1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/InstructionCost.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 static cl::opt<unsigned> 131 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 132 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 133 134 static cl::opt<int> 135 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 136 cl::desc("Maximum depth of the lookup for consecutive stores.")); 137 138 /// Limits the size of scheduling regions in a block. 139 /// It avoid long compile times for _very_ large blocks where vector 140 /// instructions are spread over a wide range. 141 /// This limit is way higher than needed by real-world functions. 142 static cl::opt<int> 143 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 144 cl::desc("Limit the size of the SLP scheduling region per block")); 145 146 static cl::opt<int> MinVectorRegSizeOption( 147 "slp-min-reg-size", cl::init(128), cl::Hidden, 148 cl::desc("Attempt to vectorize for this register size in bits")); 149 150 static cl::opt<unsigned> RecursionMaxDepth( 151 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 152 cl::desc("Limit the recursion depth when building a vectorizable tree")); 153 154 static cl::opt<unsigned> MinTreeSize( 155 "slp-min-tree-size", cl::init(3), cl::Hidden, 156 cl::desc("Only vectorize small trees if they are fully vectorizable")); 157 158 // The maximum depth that the look-ahead score heuristic will explore. 159 // The higher this value, the higher the compilation time overhead. 160 static cl::opt<int> LookAheadMaxDepth( 161 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 162 cl::desc("The maximum look-ahead depth for operand reordering scores")); 163 164 // The Look-ahead heuristic goes through the users of the bundle to calculate 165 // the users cost in getExternalUsesCost(). To avoid compilation time increase 166 // we limit the number of users visited to this value. 167 static cl::opt<unsigned> LookAheadUsersBudget( 168 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 169 cl::desc("The maximum number of users to visit while visiting the " 170 "predecessors. This prevents compilation time increase.")); 171 172 static cl::opt<bool> 173 ViewSLPTree("view-slp-tree", cl::Hidden, 174 cl::desc("Display the SLP trees with Graphviz")); 175 176 // Limit the number of alias checks. The limit is chosen so that 177 // it has no negative effect on the llvm benchmarks. 178 static const unsigned AliasedCheckLimit = 10; 179 180 // Another limit for the alias checks: The maximum distance between load/store 181 // instructions where alias checks are done. 182 // This limit is useful for very large basic blocks. 183 static const unsigned MaxMemDepDistance = 160; 184 185 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 186 /// regions to be handled. 187 static const int MinScheduleRegionSize = 16; 188 189 /// Predicate for the element types that the SLP vectorizer supports. 190 /// 191 /// The most important thing to filter here are types which are invalid in LLVM 192 /// vectors. We also filter target specific types which have absolutely no 193 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 194 /// avoids spending time checking the cost model and realizing that they will 195 /// be inevitably scalarized. 196 static bool isValidElementType(Type *Ty) { 197 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 198 !Ty->isPPC_FP128Ty(); 199 } 200 201 /// \returns true if all of the instructions in \p VL are in the same block or 202 /// false otherwise. 203 static bool allSameBlock(ArrayRef<Value *> VL) { 204 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 205 if (!I0) 206 return false; 207 BasicBlock *BB = I0->getParent(); 208 for (int I = 1, E = VL.size(); I < E; I++) { 209 auto *II = dyn_cast<Instruction>(VL[I]); 210 if (!II) 211 return false; 212 213 if (BB != II->getParent()) 214 return false; 215 } 216 return true; 217 } 218 219 /// \returns True if all of the values in \p VL are constants (but not 220 /// globals/constant expressions). 221 static bool allConstant(ArrayRef<Value *> VL) { 222 // Constant expressions and globals can't be vectorized like normal integer/FP 223 // constants. 224 for (Value *i : VL) 225 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 226 return false; 227 return true; 228 } 229 230 /// \returns True if all of the values in \p VL are identical. 231 static bool isSplat(ArrayRef<Value *> VL) { 232 for (unsigned i = 1, e = VL.size(); i < e; ++i) 233 if (VL[i] != VL[0]) 234 return false; 235 return true; 236 } 237 238 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 239 static bool isCommutative(Instruction *I) { 240 if (auto *Cmp = dyn_cast<CmpInst>(I)) 241 return Cmp->isCommutative(); 242 if (auto *BO = dyn_cast<BinaryOperator>(I)) 243 return BO->isCommutative(); 244 // TODO: This should check for generic Instruction::isCommutative(), but 245 // we need to confirm that the caller code correctly handles Intrinsics 246 // for example (does not have 2 operands). 247 return false; 248 } 249 250 /// Checks if the vector of instructions can be represented as a shuffle, like: 251 /// %x0 = extractelement <4 x i8> %x, i32 0 252 /// %x3 = extractelement <4 x i8> %x, i32 3 253 /// %y1 = extractelement <4 x i8> %y, i32 1 254 /// %y2 = extractelement <4 x i8> %y, i32 2 255 /// %x0x0 = mul i8 %x0, %x0 256 /// %x3x3 = mul i8 %x3, %x3 257 /// %y1y1 = mul i8 %y1, %y1 258 /// %y2y2 = mul i8 %y2, %y2 259 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 260 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 261 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 262 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 263 /// ret <4 x i8> %ins4 264 /// can be transformed into: 265 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 266 /// i32 6> 267 /// %2 = mul <4 x i8> %1, %1 268 /// ret <4 x i8> %2 269 /// We convert this initially to something like: 270 /// %x0 = extractelement <4 x i8> %x, i32 0 271 /// %x3 = extractelement <4 x i8> %x, i32 3 272 /// %y1 = extractelement <4 x i8> %y, i32 1 273 /// %y2 = extractelement <4 x i8> %y, i32 2 274 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 275 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 276 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 277 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 278 /// %5 = mul <4 x i8> %4, %4 279 /// %6 = extractelement <4 x i8> %5, i32 0 280 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 281 /// %7 = extractelement <4 x i8> %5, i32 1 282 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 283 /// %8 = extractelement <4 x i8> %5, i32 2 284 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 285 /// %9 = extractelement <4 x i8> %5, i32 3 286 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 287 /// ret <4 x i8> %ins4 288 /// InstCombiner transforms this into a shuffle and vector mul 289 /// TODO: Can we split off and reuse the shuffle mask detection from 290 /// TargetTransformInfo::getInstructionThroughput? 291 static Optional<TargetTransformInfo::ShuffleKind> 292 isShuffle(ArrayRef<Value *> VL) { 293 auto *EI0 = cast<ExtractElementInst>(VL[0]); 294 unsigned Size = 295 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 296 Value *Vec1 = nullptr; 297 Value *Vec2 = nullptr; 298 enum ShuffleMode { Unknown, Select, Permute }; 299 ShuffleMode CommonShuffleMode = Unknown; 300 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 301 auto *EI = cast<ExtractElementInst>(VL[I]); 302 auto *Vec = EI->getVectorOperand(); 303 // All vector operands must have the same number of vector elements. 304 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 305 return None; 306 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 307 if (!Idx) 308 return None; 309 // Undefined behavior if Idx is negative or >= Size. 310 if (Idx->getValue().uge(Size)) 311 continue; 312 unsigned IntIdx = Idx->getValue().getZExtValue(); 313 // We can extractelement from undef vector. 314 if (isa<UndefValue>(Vec)) 315 continue; 316 // For correct shuffling we have to have at most 2 different vector operands 317 // in all extractelement instructions. 318 if (!Vec1 || Vec1 == Vec) 319 Vec1 = Vec; 320 else if (!Vec2 || Vec2 == Vec) 321 Vec2 = Vec; 322 else 323 return None; 324 if (CommonShuffleMode == Permute) 325 continue; 326 // If the extract index is not the same as the operation number, it is a 327 // permutation. 328 if (IntIdx != I) { 329 CommonShuffleMode = Permute; 330 continue; 331 } 332 CommonShuffleMode = Select; 333 } 334 // If we're not crossing lanes in different vectors, consider it as blending. 335 if (CommonShuffleMode == Select && Vec2) 336 return TargetTransformInfo::SK_Select; 337 // If Vec2 was never used, we have a permutation of a single vector, otherwise 338 // we have permutation of 2 vectors. 339 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 340 : TargetTransformInfo::SK_PermuteSingleSrc; 341 } 342 343 namespace { 344 345 /// Main data required for vectorization of instructions. 346 struct InstructionsState { 347 /// The very first instruction in the list with the main opcode. 348 Value *OpValue = nullptr; 349 350 /// The main/alternate instruction. 351 Instruction *MainOp = nullptr; 352 Instruction *AltOp = nullptr; 353 354 /// The main/alternate opcodes for the list of instructions. 355 unsigned getOpcode() const { 356 return MainOp ? MainOp->getOpcode() : 0; 357 } 358 359 unsigned getAltOpcode() const { 360 return AltOp ? AltOp->getOpcode() : 0; 361 } 362 363 /// Some of the instructions in the list have alternate opcodes. 364 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 365 366 bool isOpcodeOrAlt(Instruction *I) const { 367 unsigned CheckedOpcode = I->getOpcode(); 368 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 369 } 370 371 InstructionsState() = delete; 372 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 373 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 374 }; 375 376 } // end anonymous namespace 377 378 /// Chooses the correct key for scheduling data. If \p Op has the same (or 379 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 380 /// OpValue. 381 static Value *isOneOf(const InstructionsState &S, Value *Op) { 382 auto *I = dyn_cast<Instruction>(Op); 383 if (I && S.isOpcodeOrAlt(I)) 384 return Op; 385 return S.OpValue; 386 } 387 388 /// \returns true if \p Opcode is allowed as part of of the main/alternate 389 /// instruction for SLP vectorization. 390 /// 391 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 392 /// "shuffled out" lane would result in division by zero. 393 static bool isValidForAlternation(unsigned Opcode) { 394 if (Instruction::isIntDivRem(Opcode)) 395 return false; 396 397 return true; 398 } 399 400 /// \returns analysis of the Instructions in \p VL described in 401 /// InstructionsState, the Opcode that we suppose the whole list 402 /// could be vectorized even if its structure is diverse. 403 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 404 unsigned BaseIndex = 0) { 405 // Make sure these are all Instructions. 406 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 407 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 408 409 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 410 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 411 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 412 unsigned AltOpcode = Opcode; 413 unsigned AltIndex = BaseIndex; 414 415 // Check for one alternate opcode from another BinaryOperator. 416 // TODO - generalize to support all operators (types, calls etc.). 417 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 418 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 419 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 420 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 421 continue; 422 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 423 isValidForAlternation(Opcode)) { 424 AltOpcode = InstOpcode; 425 AltIndex = Cnt; 426 continue; 427 } 428 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 429 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 430 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 431 if (Ty0 == Ty1) { 432 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 433 continue; 434 if (Opcode == AltOpcode) { 435 assert(isValidForAlternation(Opcode) && 436 isValidForAlternation(InstOpcode) && 437 "Cast isn't safe for alternation, logic needs to be updated!"); 438 AltOpcode = InstOpcode; 439 AltIndex = Cnt; 440 continue; 441 } 442 } 443 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 444 continue; 445 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 446 } 447 448 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 449 cast<Instruction>(VL[AltIndex])); 450 } 451 452 /// \returns true if all of the values in \p VL have the same type or false 453 /// otherwise. 454 static bool allSameType(ArrayRef<Value *> VL) { 455 Type *Ty = VL[0]->getType(); 456 for (int i = 1, e = VL.size(); i < e; i++) 457 if (VL[i]->getType() != Ty) 458 return false; 459 460 return true; 461 } 462 463 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 464 static Optional<unsigned> getExtractIndex(Instruction *E) { 465 unsigned Opcode = E->getOpcode(); 466 assert((Opcode == Instruction::ExtractElement || 467 Opcode == Instruction::ExtractValue) && 468 "Expected extractelement or extractvalue instruction."); 469 if (Opcode == Instruction::ExtractElement) { 470 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 471 if (!CI) 472 return None; 473 return CI->getZExtValue(); 474 } 475 ExtractValueInst *EI = cast<ExtractValueInst>(E); 476 if (EI->getNumIndices() != 1) 477 return None; 478 return *EI->idx_begin(); 479 } 480 481 /// \returns True if in-tree use also needs extract. This refers to 482 /// possible scalar operand in vectorized instruction. 483 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 484 TargetLibraryInfo *TLI) { 485 unsigned Opcode = UserInst->getOpcode(); 486 switch (Opcode) { 487 case Instruction::Load: { 488 LoadInst *LI = cast<LoadInst>(UserInst); 489 return (LI->getPointerOperand() == Scalar); 490 } 491 case Instruction::Store: { 492 StoreInst *SI = cast<StoreInst>(UserInst); 493 return (SI->getPointerOperand() == Scalar); 494 } 495 case Instruction::Call: { 496 CallInst *CI = cast<CallInst>(UserInst); 497 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 498 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 499 if (hasVectorInstrinsicScalarOpd(ID, i)) 500 return (CI->getArgOperand(i) == Scalar); 501 } 502 LLVM_FALLTHROUGH; 503 } 504 default: 505 return false; 506 } 507 } 508 509 /// \returns the AA location that is being access by the instruction. 510 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 511 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 512 return MemoryLocation::get(SI); 513 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 514 return MemoryLocation::get(LI); 515 return MemoryLocation(); 516 } 517 518 /// \returns True if the instruction is not a volatile or atomic load/store. 519 static bool isSimple(Instruction *I) { 520 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 521 return LI->isSimple(); 522 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 523 return SI->isSimple(); 524 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 525 return !MI->isVolatile(); 526 return true; 527 } 528 529 namespace llvm { 530 531 static void inversePermutation(ArrayRef<unsigned> Indices, 532 SmallVectorImpl<int> &Mask) { 533 Mask.clear(); 534 const unsigned E = Indices.size(); 535 Mask.resize(E, E + 1); 536 for (unsigned I = 0; I < E; ++I) 537 Mask[Indices[I]] = I; 538 } 539 540 namespace slpvectorizer { 541 542 /// Bottom Up SLP Vectorizer. 543 class BoUpSLP { 544 struct TreeEntry; 545 struct ScheduleData; 546 547 public: 548 using ValueList = SmallVector<Value *, 8>; 549 using InstrList = SmallVector<Instruction *, 16>; 550 using ValueSet = SmallPtrSet<Value *, 16>; 551 using StoreList = SmallVector<StoreInst *, 8>; 552 using ExtraValueToDebugLocsMap = 553 MapVector<Value *, SmallVector<Instruction *, 2>>; 554 using OrdersType = SmallVector<unsigned, 4>; 555 556 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 557 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 558 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 559 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 560 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 561 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 562 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 563 // Use the vector register size specified by the target unless overridden 564 // by a command-line option. 565 // TODO: It would be better to limit the vectorization factor based on 566 // data type rather than just register size. For example, x86 AVX has 567 // 256-bit registers, but it does not support integer operations 568 // at that width (that requires AVX2). 569 if (MaxVectorRegSizeOption.getNumOccurrences()) 570 MaxVecRegSize = MaxVectorRegSizeOption; 571 else 572 MaxVecRegSize = TTI->getRegisterBitWidth(true); 573 574 if (MinVectorRegSizeOption.getNumOccurrences()) 575 MinVecRegSize = MinVectorRegSizeOption; 576 else 577 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 578 } 579 580 /// Vectorize the tree that starts with the elements in \p VL. 581 /// Returns the vectorized root. 582 Value *vectorizeTree(); 583 584 /// Vectorize the tree but with the list of externally used values \p 585 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 586 /// generated extractvalue instructions. 587 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 588 589 /// \returns the cost incurred by unwanted spills and fills, caused by 590 /// holding live values over call sites. 591 InstructionCost getSpillCost() const; 592 593 /// \returns the vectorization cost of the subtree that starts at \p VL. 594 /// A negative number means that this is profitable. 595 InstructionCost getTreeCost(); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 599 void buildTree(ArrayRef<Value *> Roots, 600 ArrayRef<Value *> UserIgnoreLst = None); 601 602 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 603 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 604 /// into account (and updating it, if required) list of externally used 605 /// values stored in \p ExternallyUsedValues. 606 void buildTree(ArrayRef<Value *> Roots, 607 ExtraValueToDebugLocsMap &ExternallyUsedValues, 608 ArrayRef<Value *> UserIgnoreLst = None); 609 610 /// Clear the internal data structures that are created by 'buildTree'. 611 void deleteTree() { 612 VectorizableTree.clear(); 613 ScalarToTreeEntry.clear(); 614 MustGather.clear(); 615 ExternalUses.clear(); 616 NumOpsWantToKeepOrder.clear(); 617 NumOpsWantToKeepOriginalOrder = 0; 618 for (auto &Iter : BlocksSchedules) { 619 BlockScheduling *BS = Iter.second.get(); 620 BS->clear(); 621 } 622 MinBWs.clear(); 623 } 624 625 unsigned getTreeSize() const { return VectorizableTree.size(); } 626 627 /// Perform LICM and CSE on the newly generated gather sequences. 628 void optimizeGatherSequence(); 629 630 /// \returns The best order of instructions for vectorization. 631 Optional<ArrayRef<unsigned>> bestOrder() const { 632 assert(llvm::all_of( 633 NumOpsWantToKeepOrder, 634 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 635 return D.getFirst().size() == 636 VectorizableTree[0]->Scalars.size(); 637 }) && 638 "All orders must have the same size as number of instructions in " 639 "tree node."); 640 auto I = std::max_element( 641 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 642 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 643 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 644 return D1.second < D2.second; 645 }); 646 if (I == NumOpsWantToKeepOrder.end() || 647 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 648 return None; 649 650 return makeArrayRef(I->getFirst()); 651 } 652 653 /// Builds the correct order for root instructions. 654 /// If some leaves have the same instructions to be vectorized, we may 655 /// incorrectly evaluate the best order for the root node (it is built for the 656 /// vector of instructions without repeated instructions and, thus, has less 657 /// elements than the root node). This function builds the correct order for 658 /// the root node. 659 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 660 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 661 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 662 /// be reordered, the best order will be \<1, 0\>. We need to extend this 663 /// order for the root node. For the root node this order should look like 664 /// \<3, 0, 1, 2\>. This function extends the order for the reused 665 /// instructions. 666 void findRootOrder(OrdersType &Order) { 667 // If the leaf has the same number of instructions to vectorize as the root 668 // - order must be set already. 669 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 670 if (Order.size() == RootSize) 671 return; 672 SmallVector<unsigned, 4> RealOrder(Order.size()); 673 std::swap(Order, RealOrder); 674 SmallVector<int, 4> Mask; 675 inversePermutation(RealOrder, Mask); 676 Order.assign(Mask.begin(), Mask.end()); 677 // The leaf has less number of instructions - need to find the true order of 678 // the root. 679 // Scan the nodes starting from the leaf back to the root. 680 const TreeEntry *PNode = VectorizableTree.back().get(); 681 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 682 SmallPtrSet<const TreeEntry *, 4> Visited; 683 while (!Nodes.empty() && Order.size() != RootSize) { 684 const TreeEntry *PNode = Nodes.pop_back_val(); 685 if (!Visited.insert(PNode).second) 686 continue; 687 const TreeEntry &Node = *PNode; 688 for (const EdgeInfo &EI : Node.UserTreeIndices) 689 if (EI.UserTE) 690 Nodes.push_back(EI.UserTE); 691 if (Node.ReuseShuffleIndices.empty()) 692 continue; 693 // Build the order for the parent node. 694 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 695 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 696 // The algorithm of the order extension is: 697 // 1. Calculate the number of the same instructions for the order. 698 // 2. Calculate the index of the new order: total number of instructions 699 // with order less than the order of the current instruction + reuse 700 // number of the current instruction. 701 // 3. The new order is just the index of the instruction in the original 702 // vector of the instructions. 703 for (unsigned I : Node.ReuseShuffleIndices) 704 ++OrderCounter[Order[I]]; 705 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 706 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 707 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 708 unsigned OrderIdx = Order[ReusedIdx]; 709 unsigned NewIdx = 0; 710 for (unsigned J = 0; J < OrderIdx; ++J) 711 NewIdx += OrderCounter[J]; 712 NewIdx += CurrentCounter[OrderIdx]; 713 ++CurrentCounter[OrderIdx]; 714 assert(NewOrder[NewIdx] == RootSize && 715 "The order index should not be written already."); 716 NewOrder[NewIdx] = I; 717 } 718 std::swap(Order, NewOrder); 719 } 720 assert(Order.size() == RootSize && 721 "Root node is expected or the size of the order must be the same as " 722 "the number of elements in the root node."); 723 assert(llvm::all_of(Order, 724 [RootSize](unsigned Val) { return Val != RootSize; }) && 725 "All indices must be initialized"); 726 } 727 728 /// \return The vector element size in bits to use when vectorizing the 729 /// expression tree ending at \p V. If V is a store, the size is the width of 730 /// the stored value. Otherwise, the size is the width of the largest loaded 731 /// value reaching V. This method is used by the vectorizer to calculate 732 /// vectorization factors. 733 unsigned getVectorElementSize(Value *V); 734 735 /// Compute the minimum type sizes required to represent the entries in a 736 /// vectorizable tree. 737 void computeMinimumValueSizes(); 738 739 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 740 unsigned getMaxVecRegSize() const { 741 return MaxVecRegSize; 742 } 743 744 // \returns minimum vector register size as set by cl::opt. 745 unsigned getMinVecRegSize() const { 746 return MinVecRegSize; 747 } 748 749 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 750 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 751 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 752 return MaxVF ? MaxVF : UINT_MAX; 753 } 754 755 /// Check if homogeneous aggregate is isomorphic to some VectorType. 756 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 757 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 758 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 759 /// 760 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 761 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 762 763 /// \returns True if the VectorizableTree is both tiny and not fully 764 /// vectorizable. We do not vectorize such trees. 765 bool isTreeTinyAndNotFullyVectorizable() const; 766 767 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 768 /// can be load combined in the backend. Load combining may not be allowed in 769 /// the IR optimizer, so we do not want to alter the pattern. For example, 770 /// partially transforming a scalar bswap() pattern into vector code is 771 /// effectively impossible for the backend to undo. 772 /// TODO: If load combining is allowed in the IR optimizer, this analysis 773 /// may not be necessary. 774 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 775 776 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 777 /// can be load combined in the backend. Load combining may not be allowed in 778 /// the IR optimizer, so we do not want to alter the pattern. For example, 779 /// partially transforming a scalar bswap() pattern into vector code is 780 /// effectively impossible for the backend to undo. 781 /// TODO: If load combining is allowed in the IR optimizer, this analysis 782 /// may not be necessary. 783 bool isLoadCombineCandidate() const; 784 785 OptimizationRemarkEmitter *getORE() { return ORE; } 786 787 /// This structure holds any data we need about the edges being traversed 788 /// during buildTree_rec(). We keep track of: 789 /// (i) the user TreeEntry index, and 790 /// (ii) the index of the edge. 791 struct EdgeInfo { 792 EdgeInfo() = default; 793 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 794 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 795 /// The user TreeEntry. 796 TreeEntry *UserTE = nullptr; 797 /// The operand index of the use. 798 unsigned EdgeIdx = UINT_MAX; 799 #ifndef NDEBUG 800 friend inline raw_ostream &operator<<(raw_ostream &OS, 801 const BoUpSLP::EdgeInfo &EI) { 802 EI.dump(OS); 803 return OS; 804 } 805 /// Debug print. 806 void dump(raw_ostream &OS) const { 807 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 808 << " EdgeIdx:" << EdgeIdx << "}"; 809 } 810 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 811 #endif 812 }; 813 814 /// A helper data structure to hold the operands of a vector of instructions. 815 /// This supports a fixed vector length for all operand vectors. 816 class VLOperands { 817 /// For each operand we need (i) the value, and (ii) the opcode that it 818 /// would be attached to if the expression was in a left-linearized form. 819 /// This is required to avoid illegal operand reordering. 820 /// For example: 821 /// \verbatim 822 /// 0 Op1 823 /// |/ 824 /// Op1 Op2 Linearized + Op2 825 /// \ / ----------> |/ 826 /// - - 827 /// 828 /// Op1 - Op2 (0 + Op1) - Op2 829 /// \endverbatim 830 /// 831 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 832 /// 833 /// Another way to think of this is to track all the operations across the 834 /// path from the operand all the way to the root of the tree and to 835 /// calculate the operation that corresponds to this path. For example, the 836 /// path from Op2 to the root crosses the RHS of the '-', therefore the 837 /// corresponding operation is a '-' (which matches the one in the 838 /// linearized tree, as shown above). 839 /// 840 /// For lack of a better term, we refer to this operation as Accumulated 841 /// Path Operation (APO). 842 struct OperandData { 843 OperandData() = default; 844 OperandData(Value *V, bool APO, bool IsUsed) 845 : V(V), APO(APO), IsUsed(IsUsed) {} 846 /// The operand value. 847 Value *V = nullptr; 848 /// TreeEntries only allow a single opcode, or an alternate sequence of 849 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 850 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 851 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 852 /// (e.g., Add/Mul) 853 bool APO = false; 854 /// Helper data for the reordering function. 855 bool IsUsed = false; 856 }; 857 858 /// During operand reordering, we are trying to select the operand at lane 859 /// that matches best with the operand at the neighboring lane. Our 860 /// selection is based on the type of value we are looking for. For example, 861 /// if the neighboring lane has a load, we need to look for a load that is 862 /// accessing a consecutive address. These strategies are summarized in the 863 /// 'ReorderingMode' enumerator. 864 enum class ReorderingMode { 865 Load, ///< Matching loads to consecutive memory addresses 866 Opcode, ///< Matching instructions based on opcode (same or alternate) 867 Constant, ///< Matching constants 868 Splat, ///< Matching the same instruction multiple times (broadcast) 869 Failed, ///< We failed to create a vectorizable group 870 }; 871 872 using OperandDataVec = SmallVector<OperandData, 2>; 873 874 /// A vector of operand vectors. 875 SmallVector<OperandDataVec, 4> OpsVec; 876 877 const DataLayout &DL; 878 ScalarEvolution &SE; 879 const BoUpSLP &R; 880 881 /// \returns the operand data at \p OpIdx and \p Lane. 882 OperandData &getData(unsigned OpIdx, unsigned Lane) { 883 return OpsVec[OpIdx][Lane]; 884 } 885 886 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 887 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 888 return OpsVec[OpIdx][Lane]; 889 } 890 891 /// Clears the used flag for all entries. 892 void clearUsed() { 893 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 894 OpIdx != NumOperands; ++OpIdx) 895 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 896 ++Lane) 897 OpsVec[OpIdx][Lane].IsUsed = false; 898 } 899 900 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 901 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 902 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 903 } 904 905 // The hard-coded scores listed here are not very important. When computing 906 // the scores of matching one sub-tree with another, we are basically 907 // counting the number of values that are matching. So even if all scores 908 // are set to 1, we would still get a decent matching result. 909 // However, sometimes we have to break ties. For example we may have to 910 // choose between matching loads vs matching opcodes. This is what these 911 // scores are helping us with: they provide the order of preference. 912 913 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 914 static const int ScoreConsecutiveLoads = 3; 915 /// ExtractElementInst from same vector and consecutive indexes. 916 static const int ScoreConsecutiveExtracts = 3; 917 /// Constants. 918 static const int ScoreConstants = 2; 919 /// Instructions with the same opcode. 920 static const int ScoreSameOpcode = 2; 921 /// Instructions with alt opcodes (e.g, add + sub). 922 static const int ScoreAltOpcodes = 1; 923 /// Identical instructions (a.k.a. splat or broadcast). 924 static const int ScoreSplat = 1; 925 /// Matching with an undef is preferable to failing. 926 static const int ScoreUndef = 1; 927 /// Score for failing to find a decent match. 928 static const int ScoreFail = 0; 929 /// User exteranl to the vectorized code. 930 static const int ExternalUseCost = 1; 931 /// The user is internal but in a different lane. 932 static const int UserInDiffLaneCost = ExternalUseCost; 933 934 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 935 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 936 ScalarEvolution &SE) { 937 auto *LI1 = dyn_cast<LoadInst>(V1); 938 auto *LI2 = dyn_cast<LoadInst>(V2); 939 if (LI1 && LI2) 940 return isConsecutiveAccess(LI1, LI2, DL, SE) 941 ? VLOperands::ScoreConsecutiveLoads 942 : VLOperands::ScoreFail; 943 944 auto *C1 = dyn_cast<Constant>(V1); 945 auto *C2 = dyn_cast<Constant>(V2); 946 if (C1 && C2) 947 return VLOperands::ScoreConstants; 948 949 // Extracts from consecutive indexes of the same vector better score as 950 // the extracts could be optimized away. 951 Value *EV; 952 ConstantInt *Ex1Idx, *Ex2Idx; 953 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 954 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 955 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 956 return VLOperands::ScoreConsecutiveExtracts; 957 958 auto *I1 = dyn_cast<Instruction>(V1); 959 auto *I2 = dyn_cast<Instruction>(V2); 960 if (I1 && I2) { 961 if (I1 == I2) 962 return VLOperands::ScoreSplat; 963 InstructionsState S = getSameOpcode({I1, I2}); 964 // Note: Only consider instructions with <= 2 operands to avoid 965 // complexity explosion. 966 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 967 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 968 : VLOperands::ScoreSameOpcode; 969 } 970 971 if (isa<UndefValue>(V2)) 972 return VLOperands::ScoreUndef; 973 974 return VLOperands::ScoreFail; 975 } 976 977 /// Holds the values and their lane that are taking part in the look-ahead 978 /// score calculation. This is used in the external uses cost calculation. 979 SmallDenseMap<Value *, int> InLookAheadValues; 980 981 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 982 /// either external to the vectorized code, or require shuffling. 983 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 984 const std::pair<Value *, int> &RHS) { 985 int Cost = 0; 986 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 987 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 988 Value *V = Values[Idx].first; 989 // Calculate the absolute lane, using the minimum relative lane of LHS 990 // and RHS as base and Idx as the offset. 991 int Ln = std::min(LHS.second, RHS.second) + Idx; 992 assert(Ln >= 0 && "Bad lane calculation"); 993 unsigned UsersBudget = LookAheadUsersBudget; 994 for (User *U : V->users()) { 995 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 996 // The user is in the VectorizableTree. Check if we need to insert. 997 auto It = llvm::find(UserTE->Scalars, U); 998 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 999 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1000 assert(UserLn >= 0 && "Bad lane"); 1001 if (UserLn != Ln) 1002 Cost += UserInDiffLaneCost; 1003 } else { 1004 // Check if the user is in the look-ahead code. 1005 auto It2 = InLookAheadValues.find(U); 1006 if (It2 != InLookAheadValues.end()) { 1007 // The user is in the look-ahead code. Check the lane. 1008 if (It2->second != Ln) 1009 Cost += UserInDiffLaneCost; 1010 } else { 1011 // The user is neither in SLP tree nor in the look-ahead code. 1012 Cost += ExternalUseCost; 1013 } 1014 } 1015 // Limit the number of visited uses to cap compilation time. 1016 if (--UsersBudget == 0) 1017 break; 1018 } 1019 } 1020 return Cost; 1021 } 1022 1023 /// Go through the operands of \p LHS and \p RHS recursively until \p 1024 /// MaxLevel, and return the cummulative score. For example: 1025 /// \verbatim 1026 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1027 /// \ / \ / \ / \ / 1028 /// + + + + 1029 /// G1 G2 G3 G4 1030 /// \endverbatim 1031 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1032 /// each level recursively, accumulating the score. It starts from matching 1033 /// the additions at level 0, then moves on to the loads (level 1). The 1034 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1035 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1036 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1037 /// Please note that the order of the operands does not matter, as we 1038 /// evaluate the score of all profitable combinations of operands. In 1039 /// other words the score of G1 and G4 is the same as G1 and G2. This 1040 /// heuristic is based on ideas described in: 1041 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1042 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1043 /// Luís F. W. Góes 1044 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1045 const std::pair<Value *, int> &RHS, int CurrLevel, 1046 int MaxLevel) { 1047 1048 Value *V1 = LHS.first; 1049 Value *V2 = RHS.first; 1050 // Get the shallow score of V1 and V2. 1051 int ShallowScoreAtThisLevel = 1052 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1053 getExternalUsesCost(LHS, RHS)); 1054 int Lane1 = LHS.second; 1055 int Lane2 = RHS.second; 1056 1057 // If reached MaxLevel, 1058 // or if V1 and V2 are not instructions, 1059 // or if they are SPLAT, 1060 // or if they are not consecutive, early return the current cost. 1061 auto *I1 = dyn_cast<Instruction>(V1); 1062 auto *I2 = dyn_cast<Instruction>(V2); 1063 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1064 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1065 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1066 return ShallowScoreAtThisLevel; 1067 assert(I1 && I2 && "Should have early exited."); 1068 1069 // Keep track of in-tree values for determining the external-use cost. 1070 InLookAheadValues[V1] = Lane1; 1071 InLookAheadValues[V2] = Lane2; 1072 1073 // Contains the I2 operand indexes that got matched with I1 operands. 1074 SmallSet<unsigned, 4> Op2Used; 1075 1076 // Recursion towards the operands of I1 and I2. We are trying all possbile 1077 // operand pairs, and keeping track of the best score. 1078 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1079 OpIdx1 != NumOperands1; ++OpIdx1) { 1080 // Try to pair op1I with the best operand of I2. 1081 int MaxTmpScore = 0; 1082 unsigned MaxOpIdx2 = 0; 1083 bool FoundBest = false; 1084 // If I2 is commutative try all combinations. 1085 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1086 unsigned ToIdx = isCommutative(I2) 1087 ? I2->getNumOperands() 1088 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1089 assert(FromIdx <= ToIdx && "Bad index"); 1090 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1091 // Skip operands already paired with OpIdx1. 1092 if (Op2Used.count(OpIdx2)) 1093 continue; 1094 // Recursively calculate the cost at each level 1095 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1096 {I2->getOperand(OpIdx2), Lane2}, 1097 CurrLevel + 1, MaxLevel); 1098 // Look for the best score. 1099 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1100 MaxTmpScore = TmpScore; 1101 MaxOpIdx2 = OpIdx2; 1102 FoundBest = true; 1103 } 1104 } 1105 if (FoundBest) { 1106 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1107 Op2Used.insert(MaxOpIdx2); 1108 ShallowScoreAtThisLevel += MaxTmpScore; 1109 } 1110 } 1111 return ShallowScoreAtThisLevel; 1112 } 1113 1114 /// \Returns the look-ahead score, which tells us how much the sub-trees 1115 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1116 /// score. This helps break ties in an informed way when we cannot decide on 1117 /// the order of the operands by just considering the immediate 1118 /// predecessors. 1119 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1120 const std::pair<Value *, int> &RHS) { 1121 InLookAheadValues.clear(); 1122 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1123 } 1124 1125 // Search all operands in Ops[*][Lane] for the one that matches best 1126 // Ops[OpIdx][LastLane] and return its opreand index. 1127 // If no good match can be found, return None. 1128 Optional<unsigned> 1129 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1130 ArrayRef<ReorderingMode> ReorderingModes) { 1131 unsigned NumOperands = getNumOperands(); 1132 1133 // The operand of the previous lane at OpIdx. 1134 Value *OpLastLane = getData(OpIdx, LastLane).V; 1135 1136 // Our strategy mode for OpIdx. 1137 ReorderingMode RMode = ReorderingModes[OpIdx]; 1138 1139 // The linearized opcode of the operand at OpIdx, Lane. 1140 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1141 1142 // The best operand index and its score. 1143 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1144 // are using the score to differentiate between the two. 1145 struct BestOpData { 1146 Optional<unsigned> Idx = None; 1147 unsigned Score = 0; 1148 } BestOp; 1149 1150 // Iterate through all unused operands and look for the best. 1151 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1152 // Get the operand at Idx and Lane. 1153 OperandData &OpData = getData(Idx, Lane); 1154 Value *Op = OpData.V; 1155 bool OpAPO = OpData.APO; 1156 1157 // Skip already selected operands. 1158 if (OpData.IsUsed) 1159 continue; 1160 1161 // Skip if we are trying to move the operand to a position with a 1162 // different opcode in the linearized tree form. This would break the 1163 // semantics. 1164 if (OpAPO != OpIdxAPO) 1165 continue; 1166 1167 // Look for an operand that matches the current mode. 1168 switch (RMode) { 1169 case ReorderingMode::Load: 1170 case ReorderingMode::Constant: 1171 case ReorderingMode::Opcode: { 1172 bool LeftToRight = Lane > LastLane; 1173 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1174 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1175 unsigned Score = 1176 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1177 if (Score > BestOp.Score) { 1178 BestOp.Idx = Idx; 1179 BestOp.Score = Score; 1180 } 1181 break; 1182 } 1183 case ReorderingMode::Splat: 1184 if (Op == OpLastLane) 1185 BestOp.Idx = Idx; 1186 break; 1187 case ReorderingMode::Failed: 1188 return None; 1189 } 1190 } 1191 1192 if (BestOp.Idx) { 1193 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1194 return BestOp.Idx; 1195 } 1196 // If we could not find a good match return None. 1197 return None; 1198 } 1199 1200 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1201 /// reordering from. This is the one which has the least number of operands 1202 /// that can freely move about. 1203 unsigned getBestLaneToStartReordering() const { 1204 unsigned BestLane = 0; 1205 unsigned Min = UINT_MAX; 1206 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1207 ++Lane) { 1208 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1209 if (NumFreeOps < Min) { 1210 Min = NumFreeOps; 1211 BestLane = Lane; 1212 } 1213 } 1214 return BestLane; 1215 } 1216 1217 /// \Returns the maximum number of operands that are allowed to be reordered 1218 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1219 /// start operand reordering. 1220 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1221 unsigned CntTrue = 0; 1222 unsigned NumOperands = getNumOperands(); 1223 // Operands with the same APO can be reordered. We therefore need to count 1224 // how many of them we have for each APO, like this: Cnt[APO] = x. 1225 // Since we only have two APOs, namely true and false, we can avoid using 1226 // a map. Instead we can simply count the number of operands that 1227 // correspond to one of them (in this case the 'true' APO), and calculate 1228 // the other by subtracting it from the total number of operands. 1229 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1230 if (getData(OpIdx, Lane).APO) 1231 ++CntTrue; 1232 unsigned CntFalse = NumOperands - CntTrue; 1233 return std::max(CntTrue, CntFalse); 1234 } 1235 1236 /// Go through the instructions in VL and append their operands. 1237 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1238 assert(!VL.empty() && "Bad VL"); 1239 assert((empty() || VL.size() == getNumLanes()) && 1240 "Expected same number of lanes"); 1241 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1242 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1243 OpsVec.resize(NumOperands); 1244 unsigned NumLanes = VL.size(); 1245 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1246 OpsVec[OpIdx].resize(NumLanes); 1247 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1248 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1249 // Our tree has just 3 nodes: the root and two operands. 1250 // It is therefore trivial to get the APO. We only need to check the 1251 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1252 // RHS operand. The LHS operand of both add and sub is never attached 1253 // to an inversese operation in the linearized form, therefore its APO 1254 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1255 1256 // Since operand reordering is performed on groups of commutative 1257 // operations or alternating sequences (e.g., +, -), we can safely 1258 // tell the inverse operations by checking commutativity. 1259 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1260 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1261 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1262 APO, false}; 1263 } 1264 } 1265 } 1266 1267 /// \returns the number of operands. 1268 unsigned getNumOperands() const { return OpsVec.size(); } 1269 1270 /// \returns the number of lanes. 1271 unsigned getNumLanes() const { return OpsVec[0].size(); } 1272 1273 /// \returns the operand value at \p OpIdx and \p Lane. 1274 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1275 return getData(OpIdx, Lane).V; 1276 } 1277 1278 /// \returns true if the data structure is empty. 1279 bool empty() const { return OpsVec.empty(); } 1280 1281 /// Clears the data. 1282 void clear() { OpsVec.clear(); } 1283 1284 /// \Returns true if there are enough operands identical to \p Op to fill 1285 /// the whole vector. 1286 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1287 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1288 bool OpAPO = getData(OpIdx, Lane).APO; 1289 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1290 if (Ln == Lane) 1291 continue; 1292 // This is set to true if we found a candidate for broadcast at Lane. 1293 bool FoundCandidate = false; 1294 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1295 OperandData &Data = getData(OpI, Ln); 1296 if (Data.APO != OpAPO || Data.IsUsed) 1297 continue; 1298 if (Data.V == Op) { 1299 FoundCandidate = true; 1300 Data.IsUsed = true; 1301 break; 1302 } 1303 } 1304 if (!FoundCandidate) 1305 return false; 1306 } 1307 return true; 1308 } 1309 1310 public: 1311 /// Initialize with all the operands of the instruction vector \p RootVL. 1312 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1313 ScalarEvolution &SE, const BoUpSLP &R) 1314 : DL(DL), SE(SE), R(R) { 1315 // Append all the operands of RootVL. 1316 appendOperandsOfVL(RootVL); 1317 } 1318 1319 /// \Returns a value vector with the operands across all lanes for the 1320 /// opearnd at \p OpIdx. 1321 ValueList getVL(unsigned OpIdx) const { 1322 ValueList OpVL(OpsVec[OpIdx].size()); 1323 assert(OpsVec[OpIdx].size() == getNumLanes() && 1324 "Expected same num of lanes across all operands"); 1325 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1326 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1327 return OpVL; 1328 } 1329 1330 // Performs operand reordering for 2 or more operands. 1331 // The original operands are in OrigOps[OpIdx][Lane]. 1332 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1333 void reorder() { 1334 unsigned NumOperands = getNumOperands(); 1335 unsigned NumLanes = getNumLanes(); 1336 // Each operand has its own mode. We are using this mode to help us select 1337 // the instructions for each lane, so that they match best with the ones 1338 // we have selected so far. 1339 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1340 1341 // This is a greedy single-pass algorithm. We are going over each lane 1342 // once and deciding on the best order right away with no back-tracking. 1343 // However, in order to increase its effectiveness, we start with the lane 1344 // that has operands that can move the least. For example, given the 1345 // following lanes: 1346 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1347 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1348 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1349 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1350 // we will start at Lane 1, since the operands of the subtraction cannot 1351 // be reordered. Then we will visit the rest of the lanes in a circular 1352 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1353 1354 // Find the first lane that we will start our search from. 1355 unsigned FirstLane = getBestLaneToStartReordering(); 1356 1357 // Initialize the modes. 1358 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1359 Value *OpLane0 = getValue(OpIdx, FirstLane); 1360 // Keep track if we have instructions with all the same opcode on one 1361 // side. 1362 if (isa<LoadInst>(OpLane0)) 1363 ReorderingModes[OpIdx] = ReorderingMode::Load; 1364 else if (isa<Instruction>(OpLane0)) { 1365 // Check if OpLane0 should be broadcast. 1366 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1367 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1368 else 1369 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1370 } 1371 else if (isa<Constant>(OpLane0)) 1372 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1373 else if (isa<Argument>(OpLane0)) 1374 // Our best hope is a Splat. It may save some cost in some cases. 1375 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1376 else 1377 // NOTE: This should be unreachable. 1378 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1379 } 1380 1381 // If the initial strategy fails for any of the operand indexes, then we 1382 // perform reordering again in a second pass. This helps avoid assigning 1383 // high priority to the failed strategy, and should improve reordering for 1384 // the non-failed operand indexes. 1385 for (int Pass = 0; Pass != 2; ++Pass) { 1386 // Skip the second pass if the first pass did not fail. 1387 bool StrategyFailed = false; 1388 // Mark all operand data as free to use. 1389 clearUsed(); 1390 // We keep the original operand order for the FirstLane, so reorder the 1391 // rest of the lanes. We are visiting the nodes in a circular fashion, 1392 // using FirstLane as the center point and increasing the radius 1393 // distance. 1394 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1395 // Visit the lane on the right and then the lane on the left. 1396 for (int Direction : {+1, -1}) { 1397 int Lane = FirstLane + Direction * Distance; 1398 if (Lane < 0 || Lane >= (int)NumLanes) 1399 continue; 1400 int LastLane = Lane - Direction; 1401 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1402 "Out of bounds"); 1403 // Look for a good match for each operand. 1404 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1405 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1406 Optional<unsigned> BestIdx = 1407 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1408 // By not selecting a value, we allow the operands that follow to 1409 // select a better matching value. We will get a non-null value in 1410 // the next run of getBestOperand(). 1411 if (BestIdx) { 1412 // Swap the current operand with the one returned by 1413 // getBestOperand(). 1414 swap(OpIdx, BestIdx.getValue(), Lane); 1415 } else { 1416 // We failed to find a best operand, set mode to 'Failed'. 1417 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1418 // Enable the second pass. 1419 StrategyFailed = true; 1420 } 1421 } 1422 } 1423 } 1424 // Skip second pass if the strategy did not fail. 1425 if (!StrategyFailed) 1426 break; 1427 } 1428 } 1429 1430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1431 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1432 switch (RMode) { 1433 case ReorderingMode::Load: 1434 return "Load"; 1435 case ReorderingMode::Opcode: 1436 return "Opcode"; 1437 case ReorderingMode::Constant: 1438 return "Constant"; 1439 case ReorderingMode::Splat: 1440 return "Splat"; 1441 case ReorderingMode::Failed: 1442 return "Failed"; 1443 } 1444 llvm_unreachable("Unimplemented Reordering Type"); 1445 } 1446 1447 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1448 raw_ostream &OS) { 1449 return OS << getModeStr(RMode); 1450 } 1451 1452 /// Debug print. 1453 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1454 printMode(RMode, dbgs()); 1455 } 1456 1457 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1458 return printMode(RMode, OS); 1459 } 1460 1461 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1462 const unsigned Indent = 2; 1463 unsigned Cnt = 0; 1464 for (const OperandDataVec &OpDataVec : OpsVec) { 1465 OS << "Operand " << Cnt++ << "\n"; 1466 for (const OperandData &OpData : OpDataVec) { 1467 OS.indent(Indent) << "{"; 1468 if (Value *V = OpData.V) 1469 OS << *V; 1470 else 1471 OS << "null"; 1472 OS << ", APO:" << OpData.APO << "}\n"; 1473 } 1474 OS << "\n"; 1475 } 1476 return OS; 1477 } 1478 1479 /// Debug print. 1480 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1481 #endif 1482 }; 1483 1484 /// Checks if the instruction is marked for deletion. 1485 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1486 1487 /// Marks values operands for later deletion by replacing them with Undefs. 1488 void eraseInstructions(ArrayRef<Value *> AV); 1489 1490 ~BoUpSLP(); 1491 1492 private: 1493 /// Checks if all users of \p I are the part of the vectorization tree. 1494 bool areAllUsersVectorized(Instruction *I) const; 1495 1496 /// \returns the cost of the vectorizable entry. 1497 InstructionCost getEntryCost(TreeEntry *E); 1498 1499 /// This is the recursive part of buildTree. 1500 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1501 const EdgeInfo &EI); 1502 1503 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1504 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1505 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1506 /// returns false, setting \p CurrentOrder to either an empty vector or a 1507 /// non-identity permutation that allows to reuse extract instructions. 1508 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1509 SmallVectorImpl<unsigned> &CurrentOrder) const; 1510 1511 /// Vectorize a single entry in the tree. 1512 Value *vectorizeTree(TreeEntry *E); 1513 1514 /// Vectorize a single entry in the tree, starting in \p VL. 1515 Value *vectorizeTree(ArrayRef<Value *> VL); 1516 1517 /// \returns the scalarization cost for this type. Scalarization in this 1518 /// context means the creation of vectors from a group of scalars. 1519 InstructionCost 1520 getGatherCost(FixedVectorType *Ty, 1521 const DenseSet<unsigned> &ShuffledIndices) const; 1522 1523 /// \returns the scalarization cost for this list of values. Assuming that 1524 /// this subtree gets vectorized, we may need to extract the values from the 1525 /// roots. This method calculates the cost of extracting the values. 1526 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1527 1528 /// Set the Builder insert point to one after the last instruction in 1529 /// the bundle 1530 void setInsertPointAfterBundle(TreeEntry *E); 1531 1532 /// \returns a vector from a collection of scalars in \p VL. 1533 Value *gather(ArrayRef<Value *> VL); 1534 1535 /// \returns whether the VectorizableTree is fully vectorizable and will 1536 /// be beneficial even the tree height is tiny. 1537 bool isFullyVectorizableTinyTree() const; 1538 1539 /// Reorder commutative or alt operands to get better probability of 1540 /// generating vectorized code. 1541 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1542 SmallVectorImpl<Value *> &Left, 1543 SmallVectorImpl<Value *> &Right, 1544 const DataLayout &DL, 1545 ScalarEvolution &SE, 1546 const BoUpSLP &R); 1547 struct TreeEntry { 1548 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1549 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1550 1551 /// \returns true if the scalars in VL are equal to this entry. 1552 bool isSame(ArrayRef<Value *> VL) const { 1553 if (VL.size() == Scalars.size()) 1554 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1555 return VL.size() == ReuseShuffleIndices.size() && 1556 std::equal( 1557 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1558 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1559 } 1560 1561 /// A vector of scalars. 1562 ValueList Scalars; 1563 1564 /// The Scalars are vectorized into this value. It is initialized to Null. 1565 Value *VectorizedValue = nullptr; 1566 1567 /// Do we need to gather this sequence or vectorize it 1568 /// (either with vector instruction or with scatter/gather 1569 /// intrinsics for store/load)? 1570 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1571 EntryState State; 1572 1573 /// Does this sequence require some shuffling? 1574 SmallVector<int, 4> ReuseShuffleIndices; 1575 1576 /// Does this entry require reordering? 1577 SmallVector<unsigned, 4> ReorderIndices; 1578 1579 /// Points back to the VectorizableTree. 1580 /// 1581 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1582 /// to be a pointer and needs to be able to initialize the child iterator. 1583 /// Thus we need a reference back to the container to translate the indices 1584 /// to entries. 1585 VecTreeTy &Container; 1586 1587 /// The TreeEntry index containing the user of this entry. We can actually 1588 /// have multiple users so the data structure is not truly a tree. 1589 SmallVector<EdgeInfo, 1> UserTreeIndices; 1590 1591 /// The index of this treeEntry in VectorizableTree. 1592 int Idx = -1; 1593 1594 private: 1595 /// The operands of each instruction in each lane Operands[op_index][lane]. 1596 /// Note: This helps avoid the replication of the code that performs the 1597 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1598 SmallVector<ValueList, 2> Operands; 1599 1600 /// The main/alternate instruction. 1601 Instruction *MainOp = nullptr; 1602 Instruction *AltOp = nullptr; 1603 1604 public: 1605 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1606 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1607 if (Operands.size() < OpIdx + 1) 1608 Operands.resize(OpIdx + 1); 1609 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1610 Operands[OpIdx].resize(Scalars.size()); 1611 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1612 Operands[OpIdx][Lane] = OpVL[Lane]; 1613 } 1614 1615 /// Set the operands of this bundle in their original order. 1616 void setOperandsInOrder() { 1617 assert(Operands.empty() && "Already initialized?"); 1618 auto *I0 = cast<Instruction>(Scalars[0]); 1619 Operands.resize(I0->getNumOperands()); 1620 unsigned NumLanes = Scalars.size(); 1621 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1622 OpIdx != NumOperands; ++OpIdx) { 1623 Operands[OpIdx].resize(NumLanes); 1624 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1625 auto *I = cast<Instruction>(Scalars[Lane]); 1626 assert(I->getNumOperands() == NumOperands && 1627 "Expected same number of operands"); 1628 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1629 } 1630 } 1631 } 1632 1633 /// \returns the \p OpIdx operand of this TreeEntry. 1634 ValueList &getOperand(unsigned OpIdx) { 1635 assert(OpIdx < Operands.size() && "Off bounds"); 1636 return Operands[OpIdx]; 1637 } 1638 1639 /// \returns the number of operands. 1640 unsigned getNumOperands() const { return Operands.size(); } 1641 1642 /// \return the single \p OpIdx operand. 1643 Value *getSingleOperand(unsigned OpIdx) const { 1644 assert(OpIdx < Operands.size() && "Off bounds"); 1645 assert(!Operands[OpIdx].empty() && "No operand available"); 1646 return Operands[OpIdx][0]; 1647 } 1648 1649 /// Some of the instructions in the list have alternate opcodes. 1650 bool isAltShuffle() const { 1651 return getOpcode() != getAltOpcode(); 1652 } 1653 1654 bool isOpcodeOrAlt(Instruction *I) const { 1655 unsigned CheckedOpcode = I->getOpcode(); 1656 return (getOpcode() == CheckedOpcode || 1657 getAltOpcode() == CheckedOpcode); 1658 } 1659 1660 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1661 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1662 /// \p OpValue. 1663 Value *isOneOf(Value *Op) const { 1664 auto *I = dyn_cast<Instruction>(Op); 1665 if (I && isOpcodeOrAlt(I)) 1666 return Op; 1667 return MainOp; 1668 } 1669 1670 void setOperations(const InstructionsState &S) { 1671 MainOp = S.MainOp; 1672 AltOp = S.AltOp; 1673 } 1674 1675 Instruction *getMainOp() const { 1676 return MainOp; 1677 } 1678 1679 Instruction *getAltOp() const { 1680 return AltOp; 1681 } 1682 1683 /// The main/alternate opcodes for the list of instructions. 1684 unsigned getOpcode() const { 1685 return MainOp ? MainOp->getOpcode() : 0; 1686 } 1687 1688 unsigned getAltOpcode() const { 1689 return AltOp ? AltOp->getOpcode() : 0; 1690 } 1691 1692 /// Update operations state of this entry if reorder occurred. 1693 bool updateStateIfReorder() { 1694 if (ReorderIndices.empty()) 1695 return false; 1696 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1697 setOperations(S); 1698 return true; 1699 } 1700 1701 #ifndef NDEBUG 1702 /// Debug printer. 1703 LLVM_DUMP_METHOD void dump() const { 1704 dbgs() << Idx << ".\n"; 1705 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1706 dbgs() << "Operand " << OpI << ":\n"; 1707 for (const Value *V : Operands[OpI]) 1708 dbgs().indent(2) << *V << "\n"; 1709 } 1710 dbgs() << "Scalars: \n"; 1711 for (Value *V : Scalars) 1712 dbgs().indent(2) << *V << "\n"; 1713 dbgs() << "State: "; 1714 switch (State) { 1715 case Vectorize: 1716 dbgs() << "Vectorize\n"; 1717 break; 1718 case ScatterVectorize: 1719 dbgs() << "ScatterVectorize\n"; 1720 break; 1721 case NeedToGather: 1722 dbgs() << "NeedToGather\n"; 1723 break; 1724 } 1725 dbgs() << "MainOp: "; 1726 if (MainOp) 1727 dbgs() << *MainOp << "\n"; 1728 else 1729 dbgs() << "NULL\n"; 1730 dbgs() << "AltOp: "; 1731 if (AltOp) 1732 dbgs() << *AltOp << "\n"; 1733 else 1734 dbgs() << "NULL\n"; 1735 dbgs() << "VectorizedValue: "; 1736 if (VectorizedValue) 1737 dbgs() << *VectorizedValue << "\n"; 1738 else 1739 dbgs() << "NULL\n"; 1740 dbgs() << "ReuseShuffleIndices: "; 1741 if (ReuseShuffleIndices.empty()) 1742 dbgs() << "Empty"; 1743 else 1744 for (unsigned ReuseIdx : ReuseShuffleIndices) 1745 dbgs() << ReuseIdx << ", "; 1746 dbgs() << "\n"; 1747 dbgs() << "ReorderIndices: "; 1748 for (unsigned ReorderIdx : ReorderIndices) 1749 dbgs() << ReorderIdx << ", "; 1750 dbgs() << "\n"; 1751 dbgs() << "UserTreeIndices: "; 1752 for (const auto &EInfo : UserTreeIndices) 1753 dbgs() << EInfo << ", "; 1754 dbgs() << "\n"; 1755 } 1756 #endif 1757 }; 1758 1759 #ifndef NDEBUG 1760 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1761 InstructionCost VecCost, 1762 InstructionCost ScalarCost) const { 1763 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1764 dbgs() << "SLP: Costs:\n"; 1765 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1766 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1767 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1768 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1769 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1770 } 1771 #endif 1772 1773 /// Create a new VectorizableTree entry. 1774 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1775 const InstructionsState &S, 1776 const EdgeInfo &UserTreeIdx, 1777 ArrayRef<unsigned> ReuseShuffleIndices = None, 1778 ArrayRef<unsigned> ReorderIndices = None) { 1779 TreeEntry::EntryState EntryState = 1780 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1781 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1782 ReuseShuffleIndices, ReorderIndices); 1783 } 1784 1785 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1786 TreeEntry::EntryState EntryState, 1787 Optional<ScheduleData *> Bundle, 1788 const InstructionsState &S, 1789 const EdgeInfo &UserTreeIdx, 1790 ArrayRef<unsigned> ReuseShuffleIndices = None, 1791 ArrayRef<unsigned> ReorderIndices = None) { 1792 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1793 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1794 "Need to vectorize gather entry?"); 1795 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1796 TreeEntry *Last = VectorizableTree.back().get(); 1797 Last->Idx = VectorizableTree.size() - 1; 1798 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1799 Last->State = EntryState; 1800 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1801 ReuseShuffleIndices.end()); 1802 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1803 Last->setOperations(S); 1804 if (Last->State != TreeEntry::NeedToGather) { 1805 for (Value *V : VL) { 1806 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1807 ScalarToTreeEntry[V] = Last; 1808 } 1809 // Update the scheduler bundle to point to this TreeEntry. 1810 unsigned Lane = 0; 1811 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1812 BundleMember = BundleMember->NextInBundle) { 1813 BundleMember->TE = Last; 1814 BundleMember->Lane = Lane; 1815 ++Lane; 1816 } 1817 assert((!Bundle.getValue() || Lane == VL.size()) && 1818 "Bundle and VL out of sync"); 1819 } else { 1820 MustGather.insert(VL.begin(), VL.end()); 1821 } 1822 1823 if (UserTreeIdx.UserTE) 1824 Last->UserTreeIndices.push_back(UserTreeIdx); 1825 1826 return Last; 1827 } 1828 1829 /// -- Vectorization State -- 1830 /// Holds all of the tree entries. 1831 TreeEntry::VecTreeTy VectorizableTree; 1832 1833 #ifndef NDEBUG 1834 /// Debug printer. 1835 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1836 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1837 VectorizableTree[Id]->dump(); 1838 dbgs() << "\n"; 1839 } 1840 } 1841 #endif 1842 1843 TreeEntry *getTreeEntry(Value *V) { 1844 auto I = ScalarToTreeEntry.find(V); 1845 if (I != ScalarToTreeEntry.end()) 1846 return I->second; 1847 return nullptr; 1848 } 1849 1850 const TreeEntry *getTreeEntry(Value *V) const { 1851 auto I = ScalarToTreeEntry.find(V); 1852 if (I != ScalarToTreeEntry.end()) 1853 return I->second; 1854 return nullptr; 1855 } 1856 1857 /// Maps a specific scalar to its tree entry. 1858 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1859 1860 /// Maps a value to the proposed vectorizable size. 1861 SmallDenseMap<Value *, unsigned> InstrElementSize; 1862 1863 /// A list of scalars that we found that we need to keep as scalars. 1864 ValueSet MustGather; 1865 1866 /// This POD struct describes one external user in the vectorized tree. 1867 struct ExternalUser { 1868 ExternalUser(Value *S, llvm::User *U, int L) 1869 : Scalar(S), User(U), Lane(L) {} 1870 1871 // Which scalar in our function. 1872 Value *Scalar; 1873 1874 // Which user that uses the scalar. 1875 llvm::User *User; 1876 1877 // Which lane does the scalar belong to. 1878 int Lane; 1879 }; 1880 using UserList = SmallVector<ExternalUser, 16>; 1881 1882 /// Checks if two instructions may access the same memory. 1883 /// 1884 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1885 /// is invariant in the calling loop. 1886 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1887 Instruction *Inst2) { 1888 // First check if the result is already in the cache. 1889 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1890 Optional<bool> &result = AliasCache[key]; 1891 if (result.hasValue()) { 1892 return result.getValue(); 1893 } 1894 MemoryLocation Loc2 = getLocation(Inst2, AA); 1895 bool aliased = true; 1896 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1897 // Do the alias check. 1898 aliased = AA->alias(Loc1, Loc2); 1899 } 1900 // Store the result in the cache. 1901 result = aliased; 1902 return aliased; 1903 } 1904 1905 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1906 1907 /// Cache for alias results. 1908 /// TODO: consider moving this to the AliasAnalysis itself. 1909 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1910 1911 /// Removes an instruction from its block and eventually deletes it. 1912 /// It's like Instruction::eraseFromParent() except that the actual deletion 1913 /// is delayed until BoUpSLP is destructed. 1914 /// This is required to ensure that there are no incorrect collisions in the 1915 /// AliasCache, which can happen if a new instruction is allocated at the 1916 /// same address as a previously deleted instruction. 1917 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1918 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1919 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1920 } 1921 1922 /// Temporary store for deleted instructions. Instructions will be deleted 1923 /// eventually when the BoUpSLP is destructed. 1924 DenseMap<Instruction *, bool> DeletedInstructions; 1925 1926 /// A list of values that need to extracted out of the tree. 1927 /// This list holds pairs of (Internal Scalar : External User). External User 1928 /// can be nullptr, it means that this Internal Scalar will be used later, 1929 /// after vectorization. 1930 UserList ExternalUses; 1931 1932 /// Values used only by @llvm.assume calls. 1933 SmallPtrSet<const Value *, 32> EphValues; 1934 1935 /// Holds all of the instructions that we gathered. 1936 SetVector<Instruction *> GatherSeq; 1937 1938 /// A list of blocks that we are going to CSE. 1939 SetVector<BasicBlock *> CSEBlocks; 1940 1941 /// Contains all scheduling relevant data for an instruction. 1942 /// A ScheduleData either represents a single instruction or a member of an 1943 /// instruction bundle (= a group of instructions which is combined into a 1944 /// vector instruction). 1945 struct ScheduleData { 1946 // The initial value for the dependency counters. It means that the 1947 // dependencies are not calculated yet. 1948 enum { InvalidDeps = -1 }; 1949 1950 ScheduleData() = default; 1951 1952 void init(int BlockSchedulingRegionID, Value *OpVal) { 1953 FirstInBundle = this; 1954 NextInBundle = nullptr; 1955 NextLoadStore = nullptr; 1956 IsScheduled = false; 1957 SchedulingRegionID = BlockSchedulingRegionID; 1958 UnscheduledDepsInBundle = UnscheduledDeps; 1959 clearDependencies(); 1960 OpValue = OpVal; 1961 TE = nullptr; 1962 Lane = -1; 1963 } 1964 1965 /// Returns true if the dependency information has been calculated. 1966 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1967 1968 /// Returns true for single instructions and for bundle representatives 1969 /// (= the head of a bundle). 1970 bool isSchedulingEntity() const { return FirstInBundle == this; } 1971 1972 /// Returns true if it represents an instruction bundle and not only a 1973 /// single instruction. 1974 bool isPartOfBundle() const { 1975 return NextInBundle != nullptr || FirstInBundle != this; 1976 } 1977 1978 /// Returns true if it is ready for scheduling, i.e. it has no more 1979 /// unscheduled depending instructions/bundles. 1980 bool isReady() const { 1981 assert(isSchedulingEntity() && 1982 "can't consider non-scheduling entity for ready list"); 1983 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1984 } 1985 1986 /// Modifies the number of unscheduled dependencies, also updating it for 1987 /// the whole bundle. 1988 int incrementUnscheduledDeps(int Incr) { 1989 UnscheduledDeps += Incr; 1990 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1991 } 1992 1993 /// Sets the number of unscheduled dependencies to the number of 1994 /// dependencies. 1995 void resetUnscheduledDeps() { 1996 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1997 } 1998 1999 /// Clears all dependency information. 2000 void clearDependencies() { 2001 Dependencies = InvalidDeps; 2002 resetUnscheduledDeps(); 2003 MemoryDependencies.clear(); 2004 } 2005 2006 void dump(raw_ostream &os) const { 2007 if (!isSchedulingEntity()) { 2008 os << "/ " << *Inst; 2009 } else if (NextInBundle) { 2010 os << '[' << *Inst; 2011 ScheduleData *SD = NextInBundle; 2012 while (SD) { 2013 os << ';' << *SD->Inst; 2014 SD = SD->NextInBundle; 2015 } 2016 os << ']'; 2017 } else { 2018 os << *Inst; 2019 } 2020 } 2021 2022 Instruction *Inst = nullptr; 2023 2024 /// Points to the head in an instruction bundle (and always to this for 2025 /// single instructions). 2026 ScheduleData *FirstInBundle = nullptr; 2027 2028 /// Single linked list of all instructions in a bundle. Null if it is a 2029 /// single instruction. 2030 ScheduleData *NextInBundle = nullptr; 2031 2032 /// Single linked list of all memory instructions (e.g. load, store, call) 2033 /// in the block - until the end of the scheduling region. 2034 ScheduleData *NextLoadStore = nullptr; 2035 2036 /// The dependent memory instructions. 2037 /// This list is derived on demand in calculateDependencies(). 2038 SmallVector<ScheduleData *, 4> MemoryDependencies; 2039 2040 /// This ScheduleData is in the current scheduling region if this matches 2041 /// the current SchedulingRegionID of BlockScheduling. 2042 int SchedulingRegionID = 0; 2043 2044 /// Used for getting a "good" final ordering of instructions. 2045 int SchedulingPriority = 0; 2046 2047 /// The number of dependencies. Constitutes of the number of users of the 2048 /// instruction plus the number of dependent memory instructions (if any). 2049 /// This value is calculated on demand. 2050 /// If InvalidDeps, the number of dependencies is not calculated yet. 2051 int Dependencies = InvalidDeps; 2052 2053 /// The number of dependencies minus the number of dependencies of scheduled 2054 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2055 /// for scheduling. 2056 /// Note that this is negative as long as Dependencies is not calculated. 2057 int UnscheduledDeps = InvalidDeps; 2058 2059 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2060 /// single instructions. 2061 int UnscheduledDepsInBundle = InvalidDeps; 2062 2063 /// True if this instruction is scheduled (or considered as scheduled in the 2064 /// dry-run). 2065 bool IsScheduled = false; 2066 2067 /// Opcode of the current instruction in the schedule data. 2068 Value *OpValue = nullptr; 2069 2070 /// The TreeEntry that this instruction corresponds to. 2071 TreeEntry *TE = nullptr; 2072 2073 /// The lane of this node in the TreeEntry. 2074 int Lane = -1; 2075 }; 2076 2077 #ifndef NDEBUG 2078 friend inline raw_ostream &operator<<(raw_ostream &os, 2079 const BoUpSLP::ScheduleData &SD) { 2080 SD.dump(os); 2081 return os; 2082 } 2083 #endif 2084 2085 friend struct GraphTraits<BoUpSLP *>; 2086 friend struct DOTGraphTraits<BoUpSLP *>; 2087 2088 /// Contains all scheduling data for a basic block. 2089 struct BlockScheduling { 2090 BlockScheduling(BasicBlock *BB) 2091 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2092 2093 void clear() { 2094 ReadyInsts.clear(); 2095 ScheduleStart = nullptr; 2096 ScheduleEnd = nullptr; 2097 FirstLoadStoreInRegion = nullptr; 2098 LastLoadStoreInRegion = nullptr; 2099 2100 // Reduce the maximum schedule region size by the size of the 2101 // previous scheduling run. 2102 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2103 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2104 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2105 ScheduleRegionSize = 0; 2106 2107 // Make a new scheduling region, i.e. all existing ScheduleData is not 2108 // in the new region yet. 2109 ++SchedulingRegionID; 2110 } 2111 2112 ScheduleData *getScheduleData(Value *V) { 2113 ScheduleData *SD = ScheduleDataMap[V]; 2114 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2115 return SD; 2116 return nullptr; 2117 } 2118 2119 ScheduleData *getScheduleData(Value *V, Value *Key) { 2120 if (V == Key) 2121 return getScheduleData(V); 2122 auto I = ExtraScheduleDataMap.find(V); 2123 if (I != ExtraScheduleDataMap.end()) { 2124 ScheduleData *SD = I->second[Key]; 2125 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2126 return SD; 2127 } 2128 return nullptr; 2129 } 2130 2131 bool isInSchedulingRegion(ScheduleData *SD) const { 2132 return SD->SchedulingRegionID == SchedulingRegionID; 2133 } 2134 2135 /// Marks an instruction as scheduled and puts all dependent ready 2136 /// instructions into the ready-list. 2137 template <typename ReadyListType> 2138 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2139 SD->IsScheduled = true; 2140 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2141 2142 ScheduleData *BundleMember = SD; 2143 while (BundleMember) { 2144 if (BundleMember->Inst != BundleMember->OpValue) { 2145 BundleMember = BundleMember->NextInBundle; 2146 continue; 2147 } 2148 // Handle the def-use chain dependencies. 2149 2150 // Decrement the unscheduled counter and insert to ready list if ready. 2151 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2152 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2153 if (OpDef && OpDef->hasValidDependencies() && 2154 OpDef->incrementUnscheduledDeps(-1) == 0) { 2155 // There are no more unscheduled dependencies after 2156 // decrementing, so we can put the dependent instruction 2157 // into the ready list. 2158 ScheduleData *DepBundle = OpDef->FirstInBundle; 2159 assert(!DepBundle->IsScheduled && 2160 "already scheduled bundle gets ready"); 2161 ReadyList.insert(DepBundle); 2162 LLVM_DEBUG(dbgs() 2163 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2164 } 2165 }); 2166 }; 2167 2168 // If BundleMember is a vector bundle, its operands may have been 2169 // reordered duiring buildTree(). We therefore need to get its operands 2170 // through the TreeEntry. 2171 if (TreeEntry *TE = BundleMember->TE) { 2172 int Lane = BundleMember->Lane; 2173 assert(Lane >= 0 && "Lane not set"); 2174 2175 // Since vectorization tree is being built recursively this assertion 2176 // ensures that the tree entry has all operands set before reaching 2177 // this code. Couple of exceptions known at the moment are extracts 2178 // where their second (immediate) operand is not added. Since 2179 // immediates do not affect scheduler behavior this is considered 2180 // okay. 2181 auto *In = TE->getMainOp(); 2182 assert(In && 2183 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2184 In->getNumOperands() == TE->getNumOperands()) && 2185 "Missed TreeEntry operands?"); 2186 (void)In; // fake use to avoid build failure when assertions disabled 2187 2188 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2189 OpIdx != NumOperands; ++OpIdx) 2190 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2191 DecrUnsched(I); 2192 } else { 2193 // If BundleMember is a stand-alone instruction, no operand reordering 2194 // has taken place, so we directly access its operands. 2195 for (Use &U : BundleMember->Inst->operands()) 2196 if (auto *I = dyn_cast<Instruction>(U.get())) 2197 DecrUnsched(I); 2198 } 2199 // Handle the memory dependencies. 2200 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2201 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2202 // There are no more unscheduled dependencies after decrementing, 2203 // so we can put the dependent instruction into the ready list. 2204 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2205 assert(!DepBundle->IsScheduled && 2206 "already scheduled bundle gets ready"); 2207 ReadyList.insert(DepBundle); 2208 LLVM_DEBUG(dbgs() 2209 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2210 } 2211 } 2212 BundleMember = BundleMember->NextInBundle; 2213 } 2214 } 2215 2216 void doForAllOpcodes(Value *V, 2217 function_ref<void(ScheduleData *SD)> Action) { 2218 if (ScheduleData *SD = getScheduleData(V)) 2219 Action(SD); 2220 auto I = ExtraScheduleDataMap.find(V); 2221 if (I != ExtraScheduleDataMap.end()) 2222 for (auto &P : I->second) 2223 if (P.second->SchedulingRegionID == SchedulingRegionID) 2224 Action(P.second); 2225 } 2226 2227 /// Put all instructions into the ReadyList which are ready for scheduling. 2228 template <typename ReadyListType> 2229 void initialFillReadyList(ReadyListType &ReadyList) { 2230 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2231 doForAllOpcodes(I, [&](ScheduleData *SD) { 2232 if (SD->isSchedulingEntity() && SD->isReady()) { 2233 ReadyList.insert(SD); 2234 LLVM_DEBUG(dbgs() 2235 << "SLP: initially in ready list: " << *I << "\n"); 2236 } 2237 }); 2238 } 2239 } 2240 2241 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2242 /// cyclic dependencies. This is only a dry-run, no instructions are 2243 /// actually moved at this stage. 2244 /// \returns the scheduling bundle. The returned Optional value is non-None 2245 /// if \p VL is allowed to be scheduled. 2246 Optional<ScheduleData *> 2247 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2248 const InstructionsState &S); 2249 2250 /// Un-bundles a group of instructions. 2251 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2252 2253 /// Allocates schedule data chunk. 2254 ScheduleData *allocateScheduleDataChunks(); 2255 2256 /// Extends the scheduling region so that V is inside the region. 2257 /// \returns true if the region size is within the limit. 2258 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2259 2260 /// Initialize the ScheduleData structures for new instructions in the 2261 /// scheduling region. 2262 void initScheduleData(Instruction *FromI, Instruction *ToI, 2263 ScheduleData *PrevLoadStore, 2264 ScheduleData *NextLoadStore); 2265 2266 /// Updates the dependency information of a bundle and of all instructions/ 2267 /// bundles which depend on the original bundle. 2268 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2269 BoUpSLP *SLP); 2270 2271 /// Sets all instruction in the scheduling region to un-scheduled. 2272 void resetSchedule(); 2273 2274 BasicBlock *BB; 2275 2276 /// Simple memory allocation for ScheduleData. 2277 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2278 2279 /// The size of a ScheduleData array in ScheduleDataChunks. 2280 int ChunkSize; 2281 2282 /// The allocator position in the current chunk, which is the last entry 2283 /// of ScheduleDataChunks. 2284 int ChunkPos; 2285 2286 /// Attaches ScheduleData to Instruction. 2287 /// Note that the mapping survives during all vectorization iterations, i.e. 2288 /// ScheduleData structures are recycled. 2289 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2290 2291 /// Attaches ScheduleData to Instruction with the leading key. 2292 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2293 ExtraScheduleDataMap; 2294 2295 struct ReadyList : SmallVector<ScheduleData *, 8> { 2296 void insert(ScheduleData *SD) { push_back(SD); } 2297 }; 2298 2299 /// The ready-list for scheduling (only used for the dry-run). 2300 ReadyList ReadyInsts; 2301 2302 /// The first instruction of the scheduling region. 2303 Instruction *ScheduleStart = nullptr; 2304 2305 /// The first instruction _after_ the scheduling region. 2306 Instruction *ScheduleEnd = nullptr; 2307 2308 /// The first memory accessing instruction in the scheduling region 2309 /// (can be null). 2310 ScheduleData *FirstLoadStoreInRegion = nullptr; 2311 2312 /// The last memory accessing instruction in the scheduling region 2313 /// (can be null). 2314 ScheduleData *LastLoadStoreInRegion = nullptr; 2315 2316 /// The current size of the scheduling region. 2317 int ScheduleRegionSize = 0; 2318 2319 /// The maximum size allowed for the scheduling region. 2320 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2321 2322 /// The ID of the scheduling region. For a new vectorization iteration this 2323 /// is incremented which "removes" all ScheduleData from the region. 2324 // Make sure that the initial SchedulingRegionID is greater than the 2325 // initial SchedulingRegionID in ScheduleData (which is 0). 2326 int SchedulingRegionID = 1; 2327 }; 2328 2329 /// Attaches the BlockScheduling structures to basic blocks. 2330 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2331 2332 /// Performs the "real" scheduling. Done before vectorization is actually 2333 /// performed in a basic block. 2334 void scheduleBlock(BlockScheduling *BS); 2335 2336 /// List of users to ignore during scheduling and that don't need extracting. 2337 ArrayRef<Value *> UserIgnoreList; 2338 2339 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2340 /// sorted SmallVectors of unsigned. 2341 struct OrdersTypeDenseMapInfo { 2342 static OrdersType getEmptyKey() { 2343 OrdersType V; 2344 V.push_back(~1U); 2345 return V; 2346 } 2347 2348 static OrdersType getTombstoneKey() { 2349 OrdersType V; 2350 V.push_back(~2U); 2351 return V; 2352 } 2353 2354 static unsigned getHashValue(const OrdersType &V) { 2355 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2356 } 2357 2358 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2359 return LHS == RHS; 2360 } 2361 }; 2362 2363 /// Contains orders of operations along with the number of bundles that have 2364 /// operations in this order. It stores only those orders that require 2365 /// reordering, if reordering is not required it is counted using \a 2366 /// NumOpsWantToKeepOriginalOrder. 2367 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2368 /// Number of bundles that do not require reordering. 2369 unsigned NumOpsWantToKeepOriginalOrder = 0; 2370 2371 // Analysis and block reference. 2372 Function *F; 2373 ScalarEvolution *SE; 2374 TargetTransformInfo *TTI; 2375 TargetLibraryInfo *TLI; 2376 AAResults *AA; 2377 LoopInfo *LI; 2378 DominatorTree *DT; 2379 AssumptionCache *AC; 2380 DemandedBits *DB; 2381 const DataLayout *DL; 2382 OptimizationRemarkEmitter *ORE; 2383 2384 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2385 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2386 2387 /// Instruction builder to construct the vectorized tree. 2388 IRBuilder<> Builder; 2389 2390 /// A map of scalar integer values to the smallest bit width with which they 2391 /// can legally be represented. The values map to (width, signed) pairs, 2392 /// where "width" indicates the minimum bit width and "signed" is True if the 2393 /// value must be signed-extended, rather than zero-extended, back to its 2394 /// original width. 2395 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2396 }; 2397 2398 } // end namespace slpvectorizer 2399 2400 template <> struct GraphTraits<BoUpSLP *> { 2401 using TreeEntry = BoUpSLP::TreeEntry; 2402 2403 /// NodeRef has to be a pointer per the GraphWriter. 2404 using NodeRef = TreeEntry *; 2405 2406 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2407 2408 /// Add the VectorizableTree to the index iterator to be able to return 2409 /// TreeEntry pointers. 2410 struct ChildIteratorType 2411 : public iterator_adaptor_base< 2412 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2413 ContainerTy &VectorizableTree; 2414 2415 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2416 ContainerTy &VT) 2417 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2418 2419 NodeRef operator*() { return I->UserTE; } 2420 }; 2421 2422 static NodeRef getEntryNode(BoUpSLP &R) { 2423 return R.VectorizableTree[0].get(); 2424 } 2425 2426 static ChildIteratorType child_begin(NodeRef N) { 2427 return {N->UserTreeIndices.begin(), N->Container}; 2428 } 2429 2430 static ChildIteratorType child_end(NodeRef N) { 2431 return {N->UserTreeIndices.end(), N->Container}; 2432 } 2433 2434 /// For the node iterator we just need to turn the TreeEntry iterator into a 2435 /// TreeEntry* iterator so that it dereferences to NodeRef. 2436 class nodes_iterator { 2437 using ItTy = ContainerTy::iterator; 2438 ItTy It; 2439 2440 public: 2441 nodes_iterator(const ItTy &It2) : It(It2) {} 2442 NodeRef operator*() { return It->get(); } 2443 nodes_iterator operator++() { 2444 ++It; 2445 return *this; 2446 } 2447 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2448 }; 2449 2450 static nodes_iterator nodes_begin(BoUpSLP *R) { 2451 return nodes_iterator(R->VectorizableTree.begin()); 2452 } 2453 2454 static nodes_iterator nodes_end(BoUpSLP *R) { 2455 return nodes_iterator(R->VectorizableTree.end()); 2456 } 2457 2458 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2459 }; 2460 2461 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2462 using TreeEntry = BoUpSLP::TreeEntry; 2463 2464 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2465 2466 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2467 std::string Str; 2468 raw_string_ostream OS(Str); 2469 if (isSplat(Entry->Scalars)) { 2470 OS << "<splat> " << *Entry->Scalars[0]; 2471 return Str; 2472 } 2473 for (auto V : Entry->Scalars) { 2474 OS << *V; 2475 if (std::any_of( 2476 R->ExternalUses.begin(), R->ExternalUses.end(), 2477 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2478 OS << " <extract>"; 2479 OS << "\n"; 2480 } 2481 return Str; 2482 } 2483 2484 static std::string getNodeAttributes(const TreeEntry *Entry, 2485 const BoUpSLP *) { 2486 if (Entry->State == TreeEntry::NeedToGather) 2487 return "color=red"; 2488 return ""; 2489 } 2490 }; 2491 2492 } // end namespace llvm 2493 2494 BoUpSLP::~BoUpSLP() { 2495 for (const auto &Pair : DeletedInstructions) { 2496 // Replace operands of ignored instructions with Undefs in case if they were 2497 // marked for deletion. 2498 if (Pair.getSecond()) { 2499 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2500 Pair.getFirst()->replaceAllUsesWith(Undef); 2501 } 2502 Pair.getFirst()->dropAllReferences(); 2503 } 2504 for (const auto &Pair : DeletedInstructions) { 2505 assert(Pair.getFirst()->use_empty() && 2506 "trying to erase instruction with users."); 2507 Pair.getFirst()->eraseFromParent(); 2508 } 2509 assert(!verifyFunction(*F, &dbgs())); 2510 } 2511 2512 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2513 for (auto *V : AV) { 2514 if (auto *I = dyn_cast<Instruction>(V)) 2515 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2516 }; 2517 } 2518 2519 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2520 ArrayRef<Value *> UserIgnoreLst) { 2521 ExtraValueToDebugLocsMap ExternallyUsedValues; 2522 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2523 } 2524 2525 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2526 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2527 ArrayRef<Value *> UserIgnoreLst) { 2528 deleteTree(); 2529 UserIgnoreList = UserIgnoreLst; 2530 if (!allSameType(Roots)) 2531 return; 2532 buildTree_rec(Roots, 0, EdgeInfo()); 2533 2534 // Collect the values that we need to extract from the tree. 2535 for (auto &TEPtr : VectorizableTree) { 2536 TreeEntry *Entry = TEPtr.get(); 2537 2538 // No need to handle users of gathered values. 2539 if (Entry->State == TreeEntry::NeedToGather) 2540 continue; 2541 2542 // For each lane: 2543 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2544 Value *Scalar = Entry->Scalars[Lane]; 2545 int FoundLane = Lane; 2546 if (!Entry->ReuseShuffleIndices.empty()) { 2547 FoundLane = 2548 std::distance(Entry->ReuseShuffleIndices.begin(), 2549 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2550 } 2551 2552 // Check if the scalar is externally used as an extra arg. 2553 auto ExtI = ExternallyUsedValues.find(Scalar); 2554 if (ExtI != ExternallyUsedValues.end()) { 2555 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2556 << Lane << " from " << *Scalar << ".\n"); 2557 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2558 } 2559 for (User *U : Scalar->users()) { 2560 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2561 2562 Instruction *UserInst = dyn_cast<Instruction>(U); 2563 if (!UserInst) 2564 continue; 2565 2566 // Skip in-tree scalars that become vectors 2567 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2568 Value *UseScalar = UseEntry->Scalars[0]; 2569 // Some in-tree scalars will remain as scalar in vectorized 2570 // instructions. If that is the case, the one in Lane 0 will 2571 // be used. 2572 if (UseScalar != U || 2573 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2574 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2575 << ".\n"); 2576 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2577 continue; 2578 } 2579 } 2580 2581 // Ignore users in the user ignore list. 2582 if (is_contained(UserIgnoreList, UserInst)) 2583 continue; 2584 2585 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2586 << Lane << " from " << *Scalar << ".\n"); 2587 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2588 } 2589 } 2590 } 2591 } 2592 2593 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2594 const EdgeInfo &UserTreeIdx) { 2595 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2596 2597 InstructionsState S = getSameOpcode(VL); 2598 if (Depth == RecursionMaxDepth) { 2599 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2600 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2601 return; 2602 } 2603 2604 // Don't handle vectors. 2605 if (S.OpValue->getType()->isVectorTy()) { 2606 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2608 return; 2609 } 2610 2611 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2612 if (SI->getValueOperand()->getType()->isVectorTy()) { 2613 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2614 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2615 return; 2616 } 2617 2618 // If all of the operands are identical or constant we have a simple solution. 2619 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2620 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2622 return; 2623 } 2624 2625 // We now know that this is a vector of instructions of the same type from 2626 // the same block. 2627 2628 // Don't vectorize ephemeral values. 2629 for (Value *V : VL) { 2630 if (EphValues.count(V)) { 2631 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2632 << ") is ephemeral.\n"); 2633 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2634 return; 2635 } 2636 } 2637 2638 // Check if this is a duplicate of another entry. 2639 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2640 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2641 if (!E->isSame(VL)) { 2642 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2643 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2644 return; 2645 } 2646 // Record the reuse of the tree node. FIXME, currently this is only used to 2647 // properly draw the graph rather than for the actual vectorization. 2648 E->UserTreeIndices.push_back(UserTreeIdx); 2649 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2650 << ".\n"); 2651 return; 2652 } 2653 2654 // Check that none of the instructions in the bundle are already in the tree. 2655 for (Value *V : VL) { 2656 auto *I = dyn_cast<Instruction>(V); 2657 if (!I) 2658 continue; 2659 if (getTreeEntry(I)) { 2660 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2661 << ") is already in tree.\n"); 2662 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2663 return; 2664 } 2665 } 2666 2667 // If any of the scalars is marked as a value that needs to stay scalar, then 2668 // we need to gather the scalars. 2669 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2670 for (Value *V : VL) { 2671 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2672 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2673 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2674 return; 2675 } 2676 } 2677 2678 // Check that all of the users of the scalars that we want to vectorize are 2679 // schedulable. 2680 auto *VL0 = cast<Instruction>(S.OpValue); 2681 BasicBlock *BB = VL0->getParent(); 2682 2683 if (!DT->isReachableFromEntry(BB)) { 2684 // Don't go into unreachable blocks. They may contain instructions with 2685 // dependency cycles which confuse the final scheduling. 2686 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2687 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2688 return; 2689 } 2690 2691 // Check that every instruction appears once in this bundle. 2692 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2693 SmallVector<Value *, 4> UniqueValues; 2694 DenseMap<Value *, unsigned> UniquePositions; 2695 for (Value *V : VL) { 2696 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2697 ReuseShuffleIndicies.emplace_back(Res.first->second); 2698 if (Res.second) 2699 UniqueValues.emplace_back(V); 2700 } 2701 size_t NumUniqueScalarValues = UniqueValues.size(); 2702 if (NumUniqueScalarValues == VL.size()) { 2703 ReuseShuffleIndicies.clear(); 2704 } else { 2705 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2706 if (NumUniqueScalarValues <= 1 || 2707 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2708 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2709 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2710 return; 2711 } 2712 VL = UniqueValues; 2713 } 2714 2715 auto &BSRef = BlocksSchedules[BB]; 2716 if (!BSRef) 2717 BSRef = std::make_unique<BlockScheduling>(BB); 2718 2719 BlockScheduling &BS = *BSRef.get(); 2720 2721 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2722 if (!Bundle) { 2723 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2724 assert((!BS.getScheduleData(VL0) || 2725 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2726 "tryScheduleBundle should cancelScheduling on failure"); 2727 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2728 ReuseShuffleIndicies); 2729 return; 2730 } 2731 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2732 2733 unsigned ShuffleOrOp = S.isAltShuffle() ? 2734 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2735 switch (ShuffleOrOp) { 2736 case Instruction::PHI: { 2737 auto *PH = cast<PHINode>(VL0); 2738 2739 // Check for terminator values (e.g. invoke). 2740 for (Value *V : VL) 2741 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2742 Instruction *Term = dyn_cast<Instruction>( 2743 cast<PHINode>(V)->getIncomingValueForBlock( 2744 PH->getIncomingBlock(I))); 2745 if (Term && Term->isTerminator()) { 2746 LLVM_DEBUG(dbgs() 2747 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2748 BS.cancelScheduling(VL, VL0); 2749 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2750 ReuseShuffleIndicies); 2751 return; 2752 } 2753 } 2754 2755 TreeEntry *TE = 2756 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2757 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2758 2759 // Keeps the reordered operands to avoid code duplication. 2760 SmallVector<ValueList, 2> OperandsVec; 2761 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2762 ValueList Operands; 2763 // Prepare the operand vector. 2764 for (Value *V : VL) 2765 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2766 PH->getIncomingBlock(I))); 2767 TE->setOperand(I, Operands); 2768 OperandsVec.push_back(Operands); 2769 } 2770 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2771 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2772 return; 2773 } 2774 case Instruction::ExtractValue: 2775 case Instruction::ExtractElement: { 2776 OrdersType CurrentOrder; 2777 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2778 if (Reuse) { 2779 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2780 ++NumOpsWantToKeepOriginalOrder; 2781 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2782 ReuseShuffleIndicies); 2783 // This is a special case, as it does not gather, but at the same time 2784 // we are not extending buildTree_rec() towards the operands. 2785 ValueList Op0; 2786 Op0.assign(VL.size(), VL0->getOperand(0)); 2787 VectorizableTree.back()->setOperand(0, Op0); 2788 return; 2789 } 2790 if (!CurrentOrder.empty()) { 2791 LLVM_DEBUG({ 2792 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2793 "with order"; 2794 for (unsigned Idx : CurrentOrder) 2795 dbgs() << " " << Idx; 2796 dbgs() << "\n"; 2797 }); 2798 // Insert new order with initial value 0, if it does not exist, 2799 // otherwise return the iterator to the existing one. 2800 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2801 ReuseShuffleIndicies, CurrentOrder); 2802 findRootOrder(CurrentOrder); 2803 ++NumOpsWantToKeepOrder[CurrentOrder]; 2804 // This is a special case, as it does not gather, but at the same time 2805 // we are not extending buildTree_rec() towards the operands. 2806 ValueList Op0; 2807 Op0.assign(VL.size(), VL0->getOperand(0)); 2808 VectorizableTree.back()->setOperand(0, Op0); 2809 return; 2810 } 2811 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2812 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2813 ReuseShuffleIndicies); 2814 BS.cancelScheduling(VL, VL0); 2815 return; 2816 } 2817 case Instruction::Load: { 2818 // Check that a vectorized load would load the same memory as a scalar 2819 // load. For example, we don't want to vectorize loads that are smaller 2820 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2821 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2822 // from such a struct, we read/write packed bits disagreeing with the 2823 // unvectorized version. 2824 Type *ScalarTy = VL0->getType(); 2825 2826 if (DL->getTypeSizeInBits(ScalarTy) != 2827 DL->getTypeAllocSizeInBits(ScalarTy)) { 2828 BS.cancelScheduling(VL, VL0); 2829 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2830 ReuseShuffleIndicies); 2831 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2832 return; 2833 } 2834 2835 // Make sure all loads in the bundle are simple - we can't vectorize 2836 // atomic or volatile loads. 2837 SmallVector<Value *, 4> PointerOps(VL.size()); 2838 auto POIter = PointerOps.begin(); 2839 for (Value *V : VL) { 2840 auto *L = cast<LoadInst>(V); 2841 if (!L->isSimple()) { 2842 BS.cancelScheduling(VL, VL0); 2843 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2844 ReuseShuffleIndicies); 2845 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2846 return; 2847 } 2848 *POIter = L->getPointerOperand(); 2849 ++POIter; 2850 } 2851 2852 OrdersType CurrentOrder; 2853 // Check the order of pointer operands. 2854 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2855 Value *Ptr0; 2856 Value *PtrN; 2857 if (CurrentOrder.empty()) { 2858 Ptr0 = PointerOps.front(); 2859 PtrN = PointerOps.back(); 2860 } else { 2861 Ptr0 = PointerOps[CurrentOrder.front()]; 2862 PtrN = PointerOps[CurrentOrder.back()]; 2863 } 2864 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2865 const SCEV *ScevN = SE->getSCEV(PtrN); 2866 const auto *Diff = 2867 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2868 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2869 // Check that the sorted loads are consecutive. 2870 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2871 if (CurrentOrder.empty()) { 2872 // Original loads are consecutive and does not require reordering. 2873 ++NumOpsWantToKeepOriginalOrder; 2874 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2875 UserTreeIdx, ReuseShuffleIndicies); 2876 TE->setOperandsInOrder(); 2877 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2878 } else { 2879 // Need to reorder. 2880 TreeEntry *TE = 2881 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2882 ReuseShuffleIndicies, CurrentOrder); 2883 TE->setOperandsInOrder(); 2884 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2885 findRootOrder(CurrentOrder); 2886 ++NumOpsWantToKeepOrder[CurrentOrder]; 2887 } 2888 return; 2889 } 2890 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2891 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2892 UserTreeIdx, ReuseShuffleIndicies); 2893 TE->setOperandsInOrder(); 2894 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2895 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2896 return; 2897 } 2898 2899 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2900 BS.cancelScheduling(VL, VL0); 2901 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2902 ReuseShuffleIndicies); 2903 return; 2904 } 2905 case Instruction::ZExt: 2906 case Instruction::SExt: 2907 case Instruction::FPToUI: 2908 case Instruction::FPToSI: 2909 case Instruction::FPExt: 2910 case Instruction::PtrToInt: 2911 case Instruction::IntToPtr: 2912 case Instruction::SIToFP: 2913 case Instruction::UIToFP: 2914 case Instruction::Trunc: 2915 case Instruction::FPTrunc: 2916 case Instruction::BitCast: { 2917 Type *SrcTy = VL0->getOperand(0)->getType(); 2918 for (Value *V : VL) { 2919 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2920 if (Ty != SrcTy || !isValidElementType(Ty)) { 2921 BS.cancelScheduling(VL, VL0); 2922 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2923 ReuseShuffleIndicies); 2924 LLVM_DEBUG(dbgs() 2925 << "SLP: Gathering casts with different src types.\n"); 2926 return; 2927 } 2928 } 2929 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2930 ReuseShuffleIndicies); 2931 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2932 2933 TE->setOperandsInOrder(); 2934 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2935 ValueList Operands; 2936 // Prepare the operand vector. 2937 for (Value *V : VL) 2938 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2939 2940 buildTree_rec(Operands, Depth + 1, {TE, i}); 2941 } 2942 return; 2943 } 2944 case Instruction::ICmp: 2945 case Instruction::FCmp: { 2946 // Check that all of the compares have the same predicate. 2947 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2948 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2949 Type *ComparedTy = VL0->getOperand(0)->getType(); 2950 for (Value *V : VL) { 2951 CmpInst *Cmp = cast<CmpInst>(V); 2952 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2953 Cmp->getOperand(0)->getType() != ComparedTy) { 2954 BS.cancelScheduling(VL, VL0); 2955 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2956 ReuseShuffleIndicies); 2957 LLVM_DEBUG(dbgs() 2958 << "SLP: Gathering cmp with different predicate.\n"); 2959 return; 2960 } 2961 } 2962 2963 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2964 ReuseShuffleIndicies); 2965 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2966 2967 ValueList Left, Right; 2968 if (cast<CmpInst>(VL0)->isCommutative()) { 2969 // Commutative predicate - collect + sort operands of the instructions 2970 // so that each side is more likely to have the same opcode. 2971 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2972 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2973 } else { 2974 // Collect operands - commute if it uses the swapped predicate. 2975 for (Value *V : VL) { 2976 auto *Cmp = cast<CmpInst>(V); 2977 Value *LHS = Cmp->getOperand(0); 2978 Value *RHS = Cmp->getOperand(1); 2979 if (Cmp->getPredicate() != P0) 2980 std::swap(LHS, RHS); 2981 Left.push_back(LHS); 2982 Right.push_back(RHS); 2983 } 2984 } 2985 TE->setOperand(0, Left); 2986 TE->setOperand(1, Right); 2987 buildTree_rec(Left, Depth + 1, {TE, 0}); 2988 buildTree_rec(Right, Depth + 1, {TE, 1}); 2989 return; 2990 } 2991 case Instruction::Select: 2992 case Instruction::FNeg: 2993 case Instruction::Add: 2994 case Instruction::FAdd: 2995 case Instruction::Sub: 2996 case Instruction::FSub: 2997 case Instruction::Mul: 2998 case Instruction::FMul: 2999 case Instruction::UDiv: 3000 case Instruction::SDiv: 3001 case Instruction::FDiv: 3002 case Instruction::URem: 3003 case Instruction::SRem: 3004 case Instruction::FRem: 3005 case Instruction::Shl: 3006 case Instruction::LShr: 3007 case Instruction::AShr: 3008 case Instruction::And: 3009 case Instruction::Or: 3010 case Instruction::Xor: { 3011 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3012 ReuseShuffleIndicies); 3013 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3014 3015 // Sort operands of the instructions so that each side is more likely to 3016 // have the same opcode. 3017 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3018 ValueList Left, Right; 3019 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3020 TE->setOperand(0, Left); 3021 TE->setOperand(1, Right); 3022 buildTree_rec(Left, Depth + 1, {TE, 0}); 3023 buildTree_rec(Right, Depth + 1, {TE, 1}); 3024 return; 3025 } 3026 3027 TE->setOperandsInOrder(); 3028 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3029 ValueList Operands; 3030 // Prepare the operand vector. 3031 for (Value *V : VL) 3032 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3033 3034 buildTree_rec(Operands, Depth + 1, {TE, i}); 3035 } 3036 return; 3037 } 3038 case Instruction::GetElementPtr: { 3039 // We don't combine GEPs with complicated (nested) indexing. 3040 for (Value *V : VL) { 3041 if (cast<Instruction>(V)->getNumOperands() != 2) { 3042 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3043 BS.cancelScheduling(VL, VL0); 3044 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3045 ReuseShuffleIndicies); 3046 return; 3047 } 3048 } 3049 3050 // We can't combine several GEPs into one vector if they operate on 3051 // different types. 3052 Type *Ty0 = VL0->getOperand(0)->getType(); 3053 for (Value *V : VL) { 3054 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3055 if (Ty0 != CurTy) { 3056 LLVM_DEBUG(dbgs() 3057 << "SLP: not-vectorizable GEP (different types).\n"); 3058 BS.cancelScheduling(VL, VL0); 3059 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3060 ReuseShuffleIndicies); 3061 return; 3062 } 3063 } 3064 3065 // We don't combine GEPs with non-constant indexes. 3066 Type *Ty1 = VL0->getOperand(1)->getType(); 3067 for (Value *V : VL) { 3068 auto Op = cast<Instruction>(V)->getOperand(1); 3069 if (!isa<ConstantInt>(Op) || 3070 (Op->getType() != Ty1 && 3071 Op->getType()->getScalarSizeInBits() > 3072 DL->getIndexSizeInBits( 3073 V->getType()->getPointerAddressSpace()))) { 3074 LLVM_DEBUG(dbgs() 3075 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3076 BS.cancelScheduling(VL, VL0); 3077 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3078 ReuseShuffleIndicies); 3079 return; 3080 } 3081 } 3082 3083 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3084 ReuseShuffleIndicies); 3085 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3086 TE->setOperandsInOrder(); 3087 for (unsigned i = 0, e = 2; i < e; ++i) { 3088 ValueList Operands; 3089 // Prepare the operand vector. 3090 for (Value *V : VL) 3091 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3092 3093 buildTree_rec(Operands, Depth + 1, {TE, i}); 3094 } 3095 return; 3096 } 3097 case Instruction::Store: { 3098 // Check if the stores are consecutive or if we need to swizzle them. 3099 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3100 // Make sure all stores in the bundle are simple - we can't vectorize 3101 // atomic or volatile stores. 3102 SmallVector<Value *, 4> PointerOps(VL.size()); 3103 ValueList Operands(VL.size()); 3104 auto POIter = PointerOps.begin(); 3105 auto OIter = Operands.begin(); 3106 for (Value *V : VL) { 3107 auto *SI = cast<StoreInst>(V); 3108 if (!SI->isSimple()) { 3109 BS.cancelScheduling(VL, VL0); 3110 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3111 ReuseShuffleIndicies); 3112 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3113 return; 3114 } 3115 *POIter = SI->getPointerOperand(); 3116 *OIter = SI->getValueOperand(); 3117 ++POIter; 3118 ++OIter; 3119 } 3120 3121 OrdersType CurrentOrder; 3122 // Check the order of pointer operands. 3123 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3124 Value *Ptr0; 3125 Value *PtrN; 3126 if (CurrentOrder.empty()) { 3127 Ptr0 = PointerOps.front(); 3128 PtrN = PointerOps.back(); 3129 } else { 3130 Ptr0 = PointerOps[CurrentOrder.front()]; 3131 PtrN = PointerOps[CurrentOrder.back()]; 3132 } 3133 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3134 const SCEV *ScevN = SE->getSCEV(PtrN); 3135 const auto *Diff = 3136 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3137 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3138 // Check that the sorted pointer operands are consecutive. 3139 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3140 if (CurrentOrder.empty()) { 3141 // Original stores are consecutive and does not require reordering. 3142 ++NumOpsWantToKeepOriginalOrder; 3143 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3144 UserTreeIdx, ReuseShuffleIndicies); 3145 TE->setOperandsInOrder(); 3146 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3147 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3148 } else { 3149 TreeEntry *TE = 3150 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3151 ReuseShuffleIndicies, CurrentOrder); 3152 TE->setOperandsInOrder(); 3153 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3154 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3155 findRootOrder(CurrentOrder); 3156 ++NumOpsWantToKeepOrder[CurrentOrder]; 3157 } 3158 return; 3159 } 3160 } 3161 3162 BS.cancelScheduling(VL, VL0); 3163 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3164 ReuseShuffleIndicies); 3165 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3166 return; 3167 } 3168 case Instruction::Call: { 3169 // Check if the calls are all to the same vectorizable intrinsic or 3170 // library function. 3171 CallInst *CI = cast<CallInst>(VL0); 3172 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3173 3174 VFShape Shape = VFShape::get( 3175 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3176 false /*HasGlobalPred*/); 3177 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3178 3179 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3180 BS.cancelScheduling(VL, VL0); 3181 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3182 ReuseShuffleIndicies); 3183 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3184 return; 3185 } 3186 Function *F = CI->getCalledFunction(); 3187 unsigned NumArgs = CI->getNumArgOperands(); 3188 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3189 for (unsigned j = 0; j != NumArgs; ++j) 3190 if (hasVectorInstrinsicScalarOpd(ID, j)) 3191 ScalarArgs[j] = CI->getArgOperand(j); 3192 for (Value *V : VL) { 3193 CallInst *CI2 = dyn_cast<CallInst>(V); 3194 if (!CI2 || CI2->getCalledFunction() != F || 3195 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3196 (VecFunc && 3197 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3198 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3199 BS.cancelScheduling(VL, VL0); 3200 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3201 ReuseShuffleIndicies); 3202 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3203 << "\n"); 3204 return; 3205 } 3206 // Some intrinsics have scalar arguments and should be same in order for 3207 // them to be vectorized. 3208 for (unsigned j = 0; j != NumArgs; ++j) { 3209 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3210 Value *A1J = CI2->getArgOperand(j); 3211 if (ScalarArgs[j] != A1J) { 3212 BS.cancelScheduling(VL, VL0); 3213 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3214 ReuseShuffleIndicies); 3215 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3216 << " argument " << ScalarArgs[j] << "!=" << A1J 3217 << "\n"); 3218 return; 3219 } 3220 } 3221 } 3222 // Verify that the bundle operands are identical between the two calls. 3223 if (CI->hasOperandBundles() && 3224 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3225 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3226 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3227 BS.cancelScheduling(VL, VL0); 3228 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3229 ReuseShuffleIndicies); 3230 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3231 << *CI << "!=" << *V << '\n'); 3232 return; 3233 } 3234 } 3235 3236 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3237 ReuseShuffleIndicies); 3238 TE->setOperandsInOrder(); 3239 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3240 ValueList Operands; 3241 // Prepare the operand vector. 3242 for (Value *V : VL) { 3243 auto *CI2 = cast<CallInst>(V); 3244 Operands.push_back(CI2->getArgOperand(i)); 3245 } 3246 buildTree_rec(Operands, Depth + 1, {TE, i}); 3247 } 3248 return; 3249 } 3250 case Instruction::ShuffleVector: { 3251 // If this is not an alternate sequence of opcode like add-sub 3252 // then do not vectorize this instruction. 3253 if (!S.isAltShuffle()) { 3254 BS.cancelScheduling(VL, VL0); 3255 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3256 ReuseShuffleIndicies); 3257 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3258 return; 3259 } 3260 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3261 ReuseShuffleIndicies); 3262 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3263 3264 // Reorder operands if reordering would enable vectorization. 3265 if (isa<BinaryOperator>(VL0)) { 3266 ValueList Left, Right; 3267 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3268 TE->setOperand(0, Left); 3269 TE->setOperand(1, Right); 3270 buildTree_rec(Left, Depth + 1, {TE, 0}); 3271 buildTree_rec(Right, Depth + 1, {TE, 1}); 3272 return; 3273 } 3274 3275 TE->setOperandsInOrder(); 3276 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3277 ValueList Operands; 3278 // Prepare the operand vector. 3279 for (Value *V : VL) 3280 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3281 3282 buildTree_rec(Operands, Depth + 1, {TE, i}); 3283 } 3284 return; 3285 } 3286 default: 3287 BS.cancelScheduling(VL, VL0); 3288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3289 ReuseShuffleIndicies); 3290 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3291 return; 3292 } 3293 } 3294 3295 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3296 unsigned N = 1; 3297 Type *EltTy = T; 3298 3299 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3300 isa<VectorType>(EltTy)) { 3301 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3302 // Check that struct is homogeneous. 3303 for (const auto *Ty : ST->elements()) 3304 if (Ty != *ST->element_begin()) 3305 return 0; 3306 N *= ST->getNumElements(); 3307 EltTy = *ST->element_begin(); 3308 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3309 N *= AT->getNumElements(); 3310 EltTy = AT->getElementType(); 3311 } else { 3312 auto *VT = cast<FixedVectorType>(EltTy); 3313 N *= VT->getNumElements(); 3314 EltTy = VT->getElementType(); 3315 } 3316 } 3317 3318 if (!isValidElementType(EltTy)) 3319 return 0; 3320 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3321 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3322 return 0; 3323 return N; 3324 } 3325 3326 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3327 SmallVectorImpl<unsigned> &CurrentOrder) const { 3328 Instruction *E0 = cast<Instruction>(OpValue); 3329 assert(E0->getOpcode() == Instruction::ExtractElement || 3330 E0->getOpcode() == Instruction::ExtractValue); 3331 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3332 // Check if all of the extracts come from the same vector and from the 3333 // correct offset. 3334 Value *Vec = E0->getOperand(0); 3335 3336 CurrentOrder.clear(); 3337 3338 // We have to extract from a vector/aggregate with the same number of elements. 3339 unsigned NElts; 3340 if (E0->getOpcode() == Instruction::ExtractValue) { 3341 const DataLayout &DL = E0->getModule()->getDataLayout(); 3342 NElts = canMapToVector(Vec->getType(), DL); 3343 if (!NElts) 3344 return false; 3345 // Check if load can be rewritten as load of vector. 3346 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3347 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3348 return false; 3349 } else { 3350 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3351 } 3352 3353 if (NElts != VL.size()) 3354 return false; 3355 3356 // Check that all of the indices extract from the correct offset. 3357 bool ShouldKeepOrder = true; 3358 unsigned E = VL.size(); 3359 // Assign to all items the initial value E + 1 so we can check if the extract 3360 // instruction index was used already. 3361 // Also, later we can check that all the indices are used and we have a 3362 // consecutive access in the extract instructions, by checking that no 3363 // element of CurrentOrder still has value E + 1. 3364 CurrentOrder.assign(E, E + 1); 3365 unsigned I = 0; 3366 for (; I < E; ++I) { 3367 auto *Inst = cast<Instruction>(VL[I]); 3368 if (Inst->getOperand(0) != Vec) 3369 break; 3370 Optional<unsigned> Idx = getExtractIndex(Inst); 3371 if (!Idx) 3372 break; 3373 const unsigned ExtIdx = *Idx; 3374 if (ExtIdx != I) { 3375 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3376 break; 3377 ShouldKeepOrder = false; 3378 CurrentOrder[ExtIdx] = I; 3379 } else { 3380 if (CurrentOrder[I] != E + 1) 3381 break; 3382 CurrentOrder[I] = I; 3383 } 3384 } 3385 if (I < E) { 3386 CurrentOrder.clear(); 3387 return false; 3388 } 3389 3390 return ShouldKeepOrder; 3391 } 3392 3393 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3394 return I->hasOneUse() || 3395 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3396 return ScalarToTreeEntry.count(U) > 0; 3397 }); 3398 } 3399 3400 static std::pair<unsigned, unsigned> 3401 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3402 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3403 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3404 3405 // Calculate the cost of the scalar and vector calls. 3406 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3407 int IntrinsicCost = 3408 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3409 3410 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3411 VecTy->getNumElements())), 3412 false /*HasGlobalPred*/); 3413 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3414 int LibCost = IntrinsicCost; 3415 if (!CI->isNoBuiltin() && VecFunc) { 3416 // Calculate the cost of the vector library call. 3417 SmallVector<Type *, 4> VecTys; 3418 for (Use &Arg : CI->args()) 3419 VecTys.push_back( 3420 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3421 3422 // If the corresponding vector call is cheaper, return its cost. 3423 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3424 TTI::TCK_RecipThroughput); 3425 } 3426 return {IntrinsicCost, LibCost}; 3427 } 3428 3429 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3430 ArrayRef<Value*> VL = E->Scalars; 3431 3432 Type *ScalarTy = VL[0]->getType(); 3433 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3434 ScalarTy = SI->getValueOperand()->getType(); 3435 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3436 ScalarTy = CI->getOperand(0)->getType(); 3437 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3438 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3439 3440 // If we have computed a smaller type for the expression, update VecTy so 3441 // that the costs will be accurate. 3442 if (MinBWs.count(VL[0])) 3443 VecTy = FixedVectorType::get( 3444 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3445 3446 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3447 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3448 InstructionCost ReuseShuffleCost = 0; 3449 if (NeedToShuffleReuses) { 3450 ReuseShuffleCost = 3451 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3452 } 3453 if (E->State == TreeEntry::NeedToGather) { 3454 if (allConstant(VL)) 3455 return 0; 3456 if (isSplat(VL)) { 3457 return ReuseShuffleCost + 3458 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3459 } 3460 if (E->getOpcode() == Instruction::ExtractElement && 3461 allSameType(VL) && allSameBlock(VL)) { 3462 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3463 if (ShuffleKind.hasValue()) { 3464 InstructionCost Cost = 3465 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3466 for (auto *V : VL) { 3467 // If all users of instruction are going to be vectorized and this 3468 // instruction itself is not going to be vectorized, consider this 3469 // instruction as dead and remove its cost from the final cost of the 3470 // vectorized tree. 3471 if (areAllUsersVectorized(cast<Instruction>(V)) && 3472 !ScalarToTreeEntry.count(V)) { 3473 auto *IO = cast<ConstantInt>( 3474 cast<ExtractElementInst>(V)->getIndexOperand()); 3475 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3476 IO->getZExtValue()); 3477 } 3478 } 3479 return ReuseShuffleCost + Cost; 3480 } 3481 } 3482 return ReuseShuffleCost + getGatherCost(VL); 3483 } 3484 assert((E->State == TreeEntry::Vectorize || 3485 E->State == TreeEntry::ScatterVectorize) && 3486 "Unhandled state"); 3487 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3488 Instruction *VL0 = E->getMainOp(); 3489 unsigned ShuffleOrOp = 3490 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3491 switch (ShuffleOrOp) { 3492 case Instruction::PHI: 3493 return 0; 3494 3495 case Instruction::ExtractValue: 3496 case Instruction::ExtractElement: { 3497 InstructionCost DeadCost = 0; 3498 if (NeedToShuffleReuses) { 3499 unsigned Idx = 0; 3500 for (unsigned I : E->ReuseShuffleIndices) { 3501 if (ShuffleOrOp == Instruction::ExtractElement) { 3502 auto *IO = cast<ConstantInt>( 3503 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3504 Idx = IO->getZExtValue(); 3505 ReuseShuffleCost -= TTI->getVectorInstrCost( 3506 Instruction::ExtractElement, VecTy, Idx); 3507 } else { 3508 ReuseShuffleCost -= TTI->getVectorInstrCost( 3509 Instruction::ExtractElement, VecTy, Idx); 3510 ++Idx; 3511 } 3512 } 3513 Idx = ReuseShuffleNumbers; 3514 for (Value *V : VL) { 3515 if (ShuffleOrOp == Instruction::ExtractElement) { 3516 auto *IO = cast<ConstantInt>( 3517 cast<ExtractElementInst>(V)->getIndexOperand()); 3518 Idx = IO->getZExtValue(); 3519 } else { 3520 --Idx; 3521 } 3522 ReuseShuffleCost += 3523 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3524 } 3525 DeadCost = ReuseShuffleCost; 3526 } else if (!E->ReorderIndices.empty()) { 3527 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3528 VecTy); 3529 } 3530 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3531 Instruction *EI = cast<Instruction>(VL[I]); 3532 // If all users are going to be vectorized, instruction can be 3533 // considered as dead. 3534 // The same, if have only one user, it will be vectorized for sure. 3535 if (areAllUsersVectorized(EI)) { 3536 // Take credit for instruction that will become dead. 3537 if (EI->hasOneUse()) { 3538 Instruction *Ext = EI->user_back(); 3539 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3540 all_of(Ext->users(), 3541 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3542 // Use getExtractWithExtendCost() to calculate the cost of 3543 // extractelement/ext pair. 3544 DeadCost -= TTI->getExtractWithExtendCost( 3545 Ext->getOpcode(), Ext->getType(), VecTy, I); 3546 // Add back the cost of s|zext which is subtracted separately. 3547 DeadCost += TTI->getCastInstrCost( 3548 Ext->getOpcode(), Ext->getType(), EI->getType(), 3549 TTI::getCastContextHint(Ext), CostKind, Ext); 3550 continue; 3551 } 3552 } 3553 DeadCost -= 3554 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3555 } 3556 } 3557 return DeadCost; 3558 } 3559 case Instruction::ZExt: 3560 case Instruction::SExt: 3561 case Instruction::FPToUI: 3562 case Instruction::FPToSI: 3563 case Instruction::FPExt: 3564 case Instruction::PtrToInt: 3565 case Instruction::IntToPtr: 3566 case Instruction::SIToFP: 3567 case Instruction::UIToFP: 3568 case Instruction::Trunc: 3569 case Instruction::FPTrunc: 3570 case Instruction::BitCast: { 3571 Type *SrcTy = VL0->getOperand(0)->getType(); 3572 InstructionCost ScalarEltCost = 3573 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3574 TTI::getCastContextHint(VL0), CostKind, VL0); 3575 if (NeedToShuffleReuses) { 3576 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3577 } 3578 3579 // Calculate the cost of this instruction. 3580 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3581 3582 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3583 InstructionCost VecCost = 0; 3584 // Check if the values are candidates to demote. 3585 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3586 VecCost = 3587 ReuseShuffleCost + 3588 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3589 TTI::getCastContextHint(VL0), CostKind, VL0); 3590 } 3591 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3592 return VecCost - ScalarCost; 3593 } 3594 case Instruction::FCmp: 3595 case Instruction::ICmp: 3596 case Instruction::Select: { 3597 // Calculate the cost of this instruction. 3598 InstructionCost ScalarEltCost = 3599 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3600 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3601 if (NeedToShuffleReuses) { 3602 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3603 } 3604 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3605 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3606 3607 // Check if all entries in VL are either compares or selects with compares 3608 // as condition that have the same predicates. 3609 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3610 bool First = true; 3611 for (auto *V : VL) { 3612 CmpInst::Predicate CurrentPred; 3613 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3614 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3615 !match(V, MatchCmp)) || 3616 (!First && VecPred != CurrentPred)) { 3617 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3618 break; 3619 } 3620 First = false; 3621 VecPred = CurrentPred; 3622 } 3623 3624 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3625 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3626 // Check if it is possible and profitable to use min/max for selects in 3627 // VL. 3628 // 3629 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3630 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3631 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3632 {VecTy, VecTy}); 3633 InstructionCost IntrinsicCost = 3634 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3635 // If the selects are the only uses of the compares, they will be dead 3636 // and we can adjust the cost by removing their cost. 3637 if (IntrinsicAndUse.second) 3638 IntrinsicCost -= 3639 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3640 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3641 VecCost = std::min(VecCost, IntrinsicCost); 3642 } 3643 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3644 return ReuseShuffleCost + VecCost - ScalarCost; 3645 } 3646 case Instruction::FNeg: 3647 case Instruction::Add: 3648 case Instruction::FAdd: 3649 case Instruction::Sub: 3650 case Instruction::FSub: 3651 case Instruction::Mul: 3652 case Instruction::FMul: 3653 case Instruction::UDiv: 3654 case Instruction::SDiv: 3655 case Instruction::FDiv: 3656 case Instruction::URem: 3657 case Instruction::SRem: 3658 case Instruction::FRem: 3659 case Instruction::Shl: 3660 case Instruction::LShr: 3661 case Instruction::AShr: 3662 case Instruction::And: 3663 case Instruction::Or: 3664 case Instruction::Xor: { 3665 // Certain instructions can be cheaper to vectorize if they have a 3666 // constant second vector operand. 3667 TargetTransformInfo::OperandValueKind Op1VK = 3668 TargetTransformInfo::OK_AnyValue; 3669 TargetTransformInfo::OperandValueKind Op2VK = 3670 TargetTransformInfo::OK_UniformConstantValue; 3671 TargetTransformInfo::OperandValueProperties Op1VP = 3672 TargetTransformInfo::OP_None; 3673 TargetTransformInfo::OperandValueProperties Op2VP = 3674 TargetTransformInfo::OP_PowerOf2; 3675 3676 // If all operands are exactly the same ConstantInt then set the 3677 // operand kind to OK_UniformConstantValue. 3678 // If instead not all operands are constants, then set the operand kind 3679 // to OK_AnyValue. If all operands are constants but not the same, 3680 // then set the operand kind to OK_NonUniformConstantValue. 3681 ConstantInt *CInt0 = nullptr; 3682 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3683 const Instruction *I = cast<Instruction>(VL[i]); 3684 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3685 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3686 if (!CInt) { 3687 Op2VK = TargetTransformInfo::OK_AnyValue; 3688 Op2VP = TargetTransformInfo::OP_None; 3689 break; 3690 } 3691 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3692 !CInt->getValue().isPowerOf2()) 3693 Op2VP = TargetTransformInfo::OP_None; 3694 if (i == 0) { 3695 CInt0 = CInt; 3696 continue; 3697 } 3698 if (CInt0 != CInt) 3699 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3700 } 3701 3702 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3703 InstructionCost ScalarEltCost = 3704 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3705 Op2VK, Op1VP, Op2VP, Operands, VL0); 3706 if (NeedToShuffleReuses) { 3707 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3708 } 3709 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3710 InstructionCost VecCost = 3711 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3712 Op2VK, Op1VP, Op2VP, Operands, VL0); 3713 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3714 return ReuseShuffleCost + VecCost - ScalarCost; 3715 } 3716 case Instruction::GetElementPtr: { 3717 TargetTransformInfo::OperandValueKind Op1VK = 3718 TargetTransformInfo::OK_AnyValue; 3719 TargetTransformInfo::OperandValueKind Op2VK = 3720 TargetTransformInfo::OK_UniformConstantValue; 3721 3722 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3723 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3724 if (NeedToShuffleReuses) { 3725 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3726 } 3727 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3728 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3729 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3730 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3731 return ReuseShuffleCost + VecCost - ScalarCost; 3732 } 3733 case Instruction::Load: { 3734 // Cost of wide load - cost of scalar loads. 3735 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3736 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3737 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3738 if (NeedToShuffleReuses) { 3739 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3740 } 3741 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3742 InstructionCost VecLdCost; 3743 if (E->State == TreeEntry::Vectorize) { 3744 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3745 CostKind, VL0); 3746 } else { 3747 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3748 VecLdCost = TTI->getGatherScatterOpCost( 3749 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3750 /*VariableMask=*/false, alignment, CostKind, VL0); 3751 } 3752 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3753 VecLdCost += TTI->getShuffleCost( 3754 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3755 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3756 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3757 } 3758 case Instruction::Store: { 3759 // We know that we can merge the stores. Calculate the cost. 3760 bool IsReorder = !E->ReorderIndices.empty(); 3761 auto *SI = 3762 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3763 Align Alignment = SI->getAlign(); 3764 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3765 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3766 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3767 InstructionCost VecStCost = TTI->getMemoryOpCost( 3768 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3769 if (IsReorder) 3770 VecStCost += TTI->getShuffleCost( 3771 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3772 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3773 return VecStCost - ScalarStCost; 3774 } 3775 case Instruction::Call: { 3776 CallInst *CI = cast<CallInst>(VL0); 3777 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3778 3779 // Calculate the cost of the scalar and vector calls. 3780 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3781 InstructionCost ScalarEltCost = 3782 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3783 if (NeedToShuffleReuses) { 3784 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3785 } 3786 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3787 3788 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3789 InstructionCost VecCallCost = 3790 std::min(VecCallCosts.first, VecCallCosts.second); 3791 3792 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3793 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3794 << " for " << *CI << "\n"); 3795 3796 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3797 } 3798 case Instruction::ShuffleVector: { 3799 assert(E->isAltShuffle() && 3800 ((Instruction::isBinaryOp(E->getOpcode()) && 3801 Instruction::isBinaryOp(E->getAltOpcode())) || 3802 (Instruction::isCast(E->getOpcode()) && 3803 Instruction::isCast(E->getAltOpcode()))) && 3804 "Invalid Shuffle Vector Operand"); 3805 InstructionCost ScalarCost = 0; 3806 if (NeedToShuffleReuses) { 3807 for (unsigned Idx : E->ReuseShuffleIndices) { 3808 Instruction *I = cast<Instruction>(VL[Idx]); 3809 InstructionCost Cost = TTI->getInstructionCost(I, CostKind); 3810 assert(Cost.isValid() && "Invalid instruction cost"); 3811 ReuseShuffleCost -= *(Cost.getValue()); 3812 } 3813 for (Value *V : VL) { 3814 Instruction *I = cast<Instruction>(V); 3815 InstructionCost Cost = TTI->getInstructionCost(I, CostKind); 3816 assert(Cost.isValid() && "Invalid instruction cost"); 3817 ReuseShuffleCost += *(Cost.getValue()); 3818 } 3819 } 3820 for (Value *V : VL) { 3821 Instruction *I = cast<Instruction>(V); 3822 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3823 InstructionCost Cost = TTI->getInstructionCost(I, CostKind); 3824 assert(Cost.isValid() && "Invalid instruction cost"); 3825 ScalarCost += *(Cost.getValue()); 3826 } 3827 // VecCost is equal to sum of the cost of creating 2 vectors 3828 // and the cost of creating shuffle. 3829 InstructionCost VecCost = 0; 3830 if (Instruction::isBinaryOp(E->getOpcode())) { 3831 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3832 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3833 CostKind); 3834 } else { 3835 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3836 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3837 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3838 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3839 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3840 TTI::CastContextHint::None, CostKind); 3841 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3842 TTI::CastContextHint::None, CostKind); 3843 } 3844 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3845 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3846 return ReuseShuffleCost + VecCost - ScalarCost; 3847 } 3848 default: 3849 llvm_unreachable("Unknown instruction"); 3850 } 3851 } 3852 3853 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3854 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3855 << VectorizableTree.size() << " is fully vectorizable .\n"); 3856 3857 // We only handle trees of heights 1 and 2. 3858 if (VectorizableTree.size() == 1 && 3859 VectorizableTree[0]->State == TreeEntry::Vectorize) 3860 return true; 3861 3862 if (VectorizableTree.size() != 2) 3863 return false; 3864 3865 // Handle splat and all-constants stores. 3866 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3867 (allConstant(VectorizableTree[1]->Scalars) || 3868 isSplat(VectorizableTree[1]->Scalars))) 3869 return true; 3870 3871 // Gathering cost would be too much for tiny trees. 3872 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3873 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3874 return false; 3875 3876 return true; 3877 } 3878 3879 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3880 TargetTransformInfo *TTI) { 3881 // Look past the root to find a source value. Arbitrarily follow the 3882 // path through operand 0 of any 'or'. Also, peek through optional 3883 // shift-left-by-multiple-of-8-bits. 3884 Value *ZextLoad = Root; 3885 const APInt *ShAmtC; 3886 while (!isa<ConstantExpr>(ZextLoad) && 3887 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3888 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3889 ShAmtC->urem(8) == 0))) 3890 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3891 3892 // Check if the input is an extended load of the required or/shift expression. 3893 Value *LoadPtr; 3894 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3895 return false; 3896 3897 // Require that the total load bit width is a legal integer type. 3898 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3899 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3900 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3901 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3902 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3903 return false; 3904 3905 // Everything matched - assume that we can fold the whole sequence using 3906 // load combining. 3907 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3908 << *(cast<Instruction>(Root)) << "\n"); 3909 3910 return true; 3911 } 3912 3913 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3914 if (RdxOpcode != Instruction::Or) 3915 return false; 3916 3917 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3918 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3919 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3920 } 3921 3922 bool BoUpSLP::isLoadCombineCandidate() const { 3923 // Peek through a final sequence of stores and check if all operations are 3924 // likely to be load-combined. 3925 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3926 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3927 Value *X; 3928 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3929 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3930 return false; 3931 } 3932 return true; 3933 } 3934 3935 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3936 // We can vectorize the tree if its size is greater than or equal to the 3937 // minimum size specified by the MinTreeSize command line option. 3938 if (VectorizableTree.size() >= MinTreeSize) 3939 return false; 3940 3941 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3942 // can vectorize it if we can prove it fully vectorizable. 3943 if (isFullyVectorizableTinyTree()) 3944 return false; 3945 3946 assert(VectorizableTree.empty() 3947 ? ExternalUses.empty() 3948 : true && "We shouldn't have any external users"); 3949 3950 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3951 // vectorizable. 3952 return true; 3953 } 3954 3955 InstructionCost BoUpSLP::getSpillCost() const { 3956 // Walk from the bottom of the tree to the top, tracking which values are 3957 // live. When we see a call instruction that is not part of our tree, 3958 // query TTI to see if there is a cost to keeping values live over it 3959 // (for example, if spills and fills are required). 3960 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3961 InstructionCost Cost = 0; 3962 3963 SmallPtrSet<Instruction*, 4> LiveValues; 3964 Instruction *PrevInst = nullptr; 3965 3966 // The entries in VectorizableTree are not necessarily ordered by their 3967 // position in basic blocks. Collect them and order them by dominance so later 3968 // instructions are guaranteed to be visited first. For instructions in 3969 // different basic blocks, we only scan to the beginning of the block, so 3970 // their order does not matter, as long as all instructions in a basic block 3971 // are grouped together. Using dominance ensures a deterministic order. 3972 SmallVector<Instruction *, 16> OrderedScalars; 3973 for (const auto &TEPtr : VectorizableTree) { 3974 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3975 if (!Inst) 3976 continue; 3977 OrderedScalars.push_back(Inst); 3978 } 3979 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3980 return DT->dominates(B, A); 3981 }); 3982 3983 for (Instruction *Inst : OrderedScalars) { 3984 if (!PrevInst) { 3985 PrevInst = Inst; 3986 continue; 3987 } 3988 3989 // Update LiveValues. 3990 LiveValues.erase(PrevInst); 3991 for (auto &J : PrevInst->operands()) { 3992 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3993 LiveValues.insert(cast<Instruction>(&*J)); 3994 } 3995 3996 LLVM_DEBUG({ 3997 dbgs() << "SLP: #LV: " << LiveValues.size(); 3998 for (auto *X : LiveValues) 3999 dbgs() << " " << X->getName(); 4000 dbgs() << ", Looking at "; 4001 Inst->dump(); 4002 }); 4003 4004 // Now find the sequence of instructions between PrevInst and Inst. 4005 unsigned NumCalls = 0; 4006 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4007 PrevInstIt = 4008 PrevInst->getIterator().getReverse(); 4009 while (InstIt != PrevInstIt) { 4010 if (PrevInstIt == PrevInst->getParent()->rend()) { 4011 PrevInstIt = Inst->getParent()->rbegin(); 4012 continue; 4013 } 4014 4015 // Debug information does not impact spill cost. 4016 if ((isa<CallInst>(&*PrevInstIt) && 4017 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4018 &*PrevInstIt != PrevInst) 4019 NumCalls++; 4020 4021 ++PrevInstIt; 4022 } 4023 4024 if (NumCalls) { 4025 SmallVector<Type*, 4> V; 4026 for (auto *II : LiveValues) 4027 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4028 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4029 } 4030 4031 PrevInst = Inst; 4032 } 4033 4034 return Cost; 4035 } 4036 4037 InstructionCost BoUpSLP::getTreeCost() { 4038 InstructionCost Cost = 0; 4039 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4040 << VectorizableTree.size() << ".\n"); 4041 4042 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4043 4044 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4045 TreeEntry &TE = *VectorizableTree[I].get(); 4046 4047 // We create duplicate tree entries for gather sequences that have multiple 4048 // uses. However, we should not compute the cost of duplicate sequences. 4049 // For example, if we have a build vector (i.e., insertelement sequence) 4050 // that is used by more than one vector instruction, we only need to 4051 // compute the cost of the insertelement instructions once. The redundant 4052 // instructions will be eliminated by CSE. 4053 // 4054 // We should consider not creating duplicate tree entries for gather 4055 // sequences, and instead add additional edges to the tree representing 4056 // their uses. Since such an approach results in fewer total entries, 4057 // existing heuristics based on tree size may yield different results. 4058 // 4059 if (TE.State == TreeEntry::NeedToGather && 4060 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4061 VectorizableTree.end(), 4062 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4063 return EntryPtr->State == TreeEntry::NeedToGather && 4064 EntryPtr->isSame(TE.Scalars); 4065 })) 4066 continue; 4067 4068 InstructionCost C = getEntryCost(&TE); 4069 Cost += C; 4070 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4071 << " for bundle that starts with " << *TE.Scalars[0] 4072 << ".\n" 4073 << "SLP: Current total cost = " << Cost << "\n"); 4074 } 4075 4076 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4077 InstructionCost ExtractCost = 0; 4078 for (ExternalUser &EU : ExternalUses) { 4079 // We only add extract cost once for the same scalar. 4080 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4081 continue; 4082 4083 // Uses by ephemeral values are free (because the ephemeral value will be 4084 // removed prior to code generation, and so the extraction will be 4085 // removed as well). 4086 if (EphValues.count(EU.User)) 4087 continue; 4088 4089 // If we plan to rewrite the tree in a smaller type, we will need to sign 4090 // extend the extracted value back to the original type. Here, we account 4091 // for the extract and the added cost of the sign extend if needed. 4092 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4093 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4094 if (MinBWs.count(ScalarRoot)) { 4095 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4096 auto Extend = 4097 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4098 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4099 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4100 VecTy, EU.Lane); 4101 } else { 4102 ExtractCost += 4103 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4104 } 4105 } 4106 4107 InstructionCost SpillCost = getSpillCost(); 4108 Cost += SpillCost + ExtractCost; 4109 4110 #ifndef NDEBUG 4111 SmallString<256> Str; 4112 { 4113 raw_svector_ostream OS(Str); 4114 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4115 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4116 << "SLP: Total Cost = " << Cost << ".\n"; 4117 } 4118 LLVM_DEBUG(dbgs() << Str); 4119 if (ViewSLPTree) 4120 ViewGraph(this, "SLP" + F->getName(), false, Str); 4121 #endif 4122 4123 return Cost; 4124 } 4125 4126 InstructionCost 4127 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4128 const DenseSet<unsigned> &ShuffledIndices) const { 4129 unsigned NumElts = Ty->getNumElements(); 4130 APInt DemandedElts = APInt::getNullValue(NumElts); 4131 for (unsigned I = 0; I < NumElts; ++I) 4132 if (!ShuffledIndices.count(I)) 4133 DemandedElts.setBit(I); 4134 InstructionCost Cost = 4135 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4136 /*Extract*/ false); 4137 if (!ShuffledIndices.empty()) 4138 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4139 return Cost; 4140 } 4141 4142 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4143 // Find the type of the operands in VL. 4144 Type *ScalarTy = VL[0]->getType(); 4145 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4146 ScalarTy = SI->getValueOperand()->getType(); 4147 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4148 // Find the cost of inserting/extracting values from the vector. 4149 // Check if the same elements are inserted several times and count them as 4150 // shuffle candidates. 4151 DenseSet<unsigned> ShuffledElements; 4152 DenseSet<Value *> UniqueElements; 4153 // Iterate in reverse order to consider insert elements with the high cost. 4154 for (unsigned I = VL.size(); I > 0; --I) { 4155 unsigned Idx = I - 1; 4156 if (!UniqueElements.insert(VL[Idx]).second) 4157 ShuffledElements.insert(Idx); 4158 } 4159 return getGatherCost(VecTy, ShuffledElements); 4160 } 4161 4162 // Perform operand reordering on the instructions in VL and return the reordered 4163 // operands in Left and Right. 4164 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4165 SmallVectorImpl<Value *> &Left, 4166 SmallVectorImpl<Value *> &Right, 4167 const DataLayout &DL, 4168 ScalarEvolution &SE, 4169 const BoUpSLP &R) { 4170 if (VL.empty()) 4171 return; 4172 VLOperands Ops(VL, DL, SE, R); 4173 // Reorder the operands in place. 4174 Ops.reorder(); 4175 Left = Ops.getVL(0); 4176 Right = Ops.getVL(1); 4177 } 4178 4179 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4180 // Get the basic block this bundle is in. All instructions in the bundle 4181 // should be in this block. 4182 auto *Front = E->getMainOp(); 4183 auto *BB = Front->getParent(); 4184 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4185 [=](Value *V) -> bool { 4186 auto *I = cast<Instruction>(V); 4187 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4188 })); 4189 4190 // The last instruction in the bundle in program order. 4191 Instruction *LastInst = nullptr; 4192 4193 // Find the last instruction. The common case should be that BB has been 4194 // scheduled, and the last instruction is VL.back(). So we start with 4195 // VL.back() and iterate over schedule data until we reach the end of the 4196 // bundle. The end of the bundle is marked by null ScheduleData. 4197 if (BlocksSchedules.count(BB)) { 4198 auto *Bundle = 4199 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4200 if (Bundle && Bundle->isPartOfBundle()) 4201 for (; Bundle; Bundle = Bundle->NextInBundle) 4202 if (Bundle->OpValue == Bundle->Inst) 4203 LastInst = Bundle->Inst; 4204 } 4205 4206 // LastInst can still be null at this point if there's either not an entry 4207 // for BB in BlocksSchedules or there's no ScheduleData available for 4208 // VL.back(). This can be the case if buildTree_rec aborts for various 4209 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4210 // size is reached, etc.). ScheduleData is initialized in the scheduling 4211 // "dry-run". 4212 // 4213 // If this happens, we can still find the last instruction by brute force. We 4214 // iterate forwards from Front (inclusive) until we either see all 4215 // instructions in the bundle or reach the end of the block. If Front is the 4216 // last instruction in program order, LastInst will be set to Front, and we 4217 // will visit all the remaining instructions in the block. 4218 // 4219 // One of the reasons we exit early from buildTree_rec is to place an upper 4220 // bound on compile-time. Thus, taking an additional compile-time hit here is 4221 // not ideal. However, this should be exceedingly rare since it requires that 4222 // we both exit early from buildTree_rec and that the bundle be out-of-order 4223 // (causing us to iterate all the way to the end of the block). 4224 if (!LastInst) { 4225 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4226 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4227 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4228 LastInst = &I; 4229 if (Bundle.empty()) 4230 break; 4231 } 4232 } 4233 assert(LastInst && "Failed to find last instruction in bundle"); 4234 4235 // Set the insertion point after the last instruction in the bundle. Set the 4236 // debug location to Front. 4237 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4238 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4239 } 4240 4241 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4242 Value *Val0 = 4243 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4244 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4245 Value *Vec = UndefValue::get(VecTy); 4246 unsigned InsIndex = 0; 4247 for (Value *Val : VL) { 4248 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4249 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4250 if (!InsElt) 4251 continue; 4252 GatherSeq.insert(InsElt); 4253 CSEBlocks.insert(InsElt->getParent()); 4254 // Add to our 'need-to-extract' list. 4255 if (TreeEntry *Entry = getTreeEntry(Val)) { 4256 // Find which lane we need to extract. 4257 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4258 find(Entry->Scalars, Val)); 4259 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4260 if (!Entry->ReuseShuffleIndices.empty()) { 4261 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4262 find(Entry->ReuseShuffleIndices, FoundLane)); 4263 } 4264 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4265 } 4266 } 4267 4268 return Vec; 4269 } 4270 4271 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4272 InstructionsState S = getSameOpcode(VL); 4273 if (S.getOpcode()) { 4274 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4275 if (E->isSame(VL)) { 4276 Value *V = vectorizeTree(E); 4277 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4278 // We need to get the vectorized value but without shuffle. 4279 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4280 V = SV->getOperand(0); 4281 } else { 4282 // Reshuffle to get only unique values. 4283 SmallVector<int, 4> UniqueIdxs; 4284 SmallSet<int, 4> UsedIdxs; 4285 for (int Idx : E->ReuseShuffleIndices) 4286 if (UsedIdxs.insert(Idx).second) 4287 UniqueIdxs.emplace_back(Idx); 4288 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4289 } 4290 } 4291 return V; 4292 } 4293 } 4294 } 4295 4296 // Check that every instruction appears once in this bundle. 4297 SmallVector<int, 4> ReuseShuffleIndicies; 4298 SmallVector<Value *, 4> UniqueValues; 4299 if (VL.size() > 2) { 4300 DenseMap<Value *, unsigned> UniquePositions; 4301 for (Value *V : VL) { 4302 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4303 ReuseShuffleIndicies.emplace_back(Res.first->second); 4304 if (Res.second || isa<Constant>(V)) 4305 UniqueValues.emplace_back(V); 4306 } 4307 // Do not shuffle single element or if number of unique values is not power 4308 // of 2. 4309 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4310 !llvm::isPowerOf2_32(UniqueValues.size())) 4311 ReuseShuffleIndicies.clear(); 4312 else 4313 VL = UniqueValues; 4314 } 4315 4316 Value *Vec = gather(VL); 4317 if (!ReuseShuffleIndicies.empty()) { 4318 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4319 if (auto *I = dyn_cast<Instruction>(Vec)) { 4320 GatherSeq.insert(I); 4321 CSEBlocks.insert(I->getParent()); 4322 } 4323 } 4324 return Vec; 4325 } 4326 4327 namespace { 4328 /// Merges shuffle masks and emits final shuffle instruction, if required. 4329 class ShuffleInstructionBuilder { 4330 IRBuilderBase &Builder; 4331 bool IsFinalized = false; 4332 SmallVector<int, 4> Mask; 4333 4334 public: 4335 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4336 4337 /// Adds a mask, inverting it before applying. 4338 void addInversedMask(ArrayRef<unsigned> SubMask) { 4339 if (SubMask.empty()) 4340 return; 4341 SmallVector<int, 4> NewMask; 4342 inversePermutation(SubMask, NewMask); 4343 addMask(NewMask); 4344 } 4345 4346 /// Functions adds masks, merging them into single one. 4347 void addMask(ArrayRef<unsigned> SubMask) { 4348 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4349 addMask(NewMask); 4350 } 4351 4352 void addMask(ArrayRef<int> SubMask) { 4353 if (SubMask.empty()) 4354 return; 4355 if (Mask.empty()) { 4356 Mask.append(SubMask.begin(), SubMask.end()); 4357 return; 4358 } 4359 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4360 int TermValue = std::min(Mask.size(), SubMask.size()); 4361 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4362 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4363 NewMask[I] = E; 4364 continue; 4365 } 4366 NewMask[I] = Mask[SubMask[I]]; 4367 } 4368 Mask.swap(NewMask); 4369 } 4370 4371 Value *finalize(Value *V) { 4372 IsFinalized = true; 4373 if (Mask.empty()) 4374 return V; 4375 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4376 } 4377 4378 ~ShuffleInstructionBuilder() { 4379 assert((IsFinalized || Mask.empty()) && 4380 "Must be finalized construction of the shuffles."); 4381 } 4382 }; 4383 } // namespace 4384 4385 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4386 IRBuilder<>::InsertPointGuard Guard(Builder); 4387 4388 if (E->VectorizedValue) { 4389 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4390 return E->VectorizedValue; 4391 } 4392 4393 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4394 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4395 if (E->State == TreeEntry::NeedToGather) { 4396 setInsertPointAfterBundle(E); 4397 Value *Vec = gather(E->Scalars); 4398 if (NeedToShuffleReuses) { 4399 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4400 Vec = ShuffleBuilder.finalize(Vec); 4401 if (auto *I = dyn_cast<Instruction>(Vec)) { 4402 GatherSeq.insert(I); 4403 CSEBlocks.insert(I->getParent()); 4404 } 4405 } 4406 E->VectorizedValue = Vec; 4407 return Vec; 4408 } 4409 4410 assert((E->State == TreeEntry::Vectorize || 4411 E->State == TreeEntry::ScatterVectorize) && 4412 "Unhandled state"); 4413 unsigned ShuffleOrOp = 4414 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4415 Instruction *VL0 = E->getMainOp(); 4416 Type *ScalarTy = VL0->getType(); 4417 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4418 ScalarTy = Store->getValueOperand()->getType(); 4419 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4420 switch (ShuffleOrOp) { 4421 case Instruction::PHI: { 4422 auto *PH = cast<PHINode>(VL0); 4423 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4424 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4425 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4426 Value *V = NewPhi; 4427 if (NeedToShuffleReuses) 4428 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4429 4430 E->VectorizedValue = V; 4431 4432 // PHINodes may have multiple entries from the same block. We want to 4433 // visit every block once. 4434 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4435 4436 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4437 ValueList Operands; 4438 BasicBlock *IBB = PH->getIncomingBlock(i); 4439 4440 if (!VisitedBBs.insert(IBB).second) { 4441 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4442 continue; 4443 } 4444 4445 Builder.SetInsertPoint(IBB->getTerminator()); 4446 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4447 Value *Vec = vectorizeTree(E->getOperand(i)); 4448 NewPhi->addIncoming(Vec, IBB); 4449 } 4450 4451 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4452 "Invalid number of incoming values"); 4453 return V; 4454 } 4455 4456 case Instruction::ExtractElement: { 4457 Value *V = E->getSingleOperand(0); 4458 Builder.SetInsertPoint(VL0); 4459 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4460 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4461 V = ShuffleBuilder.finalize(V); 4462 E->VectorizedValue = V; 4463 return V; 4464 } 4465 case Instruction::ExtractValue: { 4466 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4467 Builder.SetInsertPoint(LI); 4468 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4469 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4470 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4471 Value *NewV = propagateMetadata(V, E->Scalars); 4472 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4473 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4474 NewV = ShuffleBuilder.finalize(NewV); 4475 E->VectorizedValue = NewV; 4476 return NewV; 4477 } 4478 case Instruction::ZExt: 4479 case Instruction::SExt: 4480 case Instruction::FPToUI: 4481 case Instruction::FPToSI: 4482 case Instruction::FPExt: 4483 case Instruction::PtrToInt: 4484 case Instruction::IntToPtr: 4485 case Instruction::SIToFP: 4486 case Instruction::UIToFP: 4487 case Instruction::Trunc: 4488 case Instruction::FPTrunc: 4489 case Instruction::BitCast: { 4490 setInsertPointAfterBundle(E); 4491 4492 Value *InVec = vectorizeTree(E->getOperand(0)); 4493 4494 if (E->VectorizedValue) { 4495 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4496 return E->VectorizedValue; 4497 } 4498 4499 auto *CI = cast<CastInst>(VL0); 4500 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4501 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4502 V = ShuffleBuilder.finalize(V); 4503 4504 E->VectorizedValue = V; 4505 ++NumVectorInstructions; 4506 return V; 4507 } 4508 case Instruction::FCmp: 4509 case Instruction::ICmp: { 4510 setInsertPointAfterBundle(E); 4511 4512 Value *L = vectorizeTree(E->getOperand(0)); 4513 Value *R = vectorizeTree(E->getOperand(1)); 4514 4515 if (E->VectorizedValue) { 4516 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4517 return E->VectorizedValue; 4518 } 4519 4520 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4521 Value *V = Builder.CreateCmp(P0, L, R); 4522 propagateIRFlags(V, E->Scalars, VL0); 4523 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4524 V = ShuffleBuilder.finalize(V); 4525 4526 E->VectorizedValue = V; 4527 ++NumVectorInstructions; 4528 return V; 4529 } 4530 case Instruction::Select: { 4531 setInsertPointAfterBundle(E); 4532 4533 Value *Cond = vectorizeTree(E->getOperand(0)); 4534 Value *True = vectorizeTree(E->getOperand(1)); 4535 Value *False = vectorizeTree(E->getOperand(2)); 4536 4537 if (E->VectorizedValue) { 4538 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4539 return E->VectorizedValue; 4540 } 4541 4542 Value *V = Builder.CreateSelect(Cond, True, False); 4543 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4544 V = ShuffleBuilder.finalize(V); 4545 4546 E->VectorizedValue = V; 4547 ++NumVectorInstructions; 4548 return V; 4549 } 4550 case Instruction::FNeg: { 4551 setInsertPointAfterBundle(E); 4552 4553 Value *Op = vectorizeTree(E->getOperand(0)); 4554 4555 if (E->VectorizedValue) { 4556 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4557 return E->VectorizedValue; 4558 } 4559 4560 Value *V = Builder.CreateUnOp( 4561 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4562 propagateIRFlags(V, E->Scalars, VL0); 4563 if (auto *I = dyn_cast<Instruction>(V)) 4564 V = propagateMetadata(I, E->Scalars); 4565 4566 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4567 V = ShuffleBuilder.finalize(V); 4568 4569 E->VectorizedValue = V; 4570 ++NumVectorInstructions; 4571 4572 return V; 4573 } 4574 case Instruction::Add: 4575 case Instruction::FAdd: 4576 case Instruction::Sub: 4577 case Instruction::FSub: 4578 case Instruction::Mul: 4579 case Instruction::FMul: 4580 case Instruction::UDiv: 4581 case Instruction::SDiv: 4582 case Instruction::FDiv: 4583 case Instruction::URem: 4584 case Instruction::SRem: 4585 case Instruction::FRem: 4586 case Instruction::Shl: 4587 case Instruction::LShr: 4588 case Instruction::AShr: 4589 case Instruction::And: 4590 case Instruction::Or: 4591 case Instruction::Xor: { 4592 setInsertPointAfterBundle(E); 4593 4594 Value *LHS = vectorizeTree(E->getOperand(0)); 4595 Value *RHS = vectorizeTree(E->getOperand(1)); 4596 4597 if (E->VectorizedValue) { 4598 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4599 return E->VectorizedValue; 4600 } 4601 4602 Value *V = Builder.CreateBinOp( 4603 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4604 RHS); 4605 propagateIRFlags(V, E->Scalars, VL0); 4606 if (auto *I = dyn_cast<Instruction>(V)) 4607 V = propagateMetadata(I, E->Scalars); 4608 4609 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4610 V = ShuffleBuilder.finalize(V); 4611 4612 E->VectorizedValue = V; 4613 ++NumVectorInstructions; 4614 4615 return V; 4616 } 4617 case Instruction::Load: { 4618 // Loads are inserted at the head of the tree because we don't want to 4619 // sink them all the way down past store instructions. 4620 bool IsReorder = E->updateStateIfReorder(); 4621 if (IsReorder) 4622 VL0 = E->getMainOp(); 4623 setInsertPointAfterBundle(E); 4624 4625 LoadInst *LI = cast<LoadInst>(VL0); 4626 Instruction *NewLI; 4627 unsigned AS = LI->getPointerAddressSpace(); 4628 Value *PO = LI->getPointerOperand(); 4629 if (E->State == TreeEntry::Vectorize) { 4630 4631 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4632 4633 // The pointer operand uses an in-tree scalar so we add the new BitCast 4634 // to ExternalUses list to make sure that an extract will be generated 4635 // in the future. 4636 if (getTreeEntry(PO)) 4637 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4638 4639 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4640 } else { 4641 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4642 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4643 // Use the minimum alignment of the gathered loads. 4644 Align CommonAlignment = LI->getAlign(); 4645 for (Value *V : E->Scalars) 4646 CommonAlignment = 4647 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4648 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4649 } 4650 Value *V = propagateMetadata(NewLI, E->Scalars); 4651 4652 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4653 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4654 V = ShuffleBuilder.finalize(V); 4655 E->VectorizedValue = V; 4656 ++NumVectorInstructions; 4657 return V; 4658 } 4659 case Instruction::Store: { 4660 bool IsReorder = !E->ReorderIndices.empty(); 4661 auto *SI = cast<StoreInst>( 4662 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4663 unsigned AS = SI->getPointerAddressSpace(); 4664 4665 setInsertPointAfterBundle(E); 4666 4667 Value *VecValue = vectorizeTree(E->getOperand(0)); 4668 ShuffleBuilder.addMask(E->ReorderIndices); 4669 VecValue = ShuffleBuilder.finalize(VecValue); 4670 4671 Value *ScalarPtr = SI->getPointerOperand(); 4672 Value *VecPtr = Builder.CreateBitCast( 4673 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4674 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4675 SI->getAlign()); 4676 4677 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4678 // ExternalUses to make sure that an extract will be generated in the 4679 // future. 4680 if (getTreeEntry(ScalarPtr)) 4681 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4682 4683 Value *V = propagateMetadata(ST, E->Scalars); 4684 4685 E->VectorizedValue = V; 4686 ++NumVectorInstructions; 4687 return V; 4688 } 4689 case Instruction::GetElementPtr: { 4690 setInsertPointAfterBundle(E); 4691 4692 Value *Op0 = vectorizeTree(E->getOperand(0)); 4693 4694 std::vector<Value *> OpVecs; 4695 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4696 ++j) { 4697 ValueList &VL = E->getOperand(j); 4698 // Need to cast all elements to the same type before vectorization to 4699 // avoid crash. 4700 Type *VL0Ty = VL0->getOperand(j)->getType(); 4701 Type *Ty = llvm::all_of( 4702 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4703 ? VL0Ty 4704 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4705 ->getPointerOperandType() 4706 ->getScalarType()); 4707 for (Value *&V : VL) { 4708 auto *CI = cast<ConstantInt>(V); 4709 V = ConstantExpr::getIntegerCast(CI, Ty, 4710 CI->getValue().isSignBitSet()); 4711 } 4712 Value *OpVec = vectorizeTree(VL); 4713 OpVecs.push_back(OpVec); 4714 } 4715 4716 Value *V = Builder.CreateGEP( 4717 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4718 if (Instruction *I = dyn_cast<Instruction>(V)) 4719 V = propagateMetadata(I, E->Scalars); 4720 4721 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4722 V = ShuffleBuilder.finalize(V); 4723 4724 E->VectorizedValue = V; 4725 ++NumVectorInstructions; 4726 4727 return V; 4728 } 4729 case Instruction::Call: { 4730 CallInst *CI = cast<CallInst>(VL0); 4731 setInsertPointAfterBundle(E); 4732 4733 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4734 if (Function *FI = CI->getCalledFunction()) 4735 IID = FI->getIntrinsicID(); 4736 4737 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4738 4739 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4740 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4741 VecCallCosts.first <= VecCallCosts.second; 4742 4743 Value *ScalarArg = nullptr; 4744 std::vector<Value *> OpVecs; 4745 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4746 ValueList OpVL; 4747 // Some intrinsics have scalar arguments. This argument should not be 4748 // vectorized. 4749 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4750 CallInst *CEI = cast<CallInst>(VL0); 4751 ScalarArg = CEI->getArgOperand(j); 4752 OpVecs.push_back(CEI->getArgOperand(j)); 4753 continue; 4754 } 4755 4756 Value *OpVec = vectorizeTree(E->getOperand(j)); 4757 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4758 OpVecs.push_back(OpVec); 4759 } 4760 4761 Function *CF; 4762 if (!UseIntrinsic) { 4763 VFShape Shape = 4764 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4765 VecTy->getNumElements())), 4766 false /*HasGlobalPred*/); 4767 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4768 } else { 4769 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4770 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4771 } 4772 4773 SmallVector<OperandBundleDef, 1> OpBundles; 4774 CI->getOperandBundlesAsDefs(OpBundles); 4775 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4776 4777 // The scalar argument uses an in-tree scalar so we add the new vectorized 4778 // call to ExternalUses list to make sure that an extract will be 4779 // generated in the future. 4780 if (ScalarArg && getTreeEntry(ScalarArg)) 4781 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4782 4783 propagateIRFlags(V, E->Scalars, VL0); 4784 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4785 V = ShuffleBuilder.finalize(V); 4786 4787 E->VectorizedValue = V; 4788 ++NumVectorInstructions; 4789 return V; 4790 } 4791 case Instruction::ShuffleVector: { 4792 assert(E->isAltShuffle() && 4793 ((Instruction::isBinaryOp(E->getOpcode()) && 4794 Instruction::isBinaryOp(E->getAltOpcode())) || 4795 (Instruction::isCast(E->getOpcode()) && 4796 Instruction::isCast(E->getAltOpcode()))) && 4797 "Invalid Shuffle Vector Operand"); 4798 4799 Value *LHS = nullptr, *RHS = nullptr; 4800 if (Instruction::isBinaryOp(E->getOpcode())) { 4801 setInsertPointAfterBundle(E); 4802 LHS = vectorizeTree(E->getOperand(0)); 4803 RHS = vectorizeTree(E->getOperand(1)); 4804 } else { 4805 setInsertPointAfterBundle(E); 4806 LHS = vectorizeTree(E->getOperand(0)); 4807 } 4808 4809 if (E->VectorizedValue) { 4810 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4811 return E->VectorizedValue; 4812 } 4813 4814 Value *V0, *V1; 4815 if (Instruction::isBinaryOp(E->getOpcode())) { 4816 V0 = Builder.CreateBinOp( 4817 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4818 V1 = Builder.CreateBinOp( 4819 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4820 } else { 4821 V0 = Builder.CreateCast( 4822 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4823 V1 = Builder.CreateCast( 4824 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4825 } 4826 4827 // Create shuffle to take alternate operations from the vector. 4828 // Also, gather up main and alt scalar ops to propagate IR flags to 4829 // each vector operation. 4830 ValueList OpScalars, AltScalars; 4831 unsigned e = E->Scalars.size(); 4832 SmallVector<int, 8> Mask(e); 4833 for (unsigned i = 0; i < e; ++i) { 4834 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4835 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4836 if (OpInst->getOpcode() == E->getAltOpcode()) { 4837 Mask[i] = e + i; 4838 AltScalars.push_back(E->Scalars[i]); 4839 } else { 4840 Mask[i] = i; 4841 OpScalars.push_back(E->Scalars[i]); 4842 } 4843 } 4844 4845 propagateIRFlags(V0, OpScalars); 4846 propagateIRFlags(V1, AltScalars); 4847 4848 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4849 if (Instruction *I = dyn_cast<Instruction>(V)) 4850 V = propagateMetadata(I, E->Scalars); 4851 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4852 V = ShuffleBuilder.finalize(V); 4853 4854 E->VectorizedValue = V; 4855 ++NumVectorInstructions; 4856 4857 return V; 4858 } 4859 default: 4860 llvm_unreachable("unknown inst"); 4861 } 4862 return nullptr; 4863 } 4864 4865 Value *BoUpSLP::vectorizeTree() { 4866 ExtraValueToDebugLocsMap ExternallyUsedValues; 4867 return vectorizeTree(ExternallyUsedValues); 4868 } 4869 4870 Value * 4871 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4872 // All blocks must be scheduled before any instructions are inserted. 4873 for (auto &BSIter : BlocksSchedules) { 4874 scheduleBlock(BSIter.second.get()); 4875 } 4876 4877 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4878 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4879 4880 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4881 // vectorized root. InstCombine will then rewrite the entire expression. We 4882 // sign extend the extracted values below. 4883 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4884 if (MinBWs.count(ScalarRoot)) { 4885 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4886 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4887 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4888 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4889 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4890 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4891 VectorizableTree[0]->VectorizedValue = Trunc; 4892 } 4893 4894 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4895 << " values .\n"); 4896 4897 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4898 // specified by ScalarType. 4899 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4900 if (!MinBWs.count(ScalarRoot)) 4901 return Ex; 4902 if (MinBWs[ScalarRoot].second) 4903 return Builder.CreateSExt(Ex, ScalarType); 4904 return Builder.CreateZExt(Ex, ScalarType); 4905 }; 4906 4907 // Extract all of the elements with the external uses. 4908 for (const auto &ExternalUse : ExternalUses) { 4909 Value *Scalar = ExternalUse.Scalar; 4910 llvm::User *User = ExternalUse.User; 4911 4912 // Skip users that we already RAUW. This happens when one instruction 4913 // has multiple uses of the same value. 4914 if (User && !is_contained(Scalar->users(), User)) 4915 continue; 4916 TreeEntry *E = getTreeEntry(Scalar); 4917 assert(E && "Invalid scalar"); 4918 assert(E->State != TreeEntry::NeedToGather && 4919 "Extracting from a gather list"); 4920 4921 Value *Vec = E->VectorizedValue; 4922 assert(Vec && "Can't find vectorizable value"); 4923 4924 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4925 // If User == nullptr, the Scalar is used as extra arg. Generate 4926 // ExtractElement instruction and update the record for this scalar in 4927 // ExternallyUsedValues. 4928 if (!User) { 4929 assert(ExternallyUsedValues.count(Scalar) && 4930 "Scalar with nullptr as an external user must be registered in " 4931 "ExternallyUsedValues map"); 4932 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4933 Builder.SetInsertPoint(VecI->getParent(), 4934 std::next(VecI->getIterator())); 4935 } else { 4936 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4937 } 4938 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4939 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4940 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4941 auto &Locs = ExternallyUsedValues[Scalar]; 4942 ExternallyUsedValues.insert({Ex, Locs}); 4943 ExternallyUsedValues.erase(Scalar); 4944 // Required to update internally referenced instructions. 4945 Scalar->replaceAllUsesWith(Ex); 4946 continue; 4947 } 4948 4949 // Generate extracts for out-of-tree users. 4950 // Find the insertion point for the extractelement lane. 4951 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4952 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4953 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4954 if (PH->getIncomingValue(i) == Scalar) { 4955 Instruction *IncomingTerminator = 4956 PH->getIncomingBlock(i)->getTerminator(); 4957 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4958 Builder.SetInsertPoint(VecI->getParent(), 4959 std::next(VecI->getIterator())); 4960 } else { 4961 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4962 } 4963 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4964 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4965 CSEBlocks.insert(PH->getIncomingBlock(i)); 4966 PH->setOperand(i, Ex); 4967 } 4968 } 4969 } else { 4970 Builder.SetInsertPoint(cast<Instruction>(User)); 4971 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4972 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4973 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4974 User->replaceUsesOfWith(Scalar, Ex); 4975 } 4976 } else { 4977 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4978 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4979 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4980 CSEBlocks.insert(&F->getEntryBlock()); 4981 User->replaceUsesOfWith(Scalar, Ex); 4982 } 4983 4984 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4985 } 4986 4987 // For each vectorized value: 4988 for (auto &TEPtr : VectorizableTree) { 4989 TreeEntry *Entry = TEPtr.get(); 4990 4991 // No need to handle users of gathered values. 4992 if (Entry->State == TreeEntry::NeedToGather) 4993 continue; 4994 4995 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4996 4997 // For each lane: 4998 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4999 Value *Scalar = Entry->Scalars[Lane]; 5000 5001 #ifndef NDEBUG 5002 Type *Ty = Scalar->getType(); 5003 if (!Ty->isVoidTy()) { 5004 for (User *U : Scalar->users()) { 5005 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5006 5007 // It is legal to delete users in the ignorelist. 5008 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5009 "Deleting out-of-tree value"); 5010 } 5011 } 5012 #endif 5013 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5014 eraseInstruction(cast<Instruction>(Scalar)); 5015 } 5016 } 5017 5018 Builder.ClearInsertionPoint(); 5019 InstrElementSize.clear(); 5020 5021 return VectorizableTree[0]->VectorizedValue; 5022 } 5023 5024 void BoUpSLP::optimizeGatherSequence() { 5025 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5026 << " gather sequences instructions.\n"); 5027 // LICM InsertElementInst sequences. 5028 for (Instruction *I : GatherSeq) { 5029 if (isDeleted(I)) 5030 continue; 5031 5032 // Check if this block is inside a loop. 5033 Loop *L = LI->getLoopFor(I->getParent()); 5034 if (!L) 5035 continue; 5036 5037 // Check if it has a preheader. 5038 BasicBlock *PreHeader = L->getLoopPreheader(); 5039 if (!PreHeader) 5040 continue; 5041 5042 // If the vector or the element that we insert into it are 5043 // instructions that are defined in this basic block then we can't 5044 // hoist this instruction. 5045 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5046 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5047 if (Op0 && L->contains(Op0)) 5048 continue; 5049 if (Op1 && L->contains(Op1)) 5050 continue; 5051 5052 // We can hoist this instruction. Move it to the pre-header. 5053 I->moveBefore(PreHeader->getTerminator()); 5054 } 5055 5056 // Make a list of all reachable blocks in our CSE queue. 5057 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5058 CSEWorkList.reserve(CSEBlocks.size()); 5059 for (BasicBlock *BB : CSEBlocks) 5060 if (DomTreeNode *N = DT->getNode(BB)) { 5061 assert(DT->isReachableFromEntry(N)); 5062 CSEWorkList.push_back(N); 5063 } 5064 5065 // Sort blocks by domination. This ensures we visit a block after all blocks 5066 // dominating it are visited. 5067 llvm::stable_sort(CSEWorkList, 5068 [this](const DomTreeNode *A, const DomTreeNode *B) { 5069 return DT->properlyDominates(A, B); 5070 }); 5071 5072 // Perform O(N^2) search over the gather sequences and merge identical 5073 // instructions. TODO: We can further optimize this scan if we split the 5074 // instructions into different buckets based on the insert lane. 5075 SmallVector<Instruction *, 16> Visited; 5076 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5077 assert(*I && 5078 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5079 "Worklist not sorted properly!"); 5080 BasicBlock *BB = (*I)->getBlock(); 5081 // For all instructions in blocks containing gather sequences: 5082 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5083 Instruction *In = &*it++; 5084 if (isDeleted(In)) 5085 continue; 5086 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5087 continue; 5088 5089 // Check if we can replace this instruction with any of the 5090 // visited instructions. 5091 for (Instruction *v : Visited) { 5092 if (In->isIdenticalTo(v) && 5093 DT->dominates(v->getParent(), In->getParent())) { 5094 In->replaceAllUsesWith(v); 5095 eraseInstruction(In); 5096 In = nullptr; 5097 break; 5098 } 5099 } 5100 if (In) { 5101 assert(!is_contained(Visited, In)); 5102 Visited.push_back(In); 5103 } 5104 } 5105 } 5106 CSEBlocks.clear(); 5107 GatherSeq.clear(); 5108 } 5109 5110 // Groups the instructions to a bundle (which is then a single scheduling entity) 5111 // and schedules instructions until the bundle gets ready. 5112 Optional<BoUpSLP::ScheduleData *> 5113 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5114 const InstructionsState &S) { 5115 if (isa<PHINode>(S.OpValue)) 5116 return nullptr; 5117 5118 // Initialize the instruction bundle. 5119 Instruction *OldScheduleEnd = ScheduleEnd; 5120 ScheduleData *PrevInBundle = nullptr; 5121 ScheduleData *Bundle = nullptr; 5122 bool ReSchedule = false; 5123 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5124 5125 // Make sure that the scheduling region contains all 5126 // instructions of the bundle. 5127 for (Value *V : VL) { 5128 if (!extendSchedulingRegion(V, S)) 5129 return None; 5130 } 5131 5132 for (Value *V : VL) { 5133 ScheduleData *BundleMember = getScheduleData(V); 5134 assert(BundleMember && 5135 "no ScheduleData for bundle member (maybe not in same basic block)"); 5136 if (BundleMember->IsScheduled) { 5137 // A bundle member was scheduled as single instruction before and now 5138 // needs to be scheduled as part of the bundle. We just get rid of the 5139 // existing schedule. 5140 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5141 << " was already scheduled\n"); 5142 ReSchedule = true; 5143 } 5144 assert(BundleMember->isSchedulingEntity() && 5145 "bundle member already part of other bundle"); 5146 if (PrevInBundle) { 5147 PrevInBundle->NextInBundle = BundleMember; 5148 } else { 5149 Bundle = BundleMember; 5150 } 5151 BundleMember->UnscheduledDepsInBundle = 0; 5152 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5153 5154 // Group the instructions to a bundle. 5155 BundleMember->FirstInBundle = Bundle; 5156 PrevInBundle = BundleMember; 5157 } 5158 if (ScheduleEnd != OldScheduleEnd) { 5159 // The scheduling region got new instructions at the lower end (or it is a 5160 // new region for the first bundle). This makes it necessary to 5161 // recalculate all dependencies. 5162 // It is seldom that this needs to be done a second time after adding the 5163 // initial bundle to the region. 5164 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5165 doForAllOpcodes(I, [](ScheduleData *SD) { 5166 SD->clearDependencies(); 5167 }); 5168 } 5169 ReSchedule = true; 5170 } 5171 if (ReSchedule) { 5172 resetSchedule(); 5173 initialFillReadyList(ReadyInsts); 5174 } 5175 assert(Bundle && "Failed to find schedule bundle"); 5176 5177 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5178 << BB->getName() << "\n"); 5179 5180 calculateDependencies(Bundle, true, SLP); 5181 5182 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5183 // means that there are no cyclic dependencies and we can schedule it. 5184 // Note that's important that we don't "schedule" the bundle yet (see 5185 // cancelScheduling). 5186 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5187 5188 ScheduleData *pickedSD = ReadyInsts.back(); 5189 ReadyInsts.pop_back(); 5190 5191 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5192 schedule(pickedSD, ReadyInsts); 5193 } 5194 } 5195 if (!Bundle->isReady()) { 5196 cancelScheduling(VL, S.OpValue); 5197 return None; 5198 } 5199 return Bundle; 5200 } 5201 5202 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5203 Value *OpValue) { 5204 if (isa<PHINode>(OpValue)) 5205 return; 5206 5207 ScheduleData *Bundle = getScheduleData(OpValue); 5208 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5209 assert(!Bundle->IsScheduled && 5210 "Can't cancel bundle which is already scheduled"); 5211 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5212 "tried to unbundle something which is not a bundle"); 5213 5214 // Un-bundle: make single instructions out of the bundle. 5215 ScheduleData *BundleMember = Bundle; 5216 while (BundleMember) { 5217 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5218 BundleMember->FirstInBundle = BundleMember; 5219 ScheduleData *Next = BundleMember->NextInBundle; 5220 BundleMember->NextInBundle = nullptr; 5221 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5222 if (BundleMember->UnscheduledDepsInBundle == 0) { 5223 ReadyInsts.insert(BundleMember); 5224 } 5225 BundleMember = Next; 5226 } 5227 } 5228 5229 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5230 // Allocate a new ScheduleData for the instruction. 5231 if (ChunkPos >= ChunkSize) { 5232 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5233 ChunkPos = 0; 5234 } 5235 return &(ScheduleDataChunks.back()[ChunkPos++]); 5236 } 5237 5238 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5239 const InstructionsState &S) { 5240 if (getScheduleData(V, isOneOf(S, V))) 5241 return true; 5242 Instruction *I = dyn_cast<Instruction>(V); 5243 assert(I && "bundle member must be an instruction"); 5244 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5245 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5246 ScheduleData *ISD = getScheduleData(I); 5247 if (!ISD) 5248 return false; 5249 assert(isInSchedulingRegion(ISD) && 5250 "ScheduleData not in scheduling region"); 5251 ScheduleData *SD = allocateScheduleDataChunks(); 5252 SD->Inst = I; 5253 SD->init(SchedulingRegionID, S.OpValue); 5254 ExtraScheduleDataMap[I][S.OpValue] = SD; 5255 return true; 5256 }; 5257 if (CheckSheduleForI(I)) 5258 return true; 5259 if (!ScheduleStart) { 5260 // It's the first instruction in the new region. 5261 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5262 ScheduleStart = I; 5263 ScheduleEnd = I->getNextNode(); 5264 if (isOneOf(S, I) != I) 5265 CheckSheduleForI(I); 5266 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5267 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5268 return true; 5269 } 5270 // Search up and down at the same time, because we don't know if the new 5271 // instruction is above or below the existing scheduling region. 5272 BasicBlock::reverse_iterator UpIter = 5273 ++ScheduleStart->getIterator().getReverse(); 5274 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5275 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5276 BasicBlock::iterator LowerEnd = BB->end(); 5277 while (true) { 5278 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5279 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5280 return false; 5281 } 5282 5283 if (UpIter != UpperEnd) { 5284 if (&*UpIter == I) { 5285 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5286 ScheduleStart = I; 5287 if (isOneOf(S, I) != I) 5288 CheckSheduleForI(I); 5289 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5290 << "\n"); 5291 return true; 5292 } 5293 ++UpIter; 5294 } 5295 if (DownIter != LowerEnd) { 5296 if (&*DownIter == I) { 5297 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5298 nullptr); 5299 ScheduleEnd = I->getNextNode(); 5300 if (isOneOf(S, I) != I) 5301 CheckSheduleForI(I); 5302 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5303 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5304 << "\n"); 5305 return true; 5306 } 5307 ++DownIter; 5308 } 5309 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5310 "instruction not found in block"); 5311 } 5312 return true; 5313 } 5314 5315 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5316 Instruction *ToI, 5317 ScheduleData *PrevLoadStore, 5318 ScheduleData *NextLoadStore) { 5319 ScheduleData *CurrentLoadStore = PrevLoadStore; 5320 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5321 ScheduleData *SD = ScheduleDataMap[I]; 5322 if (!SD) { 5323 SD = allocateScheduleDataChunks(); 5324 ScheduleDataMap[I] = SD; 5325 SD->Inst = I; 5326 } 5327 assert(!isInSchedulingRegion(SD) && 5328 "new ScheduleData already in scheduling region"); 5329 SD->init(SchedulingRegionID, I); 5330 5331 if (I->mayReadOrWriteMemory() && 5332 (!isa<IntrinsicInst>(I) || 5333 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5334 cast<IntrinsicInst>(I)->getIntrinsicID() != 5335 Intrinsic::pseudoprobe))) { 5336 // Update the linked list of memory accessing instructions. 5337 if (CurrentLoadStore) { 5338 CurrentLoadStore->NextLoadStore = SD; 5339 } else { 5340 FirstLoadStoreInRegion = SD; 5341 } 5342 CurrentLoadStore = SD; 5343 } 5344 } 5345 if (NextLoadStore) { 5346 if (CurrentLoadStore) 5347 CurrentLoadStore->NextLoadStore = NextLoadStore; 5348 } else { 5349 LastLoadStoreInRegion = CurrentLoadStore; 5350 } 5351 } 5352 5353 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5354 bool InsertInReadyList, 5355 BoUpSLP *SLP) { 5356 assert(SD->isSchedulingEntity()); 5357 5358 SmallVector<ScheduleData *, 10> WorkList; 5359 WorkList.push_back(SD); 5360 5361 while (!WorkList.empty()) { 5362 ScheduleData *SD = WorkList.back(); 5363 WorkList.pop_back(); 5364 5365 ScheduleData *BundleMember = SD; 5366 while (BundleMember) { 5367 assert(isInSchedulingRegion(BundleMember)); 5368 if (!BundleMember->hasValidDependencies()) { 5369 5370 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5371 << "\n"); 5372 BundleMember->Dependencies = 0; 5373 BundleMember->resetUnscheduledDeps(); 5374 5375 // Handle def-use chain dependencies. 5376 if (BundleMember->OpValue != BundleMember->Inst) { 5377 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5378 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5379 BundleMember->Dependencies++; 5380 ScheduleData *DestBundle = UseSD->FirstInBundle; 5381 if (!DestBundle->IsScheduled) 5382 BundleMember->incrementUnscheduledDeps(1); 5383 if (!DestBundle->hasValidDependencies()) 5384 WorkList.push_back(DestBundle); 5385 } 5386 } else { 5387 for (User *U : BundleMember->Inst->users()) { 5388 if (isa<Instruction>(U)) { 5389 ScheduleData *UseSD = getScheduleData(U); 5390 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5391 BundleMember->Dependencies++; 5392 ScheduleData *DestBundle = UseSD->FirstInBundle; 5393 if (!DestBundle->IsScheduled) 5394 BundleMember->incrementUnscheduledDeps(1); 5395 if (!DestBundle->hasValidDependencies()) 5396 WorkList.push_back(DestBundle); 5397 } 5398 } else { 5399 // I'm not sure if this can ever happen. But we need to be safe. 5400 // This lets the instruction/bundle never be scheduled and 5401 // eventually disable vectorization. 5402 BundleMember->Dependencies++; 5403 BundleMember->incrementUnscheduledDeps(1); 5404 } 5405 } 5406 } 5407 5408 // Handle the memory dependencies. 5409 ScheduleData *DepDest = BundleMember->NextLoadStore; 5410 if (DepDest) { 5411 Instruction *SrcInst = BundleMember->Inst; 5412 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5413 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5414 unsigned numAliased = 0; 5415 unsigned DistToSrc = 1; 5416 5417 while (DepDest) { 5418 assert(isInSchedulingRegion(DepDest)); 5419 5420 // We have two limits to reduce the complexity: 5421 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5422 // SLP->isAliased (which is the expensive part in this loop). 5423 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5424 // the whole loop (even if the loop is fast, it's quadratic). 5425 // It's important for the loop break condition (see below) to 5426 // check this limit even between two read-only instructions. 5427 if (DistToSrc >= MaxMemDepDistance || 5428 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5429 (numAliased >= AliasedCheckLimit || 5430 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5431 5432 // We increment the counter only if the locations are aliased 5433 // (instead of counting all alias checks). This gives a better 5434 // balance between reduced runtime and accurate dependencies. 5435 numAliased++; 5436 5437 DepDest->MemoryDependencies.push_back(BundleMember); 5438 BundleMember->Dependencies++; 5439 ScheduleData *DestBundle = DepDest->FirstInBundle; 5440 if (!DestBundle->IsScheduled) { 5441 BundleMember->incrementUnscheduledDeps(1); 5442 } 5443 if (!DestBundle->hasValidDependencies()) { 5444 WorkList.push_back(DestBundle); 5445 } 5446 } 5447 DepDest = DepDest->NextLoadStore; 5448 5449 // Example, explaining the loop break condition: Let's assume our 5450 // starting instruction is i0 and MaxMemDepDistance = 3. 5451 // 5452 // +--------v--v--v 5453 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5454 // +--------^--^--^ 5455 // 5456 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5457 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5458 // Previously we already added dependencies from i3 to i6,i7,i8 5459 // (because of MaxMemDepDistance). As we added a dependency from 5460 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5461 // and we can abort this loop at i6. 5462 if (DistToSrc >= 2 * MaxMemDepDistance) 5463 break; 5464 DistToSrc++; 5465 } 5466 } 5467 } 5468 BundleMember = BundleMember->NextInBundle; 5469 } 5470 if (InsertInReadyList && SD->isReady()) { 5471 ReadyInsts.push_back(SD); 5472 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5473 << "\n"); 5474 } 5475 } 5476 } 5477 5478 void BoUpSLP::BlockScheduling::resetSchedule() { 5479 assert(ScheduleStart && 5480 "tried to reset schedule on block which has not been scheduled"); 5481 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5482 doForAllOpcodes(I, [&](ScheduleData *SD) { 5483 assert(isInSchedulingRegion(SD) && 5484 "ScheduleData not in scheduling region"); 5485 SD->IsScheduled = false; 5486 SD->resetUnscheduledDeps(); 5487 }); 5488 } 5489 ReadyInsts.clear(); 5490 } 5491 5492 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5493 if (!BS->ScheduleStart) 5494 return; 5495 5496 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5497 5498 BS->resetSchedule(); 5499 5500 // For the real scheduling we use a more sophisticated ready-list: it is 5501 // sorted by the original instruction location. This lets the final schedule 5502 // be as close as possible to the original instruction order. 5503 struct ScheduleDataCompare { 5504 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5505 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5506 } 5507 }; 5508 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5509 5510 // Ensure that all dependency data is updated and fill the ready-list with 5511 // initial instructions. 5512 int Idx = 0; 5513 int NumToSchedule = 0; 5514 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5515 I = I->getNextNode()) { 5516 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5517 assert(SD->isPartOfBundle() == 5518 (getTreeEntry(SD->Inst) != nullptr) && 5519 "scheduler and vectorizer bundle mismatch"); 5520 SD->FirstInBundle->SchedulingPriority = Idx++; 5521 if (SD->isSchedulingEntity()) { 5522 BS->calculateDependencies(SD, false, this); 5523 NumToSchedule++; 5524 } 5525 }); 5526 } 5527 BS->initialFillReadyList(ReadyInsts); 5528 5529 Instruction *LastScheduledInst = BS->ScheduleEnd; 5530 5531 // Do the "real" scheduling. 5532 while (!ReadyInsts.empty()) { 5533 ScheduleData *picked = *ReadyInsts.begin(); 5534 ReadyInsts.erase(ReadyInsts.begin()); 5535 5536 // Move the scheduled instruction(s) to their dedicated places, if not 5537 // there yet. 5538 ScheduleData *BundleMember = picked; 5539 while (BundleMember) { 5540 Instruction *pickedInst = BundleMember->Inst; 5541 if (LastScheduledInst->getNextNode() != pickedInst) { 5542 BS->BB->getInstList().remove(pickedInst); 5543 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5544 pickedInst); 5545 } 5546 LastScheduledInst = pickedInst; 5547 BundleMember = BundleMember->NextInBundle; 5548 } 5549 5550 BS->schedule(picked, ReadyInsts); 5551 NumToSchedule--; 5552 } 5553 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5554 5555 // Avoid duplicate scheduling of the block. 5556 BS->ScheduleStart = nullptr; 5557 } 5558 5559 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5560 // If V is a store, just return the width of the stored value (or value 5561 // truncated just before storing) without traversing the expression tree. 5562 // This is the common case. 5563 if (auto *Store = dyn_cast<StoreInst>(V)) { 5564 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5565 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5566 else 5567 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5568 } 5569 5570 auto E = InstrElementSize.find(V); 5571 if (E != InstrElementSize.end()) 5572 return E->second; 5573 5574 // If V is not a store, we can traverse the expression tree to find loads 5575 // that feed it. The type of the loaded value may indicate a more suitable 5576 // width than V's type. We want to base the vector element size on the width 5577 // of memory operations where possible. 5578 SmallVector<Instruction *, 16> Worklist; 5579 SmallPtrSet<Instruction *, 16> Visited; 5580 if (auto *I = dyn_cast<Instruction>(V)) { 5581 Worklist.push_back(I); 5582 Visited.insert(I); 5583 } 5584 5585 // Traverse the expression tree in bottom-up order looking for loads. If we 5586 // encounter an instruction we don't yet handle, we give up. 5587 auto MaxWidth = 0u; 5588 auto FoundUnknownInst = false; 5589 while (!Worklist.empty() && !FoundUnknownInst) { 5590 auto *I = Worklist.pop_back_val(); 5591 5592 // We should only be looking at scalar instructions here. If the current 5593 // instruction has a vector type, give up. 5594 auto *Ty = I->getType(); 5595 if (isa<VectorType>(Ty)) 5596 FoundUnknownInst = true; 5597 5598 // If the current instruction is a load, update MaxWidth to reflect the 5599 // width of the loaded value. 5600 else if (isa<LoadInst>(I)) 5601 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5602 5603 // Otherwise, we need to visit the operands of the instruction. We only 5604 // handle the interesting cases from buildTree here. If an operand is an 5605 // instruction we haven't yet visited, we add it to the worklist. 5606 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5607 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5608 for (Use &U : I->operands()) 5609 if (auto *J = dyn_cast<Instruction>(U.get())) 5610 if (Visited.insert(J).second) 5611 Worklist.push_back(J); 5612 } 5613 5614 // If we don't yet handle the instruction, give up. 5615 else 5616 FoundUnknownInst = true; 5617 } 5618 5619 int Width = MaxWidth; 5620 // If we didn't encounter a memory access in the expression tree, or if we 5621 // gave up for some reason, just return the width of V. Otherwise, return the 5622 // maximum width we found. 5623 if (!MaxWidth || FoundUnknownInst) 5624 Width = DL->getTypeSizeInBits(V->getType()); 5625 5626 for (Instruction *I : Visited) 5627 InstrElementSize[I] = Width; 5628 5629 return Width; 5630 } 5631 5632 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5633 // smaller type with a truncation. We collect the values that will be demoted 5634 // in ToDemote and additional roots that require investigating in Roots. 5635 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5636 SmallVectorImpl<Value *> &ToDemote, 5637 SmallVectorImpl<Value *> &Roots) { 5638 // We can always demote constants. 5639 if (isa<Constant>(V)) { 5640 ToDemote.push_back(V); 5641 return true; 5642 } 5643 5644 // If the value is not an instruction in the expression with only one use, it 5645 // cannot be demoted. 5646 auto *I = dyn_cast<Instruction>(V); 5647 if (!I || !I->hasOneUse() || !Expr.count(I)) 5648 return false; 5649 5650 switch (I->getOpcode()) { 5651 5652 // We can always demote truncations and extensions. Since truncations can 5653 // seed additional demotion, we save the truncated value. 5654 case Instruction::Trunc: 5655 Roots.push_back(I->getOperand(0)); 5656 break; 5657 case Instruction::ZExt: 5658 case Instruction::SExt: 5659 break; 5660 5661 // We can demote certain binary operations if we can demote both of their 5662 // operands. 5663 case Instruction::Add: 5664 case Instruction::Sub: 5665 case Instruction::Mul: 5666 case Instruction::And: 5667 case Instruction::Or: 5668 case Instruction::Xor: 5669 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5670 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5671 return false; 5672 break; 5673 5674 // We can demote selects if we can demote their true and false values. 5675 case Instruction::Select: { 5676 SelectInst *SI = cast<SelectInst>(I); 5677 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5678 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5679 return false; 5680 break; 5681 } 5682 5683 // We can demote phis if we can demote all their incoming operands. Note that 5684 // we don't need to worry about cycles since we ensure single use above. 5685 case Instruction::PHI: { 5686 PHINode *PN = cast<PHINode>(I); 5687 for (Value *IncValue : PN->incoming_values()) 5688 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5689 return false; 5690 break; 5691 } 5692 5693 // Otherwise, conservatively give up. 5694 default: 5695 return false; 5696 } 5697 5698 // Record the value that we can demote. 5699 ToDemote.push_back(V); 5700 return true; 5701 } 5702 5703 void BoUpSLP::computeMinimumValueSizes() { 5704 // If there are no external uses, the expression tree must be rooted by a 5705 // store. We can't demote in-memory values, so there is nothing to do here. 5706 if (ExternalUses.empty()) 5707 return; 5708 5709 // We only attempt to truncate integer expressions. 5710 auto &TreeRoot = VectorizableTree[0]->Scalars; 5711 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5712 if (!TreeRootIT) 5713 return; 5714 5715 // If the expression is not rooted by a store, these roots should have 5716 // external uses. We will rely on InstCombine to rewrite the expression in 5717 // the narrower type. However, InstCombine only rewrites single-use values. 5718 // This means that if a tree entry other than a root is used externally, it 5719 // must have multiple uses and InstCombine will not rewrite it. The code 5720 // below ensures that only the roots are used externally. 5721 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5722 for (auto &EU : ExternalUses) 5723 if (!Expr.erase(EU.Scalar)) 5724 return; 5725 if (!Expr.empty()) 5726 return; 5727 5728 // Collect the scalar values of the vectorizable expression. We will use this 5729 // context to determine which values can be demoted. If we see a truncation, 5730 // we mark it as seeding another demotion. 5731 for (auto &EntryPtr : VectorizableTree) 5732 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5733 5734 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5735 // have a single external user that is not in the vectorizable tree. 5736 for (auto *Root : TreeRoot) 5737 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5738 return; 5739 5740 // Conservatively determine if we can actually truncate the roots of the 5741 // expression. Collect the values that can be demoted in ToDemote and 5742 // additional roots that require investigating in Roots. 5743 SmallVector<Value *, 32> ToDemote; 5744 SmallVector<Value *, 4> Roots; 5745 for (auto *Root : TreeRoot) 5746 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5747 return; 5748 5749 // The maximum bit width required to represent all the values that can be 5750 // demoted without loss of precision. It would be safe to truncate the roots 5751 // of the expression to this width. 5752 auto MaxBitWidth = 8u; 5753 5754 // We first check if all the bits of the roots are demanded. If they're not, 5755 // we can truncate the roots to this narrower type. 5756 for (auto *Root : TreeRoot) { 5757 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5758 MaxBitWidth = std::max<unsigned>( 5759 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5760 } 5761 5762 // True if the roots can be zero-extended back to their original type, rather 5763 // than sign-extended. We know that if the leading bits are not demanded, we 5764 // can safely zero-extend. So we initialize IsKnownPositive to True. 5765 bool IsKnownPositive = true; 5766 5767 // If all the bits of the roots are demanded, we can try a little harder to 5768 // compute a narrower type. This can happen, for example, if the roots are 5769 // getelementptr indices. InstCombine promotes these indices to the pointer 5770 // width. Thus, all their bits are technically demanded even though the 5771 // address computation might be vectorized in a smaller type. 5772 // 5773 // We start by looking at each entry that can be demoted. We compute the 5774 // maximum bit width required to store the scalar by using ValueTracking to 5775 // compute the number of high-order bits we can truncate. 5776 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5777 llvm::all_of(TreeRoot, [](Value *R) { 5778 assert(R->hasOneUse() && "Root should have only one use!"); 5779 return isa<GetElementPtrInst>(R->user_back()); 5780 })) { 5781 MaxBitWidth = 8u; 5782 5783 // Determine if the sign bit of all the roots is known to be zero. If not, 5784 // IsKnownPositive is set to False. 5785 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5786 KnownBits Known = computeKnownBits(R, *DL); 5787 return Known.isNonNegative(); 5788 }); 5789 5790 // Determine the maximum number of bits required to store the scalar 5791 // values. 5792 for (auto *Scalar : ToDemote) { 5793 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5794 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5795 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5796 } 5797 5798 // If we can't prove that the sign bit is zero, we must add one to the 5799 // maximum bit width to account for the unknown sign bit. This preserves 5800 // the existing sign bit so we can safely sign-extend the root back to the 5801 // original type. Otherwise, if we know the sign bit is zero, we will 5802 // zero-extend the root instead. 5803 // 5804 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5805 // one to the maximum bit width will yield a larger-than-necessary 5806 // type. In general, we need to add an extra bit only if we can't 5807 // prove that the upper bit of the original type is equal to the 5808 // upper bit of the proposed smaller type. If these two bits are the 5809 // same (either zero or one) we know that sign-extending from the 5810 // smaller type will result in the same value. Here, since we can't 5811 // yet prove this, we are just making the proposed smaller type 5812 // larger to ensure correctness. 5813 if (!IsKnownPositive) 5814 ++MaxBitWidth; 5815 } 5816 5817 // Round MaxBitWidth up to the next power-of-two. 5818 if (!isPowerOf2_64(MaxBitWidth)) 5819 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5820 5821 // If the maximum bit width we compute is less than the with of the roots' 5822 // type, we can proceed with the narrowing. Otherwise, do nothing. 5823 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5824 return; 5825 5826 // If we can truncate the root, we must collect additional values that might 5827 // be demoted as a result. That is, those seeded by truncations we will 5828 // modify. 5829 while (!Roots.empty()) 5830 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5831 5832 // Finally, map the values we can demote to the maximum bit with we computed. 5833 for (auto *Scalar : ToDemote) 5834 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5835 } 5836 5837 namespace { 5838 5839 /// The SLPVectorizer Pass. 5840 struct SLPVectorizer : public FunctionPass { 5841 SLPVectorizerPass Impl; 5842 5843 /// Pass identification, replacement for typeid 5844 static char ID; 5845 5846 explicit SLPVectorizer() : FunctionPass(ID) { 5847 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5848 } 5849 5850 bool doInitialization(Module &M) override { 5851 return false; 5852 } 5853 5854 bool runOnFunction(Function &F) override { 5855 if (skipFunction(F)) 5856 return false; 5857 5858 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5859 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5860 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5861 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5862 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5863 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5864 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5865 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5866 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5867 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5868 5869 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5870 } 5871 5872 void getAnalysisUsage(AnalysisUsage &AU) const override { 5873 FunctionPass::getAnalysisUsage(AU); 5874 AU.addRequired<AssumptionCacheTracker>(); 5875 AU.addRequired<ScalarEvolutionWrapperPass>(); 5876 AU.addRequired<AAResultsWrapperPass>(); 5877 AU.addRequired<TargetTransformInfoWrapperPass>(); 5878 AU.addRequired<LoopInfoWrapperPass>(); 5879 AU.addRequired<DominatorTreeWrapperPass>(); 5880 AU.addRequired<DemandedBitsWrapperPass>(); 5881 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5882 AU.addRequired<InjectTLIMappingsLegacy>(); 5883 AU.addPreserved<LoopInfoWrapperPass>(); 5884 AU.addPreserved<DominatorTreeWrapperPass>(); 5885 AU.addPreserved<AAResultsWrapperPass>(); 5886 AU.addPreserved<GlobalsAAWrapperPass>(); 5887 AU.setPreservesCFG(); 5888 } 5889 }; 5890 5891 } // end anonymous namespace 5892 5893 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5894 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5895 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5896 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5897 auto *AA = &AM.getResult<AAManager>(F); 5898 auto *LI = &AM.getResult<LoopAnalysis>(F); 5899 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5900 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5901 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5902 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5903 5904 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5905 if (!Changed) 5906 return PreservedAnalyses::all(); 5907 5908 PreservedAnalyses PA; 5909 PA.preserveSet<CFGAnalyses>(); 5910 PA.preserve<AAManager>(); 5911 PA.preserve<GlobalsAA>(); 5912 return PA; 5913 } 5914 5915 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5916 TargetTransformInfo *TTI_, 5917 TargetLibraryInfo *TLI_, AAResults *AA_, 5918 LoopInfo *LI_, DominatorTree *DT_, 5919 AssumptionCache *AC_, DemandedBits *DB_, 5920 OptimizationRemarkEmitter *ORE_) { 5921 if (!RunSLPVectorization) 5922 return false; 5923 SE = SE_; 5924 TTI = TTI_; 5925 TLI = TLI_; 5926 AA = AA_; 5927 LI = LI_; 5928 DT = DT_; 5929 AC = AC_; 5930 DB = DB_; 5931 DL = &F.getParent()->getDataLayout(); 5932 5933 Stores.clear(); 5934 GEPs.clear(); 5935 bool Changed = false; 5936 5937 // If the target claims to have no vector registers don't attempt 5938 // vectorization. 5939 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5940 return false; 5941 5942 // Don't vectorize when the attribute NoImplicitFloat is used. 5943 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5944 return false; 5945 5946 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5947 5948 // Use the bottom up slp vectorizer to construct chains that start with 5949 // store instructions. 5950 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5951 5952 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5953 // delete instructions. 5954 5955 // Scan the blocks in the function in post order. 5956 for (auto BB : post_order(&F.getEntryBlock())) { 5957 collectSeedInstructions(BB); 5958 5959 // Vectorize trees that end at stores. 5960 if (!Stores.empty()) { 5961 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5962 << " underlying objects.\n"); 5963 Changed |= vectorizeStoreChains(R); 5964 } 5965 5966 // Vectorize trees that end at reductions. 5967 Changed |= vectorizeChainsInBlock(BB, R); 5968 5969 // Vectorize the index computations of getelementptr instructions. This 5970 // is primarily intended to catch gather-like idioms ending at 5971 // non-consecutive loads. 5972 if (!GEPs.empty()) { 5973 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5974 << " underlying objects.\n"); 5975 Changed |= vectorizeGEPIndices(BB, R); 5976 } 5977 } 5978 5979 if (Changed) { 5980 R.optimizeGatherSequence(); 5981 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5982 } 5983 return Changed; 5984 } 5985 5986 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5987 unsigned Idx) { 5988 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5989 << "\n"); 5990 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5991 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5992 unsigned VF = Chain.size(); 5993 5994 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5995 return false; 5996 5997 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5998 << "\n"); 5999 6000 R.buildTree(Chain); 6001 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6002 // TODO: Handle orders of size less than number of elements in the vector. 6003 if (Order && Order->size() == Chain.size()) { 6004 // TODO: reorder tree nodes without tree rebuilding. 6005 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6006 llvm::transform(*Order, ReorderedOps.begin(), 6007 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6008 R.buildTree(ReorderedOps); 6009 } 6010 if (R.isTreeTinyAndNotFullyVectorizable()) 6011 return false; 6012 if (R.isLoadCombineCandidate()) 6013 return false; 6014 6015 R.computeMinimumValueSizes(); 6016 6017 InstructionCost Cost = R.getTreeCost(); 6018 6019 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6020 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6021 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6022 6023 using namespace ore; 6024 6025 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6026 cast<StoreInst>(Chain[0])) 6027 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6028 << " and with tree size " 6029 << NV("TreeSize", R.getTreeSize())); 6030 6031 R.vectorizeTree(); 6032 return true; 6033 } 6034 6035 return false; 6036 } 6037 6038 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6039 BoUpSLP &R) { 6040 // We may run into multiple chains that merge into a single chain. We mark the 6041 // stores that we vectorized so that we don't visit the same store twice. 6042 BoUpSLP::ValueSet VectorizedStores; 6043 bool Changed = false; 6044 6045 int E = Stores.size(); 6046 SmallBitVector Tails(E, false); 6047 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6048 int MaxIter = MaxStoreLookup.getValue(); 6049 int IterCnt; 6050 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6051 &ConsecutiveChain](int K, int Idx) { 6052 if (IterCnt >= MaxIter) 6053 return true; 6054 ++IterCnt; 6055 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6056 return false; 6057 6058 Tails.set(Idx); 6059 ConsecutiveChain[K] = Idx; 6060 return true; 6061 }; 6062 // Do a quadratic search on all of the given stores in reverse order and find 6063 // all of the pairs of stores that follow each other. 6064 for (int Idx = E - 1; Idx >= 0; --Idx) { 6065 // If a store has multiple consecutive store candidates, search according 6066 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6067 // This is because usually pairing with immediate succeeding or preceding 6068 // candidate create the best chance to find slp vectorization opportunity. 6069 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6070 IterCnt = 0; 6071 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6072 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6073 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6074 break; 6075 } 6076 6077 // For stores that start but don't end a link in the chain: 6078 for (int Cnt = E; Cnt > 0; --Cnt) { 6079 int I = Cnt - 1; 6080 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6081 continue; 6082 // We found a store instr that starts a chain. Now follow the chain and try 6083 // to vectorize it. 6084 BoUpSLP::ValueList Operands; 6085 // Collect the chain into a list. 6086 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6087 Operands.push_back(Stores[I]); 6088 // Move to the next value in the chain. 6089 I = ConsecutiveChain[I]; 6090 } 6091 6092 // If a vector register can't hold 1 element, we are done. 6093 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6094 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6095 if (MaxVecRegSize % EltSize != 0) 6096 continue; 6097 6098 unsigned MaxElts = MaxVecRegSize / EltSize; 6099 // FIXME: Is division-by-2 the correct step? Should we assert that the 6100 // register size is a power-of-2? 6101 unsigned StartIdx = 0; 6102 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6103 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6104 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6105 if (!VectorizedStores.count(Slice.front()) && 6106 !VectorizedStores.count(Slice.back()) && 6107 vectorizeStoreChain(Slice, R, Cnt)) { 6108 // Mark the vectorized stores so that we don't vectorize them again. 6109 VectorizedStores.insert(Slice.begin(), Slice.end()); 6110 Changed = true; 6111 // If we vectorized initial block, no need to try to vectorize it 6112 // again. 6113 if (Cnt == StartIdx) 6114 StartIdx += Size; 6115 Cnt += Size; 6116 continue; 6117 } 6118 ++Cnt; 6119 } 6120 // Check if the whole array was vectorized already - exit. 6121 if (StartIdx >= Operands.size()) 6122 break; 6123 } 6124 } 6125 6126 return Changed; 6127 } 6128 6129 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6130 // Initialize the collections. We will make a single pass over the block. 6131 Stores.clear(); 6132 GEPs.clear(); 6133 6134 // Visit the store and getelementptr instructions in BB and organize them in 6135 // Stores and GEPs according to the underlying objects of their pointer 6136 // operands. 6137 for (Instruction &I : *BB) { 6138 // Ignore store instructions that are volatile or have a pointer operand 6139 // that doesn't point to a scalar type. 6140 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6141 if (!SI->isSimple()) 6142 continue; 6143 if (!isValidElementType(SI->getValueOperand()->getType())) 6144 continue; 6145 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6146 } 6147 6148 // Ignore getelementptr instructions that have more than one index, a 6149 // constant index, or a pointer operand that doesn't point to a scalar 6150 // type. 6151 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6152 auto Idx = GEP->idx_begin()->get(); 6153 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6154 continue; 6155 if (!isValidElementType(Idx->getType())) 6156 continue; 6157 if (GEP->getType()->isVectorTy()) 6158 continue; 6159 GEPs[GEP->getPointerOperand()].push_back(GEP); 6160 } 6161 } 6162 } 6163 6164 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6165 if (!A || !B) 6166 return false; 6167 Value *VL[] = {A, B}; 6168 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6169 } 6170 6171 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6172 bool AllowReorder, 6173 ArrayRef<Value *> InsertUses) { 6174 if (VL.size() < 2) 6175 return false; 6176 6177 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6178 << VL.size() << ".\n"); 6179 6180 // Check that all of the parts are instructions of the same type, 6181 // we permit an alternate opcode via InstructionsState. 6182 InstructionsState S = getSameOpcode(VL); 6183 if (!S.getOpcode()) 6184 return false; 6185 6186 Instruction *I0 = cast<Instruction>(S.OpValue); 6187 // Make sure invalid types (including vector type) are rejected before 6188 // determining vectorization factor for scalar instructions. 6189 for (Value *V : VL) { 6190 Type *Ty = V->getType(); 6191 if (!isValidElementType(Ty)) { 6192 // NOTE: the following will give user internal llvm type name, which may 6193 // not be useful. 6194 R.getORE()->emit([&]() { 6195 std::string type_str; 6196 llvm::raw_string_ostream rso(type_str); 6197 Ty->print(rso); 6198 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6199 << "Cannot SLP vectorize list: type " 6200 << rso.str() + " is unsupported by vectorizer"; 6201 }); 6202 return false; 6203 } 6204 } 6205 6206 unsigned Sz = R.getVectorElementSize(I0); 6207 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6208 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6209 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6210 if (MaxVF < 2) { 6211 R.getORE()->emit([&]() { 6212 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6213 << "Cannot SLP vectorize list: vectorization factor " 6214 << "less than 2 is not supported"; 6215 }); 6216 return false; 6217 } 6218 6219 bool Changed = false; 6220 bool CandidateFound = false; 6221 InstructionCost MinCost = SLPCostThreshold.getValue(); 6222 6223 bool CompensateUseCost = 6224 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6225 return V && isa<InsertElementInst>(V); 6226 }); 6227 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6228 "Each scalar expected to have an associated InsertElement user."); 6229 6230 unsigned NextInst = 0, MaxInst = VL.size(); 6231 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6232 // No actual vectorization should happen, if number of parts is the same as 6233 // provided vectorization factor (i.e. the scalar type is used for vector 6234 // code during codegen). 6235 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6236 if (TTI->getNumberOfParts(VecTy) == VF) 6237 continue; 6238 for (unsigned I = NextInst; I < MaxInst; ++I) { 6239 unsigned OpsWidth = 0; 6240 6241 if (I + VF > MaxInst) 6242 OpsWidth = MaxInst - I; 6243 else 6244 OpsWidth = VF; 6245 6246 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6247 break; 6248 6249 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6250 // Check that a previous iteration of this loop did not delete the Value. 6251 if (llvm::any_of(Ops, [&R](Value *V) { 6252 auto *I = dyn_cast<Instruction>(V); 6253 return I && R.isDeleted(I); 6254 })) 6255 continue; 6256 6257 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6258 << "\n"); 6259 6260 R.buildTree(Ops); 6261 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6262 // TODO: check if we can allow reordering for more cases. 6263 if (AllowReorder && Order) { 6264 // TODO: reorder tree nodes without tree rebuilding. 6265 // Conceptually, there is nothing actually preventing us from trying to 6266 // reorder a larger list. In fact, we do exactly this when vectorizing 6267 // reductions. However, at this point, we only expect to get here when 6268 // there are exactly two operations. 6269 assert(Ops.size() == 2); 6270 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6271 R.buildTree(ReorderedOps, None); 6272 } 6273 if (R.isTreeTinyAndNotFullyVectorizable()) 6274 continue; 6275 6276 R.computeMinimumValueSizes(); 6277 InstructionCost Cost = R.getTreeCost(); 6278 CandidateFound = true; 6279 if (CompensateUseCost) { 6280 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6281 // rather than sum of single inserts as the latter may overestimate 6282 // cost. This work should imply improving cost estimation for extracts 6283 // that added in for external (for vectorization tree) users,i.e. that 6284 // part should also switch to same interface. 6285 // For example, the following case is projected code after SLP: 6286 // %4 = extractelement <4 x i64> %3, i32 0 6287 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6288 // %5 = extractelement <4 x i64> %3, i32 1 6289 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6290 // %6 = extractelement <4 x i64> %3, i32 2 6291 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6292 // %7 = extractelement <4 x i64> %3, i32 3 6293 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6294 // 6295 // Extracts here added by SLP in order to feed users (the inserts) of 6296 // original scalars and contribute to "ExtractCost" at cost evaluation. 6297 // The inserts in turn form sequence to build an aggregate that 6298 // detected by findBuildAggregate routine. 6299 // SLP makes an assumption that such sequence will be optimized away 6300 // later (instcombine) so it tries to compensate ExctractCost with 6301 // cost of insert sequence. 6302 // Current per element cost calculation approach is not quite accurate 6303 // and tends to create bias toward favoring vectorization. 6304 // Switching to the TTI interface might help a bit. 6305 // Alternative solution could be pattern-match to detect a no-op or 6306 // shuffle. 6307 InstructionCost UserCost = 0; 6308 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6309 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6310 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6311 UserCost += TTI->getVectorInstrCost( 6312 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6313 } 6314 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6315 << ".\n"); 6316 Cost -= UserCost; 6317 } 6318 6319 MinCost = InstructionCost::min(MinCost, Cost); 6320 6321 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6322 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6323 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6324 cast<Instruction>(Ops[0])) 6325 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6326 << " and with tree size " 6327 << ore::NV("TreeSize", R.getTreeSize())); 6328 6329 R.vectorizeTree(); 6330 // Move to the next bundle. 6331 I += VF - 1; 6332 NextInst = I + 1; 6333 Changed = true; 6334 } 6335 } 6336 } 6337 6338 if (!Changed && CandidateFound) { 6339 R.getORE()->emit([&]() { 6340 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6341 << "List vectorization was possible but not beneficial with cost " 6342 << ore::NV("Cost", MinCost) << " >= " 6343 << ore::NV("Treshold", -SLPCostThreshold); 6344 }); 6345 } else if (!Changed) { 6346 R.getORE()->emit([&]() { 6347 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6348 << "Cannot SLP vectorize list: vectorization was impossible" 6349 << " with available vectorization factors"; 6350 }); 6351 } 6352 return Changed; 6353 } 6354 6355 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6356 if (!I) 6357 return false; 6358 6359 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6360 return false; 6361 6362 Value *P = I->getParent(); 6363 6364 // Vectorize in current basic block only. 6365 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6366 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6367 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6368 return false; 6369 6370 // Try to vectorize V. 6371 if (tryToVectorizePair(Op0, Op1, R)) 6372 return true; 6373 6374 auto *A = dyn_cast<BinaryOperator>(Op0); 6375 auto *B = dyn_cast<BinaryOperator>(Op1); 6376 // Try to skip B. 6377 if (B && B->hasOneUse()) { 6378 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6379 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6380 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6381 return true; 6382 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6383 return true; 6384 } 6385 6386 // Try to skip A. 6387 if (A && A->hasOneUse()) { 6388 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6389 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6390 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6391 return true; 6392 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6393 return true; 6394 } 6395 return false; 6396 } 6397 6398 /// Generate a shuffle mask to be used in a reduction tree. 6399 /// 6400 /// \param VecLen The length of the vector to be reduced. 6401 /// \param NumEltsToRdx The number of elements that should be reduced in the 6402 /// vector. 6403 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6404 /// reduction. A pairwise reduction will generate a mask of 6405 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6406 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6407 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6408 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6409 unsigned NumEltsToRdx, 6410 bool IsPairwise, bool IsLeft) { 6411 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6412 6413 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6414 6415 if (IsPairwise) 6416 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6417 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6418 ShuffleMask[i] = 2 * i + !IsLeft; 6419 else 6420 // Move the upper half of the vector to the lower half. 6421 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6422 ShuffleMask[i] = NumEltsToRdx + i; 6423 6424 return ShuffleMask; 6425 } 6426 6427 namespace { 6428 6429 /// Model horizontal reductions. 6430 /// 6431 /// A horizontal reduction is a tree of reduction operations (currently add and 6432 /// fadd) that has operations that can be put into a vector as its leaf. 6433 /// For example, this tree: 6434 /// 6435 /// mul mul mul mul 6436 /// \ / \ / 6437 /// + + 6438 /// \ / 6439 /// + 6440 /// This tree has "mul" as its reduced values and "+" as its reduction 6441 /// operations. A reduction might be feeding into a store or a binary operation 6442 /// feeding a phi. 6443 /// ... 6444 /// \ / 6445 /// + 6446 /// | 6447 /// phi += 6448 /// 6449 /// Or: 6450 /// ... 6451 /// \ / 6452 /// + 6453 /// | 6454 /// *p = 6455 /// 6456 class HorizontalReduction { 6457 using ReductionOpsType = SmallVector<Value *, 16>; 6458 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6459 ReductionOpsListType ReductionOps; 6460 SmallVector<Value *, 32> ReducedVals; 6461 // Use map vector to make stable output. 6462 MapVector<Instruction *, Value *> ExtraArgs; 6463 6464 /// Kind of the reduction data. 6465 enum ReductionKind { 6466 RK_None, /// Not a reduction. 6467 RK_Arithmetic, /// Binary reduction data. 6468 RK_SMin, /// Signed minimum reduction data. 6469 RK_UMin, /// Unsigned minimum reduction data. 6470 RK_SMax, /// Signed maximum reduction data. 6471 RK_UMax, /// Unsigned maximum reduction data. 6472 }; 6473 6474 /// Contains info about operation, like its opcode, left and right operands. 6475 class OperationData { 6476 /// Opcode of the instruction. 6477 unsigned Opcode = 0; 6478 6479 /// Kind of the reduction operation. 6480 ReductionKind Kind = RK_None; 6481 6482 /// Checks if the reduction operation can be vectorized. 6483 bool isVectorizable() const { 6484 // We currently only support add/mul/logical && min/max reductions. 6485 return ((Kind == RK_Arithmetic && 6486 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6487 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6488 Opcode == Instruction::And || Opcode == Instruction::Or || 6489 Opcode == Instruction::Xor)) || 6490 (Opcode == Instruction::ICmp && 6491 (Kind == RK_SMin || Kind == RK_SMax || 6492 Kind == RK_UMin || Kind == RK_UMax))); 6493 } 6494 6495 /// Creates reduction operation with the current opcode. 6496 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6497 const Twine &Name) const { 6498 assert(isVectorizable() && 6499 "Expected add|fadd or min/max reduction operation."); 6500 Value *Cmp = nullptr; 6501 switch (Kind) { 6502 case RK_Arithmetic: 6503 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6504 Name); 6505 case RK_SMin: 6506 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6507 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6508 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6509 case RK_SMax: 6510 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6511 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6512 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6513 case RK_UMin: 6514 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6515 Cmp = Builder.CreateICmpULT(LHS, RHS); 6516 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6517 case RK_UMax: 6518 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6519 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6520 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6521 case RK_None: 6522 break; 6523 } 6524 llvm_unreachable("Unknown reduction operation."); 6525 } 6526 6527 public: 6528 explicit OperationData() = default; 6529 6530 /// Construction for reduced values. They are identified by opcode only and 6531 /// don't have associated LHS/RHS values. 6532 explicit OperationData(Instruction &I) { 6533 Opcode = I.getOpcode(); 6534 } 6535 6536 /// Constructor for reduction operations with opcode and its left and 6537 /// right operands. 6538 OperationData(unsigned Opcode, ReductionKind Kind) 6539 : Opcode(Opcode), Kind(Kind) { 6540 assert(Kind != RK_None && "One of the reduction operations is expected."); 6541 } 6542 6543 explicit operator bool() const { return Opcode; } 6544 6545 /// Return true if this operation is any kind of minimum or maximum. 6546 bool isMinMax() const { 6547 switch (Kind) { 6548 case RK_Arithmetic: 6549 return false; 6550 case RK_SMin: 6551 case RK_SMax: 6552 case RK_UMin: 6553 case RK_UMax: 6554 return true; 6555 case RK_None: 6556 break; 6557 } 6558 llvm_unreachable("Reduction kind is not set"); 6559 } 6560 6561 /// Get the index of the first operand. 6562 unsigned getFirstOperandIndex() const { 6563 assert(!!*this && "The opcode is not set."); 6564 // We allow calling this before 'Kind' is set, so handle that specially. 6565 if (Kind == RK_None) 6566 return 0; 6567 return isMinMax() ? 1 : 0; 6568 } 6569 6570 /// Total number of operands in the reduction operation. 6571 unsigned getNumberOfOperands() const { 6572 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6573 return isMinMax() ? 3 : 2; 6574 } 6575 6576 /// Checks if the instruction is in basic block \p BB. 6577 /// For a min/max reduction check that both compare and select are in \p BB. 6578 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6579 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6580 if (IsRedOp && isMinMax()) { 6581 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6582 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6583 } 6584 return I->getParent() == BB; 6585 } 6586 6587 /// Expected number of uses for reduction operations/reduced values. 6588 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6589 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6590 // SelectInst must be used twice while the condition op must have single 6591 // use only. 6592 if (isMinMax()) 6593 return I->hasNUses(2) && 6594 (!IsReductionOp || 6595 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6596 6597 // Arithmetic reduction operation must be used once only. 6598 return I->hasOneUse(); 6599 } 6600 6601 /// Initializes the list of reduction operations. 6602 void initReductionOps(ReductionOpsListType &ReductionOps) { 6603 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6604 if (isMinMax()) 6605 ReductionOps.assign(2, ReductionOpsType()); 6606 else 6607 ReductionOps.assign(1, ReductionOpsType()); 6608 } 6609 6610 /// Add all reduction operations for the reduction instruction \p I. 6611 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6612 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6613 if (isMinMax()) { 6614 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6615 ReductionOps[1].emplace_back(I); 6616 } else { 6617 ReductionOps[0].emplace_back(I); 6618 } 6619 } 6620 6621 /// Checks if instruction is associative and can be vectorized. 6622 bool isAssociative(Instruction *I) const { 6623 assert(Kind != RK_None && *this && "Expected reduction operation."); 6624 switch (Kind) { 6625 case RK_Arithmetic: 6626 return I->isAssociative(); 6627 case RK_SMin: 6628 case RK_SMax: 6629 case RK_UMin: 6630 case RK_UMax: 6631 assert(Opcode == Instruction::ICmp && 6632 "Only integer compare operation is expected."); 6633 return true; 6634 case RK_None: 6635 break; 6636 } 6637 llvm_unreachable("Reduction kind is not set"); 6638 } 6639 6640 /// Checks if the reduction operation can be vectorized. 6641 bool isVectorizable(Instruction *I) const { 6642 return isVectorizable() && isAssociative(I); 6643 } 6644 6645 /// Checks if two operation data are both a reduction op or both a reduced 6646 /// value. 6647 bool operator==(const OperationData &OD) const { 6648 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6649 "One of the comparing operations is incorrect."); 6650 return Kind == OD.Kind && Opcode == OD.Opcode; 6651 } 6652 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6653 void clear() { 6654 Opcode = 0; 6655 Kind = RK_None; 6656 } 6657 6658 /// Get the opcode of the reduction operation. 6659 unsigned getOpcode() const { 6660 assert(isVectorizable() && "Expected vectorizable operation."); 6661 return Opcode; 6662 } 6663 6664 /// Get kind of reduction data. 6665 ReductionKind getKind() const { return Kind; } 6666 Value *getLHS(Instruction *I) const { 6667 if (Kind == RK_None) 6668 return nullptr; 6669 return I->getOperand(getFirstOperandIndex()); 6670 } 6671 Value *getRHS(Instruction *I) const { 6672 if (Kind == RK_None) 6673 return nullptr; 6674 return I->getOperand(getFirstOperandIndex() + 1); 6675 } 6676 6677 /// Creates reduction operation with the current opcode with the IR flags 6678 /// from \p ReductionOps. 6679 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6680 const Twine &Name, 6681 const ReductionOpsListType &ReductionOps) const { 6682 assert(isVectorizable() && 6683 "Expected add|fadd or min/max reduction operation."); 6684 auto *Op = createOp(Builder, LHS, RHS, Name); 6685 switch (Kind) { 6686 case RK_Arithmetic: 6687 propagateIRFlags(Op, ReductionOps[0]); 6688 return Op; 6689 case RK_SMin: 6690 case RK_SMax: 6691 case RK_UMin: 6692 case RK_UMax: 6693 if (auto *SI = dyn_cast<SelectInst>(Op)) 6694 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6695 propagateIRFlags(Op, ReductionOps[1]); 6696 return Op; 6697 case RK_None: 6698 break; 6699 } 6700 llvm_unreachable("Unknown reduction operation."); 6701 } 6702 /// Creates reduction operation with the current opcode with the IR flags 6703 /// from \p I. 6704 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6705 const Twine &Name, Instruction *I) const { 6706 assert(isVectorizable() && 6707 "Expected add|fadd or min/max reduction operation."); 6708 auto *Op = createOp(Builder, LHS, RHS, Name); 6709 switch (Kind) { 6710 case RK_Arithmetic: 6711 propagateIRFlags(Op, I); 6712 return Op; 6713 case RK_SMin: 6714 case RK_SMax: 6715 case RK_UMin: 6716 case RK_UMax: 6717 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6718 propagateIRFlags(SI->getCondition(), 6719 cast<SelectInst>(I)->getCondition()); 6720 } 6721 propagateIRFlags(Op, I); 6722 return Op; 6723 case RK_None: 6724 break; 6725 } 6726 llvm_unreachable("Unknown reduction operation."); 6727 } 6728 6729 TargetTransformInfo::ReductionFlags getFlags() const { 6730 TargetTransformInfo::ReductionFlags Flags; 6731 switch (Kind) { 6732 case RK_Arithmetic: 6733 break; 6734 case RK_SMin: 6735 Flags.IsSigned = true; 6736 Flags.IsMaxOp = false; 6737 break; 6738 case RK_SMax: 6739 Flags.IsSigned = true; 6740 Flags.IsMaxOp = true; 6741 break; 6742 case RK_UMin: 6743 Flags.IsSigned = false; 6744 Flags.IsMaxOp = false; 6745 break; 6746 case RK_UMax: 6747 Flags.IsSigned = false; 6748 Flags.IsMaxOp = true; 6749 break; 6750 case RK_None: 6751 llvm_unreachable("Reduction kind is not set"); 6752 } 6753 return Flags; 6754 } 6755 }; 6756 6757 WeakTrackingVH ReductionRoot; 6758 6759 /// The operation data of the reduction operation. 6760 OperationData ReductionData; 6761 6762 /// The operation data of the values we perform a reduction on. 6763 OperationData ReducedValueData; 6764 6765 /// Should we model this reduction as a pairwise reduction tree or a tree that 6766 /// splits the vector in halves and adds those halves. 6767 bool IsPairwiseReduction = false; 6768 6769 /// Checks if the ParentStackElem.first should be marked as a reduction 6770 /// operation with an extra argument or as extra argument itself. 6771 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6772 Value *ExtraArg) { 6773 if (ExtraArgs.count(ParentStackElem.first)) { 6774 ExtraArgs[ParentStackElem.first] = nullptr; 6775 // We ran into something like: 6776 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6777 // The whole ParentStackElem.first should be considered as an extra value 6778 // in this case. 6779 // Do not perform analysis of remaining operands of ParentStackElem.first 6780 // instruction, this whole instruction is an extra argument. 6781 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6782 } else { 6783 // We ran into something like: 6784 // ParentStackElem.first += ... + ExtraArg + ... 6785 ExtraArgs[ParentStackElem.first] = ExtraArg; 6786 } 6787 } 6788 6789 static OperationData getOperationData(Instruction *I) { 6790 if (!I) 6791 return OperationData(); 6792 6793 Value *LHS; 6794 Value *RHS; 6795 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6796 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6797 } 6798 if (auto *Select = dyn_cast<SelectInst>(I)) { 6799 // Look for a min/max pattern. 6800 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6801 return OperationData(Instruction::ICmp, RK_UMin); 6802 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6803 return OperationData(Instruction::ICmp, RK_SMin); 6804 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6805 return OperationData(Instruction::ICmp, RK_UMax); 6806 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6807 return OperationData(Instruction::ICmp, RK_SMax); 6808 } else { 6809 // Try harder: look for min/max pattern based on instructions producing 6810 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6811 // During the intermediate stages of SLP, it's very common to have 6812 // pattern like this (since optimizeGatherSequence is run only once 6813 // at the end): 6814 // %1 = extractelement <2 x i32> %a, i32 0 6815 // %2 = extractelement <2 x i32> %a, i32 1 6816 // %cond = icmp sgt i32 %1, %2 6817 // %3 = extractelement <2 x i32> %a, i32 0 6818 // %4 = extractelement <2 x i32> %a, i32 1 6819 // %select = select i1 %cond, i32 %3, i32 %4 6820 CmpInst::Predicate Pred; 6821 Instruction *L1; 6822 Instruction *L2; 6823 6824 LHS = Select->getTrueValue(); 6825 RHS = Select->getFalseValue(); 6826 Value *Cond = Select->getCondition(); 6827 6828 // TODO: Support inverse predicates. 6829 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6830 if (!isa<ExtractElementInst>(RHS) || 6831 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6832 return OperationData(*I); 6833 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6834 if (!isa<ExtractElementInst>(LHS) || 6835 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6836 return OperationData(*I); 6837 } else { 6838 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6839 return OperationData(*I); 6840 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6841 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6842 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6843 return OperationData(*I); 6844 } 6845 switch (Pred) { 6846 default: 6847 return OperationData(*I); 6848 6849 case CmpInst::ICMP_ULT: 6850 case CmpInst::ICMP_ULE: 6851 return OperationData(Instruction::ICmp, RK_UMin); 6852 6853 case CmpInst::ICMP_SLT: 6854 case CmpInst::ICMP_SLE: 6855 return OperationData(Instruction::ICmp, RK_SMin); 6856 6857 case CmpInst::ICMP_UGT: 6858 case CmpInst::ICMP_UGE: 6859 return OperationData(Instruction::ICmp, RK_UMax); 6860 6861 case CmpInst::ICMP_SGT: 6862 case CmpInst::ICMP_SGE: 6863 return OperationData(Instruction::ICmp, RK_SMax); 6864 } 6865 } 6866 } 6867 return OperationData(*I); 6868 } 6869 6870 public: 6871 HorizontalReduction() = default; 6872 6873 /// Try to find a reduction tree. 6874 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6875 assert((!Phi || is_contained(Phi->operands(), B)) && 6876 "Thi phi needs to use the binary operator"); 6877 6878 ReductionData = getOperationData(B); 6879 6880 // We could have a initial reductions that is not an add. 6881 // r *= v1 + v2 + v3 + v4 6882 // In such a case start looking for a tree rooted in the first '+'. 6883 if (Phi) { 6884 if (ReductionData.getLHS(B) == Phi) { 6885 Phi = nullptr; 6886 B = dyn_cast<Instruction>(ReductionData.getRHS(B)); 6887 ReductionData = getOperationData(B); 6888 } else if (ReductionData.getRHS(B) == Phi) { 6889 Phi = nullptr; 6890 B = dyn_cast<Instruction>(ReductionData.getLHS(B)); 6891 ReductionData = getOperationData(B); 6892 } 6893 } 6894 6895 if (!ReductionData.isVectorizable(B)) 6896 return false; 6897 6898 Type *Ty = B->getType(); 6899 if (!isValidElementType(Ty)) 6900 return false; 6901 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6902 return false; 6903 6904 ReducedValueData.clear(); 6905 ReductionRoot = B; 6906 6907 // Post order traverse the reduction tree starting at B. We only handle true 6908 // trees containing only binary operators. 6909 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6910 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6911 ReductionData.initReductionOps(ReductionOps); 6912 while (!Stack.empty()) { 6913 Instruction *TreeN = Stack.back().first; 6914 unsigned EdgeToVist = Stack.back().second++; 6915 OperationData OpData = getOperationData(TreeN); 6916 bool IsReducedValue = OpData != ReductionData; 6917 6918 // Postorder vist. 6919 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6920 if (IsReducedValue) 6921 ReducedVals.push_back(TreeN); 6922 else { 6923 auto I = ExtraArgs.find(TreeN); 6924 if (I != ExtraArgs.end() && !I->second) { 6925 // Check if TreeN is an extra argument of its parent operation. 6926 if (Stack.size() <= 1) { 6927 // TreeN can't be an extra argument as it is a root reduction 6928 // operation. 6929 return false; 6930 } 6931 // Yes, TreeN is an extra argument, do not add it to a list of 6932 // reduction operations. 6933 // Stack[Stack.size() - 2] always points to the parent operation. 6934 markExtraArg(Stack[Stack.size() - 2], TreeN); 6935 ExtraArgs.erase(TreeN); 6936 } else 6937 ReductionData.addReductionOps(TreeN, ReductionOps); 6938 } 6939 // Retract. 6940 Stack.pop_back(); 6941 continue; 6942 } 6943 6944 // Visit left or right. 6945 Value *NextV = TreeN->getOperand(EdgeToVist); 6946 if (NextV != Phi) { 6947 auto *I = dyn_cast<Instruction>(NextV); 6948 OpData = getOperationData(I); 6949 // Continue analysis if the next operand is a reduction operation or 6950 // (possibly) a reduced value. If the reduced value opcode is not set, 6951 // the first met operation != reduction operation is considered as the 6952 // reduced value class. 6953 if (I && (!ReducedValueData || OpData == ReducedValueData || 6954 OpData == ReductionData)) { 6955 const bool IsReductionOperation = OpData == ReductionData; 6956 // Only handle trees in the current basic block. 6957 if (!ReductionData.hasSameParent(I, B->getParent(), 6958 IsReductionOperation)) { 6959 // I is an extra argument for TreeN (its parent operation). 6960 markExtraArg(Stack.back(), I); 6961 continue; 6962 } 6963 6964 // Each tree node needs to have minimal number of users except for the 6965 // ultimate reduction. 6966 if (!ReductionData.hasRequiredNumberOfUses(I, 6967 OpData == ReductionData) && 6968 I != B) { 6969 // I is an extra argument for TreeN (its parent operation). 6970 markExtraArg(Stack.back(), I); 6971 continue; 6972 } 6973 6974 if (IsReductionOperation) { 6975 // We need to be able to reassociate the reduction operations. 6976 if (!OpData.isAssociative(I)) { 6977 // I is an extra argument for TreeN (its parent operation). 6978 markExtraArg(Stack.back(), I); 6979 continue; 6980 } 6981 } else if (ReducedValueData && 6982 ReducedValueData != OpData) { 6983 // Make sure that the opcodes of the operations that we are going to 6984 // reduce match. 6985 // I is an extra argument for TreeN (its parent operation). 6986 markExtraArg(Stack.back(), I); 6987 continue; 6988 } else if (!ReducedValueData) 6989 ReducedValueData = OpData; 6990 6991 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6992 continue; 6993 } 6994 } 6995 // NextV is an extra argument for TreeN (its parent operation). 6996 markExtraArg(Stack.back(), NextV); 6997 } 6998 return true; 6999 } 7000 7001 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7002 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7003 // If there are a sufficient number of reduction values, reduce 7004 // to a nearby power-of-2. We can safely generate oversized 7005 // vectors and rely on the backend to split them to legal sizes. 7006 unsigned NumReducedVals = ReducedVals.size(); 7007 if (NumReducedVals < 4) 7008 return false; 7009 7010 // FIXME: Fast-math-flags should be set based on the instructions in the 7011 // reduction (not all of 'fast' are required). 7012 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7013 FastMathFlags Unsafe; 7014 Unsafe.setFast(); 7015 Builder.setFastMathFlags(Unsafe); 7016 7017 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7018 // The same extra argument may be used several times, so log each attempt 7019 // to use it. 7020 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7021 assert(Pair.first && "DebugLoc must be set."); 7022 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7023 } 7024 7025 // The compare instruction of a min/max is the insertion point for new 7026 // instructions and may be replaced with a new compare instruction. 7027 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7028 assert(isa<SelectInst>(RdxRootInst) && 7029 "Expected min/max reduction to have select root instruction"); 7030 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7031 assert(isa<Instruction>(ScalarCond) && 7032 "Expected min/max reduction to have compare condition"); 7033 return cast<Instruction>(ScalarCond); 7034 }; 7035 7036 // The reduction root is used as the insertion point for new instructions, 7037 // so set it as externally used to prevent it from being deleted. 7038 ExternallyUsedValues[ReductionRoot]; 7039 SmallVector<Value *, 16> IgnoreList; 7040 for (ReductionOpsType &RdxOp : ReductionOps) 7041 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7042 7043 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7044 if (NumReducedVals > ReduxWidth) { 7045 // In the loop below, we are building a tree based on a window of 7046 // 'ReduxWidth' values. 7047 // If the operands of those values have common traits (compare predicate, 7048 // constant operand, etc), then we want to group those together to 7049 // minimize the cost of the reduction. 7050 7051 // TODO: This should be extended to count common operands for 7052 // compares and binops. 7053 7054 // Step 1: Count the number of times each compare predicate occurs. 7055 SmallDenseMap<unsigned, unsigned> PredCountMap; 7056 for (Value *RdxVal : ReducedVals) { 7057 CmpInst::Predicate Pred; 7058 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7059 ++PredCountMap[Pred]; 7060 } 7061 // Step 2: Sort the values so the most common predicates come first. 7062 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7063 CmpInst::Predicate PredA, PredB; 7064 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7065 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7066 return PredCountMap[PredA] > PredCountMap[PredB]; 7067 } 7068 return false; 7069 }); 7070 } 7071 7072 Value *VectorizedTree = nullptr; 7073 unsigned i = 0; 7074 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7075 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7076 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7077 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7078 if (Order) { 7079 assert(Order->size() == VL.size() && 7080 "Order size must be the same as number of vectorized " 7081 "instructions."); 7082 // TODO: reorder tree nodes without tree rebuilding. 7083 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7084 llvm::transform(*Order, ReorderedOps.begin(), 7085 [VL](const unsigned Idx) { return VL[Idx]; }); 7086 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7087 } 7088 if (V.isTreeTinyAndNotFullyVectorizable()) 7089 break; 7090 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 7091 break; 7092 7093 V.computeMinimumValueSizes(); 7094 7095 // Estimate cost. 7096 InstructionCost TreeCost = V.getTreeCost(); 7097 InstructionCost ReductionCost = 7098 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7099 InstructionCost Cost = TreeCost + ReductionCost; 7100 if (!Cost.isValid()) { 7101 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7102 return false; 7103 } 7104 if (Cost >= -SLPCostThreshold) { 7105 V.getORE()->emit([&]() { 7106 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7107 cast<Instruction>(VL[0])) 7108 << "Vectorizing horizontal reduction is possible" 7109 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7110 << " and threshold " 7111 << ore::NV("Threshold", -SLPCostThreshold); 7112 }); 7113 break; 7114 } 7115 7116 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7117 << Cost << ". (HorRdx)\n"); 7118 V.getORE()->emit([&]() { 7119 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7120 cast<Instruction>(VL[0])) 7121 << "Vectorized horizontal reduction with cost " 7122 << ore::NV("Cost", Cost) << " and with tree size " 7123 << ore::NV("TreeSize", V.getTreeSize()); 7124 }); 7125 7126 // Vectorize a tree. 7127 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7128 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7129 7130 // Emit a reduction. For min/max, the root is a select, but the insertion 7131 // point is the compare condition of that select. 7132 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7133 if (ReductionData.isMinMax()) 7134 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7135 else 7136 Builder.SetInsertPoint(RdxRootInst); 7137 7138 Value *ReducedSubTree = 7139 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7140 7141 if (!VectorizedTree) { 7142 // Initialize the final value in the reduction. 7143 VectorizedTree = ReducedSubTree; 7144 } else { 7145 // Update the final value in the reduction. 7146 Builder.SetCurrentDebugLocation(Loc); 7147 VectorizedTree = ReductionData.createOp( 7148 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7149 } 7150 i += ReduxWidth; 7151 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7152 } 7153 7154 if (VectorizedTree) { 7155 // Finish the reduction. 7156 for (; i < NumReducedVals; ++i) { 7157 auto *I = cast<Instruction>(ReducedVals[i]); 7158 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7159 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "", 7160 ReductionOps); 7161 } 7162 for (auto &Pair : ExternallyUsedValues) { 7163 // Add each externally used value to the final reduction. 7164 for (auto *I : Pair.second) { 7165 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7166 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, 7167 Pair.first, "op.extra", I); 7168 } 7169 } 7170 7171 // Update users. For a min/max reduction that ends with a compare and 7172 // select, we also have to RAUW for the compare instruction feeding the 7173 // reduction root. That's because the original compare may have extra uses 7174 // besides the final select of the reduction. 7175 if (ReductionData.isMinMax()) { 7176 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7177 Instruction *ScalarCmp = 7178 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7179 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7180 } 7181 } 7182 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7183 7184 // Mark all scalar reduction ops for deletion, they are replaced by the 7185 // vector reductions. 7186 V.eraseInstructions(IgnoreList); 7187 } 7188 return VectorizedTree != nullptr; 7189 } 7190 7191 unsigned numReductionValues() const { 7192 return ReducedVals.size(); 7193 } 7194 7195 private: 7196 /// Calculate the cost of a reduction. 7197 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7198 unsigned ReduxWidth) { 7199 Type *ScalarTy = FirstReducedVal->getType(); 7200 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7201 7202 int PairwiseRdxCost; 7203 int SplittingRdxCost; 7204 switch (ReductionData.getKind()) { 7205 case RK_Arithmetic: 7206 PairwiseRdxCost = 7207 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7208 /*IsPairwiseForm=*/true); 7209 SplittingRdxCost = 7210 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7211 /*IsPairwiseForm=*/false); 7212 break; 7213 case RK_SMin: 7214 case RK_SMax: 7215 case RK_UMin: 7216 case RK_UMax: { 7217 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7218 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7219 ReductionData.getKind() == RK_UMax; 7220 PairwiseRdxCost = 7221 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7222 /*IsPairwiseForm=*/true, IsUnsigned); 7223 SplittingRdxCost = 7224 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7225 /*IsPairwiseForm=*/false, IsUnsigned); 7226 break; 7227 } 7228 case RK_None: 7229 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7230 } 7231 7232 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7233 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7234 7235 int ScalarReduxCost = 0; 7236 switch (ReductionData.getKind()) { 7237 case RK_Arithmetic: 7238 ScalarReduxCost = 7239 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7240 break; 7241 case RK_SMin: 7242 case RK_SMax: 7243 case RK_UMin: 7244 case RK_UMax: 7245 ScalarReduxCost = 7246 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7247 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7248 CmpInst::makeCmpResultType(ScalarTy)); 7249 break; 7250 case RK_None: 7251 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7252 } 7253 ScalarReduxCost *= (ReduxWidth - 1); 7254 7255 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7256 << " for reduction that starts with " << *FirstReducedVal 7257 << " (It is a " 7258 << (IsPairwiseReduction ? "pairwise" : "splitting") 7259 << " reduction)\n"); 7260 7261 return VecReduxCost - ScalarReduxCost; 7262 } 7263 7264 /// Emit a horizontal reduction of the vectorized value. 7265 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7266 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7267 assert(VectorizedValue && "Need to have a vectorized tree node"); 7268 assert(isPowerOf2_32(ReduxWidth) && 7269 "We only handle power-of-two reductions for now"); 7270 7271 if (!IsPairwiseReduction) { 7272 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7273 // to 'fast'. 7274 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7275 return createSimpleTargetReduction( 7276 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7277 ReductionData.getFlags(), ReductionOps.back()); 7278 } 7279 7280 Value *TmpVec = VectorizedValue; 7281 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7282 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7283 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7284 7285 Value *LeftShuf = 7286 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7287 Value *RightShuf = 7288 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7289 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7290 ReductionOps); 7291 } 7292 7293 // The result is in the first element of the vector. 7294 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7295 } 7296 }; 7297 7298 } // end anonymous namespace 7299 7300 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7301 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7302 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7303 7304 unsigned AggregateSize = 1; 7305 auto *IV = cast<InsertValueInst>(InsertInst); 7306 Type *CurrentType = IV->getType(); 7307 do { 7308 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7309 for (auto *Elt : ST->elements()) 7310 if (Elt != ST->getElementType(0)) // check homogeneity 7311 return None; 7312 AggregateSize *= ST->getNumElements(); 7313 CurrentType = ST->getElementType(0); 7314 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7315 AggregateSize *= AT->getNumElements(); 7316 CurrentType = AT->getElementType(); 7317 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7318 AggregateSize *= VT->getNumElements(); 7319 return AggregateSize; 7320 } else if (CurrentType->isSingleValueType()) { 7321 return AggregateSize; 7322 } else { 7323 return None; 7324 } 7325 } while (true); 7326 } 7327 7328 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7329 unsigned OperandOffset) { 7330 unsigned OperandIndex = OperandOffset; 7331 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7332 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7333 auto *VT = cast<FixedVectorType>(IE->getType()); 7334 OperandIndex *= VT->getNumElements(); 7335 OperandIndex += CI->getZExtValue(); 7336 return OperandIndex; 7337 } 7338 return None; 7339 } 7340 7341 auto *IV = cast<InsertValueInst>(InsertInst); 7342 Type *CurrentType = IV->getType(); 7343 for (unsigned int Index : IV->indices()) { 7344 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7345 OperandIndex *= ST->getNumElements(); 7346 CurrentType = ST->getElementType(Index); 7347 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7348 OperandIndex *= AT->getNumElements(); 7349 CurrentType = AT->getElementType(); 7350 } else { 7351 return None; 7352 } 7353 OperandIndex += Index; 7354 } 7355 return OperandIndex; 7356 } 7357 7358 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7359 TargetTransformInfo *TTI, 7360 SmallVectorImpl<Value *> &BuildVectorOpds, 7361 SmallVectorImpl<Value *> &InsertElts, 7362 unsigned OperandOffset) { 7363 do { 7364 Value *InsertedOperand = LastInsertInst->getOperand(1); 7365 Optional<unsigned> OperandIndex = 7366 getOperandIndex(LastInsertInst, OperandOffset); 7367 if (!OperandIndex) 7368 return false; 7369 if (isa<InsertElementInst>(InsertedOperand) || 7370 isa<InsertValueInst>(InsertedOperand)) { 7371 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7372 BuildVectorOpds, InsertElts, *OperandIndex)) 7373 return false; 7374 } else { 7375 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7376 InsertElts[*OperandIndex] = LastInsertInst; 7377 } 7378 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7379 return true; 7380 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7381 } while (LastInsertInst != nullptr && 7382 (isa<InsertValueInst>(LastInsertInst) || 7383 isa<InsertElementInst>(LastInsertInst)) && 7384 LastInsertInst->hasOneUse()); 7385 return false; 7386 } 7387 7388 /// Recognize construction of vectors like 7389 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7390 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7391 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7392 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7393 /// starting from the last insertelement or insertvalue instruction. 7394 /// 7395 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7396 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7397 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7398 /// 7399 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7400 /// 7401 /// \return true if it matches. 7402 static bool findBuildAggregate(Instruction *LastInsertInst, 7403 TargetTransformInfo *TTI, 7404 SmallVectorImpl<Value *> &BuildVectorOpds, 7405 SmallVectorImpl<Value *> &InsertElts) { 7406 7407 assert((isa<InsertElementInst>(LastInsertInst) || 7408 isa<InsertValueInst>(LastInsertInst)) && 7409 "Expected insertelement or insertvalue instruction!"); 7410 7411 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7412 "Expected empty result vectors!"); 7413 7414 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7415 if (!AggregateSize) 7416 return false; 7417 BuildVectorOpds.resize(*AggregateSize); 7418 InsertElts.resize(*AggregateSize); 7419 7420 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7421 0)) { 7422 llvm::erase_value(BuildVectorOpds, nullptr); 7423 llvm::erase_value(InsertElts, nullptr); 7424 if (BuildVectorOpds.size() >= 2) 7425 return true; 7426 } 7427 7428 return false; 7429 } 7430 7431 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7432 return V->getType() < V2->getType(); 7433 } 7434 7435 /// Try and get a reduction value from a phi node. 7436 /// 7437 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7438 /// if they come from either \p ParentBB or a containing loop latch. 7439 /// 7440 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7441 /// if not possible. 7442 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7443 BasicBlock *ParentBB, LoopInfo *LI) { 7444 // There are situations where the reduction value is not dominated by the 7445 // reduction phi. Vectorizing such cases has been reported to cause 7446 // miscompiles. See PR25787. 7447 auto DominatedReduxValue = [&](Value *R) { 7448 return isa<Instruction>(R) && 7449 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7450 }; 7451 7452 Value *Rdx = nullptr; 7453 7454 // Return the incoming value if it comes from the same BB as the phi node. 7455 if (P->getIncomingBlock(0) == ParentBB) { 7456 Rdx = P->getIncomingValue(0); 7457 } else if (P->getIncomingBlock(1) == ParentBB) { 7458 Rdx = P->getIncomingValue(1); 7459 } 7460 7461 if (Rdx && DominatedReduxValue(Rdx)) 7462 return Rdx; 7463 7464 // Otherwise, check whether we have a loop latch to look at. 7465 Loop *BBL = LI->getLoopFor(ParentBB); 7466 if (!BBL) 7467 return nullptr; 7468 BasicBlock *BBLatch = BBL->getLoopLatch(); 7469 if (!BBLatch) 7470 return nullptr; 7471 7472 // There is a loop latch, return the incoming value if it comes from 7473 // that. This reduction pattern occasionally turns up. 7474 if (P->getIncomingBlock(0) == BBLatch) { 7475 Rdx = P->getIncomingValue(0); 7476 } else if (P->getIncomingBlock(1) == BBLatch) { 7477 Rdx = P->getIncomingValue(1); 7478 } 7479 7480 if (Rdx && DominatedReduxValue(Rdx)) 7481 return Rdx; 7482 7483 return nullptr; 7484 } 7485 7486 /// Attempt to reduce a horizontal reduction. 7487 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7488 /// with reduction operators \a Root (or one of its operands) in a basic block 7489 /// \a BB, then check if it can be done. If horizontal reduction is not found 7490 /// and root instruction is a binary operation, vectorization of the operands is 7491 /// attempted. 7492 /// \returns true if a horizontal reduction was matched and reduced or operands 7493 /// of one of the binary instruction were vectorized. 7494 /// \returns false if a horizontal reduction was not matched (or not possible) 7495 /// or no vectorization of any binary operation feeding \a Root instruction was 7496 /// performed. 7497 static bool tryToVectorizeHorReductionOrInstOperands( 7498 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7499 TargetTransformInfo *TTI, 7500 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7501 if (!ShouldVectorizeHor) 7502 return false; 7503 7504 if (!Root) 7505 return false; 7506 7507 if (Root->getParent() != BB || isa<PHINode>(Root)) 7508 return false; 7509 // Start analysis starting from Root instruction. If horizontal reduction is 7510 // found, try to vectorize it. If it is not a horizontal reduction or 7511 // vectorization is not possible or not effective, and currently analyzed 7512 // instruction is a binary operation, try to vectorize the operands, using 7513 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7514 // the same procedure considering each operand as a possible root of the 7515 // horizontal reduction. 7516 // Interrupt the process if the Root instruction itself was vectorized or all 7517 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7518 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7519 SmallPtrSet<Value *, 8> VisitedInstrs; 7520 bool Res = false; 7521 while (!Stack.empty()) { 7522 Instruction *Inst; 7523 unsigned Level; 7524 std::tie(Inst, Level) = Stack.pop_back_val(); 7525 Value *B0, *B1; 7526 bool IsBinop = match(Inst, m_BinOp(m_Value(B0), m_Value(B1))); 7527 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7528 if (IsBinop || IsSelect) { 7529 HorizontalReduction HorRdx; 7530 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7531 if (HorRdx.tryToReduce(R, TTI)) { 7532 Res = true; 7533 // Set P to nullptr to avoid re-analysis of phi node in 7534 // matchAssociativeReduction function unless this is the root node. 7535 P = nullptr; 7536 continue; 7537 } 7538 } 7539 if (P && IsBinop) { 7540 Inst = dyn_cast<Instruction>(B0); 7541 if (Inst == P) 7542 Inst = dyn_cast<Instruction>(B1); 7543 if (!Inst) { 7544 // Set P to nullptr to avoid re-analysis of phi node in 7545 // matchAssociativeReduction function unless this is the root node. 7546 P = nullptr; 7547 continue; 7548 } 7549 } 7550 } 7551 // Set P to nullptr to avoid re-analysis of phi node in 7552 // matchAssociativeReduction function unless this is the root node. 7553 P = nullptr; 7554 if (Vectorize(Inst, R)) { 7555 Res = true; 7556 continue; 7557 } 7558 7559 // Try to vectorize operands. 7560 // Continue analysis for the instruction from the same basic block only to 7561 // save compile time. 7562 if (++Level < RecursionMaxDepth) 7563 for (auto *Op : Inst->operand_values()) 7564 if (VisitedInstrs.insert(Op).second) 7565 if (auto *I = dyn_cast<Instruction>(Op)) 7566 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7567 Stack.emplace_back(I, Level); 7568 } 7569 return Res; 7570 } 7571 7572 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7573 BasicBlock *BB, BoUpSLP &R, 7574 TargetTransformInfo *TTI) { 7575 auto *I = dyn_cast_or_null<Instruction>(V); 7576 if (!I) 7577 return false; 7578 7579 if (!isa<BinaryOperator>(I)) 7580 P = nullptr; 7581 // Try to match and vectorize a horizontal reduction. 7582 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7583 return tryToVectorize(I, R); 7584 }; 7585 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7586 ExtraVectorization); 7587 } 7588 7589 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7590 BasicBlock *BB, BoUpSLP &R) { 7591 const DataLayout &DL = BB->getModule()->getDataLayout(); 7592 if (!R.canMapToVector(IVI->getType(), DL)) 7593 return false; 7594 7595 SmallVector<Value *, 16> BuildVectorOpds; 7596 SmallVector<Value *, 16> BuildVectorInsts; 7597 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7598 return false; 7599 7600 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7601 // Aggregate value is unlikely to be processed in vector register, we need to 7602 // extract scalars into scalar registers, so NeedExtraction is set true. 7603 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7604 BuildVectorInsts); 7605 } 7606 7607 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7608 BasicBlock *BB, BoUpSLP &R) { 7609 SmallVector<Value *, 16> BuildVectorInsts; 7610 SmallVector<Value *, 16> BuildVectorOpds; 7611 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7612 (llvm::all_of(BuildVectorOpds, 7613 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7614 isShuffle(BuildVectorOpds))) 7615 return false; 7616 7617 // Vectorize starting with the build vector operands ignoring the BuildVector 7618 // instructions for the purpose of scheduling and user extraction. 7619 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7620 BuildVectorInsts); 7621 } 7622 7623 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7624 BoUpSLP &R) { 7625 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7626 return true; 7627 7628 bool OpsChanged = false; 7629 for (int Idx = 0; Idx < 2; ++Idx) { 7630 OpsChanged |= 7631 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7632 } 7633 return OpsChanged; 7634 } 7635 7636 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7637 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7638 bool OpsChanged = false; 7639 for (auto *I : reverse(Instructions)) { 7640 if (R.isDeleted(I)) 7641 continue; 7642 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7643 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7644 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7645 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7646 else if (auto *CI = dyn_cast<CmpInst>(I)) 7647 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7648 } 7649 Instructions.clear(); 7650 return OpsChanged; 7651 } 7652 7653 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7654 bool Changed = false; 7655 SmallVector<Value *, 4> Incoming; 7656 SmallPtrSet<Value *, 16> VisitedInstrs; 7657 7658 bool HaveVectorizedPhiNodes = true; 7659 while (HaveVectorizedPhiNodes) { 7660 HaveVectorizedPhiNodes = false; 7661 7662 // Collect the incoming values from the PHIs. 7663 Incoming.clear(); 7664 for (Instruction &I : *BB) { 7665 PHINode *P = dyn_cast<PHINode>(&I); 7666 if (!P) 7667 break; 7668 7669 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7670 Incoming.push_back(P); 7671 } 7672 7673 // Sort by type. 7674 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7675 7676 // Try to vectorize elements base on their type. 7677 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7678 E = Incoming.end(); 7679 IncIt != E;) { 7680 7681 // Look for the next elements with the same type. 7682 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7683 while (SameTypeIt != E && 7684 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7685 VisitedInstrs.insert(*SameTypeIt); 7686 ++SameTypeIt; 7687 } 7688 7689 // Try to vectorize them. 7690 unsigned NumElts = (SameTypeIt - IncIt); 7691 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7692 << NumElts << ")\n"); 7693 // The order in which the phi nodes appear in the program does not matter. 7694 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7695 // is done when there are exactly two elements since tryToVectorizeList 7696 // asserts that there are only two values when AllowReorder is true. 7697 bool AllowReorder = NumElts == 2; 7698 if (NumElts > 1 && 7699 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7700 // Success start over because instructions might have been changed. 7701 HaveVectorizedPhiNodes = true; 7702 Changed = true; 7703 break; 7704 } 7705 7706 // Start over at the next instruction of a different type (or the end). 7707 IncIt = SameTypeIt; 7708 } 7709 } 7710 7711 VisitedInstrs.clear(); 7712 7713 SmallVector<Instruction *, 8> PostProcessInstructions; 7714 SmallDenseSet<Instruction *, 4> KeyNodes; 7715 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7716 // Skip instructions with scalable type. The num of elements is unknown at 7717 // compile-time for scalable type. 7718 if (isa<ScalableVectorType>(it->getType())) 7719 continue; 7720 7721 // Skip instructions marked for the deletion. 7722 if (R.isDeleted(&*it)) 7723 continue; 7724 // We may go through BB multiple times so skip the one we have checked. 7725 if (!VisitedInstrs.insert(&*it).second) { 7726 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7727 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7728 // We would like to start over since some instructions are deleted 7729 // and the iterator may become invalid value. 7730 Changed = true; 7731 it = BB->begin(); 7732 e = BB->end(); 7733 } 7734 continue; 7735 } 7736 7737 if (isa<DbgInfoIntrinsic>(it)) 7738 continue; 7739 7740 // Try to vectorize reductions that use PHINodes. 7741 if (PHINode *P = dyn_cast<PHINode>(it)) { 7742 // Check that the PHI is a reduction PHI. 7743 if (P->getNumIncomingValues() == 2) { 7744 // Try to match and vectorize a horizontal reduction. 7745 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7746 TTI)) { 7747 Changed = true; 7748 it = BB->begin(); 7749 e = BB->end(); 7750 continue; 7751 } 7752 } 7753 // Try to vectorize the incoming values of the PHI, to catch reductions 7754 // that feed into PHIs. 7755 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7756 // Skip if the incoming block is the current BB for now. Also, bypass 7757 // unreachable IR for efficiency and to avoid crashing. 7758 // TODO: Collect the skipped incoming values and try to vectorize them 7759 // after processing BB. 7760 if (BB == P->getIncomingBlock(I) || 7761 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7762 continue; 7763 7764 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7765 P->getIncomingBlock(I), R, TTI); 7766 } 7767 continue; 7768 } 7769 7770 // Ran into an instruction without users, like terminator, or function call 7771 // with ignored return value, store. Ignore unused instructions (basing on 7772 // instruction type, except for CallInst and InvokeInst). 7773 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7774 isa<InvokeInst>(it))) { 7775 KeyNodes.insert(&*it); 7776 bool OpsChanged = false; 7777 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7778 for (auto *V : it->operand_values()) { 7779 // Try to match and vectorize a horizontal reduction. 7780 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7781 } 7782 } 7783 // Start vectorization of post-process list of instructions from the 7784 // top-tree instructions to try to vectorize as many instructions as 7785 // possible. 7786 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7787 if (OpsChanged) { 7788 // We would like to start over since some instructions are deleted 7789 // and the iterator may become invalid value. 7790 Changed = true; 7791 it = BB->begin(); 7792 e = BB->end(); 7793 continue; 7794 } 7795 } 7796 7797 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7798 isa<InsertValueInst>(it)) 7799 PostProcessInstructions.push_back(&*it); 7800 } 7801 7802 return Changed; 7803 } 7804 7805 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7806 auto Changed = false; 7807 for (auto &Entry : GEPs) { 7808 // If the getelementptr list has fewer than two elements, there's nothing 7809 // to do. 7810 if (Entry.second.size() < 2) 7811 continue; 7812 7813 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7814 << Entry.second.size() << ".\n"); 7815 7816 // Process the GEP list in chunks suitable for the target's supported 7817 // vector size. If a vector register can't hold 1 element, we are done. We 7818 // are trying to vectorize the index computations, so the maximum number of 7819 // elements is based on the size of the index expression, rather than the 7820 // size of the GEP itself (the target's pointer size). 7821 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7822 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7823 if (MaxVecRegSize < EltSize) 7824 continue; 7825 7826 unsigned MaxElts = MaxVecRegSize / EltSize; 7827 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7828 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7829 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7830 7831 // Initialize a set a candidate getelementptrs. Note that we use a 7832 // SetVector here to preserve program order. If the index computations 7833 // are vectorizable and begin with loads, we want to minimize the chance 7834 // of having to reorder them later. 7835 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7836 7837 // Some of the candidates may have already been vectorized after we 7838 // initially collected them. If so, they are marked as deleted, so remove 7839 // them from the set of candidates. 7840 Candidates.remove_if( 7841 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7842 7843 // Remove from the set of candidates all pairs of getelementptrs with 7844 // constant differences. Such getelementptrs are likely not good 7845 // candidates for vectorization in a bottom-up phase since one can be 7846 // computed from the other. We also ensure all candidate getelementptr 7847 // indices are unique. 7848 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7849 auto *GEPI = GEPList[I]; 7850 if (!Candidates.count(GEPI)) 7851 continue; 7852 auto *SCEVI = SE->getSCEV(GEPList[I]); 7853 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7854 auto *GEPJ = GEPList[J]; 7855 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7856 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7857 Candidates.remove(GEPI); 7858 Candidates.remove(GEPJ); 7859 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7860 Candidates.remove(GEPJ); 7861 } 7862 } 7863 } 7864 7865 // We break out of the above computation as soon as we know there are 7866 // fewer than two candidates remaining. 7867 if (Candidates.size() < 2) 7868 continue; 7869 7870 // Add the single, non-constant index of each candidate to the bundle. We 7871 // ensured the indices met these constraints when we originally collected 7872 // the getelementptrs. 7873 SmallVector<Value *, 16> Bundle(Candidates.size()); 7874 auto BundleIndex = 0u; 7875 for (auto *V : Candidates) { 7876 auto *GEP = cast<GetElementPtrInst>(V); 7877 auto *GEPIdx = GEP->idx_begin()->get(); 7878 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7879 Bundle[BundleIndex++] = GEPIdx; 7880 } 7881 7882 // Try and vectorize the indices. We are currently only interested in 7883 // gather-like cases of the form: 7884 // 7885 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7886 // 7887 // where the loads of "a", the loads of "b", and the subtractions can be 7888 // performed in parallel. It's likely that detecting this pattern in a 7889 // bottom-up phase will be simpler and less costly than building a 7890 // full-blown top-down phase beginning at the consecutive loads. 7891 Changed |= tryToVectorizeList(Bundle, R); 7892 } 7893 } 7894 return Changed; 7895 } 7896 7897 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7898 bool Changed = false; 7899 // Attempt to sort and vectorize each of the store-groups. 7900 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7901 ++it) { 7902 if (it->second.size() < 2) 7903 continue; 7904 7905 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7906 << it->second.size() << ".\n"); 7907 7908 Changed |= vectorizeStores(it->second, R); 7909 } 7910 return Changed; 7911 } 7912 7913 char SLPVectorizer::ID = 0; 7914 7915 static const char lv_name[] = "SLP Vectorizer"; 7916 7917 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7918 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7919 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7920 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7921 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7922 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7923 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7924 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7925 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7926 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7927 7928 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7929