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6471 auto Idx = GEP->idx_begin()->get(); 6472 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6473 continue; 6474 if (!isValidElementType(Idx->getType())) 6475 continue; 6476 if (GEP->getType()->isVectorTy()) 6477 continue; 6478 GEPs[GEP->getPointerOperand()].push_back(GEP); 6479 } 6480 } 6481 } 6482 6483 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6484 if (!A || !B) 6485 return false; 6486 Value *VL[] = {A, B}; 6487 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6488 } 6489 6490 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6491 bool AllowReorder, 6492 ArrayRef<Value *> InsertUses) { 6493 if (VL.size() < 2) 6494 return false; 6495 6496 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6497 << VL.size() << ".\n"); 6498 6499 // Check that all of the parts are instructions of the same type, 6500 // we permit an alternate opcode via InstructionsState. 6501 InstructionsState S = getSameOpcode(VL); 6502 if (!S.getOpcode()) 6503 return false; 6504 6505 Instruction *I0 = cast<Instruction>(S.OpValue); 6506 // Make sure invalid types (including vector type) are rejected before 6507 // determining vectorization factor for scalar instructions. 6508 for (Value *V : VL) { 6509 Type *Ty = V->getType(); 6510 if (!isValidElementType(Ty)) { 6511 // NOTE: the following will give user internal llvm type name, which may 6512 // not be useful. 6513 R.getORE()->emit([&]() { 6514 std::string type_str; 6515 llvm::raw_string_ostream rso(type_str); 6516 Ty->print(rso); 6517 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6518 << "Cannot SLP vectorize list: type " 6519 << rso.str() + " is unsupported by vectorizer"; 6520 }); 6521 return false; 6522 } 6523 } 6524 6525 unsigned Sz = R.getVectorElementSize(I0); 6526 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6527 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6528 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6529 if (MaxVF < 2) { 6530 R.getORE()->emit([&]() { 6531 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6532 << "Cannot SLP vectorize list: vectorization factor " 6533 << "less than 2 is not supported"; 6534 }); 6535 return false; 6536 } 6537 6538 bool Changed = false; 6539 bool CandidateFound = false; 6540 InstructionCost MinCost = SLPCostThreshold.getValue(); 6541 6542 bool CompensateUseCost = 6543 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6544 return V && isa<InsertElementInst>(V); 6545 }); 6546 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6547 "Each scalar expected to have an associated InsertElement user."); 6548 6549 unsigned NextInst = 0, MaxInst = VL.size(); 6550 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6551 // No actual vectorization should happen, if number of parts is the same as 6552 // provided vectorization factor (i.e. the scalar type is used for vector 6553 // code during codegen). 6554 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6555 if (TTI->getNumberOfParts(VecTy) == VF) 6556 continue; 6557 for (unsigned I = NextInst; I < MaxInst; ++I) { 6558 unsigned OpsWidth = 0; 6559 6560 if (I + VF > MaxInst) 6561 OpsWidth = MaxInst - I; 6562 else 6563 OpsWidth = VF; 6564 6565 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6566 break; 6567 6568 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6569 // Check that a previous iteration of this loop did not delete the Value. 6570 if (llvm::any_of(Ops, [&R](Value *V) { 6571 auto *I = dyn_cast<Instruction>(V); 6572 return I && R.isDeleted(I); 6573 })) 6574 continue; 6575 6576 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6577 << "\n"); 6578 6579 R.buildTree(Ops); 6580 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6581 // TODO: check if we can allow reordering for more cases. 6582 if (AllowReorder && Order) { 6583 // TODO: reorder tree nodes without tree rebuilding. 6584 // Conceptually, there is nothing actually preventing us from trying to 6585 // reorder a larger list. In fact, we do exactly this when vectorizing 6586 // reductions. However, at this point, we only expect to get here when 6587 // there are exactly two operations. 6588 assert(Ops.size() == 2); 6589 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6590 R.buildTree(ReorderedOps, None); 6591 } 6592 if (R.isTreeTinyAndNotFullyVectorizable()) 6593 continue; 6594 6595 R.computeMinimumValueSizes(); 6596 InstructionCost Cost = R.getTreeCost(); 6597 CandidateFound = true; 6598 if (CompensateUseCost) { 6599 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6600 // rather than sum of single inserts as the latter may overestimate 6601 // cost. This work should imply improving cost estimation for extracts 6602 // that added in for external (for vectorization tree) users,i.e. that 6603 // part should also switch to same interface. 6604 // For example, the following case is projected code after SLP: 6605 // %4 = extractelement <4 x i64> %3, i32 0 6606 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6607 // %5 = extractelement <4 x i64> %3, i32 1 6608 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6609 // %6 = extractelement <4 x i64> %3, i32 2 6610 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6611 // %7 = extractelement <4 x i64> %3, i32 3 6612 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6613 // 6614 // Extracts here added by SLP in order to feed users (the inserts) of 6615 // original scalars and contribute to "ExtractCost" at cost evaluation. 6616 // The inserts in turn form sequence to build an aggregate that 6617 // detected by findBuildAggregate routine. 6618 // SLP makes an assumption that such sequence will be optimized away 6619 // later (instcombine) so it tries to compensate ExctractCost with 6620 // cost of insert sequence. 6621 // Current per element cost calculation approach is not quite accurate 6622 // and tends to create bias toward favoring vectorization. 6623 // Switching to the TTI interface might help a bit. 6624 // Alternative solution could be pattern-match to detect a no-op or 6625 // shuffle. 6626 InstructionCost UserCost = 0; 6627 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6628 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6629 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6630 UserCost += TTI->getVectorInstrCost( 6631 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6632 } 6633 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6634 << ".\n"); 6635 Cost -= UserCost; 6636 } 6637 6638 MinCost = std::min(MinCost, Cost); 6639 6640 if (Cost < -SLPCostThreshold) { 6641 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6642 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6643 cast<Instruction>(Ops[0])) 6644 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6645 << " and with tree size " 6646 << ore::NV("TreeSize", R.getTreeSize())); 6647 6648 R.vectorizeTree(); 6649 // Move to the next bundle. 6650 I += VF - 1; 6651 NextInst = I + 1; 6652 Changed = true; 6653 } 6654 } 6655 } 6656 6657 if (!Changed && CandidateFound) { 6658 R.getORE()->emit([&]() { 6659 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6660 << "List vectorization was possible but not beneficial with cost " 6661 << ore::NV("Cost", MinCost) << " >= " 6662 << ore::NV("Treshold", -SLPCostThreshold); 6663 }); 6664 } else if (!Changed) { 6665 R.getORE()->emit([&]() { 6666 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6667 << "Cannot SLP vectorize list: vectorization was impossible" 6668 << " with available vectorization factors"; 6669 }); 6670 } 6671 return Changed; 6672 } 6673 6674 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6675 if (!I) 6676 return false; 6677 6678 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6679 return false; 6680 6681 Value *P = I->getParent(); 6682 6683 // Vectorize in current basic block only. 6684 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6685 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6686 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6687 return false; 6688 6689 // Try to vectorize V. 6690 if (tryToVectorizePair(Op0, Op1, R)) 6691 return true; 6692 6693 auto *A = dyn_cast<BinaryOperator>(Op0); 6694 auto *B = dyn_cast<BinaryOperator>(Op1); 6695 // Try to skip B. 6696 if (B && B->hasOneUse()) { 6697 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6698 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6699 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6700 return true; 6701 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6702 return true; 6703 } 6704 6705 // Try to skip A. 6706 if (A && A->hasOneUse()) { 6707 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6708 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6709 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6710 return true; 6711 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6712 return true; 6713 } 6714 return false; 6715 } 6716 6717 namespace { 6718 6719 /// Model horizontal reductions. 6720 /// 6721 /// A horizontal reduction is a tree of reduction instructions that has values 6722 /// that can be put into a vector as its leaves. For example: 6723 /// 6724 /// mul mul mul mul 6725 /// \ / \ / 6726 /// + + 6727 /// \ / 6728 /// + 6729 /// This tree has "mul" as its leaf values and "+" as its reduction 6730 /// instructions. A reduction can feed into a store or a binary operation 6731 /// feeding a phi. 6732 /// ... 6733 /// \ / 6734 /// + 6735 /// | 6736 /// phi += 6737 /// 6738 /// Or: 6739 /// ... 6740 /// \ / 6741 /// + 6742 /// | 6743 /// *p = 6744 /// 6745 class HorizontalReduction { 6746 using ReductionOpsType = SmallVector<Value *, 16>; 6747 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6748 ReductionOpsListType ReductionOps; 6749 SmallVector<Value *, 32> ReducedVals; 6750 // Use map vector to make stable output. 6751 MapVector<Instruction *, Value *> ExtraArgs; 6752 WeakTrackingVH ReductionRoot; 6753 /// The type of reduction operation. 6754 RecurKind RdxKind; 6755 6756 /// Checks if instruction is associative and can be vectorized. 6757 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6758 if (Kind == RecurKind::None) 6759 return false; 6760 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6761 return true; 6762 6763 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6764 // FP min/max are associative except for NaN and -0.0. We do not 6765 // have to rule out -0.0 here because the intrinsic semantics do not 6766 // specify a fixed result for it. 6767 return I->getFastMathFlags().noNaNs(); 6768 } 6769 6770 return I->isAssociative(); 6771 } 6772 6773 /// Checks if the ParentStackElem.first should be marked as a reduction 6774 /// operation with an extra argument or as extra argument itself. 6775 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6776 Value *ExtraArg) { 6777 if (ExtraArgs.count(ParentStackElem.first)) { 6778 ExtraArgs[ParentStackElem.first] = nullptr; 6779 // We ran into something like: 6780 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6781 // The whole ParentStackElem.first should be considered as an extra value 6782 // in this case. 6783 // Do not perform analysis of remaining operands of ParentStackElem.first 6784 // instruction, this whole instruction is an extra argument. 6785 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 6786 } else { 6787 // We ran into something like: 6788 // ParentStackElem.first += ... + ExtraArg + ... 6789 ExtraArgs[ParentStackElem.first] = ExtraArg; 6790 } 6791 } 6792 6793 /// Creates reduction operation with the current opcode. 6794 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6795 Value *RHS, const Twine &Name, bool UseSelect) { 6796 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6797 switch (Kind) { 6798 case RecurKind::Add: 6799 case RecurKind::Mul: 6800 case RecurKind::Or: 6801 case RecurKind::And: 6802 case RecurKind::Xor: 6803 case RecurKind::FAdd: 6804 case RecurKind::FMul: 6805 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6806 Name); 6807 case RecurKind::FMax: 6808 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6809 case RecurKind::FMin: 6810 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6811 case RecurKind::SMax: 6812 if (UseSelect) { 6813 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6814 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6815 } 6816 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 6817 case RecurKind::SMin: 6818 if (UseSelect) { 6819 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6820 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6821 } 6822 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 6823 case RecurKind::UMax: 6824 if (UseSelect) { 6825 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6826 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6827 } 6828 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 6829 case RecurKind::UMin: 6830 if (UseSelect) { 6831 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6832 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6833 } 6834 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 6835 default: 6836 llvm_unreachable("Unknown reduction operation."); 6837 } 6838 } 6839 6840 /// Creates reduction operation with the current opcode with the IR flags 6841 /// from \p ReductionOps. 6842 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6843 Value *RHS, const Twine &Name, 6844 const ReductionOpsListType &ReductionOps) { 6845 bool UseSelect = ReductionOps.size() == 2; 6846 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 6847 "Expected cmp + select pairs for reduction"); 6848 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 6849 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6850 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6851 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6852 propagateIRFlags(Op, ReductionOps[1]); 6853 return Op; 6854 } 6855 } 6856 propagateIRFlags(Op, ReductionOps[0]); 6857 return Op; 6858 } 6859 6860 /// Creates reduction operation with the current opcode with the IR flags 6861 /// from \p I. 6862 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6863 Value *RHS, const Twine &Name, Instruction *I) { 6864 auto *SelI = dyn_cast<SelectInst>(I); 6865 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 6866 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6867 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6868 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 6869 } 6870 propagateIRFlags(Op, I); 6871 return Op; 6872 } 6873 6874 static RecurKind getRdxKind(Instruction *I) { 6875 assert(I && "Expected instruction for reduction matching"); 6876 TargetTransformInfo::ReductionFlags RdxFlags; 6877 if (match(I, m_Add(m_Value(), m_Value()))) 6878 return RecurKind::Add; 6879 if (match(I, m_Mul(m_Value(), m_Value()))) 6880 return RecurKind::Mul; 6881 if (match(I, m_And(m_Value(), m_Value()))) 6882 return RecurKind::And; 6883 if (match(I, m_Or(m_Value(), m_Value()))) 6884 return RecurKind::Or; 6885 if (match(I, m_Xor(m_Value(), m_Value()))) 6886 return RecurKind::Xor; 6887 if (match(I, m_FAdd(m_Value(), m_Value()))) 6888 return RecurKind::FAdd; 6889 if (match(I, m_FMul(m_Value(), m_Value()))) 6890 return RecurKind::FMul; 6891 6892 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6893 return RecurKind::FMax; 6894 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6895 return RecurKind::FMin; 6896 6897 // This matches either cmp+select or intrinsics. SLP is expected to handle 6898 // either form. 6899 // TODO: If we are canonicalizing to intrinsics, we can remove several 6900 // special-case paths that deal with selects. 6901 if (match(I, m_SMax(m_Value(), m_Value()))) 6902 return RecurKind::SMax; 6903 if (match(I, m_SMin(m_Value(), m_Value()))) 6904 return RecurKind::SMin; 6905 if (match(I, m_UMax(m_Value(), m_Value()))) 6906 return RecurKind::UMax; 6907 if (match(I, m_UMin(m_Value(), m_Value()))) 6908 return RecurKind::UMin; 6909 6910 if (auto *Select = dyn_cast<SelectInst>(I)) { 6911 // Try harder: look for min/max pattern based on instructions producing 6912 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6913 // During the intermediate stages of SLP, it's very common to have 6914 // pattern like this (since optimizeGatherSequence is run only once 6915 // at the end): 6916 // %1 = extractelement <2 x i32> %a, i32 0 6917 // %2 = extractelement <2 x i32> %a, i32 1 6918 // %cond = icmp sgt i32 %1, %2 6919 // %3 = extractelement <2 x i32> %a, i32 0 6920 // %4 = extractelement <2 x i32> %a, i32 1 6921 // %select = select i1 %cond, i32 %3, i32 %4 6922 CmpInst::Predicate Pred; 6923 Instruction *L1; 6924 Instruction *L2; 6925 6926 Value *LHS = Select->getTrueValue(); 6927 Value *RHS = Select->getFalseValue(); 6928 Value *Cond = Select->getCondition(); 6929 6930 // TODO: Support inverse predicates. 6931 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6932 if (!isa<ExtractElementInst>(RHS) || 6933 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6934 return RecurKind::None; 6935 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6936 if (!isa<ExtractElementInst>(LHS) || 6937 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6938 return RecurKind::None; 6939 } else { 6940 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6941 return RecurKind::None; 6942 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6943 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6944 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6945 return RecurKind::None; 6946 } 6947 6948 TargetTransformInfo::ReductionFlags RdxFlags; 6949 switch (Pred) { 6950 default: 6951 return RecurKind::None; 6952 case CmpInst::ICMP_SGT: 6953 case CmpInst::ICMP_SGE: 6954 return RecurKind::SMax; 6955 case CmpInst::ICMP_SLT: 6956 case CmpInst::ICMP_SLE: 6957 return RecurKind::SMin; 6958 case CmpInst::ICMP_UGT: 6959 case CmpInst::ICMP_UGE: 6960 return RecurKind::UMax; 6961 case CmpInst::ICMP_ULT: 6962 case CmpInst::ICMP_ULE: 6963 return RecurKind::UMin; 6964 } 6965 } 6966 return RecurKind::None; 6967 } 6968 6969 /// Get the index of the first operand. 6970 static unsigned getFirstOperandIndex(Instruction *I) { 6971 return isa<SelectInst>(I) ? 1 : 0; 6972 } 6973 6974 /// Total number of operands in the reduction operation. 6975 static unsigned getNumberOfOperands(Instruction *I) { 6976 return isa<SelectInst>(I) ? 3 : 2; 6977 } 6978 6979 /// Checks if the instruction is in basic block \p BB. 6980 /// For a min/max reduction check that both compare and select are in \p BB. 6981 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 6982 auto *Sel = dyn_cast<SelectInst>(I); 6983 if (IsRedOp && Sel) { 6984 auto *Cmp = cast<Instruction>(Sel->getCondition()); 6985 return Sel->getParent() == BB && Cmp->getParent() == BB; 6986 } 6987 return I->getParent() == BB; 6988 } 6989 6990 /// Expected number of uses for reduction operations/reduced values. 6991 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 6992 // SelectInst must be used twice while the condition op must have single 6993 // use only. 6994 if (MatchCmpSel) { 6995 if (auto *Sel = dyn_cast<SelectInst>(I)) 6996 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 6997 return I->hasNUses(2); 6998 } 6999 7000 // Arithmetic reduction operation must be used once only. 7001 return I->hasOneUse(); 7002 } 7003 7004 /// Initializes the list of reduction operations. 7005 void initReductionOps(Instruction *I) { 7006 if (isa<SelectInst>(I)) 7007 ReductionOps.assign(2, ReductionOpsType()); 7008 else 7009 ReductionOps.assign(1, ReductionOpsType()); 7010 } 7011 7012 /// Add all reduction operations for the reduction instruction \p I. 7013 void addReductionOps(Instruction *I) { 7014 if (auto *Sel = dyn_cast<SelectInst>(I)) { 7015 ReductionOps[0].emplace_back(Sel->getCondition()); 7016 ReductionOps[1].emplace_back(Sel); 7017 } else { 7018 ReductionOps[0].emplace_back(I); 7019 } 7020 } 7021 7022 static Value *getLHS(RecurKind Kind, Instruction *I) { 7023 if (Kind == RecurKind::None) 7024 return nullptr; 7025 return I->getOperand(getFirstOperandIndex(I)); 7026 } 7027 static Value *getRHS(RecurKind Kind, Instruction *I) { 7028 if (Kind == RecurKind::None) 7029 return nullptr; 7030 return I->getOperand(getFirstOperandIndex(I) + 1); 7031 } 7032 7033 public: 7034 HorizontalReduction() = default; 7035 7036 /// Try to find a reduction tree. 7037 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 7038 assert((!Phi || is_contained(Phi->operands(), B)) && 7039 "Phi needs to use the binary operator"); 7040 7041 RdxKind = getRdxKind(B); 7042 7043 // We could have a initial reductions that is not an add. 7044 // r *= v1 + v2 + v3 + v4 7045 // In such a case start looking for a tree rooted in the first '+'. 7046 if (Phi) { 7047 if (getLHS(RdxKind, B) == Phi) { 7048 Phi = nullptr; 7049 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 7050 if (!B) 7051 return false; 7052 RdxKind = getRdxKind(B); 7053 } else if (getRHS(RdxKind, B) == Phi) { 7054 Phi = nullptr; 7055 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 7056 if (!B) 7057 return false; 7058 RdxKind = getRdxKind(B); 7059 } 7060 } 7061 7062 if (!isVectorizable(RdxKind, B)) 7063 return false; 7064 7065 // Analyze "regular" integer/FP types for reductions - no target-specific 7066 // types or pointers. 7067 Type *Ty = B->getType(); 7068 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7069 return false; 7070 7071 // Though the ultimate reduction may have multiple uses, its condition must 7072 // have only single use. 7073 if (auto *SI = dyn_cast<SelectInst>(B)) 7074 if (!SI->getCondition()->hasOneUse()) 7075 return false; 7076 7077 ReductionRoot = B; 7078 7079 // The opcode for leaf values that we perform a reduction on. 7080 // For example: load(x) + load(y) + load(z) + fptoui(w) 7081 // The leaf opcode for 'w' does not match, so we don't include it as a 7082 // potential candidate for the reduction. 7083 unsigned LeafOpcode = 0; 7084 7085 // Post order traverse the reduction tree starting at B. We only handle true 7086 // trees containing only binary operators. 7087 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7088 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 7089 initReductionOps(B); 7090 while (!Stack.empty()) { 7091 Instruction *TreeN = Stack.back().first; 7092 unsigned EdgeToVisit = Stack.back().second++; 7093 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7094 bool IsReducedValue = TreeRdxKind != RdxKind; 7095 7096 // Postorder visit. 7097 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 7098 if (IsReducedValue) 7099 ReducedVals.push_back(TreeN); 7100 else { 7101 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7102 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7103 // Check if TreeN is an extra argument of its parent operation. 7104 if (Stack.size() <= 1) { 7105 // TreeN can't be an extra argument as it is a root reduction 7106 // operation. 7107 return false; 7108 } 7109 // Yes, TreeN is an extra argument, do not add it to a list of 7110 // reduction operations. 7111 // Stack[Stack.size() - 2] always points to the parent operation. 7112 markExtraArg(Stack[Stack.size() - 2], TreeN); 7113 ExtraArgs.erase(TreeN); 7114 } else 7115 addReductionOps(TreeN); 7116 } 7117 // Retract. 7118 Stack.pop_back(); 7119 continue; 7120 } 7121 7122 // Visit left or right. 7123 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 7124 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7125 if (!EdgeInst) { 7126 // Edge value is not a reduction instruction or a leaf instruction. 7127 // (It may be a constant, function argument, or something else.) 7128 markExtraArg(Stack.back(), EdgeVal); 7129 continue; 7130 } 7131 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7132 // Continue analysis if the next operand is a reduction operation or 7133 // (possibly) a leaf value. If the leaf value opcode is not set, 7134 // the first met operation != reduction operation is considered as the 7135 // leaf opcode. 7136 // Only handle trees in the current basic block. 7137 // Each tree node needs to have minimal number of users except for the 7138 // ultimate reduction. 7139 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7140 if (EdgeInst != Phi && EdgeInst != B && 7141 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 7142 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 7143 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7144 if (IsRdxInst) { 7145 // We need to be able to reassociate the reduction operations. 7146 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7147 // I is an extra argument for TreeN (its parent operation). 7148 markExtraArg(Stack.back(), EdgeInst); 7149 continue; 7150 } 7151 } else if (!LeafOpcode) { 7152 LeafOpcode = EdgeInst->getOpcode(); 7153 } 7154 Stack.push_back( 7155 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7156 continue; 7157 } 7158 // I is an extra argument for TreeN (its parent operation). 7159 markExtraArg(Stack.back(), EdgeInst); 7160 } 7161 return true; 7162 } 7163 7164 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7165 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7166 // If there are a sufficient number of reduction values, reduce 7167 // to a nearby power-of-2. We can safely generate oversized 7168 // vectors and rely on the backend to split them to legal sizes. 7169 unsigned NumReducedVals = ReducedVals.size(); 7170 if (NumReducedVals < 4) 7171 return false; 7172 7173 // Intersect the fast-math-flags from all reduction operations. 7174 FastMathFlags RdxFMF; 7175 RdxFMF.set(); 7176 for (ReductionOpsType &RdxOp : ReductionOps) { 7177 for (Value *RdxVal : RdxOp) { 7178 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7179 RdxFMF &= FPMO->getFastMathFlags(); 7180 } 7181 } 7182 7183 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7184 Builder.setFastMathFlags(RdxFMF); 7185 7186 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7187 // The same extra argument may be used several times, so log each attempt 7188 // to use it. 7189 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7190 assert(Pair.first && "DebugLoc must be set."); 7191 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7192 } 7193 7194 // The compare instruction of a min/max is the insertion point for new 7195 // instructions and may be replaced with a new compare instruction. 7196 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7197 assert(isa<SelectInst>(RdxRootInst) && 7198 "Expected min/max reduction to have select root instruction"); 7199 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7200 assert(isa<Instruction>(ScalarCond) && 7201 "Expected min/max reduction to have compare condition"); 7202 return cast<Instruction>(ScalarCond); 7203 }; 7204 7205 // The reduction root is used as the insertion point for new instructions, 7206 // so set it as externally used to prevent it from being deleted. 7207 ExternallyUsedValues[ReductionRoot]; 7208 SmallVector<Value *, 16> IgnoreList; 7209 for (ReductionOpsType &RdxOp : ReductionOps) 7210 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7211 7212 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7213 if (NumReducedVals > ReduxWidth) { 7214 // In the loop below, we are building a tree based on a window of 7215 // 'ReduxWidth' values. 7216 // If the operands of those values have common traits (compare predicate, 7217 // constant operand, etc), then we want to group those together to 7218 // minimize the cost of the reduction. 7219 7220 // TODO: This should be extended to count common operands for 7221 // compares and binops. 7222 7223 // Step 1: Count the number of times each compare predicate occurs. 7224 SmallDenseMap<unsigned, unsigned> PredCountMap; 7225 for (Value *RdxVal : ReducedVals) { 7226 CmpInst::Predicate Pred; 7227 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7228 ++PredCountMap[Pred]; 7229 } 7230 // Step 2: Sort the values so the most common predicates come first. 7231 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7232 CmpInst::Predicate PredA, PredB; 7233 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7234 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7235 return PredCountMap[PredA] > PredCountMap[PredB]; 7236 } 7237 return false; 7238 }); 7239 } 7240 7241 Value *VectorizedTree = nullptr; 7242 unsigned i = 0; 7243 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7244 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7245 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7246 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7247 if (Order) { 7248 assert(Order->size() == VL.size() && 7249 "Order size must be the same as number of vectorized " 7250 "instructions."); 7251 // TODO: reorder tree nodes without tree rebuilding. 7252 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7253 llvm::transform(*Order, ReorderedOps.begin(), 7254 [VL](const unsigned Idx) { return VL[Idx]; }); 7255 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7256 } 7257 if (V.isTreeTinyAndNotFullyVectorizable()) 7258 break; 7259 if (V.isLoadCombineReductionCandidate(RdxKind)) 7260 break; 7261 7262 V.computeMinimumValueSizes(); 7263 7264 // Estimate cost. 7265 InstructionCost TreeCost = V.getTreeCost(); 7266 InstructionCost ReductionCost = 7267 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7268 InstructionCost Cost = TreeCost + ReductionCost; 7269 if (!Cost.isValid()) { 7270 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7271 return false; 7272 } 7273 if (Cost >= -SLPCostThreshold) { 7274 V.getORE()->emit([&]() { 7275 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7276 cast<Instruction>(VL[0])) 7277 << "Vectorizing horizontal reduction is possible" 7278 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7279 << " and threshold " 7280 << ore::NV("Threshold", -SLPCostThreshold); 7281 }); 7282 break; 7283 } 7284 7285 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7286 << Cost << ". (HorRdx)\n"); 7287 V.getORE()->emit([&]() { 7288 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7289 cast<Instruction>(VL[0])) 7290 << "Vectorized horizontal reduction with cost " 7291 << ore::NV("Cost", Cost) << " and with tree size " 7292 << ore::NV("TreeSize", V.getTreeSize()); 7293 }); 7294 7295 // Vectorize a tree. 7296 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7297 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7298 7299 // Emit a reduction. If the root is a select (min/max idiom), the insert 7300 // point is the compare condition of that select. 7301 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7302 if (isa<SelectInst>(RdxRootInst)) 7303 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7304 else 7305 Builder.SetInsertPoint(RdxRootInst); 7306 7307 Value *ReducedSubTree = 7308 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7309 7310 if (!VectorizedTree) { 7311 // Initialize the final value in the reduction. 7312 VectorizedTree = ReducedSubTree; 7313 } else { 7314 // Update the final value in the reduction. 7315 Builder.SetCurrentDebugLocation(Loc); 7316 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7317 ReducedSubTree, "op.rdx", ReductionOps); 7318 } 7319 i += ReduxWidth; 7320 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7321 } 7322 7323 if (VectorizedTree) { 7324 // Finish the reduction. 7325 for (; i < NumReducedVals; ++i) { 7326 auto *I = cast<Instruction>(ReducedVals[i]); 7327 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7328 VectorizedTree = 7329 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7330 } 7331 for (auto &Pair : ExternallyUsedValues) { 7332 // Add each externally used value to the final reduction. 7333 for (auto *I : Pair.second) { 7334 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7335 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7336 Pair.first, "op.extra", I); 7337 } 7338 } 7339 7340 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7341 7342 // Mark all scalar reduction ops for deletion, they are replaced by the 7343 // vector reductions. 7344 V.eraseInstructions(IgnoreList); 7345 } 7346 return VectorizedTree != nullptr; 7347 } 7348 7349 unsigned numReductionValues() const { return ReducedVals.size(); } 7350 7351 private: 7352 /// Calculate the cost of a reduction. 7353 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7354 Value *FirstReducedVal, 7355 unsigned ReduxWidth) { 7356 Type *ScalarTy = FirstReducedVal->getType(); 7357 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7358 InstructionCost VectorCost, ScalarCost; 7359 switch (RdxKind) { 7360 case RecurKind::Add: 7361 case RecurKind::Mul: 7362 case RecurKind::Or: 7363 case RecurKind::And: 7364 case RecurKind::Xor: 7365 case RecurKind::FAdd: 7366 case RecurKind::FMul: { 7367 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7368 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7369 /*IsPairwiseForm=*/false); 7370 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7371 break; 7372 } 7373 case RecurKind::FMax: 7374 case RecurKind::FMin: { 7375 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7376 VectorCost = 7377 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7378 /*pairwise=*/false, /*unsigned=*/false); 7379 ScalarCost = 7380 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7381 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7382 CmpInst::makeCmpResultType(ScalarTy)); 7383 break; 7384 } 7385 case RecurKind::SMax: 7386 case RecurKind::SMin: 7387 case RecurKind::UMax: 7388 case RecurKind::UMin: { 7389 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7390 bool IsUnsigned = 7391 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7392 VectorCost = 7393 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7394 /*IsPairwiseForm=*/false, IsUnsigned); 7395 ScalarCost = 7396 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7397 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7398 CmpInst::makeCmpResultType(ScalarTy)); 7399 break; 7400 } 7401 default: 7402 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7403 } 7404 7405 // Scalar cost is repeated for N-1 elements. 7406 ScalarCost *= (ReduxWidth - 1); 7407 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7408 << " for reduction that starts with " << *FirstReducedVal 7409 << " (It is a splitting reduction)\n"); 7410 return VectorCost - ScalarCost; 7411 } 7412 7413 /// Emit a horizontal reduction of the vectorized value. 7414 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7415 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7416 assert(VectorizedValue && "Need to have a vectorized tree node"); 7417 assert(isPowerOf2_32(ReduxWidth) && 7418 "We only handle power-of-two reductions for now"); 7419 7420 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7421 ReductionOps.back()); 7422 } 7423 }; 7424 7425 } // end anonymous namespace 7426 7427 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7428 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7429 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7430 7431 unsigned AggregateSize = 1; 7432 auto *IV = cast<InsertValueInst>(InsertInst); 7433 Type *CurrentType = IV->getType(); 7434 do { 7435 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7436 for (auto *Elt : ST->elements()) 7437 if (Elt != ST->getElementType(0)) // check homogeneity 7438 return None; 7439 AggregateSize *= ST->getNumElements(); 7440 CurrentType = ST->getElementType(0); 7441 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7442 AggregateSize *= AT->getNumElements(); 7443 CurrentType = AT->getElementType(); 7444 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7445 AggregateSize *= VT->getNumElements(); 7446 return AggregateSize; 7447 } else if (CurrentType->isSingleValueType()) { 7448 return AggregateSize; 7449 } else { 7450 return None; 7451 } 7452 } while (true); 7453 } 7454 7455 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7456 unsigned OperandOffset) { 7457 unsigned OperandIndex = OperandOffset; 7458 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7459 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7460 auto *VT = cast<FixedVectorType>(IE->getType()); 7461 OperandIndex *= VT->getNumElements(); 7462 OperandIndex += CI->getZExtValue(); 7463 return OperandIndex; 7464 } 7465 return None; 7466 } 7467 7468 auto *IV = cast<InsertValueInst>(InsertInst); 7469 Type *CurrentType = IV->getType(); 7470 for (unsigned int Index : IV->indices()) { 7471 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7472 OperandIndex *= ST->getNumElements(); 7473 CurrentType = ST->getElementType(Index); 7474 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7475 OperandIndex *= AT->getNumElements(); 7476 CurrentType = AT->getElementType(); 7477 } else { 7478 return None; 7479 } 7480 OperandIndex += Index; 7481 } 7482 return OperandIndex; 7483 } 7484 7485 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7486 TargetTransformInfo *TTI, 7487 SmallVectorImpl<Value *> &BuildVectorOpds, 7488 SmallVectorImpl<Value *> &InsertElts, 7489 unsigned OperandOffset) { 7490 do { 7491 Value *InsertedOperand = LastInsertInst->getOperand(1); 7492 Optional<unsigned> OperandIndex = 7493 getOperandIndex(LastInsertInst, OperandOffset); 7494 if (!OperandIndex) 7495 return false; 7496 if (isa<InsertElementInst>(InsertedOperand) || 7497 isa<InsertValueInst>(InsertedOperand)) { 7498 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7499 BuildVectorOpds, InsertElts, *OperandIndex)) 7500 return false; 7501 } else { 7502 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7503 InsertElts[*OperandIndex] = LastInsertInst; 7504 } 7505 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7506 return true; 7507 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7508 } while (LastInsertInst != nullptr && 7509 (isa<InsertValueInst>(LastInsertInst) || 7510 isa<InsertElementInst>(LastInsertInst)) && 7511 LastInsertInst->hasOneUse()); 7512 return false; 7513 } 7514 7515 /// Recognize construction of vectors like 7516 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7517 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7518 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7519 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7520 /// starting from the last insertelement or insertvalue instruction. 7521 /// 7522 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7523 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7524 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7525 /// 7526 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7527 /// 7528 /// \return true if it matches. 7529 static bool findBuildAggregate(Instruction *LastInsertInst, 7530 TargetTransformInfo *TTI, 7531 SmallVectorImpl<Value *> &BuildVectorOpds, 7532 SmallVectorImpl<Value *> &InsertElts) { 7533 7534 assert((isa<InsertElementInst>(LastInsertInst) || 7535 isa<InsertValueInst>(LastInsertInst)) && 7536 "Expected insertelement or insertvalue instruction!"); 7537 7538 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7539 "Expected empty result vectors!"); 7540 7541 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7542 if (!AggregateSize) 7543 return false; 7544 BuildVectorOpds.resize(*AggregateSize); 7545 InsertElts.resize(*AggregateSize); 7546 7547 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7548 0)) { 7549 llvm::erase_value(BuildVectorOpds, nullptr); 7550 llvm::erase_value(InsertElts, nullptr); 7551 if (BuildVectorOpds.size() >= 2) 7552 return true; 7553 } 7554 7555 return false; 7556 } 7557 7558 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7559 return V->getType() < V2->getType(); 7560 } 7561 7562 /// Try and get a reduction value from a phi node. 7563 /// 7564 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7565 /// if they come from either \p ParentBB or a containing loop latch. 7566 /// 7567 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7568 /// if not possible. 7569 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7570 BasicBlock *ParentBB, LoopInfo *LI) { 7571 // There are situations where the reduction value is not dominated by the 7572 // reduction phi. Vectorizing such cases has been reported to cause 7573 // miscompiles. See PR25787. 7574 auto DominatedReduxValue = [&](Value *R) { 7575 return isa<Instruction>(R) && 7576 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7577 }; 7578 7579 Value *Rdx = nullptr; 7580 7581 // Return the incoming value if it comes from the same BB as the phi node. 7582 if (P->getIncomingBlock(0) == ParentBB) { 7583 Rdx = P->getIncomingValue(0); 7584 } else if (P->getIncomingBlock(1) == ParentBB) { 7585 Rdx = P->getIncomingValue(1); 7586 } 7587 7588 if (Rdx && DominatedReduxValue(Rdx)) 7589 return Rdx; 7590 7591 // Otherwise, check whether we have a loop latch to look at. 7592 Loop *BBL = LI->getLoopFor(ParentBB); 7593 if (!BBL) 7594 return nullptr; 7595 BasicBlock *BBLatch = BBL->getLoopLatch(); 7596 if (!BBLatch) 7597 return nullptr; 7598 7599 // There is a loop latch, return the incoming value if it comes from 7600 // that. This reduction pattern occasionally turns up. 7601 if (P->getIncomingBlock(0) == BBLatch) { 7602 Rdx = P->getIncomingValue(0); 7603 } else if (P->getIncomingBlock(1) == BBLatch) { 7604 Rdx = P->getIncomingValue(1); 7605 } 7606 7607 if (Rdx && DominatedReduxValue(Rdx)) 7608 return Rdx; 7609 7610 return nullptr; 7611 } 7612 7613 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7614 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7615 return true; 7616 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7617 return true; 7618 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7619 return true; 7620 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 7621 return true; 7622 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 7623 return true; 7624 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 7625 return true; 7626 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 7627 return true; 7628 return false; 7629 } 7630 7631 /// Attempt to reduce a horizontal reduction. 7632 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7633 /// with reduction operators \a Root (or one of its operands) in a basic block 7634 /// \a BB, then check if it can be done. If horizontal reduction is not found 7635 /// and root instruction is a binary operation, vectorization of the operands is 7636 /// attempted. 7637 /// \returns true if a horizontal reduction was matched and reduced or operands 7638 /// of one of the binary instruction were vectorized. 7639 /// \returns false if a horizontal reduction was not matched (or not possible) 7640 /// or no vectorization of any binary operation feeding \a Root instruction was 7641 /// performed. 7642 static bool tryToVectorizeHorReductionOrInstOperands( 7643 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7644 TargetTransformInfo *TTI, 7645 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7646 if (!ShouldVectorizeHor) 7647 return false; 7648 7649 if (!Root) 7650 return false; 7651 7652 if (Root->getParent() != BB || isa<PHINode>(Root)) 7653 return false; 7654 // Start analysis starting from Root instruction. If horizontal reduction is 7655 // found, try to vectorize it. If it is not a horizontal reduction or 7656 // vectorization is not possible or not effective, and currently analyzed 7657 // instruction is a binary operation, try to vectorize the operands, using 7658 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7659 // the same procedure considering each operand as a possible root of the 7660 // horizontal reduction. 7661 // Interrupt the process if the Root instruction itself was vectorized or all 7662 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7663 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 7664 // CmpInsts so we can skip extra attempts in 7665 // tryToVectorizeHorReductionOrInstOperands and save compile time. 7666 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7667 SmallPtrSet<Value *, 8> VisitedInstrs; 7668 bool Res = false; 7669 while (!Stack.empty()) { 7670 Instruction *Inst; 7671 unsigned Level; 7672 std::tie(Inst, Level) = Stack.pop_back_val(); 7673 Value *B0, *B1; 7674 bool IsBinop = matchRdxBop(Inst, B0, B1); 7675 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7676 if (IsBinop || IsSelect) { 7677 HorizontalReduction HorRdx; 7678 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7679 if (HorRdx.tryToReduce(R, TTI)) { 7680 Res = true; 7681 // Set P to nullptr to avoid re-analysis of phi node in 7682 // matchAssociativeReduction function unless this is the root node. 7683 P = nullptr; 7684 continue; 7685 } 7686 } 7687 if (P && IsBinop) { 7688 Inst = dyn_cast<Instruction>(B0); 7689 if (Inst == P) 7690 Inst = dyn_cast<Instruction>(B1); 7691 if (!Inst) { 7692 // Set P to nullptr to avoid re-analysis of phi node in 7693 // matchAssociativeReduction function unless this is the root node. 7694 P = nullptr; 7695 continue; 7696 } 7697 } 7698 } 7699 // Set P to nullptr to avoid re-analysis of phi node in 7700 // matchAssociativeReduction function unless this is the root node. 7701 P = nullptr; 7702 // Do not try to vectorize CmpInst operands, this is done separately. 7703 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 7704 Res = true; 7705 continue; 7706 } 7707 7708 // Try to vectorize operands. 7709 // Continue analysis for the instruction from the same basic block only to 7710 // save compile time. 7711 if (++Level < RecursionMaxDepth) 7712 for (auto *Op : Inst->operand_values()) 7713 if (VisitedInstrs.insert(Op).second) 7714 if (auto *I = dyn_cast<Instruction>(Op)) 7715 // Do not try to vectorize CmpInst operands, this is done 7716 // separately. 7717 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 7718 I->getParent() == BB) 7719 Stack.emplace_back(I, Level); 7720 } 7721 return Res; 7722 } 7723 7724 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7725 BasicBlock *BB, BoUpSLP &R, 7726 TargetTransformInfo *TTI) { 7727 auto *I = dyn_cast_or_null<Instruction>(V); 7728 if (!I) 7729 return false; 7730 7731 if (!isa<BinaryOperator>(I)) 7732 P = nullptr; 7733 // Try to match and vectorize a horizontal reduction. 7734 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7735 return tryToVectorize(I, R); 7736 }; 7737 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7738 ExtraVectorization); 7739 } 7740 7741 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7742 BasicBlock *BB, BoUpSLP &R) { 7743 const DataLayout &DL = BB->getModule()->getDataLayout(); 7744 if (!R.canMapToVector(IVI->getType(), DL)) 7745 return false; 7746 7747 SmallVector<Value *, 16> BuildVectorOpds; 7748 SmallVector<Value *, 16> BuildVectorInsts; 7749 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7750 return false; 7751 7752 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7753 // Aggregate value is unlikely to be processed in vector register, we need to 7754 // extract scalars into scalar registers, so NeedExtraction is set true. 7755 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7756 BuildVectorInsts); 7757 } 7758 7759 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7760 BasicBlock *BB, BoUpSLP &R) { 7761 SmallVector<Value *, 16> BuildVectorInsts; 7762 SmallVector<Value *, 16> BuildVectorOpds; 7763 SmallVector<int> Mask; 7764 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7765 (llvm::all_of(BuildVectorOpds, 7766 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7767 isShuffle(BuildVectorOpds, Mask))) 7768 return false; 7769 7770 // Vectorize starting with the build vector operands ignoring the BuildVector 7771 // instructions for the purpose of scheduling and user extraction. 7772 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7773 BuildVectorInsts); 7774 } 7775 7776 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7777 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 7778 bool AtTerminator) { 7779 bool OpsChanged = false; 7780 SmallVector<Instruction *, 4> PostponedCmps; 7781 for (auto *I : reverse(Instructions)) { 7782 if (R.isDeleted(I)) 7783 continue; 7784 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7785 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7786 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7787 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7788 else if (isa<CmpInst>(I)) 7789 PostponedCmps.push_back(I); 7790 } 7791 if (AtTerminator) { 7792 // Try to find reductions first. 7793 for (Instruction *I : PostponedCmps) { 7794 if (R.isDeleted(I)) 7795 continue; 7796 for (Value *Op : I->operands()) 7797 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 7798 } 7799 // Try to vectorize operands as vector bundles. 7800 for (Instruction *I : PostponedCmps) { 7801 if (R.isDeleted(I)) 7802 continue; 7803 OpsChanged |= tryToVectorize(I, R); 7804 } 7805 Instructions.clear(); 7806 } else { 7807 // Insert in reverse order since the PostponedCmps vector was filled in 7808 // reverse order. 7809 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 7810 } 7811 return OpsChanged; 7812 } 7813 7814 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7815 bool Changed = false; 7816 SmallVector<Value *, 4> Incoming; 7817 SmallPtrSet<Value *, 16> VisitedInstrs; 7818 7819 bool HaveVectorizedPhiNodes = true; 7820 while (HaveVectorizedPhiNodes) { 7821 HaveVectorizedPhiNodes = false; 7822 7823 // Collect the incoming values from the PHIs. 7824 Incoming.clear(); 7825 for (Instruction &I : *BB) { 7826 PHINode *P = dyn_cast<PHINode>(&I); 7827 if (!P) 7828 break; 7829 7830 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7831 Incoming.push_back(P); 7832 } 7833 7834 // Sort by type. 7835 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7836 7837 // Try to vectorize elements base on their type. 7838 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7839 E = Incoming.end(); 7840 IncIt != E;) { 7841 7842 // Look for the next elements with the same type. 7843 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7844 while (SameTypeIt != E && 7845 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7846 VisitedInstrs.insert(*SameTypeIt); 7847 ++SameTypeIt; 7848 } 7849 7850 // Try to vectorize them. 7851 unsigned NumElts = (SameTypeIt - IncIt); 7852 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7853 << NumElts << ")\n"); 7854 // The order in which the phi nodes appear in the program does not matter. 7855 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7856 // is done when there are exactly two elements since tryToVectorizeList 7857 // asserts that there are only two values when AllowReorder is true. 7858 bool AllowReorder = NumElts == 2; 7859 if (NumElts > 1 && 7860 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7861 // Success start over because instructions might have been changed. 7862 HaveVectorizedPhiNodes = true; 7863 Changed = true; 7864 break; 7865 } 7866 7867 // Start over at the next instruction of a different type (or the end). 7868 IncIt = SameTypeIt; 7869 } 7870 } 7871 7872 VisitedInstrs.clear(); 7873 7874 SmallVector<Instruction *, 8> PostProcessInstructions; 7875 SmallDenseSet<Instruction *, 4> KeyNodes; 7876 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7877 // Skip instructions with scalable type. The num of elements is unknown at 7878 // compile-time for scalable type. 7879 if (isa<ScalableVectorType>(it->getType())) 7880 continue; 7881 7882 // Skip instructions marked for the deletion. 7883 if (R.isDeleted(&*it)) 7884 continue; 7885 // We may go through BB multiple times so skip the one we have checked. 7886 if (!VisitedInstrs.insert(&*it).second) { 7887 if (it->use_empty() && KeyNodes.contains(&*it) && 7888 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 7889 it->isTerminator())) { 7890 // We would like to start over since some instructions are deleted 7891 // and the iterator may become invalid value. 7892 Changed = true; 7893 it = BB->begin(); 7894 e = BB->end(); 7895 } 7896 continue; 7897 } 7898 7899 if (isa<DbgInfoIntrinsic>(it)) 7900 continue; 7901 7902 // Try to vectorize reductions that use PHINodes. 7903 if (PHINode *P = dyn_cast<PHINode>(it)) { 7904 // Check that the PHI is a reduction PHI. 7905 if (P->getNumIncomingValues() == 2) { 7906 // Try to match and vectorize a horizontal reduction. 7907 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7908 TTI)) { 7909 Changed = true; 7910 it = BB->begin(); 7911 e = BB->end(); 7912 continue; 7913 } 7914 } 7915 // Try to vectorize the incoming values of the PHI, to catch reductions 7916 // that feed into PHIs. 7917 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7918 // Skip if the incoming block is the current BB for now. Also, bypass 7919 // unreachable IR for efficiency and to avoid crashing. 7920 // TODO: Collect the skipped incoming values and try to vectorize them 7921 // after processing BB. 7922 if (BB == P->getIncomingBlock(I) || 7923 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7924 continue; 7925 7926 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7927 P->getIncomingBlock(I), R, TTI); 7928 } 7929 continue; 7930 } 7931 7932 // Ran into an instruction without users, like terminator, or function call 7933 // with ignored return value, store. Ignore unused instructions (basing on 7934 // instruction type, except for CallInst and InvokeInst). 7935 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7936 isa<InvokeInst>(it))) { 7937 KeyNodes.insert(&*it); 7938 bool OpsChanged = false; 7939 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7940 for (auto *V : it->operand_values()) { 7941 // Try to match and vectorize a horizontal reduction. 7942 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7943 } 7944 } 7945 // Start vectorization of post-process list of instructions from the 7946 // top-tree instructions to try to vectorize as many instructions as 7947 // possible. 7948 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 7949 it->isTerminator()); 7950 if (OpsChanged) { 7951 // We would like to start over since some instructions are deleted 7952 // and the iterator may become invalid value. 7953 Changed = true; 7954 it = BB->begin(); 7955 e = BB->end(); 7956 continue; 7957 } 7958 } 7959 7960 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7961 isa<InsertValueInst>(it)) 7962 PostProcessInstructions.push_back(&*it); 7963 } 7964 7965 return Changed; 7966 } 7967 7968 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7969 auto Changed = false; 7970 for (auto &Entry : GEPs) { 7971 // If the getelementptr list has fewer than two elements, there's nothing 7972 // to do. 7973 if (Entry.second.size() < 2) 7974 continue; 7975 7976 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7977 << Entry.second.size() << ".\n"); 7978 7979 // Process the GEP list in chunks suitable for the target's supported 7980 // vector size. If a vector register can't hold 1 element, we are done. We 7981 // are trying to vectorize the index computations, so the maximum number of 7982 // elements is based on the size of the index expression, rather than the 7983 // size of the GEP itself (the target's pointer size). 7984 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7985 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7986 if (MaxVecRegSize < EltSize) 7987 continue; 7988 7989 unsigned MaxElts = MaxVecRegSize / EltSize; 7990 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7991 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7992 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7993 7994 // Initialize a set a candidate getelementptrs. Note that we use a 7995 // SetVector here to preserve program order. If the index computations 7996 // are vectorizable and begin with loads, we want to minimize the chance 7997 // of having to reorder them later. 7998 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7999 8000 // Some of the candidates may have already been vectorized after we 8001 // initially collected them. If so, they are marked as deleted, so remove 8002 // them from the set of candidates. 8003 Candidates.remove_if( 8004 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 8005 8006 // Remove from the set of candidates all pairs of getelementptrs with 8007 // constant differences. Such getelementptrs are likely not good 8008 // candidates for vectorization in a bottom-up phase since one can be 8009 // computed from the other. We also ensure all candidate getelementptr 8010 // indices are unique. 8011 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 8012 auto *GEPI = GEPList[I]; 8013 if (!Candidates.count(GEPI)) 8014 continue; 8015 auto *SCEVI = SE->getSCEV(GEPList[I]); 8016 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 8017 auto *GEPJ = GEPList[J]; 8018 auto *SCEVJ = SE->getSCEV(GEPList[J]); 8019 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 8020 Candidates.remove(GEPI); 8021 Candidates.remove(GEPJ); 8022 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 8023 Candidates.remove(GEPJ); 8024 } 8025 } 8026 } 8027 8028 // We break out of the above computation as soon as we know there are 8029 // fewer than two candidates remaining. 8030 if (Candidates.size() < 2) 8031 continue; 8032 8033 // Add the single, non-constant index of each candidate to the bundle. We 8034 // ensured the indices met these constraints when we originally collected 8035 // the getelementptrs. 8036 SmallVector<Value *, 16> Bundle(Candidates.size()); 8037 auto BundleIndex = 0u; 8038 for (auto *V : Candidates) { 8039 auto *GEP = cast<GetElementPtrInst>(V); 8040 auto *GEPIdx = GEP->idx_begin()->get(); 8041 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 8042 Bundle[BundleIndex++] = GEPIdx; 8043 } 8044 8045 // Try and vectorize the indices. We are currently only interested in 8046 // gather-like cases of the form: 8047 // 8048 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8049 // 8050 // where the loads of "a", the loads of "b", and the subtractions can be 8051 // performed in parallel. It's likely that detecting this pattern in a 8052 // bottom-up phase will be simpler and less costly than building a 8053 // full-blown top-down phase beginning at the consecutive loads. 8054 Changed |= tryToVectorizeList(Bundle, R); 8055 } 8056 } 8057 return Changed; 8058 } 8059 8060 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8061 bool Changed = false; 8062 // Attempt to sort and vectorize each of the store-groups. 8063 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 8064 ++it) { 8065 if (it->second.size() < 2) 8066 continue; 8067 8068 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8069 << it->second.size() << ".\n"); 8070 8071 Changed |= vectorizeStores(it->second, R); 8072 } 8073 return Changed; 8074 } 8075 8076 char SLPVectorizer::ID = 0; 8077 8078 static const char lv_name[] = "SLP Vectorizer"; 8079 8080 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8081 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8082 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8083 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8084 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8085 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8086 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8087 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8088 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8089 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8090 8091 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8092