1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 static cl::opt<bool> 166 ViewSLPTree("view-slp-tree", cl::Hidden, 167 cl::desc("Display the SLP trees with Graphviz")); 168 169 // Limit the number of alias checks. The limit is chosen so that 170 // it has no negative effect on the llvm benchmarks. 171 static const unsigned AliasedCheckLimit = 10; 172 173 // Another limit for the alias checks: The maximum distance between load/store 174 // instructions where alias checks are done. 175 // This limit is useful for very large basic blocks. 176 static const unsigned MaxMemDepDistance = 160; 177 178 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 179 /// regions to be handled. 180 static const int MinScheduleRegionSize = 16; 181 182 /// Predicate for the element types that the SLP vectorizer supports. 183 /// 184 /// The most important thing to filter here are types which are invalid in LLVM 185 /// vectors. We also filter target specific types which have absolutely no 186 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 187 /// avoids spending time checking the cost model and realizing that they will 188 /// be inevitably scalarized. 189 static bool isValidElementType(Type *Ty) { 190 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 191 !Ty->isPPC_FP128Ty(); 192 } 193 194 /// \returns True if the value is a constant (but not globals/constant 195 /// expressions). 196 static bool isConstant(Value *V) { 197 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 198 } 199 200 /// Checks if \p V is one of vector-like instructions, i.e. undef, 201 /// insertelement/extractelement with constant indices for fixed vector type or 202 /// extractvalue instruction. 203 static bool isVectorLikeInstWithConstOps(Value *V) { 204 if (!isa<InsertElementInst, ExtractElementInst>(V) && 205 !isa<ExtractValueInst, UndefValue>(V)) 206 return false; 207 auto *I = dyn_cast<Instruction>(V); 208 if (!I || isa<ExtractValueInst>(I)) 209 return true; 210 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 211 return false; 212 if (isa<ExtractElementInst>(I)) 213 return isConstant(I->getOperand(1)); 214 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 215 return isConstant(I->getOperand(2)); 216 } 217 218 /// \returns true if all of the instructions in \p VL are in the same block or 219 /// false otherwise. 220 static bool allSameBlock(ArrayRef<Value *> VL) { 221 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 222 if (!I0) 223 return false; 224 if (all_of(VL, isVectorLikeInstWithConstOps)) 225 return true; 226 227 BasicBlock *BB = I0->getParent(); 228 for (int I = 1, E = VL.size(); I < E; I++) { 229 auto *II = dyn_cast<Instruction>(VL[I]); 230 if (!II) 231 return false; 232 233 if (BB != II->getParent()) 234 return false; 235 } 236 return true; 237 } 238 239 /// \returns True if all of the values in \p VL are constants (but not 240 /// globals/constant expressions). 241 static bool allConstant(ArrayRef<Value *> VL) { 242 // Constant expressions and globals can't be vectorized like normal integer/FP 243 // constants. 244 return all_of(VL, isConstant); 245 } 246 247 /// \returns True if all of the values in \p VL are identical or some of them 248 /// are UndefValue. 249 static bool isSplat(ArrayRef<Value *> VL) { 250 Value *FirstNonUndef = nullptr; 251 for (Value *V : VL) { 252 if (isa<UndefValue>(V)) 253 continue; 254 if (!FirstNonUndef) { 255 FirstNonUndef = V; 256 continue; 257 } 258 if (V != FirstNonUndef) 259 return false; 260 } 261 return FirstNonUndef != nullptr; 262 } 263 264 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 265 static bool isCommutative(Instruction *I) { 266 if (auto *Cmp = dyn_cast<CmpInst>(I)) 267 return Cmp->isCommutative(); 268 if (auto *BO = dyn_cast<BinaryOperator>(I)) 269 return BO->isCommutative(); 270 // TODO: This should check for generic Instruction::isCommutative(), but 271 // we need to confirm that the caller code correctly handles Intrinsics 272 // for example (does not have 2 operands). 273 return false; 274 } 275 276 /// Checks if the given value is actually an undefined constant vector. 277 static bool isUndefVector(const Value *V) { 278 if (isa<UndefValue>(V)) 279 return true; 280 auto *C = dyn_cast<Constant>(V); 281 if (!C) 282 return false; 283 if (!C->containsUndefOrPoisonElement()) 284 return false; 285 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 286 if (!VecTy) 287 return false; 288 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 289 if (Constant *Elem = C->getAggregateElement(I)) 290 if (!isa<UndefValue>(Elem)) 291 return false; 292 } 293 return true; 294 } 295 296 /// Checks if the vector of instructions can be represented as a shuffle, like: 297 /// %x0 = extractelement <4 x i8> %x, i32 0 298 /// %x3 = extractelement <4 x i8> %x, i32 3 299 /// %y1 = extractelement <4 x i8> %y, i32 1 300 /// %y2 = extractelement <4 x i8> %y, i32 2 301 /// %x0x0 = mul i8 %x0, %x0 302 /// %x3x3 = mul i8 %x3, %x3 303 /// %y1y1 = mul i8 %y1, %y1 304 /// %y2y2 = mul i8 %y2, %y2 305 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 306 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 307 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 308 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 309 /// ret <4 x i8> %ins4 310 /// can be transformed into: 311 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 312 /// i32 6> 313 /// %2 = mul <4 x i8> %1, %1 314 /// ret <4 x i8> %2 315 /// We convert this initially to something like: 316 /// %x0 = extractelement <4 x i8> %x, i32 0 317 /// %x3 = extractelement <4 x i8> %x, i32 3 318 /// %y1 = extractelement <4 x i8> %y, i32 1 319 /// %y2 = extractelement <4 x i8> %y, i32 2 320 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 321 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 322 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 323 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 324 /// %5 = mul <4 x i8> %4, %4 325 /// %6 = extractelement <4 x i8> %5, i32 0 326 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 327 /// %7 = extractelement <4 x i8> %5, i32 1 328 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 329 /// %8 = extractelement <4 x i8> %5, i32 2 330 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 331 /// %9 = extractelement <4 x i8> %5, i32 3 332 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 333 /// ret <4 x i8> %ins4 334 /// InstCombiner transforms this into a shuffle and vector mul 335 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 336 /// TODO: Can we split off and reuse the shuffle mask detection from 337 /// TargetTransformInfo::getInstructionThroughput? 338 static Optional<TargetTransformInfo::ShuffleKind> 339 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 340 const auto *It = 341 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 342 if (It == VL.end()) 343 return None; 344 auto *EI0 = cast<ExtractElementInst>(*It); 345 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 346 return None; 347 unsigned Size = 348 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 349 Value *Vec1 = nullptr; 350 Value *Vec2 = nullptr; 351 enum ShuffleMode { Unknown, Select, Permute }; 352 ShuffleMode CommonShuffleMode = Unknown; 353 Mask.assign(VL.size(), UndefMaskElem); 354 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 355 // Undef can be represented as an undef element in a vector. 356 if (isa<UndefValue>(VL[I])) 357 continue; 358 auto *EI = cast<ExtractElementInst>(VL[I]); 359 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 360 return None; 361 auto *Vec = EI->getVectorOperand(); 362 // We can extractelement from undef or poison vector. 363 if (isUndefVector(Vec)) 364 continue; 365 // All vector operands must have the same number of vector elements. 366 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 367 return None; 368 if (isa<UndefValue>(EI->getIndexOperand())) 369 continue; 370 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 371 if (!Idx) 372 return None; 373 // Undefined behavior if Idx is negative or >= Size. 374 if (Idx->getValue().uge(Size)) 375 continue; 376 unsigned IntIdx = Idx->getValue().getZExtValue(); 377 Mask[I] = IntIdx; 378 // For correct shuffling we have to have at most 2 different vector operands 379 // in all extractelement instructions. 380 if (!Vec1 || Vec1 == Vec) { 381 Vec1 = Vec; 382 } else if (!Vec2 || Vec2 == Vec) { 383 Vec2 = Vec; 384 Mask[I] += Size; 385 } else { 386 return None; 387 } 388 if (CommonShuffleMode == Permute) 389 continue; 390 // If the extract index is not the same as the operation number, it is a 391 // permutation. 392 if (IntIdx != I) { 393 CommonShuffleMode = Permute; 394 continue; 395 } 396 CommonShuffleMode = Select; 397 } 398 // If we're not crossing lanes in different vectors, consider it as blending. 399 if (CommonShuffleMode == Select && Vec2) 400 return TargetTransformInfo::SK_Select; 401 // If Vec2 was never used, we have a permutation of a single vector, otherwise 402 // we have permutation of 2 vectors. 403 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 404 : TargetTransformInfo::SK_PermuteSingleSrc; 405 } 406 407 namespace { 408 409 /// Main data required for vectorization of instructions. 410 struct InstructionsState { 411 /// The very first instruction in the list with the main opcode. 412 Value *OpValue = nullptr; 413 414 /// The main/alternate instruction. 415 Instruction *MainOp = nullptr; 416 Instruction *AltOp = nullptr; 417 418 /// The main/alternate opcodes for the list of instructions. 419 unsigned getOpcode() const { 420 return MainOp ? MainOp->getOpcode() : 0; 421 } 422 423 unsigned getAltOpcode() const { 424 return AltOp ? AltOp->getOpcode() : 0; 425 } 426 427 /// Some of the instructions in the list have alternate opcodes. 428 bool isAltShuffle() const { return AltOp != MainOp; } 429 430 bool isOpcodeOrAlt(Instruction *I) const { 431 unsigned CheckedOpcode = I->getOpcode(); 432 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 433 } 434 435 InstructionsState() = delete; 436 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 437 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 438 }; 439 440 } // end anonymous namespace 441 442 /// Chooses the correct key for scheduling data. If \p Op has the same (or 443 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 444 /// OpValue. 445 static Value *isOneOf(const InstructionsState &S, Value *Op) { 446 auto *I = dyn_cast<Instruction>(Op); 447 if (I && S.isOpcodeOrAlt(I)) 448 return Op; 449 return S.OpValue; 450 } 451 452 /// \returns true if \p Opcode is allowed as part of of the main/alternate 453 /// instruction for SLP vectorization. 454 /// 455 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 456 /// "shuffled out" lane would result in division by zero. 457 static bool isValidForAlternation(unsigned Opcode) { 458 if (Instruction::isIntDivRem(Opcode)) 459 return false; 460 461 return true; 462 } 463 464 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 465 unsigned BaseIndex = 0); 466 467 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 468 /// compatible instructions or constants, or just some other regular values. 469 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 470 Value *Op1) { 471 return (isConstant(BaseOp0) && isConstant(Op0)) || 472 (isConstant(BaseOp1) && isConstant(Op1)) || 473 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 474 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 475 getSameOpcode({BaseOp0, Op0}).getOpcode() || 476 getSameOpcode({BaseOp1, Op1}).getOpcode(); 477 } 478 479 /// \returns analysis of the Instructions in \p VL described in 480 /// InstructionsState, the Opcode that we suppose the whole list 481 /// could be vectorized even if its structure is diverse. 482 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 483 unsigned BaseIndex) { 484 // Make sure these are all Instructions. 485 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 486 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 487 488 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 489 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 490 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 491 CmpInst::Predicate BasePred = 492 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 493 : CmpInst::BAD_ICMP_PREDICATE; 494 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 495 unsigned AltOpcode = Opcode; 496 unsigned AltIndex = BaseIndex; 497 498 // Check for one alternate opcode from another BinaryOperator. 499 // TODO - generalize to support all operators (types, calls etc.). 500 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 501 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 502 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 503 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 504 continue; 505 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 506 isValidForAlternation(Opcode)) { 507 AltOpcode = InstOpcode; 508 AltIndex = Cnt; 509 continue; 510 } 511 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 512 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 513 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 514 if (Ty0 == Ty1) { 515 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 516 continue; 517 if (Opcode == AltOpcode) { 518 assert(isValidForAlternation(Opcode) && 519 isValidForAlternation(InstOpcode) && 520 "Cast isn't safe for alternation, logic needs to be updated!"); 521 AltOpcode = InstOpcode; 522 AltIndex = Cnt; 523 continue; 524 } 525 } 526 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 527 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 528 auto *Inst = cast<Instruction>(VL[Cnt]); 529 Type *Ty0 = BaseInst->getOperand(0)->getType(); 530 Type *Ty1 = Inst->getOperand(0)->getType(); 531 if (Ty0 == Ty1) { 532 Value *BaseOp0 = BaseInst->getOperand(0); 533 Value *BaseOp1 = BaseInst->getOperand(1); 534 Value *Op0 = Inst->getOperand(0); 535 Value *Op1 = Inst->getOperand(1); 536 CmpInst::Predicate CurrentPred = 537 cast<CmpInst>(VL[Cnt])->getPredicate(); 538 CmpInst::Predicate SwappedCurrentPred = 539 CmpInst::getSwappedPredicate(CurrentPred); 540 // Check for compatible operands. If the corresponding operands are not 541 // compatible - need to perform alternate vectorization. 542 if (InstOpcode == Opcode) { 543 if (BasePred == CurrentPred && 544 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 545 continue; 546 if (BasePred == SwappedCurrentPred && 547 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 548 continue; 549 if (E == 2 && 550 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 551 continue; 552 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 553 CmpInst::Predicate AltPred = AltInst->getPredicate(); 554 Value *AltOp0 = AltInst->getOperand(0); 555 Value *AltOp1 = AltInst->getOperand(1); 556 // Check if operands are compatible with alternate operands. 557 if (AltPred == CurrentPred && 558 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 559 continue; 560 if (AltPred == SwappedCurrentPred && 561 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 562 continue; 563 } 564 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 565 assert(isValidForAlternation(Opcode) && 566 isValidForAlternation(InstOpcode) && 567 "Cast isn't safe for alternation, logic needs to be updated!"); 568 AltIndex = Cnt; 569 continue; 570 } 571 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 572 CmpInst::Predicate AltPred = AltInst->getPredicate(); 573 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 574 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 575 continue; 576 } 577 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 578 continue; 579 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 580 } 581 582 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 583 cast<Instruction>(VL[AltIndex])); 584 } 585 586 /// \returns true if all of the values in \p VL have the same type or false 587 /// otherwise. 588 static bool allSameType(ArrayRef<Value *> VL) { 589 Type *Ty = VL[0]->getType(); 590 for (int i = 1, e = VL.size(); i < e; i++) 591 if (VL[i]->getType() != Ty) 592 return false; 593 594 return true; 595 } 596 597 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 598 static Optional<unsigned> getExtractIndex(Instruction *E) { 599 unsigned Opcode = E->getOpcode(); 600 assert((Opcode == Instruction::ExtractElement || 601 Opcode == Instruction::ExtractValue) && 602 "Expected extractelement or extractvalue instruction."); 603 if (Opcode == Instruction::ExtractElement) { 604 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 605 if (!CI) 606 return None; 607 return CI->getZExtValue(); 608 } 609 ExtractValueInst *EI = cast<ExtractValueInst>(E); 610 if (EI->getNumIndices() != 1) 611 return None; 612 return *EI->idx_begin(); 613 } 614 615 /// \returns True if in-tree use also needs extract. This refers to 616 /// possible scalar operand in vectorized instruction. 617 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 618 TargetLibraryInfo *TLI) { 619 unsigned Opcode = UserInst->getOpcode(); 620 switch (Opcode) { 621 case Instruction::Load: { 622 LoadInst *LI = cast<LoadInst>(UserInst); 623 return (LI->getPointerOperand() == Scalar); 624 } 625 case Instruction::Store: { 626 StoreInst *SI = cast<StoreInst>(UserInst); 627 return (SI->getPointerOperand() == Scalar); 628 } 629 case Instruction::Call: { 630 CallInst *CI = cast<CallInst>(UserInst); 631 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 632 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 633 if (hasVectorInstrinsicScalarOpd(ID, i)) 634 return (CI->getArgOperand(i) == Scalar); 635 } 636 LLVM_FALLTHROUGH; 637 } 638 default: 639 return false; 640 } 641 } 642 643 /// \returns the AA location that is being access by the instruction. 644 static MemoryLocation getLocation(Instruction *I) { 645 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 646 return MemoryLocation::get(SI); 647 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 648 return MemoryLocation::get(LI); 649 return MemoryLocation(); 650 } 651 652 /// \returns True if the instruction is not a volatile or atomic load/store. 653 static bool isSimple(Instruction *I) { 654 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 655 return LI->isSimple(); 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return SI->isSimple(); 658 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 659 return !MI->isVolatile(); 660 return true; 661 } 662 663 /// Shuffles \p Mask in accordance with the given \p SubMask. 664 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 665 if (SubMask.empty()) 666 return; 667 if (Mask.empty()) { 668 Mask.append(SubMask.begin(), SubMask.end()); 669 return; 670 } 671 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 672 int TermValue = std::min(Mask.size(), SubMask.size()); 673 for (int I = 0, E = SubMask.size(); I < E; ++I) { 674 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 675 Mask[SubMask[I]] >= TermValue) 676 continue; 677 NewMask[I] = Mask[SubMask[I]]; 678 } 679 Mask.swap(NewMask); 680 } 681 682 /// Order may have elements assigned special value (size) which is out of 683 /// bounds. Such indices only appear on places which correspond to undef values 684 /// (see canReuseExtract for details) and used in order to avoid undef values 685 /// have effect on operands ordering. 686 /// The first loop below simply finds all unused indices and then the next loop 687 /// nest assigns these indices for undef values positions. 688 /// As an example below Order has two undef positions and they have assigned 689 /// values 3 and 7 respectively: 690 /// before: 6 9 5 4 9 2 1 0 691 /// after: 6 3 5 4 7 2 1 0 692 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 693 const unsigned Sz = Order.size(); 694 SmallBitVector UnusedIndices(Sz, /*t=*/true); 695 SmallBitVector MaskedIndices(Sz); 696 for (unsigned I = 0; I < Sz; ++I) { 697 if (Order[I] < Sz) 698 UnusedIndices.reset(Order[I]); 699 else 700 MaskedIndices.set(I); 701 } 702 if (MaskedIndices.none()) 703 return; 704 assert(UnusedIndices.count() == MaskedIndices.count() && 705 "Non-synced masked/available indices."); 706 int Idx = UnusedIndices.find_first(); 707 int MIdx = MaskedIndices.find_first(); 708 while (MIdx >= 0) { 709 assert(Idx >= 0 && "Indices must be synced."); 710 Order[MIdx] = Idx; 711 Idx = UnusedIndices.find_next(Idx); 712 MIdx = MaskedIndices.find_next(MIdx); 713 } 714 } 715 716 namespace llvm { 717 718 static void inversePermutation(ArrayRef<unsigned> Indices, 719 SmallVectorImpl<int> &Mask) { 720 Mask.clear(); 721 const unsigned E = Indices.size(); 722 Mask.resize(E, UndefMaskElem); 723 for (unsigned I = 0; I < E; ++I) 724 Mask[Indices[I]] = I; 725 } 726 727 /// \returns inserting index of InsertElement or InsertValue instruction, 728 /// using Offset as base offset for index. 729 static Optional<unsigned> getInsertIndex(Value *InsertInst, 730 unsigned Offset = 0) { 731 int Index = Offset; 732 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 733 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 734 auto *VT = cast<FixedVectorType>(IE->getType()); 735 if (CI->getValue().uge(VT->getNumElements())) 736 return None; 737 Index *= VT->getNumElements(); 738 Index += CI->getZExtValue(); 739 return Index; 740 } 741 return None; 742 } 743 744 auto *IV = cast<InsertValueInst>(InsertInst); 745 Type *CurrentType = IV->getType(); 746 for (unsigned I : IV->indices()) { 747 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 748 Index *= ST->getNumElements(); 749 CurrentType = ST->getElementType(I); 750 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 751 Index *= AT->getNumElements(); 752 CurrentType = AT->getElementType(); 753 } else { 754 return None; 755 } 756 Index += I; 757 } 758 return Index; 759 } 760 761 /// Reorders the list of scalars in accordance with the given \p Mask. 762 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 763 ArrayRef<int> Mask) { 764 assert(!Mask.empty() && "Expected non-empty mask."); 765 SmallVector<Value *> Prev(Scalars.size(), 766 UndefValue::get(Scalars.front()->getType())); 767 Prev.swap(Scalars); 768 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 769 if (Mask[I] != UndefMaskElem) 770 Scalars[Mask[I]] = Prev[I]; 771 } 772 773 /// Checks if the provided value does not require scheduling. It does not 774 /// require scheduling if this is not an instruction or it is an instruction 775 /// that does not read/write memory and all operands are either not instructions 776 /// or phi nodes or instructions from different blocks. 777 static bool areAllOperandsNonInsts(Value *V) { 778 auto *I = dyn_cast<Instruction>(V); 779 if (!I) 780 return true; 781 return !I->mayReadOrWriteMemory() && all_of(I->operands(), [I](Value *V) { 782 auto *IO = dyn_cast<Instruction>(V); 783 if (!IO) 784 return true; 785 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 786 }); 787 } 788 789 /// Checks if the provided value does not require scheduling. It does not 790 /// require scheduling if this is not an instruction or it is an instruction 791 /// that does not read/write memory and all users are phi nodes or instructions 792 /// from the different blocks. 793 static bool isUsedOutsideBlock(Value *V) { 794 auto *I = dyn_cast<Instruction>(V); 795 if (!I) 796 return true; 797 // Limits the number of uses to save compile time. 798 constexpr int UsesLimit = 8; 799 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 800 all_of(I->users(), [I](User *U) { 801 auto *IU = dyn_cast<Instruction>(U); 802 if (!IU) 803 return true; 804 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 805 }); 806 } 807 808 /// Checks if the specified value does not require scheduling. It does not 809 /// require scheduling if all operands and all users do not need to be scheduled 810 /// in the current basic block. 811 static bool doesNotNeedToBeScheduled(Value *V) { 812 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 813 } 814 815 /// Checks if the specified array of instructions does not require scheduling. 816 /// It is so if all either instructions have operands that do not require 817 /// scheduling or their users do not require scheduling since they are phis or 818 /// in other basic blocks. 819 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 820 return !VL.empty() && 821 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 822 } 823 824 namespace slpvectorizer { 825 826 /// Bottom Up SLP Vectorizer. 827 class BoUpSLP { 828 struct TreeEntry; 829 struct ScheduleData; 830 831 public: 832 using ValueList = SmallVector<Value *, 8>; 833 using InstrList = SmallVector<Instruction *, 16>; 834 using ValueSet = SmallPtrSet<Value *, 16>; 835 using StoreList = SmallVector<StoreInst *, 8>; 836 using ExtraValueToDebugLocsMap = 837 MapVector<Value *, SmallVector<Instruction *, 2>>; 838 using OrdersType = SmallVector<unsigned, 4>; 839 840 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 841 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 842 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 843 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 844 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 845 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 846 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 847 // Use the vector register size specified by the target unless overridden 848 // by a command-line option. 849 // TODO: It would be better to limit the vectorization factor based on 850 // data type rather than just register size. For example, x86 AVX has 851 // 256-bit registers, but it does not support integer operations 852 // at that width (that requires AVX2). 853 if (MaxVectorRegSizeOption.getNumOccurrences()) 854 MaxVecRegSize = MaxVectorRegSizeOption; 855 else 856 MaxVecRegSize = 857 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 858 .getFixedSize(); 859 860 if (MinVectorRegSizeOption.getNumOccurrences()) 861 MinVecRegSize = MinVectorRegSizeOption; 862 else 863 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 864 } 865 866 /// Vectorize the tree that starts with the elements in \p VL. 867 /// Returns the vectorized root. 868 Value *vectorizeTree(); 869 870 /// Vectorize the tree but with the list of externally used values \p 871 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 872 /// generated extractvalue instructions. 873 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 874 875 /// \returns the cost incurred by unwanted spills and fills, caused by 876 /// holding live values over call sites. 877 InstructionCost getSpillCost() const; 878 879 /// \returns the vectorization cost of the subtree that starts at \p VL. 880 /// A negative number means that this is profitable. 881 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 882 883 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 884 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 885 void buildTree(ArrayRef<Value *> Roots, 886 ArrayRef<Value *> UserIgnoreLst = None); 887 888 /// Builds external uses of the vectorized scalars, i.e. the list of 889 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 890 /// ExternallyUsedValues contains additional list of external uses to handle 891 /// vectorization of reductions. 892 void 893 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 894 895 /// Clear the internal data structures that are created by 'buildTree'. 896 void deleteTree() { 897 VectorizableTree.clear(); 898 ScalarToTreeEntry.clear(); 899 MustGather.clear(); 900 ExternalUses.clear(); 901 for (auto &Iter : BlocksSchedules) { 902 BlockScheduling *BS = Iter.second.get(); 903 BS->clear(); 904 } 905 MinBWs.clear(); 906 InstrElementSize.clear(); 907 } 908 909 unsigned getTreeSize() const { return VectorizableTree.size(); } 910 911 /// Perform LICM and CSE on the newly generated gather sequences. 912 void optimizeGatherSequence(); 913 914 /// Checks if the specified gather tree entry \p TE can be represented as a 915 /// shuffled vector entry + (possibly) permutation with other gathers. It 916 /// implements the checks only for possibly ordered scalars (Loads, 917 /// ExtractElement, ExtractValue), which can be part of the graph. 918 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 919 920 /// Gets reordering data for the given tree entry. If the entry is vectorized 921 /// - just return ReorderIndices, otherwise check if the scalars can be 922 /// reordered and return the most optimal order. 923 /// \param TopToBottom If true, include the order of vectorized stores and 924 /// insertelement nodes, otherwise skip them. 925 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 926 927 /// Reorders the current graph to the most profitable order starting from the 928 /// root node to the leaf nodes. The best order is chosen only from the nodes 929 /// of the same size (vectorization factor). Smaller nodes are considered 930 /// parts of subgraph with smaller VF and they are reordered independently. We 931 /// can make it because we still need to extend smaller nodes to the wider VF 932 /// and we can merge reordering shuffles with the widening shuffles. 933 void reorderTopToBottom(); 934 935 /// Reorders the current graph to the most profitable order starting from 936 /// leaves to the root. It allows to rotate small subgraphs and reduce the 937 /// number of reshuffles if the leaf nodes use the same order. In this case we 938 /// can merge the orders and just shuffle user node instead of shuffling its 939 /// operands. Plus, even the leaf nodes have different orders, it allows to 940 /// sink reordering in the graph closer to the root node and merge it later 941 /// during analysis. 942 void reorderBottomToTop(bool IgnoreReorder = false); 943 944 /// \return The vector element size in bits to use when vectorizing the 945 /// expression tree ending at \p V. If V is a store, the size is the width of 946 /// the stored value. Otherwise, the size is the width of the largest loaded 947 /// value reaching V. This method is used by the vectorizer to calculate 948 /// vectorization factors. 949 unsigned getVectorElementSize(Value *V); 950 951 /// Compute the minimum type sizes required to represent the entries in a 952 /// vectorizable tree. 953 void computeMinimumValueSizes(); 954 955 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 956 unsigned getMaxVecRegSize() const { 957 return MaxVecRegSize; 958 } 959 960 // \returns minimum vector register size as set by cl::opt. 961 unsigned getMinVecRegSize() const { 962 return MinVecRegSize; 963 } 964 965 unsigned getMinVF(unsigned Sz) const { 966 return std::max(2U, getMinVecRegSize() / Sz); 967 } 968 969 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 970 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 971 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 972 return MaxVF ? MaxVF : UINT_MAX; 973 } 974 975 /// Check if homogeneous aggregate is isomorphic to some VectorType. 976 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 977 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 978 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 979 /// 980 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 981 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 982 983 /// \returns True if the VectorizableTree is both tiny and not fully 984 /// vectorizable. We do not vectorize such trees. 985 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 986 987 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 988 /// can be load combined in the backend. Load combining may not be allowed in 989 /// the IR optimizer, so we do not want to alter the pattern. For example, 990 /// partially transforming a scalar bswap() pattern into vector code is 991 /// effectively impossible for the backend to undo. 992 /// TODO: If load combining is allowed in the IR optimizer, this analysis 993 /// may not be necessary. 994 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 995 996 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 997 /// can be load combined in the backend. Load combining may not be allowed in 998 /// the IR optimizer, so we do not want to alter the pattern. For example, 999 /// partially transforming a scalar bswap() pattern into vector code is 1000 /// effectively impossible for the backend to undo. 1001 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1002 /// may not be necessary. 1003 bool isLoadCombineCandidate() const; 1004 1005 OptimizationRemarkEmitter *getORE() { return ORE; } 1006 1007 /// This structure holds any data we need about the edges being traversed 1008 /// during buildTree_rec(). We keep track of: 1009 /// (i) the user TreeEntry index, and 1010 /// (ii) the index of the edge. 1011 struct EdgeInfo { 1012 EdgeInfo() = default; 1013 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1014 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1015 /// The user TreeEntry. 1016 TreeEntry *UserTE = nullptr; 1017 /// The operand index of the use. 1018 unsigned EdgeIdx = UINT_MAX; 1019 #ifndef NDEBUG 1020 friend inline raw_ostream &operator<<(raw_ostream &OS, 1021 const BoUpSLP::EdgeInfo &EI) { 1022 EI.dump(OS); 1023 return OS; 1024 } 1025 /// Debug print. 1026 void dump(raw_ostream &OS) const { 1027 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1028 << " EdgeIdx:" << EdgeIdx << "}"; 1029 } 1030 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1031 #endif 1032 }; 1033 1034 /// A helper data structure to hold the operands of a vector of instructions. 1035 /// This supports a fixed vector length for all operand vectors. 1036 class VLOperands { 1037 /// For each operand we need (i) the value, and (ii) the opcode that it 1038 /// would be attached to if the expression was in a left-linearized form. 1039 /// This is required to avoid illegal operand reordering. 1040 /// For example: 1041 /// \verbatim 1042 /// 0 Op1 1043 /// |/ 1044 /// Op1 Op2 Linearized + Op2 1045 /// \ / ----------> |/ 1046 /// - - 1047 /// 1048 /// Op1 - Op2 (0 + Op1) - Op2 1049 /// \endverbatim 1050 /// 1051 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1052 /// 1053 /// Another way to think of this is to track all the operations across the 1054 /// path from the operand all the way to the root of the tree and to 1055 /// calculate the operation that corresponds to this path. For example, the 1056 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1057 /// corresponding operation is a '-' (which matches the one in the 1058 /// linearized tree, as shown above). 1059 /// 1060 /// For lack of a better term, we refer to this operation as Accumulated 1061 /// Path Operation (APO). 1062 struct OperandData { 1063 OperandData() = default; 1064 OperandData(Value *V, bool APO, bool IsUsed) 1065 : V(V), APO(APO), IsUsed(IsUsed) {} 1066 /// The operand value. 1067 Value *V = nullptr; 1068 /// TreeEntries only allow a single opcode, or an alternate sequence of 1069 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1070 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1071 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1072 /// (e.g., Add/Mul) 1073 bool APO = false; 1074 /// Helper data for the reordering function. 1075 bool IsUsed = false; 1076 }; 1077 1078 /// During operand reordering, we are trying to select the operand at lane 1079 /// that matches best with the operand at the neighboring lane. Our 1080 /// selection is based on the type of value we are looking for. For example, 1081 /// if the neighboring lane has a load, we need to look for a load that is 1082 /// accessing a consecutive address. These strategies are summarized in the 1083 /// 'ReorderingMode' enumerator. 1084 enum class ReorderingMode { 1085 Load, ///< Matching loads to consecutive memory addresses 1086 Opcode, ///< Matching instructions based on opcode (same or alternate) 1087 Constant, ///< Matching constants 1088 Splat, ///< Matching the same instruction multiple times (broadcast) 1089 Failed, ///< We failed to create a vectorizable group 1090 }; 1091 1092 using OperandDataVec = SmallVector<OperandData, 2>; 1093 1094 /// A vector of operand vectors. 1095 SmallVector<OperandDataVec, 4> OpsVec; 1096 1097 const DataLayout &DL; 1098 ScalarEvolution &SE; 1099 const BoUpSLP &R; 1100 1101 /// \returns the operand data at \p OpIdx and \p Lane. 1102 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1103 return OpsVec[OpIdx][Lane]; 1104 } 1105 1106 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1107 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1108 return OpsVec[OpIdx][Lane]; 1109 } 1110 1111 /// Clears the used flag for all entries. 1112 void clearUsed() { 1113 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1114 OpIdx != NumOperands; ++OpIdx) 1115 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1116 ++Lane) 1117 OpsVec[OpIdx][Lane].IsUsed = false; 1118 } 1119 1120 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1121 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1122 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1123 } 1124 1125 // The hard-coded scores listed here are not very important, though it shall 1126 // be higher for better matches to improve the resulting cost. When 1127 // computing the scores of matching one sub-tree with another, we are 1128 // basically counting the number of values that are matching. So even if all 1129 // scores are set to 1, we would still get a decent matching result. 1130 // However, sometimes we have to break ties. For example we may have to 1131 // choose between matching loads vs matching opcodes. This is what these 1132 // scores are helping us with: they provide the order of preference. Also, 1133 // this is important if the scalar is externally used or used in another 1134 // tree entry node in the different lane. 1135 1136 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1137 static const int ScoreConsecutiveLoads = 4; 1138 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1139 static const int ScoreReversedLoads = 3; 1140 /// ExtractElementInst from same vector and consecutive indexes. 1141 static const int ScoreConsecutiveExtracts = 4; 1142 /// ExtractElementInst from same vector and reversed indices. 1143 static const int ScoreReversedExtracts = 3; 1144 /// Constants. 1145 static const int ScoreConstants = 2; 1146 /// Instructions with the same opcode. 1147 static const int ScoreSameOpcode = 2; 1148 /// Instructions with alt opcodes (e.g, add + sub). 1149 static const int ScoreAltOpcodes = 1; 1150 /// Identical instructions (a.k.a. splat or broadcast). 1151 static const int ScoreSplat = 1; 1152 /// Matching with an undef is preferable to failing. 1153 static const int ScoreUndef = 1; 1154 /// Score for failing to find a decent match. 1155 static const int ScoreFail = 0; 1156 /// Score if all users are vectorized. 1157 static const int ScoreAllUserVectorized = 1; 1158 1159 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1160 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1161 /// MainAltOps. 1162 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1163 ScalarEvolution &SE, int NumLanes, 1164 ArrayRef<Value *> MainAltOps) { 1165 if (V1 == V2) 1166 return VLOperands::ScoreSplat; 1167 1168 auto *LI1 = dyn_cast<LoadInst>(V1); 1169 auto *LI2 = dyn_cast<LoadInst>(V2); 1170 if (LI1 && LI2) { 1171 if (LI1->getParent() != LI2->getParent()) 1172 return VLOperands::ScoreFail; 1173 1174 Optional<int> Dist = getPointersDiff( 1175 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1176 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1177 if (!Dist || *Dist == 0) 1178 return VLOperands::ScoreFail; 1179 // The distance is too large - still may be profitable to use masked 1180 // loads/gathers. 1181 if (std::abs(*Dist) > NumLanes / 2) 1182 return VLOperands::ScoreAltOpcodes; 1183 // This still will detect consecutive loads, but we might have "holes" 1184 // in some cases. It is ok for non-power-2 vectorization and may produce 1185 // better results. It should not affect current vectorization. 1186 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1187 : VLOperands::ScoreReversedLoads; 1188 } 1189 1190 auto *C1 = dyn_cast<Constant>(V1); 1191 auto *C2 = dyn_cast<Constant>(V2); 1192 if (C1 && C2) 1193 return VLOperands::ScoreConstants; 1194 1195 // Extracts from consecutive indexes of the same vector better score as 1196 // the extracts could be optimized away. 1197 Value *EV1; 1198 ConstantInt *Ex1Idx; 1199 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1200 // Undefs are always profitable for extractelements. 1201 if (isa<UndefValue>(V2)) 1202 return VLOperands::ScoreConsecutiveExtracts; 1203 Value *EV2 = nullptr; 1204 ConstantInt *Ex2Idx = nullptr; 1205 if (match(V2, 1206 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1207 m_Undef())))) { 1208 // Undefs are always profitable for extractelements. 1209 if (!Ex2Idx) 1210 return VLOperands::ScoreConsecutiveExtracts; 1211 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1212 return VLOperands::ScoreConsecutiveExtracts; 1213 if (EV2 == EV1) { 1214 int Idx1 = Ex1Idx->getZExtValue(); 1215 int Idx2 = Ex2Idx->getZExtValue(); 1216 int Dist = Idx2 - Idx1; 1217 // The distance is too large - still may be profitable to use 1218 // shuffles. 1219 if (std::abs(Dist) == 0) 1220 return VLOperands::ScoreSplat; 1221 if (std::abs(Dist) > NumLanes / 2) 1222 return VLOperands::ScoreSameOpcode; 1223 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1224 : VLOperands::ScoreReversedExtracts; 1225 } 1226 return VLOperands::ScoreAltOpcodes; 1227 } 1228 return VLOperands::ScoreFail; 1229 } 1230 1231 auto *I1 = dyn_cast<Instruction>(V1); 1232 auto *I2 = dyn_cast<Instruction>(V2); 1233 if (I1 && I2) { 1234 if (I1->getParent() != I2->getParent()) 1235 return VLOperands::ScoreFail; 1236 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1237 Ops.push_back(I1); 1238 Ops.push_back(I2); 1239 InstructionsState S = getSameOpcode(Ops); 1240 // Note: Only consider instructions with <= 2 operands to avoid 1241 // complexity explosion. 1242 if (S.getOpcode() && 1243 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1244 !S.isAltShuffle()) && 1245 all_of(Ops, [&S](Value *V) { 1246 return cast<Instruction>(V)->getNumOperands() == 1247 S.MainOp->getNumOperands(); 1248 })) 1249 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1250 : VLOperands::ScoreSameOpcode; 1251 } 1252 1253 if (isa<UndefValue>(V2)) 1254 return VLOperands::ScoreUndef; 1255 1256 return VLOperands::ScoreFail; 1257 } 1258 1259 /// \param Lane lane of the operands under analysis. 1260 /// \param OpIdx operand index in \p Lane lane we're looking the best 1261 /// candidate for. 1262 /// \param Idx operand index of the current candidate value. 1263 /// \returns The additional score due to possible broadcasting of the 1264 /// elements in the lane. It is more profitable to have power-of-2 unique 1265 /// elements in the lane, it will be vectorized with higher probability 1266 /// after removing duplicates. Currently the SLP vectorizer supports only 1267 /// vectorization of the power-of-2 number of unique scalars. 1268 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1269 Value *IdxLaneV = getData(Idx, Lane).V; 1270 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1271 return 0; 1272 SmallPtrSet<Value *, 4> Uniques; 1273 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1274 if (Ln == Lane) 1275 continue; 1276 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1277 if (!isa<Instruction>(OpIdxLnV)) 1278 return 0; 1279 Uniques.insert(OpIdxLnV); 1280 } 1281 int UniquesCount = Uniques.size(); 1282 int UniquesCntWithIdxLaneV = 1283 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1284 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1285 int UniquesCntWithOpIdxLaneV = 1286 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1287 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1288 return 0; 1289 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1290 UniquesCntWithOpIdxLaneV) - 1291 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1292 } 1293 1294 /// \param Lane lane of the operands under analysis. 1295 /// \param OpIdx operand index in \p Lane lane we're looking the best 1296 /// candidate for. 1297 /// \param Idx operand index of the current candidate value. 1298 /// \returns The additional score for the scalar which users are all 1299 /// vectorized. 1300 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1301 Value *IdxLaneV = getData(Idx, Lane).V; 1302 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1303 // Do not care about number of uses for vector-like instructions 1304 // (extractelement/extractvalue with constant indices), they are extracts 1305 // themselves and already externally used. Vectorization of such 1306 // instructions does not add extra extractelement instruction, just may 1307 // remove it. 1308 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1309 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1310 return VLOperands::ScoreAllUserVectorized; 1311 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1312 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1313 return 0; 1314 return R.areAllUsersVectorized(IdxLaneI, None) 1315 ? VLOperands::ScoreAllUserVectorized 1316 : 0; 1317 } 1318 1319 /// Go through the operands of \p LHS and \p RHS recursively until \p 1320 /// MaxLevel, and return the cummulative score. For example: 1321 /// \verbatim 1322 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1323 /// \ / \ / \ / \ / 1324 /// + + + + 1325 /// G1 G2 G3 G4 1326 /// \endverbatim 1327 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1328 /// each level recursively, accumulating the score. It starts from matching 1329 /// the additions at level 0, then moves on to the loads (level 1). The 1330 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1331 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1332 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1333 /// Please note that the order of the operands does not matter, as we 1334 /// evaluate the score of all profitable combinations of operands. In 1335 /// other words the score of G1 and G4 is the same as G1 and G2. This 1336 /// heuristic is based on ideas described in: 1337 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1338 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1339 /// Luís F. W. Góes 1340 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1341 ArrayRef<Value *> MainAltOps) { 1342 1343 // Get the shallow score of V1 and V2. 1344 int ShallowScoreAtThisLevel = 1345 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1346 1347 // If reached MaxLevel, 1348 // or if V1 and V2 are not instructions, 1349 // or if they are SPLAT, 1350 // or if they are not consecutive, 1351 // or if profitable to vectorize loads or extractelements, early return 1352 // the current cost. 1353 auto *I1 = dyn_cast<Instruction>(LHS); 1354 auto *I2 = dyn_cast<Instruction>(RHS); 1355 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1356 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1357 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1358 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1359 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1360 ShallowScoreAtThisLevel)) 1361 return ShallowScoreAtThisLevel; 1362 assert(I1 && I2 && "Should have early exited."); 1363 1364 // Contains the I2 operand indexes that got matched with I1 operands. 1365 SmallSet<unsigned, 4> Op2Used; 1366 1367 // Recursion towards the operands of I1 and I2. We are trying all possible 1368 // operand pairs, and keeping track of the best score. 1369 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1370 OpIdx1 != NumOperands1; ++OpIdx1) { 1371 // Try to pair op1I with the best operand of I2. 1372 int MaxTmpScore = 0; 1373 unsigned MaxOpIdx2 = 0; 1374 bool FoundBest = false; 1375 // If I2 is commutative try all combinations. 1376 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1377 unsigned ToIdx = isCommutative(I2) 1378 ? I2->getNumOperands() 1379 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1380 assert(FromIdx <= ToIdx && "Bad index"); 1381 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1382 // Skip operands already paired with OpIdx1. 1383 if (Op2Used.count(OpIdx2)) 1384 continue; 1385 // Recursively calculate the cost at each level 1386 int TmpScore = 1387 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1388 CurrLevel + 1, MaxLevel, None); 1389 // Look for the best score. 1390 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1391 MaxTmpScore = TmpScore; 1392 MaxOpIdx2 = OpIdx2; 1393 FoundBest = true; 1394 } 1395 } 1396 if (FoundBest) { 1397 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1398 Op2Used.insert(MaxOpIdx2); 1399 ShallowScoreAtThisLevel += MaxTmpScore; 1400 } 1401 } 1402 return ShallowScoreAtThisLevel; 1403 } 1404 1405 /// Score scaling factor for fully compatible instructions but with 1406 /// different number of external uses. Allows better selection of the 1407 /// instructions with less external uses. 1408 static const int ScoreScaleFactor = 10; 1409 1410 /// \Returns the look-ahead score, which tells us how much the sub-trees 1411 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1412 /// score. This helps break ties in an informed way when we cannot decide on 1413 /// the order of the operands by just considering the immediate 1414 /// predecessors. 1415 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1416 int Lane, unsigned OpIdx, unsigned Idx, 1417 bool &IsUsed) { 1418 int Score = 1419 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1420 if (Score) { 1421 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1422 if (Score <= -SplatScore) { 1423 // Set the minimum score for splat-like sequence to avoid setting 1424 // failed state. 1425 Score = 1; 1426 } else { 1427 Score += SplatScore; 1428 // Scale score to see the difference between different operands 1429 // and similar operands but all vectorized/not all vectorized 1430 // uses. It does not affect actual selection of the best 1431 // compatible operand in general, just allows to select the 1432 // operand with all vectorized uses. 1433 Score *= ScoreScaleFactor; 1434 Score += getExternalUseScore(Lane, OpIdx, Idx); 1435 IsUsed = true; 1436 } 1437 } 1438 return Score; 1439 } 1440 1441 /// Best defined scores per lanes between the passes. Used to choose the 1442 /// best operand (with the highest score) between the passes. 1443 /// The key - {Operand Index, Lane}. 1444 /// The value - the best score between the passes for the lane and the 1445 /// operand. 1446 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1447 BestScoresPerLanes; 1448 1449 // Search all operands in Ops[*][Lane] for the one that matches best 1450 // Ops[OpIdx][LastLane] and return its opreand index. 1451 // If no good match can be found, return None. 1452 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1453 ArrayRef<ReorderingMode> ReorderingModes, 1454 ArrayRef<Value *> MainAltOps) { 1455 unsigned NumOperands = getNumOperands(); 1456 1457 // The operand of the previous lane at OpIdx. 1458 Value *OpLastLane = getData(OpIdx, LastLane).V; 1459 1460 // Our strategy mode for OpIdx. 1461 ReorderingMode RMode = ReorderingModes[OpIdx]; 1462 if (RMode == ReorderingMode::Failed) 1463 return None; 1464 1465 // The linearized opcode of the operand at OpIdx, Lane. 1466 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1467 1468 // The best operand index and its score. 1469 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1470 // are using the score to differentiate between the two. 1471 struct BestOpData { 1472 Optional<unsigned> Idx = None; 1473 unsigned Score = 0; 1474 } BestOp; 1475 BestOp.Score = 1476 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1477 .first->second; 1478 1479 // Track if the operand must be marked as used. If the operand is set to 1480 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1481 // want to reestimate the operands again on the following iterations). 1482 bool IsUsed = 1483 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1484 // Iterate through all unused operands and look for the best. 1485 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1486 // Get the operand at Idx and Lane. 1487 OperandData &OpData = getData(Idx, Lane); 1488 Value *Op = OpData.V; 1489 bool OpAPO = OpData.APO; 1490 1491 // Skip already selected operands. 1492 if (OpData.IsUsed) 1493 continue; 1494 1495 // Skip if we are trying to move the operand to a position with a 1496 // different opcode in the linearized tree form. This would break the 1497 // semantics. 1498 if (OpAPO != OpIdxAPO) 1499 continue; 1500 1501 // Look for an operand that matches the current mode. 1502 switch (RMode) { 1503 case ReorderingMode::Load: 1504 case ReorderingMode::Constant: 1505 case ReorderingMode::Opcode: { 1506 bool LeftToRight = Lane > LastLane; 1507 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1508 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1509 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1510 OpIdx, Idx, IsUsed); 1511 if (Score > static_cast<int>(BestOp.Score)) { 1512 BestOp.Idx = Idx; 1513 BestOp.Score = Score; 1514 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1515 } 1516 break; 1517 } 1518 case ReorderingMode::Splat: 1519 if (Op == OpLastLane) 1520 BestOp.Idx = Idx; 1521 break; 1522 case ReorderingMode::Failed: 1523 llvm_unreachable("Not expected Failed reordering mode."); 1524 } 1525 } 1526 1527 if (BestOp.Idx) { 1528 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1529 return BestOp.Idx; 1530 } 1531 // If we could not find a good match return None. 1532 return None; 1533 } 1534 1535 /// Helper for reorderOperandVecs. 1536 /// \returns the lane that we should start reordering from. This is the one 1537 /// which has the least number of operands that can freely move about or 1538 /// less profitable because it already has the most optimal set of operands. 1539 unsigned getBestLaneToStartReordering() const { 1540 unsigned Min = UINT_MAX; 1541 unsigned SameOpNumber = 0; 1542 // std::pair<unsigned, unsigned> is used to implement a simple voting 1543 // algorithm and choose the lane with the least number of operands that 1544 // can freely move about or less profitable because it already has the 1545 // most optimal set of operands. The first unsigned is a counter for 1546 // voting, the second unsigned is the counter of lanes with instructions 1547 // with same/alternate opcodes and same parent basic block. 1548 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1549 // Try to be closer to the original results, if we have multiple lanes 1550 // with same cost. If 2 lanes have the same cost, use the one with the 1551 // lowest index. 1552 for (int I = getNumLanes(); I > 0; --I) { 1553 unsigned Lane = I - 1; 1554 OperandsOrderData NumFreeOpsHash = 1555 getMaxNumOperandsThatCanBeReordered(Lane); 1556 // Compare the number of operands that can move and choose the one with 1557 // the least number. 1558 if (NumFreeOpsHash.NumOfAPOs < Min) { 1559 Min = NumFreeOpsHash.NumOfAPOs; 1560 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1561 HashMap.clear(); 1562 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1563 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1564 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1565 // Select the most optimal lane in terms of number of operands that 1566 // should be moved around. 1567 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1568 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1569 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1570 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1571 auto It = HashMap.find(NumFreeOpsHash.Hash); 1572 if (It == HashMap.end()) 1573 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1574 else 1575 ++It->second.first; 1576 } 1577 } 1578 // Select the lane with the minimum counter. 1579 unsigned BestLane = 0; 1580 unsigned CntMin = UINT_MAX; 1581 for (const auto &Data : reverse(HashMap)) { 1582 if (Data.second.first < CntMin) { 1583 CntMin = Data.second.first; 1584 BestLane = Data.second.second; 1585 } 1586 } 1587 return BestLane; 1588 } 1589 1590 /// Data structure that helps to reorder operands. 1591 struct OperandsOrderData { 1592 /// The best number of operands with the same APOs, which can be 1593 /// reordered. 1594 unsigned NumOfAPOs = UINT_MAX; 1595 /// Number of operands with the same/alternate instruction opcode and 1596 /// parent. 1597 unsigned NumOpsWithSameOpcodeParent = 0; 1598 /// Hash for the actual operands ordering. 1599 /// Used to count operands, actually their position id and opcode 1600 /// value. It is used in the voting mechanism to find the lane with the 1601 /// least number of operands that can freely move about or less profitable 1602 /// because it already has the most optimal set of operands. Can be 1603 /// replaced with SmallVector<unsigned> instead but hash code is faster 1604 /// and requires less memory. 1605 unsigned Hash = 0; 1606 }; 1607 /// \returns the maximum number of operands that are allowed to be reordered 1608 /// for \p Lane and the number of compatible instructions(with the same 1609 /// parent/opcode). This is used as a heuristic for selecting the first lane 1610 /// to start operand reordering. 1611 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1612 unsigned CntTrue = 0; 1613 unsigned NumOperands = getNumOperands(); 1614 // Operands with the same APO can be reordered. We therefore need to count 1615 // how many of them we have for each APO, like this: Cnt[APO] = x. 1616 // Since we only have two APOs, namely true and false, we can avoid using 1617 // a map. Instead we can simply count the number of operands that 1618 // correspond to one of them (in this case the 'true' APO), and calculate 1619 // the other by subtracting it from the total number of operands. 1620 // Operands with the same instruction opcode and parent are more 1621 // profitable since we don't need to move them in many cases, with a high 1622 // probability such lane already can be vectorized effectively. 1623 bool AllUndefs = true; 1624 unsigned NumOpsWithSameOpcodeParent = 0; 1625 Instruction *OpcodeI = nullptr; 1626 BasicBlock *Parent = nullptr; 1627 unsigned Hash = 0; 1628 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1629 const OperandData &OpData = getData(OpIdx, Lane); 1630 if (OpData.APO) 1631 ++CntTrue; 1632 // Use Boyer-Moore majority voting for finding the majority opcode and 1633 // the number of times it occurs. 1634 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1635 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1636 I->getParent() != Parent) { 1637 if (NumOpsWithSameOpcodeParent == 0) { 1638 NumOpsWithSameOpcodeParent = 1; 1639 OpcodeI = I; 1640 Parent = I->getParent(); 1641 } else { 1642 --NumOpsWithSameOpcodeParent; 1643 } 1644 } else { 1645 ++NumOpsWithSameOpcodeParent; 1646 } 1647 } 1648 Hash = hash_combine( 1649 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1650 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1651 } 1652 if (AllUndefs) 1653 return {}; 1654 OperandsOrderData Data; 1655 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1656 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1657 Data.Hash = Hash; 1658 return Data; 1659 } 1660 1661 /// Go through the instructions in VL and append their operands. 1662 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1663 assert(!VL.empty() && "Bad VL"); 1664 assert((empty() || VL.size() == getNumLanes()) && 1665 "Expected same number of lanes"); 1666 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1667 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1668 OpsVec.resize(NumOperands); 1669 unsigned NumLanes = VL.size(); 1670 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1671 OpsVec[OpIdx].resize(NumLanes); 1672 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1673 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1674 // Our tree has just 3 nodes: the root and two operands. 1675 // It is therefore trivial to get the APO. We only need to check the 1676 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1677 // RHS operand. The LHS operand of both add and sub is never attached 1678 // to an inversese operation in the linearized form, therefore its APO 1679 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1680 1681 // Since operand reordering is performed on groups of commutative 1682 // operations or alternating sequences (e.g., +, -), we can safely 1683 // tell the inverse operations by checking commutativity. 1684 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1685 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1686 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1687 APO, false}; 1688 } 1689 } 1690 } 1691 1692 /// \returns the number of operands. 1693 unsigned getNumOperands() const { return OpsVec.size(); } 1694 1695 /// \returns the number of lanes. 1696 unsigned getNumLanes() const { return OpsVec[0].size(); } 1697 1698 /// \returns the operand value at \p OpIdx and \p Lane. 1699 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1700 return getData(OpIdx, Lane).V; 1701 } 1702 1703 /// \returns true if the data structure is empty. 1704 bool empty() const { return OpsVec.empty(); } 1705 1706 /// Clears the data. 1707 void clear() { OpsVec.clear(); } 1708 1709 /// \Returns true if there are enough operands identical to \p Op to fill 1710 /// the whole vector. 1711 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1712 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1713 bool OpAPO = getData(OpIdx, Lane).APO; 1714 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1715 if (Ln == Lane) 1716 continue; 1717 // This is set to true if we found a candidate for broadcast at Lane. 1718 bool FoundCandidate = false; 1719 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1720 OperandData &Data = getData(OpI, Ln); 1721 if (Data.APO != OpAPO || Data.IsUsed) 1722 continue; 1723 if (Data.V == Op) { 1724 FoundCandidate = true; 1725 Data.IsUsed = true; 1726 break; 1727 } 1728 } 1729 if (!FoundCandidate) 1730 return false; 1731 } 1732 return true; 1733 } 1734 1735 public: 1736 /// Initialize with all the operands of the instruction vector \p RootVL. 1737 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1738 ScalarEvolution &SE, const BoUpSLP &R) 1739 : DL(DL), SE(SE), R(R) { 1740 // Append all the operands of RootVL. 1741 appendOperandsOfVL(RootVL); 1742 } 1743 1744 /// \Returns a value vector with the operands across all lanes for the 1745 /// opearnd at \p OpIdx. 1746 ValueList getVL(unsigned OpIdx) const { 1747 ValueList OpVL(OpsVec[OpIdx].size()); 1748 assert(OpsVec[OpIdx].size() == getNumLanes() && 1749 "Expected same num of lanes across all operands"); 1750 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1751 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1752 return OpVL; 1753 } 1754 1755 // Performs operand reordering for 2 or more operands. 1756 // The original operands are in OrigOps[OpIdx][Lane]. 1757 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1758 void reorder() { 1759 unsigned NumOperands = getNumOperands(); 1760 unsigned NumLanes = getNumLanes(); 1761 // Each operand has its own mode. We are using this mode to help us select 1762 // the instructions for each lane, so that they match best with the ones 1763 // we have selected so far. 1764 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1765 1766 // This is a greedy single-pass algorithm. We are going over each lane 1767 // once and deciding on the best order right away with no back-tracking. 1768 // However, in order to increase its effectiveness, we start with the lane 1769 // that has operands that can move the least. For example, given the 1770 // following lanes: 1771 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1772 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1773 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1774 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1775 // we will start at Lane 1, since the operands of the subtraction cannot 1776 // be reordered. Then we will visit the rest of the lanes in a circular 1777 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1778 1779 // Find the first lane that we will start our search from. 1780 unsigned FirstLane = getBestLaneToStartReordering(); 1781 1782 // Initialize the modes. 1783 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1784 Value *OpLane0 = getValue(OpIdx, FirstLane); 1785 // Keep track if we have instructions with all the same opcode on one 1786 // side. 1787 if (isa<LoadInst>(OpLane0)) 1788 ReorderingModes[OpIdx] = ReorderingMode::Load; 1789 else if (isa<Instruction>(OpLane0)) { 1790 // Check if OpLane0 should be broadcast. 1791 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1792 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1793 else 1794 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1795 } 1796 else if (isa<Constant>(OpLane0)) 1797 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1798 else if (isa<Argument>(OpLane0)) 1799 // Our best hope is a Splat. It may save some cost in some cases. 1800 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1801 else 1802 // NOTE: This should be unreachable. 1803 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1804 } 1805 1806 // Check that we don't have same operands. No need to reorder if operands 1807 // are just perfect diamond or shuffled diamond match. Do not do it only 1808 // for possible broadcasts or non-power of 2 number of scalars (just for 1809 // now). 1810 auto &&SkipReordering = [this]() { 1811 SmallPtrSet<Value *, 4> UniqueValues; 1812 ArrayRef<OperandData> Op0 = OpsVec.front(); 1813 for (const OperandData &Data : Op0) 1814 UniqueValues.insert(Data.V); 1815 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1816 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1817 return !UniqueValues.contains(Data.V); 1818 })) 1819 return false; 1820 } 1821 // TODO: Check if we can remove a check for non-power-2 number of 1822 // scalars after full support of non-power-2 vectorization. 1823 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1824 }; 1825 1826 // If the initial strategy fails for any of the operand indexes, then we 1827 // perform reordering again in a second pass. This helps avoid assigning 1828 // high priority to the failed strategy, and should improve reordering for 1829 // the non-failed operand indexes. 1830 for (int Pass = 0; Pass != 2; ++Pass) { 1831 // Check if no need to reorder operands since they're are perfect or 1832 // shuffled diamond match. 1833 // Need to to do it to avoid extra external use cost counting for 1834 // shuffled matches, which may cause regressions. 1835 if (SkipReordering()) 1836 break; 1837 // Skip the second pass if the first pass did not fail. 1838 bool StrategyFailed = false; 1839 // Mark all operand data as free to use. 1840 clearUsed(); 1841 // We keep the original operand order for the FirstLane, so reorder the 1842 // rest of the lanes. We are visiting the nodes in a circular fashion, 1843 // using FirstLane as the center point and increasing the radius 1844 // distance. 1845 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1846 for (unsigned I = 0; I < NumOperands; ++I) 1847 MainAltOps[I].push_back(getData(I, FirstLane).V); 1848 1849 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1850 // Visit the lane on the right and then the lane on the left. 1851 for (int Direction : {+1, -1}) { 1852 int Lane = FirstLane + Direction * Distance; 1853 if (Lane < 0 || Lane >= (int)NumLanes) 1854 continue; 1855 int LastLane = Lane - Direction; 1856 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1857 "Out of bounds"); 1858 // Look for a good match for each operand. 1859 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1860 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1861 Optional<unsigned> BestIdx = getBestOperand( 1862 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1863 // By not selecting a value, we allow the operands that follow to 1864 // select a better matching value. We will get a non-null value in 1865 // the next run of getBestOperand(). 1866 if (BestIdx) { 1867 // Swap the current operand with the one returned by 1868 // getBestOperand(). 1869 swap(OpIdx, BestIdx.getValue(), Lane); 1870 } else { 1871 // We failed to find a best operand, set mode to 'Failed'. 1872 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1873 // Enable the second pass. 1874 StrategyFailed = true; 1875 } 1876 // Try to get the alternate opcode and follow it during analysis. 1877 if (MainAltOps[OpIdx].size() != 2) { 1878 OperandData &AltOp = getData(OpIdx, Lane); 1879 InstructionsState OpS = 1880 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1881 if (OpS.getOpcode() && OpS.isAltShuffle()) 1882 MainAltOps[OpIdx].push_back(AltOp.V); 1883 } 1884 } 1885 } 1886 } 1887 // Skip second pass if the strategy did not fail. 1888 if (!StrategyFailed) 1889 break; 1890 } 1891 } 1892 1893 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1894 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1895 switch (RMode) { 1896 case ReorderingMode::Load: 1897 return "Load"; 1898 case ReorderingMode::Opcode: 1899 return "Opcode"; 1900 case ReorderingMode::Constant: 1901 return "Constant"; 1902 case ReorderingMode::Splat: 1903 return "Splat"; 1904 case ReorderingMode::Failed: 1905 return "Failed"; 1906 } 1907 llvm_unreachable("Unimplemented Reordering Type"); 1908 } 1909 1910 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1911 raw_ostream &OS) { 1912 return OS << getModeStr(RMode); 1913 } 1914 1915 /// Debug print. 1916 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1917 printMode(RMode, dbgs()); 1918 } 1919 1920 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1921 return printMode(RMode, OS); 1922 } 1923 1924 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1925 const unsigned Indent = 2; 1926 unsigned Cnt = 0; 1927 for (const OperandDataVec &OpDataVec : OpsVec) { 1928 OS << "Operand " << Cnt++ << "\n"; 1929 for (const OperandData &OpData : OpDataVec) { 1930 OS.indent(Indent) << "{"; 1931 if (Value *V = OpData.V) 1932 OS << *V; 1933 else 1934 OS << "null"; 1935 OS << ", APO:" << OpData.APO << "}\n"; 1936 } 1937 OS << "\n"; 1938 } 1939 return OS; 1940 } 1941 1942 /// Debug print. 1943 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1944 #endif 1945 }; 1946 1947 /// Checks if the instruction is marked for deletion. 1948 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1949 1950 /// Marks values operands for later deletion by replacing them with Undefs. 1951 void eraseInstructions(ArrayRef<Value *> AV); 1952 1953 ~BoUpSLP(); 1954 1955 private: 1956 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1957 /// reordering (i.e. the operands can be reordered because they have only one 1958 /// user and reordarable). 1959 /// \param NonVectorized List of all gather nodes that require reordering 1960 /// (e.g., gather of extractlements or partially vectorizable loads). 1961 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1962 /// reordering, subset of \p NonVectorized. 1963 bool 1964 canReorderOperands(TreeEntry *UserTE, 1965 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1966 ArrayRef<TreeEntry *> ReorderableGathers, 1967 SmallVectorImpl<TreeEntry *> &GatherOps); 1968 1969 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1970 /// if any. If it is not vectorized (gather node), returns nullptr. 1971 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1972 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1973 TreeEntry *TE = nullptr; 1974 const auto *It = find_if(VL, [this, &TE](Value *V) { 1975 TE = getTreeEntry(V); 1976 return TE; 1977 }); 1978 if (It != VL.end() && TE->isSame(VL)) 1979 return TE; 1980 return nullptr; 1981 } 1982 1983 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1984 /// if any. If it is not vectorized (gather node), returns nullptr. 1985 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1986 unsigned OpIdx) const { 1987 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1988 const_cast<TreeEntry *>(UserTE), OpIdx); 1989 } 1990 1991 /// Checks if all users of \p I are the part of the vectorization tree. 1992 bool areAllUsersVectorized(Instruction *I, 1993 ArrayRef<Value *> VectorizedVals) const; 1994 1995 /// \returns the cost of the vectorizable entry. 1996 InstructionCost getEntryCost(const TreeEntry *E, 1997 ArrayRef<Value *> VectorizedVals); 1998 1999 /// This is the recursive part of buildTree. 2000 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2001 const EdgeInfo &EI); 2002 2003 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2004 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2005 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2006 /// returns false, setting \p CurrentOrder to either an empty vector or a 2007 /// non-identity permutation that allows to reuse extract instructions. 2008 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2009 SmallVectorImpl<unsigned> &CurrentOrder) const; 2010 2011 /// Vectorize a single entry in the tree. 2012 Value *vectorizeTree(TreeEntry *E); 2013 2014 /// Vectorize a single entry in the tree, starting in \p VL. 2015 Value *vectorizeTree(ArrayRef<Value *> VL); 2016 2017 /// Create a new vector from a list of scalar values. Produces a sequence 2018 /// which exploits values reused across lanes, and arranges the inserts 2019 /// for ease of later optimization. 2020 Value *createBuildVector(ArrayRef<Value *> VL); 2021 2022 /// \returns the scalarization cost for this type. Scalarization in this 2023 /// context means the creation of vectors from a group of scalars. If \p 2024 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2025 /// vector elements. 2026 InstructionCost getGatherCost(FixedVectorType *Ty, 2027 const APInt &ShuffledIndices, 2028 bool NeedToShuffle) const; 2029 2030 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2031 /// tree entries. 2032 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2033 /// previous tree entries. \p Mask is filled with the shuffle mask. 2034 Optional<TargetTransformInfo::ShuffleKind> 2035 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2036 SmallVectorImpl<const TreeEntry *> &Entries); 2037 2038 /// \returns the scalarization cost for this list of values. Assuming that 2039 /// this subtree gets vectorized, we may need to extract the values from the 2040 /// roots. This method calculates the cost of extracting the values. 2041 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2042 2043 /// Set the Builder insert point to one after the last instruction in 2044 /// the bundle 2045 void setInsertPointAfterBundle(const TreeEntry *E); 2046 2047 /// \returns a vector from a collection of scalars in \p VL. 2048 Value *gather(ArrayRef<Value *> VL); 2049 2050 /// \returns whether the VectorizableTree is fully vectorizable and will 2051 /// be beneficial even the tree height is tiny. 2052 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2053 2054 /// Reorder commutative or alt operands to get better probability of 2055 /// generating vectorized code. 2056 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2057 SmallVectorImpl<Value *> &Left, 2058 SmallVectorImpl<Value *> &Right, 2059 const DataLayout &DL, 2060 ScalarEvolution &SE, 2061 const BoUpSLP &R); 2062 struct TreeEntry { 2063 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2064 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2065 2066 /// \returns true if the scalars in VL are equal to this entry. 2067 bool isSame(ArrayRef<Value *> VL) const { 2068 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2069 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2070 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2071 return VL.size() == Mask.size() && 2072 std::equal(VL.begin(), VL.end(), Mask.begin(), 2073 [Scalars](Value *V, int Idx) { 2074 return (isa<UndefValue>(V) && 2075 Idx == UndefMaskElem) || 2076 (Idx != UndefMaskElem && V == Scalars[Idx]); 2077 }); 2078 }; 2079 if (!ReorderIndices.empty()) { 2080 // TODO: implement matching if the nodes are just reordered, still can 2081 // treat the vector as the same if the list of scalars matches VL 2082 // directly, without reordering. 2083 SmallVector<int> Mask; 2084 inversePermutation(ReorderIndices, Mask); 2085 if (VL.size() == Scalars.size()) 2086 return IsSame(Scalars, Mask); 2087 if (VL.size() == ReuseShuffleIndices.size()) { 2088 ::addMask(Mask, ReuseShuffleIndices); 2089 return IsSame(Scalars, Mask); 2090 } 2091 return false; 2092 } 2093 return IsSame(Scalars, ReuseShuffleIndices); 2094 } 2095 2096 /// \returns true if current entry has same operands as \p TE. 2097 bool hasEqualOperands(const TreeEntry &TE) const { 2098 if (TE.getNumOperands() != getNumOperands()) 2099 return false; 2100 SmallBitVector Used(getNumOperands()); 2101 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2102 unsigned PrevCount = Used.count(); 2103 for (unsigned K = 0; K < E; ++K) { 2104 if (Used.test(K)) 2105 continue; 2106 if (getOperand(K) == TE.getOperand(I)) { 2107 Used.set(K); 2108 break; 2109 } 2110 } 2111 // Check if we actually found the matching operand. 2112 if (PrevCount == Used.count()) 2113 return false; 2114 } 2115 return true; 2116 } 2117 2118 /// \return Final vectorization factor for the node. Defined by the total 2119 /// number of vectorized scalars, including those, used several times in the 2120 /// entry and counted in the \a ReuseShuffleIndices, if any. 2121 unsigned getVectorFactor() const { 2122 if (!ReuseShuffleIndices.empty()) 2123 return ReuseShuffleIndices.size(); 2124 return Scalars.size(); 2125 }; 2126 2127 /// A vector of scalars. 2128 ValueList Scalars; 2129 2130 /// The Scalars are vectorized into this value. It is initialized to Null. 2131 Value *VectorizedValue = nullptr; 2132 2133 /// Do we need to gather this sequence or vectorize it 2134 /// (either with vector instruction or with scatter/gather 2135 /// intrinsics for store/load)? 2136 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2137 EntryState State; 2138 2139 /// Does this sequence require some shuffling? 2140 SmallVector<int, 4> ReuseShuffleIndices; 2141 2142 /// Does this entry require reordering? 2143 SmallVector<unsigned, 4> ReorderIndices; 2144 2145 /// Points back to the VectorizableTree. 2146 /// 2147 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2148 /// to be a pointer and needs to be able to initialize the child iterator. 2149 /// Thus we need a reference back to the container to translate the indices 2150 /// to entries. 2151 VecTreeTy &Container; 2152 2153 /// The TreeEntry index containing the user of this entry. We can actually 2154 /// have multiple users so the data structure is not truly a tree. 2155 SmallVector<EdgeInfo, 1> UserTreeIndices; 2156 2157 /// The index of this treeEntry in VectorizableTree. 2158 int Idx = -1; 2159 2160 private: 2161 /// The operands of each instruction in each lane Operands[op_index][lane]. 2162 /// Note: This helps avoid the replication of the code that performs the 2163 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2164 SmallVector<ValueList, 2> Operands; 2165 2166 /// The main/alternate instruction. 2167 Instruction *MainOp = nullptr; 2168 Instruction *AltOp = nullptr; 2169 2170 public: 2171 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2172 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2173 if (Operands.size() < OpIdx + 1) 2174 Operands.resize(OpIdx + 1); 2175 assert(Operands[OpIdx].empty() && "Already resized?"); 2176 assert(OpVL.size() <= Scalars.size() && 2177 "Number of operands is greater than the number of scalars."); 2178 Operands[OpIdx].resize(OpVL.size()); 2179 copy(OpVL, Operands[OpIdx].begin()); 2180 } 2181 2182 /// Set the operands of this bundle in their original order. 2183 void setOperandsInOrder() { 2184 assert(Operands.empty() && "Already initialized?"); 2185 auto *I0 = cast<Instruction>(Scalars[0]); 2186 Operands.resize(I0->getNumOperands()); 2187 unsigned NumLanes = Scalars.size(); 2188 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2189 OpIdx != NumOperands; ++OpIdx) { 2190 Operands[OpIdx].resize(NumLanes); 2191 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2192 auto *I = cast<Instruction>(Scalars[Lane]); 2193 assert(I->getNumOperands() == NumOperands && 2194 "Expected same number of operands"); 2195 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2196 } 2197 } 2198 } 2199 2200 /// Reorders operands of the node to the given mask \p Mask. 2201 void reorderOperands(ArrayRef<int> Mask) { 2202 for (ValueList &Operand : Operands) 2203 reorderScalars(Operand, Mask); 2204 } 2205 2206 /// \returns the \p OpIdx operand of this TreeEntry. 2207 ValueList &getOperand(unsigned OpIdx) { 2208 assert(OpIdx < Operands.size() && "Off bounds"); 2209 return Operands[OpIdx]; 2210 } 2211 2212 /// \returns the \p OpIdx operand of this TreeEntry. 2213 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2214 assert(OpIdx < Operands.size() && "Off bounds"); 2215 return Operands[OpIdx]; 2216 } 2217 2218 /// \returns the number of operands. 2219 unsigned getNumOperands() const { return Operands.size(); } 2220 2221 /// \return the single \p OpIdx operand. 2222 Value *getSingleOperand(unsigned OpIdx) const { 2223 assert(OpIdx < Operands.size() && "Off bounds"); 2224 assert(!Operands[OpIdx].empty() && "No operand available"); 2225 return Operands[OpIdx][0]; 2226 } 2227 2228 /// Some of the instructions in the list have alternate opcodes. 2229 bool isAltShuffle() const { return MainOp != AltOp; } 2230 2231 bool isOpcodeOrAlt(Instruction *I) const { 2232 unsigned CheckedOpcode = I->getOpcode(); 2233 return (getOpcode() == CheckedOpcode || 2234 getAltOpcode() == CheckedOpcode); 2235 } 2236 2237 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2238 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2239 /// \p OpValue. 2240 Value *isOneOf(Value *Op) const { 2241 auto *I = dyn_cast<Instruction>(Op); 2242 if (I && isOpcodeOrAlt(I)) 2243 return Op; 2244 return MainOp; 2245 } 2246 2247 void setOperations(const InstructionsState &S) { 2248 MainOp = S.MainOp; 2249 AltOp = S.AltOp; 2250 } 2251 2252 Instruction *getMainOp() const { 2253 return MainOp; 2254 } 2255 2256 Instruction *getAltOp() const { 2257 return AltOp; 2258 } 2259 2260 /// The main/alternate opcodes for the list of instructions. 2261 unsigned getOpcode() const { 2262 return MainOp ? MainOp->getOpcode() : 0; 2263 } 2264 2265 unsigned getAltOpcode() const { 2266 return AltOp ? AltOp->getOpcode() : 0; 2267 } 2268 2269 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2270 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2271 int findLaneForValue(Value *V) const { 2272 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2273 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2274 if (!ReorderIndices.empty()) 2275 FoundLane = ReorderIndices[FoundLane]; 2276 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2277 if (!ReuseShuffleIndices.empty()) { 2278 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2279 find(ReuseShuffleIndices, FoundLane)); 2280 } 2281 return FoundLane; 2282 } 2283 2284 #ifndef NDEBUG 2285 /// Debug printer. 2286 LLVM_DUMP_METHOD void dump() const { 2287 dbgs() << Idx << ".\n"; 2288 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2289 dbgs() << "Operand " << OpI << ":\n"; 2290 for (const Value *V : Operands[OpI]) 2291 dbgs().indent(2) << *V << "\n"; 2292 } 2293 dbgs() << "Scalars: \n"; 2294 for (Value *V : Scalars) 2295 dbgs().indent(2) << *V << "\n"; 2296 dbgs() << "State: "; 2297 switch (State) { 2298 case Vectorize: 2299 dbgs() << "Vectorize\n"; 2300 break; 2301 case ScatterVectorize: 2302 dbgs() << "ScatterVectorize\n"; 2303 break; 2304 case NeedToGather: 2305 dbgs() << "NeedToGather\n"; 2306 break; 2307 } 2308 dbgs() << "MainOp: "; 2309 if (MainOp) 2310 dbgs() << *MainOp << "\n"; 2311 else 2312 dbgs() << "NULL\n"; 2313 dbgs() << "AltOp: "; 2314 if (AltOp) 2315 dbgs() << *AltOp << "\n"; 2316 else 2317 dbgs() << "NULL\n"; 2318 dbgs() << "VectorizedValue: "; 2319 if (VectorizedValue) 2320 dbgs() << *VectorizedValue << "\n"; 2321 else 2322 dbgs() << "NULL\n"; 2323 dbgs() << "ReuseShuffleIndices: "; 2324 if (ReuseShuffleIndices.empty()) 2325 dbgs() << "Empty"; 2326 else 2327 for (int ReuseIdx : ReuseShuffleIndices) 2328 dbgs() << ReuseIdx << ", "; 2329 dbgs() << "\n"; 2330 dbgs() << "ReorderIndices: "; 2331 for (unsigned ReorderIdx : ReorderIndices) 2332 dbgs() << ReorderIdx << ", "; 2333 dbgs() << "\n"; 2334 dbgs() << "UserTreeIndices: "; 2335 for (const auto &EInfo : UserTreeIndices) 2336 dbgs() << EInfo << ", "; 2337 dbgs() << "\n"; 2338 } 2339 #endif 2340 }; 2341 2342 #ifndef NDEBUG 2343 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2344 InstructionCost VecCost, 2345 InstructionCost ScalarCost) const { 2346 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2347 dbgs() << "SLP: Costs:\n"; 2348 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2349 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2350 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2351 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2352 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2353 } 2354 #endif 2355 2356 /// Create a new VectorizableTree entry. 2357 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2358 const InstructionsState &S, 2359 const EdgeInfo &UserTreeIdx, 2360 ArrayRef<int> ReuseShuffleIndices = None, 2361 ArrayRef<unsigned> ReorderIndices = None) { 2362 TreeEntry::EntryState EntryState = 2363 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2364 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2365 ReuseShuffleIndices, ReorderIndices); 2366 } 2367 2368 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2369 TreeEntry::EntryState EntryState, 2370 Optional<ScheduleData *> Bundle, 2371 const InstructionsState &S, 2372 const EdgeInfo &UserTreeIdx, 2373 ArrayRef<int> ReuseShuffleIndices = None, 2374 ArrayRef<unsigned> ReorderIndices = None) { 2375 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2376 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2377 "Need to vectorize gather entry?"); 2378 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2379 TreeEntry *Last = VectorizableTree.back().get(); 2380 Last->Idx = VectorizableTree.size() - 1; 2381 Last->State = EntryState; 2382 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2383 ReuseShuffleIndices.end()); 2384 if (ReorderIndices.empty()) { 2385 Last->Scalars.assign(VL.begin(), VL.end()); 2386 Last->setOperations(S); 2387 } else { 2388 // Reorder scalars and build final mask. 2389 Last->Scalars.assign(VL.size(), nullptr); 2390 transform(ReorderIndices, Last->Scalars.begin(), 2391 [VL](unsigned Idx) -> Value * { 2392 if (Idx >= VL.size()) 2393 return UndefValue::get(VL.front()->getType()); 2394 return VL[Idx]; 2395 }); 2396 InstructionsState S = getSameOpcode(Last->Scalars); 2397 Last->setOperations(S); 2398 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2399 } 2400 if (Last->State != TreeEntry::NeedToGather) { 2401 for (Value *V : VL) { 2402 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2403 ScalarToTreeEntry[V] = Last; 2404 } 2405 // Update the scheduler bundle to point to this TreeEntry. 2406 ScheduleData *BundleMember = Bundle.getValue(); 2407 assert((BundleMember || isa<PHINode>(S.MainOp) || 2408 isVectorLikeInstWithConstOps(S.MainOp) || 2409 doesNotNeedToSchedule(VL)) && 2410 "Bundle and VL out of sync"); 2411 if (BundleMember) { 2412 for (Value *V : VL) { 2413 if (doesNotNeedToBeScheduled(V)) 2414 continue; 2415 assert(BundleMember && "Unexpected end of bundle."); 2416 BundleMember->TE = Last; 2417 BundleMember = BundleMember->NextInBundle; 2418 } 2419 } 2420 assert(!BundleMember && "Bundle and VL out of sync"); 2421 } else { 2422 MustGather.insert(VL.begin(), VL.end()); 2423 } 2424 2425 if (UserTreeIdx.UserTE) 2426 Last->UserTreeIndices.push_back(UserTreeIdx); 2427 2428 return Last; 2429 } 2430 2431 /// -- Vectorization State -- 2432 /// Holds all of the tree entries. 2433 TreeEntry::VecTreeTy VectorizableTree; 2434 2435 #ifndef NDEBUG 2436 /// Debug printer. 2437 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2438 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2439 VectorizableTree[Id]->dump(); 2440 dbgs() << "\n"; 2441 } 2442 } 2443 #endif 2444 2445 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2446 2447 const TreeEntry *getTreeEntry(Value *V) const { 2448 return ScalarToTreeEntry.lookup(V); 2449 } 2450 2451 /// Maps a specific scalar to its tree entry. 2452 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2453 2454 /// Maps a value to the proposed vectorizable size. 2455 SmallDenseMap<Value *, unsigned> InstrElementSize; 2456 2457 /// A list of scalars that we found that we need to keep as scalars. 2458 ValueSet MustGather; 2459 2460 /// This POD struct describes one external user in the vectorized tree. 2461 struct ExternalUser { 2462 ExternalUser(Value *S, llvm::User *U, int L) 2463 : Scalar(S), User(U), Lane(L) {} 2464 2465 // Which scalar in our function. 2466 Value *Scalar; 2467 2468 // Which user that uses the scalar. 2469 llvm::User *User; 2470 2471 // Which lane does the scalar belong to. 2472 int Lane; 2473 }; 2474 using UserList = SmallVector<ExternalUser, 16>; 2475 2476 /// Checks if two instructions may access the same memory. 2477 /// 2478 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2479 /// is invariant in the calling loop. 2480 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2481 Instruction *Inst2) { 2482 // First check if the result is already in the cache. 2483 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2484 Optional<bool> &result = AliasCache[key]; 2485 if (result.hasValue()) { 2486 return result.getValue(); 2487 } 2488 bool aliased = true; 2489 if (Loc1.Ptr && isSimple(Inst1)) 2490 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2491 // Store the result in the cache. 2492 result = aliased; 2493 return aliased; 2494 } 2495 2496 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2497 2498 /// Cache for alias results. 2499 /// TODO: consider moving this to the AliasAnalysis itself. 2500 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2501 2502 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2503 // globally through SLP because we don't perform any action which 2504 // invalidates capture results. 2505 BatchAAResults BatchAA; 2506 2507 /// Removes an instruction from its block and eventually deletes it. 2508 /// It's like Instruction::eraseFromParent() except that the actual deletion 2509 /// is delayed until BoUpSLP is destructed. 2510 /// This is required to ensure that there are no incorrect collisions in the 2511 /// AliasCache, which can happen if a new instruction is allocated at the 2512 /// same address as a previously deleted instruction. 2513 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2514 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2515 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2516 } 2517 2518 /// Temporary store for deleted instructions. Instructions will be deleted 2519 /// eventually when the BoUpSLP is destructed. 2520 DenseMap<Instruction *, bool> DeletedInstructions; 2521 2522 /// A list of values that need to extracted out of the tree. 2523 /// This list holds pairs of (Internal Scalar : External User). External User 2524 /// can be nullptr, it means that this Internal Scalar will be used later, 2525 /// after vectorization. 2526 UserList ExternalUses; 2527 2528 /// Values used only by @llvm.assume calls. 2529 SmallPtrSet<const Value *, 32> EphValues; 2530 2531 /// Holds all of the instructions that we gathered. 2532 SetVector<Instruction *> GatherShuffleSeq; 2533 2534 /// A list of blocks that we are going to CSE. 2535 SetVector<BasicBlock *> CSEBlocks; 2536 2537 /// Contains all scheduling relevant data for an instruction. 2538 /// A ScheduleData either represents a single instruction or a member of an 2539 /// instruction bundle (= a group of instructions which is combined into a 2540 /// vector instruction). 2541 struct ScheduleData { 2542 // The initial value for the dependency counters. It means that the 2543 // dependencies are not calculated yet. 2544 enum { InvalidDeps = -1 }; 2545 2546 ScheduleData() = default; 2547 2548 void init(int BlockSchedulingRegionID, Value *OpVal) { 2549 FirstInBundle = this; 2550 NextInBundle = nullptr; 2551 NextLoadStore = nullptr; 2552 IsScheduled = false; 2553 SchedulingRegionID = BlockSchedulingRegionID; 2554 clearDependencies(); 2555 OpValue = OpVal; 2556 TE = nullptr; 2557 } 2558 2559 /// Verify basic self consistency properties 2560 void verify() { 2561 if (hasValidDependencies()) { 2562 assert(UnscheduledDeps <= Dependencies && "invariant"); 2563 } else { 2564 assert(UnscheduledDeps == Dependencies && "invariant"); 2565 } 2566 2567 if (IsScheduled) { 2568 assert(isSchedulingEntity() && 2569 "unexpected scheduled state"); 2570 for (const ScheduleData *BundleMember = this; BundleMember; 2571 BundleMember = BundleMember->NextInBundle) { 2572 assert(BundleMember->hasValidDependencies() && 2573 BundleMember->UnscheduledDeps == 0 && 2574 "unexpected scheduled state"); 2575 assert((BundleMember == this || !BundleMember->IsScheduled) && 2576 "only bundle is marked scheduled"); 2577 } 2578 } 2579 2580 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2581 "all bundle members must be in same basic block"); 2582 } 2583 2584 /// Returns true if the dependency information has been calculated. 2585 /// Note that depenendency validity can vary between instructions within 2586 /// a single bundle. 2587 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2588 2589 /// Returns true for single instructions and for bundle representatives 2590 /// (= the head of a bundle). 2591 bool isSchedulingEntity() const { return FirstInBundle == this; } 2592 2593 /// Returns true if it represents an instruction bundle and not only a 2594 /// single instruction. 2595 bool isPartOfBundle() const { 2596 return NextInBundle != nullptr || FirstInBundle != this || TE; 2597 } 2598 2599 /// Returns true if it is ready for scheduling, i.e. it has no more 2600 /// unscheduled depending instructions/bundles. 2601 bool isReady() const { 2602 assert(isSchedulingEntity() && 2603 "can't consider non-scheduling entity for ready list"); 2604 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2605 } 2606 2607 /// Modifies the number of unscheduled dependencies for this instruction, 2608 /// and returns the number of remaining dependencies for the containing 2609 /// bundle. 2610 int incrementUnscheduledDeps(int Incr) { 2611 assert(hasValidDependencies() && 2612 "increment of unscheduled deps would be meaningless"); 2613 UnscheduledDeps += Incr; 2614 return FirstInBundle->unscheduledDepsInBundle(); 2615 } 2616 2617 /// Sets the number of unscheduled dependencies to the number of 2618 /// dependencies. 2619 void resetUnscheduledDeps() { 2620 UnscheduledDeps = Dependencies; 2621 } 2622 2623 /// Clears all dependency information. 2624 void clearDependencies() { 2625 Dependencies = InvalidDeps; 2626 resetUnscheduledDeps(); 2627 MemoryDependencies.clear(); 2628 } 2629 2630 int unscheduledDepsInBundle() const { 2631 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2632 int Sum = 0; 2633 for (const ScheduleData *BundleMember = this; BundleMember; 2634 BundleMember = BundleMember->NextInBundle) { 2635 if (BundleMember->UnscheduledDeps == InvalidDeps) 2636 return InvalidDeps; 2637 Sum += BundleMember->UnscheduledDeps; 2638 } 2639 return Sum; 2640 } 2641 2642 void dump(raw_ostream &os) const { 2643 if (!isSchedulingEntity()) { 2644 os << "/ " << *Inst; 2645 } else if (NextInBundle) { 2646 os << '[' << *Inst; 2647 ScheduleData *SD = NextInBundle; 2648 while (SD) { 2649 os << ';' << *SD->Inst; 2650 SD = SD->NextInBundle; 2651 } 2652 os << ']'; 2653 } else { 2654 os << *Inst; 2655 } 2656 } 2657 2658 Instruction *Inst = nullptr; 2659 2660 /// Opcode of the current instruction in the schedule data. 2661 Value *OpValue = nullptr; 2662 2663 /// The TreeEntry that this instruction corresponds to. 2664 TreeEntry *TE = nullptr; 2665 2666 /// Points to the head in an instruction bundle (and always to this for 2667 /// single instructions). 2668 ScheduleData *FirstInBundle = nullptr; 2669 2670 /// Single linked list of all instructions in a bundle. Null if it is a 2671 /// single instruction. 2672 ScheduleData *NextInBundle = nullptr; 2673 2674 /// Single linked list of all memory instructions (e.g. load, store, call) 2675 /// in the block - until the end of the scheduling region. 2676 ScheduleData *NextLoadStore = nullptr; 2677 2678 /// The dependent memory instructions. 2679 /// This list is derived on demand in calculateDependencies(). 2680 SmallVector<ScheduleData *, 4> MemoryDependencies; 2681 2682 /// This ScheduleData is in the current scheduling region if this matches 2683 /// the current SchedulingRegionID of BlockScheduling. 2684 int SchedulingRegionID = 0; 2685 2686 /// Used for getting a "good" final ordering of instructions. 2687 int SchedulingPriority = 0; 2688 2689 /// The number of dependencies. Constitutes of the number of users of the 2690 /// instruction plus the number of dependent memory instructions (if any). 2691 /// This value is calculated on demand. 2692 /// If InvalidDeps, the number of dependencies is not calculated yet. 2693 int Dependencies = InvalidDeps; 2694 2695 /// The number of dependencies minus the number of dependencies of scheduled 2696 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2697 /// for scheduling. 2698 /// Note that this is negative as long as Dependencies is not calculated. 2699 int UnscheduledDeps = InvalidDeps; 2700 2701 /// True if this instruction is scheduled (or considered as scheduled in the 2702 /// dry-run). 2703 bool IsScheduled = false; 2704 }; 2705 2706 #ifndef NDEBUG 2707 friend inline raw_ostream &operator<<(raw_ostream &os, 2708 const BoUpSLP::ScheduleData &SD) { 2709 SD.dump(os); 2710 return os; 2711 } 2712 #endif 2713 2714 friend struct GraphTraits<BoUpSLP *>; 2715 friend struct DOTGraphTraits<BoUpSLP *>; 2716 2717 /// Contains all scheduling data for a basic block. 2718 /// It does not schedules instructions, which are not memory read/write 2719 /// instructions and their operands are either constants, or arguments, or 2720 /// phis, or instructions from others blocks, or their users are phis or from 2721 /// the other blocks. The resulting vector instructions can be placed at the 2722 /// beginning of the basic block without scheduling (if operands does not need 2723 /// to be scheduled) or at the end of the block (if users are outside of the 2724 /// block). It allows to save some compile time and memory used by the 2725 /// compiler. 2726 /// ScheduleData is assigned for each instruction in between the boundaries of 2727 /// the tree entry, even for those, which are not part of the graph. It is 2728 /// required to correctly follow the dependencies between the instructions and 2729 /// their correct scheduling. The ScheduleData is not allocated for the 2730 /// instructions, which do not require scheduling, like phis, nodes with 2731 /// extractelements/insertelements only or nodes with instructions, with 2732 /// uses/operands outside of the block. 2733 struct BlockScheduling { 2734 BlockScheduling(BasicBlock *BB) 2735 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2736 2737 void clear() { 2738 ReadyInsts.clear(); 2739 ScheduleStart = nullptr; 2740 ScheduleEnd = nullptr; 2741 FirstLoadStoreInRegion = nullptr; 2742 LastLoadStoreInRegion = nullptr; 2743 2744 // Reduce the maximum schedule region size by the size of the 2745 // previous scheduling run. 2746 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2747 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2748 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2749 ScheduleRegionSize = 0; 2750 2751 // Make a new scheduling region, i.e. all existing ScheduleData is not 2752 // in the new region yet. 2753 ++SchedulingRegionID; 2754 } 2755 2756 ScheduleData *getScheduleData(Instruction *I) { 2757 if (BB != I->getParent()) 2758 // Avoid lookup if can't possibly be in map. 2759 return nullptr; 2760 ScheduleData *SD = ScheduleDataMap.lookup(I); 2761 if (SD && isInSchedulingRegion(SD)) 2762 return SD; 2763 return nullptr; 2764 } 2765 2766 ScheduleData *getScheduleData(Value *V) { 2767 if (auto *I = dyn_cast<Instruction>(V)) 2768 return getScheduleData(I); 2769 return nullptr; 2770 } 2771 2772 ScheduleData *getScheduleData(Value *V, Value *Key) { 2773 if (V == Key) 2774 return getScheduleData(V); 2775 auto I = ExtraScheduleDataMap.find(V); 2776 if (I != ExtraScheduleDataMap.end()) { 2777 ScheduleData *SD = I->second.lookup(Key); 2778 if (SD && isInSchedulingRegion(SD)) 2779 return SD; 2780 } 2781 return nullptr; 2782 } 2783 2784 bool isInSchedulingRegion(ScheduleData *SD) const { 2785 return SD->SchedulingRegionID == SchedulingRegionID; 2786 } 2787 2788 /// Marks an instruction as scheduled and puts all dependent ready 2789 /// instructions into the ready-list. 2790 template <typename ReadyListType> 2791 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2792 SD->IsScheduled = true; 2793 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2794 2795 for (ScheduleData *BundleMember = SD; BundleMember; 2796 BundleMember = BundleMember->NextInBundle) { 2797 if (BundleMember->Inst != BundleMember->OpValue) 2798 continue; 2799 2800 // Handle the def-use chain dependencies. 2801 2802 // Decrement the unscheduled counter and insert to ready list if ready. 2803 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2804 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2805 if (OpDef && OpDef->hasValidDependencies() && 2806 OpDef->incrementUnscheduledDeps(-1) == 0) { 2807 // There are no more unscheduled dependencies after 2808 // decrementing, so we can put the dependent instruction 2809 // into the ready list. 2810 ScheduleData *DepBundle = OpDef->FirstInBundle; 2811 assert(!DepBundle->IsScheduled && 2812 "already scheduled bundle gets ready"); 2813 ReadyList.insert(DepBundle); 2814 LLVM_DEBUG(dbgs() 2815 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2816 } 2817 }); 2818 }; 2819 2820 // If BundleMember is a vector bundle, its operands may have been 2821 // reordered during buildTree(). We therefore need to get its operands 2822 // through the TreeEntry. 2823 if (TreeEntry *TE = BundleMember->TE) { 2824 // Need to search for the lane since the tree entry can be reordered. 2825 int Lane = std::distance(TE->Scalars.begin(), 2826 find(TE->Scalars, BundleMember->Inst)); 2827 assert(Lane >= 0 && "Lane not set"); 2828 2829 // Since vectorization tree is being built recursively this assertion 2830 // ensures that the tree entry has all operands set before reaching 2831 // this code. Couple of exceptions known at the moment are extracts 2832 // where their second (immediate) operand is not added. Since 2833 // immediates do not affect scheduler behavior this is considered 2834 // okay. 2835 auto *In = BundleMember->Inst; 2836 assert(In && 2837 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2838 In->getNumOperands() == TE->getNumOperands()) && 2839 "Missed TreeEntry operands?"); 2840 (void)In; // fake use to avoid build failure when assertions disabled 2841 2842 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2843 OpIdx != NumOperands; ++OpIdx) 2844 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2845 DecrUnsched(I); 2846 } else { 2847 // If BundleMember is a stand-alone instruction, no operand reordering 2848 // has taken place, so we directly access its operands. 2849 for (Use &U : BundleMember->Inst->operands()) 2850 if (auto *I = dyn_cast<Instruction>(U.get())) 2851 DecrUnsched(I); 2852 } 2853 // Handle the memory dependencies. 2854 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2855 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2856 // There are no more unscheduled dependencies after decrementing, 2857 // so we can put the dependent instruction into the ready list. 2858 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2859 assert(!DepBundle->IsScheduled && 2860 "already scheduled bundle gets ready"); 2861 ReadyList.insert(DepBundle); 2862 LLVM_DEBUG(dbgs() 2863 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2864 } 2865 } 2866 } 2867 } 2868 2869 /// Verify basic self consistency properties of the data structure. 2870 void verify() { 2871 if (!ScheduleStart) 2872 return; 2873 2874 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2875 ScheduleStart->comesBefore(ScheduleEnd) && 2876 "Not a valid scheduling region?"); 2877 2878 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2879 auto *SD = getScheduleData(I); 2880 if (!SD) 2881 continue; 2882 assert(isInSchedulingRegion(SD) && 2883 "primary schedule data not in window?"); 2884 assert(isInSchedulingRegion(SD->FirstInBundle) && 2885 "entire bundle in window!"); 2886 (void)SD; 2887 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2888 } 2889 2890 for (auto *SD : ReadyInsts) { 2891 assert(SD->isSchedulingEntity() && SD->isReady() && 2892 "item in ready list not ready?"); 2893 (void)SD; 2894 } 2895 } 2896 2897 void doForAllOpcodes(Value *V, 2898 function_ref<void(ScheduleData *SD)> Action) { 2899 if (ScheduleData *SD = getScheduleData(V)) 2900 Action(SD); 2901 auto I = ExtraScheduleDataMap.find(V); 2902 if (I != ExtraScheduleDataMap.end()) 2903 for (auto &P : I->second) 2904 if (isInSchedulingRegion(P.second)) 2905 Action(P.second); 2906 } 2907 2908 /// Put all instructions into the ReadyList which are ready for scheduling. 2909 template <typename ReadyListType> 2910 void initialFillReadyList(ReadyListType &ReadyList) { 2911 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2912 doForAllOpcodes(I, [&](ScheduleData *SD) { 2913 if (SD->isSchedulingEntity() && SD->isReady()) { 2914 ReadyList.insert(SD); 2915 LLVM_DEBUG(dbgs() 2916 << "SLP: initially in ready list: " << *SD << "\n"); 2917 } 2918 }); 2919 } 2920 } 2921 2922 /// Build a bundle from the ScheduleData nodes corresponding to the 2923 /// scalar instruction for each lane. 2924 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2925 2926 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2927 /// cyclic dependencies. This is only a dry-run, no instructions are 2928 /// actually moved at this stage. 2929 /// \returns the scheduling bundle. The returned Optional value is non-None 2930 /// if \p VL is allowed to be scheduled. 2931 Optional<ScheduleData *> 2932 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2933 const InstructionsState &S); 2934 2935 /// Un-bundles a group of instructions. 2936 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2937 2938 /// Allocates schedule data chunk. 2939 ScheduleData *allocateScheduleDataChunks(); 2940 2941 /// Extends the scheduling region so that V is inside the region. 2942 /// \returns true if the region size is within the limit. 2943 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2944 2945 /// Initialize the ScheduleData structures for new instructions in the 2946 /// scheduling region. 2947 void initScheduleData(Instruction *FromI, Instruction *ToI, 2948 ScheduleData *PrevLoadStore, 2949 ScheduleData *NextLoadStore); 2950 2951 /// Updates the dependency information of a bundle and of all instructions/ 2952 /// bundles which depend on the original bundle. Note that only 2953 /// def-use and memory dependencies are explicitly modeled. We do not 2954 /// track control dependencies (e.g. a potentially faulting load following 2955 /// a potentially infinte looping readnone call), and as such the resulting 2956 /// graph is a subgraph of the full dependency graph. 2957 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2958 BoUpSLP *SLP); 2959 2960 /// Sets all instruction in the scheduling region to un-scheduled. 2961 void resetSchedule(); 2962 2963 BasicBlock *BB; 2964 2965 /// Simple memory allocation for ScheduleData. 2966 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2967 2968 /// The size of a ScheduleData array in ScheduleDataChunks. 2969 int ChunkSize; 2970 2971 /// The allocator position in the current chunk, which is the last entry 2972 /// of ScheduleDataChunks. 2973 int ChunkPos; 2974 2975 /// Attaches ScheduleData to Instruction. 2976 /// Note that the mapping survives during all vectorization iterations, i.e. 2977 /// ScheduleData structures are recycled. 2978 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2979 2980 /// Attaches ScheduleData to Instruction with the leading key. 2981 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2982 ExtraScheduleDataMap; 2983 2984 /// The ready-list for scheduling (only used for the dry-run). 2985 SetVector<ScheduleData *> ReadyInsts; 2986 2987 /// The first instruction of the scheduling region. 2988 Instruction *ScheduleStart = nullptr; 2989 2990 /// The first instruction _after_ the scheduling region. 2991 Instruction *ScheduleEnd = nullptr; 2992 2993 /// The first memory accessing instruction in the scheduling region 2994 /// (can be null). 2995 ScheduleData *FirstLoadStoreInRegion = nullptr; 2996 2997 /// The last memory accessing instruction in the scheduling region 2998 /// (can be null). 2999 ScheduleData *LastLoadStoreInRegion = nullptr; 3000 3001 /// The current size of the scheduling region. 3002 int ScheduleRegionSize = 0; 3003 3004 /// The maximum size allowed for the scheduling region. 3005 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3006 3007 /// The ID of the scheduling region. For a new vectorization iteration this 3008 /// is incremented which "removes" all ScheduleData from the region. 3009 /// Make sure that the initial SchedulingRegionID is greater than the 3010 /// initial SchedulingRegionID in ScheduleData (which is 0). 3011 int SchedulingRegionID = 1; 3012 }; 3013 3014 /// Attaches the BlockScheduling structures to basic blocks. 3015 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3016 3017 /// Performs the "real" scheduling. Done before vectorization is actually 3018 /// performed in a basic block. 3019 void scheduleBlock(BlockScheduling *BS); 3020 3021 /// List of users to ignore during scheduling and that don't need extracting. 3022 ArrayRef<Value *> UserIgnoreList; 3023 3024 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3025 /// sorted SmallVectors of unsigned. 3026 struct OrdersTypeDenseMapInfo { 3027 static OrdersType getEmptyKey() { 3028 OrdersType V; 3029 V.push_back(~1U); 3030 return V; 3031 } 3032 3033 static OrdersType getTombstoneKey() { 3034 OrdersType V; 3035 V.push_back(~2U); 3036 return V; 3037 } 3038 3039 static unsigned getHashValue(const OrdersType &V) { 3040 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3041 } 3042 3043 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3044 return LHS == RHS; 3045 } 3046 }; 3047 3048 // Analysis and block reference. 3049 Function *F; 3050 ScalarEvolution *SE; 3051 TargetTransformInfo *TTI; 3052 TargetLibraryInfo *TLI; 3053 LoopInfo *LI; 3054 DominatorTree *DT; 3055 AssumptionCache *AC; 3056 DemandedBits *DB; 3057 const DataLayout *DL; 3058 OptimizationRemarkEmitter *ORE; 3059 3060 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3061 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3062 3063 /// Instruction builder to construct the vectorized tree. 3064 IRBuilder<> Builder; 3065 3066 /// A map of scalar integer values to the smallest bit width with which they 3067 /// can legally be represented. The values map to (width, signed) pairs, 3068 /// where "width" indicates the minimum bit width and "signed" is True if the 3069 /// value must be signed-extended, rather than zero-extended, back to its 3070 /// original width. 3071 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3072 }; 3073 3074 } // end namespace slpvectorizer 3075 3076 template <> struct GraphTraits<BoUpSLP *> { 3077 using TreeEntry = BoUpSLP::TreeEntry; 3078 3079 /// NodeRef has to be a pointer per the GraphWriter. 3080 using NodeRef = TreeEntry *; 3081 3082 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3083 3084 /// Add the VectorizableTree to the index iterator to be able to return 3085 /// TreeEntry pointers. 3086 struct ChildIteratorType 3087 : public iterator_adaptor_base< 3088 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3089 ContainerTy &VectorizableTree; 3090 3091 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3092 ContainerTy &VT) 3093 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3094 3095 NodeRef operator*() { return I->UserTE; } 3096 }; 3097 3098 static NodeRef getEntryNode(BoUpSLP &R) { 3099 return R.VectorizableTree[0].get(); 3100 } 3101 3102 static ChildIteratorType child_begin(NodeRef N) { 3103 return {N->UserTreeIndices.begin(), N->Container}; 3104 } 3105 3106 static ChildIteratorType child_end(NodeRef N) { 3107 return {N->UserTreeIndices.end(), N->Container}; 3108 } 3109 3110 /// For the node iterator we just need to turn the TreeEntry iterator into a 3111 /// TreeEntry* iterator so that it dereferences to NodeRef. 3112 class nodes_iterator { 3113 using ItTy = ContainerTy::iterator; 3114 ItTy It; 3115 3116 public: 3117 nodes_iterator(const ItTy &It2) : It(It2) {} 3118 NodeRef operator*() { return It->get(); } 3119 nodes_iterator operator++() { 3120 ++It; 3121 return *this; 3122 } 3123 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3124 }; 3125 3126 static nodes_iterator nodes_begin(BoUpSLP *R) { 3127 return nodes_iterator(R->VectorizableTree.begin()); 3128 } 3129 3130 static nodes_iterator nodes_end(BoUpSLP *R) { 3131 return nodes_iterator(R->VectorizableTree.end()); 3132 } 3133 3134 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3135 }; 3136 3137 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3138 using TreeEntry = BoUpSLP::TreeEntry; 3139 3140 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3141 3142 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3143 std::string Str; 3144 raw_string_ostream OS(Str); 3145 if (isSplat(Entry->Scalars)) 3146 OS << "<splat> "; 3147 for (auto V : Entry->Scalars) { 3148 OS << *V; 3149 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3150 return EU.Scalar == V; 3151 })) 3152 OS << " <extract>"; 3153 OS << "\n"; 3154 } 3155 return Str; 3156 } 3157 3158 static std::string getNodeAttributes(const TreeEntry *Entry, 3159 const BoUpSLP *) { 3160 if (Entry->State == TreeEntry::NeedToGather) 3161 return "color=red"; 3162 return ""; 3163 } 3164 }; 3165 3166 } // end namespace llvm 3167 3168 BoUpSLP::~BoUpSLP() { 3169 for (const auto &Pair : DeletedInstructions) { 3170 // Replace operands of ignored instructions with Undefs in case if they were 3171 // marked for deletion. 3172 if (Pair.getSecond()) { 3173 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3174 Pair.getFirst()->replaceAllUsesWith(Undef); 3175 } 3176 Pair.getFirst()->dropAllReferences(); 3177 } 3178 for (const auto &Pair : DeletedInstructions) { 3179 assert(Pair.getFirst()->use_empty() && 3180 "trying to erase instruction with users."); 3181 Pair.getFirst()->eraseFromParent(); 3182 } 3183 #ifdef EXPENSIVE_CHECKS 3184 // If we could guarantee that this call is not extremely slow, we could 3185 // remove the ifdef limitation (see PR47712). 3186 assert(!verifyFunction(*F, &dbgs())); 3187 #endif 3188 } 3189 3190 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3191 for (auto *V : AV) { 3192 if (auto *I = dyn_cast<Instruction>(V)) 3193 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3194 }; 3195 } 3196 3197 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3198 /// contains original mask for the scalars reused in the node. Procedure 3199 /// transform this mask in accordance with the given \p Mask. 3200 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3201 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3202 "Expected non-empty mask."); 3203 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3204 Prev.swap(Reuses); 3205 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3206 if (Mask[I] != UndefMaskElem) 3207 Reuses[Mask[I]] = Prev[I]; 3208 } 3209 3210 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3211 /// the original order of the scalars. Procedure transforms the provided order 3212 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3213 /// identity order, \p Order is cleared. 3214 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3215 assert(!Mask.empty() && "Expected non-empty mask."); 3216 SmallVector<int> MaskOrder; 3217 if (Order.empty()) { 3218 MaskOrder.resize(Mask.size()); 3219 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3220 } else { 3221 inversePermutation(Order, MaskOrder); 3222 } 3223 reorderReuses(MaskOrder, Mask); 3224 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3225 Order.clear(); 3226 return; 3227 } 3228 Order.assign(Mask.size(), Mask.size()); 3229 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3230 if (MaskOrder[I] != UndefMaskElem) 3231 Order[MaskOrder[I]] = I; 3232 fixupOrderingIndices(Order); 3233 } 3234 3235 Optional<BoUpSLP::OrdersType> 3236 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3237 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3238 unsigned NumScalars = TE.Scalars.size(); 3239 OrdersType CurrentOrder(NumScalars, NumScalars); 3240 SmallVector<int> Positions; 3241 SmallBitVector UsedPositions(NumScalars); 3242 const TreeEntry *STE = nullptr; 3243 // Try to find all gathered scalars that are gets vectorized in other 3244 // vectorize node. Here we can have only one single tree vector node to 3245 // correctly identify order of the gathered scalars. 3246 for (unsigned I = 0; I < NumScalars; ++I) { 3247 Value *V = TE.Scalars[I]; 3248 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3249 continue; 3250 if (const auto *LocalSTE = getTreeEntry(V)) { 3251 if (!STE) 3252 STE = LocalSTE; 3253 else if (STE != LocalSTE) 3254 // Take the order only from the single vector node. 3255 return None; 3256 unsigned Lane = 3257 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3258 if (Lane >= NumScalars) 3259 return None; 3260 if (CurrentOrder[Lane] != NumScalars) { 3261 if (Lane != I) 3262 continue; 3263 UsedPositions.reset(CurrentOrder[Lane]); 3264 } 3265 // The partial identity (where only some elements of the gather node are 3266 // in the identity order) is good. 3267 CurrentOrder[Lane] = I; 3268 UsedPositions.set(I); 3269 } 3270 } 3271 // Need to keep the order if we have a vector entry and at least 2 scalars or 3272 // the vectorized entry has just 2 scalars. 3273 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3274 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3275 for (unsigned I = 0; I < NumScalars; ++I) 3276 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3277 return false; 3278 return true; 3279 }; 3280 if (IsIdentityOrder(CurrentOrder)) { 3281 CurrentOrder.clear(); 3282 return CurrentOrder; 3283 } 3284 auto *It = CurrentOrder.begin(); 3285 for (unsigned I = 0; I < NumScalars;) { 3286 if (UsedPositions.test(I)) { 3287 ++I; 3288 continue; 3289 } 3290 if (*It == NumScalars) { 3291 *It = I; 3292 ++I; 3293 } 3294 ++It; 3295 } 3296 return CurrentOrder; 3297 } 3298 return None; 3299 } 3300 3301 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3302 bool TopToBottom) { 3303 // No need to reorder if need to shuffle reuses, still need to shuffle the 3304 // node. 3305 if (!TE.ReuseShuffleIndices.empty()) 3306 return None; 3307 if (TE.State == TreeEntry::Vectorize && 3308 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3309 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3310 !TE.isAltShuffle()) 3311 return TE.ReorderIndices; 3312 if (TE.State == TreeEntry::NeedToGather) { 3313 // TODO: add analysis of other gather nodes with extractelement 3314 // instructions and other values/instructions, not only undefs. 3315 if (((TE.getOpcode() == Instruction::ExtractElement && 3316 !TE.isAltShuffle()) || 3317 (all_of(TE.Scalars, 3318 [](Value *V) { 3319 return isa<UndefValue, ExtractElementInst>(V); 3320 }) && 3321 any_of(TE.Scalars, 3322 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3323 all_of(TE.Scalars, 3324 [](Value *V) { 3325 auto *EE = dyn_cast<ExtractElementInst>(V); 3326 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3327 }) && 3328 allSameType(TE.Scalars)) { 3329 // Check that gather of extractelements can be represented as 3330 // just a shuffle of a single vector. 3331 OrdersType CurrentOrder; 3332 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3333 if (Reuse || !CurrentOrder.empty()) { 3334 if (!CurrentOrder.empty()) 3335 fixupOrderingIndices(CurrentOrder); 3336 return CurrentOrder; 3337 } 3338 } 3339 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3340 return CurrentOrder; 3341 } 3342 return None; 3343 } 3344 3345 void BoUpSLP::reorderTopToBottom() { 3346 // Maps VF to the graph nodes. 3347 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3348 // ExtractElement gather nodes which can be vectorized and need to handle 3349 // their ordering. 3350 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3351 // Find all reorderable nodes with the given VF. 3352 // Currently the are vectorized stores,loads,extracts + some gathering of 3353 // extracts. 3354 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3355 const std::unique_ptr<TreeEntry> &TE) { 3356 if (Optional<OrdersType> CurrentOrder = 3357 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3358 // Do not include ordering for nodes used in the alt opcode vectorization, 3359 // better to reorder them during bottom-to-top stage. If follow the order 3360 // here, it causes reordering of the whole graph though actually it is 3361 // profitable just to reorder the subgraph that starts from the alternate 3362 // opcode vectorization node. Such nodes already end-up with the shuffle 3363 // instruction and it is just enough to change this shuffle rather than 3364 // rotate the scalars for the whole graph. 3365 unsigned Cnt = 0; 3366 const TreeEntry *UserTE = TE.get(); 3367 while (UserTE && Cnt < RecursionMaxDepth) { 3368 if (UserTE->UserTreeIndices.size() != 1) 3369 break; 3370 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3371 return EI.UserTE->State == TreeEntry::Vectorize && 3372 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3373 })) 3374 return; 3375 if (UserTE->UserTreeIndices.empty()) 3376 UserTE = nullptr; 3377 else 3378 UserTE = UserTE->UserTreeIndices.back().UserTE; 3379 ++Cnt; 3380 } 3381 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3382 if (TE->State != TreeEntry::Vectorize) 3383 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3384 } 3385 }); 3386 3387 // Reorder the graph nodes according to their vectorization factor. 3388 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3389 VF /= 2) { 3390 auto It = VFToOrderedEntries.find(VF); 3391 if (It == VFToOrderedEntries.end()) 3392 continue; 3393 // Try to find the most profitable order. We just are looking for the most 3394 // used order and reorder scalar elements in the nodes according to this 3395 // mostly used order. 3396 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3397 // All operands are reordered and used only in this node - propagate the 3398 // most used order to the user node. 3399 MapVector<OrdersType, unsigned, 3400 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3401 OrdersUses; 3402 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3403 for (const TreeEntry *OpTE : OrderedEntries) { 3404 // No need to reorder this nodes, still need to extend and to use shuffle, 3405 // just need to merge reordering shuffle and the reuse shuffle. 3406 if (!OpTE->ReuseShuffleIndices.empty()) 3407 continue; 3408 // Count number of orders uses. 3409 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3410 if (OpTE->State == TreeEntry::NeedToGather) 3411 return GathersToOrders.find(OpTE)->second; 3412 return OpTE->ReorderIndices; 3413 }(); 3414 // Stores actually store the mask, not the order, need to invert. 3415 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3416 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3417 SmallVector<int> Mask; 3418 inversePermutation(Order, Mask); 3419 unsigned E = Order.size(); 3420 OrdersType CurrentOrder(E, E); 3421 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3422 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3423 }); 3424 fixupOrderingIndices(CurrentOrder); 3425 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3426 } else { 3427 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3428 } 3429 } 3430 // Set order of the user node. 3431 if (OrdersUses.empty()) 3432 continue; 3433 // Choose the most used order. 3434 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3435 unsigned Cnt = OrdersUses.front().second; 3436 for (const auto &Pair : drop_begin(OrdersUses)) { 3437 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3438 BestOrder = Pair.first; 3439 Cnt = Pair.second; 3440 } 3441 } 3442 // Set order of the user node. 3443 if (BestOrder.empty()) 3444 continue; 3445 SmallVector<int> Mask; 3446 inversePermutation(BestOrder, Mask); 3447 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3448 unsigned E = BestOrder.size(); 3449 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3450 return I < E ? static_cast<int>(I) : UndefMaskElem; 3451 }); 3452 // Do an actual reordering, if profitable. 3453 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3454 // Just do the reordering for the nodes with the given VF. 3455 if (TE->Scalars.size() != VF) { 3456 if (TE->ReuseShuffleIndices.size() == VF) { 3457 // Need to reorder the reuses masks of the operands with smaller VF to 3458 // be able to find the match between the graph nodes and scalar 3459 // operands of the given node during vectorization/cost estimation. 3460 assert(all_of(TE->UserTreeIndices, 3461 [VF, &TE](const EdgeInfo &EI) { 3462 return EI.UserTE->Scalars.size() == VF || 3463 EI.UserTE->Scalars.size() == 3464 TE->Scalars.size(); 3465 }) && 3466 "All users must be of VF size."); 3467 // Update ordering of the operands with the smaller VF than the given 3468 // one. 3469 reorderReuses(TE->ReuseShuffleIndices, Mask); 3470 } 3471 continue; 3472 } 3473 if (TE->State == TreeEntry::Vectorize && 3474 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3475 InsertElementInst>(TE->getMainOp()) && 3476 !TE->isAltShuffle()) { 3477 // Build correct orders for extract{element,value}, loads and 3478 // stores. 3479 reorderOrder(TE->ReorderIndices, Mask); 3480 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3481 TE->reorderOperands(Mask); 3482 } else { 3483 // Reorder the node and its operands. 3484 TE->reorderOperands(Mask); 3485 assert(TE->ReorderIndices.empty() && 3486 "Expected empty reorder sequence."); 3487 reorderScalars(TE->Scalars, Mask); 3488 } 3489 if (!TE->ReuseShuffleIndices.empty()) { 3490 // Apply reversed order to keep the original ordering of the reused 3491 // elements to avoid extra reorder indices shuffling. 3492 OrdersType CurrentOrder; 3493 reorderOrder(CurrentOrder, MaskOrder); 3494 SmallVector<int> NewReuses; 3495 inversePermutation(CurrentOrder, NewReuses); 3496 addMask(NewReuses, TE->ReuseShuffleIndices); 3497 TE->ReuseShuffleIndices.swap(NewReuses); 3498 } 3499 } 3500 } 3501 } 3502 3503 bool BoUpSLP::canReorderOperands( 3504 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3505 ArrayRef<TreeEntry *> ReorderableGathers, 3506 SmallVectorImpl<TreeEntry *> &GatherOps) { 3507 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3508 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3509 return OpData.first == I && 3510 OpData.second->State == TreeEntry::Vectorize; 3511 })) 3512 continue; 3513 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3514 // Do not reorder if operand node is used by many user nodes. 3515 if (any_of(TE->UserTreeIndices, 3516 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3517 return false; 3518 // Add the node to the list of the ordered nodes with the identity 3519 // order. 3520 Edges.emplace_back(I, TE); 3521 continue; 3522 } 3523 ArrayRef<Value *> VL = UserTE->getOperand(I); 3524 TreeEntry *Gather = nullptr; 3525 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3526 assert(TE->State != TreeEntry::Vectorize && 3527 "Only non-vectorized nodes are expected."); 3528 if (TE->isSame(VL)) { 3529 Gather = TE; 3530 return true; 3531 } 3532 return false; 3533 }) > 1) 3534 return false; 3535 if (Gather) 3536 GatherOps.push_back(Gather); 3537 } 3538 return true; 3539 } 3540 3541 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3542 SetVector<TreeEntry *> OrderedEntries; 3543 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3544 // Find all reorderable leaf nodes with the given VF. 3545 // Currently the are vectorized loads,extracts without alternate operands + 3546 // some gathering of extracts. 3547 SmallVector<TreeEntry *> NonVectorized; 3548 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3549 &NonVectorized]( 3550 const std::unique_ptr<TreeEntry> &TE) { 3551 if (TE->State != TreeEntry::Vectorize) 3552 NonVectorized.push_back(TE.get()); 3553 if (Optional<OrdersType> CurrentOrder = 3554 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3555 OrderedEntries.insert(TE.get()); 3556 if (TE->State != TreeEntry::Vectorize) 3557 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3558 } 3559 }); 3560 3561 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3562 // I.e., if the node has operands, that are reordered, try to make at least 3563 // one operand order in the natural order and reorder others + reorder the 3564 // user node itself. 3565 SmallPtrSet<const TreeEntry *, 4> Visited; 3566 while (!OrderedEntries.empty()) { 3567 // 1. Filter out only reordered nodes. 3568 // 2. If the entry has multiple uses - skip it and jump to the next node. 3569 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3570 SmallVector<TreeEntry *> Filtered; 3571 for (TreeEntry *TE : OrderedEntries) { 3572 if (!(TE->State == TreeEntry::Vectorize || 3573 (TE->State == TreeEntry::NeedToGather && 3574 GathersToOrders.count(TE))) || 3575 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3576 !all_of(drop_begin(TE->UserTreeIndices), 3577 [TE](const EdgeInfo &EI) { 3578 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3579 }) || 3580 !Visited.insert(TE).second) { 3581 Filtered.push_back(TE); 3582 continue; 3583 } 3584 // Build a map between user nodes and their operands order to speedup 3585 // search. The graph currently does not provide this dependency directly. 3586 for (EdgeInfo &EI : TE->UserTreeIndices) { 3587 TreeEntry *UserTE = EI.UserTE; 3588 auto It = Users.find(UserTE); 3589 if (It == Users.end()) 3590 It = Users.insert({UserTE, {}}).first; 3591 It->second.emplace_back(EI.EdgeIdx, TE); 3592 } 3593 } 3594 // Erase filtered entries. 3595 for_each(Filtered, 3596 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3597 for (auto &Data : Users) { 3598 // Check that operands are used only in the User node. 3599 SmallVector<TreeEntry *> GatherOps; 3600 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3601 GatherOps)) { 3602 for_each(Data.second, 3603 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3604 OrderedEntries.remove(Op.second); 3605 }); 3606 continue; 3607 } 3608 // All operands are reordered and used only in this node - propagate the 3609 // most used order to the user node. 3610 MapVector<OrdersType, unsigned, 3611 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3612 OrdersUses; 3613 // Do the analysis for each tree entry only once, otherwise the order of 3614 // the same node my be considered several times, though might be not 3615 // profitable. 3616 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3617 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3618 for (const auto &Op : Data.second) { 3619 TreeEntry *OpTE = Op.second; 3620 if (!VisitedOps.insert(OpTE).second) 3621 continue; 3622 if (!OpTE->ReuseShuffleIndices.empty() || 3623 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3624 continue; 3625 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3626 if (OpTE->State == TreeEntry::NeedToGather) 3627 return GathersToOrders.find(OpTE)->second; 3628 return OpTE->ReorderIndices; 3629 }(); 3630 unsigned NumOps = count_if( 3631 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3632 return P.second == OpTE; 3633 }); 3634 // Stores actually store the mask, not the order, need to invert. 3635 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3636 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3637 SmallVector<int> Mask; 3638 inversePermutation(Order, Mask); 3639 unsigned E = Order.size(); 3640 OrdersType CurrentOrder(E, E); 3641 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3642 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3643 }); 3644 fixupOrderingIndices(CurrentOrder); 3645 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3646 NumOps; 3647 } else { 3648 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3649 } 3650 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3651 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3652 const TreeEntry *TE) { 3653 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3654 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3655 (IgnoreReorder && TE->Idx == 0)) 3656 return true; 3657 if (TE->State == TreeEntry::NeedToGather) { 3658 auto It = GathersToOrders.find(TE); 3659 if (It != GathersToOrders.end()) 3660 return !It->second.empty(); 3661 return true; 3662 } 3663 return false; 3664 }; 3665 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3666 TreeEntry *UserTE = EI.UserTE; 3667 if (!VisitedUsers.insert(UserTE).second) 3668 continue; 3669 // May reorder user node if it requires reordering, has reused 3670 // scalars, is an alternate op vectorize node or its op nodes require 3671 // reordering. 3672 if (AllowsReordering(UserTE)) 3673 continue; 3674 // Check if users allow reordering. 3675 // Currently look up just 1 level of operands to avoid increase of 3676 // the compile time. 3677 // Profitable to reorder if definitely more operands allow 3678 // reordering rather than those with natural order. 3679 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3680 if (static_cast<unsigned>(count_if( 3681 Ops, [UserTE, &AllowsReordering]( 3682 const std::pair<unsigned, TreeEntry *> &Op) { 3683 return AllowsReordering(Op.second) && 3684 all_of(Op.second->UserTreeIndices, 3685 [UserTE](const EdgeInfo &EI) { 3686 return EI.UserTE == UserTE; 3687 }); 3688 })) <= Ops.size() / 2) 3689 ++Res.first->second; 3690 } 3691 } 3692 // If no orders - skip current nodes and jump to the next one, if any. 3693 if (OrdersUses.empty()) { 3694 for_each(Data.second, 3695 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3696 OrderedEntries.remove(Op.second); 3697 }); 3698 continue; 3699 } 3700 // Choose the best order. 3701 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3702 unsigned Cnt = OrdersUses.front().second; 3703 for (const auto &Pair : drop_begin(OrdersUses)) { 3704 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3705 BestOrder = Pair.first; 3706 Cnt = Pair.second; 3707 } 3708 } 3709 // Set order of the user node (reordering of operands and user nodes). 3710 if (BestOrder.empty()) { 3711 for_each(Data.second, 3712 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3713 OrderedEntries.remove(Op.second); 3714 }); 3715 continue; 3716 } 3717 // Erase operands from OrderedEntries list and adjust their orders. 3718 VisitedOps.clear(); 3719 SmallVector<int> Mask; 3720 inversePermutation(BestOrder, Mask); 3721 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3722 unsigned E = BestOrder.size(); 3723 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3724 return I < E ? static_cast<int>(I) : UndefMaskElem; 3725 }); 3726 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3727 TreeEntry *TE = Op.second; 3728 OrderedEntries.remove(TE); 3729 if (!VisitedOps.insert(TE).second) 3730 continue; 3731 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3732 // Just reorder reuses indices. 3733 reorderReuses(TE->ReuseShuffleIndices, Mask); 3734 continue; 3735 } 3736 // Gathers are processed separately. 3737 if (TE->State != TreeEntry::Vectorize) 3738 continue; 3739 assert((BestOrder.size() == TE->ReorderIndices.size() || 3740 TE->ReorderIndices.empty()) && 3741 "Non-matching sizes of user/operand entries."); 3742 reorderOrder(TE->ReorderIndices, Mask); 3743 } 3744 // For gathers just need to reorder its scalars. 3745 for (TreeEntry *Gather : GatherOps) { 3746 assert(Gather->ReorderIndices.empty() && 3747 "Unexpected reordering of gathers."); 3748 if (!Gather->ReuseShuffleIndices.empty()) { 3749 // Just reorder reuses indices. 3750 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3751 continue; 3752 } 3753 reorderScalars(Gather->Scalars, Mask); 3754 OrderedEntries.remove(Gather); 3755 } 3756 // Reorder operands of the user node and set the ordering for the user 3757 // node itself. 3758 if (Data.first->State != TreeEntry::Vectorize || 3759 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3760 Data.first->getMainOp()) || 3761 Data.first->isAltShuffle()) 3762 Data.first->reorderOperands(Mask); 3763 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3764 Data.first->isAltShuffle()) { 3765 reorderScalars(Data.first->Scalars, Mask); 3766 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3767 if (Data.first->ReuseShuffleIndices.empty() && 3768 !Data.first->ReorderIndices.empty() && 3769 !Data.first->isAltShuffle()) { 3770 // Insert user node to the list to try to sink reordering deeper in 3771 // the graph. 3772 OrderedEntries.insert(Data.first); 3773 } 3774 } else { 3775 reorderOrder(Data.first->ReorderIndices, Mask); 3776 } 3777 } 3778 } 3779 // If the reordering is unnecessary, just remove the reorder. 3780 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3781 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3782 VectorizableTree.front()->ReorderIndices.clear(); 3783 } 3784 3785 void BoUpSLP::buildExternalUses( 3786 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3787 // Collect the values that we need to extract from the tree. 3788 for (auto &TEPtr : VectorizableTree) { 3789 TreeEntry *Entry = TEPtr.get(); 3790 3791 // No need to handle users of gathered values. 3792 if (Entry->State == TreeEntry::NeedToGather) 3793 continue; 3794 3795 // For each lane: 3796 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3797 Value *Scalar = Entry->Scalars[Lane]; 3798 int FoundLane = Entry->findLaneForValue(Scalar); 3799 3800 // Check if the scalar is externally used as an extra arg. 3801 auto ExtI = ExternallyUsedValues.find(Scalar); 3802 if (ExtI != ExternallyUsedValues.end()) { 3803 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3804 << Lane << " from " << *Scalar << ".\n"); 3805 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3806 } 3807 for (User *U : Scalar->users()) { 3808 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3809 3810 Instruction *UserInst = dyn_cast<Instruction>(U); 3811 if (!UserInst) 3812 continue; 3813 3814 if (isDeleted(UserInst)) 3815 continue; 3816 3817 // Skip in-tree scalars that become vectors 3818 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3819 Value *UseScalar = UseEntry->Scalars[0]; 3820 // Some in-tree scalars will remain as scalar in vectorized 3821 // instructions. If that is the case, the one in Lane 0 will 3822 // be used. 3823 if (UseScalar != U || 3824 UseEntry->State == TreeEntry::ScatterVectorize || 3825 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3826 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3827 << ".\n"); 3828 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3829 continue; 3830 } 3831 } 3832 3833 // Ignore users in the user ignore list. 3834 if (is_contained(UserIgnoreList, UserInst)) 3835 continue; 3836 3837 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3838 << Lane << " from " << *Scalar << ".\n"); 3839 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3840 } 3841 } 3842 } 3843 } 3844 3845 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3846 ArrayRef<Value *> UserIgnoreLst) { 3847 deleteTree(); 3848 UserIgnoreList = UserIgnoreLst; 3849 if (!allSameType(Roots)) 3850 return; 3851 buildTree_rec(Roots, 0, EdgeInfo()); 3852 } 3853 3854 namespace { 3855 /// Tracks the state we can represent the loads in the given sequence. 3856 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3857 } // anonymous namespace 3858 3859 /// Checks if the given array of loads can be represented as a vectorized, 3860 /// scatter or just simple gather. 3861 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3862 const TargetTransformInfo &TTI, 3863 const DataLayout &DL, ScalarEvolution &SE, 3864 SmallVectorImpl<unsigned> &Order, 3865 SmallVectorImpl<Value *> &PointerOps) { 3866 // Check that a vectorized load would load the same memory as a scalar 3867 // load. For example, we don't want to vectorize loads that are smaller 3868 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3869 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3870 // from such a struct, we read/write packed bits disagreeing with the 3871 // unvectorized version. 3872 Type *ScalarTy = VL0->getType(); 3873 3874 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3875 return LoadsState::Gather; 3876 3877 // Make sure all loads in the bundle are simple - we can't vectorize 3878 // atomic or volatile loads. 3879 PointerOps.clear(); 3880 PointerOps.resize(VL.size()); 3881 auto *POIter = PointerOps.begin(); 3882 for (Value *V : VL) { 3883 auto *L = cast<LoadInst>(V); 3884 if (!L->isSimple()) 3885 return LoadsState::Gather; 3886 *POIter = L->getPointerOperand(); 3887 ++POIter; 3888 } 3889 3890 Order.clear(); 3891 // Check the order of pointer operands. 3892 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3893 Value *Ptr0; 3894 Value *PtrN; 3895 if (Order.empty()) { 3896 Ptr0 = PointerOps.front(); 3897 PtrN = PointerOps.back(); 3898 } else { 3899 Ptr0 = PointerOps[Order.front()]; 3900 PtrN = PointerOps[Order.back()]; 3901 } 3902 Optional<int> Diff = 3903 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3904 // Check that the sorted loads are consecutive. 3905 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3906 return LoadsState::Vectorize; 3907 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3908 for (Value *V : VL) 3909 CommonAlignment = 3910 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3911 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3912 CommonAlignment)) 3913 return LoadsState::ScatterVectorize; 3914 } 3915 3916 return LoadsState::Gather; 3917 } 3918 3919 /// \return true if the specified list of values has only one instruction that 3920 /// requires scheduling, false otherwise. 3921 #ifndef NDEBUG 3922 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3923 Value *NeedsScheduling = nullptr; 3924 for (Value *V : VL) { 3925 if (doesNotNeedToBeScheduled(V)) 3926 continue; 3927 if (!NeedsScheduling) { 3928 NeedsScheduling = V; 3929 continue; 3930 } 3931 return false; 3932 } 3933 return NeedsScheduling; 3934 } 3935 #endif 3936 3937 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3938 const EdgeInfo &UserTreeIdx) { 3939 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3940 3941 SmallVector<int> ReuseShuffleIndicies; 3942 SmallVector<Value *> UniqueValues; 3943 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3944 &UserTreeIdx, 3945 this](const InstructionsState &S) { 3946 // Check that every instruction appears once in this bundle. 3947 DenseMap<Value *, unsigned> UniquePositions; 3948 for (Value *V : VL) { 3949 if (isConstant(V)) { 3950 ReuseShuffleIndicies.emplace_back( 3951 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3952 UniqueValues.emplace_back(V); 3953 continue; 3954 } 3955 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3956 ReuseShuffleIndicies.emplace_back(Res.first->second); 3957 if (Res.second) 3958 UniqueValues.emplace_back(V); 3959 } 3960 size_t NumUniqueScalarValues = UniqueValues.size(); 3961 if (NumUniqueScalarValues == VL.size()) { 3962 ReuseShuffleIndicies.clear(); 3963 } else { 3964 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3965 if (NumUniqueScalarValues <= 1 || 3966 (UniquePositions.size() == 1 && all_of(UniqueValues, 3967 [](Value *V) { 3968 return isa<UndefValue>(V) || 3969 !isConstant(V); 3970 })) || 3971 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3972 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3973 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3974 return false; 3975 } 3976 VL = UniqueValues; 3977 } 3978 return true; 3979 }; 3980 3981 InstructionsState S = getSameOpcode(VL); 3982 if (Depth == RecursionMaxDepth) { 3983 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3984 if (TryToFindDuplicates(S)) 3985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3986 ReuseShuffleIndicies); 3987 return; 3988 } 3989 3990 // Don't handle scalable vectors 3991 if (S.getOpcode() == Instruction::ExtractElement && 3992 isa<ScalableVectorType>( 3993 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3994 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3995 if (TryToFindDuplicates(S)) 3996 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3997 ReuseShuffleIndicies); 3998 return; 3999 } 4000 4001 // Don't handle vectors. 4002 if (S.OpValue->getType()->isVectorTy() && 4003 !isa<InsertElementInst>(S.OpValue)) { 4004 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4006 return; 4007 } 4008 4009 // Avoid attempting to schedule allocas; there are unmodeled dependencies 4010 // for "static" alloca status and for reordering with stacksave calls. 4011 for (Value *V : VL) { 4012 if (isa<AllocaInst>(V)) { 4013 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 4014 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4015 return; 4016 } 4017 } 4018 4019 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4020 if (SI->getValueOperand()->getType()->isVectorTy()) { 4021 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4022 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4023 return; 4024 } 4025 4026 // If all of the operands are identical or constant we have a simple solution. 4027 // If we deal with insert/extract instructions, they all must have constant 4028 // indices, otherwise we should gather them, not try to vectorize. 4029 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4030 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4031 !all_of(VL, isVectorLikeInstWithConstOps))) { 4032 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4033 if (TryToFindDuplicates(S)) 4034 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4035 ReuseShuffleIndicies); 4036 return; 4037 } 4038 4039 // We now know that this is a vector of instructions of the same type from 4040 // the same block. 4041 4042 // Don't vectorize ephemeral values. 4043 for (Value *V : VL) { 4044 if (EphValues.count(V)) { 4045 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4046 << ") is ephemeral.\n"); 4047 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4048 return; 4049 } 4050 } 4051 4052 // Check if this is a duplicate of another entry. 4053 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4054 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4055 if (!E->isSame(VL)) { 4056 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4057 if (TryToFindDuplicates(S)) 4058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4059 ReuseShuffleIndicies); 4060 return; 4061 } 4062 // Record the reuse of the tree node. FIXME, currently this is only used to 4063 // properly draw the graph rather than for the actual vectorization. 4064 E->UserTreeIndices.push_back(UserTreeIdx); 4065 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4066 << ".\n"); 4067 return; 4068 } 4069 4070 // Check that none of the instructions in the bundle are already in the tree. 4071 for (Value *V : VL) { 4072 auto *I = dyn_cast<Instruction>(V); 4073 if (!I) 4074 continue; 4075 if (getTreeEntry(I)) { 4076 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4077 << ") is already in tree.\n"); 4078 if (TryToFindDuplicates(S)) 4079 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4080 ReuseShuffleIndicies); 4081 return; 4082 } 4083 } 4084 4085 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4086 for (Value *V : VL) { 4087 if (is_contained(UserIgnoreList, V)) { 4088 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4089 if (TryToFindDuplicates(S)) 4090 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4091 ReuseShuffleIndicies); 4092 return; 4093 } 4094 } 4095 4096 // Check that all of the users of the scalars that we want to vectorize are 4097 // schedulable. 4098 auto *VL0 = cast<Instruction>(S.OpValue); 4099 BasicBlock *BB = VL0->getParent(); 4100 4101 if (!DT->isReachableFromEntry(BB)) { 4102 // Don't go into unreachable blocks. They may contain instructions with 4103 // dependency cycles which confuse the final scheduling. 4104 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4105 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4106 return; 4107 } 4108 4109 // Check that every instruction appears once in this bundle. 4110 if (!TryToFindDuplicates(S)) 4111 return; 4112 4113 auto &BSRef = BlocksSchedules[BB]; 4114 if (!BSRef) 4115 BSRef = std::make_unique<BlockScheduling>(BB); 4116 4117 BlockScheduling &BS = *BSRef.get(); 4118 4119 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4120 #ifdef EXPENSIVE_CHECKS 4121 // Make sure we didn't break any internal invariants 4122 BS.verify(); 4123 #endif 4124 if (!Bundle) { 4125 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4126 assert((!BS.getScheduleData(VL0) || 4127 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4128 "tryScheduleBundle should cancelScheduling on failure"); 4129 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4130 ReuseShuffleIndicies); 4131 return; 4132 } 4133 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4134 4135 unsigned ShuffleOrOp = S.isAltShuffle() ? 4136 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4137 switch (ShuffleOrOp) { 4138 case Instruction::PHI: { 4139 auto *PH = cast<PHINode>(VL0); 4140 4141 // Check for terminator values (e.g. invoke). 4142 for (Value *V : VL) 4143 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4144 Instruction *Term = dyn_cast<Instruction>(Incoming); 4145 if (Term && Term->isTerminator()) { 4146 LLVM_DEBUG(dbgs() 4147 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4148 BS.cancelScheduling(VL, VL0); 4149 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4150 ReuseShuffleIndicies); 4151 return; 4152 } 4153 } 4154 4155 TreeEntry *TE = 4156 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4157 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4158 4159 // Keeps the reordered operands to avoid code duplication. 4160 SmallVector<ValueList, 2> OperandsVec; 4161 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4162 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4163 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4164 TE->setOperand(I, Operands); 4165 OperandsVec.push_back(Operands); 4166 continue; 4167 } 4168 ValueList Operands; 4169 // Prepare the operand vector. 4170 for (Value *V : VL) 4171 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4172 PH->getIncomingBlock(I))); 4173 TE->setOperand(I, Operands); 4174 OperandsVec.push_back(Operands); 4175 } 4176 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4177 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4178 return; 4179 } 4180 case Instruction::ExtractValue: 4181 case Instruction::ExtractElement: { 4182 OrdersType CurrentOrder; 4183 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4184 if (Reuse) { 4185 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4186 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4187 ReuseShuffleIndicies); 4188 // This is a special case, as it does not gather, but at the same time 4189 // we are not extending buildTree_rec() towards the operands. 4190 ValueList Op0; 4191 Op0.assign(VL.size(), VL0->getOperand(0)); 4192 VectorizableTree.back()->setOperand(0, Op0); 4193 return; 4194 } 4195 if (!CurrentOrder.empty()) { 4196 LLVM_DEBUG({ 4197 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4198 "with order"; 4199 for (unsigned Idx : CurrentOrder) 4200 dbgs() << " " << Idx; 4201 dbgs() << "\n"; 4202 }); 4203 fixupOrderingIndices(CurrentOrder); 4204 // Insert new order with initial value 0, if it does not exist, 4205 // otherwise return the iterator to the existing one. 4206 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4207 ReuseShuffleIndicies, CurrentOrder); 4208 // This is a special case, as it does not gather, but at the same time 4209 // we are not extending buildTree_rec() towards the operands. 4210 ValueList Op0; 4211 Op0.assign(VL.size(), VL0->getOperand(0)); 4212 VectorizableTree.back()->setOperand(0, Op0); 4213 return; 4214 } 4215 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4216 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4217 ReuseShuffleIndicies); 4218 BS.cancelScheduling(VL, VL0); 4219 return; 4220 } 4221 case Instruction::InsertElement: { 4222 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4223 4224 // Check that we have a buildvector and not a shuffle of 2 or more 4225 // different vectors. 4226 ValueSet SourceVectors; 4227 for (Value *V : VL) { 4228 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4229 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4230 } 4231 4232 if (count_if(VL, [&SourceVectors](Value *V) { 4233 return !SourceVectors.contains(V); 4234 }) >= 2) { 4235 // Found 2nd source vector - cancel. 4236 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4237 "different source vectors.\n"); 4238 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4239 BS.cancelScheduling(VL, VL0); 4240 return; 4241 } 4242 4243 auto OrdCompare = [](const std::pair<int, int> &P1, 4244 const std::pair<int, int> &P2) { 4245 return P1.first > P2.first; 4246 }; 4247 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4248 decltype(OrdCompare)> 4249 Indices(OrdCompare); 4250 for (int I = 0, E = VL.size(); I < E; ++I) { 4251 unsigned Idx = *getInsertIndex(VL[I]); 4252 Indices.emplace(Idx, I); 4253 } 4254 OrdersType CurrentOrder(VL.size(), VL.size()); 4255 bool IsIdentity = true; 4256 for (int I = 0, E = VL.size(); I < E; ++I) { 4257 CurrentOrder[Indices.top().second] = I; 4258 IsIdentity &= Indices.top().second == I; 4259 Indices.pop(); 4260 } 4261 if (IsIdentity) 4262 CurrentOrder.clear(); 4263 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4264 None, CurrentOrder); 4265 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4266 4267 constexpr int NumOps = 2; 4268 ValueList VectorOperands[NumOps]; 4269 for (int I = 0; I < NumOps; ++I) { 4270 for (Value *V : VL) 4271 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4272 4273 TE->setOperand(I, VectorOperands[I]); 4274 } 4275 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4276 return; 4277 } 4278 case Instruction::Load: { 4279 // Check that a vectorized load would load the same memory as a scalar 4280 // load. For example, we don't want to vectorize loads that are smaller 4281 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4282 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4283 // from such a struct, we read/write packed bits disagreeing with the 4284 // unvectorized version. 4285 SmallVector<Value *> PointerOps; 4286 OrdersType CurrentOrder; 4287 TreeEntry *TE = nullptr; 4288 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4289 PointerOps)) { 4290 case LoadsState::Vectorize: 4291 if (CurrentOrder.empty()) { 4292 // Original loads are consecutive and does not require reordering. 4293 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4294 ReuseShuffleIndicies); 4295 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4296 } else { 4297 fixupOrderingIndices(CurrentOrder); 4298 // Need to reorder. 4299 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4300 ReuseShuffleIndicies, CurrentOrder); 4301 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4302 } 4303 TE->setOperandsInOrder(); 4304 break; 4305 case LoadsState::ScatterVectorize: 4306 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4307 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4308 UserTreeIdx, ReuseShuffleIndicies); 4309 TE->setOperandsInOrder(); 4310 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4311 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4312 break; 4313 case LoadsState::Gather: 4314 BS.cancelScheduling(VL, VL0); 4315 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4316 ReuseShuffleIndicies); 4317 #ifndef NDEBUG 4318 Type *ScalarTy = VL0->getType(); 4319 if (DL->getTypeSizeInBits(ScalarTy) != 4320 DL->getTypeAllocSizeInBits(ScalarTy)) 4321 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4322 else if (any_of(VL, [](Value *V) { 4323 return !cast<LoadInst>(V)->isSimple(); 4324 })) 4325 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4326 else 4327 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4328 #endif // NDEBUG 4329 break; 4330 } 4331 return; 4332 } 4333 case Instruction::ZExt: 4334 case Instruction::SExt: 4335 case Instruction::FPToUI: 4336 case Instruction::FPToSI: 4337 case Instruction::FPExt: 4338 case Instruction::PtrToInt: 4339 case Instruction::IntToPtr: 4340 case Instruction::SIToFP: 4341 case Instruction::UIToFP: 4342 case Instruction::Trunc: 4343 case Instruction::FPTrunc: 4344 case Instruction::BitCast: { 4345 Type *SrcTy = VL0->getOperand(0)->getType(); 4346 for (Value *V : VL) { 4347 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4348 if (Ty != SrcTy || !isValidElementType(Ty)) { 4349 BS.cancelScheduling(VL, VL0); 4350 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4351 ReuseShuffleIndicies); 4352 LLVM_DEBUG(dbgs() 4353 << "SLP: Gathering casts with different src types.\n"); 4354 return; 4355 } 4356 } 4357 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4358 ReuseShuffleIndicies); 4359 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4360 4361 TE->setOperandsInOrder(); 4362 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4363 ValueList Operands; 4364 // Prepare the operand vector. 4365 for (Value *V : VL) 4366 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4367 4368 buildTree_rec(Operands, Depth + 1, {TE, i}); 4369 } 4370 return; 4371 } 4372 case Instruction::ICmp: 4373 case Instruction::FCmp: { 4374 // Check that all of the compares have the same predicate. 4375 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4376 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4377 Type *ComparedTy = VL0->getOperand(0)->getType(); 4378 for (Value *V : VL) { 4379 CmpInst *Cmp = cast<CmpInst>(V); 4380 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4381 Cmp->getOperand(0)->getType() != ComparedTy) { 4382 BS.cancelScheduling(VL, VL0); 4383 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4384 ReuseShuffleIndicies); 4385 LLVM_DEBUG(dbgs() 4386 << "SLP: Gathering cmp with different predicate.\n"); 4387 return; 4388 } 4389 } 4390 4391 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4392 ReuseShuffleIndicies); 4393 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4394 4395 ValueList Left, Right; 4396 if (cast<CmpInst>(VL0)->isCommutative()) { 4397 // Commutative predicate - collect + sort operands of the instructions 4398 // so that each side is more likely to have the same opcode. 4399 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4400 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4401 } else { 4402 // Collect operands - commute if it uses the swapped predicate. 4403 for (Value *V : VL) { 4404 auto *Cmp = cast<CmpInst>(V); 4405 Value *LHS = Cmp->getOperand(0); 4406 Value *RHS = Cmp->getOperand(1); 4407 if (Cmp->getPredicate() != P0) 4408 std::swap(LHS, RHS); 4409 Left.push_back(LHS); 4410 Right.push_back(RHS); 4411 } 4412 } 4413 TE->setOperand(0, Left); 4414 TE->setOperand(1, Right); 4415 buildTree_rec(Left, Depth + 1, {TE, 0}); 4416 buildTree_rec(Right, Depth + 1, {TE, 1}); 4417 return; 4418 } 4419 case Instruction::Select: 4420 case Instruction::FNeg: 4421 case Instruction::Add: 4422 case Instruction::FAdd: 4423 case Instruction::Sub: 4424 case Instruction::FSub: 4425 case Instruction::Mul: 4426 case Instruction::FMul: 4427 case Instruction::UDiv: 4428 case Instruction::SDiv: 4429 case Instruction::FDiv: 4430 case Instruction::URem: 4431 case Instruction::SRem: 4432 case Instruction::FRem: 4433 case Instruction::Shl: 4434 case Instruction::LShr: 4435 case Instruction::AShr: 4436 case Instruction::And: 4437 case Instruction::Or: 4438 case Instruction::Xor: { 4439 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4440 ReuseShuffleIndicies); 4441 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4442 4443 // Sort operands of the instructions so that each side is more likely to 4444 // have the same opcode. 4445 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4446 ValueList Left, Right; 4447 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4448 TE->setOperand(0, Left); 4449 TE->setOperand(1, Right); 4450 buildTree_rec(Left, Depth + 1, {TE, 0}); 4451 buildTree_rec(Right, Depth + 1, {TE, 1}); 4452 return; 4453 } 4454 4455 TE->setOperandsInOrder(); 4456 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4457 ValueList Operands; 4458 // Prepare the operand vector. 4459 for (Value *V : VL) 4460 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4461 4462 buildTree_rec(Operands, Depth + 1, {TE, i}); 4463 } 4464 return; 4465 } 4466 case Instruction::GetElementPtr: { 4467 // We don't combine GEPs with complicated (nested) indexing. 4468 for (Value *V : VL) { 4469 if (cast<Instruction>(V)->getNumOperands() != 2) { 4470 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4471 BS.cancelScheduling(VL, VL0); 4472 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4473 ReuseShuffleIndicies); 4474 return; 4475 } 4476 } 4477 4478 // We can't combine several GEPs into one vector if they operate on 4479 // different types. 4480 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4481 for (Value *V : VL) { 4482 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4483 if (Ty0 != CurTy) { 4484 LLVM_DEBUG(dbgs() 4485 << "SLP: not-vectorizable GEP (different types).\n"); 4486 BS.cancelScheduling(VL, VL0); 4487 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4488 ReuseShuffleIndicies); 4489 return; 4490 } 4491 } 4492 4493 // We don't combine GEPs with non-constant indexes. 4494 Type *Ty1 = VL0->getOperand(1)->getType(); 4495 for (Value *V : VL) { 4496 auto Op = cast<Instruction>(V)->getOperand(1); 4497 if (!isa<ConstantInt>(Op) || 4498 (Op->getType() != Ty1 && 4499 Op->getType()->getScalarSizeInBits() > 4500 DL->getIndexSizeInBits( 4501 V->getType()->getPointerAddressSpace()))) { 4502 LLVM_DEBUG(dbgs() 4503 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4504 BS.cancelScheduling(VL, VL0); 4505 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4506 ReuseShuffleIndicies); 4507 return; 4508 } 4509 } 4510 4511 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4512 ReuseShuffleIndicies); 4513 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4514 SmallVector<ValueList, 2> Operands(2); 4515 // Prepare the operand vector for pointer operands. 4516 for (Value *V : VL) 4517 Operands.front().push_back( 4518 cast<GetElementPtrInst>(V)->getPointerOperand()); 4519 TE->setOperand(0, Operands.front()); 4520 // Need to cast all indices to the same type before vectorization to 4521 // avoid crash. 4522 // Required to be able to find correct matches between different gather 4523 // nodes and reuse the vectorized values rather than trying to gather them 4524 // again. 4525 int IndexIdx = 1; 4526 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4527 Type *Ty = all_of(VL, 4528 [VL0Ty, IndexIdx](Value *V) { 4529 return VL0Ty == cast<GetElementPtrInst>(V) 4530 ->getOperand(IndexIdx) 4531 ->getType(); 4532 }) 4533 ? VL0Ty 4534 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4535 ->getPointerOperandType() 4536 ->getScalarType()); 4537 // Prepare the operand vector. 4538 for (Value *V : VL) { 4539 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4540 auto *CI = cast<ConstantInt>(Op); 4541 Operands.back().push_back(ConstantExpr::getIntegerCast( 4542 CI, Ty, CI->getValue().isSignBitSet())); 4543 } 4544 TE->setOperand(IndexIdx, Operands.back()); 4545 4546 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4547 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4548 return; 4549 } 4550 case Instruction::Store: { 4551 // Check if the stores are consecutive or if we need to swizzle them. 4552 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4553 // Avoid types that are padded when being allocated as scalars, while 4554 // being packed together in a vector (such as i1). 4555 if (DL->getTypeSizeInBits(ScalarTy) != 4556 DL->getTypeAllocSizeInBits(ScalarTy)) { 4557 BS.cancelScheduling(VL, VL0); 4558 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4559 ReuseShuffleIndicies); 4560 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4561 return; 4562 } 4563 // Make sure all stores in the bundle are simple - we can't vectorize 4564 // atomic or volatile stores. 4565 SmallVector<Value *, 4> PointerOps(VL.size()); 4566 ValueList Operands(VL.size()); 4567 auto POIter = PointerOps.begin(); 4568 auto OIter = Operands.begin(); 4569 for (Value *V : VL) { 4570 auto *SI = cast<StoreInst>(V); 4571 if (!SI->isSimple()) { 4572 BS.cancelScheduling(VL, VL0); 4573 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4574 ReuseShuffleIndicies); 4575 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4576 return; 4577 } 4578 *POIter = SI->getPointerOperand(); 4579 *OIter = SI->getValueOperand(); 4580 ++POIter; 4581 ++OIter; 4582 } 4583 4584 OrdersType CurrentOrder; 4585 // Check the order of pointer operands. 4586 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4587 Value *Ptr0; 4588 Value *PtrN; 4589 if (CurrentOrder.empty()) { 4590 Ptr0 = PointerOps.front(); 4591 PtrN = PointerOps.back(); 4592 } else { 4593 Ptr0 = PointerOps[CurrentOrder.front()]; 4594 PtrN = PointerOps[CurrentOrder.back()]; 4595 } 4596 Optional<int> Dist = 4597 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4598 // Check that the sorted pointer operands are consecutive. 4599 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4600 if (CurrentOrder.empty()) { 4601 // Original stores are consecutive and does not require reordering. 4602 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4603 UserTreeIdx, ReuseShuffleIndicies); 4604 TE->setOperandsInOrder(); 4605 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4606 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4607 } else { 4608 fixupOrderingIndices(CurrentOrder); 4609 TreeEntry *TE = 4610 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4611 ReuseShuffleIndicies, CurrentOrder); 4612 TE->setOperandsInOrder(); 4613 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4614 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4615 } 4616 return; 4617 } 4618 } 4619 4620 BS.cancelScheduling(VL, VL0); 4621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4622 ReuseShuffleIndicies); 4623 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4624 return; 4625 } 4626 case Instruction::Call: { 4627 // Check if the calls are all to the same vectorizable intrinsic or 4628 // library function. 4629 CallInst *CI = cast<CallInst>(VL0); 4630 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4631 4632 VFShape Shape = VFShape::get( 4633 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4634 false /*HasGlobalPred*/); 4635 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4636 4637 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4638 BS.cancelScheduling(VL, VL0); 4639 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4640 ReuseShuffleIndicies); 4641 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4642 return; 4643 } 4644 Function *F = CI->getCalledFunction(); 4645 unsigned NumArgs = CI->arg_size(); 4646 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4647 for (unsigned j = 0; j != NumArgs; ++j) 4648 if (hasVectorInstrinsicScalarOpd(ID, j)) 4649 ScalarArgs[j] = CI->getArgOperand(j); 4650 for (Value *V : VL) { 4651 CallInst *CI2 = dyn_cast<CallInst>(V); 4652 if (!CI2 || CI2->getCalledFunction() != F || 4653 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4654 (VecFunc && 4655 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4656 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4657 BS.cancelScheduling(VL, VL0); 4658 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4659 ReuseShuffleIndicies); 4660 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4661 << "\n"); 4662 return; 4663 } 4664 // Some intrinsics have scalar arguments and should be same in order for 4665 // them to be vectorized. 4666 for (unsigned j = 0; j != NumArgs; ++j) { 4667 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4668 Value *A1J = CI2->getArgOperand(j); 4669 if (ScalarArgs[j] != A1J) { 4670 BS.cancelScheduling(VL, VL0); 4671 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4672 ReuseShuffleIndicies); 4673 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4674 << " argument " << ScalarArgs[j] << "!=" << A1J 4675 << "\n"); 4676 return; 4677 } 4678 } 4679 } 4680 // Verify that the bundle operands are identical between the two calls. 4681 if (CI->hasOperandBundles() && 4682 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4683 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4684 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4685 BS.cancelScheduling(VL, VL0); 4686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4687 ReuseShuffleIndicies); 4688 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4689 << *CI << "!=" << *V << '\n'); 4690 return; 4691 } 4692 } 4693 4694 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4695 ReuseShuffleIndicies); 4696 TE->setOperandsInOrder(); 4697 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4698 // For scalar operands no need to to create an entry since no need to 4699 // vectorize it. 4700 if (hasVectorInstrinsicScalarOpd(ID, i)) 4701 continue; 4702 ValueList Operands; 4703 // Prepare the operand vector. 4704 for (Value *V : VL) { 4705 auto *CI2 = cast<CallInst>(V); 4706 Operands.push_back(CI2->getArgOperand(i)); 4707 } 4708 buildTree_rec(Operands, Depth + 1, {TE, i}); 4709 } 4710 return; 4711 } 4712 case Instruction::ShuffleVector: { 4713 // If this is not an alternate sequence of opcode like add-sub 4714 // then do not vectorize this instruction. 4715 if (!S.isAltShuffle()) { 4716 BS.cancelScheduling(VL, VL0); 4717 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4718 ReuseShuffleIndicies); 4719 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4720 return; 4721 } 4722 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4723 ReuseShuffleIndicies); 4724 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4725 4726 // Reorder operands if reordering would enable vectorization. 4727 auto *CI = dyn_cast<CmpInst>(VL0); 4728 if (isa<BinaryOperator>(VL0) || CI) { 4729 ValueList Left, Right; 4730 if (!CI || all_of(VL, [](Value *V) { 4731 return cast<CmpInst>(V)->isCommutative(); 4732 })) { 4733 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4734 } else { 4735 CmpInst::Predicate P0 = CI->getPredicate(); 4736 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4737 assert(P0 != AltP0 && 4738 "Expected different main/alternate predicates."); 4739 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4740 Value *BaseOp0 = VL0->getOperand(0); 4741 Value *BaseOp1 = VL0->getOperand(1); 4742 // Collect operands - commute if it uses the swapped predicate or 4743 // alternate operation. 4744 for (Value *V : VL) { 4745 auto *Cmp = cast<CmpInst>(V); 4746 Value *LHS = Cmp->getOperand(0); 4747 Value *RHS = Cmp->getOperand(1); 4748 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4749 if (P0 == AltP0Swapped) { 4750 if (CI != Cmp && S.AltOp != Cmp && 4751 ((P0 == CurrentPred && 4752 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4753 (AltP0 == CurrentPred && 4754 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4755 std::swap(LHS, RHS); 4756 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4757 std::swap(LHS, RHS); 4758 } 4759 Left.push_back(LHS); 4760 Right.push_back(RHS); 4761 } 4762 } 4763 TE->setOperand(0, Left); 4764 TE->setOperand(1, Right); 4765 buildTree_rec(Left, Depth + 1, {TE, 0}); 4766 buildTree_rec(Right, Depth + 1, {TE, 1}); 4767 return; 4768 } 4769 4770 TE->setOperandsInOrder(); 4771 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4772 ValueList Operands; 4773 // Prepare the operand vector. 4774 for (Value *V : VL) 4775 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4776 4777 buildTree_rec(Operands, Depth + 1, {TE, i}); 4778 } 4779 return; 4780 } 4781 default: 4782 BS.cancelScheduling(VL, VL0); 4783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4784 ReuseShuffleIndicies); 4785 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4786 return; 4787 } 4788 } 4789 4790 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4791 unsigned N = 1; 4792 Type *EltTy = T; 4793 4794 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4795 isa<VectorType>(EltTy)) { 4796 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4797 // Check that struct is homogeneous. 4798 for (const auto *Ty : ST->elements()) 4799 if (Ty != *ST->element_begin()) 4800 return 0; 4801 N *= ST->getNumElements(); 4802 EltTy = *ST->element_begin(); 4803 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4804 N *= AT->getNumElements(); 4805 EltTy = AT->getElementType(); 4806 } else { 4807 auto *VT = cast<FixedVectorType>(EltTy); 4808 N *= VT->getNumElements(); 4809 EltTy = VT->getElementType(); 4810 } 4811 } 4812 4813 if (!isValidElementType(EltTy)) 4814 return 0; 4815 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4816 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4817 return 0; 4818 return N; 4819 } 4820 4821 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4822 SmallVectorImpl<unsigned> &CurrentOrder) const { 4823 const auto *It = find_if(VL, [](Value *V) { 4824 return isa<ExtractElementInst, ExtractValueInst>(V); 4825 }); 4826 assert(It != VL.end() && "Expected at least one extract instruction."); 4827 auto *E0 = cast<Instruction>(*It); 4828 assert(all_of(VL, 4829 [](Value *V) { 4830 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4831 V); 4832 }) && 4833 "Invalid opcode"); 4834 // Check if all of the extracts come from the same vector and from the 4835 // correct offset. 4836 Value *Vec = E0->getOperand(0); 4837 4838 CurrentOrder.clear(); 4839 4840 // We have to extract from a vector/aggregate with the same number of elements. 4841 unsigned NElts; 4842 if (E0->getOpcode() == Instruction::ExtractValue) { 4843 const DataLayout &DL = E0->getModule()->getDataLayout(); 4844 NElts = canMapToVector(Vec->getType(), DL); 4845 if (!NElts) 4846 return false; 4847 // Check if load can be rewritten as load of vector. 4848 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4849 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4850 return false; 4851 } else { 4852 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4853 } 4854 4855 if (NElts != VL.size()) 4856 return false; 4857 4858 // Check that all of the indices extract from the correct offset. 4859 bool ShouldKeepOrder = true; 4860 unsigned E = VL.size(); 4861 // Assign to all items the initial value E + 1 so we can check if the extract 4862 // instruction index was used already. 4863 // Also, later we can check that all the indices are used and we have a 4864 // consecutive access in the extract instructions, by checking that no 4865 // element of CurrentOrder still has value E + 1. 4866 CurrentOrder.assign(E, E); 4867 unsigned I = 0; 4868 for (; I < E; ++I) { 4869 auto *Inst = dyn_cast<Instruction>(VL[I]); 4870 if (!Inst) 4871 continue; 4872 if (Inst->getOperand(0) != Vec) 4873 break; 4874 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4875 if (isa<UndefValue>(EE->getIndexOperand())) 4876 continue; 4877 Optional<unsigned> Idx = getExtractIndex(Inst); 4878 if (!Idx) 4879 break; 4880 const unsigned ExtIdx = *Idx; 4881 if (ExtIdx != I) { 4882 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4883 break; 4884 ShouldKeepOrder = false; 4885 CurrentOrder[ExtIdx] = I; 4886 } else { 4887 if (CurrentOrder[I] != E) 4888 break; 4889 CurrentOrder[I] = I; 4890 } 4891 } 4892 if (I < E) { 4893 CurrentOrder.clear(); 4894 return false; 4895 } 4896 if (ShouldKeepOrder) 4897 CurrentOrder.clear(); 4898 4899 return ShouldKeepOrder; 4900 } 4901 4902 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4903 ArrayRef<Value *> VectorizedVals) const { 4904 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4905 all_of(I->users(), [this](User *U) { 4906 return ScalarToTreeEntry.count(U) > 0 || 4907 isVectorLikeInstWithConstOps(U) || 4908 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4909 }); 4910 } 4911 4912 static std::pair<InstructionCost, InstructionCost> 4913 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4914 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4915 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4916 4917 // Calculate the cost of the scalar and vector calls. 4918 SmallVector<Type *, 4> VecTys; 4919 for (Use &Arg : CI->args()) 4920 VecTys.push_back( 4921 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4922 FastMathFlags FMF; 4923 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4924 FMF = FPCI->getFastMathFlags(); 4925 SmallVector<const Value *> Arguments(CI->args()); 4926 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4927 dyn_cast<IntrinsicInst>(CI)); 4928 auto IntrinsicCost = 4929 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4930 4931 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4932 VecTy->getNumElements())), 4933 false /*HasGlobalPred*/); 4934 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4935 auto LibCost = IntrinsicCost; 4936 if (!CI->isNoBuiltin() && VecFunc) { 4937 // Calculate the cost of the vector library call. 4938 // If the corresponding vector call is cheaper, return its cost. 4939 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4940 TTI::TCK_RecipThroughput); 4941 } 4942 return {IntrinsicCost, LibCost}; 4943 } 4944 4945 /// Compute the cost of creating a vector of type \p VecTy containing the 4946 /// extracted values from \p VL. 4947 static InstructionCost 4948 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4949 TargetTransformInfo::ShuffleKind ShuffleKind, 4950 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4951 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4952 4953 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4954 VecTy->getNumElements() < NumOfParts) 4955 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4956 4957 bool AllConsecutive = true; 4958 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4959 unsigned Idx = -1; 4960 InstructionCost Cost = 0; 4961 4962 // Process extracts in blocks of EltsPerVector to check if the source vector 4963 // operand can be re-used directly. If not, add the cost of creating a shuffle 4964 // to extract the values into a vector register. 4965 for (auto *V : VL) { 4966 ++Idx; 4967 4968 // Need to exclude undefs from analysis. 4969 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4970 continue; 4971 4972 // Reached the start of a new vector registers. 4973 if (Idx % EltsPerVector == 0) { 4974 AllConsecutive = true; 4975 continue; 4976 } 4977 4978 // Check all extracts for a vector register on the target directly 4979 // extract values in order. 4980 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4981 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4982 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4983 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4984 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4985 } 4986 4987 if (AllConsecutive) 4988 continue; 4989 4990 // Skip all indices, except for the last index per vector block. 4991 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4992 continue; 4993 4994 // If we have a series of extracts which are not consecutive and hence 4995 // cannot re-use the source vector register directly, compute the shuffle 4996 // cost to extract the a vector with EltsPerVector elements. 4997 Cost += TTI.getShuffleCost( 4998 TargetTransformInfo::SK_PermuteSingleSrc, 4999 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5000 } 5001 return Cost; 5002 } 5003 5004 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5005 /// operations operands. 5006 static void 5007 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5008 ArrayRef<int> ReusesIndices, 5009 const function_ref<bool(Instruction *)> IsAltOp, 5010 SmallVectorImpl<int> &Mask, 5011 SmallVectorImpl<Value *> *OpScalars = nullptr, 5012 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5013 unsigned Sz = VL.size(); 5014 Mask.assign(Sz, UndefMaskElem); 5015 SmallVector<int> OrderMask; 5016 if (!ReorderIndices.empty()) 5017 inversePermutation(ReorderIndices, OrderMask); 5018 for (unsigned I = 0; I < Sz; ++I) { 5019 unsigned Idx = I; 5020 if (!ReorderIndices.empty()) 5021 Idx = OrderMask[I]; 5022 auto *OpInst = cast<Instruction>(VL[Idx]); 5023 if (IsAltOp(OpInst)) { 5024 Mask[I] = Sz + Idx; 5025 if (AltScalars) 5026 AltScalars->push_back(OpInst); 5027 } else { 5028 Mask[I] = Idx; 5029 if (OpScalars) 5030 OpScalars->push_back(OpInst); 5031 } 5032 } 5033 if (!ReusesIndices.empty()) { 5034 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5035 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5036 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5037 }); 5038 Mask.swap(NewMask); 5039 } 5040 } 5041 5042 /// Checks if the specified instruction \p I is an alternate operation for the 5043 /// given \p MainOp and \p AltOp instructions. 5044 static bool isAlternateInstruction(const Instruction *I, 5045 const Instruction *MainOp, 5046 const Instruction *AltOp) { 5047 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5048 auto *AltCI0 = cast<CmpInst>(AltOp); 5049 auto *CI = cast<CmpInst>(I); 5050 CmpInst::Predicate P0 = CI0->getPredicate(); 5051 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5052 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5053 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5054 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5055 if (P0 == AltP0Swapped) 5056 return I == AltCI0 || 5057 (I != MainOp && 5058 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5059 CI->getOperand(0), CI->getOperand(1))); 5060 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5061 } 5062 return I->getOpcode() == AltOp->getOpcode(); 5063 } 5064 5065 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5066 ArrayRef<Value *> VectorizedVals) { 5067 ArrayRef<Value*> VL = E->Scalars; 5068 5069 Type *ScalarTy = VL[0]->getType(); 5070 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5071 ScalarTy = SI->getValueOperand()->getType(); 5072 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5073 ScalarTy = CI->getOperand(0)->getType(); 5074 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5075 ScalarTy = IE->getOperand(1)->getType(); 5076 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5077 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5078 5079 // If we have computed a smaller type for the expression, update VecTy so 5080 // that the costs will be accurate. 5081 if (MinBWs.count(VL[0])) 5082 VecTy = FixedVectorType::get( 5083 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5084 unsigned EntryVF = E->getVectorFactor(); 5085 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5086 5087 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5088 // FIXME: it tries to fix a problem with MSVC buildbots. 5089 TargetTransformInfo &TTIRef = *TTI; 5090 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5091 VectorizedVals, E](InstructionCost &Cost) { 5092 DenseMap<Value *, int> ExtractVectorsTys; 5093 SmallPtrSet<Value *, 4> CheckedExtracts; 5094 for (auto *V : VL) { 5095 if (isa<UndefValue>(V)) 5096 continue; 5097 // If all users of instruction are going to be vectorized and this 5098 // instruction itself is not going to be vectorized, consider this 5099 // instruction as dead and remove its cost from the final cost of the 5100 // vectorized tree. 5101 // Also, avoid adjusting the cost for extractelements with multiple uses 5102 // in different graph entries. 5103 const TreeEntry *VE = getTreeEntry(V); 5104 if (!CheckedExtracts.insert(V).second || 5105 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5106 (VE && VE != E)) 5107 continue; 5108 auto *EE = cast<ExtractElementInst>(V); 5109 Optional<unsigned> EEIdx = getExtractIndex(EE); 5110 if (!EEIdx) 5111 continue; 5112 unsigned Idx = *EEIdx; 5113 if (TTIRef.getNumberOfParts(VecTy) != 5114 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5115 auto It = 5116 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5117 It->getSecond() = std::min<int>(It->second, Idx); 5118 } 5119 // Take credit for instruction that will become dead. 5120 if (EE->hasOneUse()) { 5121 Instruction *Ext = EE->user_back(); 5122 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5123 all_of(Ext->users(), 5124 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5125 // Use getExtractWithExtendCost() to calculate the cost of 5126 // extractelement/ext pair. 5127 Cost -= 5128 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5129 EE->getVectorOperandType(), Idx); 5130 // Add back the cost of s|zext which is subtracted separately. 5131 Cost += TTIRef.getCastInstrCost( 5132 Ext->getOpcode(), Ext->getType(), EE->getType(), 5133 TTI::getCastContextHint(Ext), CostKind, Ext); 5134 continue; 5135 } 5136 } 5137 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5138 EE->getVectorOperandType(), Idx); 5139 } 5140 // Add a cost for subvector extracts/inserts if required. 5141 for (const auto &Data : ExtractVectorsTys) { 5142 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5143 unsigned NumElts = VecTy->getNumElements(); 5144 if (Data.second % NumElts == 0) 5145 continue; 5146 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5147 unsigned Idx = (Data.second / NumElts) * NumElts; 5148 unsigned EENumElts = EEVTy->getNumElements(); 5149 if (Idx + NumElts <= EENumElts) { 5150 Cost += 5151 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5152 EEVTy, None, Idx, VecTy); 5153 } else { 5154 // Need to round up the subvector type vectorization factor to avoid a 5155 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5156 // <= EENumElts. 5157 auto *SubVT = 5158 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5159 Cost += 5160 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5161 EEVTy, None, Idx, SubVT); 5162 } 5163 } else { 5164 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5165 VecTy, None, 0, EEVTy); 5166 } 5167 } 5168 }; 5169 if (E->State == TreeEntry::NeedToGather) { 5170 if (allConstant(VL)) 5171 return 0; 5172 if (isa<InsertElementInst>(VL[0])) 5173 return InstructionCost::getInvalid(); 5174 SmallVector<int> Mask; 5175 SmallVector<const TreeEntry *> Entries; 5176 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5177 isGatherShuffledEntry(E, Mask, Entries); 5178 if (Shuffle.hasValue()) { 5179 InstructionCost GatherCost = 0; 5180 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5181 // Perfect match in the graph, will reuse the previously vectorized 5182 // node. Cost is 0. 5183 LLVM_DEBUG( 5184 dbgs() 5185 << "SLP: perfect diamond match for gather bundle that starts with " 5186 << *VL.front() << ".\n"); 5187 if (NeedToShuffleReuses) 5188 GatherCost = 5189 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5190 FinalVecTy, E->ReuseShuffleIndices); 5191 } else { 5192 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5193 << " entries for bundle that starts with " 5194 << *VL.front() << ".\n"); 5195 // Detected that instead of gather we can emit a shuffle of single/two 5196 // previously vectorized nodes. Add the cost of the permutation rather 5197 // than gather. 5198 ::addMask(Mask, E->ReuseShuffleIndices); 5199 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5200 } 5201 return GatherCost; 5202 } 5203 if ((E->getOpcode() == Instruction::ExtractElement || 5204 all_of(E->Scalars, 5205 [](Value *V) { 5206 return isa<ExtractElementInst, UndefValue>(V); 5207 })) && 5208 allSameType(VL)) { 5209 // Check that gather of extractelements can be represented as just a 5210 // shuffle of a single/two vectors the scalars are extracted from. 5211 SmallVector<int> Mask; 5212 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5213 isFixedVectorShuffle(VL, Mask); 5214 if (ShuffleKind.hasValue()) { 5215 // Found the bunch of extractelement instructions that must be gathered 5216 // into a vector and can be represented as a permutation elements in a 5217 // single input vector or of 2 input vectors. 5218 InstructionCost Cost = 5219 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5220 AdjustExtractsCost(Cost); 5221 if (NeedToShuffleReuses) 5222 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5223 FinalVecTy, E->ReuseShuffleIndices); 5224 return Cost; 5225 } 5226 } 5227 if (isSplat(VL)) { 5228 // Found the broadcasting of the single scalar, calculate the cost as the 5229 // broadcast. 5230 assert(VecTy == FinalVecTy && 5231 "No reused scalars expected for broadcast."); 5232 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5233 } 5234 InstructionCost ReuseShuffleCost = 0; 5235 if (NeedToShuffleReuses) 5236 ReuseShuffleCost = TTI->getShuffleCost( 5237 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5238 // Improve gather cost for gather of loads, if we can group some of the 5239 // loads into vector loads. 5240 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5241 !E->isAltShuffle()) { 5242 BoUpSLP::ValueSet VectorizedLoads; 5243 unsigned StartIdx = 0; 5244 unsigned VF = VL.size() / 2; 5245 unsigned VectorizedCnt = 0; 5246 unsigned ScatterVectorizeCnt = 0; 5247 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5248 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5249 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5250 Cnt += VF) { 5251 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5252 if (!VectorizedLoads.count(Slice.front()) && 5253 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5254 SmallVector<Value *> PointerOps; 5255 OrdersType CurrentOrder; 5256 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5257 *SE, CurrentOrder, PointerOps); 5258 switch (LS) { 5259 case LoadsState::Vectorize: 5260 case LoadsState::ScatterVectorize: 5261 // Mark the vectorized loads so that we don't vectorize them 5262 // again. 5263 if (LS == LoadsState::Vectorize) 5264 ++VectorizedCnt; 5265 else 5266 ++ScatterVectorizeCnt; 5267 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5268 // If we vectorized initial block, no need to try to vectorize it 5269 // again. 5270 if (Cnt == StartIdx) 5271 StartIdx += VF; 5272 break; 5273 case LoadsState::Gather: 5274 break; 5275 } 5276 } 5277 } 5278 // Check if the whole array was vectorized already - exit. 5279 if (StartIdx >= VL.size()) 5280 break; 5281 // Found vectorizable parts - exit. 5282 if (!VectorizedLoads.empty()) 5283 break; 5284 } 5285 if (!VectorizedLoads.empty()) { 5286 InstructionCost GatherCost = 0; 5287 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5288 bool NeedInsertSubvectorAnalysis = 5289 !NumParts || (VL.size() / VF) > NumParts; 5290 // Get the cost for gathered loads. 5291 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5292 if (VectorizedLoads.contains(VL[I])) 5293 continue; 5294 GatherCost += getGatherCost(VL.slice(I, VF)); 5295 } 5296 // The cost for vectorized loads. 5297 InstructionCost ScalarsCost = 0; 5298 for (Value *V : VectorizedLoads) { 5299 auto *LI = cast<LoadInst>(V); 5300 ScalarsCost += TTI->getMemoryOpCost( 5301 Instruction::Load, LI->getType(), LI->getAlign(), 5302 LI->getPointerAddressSpace(), CostKind, LI); 5303 } 5304 auto *LI = cast<LoadInst>(E->getMainOp()); 5305 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5306 Align Alignment = LI->getAlign(); 5307 GatherCost += 5308 VectorizedCnt * 5309 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5310 LI->getPointerAddressSpace(), CostKind, LI); 5311 GatherCost += ScatterVectorizeCnt * 5312 TTI->getGatherScatterOpCost( 5313 Instruction::Load, LoadTy, LI->getPointerOperand(), 5314 /*VariableMask=*/false, Alignment, CostKind, LI); 5315 if (NeedInsertSubvectorAnalysis) { 5316 // Add the cost for the subvectors insert. 5317 for (int I = VF, E = VL.size(); I < E; I += VF) 5318 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5319 None, I, LoadTy); 5320 } 5321 return ReuseShuffleCost + GatherCost - ScalarsCost; 5322 } 5323 } 5324 return ReuseShuffleCost + getGatherCost(VL); 5325 } 5326 InstructionCost CommonCost = 0; 5327 SmallVector<int> Mask; 5328 if (!E->ReorderIndices.empty()) { 5329 SmallVector<int> NewMask; 5330 if (E->getOpcode() == Instruction::Store) { 5331 // For stores the order is actually a mask. 5332 NewMask.resize(E->ReorderIndices.size()); 5333 copy(E->ReorderIndices, NewMask.begin()); 5334 } else { 5335 inversePermutation(E->ReorderIndices, NewMask); 5336 } 5337 ::addMask(Mask, NewMask); 5338 } 5339 if (NeedToShuffleReuses) 5340 ::addMask(Mask, E->ReuseShuffleIndices); 5341 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5342 CommonCost = 5343 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5344 assert((E->State == TreeEntry::Vectorize || 5345 E->State == TreeEntry::ScatterVectorize) && 5346 "Unhandled state"); 5347 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5348 Instruction *VL0 = E->getMainOp(); 5349 unsigned ShuffleOrOp = 5350 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5351 switch (ShuffleOrOp) { 5352 case Instruction::PHI: 5353 return 0; 5354 5355 case Instruction::ExtractValue: 5356 case Instruction::ExtractElement: { 5357 // The common cost of removal ExtractElement/ExtractValue instructions + 5358 // the cost of shuffles, if required to resuffle the original vector. 5359 if (NeedToShuffleReuses) { 5360 unsigned Idx = 0; 5361 for (unsigned I : E->ReuseShuffleIndices) { 5362 if (ShuffleOrOp == Instruction::ExtractElement) { 5363 auto *EE = cast<ExtractElementInst>(VL[I]); 5364 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5365 EE->getVectorOperandType(), 5366 *getExtractIndex(EE)); 5367 } else { 5368 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5369 VecTy, Idx); 5370 ++Idx; 5371 } 5372 } 5373 Idx = EntryVF; 5374 for (Value *V : VL) { 5375 if (ShuffleOrOp == Instruction::ExtractElement) { 5376 auto *EE = cast<ExtractElementInst>(V); 5377 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5378 EE->getVectorOperandType(), 5379 *getExtractIndex(EE)); 5380 } else { 5381 --Idx; 5382 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5383 VecTy, Idx); 5384 } 5385 } 5386 } 5387 if (ShuffleOrOp == Instruction::ExtractValue) { 5388 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5389 auto *EI = cast<Instruction>(VL[I]); 5390 // Take credit for instruction that will become dead. 5391 if (EI->hasOneUse()) { 5392 Instruction *Ext = EI->user_back(); 5393 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5394 all_of(Ext->users(), 5395 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5396 // Use getExtractWithExtendCost() to calculate the cost of 5397 // extractelement/ext pair. 5398 CommonCost -= TTI->getExtractWithExtendCost( 5399 Ext->getOpcode(), Ext->getType(), VecTy, I); 5400 // Add back the cost of s|zext which is subtracted separately. 5401 CommonCost += TTI->getCastInstrCost( 5402 Ext->getOpcode(), Ext->getType(), EI->getType(), 5403 TTI::getCastContextHint(Ext), CostKind, Ext); 5404 continue; 5405 } 5406 } 5407 CommonCost -= 5408 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5409 } 5410 } else { 5411 AdjustExtractsCost(CommonCost); 5412 } 5413 return CommonCost; 5414 } 5415 case Instruction::InsertElement: { 5416 assert(E->ReuseShuffleIndices.empty() && 5417 "Unique insertelements only are expected."); 5418 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5419 5420 unsigned const NumElts = SrcVecTy->getNumElements(); 5421 unsigned const NumScalars = VL.size(); 5422 APInt DemandedElts = APInt::getZero(NumElts); 5423 // TODO: Add support for Instruction::InsertValue. 5424 SmallVector<int> Mask; 5425 if (!E->ReorderIndices.empty()) { 5426 inversePermutation(E->ReorderIndices, Mask); 5427 Mask.append(NumElts - NumScalars, UndefMaskElem); 5428 } else { 5429 Mask.assign(NumElts, UndefMaskElem); 5430 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5431 } 5432 unsigned Offset = *getInsertIndex(VL0); 5433 bool IsIdentity = true; 5434 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5435 Mask.swap(PrevMask); 5436 for (unsigned I = 0; I < NumScalars; ++I) { 5437 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5438 DemandedElts.setBit(InsertIdx); 5439 IsIdentity &= InsertIdx - Offset == I; 5440 Mask[InsertIdx - Offset] = I; 5441 } 5442 assert(Offset < NumElts && "Failed to find vector index offset"); 5443 5444 InstructionCost Cost = 0; 5445 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5446 /*Insert*/ true, /*Extract*/ false); 5447 5448 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5449 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5450 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5451 Cost += TTI->getShuffleCost( 5452 TargetTransformInfo::SK_PermuteSingleSrc, 5453 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5454 } else if (!IsIdentity) { 5455 auto *FirstInsert = 5456 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5457 return !is_contained(E->Scalars, 5458 cast<Instruction>(V)->getOperand(0)); 5459 })); 5460 if (isUndefVector(FirstInsert->getOperand(0))) { 5461 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5462 } else { 5463 SmallVector<int> InsertMask(NumElts); 5464 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5465 for (unsigned I = 0; I < NumElts; I++) { 5466 if (Mask[I] != UndefMaskElem) 5467 InsertMask[Offset + I] = NumElts + I; 5468 } 5469 Cost += 5470 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5471 } 5472 } 5473 5474 return Cost; 5475 } 5476 case Instruction::ZExt: 5477 case Instruction::SExt: 5478 case Instruction::FPToUI: 5479 case Instruction::FPToSI: 5480 case Instruction::FPExt: 5481 case Instruction::PtrToInt: 5482 case Instruction::IntToPtr: 5483 case Instruction::SIToFP: 5484 case Instruction::UIToFP: 5485 case Instruction::Trunc: 5486 case Instruction::FPTrunc: 5487 case Instruction::BitCast: { 5488 Type *SrcTy = VL0->getOperand(0)->getType(); 5489 InstructionCost ScalarEltCost = 5490 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5491 TTI::getCastContextHint(VL0), CostKind, VL0); 5492 if (NeedToShuffleReuses) { 5493 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5494 } 5495 5496 // Calculate the cost of this instruction. 5497 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5498 5499 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5500 InstructionCost VecCost = 0; 5501 // Check if the values are candidates to demote. 5502 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5503 VecCost = CommonCost + TTI->getCastInstrCost( 5504 E->getOpcode(), VecTy, SrcVecTy, 5505 TTI::getCastContextHint(VL0), CostKind, VL0); 5506 } 5507 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5508 return VecCost - ScalarCost; 5509 } 5510 case Instruction::FCmp: 5511 case Instruction::ICmp: 5512 case Instruction::Select: { 5513 // Calculate the cost of this instruction. 5514 InstructionCost ScalarEltCost = 5515 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5516 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5517 if (NeedToShuffleReuses) { 5518 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5519 } 5520 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5521 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5522 5523 // Check if all entries in VL are either compares or selects with compares 5524 // as condition that have the same predicates. 5525 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5526 bool First = true; 5527 for (auto *V : VL) { 5528 CmpInst::Predicate CurrentPred; 5529 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5530 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5531 !match(V, MatchCmp)) || 5532 (!First && VecPred != CurrentPred)) { 5533 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5534 break; 5535 } 5536 First = false; 5537 VecPred = CurrentPred; 5538 } 5539 5540 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5541 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5542 // Check if it is possible and profitable to use min/max for selects in 5543 // VL. 5544 // 5545 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5546 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5547 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5548 {VecTy, VecTy}); 5549 InstructionCost IntrinsicCost = 5550 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5551 // If the selects are the only uses of the compares, they will be dead 5552 // and we can adjust the cost by removing their cost. 5553 if (IntrinsicAndUse.second) 5554 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5555 MaskTy, VecPred, CostKind); 5556 VecCost = std::min(VecCost, IntrinsicCost); 5557 } 5558 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5559 return CommonCost + VecCost - ScalarCost; 5560 } 5561 case Instruction::FNeg: 5562 case Instruction::Add: 5563 case Instruction::FAdd: 5564 case Instruction::Sub: 5565 case Instruction::FSub: 5566 case Instruction::Mul: 5567 case Instruction::FMul: 5568 case Instruction::UDiv: 5569 case Instruction::SDiv: 5570 case Instruction::FDiv: 5571 case Instruction::URem: 5572 case Instruction::SRem: 5573 case Instruction::FRem: 5574 case Instruction::Shl: 5575 case Instruction::LShr: 5576 case Instruction::AShr: 5577 case Instruction::And: 5578 case Instruction::Or: 5579 case Instruction::Xor: { 5580 // Certain instructions can be cheaper to vectorize if they have a 5581 // constant second vector operand. 5582 TargetTransformInfo::OperandValueKind Op1VK = 5583 TargetTransformInfo::OK_AnyValue; 5584 TargetTransformInfo::OperandValueKind Op2VK = 5585 TargetTransformInfo::OK_UniformConstantValue; 5586 TargetTransformInfo::OperandValueProperties Op1VP = 5587 TargetTransformInfo::OP_None; 5588 TargetTransformInfo::OperandValueProperties Op2VP = 5589 TargetTransformInfo::OP_PowerOf2; 5590 5591 // If all operands are exactly the same ConstantInt then set the 5592 // operand kind to OK_UniformConstantValue. 5593 // If instead not all operands are constants, then set the operand kind 5594 // to OK_AnyValue. If all operands are constants but not the same, 5595 // then set the operand kind to OK_NonUniformConstantValue. 5596 ConstantInt *CInt0 = nullptr; 5597 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5598 const Instruction *I = cast<Instruction>(VL[i]); 5599 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5600 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5601 if (!CInt) { 5602 Op2VK = TargetTransformInfo::OK_AnyValue; 5603 Op2VP = TargetTransformInfo::OP_None; 5604 break; 5605 } 5606 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5607 !CInt->getValue().isPowerOf2()) 5608 Op2VP = TargetTransformInfo::OP_None; 5609 if (i == 0) { 5610 CInt0 = CInt; 5611 continue; 5612 } 5613 if (CInt0 != CInt) 5614 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5615 } 5616 5617 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5618 InstructionCost ScalarEltCost = 5619 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5620 Op2VK, Op1VP, Op2VP, Operands, VL0); 5621 if (NeedToShuffleReuses) { 5622 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5623 } 5624 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5625 InstructionCost VecCost = 5626 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5627 Op2VK, Op1VP, Op2VP, Operands, VL0); 5628 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5629 return CommonCost + VecCost - ScalarCost; 5630 } 5631 case Instruction::GetElementPtr: { 5632 TargetTransformInfo::OperandValueKind Op1VK = 5633 TargetTransformInfo::OK_AnyValue; 5634 TargetTransformInfo::OperandValueKind Op2VK = 5635 TargetTransformInfo::OK_UniformConstantValue; 5636 5637 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5638 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5639 if (NeedToShuffleReuses) { 5640 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5641 } 5642 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5643 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5644 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5645 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5646 return CommonCost + VecCost - ScalarCost; 5647 } 5648 case Instruction::Load: { 5649 // Cost of wide load - cost of scalar loads. 5650 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5651 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5652 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5653 if (NeedToShuffleReuses) { 5654 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5655 } 5656 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5657 InstructionCost VecLdCost; 5658 if (E->State == TreeEntry::Vectorize) { 5659 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5660 CostKind, VL0); 5661 } else { 5662 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5663 Align CommonAlignment = Alignment; 5664 for (Value *V : VL) 5665 CommonAlignment = 5666 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5667 VecLdCost = TTI->getGatherScatterOpCost( 5668 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5669 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5670 } 5671 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5672 return CommonCost + VecLdCost - ScalarLdCost; 5673 } 5674 case Instruction::Store: { 5675 // We know that we can merge the stores. Calculate the cost. 5676 bool IsReorder = !E->ReorderIndices.empty(); 5677 auto *SI = 5678 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5679 Align Alignment = SI->getAlign(); 5680 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5681 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5682 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5683 InstructionCost VecStCost = TTI->getMemoryOpCost( 5684 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5685 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5686 return CommonCost + VecStCost - ScalarStCost; 5687 } 5688 case Instruction::Call: { 5689 CallInst *CI = cast<CallInst>(VL0); 5690 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5691 5692 // Calculate the cost of the scalar and vector calls. 5693 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5694 InstructionCost ScalarEltCost = 5695 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5696 if (NeedToShuffleReuses) { 5697 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5698 } 5699 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5700 5701 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5702 InstructionCost VecCallCost = 5703 std::min(VecCallCosts.first, VecCallCosts.second); 5704 5705 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5706 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5707 << " for " << *CI << "\n"); 5708 5709 return CommonCost + VecCallCost - ScalarCallCost; 5710 } 5711 case Instruction::ShuffleVector: { 5712 assert(E->isAltShuffle() && 5713 ((Instruction::isBinaryOp(E->getOpcode()) && 5714 Instruction::isBinaryOp(E->getAltOpcode())) || 5715 (Instruction::isCast(E->getOpcode()) && 5716 Instruction::isCast(E->getAltOpcode())) || 5717 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5718 "Invalid Shuffle Vector Operand"); 5719 InstructionCost ScalarCost = 0; 5720 if (NeedToShuffleReuses) { 5721 for (unsigned Idx : E->ReuseShuffleIndices) { 5722 Instruction *I = cast<Instruction>(VL[Idx]); 5723 CommonCost -= TTI->getInstructionCost(I, CostKind); 5724 } 5725 for (Value *V : VL) { 5726 Instruction *I = cast<Instruction>(V); 5727 CommonCost += TTI->getInstructionCost(I, CostKind); 5728 } 5729 } 5730 for (Value *V : VL) { 5731 Instruction *I = cast<Instruction>(V); 5732 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5733 ScalarCost += TTI->getInstructionCost(I, CostKind); 5734 } 5735 // VecCost is equal to sum of the cost of creating 2 vectors 5736 // and the cost of creating shuffle. 5737 InstructionCost VecCost = 0; 5738 // Try to find the previous shuffle node with the same operands and same 5739 // main/alternate ops. 5740 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5741 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5742 if (TE.get() == E) 5743 break; 5744 if (TE->isAltShuffle() && 5745 ((TE->getOpcode() == E->getOpcode() && 5746 TE->getAltOpcode() == E->getAltOpcode()) || 5747 (TE->getOpcode() == E->getAltOpcode() && 5748 TE->getAltOpcode() == E->getOpcode())) && 5749 TE->hasEqualOperands(*E)) 5750 return true; 5751 } 5752 return false; 5753 }; 5754 if (TryFindNodeWithEqualOperands()) { 5755 LLVM_DEBUG({ 5756 dbgs() << "SLP: diamond match for alternate node found.\n"; 5757 E->dump(); 5758 }); 5759 // No need to add new vector costs here since we're going to reuse 5760 // same main/alternate vector ops, just do different shuffling. 5761 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5762 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5763 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5764 CostKind); 5765 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5766 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5767 Builder.getInt1Ty(), 5768 CI0->getPredicate(), CostKind, VL0); 5769 VecCost += TTI->getCmpSelInstrCost( 5770 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5771 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5772 E->getAltOp()); 5773 } else { 5774 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5775 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5776 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5777 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5778 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5779 TTI::CastContextHint::None, CostKind); 5780 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5781 TTI::CastContextHint::None, CostKind); 5782 } 5783 5784 SmallVector<int> Mask; 5785 buildShuffleEntryMask( 5786 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5787 [E](Instruction *I) { 5788 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5789 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5790 }, 5791 Mask); 5792 CommonCost = 5793 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5794 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5795 return CommonCost + VecCost - ScalarCost; 5796 } 5797 default: 5798 llvm_unreachable("Unknown instruction"); 5799 } 5800 } 5801 5802 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5803 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5804 << VectorizableTree.size() << " is fully vectorizable .\n"); 5805 5806 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5807 SmallVector<int> Mask; 5808 return TE->State == TreeEntry::NeedToGather && 5809 !any_of(TE->Scalars, 5810 [this](Value *V) { return EphValues.contains(V); }) && 5811 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5812 TE->Scalars.size() < Limit || 5813 ((TE->getOpcode() == Instruction::ExtractElement || 5814 all_of(TE->Scalars, 5815 [](Value *V) { 5816 return isa<ExtractElementInst, UndefValue>(V); 5817 })) && 5818 isFixedVectorShuffle(TE->Scalars, Mask)) || 5819 (TE->State == TreeEntry::NeedToGather && 5820 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5821 }; 5822 5823 // We only handle trees of heights 1 and 2. 5824 if (VectorizableTree.size() == 1 && 5825 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5826 (ForReduction && 5827 AreVectorizableGathers(VectorizableTree[0].get(), 5828 VectorizableTree[0]->Scalars.size()) && 5829 VectorizableTree[0]->getVectorFactor() > 2))) 5830 return true; 5831 5832 if (VectorizableTree.size() != 2) 5833 return false; 5834 5835 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5836 // with the second gather nodes if they have less scalar operands rather than 5837 // the initial tree element (may be profitable to shuffle the second gather) 5838 // or they are extractelements, which form shuffle. 5839 SmallVector<int> Mask; 5840 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5841 AreVectorizableGathers(VectorizableTree[1].get(), 5842 VectorizableTree[0]->Scalars.size())) 5843 return true; 5844 5845 // Gathering cost would be too much for tiny trees. 5846 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5847 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5848 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5849 return false; 5850 5851 return true; 5852 } 5853 5854 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5855 TargetTransformInfo *TTI, 5856 bool MustMatchOrInst) { 5857 // Look past the root to find a source value. Arbitrarily follow the 5858 // path through operand 0 of any 'or'. Also, peek through optional 5859 // shift-left-by-multiple-of-8-bits. 5860 Value *ZextLoad = Root; 5861 const APInt *ShAmtC; 5862 bool FoundOr = false; 5863 while (!isa<ConstantExpr>(ZextLoad) && 5864 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5865 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5866 ShAmtC->urem(8) == 0))) { 5867 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5868 ZextLoad = BinOp->getOperand(0); 5869 if (BinOp->getOpcode() == Instruction::Or) 5870 FoundOr = true; 5871 } 5872 // Check if the input is an extended load of the required or/shift expression. 5873 Value *Load; 5874 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5875 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5876 return false; 5877 5878 // Require that the total load bit width is a legal integer type. 5879 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5880 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5881 Type *SrcTy = Load->getType(); 5882 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5883 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5884 return false; 5885 5886 // Everything matched - assume that we can fold the whole sequence using 5887 // load combining. 5888 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5889 << *(cast<Instruction>(Root)) << "\n"); 5890 5891 return true; 5892 } 5893 5894 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5895 if (RdxKind != RecurKind::Or) 5896 return false; 5897 5898 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5899 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5900 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5901 /* MatchOr */ false); 5902 } 5903 5904 bool BoUpSLP::isLoadCombineCandidate() const { 5905 // Peek through a final sequence of stores and check if all operations are 5906 // likely to be load-combined. 5907 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5908 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5909 Value *X; 5910 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5911 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5912 return false; 5913 } 5914 return true; 5915 } 5916 5917 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5918 // No need to vectorize inserts of gathered values. 5919 if (VectorizableTree.size() == 2 && 5920 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5921 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5922 return true; 5923 5924 // We can vectorize the tree if its size is greater than or equal to the 5925 // minimum size specified by the MinTreeSize command line option. 5926 if (VectorizableTree.size() >= MinTreeSize) 5927 return false; 5928 5929 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5930 // can vectorize it if we can prove it fully vectorizable. 5931 if (isFullyVectorizableTinyTree(ForReduction)) 5932 return false; 5933 5934 assert(VectorizableTree.empty() 5935 ? ExternalUses.empty() 5936 : true && "We shouldn't have any external users"); 5937 5938 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5939 // vectorizable. 5940 return true; 5941 } 5942 5943 InstructionCost BoUpSLP::getSpillCost() const { 5944 // Walk from the bottom of the tree to the top, tracking which values are 5945 // live. When we see a call instruction that is not part of our tree, 5946 // query TTI to see if there is a cost to keeping values live over it 5947 // (for example, if spills and fills are required). 5948 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5949 InstructionCost Cost = 0; 5950 5951 SmallPtrSet<Instruction*, 4> LiveValues; 5952 Instruction *PrevInst = nullptr; 5953 5954 // The entries in VectorizableTree are not necessarily ordered by their 5955 // position in basic blocks. Collect them and order them by dominance so later 5956 // instructions are guaranteed to be visited first. For instructions in 5957 // different basic blocks, we only scan to the beginning of the block, so 5958 // their order does not matter, as long as all instructions in a basic block 5959 // are grouped together. Using dominance ensures a deterministic order. 5960 SmallVector<Instruction *, 16> OrderedScalars; 5961 for (const auto &TEPtr : VectorizableTree) { 5962 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5963 if (!Inst) 5964 continue; 5965 OrderedScalars.push_back(Inst); 5966 } 5967 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5968 auto *NodeA = DT->getNode(A->getParent()); 5969 auto *NodeB = DT->getNode(B->getParent()); 5970 assert(NodeA && "Should only process reachable instructions"); 5971 assert(NodeB && "Should only process reachable instructions"); 5972 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5973 "Different nodes should have different DFS numbers"); 5974 if (NodeA != NodeB) 5975 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5976 return B->comesBefore(A); 5977 }); 5978 5979 for (Instruction *Inst : OrderedScalars) { 5980 if (!PrevInst) { 5981 PrevInst = Inst; 5982 continue; 5983 } 5984 5985 // Update LiveValues. 5986 LiveValues.erase(PrevInst); 5987 for (auto &J : PrevInst->operands()) { 5988 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5989 LiveValues.insert(cast<Instruction>(&*J)); 5990 } 5991 5992 LLVM_DEBUG({ 5993 dbgs() << "SLP: #LV: " << LiveValues.size(); 5994 for (auto *X : LiveValues) 5995 dbgs() << " " << X->getName(); 5996 dbgs() << ", Looking at "; 5997 Inst->dump(); 5998 }); 5999 6000 // Now find the sequence of instructions between PrevInst and Inst. 6001 unsigned NumCalls = 0; 6002 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6003 PrevInstIt = 6004 PrevInst->getIterator().getReverse(); 6005 while (InstIt != PrevInstIt) { 6006 if (PrevInstIt == PrevInst->getParent()->rend()) { 6007 PrevInstIt = Inst->getParent()->rbegin(); 6008 continue; 6009 } 6010 6011 // Debug information does not impact spill cost. 6012 if ((isa<CallInst>(&*PrevInstIt) && 6013 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6014 &*PrevInstIt != PrevInst) 6015 NumCalls++; 6016 6017 ++PrevInstIt; 6018 } 6019 6020 if (NumCalls) { 6021 SmallVector<Type*, 4> V; 6022 for (auto *II : LiveValues) { 6023 auto *ScalarTy = II->getType(); 6024 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6025 ScalarTy = VectorTy->getElementType(); 6026 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6027 } 6028 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6029 } 6030 6031 PrevInst = Inst; 6032 } 6033 6034 return Cost; 6035 } 6036 6037 /// Check if two insertelement instructions are from the same buildvector. 6038 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6039 InsertElementInst *V) { 6040 // Instructions must be from the same basic blocks. 6041 if (VU->getParent() != V->getParent()) 6042 return false; 6043 // Checks if 2 insertelements are from the same buildvector. 6044 if (VU->getType() != V->getType()) 6045 return false; 6046 // Multiple used inserts are separate nodes. 6047 if (!VU->hasOneUse() && !V->hasOneUse()) 6048 return false; 6049 auto *IE1 = VU; 6050 auto *IE2 = V; 6051 // Go through the vector operand of insertelement instructions trying to find 6052 // either VU as the original vector for IE2 or V as the original vector for 6053 // IE1. 6054 do { 6055 if (IE2 == VU || IE1 == V) 6056 return true; 6057 if (IE1) { 6058 if (IE1 != VU && !IE1->hasOneUse()) 6059 IE1 = nullptr; 6060 else 6061 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6062 } 6063 if (IE2) { 6064 if (IE2 != V && !IE2->hasOneUse()) 6065 IE2 = nullptr; 6066 else 6067 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6068 } 6069 } while (IE1 || IE2); 6070 return false; 6071 } 6072 6073 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6074 InstructionCost Cost = 0; 6075 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6076 << VectorizableTree.size() << ".\n"); 6077 6078 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6079 6080 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6081 TreeEntry &TE = *VectorizableTree[I].get(); 6082 6083 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6084 Cost += C; 6085 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6086 << " for bundle that starts with " << *TE.Scalars[0] 6087 << ".\n" 6088 << "SLP: Current total cost = " << Cost << "\n"); 6089 } 6090 6091 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6092 InstructionCost ExtractCost = 0; 6093 SmallVector<unsigned> VF; 6094 SmallVector<SmallVector<int>> ShuffleMask; 6095 SmallVector<Value *> FirstUsers; 6096 SmallVector<APInt> DemandedElts; 6097 for (ExternalUser &EU : ExternalUses) { 6098 // We only add extract cost once for the same scalar. 6099 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6100 !ExtractCostCalculated.insert(EU.Scalar).second) 6101 continue; 6102 6103 // Uses by ephemeral values are free (because the ephemeral value will be 6104 // removed prior to code generation, and so the extraction will be 6105 // removed as well). 6106 if (EphValues.count(EU.User)) 6107 continue; 6108 6109 // No extract cost for vector "scalar" 6110 if (isa<FixedVectorType>(EU.Scalar->getType())) 6111 continue; 6112 6113 // Already counted the cost for external uses when tried to adjust the cost 6114 // for extractelements, no need to add it again. 6115 if (isa<ExtractElementInst>(EU.Scalar)) 6116 continue; 6117 6118 // If found user is an insertelement, do not calculate extract cost but try 6119 // to detect it as a final shuffled/identity match. 6120 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6121 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6122 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6123 if (InsertIdx) { 6124 auto *It = find_if(FirstUsers, [VU](Value *V) { 6125 return areTwoInsertFromSameBuildVector(VU, 6126 cast<InsertElementInst>(V)); 6127 }); 6128 int VecId = -1; 6129 if (It == FirstUsers.end()) { 6130 VF.push_back(FTy->getNumElements()); 6131 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6132 // Find the insertvector, vectorized in tree, if any. 6133 Value *Base = VU; 6134 while (isa<InsertElementInst>(Base)) { 6135 // Build the mask for the vectorized insertelement instructions. 6136 if (const TreeEntry *E = getTreeEntry(Base)) { 6137 VU = cast<InsertElementInst>(Base); 6138 do { 6139 int Idx = E->findLaneForValue(Base); 6140 ShuffleMask.back()[Idx] = Idx; 6141 Base = cast<InsertElementInst>(Base)->getOperand(0); 6142 } while (E == getTreeEntry(Base)); 6143 break; 6144 } 6145 Base = cast<InsertElementInst>(Base)->getOperand(0); 6146 } 6147 FirstUsers.push_back(VU); 6148 DemandedElts.push_back(APInt::getZero(VF.back())); 6149 VecId = FirstUsers.size() - 1; 6150 } else { 6151 VecId = std::distance(FirstUsers.begin(), It); 6152 } 6153 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6154 DemandedElts[VecId].setBit(*InsertIdx); 6155 continue; 6156 } 6157 } 6158 } 6159 6160 // If we plan to rewrite the tree in a smaller type, we will need to sign 6161 // extend the extracted value back to the original type. Here, we account 6162 // for the extract and the added cost of the sign extend if needed. 6163 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6164 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6165 if (MinBWs.count(ScalarRoot)) { 6166 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6167 auto Extend = 6168 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6169 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6170 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6171 VecTy, EU.Lane); 6172 } else { 6173 ExtractCost += 6174 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6175 } 6176 } 6177 6178 InstructionCost SpillCost = getSpillCost(); 6179 Cost += SpillCost + ExtractCost; 6180 if (FirstUsers.size() == 1) { 6181 int Limit = ShuffleMask.front().size() * 2; 6182 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6183 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6184 InstructionCost C = TTI->getShuffleCost( 6185 TTI::SK_PermuteSingleSrc, 6186 cast<FixedVectorType>(FirstUsers.front()->getType()), 6187 ShuffleMask.front()); 6188 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6189 << " for final shuffle of insertelement external users " 6190 << *VectorizableTree.front()->Scalars.front() << ".\n" 6191 << "SLP: Current total cost = " << Cost << "\n"); 6192 Cost += C; 6193 } 6194 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6195 cast<FixedVectorType>(FirstUsers.front()->getType()), 6196 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6197 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6198 << " for insertelements gather.\n" 6199 << "SLP: Current total cost = " << Cost << "\n"); 6200 Cost -= InsertCost; 6201 } else if (FirstUsers.size() >= 2) { 6202 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6203 // Combined masks of the first 2 vectors. 6204 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6205 copy(ShuffleMask.front(), CombinedMask.begin()); 6206 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6207 auto *VecTy = FixedVectorType::get( 6208 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6209 MaxVF); 6210 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6211 if (ShuffleMask[1][I] != UndefMaskElem) { 6212 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6213 CombinedDemandedElts.setBit(I); 6214 } 6215 } 6216 InstructionCost C = 6217 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6218 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6219 << " for final shuffle of vector node and external " 6220 "insertelement users " 6221 << *VectorizableTree.front()->Scalars.front() << ".\n" 6222 << "SLP: Current total cost = " << Cost << "\n"); 6223 Cost += C; 6224 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6225 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6226 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6227 << " for insertelements gather.\n" 6228 << "SLP: Current total cost = " << Cost << "\n"); 6229 Cost -= InsertCost; 6230 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6231 // Other elements - permutation of 2 vectors (the initial one and the 6232 // next Ith incoming vector). 6233 unsigned VF = ShuffleMask[I].size(); 6234 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6235 int Mask = ShuffleMask[I][Idx]; 6236 if (Mask != UndefMaskElem) 6237 CombinedMask[Idx] = MaxVF + Mask; 6238 else if (CombinedMask[Idx] != UndefMaskElem) 6239 CombinedMask[Idx] = Idx; 6240 } 6241 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6242 if (CombinedMask[Idx] != UndefMaskElem) 6243 CombinedMask[Idx] = Idx; 6244 InstructionCost C = 6245 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6246 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6247 << " for final shuffle of vector node and external " 6248 "insertelement users " 6249 << *VectorizableTree.front()->Scalars.front() << ".\n" 6250 << "SLP: Current total cost = " << Cost << "\n"); 6251 Cost += C; 6252 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6253 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6254 /*Insert*/ true, /*Extract*/ false); 6255 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6256 << " for insertelements gather.\n" 6257 << "SLP: Current total cost = " << Cost << "\n"); 6258 Cost -= InsertCost; 6259 } 6260 } 6261 6262 #ifndef NDEBUG 6263 SmallString<256> Str; 6264 { 6265 raw_svector_ostream OS(Str); 6266 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6267 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6268 << "SLP: Total Cost = " << Cost << ".\n"; 6269 } 6270 LLVM_DEBUG(dbgs() << Str); 6271 if (ViewSLPTree) 6272 ViewGraph(this, "SLP" + F->getName(), false, Str); 6273 #endif 6274 6275 return Cost; 6276 } 6277 6278 Optional<TargetTransformInfo::ShuffleKind> 6279 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6280 SmallVectorImpl<const TreeEntry *> &Entries) { 6281 // TODO: currently checking only for Scalars in the tree entry, need to count 6282 // reused elements too for better cost estimation. 6283 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6284 Entries.clear(); 6285 // Build a lists of values to tree entries. 6286 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6287 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6288 if (EntryPtr.get() == TE) 6289 break; 6290 if (EntryPtr->State != TreeEntry::NeedToGather) 6291 continue; 6292 for (Value *V : EntryPtr->Scalars) 6293 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6294 } 6295 // Find all tree entries used by the gathered values. If no common entries 6296 // found - not a shuffle. 6297 // Here we build a set of tree nodes for each gathered value and trying to 6298 // find the intersection between these sets. If we have at least one common 6299 // tree node for each gathered value - we have just a permutation of the 6300 // single vector. If we have 2 different sets, we're in situation where we 6301 // have a permutation of 2 input vectors. 6302 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6303 DenseMap<Value *, int> UsedValuesEntry; 6304 for (Value *V : TE->Scalars) { 6305 if (isa<UndefValue>(V)) 6306 continue; 6307 // Build a list of tree entries where V is used. 6308 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6309 auto It = ValueToTEs.find(V); 6310 if (It != ValueToTEs.end()) 6311 VToTEs = It->second; 6312 if (const TreeEntry *VTE = getTreeEntry(V)) 6313 VToTEs.insert(VTE); 6314 if (VToTEs.empty()) 6315 return None; 6316 if (UsedTEs.empty()) { 6317 // The first iteration, just insert the list of nodes to vector. 6318 UsedTEs.push_back(VToTEs); 6319 } else { 6320 // Need to check if there are any previously used tree nodes which use V. 6321 // If there are no such nodes, consider that we have another one input 6322 // vector. 6323 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6324 unsigned Idx = 0; 6325 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6326 // Do we have a non-empty intersection of previously listed tree entries 6327 // and tree entries using current V? 6328 set_intersect(VToTEs, Set); 6329 if (!VToTEs.empty()) { 6330 // Yes, write the new subset and continue analysis for the next 6331 // scalar. 6332 Set.swap(VToTEs); 6333 break; 6334 } 6335 VToTEs = SavedVToTEs; 6336 ++Idx; 6337 } 6338 // No non-empty intersection found - need to add a second set of possible 6339 // source vectors. 6340 if (Idx == UsedTEs.size()) { 6341 // If the number of input vectors is greater than 2 - not a permutation, 6342 // fallback to the regular gather. 6343 if (UsedTEs.size() == 2) 6344 return None; 6345 UsedTEs.push_back(SavedVToTEs); 6346 Idx = UsedTEs.size() - 1; 6347 } 6348 UsedValuesEntry.try_emplace(V, Idx); 6349 } 6350 } 6351 6352 unsigned VF = 0; 6353 if (UsedTEs.size() == 1) { 6354 // Try to find the perfect match in another gather node at first. 6355 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6356 return EntryPtr->isSame(TE->Scalars); 6357 }); 6358 if (It != UsedTEs.front().end()) { 6359 Entries.push_back(*It); 6360 std::iota(Mask.begin(), Mask.end(), 0); 6361 return TargetTransformInfo::SK_PermuteSingleSrc; 6362 } 6363 // No perfect match, just shuffle, so choose the first tree node. 6364 Entries.push_back(*UsedTEs.front().begin()); 6365 } else { 6366 // Try to find nodes with the same vector factor. 6367 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6368 DenseMap<int, const TreeEntry *> VFToTE; 6369 for (const TreeEntry *TE : UsedTEs.front()) 6370 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6371 for (const TreeEntry *TE : UsedTEs.back()) { 6372 auto It = VFToTE.find(TE->getVectorFactor()); 6373 if (It != VFToTE.end()) { 6374 VF = It->first; 6375 Entries.push_back(It->second); 6376 Entries.push_back(TE); 6377 break; 6378 } 6379 } 6380 // No 2 source vectors with the same vector factor - give up and do regular 6381 // gather. 6382 if (Entries.empty()) 6383 return None; 6384 } 6385 6386 // Build a shuffle mask for better cost estimation and vector emission. 6387 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6388 Value *V = TE->Scalars[I]; 6389 if (isa<UndefValue>(V)) 6390 continue; 6391 unsigned Idx = UsedValuesEntry.lookup(V); 6392 const TreeEntry *VTE = Entries[Idx]; 6393 int FoundLane = VTE->findLaneForValue(V); 6394 Mask[I] = Idx * VF + FoundLane; 6395 // Extra check required by isSingleSourceMaskImpl function (called by 6396 // ShuffleVectorInst::isSingleSourceMask). 6397 if (Mask[I] >= 2 * E) 6398 return None; 6399 } 6400 switch (Entries.size()) { 6401 case 1: 6402 return TargetTransformInfo::SK_PermuteSingleSrc; 6403 case 2: 6404 return TargetTransformInfo::SK_PermuteTwoSrc; 6405 default: 6406 break; 6407 } 6408 return None; 6409 } 6410 6411 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6412 const APInt &ShuffledIndices, 6413 bool NeedToShuffle) const { 6414 InstructionCost Cost = 6415 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6416 /*Extract*/ false); 6417 if (NeedToShuffle) 6418 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6419 return Cost; 6420 } 6421 6422 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6423 // Find the type of the operands in VL. 6424 Type *ScalarTy = VL[0]->getType(); 6425 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6426 ScalarTy = SI->getValueOperand()->getType(); 6427 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6428 bool DuplicateNonConst = false; 6429 // Find the cost of inserting/extracting values from the vector. 6430 // Check if the same elements are inserted several times and count them as 6431 // shuffle candidates. 6432 APInt ShuffledElements = APInt::getZero(VL.size()); 6433 DenseSet<Value *> UniqueElements; 6434 // Iterate in reverse order to consider insert elements with the high cost. 6435 for (unsigned I = VL.size(); I > 0; --I) { 6436 unsigned Idx = I - 1; 6437 // No need to shuffle duplicates for constants. 6438 if (isConstant(VL[Idx])) { 6439 ShuffledElements.setBit(Idx); 6440 continue; 6441 } 6442 if (!UniqueElements.insert(VL[Idx]).second) { 6443 DuplicateNonConst = true; 6444 ShuffledElements.setBit(Idx); 6445 } 6446 } 6447 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6448 } 6449 6450 // Perform operand reordering on the instructions in VL and return the reordered 6451 // operands in Left and Right. 6452 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6453 SmallVectorImpl<Value *> &Left, 6454 SmallVectorImpl<Value *> &Right, 6455 const DataLayout &DL, 6456 ScalarEvolution &SE, 6457 const BoUpSLP &R) { 6458 if (VL.empty()) 6459 return; 6460 VLOperands Ops(VL, DL, SE, R); 6461 // Reorder the operands in place. 6462 Ops.reorder(); 6463 Left = Ops.getVL(0); 6464 Right = Ops.getVL(1); 6465 } 6466 6467 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6468 // Get the basic block this bundle is in. All instructions in the bundle 6469 // should be in this block. 6470 auto *Front = E->getMainOp(); 6471 auto *BB = Front->getParent(); 6472 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6473 auto *I = cast<Instruction>(V); 6474 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6475 })); 6476 6477 auto &&FindLastInst = [E, Front]() { 6478 Instruction *LastInst = Front; 6479 for (Value *V : E->Scalars) { 6480 auto *I = dyn_cast<Instruction>(V); 6481 if (!I) 6482 continue; 6483 if (LastInst->comesBefore(I)) 6484 LastInst = I; 6485 } 6486 return LastInst; 6487 }; 6488 6489 auto &&FindFirstInst = [E, Front]() { 6490 Instruction *FirstInst = Front; 6491 for (Value *V : E->Scalars) { 6492 auto *I = dyn_cast<Instruction>(V); 6493 if (!I) 6494 continue; 6495 if (I->comesBefore(FirstInst)) 6496 FirstInst = I; 6497 } 6498 return FirstInst; 6499 }; 6500 6501 // Set the insert point to the beginning of the basic block if the entry 6502 // should not be scheduled. 6503 if (E->State != TreeEntry::NeedToGather && 6504 doesNotNeedToSchedule(E->Scalars)) { 6505 BasicBlock::iterator InsertPt; 6506 if (all_of(E->Scalars, isUsedOutsideBlock)) 6507 InsertPt = FindLastInst()->getIterator(); 6508 else 6509 InsertPt = FindFirstInst()->getIterator(); 6510 Builder.SetInsertPoint(BB, InsertPt); 6511 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6512 return; 6513 } 6514 6515 // The last instruction in the bundle in program order. 6516 Instruction *LastInst = nullptr; 6517 6518 // Find the last instruction. The common case should be that BB has been 6519 // scheduled, and the last instruction is VL.back(). So we start with 6520 // VL.back() and iterate over schedule data until we reach the end of the 6521 // bundle. The end of the bundle is marked by null ScheduleData. 6522 if (BlocksSchedules.count(BB)) { 6523 Value *V = E->isOneOf(E->Scalars.back()); 6524 if (doesNotNeedToBeScheduled(V)) 6525 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6526 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6527 if (Bundle && Bundle->isPartOfBundle()) 6528 for (; Bundle; Bundle = Bundle->NextInBundle) 6529 if (Bundle->OpValue == Bundle->Inst) 6530 LastInst = Bundle->Inst; 6531 } 6532 6533 // LastInst can still be null at this point if there's either not an entry 6534 // for BB in BlocksSchedules or there's no ScheduleData available for 6535 // VL.back(). This can be the case if buildTree_rec aborts for various 6536 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6537 // size is reached, etc.). ScheduleData is initialized in the scheduling 6538 // "dry-run". 6539 // 6540 // If this happens, we can still find the last instruction by brute force. We 6541 // iterate forwards from Front (inclusive) until we either see all 6542 // instructions in the bundle or reach the end of the block. If Front is the 6543 // last instruction in program order, LastInst will be set to Front, and we 6544 // will visit all the remaining instructions in the block. 6545 // 6546 // One of the reasons we exit early from buildTree_rec is to place an upper 6547 // bound on compile-time. Thus, taking an additional compile-time hit here is 6548 // not ideal. However, this should be exceedingly rare since it requires that 6549 // we both exit early from buildTree_rec and that the bundle be out-of-order 6550 // (causing us to iterate all the way to the end of the block). 6551 if (!LastInst) 6552 LastInst = FindLastInst(); 6553 assert(LastInst && "Failed to find last instruction in bundle"); 6554 6555 // Set the insertion point after the last instruction in the bundle. Set the 6556 // debug location to Front. 6557 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6558 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6559 } 6560 6561 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6562 // List of instructions/lanes from current block and/or the blocks which are 6563 // part of the current loop. These instructions will be inserted at the end to 6564 // make it possible to optimize loops and hoist invariant instructions out of 6565 // the loops body with better chances for success. 6566 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6567 SmallSet<int, 4> PostponedIndices; 6568 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6569 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6570 SmallPtrSet<BasicBlock *, 4> Visited; 6571 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6572 InsertBB = InsertBB->getSinglePredecessor(); 6573 return InsertBB && InsertBB == InstBB; 6574 }; 6575 for (int I = 0, E = VL.size(); I < E; ++I) { 6576 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6577 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6578 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6579 PostponedIndices.insert(I).second) 6580 PostponedInsts.emplace_back(Inst, I); 6581 } 6582 6583 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6584 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6585 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6586 if (!InsElt) 6587 return Vec; 6588 GatherShuffleSeq.insert(InsElt); 6589 CSEBlocks.insert(InsElt->getParent()); 6590 // Add to our 'need-to-extract' list. 6591 if (TreeEntry *Entry = getTreeEntry(V)) { 6592 // Find which lane we need to extract. 6593 unsigned FoundLane = Entry->findLaneForValue(V); 6594 ExternalUses.emplace_back(V, InsElt, FoundLane); 6595 } 6596 return Vec; 6597 }; 6598 Value *Val0 = 6599 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6600 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6601 Value *Vec = PoisonValue::get(VecTy); 6602 SmallVector<int> NonConsts; 6603 // Insert constant values at first. 6604 for (int I = 0, E = VL.size(); I < E; ++I) { 6605 if (PostponedIndices.contains(I)) 6606 continue; 6607 if (!isConstant(VL[I])) { 6608 NonConsts.push_back(I); 6609 continue; 6610 } 6611 Vec = CreateInsertElement(Vec, VL[I], I); 6612 } 6613 // Insert non-constant values. 6614 for (int I : NonConsts) 6615 Vec = CreateInsertElement(Vec, VL[I], I); 6616 // Append instructions, which are/may be part of the loop, in the end to make 6617 // it possible to hoist non-loop-based instructions. 6618 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6619 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6620 6621 return Vec; 6622 } 6623 6624 namespace { 6625 /// Merges shuffle masks and emits final shuffle instruction, if required. 6626 class ShuffleInstructionBuilder { 6627 IRBuilderBase &Builder; 6628 const unsigned VF = 0; 6629 bool IsFinalized = false; 6630 SmallVector<int, 4> Mask; 6631 /// Holds all of the instructions that we gathered. 6632 SetVector<Instruction *> &GatherShuffleSeq; 6633 /// A list of blocks that we are going to CSE. 6634 SetVector<BasicBlock *> &CSEBlocks; 6635 6636 public: 6637 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6638 SetVector<Instruction *> &GatherShuffleSeq, 6639 SetVector<BasicBlock *> &CSEBlocks) 6640 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6641 CSEBlocks(CSEBlocks) {} 6642 6643 /// Adds a mask, inverting it before applying. 6644 void addInversedMask(ArrayRef<unsigned> SubMask) { 6645 if (SubMask.empty()) 6646 return; 6647 SmallVector<int, 4> NewMask; 6648 inversePermutation(SubMask, NewMask); 6649 addMask(NewMask); 6650 } 6651 6652 /// Functions adds masks, merging them into single one. 6653 void addMask(ArrayRef<unsigned> SubMask) { 6654 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6655 addMask(NewMask); 6656 } 6657 6658 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6659 6660 Value *finalize(Value *V) { 6661 IsFinalized = true; 6662 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6663 if (VF == ValueVF && Mask.empty()) 6664 return V; 6665 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6666 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6667 addMask(NormalizedMask); 6668 6669 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6670 return V; 6671 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6672 if (auto *I = dyn_cast<Instruction>(Vec)) { 6673 GatherShuffleSeq.insert(I); 6674 CSEBlocks.insert(I->getParent()); 6675 } 6676 return Vec; 6677 } 6678 6679 ~ShuffleInstructionBuilder() { 6680 assert((IsFinalized || Mask.empty()) && 6681 "Shuffle construction must be finalized."); 6682 } 6683 }; 6684 } // namespace 6685 6686 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6687 const unsigned VF = VL.size(); 6688 InstructionsState S = getSameOpcode(VL); 6689 if (S.getOpcode()) { 6690 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6691 if (E->isSame(VL)) { 6692 Value *V = vectorizeTree(E); 6693 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6694 if (!E->ReuseShuffleIndices.empty()) { 6695 // Reshuffle to get only unique values. 6696 // If some of the scalars are duplicated in the vectorization tree 6697 // entry, we do not vectorize them but instead generate a mask for 6698 // the reuses. But if there are several users of the same entry, 6699 // they may have different vectorization factors. This is especially 6700 // important for PHI nodes. In this case, we need to adapt the 6701 // resulting instruction for the user vectorization factor and have 6702 // to reshuffle it again to take only unique elements of the vector. 6703 // Without this code the function incorrectly returns reduced vector 6704 // instruction with the same elements, not with the unique ones. 6705 6706 // block: 6707 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6708 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6709 // ... (use %2) 6710 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6711 // br %block 6712 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6713 SmallSet<int, 4> UsedIdxs; 6714 int Pos = 0; 6715 int Sz = VL.size(); 6716 for (int Idx : E->ReuseShuffleIndices) { 6717 if (Idx != Sz && Idx != UndefMaskElem && 6718 UsedIdxs.insert(Idx).second) 6719 UniqueIdxs[Idx] = Pos; 6720 ++Pos; 6721 } 6722 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6723 "less than original vector size."); 6724 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6725 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6726 } else { 6727 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6728 "Expected vectorization factor less " 6729 "than original vector size."); 6730 SmallVector<int> UniformMask(VF, 0); 6731 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6732 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6733 } 6734 if (auto *I = dyn_cast<Instruction>(V)) { 6735 GatherShuffleSeq.insert(I); 6736 CSEBlocks.insert(I->getParent()); 6737 } 6738 } 6739 return V; 6740 } 6741 } 6742 6743 // Can't vectorize this, so simply build a new vector with each lane 6744 // corresponding to the requested value. 6745 return createBuildVector(VL); 6746 } 6747 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6748 unsigned VF = VL.size(); 6749 // Exploit possible reuse of values across lanes. 6750 SmallVector<int> ReuseShuffleIndicies; 6751 SmallVector<Value *> UniqueValues; 6752 if (VL.size() > 2) { 6753 DenseMap<Value *, unsigned> UniquePositions; 6754 unsigned NumValues = 6755 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6756 return !isa<UndefValue>(V); 6757 }).base()); 6758 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6759 int UniqueVals = 0; 6760 for (Value *V : VL.drop_back(VL.size() - VF)) { 6761 if (isa<UndefValue>(V)) { 6762 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6763 continue; 6764 } 6765 if (isConstant(V)) { 6766 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6767 UniqueValues.emplace_back(V); 6768 continue; 6769 } 6770 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6771 ReuseShuffleIndicies.emplace_back(Res.first->second); 6772 if (Res.second) { 6773 UniqueValues.emplace_back(V); 6774 ++UniqueVals; 6775 } 6776 } 6777 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6778 // Emit pure splat vector. 6779 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6780 UndefMaskElem); 6781 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6782 ReuseShuffleIndicies.clear(); 6783 UniqueValues.clear(); 6784 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6785 } 6786 UniqueValues.append(VF - UniqueValues.size(), 6787 PoisonValue::get(VL[0]->getType())); 6788 VL = UniqueValues; 6789 } 6790 6791 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6792 CSEBlocks); 6793 Value *Vec = gather(VL); 6794 if (!ReuseShuffleIndicies.empty()) { 6795 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6796 Vec = ShuffleBuilder.finalize(Vec); 6797 } 6798 return Vec; 6799 } 6800 6801 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6802 IRBuilder<>::InsertPointGuard Guard(Builder); 6803 6804 if (E->VectorizedValue) { 6805 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6806 return E->VectorizedValue; 6807 } 6808 6809 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6810 unsigned VF = E->getVectorFactor(); 6811 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6812 CSEBlocks); 6813 if (E->State == TreeEntry::NeedToGather) { 6814 if (E->getMainOp()) 6815 setInsertPointAfterBundle(E); 6816 Value *Vec; 6817 SmallVector<int> Mask; 6818 SmallVector<const TreeEntry *> Entries; 6819 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6820 isGatherShuffledEntry(E, Mask, Entries); 6821 if (Shuffle.hasValue()) { 6822 assert((Entries.size() == 1 || Entries.size() == 2) && 6823 "Expected shuffle of 1 or 2 entries."); 6824 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6825 Entries.back()->VectorizedValue, Mask); 6826 if (auto *I = dyn_cast<Instruction>(Vec)) { 6827 GatherShuffleSeq.insert(I); 6828 CSEBlocks.insert(I->getParent()); 6829 } 6830 } else { 6831 Vec = gather(E->Scalars); 6832 } 6833 if (NeedToShuffleReuses) { 6834 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6835 Vec = ShuffleBuilder.finalize(Vec); 6836 } 6837 E->VectorizedValue = Vec; 6838 return Vec; 6839 } 6840 6841 assert((E->State == TreeEntry::Vectorize || 6842 E->State == TreeEntry::ScatterVectorize) && 6843 "Unhandled state"); 6844 unsigned ShuffleOrOp = 6845 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6846 Instruction *VL0 = E->getMainOp(); 6847 Type *ScalarTy = VL0->getType(); 6848 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6849 ScalarTy = Store->getValueOperand()->getType(); 6850 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6851 ScalarTy = IE->getOperand(1)->getType(); 6852 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6853 switch (ShuffleOrOp) { 6854 case Instruction::PHI: { 6855 assert( 6856 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6857 "PHI reordering is free."); 6858 auto *PH = cast<PHINode>(VL0); 6859 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6860 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6861 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6862 Value *V = NewPhi; 6863 6864 // Adjust insertion point once all PHI's have been generated. 6865 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6866 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6867 6868 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6869 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6870 V = ShuffleBuilder.finalize(V); 6871 6872 E->VectorizedValue = V; 6873 6874 // PHINodes may have multiple entries from the same block. We want to 6875 // visit every block once. 6876 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6877 6878 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6879 ValueList Operands; 6880 BasicBlock *IBB = PH->getIncomingBlock(i); 6881 6882 if (!VisitedBBs.insert(IBB).second) { 6883 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6884 continue; 6885 } 6886 6887 Builder.SetInsertPoint(IBB->getTerminator()); 6888 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6889 Value *Vec = vectorizeTree(E->getOperand(i)); 6890 NewPhi->addIncoming(Vec, IBB); 6891 } 6892 6893 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6894 "Invalid number of incoming values"); 6895 return V; 6896 } 6897 6898 case Instruction::ExtractElement: { 6899 Value *V = E->getSingleOperand(0); 6900 Builder.SetInsertPoint(VL0); 6901 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6902 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6903 V = ShuffleBuilder.finalize(V); 6904 E->VectorizedValue = V; 6905 return V; 6906 } 6907 case Instruction::ExtractValue: { 6908 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6909 Builder.SetInsertPoint(LI); 6910 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6911 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6912 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6913 Value *NewV = propagateMetadata(V, E->Scalars); 6914 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6915 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6916 NewV = ShuffleBuilder.finalize(NewV); 6917 E->VectorizedValue = NewV; 6918 return NewV; 6919 } 6920 case Instruction::InsertElement: { 6921 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6922 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6923 Value *V = vectorizeTree(E->getOperand(1)); 6924 6925 // Create InsertVector shuffle if necessary 6926 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6927 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6928 })); 6929 const unsigned NumElts = 6930 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6931 const unsigned NumScalars = E->Scalars.size(); 6932 6933 unsigned Offset = *getInsertIndex(VL0); 6934 assert(Offset < NumElts && "Failed to find vector index offset"); 6935 6936 // Create shuffle to resize vector 6937 SmallVector<int> Mask; 6938 if (!E->ReorderIndices.empty()) { 6939 inversePermutation(E->ReorderIndices, Mask); 6940 Mask.append(NumElts - NumScalars, UndefMaskElem); 6941 } else { 6942 Mask.assign(NumElts, UndefMaskElem); 6943 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6944 } 6945 // Create InsertVector shuffle if necessary 6946 bool IsIdentity = true; 6947 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6948 Mask.swap(PrevMask); 6949 for (unsigned I = 0; I < NumScalars; ++I) { 6950 Value *Scalar = E->Scalars[PrevMask[I]]; 6951 unsigned InsertIdx = *getInsertIndex(Scalar); 6952 IsIdentity &= InsertIdx - Offset == I; 6953 Mask[InsertIdx - Offset] = I; 6954 } 6955 if (!IsIdentity || NumElts != NumScalars) { 6956 V = Builder.CreateShuffleVector(V, Mask); 6957 if (auto *I = dyn_cast<Instruction>(V)) { 6958 GatherShuffleSeq.insert(I); 6959 CSEBlocks.insert(I->getParent()); 6960 } 6961 } 6962 6963 if ((!IsIdentity || Offset != 0 || 6964 !isUndefVector(FirstInsert->getOperand(0))) && 6965 NumElts != NumScalars) { 6966 SmallVector<int> InsertMask(NumElts); 6967 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6968 for (unsigned I = 0; I < NumElts; I++) { 6969 if (Mask[I] != UndefMaskElem) 6970 InsertMask[Offset + I] = NumElts + I; 6971 } 6972 6973 V = Builder.CreateShuffleVector( 6974 FirstInsert->getOperand(0), V, InsertMask, 6975 cast<Instruction>(E->Scalars.back())->getName()); 6976 if (auto *I = dyn_cast<Instruction>(V)) { 6977 GatherShuffleSeq.insert(I); 6978 CSEBlocks.insert(I->getParent()); 6979 } 6980 } 6981 6982 ++NumVectorInstructions; 6983 E->VectorizedValue = V; 6984 return V; 6985 } 6986 case Instruction::ZExt: 6987 case Instruction::SExt: 6988 case Instruction::FPToUI: 6989 case Instruction::FPToSI: 6990 case Instruction::FPExt: 6991 case Instruction::PtrToInt: 6992 case Instruction::IntToPtr: 6993 case Instruction::SIToFP: 6994 case Instruction::UIToFP: 6995 case Instruction::Trunc: 6996 case Instruction::FPTrunc: 6997 case Instruction::BitCast: { 6998 setInsertPointAfterBundle(E); 6999 7000 Value *InVec = vectorizeTree(E->getOperand(0)); 7001 7002 if (E->VectorizedValue) { 7003 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7004 return E->VectorizedValue; 7005 } 7006 7007 auto *CI = cast<CastInst>(VL0); 7008 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7009 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7010 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7011 V = ShuffleBuilder.finalize(V); 7012 7013 E->VectorizedValue = V; 7014 ++NumVectorInstructions; 7015 return V; 7016 } 7017 case Instruction::FCmp: 7018 case Instruction::ICmp: { 7019 setInsertPointAfterBundle(E); 7020 7021 Value *L = vectorizeTree(E->getOperand(0)); 7022 Value *R = vectorizeTree(E->getOperand(1)); 7023 7024 if (E->VectorizedValue) { 7025 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7026 return E->VectorizedValue; 7027 } 7028 7029 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7030 Value *V = Builder.CreateCmp(P0, L, R); 7031 propagateIRFlags(V, E->Scalars, VL0); 7032 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7033 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7034 V = ShuffleBuilder.finalize(V); 7035 7036 E->VectorizedValue = V; 7037 ++NumVectorInstructions; 7038 return V; 7039 } 7040 case Instruction::Select: { 7041 setInsertPointAfterBundle(E); 7042 7043 Value *Cond = vectorizeTree(E->getOperand(0)); 7044 Value *True = vectorizeTree(E->getOperand(1)); 7045 Value *False = vectorizeTree(E->getOperand(2)); 7046 7047 if (E->VectorizedValue) { 7048 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7049 return E->VectorizedValue; 7050 } 7051 7052 Value *V = Builder.CreateSelect(Cond, True, False); 7053 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7054 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7055 V = ShuffleBuilder.finalize(V); 7056 7057 E->VectorizedValue = V; 7058 ++NumVectorInstructions; 7059 return V; 7060 } 7061 case Instruction::FNeg: { 7062 setInsertPointAfterBundle(E); 7063 7064 Value *Op = vectorizeTree(E->getOperand(0)); 7065 7066 if (E->VectorizedValue) { 7067 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7068 return E->VectorizedValue; 7069 } 7070 7071 Value *V = Builder.CreateUnOp( 7072 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7073 propagateIRFlags(V, E->Scalars, VL0); 7074 if (auto *I = dyn_cast<Instruction>(V)) 7075 V = propagateMetadata(I, E->Scalars); 7076 7077 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7078 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7079 V = ShuffleBuilder.finalize(V); 7080 7081 E->VectorizedValue = V; 7082 ++NumVectorInstructions; 7083 7084 return V; 7085 } 7086 case Instruction::Add: 7087 case Instruction::FAdd: 7088 case Instruction::Sub: 7089 case Instruction::FSub: 7090 case Instruction::Mul: 7091 case Instruction::FMul: 7092 case Instruction::UDiv: 7093 case Instruction::SDiv: 7094 case Instruction::FDiv: 7095 case Instruction::URem: 7096 case Instruction::SRem: 7097 case Instruction::FRem: 7098 case Instruction::Shl: 7099 case Instruction::LShr: 7100 case Instruction::AShr: 7101 case Instruction::And: 7102 case Instruction::Or: 7103 case Instruction::Xor: { 7104 setInsertPointAfterBundle(E); 7105 7106 Value *LHS = vectorizeTree(E->getOperand(0)); 7107 Value *RHS = vectorizeTree(E->getOperand(1)); 7108 7109 if (E->VectorizedValue) { 7110 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7111 return E->VectorizedValue; 7112 } 7113 7114 Value *V = Builder.CreateBinOp( 7115 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7116 RHS); 7117 propagateIRFlags(V, E->Scalars, VL0); 7118 if (auto *I = dyn_cast<Instruction>(V)) 7119 V = propagateMetadata(I, E->Scalars); 7120 7121 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7122 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7123 V = ShuffleBuilder.finalize(V); 7124 7125 E->VectorizedValue = V; 7126 ++NumVectorInstructions; 7127 7128 return V; 7129 } 7130 case Instruction::Load: { 7131 // Loads are inserted at the head of the tree because we don't want to 7132 // sink them all the way down past store instructions. 7133 setInsertPointAfterBundle(E); 7134 7135 LoadInst *LI = cast<LoadInst>(VL0); 7136 Instruction *NewLI; 7137 unsigned AS = LI->getPointerAddressSpace(); 7138 Value *PO = LI->getPointerOperand(); 7139 if (E->State == TreeEntry::Vectorize) { 7140 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7141 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7142 7143 // The pointer operand uses an in-tree scalar so we add the new BitCast 7144 // or LoadInst to ExternalUses list to make sure that an extract will 7145 // be generated in the future. 7146 if (TreeEntry *Entry = getTreeEntry(PO)) { 7147 // Find which lane we need to extract. 7148 unsigned FoundLane = Entry->findLaneForValue(PO); 7149 ExternalUses.emplace_back( 7150 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7151 } 7152 } else { 7153 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7154 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7155 // Use the minimum alignment of the gathered loads. 7156 Align CommonAlignment = LI->getAlign(); 7157 for (Value *V : E->Scalars) 7158 CommonAlignment = 7159 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7160 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7161 } 7162 Value *V = propagateMetadata(NewLI, E->Scalars); 7163 7164 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7165 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7166 V = ShuffleBuilder.finalize(V); 7167 E->VectorizedValue = V; 7168 ++NumVectorInstructions; 7169 return V; 7170 } 7171 case Instruction::Store: { 7172 auto *SI = cast<StoreInst>(VL0); 7173 unsigned AS = SI->getPointerAddressSpace(); 7174 7175 setInsertPointAfterBundle(E); 7176 7177 Value *VecValue = vectorizeTree(E->getOperand(0)); 7178 ShuffleBuilder.addMask(E->ReorderIndices); 7179 VecValue = ShuffleBuilder.finalize(VecValue); 7180 7181 Value *ScalarPtr = SI->getPointerOperand(); 7182 Value *VecPtr = Builder.CreateBitCast( 7183 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7184 StoreInst *ST = 7185 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7186 7187 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7188 // StoreInst to ExternalUses to make sure that an extract will be 7189 // generated in the future. 7190 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7191 // Find which lane we need to extract. 7192 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7193 ExternalUses.push_back(ExternalUser( 7194 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7195 FoundLane)); 7196 } 7197 7198 Value *V = propagateMetadata(ST, E->Scalars); 7199 7200 E->VectorizedValue = V; 7201 ++NumVectorInstructions; 7202 return V; 7203 } 7204 case Instruction::GetElementPtr: { 7205 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7206 setInsertPointAfterBundle(E); 7207 7208 Value *Op0 = vectorizeTree(E->getOperand(0)); 7209 7210 SmallVector<Value *> OpVecs; 7211 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7212 Value *OpVec = vectorizeTree(E->getOperand(J)); 7213 OpVecs.push_back(OpVec); 7214 } 7215 7216 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7217 if (Instruction *I = dyn_cast<Instruction>(V)) 7218 V = propagateMetadata(I, E->Scalars); 7219 7220 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7221 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7222 V = ShuffleBuilder.finalize(V); 7223 7224 E->VectorizedValue = V; 7225 ++NumVectorInstructions; 7226 7227 return V; 7228 } 7229 case Instruction::Call: { 7230 CallInst *CI = cast<CallInst>(VL0); 7231 setInsertPointAfterBundle(E); 7232 7233 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7234 if (Function *FI = CI->getCalledFunction()) 7235 IID = FI->getIntrinsicID(); 7236 7237 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7238 7239 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7240 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7241 VecCallCosts.first <= VecCallCosts.second; 7242 7243 Value *ScalarArg = nullptr; 7244 std::vector<Value *> OpVecs; 7245 SmallVector<Type *, 2> TysForDecl = 7246 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7247 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7248 ValueList OpVL; 7249 // Some intrinsics have scalar arguments. This argument should not be 7250 // vectorized. 7251 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7252 CallInst *CEI = cast<CallInst>(VL0); 7253 ScalarArg = CEI->getArgOperand(j); 7254 OpVecs.push_back(CEI->getArgOperand(j)); 7255 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7256 TysForDecl.push_back(ScalarArg->getType()); 7257 continue; 7258 } 7259 7260 Value *OpVec = vectorizeTree(E->getOperand(j)); 7261 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7262 OpVecs.push_back(OpVec); 7263 } 7264 7265 Function *CF; 7266 if (!UseIntrinsic) { 7267 VFShape Shape = 7268 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7269 VecTy->getNumElements())), 7270 false /*HasGlobalPred*/); 7271 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7272 } else { 7273 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7274 } 7275 7276 SmallVector<OperandBundleDef, 1> OpBundles; 7277 CI->getOperandBundlesAsDefs(OpBundles); 7278 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7279 7280 // The scalar argument uses an in-tree scalar so we add the new vectorized 7281 // call to ExternalUses list to make sure that an extract will be 7282 // generated in the future. 7283 if (ScalarArg) { 7284 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7285 // Find which lane we need to extract. 7286 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7287 ExternalUses.push_back( 7288 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7289 } 7290 } 7291 7292 propagateIRFlags(V, E->Scalars, VL0); 7293 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7294 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7295 V = ShuffleBuilder.finalize(V); 7296 7297 E->VectorizedValue = V; 7298 ++NumVectorInstructions; 7299 return V; 7300 } 7301 case Instruction::ShuffleVector: { 7302 assert(E->isAltShuffle() && 7303 ((Instruction::isBinaryOp(E->getOpcode()) && 7304 Instruction::isBinaryOp(E->getAltOpcode())) || 7305 (Instruction::isCast(E->getOpcode()) && 7306 Instruction::isCast(E->getAltOpcode())) || 7307 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7308 "Invalid Shuffle Vector Operand"); 7309 7310 Value *LHS = nullptr, *RHS = nullptr; 7311 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7312 setInsertPointAfterBundle(E); 7313 LHS = vectorizeTree(E->getOperand(0)); 7314 RHS = vectorizeTree(E->getOperand(1)); 7315 } else { 7316 setInsertPointAfterBundle(E); 7317 LHS = vectorizeTree(E->getOperand(0)); 7318 } 7319 7320 if (E->VectorizedValue) { 7321 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7322 return E->VectorizedValue; 7323 } 7324 7325 Value *V0, *V1; 7326 if (Instruction::isBinaryOp(E->getOpcode())) { 7327 V0 = Builder.CreateBinOp( 7328 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7329 V1 = Builder.CreateBinOp( 7330 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7331 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7332 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7333 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7334 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7335 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7336 } else { 7337 V0 = Builder.CreateCast( 7338 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7339 V1 = Builder.CreateCast( 7340 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7341 } 7342 // Add V0 and V1 to later analysis to try to find and remove matching 7343 // instruction, if any. 7344 for (Value *V : {V0, V1}) { 7345 if (auto *I = dyn_cast<Instruction>(V)) { 7346 GatherShuffleSeq.insert(I); 7347 CSEBlocks.insert(I->getParent()); 7348 } 7349 } 7350 7351 // Create shuffle to take alternate operations from the vector. 7352 // Also, gather up main and alt scalar ops to propagate IR flags to 7353 // each vector operation. 7354 ValueList OpScalars, AltScalars; 7355 SmallVector<int> Mask; 7356 buildShuffleEntryMask( 7357 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7358 [E](Instruction *I) { 7359 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7360 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7361 }, 7362 Mask, &OpScalars, &AltScalars); 7363 7364 propagateIRFlags(V0, OpScalars); 7365 propagateIRFlags(V1, AltScalars); 7366 7367 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7368 if (auto *I = dyn_cast<Instruction>(V)) { 7369 V = propagateMetadata(I, E->Scalars); 7370 GatherShuffleSeq.insert(I); 7371 CSEBlocks.insert(I->getParent()); 7372 } 7373 V = ShuffleBuilder.finalize(V); 7374 7375 E->VectorizedValue = V; 7376 ++NumVectorInstructions; 7377 7378 return V; 7379 } 7380 default: 7381 llvm_unreachable("unknown inst"); 7382 } 7383 return nullptr; 7384 } 7385 7386 Value *BoUpSLP::vectorizeTree() { 7387 ExtraValueToDebugLocsMap ExternallyUsedValues; 7388 return vectorizeTree(ExternallyUsedValues); 7389 } 7390 7391 Value * 7392 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7393 // All blocks must be scheduled before any instructions are inserted. 7394 for (auto &BSIter : BlocksSchedules) { 7395 scheduleBlock(BSIter.second.get()); 7396 } 7397 7398 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7399 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7400 7401 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7402 // vectorized root. InstCombine will then rewrite the entire expression. We 7403 // sign extend the extracted values below. 7404 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7405 if (MinBWs.count(ScalarRoot)) { 7406 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7407 // If current instr is a phi and not the last phi, insert it after the 7408 // last phi node. 7409 if (isa<PHINode>(I)) 7410 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7411 else 7412 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7413 } 7414 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7415 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7416 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7417 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7418 VectorizableTree[0]->VectorizedValue = Trunc; 7419 } 7420 7421 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7422 << " values .\n"); 7423 7424 // Extract all of the elements with the external uses. 7425 for (const auto &ExternalUse : ExternalUses) { 7426 Value *Scalar = ExternalUse.Scalar; 7427 llvm::User *User = ExternalUse.User; 7428 7429 // Skip users that we already RAUW. This happens when one instruction 7430 // has multiple uses of the same value. 7431 if (User && !is_contained(Scalar->users(), User)) 7432 continue; 7433 TreeEntry *E = getTreeEntry(Scalar); 7434 assert(E && "Invalid scalar"); 7435 assert(E->State != TreeEntry::NeedToGather && 7436 "Extracting from a gather list"); 7437 7438 Value *Vec = E->VectorizedValue; 7439 assert(Vec && "Can't find vectorizable value"); 7440 7441 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7442 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7443 if (Scalar->getType() != Vec->getType()) { 7444 Value *Ex; 7445 // "Reuse" the existing extract to improve final codegen. 7446 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7447 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7448 ES->getOperand(1)); 7449 } else { 7450 Ex = Builder.CreateExtractElement(Vec, Lane); 7451 } 7452 // If necessary, sign-extend or zero-extend ScalarRoot 7453 // to the larger type. 7454 if (!MinBWs.count(ScalarRoot)) 7455 return Ex; 7456 if (MinBWs[ScalarRoot].second) 7457 return Builder.CreateSExt(Ex, Scalar->getType()); 7458 return Builder.CreateZExt(Ex, Scalar->getType()); 7459 } 7460 assert(isa<FixedVectorType>(Scalar->getType()) && 7461 isa<InsertElementInst>(Scalar) && 7462 "In-tree scalar of vector type is not insertelement?"); 7463 return Vec; 7464 }; 7465 // If User == nullptr, the Scalar is used as extra arg. Generate 7466 // ExtractElement instruction and update the record for this scalar in 7467 // ExternallyUsedValues. 7468 if (!User) { 7469 assert(ExternallyUsedValues.count(Scalar) && 7470 "Scalar with nullptr as an external user must be registered in " 7471 "ExternallyUsedValues map"); 7472 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7473 Builder.SetInsertPoint(VecI->getParent(), 7474 std::next(VecI->getIterator())); 7475 } else { 7476 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7477 } 7478 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7479 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7480 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7481 auto It = ExternallyUsedValues.find(Scalar); 7482 assert(It != ExternallyUsedValues.end() && 7483 "Externally used scalar is not found in ExternallyUsedValues"); 7484 NewInstLocs.append(It->second); 7485 ExternallyUsedValues.erase(Scalar); 7486 // Required to update internally referenced instructions. 7487 Scalar->replaceAllUsesWith(NewInst); 7488 continue; 7489 } 7490 7491 // Generate extracts for out-of-tree users. 7492 // Find the insertion point for the extractelement lane. 7493 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7494 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7495 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7496 if (PH->getIncomingValue(i) == Scalar) { 7497 Instruction *IncomingTerminator = 7498 PH->getIncomingBlock(i)->getTerminator(); 7499 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7500 Builder.SetInsertPoint(VecI->getParent(), 7501 std::next(VecI->getIterator())); 7502 } else { 7503 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7504 } 7505 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7506 CSEBlocks.insert(PH->getIncomingBlock(i)); 7507 PH->setOperand(i, NewInst); 7508 } 7509 } 7510 } else { 7511 Builder.SetInsertPoint(cast<Instruction>(User)); 7512 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7513 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7514 User->replaceUsesOfWith(Scalar, NewInst); 7515 } 7516 } else { 7517 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7518 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7519 CSEBlocks.insert(&F->getEntryBlock()); 7520 User->replaceUsesOfWith(Scalar, NewInst); 7521 } 7522 7523 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7524 } 7525 7526 // For each vectorized value: 7527 for (auto &TEPtr : VectorizableTree) { 7528 TreeEntry *Entry = TEPtr.get(); 7529 7530 // No need to handle users of gathered values. 7531 if (Entry->State == TreeEntry::NeedToGather) 7532 continue; 7533 7534 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7535 7536 // For each lane: 7537 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7538 Value *Scalar = Entry->Scalars[Lane]; 7539 7540 #ifndef NDEBUG 7541 Type *Ty = Scalar->getType(); 7542 if (!Ty->isVoidTy()) { 7543 for (User *U : Scalar->users()) { 7544 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7545 7546 // It is legal to delete users in the ignorelist. 7547 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7548 (isa_and_nonnull<Instruction>(U) && 7549 isDeleted(cast<Instruction>(U)))) && 7550 "Deleting out-of-tree value"); 7551 } 7552 } 7553 #endif 7554 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7555 eraseInstruction(cast<Instruction>(Scalar)); 7556 } 7557 } 7558 7559 Builder.ClearInsertionPoint(); 7560 InstrElementSize.clear(); 7561 7562 return VectorizableTree[0]->VectorizedValue; 7563 } 7564 7565 void BoUpSLP::optimizeGatherSequence() { 7566 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7567 << " gather sequences instructions.\n"); 7568 // LICM InsertElementInst sequences. 7569 for (Instruction *I : GatherShuffleSeq) { 7570 if (isDeleted(I)) 7571 continue; 7572 7573 // Check if this block is inside a loop. 7574 Loop *L = LI->getLoopFor(I->getParent()); 7575 if (!L) 7576 continue; 7577 7578 // Check if it has a preheader. 7579 BasicBlock *PreHeader = L->getLoopPreheader(); 7580 if (!PreHeader) 7581 continue; 7582 7583 // If the vector or the element that we insert into it are 7584 // instructions that are defined in this basic block then we can't 7585 // hoist this instruction. 7586 if (any_of(I->operands(), [L](Value *V) { 7587 auto *OpI = dyn_cast<Instruction>(V); 7588 return OpI && L->contains(OpI); 7589 })) 7590 continue; 7591 7592 // We can hoist this instruction. Move it to the pre-header. 7593 I->moveBefore(PreHeader->getTerminator()); 7594 } 7595 7596 // Make a list of all reachable blocks in our CSE queue. 7597 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7598 CSEWorkList.reserve(CSEBlocks.size()); 7599 for (BasicBlock *BB : CSEBlocks) 7600 if (DomTreeNode *N = DT->getNode(BB)) { 7601 assert(DT->isReachableFromEntry(N)); 7602 CSEWorkList.push_back(N); 7603 } 7604 7605 // Sort blocks by domination. This ensures we visit a block after all blocks 7606 // dominating it are visited. 7607 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7608 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7609 "Different nodes should have different DFS numbers"); 7610 return A->getDFSNumIn() < B->getDFSNumIn(); 7611 }); 7612 7613 // Less defined shuffles can be replaced by the more defined copies. 7614 // Between two shuffles one is less defined if it has the same vector operands 7615 // and its mask indeces are the same as in the first one or undefs. E.g. 7616 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7617 // poison, <0, 0, 0, 0>. 7618 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7619 SmallVectorImpl<int> &NewMask) { 7620 if (I1->getType() != I2->getType()) 7621 return false; 7622 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7623 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7624 if (!SI1 || !SI2) 7625 return I1->isIdenticalTo(I2); 7626 if (SI1->isIdenticalTo(SI2)) 7627 return true; 7628 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7629 if (SI1->getOperand(I) != SI2->getOperand(I)) 7630 return false; 7631 // Check if the second instruction is more defined than the first one. 7632 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7633 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7634 // Count trailing undefs in the mask to check the final number of used 7635 // registers. 7636 unsigned LastUndefsCnt = 0; 7637 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7638 if (SM1[I] == UndefMaskElem) 7639 ++LastUndefsCnt; 7640 else 7641 LastUndefsCnt = 0; 7642 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7643 NewMask[I] != SM1[I]) 7644 return false; 7645 if (NewMask[I] == UndefMaskElem) 7646 NewMask[I] = SM1[I]; 7647 } 7648 // Check if the last undefs actually change the final number of used vector 7649 // registers. 7650 return SM1.size() - LastUndefsCnt > 1 && 7651 TTI->getNumberOfParts(SI1->getType()) == 7652 TTI->getNumberOfParts( 7653 FixedVectorType::get(SI1->getType()->getElementType(), 7654 SM1.size() - LastUndefsCnt)); 7655 }; 7656 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7657 // instructions. TODO: We can further optimize this scan if we split the 7658 // instructions into different buckets based on the insert lane. 7659 SmallVector<Instruction *, 16> Visited; 7660 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7661 assert(*I && 7662 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7663 "Worklist not sorted properly!"); 7664 BasicBlock *BB = (*I)->getBlock(); 7665 // For all instructions in blocks containing gather sequences: 7666 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7667 if (isDeleted(&In)) 7668 continue; 7669 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7670 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7671 continue; 7672 7673 // Check if we can replace this instruction with any of the 7674 // visited instructions. 7675 bool Replaced = false; 7676 for (Instruction *&V : Visited) { 7677 SmallVector<int> NewMask; 7678 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7679 DT->dominates(V->getParent(), In.getParent())) { 7680 In.replaceAllUsesWith(V); 7681 eraseInstruction(&In); 7682 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7683 if (!NewMask.empty()) 7684 SI->setShuffleMask(NewMask); 7685 Replaced = true; 7686 break; 7687 } 7688 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7689 GatherShuffleSeq.contains(V) && 7690 IsIdenticalOrLessDefined(V, &In, NewMask) && 7691 DT->dominates(In.getParent(), V->getParent())) { 7692 In.moveAfter(V); 7693 V->replaceAllUsesWith(&In); 7694 eraseInstruction(V); 7695 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7696 if (!NewMask.empty()) 7697 SI->setShuffleMask(NewMask); 7698 V = &In; 7699 Replaced = true; 7700 break; 7701 } 7702 } 7703 if (!Replaced) { 7704 assert(!is_contained(Visited, &In)); 7705 Visited.push_back(&In); 7706 } 7707 } 7708 } 7709 CSEBlocks.clear(); 7710 GatherShuffleSeq.clear(); 7711 } 7712 7713 BoUpSLP::ScheduleData * 7714 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7715 ScheduleData *Bundle = nullptr; 7716 ScheduleData *PrevInBundle = nullptr; 7717 for (Value *V : VL) { 7718 if (doesNotNeedToBeScheduled(V)) 7719 continue; 7720 ScheduleData *BundleMember = getScheduleData(V); 7721 assert(BundleMember && 7722 "no ScheduleData for bundle member " 7723 "(maybe not in same basic block)"); 7724 assert(BundleMember->isSchedulingEntity() && 7725 "bundle member already part of other bundle"); 7726 if (PrevInBundle) { 7727 PrevInBundle->NextInBundle = BundleMember; 7728 } else { 7729 Bundle = BundleMember; 7730 } 7731 7732 // Group the instructions to a bundle. 7733 BundleMember->FirstInBundle = Bundle; 7734 PrevInBundle = BundleMember; 7735 } 7736 assert(Bundle && "Failed to find schedule bundle"); 7737 return Bundle; 7738 } 7739 7740 // Groups the instructions to a bundle (which is then a single scheduling entity) 7741 // and schedules instructions until the bundle gets ready. 7742 Optional<BoUpSLP::ScheduleData *> 7743 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7744 const InstructionsState &S) { 7745 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7746 // instructions. 7747 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7748 doesNotNeedToSchedule(VL)) 7749 return nullptr; 7750 7751 // Initialize the instruction bundle. 7752 Instruction *OldScheduleEnd = ScheduleEnd; 7753 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7754 7755 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7756 ScheduleData *Bundle) { 7757 // The scheduling region got new instructions at the lower end (or it is a 7758 // new region for the first bundle). This makes it necessary to 7759 // recalculate all dependencies. 7760 // It is seldom that this needs to be done a second time after adding the 7761 // initial bundle to the region. 7762 if (ScheduleEnd != OldScheduleEnd) { 7763 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7764 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7765 ReSchedule = true; 7766 } 7767 if (Bundle) { 7768 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7769 << " in block " << BB->getName() << "\n"); 7770 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7771 } 7772 7773 if (ReSchedule) { 7774 resetSchedule(); 7775 initialFillReadyList(ReadyInsts); 7776 } 7777 7778 // Now try to schedule the new bundle or (if no bundle) just calculate 7779 // dependencies. As soon as the bundle is "ready" it means that there are no 7780 // cyclic dependencies and we can schedule it. Note that's important that we 7781 // don't "schedule" the bundle yet (see cancelScheduling). 7782 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7783 !ReadyInsts.empty()) { 7784 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7785 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7786 "must be ready to schedule"); 7787 schedule(Picked, ReadyInsts); 7788 } 7789 }; 7790 7791 // Make sure that the scheduling region contains all 7792 // instructions of the bundle. 7793 for (Value *V : VL) { 7794 if (doesNotNeedToBeScheduled(V)) 7795 continue; 7796 if (!extendSchedulingRegion(V, S)) { 7797 // If the scheduling region got new instructions at the lower end (or it 7798 // is a new region for the first bundle). This makes it necessary to 7799 // recalculate all dependencies. 7800 // Otherwise the compiler may crash trying to incorrectly calculate 7801 // dependencies and emit instruction in the wrong order at the actual 7802 // scheduling. 7803 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7804 return None; 7805 } 7806 } 7807 7808 bool ReSchedule = false; 7809 for (Value *V : VL) { 7810 if (doesNotNeedToBeScheduled(V)) 7811 continue; 7812 ScheduleData *BundleMember = getScheduleData(V); 7813 assert(BundleMember && 7814 "no ScheduleData for bundle member (maybe not in same basic block)"); 7815 7816 // Make sure we don't leave the pieces of the bundle in the ready list when 7817 // whole bundle might not be ready. 7818 ReadyInsts.remove(BundleMember); 7819 7820 if (!BundleMember->IsScheduled) 7821 continue; 7822 // A bundle member was scheduled as single instruction before and now 7823 // needs to be scheduled as part of the bundle. We just get rid of the 7824 // existing schedule. 7825 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7826 << " was already scheduled\n"); 7827 ReSchedule = true; 7828 } 7829 7830 auto *Bundle = buildBundle(VL); 7831 TryScheduleBundleImpl(ReSchedule, Bundle); 7832 if (!Bundle->isReady()) { 7833 cancelScheduling(VL, S.OpValue); 7834 return None; 7835 } 7836 return Bundle; 7837 } 7838 7839 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7840 Value *OpValue) { 7841 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7842 doesNotNeedToSchedule(VL)) 7843 return; 7844 7845 if (doesNotNeedToBeScheduled(OpValue)) 7846 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7847 ScheduleData *Bundle = getScheduleData(OpValue); 7848 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7849 assert(!Bundle->IsScheduled && 7850 "Can't cancel bundle which is already scheduled"); 7851 assert(Bundle->isSchedulingEntity() && 7852 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7853 "tried to unbundle something which is not a bundle"); 7854 7855 // Remove the bundle from the ready list. 7856 if (Bundle->isReady()) 7857 ReadyInsts.remove(Bundle); 7858 7859 // Un-bundle: make single instructions out of the bundle. 7860 ScheduleData *BundleMember = Bundle; 7861 while (BundleMember) { 7862 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7863 BundleMember->FirstInBundle = BundleMember; 7864 ScheduleData *Next = BundleMember->NextInBundle; 7865 BundleMember->NextInBundle = nullptr; 7866 BundleMember->TE = nullptr; 7867 if (BundleMember->unscheduledDepsInBundle() == 0) { 7868 ReadyInsts.insert(BundleMember); 7869 } 7870 BundleMember = Next; 7871 } 7872 } 7873 7874 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7875 // Allocate a new ScheduleData for the instruction. 7876 if (ChunkPos >= ChunkSize) { 7877 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7878 ChunkPos = 0; 7879 } 7880 return &(ScheduleDataChunks.back()[ChunkPos++]); 7881 } 7882 7883 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7884 const InstructionsState &S) { 7885 if (getScheduleData(V, isOneOf(S, V))) 7886 return true; 7887 Instruction *I = dyn_cast<Instruction>(V); 7888 assert(I && "bundle member must be an instruction"); 7889 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7890 !doesNotNeedToBeScheduled(I) && 7891 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7892 "be scheduled"); 7893 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7894 ScheduleData *ISD = getScheduleData(I); 7895 if (!ISD) 7896 return false; 7897 assert(isInSchedulingRegion(ISD) && 7898 "ScheduleData not in scheduling region"); 7899 ScheduleData *SD = allocateScheduleDataChunks(); 7900 SD->Inst = I; 7901 SD->init(SchedulingRegionID, S.OpValue); 7902 ExtraScheduleDataMap[I][S.OpValue] = SD; 7903 return true; 7904 }; 7905 if (CheckScheduleForI(I)) 7906 return true; 7907 if (!ScheduleStart) { 7908 // It's the first instruction in the new region. 7909 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7910 ScheduleStart = I; 7911 ScheduleEnd = I->getNextNode(); 7912 if (isOneOf(S, I) != I) 7913 CheckScheduleForI(I); 7914 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7915 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7916 return true; 7917 } 7918 // Search up and down at the same time, because we don't know if the new 7919 // instruction is above or below the existing scheduling region. 7920 BasicBlock::reverse_iterator UpIter = 7921 ++ScheduleStart->getIterator().getReverse(); 7922 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7923 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7924 BasicBlock::iterator LowerEnd = BB->end(); 7925 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7926 &*DownIter != I) { 7927 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7928 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7929 return false; 7930 } 7931 7932 ++UpIter; 7933 ++DownIter; 7934 } 7935 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7936 assert(I->getParent() == ScheduleStart->getParent() && 7937 "Instruction is in wrong basic block."); 7938 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7939 ScheduleStart = I; 7940 if (isOneOf(S, I) != I) 7941 CheckScheduleForI(I); 7942 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7943 << "\n"); 7944 return true; 7945 } 7946 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7947 "Expected to reach top of the basic block or instruction down the " 7948 "lower end."); 7949 assert(I->getParent() == ScheduleEnd->getParent() && 7950 "Instruction is in wrong basic block."); 7951 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7952 nullptr); 7953 ScheduleEnd = I->getNextNode(); 7954 if (isOneOf(S, I) != I) 7955 CheckScheduleForI(I); 7956 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7957 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7958 return true; 7959 } 7960 7961 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7962 Instruction *ToI, 7963 ScheduleData *PrevLoadStore, 7964 ScheduleData *NextLoadStore) { 7965 ScheduleData *CurrentLoadStore = PrevLoadStore; 7966 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7967 // No need to allocate data for non-schedulable instructions. 7968 if (doesNotNeedToBeScheduled(I)) 7969 continue; 7970 ScheduleData *SD = ScheduleDataMap.lookup(I); 7971 if (!SD) { 7972 SD = allocateScheduleDataChunks(); 7973 ScheduleDataMap[I] = SD; 7974 SD->Inst = I; 7975 } 7976 assert(!isInSchedulingRegion(SD) && 7977 "new ScheduleData already in scheduling region"); 7978 SD->init(SchedulingRegionID, I); 7979 7980 if (I->mayReadOrWriteMemory() && 7981 (!isa<IntrinsicInst>(I) || 7982 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7983 cast<IntrinsicInst>(I)->getIntrinsicID() != 7984 Intrinsic::pseudoprobe))) { 7985 // Update the linked list of memory accessing instructions. 7986 if (CurrentLoadStore) { 7987 CurrentLoadStore->NextLoadStore = SD; 7988 } else { 7989 FirstLoadStoreInRegion = SD; 7990 } 7991 CurrentLoadStore = SD; 7992 } 7993 } 7994 if (NextLoadStore) { 7995 if (CurrentLoadStore) 7996 CurrentLoadStore->NextLoadStore = NextLoadStore; 7997 } else { 7998 LastLoadStoreInRegion = CurrentLoadStore; 7999 } 8000 } 8001 8002 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8003 bool InsertInReadyList, 8004 BoUpSLP *SLP) { 8005 assert(SD->isSchedulingEntity()); 8006 8007 SmallVector<ScheduleData *, 10> WorkList; 8008 WorkList.push_back(SD); 8009 8010 while (!WorkList.empty()) { 8011 ScheduleData *SD = WorkList.pop_back_val(); 8012 for (ScheduleData *BundleMember = SD; BundleMember; 8013 BundleMember = BundleMember->NextInBundle) { 8014 assert(isInSchedulingRegion(BundleMember)); 8015 if (BundleMember->hasValidDependencies()) 8016 continue; 8017 8018 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8019 << "\n"); 8020 BundleMember->Dependencies = 0; 8021 BundleMember->resetUnscheduledDeps(); 8022 8023 // Handle def-use chain dependencies. 8024 if (BundleMember->OpValue != BundleMember->Inst) { 8025 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8026 BundleMember->Dependencies++; 8027 ScheduleData *DestBundle = UseSD->FirstInBundle; 8028 if (!DestBundle->IsScheduled) 8029 BundleMember->incrementUnscheduledDeps(1); 8030 if (!DestBundle->hasValidDependencies()) 8031 WorkList.push_back(DestBundle); 8032 } 8033 } else { 8034 for (User *U : BundleMember->Inst->users()) { 8035 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8036 BundleMember->Dependencies++; 8037 ScheduleData *DestBundle = UseSD->FirstInBundle; 8038 if (!DestBundle->IsScheduled) 8039 BundleMember->incrementUnscheduledDeps(1); 8040 if (!DestBundle->hasValidDependencies()) 8041 WorkList.push_back(DestBundle); 8042 } 8043 } 8044 } 8045 8046 // Handle the memory dependencies (if any). 8047 ScheduleData *DepDest = BundleMember->NextLoadStore; 8048 if (!DepDest) 8049 continue; 8050 Instruction *SrcInst = BundleMember->Inst; 8051 assert(SrcInst->mayReadOrWriteMemory() && 8052 "NextLoadStore list for non memory effecting bundle?"); 8053 MemoryLocation SrcLoc = getLocation(SrcInst); 8054 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8055 unsigned numAliased = 0; 8056 unsigned DistToSrc = 1; 8057 8058 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8059 assert(isInSchedulingRegion(DepDest)); 8060 8061 // We have two limits to reduce the complexity: 8062 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8063 // SLP->isAliased (which is the expensive part in this loop). 8064 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8065 // the whole loop (even if the loop is fast, it's quadratic). 8066 // It's important for the loop break condition (see below) to 8067 // check this limit even between two read-only instructions. 8068 if (DistToSrc >= MaxMemDepDistance || 8069 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8070 (numAliased >= AliasedCheckLimit || 8071 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8072 8073 // We increment the counter only if the locations are aliased 8074 // (instead of counting all alias checks). This gives a better 8075 // balance between reduced runtime and accurate dependencies. 8076 numAliased++; 8077 8078 DepDest->MemoryDependencies.push_back(BundleMember); 8079 BundleMember->Dependencies++; 8080 ScheduleData *DestBundle = DepDest->FirstInBundle; 8081 if (!DestBundle->IsScheduled) { 8082 BundleMember->incrementUnscheduledDeps(1); 8083 } 8084 if (!DestBundle->hasValidDependencies()) { 8085 WorkList.push_back(DestBundle); 8086 } 8087 } 8088 8089 // Example, explaining the loop break condition: Let's assume our 8090 // starting instruction is i0 and MaxMemDepDistance = 3. 8091 // 8092 // +--------v--v--v 8093 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8094 // +--------^--^--^ 8095 // 8096 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8097 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8098 // Previously we already added dependencies from i3 to i6,i7,i8 8099 // (because of MaxMemDepDistance). As we added a dependency from 8100 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8101 // and we can abort this loop at i6. 8102 if (DistToSrc >= 2 * MaxMemDepDistance) 8103 break; 8104 DistToSrc++; 8105 } 8106 } 8107 if (InsertInReadyList && SD->isReady()) { 8108 ReadyInsts.insert(SD); 8109 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8110 << "\n"); 8111 } 8112 } 8113 } 8114 8115 void BoUpSLP::BlockScheduling::resetSchedule() { 8116 assert(ScheduleStart && 8117 "tried to reset schedule on block which has not been scheduled"); 8118 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8119 doForAllOpcodes(I, [&](ScheduleData *SD) { 8120 assert(isInSchedulingRegion(SD) && 8121 "ScheduleData not in scheduling region"); 8122 SD->IsScheduled = false; 8123 SD->resetUnscheduledDeps(); 8124 }); 8125 } 8126 ReadyInsts.clear(); 8127 } 8128 8129 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8130 if (!BS->ScheduleStart) 8131 return; 8132 8133 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8134 8135 BS->resetSchedule(); 8136 8137 // For the real scheduling we use a more sophisticated ready-list: it is 8138 // sorted by the original instruction location. This lets the final schedule 8139 // be as close as possible to the original instruction order. 8140 // WARNING: This required for correctness in several cases: 8141 // * We must prevent reordering of potentially infinte loops inside 8142 // readnone calls with following potentially faulting instructions. 8143 // * We must prevent reordering of allocas with stacksave intrinsic calls. 8144 // In both cases, we rely on two instructions which are both ready (per the 8145 // def-use and memory dependency subgraph) not to be reordered. 8146 struct ScheduleDataCompare { 8147 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8148 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8149 } 8150 }; 8151 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8152 8153 // Ensure that all dependency data is updated and fill the ready-list with 8154 // initial instructions. 8155 int Idx = 0; 8156 int NumToSchedule = 0; 8157 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8158 I = I->getNextNode()) { 8159 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8160 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8161 (void)SDTE; 8162 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8163 SD->isPartOfBundle() == 8164 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8165 "scheduler and vectorizer bundle mismatch"); 8166 SD->FirstInBundle->SchedulingPriority = Idx++; 8167 if (SD->isSchedulingEntity()) { 8168 BS->calculateDependencies(SD, false, this); 8169 NumToSchedule++; 8170 } 8171 }); 8172 } 8173 BS->initialFillReadyList(ReadyInsts); 8174 8175 Instruction *LastScheduledInst = BS->ScheduleEnd; 8176 8177 // Do the "real" scheduling. 8178 while (!ReadyInsts.empty()) { 8179 ScheduleData *picked = *ReadyInsts.begin(); 8180 ReadyInsts.erase(ReadyInsts.begin()); 8181 8182 // Move the scheduled instruction(s) to their dedicated places, if not 8183 // there yet. 8184 for (ScheduleData *BundleMember = picked; BundleMember; 8185 BundleMember = BundleMember->NextInBundle) { 8186 Instruction *pickedInst = BundleMember->Inst; 8187 if (pickedInst->getNextNode() != LastScheduledInst) 8188 pickedInst->moveBefore(LastScheduledInst); 8189 LastScheduledInst = pickedInst; 8190 } 8191 8192 BS->schedule(picked, ReadyInsts); 8193 NumToSchedule--; 8194 } 8195 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8196 8197 // Check that we didn't break any of our invariants. 8198 #ifdef EXPENSIVE_CHECKS 8199 BS->verify(); 8200 #endif 8201 8202 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8203 // Check that all schedulable entities got scheduled 8204 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8205 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8206 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8207 assert(SD->IsScheduled && "must be scheduled at this point"); 8208 } 8209 }); 8210 } 8211 #endif 8212 8213 // Avoid duplicate scheduling of the block. 8214 BS->ScheduleStart = nullptr; 8215 } 8216 8217 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8218 // If V is a store, just return the width of the stored value (or value 8219 // truncated just before storing) without traversing the expression tree. 8220 // This is the common case. 8221 if (auto *Store = dyn_cast<StoreInst>(V)) { 8222 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8223 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8224 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8225 } 8226 8227 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8228 return getVectorElementSize(IEI->getOperand(1)); 8229 8230 auto E = InstrElementSize.find(V); 8231 if (E != InstrElementSize.end()) 8232 return E->second; 8233 8234 // If V is not a store, we can traverse the expression tree to find loads 8235 // that feed it. The type of the loaded value may indicate a more suitable 8236 // width than V's type. We want to base the vector element size on the width 8237 // of memory operations where possible. 8238 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8239 SmallPtrSet<Instruction *, 16> Visited; 8240 if (auto *I = dyn_cast<Instruction>(V)) { 8241 Worklist.emplace_back(I, I->getParent()); 8242 Visited.insert(I); 8243 } 8244 8245 // Traverse the expression tree in bottom-up order looking for loads. If we 8246 // encounter an instruction we don't yet handle, we give up. 8247 auto Width = 0u; 8248 while (!Worklist.empty()) { 8249 Instruction *I; 8250 BasicBlock *Parent; 8251 std::tie(I, Parent) = Worklist.pop_back_val(); 8252 8253 // We should only be looking at scalar instructions here. If the current 8254 // instruction has a vector type, skip. 8255 auto *Ty = I->getType(); 8256 if (isa<VectorType>(Ty)) 8257 continue; 8258 8259 // If the current instruction is a load, update MaxWidth to reflect the 8260 // width of the loaded value. 8261 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8262 isa<ExtractValueInst>(I)) 8263 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8264 8265 // Otherwise, we need to visit the operands of the instruction. We only 8266 // handle the interesting cases from buildTree here. If an operand is an 8267 // instruction we haven't yet visited and from the same basic block as the 8268 // user or the use is a PHI node, we add it to the worklist. 8269 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8270 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8271 isa<UnaryOperator>(I)) { 8272 for (Use &U : I->operands()) 8273 if (auto *J = dyn_cast<Instruction>(U.get())) 8274 if (Visited.insert(J).second && 8275 (isa<PHINode>(I) || J->getParent() == Parent)) 8276 Worklist.emplace_back(J, J->getParent()); 8277 } else { 8278 break; 8279 } 8280 } 8281 8282 // If we didn't encounter a memory access in the expression tree, or if we 8283 // gave up for some reason, just return the width of V. Otherwise, return the 8284 // maximum width we found. 8285 if (!Width) { 8286 if (auto *CI = dyn_cast<CmpInst>(V)) 8287 V = CI->getOperand(0); 8288 Width = DL->getTypeSizeInBits(V->getType()); 8289 } 8290 8291 for (Instruction *I : Visited) 8292 InstrElementSize[I] = Width; 8293 8294 return Width; 8295 } 8296 8297 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8298 // smaller type with a truncation. We collect the values that will be demoted 8299 // in ToDemote and additional roots that require investigating in Roots. 8300 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8301 SmallVectorImpl<Value *> &ToDemote, 8302 SmallVectorImpl<Value *> &Roots) { 8303 // We can always demote constants. 8304 if (isa<Constant>(V)) { 8305 ToDemote.push_back(V); 8306 return true; 8307 } 8308 8309 // If the value is not an instruction in the expression with only one use, it 8310 // cannot be demoted. 8311 auto *I = dyn_cast<Instruction>(V); 8312 if (!I || !I->hasOneUse() || !Expr.count(I)) 8313 return false; 8314 8315 switch (I->getOpcode()) { 8316 8317 // We can always demote truncations and extensions. Since truncations can 8318 // seed additional demotion, we save the truncated value. 8319 case Instruction::Trunc: 8320 Roots.push_back(I->getOperand(0)); 8321 break; 8322 case Instruction::ZExt: 8323 case Instruction::SExt: 8324 if (isa<ExtractElementInst>(I->getOperand(0)) || 8325 isa<InsertElementInst>(I->getOperand(0))) 8326 return false; 8327 break; 8328 8329 // We can demote certain binary operations if we can demote both of their 8330 // operands. 8331 case Instruction::Add: 8332 case Instruction::Sub: 8333 case Instruction::Mul: 8334 case Instruction::And: 8335 case Instruction::Or: 8336 case Instruction::Xor: 8337 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8338 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8339 return false; 8340 break; 8341 8342 // We can demote selects if we can demote their true and false values. 8343 case Instruction::Select: { 8344 SelectInst *SI = cast<SelectInst>(I); 8345 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8346 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8347 return false; 8348 break; 8349 } 8350 8351 // We can demote phis if we can demote all their incoming operands. Note that 8352 // we don't need to worry about cycles since we ensure single use above. 8353 case Instruction::PHI: { 8354 PHINode *PN = cast<PHINode>(I); 8355 for (Value *IncValue : PN->incoming_values()) 8356 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8357 return false; 8358 break; 8359 } 8360 8361 // Otherwise, conservatively give up. 8362 default: 8363 return false; 8364 } 8365 8366 // Record the value that we can demote. 8367 ToDemote.push_back(V); 8368 return true; 8369 } 8370 8371 void BoUpSLP::computeMinimumValueSizes() { 8372 // If there are no external uses, the expression tree must be rooted by a 8373 // store. We can't demote in-memory values, so there is nothing to do here. 8374 if (ExternalUses.empty()) 8375 return; 8376 8377 // We only attempt to truncate integer expressions. 8378 auto &TreeRoot = VectorizableTree[0]->Scalars; 8379 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8380 if (!TreeRootIT) 8381 return; 8382 8383 // If the expression is not rooted by a store, these roots should have 8384 // external uses. We will rely on InstCombine to rewrite the expression in 8385 // the narrower type. However, InstCombine only rewrites single-use values. 8386 // This means that if a tree entry other than a root is used externally, it 8387 // must have multiple uses and InstCombine will not rewrite it. The code 8388 // below ensures that only the roots are used externally. 8389 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8390 for (auto &EU : ExternalUses) 8391 if (!Expr.erase(EU.Scalar)) 8392 return; 8393 if (!Expr.empty()) 8394 return; 8395 8396 // Collect the scalar values of the vectorizable expression. We will use this 8397 // context to determine which values can be demoted. If we see a truncation, 8398 // we mark it as seeding another demotion. 8399 for (auto &EntryPtr : VectorizableTree) 8400 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8401 8402 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8403 // have a single external user that is not in the vectorizable tree. 8404 for (auto *Root : TreeRoot) 8405 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8406 return; 8407 8408 // Conservatively determine if we can actually truncate the roots of the 8409 // expression. Collect the values that can be demoted in ToDemote and 8410 // additional roots that require investigating in Roots. 8411 SmallVector<Value *, 32> ToDemote; 8412 SmallVector<Value *, 4> Roots; 8413 for (auto *Root : TreeRoot) 8414 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8415 return; 8416 8417 // The maximum bit width required to represent all the values that can be 8418 // demoted without loss of precision. It would be safe to truncate the roots 8419 // of the expression to this width. 8420 auto MaxBitWidth = 8u; 8421 8422 // We first check if all the bits of the roots are demanded. If they're not, 8423 // we can truncate the roots to this narrower type. 8424 for (auto *Root : TreeRoot) { 8425 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8426 MaxBitWidth = std::max<unsigned>( 8427 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8428 } 8429 8430 // True if the roots can be zero-extended back to their original type, rather 8431 // than sign-extended. We know that if the leading bits are not demanded, we 8432 // can safely zero-extend. So we initialize IsKnownPositive to True. 8433 bool IsKnownPositive = true; 8434 8435 // If all the bits of the roots are demanded, we can try a little harder to 8436 // compute a narrower type. This can happen, for example, if the roots are 8437 // getelementptr indices. InstCombine promotes these indices to the pointer 8438 // width. Thus, all their bits are technically demanded even though the 8439 // address computation might be vectorized in a smaller type. 8440 // 8441 // We start by looking at each entry that can be demoted. We compute the 8442 // maximum bit width required to store the scalar by using ValueTracking to 8443 // compute the number of high-order bits we can truncate. 8444 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8445 llvm::all_of(TreeRoot, [](Value *R) { 8446 assert(R->hasOneUse() && "Root should have only one use!"); 8447 return isa<GetElementPtrInst>(R->user_back()); 8448 })) { 8449 MaxBitWidth = 8u; 8450 8451 // Determine if the sign bit of all the roots is known to be zero. If not, 8452 // IsKnownPositive is set to False. 8453 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8454 KnownBits Known = computeKnownBits(R, *DL); 8455 return Known.isNonNegative(); 8456 }); 8457 8458 // Determine the maximum number of bits required to store the scalar 8459 // values. 8460 for (auto *Scalar : ToDemote) { 8461 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8462 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8463 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8464 } 8465 8466 // If we can't prove that the sign bit is zero, we must add one to the 8467 // maximum bit width to account for the unknown sign bit. This preserves 8468 // the existing sign bit so we can safely sign-extend the root back to the 8469 // original type. Otherwise, if we know the sign bit is zero, we will 8470 // zero-extend the root instead. 8471 // 8472 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8473 // one to the maximum bit width will yield a larger-than-necessary 8474 // type. In general, we need to add an extra bit only if we can't 8475 // prove that the upper bit of the original type is equal to the 8476 // upper bit of the proposed smaller type. If these two bits are the 8477 // same (either zero or one) we know that sign-extending from the 8478 // smaller type will result in the same value. Here, since we can't 8479 // yet prove this, we are just making the proposed smaller type 8480 // larger to ensure correctness. 8481 if (!IsKnownPositive) 8482 ++MaxBitWidth; 8483 } 8484 8485 // Round MaxBitWidth up to the next power-of-two. 8486 if (!isPowerOf2_64(MaxBitWidth)) 8487 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8488 8489 // If the maximum bit width we compute is less than the with of the roots' 8490 // type, we can proceed with the narrowing. Otherwise, do nothing. 8491 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8492 return; 8493 8494 // If we can truncate the root, we must collect additional values that might 8495 // be demoted as a result. That is, those seeded by truncations we will 8496 // modify. 8497 while (!Roots.empty()) 8498 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8499 8500 // Finally, map the values we can demote to the maximum bit with we computed. 8501 for (auto *Scalar : ToDemote) 8502 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8503 } 8504 8505 namespace { 8506 8507 /// The SLPVectorizer Pass. 8508 struct SLPVectorizer : public FunctionPass { 8509 SLPVectorizerPass Impl; 8510 8511 /// Pass identification, replacement for typeid 8512 static char ID; 8513 8514 explicit SLPVectorizer() : FunctionPass(ID) { 8515 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8516 } 8517 8518 bool doInitialization(Module &M) override { return false; } 8519 8520 bool runOnFunction(Function &F) override { 8521 if (skipFunction(F)) 8522 return false; 8523 8524 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8525 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8526 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8527 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8528 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8529 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8530 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8531 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8532 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8533 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8534 8535 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8536 } 8537 8538 void getAnalysisUsage(AnalysisUsage &AU) const override { 8539 FunctionPass::getAnalysisUsage(AU); 8540 AU.addRequired<AssumptionCacheTracker>(); 8541 AU.addRequired<ScalarEvolutionWrapperPass>(); 8542 AU.addRequired<AAResultsWrapperPass>(); 8543 AU.addRequired<TargetTransformInfoWrapperPass>(); 8544 AU.addRequired<LoopInfoWrapperPass>(); 8545 AU.addRequired<DominatorTreeWrapperPass>(); 8546 AU.addRequired<DemandedBitsWrapperPass>(); 8547 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8548 AU.addRequired<InjectTLIMappingsLegacy>(); 8549 AU.addPreserved<LoopInfoWrapperPass>(); 8550 AU.addPreserved<DominatorTreeWrapperPass>(); 8551 AU.addPreserved<AAResultsWrapperPass>(); 8552 AU.addPreserved<GlobalsAAWrapperPass>(); 8553 AU.setPreservesCFG(); 8554 } 8555 }; 8556 8557 } // end anonymous namespace 8558 8559 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8560 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8561 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8562 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8563 auto *AA = &AM.getResult<AAManager>(F); 8564 auto *LI = &AM.getResult<LoopAnalysis>(F); 8565 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8566 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8567 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8568 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8569 8570 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8571 if (!Changed) 8572 return PreservedAnalyses::all(); 8573 8574 PreservedAnalyses PA; 8575 PA.preserveSet<CFGAnalyses>(); 8576 return PA; 8577 } 8578 8579 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8580 TargetTransformInfo *TTI_, 8581 TargetLibraryInfo *TLI_, AAResults *AA_, 8582 LoopInfo *LI_, DominatorTree *DT_, 8583 AssumptionCache *AC_, DemandedBits *DB_, 8584 OptimizationRemarkEmitter *ORE_) { 8585 if (!RunSLPVectorization) 8586 return false; 8587 SE = SE_; 8588 TTI = TTI_; 8589 TLI = TLI_; 8590 AA = AA_; 8591 LI = LI_; 8592 DT = DT_; 8593 AC = AC_; 8594 DB = DB_; 8595 DL = &F.getParent()->getDataLayout(); 8596 8597 Stores.clear(); 8598 GEPs.clear(); 8599 bool Changed = false; 8600 8601 // If the target claims to have no vector registers don't attempt 8602 // vectorization. 8603 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8604 LLVM_DEBUG( 8605 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8606 return false; 8607 } 8608 8609 // Don't vectorize when the attribute NoImplicitFloat is used. 8610 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8611 return false; 8612 8613 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8614 8615 // Use the bottom up slp vectorizer to construct chains that start with 8616 // store instructions. 8617 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8618 8619 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8620 // delete instructions. 8621 8622 // Update DFS numbers now so that we can use them for ordering. 8623 DT->updateDFSNumbers(); 8624 8625 // Scan the blocks in the function in post order. 8626 for (auto BB : post_order(&F.getEntryBlock())) { 8627 collectSeedInstructions(BB); 8628 8629 // Vectorize trees that end at stores. 8630 if (!Stores.empty()) { 8631 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8632 << " underlying objects.\n"); 8633 Changed |= vectorizeStoreChains(R); 8634 } 8635 8636 // Vectorize trees that end at reductions. 8637 Changed |= vectorizeChainsInBlock(BB, R); 8638 8639 // Vectorize the index computations of getelementptr instructions. This 8640 // is primarily intended to catch gather-like idioms ending at 8641 // non-consecutive loads. 8642 if (!GEPs.empty()) { 8643 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8644 << " underlying objects.\n"); 8645 Changed |= vectorizeGEPIndices(BB, R); 8646 } 8647 } 8648 8649 if (Changed) { 8650 R.optimizeGatherSequence(); 8651 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8652 } 8653 return Changed; 8654 } 8655 8656 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8657 unsigned Idx) { 8658 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8659 << "\n"); 8660 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8661 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8662 unsigned VF = Chain.size(); 8663 8664 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8665 return false; 8666 8667 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8668 << "\n"); 8669 8670 R.buildTree(Chain); 8671 if (R.isTreeTinyAndNotFullyVectorizable()) 8672 return false; 8673 if (R.isLoadCombineCandidate()) 8674 return false; 8675 R.reorderTopToBottom(); 8676 R.reorderBottomToTop(); 8677 R.buildExternalUses(); 8678 8679 R.computeMinimumValueSizes(); 8680 8681 InstructionCost Cost = R.getTreeCost(); 8682 8683 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8684 if (Cost < -SLPCostThreshold) { 8685 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8686 8687 using namespace ore; 8688 8689 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8690 cast<StoreInst>(Chain[0])) 8691 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8692 << " and with tree size " 8693 << NV("TreeSize", R.getTreeSize())); 8694 8695 R.vectorizeTree(); 8696 return true; 8697 } 8698 8699 return false; 8700 } 8701 8702 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8703 BoUpSLP &R) { 8704 // We may run into multiple chains that merge into a single chain. We mark the 8705 // stores that we vectorized so that we don't visit the same store twice. 8706 BoUpSLP::ValueSet VectorizedStores; 8707 bool Changed = false; 8708 8709 int E = Stores.size(); 8710 SmallBitVector Tails(E, false); 8711 int MaxIter = MaxStoreLookup.getValue(); 8712 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8713 E, std::make_pair(E, INT_MAX)); 8714 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8715 int IterCnt; 8716 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8717 &CheckedPairs, 8718 &ConsecutiveChain](int K, int Idx) { 8719 if (IterCnt >= MaxIter) 8720 return true; 8721 if (CheckedPairs[Idx].test(K)) 8722 return ConsecutiveChain[K].second == 1 && 8723 ConsecutiveChain[K].first == Idx; 8724 ++IterCnt; 8725 CheckedPairs[Idx].set(K); 8726 CheckedPairs[K].set(Idx); 8727 Optional<int> Diff = getPointersDiff( 8728 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8729 Stores[Idx]->getValueOperand()->getType(), 8730 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8731 if (!Diff || *Diff == 0) 8732 return false; 8733 int Val = *Diff; 8734 if (Val < 0) { 8735 if (ConsecutiveChain[Idx].second > -Val) { 8736 Tails.set(K); 8737 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8738 } 8739 return false; 8740 } 8741 if (ConsecutiveChain[K].second <= Val) 8742 return false; 8743 8744 Tails.set(Idx); 8745 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8746 return Val == 1; 8747 }; 8748 // Do a quadratic search on all of the given stores in reverse order and find 8749 // all of the pairs of stores that follow each other. 8750 for (int Idx = E - 1; Idx >= 0; --Idx) { 8751 // If a store has multiple consecutive store candidates, search according 8752 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8753 // This is because usually pairing with immediate succeeding or preceding 8754 // candidate create the best chance to find slp vectorization opportunity. 8755 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8756 IterCnt = 0; 8757 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8758 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8759 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8760 break; 8761 } 8762 8763 // Tracks if we tried to vectorize stores starting from the given tail 8764 // already. 8765 SmallBitVector TriedTails(E, false); 8766 // For stores that start but don't end a link in the chain: 8767 for (int Cnt = E; Cnt > 0; --Cnt) { 8768 int I = Cnt - 1; 8769 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8770 continue; 8771 // We found a store instr that starts a chain. Now follow the chain and try 8772 // to vectorize it. 8773 BoUpSLP::ValueList Operands; 8774 // Collect the chain into a list. 8775 while (I != E && !VectorizedStores.count(Stores[I])) { 8776 Operands.push_back(Stores[I]); 8777 Tails.set(I); 8778 if (ConsecutiveChain[I].second != 1) { 8779 // Mark the new end in the chain and go back, if required. It might be 8780 // required if the original stores come in reversed order, for example. 8781 if (ConsecutiveChain[I].first != E && 8782 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8783 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8784 TriedTails.set(I); 8785 Tails.reset(ConsecutiveChain[I].first); 8786 if (Cnt < ConsecutiveChain[I].first + 2) 8787 Cnt = ConsecutiveChain[I].first + 2; 8788 } 8789 break; 8790 } 8791 // Move to the next value in the chain. 8792 I = ConsecutiveChain[I].first; 8793 } 8794 assert(!Operands.empty() && "Expected non-empty list of stores."); 8795 8796 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8797 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8798 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8799 8800 unsigned MinVF = R.getMinVF(EltSize); 8801 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8802 MaxElts); 8803 8804 // FIXME: Is division-by-2 the correct step? Should we assert that the 8805 // register size is a power-of-2? 8806 unsigned StartIdx = 0; 8807 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8808 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8809 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8810 if (!VectorizedStores.count(Slice.front()) && 8811 !VectorizedStores.count(Slice.back()) && 8812 vectorizeStoreChain(Slice, R, Cnt)) { 8813 // Mark the vectorized stores so that we don't vectorize them again. 8814 VectorizedStores.insert(Slice.begin(), Slice.end()); 8815 Changed = true; 8816 // If we vectorized initial block, no need to try to vectorize it 8817 // again. 8818 if (Cnt == StartIdx) 8819 StartIdx += Size; 8820 Cnt += Size; 8821 continue; 8822 } 8823 ++Cnt; 8824 } 8825 // Check if the whole array was vectorized already - exit. 8826 if (StartIdx >= Operands.size()) 8827 break; 8828 } 8829 } 8830 8831 return Changed; 8832 } 8833 8834 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8835 // Initialize the collections. We will make a single pass over the block. 8836 Stores.clear(); 8837 GEPs.clear(); 8838 8839 // Visit the store and getelementptr instructions in BB and organize them in 8840 // Stores and GEPs according to the underlying objects of their pointer 8841 // operands. 8842 for (Instruction &I : *BB) { 8843 // Ignore store instructions that are volatile or have a pointer operand 8844 // that doesn't point to a scalar type. 8845 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8846 if (!SI->isSimple()) 8847 continue; 8848 if (!isValidElementType(SI->getValueOperand()->getType())) 8849 continue; 8850 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8851 } 8852 8853 // Ignore getelementptr instructions that have more than one index, a 8854 // constant index, or a pointer operand that doesn't point to a scalar 8855 // type. 8856 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8857 auto Idx = GEP->idx_begin()->get(); 8858 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8859 continue; 8860 if (!isValidElementType(Idx->getType())) 8861 continue; 8862 if (GEP->getType()->isVectorTy()) 8863 continue; 8864 GEPs[GEP->getPointerOperand()].push_back(GEP); 8865 } 8866 } 8867 } 8868 8869 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8870 if (!A || !B) 8871 return false; 8872 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8873 return false; 8874 Value *VL[] = {A, B}; 8875 return tryToVectorizeList(VL, R); 8876 } 8877 8878 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8879 bool LimitForRegisterSize) { 8880 if (VL.size() < 2) 8881 return false; 8882 8883 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8884 << VL.size() << ".\n"); 8885 8886 // Check that all of the parts are instructions of the same type, 8887 // we permit an alternate opcode via InstructionsState. 8888 InstructionsState S = getSameOpcode(VL); 8889 if (!S.getOpcode()) 8890 return false; 8891 8892 Instruction *I0 = cast<Instruction>(S.OpValue); 8893 // Make sure invalid types (including vector type) are rejected before 8894 // determining vectorization factor for scalar instructions. 8895 for (Value *V : VL) { 8896 Type *Ty = V->getType(); 8897 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8898 // NOTE: the following will give user internal llvm type name, which may 8899 // not be useful. 8900 R.getORE()->emit([&]() { 8901 std::string type_str; 8902 llvm::raw_string_ostream rso(type_str); 8903 Ty->print(rso); 8904 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8905 << "Cannot SLP vectorize list: type " 8906 << rso.str() + " is unsupported by vectorizer"; 8907 }); 8908 return false; 8909 } 8910 } 8911 8912 unsigned Sz = R.getVectorElementSize(I0); 8913 unsigned MinVF = R.getMinVF(Sz); 8914 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8915 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8916 if (MaxVF < 2) { 8917 R.getORE()->emit([&]() { 8918 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8919 << "Cannot SLP vectorize list: vectorization factor " 8920 << "less than 2 is not supported"; 8921 }); 8922 return false; 8923 } 8924 8925 bool Changed = false; 8926 bool CandidateFound = false; 8927 InstructionCost MinCost = SLPCostThreshold.getValue(); 8928 Type *ScalarTy = VL[0]->getType(); 8929 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8930 ScalarTy = IE->getOperand(1)->getType(); 8931 8932 unsigned NextInst = 0, MaxInst = VL.size(); 8933 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8934 // No actual vectorization should happen, if number of parts is the same as 8935 // provided vectorization factor (i.e. the scalar type is used for vector 8936 // code during codegen). 8937 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8938 if (TTI->getNumberOfParts(VecTy) == VF) 8939 continue; 8940 for (unsigned I = NextInst; I < MaxInst; ++I) { 8941 unsigned OpsWidth = 0; 8942 8943 if (I + VF > MaxInst) 8944 OpsWidth = MaxInst - I; 8945 else 8946 OpsWidth = VF; 8947 8948 if (!isPowerOf2_32(OpsWidth)) 8949 continue; 8950 8951 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8952 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8953 break; 8954 8955 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8956 // Check that a previous iteration of this loop did not delete the Value. 8957 if (llvm::any_of(Ops, [&R](Value *V) { 8958 auto *I = dyn_cast<Instruction>(V); 8959 return I && R.isDeleted(I); 8960 })) 8961 continue; 8962 8963 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8964 << "\n"); 8965 8966 R.buildTree(Ops); 8967 if (R.isTreeTinyAndNotFullyVectorizable()) 8968 continue; 8969 R.reorderTopToBottom(); 8970 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8971 R.buildExternalUses(); 8972 8973 R.computeMinimumValueSizes(); 8974 InstructionCost Cost = R.getTreeCost(); 8975 CandidateFound = true; 8976 MinCost = std::min(MinCost, Cost); 8977 8978 if (Cost < -SLPCostThreshold) { 8979 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8980 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8981 cast<Instruction>(Ops[0])) 8982 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8983 << " and with tree size " 8984 << ore::NV("TreeSize", R.getTreeSize())); 8985 8986 R.vectorizeTree(); 8987 // Move to the next bundle. 8988 I += VF - 1; 8989 NextInst = I + 1; 8990 Changed = true; 8991 } 8992 } 8993 } 8994 8995 if (!Changed && CandidateFound) { 8996 R.getORE()->emit([&]() { 8997 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8998 << "List vectorization was possible but not beneficial with cost " 8999 << ore::NV("Cost", MinCost) << " >= " 9000 << ore::NV("Treshold", -SLPCostThreshold); 9001 }); 9002 } else if (!Changed) { 9003 R.getORE()->emit([&]() { 9004 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9005 << "Cannot SLP vectorize list: vectorization was impossible" 9006 << " with available vectorization factors"; 9007 }); 9008 } 9009 return Changed; 9010 } 9011 9012 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9013 if (!I) 9014 return false; 9015 9016 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9017 return false; 9018 9019 Value *P = I->getParent(); 9020 9021 // Vectorize in current basic block only. 9022 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9023 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9024 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9025 return false; 9026 9027 // Try to vectorize V. 9028 if (tryToVectorizePair(Op0, Op1, R)) 9029 return true; 9030 9031 auto *A = dyn_cast<BinaryOperator>(Op0); 9032 auto *B = dyn_cast<BinaryOperator>(Op1); 9033 // Try to skip B. 9034 if (B && B->hasOneUse()) { 9035 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9036 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9037 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9038 return true; 9039 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9040 return true; 9041 } 9042 9043 // Try to skip A. 9044 if (A && A->hasOneUse()) { 9045 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9046 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9047 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9048 return true; 9049 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9050 return true; 9051 } 9052 return false; 9053 } 9054 9055 namespace { 9056 9057 /// Model horizontal reductions. 9058 /// 9059 /// A horizontal reduction is a tree of reduction instructions that has values 9060 /// that can be put into a vector as its leaves. For example: 9061 /// 9062 /// mul mul mul mul 9063 /// \ / \ / 9064 /// + + 9065 /// \ / 9066 /// + 9067 /// This tree has "mul" as its leaf values and "+" as its reduction 9068 /// instructions. A reduction can feed into a store or a binary operation 9069 /// feeding a phi. 9070 /// ... 9071 /// \ / 9072 /// + 9073 /// | 9074 /// phi += 9075 /// 9076 /// Or: 9077 /// ... 9078 /// \ / 9079 /// + 9080 /// | 9081 /// *p = 9082 /// 9083 class HorizontalReduction { 9084 using ReductionOpsType = SmallVector<Value *, 16>; 9085 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9086 ReductionOpsListType ReductionOps; 9087 SmallVector<Value *, 32> ReducedVals; 9088 // Use map vector to make stable output. 9089 MapVector<Instruction *, Value *> ExtraArgs; 9090 WeakTrackingVH ReductionRoot; 9091 /// The type of reduction operation. 9092 RecurKind RdxKind; 9093 9094 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9095 9096 static bool isCmpSelMinMax(Instruction *I) { 9097 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9098 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9099 } 9100 9101 // And/or are potentially poison-safe logical patterns like: 9102 // select x, y, false 9103 // select x, true, y 9104 static bool isBoolLogicOp(Instruction *I) { 9105 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9106 match(I, m_LogicalOr(m_Value(), m_Value())); 9107 } 9108 9109 /// Checks if instruction is associative and can be vectorized. 9110 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9111 if (Kind == RecurKind::None) 9112 return false; 9113 9114 // Integer ops that map to select instructions or intrinsics are fine. 9115 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9116 isBoolLogicOp(I)) 9117 return true; 9118 9119 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9120 // FP min/max are associative except for NaN and -0.0. We do not 9121 // have to rule out -0.0 here because the intrinsic semantics do not 9122 // specify a fixed result for it. 9123 return I->getFastMathFlags().noNaNs(); 9124 } 9125 9126 return I->isAssociative(); 9127 } 9128 9129 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9130 // Poison-safe 'or' takes the form: select X, true, Y 9131 // To make that work with the normal operand processing, we skip the 9132 // true value operand. 9133 // TODO: Change the code and data structures to handle this without a hack. 9134 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9135 return I->getOperand(2); 9136 return I->getOperand(Index); 9137 } 9138 9139 /// Checks if the ParentStackElem.first should be marked as a reduction 9140 /// operation with an extra argument or as extra argument itself. 9141 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9142 Value *ExtraArg) { 9143 if (ExtraArgs.count(ParentStackElem.first)) { 9144 ExtraArgs[ParentStackElem.first] = nullptr; 9145 // We ran into something like: 9146 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9147 // The whole ParentStackElem.first should be considered as an extra value 9148 // in this case. 9149 // Do not perform analysis of remaining operands of ParentStackElem.first 9150 // instruction, this whole instruction is an extra argument. 9151 ParentStackElem.second = INVALID_OPERAND_INDEX; 9152 } else { 9153 // We ran into something like: 9154 // ParentStackElem.first += ... + ExtraArg + ... 9155 ExtraArgs[ParentStackElem.first] = ExtraArg; 9156 } 9157 } 9158 9159 /// Creates reduction operation with the current opcode. 9160 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9161 Value *RHS, const Twine &Name, bool UseSelect) { 9162 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9163 switch (Kind) { 9164 case RecurKind::Or: 9165 if (UseSelect && 9166 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9167 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9168 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9169 Name); 9170 case RecurKind::And: 9171 if (UseSelect && 9172 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9173 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9174 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9175 Name); 9176 case RecurKind::Add: 9177 case RecurKind::Mul: 9178 case RecurKind::Xor: 9179 case RecurKind::FAdd: 9180 case RecurKind::FMul: 9181 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9182 Name); 9183 case RecurKind::FMax: 9184 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9185 case RecurKind::FMin: 9186 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9187 case RecurKind::SMax: 9188 if (UseSelect) { 9189 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9190 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9191 } 9192 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9193 case RecurKind::SMin: 9194 if (UseSelect) { 9195 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9196 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9197 } 9198 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9199 case RecurKind::UMax: 9200 if (UseSelect) { 9201 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9202 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9203 } 9204 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9205 case RecurKind::UMin: 9206 if (UseSelect) { 9207 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9208 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9209 } 9210 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9211 default: 9212 llvm_unreachable("Unknown reduction operation."); 9213 } 9214 } 9215 9216 /// Creates reduction operation with the current opcode with the IR flags 9217 /// from \p ReductionOps. 9218 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9219 Value *RHS, const Twine &Name, 9220 const ReductionOpsListType &ReductionOps) { 9221 bool UseSelect = ReductionOps.size() == 2 || 9222 // Logical or/and. 9223 (ReductionOps.size() == 1 && 9224 isa<SelectInst>(ReductionOps.front().front())); 9225 assert((!UseSelect || ReductionOps.size() != 2 || 9226 isa<SelectInst>(ReductionOps[1][0])) && 9227 "Expected cmp + select pairs for reduction"); 9228 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9229 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9230 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9231 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9232 propagateIRFlags(Op, ReductionOps[1]); 9233 return Op; 9234 } 9235 } 9236 propagateIRFlags(Op, ReductionOps[0]); 9237 return Op; 9238 } 9239 9240 /// Creates reduction operation with the current opcode with the IR flags 9241 /// from \p I. 9242 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9243 Value *RHS, const Twine &Name, Instruction *I) { 9244 auto *SelI = dyn_cast<SelectInst>(I); 9245 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9246 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9247 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9248 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9249 } 9250 propagateIRFlags(Op, I); 9251 return Op; 9252 } 9253 9254 static RecurKind getRdxKind(Instruction *I) { 9255 assert(I && "Expected instruction for reduction matching"); 9256 if (match(I, m_Add(m_Value(), m_Value()))) 9257 return RecurKind::Add; 9258 if (match(I, m_Mul(m_Value(), m_Value()))) 9259 return RecurKind::Mul; 9260 if (match(I, m_And(m_Value(), m_Value())) || 9261 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9262 return RecurKind::And; 9263 if (match(I, m_Or(m_Value(), m_Value())) || 9264 match(I, m_LogicalOr(m_Value(), m_Value()))) 9265 return RecurKind::Or; 9266 if (match(I, m_Xor(m_Value(), m_Value()))) 9267 return RecurKind::Xor; 9268 if (match(I, m_FAdd(m_Value(), m_Value()))) 9269 return RecurKind::FAdd; 9270 if (match(I, m_FMul(m_Value(), m_Value()))) 9271 return RecurKind::FMul; 9272 9273 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9274 return RecurKind::FMax; 9275 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9276 return RecurKind::FMin; 9277 9278 // This matches either cmp+select or intrinsics. SLP is expected to handle 9279 // either form. 9280 // TODO: If we are canonicalizing to intrinsics, we can remove several 9281 // special-case paths that deal with selects. 9282 if (match(I, m_SMax(m_Value(), m_Value()))) 9283 return RecurKind::SMax; 9284 if (match(I, m_SMin(m_Value(), m_Value()))) 9285 return RecurKind::SMin; 9286 if (match(I, m_UMax(m_Value(), m_Value()))) 9287 return RecurKind::UMax; 9288 if (match(I, m_UMin(m_Value(), m_Value()))) 9289 return RecurKind::UMin; 9290 9291 if (auto *Select = dyn_cast<SelectInst>(I)) { 9292 // Try harder: look for min/max pattern based on instructions producing 9293 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9294 // During the intermediate stages of SLP, it's very common to have 9295 // pattern like this (since optimizeGatherSequence is run only once 9296 // at the end): 9297 // %1 = extractelement <2 x i32> %a, i32 0 9298 // %2 = extractelement <2 x i32> %a, i32 1 9299 // %cond = icmp sgt i32 %1, %2 9300 // %3 = extractelement <2 x i32> %a, i32 0 9301 // %4 = extractelement <2 x i32> %a, i32 1 9302 // %select = select i1 %cond, i32 %3, i32 %4 9303 CmpInst::Predicate Pred; 9304 Instruction *L1; 9305 Instruction *L2; 9306 9307 Value *LHS = Select->getTrueValue(); 9308 Value *RHS = Select->getFalseValue(); 9309 Value *Cond = Select->getCondition(); 9310 9311 // TODO: Support inverse predicates. 9312 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9313 if (!isa<ExtractElementInst>(RHS) || 9314 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9315 return RecurKind::None; 9316 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9317 if (!isa<ExtractElementInst>(LHS) || 9318 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9319 return RecurKind::None; 9320 } else { 9321 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9322 return RecurKind::None; 9323 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9324 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9325 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9326 return RecurKind::None; 9327 } 9328 9329 switch (Pred) { 9330 default: 9331 return RecurKind::None; 9332 case CmpInst::ICMP_SGT: 9333 case CmpInst::ICMP_SGE: 9334 return RecurKind::SMax; 9335 case CmpInst::ICMP_SLT: 9336 case CmpInst::ICMP_SLE: 9337 return RecurKind::SMin; 9338 case CmpInst::ICMP_UGT: 9339 case CmpInst::ICMP_UGE: 9340 return RecurKind::UMax; 9341 case CmpInst::ICMP_ULT: 9342 case CmpInst::ICMP_ULE: 9343 return RecurKind::UMin; 9344 } 9345 } 9346 return RecurKind::None; 9347 } 9348 9349 /// Get the index of the first operand. 9350 static unsigned getFirstOperandIndex(Instruction *I) { 9351 return isCmpSelMinMax(I) ? 1 : 0; 9352 } 9353 9354 /// Total number of operands in the reduction operation. 9355 static unsigned getNumberOfOperands(Instruction *I) { 9356 return isCmpSelMinMax(I) ? 3 : 2; 9357 } 9358 9359 /// Checks if the instruction is in basic block \p BB. 9360 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9361 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9362 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9363 auto *Sel = cast<SelectInst>(I); 9364 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9365 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9366 } 9367 return I->getParent() == BB; 9368 } 9369 9370 /// Expected number of uses for reduction operations/reduced values. 9371 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9372 if (IsCmpSelMinMax) { 9373 // SelectInst must be used twice while the condition op must have single 9374 // use only. 9375 if (auto *Sel = dyn_cast<SelectInst>(I)) 9376 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9377 return I->hasNUses(2); 9378 } 9379 9380 // Arithmetic reduction operation must be used once only. 9381 return I->hasOneUse(); 9382 } 9383 9384 /// Initializes the list of reduction operations. 9385 void initReductionOps(Instruction *I) { 9386 if (isCmpSelMinMax(I)) 9387 ReductionOps.assign(2, ReductionOpsType()); 9388 else 9389 ReductionOps.assign(1, ReductionOpsType()); 9390 } 9391 9392 /// Add all reduction operations for the reduction instruction \p I. 9393 void addReductionOps(Instruction *I) { 9394 if (isCmpSelMinMax(I)) { 9395 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9396 ReductionOps[1].emplace_back(I); 9397 } else { 9398 ReductionOps[0].emplace_back(I); 9399 } 9400 } 9401 9402 static Value *getLHS(RecurKind Kind, Instruction *I) { 9403 if (Kind == RecurKind::None) 9404 return nullptr; 9405 return I->getOperand(getFirstOperandIndex(I)); 9406 } 9407 static Value *getRHS(RecurKind Kind, Instruction *I) { 9408 if (Kind == RecurKind::None) 9409 return nullptr; 9410 return I->getOperand(getFirstOperandIndex(I) + 1); 9411 } 9412 9413 public: 9414 HorizontalReduction() = default; 9415 9416 /// Try to find a reduction tree. 9417 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9418 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9419 "Phi needs to use the binary operator"); 9420 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9421 isa<IntrinsicInst>(Inst)) && 9422 "Expected binop, select, or intrinsic for reduction matching"); 9423 RdxKind = getRdxKind(Inst); 9424 9425 // We could have a initial reductions that is not an add. 9426 // r *= v1 + v2 + v3 + v4 9427 // In such a case start looking for a tree rooted in the first '+'. 9428 if (Phi) { 9429 if (getLHS(RdxKind, Inst) == Phi) { 9430 Phi = nullptr; 9431 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9432 if (!Inst) 9433 return false; 9434 RdxKind = getRdxKind(Inst); 9435 } else if (getRHS(RdxKind, Inst) == Phi) { 9436 Phi = nullptr; 9437 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9438 if (!Inst) 9439 return false; 9440 RdxKind = getRdxKind(Inst); 9441 } 9442 } 9443 9444 if (!isVectorizable(RdxKind, Inst)) 9445 return false; 9446 9447 // Analyze "regular" integer/FP types for reductions - no target-specific 9448 // types or pointers. 9449 Type *Ty = Inst->getType(); 9450 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9451 return false; 9452 9453 // Though the ultimate reduction may have multiple uses, its condition must 9454 // have only single use. 9455 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9456 if (!Sel->getCondition()->hasOneUse()) 9457 return false; 9458 9459 ReductionRoot = Inst; 9460 9461 // The opcode for leaf values that we perform a reduction on. 9462 // For example: load(x) + load(y) + load(z) + fptoui(w) 9463 // The leaf opcode for 'w' does not match, so we don't include it as a 9464 // potential candidate for the reduction. 9465 unsigned LeafOpcode = 0; 9466 9467 // Post-order traverse the reduction tree starting at Inst. We only handle 9468 // true trees containing binary operators or selects. 9469 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9470 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9471 initReductionOps(Inst); 9472 while (!Stack.empty()) { 9473 Instruction *TreeN = Stack.back().first; 9474 unsigned EdgeToVisit = Stack.back().second++; 9475 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9476 bool IsReducedValue = TreeRdxKind != RdxKind; 9477 9478 // Postorder visit. 9479 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9480 if (IsReducedValue) 9481 ReducedVals.push_back(TreeN); 9482 else { 9483 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9484 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9485 // Check if TreeN is an extra argument of its parent operation. 9486 if (Stack.size() <= 1) { 9487 // TreeN can't be an extra argument as it is a root reduction 9488 // operation. 9489 return false; 9490 } 9491 // Yes, TreeN is an extra argument, do not add it to a list of 9492 // reduction operations. 9493 // Stack[Stack.size() - 2] always points to the parent operation. 9494 markExtraArg(Stack[Stack.size() - 2], TreeN); 9495 ExtraArgs.erase(TreeN); 9496 } else 9497 addReductionOps(TreeN); 9498 } 9499 // Retract. 9500 Stack.pop_back(); 9501 continue; 9502 } 9503 9504 // Visit operands. 9505 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9506 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9507 if (!EdgeInst) { 9508 // Edge value is not a reduction instruction or a leaf instruction. 9509 // (It may be a constant, function argument, or something else.) 9510 markExtraArg(Stack.back(), EdgeVal); 9511 continue; 9512 } 9513 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9514 // Continue analysis if the next operand is a reduction operation or 9515 // (possibly) a leaf value. If the leaf value opcode is not set, 9516 // the first met operation != reduction operation is considered as the 9517 // leaf opcode. 9518 // Only handle trees in the current basic block. 9519 // Each tree node needs to have minimal number of users except for the 9520 // ultimate reduction. 9521 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9522 if (EdgeInst != Phi && EdgeInst != Inst && 9523 hasSameParent(EdgeInst, Inst->getParent()) && 9524 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9525 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9526 if (IsRdxInst) { 9527 // We need to be able to reassociate the reduction operations. 9528 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9529 // I is an extra argument for TreeN (its parent operation). 9530 markExtraArg(Stack.back(), EdgeInst); 9531 continue; 9532 } 9533 } else if (!LeafOpcode) { 9534 LeafOpcode = EdgeInst->getOpcode(); 9535 } 9536 Stack.push_back( 9537 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9538 continue; 9539 } 9540 // I is an extra argument for TreeN (its parent operation). 9541 markExtraArg(Stack.back(), EdgeInst); 9542 } 9543 return true; 9544 } 9545 9546 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9547 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9548 // If there are a sufficient number of reduction values, reduce 9549 // to a nearby power-of-2. We can safely generate oversized 9550 // vectors and rely on the backend to split them to legal sizes. 9551 unsigned NumReducedVals = ReducedVals.size(); 9552 if (NumReducedVals < 4) 9553 return nullptr; 9554 9555 // Intersect the fast-math-flags from all reduction operations. 9556 FastMathFlags RdxFMF; 9557 RdxFMF.set(); 9558 for (ReductionOpsType &RdxOp : ReductionOps) { 9559 for (Value *RdxVal : RdxOp) { 9560 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9561 RdxFMF &= FPMO->getFastMathFlags(); 9562 } 9563 } 9564 9565 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9566 Builder.setFastMathFlags(RdxFMF); 9567 9568 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9569 // The same extra argument may be used several times, so log each attempt 9570 // to use it. 9571 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9572 assert(Pair.first && "DebugLoc must be set."); 9573 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9574 } 9575 9576 // The compare instruction of a min/max is the insertion point for new 9577 // instructions and may be replaced with a new compare instruction. 9578 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9579 assert(isa<SelectInst>(RdxRootInst) && 9580 "Expected min/max reduction to have select root instruction"); 9581 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9582 assert(isa<Instruction>(ScalarCond) && 9583 "Expected min/max reduction to have compare condition"); 9584 return cast<Instruction>(ScalarCond); 9585 }; 9586 9587 // The reduction root is used as the insertion point for new instructions, 9588 // so set it as externally used to prevent it from being deleted. 9589 ExternallyUsedValues[ReductionRoot]; 9590 SmallVector<Value *, 16> IgnoreList; 9591 for (ReductionOpsType &RdxOp : ReductionOps) 9592 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9593 9594 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9595 if (NumReducedVals > ReduxWidth) { 9596 // In the loop below, we are building a tree based on a window of 9597 // 'ReduxWidth' values. 9598 // If the operands of those values have common traits (compare predicate, 9599 // constant operand, etc), then we want to group those together to 9600 // minimize the cost of the reduction. 9601 9602 // TODO: This should be extended to count common operands for 9603 // compares and binops. 9604 9605 // Step 1: Count the number of times each compare predicate occurs. 9606 SmallDenseMap<unsigned, unsigned> PredCountMap; 9607 for (Value *RdxVal : ReducedVals) { 9608 CmpInst::Predicate Pred; 9609 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9610 ++PredCountMap[Pred]; 9611 } 9612 // Step 2: Sort the values so the most common predicates come first. 9613 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9614 CmpInst::Predicate PredA, PredB; 9615 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9616 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9617 return PredCountMap[PredA] > PredCountMap[PredB]; 9618 } 9619 return false; 9620 }); 9621 } 9622 9623 Value *VectorizedTree = nullptr; 9624 unsigned i = 0; 9625 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9626 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9627 V.buildTree(VL, IgnoreList); 9628 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9629 break; 9630 if (V.isLoadCombineReductionCandidate(RdxKind)) 9631 break; 9632 V.reorderTopToBottom(); 9633 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9634 V.buildExternalUses(ExternallyUsedValues); 9635 9636 // For a poison-safe boolean logic reduction, do not replace select 9637 // instructions with logic ops. All reduced values will be frozen (see 9638 // below) to prevent leaking poison. 9639 if (isa<SelectInst>(ReductionRoot) && 9640 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9641 NumReducedVals != ReduxWidth) 9642 break; 9643 9644 V.computeMinimumValueSizes(); 9645 9646 // Estimate cost. 9647 InstructionCost TreeCost = 9648 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9649 InstructionCost ReductionCost = 9650 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9651 InstructionCost Cost = TreeCost + ReductionCost; 9652 if (!Cost.isValid()) { 9653 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9654 return nullptr; 9655 } 9656 if (Cost >= -SLPCostThreshold) { 9657 V.getORE()->emit([&]() { 9658 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9659 cast<Instruction>(VL[0])) 9660 << "Vectorizing horizontal reduction is possible" 9661 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9662 << " and threshold " 9663 << ore::NV("Threshold", -SLPCostThreshold); 9664 }); 9665 break; 9666 } 9667 9668 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9669 << Cost << ". (HorRdx)\n"); 9670 V.getORE()->emit([&]() { 9671 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9672 cast<Instruction>(VL[0])) 9673 << "Vectorized horizontal reduction with cost " 9674 << ore::NV("Cost", Cost) << " and with tree size " 9675 << ore::NV("TreeSize", V.getTreeSize()); 9676 }); 9677 9678 // Vectorize a tree. 9679 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9680 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9681 9682 // Emit a reduction. If the root is a select (min/max idiom), the insert 9683 // point is the compare condition of that select. 9684 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9685 if (isCmpSelMinMax(RdxRootInst)) 9686 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9687 else 9688 Builder.SetInsertPoint(RdxRootInst); 9689 9690 // To prevent poison from leaking across what used to be sequential, safe, 9691 // scalar boolean logic operations, the reduction operand must be frozen. 9692 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9693 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9694 9695 Value *ReducedSubTree = 9696 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9697 9698 if (!VectorizedTree) { 9699 // Initialize the final value in the reduction. 9700 VectorizedTree = ReducedSubTree; 9701 } else { 9702 // Update the final value in the reduction. 9703 Builder.SetCurrentDebugLocation(Loc); 9704 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9705 ReducedSubTree, "op.rdx", ReductionOps); 9706 } 9707 i += ReduxWidth; 9708 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9709 } 9710 9711 if (VectorizedTree) { 9712 // Finish the reduction. 9713 for (; i < NumReducedVals; ++i) { 9714 auto *I = cast<Instruction>(ReducedVals[i]); 9715 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9716 VectorizedTree = 9717 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9718 } 9719 for (auto &Pair : ExternallyUsedValues) { 9720 // Add each externally used value to the final reduction. 9721 for (auto *I : Pair.second) { 9722 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9723 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9724 Pair.first, "op.extra", I); 9725 } 9726 } 9727 9728 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9729 9730 // Mark all scalar reduction ops for deletion, they are replaced by the 9731 // vector reductions. 9732 V.eraseInstructions(IgnoreList); 9733 } 9734 return VectorizedTree; 9735 } 9736 9737 unsigned numReductionValues() const { return ReducedVals.size(); } 9738 9739 private: 9740 /// Calculate the cost of a reduction. 9741 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9742 Value *FirstReducedVal, unsigned ReduxWidth, 9743 FastMathFlags FMF) { 9744 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9745 Type *ScalarTy = FirstReducedVal->getType(); 9746 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9747 InstructionCost VectorCost, ScalarCost; 9748 switch (RdxKind) { 9749 case RecurKind::Add: 9750 case RecurKind::Mul: 9751 case RecurKind::Or: 9752 case RecurKind::And: 9753 case RecurKind::Xor: 9754 case RecurKind::FAdd: 9755 case RecurKind::FMul: { 9756 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9757 VectorCost = 9758 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9759 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9760 break; 9761 } 9762 case RecurKind::FMax: 9763 case RecurKind::FMin: { 9764 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9765 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9766 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9767 /*IsUnsigned=*/false, CostKind); 9768 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9769 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9770 SclCondTy, RdxPred, CostKind) + 9771 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9772 SclCondTy, RdxPred, CostKind); 9773 break; 9774 } 9775 case RecurKind::SMax: 9776 case RecurKind::SMin: 9777 case RecurKind::UMax: 9778 case RecurKind::UMin: { 9779 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9780 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9781 bool IsUnsigned = 9782 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9783 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9784 CostKind); 9785 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9786 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9787 SclCondTy, RdxPred, CostKind) + 9788 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9789 SclCondTy, RdxPred, CostKind); 9790 break; 9791 } 9792 default: 9793 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9794 } 9795 9796 // Scalar cost is repeated for N-1 elements. 9797 ScalarCost *= (ReduxWidth - 1); 9798 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9799 << " for reduction that starts with " << *FirstReducedVal 9800 << " (It is a splitting reduction)\n"); 9801 return VectorCost - ScalarCost; 9802 } 9803 9804 /// Emit a horizontal reduction of the vectorized value. 9805 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9806 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9807 assert(VectorizedValue && "Need to have a vectorized tree node"); 9808 assert(isPowerOf2_32(ReduxWidth) && 9809 "We only handle power-of-two reductions for now"); 9810 assert(RdxKind != RecurKind::FMulAdd && 9811 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9812 9813 ++NumVectorInstructions; 9814 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9815 } 9816 }; 9817 9818 } // end anonymous namespace 9819 9820 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9821 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9822 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9823 9824 unsigned AggregateSize = 1; 9825 auto *IV = cast<InsertValueInst>(InsertInst); 9826 Type *CurrentType = IV->getType(); 9827 do { 9828 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9829 for (auto *Elt : ST->elements()) 9830 if (Elt != ST->getElementType(0)) // check homogeneity 9831 return None; 9832 AggregateSize *= ST->getNumElements(); 9833 CurrentType = ST->getElementType(0); 9834 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9835 AggregateSize *= AT->getNumElements(); 9836 CurrentType = AT->getElementType(); 9837 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9838 AggregateSize *= VT->getNumElements(); 9839 return AggregateSize; 9840 } else if (CurrentType->isSingleValueType()) { 9841 return AggregateSize; 9842 } else { 9843 return None; 9844 } 9845 } while (true); 9846 } 9847 9848 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9849 TargetTransformInfo *TTI, 9850 SmallVectorImpl<Value *> &BuildVectorOpds, 9851 SmallVectorImpl<Value *> &InsertElts, 9852 unsigned OperandOffset) { 9853 do { 9854 Value *InsertedOperand = LastInsertInst->getOperand(1); 9855 Optional<unsigned> OperandIndex = 9856 getInsertIndex(LastInsertInst, OperandOffset); 9857 if (!OperandIndex) 9858 return; 9859 if (isa<InsertElementInst>(InsertedOperand) || 9860 isa<InsertValueInst>(InsertedOperand)) { 9861 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9862 BuildVectorOpds, InsertElts, *OperandIndex); 9863 9864 } else { 9865 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9866 InsertElts[*OperandIndex] = LastInsertInst; 9867 } 9868 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9869 } while (LastInsertInst != nullptr && 9870 (isa<InsertValueInst>(LastInsertInst) || 9871 isa<InsertElementInst>(LastInsertInst)) && 9872 LastInsertInst->hasOneUse()); 9873 } 9874 9875 /// Recognize construction of vectors like 9876 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9877 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9878 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9879 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9880 /// starting from the last insertelement or insertvalue instruction. 9881 /// 9882 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9883 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9884 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9885 /// 9886 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9887 /// 9888 /// \return true if it matches. 9889 static bool findBuildAggregate(Instruction *LastInsertInst, 9890 TargetTransformInfo *TTI, 9891 SmallVectorImpl<Value *> &BuildVectorOpds, 9892 SmallVectorImpl<Value *> &InsertElts) { 9893 9894 assert((isa<InsertElementInst>(LastInsertInst) || 9895 isa<InsertValueInst>(LastInsertInst)) && 9896 "Expected insertelement or insertvalue instruction!"); 9897 9898 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9899 "Expected empty result vectors!"); 9900 9901 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9902 if (!AggregateSize) 9903 return false; 9904 BuildVectorOpds.resize(*AggregateSize); 9905 InsertElts.resize(*AggregateSize); 9906 9907 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9908 llvm::erase_value(BuildVectorOpds, nullptr); 9909 llvm::erase_value(InsertElts, nullptr); 9910 if (BuildVectorOpds.size() >= 2) 9911 return true; 9912 9913 return false; 9914 } 9915 9916 /// Try and get a reduction value from a phi node. 9917 /// 9918 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9919 /// if they come from either \p ParentBB or a containing loop latch. 9920 /// 9921 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9922 /// if not possible. 9923 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9924 BasicBlock *ParentBB, LoopInfo *LI) { 9925 // There are situations where the reduction value is not dominated by the 9926 // reduction phi. Vectorizing such cases has been reported to cause 9927 // miscompiles. See PR25787. 9928 auto DominatedReduxValue = [&](Value *R) { 9929 return isa<Instruction>(R) && 9930 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9931 }; 9932 9933 Value *Rdx = nullptr; 9934 9935 // Return the incoming value if it comes from the same BB as the phi node. 9936 if (P->getIncomingBlock(0) == ParentBB) { 9937 Rdx = P->getIncomingValue(0); 9938 } else if (P->getIncomingBlock(1) == ParentBB) { 9939 Rdx = P->getIncomingValue(1); 9940 } 9941 9942 if (Rdx && DominatedReduxValue(Rdx)) 9943 return Rdx; 9944 9945 // Otherwise, check whether we have a loop latch to look at. 9946 Loop *BBL = LI->getLoopFor(ParentBB); 9947 if (!BBL) 9948 return nullptr; 9949 BasicBlock *BBLatch = BBL->getLoopLatch(); 9950 if (!BBLatch) 9951 return nullptr; 9952 9953 // There is a loop latch, return the incoming value if it comes from 9954 // that. This reduction pattern occasionally turns up. 9955 if (P->getIncomingBlock(0) == BBLatch) { 9956 Rdx = P->getIncomingValue(0); 9957 } else if (P->getIncomingBlock(1) == BBLatch) { 9958 Rdx = P->getIncomingValue(1); 9959 } 9960 9961 if (Rdx && DominatedReduxValue(Rdx)) 9962 return Rdx; 9963 9964 return nullptr; 9965 } 9966 9967 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9968 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9969 return true; 9970 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9971 return true; 9972 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9973 return true; 9974 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9975 return true; 9976 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9977 return true; 9978 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9979 return true; 9980 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9981 return true; 9982 return false; 9983 } 9984 9985 /// Attempt to reduce a horizontal reduction. 9986 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9987 /// with reduction operators \a Root (or one of its operands) in a basic block 9988 /// \a BB, then check if it can be done. If horizontal reduction is not found 9989 /// and root instruction is a binary operation, vectorization of the operands is 9990 /// attempted. 9991 /// \returns true if a horizontal reduction was matched and reduced or operands 9992 /// of one of the binary instruction were vectorized. 9993 /// \returns false if a horizontal reduction was not matched (or not possible) 9994 /// or no vectorization of any binary operation feeding \a Root instruction was 9995 /// performed. 9996 static bool tryToVectorizeHorReductionOrInstOperands( 9997 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9998 TargetTransformInfo *TTI, 9999 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10000 if (!ShouldVectorizeHor) 10001 return false; 10002 10003 if (!Root) 10004 return false; 10005 10006 if (Root->getParent() != BB || isa<PHINode>(Root)) 10007 return false; 10008 // Start analysis starting from Root instruction. If horizontal reduction is 10009 // found, try to vectorize it. If it is not a horizontal reduction or 10010 // vectorization is not possible or not effective, and currently analyzed 10011 // instruction is a binary operation, try to vectorize the operands, using 10012 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10013 // the same procedure considering each operand as a possible root of the 10014 // horizontal reduction. 10015 // Interrupt the process if the Root instruction itself was vectorized or all 10016 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10017 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10018 // CmpInsts so we can skip extra attempts in 10019 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10020 std::queue<std::pair<Instruction *, unsigned>> Stack; 10021 Stack.emplace(Root, 0); 10022 SmallPtrSet<Value *, 8> VisitedInstrs; 10023 SmallVector<WeakTrackingVH> PostponedInsts; 10024 bool Res = false; 10025 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10026 Value *&B1) -> Value * { 10027 bool IsBinop = matchRdxBop(Inst, B0, B1); 10028 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10029 if (IsBinop || IsSelect) { 10030 HorizontalReduction HorRdx; 10031 if (HorRdx.matchAssociativeReduction(P, Inst)) 10032 return HorRdx.tryToReduce(R, TTI); 10033 } 10034 return nullptr; 10035 }; 10036 while (!Stack.empty()) { 10037 Instruction *Inst; 10038 unsigned Level; 10039 std::tie(Inst, Level) = Stack.front(); 10040 Stack.pop(); 10041 // Do not try to analyze instruction that has already been vectorized. 10042 // This may happen when we vectorize instruction operands on a previous 10043 // iteration while stack was populated before that happened. 10044 if (R.isDeleted(Inst)) 10045 continue; 10046 Value *B0 = nullptr, *B1 = nullptr; 10047 if (Value *V = TryToReduce(Inst, B0, B1)) { 10048 Res = true; 10049 // Set P to nullptr to avoid re-analysis of phi node in 10050 // matchAssociativeReduction function unless this is the root node. 10051 P = nullptr; 10052 if (auto *I = dyn_cast<Instruction>(V)) { 10053 // Try to find another reduction. 10054 Stack.emplace(I, Level); 10055 continue; 10056 } 10057 } else { 10058 bool IsBinop = B0 && B1; 10059 if (P && IsBinop) { 10060 Inst = dyn_cast<Instruction>(B0); 10061 if (Inst == P) 10062 Inst = dyn_cast<Instruction>(B1); 10063 if (!Inst) { 10064 // Set P to nullptr to avoid re-analysis of phi node in 10065 // matchAssociativeReduction function unless this is the root node. 10066 P = nullptr; 10067 continue; 10068 } 10069 } 10070 // Set P to nullptr to avoid re-analysis of phi node in 10071 // matchAssociativeReduction function unless this is the root node. 10072 P = nullptr; 10073 // Do not try to vectorize CmpInst operands, this is done separately. 10074 // Final attempt for binop args vectorization should happen after the loop 10075 // to try to find reductions. 10076 if (!isa<CmpInst>(Inst)) 10077 PostponedInsts.push_back(Inst); 10078 } 10079 10080 // Try to vectorize operands. 10081 // Continue analysis for the instruction from the same basic block only to 10082 // save compile time. 10083 if (++Level < RecursionMaxDepth) 10084 for (auto *Op : Inst->operand_values()) 10085 if (VisitedInstrs.insert(Op).second) 10086 if (auto *I = dyn_cast<Instruction>(Op)) 10087 // Do not try to vectorize CmpInst operands, this is done 10088 // separately. 10089 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10090 I->getParent() == BB) 10091 Stack.emplace(I, Level); 10092 } 10093 // Try to vectorized binops where reductions were not found. 10094 for (Value *V : PostponedInsts) 10095 if (auto *Inst = dyn_cast<Instruction>(V)) 10096 if (!R.isDeleted(Inst)) 10097 Res |= Vectorize(Inst, R); 10098 return Res; 10099 } 10100 10101 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10102 BasicBlock *BB, BoUpSLP &R, 10103 TargetTransformInfo *TTI) { 10104 auto *I = dyn_cast_or_null<Instruction>(V); 10105 if (!I) 10106 return false; 10107 10108 if (!isa<BinaryOperator>(I)) 10109 P = nullptr; 10110 // Try to match and vectorize a horizontal reduction. 10111 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10112 return tryToVectorize(I, R); 10113 }; 10114 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10115 ExtraVectorization); 10116 } 10117 10118 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10119 BasicBlock *BB, BoUpSLP &R) { 10120 const DataLayout &DL = BB->getModule()->getDataLayout(); 10121 if (!R.canMapToVector(IVI->getType(), DL)) 10122 return false; 10123 10124 SmallVector<Value *, 16> BuildVectorOpds; 10125 SmallVector<Value *, 16> BuildVectorInsts; 10126 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10127 return false; 10128 10129 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10130 // Aggregate value is unlikely to be processed in vector register. 10131 return tryToVectorizeList(BuildVectorOpds, R); 10132 } 10133 10134 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10135 BasicBlock *BB, BoUpSLP &R) { 10136 SmallVector<Value *, 16> BuildVectorInsts; 10137 SmallVector<Value *, 16> BuildVectorOpds; 10138 SmallVector<int> Mask; 10139 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10140 (llvm::all_of( 10141 BuildVectorOpds, 10142 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10143 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10144 return false; 10145 10146 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10147 return tryToVectorizeList(BuildVectorInsts, R); 10148 } 10149 10150 template <typename T> 10151 static bool 10152 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10153 function_ref<unsigned(T *)> Limit, 10154 function_ref<bool(T *, T *)> Comparator, 10155 function_ref<bool(T *, T *)> AreCompatible, 10156 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10157 bool LimitForRegisterSize) { 10158 bool Changed = false; 10159 // Sort by type, parent, operands. 10160 stable_sort(Incoming, Comparator); 10161 10162 // Try to vectorize elements base on their type. 10163 SmallVector<T *> Candidates; 10164 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10165 // Look for the next elements with the same type, parent and operand 10166 // kinds. 10167 auto *SameTypeIt = IncIt; 10168 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10169 ++SameTypeIt; 10170 10171 // Try to vectorize them. 10172 unsigned NumElts = (SameTypeIt - IncIt); 10173 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10174 << NumElts << ")\n"); 10175 // The vectorization is a 3-state attempt: 10176 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10177 // size of maximal register at first. 10178 // 2. Try to vectorize remaining instructions with the same type, if 10179 // possible. This may result in the better vectorization results rather than 10180 // if we try just to vectorize instructions with the same/alternate opcodes. 10181 // 3. Final attempt to try to vectorize all instructions with the 10182 // same/alternate ops only, this may result in some extra final 10183 // vectorization. 10184 if (NumElts > 1 && 10185 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10186 // Success start over because instructions might have been changed. 10187 Changed = true; 10188 } else if (NumElts < Limit(*IncIt) && 10189 (Candidates.empty() || 10190 Candidates.front()->getType() == (*IncIt)->getType())) { 10191 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10192 } 10193 // Final attempt to vectorize instructions with the same types. 10194 if (Candidates.size() > 1 && 10195 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10196 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10197 // Success start over because instructions might have been changed. 10198 Changed = true; 10199 } else if (LimitForRegisterSize) { 10200 // Try to vectorize using small vectors. 10201 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10202 It != End;) { 10203 auto *SameTypeIt = It; 10204 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10205 ++SameTypeIt; 10206 unsigned NumElts = (SameTypeIt - It); 10207 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10208 /*LimitForRegisterSize=*/false)) 10209 Changed = true; 10210 It = SameTypeIt; 10211 } 10212 } 10213 Candidates.clear(); 10214 } 10215 10216 // Start over at the next instruction of a different type (or the end). 10217 IncIt = SameTypeIt; 10218 } 10219 return Changed; 10220 } 10221 10222 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10223 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10224 /// operands. If IsCompatibility is false, function implements strict weak 10225 /// ordering relation between two cmp instructions, returning true if the first 10226 /// instruction is "less" than the second, i.e. its predicate is less than the 10227 /// predicate of the second or the operands IDs are less than the operands IDs 10228 /// of the second cmp instruction. 10229 template <bool IsCompatibility> 10230 static bool compareCmp(Value *V, Value *V2, 10231 function_ref<bool(Instruction *)> IsDeleted) { 10232 auto *CI1 = cast<CmpInst>(V); 10233 auto *CI2 = cast<CmpInst>(V2); 10234 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10235 return false; 10236 if (CI1->getOperand(0)->getType()->getTypeID() < 10237 CI2->getOperand(0)->getType()->getTypeID()) 10238 return !IsCompatibility; 10239 if (CI1->getOperand(0)->getType()->getTypeID() > 10240 CI2->getOperand(0)->getType()->getTypeID()) 10241 return false; 10242 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10243 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10244 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10245 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10246 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10247 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10248 if (BasePred1 < BasePred2) 10249 return !IsCompatibility; 10250 if (BasePred1 > BasePred2) 10251 return false; 10252 // Compare operands. 10253 bool LEPreds = Pred1 <= Pred2; 10254 bool GEPreds = Pred1 >= Pred2; 10255 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10256 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10257 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10258 if (Op1->getValueID() < Op2->getValueID()) 10259 return !IsCompatibility; 10260 if (Op1->getValueID() > Op2->getValueID()) 10261 return false; 10262 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10263 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10264 if (I1->getParent() != I2->getParent()) 10265 return false; 10266 InstructionsState S = getSameOpcode({I1, I2}); 10267 if (S.getOpcode()) 10268 continue; 10269 return false; 10270 } 10271 } 10272 return IsCompatibility; 10273 } 10274 10275 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10276 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10277 bool AtTerminator) { 10278 bool OpsChanged = false; 10279 SmallVector<Instruction *, 4> PostponedCmps; 10280 for (auto *I : reverse(Instructions)) { 10281 if (R.isDeleted(I)) 10282 continue; 10283 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10284 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10285 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10286 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10287 else if (isa<CmpInst>(I)) 10288 PostponedCmps.push_back(I); 10289 } 10290 if (AtTerminator) { 10291 // Try to find reductions first. 10292 for (Instruction *I : PostponedCmps) { 10293 if (R.isDeleted(I)) 10294 continue; 10295 for (Value *Op : I->operands()) 10296 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10297 } 10298 // Try to vectorize operands as vector bundles. 10299 for (Instruction *I : PostponedCmps) { 10300 if (R.isDeleted(I)) 10301 continue; 10302 OpsChanged |= tryToVectorize(I, R); 10303 } 10304 // Try to vectorize list of compares. 10305 // Sort by type, compare predicate, etc. 10306 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10307 return compareCmp<false>(V, V2, 10308 [&R](Instruction *I) { return R.isDeleted(I); }); 10309 }; 10310 10311 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10312 if (V1 == V2) 10313 return true; 10314 return compareCmp<true>(V1, V2, 10315 [&R](Instruction *I) { return R.isDeleted(I); }); 10316 }; 10317 auto Limit = [&R](Value *V) { 10318 unsigned EltSize = R.getVectorElementSize(V); 10319 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10320 }; 10321 10322 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10323 OpsChanged |= tryToVectorizeSequence<Value>( 10324 Vals, Limit, CompareSorter, AreCompatibleCompares, 10325 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10326 // Exclude possible reductions from other blocks. 10327 bool ArePossiblyReducedInOtherBlock = 10328 any_of(Candidates, [](Value *V) { 10329 return any_of(V->users(), [V](User *U) { 10330 return isa<SelectInst>(U) && 10331 cast<SelectInst>(U)->getParent() != 10332 cast<Instruction>(V)->getParent(); 10333 }); 10334 }); 10335 if (ArePossiblyReducedInOtherBlock) 10336 return false; 10337 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10338 }, 10339 /*LimitForRegisterSize=*/true); 10340 Instructions.clear(); 10341 } else { 10342 // Insert in reverse order since the PostponedCmps vector was filled in 10343 // reverse order. 10344 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10345 } 10346 return OpsChanged; 10347 } 10348 10349 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10350 bool Changed = false; 10351 SmallVector<Value *, 4> Incoming; 10352 SmallPtrSet<Value *, 16> VisitedInstrs; 10353 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10354 // node. Allows better to identify the chains that can be vectorized in the 10355 // better way. 10356 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10357 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10358 assert(isValidElementType(V1->getType()) && 10359 isValidElementType(V2->getType()) && 10360 "Expected vectorizable types only."); 10361 // It is fine to compare type IDs here, since we expect only vectorizable 10362 // types, like ints, floats and pointers, we don't care about other type. 10363 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10364 return true; 10365 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10366 return false; 10367 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10368 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10369 if (Opcodes1.size() < Opcodes2.size()) 10370 return true; 10371 if (Opcodes1.size() > Opcodes2.size()) 10372 return false; 10373 Optional<bool> ConstOrder; 10374 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10375 // Undefs are compatible with any other value. 10376 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10377 if (!ConstOrder) 10378 ConstOrder = 10379 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10380 continue; 10381 } 10382 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10383 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10384 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10385 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10386 if (!NodeI1) 10387 return NodeI2 != nullptr; 10388 if (!NodeI2) 10389 return false; 10390 assert((NodeI1 == NodeI2) == 10391 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10392 "Different nodes should have different DFS numbers"); 10393 if (NodeI1 != NodeI2) 10394 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10395 InstructionsState S = getSameOpcode({I1, I2}); 10396 if (S.getOpcode()) 10397 continue; 10398 return I1->getOpcode() < I2->getOpcode(); 10399 } 10400 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10401 if (!ConstOrder) 10402 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10403 continue; 10404 } 10405 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10406 return true; 10407 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10408 return false; 10409 } 10410 return ConstOrder && *ConstOrder; 10411 }; 10412 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10413 if (V1 == V2) 10414 return true; 10415 if (V1->getType() != V2->getType()) 10416 return false; 10417 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10418 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10419 if (Opcodes1.size() != Opcodes2.size()) 10420 return false; 10421 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10422 // Undefs are compatible with any other value. 10423 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10424 continue; 10425 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10426 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10427 if (I1->getParent() != I2->getParent()) 10428 return false; 10429 InstructionsState S = getSameOpcode({I1, I2}); 10430 if (S.getOpcode()) 10431 continue; 10432 return false; 10433 } 10434 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10435 continue; 10436 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10437 return false; 10438 } 10439 return true; 10440 }; 10441 auto Limit = [&R](Value *V) { 10442 unsigned EltSize = R.getVectorElementSize(V); 10443 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10444 }; 10445 10446 bool HaveVectorizedPhiNodes = false; 10447 do { 10448 // Collect the incoming values from the PHIs. 10449 Incoming.clear(); 10450 for (Instruction &I : *BB) { 10451 PHINode *P = dyn_cast<PHINode>(&I); 10452 if (!P) 10453 break; 10454 10455 // No need to analyze deleted, vectorized and non-vectorizable 10456 // instructions. 10457 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10458 isValidElementType(P->getType())) 10459 Incoming.push_back(P); 10460 } 10461 10462 // Find the corresponding non-phi nodes for better matching when trying to 10463 // build the tree. 10464 for (Value *V : Incoming) { 10465 SmallVectorImpl<Value *> &Opcodes = 10466 PHIToOpcodes.try_emplace(V).first->getSecond(); 10467 if (!Opcodes.empty()) 10468 continue; 10469 SmallVector<Value *, 4> Nodes(1, V); 10470 SmallPtrSet<Value *, 4> Visited; 10471 while (!Nodes.empty()) { 10472 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10473 if (!Visited.insert(PHI).second) 10474 continue; 10475 for (Value *V : PHI->incoming_values()) { 10476 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10477 Nodes.push_back(PHI1); 10478 continue; 10479 } 10480 Opcodes.emplace_back(V); 10481 } 10482 } 10483 } 10484 10485 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10486 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10487 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10488 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10489 }, 10490 /*LimitForRegisterSize=*/true); 10491 Changed |= HaveVectorizedPhiNodes; 10492 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10493 } while (HaveVectorizedPhiNodes); 10494 10495 VisitedInstrs.clear(); 10496 10497 SmallVector<Instruction *, 8> PostProcessInstructions; 10498 SmallDenseSet<Instruction *, 4> KeyNodes; 10499 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10500 // Skip instructions with scalable type. The num of elements is unknown at 10501 // compile-time for scalable type. 10502 if (isa<ScalableVectorType>(it->getType())) 10503 continue; 10504 10505 // Skip instructions marked for the deletion. 10506 if (R.isDeleted(&*it)) 10507 continue; 10508 // We may go through BB multiple times so skip the one we have checked. 10509 if (!VisitedInstrs.insert(&*it).second) { 10510 if (it->use_empty() && KeyNodes.contains(&*it) && 10511 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10512 it->isTerminator())) { 10513 // We would like to start over since some instructions are deleted 10514 // and the iterator may become invalid value. 10515 Changed = true; 10516 it = BB->begin(); 10517 e = BB->end(); 10518 } 10519 continue; 10520 } 10521 10522 if (isa<DbgInfoIntrinsic>(it)) 10523 continue; 10524 10525 // Try to vectorize reductions that use PHINodes. 10526 if (PHINode *P = dyn_cast<PHINode>(it)) { 10527 // Check that the PHI is a reduction PHI. 10528 if (P->getNumIncomingValues() == 2) { 10529 // Try to match and vectorize a horizontal reduction. 10530 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10531 TTI)) { 10532 Changed = true; 10533 it = BB->begin(); 10534 e = BB->end(); 10535 continue; 10536 } 10537 } 10538 // Try to vectorize the incoming values of the PHI, to catch reductions 10539 // that feed into PHIs. 10540 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10541 // Skip if the incoming block is the current BB for now. Also, bypass 10542 // unreachable IR for efficiency and to avoid crashing. 10543 // TODO: Collect the skipped incoming values and try to vectorize them 10544 // after processing BB. 10545 if (BB == P->getIncomingBlock(I) || 10546 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10547 continue; 10548 10549 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10550 P->getIncomingBlock(I), R, TTI); 10551 } 10552 continue; 10553 } 10554 10555 // Ran into an instruction without users, like terminator, or function call 10556 // with ignored return value, store. Ignore unused instructions (basing on 10557 // instruction type, except for CallInst and InvokeInst). 10558 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10559 isa<InvokeInst>(it))) { 10560 KeyNodes.insert(&*it); 10561 bool OpsChanged = false; 10562 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10563 for (auto *V : it->operand_values()) { 10564 // Try to match and vectorize a horizontal reduction. 10565 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10566 } 10567 } 10568 // Start vectorization of post-process list of instructions from the 10569 // top-tree instructions to try to vectorize as many instructions as 10570 // possible. 10571 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10572 it->isTerminator()); 10573 if (OpsChanged) { 10574 // We would like to start over since some instructions are deleted 10575 // and the iterator may become invalid value. 10576 Changed = true; 10577 it = BB->begin(); 10578 e = BB->end(); 10579 continue; 10580 } 10581 } 10582 10583 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10584 isa<InsertValueInst>(it)) 10585 PostProcessInstructions.push_back(&*it); 10586 } 10587 10588 return Changed; 10589 } 10590 10591 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10592 auto Changed = false; 10593 for (auto &Entry : GEPs) { 10594 // If the getelementptr list has fewer than two elements, there's nothing 10595 // to do. 10596 if (Entry.second.size() < 2) 10597 continue; 10598 10599 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10600 << Entry.second.size() << ".\n"); 10601 10602 // Process the GEP list in chunks suitable for the target's supported 10603 // vector size. If a vector register can't hold 1 element, we are done. We 10604 // are trying to vectorize the index computations, so the maximum number of 10605 // elements is based on the size of the index expression, rather than the 10606 // size of the GEP itself (the target's pointer size). 10607 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10608 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10609 if (MaxVecRegSize < EltSize) 10610 continue; 10611 10612 unsigned MaxElts = MaxVecRegSize / EltSize; 10613 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10614 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10615 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10616 10617 // Initialize a set a candidate getelementptrs. Note that we use a 10618 // SetVector here to preserve program order. If the index computations 10619 // are vectorizable and begin with loads, we want to minimize the chance 10620 // of having to reorder them later. 10621 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10622 10623 // Some of the candidates may have already been vectorized after we 10624 // initially collected them. If so, they are marked as deleted, so remove 10625 // them from the set of candidates. 10626 Candidates.remove_if( 10627 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10628 10629 // Remove from the set of candidates all pairs of getelementptrs with 10630 // constant differences. Such getelementptrs are likely not good 10631 // candidates for vectorization in a bottom-up phase since one can be 10632 // computed from the other. We also ensure all candidate getelementptr 10633 // indices are unique. 10634 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10635 auto *GEPI = GEPList[I]; 10636 if (!Candidates.count(GEPI)) 10637 continue; 10638 auto *SCEVI = SE->getSCEV(GEPList[I]); 10639 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10640 auto *GEPJ = GEPList[J]; 10641 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10642 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10643 Candidates.remove(GEPI); 10644 Candidates.remove(GEPJ); 10645 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10646 Candidates.remove(GEPJ); 10647 } 10648 } 10649 } 10650 10651 // We break out of the above computation as soon as we know there are 10652 // fewer than two candidates remaining. 10653 if (Candidates.size() < 2) 10654 continue; 10655 10656 // Add the single, non-constant index of each candidate to the bundle. We 10657 // ensured the indices met these constraints when we originally collected 10658 // the getelementptrs. 10659 SmallVector<Value *, 16> Bundle(Candidates.size()); 10660 auto BundleIndex = 0u; 10661 for (auto *V : Candidates) { 10662 auto *GEP = cast<GetElementPtrInst>(V); 10663 auto *GEPIdx = GEP->idx_begin()->get(); 10664 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10665 Bundle[BundleIndex++] = GEPIdx; 10666 } 10667 10668 // Try and vectorize the indices. We are currently only interested in 10669 // gather-like cases of the form: 10670 // 10671 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10672 // 10673 // where the loads of "a", the loads of "b", and the subtractions can be 10674 // performed in parallel. It's likely that detecting this pattern in a 10675 // bottom-up phase will be simpler and less costly than building a 10676 // full-blown top-down phase beginning at the consecutive loads. 10677 Changed |= tryToVectorizeList(Bundle, R); 10678 } 10679 } 10680 return Changed; 10681 } 10682 10683 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10684 bool Changed = false; 10685 // Sort by type, base pointers and values operand. Value operands must be 10686 // compatible (have the same opcode, same parent), otherwise it is 10687 // definitely not profitable to try to vectorize them. 10688 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10689 if (V->getPointerOperandType()->getTypeID() < 10690 V2->getPointerOperandType()->getTypeID()) 10691 return true; 10692 if (V->getPointerOperandType()->getTypeID() > 10693 V2->getPointerOperandType()->getTypeID()) 10694 return false; 10695 // UndefValues are compatible with all other values. 10696 if (isa<UndefValue>(V->getValueOperand()) || 10697 isa<UndefValue>(V2->getValueOperand())) 10698 return false; 10699 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10700 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10701 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10702 DT->getNode(I1->getParent()); 10703 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10704 DT->getNode(I2->getParent()); 10705 assert(NodeI1 && "Should only process reachable instructions"); 10706 assert(NodeI1 && "Should only process reachable instructions"); 10707 assert((NodeI1 == NodeI2) == 10708 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10709 "Different nodes should have different DFS numbers"); 10710 if (NodeI1 != NodeI2) 10711 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10712 InstructionsState S = getSameOpcode({I1, I2}); 10713 if (S.getOpcode()) 10714 return false; 10715 return I1->getOpcode() < I2->getOpcode(); 10716 } 10717 if (isa<Constant>(V->getValueOperand()) && 10718 isa<Constant>(V2->getValueOperand())) 10719 return false; 10720 return V->getValueOperand()->getValueID() < 10721 V2->getValueOperand()->getValueID(); 10722 }; 10723 10724 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10725 if (V1 == V2) 10726 return true; 10727 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10728 return false; 10729 // Undefs are compatible with any other value. 10730 if (isa<UndefValue>(V1->getValueOperand()) || 10731 isa<UndefValue>(V2->getValueOperand())) 10732 return true; 10733 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10734 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10735 if (I1->getParent() != I2->getParent()) 10736 return false; 10737 InstructionsState S = getSameOpcode({I1, I2}); 10738 return S.getOpcode() > 0; 10739 } 10740 if (isa<Constant>(V1->getValueOperand()) && 10741 isa<Constant>(V2->getValueOperand())) 10742 return true; 10743 return V1->getValueOperand()->getValueID() == 10744 V2->getValueOperand()->getValueID(); 10745 }; 10746 auto Limit = [&R, this](StoreInst *SI) { 10747 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10748 return R.getMinVF(EltSize); 10749 }; 10750 10751 // Attempt to sort and vectorize each of the store-groups. 10752 for (auto &Pair : Stores) { 10753 if (Pair.second.size() < 2) 10754 continue; 10755 10756 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10757 << Pair.second.size() << ".\n"); 10758 10759 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10760 continue; 10761 10762 Changed |= tryToVectorizeSequence<StoreInst>( 10763 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10764 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10765 return vectorizeStores(Candidates, R); 10766 }, 10767 /*LimitForRegisterSize=*/false); 10768 } 10769 return Changed; 10770 } 10771 10772 char SLPVectorizer::ID = 0; 10773 10774 static const char lv_name[] = "SLP Vectorizer"; 10775 10776 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10777 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10778 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10779 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10780 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10781 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10782 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10783 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10784 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10785 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10786 10787 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10788