1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<unsigned> 133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 134 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 135 136 static cl::opt<int> 137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 138 cl::desc("Maximum depth of the lookup for consecutive stores.")); 139 140 /// Limits the size of scheduling regions in a block. 141 /// It avoid long compile times for _very_ large blocks where vector 142 /// instructions are spread over a wide range. 143 /// This limit is way higher than needed by real-world functions. 144 static cl::opt<int> 145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 146 cl::desc("Limit the size of the SLP scheduling region per block")); 147 148 static cl::opt<int> MinVectorRegSizeOption( 149 "slp-min-reg-size", cl::init(128), cl::Hidden, 150 cl::desc("Attempt to vectorize for this register size in bits")); 151 152 static cl::opt<unsigned> RecursionMaxDepth( 153 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 154 cl::desc("Limit the recursion depth when building a vectorizable tree")); 155 156 static cl::opt<unsigned> MinTreeSize( 157 "slp-min-tree-size", cl::init(3), cl::Hidden, 158 cl::desc("Only vectorize small trees if they are fully vectorizable")); 159 160 // The maximum depth that the look-ahead score heuristic will explore. 161 // The higher this value, the higher the compilation time overhead. 162 static cl::opt<int> LookAheadMaxDepth( 163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 164 cl::desc("The maximum look-ahead depth for operand reordering scores")); 165 166 // The Look-ahead heuristic goes through the users of the bundle to calculate 167 // the users cost in getExternalUsesCost(). To avoid compilation time increase 168 // we limit the number of users visited to this value. 169 static cl::opt<unsigned> LookAheadUsersBudget( 170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 171 cl::desc("The maximum number of users to visit while visiting the " 172 "predecessors. This prevents compilation time increase.")); 173 174 static cl::opt<bool> 175 ViewSLPTree("view-slp-tree", cl::Hidden, 176 cl::desc("Display the SLP trees with Graphviz")); 177 178 // Limit the number of alias checks. The limit is chosen so that 179 // it has no negative effect on the llvm benchmarks. 180 static const unsigned AliasedCheckLimit = 10; 181 182 // Another limit for the alias checks: The maximum distance between load/store 183 // instructions where alias checks are done. 184 // This limit is useful for very large basic blocks. 185 static const unsigned MaxMemDepDistance = 160; 186 187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 188 /// regions to be handled. 189 static const int MinScheduleRegionSize = 16; 190 191 /// Predicate for the element types that the SLP vectorizer supports. 192 /// 193 /// The most important thing to filter here are types which are invalid in LLVM 194 /// vectors. We also filter target specific types which have absolutely no 195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 196 /// avoids spending time checking the cost model and realizing that they will 197 /// be inevitably scalarized. 198 static bool isValidElementType(Type *Ty) { 199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 200 !Ty->isPPC_FP128Ty(); 201 } 202 203 /// \returns True if the value is a constant (but not globals/constant 204 /// expressions). 205 static bool isConstant(Value *V) { 206 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 207 } 208 209 /// Checks if \p V is one of vector-like instructions, i.e. undef, 210 /// insertelement/extractelement with constant indices for fixed vector type or 211 /// extractvalue instruction. 212 static bool isVectorLikeInstWithConstOps(Value *V) { 213 if (!isa<InsertElementInst, ExtractElementInst>(V) && 214 !isa<ExtractValueInst, UndefValue>(V)) 215 return false; 216 auto *I = dyn_cast<Instruction>(V); 217 if (!I || isa<ExtractValueInst>(I)) 218 return true; 219 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 220 return false; 221 if (isa<ExtractElementInst, ExtractValueInst>(I)) 222 return isConstant(I->getOperand(1)); 223 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 224 return isConstant(I->getOperand(2)); 225 } 226 227 /// \returns true if all of the instructions in \p VL are in the same block or 228 /// false otherwise. 229 static bool allSameBlock(ArrayRef<Value *> VL) { 230 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 231 if (!I0) 232 return false; 233 if (all_of(VL, isVectorLikeInstWithConstOps)) 234 return true; 235 236 BasicBlock *BB = I0->getParent(); 237 for (int I = 1, E = VL.size(); I < E; I++) { 238 auto *II = dyn_cast<Instruction>(VL[I]); 239 if (!II) 240 return false; 241 242 if (BB != II->getParent()) 243 return false; 244 } 245 return true; 246 } 247 248 /// \returns True if all of the values in \p VL are constants (but not 249 /// globals/constant expressions). 250 static bool allConstant(ArrayRef<Value *> VL) { 251 // Constant expressions and globals can't be vectorized like normal integer/FP 252 // constants. 253 return all_of(VL, isConstant); 254 } 255 256 /// \returns True if all of the values in \p VL are identical. 257 static bool isSplat(ArrayRef<Value *> VL) { 258 for (unsigned i = 1, e = VL.size(); i < e; ++i) 259 if (VL[i] != VL[0]) 260 return false; 261 return true; 262 } 263 264 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 265 static bool isCommutative(Instruction *I) { 266 if (auto *Cmp = dyn_cast<CmpInst>(I)) 267 return Cmp->isCommutative(); 268 if (auto *BO = dyn_cast<BinaryOperator>(I)) 269 return BO->isCommutative(); 270 // TODO: This should check for generic Instruction::isCommutative(), but 271 // we need to confirm that the caller code correctly handles Intrinsics 272 // for example (does not have 2 operands). 273 return false; 274 } 275 276 /// Checks if the vector of instructions can be represented as a shuffle, like: 277 /// %x0 = extractelement <4 x i8> %x, i32 0 278 /// %x3 = extractelement <4 x i8> %x, i32 3 279 /// %y1 = extractelement <4 x i8> %y, i32 1 280 /// %y2 = extractelement <4 x i8> %y, i32 2 281 /// %x0x0 = mul i8 %x0, %x0 282 /// %x3x3 = mul i8 %x3, %x3 283 /// %y1y1 = mul i8 %y1, %y1 284 /// %y2y2 = mul i8 %y2, %y2 285 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 286 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 287 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 288 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 289 /// ret <4 x i8> %ins4 290 /// can be transformed into: 291 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 292 /// i32 6> 293 /// %2 = mul <4 x i8> %1, %1 294 /// ret <4 x i8> %2 295 /// We convert this initially to something like: 296 /// %x0 = extractelement <4 x i8> %x, i32 0 297 /// %x3 = extractelement <4 x i8> %x, i32 3 298 /// %y1 = extractelement <4 x i8> %y, i32 1 299 /// %y2 = extractelement <4 x i8> %y, i32 2 300 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 301 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 302 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 303 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 304 /// %5 = mul <4 x i8> %4, %4 305 /// %6 = extractelement <4 x i8> %5, i32 0 306 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 307 /// %7 = extractelement <4 x i8> %5, i32 1 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 309 /// %8 = extractelement <4 x i8> %5, i32 2 310 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 311 /// %9 = extractelement <4 x i8> %5, i32 3 312 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 313 /// ret <4 x i8> %ins4 314 /// InstCombiner transforms this into a shuffle and vector mul 315 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 316 /// TODO: Can we split off and reuse the shuffle mask detection from 317 /// TargetTransformInfo::getInstructionThroughput? 318 static Optional<TargetTransformInfo::ShuffleKind> 319 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 320 auto *EI0 = cast<ExtractElementInst>(VL[0]); 321 unsigned Size = 322 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 323 Value *Vec1 = nullptr; 324 Value *Vec2 = nullptr; 325 enum ShuffleMode { Unknown, Select, Permute }; 326 ShuffleMode CommonShuffleMode = Unknown; 327 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 328 auto *EI = cast<ExtractElementInst>(VL[I]); 329 auto *Vec = EI->getVectorOperand(); 330 // All vector operands must have the same number of vector elements. 331 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 332 return None; 333 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 334 if (!Idx) 335 return None; 336 // Undefined behavior if Idx is negative or >= Size. 337 if (Idx->getValue().uge(Size)) { 338 Mask.push_back(UndefMaskElem); 339 continue; 340 } 341 unsigned IntIdx = Idx->getValue().getZExtValue(); 342 Mask.push_back(IntIdx); 343 // We can extractelement from undef or poison vector. 344 if (isa<UndefValue>(Vec)) 345 continue; 346 // For correct shuffling we have to have at most 2 different vector operands 347 // in all extractelement instructions. 348 if (!Vec1 || Vec1 == Vec) 349 Vec1 = Vec; 350 else if (!Vec2 || Vec2 == Vec) 351 Vec2 = Vec; 352 else 353 return None; 354 if (CommonShuffleMode == Permute) 355 continue; 356 // If the extract index is not the same as the operation number, it is a 357 // permutation. 358 if (IntIdx != I) { 359 CommonShuffleMode = Permute; 360 continue; 361 } 362 CommonShuffleMode = Select; 363 } 364 // If we're not crossing lanes in different vectors, consider it as blending. 365 if (CommonShuffleMode == Select && Vec2) 366 return TargetTransformInfo::SK_Select; 367 // If Vec2 was never used, we have a permutation of a single vector, otherwise 368 // we have permutation of 2 vectors. 369 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 370 : TargetTransformInfo::SK_PermuteSingleSrc; 371 } 372 373 namespace { 374 375 /// Main data required for vectorization of instructions. 376 struct InstructionsState { 377 /// The very first instruction in the list with the main opcode. 378 Value *OpValue = nullptr; 379 380 /// The main/alternate instruction. 381 Instruction *MainOp = nullptr; 382 Instruction *AltOp = nullptr; 383 384 /// The main/alternate opcodes for the list of instructions. 385 unsigned getOpcode() const { 386 return MainOp ? MainOp->getOpcode() : 0; 387 } 388 389 unsigned getAltOpcode() const { 390 return AltOp ? AltOp->getOpcode() : 0; 391 } 392 393 /// Some of the instructions in the list have alternate opcodes. 394 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 395 396 bool isOpcodeOrAlt(Instruction *I) const { 397 unsigned CheckedOpcode = I->getOpcode(); 398 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 399 } 400 401 InstructionsState() = delete; 402 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 403 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 404 }; 405 406 } // end anonymous namespace 407 408 /// Chooses the correct key for scheduling data. If \p Op has the same (or 409 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 410 /// OpValue. 411 static Value *isOneOf(const InstructionsState &S, Value *Op) { 412 auto *I = dyn_cast<Instruction>(Op); 413 if (I && S.isOpcodeOrAlt(I)) 414 return Op; 415 return S.OpValue; 416 } 417 418 /// \returns true if \p Opcode is allowed as part of of the main/alternate 419 /// instruction for SLP vectorization. 420 /// 421 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 422 /// "shuffled out" lane would result in division by zero. 423 static bool isValidForAlternation(unsigned Opcode) { 424 if (Instruction::isIntDivRem(Opcode)) 425 return false; 426 427 return true; 428 } 429 430 /// \returns analysis of the Instructions in \p VL described in 431 /// InstructionsState, the Opcode that we suppose the whole list 432 /// could be vectorized even if its structure is diverse. 433 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 434 unsigned BaseIndex = 0) { 435 // Make sure these are all Instructions. 436 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 437 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 438 439 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 440 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 441 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 442 unsigned AltOpcode = Opcode; 443 unsigned AltIndex = BaseIndex; 444 445 // Check for one alternate opcode from another BinaryOperator. 446 // TODO - generalize to support all operators (types, calls etc.). 447 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 448 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 449 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 450 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 451 continue; 452 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 453 isValidForAlternation(Opcode)) { 454 AltOpcode = InstOpcode; 455 AltIndex = Cnt; 456 continue; 457 } 458 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 459 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 460 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 461 if (Ty0 == Ty1) { 462 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 463 continue; 464 if (Opcode == AltOpcode) { 465 assert(isValidForAlternation(Opcode) && 466 isValidForAlternation(InstOpcode) && 467 "Cast isn't safe for alternation, logic needs to be updated!"); 468 AltOpcode = InstOpcode; 469 AltIndex = Cnt; 470 continue; 471 } 472 } 473 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 474 continue; 475 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 476 } 477 478 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 479 cast<Instruction>(VL[AltIndex])); 480 } 481 482 /// \returns true if all of the values in \p VL have the same type or false 483 /// otherwise. 484 static bool allSameType(ArrayRef<Value *> VL) { 485 Type *Ty = VL[0]->getType(); 486 for (int i = 1, e = VL.size(); i < e; i++) 487 if (VL[i]->getType() != Ty) 488 return false; 489 490 return true; 491 } 492 493 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 494 static Optional<unsigned> getExtractIndex(Instruction *E) { 495 unsigned Opcode = E->getOpcode(); 496 assert((Opcode == Instruction::ExtractElement || 497 Opcode == Instruction::ExtractValue) && 498 "Expected extractelement or extractvalue instruction."); 499 if (Opcode == Instruction::ExtractElement) { 500 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 501 if (!CI) 502 return None; 503 return CI->getZExtValue(); 504 } 505 ExtractValueInst *EI = cast<ExtractValueInst>(E); 506 if (EI->getNumIndices() != 1) 507 return None; 508 return *EI->idx_begin(); 509 } 510 511 /// \returns True if in-tree use also needs extract. This refers to 512 /// possible scalar operand in vectorized instruction. 513 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 514 TargetLibraryInfo *TLI) { 515 unsigned Opcode = UserInst->getOpcode(); 516 switch (Opcode) { 517 case Instruction::Load: { 518 LoadInst *LI = cast<LoadInst>(UserInst); 519 return (LI->getPointerOperand() == Scalar); 520 } 521 case Instruction::Store: { 522 StoreInst *SI = cast<StoreInst>(UserInst); 523 return (SI->getPointerOperand() == Scalar); 524 } 525 case Instruction::Call: { 526 CallInst *CI = cast<CallInst>(UserInst); 527 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 528 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 529 if (hasVectorInstrinsicScalarOpd(ID, i)) 530 return (CI->getArgOperand(i) == Scalar); 531 } 532 LLVM_FALLTHROUGH; 533 } 534 default: 535 return false; 536 } 537 } 538 539 /// \returns the AA location that is being access by the instruction. 540 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 541 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 542 return MemoryLocation::get(SI); 543 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 544 return MemoryLocation::get(LI); 545 return MemoryLocation(); 546 } 547 548 /// \returns True if the instruction is not a volatile or atomic load/store. 549 static bool isSimple(Instruction *I) { 550 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 551 return LI->isSimple(); 552 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 553 return SI->isSimple(); 554 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 555 return !MI->isVolatile(); 556 return true; 557 } 558 559 namespace llvm { 560 561 static void inversePermutation(ArrayRef<unsigned> Indices, 562 SmallVectorImpl<int> &Mask) { 563 Mask.clear(); 564 const unsigned E = Indices.size(); 565 Mask.resize(E, E + 1); 566 for (unsigned I = 0; I < E; ++I) 567 Mask[Indices[I]] = I; 568 } 569 570 /// \returns inserting index of InsertElement or InsertValue instruction, 571 /// using Offset as base offset for index. 572 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 573 int Index = Offset; 574 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 575 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 576 auto *VT = cast<FixedVectorType>(IE->getType()); 577 if (CI->getValue().uge(VT->getNumElements())) 578 return UndefMaskElem; 579 Index *= VT->getNumElements(); 580 Index += CI->getZExtValue(); 581 return Index; 582 } 583 if (isa<UndefValue>(IE->getOperand(2))) 584 return UndefMaskElem; 585 return None; 586 } 587 588 auto *IV = cast<InsertValueInst>(InsertInst); 589 Type *CurrentType = IV->getType(); 590 for (unsigned I : IV->indices()) { 591 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 592 Index *= ST->getNumElements(); 593 CurrentType = ST->getElementType(I); 594 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 595 Index *= AT->getNumElements(); 596 CurrentType = AT->getElementType(); 597 } else { 598 return None; 599 } 600 Index += I; 601 } 602 return Index; 603 } 604 605 namespace slpvectorizer { 606 607 /// Bottom Up SLP Vectorizer. 608 class BoUpSLP { 609 struct TreeEntry; 610 struct ScheduleData; 611 612 public: 613 using ValueList = SmallVector<Value *, 8>; 614 using InstrList = SmallVector<Instruction *, 16>; 615 using ValueSet = SmallPtrSet<Value *, 16>; 616 using StoreList = SmallVector<StoreInst *, 8>; 617 using ExtraValueToDebugLocsMap = 618 MapVector<Value *, SmallVector<Instruction *, 2>>; 619 using OrdersType = SmallVector<unsigned, 4>; 620 621 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 622 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 623 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 624 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 625 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 626 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 627 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 628 // Use the vector register size specified by the target unless overridden 629 // by a command-line option. 630 // TODO: It would be better to limit the vectorization factor based on 631 // data type rather than just register size. For example, x86 AVX has 632 // 256-bit registers, but it does not support integer operations 633 // at that width (that requires AVX2). 634 if (MaxVectorRegSizeOption.getNumOccurrences()) 635 MaxVecRegSize = MaxVectorRegSizeOption; 636 else 637 MaxVecRegSize = 638 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 639 .getFixedSize(); 640 641 if (MinVectorRegSizeOption.getNumOccurrences()) 642 MinVecRegSize = MinVectorRegSizeOption; 643 else 644 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 645 } 646 647 /// Vectorize the tree that starts with the elements in \p VL. 648 /// Returns the vectorized root. 649 Value *vectorizeTree(); 650 651 /// Vectorize the tree but with the list of externally used values \p 652 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 653 /// generated extractvalue instructions. 654 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 655 656 /// \returns the cost incurred by unwanted spills and fills, caused by 657 /// holding live values over call sites. 658 InstructionCost getSpillCost() const; 659 660 /// \returns the vectorization cost of the subtree that starts at \p VL. 661 /// A negative number means that this is profitable. 662 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 663 664 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 665 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 666 void buildTree(ArrayRef<Value *> Roots, 667 ArrayRef<Value *> UserIgnoreLst = None); 668 669 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 670 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 671 /// into account (and updating it, if required) list of externally used 672 /// values stored in \p ExternallyUsedValues. 673 void buildTree(ArrayRef<Value *> Roots, 674 ExtraValueToDebugLocsMap &ExternallyUsedValues, 675 ArrayRef<Value *> UserIgnoreLst = None); 676 677 /// Clear the internal data structures that are created by 'buildTree'. 678 void deleteTree() { 679 VectorizableTree.clear(); 680 ScalarToTreeEntry.clear(); 681 MustGather.clear(); 682 ExternalUses.clear(); 683 NumOpsWantToKeepOrder.clear(); 684 NumOpsWantToKeepOriginalOrder = 0; 685 for (auto &Iter : BlocksSchedules) { 686 BlockScheduling *BS = Iter.second.get(); 687 BS->clear(); 688 } 689 MinBWs.clear(); 690 InstrElementSize.clear(); 691 } 692 693 unsigned getTreeSize() const { return VectorizableTree.size(); } 694 695 /// Perform LICM and CSE on the newly generated gather sequences. 696 void optimizeGatherSequence(); 697 698 /// \returns The best order of instructions for vectorization. 699 Optional<ArrayRef<unsigned>> bestOrder() const { 700 assert(llvm::all_of( 701 NumOpsWantToKeepOrder, 702 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 703 return D.getFirst().size() == 704 VectorizableTree[0]->Scalars.size(); 705 }) && 706 "All orders must have the same size as number of instructions in " 707 "tree node."); 708 auto I = std::max_element( 709 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 710 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 711 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 712 return D1.second < D2.second; 713 }); 714 if (I == NumOpsWantToKeepOrder.end() || 715 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 716 return None; 717 718 return makeArrayRef(I->getFirst()); 719 } 720 721 /// Builds the correct order for root instructions. 722 /// If some leaves have the same instructions to be vectorized, we may 723 /// incorrectly evaluate the best order for the root node (it is built for the 724 /// vector of instructions without repeated instructions and, thus, has less 725 /// elements than the root node). This function builds the correct order for 726 /// the root node. 727 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 728 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 729 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 730 /// be reordered, the best order will be \<1, 0\>. We need to extend this 731 /// order for the root node. For the root node this order should look like 732 /// \<3, 0, 1, 2\>. This function extends the order for the reused 733 /// instructions. 734 void findRootOrder(OrdersType &Order) { 735 // If the leaf has the same number of instructions to vectorize as the root 736 // - order must be set already. 737 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 738 if (Order.size() == RootSize) 739 return; 740 SmallVector<unsigned, 4> RealOrder(Order.size()); 741 std::swap(Order, RealOrder); 742 SmallVector<int, 4> Mask; 743 inversePermutation(RealOrder, Mask); 744 Order.assign(Mask.begin(), Mask.end()); 745 // The leaf has less number of instructions - need to find the true order of 746 // the root. 747 // Scan the nodes starting from the leaf back to the root. 748 const TreeEntry *PNode = VectorizableTree.back().get(); 749 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 750 SmallPtrSet<const TreeEntry *, 4> Visited; 751 while (!Nodes.empty() && Order.size() != RootSize) { 752 const TreeEntry *PNode = Nodes.pop_back_val(); 753 if (!Visited.insert(PNode).second) 754 continue; 755 const TreeEntry &Node = *PNode; 756 for (const EdgeInfo &EI : Node.UserTreeIndices) 757 if (EI.UserTE) 758 Nodes.push_back(EI.UserTE); 759 if (Node.ReuseShuffleIndices.empty()) 760 continue; 761 // Build the order for the parent node. 762 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 763 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 764 // The algorithm of the order extension is: 765 // 1. Calculate the number of the same instructions for the order. 766 // 2. Calculate the index of the new order: total number of instructions 767 // with order less than the order of the current instruction + reuse 768 // number of the current instruction. 769 // 3. The new order is just the index of the instruction in the original 770 // vector of the instructions. 771 for (unsigned I : Node.ReuseShuffleIndices) 772 ++OrderCounter[Order[I]]; 773 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 774 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 775 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 776 unsigned OrderIdx = Order[ReusedIdx]; 777 unsigned NewIdx = 0; 778 for (unsigned J = 0; J < OrderIdx; ++J) 779 NewIdx += OrderCounter[J]; 780 NewIdx += CurrentCounter[OrderIdx]; 781 ++CurrentCounter[OrderIdx]; 782 assert(NewOrder[NewIdx] == RootSize && 783 "The order index should not be written already."); 784 NewOrder[NewIdx] = I; 785 } 786 std::swap(Order, NewOrder); 787 } 788 assert(Order.size() == RootSize && 789 "Root node is expected or the size of the order must be the same as " 790 "the number of elements in the root node."); 791 assert(llvm::all_of(Order, 792 [RootSize](unsigned Val) { return Val != RootSize; }) && 793 "All indices must be initialized"); 794 } 795 796 /// \return The vector element size in bits to use when vectorizing the 797 /// expression tree ending at \p V. If V is a store, the size is the width of 798 /// the stored value. Otherwise, the size is the width of the largest loaded 799 /// value reaching V. This method is used by the vectorizer to calculate 800 /// vectorization factors. 801 unsigned getVectorElementSize(Value *V); 802 803 /// Compute the minimum type sizes required to represent the entries in a 804 /// vectorizable tree. 805 void computeMinimumValueSizes(); 806 807 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 808 unsigned getMaxVecRegSize() const { 809 return MaxVecRegSize; 810 } 811 812 // \returns minimum vector register size as set by cl::opt. 813 unsigned getMinVecRegSize() const { 814 return MinVecRegSize; 815 } 816 817 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 818 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 819 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 820 return MaxVF ? MaxVF : UINT_MAX; 821 } 822 823 /// Check if homogeneous aggregate is isomorphic to some VectorType. 824 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 825 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 826 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 827 /// 828 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 829 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 830 831 /// \returns True if the VectorizableTree is both tiny and not fully 832 /// vectorizable. We do not vectorize such trees. 833 bool isTreeTinyAndNotFullyVectorizable() const; 834 835 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 836 /// can be load combined in the backend. Load combining may not be allowed in 837 /// the IR optimizer, so we do not want to alter the pattern. For example, 838 /// partially transforming a scalar bswap() pattern into vector code is 839 /// effectively impossible for the backend to undo. 840 /// TODO: If load combining is allowed in the IR optimizer, this analysis 841 /// may not be necessary. 842 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 843 844 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 845 /// can be load combined in the backend. Load combining may not be allowed in 846 /// the IR optimizer, so we do not want to alter the pattern. For example, 847 /// partially transforming a scalar bswap() pattern into vector code is 848 /// effectively impossible for the backend to undo. 849 /// TODO: If load combining is allowed in the IR optimizer, this analysis 850 /// may not be necessary. 851 bool isLoadCombineCandidate() const; 852 853 OptimizationRemarkEmitter *getORE() { return ORE; } 854 855 /// This structure holds any data we need about the edges being traversed 856 /// during buildTree_rec(). We keep track of: 857 /// (i) the user TreeEntry index, and 858 /// (ii) the index of the edge. 859 struct EdgeInfo { 860 EdgeInfo() = default; 861 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 862 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 863 /// The user TreeEntry. 864 TreeEntry *UserTE = nullptr; 865 /// The operand index of the use. 866 unsigned EdgeIdx = UINT_MAX; 867 #ifndef NDEBUG 868 friend inline raw_ostream &operator<<(raw_ostream &OS, 869 const BoUpSLP::EdgeInfo &EI) { 870 EI.dump(OS); 871 return OS; 872 } 873 /// Debug print. 874 void dump(raw_ostream &OS) const { 875 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 876 << " EdgeIdx:" << EdgeIdx << "}"; 877 } 878 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 879 #endif 880 }; 881 882 /// A helper data structure to hold the operands of a vector of instructions. 883 /// This supports a fixed vector length for all operand vectors. 884 class VLOperands { 885 /// For each operand we need (i) the value, and (ii) the opcode that it 886 /// would be attached to if the expression was in a left-linearized form. 887 /// This is required to avoid illegal operand reordering. 888 /// For example: 889 /// \verbatim 890 /// 0 Op1 891 /// |/ 892 /// Op1 Op2 Linearized + Op2 893 /// \ / ----------> |/ 894 /// - - 895 /// 896 /// Op1 - Op2 (0 + Op1) - Op2 897 /// \endverbatim 898 /// 899 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 900 /// 901 /// Another way to think of this is to track all the operations across the 902 /// path from the operand all the way to the root of the tree and to 903 /// calculate the operation that corresponds to this path. For example, the 904 /// path from Op2 to the root crosses the RHS of the '-', therefore the 905 /// corresponding operation is a '-' (which matches the one in the 906 /// linearized tree, as shown above). 907 /// 908 /// For lack of a better term, we refer to this operation as Accumulated 909 /// Path Operation (APO). 910 struct OperandData { 911 OperandData() = default; 912 OperandData(Value *V, bool APO, bool IsUsed) 913 : V(V), APO(APO), IsUsed(IsUsed) {} 914 /// The operand value. 915 Value *V = nullptr; 916 /// TreeEntries only allow a single opcode, or an alternate sequence of 917 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 918 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 919 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 920 /// (e.g., Add/Mul) 921 bool APO = false; 922 /// Helper data for the reordering function. 923 bool IsUsed = false; 924 }; 925 926 /// During operand reordering, we are trying to select the operand at lane 927 /// that matches best with the operand at the neighboring lane. Our 928 /// selection is based on the type of value we are looking for. For example, 929 /// if the neighboring lane has a load, we need to look for a load that is 930 /// accessing a consecutive address. These strategies are summarized in the 931 /// 'ReorderingMode' enumerator. 932 enum class ReorderingMode { 933 Load, ///< Matching loads to consecutive memory addresses 934 Opcode, ///< Matching instructions based on opcode (same or alternate) 935 Constant, ///< Matching constants 936 Splat, ///< Matching the same instruction multiple times (broadcast) 937 Failed, ///< We failed to create a vectorizable group 938 }; 939 940 using OperandDataVec = SmallVector<OperandData, 2>; 941 942 /// A vector of operand vectors. 943 SmallVector<OperandDataVec, 4> OpsVec; 944 945 const DataLayout &DL; 946 ScalarEvolution &SE; 947 const BoUpSLP &R; 948 949 /// \returns the operand data at \p OpIdx and \p Lane. 950 OperandData &getData(unsigned OpIdx, unsigned Lane) { 951 return OpsVec[OpIdx][Lane]; 952 } 953 954 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 955 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 956 return OpsVec[OpIdx][Lane]; 957 } 958 959 /// Clears the used flag for all entries. 960 void clearUsed() { 961 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 962 OpIdx != NumOperands; ++OpIdx) 963 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 964 ++Lane) 965 OpsVec[OpIdx][Lane].IsUsed = false; 966 } 967 968 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 969 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 970 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 971 } 972 973 // The hard-coded scores listed here are not very important. When computing 974 // the scores of matching one sub-tree with another, we are basically 975 // counting the number of values that are matching. So even if all scores 976 // are set to 1, we would still get a decent matching result. 977 // However, sometimes we have to break ties. For example we may have to 978 // choose between matching loads vs matching opcodes. This is what these 979 // scores are helping us with: they provide the order of preference. 980 981 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 982 static const int ScoreConsecutiveLoads = 3; 983 /// ExtractElementInst from same vector and consecutive indexes. 984 static const int ScoreConsecutiveExtracts = 3; 985 /// Constants. 986 static const int ScoreConstants = 2; 987 /// Instructions with the same opcode. 988 static const int ScoreSameOpcode = 2; 989 /// Instructions with alt opcodes (e.g, add + sub). 990 static const int ScoreAltOpcodes = 1; 991 /// Identical instructions (a.k.a. splat or broadcast). 992 static const int ScoreSplat = 1; 993 /// Matching with an undef is preferable to failing. 994 static const int ScoreUndef = 1; 995 /// Score for failing to find a decent match. 996 static const int ScoreFail = 0; 997 /// User exteranl to the vectorized code. 998 static const int ExternalUseCost = 1; 999 /// The user is internal but in a different lane. 1000 static const int UserInDiffLaneCost = ExternalUseCost; 1001 1002 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1003 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1004 ScalarEvolution &SE) { 1005 auto *LI1 = dyn_cast<LoadInst>(V1); 1006 auto *LI2 = dyn_cast<LoadInst>(V2); 1007 if (LI1 && LI2) { 1008 if (LI1->getParent() != LI2->getParent()) 1009 return VLOperands::ScoreFail; 1010 1011 Optional<int> Dist = getPointersDiff( 1012 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1013 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1014 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1015 : VLOperands::ScoreFail; 1016 } 1017 1018 auto *C1 = dyn_cast<Constant>(V1); 1019 auto *C2 = dyn_cast<Constant>(V2); 1020 if (C1 && C2) 1021 return VLOperands::ScoreConstants; 1022 1023 // Extracts from consecutive indexes of the same vector better score as 1024 // the extracts could be optimized away. 1025 Value *EV; 1026 ConstantInt *Ex1Idx, *Ex2Idx; 1027 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1028 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1029 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1030 return VLOperands::ScoreConsecutiveExtracts; 1031 1032 auto *I1 = dyn_cast<Instruction>(V1); 1033 auto *I2 = dyn_cast<Instruction>(V2); 1034 if (I1 && I2) { 1035 if (I1 == I2) 1036 return VLOperands::ScoreSplat; 1037 InstructionsState S = getSameOpcode({I1, I2}); 1038 // Note: Only consider instructions with <= 2 operands to avoid 1039 // complexity explosion. 1040 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1041 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1042 : VLOperands::ScoreSameOpcode; 1043 } 1044 1045 if (isa<UndefValue>(V2)) 1046 return VLOperands::ScoreUndef; 1047 1048 return VLOperands::ScoreFail; 1049 } 1050 1051 /// Holds the values and their lane that are taking part in the look-ahead 1052 /// score calculation. This is used in the external uses cost calculation. 1053 SmallDenseMap<Value *, int> InLookAheadValues; 1054 1055 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1056 /// either external to the vectorized code, or require shuffling. 1057 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1058 const std::pair<Value *, int> &RHS) { 1059 int Cost = 0; 1060 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1061 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1062 Value *V = Values[Idx].first; 1063 if (isa<Constant>(V)) { 1064 // Since this is a function pass, it doesn't make semantic sense to 1065 // walk the users of a subclass of Constant. The users could be in 1066 // another function, or even another module that happens to be in 1067 // the same LLVMContext. 1068 continue; 1069 } 1070 1071 // Calculate the absolute lane, using the minimum relative lane of LHS 1072 // and RHS as base and Idx as the offset. 1073 int Ln = std::min(LHS.second, RHS.second) + Idx; 1074 assert(Ln >= 0 && "Bad lane calculation"); 1075 unsigned UsersBudget = LookAheadUsersBudget; 1076 for (User *U : V->users()) { 1077 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1078 // The user is in the VectorizableTree. Check if we need to insert. 1079 auto It = llvm::find(UserTE->Scalars, U); 1080 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1081 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1082 assert(UserLn >= 0 && "Bad lane"); 1083 if (UserLn != Ln) 1084 Cost += UserInDiffLaneCost; 1085 } else { 1086 // Check if the user is in the look-ahead code. 1087 auto It2 = InLookAheadValues.find(U); 1088 if (It2 != InLookAheadValues.end()) { 1089 // The user is in the look-ahead code. Check the lane. 1090 if (It2->second != Ln) 1091 Cost += UserInDiffLaneCost; 1092 } else { 1093 // The user is neither in SLP tree nor in the look-ahead code. 1094 Cost += ExternalUseCost; 1095 } 1096 } 1097 // Limit the number of visited uses to cap compilation time. 1098 if (--UsersBudget == 0) 1099 break; 1100 } 1101 } 1102 return Cost; 1103 } 1104 1105 /// Go through the operands of \p LHS and \p RHS recursively until \p 1106 /// MaxLevel, and return the cummulative score. For example: 1107 /// \verbatim 1108 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1109 /// \ / \ / \ / \ / 1110 /// + + + + 1111 /// G1 G2 G3 G4 1112 /// \endverbatim 1113 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1114 /// each level recursively, accumulating the score. It starts from matching 1115 /// the additions at level 0, then moves on to the loads (level 1). The 1116 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1117 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1118 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1119 /// Please note that the order of the operands does not matter, as we 1120 /// evaluate the score of all profitable combinations of operands. In 1121 /// other words the score of G1 and G4 is the same as G1 and G2. This 1122 /// heuristic is based on ideas described in: 1123 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1124 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1125 /// Luís F. W. Góes 1126 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1127 const std::pair<Value *, int> &RHS, int CurrLevel, 1128 int MaxLevel) { 1129 1130 Value *V1 = LHS.first; 1131 Value *V2 = RHS.first; 1132 // Get the shallow score of V1 and V2. 1133 int ShallowScoreAtThisLevel = 1134 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1135 getExternalUsesCost(LHS, RHS)); 1136 int Lane1 = LHS.second; 1137 int Lane2 = RHS.second; 1138 1139 // If reached MaxLevel, 1140 // or if V1 and V2 are not instructions, 1141 // or if they are SPLAT, 1142 // or if they are not consecutive, early return the current cost. 1143 auto *I1 = dyn_cast<Instruction>(V1); 1144 auto *I2 = dyn_cast<Instruction>(V2); 1145 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1146 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1147 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1148 return ShallowScoreAtThisLevel; 1149 assert(I1 && I2 && "Should have early exited."); 1150 1151 // Keep track of in-tree values for determining the external-use cost. 1152 InLookAheadValues[V1] = Lane1; 1153 InLookAheadValues[V2] = Lane2; 1154 1155 // Contains the I2 operand indexes that got matched with I1 operands. 1156 SmallSet<unsigned, 4> Op2Used; 1157 1158 // Recursion towards the operands of I1 and I2. We are trying all possbile 1159 // operand pairs, and keeping track of the best score. 1160 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1161 OpIdx1 != NumOperands1; ++OpIdx1) { 1162 // Try to pair op1I with the best operand of I2. 1163 int MaxTmpScore = 0; 1164 unsigned MaxOpIdx2 = 0; 1165 bool FoundBest = false; 1166 // If I2 is commutative try all combinations. 1167 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1168 unsigned ToIdx = isCommutative(I2) 1169 ? I2->getNumOperands() 1170 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1171 assert(FromIdx <= ToIdx && "Bad index"); 1172 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1173 // Skip operands already paired with OpIdx1. 1174 if (Op2Used.count(OpIdx2)) 1175 continue; 1176 // Recursively calculate the cost at each level 1177 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1178 {I2->getOperand(OpIdx2), Lane2}, 1179 CurrLevel + 1, MaxLevel); 1180 // Look for the best score. 1181 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1182 MaxTmpScore = TmpScore; 1183 MaxOpIdx2 = OpIdx2; 1184 FoundBest = true; 1185 } 1186 } 1187 if (FoundBest) { 1188 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1189 Op2Used.insert(MaxOpIdx2); 1190 ShallowScoreAtThisLevel += MaxTmpScore; 1191 } 1192 } 1193 return ShallowScoreAtThisLevel; 1194 } 1195 1196 /// \Returns the look-ahead score, which tells us how much the sub-trees 1197 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1198 /// score. This helps break ties in an informed way when we cannot decide on 1199 /// the order of the operands by just considering the immediate 1200 /// predecessors. 1201 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1202 const std::pair<Value *, int> &RHS) { 1203 InLookAheadValues.clear(); 1204 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1205 } 1206 1207 // Search all operands in Ops[*][Lane] for the one that matches best 1208 // Ops[OpIdx][LastLane] and return its opreand index. 1209 // If no good match can be found, return None. 1210 Optional<unsigned> 1211 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1212 ArrayRef<ReorderingMode> ReorderingModes) { 1213 unsigned NumOperands = getNumOperands(); 1214 1215 // The operand of the previous lane at OpIdx. 1216 Value *OpLastLane = getData(OpIdx, LastLane).V; 1217 1218 // Our strategy mode for OpIdx. 1219 ReorderingMode RMode = ReorderingModes[OpIdx]; 1220 1221 // The linearized opcode of the operand at OpIdx, Lane. 1222 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1223 1224 // The best operand index and its score. 1225 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1226 // are using the score to differentiate between the two. 1227 struct BestOpData { 1228 Optional<unsigned> Idx = None; 1229 unsigned Score = 0; 1230 } BestOp; 1231 1232 // Iterate through all unused operands and look for the best. 1233 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1234 // Get the operand at Idx and Lane. 1235 OperandData &OpData = getData(Idx, Lane); 1236 Value *Op = OpData.V; 1237 bool OpAPO = OpData.APO; 1238 1239 // Skip already selected operands. 1240 if (OpData.IsUsed) 1241 continue; 1242 1243 // Skip if we are trying to move the operand to a position with a 1244 // different opcode in the linearized tree form. This would break the 1245 // semantics. 1246 if (OpAPO != OpIdxAPO) 1247 continue; 1248 1249 // Look for an operand that matches the current mode. 1250 switch (RMode) { 1251 case ReorderingMode::Load: 1252 case ReorderingMode::Constant: 1253 case ReorderingMode::Opcode: { 1254 bool LeftToRight = Lane > LastLane; 1255 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1256 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1257 unsigned Score = 1258 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1259 if (Score > BestOp.Score) { 1260 BestOp.Idx = Idx; 1261 BestOp.Score = Score; 1262 } 1263 break; 1264 } 1265 case ReorderingMode::Splat: 1266 if (Op == OpLastLane) 1267 BestOp.Idx = Idx; 1268 break; 1269 case ReorderingMode::Failed: 1270 return None; 1271 } 1272 } 1273 1274 if (BestOp.Idx) { 1275 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1276 return BestOp.Idx; 1277 } 1278 // If we could not find a good match return None. 1279 return None; 1280 } 1281 1282 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1283 /// reordering from. This is the one which has the least number of operands 1284 /// that can freely move about. 1285 unsigned getBestLaneToStartReordering() const { 1286 unsigned BestLane = 0; 1287 unsigned Min = UINT_MAX; 1288 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1289 ++Lane) { 1290 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1291 if (NumFreeOps < Min) { 1292 Min = NumFreeOps; 1293 BestLane = Lane; 1294 } 1295 } 1296 return BestLane; 1297 } 1298 1299 /// \Returns the maximum number of operands that are allowed to be reordered 1300 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1301 /// start operand reordering. 1302 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1303 unsigned CntTrue = 0; 1304 unsigned NumOperands = getNumOperands(); 1305 // Operands with the same APO can be reordered. We therefore need to count 1306 // how many of them we have for each APO, like this: Cnt[APO] = x. 1307 // Since we only have two APOs, namely true and false, we can avoid using 1308 // a map. Instead we can simply count the number of operands that 1309 // correspond to one of them (in this case the 'true' APO), and calculate 1310 // the other by subtracting it from the total number of operands. 1311 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1312 if (getData(OpIdx, Lane).APO) 1313 ++CntTrue; 1314 unsigned CntFalse = NumOperands - CntTrue; 1315 return std::max(CntTrue, CntFalse); 1316 } 1317 1318 /// Go through the instructions in VL and append their operands. 1319 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1320 assert(!VL.empty() && "Bad VL"); 1321 assert((empty() || VL.size() == getNumLanes()) && 1322 "Expected same number of lanes"); 1323 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1324 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1325 OpsVec.resize(NumOperands); 1326 unsigned NumLanes = VL.size(); 1327 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1328 OpsVec[OpIdx].resize(NumLanes); 1329 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1330 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1331 // Our tree has just 3 nodes: the root and two operands. 1332 // It is therefore trivial to get the APO. We only need to check the 1333 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1334 // RHS operand. The LHS operand of both add and sub is never attached 1335 // to an inversese operation in the linearized form, therefore its APO 1336 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1337 1338 // Since operand reordering is performed on groups of commutative 1339 // operations or alternating sequences (e.g., +, -), we can safely 1340 // tell the inverse operations by checking commutativity. 1341 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1342 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1343 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1344 APO, false}; 1345 } 1346 } 1347 } 1348 1349 /// \returns the number of operands. 1350 unsigned getNumOperands() const { return OpsVec.size(); } 1351 1352 /// \returns the number of lanes. 1353 unsigned getNumLanes() const { return OpsVec[0].size(); } 1354 1355 /// \returns the operand value at \p OpIdx and \p Lane. 1356 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1357 return getData(OpIdx, Lane).V; 1358 } 1359 1360 /// \returns true if the data structure is empty. 1361 bool empty() const { return OpsVec.empty(); } 1362 1363 /// Clears the data. 1364 void clear() { OpsVec.clear(); } 1365 1366 /// \Returns true if there are enough operands identical to \p Op to fill 1367 /// the whole vector. 1368 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1369 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1370 bool OpAPO = getData(OpIdx, Lane).APO; 1371 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1372 if (Ln == Lane) 1373 continue; 1374 // This is set to true if we found a candidate for broadcast at Lane. 1375 bool FoundCandidate = false; 1376 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1377 OperandData &Data = getData(OpI, Ln); 1378 if (Data.APO != OpAPO || Data.IsUsed) 1379 continue; 1380 if (Data.V == Op) { 1381 FoundCandidate = true; 1382 Data.IsUsed = true; 1383 break; 1384 } 1385 } 1386 if (!FoundCandidate) 1387 return false; 1388 } 1389 return true; 1390 } 1391 1392 public: 1393 /// Initialize with all the operands of the instruction vector \p RootVL. 1394 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1395 ScalarEvolution &SE, const BoUpSLP &R) 1396 : DL(DL), SE(SE), R(R) { 1397 // Append all the operands of RootVL. 1398 appendOperandsOfVL(RootVL); 1399 } 1400 1401 /// \Returns a value vector with the operands across all lanes for the 1402 /// opearnd at \p OpIdx. 1403 ValueList getVL(unsigned OpIdx) const { 1404 ValueList OpVL(OpsVec[OpIdx].size()); 1405 assert(OpsVec[OpIdx].size() == getNumLanes() && 1406 "Expected same num of lanes across all operands"); 1407 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1408 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1409 return OpVL; 1410 } 1411 1412 // Performs operand reordering for 2 or more operands. 1413 // The original operands are in OrigOps[OpIdx][Lane]. 1414 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1415 void reorder() { 1416 unsigned NumOperands = getNumOperands(); 1417 unsigned NumLanes = getNumLanes(); 1418 // Each operand has its own mode. We are using this mode to help us select 1419 // the instructions for each lane, so that they match best with the ones 1420 // we have selected so far. 1421 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1422 1423 // This is a greedy single-pass algorithm. We are going over each lane 1424 // once and deciding on the best order right away with no back-tracking. 1425 // However, in order to increase its effectiveness, we start with the lane 1426 // that has operands that can move the least. For example, given the 1427 // following lanes: 1428 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1429 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1430 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1431 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1432 // we will start at Lane 1, since the operands of the subtraction cannot 1433 // be reordered. Then we will visit the rest of the lanes in a circular 1434 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1435 1436 // Find the first lane that we will start our search from. 1437 unsigned FirstLane = getBestLaneToStartReordering(); 1438 1439 // Initialize the modes. 1440 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1441 Value *OpLane0 = getValue(OpIdx, FirstLane); 1442 // Keep track if we have instructions with all the same opcode on one 1443 // side. 1444 if (isa<LoadInst>(OpLane0)) 1445 ReorderingModes[OpIdx] = ReorderingMode::Load; 1446 else if (isa<Instruction>(OpLane0)) { 1447 // Check if OpLane0 should be broadcast. 1448 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1449 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1450 else 1451 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1452 } 1453 else if (isa<Constant>(OpLane0)) 1454 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1455 else if (isa<Argument>(OpLane0)) 1456 // Our best hope is a Splat. It may save some cost in some cases. 1457 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1458 else 1459 // NOTE: This should be unreachable. 1460 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1461 } 1462 1463 // If the initial strategy fails for any of the operand indexes, then we 1464 // perform reordering again in a second pass. This helps avoid assigning 1465 // high priority to the failed strategy, and should improve reordering for 1466 // the non-failed operand indexes. 1467 for (int Pass = 0; Pass != 2; ++Pass) { 1468 // Skip the second pass if the first pass did not fail. 1469 bool StrategyFailed = false; 1470 // Mark all operand data as free to use. 1471 clearUsed(); 1472 // We keep the original operand order for the FirstLane, so reorder the 1473 // rest of the lanes. We are visiting the nodes in a circular fashion, 1474 // using FirstLane as the center point and increasing the radius 1475 // distance. 1476 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1477 // Visit the lane on the right and then the lane on the left. 1478 for (int Direction : {+1, -1}) { 1479 int Lane = FirstLane + Direction * Distance; 1480 if (Lane < 0 || Lane >= (int)NumLanes) 1481 continue; 1482 int LastLane = Lane - Direction; 1483 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1484 "Out of bounds"); 1485 // Look for a good match for each operand. 1486 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1487 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1488 Optional<unsigned> BestIdx = 1489 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1490 // By not selecting a value, we allow the operands that follow to 1491 // select a better matching value. We will get a non-null value in 1492 // the next run of getBestOperand(). 1493 if (BestIdx) { 1494 // Swap the current operand with the one returned by 1495 // getBestOperand(). 1496 swap(OpIdx, BestIdx.getValue(), Lane); 1497 } else { 1498 // We failed to find a best operand, set mode to 'Failed'. 1499 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1500 // Enable the second pass. 1501 StrategyFailed = true; 1502 } 1503 } 1504 } 1505 } 1506 // Skip second pass if the strategy did not fail. 1507 if (!StrategyFailed) 1508 break; 1509 } 1510 } 1511 1512 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1513 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1514 switch (RMode) { 1515 case ReorderingMode::Load: 1516 return "Load"; 1517 case ReorderingMode::Opcode: 1518 return "Opcode"; 1519 case ReorderingMode::Constant: 1520 return "Constant"; 1521 case ReorderingMode::Splat: 1522 return "Splat"; 1523 case ReorderingMode::Failed: 1524 return "Failed"; 1525 } 1526 llvm_unreachable("Unimplemented Reordering Type"); 1527 } 1528 1529 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1530 raw_ostream &OS) { 1531 return OS << getModeStr(RMode); 1532 } 1533 1534 /// Debug print. 1535 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1536 printMode(RMode, dbgs()); 1537 } 1538 1539 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1540 return printMode(RMode, OS); 1541 } 1542 1543 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1544 const unsigned Indent = 2; 1545 unsigned Cnt = 0; 1546 for (const OperandDataVec &OpDataVec : OpsVec) { 1547 OS << "Operand " << Cnt++ << "\n"; 1548 for (const OperandData &OpData : OpDataVec) { 1549 OS.indent(Indent) << "{"; 1550 if (Value *V = OpData.V) 1551 OS << *V; 1552 else 1553 OS << "null"; 1554 OS << ", APO:" << OpData.APO << "}\n"; 1555 } 1556 OS << "\n"; 1557 } 1558 return OS; 1559 } 1560 1561 /// Debug print. 1562 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1563 #endif 1564 }; 1565 1566 /// Checks if the instruction is marked for deletion. 1567 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1568 1569 /// Marks values operands for later deletion by replacing them with Undefs. 1570 void eraseInstructions(ArrayRef<Value *> AV); 1571 1572 ~BoUpSLP(); 1573 1574 private: 1575 /// Checks if all users of \p I are the part of the vectorization tree. 1576 bool areAllUsersVectorized(Instruction *I, 1577 ArrayRef<Value *> VectorizedVals) const; 1578 1579 /// \returns the cost of the vectorizable entry. 1580 InstructionCost getEntryCost(const TreeEntry *E, 1581 ArrayRef<Value *> VectorizedVals); 1582 1583 /// This is the recursive part of buildTree. 1584 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1585 const EdgeInfo &EI); 1586 1587 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1588 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1589 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1590 /// returns false, setting \p CurrentOrder to either an empty vector or a 1591 /// non-identity permutation that allows to reuse extract instructions. 1592 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1593 SmallVectorImpl<unsigned> &CurrentOrder) const; 1594 1595 /// Vectorize a single entry in the tree. 1596 Value *vectorizeTree(TreeEntry *E); 1597 1598 /// Vectorize a single entry in the tree, starting in \p VL. 1599 Value *vectorizeTree(ArrayRef<Value *> VL); 1600 1601 /// \returns the scalarization cost for this type. Scalarization in this 1602 /// context means the creation of vectors from a group of scalars. 1603 InstructionCost 1604 getGatherCost(FixedVectorType *Ty, 1605 const DenseSet<unsigned> &ShuffledIndices) const; 1606 1607 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1608 /// tree entries. 1609 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1610 /// previous tree entries. \p Mask is filled with the shuffle mask. 1611 Optional<TargetTransformInfo::ShuffleKind> 1612 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1613 SmallVectorImpl<const TreeEntry *> &Entries); 1614 1615 /// \returns the scalarization cost for this list of values. Assuming that 1616 /// this subtree gets vectorized, we may need to extract the values from the 1617 /// roots. This method calculates the cost of extracting the values. 1618 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1619 1620 /// Set the Builder insert point to one after the last instruction in 1621 /// the bundle 1622 void setInsertPointAfterBundle(const TreeEntry *E); 1623 1624 /// \returns a vector from a collection of scalars in \p VL. 1625 Value *gather(ArrayRef<Value *> VL); 1626 1627 /// \returns whether the VectorizableTree is fully vectorizable and will 1628 /// be beneficial even the tree height is tiny. 1629 bool isFullyVectorizableTinyTree() const; 1630 1631 /// Reorder commutative or alt operands to get better probability of 1632 /// generating vectorized code. 1633 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1634 SmallVectorImpl<Value *> &Left, 1635 SmallVectorImpl<Value *> &Right, 1636 const DataLayout &DL, 1637 ScalarEvolution &SE, 1638 const BoUpSLP &R); 1639 struct TreeEntry { 1640 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1641 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1642 1643 /// \returns true if the scalars in VL are equal to this entry. 1644 bool isSame(ArrayRef<Value *> VL) const { 1645 if (VL.size() == Scalars.size()) 1646 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1647 return VL.size() == ReuseShuffleIndices.size() && 1648 std::equal( 1649 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1650 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1651 } 1652 1653 /// A vector of scalars. 1654 ValueList Scalars; 1655 1656 /// The Scalars are vectorized into this value. It is initialized to Null. 1657 Value *VectorizedValue = nullptr; 1658 1659 /// Do we need to gather this sequence or vectorize it 1660 /// (either with vector instruction or with scatter/gather 1661 /// intrinsics for store/load)? 1662 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1663 EntryState State; 1664 1665 /// Does this sequence require some shuffling? 1666 SmallVector<int, 4> ReuseShuffleIndices; 1667 1668 /// Does this entry require reordering? 1669 SmallVector<unsigned, 4> ReorderIndices; 1670 1671 /// Points back to the VectorizableTree. 1672 /// 1673 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1674 /// to be a pointer and needs to be able to initialize the child iterator. 1675 /// Thus we need a reference back to the container to translate the indices 1676 /// to entries. 1677 VecTreeTy &Container; 1678 1679 /// The TreeEntry index containing the user of this entry. We can actually 1680 /// have multiple users so the data structure is not truly a tree. 1681 SmallVector<EdgeInfo, 1> UserTreeIndices; 1682 1683 /// The index of this treeEntry in VectorizableTree. 1684 int Idx = -1; 1685 1686 private: 1687 /// The operands of each instruction in each lane Operands[op_index][lane]. 1688 /// Note: This helps avoid the replication of the code that performs the 1689 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1690 SmallVector<ValueList, 2> Operands; 1691 1692 /// The main/alternate instruction. 1693 Instruction *MainOp = nullptr; 1694 Instruction *AltOp = nullptr; 1695 1696 public: 1697 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1698 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1699 if (Operands.size() < OpIdx + 1) 1700 Operands.resize(OpIdx + 1); 1701 assert(Operands[OpIdx].empty() && "Already resized?"); 1702 Operands[OpIdx].resize(Scalars.size()); 1703 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1704 Operands[OpIdx][Lane] = OpVL[Lane]; 1705 } 1706 1707 /// Set the operands of this bundle in their original order. 1708 void setOperandsInOrder() { 1709 assert(Operands.empty() && "Already initialized?"); 1710 auto *I0 = cast<Instruction>(Scalars[0]); 1711 Operands.resize(I0->getNumOperands()); 1712 unsigned NumLanes = Scalars.size(); 1713 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1714 OpIdx != NumOperands; ++OpIdx) { 1715 Operands[OpIdx].resize(NumLanes); 1716 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1717 auto *I = cast<Instruction>(Scalars[Lane]); 1718 assert(I->getNumOperands() == NumOperands && 1719 "Expected same number of operands"); 1720 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1721 } 1722 } 1723 } 1724 1725 /// \returns the \p OpIdx operand of this TreeEntry. 1726 ValueList &getOperand(unsigned OpIdx) { 1727 assert(OpIdx < Operands.size() && "Off bounds"); 1728 return Operands[OpIdx]; 1729 } 1730 1731 /// \returns the number of operands. 1732 unsigned getNumOperands() const { return Operands.size(); } 1733 1734 /// \return the single \p OpIdx operand. 1735 Value *getSingleOperand(unsigned OpIdx) const { 1736 assert(OpIdx < Operands.size() && "Off bounds"); 1737 assert(!Operands[OpIdx].empty() && "No operand available"); 1738 return Operands[OpIdx][0]; 1739 } 1740 1741 /// Some of the instructions in the list have alternate opcodes. 1742 bool isAltShuffle() const { 1743 return getOpcode() != getAltOpcode(); 1744 } 1745 1746 bool isOpcodeOrAlt(Instruction *I) const { 1747 unsigned CheckedOpcode = I->getOpcode(); 1748 return (getOpcode() == CheckedOpcode || 1749 getAltOpcode() == CheckedOpcode); 1750 } 1751 1752 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1753 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1754 /// \p OpValue. 1755 Value *isOneOf(Value *Op) const { 1756 auto *I = dyn_cast<Instruction>(Op); 1757 if (I && isOpcodeOrAlt(I)) 1758 return Op; 1759 return MainOp; 1760 } 1761 1762 void setOperations(const InstructionsState &S) { 1763 MainOp = S.MainOp; 1764 AltOp = S.AltOp; 1765 } 1766 1767 Instruction *getMainOp() const { 1768 return MainOp; 1769 } 1770 1771 Instruction *getAltOp() const { 1772 return AltOp; 1773 } 1774 1775 /// The main/alternate opcodes for the list of instructions. 1776 unsigned getOpcode() const { 1777 return MainOp ? MainOp->getOpcode() : 0; 1778 } 1779 1780 unsigned getAltOpcode() const { 1781 return AltOp ? AltOp->getOpcode() : 0; 1782 } 1783 1784 /// Update operations state of this entry if reorder occurred. 1785 bool updateStateIfReorder() { 1786 if (ReorderIndices.empty()) 1787 return false; 1788 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1789 setOperations(S); 1790 return true; 1791 } 1792 /// When ReuseShuffleIndices is empty it just returns position of \p V 1793 /// within vector of Scalars. Otherwise, try to remap on its reuse index. 1794 int findLaneForValue(Value *V) const { 1795 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1796 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1797 if (!ReuseShuffleIndices.empty()) { 1798 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1799 find(ReuseShuffleIndices, FoundLane)); 1800 } 1801 return FoundLane; 1802 } 1803 1804 #ifndef NDEBUG 1805 /// Debug printer. 1806 LLVM_DUMP_METHOD void dump() const { 1807 dbgs() << Idx << ".\n"; 1808 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1809 dbgs() << "Operand " << OpI << ":\n"; 1810 for (const Value *V : Operands[OpI]) 1811 dbgs().indent(2) << *V << "\n"; 1812 } 1813 dbgs() << "Scalars: \n"; 1814 for (Value *V : Scalars) 1815 dbgs().indent(2) << *V << "\n"; 1816 dbgs() << "State: "; 1817 switch (State) { 1818 case Vectorize: 1819 dbgs() << "Vectorize\n"; 1820 break; 1821 case ScatterVectorize: 1822 dbgs() << "ScatterVectorize\n"; 1823 break; 1824 case NeedToGather: 1825 dbgs() << "NeedToGather\n"; 1826 break; 1827 } 1828 dbgs() << "MainOp: "; 1829 if (MainOp) 1830 dbgs() << *MainOp << "\n"; 1831 else 1832 dbgs() << "NULL\n"; 1833 dbgs() << "AltOp: "; 1834 if (AltOp) 1835 dbgs() << *AltOp << "\n"; 1836 else 1837 dbgs() << "NULL\n"; 1838 dbgs() << "VectorizedValue: "; 1839 if (VectorizedValue) 1840 dbgs() << *VectorizedValue << "\n"; 1841 else 1842 dbgs() << "NULL\n"; 1843 dbgs() << "ReuseShuffleIndices: "; 1844 if (ReuseShuffleIndices.empty()) 1845 dbgs() << "Empty"; 1846 else 1847 for (unsigned ReuseIdx : ReuseShuffleIndices) 1848 dbgs() << ReuseIdx << ", "; 1849 dbgs() << "\n"; 1850 dbgs() << "ReorderIndices: "; 1851 for (unsigned ReorderIdx : ReorderIndices) 1852 dbgs() << ReorderIdx << ", "; 1853 dbgs() << "\n"; 1854 dbgs() << "UserTreeIndices: "; 1855 for (const auto &EInfo : UserTreeIndices) 1856 dbgs() << EInfo << ", "; 1857 dbgs() << "\n"; 1858 } 1859 #endif 1860 }; 1861 1862 #ifndef NDEBUG 1863 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1864 InstructionCost VecCost, 1865 InstructionCost ScalarCost) const { 1866 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1867 dbgs() << "SLP: Costs:\n"; 1868 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1869 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1870 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1871 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1872 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1873 } 1874 #endif 1875 1876 /// Create a new VectorizableTree entry. 1877 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1878 const InstructionsState &S, 1879 const EdgeInfo &UserTreeIdx, 1880 ArrayRef<unsigned> ReuseShuffleIndices = None, 1881 ArrayRef<unsigned> ReorderIndices = None) { 1882 TreeEntry::EntryState EntryState = 1883 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1884 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1885 ReuseShuffleIndices, ReorderIndices); 1886 } 1887 1888 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1889 TreeEntry::EntryState EntryState, 1890 Optional<ScheduleData *> Bundle, 1891 const InstructionsState &S, 1892 const EdgeInfo &UserTreeIdx, 1893 ArrayRef<unsigned> ReuseShuffleIndices = None, 1894 ArrayRef<unsigned> ReorderIndices = None) { 1895 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1896 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1897 "Need to vectorize gather entry?"); 1898 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1899 TreeEntry *Last = VectorizableTree.back().get(); 1900 Last->Idx = VectorizableTree.size() - 1; 1901 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1902 Last->State = EntryState; 1903 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1904 ReuseShuffleIndices.end()); 1905 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1906 Last->setOperations(S); 1907 if (Last->State != TreeEntry::NeedToGather) { 1908 for (Value *V : VL) { 1909 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1910 ScalarToTreeEntry[V] = Last; 1911 } 1912 // Update the scheduler bundle to point to this TreeEntry. 1913 unsigned Lane = 0; 1914 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1915 BundleMember = BundleMember->NextInBundle) { 1916 BundleMember->TE = Last; 1917 BundleMember->Lane = Lane; 1918 ++Lane; 1919 } 1920 assert((!Bundle.getValue() || Lane == VL.size()) && 1921 "Bundle and VL out of sync"); 1922 } else { 1923 MustGather.insert(VL.begin(), VL.end()); 1924 } 1925 1926 if (UserTreeIdx.UserTE) 1927 Last->UserTreeIndices.push_back(UserTreeIdx); 1928 1929 return Last; 1930 } 1931 1932 /// -- Vectorization State -- 1933 /// Holds all of the tree entries. 1934 TreeEntry::VecTreeTy VectorizableTree; 1935 1936 #ifndef NDEBUG 1937 /// Debug printer. 1938 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1939 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1940 VectorizableTree[Id]->dump(); 1941 dbgs() << "\n"; 1942 } 1943 } 1944 #endif 1945 1946 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1947 1948 const TreeEntry *getTreeEntry(Value *V) const { 1949 return ScalarToTreeEntry.lookup(V); 1950 } 1951 1952 /// Maps a specific scalar to its tree entry. 1953 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1954 1955 /// Maps a value to the proposed vectorizable size. 1956 SmallDenseMap<Value *, unsigned> InstrElementSize; 1957 1958 /// A list of scalars that we found that we need to keep as scalars. 1959 ValueSet MustGather; 1960 1961 /// This POD struct describes one external user in the vectorized tree. 1962 struct ExternalUser { 1963 ExternalUser(Value *S, llvm::User *U, int L) 1964 : Scalar(S), User(U), Lane(L) {} 1965 1966 // Which scalar in our function. 1967 Value *Scalar; 1968 1969 // Which user that uses the scalar. 1970 llvm::User *User; 1971 1972 // Which lane does the scalar belong to. 1973 int Lane; 1974 }; 1975 using UserList = SmallVector<ExternalUser, 16>; 1976 1977 /// Checks if two instructions may access the same memory. 1978 /// 1979 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1980 /// is invariant in the calling loop. 1981 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1982 Instruction *Inst2) { 1983 // First check if the result is already in the cache. 1984 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1985 Optional<bool> &result = AliasCache[key]; 1986 if (result.hasValue()) { 1987 return result.getValue(); 1988 } 1989 MemoryLocation Loc2 = getLocation(Inst2, AA); 1990 bool aliased = true; 1991 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1992 // Do the alias check. 1993 aliased = !AA->isNoAlias(Loc1, Loc2); 1994 } 1995 // Store the result in the cache. 1996 result = aliased; 1997 return aliased; 1998 } 1999 2000 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2001 2002 /// Cache for alias results. 2003 /// TODO: consider moving this to the AliasAnalysis itself. 2004 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2005 2006 /// Removes an instruction from its block and eventually deletes it. 2007 /// It's like Instruction::eraseFromParent() except that the actual deletion 2008 /// is delayed until BoUpSLP is destructed. 2009 /// This is required to ensure that there are no incorrect collisions in the 2010 /// AliasCache, which can happen if a new instruction is allocated at the 2011 /// same address as a previously deleted instruction. 2012 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2013 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2014 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2015 } 2016 2017 /// Temporary store for deleted instructions. Instructions will be deleted 2018 /// eventually when the BoUpSLP is destructed. 2019 DenseMap<Instruction *, bool> DeletedInstructions; 2020 2021 /// A list of values that need to extracted out of the tree. 2022 /// This list holds pairs of (Internal Scalar : External User). External User 2023 /// can be nullptr, it means that this Internal Scalar will be used later, 2024 /// after vectorization. 2025 UserList ExternalUses; 2026 2027 /// Values used only by @llvm.assume calls. 2028 SmallPtrSet<const Value *, 32> EphValues; 2029 2030 /// Holds all of the instructions that we gathered. 2031 SetVector<Instruction *> GatherSeq; 2032 2033 /// A list of blocks that we are going to CSE. 2034 SetVector<BasicBlock *> CSEBlocks; 2035 2036 /// Contains all scheduling relevant data for an instruction. 2037 /// A ScheduleData either represents a single instruction or a member of an 2038 /// instruction bundle (= a group of instructions which is combined into a 2039 /// vector instruction). 2040 struct ScheduleData { 2041 // The initial value for the dependency counters. It means that the 2042 // dependencies are not calculated yet. 2043 enum { InvalidDeps = -1 }; 2044 2045 ScheduleData() = default; 2046 2047 void init(int BlockSchedulingRegionID, Value *OpVal) { 2048 FirstInBundle = this; 2049 NextInBundle = nullptr; 2050 NextLoadStore = nullptr; 2051 IsScheduled = false; 2052 SchedulingRegionID = BlockSchedulingRegionID; 2053 UnscheduledDepsInBundle = UnscheduledDeps; 2054 clearDependencies(); 2055 OpValue = OpVal; 2056 TE = nullptr; 2057 Lane = -1; 2058 } 2059 2060 /// Returns true if the dependency information has been calculated. 2061 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2062 2063 /// Returns true for single instructions and for bundle representatives 2064 /// (= the head of a bundle). 2065 bool isSchedulingEntity() const { return FirstInBundle == this; } 2066 2067 /// Returns true if it represents an instruction bundle and not only a 2068 /// single instruction. 2069 bool isPartOfBundle() const { 2070 return NextInBundle != nullptr || FirstInBundle != this; 2071 } 2072 2073 /// Returns true if it is ready for scheduling, i.e. it has no more 2074 /// unscheduled depending instructions/bundles. 2075 bool isReady() const { 2076 assert(isSchedulingEntity() && 2077 "can't consider non-scheduling entity for ready list"); 2078 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2079 } 2080 2081 /// Modifies the number of unscheduled dependencies, also updating it for 2082 /// the whole bundle. 2083 int incrementUnscheduledDeps(int Incr) { 2084 UnscheduledDeps += Incr; 2085 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2086 } 2087 2088 /// Sets the number of unscheduled dependencies to the number of 2089 /// dependencies. 2090 void resetUnscheduledDeps() { 2091 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2092 } 2093 2094 /// Clears all dependency information. 2095 void clearDependencies() { 2096 Dependencies = InvalidDeps; 2097 resetUnscheduledDeps(); 2098 MemoryDependencies.clear(); 2099 } 2100 2101 void dump(raw_ostream &os) const { 2102 if (!isSchedulingEntity()) { 2103 os << "/ " << *Inst; 2104 } else if (NextInBundle) { 2105 os << '[' << *Inst; 2106 ScheduleData *SD = NextInBundle; 2107 while (SD) { 2108 os << ';' << *SD->Inst; 2109 SD = SD->NextInBundle; 2110 } 2111 os << ']'; 2112 } else { 2113 os << *Inst; 2114 } 2115 } 2116 2117 Instruction *Inst = nullptr; 2118 2119 /// Points to the head in an instruction bundle (and always to this for 2120 /// single instructions). 2121 ScheduleData *FirstInBundle = nullptr; 2122 2123 /// Single linked list of all instructions in a bundle. Null if it is a 2124 /// single instruction. 2125 ScheduleData *NextInBundle = nullptr; 2126 2127 /// Single linked list of all memory instructions (e.g. load, store, call) 2128 /// in the block - until the end of the scheduling region. 2129 ScheduleData *NextLoadStore = nullptr; 2130 2131 /// The dependent memory instructions. 2132 /// This list is derived on demand in calculateDependencies(). 2133 SmallVector<ScheduleData *, 4> MemoryDependencies; 2134 2135 /// This ScheduleData is in the current scheduling region if this matches 2136 /// the current SchedulingRegionID of BlockScheduling. 2137 int SchedulingRegionID = 0; 2138 2139 /// Used for getting a "good" final ordering of instructions. 2140 int SchedulingPriority = 0; 2141 2142 /// The number of dependencies. Constitutes of the number of users of the 2143 /// instruction plus the number of dependent memory instructions (if any). 2144 /// This value is calculated on demand. 2145 /// If InvalidDeps, the number of dependencies is not calculated yet. 2146 int Dependencies = InvalidDeps; 2147 2148 /// The number of dependencies minus the number of dependencies of scheduled 2149 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2150 /// for scheduling. 2151 /// Note that this is negative as long as Dependencies is not calculated. 2152 int UnscheduledDeps = InvalidDeps; 2153 2154 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2155 /// single instructions. 2156 int UnscheduledDepsInBundle = InvalidDeps; 2157 2158 /// True if this instruction is scheduled (or considered as scheduled in the 2159 /// dry-run). 2160 bool IsScheduled = false; 2161 2162 /// Opcode of the current instruction in the schedule data. 2163 Value *OpValue = nullptr; 2164 2165 /// The TreeEntry that this instruction corresponds to. 2166 TreeEntry *TE = nullptr; 2167 2168 /// The lane of this node in the TreeEntry. 2169 int Lane = -1; 2170 }; 2171 2172 #ifndef NDEBUG 2173 friend inline raw_ostream &operator<<(raw_ostream &os, 2174 const BoUpSLP::ScheduleData &SD) { 2175 SD.dump(os); 2176 return os; 2177 } 2178 #endif 2179 2180 friend struct GraphTraits<BoUpSLP *>; 2181 friend struct DOTGraphTraits<BoUpSLP *>; 2182 2183 /// Contains all scheduling data for a basic block. 2184 struct BlockScheduling { 2185 BlockScheduling(BasicBlock *BB) 2186 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2187 2188 void clear() { 2189 ReadyInsts.clear(); 2190 ScheduleStart = nullptr; 2191 ScheduleEnd = nullptr; 2192 FirstLoadStoreInRegion = nullptr; 2193 LastLoadStoreInRegion = nullptr; 2194 2195 // Reduce the maximum schedule region size by the size of the 2196 // previous scheduling run. 2197 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2198 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2199 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2200 ScheduleRegionSize = 0; 2201 2202 // Make a new scheduling region, i.e. all existing ScheduleData is not 2203 // in the new region yet. 2204 ++SchedulingRegionID; 2205 } 2206 2207 ScheduleData *getScheduleData(Value *V) { 2208 ScheduleData *SD = ScheduleDataMap[V]; 2209 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2210 return SD; 2211 return nullptr; 2212 } 2213 2214 ScheduleData *getScheduleData(Value *V, Value *Key) { 2215 if (V == Key) 2216 return getScheduleData(V); 2217 auto I = ExtraScheduleDataMap.find(V); 2218 if (I != ExtraScheduleDataMap.end()) { 2219 ScheduleData *SD = I->second[Key]; 2220 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2221 return SD; 2222 } 2223 return nullptr; 2224 } 2225 2226 bool isInSchedulingRegion(ScheduleData *SD) const { 2227 return SD->SchedulingRegionID == SchedulingRegionID; 2228 } 2229 2230 /// Marks an instruction as scheduled and puts all dependent ready 2231 /// instructions into the ready-list. 2232 template <typename ReadyListType> 2233 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2234 SD->IsScheduled = true; 2235 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2236 2237 ScheduleData *BundleMember = SD; 2238 while (BundleMember) { 2239 if (BundleMember->Inst != BundleMember->OpValue) { 2240 BundleMember = BundleMember->NextInBundle; 2241 continue; 2242 } 2243 // Handle the def-use chain dependencies. 2244 2245 // Decrement the unscheduled counter and insert to ready list if ready. 2246 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2247 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2248 if (OpDef && OpDef->hasValidDependencies() && 2249 OpDef->incrementUnscheduledDeps(-1) == 0) { 2250 // There are no more unscheduled dependencies after 2251 // decrementing, so we can put the dependent instruction 2252 // into the ready list. 2253 ScheduleData *DepBundle = OpDef->FirstInBundle; 2254 assert(!DepBundle->IsScheduled && 2255 "already scheduled bundle gets ready"); 2256 ReadyList.insert(DepBundle); 2257 LLVM_DEBUG(dbgs() 2258 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2259 } 2260 }); 2261 }; 2262 2263 // If BundleMember is a vector bundle, its operands may have been 2264 // reordered duiring buildTree(). We therefore need to get its operands 2265 // through the TreeEntry. 2266 if (TreeEntry *TE = BundleMember->TE) { 2267 int Lane = BundleMember->Lane; 2268 assert(Lane >= 0 && "Lane not set"); 2269 2270 // Since vectorization tree is being built recursively this assertion 2271 // ensures that the tree entry has all operands set before reaching 2272 // this code. Couple of exceptions known at the moment are extracts 2273 // where their second (immediate) operand is not added. Since 2274 // immediates do not affect scheduler behavior this is considered 2275 // okay. 2276 auto *In = TE->getMainOp(); 2277 assert(In && 2278 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2279 In->getNumOperands() == TE->getNumOperands()) && 2280 "Missed TreeEntry operands?"); 2281 (void)In; // fake use to avoid build failure when assertions disabled 2282 2283 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2284 OpIdx != NumOperands; ++OpIdx) 2285 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2286 DecrUnsched(I); 2287 } else { 2288 // If BundleMember is a stand-alone instruction, no operand reordering 2289 // has taken place, so we directly access its operands. 2290 for (Use &U : BundleMember->Inst->operands()) 2291 if (auto *I = dyn_cast<Instruction>(U.get())) 2292 DecrUnsched(I); 2293 } 2294 // Handle the memory dependencies. 2295 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2296 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2297 // There are no more unscheduled dependencies after decrementing, 2298 // so we can put the dependent instruction into the ready list. 2299 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2300 assert(!DepBundle->IsScheduled && 2301 "already scheduled bundle gets ready"); 2302 ReadyList.insert(DepBundle); 2303 LLVM_DEBUG(dbgs() 2304 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2305 } 2306 } 2307 BundleMember = BundleMember->NextInBundle; 2308 } 2309 } 2310 2311 void doForAllOpcodes(Value *V, 2312 function_ref<void(ScheduleData *SD)> Action) { 2313 if (ScheduleData *SD = getScheduleData(V)) 2314 Action(SD); 2315 auto I = ExtraScheduleDataMap.find(V); 2316 if (I != ExtraScheduleDataMap.end()) 2317 for (auto &P : I->second) 2318 if (P.second->SchedulingRegionID == SchedulingRegionID) 2319 Action(P.second); 2320 } 2321 2322 /// Put all instructions into the ReadyList which are ready for scheduling. 2323 template <typename ReadyListType> 2324 void initialFillReadyList(ReadyListType &ReadyList) { 2325 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2326 doForAllOpcodes(I, [&](ScheduleData *SD) { 2327 if (SD->isSchedulingEntity() && SD->isReady()) { 2328 ReadyList.insert(SD); 2329 LLVM_DEBUG(dbgs() 2330 << "SLP: initially in ready list: " << *I << "\n"); 2331 } 2332 }); 2333 } 2334 } 2335 2336 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2337 /// cyclic dependencies. This is only a dry-run, no instructions are 2338 /// actually moved at this stage. 2339 /// \returns the scheduling bundle. The returned Optional value is non-None 2340 /// if \p VL is allowed to be scheduled. 2341 Optional<ScheduleData *> 2342 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2343 const InstructionsState &S); 2344 2345 /// Un-bundles a group of instructions. 2346 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2347 2348 /// Allocates schedule data chunk. 2349 ScheduleData *allocateScheduleDataChunks(); 2350 2351 /// Extends the scheduling region so that V is inside the region. 2352 /// \returns true if the region size is within the limit. 2353 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2354 2355 /// Initialize the ScheduleData structures for new instructions in the 2356 /// scheduling region. 2357 void initScheduleData(Instruction *FromI, Instruction *ToI, 2358 ScheduleData *PrevLoadStore, 2359 ScheduleData *NextLoadStore); 2360 2361 /// Updates the dependency information of a bundle and of all instructions/ 2362 /// bundles which depend on the original bundle. 2363 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2364 BoUpSLP *SLP); 2365 2366 /// Sets all instruction in the scheduling region to un-scheduled. 2367 void resetSchedule(); 2368 2369 BasicBlock *BB; 2370 2371 /// Simple memory allocation for ScheduleData. 2372 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2373 2374 /// The size of a ScheduleData array in ScheduleDataChunks. 2375 int ChunkSize; 2376 2377 /// The allocator position in the current chunk, which is the last entry 2378 /// of ScheduleDataChunks. 2379 int ChunkPos; 2380 2381 /// Attaches ScheduleData to Instruction. 2382 /// Note that the mapping survives during all vectorization iterations, i.e. 2383 /// ScheduleData structures are recycled. 2384 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2385 2386 /// Attaches ScheduleData to Instruction with the leading key. 2387 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2388 ExtraScheduleDataMap; 2389 2390 struct ReadyList : SmallVector<ScheduleData *, 8> { 2391 void insert(ScheduleData *SD) { push_back(SD); } 2392 }; 2393 2394 /// The ready-list for scheduling (only used for the dry-run). 2395 ReadyList ReadyInsts; 2396 2397 /// The first instruction of the scheduling region. 2398 Instruction *ScheduleStart = nullptr; 2399 2400 /// The first instruction _after_ the scheduling region. 2401 Instruction *ScheduleEnd = nullptr; 2402 2403 /// The first memory accessing instruction in the scheduling region 2404 /// (can be null). 2405 ScheduleData *FirstLoadStoreInRegion = nullptr; 2406 2407 /// The last memory accessing instruction in the scheduling region 2408 /// (can be null). 2409 ScheduleData *LastLoadStoreInRegion = nullptr; 2410 2411 /// The current size of the scheduling region. 2412 int ScheduleRegionSize = 0; 2413 2414 /// The maximum size allowed for the scheduling region. 2415 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2416 2417 /// The ID of the scheduling region. For a new vectorization iteration this 2418 /// is incremented which "removes" all ScheduleData from the region. 2419 // Make sure that the initial SchedulingRegionID is greater than the 2420 // initial SchedulingRegionID in ScheduleData (which is 0). 2421 int SchedulingRegionID = 1; 2422 }; 2423 2424 /// Attaches the BlockScheduling structures to basic blocks. 2425 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2426 2427 /// Performs the "real" scheduling. Done before vectorization is actually 2428 /// performed in a basic block. 2429 void scheduleBlock(BlockScheduling *BS); 2430 2431 /// List of users to ignore during scheduling and that don't need extracting. 2432 ArrayRef<Value *> UserIgnoreList; 2433 2434 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2435 /// sorted SmallVectors of unsigned. 2436 struct OrdersTypeDenseMapInfo { 2437 static OrdersType getEmptyKey() { 2438 OrdersType V; 2439 V.push_back(~1U); 2440 return V; 2441 } 2442 2443 static OrdersType getTombstoneKey() { 2444 OrdersType V; 2445 V.push_back(~2U); 2446 return V; 2447 } 2448 2449 static unsigned getHashValue(const OrdersType &V) { 2450 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2451 } 2452 2453 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2454 return LHS == RHS; 2455 } 2456 }; 2457 2458 /// Contains orders of operations along with the number of bundles that have 2459 /// operations in this order. It stores only those orders that require 2460 /// reordering, if reordering is not required it is counted using \a 2461 /// NumOpsWantToKeepOriginalOrder. 2462 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2463 /// Number of bundles that do not require reordering. 2464 unsigned NumOpsWantToKeepOriginalOrder = 0; 2465 2466 // Analysis and block reference. 2467 Function *F; 2468 ScalarEvolution *SE; 2469 TargetTransformInfo *TTI; 2470 TargetLibraryInfo *TLI; 2471 AAResults *AA; 2472 LoopInfo *LI; 2473 DominatorTree *DT; 2474 AssumptionCache *AC; 2475 DemandedBits *DB; 2476 const DataLayout *DL; 2477 OptimizationRemarkEmitter *ORE; 2478 2479 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2480 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2481 2482 /// Instruction builder to construct the vectorized tree. 2483 IRBuilder<> Builder; 2484 2485 /// A map of scalar integer values to the smallest bit width with which they 2486 /// can legally be represented. The values map to (width, signed) pairs, 2487 /// where "width" indicates the minimum bit width and "signed" is True if the 2488 /// value must be signed-extended, rather than zero-extended, back to its 2489 /// original width. 2490 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2491 }; 2492 2493 } // end namespace slpvectorizer 2494 2495 template <> struct GraphTraits<BoUpSLP *> { 2496 using TreeEntry = BoUpSLP::TreeEntry; 2497 2498 /// NodeRef has to be a pointer per the GraphWriter. 2499 using NodeRef = TreeEntry *; 2500 2501 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2502 2503 /// Add the VectorizableTree to the index iterator to be able to return 2504 /// TreeEntry pointers. 2505 struct ChildIteratorType 2506 : public iterator_adaptor_base< 2507 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2508 ContainerTy &VectorizableTree; 2509 2510 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2511 ContainerTy &VT) 2512 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2513 2514 NodeRef operator*() { return I->UserTE; } 2515 }; 2516 2517 static NodeRef getEntryNode(BoUpSLP &R) { 2518 return R.VectorizableTree[0].get(); 2519 } 2520 2521 static ChildIteratorType child_begin(NodeRef N) { 2522 return {N->UserTreeIndices.begin(), N->Container}; 2523 } 2524 2525 static ChildIteratorType child_end(NodeRef N) { 2526 return {N->UserTreeIndices.end(), N->Container}; 2527 } 2528 2529 /// For the node iterator we just need to turn the TreeEntry iterator into a 2530 /// TreeEntry* iterator so that it dereferences to NodeRef. 2531 class nodes_iterator { 2532 using ItTy = ContainerTy::iterator; 2533 ItTy It; 2534 2535 public: 2536 nodes_iterator(const ItTy &It2) : It(It2) {} 2537 NodeRef operator*() { return It->get(); } 2538 nodes_iterator operator++() { 2539 ++It; 2540 return *this; 2541 } 2542 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2543 }; 2544 2545 static nodes_iterator nodes_begin(BoUpSLP *R) { 2546 return nodes_iterator(R->VectorizableTree.begin()); 2547 } 2548 2549 static nodes_iterator nodes_end(BoUpSLP *R) { 2550 return nodes_iterator(R->VectorizableTree.end()); 2551 } 2552 2553 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2554 }; 2555 2556 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2557 using TreeEntry = BoUpSLP::TreeEntry; 2558 2559 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2560 2561 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2562 std::string Str; 2563 raw_string_ostream OS(Str); 2564 if (isSplat(Entry->Scalars)) { 2565 OS << "<splat> " << *Entry->Scalars[0]; 2566 return Str; 2567 } 2568 for (auto V : Entry->Scalars) { 2569 OS << *V; 2570 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2571 return EU.Scalar == V; 2572 })) 2573 OS << " <extract>"; 2574 OS << "\n"; 2575 } 2576 return Str; 2577 } 2578 2579 static std::string getNodeAttributes(const TreeEntry *Entry, 2580 const BoUpSLP *) { 2581 if (Entry->State == TreeEntry::NeedToGather) 2582 return "color=red"; 2583 return ""; 2584 } 2585 }; 2586 2587 } // end namespace llvm 2588 2589 BoUpSLP::~BoUpSLP() { 2590 for (const auto &Pair : DeletedInstructions) { 2591 // Replace operands of ignored instructions with Undefs in case if they were 2592 // marked for deletion. 2593 if (Pair.getSecond()) { 2594 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2595 Pair.getFirst()->replaceAllUsesWith(Undef); 2596 } 2597 Pair.getFirst()->dropAllReferences(); 2598 } 2599 for (const auto &Pair : DeletedInstructions) { 2600 assert(Pair.getFirst()->use_empty() && 2601 "trying to erase instruction with users."); 2602 Pair.getFirst()->eraseFromParent(); 2603 } 2604 #ifdef EXPENSIVE_CHECKS 2605 // If we could guarantee that this call is not extremely slow, we could 2606 // remove the ifdef limitation (see PR47712). 2607 assert(!verifyFunction(*F, &dbgs())); 2608 #endif 2609 } 2610 2611 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2612 for (auto *V : AV) { 2613 if (auto *I = dyn_cast<Instruction>(V)) 2614 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2615 }; 2616 } 2617 2618 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2619 ArrayRef<Value *> UserIgnoreLst) { 2620 ExtraValueToDebugLocsMap ExternallyUsedValues; 2621 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2622 } 2623 2624 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2625 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2626 ArrayRef<Value *> UserIgnoreLst) { 2627 deleteTree(); 2628 UserIgnoreList = UserIgnoreLst; 2629 if (!allSameType(Roots)) 2630 return; 2631 buildTree_rec(Roots, 0, EdgeInfo()); 2632 2633 // Collect the values that we need to extract from the tree. 2634 for (auto &TEPtr : VectorizableTree) { 2635 TreeEntry *Entry = TEPtr.get(); 2636 2637 // No need to handle users of gathered values. 2638 if (Entry->State == TreeEntry::NeedToGather) 2639 continue; 2640 2641 // For each lane: 2642 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2643 Value *Scalar = Entry->Scalars[Lane]; 2644 int FoundLane = Entry->findLaneForValue(Scalar); 2645 2646 // Check if the scalar is externally used as an extra arg. 2647 auto ExtI = ExternallyUsedValues.find(Scalar); 2648 if (ExtI != ExternallyUsedValues.end()) { 2649 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2650 << Lane << " from " << *Scalar << ".\n"); 2651 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2652 } 2653 for (User *U : Scalar->users()) { 2654 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2655 2656 Instruction *UserInst = dyn_cast<Instruction>(U); 2657 if (!UserInst) 2658 continue; 2659 2660 if (isDeleted(UserInst)) 2661 continue; 2662 2663 // Skip in-tree scalars that become vectors 2664 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2665 Value *UseScalar = UseEntry->Scalars[0]; 2666 // Some in-tree scalars will remain as scalar in vectorized 2667 // instructions. If that is the case, the one in Lane 0 will 2668 // be used. 2669 if (UseScalar != U || 2670 UseEntry->State == TreeEntry::ScatterVectorize || 2671 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2672 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2673 << ".\n"); 2674 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2675 continue; 2676 } 2677 } 2678 2679 // Ignore users in the user ignore list. 2680 if (is_contained(UserIgnoreList, UserInst)) 2681 continue; 2682 2683 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2684 << Lane << " from " << *Scalar << ".\n"); 2685 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2686 } 2687 } 2688 } 2689 } 2690 2691 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2692 const EdgeInfo &UserTreeIdx) { 2693 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2694 2695 InstructionsState S = getSameOpcode(VL); 2696 if (Depth == RecursionMaxDepth) { 2697 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2698 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2699 return; 2700 } 2701 2702 // Don't handle scalable vectors 2703 if (S.getOpcode() == Instruction::ExtractElement && 2704 isa<ScalableVectorType>( 2705 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 2706 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2708 return; 2709 } 2710 2711 // Don't handle vectors. 2712 if (S.OpValue->getType()->isVectorTy() && 2713 !isa<InsertElementInst>(S.OpValue)) { 2714 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2715 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2716 return; 2717 } 2718 2719 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2720 if (SI->getValueOperand()->getType()->isVectorTy()) { 2721 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2722 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2723 return; 2724 } 2725 2726 // If all of the operands are identical or constant we have a simple solution. 2727 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2728 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2729 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2730 return; 2731 } 2732 2733 // We now know that this is a vector of instructions of the same type from 2734 // the same block. 2735 2736 // Don't vectorize ephemeral values. 2737 for (Value *V : VL) { 2738 if (EphValues.count(V)) { 2739 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2740 << ") is ephemeral.\n"); 2741 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2742 return; 2743 } 2744 } 2745 2746 // Check if this is a duplicate of another entry. 2747 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2748 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2749 if (!E->isSame(VL)) { 2750 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2751 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2752 return; 2753 } 2754 // Record the reuse of the tree node. FIXME, currently this is only used to 2755 // properly draw the graph rather than for the actual vectorization. 2756 E->UserTreeIndices.push_back(UserTreeIdx); 2757 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2758 << ".\n"); 2759 return; 2760 } 2761 2762 // Check that none of the instructions in the bundle are already in the tree. 2763 for (Value *V : VL) { 2764 auto *I = dyn_cast<Instruction>(V); 2765 if (!I) 2766 continue; 2767 if (getTreeEntry(I)) { 2768 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2769 << ") is already in tree.\n"); 2770 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2771 return; 2772 } 2773 } 2774 2775 // If any of the scalars is marked as a value that needs to stay scalar, then 2776 // we need to gather the scalars. 2777 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2778 for (Value *V : VL) { 2779 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2780 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2781 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2782 return; 2783 } 2784 } 2785 2786 // Check that all of the users of the scalars that we want to vectorize are 2787 // schedulable. 2788 auto *VL0 = cast<Instruction>(S.OpValue); 2789 BasicBlock *BB = VL0->getParent(); 2790 2791 if (!DT->isReachableFromEntry(BB)) { 2792 // Don't go into unreachable blocks. They may contain instructions with 2793 // dependency cycles which confuse the final scheduling. 2794 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2795 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2796 return; 2797 } 2798 2799 // Check that every instruction appears once in this bundle. 2800 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2801 SmallVector<Value *, 4> UniqueValues; 2802 DenseMap<Value *, unsigned> UniquePositions; 2803 for (Value *V : VL) { 2804 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2805 ReuseShuffleIndicies.emplace_back(Res.first->second); 2806 if (Res.second) 2807 UniqueValues.emplace_back(V); 2808 } 2809 size_t NumUniqueScalarValues = UniqueValues.size(); 2810 if (NumUniqueScalarValues == VL.size()) { 2811 ReuseShuffleIndicies.clear(); 2812 } else { 2813 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2814 if (NumUniqueScalarValues <= 1 || 2815 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2816 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2817 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2818 return; 2819 } 2820 VL = UniqueValues; 2821 } 2822 2823 auto &BSRef = BlocksSchedules[BB]; 2824 if (!BSRef) 2825 BSRef = std::make_unique<BlockScheduling>(BB); 2826 2827 BlockScheduling &BS = *BSRef.get(); 2828 2829 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2830 if (!Bundle) { 2831 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2832 assert((!BS.getScheduleData(VL0) || 2833 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2834 "tryScheduleBundle should cancelScheduling on failure"); 2835 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2836 ReuseShuffleIndicies); 2837 return; 2838 } 2839 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2840 2841 unsigned ShuffleOrOp = S.isAltShuffle() ? 2842 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2843 switch (ShuffleOrOp) { 2844 case Instruction::PHI: { 2845 auto *PH = cast<PHINode>(VL0); 2846 2847 // Check for terminator values (e.g. invoke). 2848 for (Value *V : VL) 2849 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2850 Instruction *Term = dyn_cast<Instruction>( 2851 cast<PHINode>(V)->getIncomingValueForBlock( 2852 PH->getIncomingBlock(I))); 2853 if (Term && Term->isTerminator()) { 2854 LLVM_DEBUG(dbgs() 2855 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2856 BS.cancelScheduling(VL, VL0); 2857 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2858 ReuseShuffleIndicies); 2859 return; 2860 } 2861 } 2862 2863 TreeEntry *TE = 2864 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2865 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2866 2867 // Keeps the reordered operands to avoid code duplication. 2868 SmallVector<ValueList, 2> OperandsVec; 2869 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2870 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 2871 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 2872 TE->setOperand(I, Operands); 2873 OperandsVec.push_back(Operands); 2874 continue; 2875 } 2876 ValueList Operands; 2877 // Prepare the operand vector. 2878 for (Value *V : VL) 2879 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2880 PH->getIncomingBlock(I))); 2881 TE->setOperand(I, Operands); 2882 OperandsVec.push_back(Operands); 2883 } 2884 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2885 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2886 return; 2887 } 2888 case Instruction::ExtractValue: 2889 case Instruction::ExtractElement: { 2890 OrdersType CurrentOrder; 2891 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2892 if (Reuse) { 2893 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2894 ++NumOpsWantToKeepOriginalOrder; 2895 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2896 ReuseShuffleIndicies); 2897 // This is a special case, as it does not gather, but at the same time 2898 // we are not extending buildTree_rec() towards the operands. 2899 ValueList Op0; 2900 Op0.assign(VL.size(), VL0->getOperand(0)); 2901 VectorizableTree.back()->setOperand(0, Op0); 2902 return; 2903 } 2904 if (!CurrentOrder.empty()) { 2905 LLVM_DEBUG({ 2906 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2907 "with order"; 2908 for (unsigned Idx : CurrentOrder) 2909 dbgs() << " " << Idx; 2910 dbgs() << "\n"; 2911 }); 2912 // Insert new order with initial value 0, if it does not exist, 2913 // otherwise return the iterator to the existing one. 2914 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2915 ReuseShuffleIndicies, CurrentOrder); 2916 findRootOrder(CurrentOrder); 2917 ++NumOpsWantToKeepOrder[CurrentOrder]; 2918 // This is a special case, as it does not gather, but at the same time 2919 // we are not extending buildTree_rec() towards the operands. 2920 ValueList Op0; 2921 Op0.assign(VL.size(), VL0->getOperand(0)); 2922 VectorizableTree.back()->setOperand(0, Op0); 2923 return; 2924 } 2925 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2926 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2927 ReuseShuffleIndicies); 2928 BS.cancelScheduling(VL, VL0); 2929 return; 2930 } 2931 case Instruction::InsertElement: { 2932 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 2933 2934 // Check that we have a buildvector and not a shuffle of 2 or more 2935 // different vectors. 2936 ValueSet SourceVectors; 2937 for (Value *V : VL) 2938 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 2939 2940 if (count_if(VL, [&SourceVectors](Value *V) { 2941 return !SourceVectors.contains(V); 2942 }) >= 2) { 2943 // Found 2nd source vector - cancel. 2944 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 2945 "different source vectors.\n"); 2946 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2947 ReuseShuffleIndicies); 2948 BS.cancelScheduling(VL, VL0); 2949 return; 2950 } 2951 2952 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx); 2953 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 2954 2955 constexpr int NumOps = 2; 2956 ValueList VectorOperands[NumOps]; 2957 for (int I = 0; I < NumOps; ++I) { 2958 for (Value *V : VL) 2959 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 2960 2961 TE->setOperand(I, VectorOperands[I]); 2962 } 2963 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0}); 2964 return; 2965 } 2966 case Instruction::Load: { 2967 // Check that a vectorized load would load the same memory as a scalar 2968 // load. For example, we don't want to vectorize loads that are smaller 2969 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2970 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2971 // from such a struct, we read/write packed bits disagreeing with the 2972 // unvectorized version. 2973 Type *ScalarTy = VL0->getType(); 2974 2975 if (DL->getTypeSizeInBits(ScalarTy) != 2976 DL->getTypeAllocSizeInBits(ScalarTy)) { 2977 BS.cancelScheduling(VL, VL0); 2978 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2979 ReuseShuffleIndicies); 2980 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2981 return; 2982 } 2983 2984 // Make sure all loads in the bundle are simple - we can't vectorize 2985 // atomic or volatile loads. 2986 SmallVector<Value *, 4> PointerOps(VL.size()); 2987 auto POIter = PointerOps.begin(); 2988 for (Value *V : VL) { 2989 auto *L = cast<LoadInst>(V); 2990 if (!L->isSimple()) { 2991 BS.cancelScheduling(VL, VL0); 2992 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2993 ReuseShuffleIndicies); 2994 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2995 return; 2996 } 2997 *POIter = L->getPointerOperand(); 2998 ++POIter; 2999 } 3000 3001 OrdersType CurrentOrder; 3002 // Check the order of pointer operands. 3003 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3004 Value *Ptr0; 3005 Value *PtrN; 3006 if (CurrentOrder.empty()) { 3007 Ptr0 = PointerOps.front(); 3008 PtrN = PointerOps.back(); 3009 } else { 3010 Ptr0 = PointerOps[CurrentOrder.front()]; 3011 PtrN = PointerOps[CurrentOrder.back()]; 3012 } 3013 Optional<int> Diff = getPointersDiff( 3014 ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3015 // Check that the sorted loads are consecutive. 3016 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 3017 if (CurrentOrder.empty()) { 3018 // Original loads are consecutive and does not require reordering. 3019 ++NumOpsWantToKeepOriginalOrder; 3020 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3021 UserTreeIdx, ReuseShuffleIndicies); 3022 TE->setOperandsInOrder(); 3023 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3024 } else { 3025 // Need to reorder. 3026 TreeEntry *TE = 3027 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3028 ReuseShuffleIndicies, CurrentOrder); 3029 TE->setOperandsInOrder(); 3030 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3031 findRootOrder(CurrentOrder); 3032 ++NumOpsWantToKeepOrder[CurrentOrder]; 3033 } 3034 return; 3035 } 3036 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3037 for (Value *V : VL) 3038 CommonAlignment = 3039 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3040 if (TTI->isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3041 CommonAlignment)) { 3042 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3043 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, 3044 S, UserTreeIdx, ReuseShuffleIndicies); 3045 TE->setOperandsInOrder(); 3046 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3047 LLVM_DEBUG(dbgs() 3048 << "SLP: added a vector of non-consecutive loads.\n"); 3049 return; 3050 } 3051 } 3052 3053 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3054 BS.cancelScheduling(VL, VL0); 3055 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3056 ReuseShuffleIndicies); 3057 return; 3058 } 3059 case Instruction::ZExt: 3060 case Instruction::SExt: 3061 case Instruction::FPToUI: 3062 case Instruction::FPToSI: 3063 case Instruction::FPExt: 3064 case Instruction::PtrToInt: 3065 case Instruction::IntToPtr: 3066 case Instruction::SIToFP: 3067 case Instruction::UIToFP: 3068 case Instruction::Trunc: 3069 case Instruction::FPTrunc: 3070 case Instruction::BitCast: { 3071 Type *SrcTy = VL0->getOperand(0)->getType(); 3072 for (Value *V : VL) { 3073 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3074 if (Ty != SrcTy || !isValidElementType(Ty)) { 3075 BS.cancelScheduling(VL, VL0); 3076 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3077 ReuseShuffleIndicies); 3078 LLVM_DEBUG(dbgs() 3079 << "SLP: Gathering casts with different src types.\n"); 3080 return; 3081 } 3082 } 3083 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3084 ReuseShuffleIndicies); 3085 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3086 3087 TE->setOperandsInOrder(); 3088 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3089 ValueList Operands; 3090 // Prepare the operand vector. 3091 for (Value *V : VL) 3092 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3093 3094 buildTree_rec(Operands, Depth + 1, {TE, i}); 3095 } 3096 return; 3097 } 3098 case Instruction::ICmp: 3099 case Instruction::FCmp: { 3100 // Check that all of the compares have the same predicate. 3101 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3102 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3103 Type *ComparedTy = VL0->getOperand(0)->getType(); 3104 for (Value *V : VL) { 3105 CmpInst *Cmp = cast<CmpInst>(V); 3106 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3107 Cmp->getOperand(0)->getType() != ComparedTy) { 3108 BS.cancelScheduling(VL, VL0); 3109 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3110 ReuseShuffleIndicies); 3111 LLVM_DEBUG(dbgs() 3112 << "SLP: Gathering cmp with different predicate.\n"); 3113 return; 3114 } 3115 } 3116 3117 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3118 ReuseShuffleIndicies); 3119 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3120 3121 ValueList Left, Right; 3122 if (cast<CmpInst>(VL0)->isCommutative()) { 3123 // Commutative predicate - collect + sort operands of the instructions 3124 // so that each side is more likely to have the same opcode. 3125 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3126 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3127 } else { 3128 // Collect operands - commute if it uses the swapped predicate. 3129 for (Value *V : VL) { 3130 auto *Cmp = cast<CmpInst>(V); 3131 Value *LHS = Cmp->getOperand(0); 3132 Value *RHS = Cmp->getOperand(1); 3133 if (Cmp->getPredicate() != P0) 3134 std::swap(LHS, RHS); 3135 Left.push_back(LHS); 3136 Right.push_back(RHS); 3137 } 3138 } 3139 TE->setOperand(0, Left); 3140 TE->setOperand(1, Right); 3141 buildTree_rec(Left, Depth + 1, {TE, 0}); 3142 buildTree_rec(Right, Depth + 1, {TE, 1}); 3143 return; 3144 } 3145 case Instruction::Select: 3146 case Instruction::FNeg: 3147 case Instruction::Add: 3148 case Instruction::FAdd: 3149 case Instruction::Sub: 3150 case Instruction::FSub: 3151 case Instruction::Mul: 3152 case Instruction::FMul: 3153 case Instruction::UDiv: 3154 case Instruction::SDiv: 3155 case Instruction::FDiv: 3156 case Instruction::URem: 3157 case Instruction::SRem: 3158 case Instruction::FRem: 3159 case Instruction::Shl: 3160 case Instruction::LShr: 3161 case Instruction::AShr: 3162 case Instruction::And: 3163 case Instruction::Or: 3164 case Instruction::Xor: { 3165 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3166 ReuseShuffleIndicies); 3167 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3168 3169 // Sort operands of the instructions so that each side is more likely to 3170 // have the same opcode. 3171 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3172 ValueList Left, Right; 3173 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3174 TE->setOperand(0, Left); 3175 TE->setOperand(1, Right); 3176 buildTree_rec(Left, Depth + 1, {TE, 0}); 3177 buildTree_rec(Right, Depth + 1, {TE, 1}); 3178 return; 3179 } 3180 3181 TE->setOperandsInOrder(); 3182 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3183 ValueList Operands; 3184 // Prepare the operand vector. 3185 for (Value *V : VL) 3186 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3187 3188 buildTree_rec(Operands, Depth + 1, {TE, i}); 3189 } 3190 return; 3191 } 3192 case Instruction::GetElementPtr: { 3193 // We don't combine GEPs with complicated (nested) indexing. 3194 for (Value *V : VL) { 3195 if (cast<Instruction>(V)->getNumOperands() != 2) { 3196 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3197 BS.cancelScheduling(VL, VL0); 3198 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3199 ReuseShuffleIndicies); 3200 return; 3201 } 3202 } 3203 3204 // We can't combine several GEPs into one vector if they operate on 3205 // different types. 3206 Type *Ty0 = VL0->getOperand(0)->getType(); 3207 for (Value *V : VL) { 3208 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3209 if (Ty0 != CurTy) { 3210 LLVM_DEBUG(dbgs() 3211 << "SLP: not-vectorizable GEP (different types).\n"); 3212 BS.cancelScheduling(VL, VL0); 3213 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3214 ReuseShuffleIndicies); 3215 return; 3216 } 3217 } 3218 3219 // We don't combine GEPs with non-constant indexes. 3220 Type *Ty1 = VL0->getOperand(1)->getType(); 3221 for (Value *V : VL) { 3222 auto Op = cast<Instruction>(V)->getOperand(1); 3223 if (!isa<ConstantInt>(Op) || 3224 (Op->getType() != Ty1 && 3225 Op->getType()->getScalarSizeInBits() > 3226 DL->getIndexSizeInBits( 3227 V->getType()->getPointerAddressSpace()))) { 3228 LLVM_DEBUG(dbgs() 3229 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3230 BS.cancelScheduling(VL, VL0); 3231 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3232 ReuseShuffleIndicies); 3233 return; 3234 } 3235 } 3236 3237 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3238 ReuseShuffleIndicies); 3239 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3240 TE->setOperandsInOrder(); 3241 for (unsigned i = 0, e = 2; i < e; ++i) { 3242 ValueList Operands; 3243 // Prepare the operand vector. 3244 for (Value *V : VL) 3245 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3246 3247 buildTree_rec(Operands, Depth + 1, {TE, i}); 3248 } 3249 return; 3250 } 3251 case Instruction::Store: { 3252 // Check if the stores are consecutive or if we need to swizzle them. 3253 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3254 // Avoid types that are padded when being allocated as scalars, while 3255 // being packed together in a vector (such as i1). 3256 if (DL->getTypeSizeInBits(ScalarTy) != 3257 DL->getTypeAllocSizeInBits(ScalarTy)) { 3258 BS.cancelScheduling(VL, VL0); 3259 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3260 ReuseShuffleIndicies); 3261 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3262 return; 3263 } 3264 // Make sure all stores in the bundle are simple - we can't vectorize 3265 // atomic or volatile stores. 3266 SmallVector<Value *, 4> PointerOps(VL.size()); 3267 ValueList Operands(VL.size()); 3268 auto POIter = PointerOps.begin(); 3269 auto OIter = Operands.begin(); 3270 for (Value *V : VL) { 3271 auto *SI = cast<StoreInst>(V); 3272 if (!SI->isSimple()) { 3273 BS.cancelScheduling(VL, VL0); 3274 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3275 ReuseShuffleIndicies); 3276 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3277 return; 3278 } 3279 *POIter = SI->getPointerOperand(); 3280 *OIter = SI->getValueOperand(); 3281 ++POIter; 3282 ++OIter; 3283 } 3284 3285 OrdersType CurrentOrder; 3286 // Check the order of pointer operands. 3287 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3288 Value *Ptr0; 3289 Value *PtrN; 3290 if (CurrentOrder.empty()) { 3291 Ptr0 = PointerOps.front(); 3292 PtrN = PointerOps.back(); 3293 } else { 3294 Ptr0 = PointerOps[CurrentOrder.front()]; 3295 PtrN = PointerOps[CurrentOrder.back()]; 3296 } 3297 Optional<int> Dist = 3298 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3299 // Check that the sorted pointer operands are consecutive. 3300 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3301 if (CurrentOrder.empty()) { 3302 // Original stores are consecutive and does not require reordering. 3303 ++NumOpsWantToKeepOriginalOrder; 3304 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3305 UserTreeIdx, ReuseShuffleIndicies); 3306 TE->setOperandsInOrder(); 3307 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3308 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3309 } else { 3310 TreeEntry *TE = 3311 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3312 ReuseShuffleIndicies, CurrentOrder); 3313 TE->setOperandsInOrder(); 3314 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3315 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3316 findRootOrder(CurrentOrder); 3317 ++NumOpsWantToKeepOrder[CurrentOrder]; 3318 } 3319 return; 3320 } 3321 } 3322 3323 BS.cancelScheduling(VL, VL0); 3324 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3325 ReuseShuffleIndicies); 3326 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3327 return; 3328 } 3329 case Instruction::Call: { 3330 // Check if the calls are all to the same vectorizable intrinsic or 3331 // library function. 3332 CallInst *CI = cast<CallInst>(VL0); 3333 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3334 3335 VFShape Shape = VFShape::get( 3336 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3337 false /*HasGlobalPred*/); 3338 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3339 3340 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3341 BS.cancelScheduling(VL, VL0); 3342 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3343 ReuseShuffleIndicies); 3344 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3345 return; 3346 } 3347 Function *F = CI->getCalledFunction(); 3348 unsigned NumArgs = CI->getNumArgOperands(); 3349 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3350 for (unsigned j = 0; j != NumArgs; ++j) 3351 if (hasVectorInstrinsicScalarOpd(ID, j)) 3352 ScalarArgs[j] = CI->getArgOperand(j); 3353 for (Value *V : VL) { 3354 CallInst *CI2 = dyn_cast<CallInst>(V); 3355 if (!CI2 || CI2->getCalledFunction() != F || 3356 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3357 (VecFunc && 3358 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3359 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3360 BS.cancelScheduling(VL, VL0); 3361 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3362 ReuseShuffleIndicies); 3363 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3364 << "\n"); 3365 return; 3366 } 3367 // Some intrinsics have scalar arguments and should be same in order for 3368 // them to be vectorized. 3369 for (unsigned j = 0; j != NumArgs; ++j) { 3370 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3371 Value *A1J = CI2->getArgOperand(j); 3372 if (ScalarArgs[j] != A1J) { 3373 BS.cancelScheduling(VL, VL0); 3374 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3375 ReuseShuffleIndicies); 3376 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3377 << " argument " << ScalarArgs[j] << "!=" << A1J 3378 << "\n"); 3379 return; 3380 } 3381 } 3382 } 3383 // Verify that the bundle operands are identical between the two calls. 3384 if (CI->hasOperandBundles() && 3385 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3386 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3387 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3388 BS.cancelScheduling(VL, VL0); 3389 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3390 ReuseShuffleIndicies); 3391 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3392 << *CI << "!=" << *V << '\n'); 3393 return; 3394 } 3395 } 3396 3397 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3398 ReuseShuffleIndicies); 3399 TE->setOperandsInOrder(); 3400 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3401 ValueList Operands; 3402 // Prepare the operand vector. 3403 for (Value *V : VL) { 3404 auto *CI2 = cast<CallInst>(V); 3405 Operands.push_back(CI2->getArgOperand(i)); 3406 } 3407 buildTree_rec(Operands, Depth + 1, {TE, i}); 3408 } 3409 return; 3410 } 3411 case Instruction::ShuffleVector: { 3412 // If this is not an alternate sequence of opcode like add-sub 3413 // then do not vectorize this instruction. 3414 if (!S.isAltShuffle()) { 3415 BS.cancelScheduling(VL, VL0); 3416 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3417 ReuseShuffleIndicies); 3418 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3419 return; 3420 } 3421 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3422 ReuseShuffleIndicies); 3423 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3424 3425 // Reorder operands if reordering would enable vectorization. 3426 if (isa<BinaryOperator>(VL0)) { 3427 ValueList Left, Right; 3428 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3429 TE->setOperand(0, Left); 3430 TE->setOperand(1, Right); 3431 buildTree_rec(Left, Depth + 1, {TE, 0}); 3432 buildTree_rec(Right, Depth + 1, {TE, 1}); 3433 return; 3434 } 3435 3436 TE->setOperandsInOrder(); 3437 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3438 ValueList Operands; 3439 // Prepare the operand vector. 3440 for (Value *V : VL) 3441 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3442 3443 buildTree_rec(Operands, Depth + 1, {TE, i}); 3444 } 3445 return; 3446 } 3447 default: 3448 BS.cancelScheduling(VL, VL0); 3449 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3450 ReuseShuffleIndicies); 3451 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3452 return; 3453 } 3454 } 3455 3456 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3457 unsigned N = 1; 3458 Type *EltTy = T; 3459 3460 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3461 isa<VectorType>(EltTy)) { 3462 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3463 // Check that struct is homogeneous. 3464 for (const auto *Ty : ST->elements()) 3465 if (Ty != *ST->element_begin()) 3466 return 0; 3467 N *= ST->getNumElements(); 3468 EltTy = *ST->element_begin(); 3469 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3470 N *= AT->getNumElements(); 3471 EltTy = AT->getElementType(); 3472 } else { 3473 auto *VT = cast<FixedVectorType>(EltTy); 3474 N *= VT->getNumElements(); 3475 EltTy = VT->getElementType(); 3476 } 3477 } 3478 3479 if (!isValidElementType(EltTy)) 3480 return 0; 3481 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3482 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3483 return 0; 3484 return N; 3485 } 3486 3487 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3488 SmallVectorImpl<unsigned> &CurrentOrder) const { 3489 Instruction *E0 = cast<Instruction>(OpValue); 3490 assert(E0->getOpcode() == Instruction::ExtractElement || 3491 E0->getOpcode() == Instruction::ExtractValue); 3492 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3493 // Check if all of the extracts come from the same vector and from the 3494 // correct offset. 3495 Value *Vec = E0->getOperand(0); 3496 3497 CurrentOrder.clear(); 3498 3499 // We have to extract from a vector/aggregate with the same number of elements. 3500 unsigned NElts; 3501 if (E0->getOpcode() == Instruction::ExtractValue) { 3502 const DataLayout &DL = E0->getModule()->getDataLayout(); 3503 NElts = canMapToVector(Vec->getType(), DL); 3504 if (!NElts) 3505 return false; 3506 // Check if load can be rewritten as load of vector. 3507 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3508 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3509 return false; 3510 } else { 3511 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3512 } 3513 3514 if (NElts != VL.size()) 3515 return false; 3516 3517 // Check that all of the indices extract from the correct offset. 3518 bool ShouldKeepOrder = true; 3519 unsigned E = VL.size(); 3520 // Assign to all items the initial value E + 1 so we can check if the extract 3521 // instruction index was used already. 3522 // Also, later we can check that all the indices are used and we have a 3523 // consecutive access in the extract instructions, by checking that no 3524 // element of CurrentOrder still has value E + 1. 3525 CurrentOrder.assign(E, E + 1); 3526 unsigned I = 0; 3527 for (; I < E; ++I) { 3528 auto *Inst = cast<Instruction>(VL[I]); 3529 if (Inst->getOperand(0) != Vec) 3530 break; 3531 Optional<unsigned> Idx = getExtractIndex(Inst); 3532 if (!Idx) 3533 break; 3534 const unsigned ExtIdx = *Idx; 3535 if (ExtIdx != I) { 3536 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3537 break; 3538 ShouldKeepOrder = false; 3539 CurrentOrder[ExtIdx] = I; 3540 } else { 3541 if (CurrentOrder[I] != E + 1) 3542 break; 3543 CurrentOrder[I] = I; 3544 } 3545 } 3546 if (I < E) { 3547 CurrentOrder.clear(); 3548 return false; 3549 } 3550 3551 return ShouldKeepOrder; 3552 } 3553 3554 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 3555 ArrayRef<Value *> VectorizedVals) const { 3556 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 3557 llvm::all_of(I->users(), [this](User *U) { 3558 return ScalarToTreeEntry.count(U) > 0; 3559 }); 3560 } 3561 3562 static std::pair<InstructionCost, InstructionCost> 3563 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3564 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3565 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3566 3567 // Calculate the cost of the scalar and vector calls. 3568 SmallVector<Type *, 4> VecTys; 3569 for (Use &Arg : CI->args()) 3570 VecTys.push_back( 3571 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3572 FastMathFlags FMF; 3573 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3574 FMF = FPCI->getFastMathFlags(); 3575 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3576 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3577 dyn_cast<IntrinsicInst>(CI)); 3578 auto IntrinsicCost = 3579 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3580 3581 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3582 VecTy->getNumElements())), 3583 false /*HasGlobalPred*/); 3584 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3585 auto LibCost = IntrinsicCost; 3586 if (!CI->isNoBuiltin() && VecFunc) { 3587 // Calculate the cost of the vector library call. 3588 // If the corresponding vector call is cheaper, return its cost. 3589 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3590 TTI::TCK_RecipThroughput); 3591 } 3592 return {IntrinsicCost, LibCost}; 3593 } 3594 3595 /// Compute the cost of creating a vector of type \p VecTy containing the 3596 /// extracted values from \p VL. 3597 static InstructionCost 3598 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3599 TargetTransformInfo::ShuffleKind ShuffleKind, 3600 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3601 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3602 3603 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3604 VecTy->getNumElements() < NumOfParts) 3605 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3606 3607 bool AllConsecutive = true; 3608 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3609 unsigned Idx = -1; 3610 InstructionCost Cost = 0; 3611 3612 // Process extracts in blocks of EltsPerVector to check if the source vector 3613 // operand can be re-used directly. If not, add the cost of creating a shuffle 3614 // to extract the values into a vector register. 3615 for (auto *V : VL) { 3616 ++Idx; 3617 3618 // Reached the start of a new vector registers. 3619 if (Idx % EltsPerVector == 0) { 3620 AllConsecutive = true; 3621 continue; 3622 } 3623 3624 // Check all extracts for a vector register on the target directly 3625 // extract values in order. 3626 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3627 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3628 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3629 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3630 3631 if (AllConsecutive) 3632 continue; 3633 3634 // Skip all indices, except for the last index per vector block. 3635 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3636 continue; 3637 3638 // If we have a series of extracts which are not consecutive and hence 3639 // cannot re-use the source vector register directly, compute the shuffle 3640 // cost to extract the a vector with EltsPerVector elements. 3641 Cost += TTI.getShuffleCost( 3642 TargetTransformInfo::SK_PermuteSingleSrc, 3643 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3644 } 3645 return Cost; 3646 } 3647 3648 /// Shuffles \p Mask in accordance with the given \p SubMask. 3649 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 3650 if (SubMask.empty()) 3651 return; 3652 if (Mask.empty()) { 3653 Mask.append(SubMask.begin(), SubMask.end()); 3654 return; 3655 } 3656 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 3657 int TermValue = std::min(Mask.size(), SubMask.size()); 3658 for (int I = 0, E = SubMask.size(); I < E; ++I) { 3659 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 3660 Mask[SubMask[I]] >= TermValue) { 3661 NewMask[I] = UndefMaskElem; 3662 continue; 3663 } 3664 NewMask[I] = Mask[SubMask[I]]; 3665 } 3666 Mask.swap(NewMask); 3667 } 3668 3669 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 3670 ArrayRef<Value *> VectorizedVals) { 3671 ArrayRef<Value*> VL = E->Scalars; 3672 3673 Type *ScalarTy = VL[0]->getType(); 3674 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3675 ScalarTy = SI->getValueOperand()->getType(); 3676 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3677 ScalarTy = CI->getOperand(0)->getType(); 3678 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 3679 ScalarTy = IE->getOperand(1)->getType(); 3680 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3681 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3682 3683 // If we have computed a smaller type for the expression, update VecTy so 3684 // that the costs will be accurate. 3685 if (MinBWs.count(VL[0])) 3686 VecTy = FixedVectorType::get( 3687 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3688 auto *FinalVecTy = VecTy; 3689 3690 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3691 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3692 if (NeedToShuffleReuses) 3693 FinalVecTy = 3694 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 3695 // FIXME: it tries to fix a problem with MSVC buildbots. 3696 TargetTransformInfo &TTIRef = *TTI; 3697 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 3698 VectorizedVals](InstructionCost &Cost, 3699 bool IsGather) { 3700 DenseMap<Value *, int> ExtractVectorsTys; 3701 for (auto *V : VL) { 3702 // If all users of instruction are going to be vectorized and this 3703 // instruction itself is not going to be vectorized, consider this 3704 // instruction as dead and remove its cost from the final cost of the 3705 // vectorized tree. 3706 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 3707 (IsGather && ScalarToTreeEntry.count(V))) 3708 continue; 3709 auto *EE = cast<ExtractElementInst>(V); 3710 unsigned Idx = *getExtractIndex(EE); 3711 if (TTIRef.getNumberOfParts(VecTy) != 3712 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 3713 auto It = 3714 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 3715 It->getSecond() = std::min<int>(It->second, Idx); 3716 } 3717 // Take credit for instruction that will become dead. 3718 if (EE->hasOneUse()) { 3719 Instruction *Ext = EE->user_back(); 3720 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3721 all_of(Ext->users(), 3722 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3723 // Use getExtractWithExtendCost() to calculate the cost of 3724 // extractelement/ext pair. 3725 Cost -= 3726 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 3727 EE->getVectorOperandType(), Idx); 3728 // Add back the cost of s|zext which is subtracted separately. 3729 Cost += TTIRef.getCastInstrCost( 3730 Ext->getOpcode(), Ext->getType(), EE->getType(), 3731 TTI::getCastContextHint(Ext), CostKind, Ext); 3732 continue; 3733 } 3734 } 3735 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 3736 EE->getVectorOperandType(), Idx); 3737 } 3738 // Add a cost for subvector extracts/inserts if required. 3739 for (const auto &Data : ExtractVectorsTys) { 3740 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 3741 unsigned NumElts = VecTy->getNumElements(); 3742 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 3743 unsigned Idx = (Data.second / NumElts) * NumElts; 3744 unsigned EENumElts = EEVTy->getNumElements(); 3745 if (Idx + NumElts <= EENumElts) { 3746 Cost += 3747 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3748 EEVTy, None, Idx, VecTy); 3749 } else { 3750 // Need to round up the subvector type vectorization factor to avoid a 3751 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 3752 // <= EENumElts. 3753 auto *SubVT = 3754 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 3755 Cost += 3756 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3757 EEVTy, None, Idx, SubVT); 3758 } 3759 } else { 3760 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 3761 VecTy, None, 0, EEVTy); 3762 } 3763 } 3764 }; 3765 if (E->State == TreeEntry::NeedToGather) { 3766 if (allConstant(VL)) 3767 return 0; 3768 if (isa<InsertElementInst>(VL[0])) 3769 return InstructionCost::getInvalid(); 3770 SmallVector<int> Mask; 3771 SmallVector<const TreeEntry *> Entries; 3772 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3773 isGatherShuffledEntry(E, Mask, Entries); 3774 if (Shuffle.hasValue()) { 3775 InstructionCost GatherCost = 0; 3776 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3777 // Perfect match in the graph, will reuse the previously vectorized 3778 // node. Cost is 0. 3779 LLVM_DEBUG( 3780 dbgs() 3781 << "SLP: perfect diamond match for gather bundle that starts with " 3782 << *VL.front() << ".\n"); 3783 if (NeedToShuffleReuses) 3784 GatherCost = 3785 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3786 FinalVecTy, E->ReuseShuffleIndices); 3787 } else { 3788 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3789 << " entries for bundle that starts with " 3790 << *VL.front() << ".\n"); 3791 // Detected that instead of gather we can emit a shuffle of single/two 3792 // previously vectorized nodes. Add the cost of the permutation rather 3793 // than gather. 3794 ::addMask(Mask, E->ReuseShuffleIndices); 3795 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 3796 } 3797 return GatherCost; 3798 } 3799 if (isSplat(VL)) { 3800 // Found the broadcasting of the single scalar, calculate the cost as the 3801 // broadcast. 3802 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 3803 } 3804 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 3805 allSameBlock(VL) && 3806 !isa<ScalableVectorType>( 3807 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 3808 // Check that gather of extractelements can be represented as just a 3809 // shuffle of a single/two vectors the scalars are extracted from. 3810 SmallVector<int> Mask; 3811 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3812 isShuffle(VL, Mask); 3813 if (ShuffleKind.hasValue()) { 3814 // Found the bunch of extractelement instructions that must be gathered 3815 // into a vector and can be represented as a permutation elements in a 3816 // single input vector or of 2 input vectors. 3817 InstructionCost Cost = 3818 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3819 AdjustExtractsCost(Cost, /*IsGather=*/true); 3820 if (NeedToShuffleReuses) 3821 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3822 FinalVecTy, E->ReuseShuffleIndices); 3823 return Cost; 3824 } 3825 } 3826 InstructionCost ReuseShuffleCost = 0; 3827 if (NeedToShuffleReuses) 3828 ReuseShuffleCost = TTI->getShuffleCost( 3829 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 3830 return ReuseShuffleCost + getGatherCost(VL); 3831 } 3832 InstructionCost CommonCost = 0; 3833 SmallVector<int> Mask; 3834 if (!E->ReorderIndices.empty()) { 3835 SmallVector<int> NewMask; 3836 if (E->getOpcode() == Instruction::Store) { 3837 // For stores the order is actually a mask. 3838 NewMask.resize(E->ReorderIndices.size()); 3839 copy(E->ReorderIndices, NewMask.begin()); 3840 } else { 3841 inversePermutation(E->ReorderIndices, NewMask); 3842 } 3843 ::addMask(Mask, NewMask); 3844 } 3845 if (NeedToShuffleReuses) 3846 ::addMask(Mask, E->ReuseShuffleIndices); 3847 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 3848 CommonCost = 3849 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 3850 assert((E->State == TreeEntry::Vectorize || 3851 E->State == TreeEntry::ScatterVectorize) && 3852 "Unhandled state"); 3853 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3854 Instruction *VL0 = E->getMainOp(); 3855 unsigned ShuffleOrOp = 3856 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3857 switch (ShuffleOrOp) { 3858 case Instruction::PHI: 3859 return 0; 3860 3861 case Instruction::ExtractValue: 3862 case Instruction::ExtractElement: { 3863 // The common cost of removal ExtractElement/ExtractValue instructions + 3864 // the cost of shuffles, if required to resuffle the original vector. 3865 if (NeedToShuffleReuses) { 3866 unsigned Idx = 0; 3867 for (unsigned I : E->ReuseShuffleIndices) { 3868 if (ShuffleOrOp == Instruction::ExtractElement) { 3869 auto *EE = cast<ExtractElementInst>(VL[I]); 3870 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 3871 EE->getVectorOperandType(), 3872 *getExtractIndex(EE)); 3873 } else { 3874 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 3875 VecTy, Idx); 3876 ++Idx; 3877 } 3878 } 3879 Idx = ReuseShuffleNumbers; 3880 for (Value *V : VL) { 3881 if (ShuffleOrOp == Instruction::ExtractElement) { 3882 auto *EE = cast<ExtractElementInst>(V); 3883 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 3884 EE->getVectorOperandType(), 3885 *getExtractIndex(EE)); 3886 } else { 3887 --Idx; 3888 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 3889 VecTy, Idx); 3890 } 3891 } 3892 } 3893 if (ShuffleOrOp == Instruction::ExtractValue) { 3894 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3895 auto *EI = cast<Instruction>(VL[I]); 3896 // Take credit for instruction that will become dead. 3897 if (EI->hasOneUse()) { 3898 Instruction *Ext = EI->user_back(); 3899 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3900 all_of(Ext->users(), 3901 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3902 // Use getExtractWithExtendCost() to calculate the cost of 3903 // extractelement/ext pair. 3904 CommonCost -= TTI->getExtractWithExtendCost( 3905 Ext->getOpcode(), Ext->getType(), VecTy, I); 3906 // Add back the cost of s|zext which is subtracted separately. 3907 CommonCost += TTI->getCastInstrCost( 3908 Ext->getOpcode(), Ext->getType(), EI->getType(), 3909 TTI::getCastContextHint(Ext), CostKind, Ext); 3910 continue; 3911 } 3912 } 3913 CommonCost -= 3914 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3915 } 3916 } else { 3917 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 3918 } 3919 return CommonCost; 3920 } 3921 case Instruction::InsertElement: { 3922 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 3923 3924 unsigned const NumElts = SrcVecTy->getNumElements(); 3925 unsigned const NumScalars = VL.size(); 3926 APInt DemandedElts = APInt::getNullValue(NumElts); 3927 // TODO: Add support for Instruction::InsertValue. 3928 unsigned Offset = UINT_MAX; 3929 bool IsIdentity = true; 3930 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem); 3931 for (unsigned I = 0; I < NumScalars; ++I) { 3932 Optional<int> InsertIdx = getInsertIndex(VL[I], 0); 3933 if (!InsertIdx || *InsertIdx == UndefMaskElem) 3934 continue; 3935 unsigned Idx = *InsertIdx; 3936 DemandedElts.setBit(Idx); 3937 if (Idx < Offset) { 3938 Offset = Idx; 3939 IsIdentity &= I == 0; 3940 } else { 3941 assert(Idx >= Offset && "Failed to find vector index offset"); 3942 IsIdentity &= Idx - Offset == I; 3943 } 3944 ShuffleMask[Idx] = I; 3945 } 3946 assert(Offset < NumElts && "Failed to find vector index offset"); 3947 3948 InstructionCost Cost = 0; 3949 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 3950 /*Insert*/ true, /*Extract*/ false); 3951 3952 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 3953 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 3954 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 3955 Cost += TTI->getShuffleCost( 3956 TargetTransformInfo::SK_PermuteSingleSrc, 3957 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 3958 } else if (!IsIdentity) { 3959 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, 3960 ShuffleMask); 3961 } 3962 3963 return Cost; 3964 } 3965 case Instruction::ZExt: 3966 case Instruction::SExt: 3967 case Instruction::FPToUI: 3968 case Instruction::FPToSI: 3969 case Instruction::FPExt: 3970 case Instruction::PtrToInt: 3971 case Instruction::IntToPtr: 3972 case Instruction::SIToFP: 3973 case Instruction::UIToFP: 3974 case Instruction::Trunc: 3975 case Instruction::FPTrunc: 3976 case Instruction::BitCast: { 3977 Type *SrcTy = VL0->getOperand(0)->getType(); 3978 InstructionCost ScalarEltCost = 3979 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3980 TTI::getCastContextHint(VL0), CostKind, VL0); 3981 if (NeedToShuffleReuses) { 3982 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3983 } 3984 3985 // Calculate the cost of this instruction. 3986 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3987 3988 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3989 InstructionCost VecCost = 0; 3990 // Check if the values are candidates to demote. 3991 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3992 VecCost = CommonCost + TTI->getCastInstrCost( 3993 E->getOpcode(), VecTy, SrcVecTy, 3994 TTI::getCastContextHint(VL0), CostKind, VL0); 3995 } 3996 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 3997 return VecCost - ScalarCost; 3998 } 3999 case Instruction::FCmp: 4000 case Instruction::ICmp: 4001 case Instruction::Select: { 4002 // Calculate the cost of this instruction. 4003 InstructionCost ScalarEltCost = 4004 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4005 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4006 if (NeedToShuffleReuses) { 4007 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4008 } 4009 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4010 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4011 4012 // Check if all entries in VL are either compares or selects with compares 4013 // as condition that have the same predicates. 4014 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4015 bool First = true; 4016 for (auto *V : VL) { 4017 CmpInst::Predicate CurrentPred; 4018 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4019 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4020 !match(V, MatchCmp)) || 4021 (!First && VecPred != CurrentPred)) { 4022 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4023 break; 4024 } 4025 First = false; 4026 VecPred = CurrentPred; 4027 } 4028 4029 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4030 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4031 // Check if it is possible and profitable to use min/max for selects in 4032 // VL. 4033 // 4034 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4035 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4036 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4037 {VecTy, VecTy}); 4038 InstructionCost IntrinsicCost = 4039 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4040 // If the selects are the only uses of the compares, they will be dead 4041 // and we can adjust the cost by removing their cost. 4042 if (IntrinsicAndUse.second) 4043 IntrinsicCost -= 4044 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4045 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4046 VecCost = std::min(VecCost, IntrinsicCost); 4047 } 4048 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4049 return CommonCost + VecCost - ScalarCost; 4050 } 4051 case Instruction::FNeg: 4052 case Instruction::Add: 4053 case Instruction::FAdd: 4054 case Instruction::Sub: 4055 case Instruction::FSub: 4056 case Instruction::Mul: 4057 case Instruction::FMul: 4058 case Instruction::UDiv: 4059 case Instruction::SDiv: 4060 case Instruction::FDiv: 4061 case Instruction::URem: 4062 case Instruction::SRem: 4063 case Instruction::FRem: 4064 case Instruction::Shl: 4065 case Instruction::LShr: 4066 case Instruction::AShr: 4067 case Instruction::And: 4068 case Instruction::Or: 4069 case Instruction::Xor: { 4070 // Certain instructions can be cheaper to vectorize if they have a 4071 // constant second vector operand. 4072 TargetTransformInfo::OperandValueKind Op1VK = 4073 TargetTransformInfo::OK_AnyValue; 4074 TargetTransformInfo::OperandValueKind Op2VK = 4075 TargetTransformInfo::OK_UniformConstantValue; 4076 TargetTransformInfo::OperandValueProperties Op1VP = 4077 TargetTransformInfo::OP_None; 4078 TargetTransformInfo::OperandValueProperties Op2VP = 4079 TargetTransformInfo::OP_PowerOf2; 4080 4081 // If all operands are exactly the same ConstantInt then set the 4082 // operand kind to OK_UniformConstantValue. 4083 // If instead not all operands are constants, then set the operand kind 4084 // to OK_AnyValue. If all operands are constants but not the same, 4085 // then set the operand kind to OK_NonUniformConstantValue. 4086 ConstantInt *CInt0 = nullptr; 4087 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4088 const Instruction *I = cast<Instruction>(VL[i]); 4089 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4090 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4091 if (!CInt) { 4092 Op2VK = TargetTransformInfo::OK_AnyValue; 4093 Op2VP = TargetTransformInfo::OP_None; 4094 break; 4095 } 4096 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4097 !CInt->getValue().isPowerOf2()) 4098 Op2VP = TargetTransformInfo::OP_None; 4099 if (i == 0) { 4100 CInt0 = CInt; 4101 continue; 4102 } 4103 if (CInt0 != CInt) 4104 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4105 } 4106 4107 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4108 InstructionCost ScalarEltCost = 4109 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4110 Op2VK, Op1VP, Op2VP, Operands, VL0); 4111 if (NeedToShuffleReuses) { 4112 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4113 } 4114 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4115 InstructionCost VecCost = 4116 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4117 Op2VK, Op1VP, Op2VP, Operands, VL0); 4118 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4119 return CommonCost + VecCost - ScalarCost; 4120 } 4121 case Instruction::GetElementPtr: { 4122 TargetTransformInfo::OperandValueKind Op1VK = 4123 TargetTransformInfo::OK_AnyValue; 4124 TargetTransformInfo::OperandValueKind Op2VK = 4125 TargetTransformInfo::OK_UniformConstantValue; 4126 4127 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4128 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4129 if (NeedToShuffleReuses) { 4130 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4131 } 4132 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4133 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4134 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4135 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4136 return CommonCost + VecCost - ScalarCost; 4137 } 4138 case Instruction::Load: { 4139 // Cost of wide load - cost of scalar loads. 4140 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4141 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4142 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4143 if (NeedToShuffleReuses) { 4144 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4145 } 4146 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4147 InstructionCost VecLdCost; 4148 if (E->State == TreeEntry::Vectorize) { 4149 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4150 CostKind, VL0); 4151 } else { 4152 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4153 Align CommonAlignment = Alignment; 4154 for (Value *V : VL) 4155 CommonAlignment = 4156 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4157 VecLdCost = TTI->getGatherScatterOpCost( 4158 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4159 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4160 } 4161 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4162 return CommonCost + VecLdCost - ScalarLdCost; 4163 } 4164 case Instruction::Store: { 4165 // We know that we can merge the stores. Calculate the cost. 4166 bool IsReorder = !E->ReorderIndices.empty(); 4167 auto *SI = 4168 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4169 Align Alignment = SI->getAlign(); 4170 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4171 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4172 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4173 InstructionCost VecStCost = TTI->getMemoryOpCost( 4174 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4175 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4176 return CommonCost + VecStCost - ScalarStCost; 4177 } 4178 case Instruction::Call: { 4179 CallInst *CI = cast<CallInst>(VL0); 4180 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4181 4182 // Calculate the cost of the scalar and vector calls. 4183 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4184 InstructionCost ScalarEltCost = 4185 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4186 if (NeedToShuffleReuses) { 4187 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4188 } 4189 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4190 4191 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4192 InstructionCost VecCallCost = 4193 std::min(VecCallCosts.first, VecCallCosts.second); 4194 4195 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4196 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4197 << " for " << *CI << "\n"); 4198 4199 return CommonCost + VecCallCost - ScalarCallCost; 4200 } 4201 case Instruction::ShuffleVector: { 4202 assert(E->isAltShuffle() && 4203 ((Instruction::isBinaryOp(E->getOpcode()) && 4204 Instruction::isBinaryOp(E->getAltOpcode())) || 4205 (Instruction::isCast(E->getOpcode()) && 4206 Instruction::isCast(E->getAltOpcode()))) && 4207 "Invalid Shuffle Vector Operand"); 4208 InstructionCost ScalarCost = 0; 4209 if (NeedToShuffleReuses) { 4210 for (unsigned Idx : E->ReuseShuffleIndices) { 4211 Instruction *I = cast<Instruction>(VL[Idx]); 4212 CommonCost -= TTI->getInstructionCost(I, CostKind); 4213 } 4214 for (Value *V : VL) { 4215 Instruction *I = cast<Instruction>(V); 4216 CommonCost += TTI->getInstructionCost(I, CostKind); 4217 } 4218 } 4219 for (Value *V : VL) { 4220 Instruction *I = cast<Instruction>(V); 4221 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4222 ScalarCost += TTI->getInstructionCost(I, CostKind); 4223 } 4224 // VecCost is equal to sum of the cost of creating 2 vectors 4225 // and the cost of creating shuffle. 4226 InstructionCost VecCost = 0; 4227 if (Instruction::isBinaryOp(E->getOpcode())) { 4228 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4229 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4230 CostKind); 4231 } else { 4232 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4233 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4234 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4235 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4236 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4237 TTI::CastContextHint::None, CostKind); 4238 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4239 TTI::CastContextHint::None, CostKind); 4240 } 4241 4242 SmallVector<int> Mask(E->Scalars.size()); 4243 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4244 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4245 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4246 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4247 } 4248 VecCost += 4249 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 4250 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4251 return CommonCost + VecCost - ScalarCost; 4252 } 4253 default: 4254 llvm_unreachable("Unknown instruction"); 4255 } 4256 } 4257 4258 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4259 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4260 << VectorizableTree.size() << " is fully vectorizable .\n"); 4261 4262 // We only handle trees of heights 1 and 2. 4263 if (VectorizableTree.size() == 1 && 4264 VectorizableTree[0]->State == TreeEntry::Vectorize) 4265 return true; 4266 4267 if (VectorizableTree.size() != 2) 4268 return false; 4269 4270 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4271 // with the second gather nodes if they have less scalar operands rather than 4272 // the initial tree element (may be profitable to shuffle the second gather) 4273 // or they are extractelements, which form shuffle. 4274 SmallVector<int> Mask; 4275 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4276 (allConstant(VectorizableTree[1]->Scalars) || 4277 isSplat(VectorizableTree[1]->Scalars) || 4278 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4279 VectorizableTree[1]->Scalars.size() < 4280 VectorizableTree[0]->Scalars.size()) || 4281 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4282 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4283 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4284 return true; 4285 4286 // Gathering cost would be too much for tiny trees. 4287 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4288 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4289 return false; 4290 4291 return true; 4292 } 4293 4294 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4295 TargetTransformInfo *TTI, 4296 bool MustMatchOrInst) { 4297 // Look past the root to find a source value. Arbitrarily follow the 4298 // path through operand 0 of any 'or'. Also, peek through optional 4299 // shift-left-by-multiple-of-8-bits. 4300 Value *ZextLoad = Root; 4301 const APInt *ShAmtC; 4302 bool FoundOr = false; 4303 while (!isa<ConstantExpr>(ZextLoad) && 4304 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4305 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4306 ShAmtC->urem(8) == 0))) { 4307 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4308 ZextLoad = BinOp->getOperand(0); 4309 if (BinOp->getOpcode() == Instruction::Or) 4310 FoundOr = true; 4311 } 4312 // Check if the input is an extended load of the required or/shift expression. 4313 Value *LoadPtr; 4314 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4315 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4316 return false; 4317 4318 // Require that the total load bit width is a legal integer type. 4319 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4320 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4321 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4322 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4323 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4324 return false; 4325 4326 // Everything matched - assume that we can fold the whole sequence using 4327 // load combining. 4328 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4329 << *(cast<Instruction>(Root)) << "\n"); 4330 4331 return true; 4332 } 4333 4334 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4335 if (RdxKind != RecurKind::Or) 4336 return false; 4337 4338 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4339 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4340 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4341 /* MatchOr */ false); 4342 } 4343 4344 bool BoUpSLP::isLoadCombineCandidate() const { 4345 // Peek through a final sequence of stores and check if all operations are 4346 // likely to be load-combined. 4347 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4348 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4349 Value *X; 4350 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4351 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4352 return false; 4353 } 4354 return true; 4355 } 4356 4357 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4358 // No need to vectorize inserts of gathered values. 4359 if (VectorizableTree.size() == 2 && 4360 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4361 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4362 return true; 4363 4364 // We can vectorize the tree if its size is greater than or equal to the 4365 // minimum size specified by the MinTreeSize command line option. 4366 if (VectorizableTree.size() >= MinTreeSize) 4367 return false; 4368 4369 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4370 // can vectorize it if we can prove it fully vectorizable. 4371 if (isFullyVectorizableTinyTree()) 4372 return false; 4373 4374 assert(VectorizableTree.empty() 4375 ? ExternalUses.empty() 4376 : true && "We shouldn't have any external users"); 4377 4378 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4379 // vectorizable. 4380 return true; 4381 } 4382 4383 InstructionCost BoUpSLP::getSpillCost() const { 4384 // Walk from the bottom of the tree to the top, tracking which values are 4385 // live. When we see a call instruction that is not part of our tree, 4386 // query TTI to see if there is a cost to keeping values live over it 4387 // (for example, if spills and fills are required). 4388 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4389 InstructionCost Cost = 0; 4390 4391 SmallPtrSet<Instruction*, 4> LiveValues; 4392 Instruction *PrevInst = nullptr; 4393 4394 // The entries in VectorizableTree are not necessarily ordered by their 4395 // position in basic blocks. Collect them and order them by dominance so later 4396 // instructions are guaranteed to be visited first. For instructions in 4397 // different basic blocks, we only scan to the beginning of the block, so 4398 // their order does not matter, as long as all instructions in a basic block 4399 // are grouped together. Using dominance ensures a deterministic order. 4400 SmallVector<Instruction *, 16> OrderedScalars; 4401 for (const auto &TEPtr : VectorizableTree) { 4402 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4403 if (!Inst) 4404 continue; 4405 OrderedScalars.push_back(Inst); 4406 } 4407 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 4408 auto *NodeA = DT->getNode(A->getParent()); 4409 auto *NodeB = DT->getNode(B->getParent()); 4410 assert(NodeA && "Should only process reachable instructions"); 4411 assert(NodeB && "Should only process reachable instructions"); 4412 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 4413 "Different nodes should have different DFS numbers"); 4414 if (NodeA != NodeB) 4415 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 4416 return B->comesBefore(A); 4417 }); 4418 4419 for (Instruction *Inst : OrderedScalars) { 4420 if (!PrevInst) { 4421 PrevInst = Inst; 4422 continue; 4423 } 4424 4425 // Update LiveValues. 4426 LiveValues.erase(PrevInst); 4427 for (auto &J : PrevInst->operands()) { 4428 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4429 LiveValues.insert(cast<Instruction>(&*J)); 4430 } 4431 4432 LLVM_DEBUG({ 4433 dbgs() << "SLP: #LV: " << LiveValues.size(); 4434 for (auto *X : LiveValues) 4435 dbgs() << " " << X->getName(); 4436 dbgs() << ", Looking at "; 4437 Inst->dump(); 4438 }); 4439 4440 // Now find the sequence of instructions between PrevInst and Inst. 4441 unsigned NumCalls = 0; 4442 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4443 PrevInstIt = 4444 PrevInst->getIterator().getReverse(); 4445 while (InstIt != PrevInstIt) { 4446 if (PrevInstIt == PrevInst->getParent()->rend()) { 4447 PrevInstIt = Inst->getParent()->rbegin(); 4448 continue; 4449 } 4450 4451 // Debug information does not impact spill cost. 4452 if ((isa<CallInst>(&*PrevInstIt) && 4453 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4454 &*PrevInstIt != PrevInst) 4455 NumCalls++; 4456 4457 ++PrevInstIt; 4458 } 4459 4460 if (NumCalls) { 4461 SmallVector<Type*, 4> V; 4462 for (auto *II : LiveValues) { 4463 auto *ScalarTy = II->getType(); 4464 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 4465 ScalarTy = VectorTy->getElementType(); 4466 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 4467 } 4468 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4469 } 4470 4471 PrevInst = Inst; 4472 } 4473 4474 return Cost; 4475 } 4476 4477 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 4478 InstructionCost Cost = 0; 4479 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4480 << VectorizableTree.size() << ".\n"); 4481 4482 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4483 4484 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4485 TreeEntry &TE = *VectorizableTree[I].get(); 4486 4487 InstructionCost C = getEntryCost(&TE, VectorizedVals); 4488 Cost += C; 4489 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4490 << " for bundle that starts with " << *TE.Scalars[0] 4491 << ".\n" 4492 << "SLP: Current total cost = " << Cost << "\n"); 4493 } 4494 4495 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4496 InstructionCost ExtractCost = 0; 4497 SmallVector<unsigned> VF; 4498 SmallVector<SmallVector<int>> ShuffleMask; 4499 SmallVector<Value *> FirstUsers; 4500 SmallVector<APInt> DemandedElts; 4501 for (ExternalUser &EU : ExternalUses) { 4502 // We only add extract cost once for the same scalar. 4503 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4504 continue; 4505 4506 // Uses by ephemeral values are free (because the ephemeral value will be 4507 // removed prior to code generation, and so the extraction will be 4508 // removed as well). 4509 if (EphValues.count(EU.User)) 4510 continue; 4511 4512 // No extract cost for vector "scalar" 4513 if (isa<FixedVectorType>(EU.Scalar->getType())) 4514 continue; 4515 4516 // Already counted the cost for external uses when tried to adjust the cost 4517 // for extractelements, no need to add it again. 4518 if (isa<ExtractElementInst>(EU.Scalar)) 4519 continue; 4520 4521 // If found user is an insertelement, do not calculate extract cost but try 4522 // to detect it as a final shuffled/identity match. 4523 if (EU.User && isa<InsertElementInst>(EU.User)) { 4524 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 4525 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 4526 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4527 continue; 4528 Value *VU = EU.User; 4529 auto *It = find_if(FirstUsers, [VU](Value *V) { 4530 // Checks if 2 insertelements are from the same buildvector. 4531 if (VU->getType() != V->getType()) 4532 return false; 4533 auto *IE1 = cast<InsertElementInst>(VU); 4534 auto *IE2 = cast<InsertElementInst>(V); 4535 // Go though of insertelement instructions trying to find either VU as 4536 // the original vector for IE2 or V as the original vector for IE1. 4537 do { 4538 if (IE1 == VU || IE2 == V) 4539 return true; 4540 if (IE1) 4541 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 4542 if (IE2) 4543 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 4544 } while (IE1 || IE2); 4545 return false; 4546 }); 4547 int VecId = -1; 4548 if (It == FirstUsers.end()) { 4549 VF.push_back(FTy->getNumElements()); 4550 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 4551 FirstUsers.push_back(EU.User); 4552 DemandedElts.push_back(APInt::getNullValue(VF.back())); 4553 VecId = FirstUsers.size() - 1; 4554 } else { 4555 VecId = std::distance(FirstUsers.begin(), It); 4556 } 4557 int Idx = *InsertIdx; 4558 ShuffleMask[VecId][Idx] = EU.Lane; 4559 DemandedElts[VecId].setBit(Idx); 4560 } 4561 } 4562 4563 // If we plan to rewrite the tree in a smaller type, we will need to sign 4564 // extend the extracted value back to the original type. Here, we account 4565 // for the extract and the added cost of the sign extend if needed. 4566 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4567 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4568 if (MinBWs.count(ScalarRoot)) { 4569 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4570 auto Extend = 4571 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4572 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4573 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4574 VecTy, EU.Lane); 4575 } else { 4576 ExtractCost += 4577 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4578 } 4579 } 4580 4581 InstructionCost SpillCost = getSpillCost(); 4582 Cost += SpillCost + ExtractCost; 4583 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 4584 // For the very first element - simple shuffle of the source vector. 4585 int Limit = ShuffleMask[I].size() * 2; 4586 if (I == 0 && 4587 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 4588 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 4589 InstructionCost C = TTI->getShuffleCost( 4590 TTI::SK_PermuteSingleSrc, 4591 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 4592 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4593 << " for final shuffle of insertelement external users " 4594 << *VectorizableTree.front()->Scalars.front() << ".\n" 4595 << "SLP: Current total cost = " << Cost << "\n"); 4596 Cost += C; 4597 continue; 4598 } 4599 // Other elements - permutation of 2 vectors (the initial one and the next 4600 // Ith incoming vector). 4601 unsigned VF = ShuffleMask[I].size(); 4602 for (unsigned Idx = 0; Idx < VF; ++Idx) { 4603 int &Mask = ShuffleMask[I][Idx]; 4604 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 4605 } 4606 InstructionCost C = TTI->getShuffleCost( 4607 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 4608 ShuffleMask[I]); 4609 LLVM_DEBUG( 4610 dbgs() 4611 << "SLP: Adding cost " << C 4612 << " for final shuffle of vector node and external insertelement users " 4613 << *VectorizableTree.front()->Scalars.front() << ".\n" 4614 << "SLP: Current total cost = " << Cost << "\n"); 4615 Cost += C; 4616 InstructionCost InsertCost = TTI->getScalarizationOverhead( 4617 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 4618 /*Insert*/ true, 4619 /*Extract*/ false); 4620 Cost -= InsertCost; 4621 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 4622 << " for insertelements gather.\n" 4623 << "SLP: Current total cost = " << Cost << "\n"); 4624 } 4625 4626 #ifndef NDEBUG 4627 SmallString<256> Str; 4628 { 4629 raw_svector_ostream OS(Str); 4630 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4631 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4632 << "SLP: Total Cost = " << Cost << ".\n"; 4633 } 4634 LLVM_DEBUG(dbgs() << Str); 4635 if (ViewSLPTree) 4636 ViewGraph(this, "SLP" + F->getName(), false, Str); 4637 #endif 4638 4639 return Cost; 4640 } 4641 4642 Optional<TargetTransformInfo::ShuffleKind> 4643 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4644 SmallVectorImpl<const TreeEntry *> &Entries) { 4645 // TODO: currently checking only for Scalars in the tree entry, need to count 4646 // reused elements too for better cost estimation. 4647 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4648 Entries.clear(); 4649 // Build a lists of values to tree entries. 4650 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 4651 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 4652 if (EntryPtr.get() == TE) 4653 break; 4654 if (EntryPtr->State != TreeEntry::NeedToGather) 4655 continue; 4656 for (Value *V : EntryPtr->Scalars) 4657 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 4658 } 4659 // Find all tree entries used by the gathered values. If no common entries 4660 // found - not a shuffle. 4661 // Here we build a set of tree nodes for each gathered value and trying to 4662 // find the intersection between these sets. If we have at least one common 4663 // tree node for each gathered value - we have just a permutation of the 4664 // single vector. If we have 2 different sets, we're in situation where we 4665 // have a permutation of 2 input vectors. 4666 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 4667 DenseMap<Value *, int> UsedValuesEntry; 4668 for (Value *V : TE->Scalars) { 4669 if (isa<UndefValue>(V)) 4670 continue; 4671 // Build a list of tree entries where V is used. 4672 SmallPtrSet<const TreeEntry *, 4> VToTEs; 4673 auto It = ValueToTEs.find(V); 4674 if (It != ValueToTEs.end()) 4675 VToTEs = It->second; 4676 if (const TreeEntry *VTE = getTreeEntry(V)) 4677 VToTEs.insert(VTE); 4678 if (VToTEs.empty()) 4679 return None; 4680 if (UsedTEs.empty()) { 4681 // The first iteration, just insert the list of nodes to vector. 4682 UsedTEs.push_back(VToTEs); 4683 } else { 4684 // Need to check if there are any previously used tree nodes which use V. 4685 // If there are no such nodes, consider that we have another one input 4686 // vector. 4687 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 4688 unsigned Idx = 0; 4689 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 4690 // Do we have a non-empty intersection of previously listed tree entries 4691 // and tree entries using current V? 4692 set_intersect(VToTEs, Set); 4693 if (!VToTEs.empty()) { 4694 // Yes, write the new subset and continue analysis for the next 4695 // scalar. 4696 Set.swap(VToTEs); 4697 break; 4698 } 4699 VToTEs = SavedVToTEs; 4700 ++Idx; 4701 } 4702 // No non-empty intersection found - need to add a second set of possible 4703 // source vectors. 4704 if (Idx == UsedTEs.size()) { 4705 // If the number of input vectors is greater than 2 - not a permutation, 4706 // fallback to the regular gather. 4707 if (UsedTEs.size() == 2) 4708 return None; 4709 UsedTEs.push_back(SavedVToTEs); 4710 Idx = UsedTEs.size() - 1; 4711 } 4712 UsedValuesEntry.try_emplace(V, Idx); 4713 } 4714 } 4715 4716 unsigned VF = 0; 4717 if (UsedTEs.size() == 1) { 4718 // Try to find the perfect match in another gather node at first. 4719 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 4720 return EntryPtr->isSame(TE->Scalars); 4721 }); 4722 if (It != UsedTEs.front().end()) { 4723 Entries.push_back(*It); 4724 std::iota(Mask.begin(), Mask.end(), 0); 4725 return TargetTransformInfo::SK_PermuteSingleSrc; 4726 } 4727 // No perfect match, just shuffle, so choose the first tree node. 4728 Entries.push_back(*UsedTEs.front().begin()); 4729 } else { 4730 // Try to find nodes with the same vector factor. 4731 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 4732 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 4733 // landed. 4734 auto &&GetVF = [](const TreeEntry *TE) { 4735 if (!TE->ReuseShuffleIndices.empty()) 4736 return TE->ReuseShuffleIndices.size(); 4737 return TE->Scalars.size(); 4738 }; 4739 DenseMap<int, const TreeEntry *> VFToTE; 4740 for (const TreeEntry *TE : UsedTEs.front()) 4741 VFToTE.try_emplace(GetVF(TE), TE); 4742 for (const TreeEntry *TE : UsedTEs.back()) { 4743 auto It = VFToTE.find(GetVF(TE)); 4744 if (It != VFToTE.end()) { 4745 VF = It->first; 4746 Entries.push_back(It->second); 4747 Entries.push_back(TE); 4748 break; 4749 } 4750 } 4751 // No 2 source vectors with the same vector factor - give up and do regular 4752 // gather. 4753 if (Entries.empty()) 4754 return None; 4755 } 4756 4757 // Build a shuffle mask for better cost estimation and vector emission. 4758 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4759 Value *V = TE->Scalars[I]; 4760 if (isa<UndefValue>(V)) 4761 continue; 4762 unsigned Idx = UsedValuesEntry.lookup(V); 4763 const TreeEntry *VTE = Entries[Idx]; 4764 int FoundLane = VTE->findLaneForValue(V); 4765 Mask[I] = Idx * VF + FoundLane; 4766 // Extra check required by isSingleSourceMaskImpl function (called by 4767 // ShuffleVectorInst::isSingleSourceMask). 4768 if (Mask[I] >= 2 * E) 4769 return None; 4770 } 4771 switch (Entries.size()) { 4772 case 1: 4773 return TargetTransformInfo::SK_PermuteSingleSrc; 4774 case 2: 4775 return TargetTransformInfo::SK_PermuteTwoSrc; 4776 default: 4777 break; 4778 } 4779 return None; 4780 } 4781 4782 InstructionCost 4783 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4784 const DenseSet<unsigned> &ShuffledIndices) const { 4785 unsigned NumElts = Ty->getNumElements(); 4786 APInt DemandedElts = APInt::getNullValue(NumElts); 4787 for (unsigned I = 0; I < NumElts; ++I) 4788 if (!ShuffledIndices.count(I)) 4789 DemandedElts.setBit(I); 4790 InstructionCost Cost = 4791 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4792 /*Extract*/ false); 4793 if (!ShuffledIndices.empty()) 4794 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4795 return Cost; 4796 } 4797 4798 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4799 // Find the type of the operands in VL. 4800 Type *ScalarTy = VL[0]->getType(); 4801 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4802 ScalarTy = SI->getValueOperand()->getType(); 4803 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4804 // Find the cost of inserting/extracting values from the vector. 4805 // Check if the same elements are inserted several times and count them as 4806 // shuffle candidates. 4807 DenseSet<unsigned> ShuffledElements; 4808 DenseSet<Value *> UniqueElements; 4809 // Iterate in reverse order to consider insert elements with the high cost. 4810 for (unsigned I = VL.size(); I > 0; --I) { 4811 unsigned Idx = I - 1; 4812 if (isConstant(VL[Idx])) 4813 continue; 4814 if (!UniqueElements.insert(VL[Idx]).second) 4815 ShuffledElements.insert(Idx); 4816 } 4817 return getGatherCost(VecTy, ShuffledElements); 4818 } 4819 4820 // Perform operand reordering on the instructions in VL and return the reordered 4821 // operands in Left and Right. 4822 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4823 SmallVectorImpl<Value *> &Left, 4824 SmallVectorImpl<Value *> &Right, 4825 const DataLayout &DL, 4826 ScalarEvolution &SE, 4827 const BoUpSLP &R) { 4828 if (VL.empty()) 4829 return; 4830 VLOperands Ops(VL, DL, SE, R); 4831 // Reorder the operands in place. 4832 Ops.reorder(); 4833 Left = Ops.getVL(0); 4834 Right = Ops.getVL(1); 4835 } 4836 4837 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 4838 // Get the basic block this bundle is in. All instructions in the bundle 4839 // should be in this block. 4840 auto *Front = E->getMainOp(); 4841 auto *BB = Front->getParent(); 4842 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4843 auto *I = cast<Instruction>(V); 4844 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4845 })); 4846 4847 // The last instruction in the bundle in program order. 4848 Instruction *LastInst = nullptr; 4849 4850 // Find the last instruction. The common case should be that BB has been 4851 // scheduled, and the last instruction is VL.back(). So we start with 4852 // VL.back() and iterate over schedule data until we reach the end of the 4853 // bundle. The end of the bundle is marked by null ScheduleData. 4854 if (BlocksSchedules.count(BB)) { 4855 auto *Bundle = 4856 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4857 if (Bundle && Bundle->isPartOfBundle()) 4858 for (; Bundle; Bundle = Bundle->NextInBundle) 4859 if (Bundle->OpValue == Bundle->Inst) 4860 LastInst = Bundle->Inst; 4861 } 4862 4863 // LastInst can still be null at this point if there's either not an entry 4864 // for BB in BlocksSchedules or there's no ScheduleData available for 4865 // VL.back(). This can be the case if buildTree_rec aborts for various 4866 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4867 // size is reached, etc.). ScheduleData is initialized in the scheduling 4868 // "dry-run". 4869 // 4870 // If this happens, we can still find the last instruction by brute force. We 4871 // iterate forwards from Front (inclusive) until we either see all 4872 // instructions in the bundle or reach the end of the block. If Front is the 4873 // last instruction in program order, LastInst will be set to Front, and we 4874 // will visit all the remaining instructions in the block. 4875 // 4876 // One of the reasons we exit early from buildTree_rec is to place an upper 4877 // bound on compile-time. Thus, taking an additional compile-time hit here is 4878 // not ideal. However, this should be exceedingly rare since it requires that 4879 // we both exit early from buildTree_rec and that the bundle be out-of-order 4880 // (causing us to iterate all the way to the end of the block). 4881 if (!LastInst) { 4882 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4883 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4884 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4885 LastInst = &I; 4886 if (Bundle.empty()) 4887 break; 4888 } 4889 } 4890 assert(LastInst && "Failed to find last instruction in bundle"); 4891 4892 // Set the insertion point after the last instruction in the bundle. Set the 4893 // debug location to Front. 4894 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4895 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4896 } 4897 4898 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4899 // List of instructions/lanes from current block and/or the blocks which are 4900 // part of the current loop. These instructions will be inserted at the end to 4901 // make it possible to optimize loops and hoist invariant instructions out of 4902 // the loops body with better chances for success. 4903 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 4904 SmallSet<int, 4> PostponedIndices; 4905 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 4906 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 4907 SmallPtrSet<BasicBlock *, 4> Visited; 4908 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 4909 InsertBB = InsertBB->getSinglePredecessor(); 4910 return InsertBB && InsertBB == InstBB; 4911 }; 4912 for (int I = 0, E = VL.size(); I < E; ++I) { 4913 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 4914 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 4915 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 4916 PostponedIndices.insert(I).second) 4917 PostponedInsts.emplace_back(Inst, I); 4918 } 4919 4920 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 4921 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 4922 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4923 if (!InsElt) 4924 return Vec; 4925 GatherSeq.insert(InsElt); 4926 CSEBlocks.insert(InsElt->getParent()); 4927 // Add to our 'need-to-extract' list. 4928 if (TreeEntry *Entry = getTreeEntry(V)) { 4929 // Find which lane we need to extract. 4930 unsigned FoundLane = Entry->findLaneForValue(V); 4931 ExternalUses.emplace_back(V, InsElt, FoundLane); 4932 } 4933 return Vec; 4934 }; 4935 Value *Val0 = 4936 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4937 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4938 Value *Vec = PoisonValue::get(VecTy); 4939 SmallVector<int> NonConsts; 4940 // Insert constant values at first. 4941 for (int I = 0, E = VL.size(); I < E; ++I) { 4942 if (PostponedIndices.contains(I)) 4943 continue; 4944 if (!isConstant(VL[I])) { 4945 NonConsts.push_back(I); 4946 continue; 4947 } 4948 Vec = CreateInsertElement(Vec, VL[I], I); 4949 } 4950 // Insert non-constant values. 4951 for (int I : NonConsts) 4952 Vec = CreateInsertElement(Vec, VL[I], I); 4953 // Append instructions, which are/may be part of the loop, in the end to make 4954 // it possible to hoist non-loop-based instructions. 4955 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 4956 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 4957 4958 return Vec; 4959 } 4960 4961 namespace { 4962 /// Merges shuffle masks and emits final shuffle instruction, if required. 4963 class ShuffleInstructionBuilder { 4964 IRBuilderBase &Builder; 4965 const unsigned VF = 0; 4966 bool IsFinalized = false; 4967 SmallVector<int, 4> Mask; 4968 4969 public: 4970 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 4971 : Builder(Builder), VF(VF) {} 4972 4973 /// Adds a mask, inverting it before applying. 4974 void addInversedMask(ArrayRef<unsigned> SubMask) { 4975 if (SubMask.empty()) 4976 return; 4977 SmallVector<int, 4> NewMask; 4978 inversePermutation(SubMask, NewMask); 4979 addMask(NewMask); 4980 } 4981 4982 /// Functions adds masks, merging them into single one. 4983 void addMask(ArrayRef<unsigned> SubMask) { 4984 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4985 addMask(NewMask); 4986 } 4987 4988 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 4989 4990 Value *finalize(Value *V) { 4991 IsFinalized = true; 4992 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 4993 if (VF == ValueVF && Mask.empty()) 4994 return V; 4995 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 4996 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 4997 addMask(NormalizedMask); 4998 4999 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5000 return V; 5001 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5002 } 5003 5004 ~ShuffleInstructionBuilder() { 5005 assert((IsFinalized || Mask.empty()) && 5006 "Shuffle construction must be finalized."); 5007 } 5008 }; 5009 } // namespace 5010 5011 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5012 unsigned VF = VL.size(); 5013 InstructionsState S = getSameOpcode(VL); 5014 if (S.getOpcode()) { 5015 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5016 if (E->isSame(VL)) { 5017 Value *V = vectorizeTree(E); 5018 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5019 if (!E->ReuseShuffleIndices.empty()) { 5020 // Reshuffle to get only unique values. 5021 // If some of the scalars are duplicated in the vectorization tree 5022 // entry, we do not vectorize them but instead generate a mask for 5023 // the reuses. But if there are several users of the same entry, 5024 // they may have different vectorization factors. This is especially 5025 // important for PHI nodes. In this case, we need to adapt the 5026 // resulting instruction for the user vectorization factor and have 5027 // to reshuffle it again to take only unique elements of the vector. 5028 // Without this code the function incorrectly returns reduced vector 5029 // instruction with the same elements, not with the unique ones. 5030 5031 // block: 5032 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5033 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 5034 // ... (use %2) 5035 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 5036 // br %block 5037 SmallVector<int> UniqueIdxs; 5038 SmallSet<int, 4> UsedIdxs; 5039 int Pos = 0; 5040 int Sz = VL.size(); 5041 for (int Idx : E->ReuseShuffleIndices) { 5042 if (Idx != Sz && UsedIdxs.insert(Idx).second) 5043 UniqueIdxs.emplace_back(Pos); 5044 ++Pos; 5045 } 5046 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5047 "less than original vector size."); 5048 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5049 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5050 } else { 5051 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5052 "Expected vectorization factor less " 5053 "than original vector size."); 5054 SmallVector<int> UniformMask(VF, 0); 5055 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5056 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5057 } 5058 } 5059 return V; 5060 } 5061 } 5062 5063 // Check that every instruction appears once in this bundle. 5064 SmallVector<int> ReuseShuffleIndicies; 5065 SmallVector<Value *> UniqueValues; 5066 if (VL.size() > 2) { 5067 DenseMap<Value *, unsigned> UniquePositions; 5068 unsigned NumValues = 5069 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5070 return !isa<UndefValue>(V); 5071 }).base()); 5072 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5073 int UniqueVals = 0; 5074 for (Value *V : VL.drop_back(VL.size() - VF)) { 5075 if (isa<UndefValue>(V)) { 5076 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5077 continue; 5078 } 5079 if (isConstant(V)) { 5080 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5081 UniqueValues.emplace_back(V); 5082 continue; 5083 } 5084 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5085 ReuseShuffleIndicies.emplace_back(Res.first->second); 5086 if (Res.second) { 5087 UniqueValues.emplace_back(V); 5088 ++UniqueVals; 5089 } 5090 } 5091 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5092 // Emit pure splat vector. 5093 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5094 UndefMaskElem); 5095 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5096 ReuseShuffleIndicies.clear(); 5097 UniqueValues.clear(); 5098 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5099 } 5100 UniqueValues.append(VF - UniqueValues.size(), 5101 PoisonValue::get(VL[0]->getType())); 5102 VL = UniqueValues; 5103 } 5104 5105 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5106 Value *Vec = gather(VL); 5107 if (!ReuseShuffleIndicies.empty()) { 5108 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5109 Vec = ShuffleBuilder.finalize(Vec); 5110 if (auto *I = dyn_cast<Instruction>(Vec)) { 5111 GatherSeq.insert(I); 5112 CSEBlocks.insert(I->getParent()); 5113 } 5114 } 5115 return Vec; 5116 } 5117 5118 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5119 IRBuilder<>::InsertPointGuard Guard(Builder); 5120 5121 if (E->VectorizedValue) { 5122 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5123 return E->VectorizedValue; 5124 } 5125 5126 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5127 unsigned VF = E->Scalars.size(); 5128 if (NeedToShuffleReuses) 5129 VF = E->ReuseShuffleIndices.size(); 5130 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5131 if (E->State == TreeEntry::NeedToGather) { 5132 setInsertPointAfterBundle(E); 5133 Value *Vec; 5134 SmallVector<int> Mask; 5135 SmallVector<const TreeEntry *> Entries; 5136 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5137 isGatherShuffledEntry(E, Mask, Entries); 5138 if (Shuffle.hasValue()) { 5139 assert((Entries.size() == 1 || Entries.size() == 2) && 5140 "Expected shuffle of 1 or 2 entries."); 5141 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5142 Entries.back()->VectorizedValue, Mask); 5143 } else { 5144 Vec = gather(E->Scalars); 5145 } 5146 if (NeedToShuffleReuses) { 5147 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5148 Vec = ShuffleBuilder.finalize(Vec); 5149 if (auto *I = dyn_cast<Instruction>(Vec)) { 5150 GatherSeq.insert(I); 5151 CSEBlocks.insert(I->getParent()); 5152 } 5153 } 5154 E->VectorizedValue = Vec; 5155 return Vec; 5156 } 5157 5158 assert((E->State == TreeEntry::Vectorize || 5159 E->State == TreeEntry::ScatterVectorize) && 5160 "Unhandled state"); 5161 unsigned ShuffleOrOp = 5162 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5163 Instruction *VL0 = E->getMainOp(); 5164 Type *ScalarTy = VL0->getType(); 5165 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5166 ScalarTy = Store->getValueOperand()->getType(); 5167 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5168 ScalarTy = IE->getOperand(1)->getType(); 5169 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5170 switch (ShuffleOrOp) { 5171 case Instruction::PHI: { 5172 auto *PH = cast<PHINode>(VL0); 5173 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5174 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5175 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5176 Value *V = NewPhi; 5177 if (NeedToShuffleReuses) 5178 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 5179 5180 E->VectorizedValue = V; 5181 5182 // PHINodes may have multiple entries from the same block. We want to 5183 // visit every block once. 5184 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5185 5186 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5187 ValueList Operands; 5188 BasicBlock *IBB = PH->getIncomingBlock(i); 5189 5190 if (!VisitedBBs.insert(IBB).second) { 5191 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5192 continue; 5193 } 5194 5195 Builder.SetInsertPoint(IBB->getTerminator()); 5196 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5197 Value *Vec = vectorizeTree(E->getOperand(i)); 5198 NewPhi->addIncoming(Vec, IBB); 5199 } 5200 5201 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5202 "Invalid number of incoming values"); 5203 return V; 5204 } 5205 5206 case Instruction::ExtractElement: { 5207 Value *V = E->getSingleOperand(0); 5208 Builder.SetInsertPoint(VL0); 5209 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5210 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5211 V = ShuffleBuilder.finalize(V); 5212 E->VectorizedValue = V; 5213 return V; 5214 } 5215 case Instruction::ExtractValue: { 5216 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5217 Builder.SetInsertPoint(LI); 5218 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5219 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5220 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5221 Value *NewV = propagateMetadata(V, E->Scalars); 5222 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5223 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5224 NewV = ShuffleBuilder.finalize(NewV); 5225 E->VectorizedValue = NewV; 5226 return NewV; 5227 } 5228 case Instruction::InsertElement: { 5229 Builder.SetInsertPoint(VL0); 5230 Value *V = vectorizeTree(E->getOperand(1)); 5231 5232 const unsigned NumElts = 5233 cast<FixedVectorType>(VL0->getType())->getNumElements(); 5234 const unsigned NumScalars = E->Scalars.size(); 5235 5236 // Create InsertVector shuffle if necessary 5237 Instruction *FirstInsert = nullptr; 5238 bool IsIdentity = true; 5239 unsigned Offset = UINT_MAX; 5240 for (unsigned I = 0; I < NumScalars; ++I) { 5241 Value *Scalar = E->Scalars[I]; 5242 if (!FirstInsert && 5243 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0))) 5244 FirstInsert = cast<Instruction>(Scalar); 5245 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5246 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5247 continue; 5248 unsigned Idx = *InsertIdx; 5249 if (Idx < Offset) { 5250 Offset = Idx; 5251 IsIdentity &= I == 0; 5252 } else { 5253 assert(Idx >= Offset && "Failed to find vector index offset"); 5254 IsIdentity &= Idx - Offset == I; 5255 } 5256 } 5257 assert(Offset < NumElts && "Failed to find vector index offset"); 5258 5259 // Create shuffle to resize vector 5260 SmallVector<int> Mask(NumElts, UndefMaskElem); 5261 if (!IsIdentity) { 5262 for (unsigned I = 0; I < NumScalars; ++I) { 5263 Value *Scalar = E->Scalars[I]; 5264 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5265 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5266 continue; 5267 Mask[*InsertIdx - Offset] = I; 5268 } 5269 } else { 5270 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5271 } 5272 if (!IsIdentity || NumElts != NumScalars) 5273 V = Builder.CreateShuffleVector(V, Mask); 5274 5275 if ((!IsIdentity || Offset != 0 || 5276 !isa<UndefValue>(FirstInsert->getOperand(0))) && 5277 NumElts != NumScalars) { 5278 SmallVector<int> InsertMask(NumElts); 5279 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5280 for (unsigned I = 0; I < NumElts; I++) { 5281 if (Mask[I] != UndefMaskElem) 5282 InsertMask[Offset + I] = NumElts + I; 5283 } 5284 5285 V = Builder.CreateShuffleVector( 5286 FirstInsert->getOperand(0), V, InsertMask, 5287 cast<Instruction>(E->Scalars.back())->getName()); 5288 } 5289 5290 ++NumVectorInstructions; 5291 E->VectorizedValue = V; 5292 return V; 5293 } 5294 case Instruction::ZExt: 5295 case Instruction::SExt: 5296 case Instruction::FPToUI: 5297 case Instruction::FPToSI: 5298 case Instruction::FPExt: 5299 case Instruction::PtrToInt: 5300 case Instruction::IntToPtr: 5301 case Instruction::SIToFP: 5302 case Instruction::UIToFP: 5303 case Instruction::Trunc: 5304 case Instruction::FPTrunc: 5305 case Instruction::BitCast: { 5306 setInsertPointAfterBundle(E); 5307 5308 Value *InVec = vectorizeTree(E->getOperand(0)); 5309 5310 if (E->VectorizedValue) { 5311 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5312 return E->VectorizedValue; 5313 } 5314 5315 auto *CI = cast<CastInst>(VL0); 5316 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5317 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5318 V = ShuffleBuilder.finalize(V); 5319 5320 E->VectorizedValue = V; 5321 ++NumVectorInstructions; 5322 return V; 5323 } 5324 case Instruction::FCmp: 5325 case Instruction::ICmp: { 5326 setInsertPointAfterBundle(E); 5327 5328 Value *L = vectorizeTree(E->getOperand(0)); 5329 Value *R = vectorizeTree(E->getOperand(1)); 5330 5331 if (E->VectorizedValue) { 5332 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5333 return E->VectorizedValue; 5334 } 5335 5336 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5337 Value *V = Builder.CreateCmp(P0, L, R); 5338 propagateIRFlags(V, E->Scalars, VL0); 5339 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5340 V = ShuffleBuilder.finalize(V); 5341 5342 E->VectorizedValue = V; 5343 ++NumVectorInstructions; 5344 return V; 5345 } 5346 case Instruction::Select: { 5347 setInsertPointAfterBundle(E); 5348 5349 Value *Cond = vectorizeTree(E->getOperand(0)); 5350 Value *True = vectorizeTree(E->getOperand(1)); 5351 Value *False = vectorizeTree(E->getOperand(2)); 5352 5353 if (E->VectorizedValue) { 5354 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5355 return E->VectorizedValue; 5356 } 5357 5358 Value *V = Builder.CreateSelect(Cond, True, False); 5359 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5360 V = ShuffleBuilder.finalize(V); 5361 5362 E->VectorizedValue = V; 5363 ++NumVectorInstructions; 5364 return V; 5365 } 5366 case Instruction::FNeg: { 5367 setInsertPointAfterBundle(E); 5368 5369 Value *Op = vectorizeTree(E->getOperand(0)); 5370 5371 if (E->VectorizedValue) { 5372 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5373 return E->VectorizedValue; 5374 } 5375 5376 Value *V = Builder.CreateUnOp( 5377 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5378 propagateIRFlags(V, E->Scalars, VL0); 5379 if (auto *I = dyn_cast<Instruction>(V)) 5380 V = propagateMetadata(I, E->Scalars); 5381 5382 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5383 V = ShuffleBuilder.finalize(V); 5384 5385 E->VectorizedValue = V; 5386 ++NumVectorInstructions; 5387 5388 return V; 5389 } 5390 case Instruction::Add: 5391 case Instruction::FAdd: 5392 case Instruction::Sub: 5393 case Instruction::FSub: 5394 case Instruction::Mul: 5395 case Instruction::FMul: 5396 case Instruction::UDiv: 5397 case Instruction::SDiv: 5398 case Instruction::FDiv: 5399 case Instruction::URem: 5400 case Instruction::SRem: 5401 case Instruction::FRem: 5402 case Instruction::Shl: 5403 case Instruction::LShr: 5404 case Instruction::AShr: 5405 case Instruction::And: 5406 case Instruction::Or: 5407 case Instruction::Xor: { 5408 setInsertPointAfterBundle(E); 5409 5410 Value *LHS = vectorizeTree(E->getOperand(0)); 5411 Value *RHS = vectorizeTree(E->getOperand(1)); 5412 5413 if (E->VectorizedValue) { 5414 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5415 return E->VectorizedValue; 5416 } 5417 5418 Value *V = Builder.CreateBinOp( 5419 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 5420 RHS); 5421 propagateIRFlags(V, E->Scalars, VL0); 5422 if (auto *I = dyn_cast<Instruction>(V)) 5423 V = propagateMetadata(I, E->Scalars); 5424 5425 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5426 V = ShuffleBuilder.finalize(V); 5427 5428 E->VectorizedValue = V; 5429 ++NumVectorInstructions; 5430 5431 return V; 5432 } 5433 case Instruction::Load: { 5434 // Loads are inserted at the head of the tree because we don't want to 5435 // sink them all the way down past store instructions. 5436 bool IsReorder = E->updateStateIfReorder(); 5437 if (IsReorder) 5438 VL0 = E->getMainOp(); 5439 setInsertPointAfterBundle(E); 5440 5441 LoadInst *LI = cast<LoadInst>(VL0); 5442 Instruction *NewLI; 5443 unsigned AS = LI->getPointerAddressSpace(); 5444 Value *PO = LI->getPointerOperand(); 5445 if (E->State == TreeEntry::Vectorize) { 5446 5447 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 5448 5449 // The pointer operand uses an in-tree scalar so we add the new BitCast 5450 // to ExternalUses list to make sure that an extract will be generated 5451 // in the future. 5452 if (getTreeEntry(PO)) 5453 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 5454 5455 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 5456 } else { 5457 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 5458 Value *VecPtr = vectorizeTree(E->getOperand(0)); 5459 // Use the minimum alignment of the gathered loads. 5460 Align CommonAlignment = LI->getAlign(); 5461 for (Value *V : E->Scalars) 5462 CommonAlignment = 5463 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5464 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 5465 } 5466 Value *V = propagateMetadata(NewLI, E->Scalars); 5467 5468 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5469 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5470 V = ShuffleBuilder.finalize(V); 5471 E->VectorizedValue = V; 5472 ++NumVectorInstructions; 5473 return V; 5474 } 5475 case Instruction::Store: { 5476 bool IsReorder = !E->ReorderIndices.empty(); 5477 auto *SI = cast<StoreInst>( 5478 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 5479 unsigned AS = SI->getPointerAddressSpace(); 5480 5481 setInsertPointAfterBundle(E); 5482 5483 Value *VecValue = vectorizeTree(E->getOperand(0)); 5484 ShuffleBuilder.addMask(E->ReorderIndices); 5485 VecValue = ShuffleBuilder.finalize(VecValue); 5486 5487 Value *ScalarPtr = SI->getPointerOperand(); 5488 Value *VecPtr = Builder.CreateBitCast( 5489 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 5490 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 5491 SI->getAlign()); 5492 5493 // The pointer operand uses an in-tree scalar, so add the new BitCast to 5494 // ExternalUses to make sure that an extract will be generated in the 5495 // future. 5496 if (getTreeEntry(ScalarPtr)) 5497 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 5498 5499 Value *V = propagateMetadata(ST, E->Scalars); 5500 5501 E->VectorizedValue = V; 5502 ++NumVectorInstructions; 5503 return V; 5504 } 5505 case Instruction::GetElementPtr: { 5506 setInsertPointAfterBundle(E); 5507 5508 Value *Op0 = vectorizeTree(E->getOperand(0)); 5509 5510 std::vector<Value *> OpVecs; 5511 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 5512 ++j) { 5513 ValueList &VL = E->getOperand(j); 5514 // Need to cast all elements to the same type before vectorization to 5515 // avoid crash. 5516 Type *VL0Ty = VL0->getOperand(j)->getType(); 5517 Type *Ty = llvm::all_of( 5518 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 5519 ? VL0Ty 5520 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5521 ->getPointerOperandType() 5522 ->getScalarType()); 5523 for (Value *&V : VL) { 5524 auto *CI = cast<ConstantInt>(V); 5525 V = ConstantExpr::getIntegerCast(CI, Ty, 5526 CI->getValue().isSignBitSet()); 5527 } 5528 Value *OpVec = vectorizeTree(VL); 5529 OpVecs.push_back(OpVec); 5530 } 5531 5532 Value *V = Builder.CreateGEP( 5533 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 5534 if (Instruction *I = dyn_cast<Instruction>(V)) 5535 V = propagateMetadata(I, E->Scalars); 5536 5537 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5538 V = ShuffleBuilder.finalize(V); 5539 5540 E->VectorizedValue = V; 5541 ++NumVectorInstructions; 5542 5543 return V; 5544 } 5545 case Instruction::Call: { 5546 CallInst *CI = cast<CallInst>(VL0); 5547 setInsertPointAfterBundle(E); 5548 5549 Intrinsic::ID IID = Intrinsic::not_intrinsic; 5550 if (Function *FI = CI->getCalledFunction()) 5551 IID = FI->getIntrinsicID(); 5552 5553 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5554 5555 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5556 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 5557 VecCallCosts.first <= VecCallCosts.second; 5558 5559 Value *ScalarArg = nullptr; 5560 std::vector<Value *> OpVecs; 5561 SmallVector<Type *, 2> TysForDecl = 5562 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 5563 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 5564 ValueList OpVL; 5565 // Some intrinsics have scalar arguments. This argument should not be 5566 // vectorized. 5567 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 5568 CallInst *CEI = cast<CallInst>(VL0); 5569 ScalarArg = CEI->getArgOperand(j); 5570 OpVecs.push_back(CEI->getArgOperand(j)); 5571 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 5572 TysForDecl.push_back(ScalarArg->getType()); 5573 continue; 5574 } 5575 5576 Value *OpVec = vectorizeTree(E->getOperand(j)); 5577 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 5578 OpVecs.push_back(OpVec); 5579 } 5580 5581 Function *CF; 5582 if (!UseIntrinsic) { 5583 VFShape Shape = 5584 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5585 VecTy->getNumElements())), 5586 false /*HasGlobalPred*/); 5587 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 5588 } else { 5589 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 5590 } 5591 5592 SmallVector<OperandBundleDef, 1> OpBundles; 5593 CI->getOperandBundlesAsDefs(OpBundles); 5594 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 5595 5596 // The scalar argument uses an in-tree scalar so we add the new vectorized 5597 // call to ExternalUses list to make sure that an extract will be 5598 // generated in the future. 5599 if (ScalarArg && getTreeEntry(ScalarArg)) 5600 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5601 5602 propagateIRFlags(V, E->Scalars, VL0); 5603 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5604 V = ShuffleBuilder.finalize(V); 5605 5606 E->VectorizedValue = V; 5607 ++NumVectorInstructions; 5608 return V; 5609 } 5610 case Instruction::ShuffleVector: { 5611 assert(E->isAltShuffle() && 5612 ((Instruction::isBinaryOp(E->getOpcode()) && 5613 Instruction::isBinaryOp(E->getAltOpcode())) || 5614 (Instruction::isCast(E->getOpcode()) && 5615 Instruction::isCast(E->getAltOpcode()))) && 5616 "Invalid Shuffle Vector Operand"); 5617 5618 Value *LHS = nullptr, *RHS = nullptr; 5619 if (Instruction::isBinaryOp(E->getOpcode())) { 5620 setInsertPointAfterBundle(E); 5621 LHS = vectorizeTree(E->getOperand(0)); 5622 RHS = vectorizeTree(E->getOperand(1)); 5623 } else { 5624 setInsertPointAfterBundle(E); 5625 LHS = vectorizeTree(E->getOperand(0)); 5626 } 5627 5628 if (E->VectorizedValue) { 5629 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5630 return E->VectorizedValue; 5631 } 5632 5633 Value *V0, *V1; 5634 if (Instruction::isBinaryOp(E->getOpcode())) { 5635 V0 = Builder.CreateBinOp( 5636 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5637 V1 = Builder.CreateBinOp( 5638 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5639 } else { 5640 V0 = Builder.CreateCast( 5641 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5642 V1 = Builder.CreateCast( 5643 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5644 } 5645 5646 // Create shuffle to take alternate operations from the vector. 5647 // Also, gather up main and alt scalar ops to propagate IR flags to 5648 // each vector operation. 5649 ValueList OpScalars, AltScalars; 5650 unsigned Sz = E->Scalars.size(); 5651 SmallVector<int> Mask(Sz); 5652 for (unsigned I = 0; I < Sz; ++I) { 5653 auto *OpInst = cast<Instruction>(E->Scalars[I]); 5654 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5655 if (OpInst->getOpcode() == E->getAltOpcode()) { 5656 Mask[I] = Sz + I; 5657 AltScalars.push_back(E->Scalars[I]); 5658 } else { 5659 Mask[I] = I; 5660 OpScalars.push_back(E->Scalars[I]); 5661 } 5662 } 5663 5664 propagateIRFlags(V0, OpScalars); 5665 propagateIRFlags(V1, AltScalars); 5666 5667 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5668 if (Instruction *I = dyn_cast<Instruction>(V)) 5669 V = propagateMetadata(I, E->Scalars); 5670 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5671 V = ShuffleBuilder.finalize(V); 5672 5673 E->VectorizedValue = V; 5674 ++NumVectorInstructions; 5675 5676 return V; 5677 } 5678 default: 5679 llvm_unreachable("unknown inst"); 5680 } 5681 return nullptr; 5682 } 5683 5684 Value *BoUpSLP::vectorizeTree() { 5685 ExtraValueToDebugLocsMap ExternallyUsedValues; 5686 return vectorizeTree(ExternallyUsedValues); 5687 } 5688 5689 Value * 5690 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5691 // All blocks must be scheduled before any instructions are inserted. 5692 for (auto &BSIter : BlocksSchedules) { 5693 scheduleBlock(BSIter.second.get()); 5694 } 5695 5696 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5697 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5698 5699 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5700 // vectorized root. InstCombine will then rewrite the entire expression. We 5701 // sign extend the extracted values below. 5702 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5703 if (MinBWs.count(ScalarRoot)) { 5704 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5705 // If current instr is a phi and not the last phi, insert it after the 5706 // last phi node. 5707 if (isa<PHINode>(I)) 5708 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5709 else 5710 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5711 } 5712 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5713 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5714 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5715 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5716 VectorizableTree[0]->VectorizedValue = Trunc; 5717 } 5718 5719 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5720 << " values .\n"); 5721 5722 // Extract all of the elements with the external uses. 5723 for (const auto &ExternalUse : ExternalUses) { 5724 Value *Scalar = ExternalUse.Scalar; 5725 llvm::User *User = ExternalUse.User; 5726 5727 // Skip users that we already RAUW. This happens when one instruction 5728 // has multiple uses of the same value. 5729 if (User && !is_contained(Scalar->users(), User)) 5730 continue; 5731 TreeEntry *E = getTreeEntry(Scalar); 5732 assert(E && "Invalid scalar"); 5733 assert(E->State != TreeEntry::NeedToGather && 5734 "Extracting from a gather list"); 5735 5736 Value *Vec = E->VectorizedValue; 5737 assert(Vec && "Can't find vectorizable value"); 5738 5739 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5740 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 5741 if (Scalar->getType() != Vec->getType()) { 5742 Value *Ex; 5743 // "Reuse" the existing extract to improve final codegen. 5744 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 5745 Ex = Builder.CreateExtractElement(ES->getOperand(0), 5746 ES->getOperand(1)); 5747 } else { 5748 Ex = Builder.CreateExtractElement(Vec, Lane); 5749 } 5750 // If necessary, sign-extend or zero-extend ScalarRoot 5751 // to the larger type. 5752 if (!MinBWs.count(ScalarRoot)) 5753 return Ex; 5754 if (MinBWs[ScalarRoot].second) 5755 return Builder.CreateSExt(Ex, Scalar->getType()); 5756 return Builder.CreateZExt(Ex, Scalar->getType()); 5757 } 5758 assert(isa<FixedVectorType>(Scalar->getType()) && 5759 isa<InsertElementInst>(Scalar) && 5760 "In-tree scalar of vector type is not insertelement?"); 5761 return Vec; 5762 }; 5763 // If User == nullptr, the Scalar is used as extra arg. Generate 5764 // ExtractElement instruction and update the record for this scalar in 5765 // ExternallyUsedValues. 5766 if (!User) { 5767 assert(ExternallyUsedValues.count(Scalar) && 5768 "Scalar with nullptr as an external user must be registered in " 5769 "ExternallyUsedValues map"); 5770 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5771 Builder.SetInsertPoint(VecI->getParent(), 5772 std::next(VecI->getIterator())); 5773 } else { 5774 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5775 } 5776 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5777 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5778 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 5779 auto It = ExternallyUsedValues.find(Scalar); 5780 assert(It != ExternallyUsedValues.end() && 5781 "Externally used scalar is not found in ExternallyUsedValues"); 5782 NewInstLocs.append(It->second); 5783 ExternallyUsedValues.erase(Scalar); 5784 // Required to update internally referenced instructions. 5785 Scalar->replaceAllUsesWith(NewInst); 5786 continue; 5787 } 5788 5789 // Generate extracts for out-of-tree users. 5790 // Find the insertion point for the extractelement lane. 5791 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5792 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5793 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5794 if (PH->getIncomingValue(i) == Scalar) { 5795 Instruction *IncomingTerminator = 5796 PH->getIncomingBlock(i)->getTerminator(); 5797 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5798 Builder.SetInsertPoint(VecI->getParent(), 5799 std::next(VecI->getIterator())); 5800 } else { 5801 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5802 } 5803 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5804 CSEBlocks.insert(PH->getIncomingBlock(i)); 5805 PH->setOperand(i, NewInst); 5806 } 5807 } 5808 } else { 5809 Builder.SetInsertPoint(cast<Instruction>(User)); 5810 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5811 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5812 User->replaceUsesOfWith(Scalar, NewInst); 5813 } 5814 } else { 5815 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5816 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5817 CSEBlocks.insert(&F->getEntryBlock()); 5818 User->replaceUsesOfWith(Scalar, NewInst); 5819 } 5820 5821 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5822 } 5823 5824 // For each vectorized value: 5825 for (auto &TEPtr : VectorizableTree) { 5826 TreeEntry *Entry = TEPtr.get(); 5827 5828 // No need to handle users of gathered values. 5829 if (Entry->State == TreeEntry::NeedToGather) 5830 continue; 5831 5832 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5833 5834 // For each lane: 5835 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5836 Value *Scalar = Entry->Scalars[Lane]; 5837 5838 #ifndef NDEBUG 5839 Type *Ty = Scalar->getType(); 5840 if (!Ty->isVoidTy()) { 5841 for (User *U : Scalar->users()) { 5842 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5843 5844 // It is legal to delete users in the ignorelist. 5845 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 5846 (isa_and_nonnull<Instruction>(U) && 5847 isDeleted(cast<Instruction>(U)))) && 5848 "Deleting out-of-tree value"); 5849 } 5850 } 5851 #endif 5852 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5853 eraseInstruction(cast<Instruction>(Scalar)); 5854 } 5855 } 5856 5857 Builder.ClearInsertionPoint(); 5858 InstrElementSize.clear(); 5859 5860 return VectorizableTree[0]->VectorizedValue; 5861 } 5862 5863 void BoUpSLP::optimizeGatherSequence() { 5864 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5865 << " gather sequences instructions.\n"); 5866 // LICM InsertElementInst sequences. 5867 for (Instruction *I : GatherSeq) { 5868 if (isDeleted(I)) 5869 continue; 5870 5871 // Check if this block is inside a loop. 5872 Loop *L = LI->getLoopFor(I->getParent()); 5873 if (!L) 5874 continue; 5875 5876 // Check if it has a preheader. 5877 BasicBlock *PreHeader = L->getLoopPreheader(); 5878 if (!PreHeader) 5879 continue; 5880 5881 // If the vector or the element that we insert into it are 5882 // instructions that are defined in this basic block then we can't 5883 // hoist this instruction. 5884 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5885 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5886 if (Op0 && L->contains(Op0)) 5887 continue; 5888 if (Op1 && L->contains(Op1)) 5889 continue; 5890 5891 // We can hoist this instruction. Move it to the pre-header. 5892 I->moveBefore(PreHeader->getTerminator()); 5893 } 5894 5895 // Make a list of all reachable blocks in our CSE queue. 5896 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5897 CSEWorkList.reserve(CSEBlocks.size()); 5898 for (BasicBlock *BB : CSEBlocks) 5899 if (DomTreeNode *N = DT->getNode(BB)) { 5900 assert(DT->isReachableFromEntry(N)); 5901 CSEWorkList.push_back(N); 5902 } 5903 5904 // Sort blocks by domination. This ensures we visit a block after all blocks 5905 // dominating it are visited. 5906 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 5907 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 5908 "Different nodes should have different DFS numbers"); 5909 return A->getDFSNumIn() < B->getDFSNumIn(); 5910 }); 5911 5912 // Perform O(N^2) search over the gather sequences and merge identical 5913 // instructions. TODO: We can further optimize this scan if we split the 5914 // instructions into different buckets based on the insert lane. 5915 SmallVector<Instruction *, 16> Visited; 5916 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5917 assert(*I && 5918 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5919 "Worklist not sorted properly!"); 5920 BasicBlock *BB = (*I)->getBlock(); 5921 // For all instructions in blocks containing gather sequences: 5922 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5923 Instruction *In = &*it++; 5924 if (isDeleted(In)) 5925 continue; 5926 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In) && 5927 !isa<ShuffleVectorInst>(In)) 5928 continue; 5929 5930 // Check if we can replace this instruction with any of the 5931 // visited instructions. 5932 for (Instruction *v : Visited) { 5933 if (In->isIdenticalTo(v) && 5934 DT->dominates(v->getParent(), In->getParent())) { 5935 In->replaceAllUsesWith(v); 5936 eraseInstruction(In); 5937 In = nullptr; 5938 break; 5939 } 5940 } 5941 if (In) { 5942 assert(!is_contained(Visited, In)); 5943 Visited.push_back(In); 5944 } 5945 } 5946 } 5947 CSEBlocks.clear(); 5948 GatherSeq.clear(); 5949 } 5950 5951 // Groups the instructions to a bundle (which is then a single scheduling entity) 5952 // and schedules instructions until the bundle gets ready. 5953 Optional<BoUpSLP::ScheduleData *> 5954 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5955 const InstructionsState &S) { 5956 // No need to schedule PHIs, insertelement, extractelement and extractvalue 5957 // instructions. 5958 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 5959 return nullptr; 5960 5961 // Initialize the instruction bundle. 5962 Instruction *OldScheduleEnd = ScheduleEnd; 5963 ScheduleData *PrevInBundle = nullptr; 5964 ScheduleData *Bundle = nullptr; 5965 bool ReSchedule = false; 5966 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5967 5968 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5969 ScheduleData *Bundle) { 5970 // The scheduling region got new instructions at the lower end (or it is a 5971 // new region for the first bundle). This makes it necessary to 5972 // recalculate all dependencies. 5973 // It is seldom that this needs to be done a second time after adding the 5974 // initial bundle to the region. 5975 if (ScheduleEnd != OldScheduleEnd) { 5976 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5977 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5978 ReSchedule = true; 5979 } 5980 if (ReSchedule) { 5981 resetSchedule(); 5982 initialFillReadyList(ReadyInsts); 5983 } 5984 if (Bundle) { 5985 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5986 << " in block " << BB->getName() << "\n"); 5987 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5988 } 5989 5990 // Now try to schedule the new bundle or (if no bundle) just calculate 5991 // dependencies. As soon as the bundle is "ready" it means that there are no 5992 // cyclic dependencies and we can schedule it. Note that's important that we 5993 // don't "schedule" the bundle yet (see cancelScheduling). 5994 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5995 !ReadyInsts.empty()) { 5996 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5997 if (Picked->isSchedulingEntity() && Picked->isReady()) 5998 schedule(Picked, ReadyInsts); 5999 } 6000 }; 6001 6002 // Make sure that the scheduling region contains all 6003 // instructions of the bundle. 6004 for (Value *V : VL) { 6005 if (!extendSchedulingRegion(V, S)) { 6006 // If the scheduling region got new instructions at the lower end (or it 6007 // is a new region for the first bundle). This makes it necessary to 6008 // recalculate all dependencies. 6009 // Otherwise the compiler may crash trying to incorrectly calculate 6010 // dependencies and emit instruction in the wrong order at the actual 6011 // scheduling. 6012 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6013 return None; 6014 } 6015 } 6016 6017 for (Value *V : VL) { 6018 ScheduleData *BundleMember = getScheduleData(V); 6019 assert(BundleMember && 6020 "no ScheduleData for bundle member (maybe not in same basic block)"); 6021 if (BundleMember->IsScheduled) { 6022 // A bundle member was scheduled as single instruction before and now 6023 // needs to be scheduled as part of the bundle. We just get rid of the 6024 // existing schedule. 6025 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6026 << " was already scheduled\n"); 6027 ReSchedule = true; 6028 } 6029 assert(BundleMember->isSchedulingEntity() && 6030 "bundle member already part of other bundle"); 6031 if (PrevInBundle) { 6032 PrevInBundle->NextInBundle = BundleMember; 6033 } else { 6034 Bundle = BundleMember; 6035 } 6036 BundleMember->UnscheduledDepsInBundle = 0; 6037 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6038 6039 // Group the instructions to a bundle. 6040 BundleMember->FirstInBundle = Bundle; 6041 PrevInBundle = BundleMember; 6042 } 6043 assert(Bundle && "Failed to find schedule bundle"); 6044 TryScheduleBundle(ReSchedule, Bundle); 6045 if (!Bundle->isReady()) { 6046 cancelScheduling(VL, S.OpValue); 6047 return None; 6048 } 6049 return Bundle; 6050 } 6051 6052 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6053 Value *OpValue) { 6054 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6055 return; 6056 6057 ScheduleData *Bundle = getScheduleData(OpValue); 6058 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6059 assert(!Bundle->IsScheduled && 6060 "Can't cancel bundle which is already scheduled"); 6061 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6062 "tried to unbundle something which is not a bundle"); 6063 6064 // Un-bundle: make single instructions out of the bundle. 6065 ScheduleData *BundleMember = Bundle; 6066 while (BundleMember) { 6067 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6068 BundleMember->FirstInBundle = BundleMember; 6069 ScheduleData *Next = BundleMember->NextInBundle; 6070 BundleMember->NextInBundle = nullptr; 6071 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6072 if (BundleMember->UnscheduledDepsInBundle == 0) { 6073 ReadyInsts.insert(BundleMember); 6074 } 6075 BundleMember = Next; 6076 } 6077 } 6078 6079 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6080 // Allocate a new ScheduleData for the instruction. 6081 if (ChunkPos >= ChunkSize) { 6082 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6083 ChunkPos = 0; 6084 } 6085 return &(ScheduleDataChunks.back()[ChunkPos++]); 6086 } 6087 6088 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6089 const InstructionsState &S) { 6090 if (getScheduleData(V, isOneOf(S, V))) 6091 return true; 6092 Instruction *I = dyn_cast<Instruction>(V); 6093 assert(I && "bundle member must be an instruction"); 6094 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6095 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6096 "be scheduled"); 6097 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6098 ScheduleData *ISD = getScheduleData(I); 6099 if (!ISD) 6100 return false; 6101 assert(isInSchedulingRegion(ISD) && 6102 "ScheduleData not in scheduling region"); 6103 ScheduleData *SD = allocateScheduleDataChunks(); 6104 SD->Inst = I; 6105 SD->init(SchedulingRegionID, S.OpValue); 6106 ExtraScheduleDataMap[I][S.OpValue] = SD; 6107 return true; 6108 }; 6109 if (CheckSheduleForI(I)) 6110 return true; 6111 if (!ScheduleStart) { 6112 // It's the first instruction in the new region. 6113 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6114 ScheduleStart = I; 6115 ScheduleEnd = I->getNextNode(); 6116 if (isOneOf(S, I) != I) 6117 CheckSheduleForI(I); 6118 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6119 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6120 return true; 6121 } 6122 // Search up and down at the same time, because we don't know if the new 6123 // instruction is above or below the existing scheduling region. 6124 BasicBlock::reverse_iterator UpIter = 6125 ++ScheduleStart->getIterator().getReverse(); 6126 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6127 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6128 BasicBlock::iterator LowerEnd = BB->end(); 6129 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6130 &*DownIter != I) { 6131 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6132 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6133 return false; 6134 } 6135 6136 ++UpIter; 6137 ++DownIter; 6138 } 6139 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6140 assert(I->getParent() == ScheduleStart->getParent() && 6141 "Instruction is in wrong basic block."); 6142 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6143 ScheduleStart = I; 6144 if (isOneOf(S, I) != I) 6145 CheckSheduleForI(I); 6146 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6147 << "\n"); 6148 return true; 6149 } 6150 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6151 "Expected to reach top of the basic block or instruction down the " 6152 "lower end."); 6153 assert(I->getParent() == ScheduleEnd->getParent() && 6154 "Instruction is in wrong basic block."); 6155 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6156 nullptr); 6157 ScheduleEnd = I->getNextNode(); 6158 if (isOneOf(S, I) != I) 6159 CheckSheduleForI(I); 6160 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6161 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6162 return true; 6163 } 6164 6165 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6166 Instruction *ToI, 6167 ScheduleData *PrevLoadStore, 6168 ScheduleData *NextLoadStore) { 6169 ScheduleData *CurrentLoadStore = PrevLoadStore; 6170 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6171 ScheduleData *SD = ScheduleDataMap[I]; 6172 if (!SD) { 6173 SD = allocateScheduleDataChunks(); 6174 ScheduleDataMap[I] = SD; 6175 SD->Inst = I; 6176 } 6177 assert(!isInSchedulingRegion(SD) && 6178 "new ScheduleData already in scheduling region"); 6179 SD->init(SchedulingRegionID, I); 6180 6181 if (I->mayReadOrWriteMemory() && 6182 (!isa<IntrinsicInst>(I) || 6183 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6184 cast<IntrinsicInst>(I)->getIntrinsicID() != 6185 Intrinsic::pseudoprobe))) { 6186 // Update the linked list of memory accessing instructions. 6187 if (CurrentLoadStore) { 6188 CurrentLoadStore->NextLoadStore = SD; 6189 } else { 6190 FirstLoadStoreInRegion = SD; 6191 } 6192 CurrentLoadStore = SD; 6193 } 6194 } 6195 if (NextLoadStore) { 6196 if (CurrentLoadStore) 6197 CurrentLoadStore->NextLoadStore = NextLoadStore; 6198 } else { 6199 LastLoadStoreInRegion = CurrentLoadStore; 6200 } 6201 } 6202 6203 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6204 bool InsertInReadyList, 6205 BoUpSLP *SLP) { 6206 assert(SD->isSchedulingEntity()); 6207 6208 SmallVector<ScheduleData *, 10> WorkList; 6209 WorkList.push_back(SD); 6210 6211 while (!WorkList.empty()) { 6212 ScheduleData *SD = WorkList.pop_back_val(); 6213 6214 ScheduleData *BundleMember = SD; 6215 while (BundleMember) { 6216 assert(isInSchedulingRegion(BundleMember)); 6217 if (!BundleMember->hasValidDependencies()) { 6218 6219 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6220 << "\n"); 6221 BundleMember->Dependencies = 0; 6222 BundleMember->resetUnscheduledDeps(); 6223 6224 // Handle def-use chain dependencies. 6225 if (BundleMember->OpValue != BundleMember->Inst) { 6226 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6227 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6228 BundleMember->Dependencies++; 6229 ScheduleData *DestBundle = UseSD->FirstInBundle; 6230 if (!DestBundle->IsScheduled) 6231 BundleMember->incrementUnscheduledDeps(1); 6232 if (!DestBundle->hasValidDependencies()) 6233 WorkList.push_back(DestBundle); 6234 } 6235 } else { 6236 for (User *U : BundleMember->Inst->users()) { 6237 if (isa<Instruction>(U)) { 6238 ScheduleData *UseSD = getScheduleData(U); 6239 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6240 BundleMember->Dependencies++; 6241 ScheduleData *DestBundle = UseSD->FirstInBundle; 6242 if (!DestBundle->IsScheduled) 6243 BundleMember->incrementUnscheduledDeps(1); 6244 if (!DestBundle->hasValidDependencies()) 6245 WorkList.push_back(DestBundle); 6246 } 6247 } else { 6248 // I'm not sure if this can ever happen. But we need to be safe. 6249 // This lets the instruction/bundle never be scheduled and 6250 // eventually disable vectorization. 6251 BundleMember->Dependencies++; 6252 BundleMember->incrementUnscheduledDeps(1); 6253 } 6254 } 6255 } 6256 6257 // Handle the memory dependencies. 6258 ScheduleData *DepDest = BundleMember->NextLoadStore; 6259 if (DepDest) { 6260 Instruction *SrcInst = BundleMember->Inst; 6261 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6262 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6263 unsigned numAliased = 0; 6264 unsigned DistToSrc = 1; 6265 6266 while (DepDest) { 6267 assert(isInSchedulingRegion(DepDest)); 6268 6269 // We have two limits to reduce the complexity: 6270 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6271 // SLP->isAliased (which is the expensive part in this loop). 6272 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6273 // the whole loop (even if the loop is fast, it's quadratic). 6274 // It's important for the loop break condition (see below) to 6275 // check this limit even between two read-only instructions. 6276 if (DistToSrc >= MaxMemDepDistance || 6277 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6278 (numAliased >= AliasedCheckLimit || 6279 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6280 6281 // We increment the counter only if the locations are aliased 6282 // (instead of counting all alias checks). This gives a better 6283 // balance between reduced runtime and accurate dependencies. 6284 numAliased++; 6285 6286 DepDest->MemoryDependencies.push_back(BundleMember); 6287 BundleMember->Dependencies++; 6288 ScheduleData *DestBundle = DepDest->FirstInBundle; 6289 if (!DestBundle->IsScheduled) { 6290 BundleMember->incrementUnscheduledDeps(1); 6291 } 6292 if (!DestBundle->hasValidDependencies()) { 6293 WorkList.push_back(DestBundle); 6294 } 6295 } 6296 DepDest = DepDest->NextLoadStore; 6297 6298 // Example, explaining the loop break condition: Let's assume our 6299 // starting instruction is i0 and MaxMemDepDistance = 3. 6300 // 6301 // +--------v--v--v 6302 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6303 // +--------^--^--^ 6304 // 6305 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6306 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6307 // Previously we already added dependencies from i3 to i6,i7,i8 6308 // (because of MaxMemDepDistance). As we added a dependency from 6309 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6310 // and we can abort this loop at i6. 6311 if (DistToSrc >= 2 * MaxMemDepDistance) 6312 break; 6313 DistToSrc++; 6314 } 6315 } 6316 } 6317 BundleMember = BundleMember->NextInBundle; 6318 } 6319 if (InsertInReadyList && SD->isReady()) { 6320 ReadyInsts.push_back(SD); 6321 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6322 << "\n"); 6323 } 6324 } 6325 } 6326 6327 void BoUpSLP::BlockScheduling::resetSchedule() { 6328 assert(ScheduleStart && 6329 "tried to reset schedule on block which has not been scheduled"); 6330 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6331 doForAllOpcodes(I, [&](ScheduleData *SD) { 6332 assert(isInSchedulingRegion(SD) && 6333 "ScheduleData not in scheduling region"); 6334 SD->IsScheduled = false; 6335 SD->resetUnscheduledDeps(); 6336 }); 6337 } 6338 ReadyInsts.clear(); 6339 } 6340 6341 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6342 if (!BS->ScheduleStart) 6343 return; 6344 6345 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6346 6347 BS->resetSchedule(); 6348 6349 // For the real scheduling we use a more sophisticated ready-list: it is 6350 // sorted by the original instruction location. This lets the final schedule 6351 // be as close as possible to the original instruction order. 6352 struct ScheduleDataCompare { 6353 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6354 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6355 } 6356 }; 6357 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6358 6359 // Ensure that all dependency data is updated and fill the ready-list with 6360 // initial instructions. 6361 int Idx = 0; 6362 int NumToSchedule = 0; 6363 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6364 I = I->getNextNode()) { 6365 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6366 assert((isVectorLikeInstWithConstOps(SD->Inst) || 6367 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 6368 "scheduler and vectorizer bundle mismatch"); 6369 SD->FirstInBundle->SchedulingPriority = Idx++; 6370 if (SD->isSchedulingEntity()) { 6371 BS->calculateDependencies(SD, false, this); 6372 NumToSchedule++; 6373 } 6374 }); 6375 } 6376 BS->initialFillReadyList(ReadyInsts); 6377 6378 Instruction *LastScheduledInst = BS->ScheduleEnd; 6379 6380 // Do the "real" scheduling. 6381 while (!ReadyInsts.empty()) { 6382 ScheduleData *picked = *ReadyInsts.begin(); 6383 ReadyInsts.erase(ReadyInsts.begin()); 6384 6385 // Move the scheduled instruction(s) to their dedicated places, if not 6386 // there yet. 6387 ScheduleData *BundleMember = picked; 6388 while (BundleMember) { 6389 Instruction *pickedInst = BundleMember->Inst; 6390 if (pickedInst->getNextNode() != LastScheduledInst) { 6391 BS->BB->getInstList().remove(pickedInst); 6392 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6393 pickedInst); 6394 } 6395 LastScheduledInst = pickedInst; 6396 BundleMember = BundleMember->NextInBundle; 6397 } 6398 6399 BS->schedule(picked, ReadyInsts); 6400 NumToSchedule--; 6401 } 6402 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6403 6404 // Avoid duplicate scheduling of the block. 6405 BS->ScheduleStart = nullptr; 6406 } 6407 6408 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6409 // If V is a store, just return the width of the stored value (or value 6410 // truncated just before storing) without traversing the expression tree. 6411 // This is the common case. 6412 if (auto *Store = dyn_cast<StoreInst>(V)) { 6413 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 6414 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 6415 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 6416 } 6417 6418 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 6419 return getVectorElementSize(IEI->getOperand(1)); 6420 6421 auto E = InstrElementSize.find(V); 6422 if (E != InstrElementSize.end()) 6423 return E->second; 6424 6425 // If V is not a store, we can traverse the expression tree to find loads 6426 // that feed it. The type of the loaded value may indicate a more suitable 6427 // width than V's type. We want to base the vector element size on the width 6428 // of memory operations where possible. 6429 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 6430 SmallPtrSet<Instruction *, 16> Visited; 6431 if (auto *I = dyn_cast<Instruction>(V)) { 6432 Worklist.emplace_back(I, I->getParent()); 6433 Visited.insert(I); 6434 } 6435 6436 // Traverse the expression tree in bottom-up order looking for loads. If we 6437 // encounter an instruction we don't yet handle, we give up. 6438 auto Width = 0u; 6439 while (!Worklist.empty()) { 6440 Instruction *I; 6441 BasicBlock *Parent; 6442 std::tie(I, Parent) = Worklist.pop_back_val(); 6443 6444 // We should only be looking at scalar instructions here. If the current 6445 // instruction has a vector type, skip. 6446 auto *Ty = I->getType(); 6447 if (isa<VectorType>(Ty)) 6448 continue; 6449 6450 // If the current instruction is a load, update MaxWidth to reflect the 6451 // width of the loaded value. 6452 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 6453 isa<ExtractValueInst>(I)) 6454 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 6455 6456 // Otherwise, we need to visit the operands of the instruction. We only 6457 // handle the interesting cases from buildTree here. If an operand is an 6458 // instruction we haven't yet visited and from the same basic block as the 6459 // user or the use is a PHI node, we add it to the worklist. 6460 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6461 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 6462 isa<UnaryOperator>(I)) { 6463 for (Use &U : I->operands()) 6464 if (auto *J = dyn_cast<Instruction>(U.get())) 6465 if (Visited.insert(J).second && 6466 (isa<PHINode>(I) || J->getParent() == Parent)) 6467 Worklist.emplace_back(J, J->getParent()); 6468 } else { 6469 break; 6470 } 6471 } 6472 6473 // If we didn't encounter a memory access in the expression tree, or if we 6474 // gave up for some reason, just return the width of V. Otherwise, return the 6475 // maximum width we found. 6476 if (!Width) { 6477 if (auto *CI = dyn_cast<CmpInst>(V)) 6478 V = CI->getOperand(0); 6479 Width = DL->getTypeSizeInBits(V->getType()); 6480 } 6481 6482 for (Instruction *I : Visited) 6483 InstrElementSize[I] = Width; 6484 6485 return Width; 6486 } 6487 6488 // Determine if a value V in a vectorizable expression Expr can be demoted to a 6489 // smaller type with a truncation. We collect the values that will be demoted 6490 // in ToDemote and additional roots that require investigating in Roots. 6491 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 6492 SmallVectorImpl<Value *> &ToDemote, 6493 SmallVectorImpl<Value *> &Roots) { 6494 // We can always demote constants. 6495 if (isa<Constant>(V)) { 6496 ToDemote.push_back(V); 6497 return true; 6498 } 6499 6500 // If the value is not an instruction in the expression with only one use, it 6501 // cannot be demoted. 6502 auto *I = dyn_cast<Instruction>(V); 6503 if (!I || !I->hasOneUse() || !Expr.count(I)) 6504 return false; 6505 6506 switch (I->getOpcode()) { 6507 6508 // We can always demote truncations and extensions. Since truncations can 6509 // seed additional demotion, we save the truncated value. 6510 case Instruction::Trunc: 6511 Roots.push_back(I->getOperand(0)); 6512 break; 6513 case Instruction::ZExt: 6514 case Instruction::SExt: 6515 if (isa<ExtractElementInst>(I->getOperand(0)) || 6516 isa<InsertElementInst>(I->getOperand(0))) 6517 return false; 6518 break; 6519 6520 // We can demote certain binary operations if we can demote both of their 6521 // operands. 6522 case Instruction::Add: 6523 case Instruction::Sub: 6524 case Instruction::Mul: 6525 case Instruction::And: 6526 case Instruction::Or: 6527 case Instruction::Xor: 6528 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 6529 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 6530 return false; 6531 break; 6532 6533 // We can demote selects if we can demote their true and false values. 6534 case Instruction::Select: { 6535 SelectInst *SI = cast<SelectInst>(I); 6536 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 6537 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 6538 return false; 6539 break; 6540 } 6541 6542 // We can demote phis if we can demote all their incoming operands. Note that 6543 // we don't need to worry about cycles since we ensure single use above. 6544 case Instruction::PHI: { 6545 PHINode *PN = cast<PHINode>(I); 6546 for (Value *IncValue : PN->incoming_values()) 6547 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 6548 return false; 6549 break; 6550 } 6551 6552 // Otherwise, conservatively give up. 6553 default: 6554 return false; 6555 } 6556 6557 // Record the value that we can demote. 6558 ToDemote.push_back(V); 6559 return true; 6560 } 6561 6562 void BoUpSLP::computeMinimumValueSizes() { 6563 // If there are no external uses, the expression tree must be rooted by a 6564 // store. We can't demote in-memory values, so there is nothing to do here. 6565 if (ExternalUses.empty()) 6566 return; 6567 6568 // We only attempt to truncate integer expressions. 6569 auto &TreeRoot = VectorizableTree[0]->Scalars; 6570 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 6571 if (!TreeRootIT) 6572 return; 6573 6574 // If the expression is not rooted by a store, these roots should have 6575 // external uses. We will rely on InstCombine to rewrite the expression in 6576 // the narrower type. However, InstCombine only rewrites single-use values. 6577 // This means that if a tree entry other than a root is used externally, it 6578 // must have multiple uses and InstCombine will not rewrite it. The code 6579 // below ensures that only the roots are used externally. 6580 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 6581 for (auto &EU : ExternalUses) 6582 if (!Expr.erase(EU.Scalar)) 6583 return; 6584 if (!Expr.empty()) 6585 return; 6586 6587 // Collect the scalar values of the vectorizable expression. We will use this 6588 // context to determine which values can be demoted. If we see a truncation, 6589 // we mark it as seeding another demotion. 6590 for (auto &EntryPtr : VectorizableTree) 6591 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 6592 6593 // Ensure the roots of the vectorizable tree don't form a cycle. They must 6594 // have a single external user that is not in the vectorizable tree. 6595 for (auto *Root : TreeRoot) 6596 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 6597 return; 6598 6599 // Conservatively determine if we can actually truncate the roots of the 6600 // expression. Collect the values that can be demoted in ToDemote and 6601 // additional roots that require investigating in Roots. 6602 SmallVector<Value *, 32> ToDemote; 6603 SmallVector<Value *, 4> Roots; 6604 for (auto *Root : TreeRoot) 6605 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 6606 return; 6607 6608 // The maximum bit width required to represent all the values that can be 6609 // demoted without loss of precision. It would be safe to truncate the roots 6610 // of the expression to this width. 6611 auto MaxBitWidth = 8u; 6612 6613 // We first check if all the bits of the roots are demanded. If they're not, 6614 // we can truncate the roots to this narrower type. 6615 for (auto *Root : TreeRoot) { 6616 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 6617 MaxBitWidth = std::max<unsigned>( 6618 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 6619 } 6620 6621 // True if the roots can be zero-extended back to their original type, rather 6622 // than sign-extended. We know that if the leading bits are not demanded, we 6623 // can safely zero-extend. So we initialize IsKnownPositive to True. 6624 bool IsKnownPositive = true; 6625 6626 // If all the bits of the roots are demanded, we can try a little harder to 6627 // compute a narrower type. This can happen, for example, if the roots are 6628 // getelementptr indices. InstCombine promotes these indices to the pointer 6629 // width. Thus, all their bits are technically demanded even though the 6630 // address computation might be vectorized in a smaller type. 6631 // 6632 // We start by looking at each entry that can be demoted. We compute the 6633 // maximum bit width required to store the scalar by using ValueTracking to 6634 // compute the number of high-order bits we can truncate. 6635 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6636 llvm::all_of(TreeRoot, [](Value *R) { 6637 assert(R->hasOneUse() && "Root should have only one use!"); 6638 return isa<GetElementPtrInst>(R->user_back()); 6639 })) { 6640 MaxBitWidth = 8u; 6641 6642 // Determine if the sign bit of all the roots is known to be zero. If not, 6643 // IsKnownPositive is set to False. 6644 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6645 KnownBits Known = computeKnownBits(R, *DL); 6646 return Known.isNonNegative(); 6647 }); 6648 6649 // Determine the maximum number of bits required to store the scalar 6650 // values. 6651 for (auto *Scalar : ToDemote) { 6652 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6653 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6654 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6655 } 6656 6657 // If we can't prove that the sign bit is zero, we must add one to the 6658 // maximum bit width to account for the unknown sign bit. This preserves 6659 // the existing sign bit so we can safely sign-extend the root back to the 6660 // original type. Otherwise, if we know the sign bit is zero, we will 6661 // zero-extend the root instead. 6662 // 6663 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6664 // one to the maximum bit width will yield a larger-than-necessary 6665 // type. In general, we need to add an extra bit only if we can't 6666 // prove that the upper bit of the original type is equal to the 6667 // upper bit of the proposed smaller type. If these two bits are the 6668 // same (either zero or one) we know that sign-extending from the 6669 // smaller type will result in the same value. Here, since we can't 6670 // yet prove this, we are just making the proposed smaller type 6671 // larger to ensure correctness. 6672 if (!IsKnownPositive) 6673 ++MaxBitWidth; 6674 } 6675 6676 // Round MaxBitWidth up to the next power-of-two. 6677 if (!isPowerOf2_64(MaxBitWidth)) 6678 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6679 6680 // If the maximum bit width we compute is less than the with of the roots' 6681 // type, we can proceed with the narrowing. Otherwise, do nothing. 6682 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6683 return; 6684 6685 // If we can truncate the root, we must collect additional values that might 6686 // be demoted as a result. That is, those seeded by truncations we will 6687 // modify. 6688 while (!Roots.empty()) 6689 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6690 6691 // Finally, map the values we can demote to the maximum bit with we computed. 6692 for (auto *Scalar : ToDemote) 6693 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6694 } 6695 6696 namespace { 6697 6698 /// The SLPVectorizer Pass. 6699 struct SLPVectorizer : public FunctionPass { 6700 SLPVectorizerPass Impl; 6701 6702 /// Pass identification, replacement for typeid 6703 static char ID; 6704 6705 explicit SLPVectorizer() : FunctionPass(ID) { 6706 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6707 } 6708 6709 bool doInitialization(Module &M) override { 6710 return false; 6711 } 6712 6713 bool runOnFunction(Function &F) override { 6714 if (skipFunction(F)) 6715 return false; 6716 6717 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6718 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6719 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6720 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6721 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6722 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6723 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6724 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6725 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6726 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6727 6728 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6729 } 6730 6731 void getAnalysisUsage(AnalysisUsage &AU) const override { 6732 FunctionPass::getAnalysisUsage(AU); 6733 AU.addRequired<AssumptionCacheTracker>(); 6734 AU.addRequired<ScalarEvolutionWrapperPass>(); 6735 AU.addRequired<AAResultsWrapperPass>(); 6736 AU.addRequired<TargetTransformInfoWrapperPass>(); 6737 AU.addRequired<LoopInfoWrapperPass>(); 6738 AU.addRequired<DominatorTreeWrapperPass>(); 6739 AU.addRequired<DemandedBitsWrapperPass>(); 6740 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6741 AU.addRequired<InjectTLIMappingsLegacy>(); 6742 AU.addPreserved<LoopInfoWrapperPass>(); 6743 AU.addPreserved<DominatorTreeWrapperPass>(); 6744 AU.addPreserved<AAResultsWrapperPass>(); 6745 AU.addPreserved<GlobalsAAWrapperPass>(); 6746 AU.setPreservesCFG(); 6747 } 6748 }; 6749 6750 } // end anonymous namespace 6751 6752 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6753 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6754 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6755 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6756 auto *AA = &AM.getResult<AAManager>(F); 6757 auto *LI = &AM.getResult<LoopAnalysis>(F); 6758 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6759 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6760 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6761 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6762 6763 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6764 if (!Changed) 6765 return PreservedAnalyses::all(); 6766 6767 PreservedAnalyses PA; 6768 PA.preserveSet<CFGAnalyses>(); 6769 return PA; 6770 } 6771 6772 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6773 TargetTransformInfo *TTI_, 6774 TargetLibraryInfo *TLI_, AAResults *AA_, 6775 LoopInfo *LI_, DominatorTree *DT_, 6776 AssumptionCache *AC_, DemandedBits *DB_, 6777 OptimizationRemarkEmitter *ORE_) { 6778 if (!RunSLPVectorization) 6779 return false; 6780 SE = SE_; 6781 TTI = TTI_; 6782 TLI = TLI_; 6783 AA = AA_; 6784 LI = LI_; 6785 DT = DT_; 6786 AC = AC_; 6787 DB = DB_; 6788 DL = &F.getParent()->getDataLayout(); 6789 6790 Stores.clear(); 6791 GEPs.clear(); 6792 bool Changed = false; 6793 6794 // If the target claims to have no vector registers don't attempt 6795 // vectorization. 6796 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6797 return false; 6798 6799 // Don't vectorize when the attribute NoImplicitFloat is used. 6800 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6801 return false; 6802 6803 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6804 6805 // Use the bottom up slp vectorizer to construct chains that start with 6806 // store instructions. 6807 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6808 6809 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6810 // delete instructions. 6811 6812 // Update DFS numbers now so that we can use them for ordering. 6813 DT->updateDFSNumbers(); 6814 6815 // Scan the blocks in the function in post order. 6816 for (auto BB : post_order(&F.getEntryBlock())) { 6817 collectSeedInstructions(BB); 6818 6819 // Vectorize trees that end at stores. 6820 if (!Stores.empty()) { 6821 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6822 << " underlying objects.\n"); 6823 Changed |= vectorizeStoreChains(R); 6824 } 6825 6826 // Vectorize trees that end at reductions. 6827 Changed |= vectorizeChainsInBlock(BB, R); 6828 6829 // Vectorize the index computations of getelementptr instructions. This 6830 // is primarily intended to catch gather-like idioms ending at 6831 // non-consecutive loads. 6832 if (!GEPs.empty()) { 6833 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6834 << " underlying objects.\n"); 6835 Changed |= vectorizeGEPIndices(BB, R); 6836 } 6837 } 6838 6839 if (Changed) { 6840 R.optimizeGatherSequence(); 6841 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6842 } 6843 return Changed; 6844 } 6845 6846 /// Order may have elements assigned special value (size) which is out of 6847 /// bounds. Such indices only appear on places which correspond to undef values 6848 /// (see canReuseExtract for details) and used in order to avoid undef values 6849 /// have effect on operands ordering. 6850 /// The first loop below simply finds all unused indices and then the next loop 6851 /// nest assigns these indices for undef values positions. 6852 /// As an example below Order has two undef positions and they have assigned 6853 /// values 3 and 7 respectively: 6854 /// before: 6 9 5 4 9 2 1 0 6855 /// after: 6 3 5 4 7 2 1 0 6856 /// \returns Fixed ordering. 6857 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) { 6858 BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end()); 6859 const unsigned Sz = NewOrder.size(); 6860 SmallBitVector UsedIndices(Sz); 6861 SmallVector<int> MaskedIndices; 6862 for (int I = 0, E = NewOrder.size(); I < E; ++I) { 6863 if (NewOrder[I] < Sz) 6864 UsedIndices.set(NewOrder[I]); 6865 else 6866 MaskedIndices.push_back(I); 6867 } 6868 if (MaskedIndices.empty()) 6869 return NewOrder; 6870 SmallVector<int> AvailableIndices(MaskedIndices.size()); 6871 unsigned Cnt = 0; 6872 int Idx = UsedIndices.find_first(); 6873 do { 6874 AvailableIndices[Cnt] = Idx; 6875 Idx = UsedIndices.find_next(Idx); 6876 ++Cnt; 6877 } while (Idx > 0); 6878 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 6879 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 6880 NewOrder[MaskedIndices[I]] = AvailableIndices[I]; 6881 return NewOrder; 6882 } 6883 6884 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6885 unsigned Idx) { 6886 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6887 << "\n"); 6888 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6889 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6890 unsigned VF = Chain.size(); 6891 6892 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6893 return false; 6894 6895 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6896 << "\n"); 6897 6898 R.buildTree(Chain); 6899 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6900 // TODO: Handle orders of size less than number of elements in the vector. 6901 if (Order && Order->size() == Chain.size()) { 6902 // TODO: reorder tree nodes without tree rebuilding. 6903 SmallVector<Value *, 4> ReorderedOps(Chain.size()); 6904 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 6905 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6906 R.buildTree(ReorderedOps); 6907 } 6908 if (R.isTreeTinyAndNotFullyVectorizable()) 6909 return false; 6910 if (R.isLoadCombineCandidate()) 6911 return false; 6912 6913 R.computeMinimumValueSizes(); 6914 6915 InstructionCost Cost = R.getTreeCost(); 6916 6917 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6918 if (Cost < -SLPCostThreshold) { 6919 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6920 6921 using namespace ore; 6922 6923 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6924 cast<StoreInst>(Chain[0])) 6925 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6926 << " and with tree size " 6927 << NV("TreeSize", R.getTreeSize())); 6928 6929 R.vectorizeTree(); 6930 return true; 6931 } 6932 6933 return false; 6934 } 6935 6936 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6937 BoUpSLP &R) { 6938 // We may run into multiple chains that merge into a single chain. We mark the 6939 // stores that we vectorized so that we don't visit the same store twice. 6940 BoUpSLP::ValueSet VectorizedStores; 6941 bool Changed = false; 6942 6943 int E = Stores.size(); 6944 SmallBitVector Tails(E, false); 6945 int MaxIter = MaxStoreLookup.getValue(); 6946 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6947 E, std::make_pair(E, INT_MAX)); 6948 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6949 int IterCnt; 6950 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6951 &CheckedPairs, 6952 &ConsecutiveChain](int K, int Idx) { 6953 if (IterCnt >= MaxIter) 6954 return true; 6955 if (CheckedPairs[Idx].test(K)) 6956 return ConsecutiveChain[K].second == 1 && 6957 ConsecutiveChain[K].first == Idx; 6958 ++IterCnt; 6959 CheckedPairs[Idx].set(K); 6960 CheckedPairs[K].set(Idx); 6961 Optional<int> Diff = getPointersDiff( 6962 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 6963 Stores[Idx]->getValueOperand()->getType(), 6964 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 6965 if (!Diff || *Diff == 0) 6966 return false; 6967 int Val = *Diff; 6968 if (Val < 0) { 6969 if (ConsecutiveChain[Idx].second > -Val) { 6970 Tails.set(K); 6971 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6972 } 6973 return false; 6974 } 6975 if (ConsecutiveChain[K].second <= Val) 6976 return false; 6977 6978 Tails.set(Idx); 6979 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6980 return Val == 1; 6981 }; 6982 // Do a quadratic search on all of the given stores in reverse order and find 6983 // all of the pairs of stores that follow each other. 6984 for (int Idx = E - 1; Idx >= 0; --Idx) { 6985 // If a store has multiple consecutive store candidates, search according 6986 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6987 // This is because usually pairing with immediate succeeding or preceding 6988 // candidate create the best chance to find slp vectorization opportunity. 6989 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6990 IterCnt = 0; 6991 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6992 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6993 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6994 break; 6995 } 6996 6997 // Tracks if we tried to vectorize stores starting from the given tail 6998 // already. 6999 SmallBitVector TriedTails(E, false); 7000 // For stores that start but don't end a link in the chain: 7001 for (int Cnt = E; Cnt > 0; --Cnt) { 7002 int I = Cnt - 1; 7003 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7004 continue; 7005 // We found a store instr that starts a chain. Now follow the chain and try 7006 // to vectorize it. 7007 BoUpSLP::ValueList Operands; 7008 // Collect the chain into a list. 7009 while (I != E && !VectorizedStores.count(Stores[I])) { 7010 Operands.push_back(Stores[I]); 7011 Tails.set(I); 7012 if (ConsecutiveChain[I].second != 1) { 7013 // Mark the new end in the chain and go back, if required. It might be 7014 // required if the original stores come in reversed order, for example. 7015 if (ConsecutiveChain[I].first != E && 7016 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7017 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7018 TriedTails.set(I); 7019 Tails.reset(ConsecutiveChain[I].first); 7020 if (Cnt < ConsecutiveChain[I].first + 2) 7021 Cnt = ConsecutiveChain[I].first + 2; 7022 } 7023 break; 7024 } 7025 // Move to the next value in the chain. 7026 I = ConsecutiveChain[I].first; 7027 } 7028 assert(!Operands.empty() && "Expected non-empty list of stores."); 7029 7030 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7031 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7032 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7033 7034 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 7035 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7036 MaxElts); 7037 7038 // FIXME: Is division-by-2 the correct step? Should we assert that the 7039 // register size is a power-of-2? 7040 unsigned StartIdx = 0; 7041 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7042 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7043 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7044 if (!VectorizedStores.count(Slice.front()) && 7045 !VectorizedStores.count(Slice.back()) && 7046 vectorizeStoreChain(Slice, R, Cnt)) { 7047 // Mark the vectorized stores so that we don't vectorize them again. 7048 VectorizedStores.insert(Slice.begin(), Slice.end()); 7049 Changed = true; 7050 // If we vectorized initial block, no need to try to vectorize it 7051 // again. 7052 if (Cnt == StartIdx) 7053 StartIdx += Size; 7054 Cnt += Size; 7055 continue; 7056 } 7057 ++Cnt; 7058 } 7059 // Check if the whole array was vectorized already - exit. 7060 if (StartIdx >= Operands.size()) 7061 break; 7062 } 7063 } 7064 7065 return Changed; 7066 } 7067 7068 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7069 // Initialize the collections. We will make a single pass over the block. 7070 Stores.clear(); 7071 GEPs.clear(); 7072 7073 // Visit the store and getelementptr instructions in BB and organize them in 7074 // Stores and GEPs according to the underlying objects of their pointer 7075 // operands. 7076 for (Instruction &I : *BB) { 7077 // Ignore store instructions that are volatile or have a pointer operand 7078 // that doesn't point to a scalar type. 7079 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7080 if (!SI->isSimple()) 7081 continue; 7082 if (!isValidElementType(SI->getValueOperand()->getType())) 7083 continue; 7084 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7085 } 7086 7087 // Ignore getelementptr instructions that have more than one index, a 7088 // constant index, or a pointer operand that doesn't point to a scalar 7089 // type. 7090 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7091 auto Idx = GEP->idx_begin()->get(); 7092 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7093 continue; 7094 if (!isValidElementType(Idx->getType())) 7095 continue; 7096 if (GEP->getType()->isVectorTy()) 7097 continue; 7098 GEPs[GEP->getPointerOperand()].push_back(GEP); 7099 } 7100 } 7101 } 7102 7103 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7104 if (!A || !B) 7105 return false; 7106 Value *VL[] = {A, B}; 7107 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 7108 } 7109 7110 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7111 bool AllowReorder) { 7112 if (VL.size() < 2) 7113 return false; 7114 7115 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7116 << VL.size() << ".\n"); 7117 7118 // Check that all of the parts are instructions of the same type, 7119 // we permit an alternate opcode via InstructionsState. 7120 InstructionsState S = getSameOpcode(VL); 7121 if (!S.getOpcode()) 7122 return false; 7123 7124 Instruction *I0 = cast<Instruction>(S.OpValue); 7125 // Make sure invalid types (including vector type) are rejected before 7126 // determining vectorization factor for scalar instructions. 7127 for (Value *V : VL) { 7128 Type *Ty = V->getType(); 7129 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7130 // NOTE: the following will give user internal llvm type name, which may 7131 // not be useful. 7132 R.getORE()->emit([&]() { 7133 std::string type_str; 7134 llvm::raw_string_ostream rso(type_str); 7135 Ty->print(rso); 7136 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7137 << "Cannot SLP vectorize list: type " 7138 << rso.str() + " is unsupported by vectorizer"; 7139 }); 7140 return false; 7141 } 7142 } 7143 7144 unsigned Sz = R.getVectorElementSize(I0); 7145 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 7146 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7147 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7148 if (MaxVF < 2) { 7149 R.getORE()->emit([&]() { 7150 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7151 << "Cannot SLP vectorize list: vectorization factor " 7152 << "less than 2 is not supported"; 7153 }); 7154 return false; 7155 } 7156 7157 bool Changed = false; 7158 bool CandidateFound = false; 7159 InstructionCost MinCost = SLPCostThreshold.getValue(); 7160 Type *ScalarTy = VL[0]->getType(); 7161 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7162 ScalarTy = IE->getOperand(1)->getType(); 7163 7164 unsigned NextInst = 0, MaxInst = VL.size(); 7165 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7166 // No actual vectorization should happen, if number of parts is the same as 7167 // provided vectorization factor (i.e. the scalar type is used for vector 7168 // code during codegen). 7169 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7170 if (TTI->getNumberOfParts(VecTy) == VF) 7171 continue; 7172 for (unsigned I = NextInst; I < MaxInst; ++I) { 7173 unsigned OpsWidth = 0; 7174 7175 if (I + VF > MaxInst) 7176 OpsWidth = MaxInst - I; 7177 else 7178 OpsWidth = VF; 7179 7180 if (!isPowerOf2_32(OpsWidth)) 7181 continue; 7182 7183 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7184 break; 7185 7186 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7187 // Check that a previous iteration of this loop did not delete the Value. 7188 if (llvm::any_of(Ops, [&R](Value *V) { 7189 auto *I = dyn_cast<Instruction>(V); 7190 return I && R.isDeleted(I); 7191 })) 7192 continue; 7193 7194 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7195 << "\n"); 7196 7197 R.buildTree(Ops); 7198 if (AllowReorder) { 7199 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 7200 if (Order) { 7201 // TODO: reorder tree nodes without tree rebuilding. 7202 SmallVector<Value *, 4> ReorderedOps(Ops.size()); 7203 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7204 [Ops](const unsigned Idx) { return Ops[Idx]; }); 7205 R.buildTree(ReorderedOps); 7206 } 7207 } 7208 if (R.isTreeTinyAndNotFullyVectorizable()) 7209 continue; 7210 7211 R.computeMinimumValueSizes(); 7212 InstructionCost Cost = R.getTreeCost(); 7213 CandidateFound = true; 7214 MinCost = std::min(MinCost, Cost); 7215 7216 if (Cost < -SLPCostThreshold) { 7217 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7218 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7219 cast<Instruction>(Ops[0])) 7220 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7221 << " and with tree size " 7222 << ore::NV("TreeSize", R.getTreeSize())); 7223 7224 R.vectorizeTree(); 7225 // Move to the next bundle. 7226 I += VF - 1; 7227 NextInst = I + 1; 7228 Changed = true; 7229 } 7230 } 7231 } 7232 7233 if (!Changed && CandidateFound) { 7234 R.getORE()->emit([&]() { 7235 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7236 << "List vectorization was possible but not beneficial with cost " 7237 << ore::NV("Cost", MinCost) << " >= " 7238 << ore::NV("Treshold", -SLPCostThreshold); 7239 }); 7240 } else if (!Changed) { 7241 R.getORE()->emit([&]() { 7242 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7243 << "Cannot SLP vectorize list: vectorization was impossible" 7244 << " with available vectorization factors"; 7245 }); 7246 } 7247 return Changed; 7248 } 7249 7250 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7251 if (!I) 7252 return false; 7253 7254 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7255 return false; 7256 7257 Value *P = I->getParent(); 7258 7259 // Vectorize in current basic block only. 7260 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7261 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7262 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7263 return false; 7264 7265 // Try to vectorize V. 7266 if (tryToVectorizePair(Op0, Op1, R)) 7267 return true; 7268 7269 auto *A = dyn_cast<BinaryOperator>(Op0); 7270 auto *B = dyn_cast<BinaryOperator>(Op1); 7271 // Try to skip B. 7272 if (B && B->hasOneUse()) { 7273 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7274 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7275 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7276 return true; 7277 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7278 return true; 7279 } 7280 7281 // Try to skip A. 7282 if (A && A->hasOneUse()) { 7283 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7284 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7285 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7286 return true; 7287 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7288 return true; 7289 } 7290 return false; 7291 } 7292 7293 namespace { 7294 7295 /// Model horizontal reductions. 7296 /// 7297 /// A horizontal reduction is a tree of reduction instructions that has values 7298 /// that can be put into a vector as its leaves. For example: 7299 /// 7300 /// mul mul mul mul 7301 /// \ / \ / 7302 /// + + 7303 /// \ / 7304 /// + 7305 /// This tree has "mul" as its leaf values and "+" as its reduction 7306 /// instructions. A reduction can feed into a store or a binary operation 7307 /// feeding a phi. 7308 /// ... 7309 /// \ / 7310 /// + 7311 /// | 7312 /// phi += 7313 /// 7314 /// Or: 7315 /// ... 7316 /// \ / 7317 /// + 7318 /// | 7319 /// *p = 7320 /// 7321 class HorizontalReduction { 7322 using ReductionOpsType = SmallVector<Value *, 16>; 7323 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7324 ReductionOpsListType ReductionOps; 7325 SmallVector<Value *, 32> ReducedVals; 7326 // Use map vector to make stable output. 7327 MapVector<Instruction *, Value *> ExtraArgs; 7328 WeakTrackingVH ReductionRoot; 7329 /// The type of reduction operation. 7330 RecurKind RdxKind; 7331 7332 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 7333 7334 static bool isCmpSelMinMax(Instruction *I) { 7335 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 7336 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 7337 } 7338 7339 // And/or are potentially poison-safe logical patterns like: 7340 // select x, y, false 7341 // select x, true, y 7342 static bool isBoolLogicOp(Instruction *I) { 7343 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 7344 match(I, m_LogicalOr(m_Value(), m_Value())); 7345 } 7346 7347 /// Checks if instruction is associative and can be vectorized. 7348 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7349 if (Kind == RecurKind::None) 7350 return false; 7351 7352 // Integer ops that map to select instructions or intrinsics are fine. 7353 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 7354 isBoolLogicOp(I)) 7355 return true; 7356 7357 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7358 // FP min/max are associative except for NaN and -0.0. We do not 7359 // have to rule out -0.0 here because the intrinsic semantics do not 7360 // specify a fixed result for it. 7361 return I->getFastMathFlags().noNaNs(); 7362 } 7363 7364 return I->isAssociative(); 7365 } 7366 7367 static Value *getRdxOperand(Instruction *I, unsigned Index) { 7368 // Poison-safe 'or' takes the form: select X, true, Y 7369 // To make that work with the normal operand processing, we skip the 7370 // true value operand. 7371 // TODO: Change the code and data structures to handle this without a hack. 7372 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 7373 return I->getOperand(2); 7374 return I->getOperand(Index); 7375 } 7376 7377 /// Checks if the ParentStackElem.first should be marked as a reduction 7378 /// operation with an extra argument or as extra argument itself. 7379 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7380 Value *ExtraArg) { 7381 if (ExtraArgs.count(ParentStackElem.first)) { 7382 ExtraArgs[ParentStackElem.first] = nullptr; 7383 // We ran into something like: 7384 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7385 // The whole ParentStackElem.first should be considered as an extra value 7386 // in this case. 7387 // Do not perform analysis of remaining operands of ParentStackElem.first 7388 // instruction, this whole instruction is an extra argument. 7389 ParentStackElem.second = INVALID_OPERAND_INDEX; 7390 } else { 7391 // We ran into something like: 7392 // ParentStackElem.first += ... + ExtraArg + ... 7393 ExtraArgs[ParentStackElem.first] = ExtraArg; 7394 } 7395 } 7396 7397 /// Creates reduction operation with the current opcode. 7398 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7399 Value *RHS, const Twine &Name, bool UseSelect) { 7400 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7401 switch (Kind) { 7402 case RecurKind::Add: 7403 case RecurKind::Mul: 7404 case RecurKind::Or: 7405 case RecurKind::And: 7406 case RecurKind::Xor: 7407 case RecurKind::FAdd: 7408 case RecurKind::FMul: 7409 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7410 Name); 7411 case RecurKind::FMax: 7412 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7413 case RecurKind::FMin: 7414 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7415 case RecurKind::SMax: 7416 if (UseSelect) { 7417 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7418 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7419 } 7420 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7421 case RecurKind::SMin: 7422 if (UseSelect) { 7423 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7424 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7425 } 7426 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7427 case RecurKind::UMax: 7428 if (UseSelect) { 7429 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7430 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7431 } 7432 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7433 case RecurKind::UMin: 7434 if (UseSelect) { 7435 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7436 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7437 } 7438 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7439 default: 7440 llvm_unreachable("Unknown reduction operation."); 7441 } 7442 } 7443 7444 /// Creates reduction operation with the current opcode with the IR flags 7445 /// from \p ReductionOps. 7446 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7447 Value *RHS, const Twine &Name, 7448 const ReductionOpsListType &ReductionOps) { 7449 bool UseSelect = ReductionOps.size() == 2; 7450 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7451 "Expected cmp + select pairs for reduction"); 7452 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7453 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7454 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7455 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7456 propagateIRFlags(Op, ReductionOps[1]); 7457 return Op; 7458 } 7459 } 7460 propagateIRFlags(Op, ReductionOps[0]); 7461 return Op; 7462 } 7463 7464 /// Creates reduction operation with the current opcode with the IR flags 7465 /// from \p I. 7466 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7467 Value *RHS, const Twine &Name, Instruction *I) { 7468 auto *SelI = dyn_cast<SelectInst>(I); 7469 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 7470 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7471 if (auto *Sel = dyn_cast<SelectInst>(Op)) 7472 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 7473 } 7474 propagateIRFlags(Op, I); 7475 return Op; 7476 } 7477 7478 static RecurKind getRdxKind(Instruction *I) { 7479 assert(I && "Expected instruction for reduction matching"); 7480 TargetTransformInfo::ReductionFlags RdxFlags; 7481 if (match(I, m_Add(m_Value(), m_Value()))) 7482 return RecurKind::Add; 7483 if (match(I, m_Mul(m_Value(), m_Value()))) 7484 return RecurKind::Mul; 7485 if (match(I, m_And(m_Value(), m_Value())) || 7486 match(I, m_LogicalAnd(m_Value(), m_Value()))) 7487 return RecurKind::And; 7488 if (match(I, m_Or(m_Value(), m_Value())) || 7489 match(I, m_LogicalOr(m_Value(), m_Value()))) 7490 return RecurKind::Or; 7491 if (match(I, m_Xor(m_Value(), m_Value()))) 7492 return RecurKind::Xor; 7493 if (match(I, m_FAdd(m_Value(), m_Value()))) 7494 return RecurKind::FAdd; 7495 if (match(I, m_FMul(m_Value(), m_Value()))) 7496 return RecurKind::FMul; 7497 7498 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 7499 return RecurKind::FMax; 7500 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 7501 return RecurKind::FMin; 7502 7503 // This matches either cmp+select or intrinsics. SLP is expected to handle 7504 // either form. 7505 // TODO: If we are canonicalizing to intrinsics, we can remove several 7506 // special-case paths that deal with selects. 7507 if (match(I, m_SMax(m_Value(), m_Value()))) 7508 return RecurKind::SMax; 7509 if (match(I, m_SMin(m_Value(), m_Value()))) 7510 return RecurKind::SMin; 7511 if (match(I, m_UMax(m_Value(), m_Value()))) 7512 return RecurKind::UMax; 7513 if (match(I, m_UMin(m_Value(), m_Value()))) 7514 return RecurKind::UMin; 7515 7516 if (auto *Select = dyn_cast<SelectInst>(I)) { 7517 // Try harder: look for min/max pattern based on instructions producing 7518 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 7519 // During the intermediate stages of SLP, it's very common to have 7520 // pattern like this (since optimizeGatherSequence is run only once 7521 // at the end): 7522 // %1 = extractelement <2 x i32> %a, i32 0 7523 // %2 = extractelement <2 x i32> %a, i32 1 7524 // %cond = icmp sgt i32 %1, %2 7525 // %3 = extractelement <2 x i32> %a, i32 0 7526 // %4 = extractelement <2 x i32> %a, i32 1 7527 // %select = select i1 %cond, i32 %3, i32 %4 7528 CmpInst::Predicate Pred; 7529 Instruction *L1; 7530 Instruction *L2; 7531 7532 Value *LHS = Select->getTrueValue(); 7533 Value *RHS = Select->getFalseValue(); 7534 Value *Cond = Select->getCondition(); 7535 7536 // TODO: Support inverse predicates. 7537 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 7538 if (!isa<ExtractElementInst>(RHS) || 7539 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7540 return RecurKind::None; 7541 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 7542 if (!isa<ExtractElementInst>(LHS) || 7543 !L1->isIdenticalTo(cast<Instruction>(LHS))) 7544 return RecurKind::None; 7545 } else { 7546 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 7547 return RecurKind::None; 7548 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 7549 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 7550 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7551 return RecurKind::None; 7552 } 7553 7554 TargetTransformInfo::ReductionFlags RdxFlags; 7555 switch (Pred) { 7556 default: 7557 return RecurKind::None; 7558 case CmpInst::ICMP_SGT: 7559 case CmpInst::ICMP_SGE: 7560 return RecurKind::SMax; 7561 case CmpInst::ICMP_SLT: 7562 case CmpInst::ICMP_SLE: 7563 return RecurKind::SMin; 7564 case CmpInst::ICMP_UGT: 7565 case CmpInst::ICMP_UGE: 7566 return RecurKind::UMax; 7567 case CmpInst::ICMP_ULT: 7568 case CmpInst::ICMP_ULE: 7569 return RecurKind::UMin; 7570 } 7571 } 7572 return RecurKind::None; 7573 } 7574 7575 /// Get the index of the first operand. 7576 static unsigned getFirstOperandIndex(Instruction *I) { 7577 return isCmpSelMinMax(I) ? 1 : 0; 7578 } 7579 7580 /// Total number of operands in the reduction operation. 7581 static unsigned getNumberOfOperands(Instruction *I) { 7582 return isCmpSelMinMax(I) ? 3 : 2; 7583 } 7584 7585 /// Checks if the instruction is in basic block \p BB. 7586 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 7587 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 7588 if (isCmpSelMinMax(I)) { 7589 auto *Sel = cast<SelectInst>(I); 7590 auto *Cmp = cast<Instruction>(Sel->getCondition()); 7591 return Sel->getParent() == BB && Cmp->getParent() == BB; 7592 } 7593 return I->getParent() == BB; 7594 } 7595 7596 /// Expected number of uses for reduction operations/reduced values. 7597 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 7598 if (IsCmpSelMinMax) { 7599 // SelectInst must be used twice while the condition op must have single 7600 // use only. 7601 if (auto *Sel = dyn_cast<SelectInst>(I)) 7602 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 7603 return I->hasNUses(2); 7604 } 7605 7606 // Arithmetic reduction operation must be used once only. 7607 return I->hasOneUse(); 7608 } 7609 7610 /// Initializes the list of reduction operations. 7611 void initReductionOps(Instruction *I) { 7612 if (isCmpSelMinMax(I)) 7613 ReductionOps.assign(2, ReductionOpsType()); 7614 else 7615 ReductionOps.assign(1, ReductionOpsType()); 7616 } 7617 7618 /// Add all reduction operations for the reduction instruction \p I. 7619 void addReductionOps(Instruction *I) { 7620 if (isCmpSelMinMax(I)) { 7621 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 7622 ReductionOps[1].emplace_back(I); 7623 } else { 7624 ReductionOps[0].emplace_back(I); 7625 } 7626 } 7627 7628 static Value *getLHS(RecurKind Kind, Instruction *I) { 7629 if (Kind == RecurKind::None) 7630 return nullptr; 7631 return I->getOperand(getFirstOperandIndex(I)); 7632 } 7633 static Value *getRHS(RecurKind Kind, Instruction *I) { 7634 if (Kind == RecurKind::None) 7635 return nullptr; 7636 return I->getOperand(getFirstOperandIndex(I) + 1); 7637 } 7638 7639 public: 7640 HorizontalReduction() = default; 7641 7642 /// Try to find a reduction tree. 7643 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 7644 assert((!Phi || is_contained(Phi->operands(), Inst)) && 7645 "Phi needs to use the binary operator"); 7646 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 7647 isa<IntrinsicInst>(Inst)) && 7648 "Expected binop, select, or intrinsic for reduction matching"); 7649 RdxKind = getRdxKind(Inst); 7650 7651 // We could have a initial reductions that is not an add. 7652 // r *= v1 + v2 + v3 + v4 7653 // In such a case start looking for a tree rooted in the first '+'. 7654 if (Phi) { 7655 if (getLHS(RdxKind, Inst) == Phi) { 7656 Phi = nullptr; 7657 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 7658 if (!Inst) 7659 return false; 7660 RdxKind = getRdxKind(Inst); 7661 } else if (getRHS(RdxKind, Inst) == Phi) { 7662 Phi = nullptr; 7663 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 7664 if (!Inst) 7665 return false; 7666 RdxKind = getRdxKind(Inst); 7667 } 7668 } 7669 7670 if (!isVectorizable(RdxKind, Inst)) 7671 return false; 7672 7673 // Analyze "regular" integer/FP types for reductions - no target-specific 7674 // types or pointers. 7675 Type *Ty = Inst->getType(); 7676 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7677 return false; 7678 7679 // Though the ultimate reduction may have multiple uses, its condition must 7680 // have only single use. 7681 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 7682 if (!Sel->getCondition()->hasOneUse()) 7683 return false; 7684 7685 ReductionRoot = Inst; 7686 7687 // The opcode for leaf values that we perform a reduction on. 7688 // For example: load(x) + load(y) + load(z) + fptoui(w) 7689 // The leaf opcode for 'w' does not match, so we don't include it as a 7690 // potential candidate for the reduction. 7691 unsigned LeafOpcode = 0; 7692 7693 // Post-order traverse the reduction tree starting at Inst. We only handle 7694 // true trees containing binary operators or selects. 7695 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7696 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 7697 initReductionOps(Inst); 7698 while (!Stack.empty()) { 7699 Instruction *TreeN = Stack.back().first; 7700 unsigned EdgeToVisit = Stack.back().second++; 7701 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7702 bool IsReducedValue = TreeRdxKind != RdxKind; 7703 7704 // Postorder visit. 7705 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 7706 if (IsReducedValue) 7707 ReducedVals.push_back(TreeN); 7708 else { 7709 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7710 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7711 // Check if TreeN is an extra argument of its parent operation. 7712 if (Stack.size() <= 1) { 7713 // TreeN can't be an extra argument as it is a root reduction 7714 // operation. 7715 return false; 7716 } 7717 // Yes, TreeN is an extra argument, do not add it to a list of 7718 // reduction operations. 7719 // Stack[Stack.size() - 2] always points to the parent operation. 7720 markExtraArg(Stack[Stack.size() - 2], TreeN); 7721 ExtraArgs.erase(TreeN); 7722 } else 7723 addReductionOps(TreeN); 7724 } 7725 // Retract. 7726 Stack.pop_back(); 7727 continue; 7728 } 7729 7730 // Visit operands. 7731 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 7732 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7733 if (!EdgeInst) { 7734 // Edge value is not a reduction instruction or a leaf instruction. 7735 // (It may be a constant, function argument, or something else.) 7736 markExtraArg(Stack.back(), EdgeVal); 7737 continue; 7738 } 7739 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7740 // Continue analysis if the next operand is a reduction operation or 7741 // (possibly) a leaf value. If the leaf value opcode is not set, 7742 // the first met operation != reduction operation is considered as the 7743 // leaf opcode. 7744 // Only handle trees in the current basic block. 7745 // Each tree node needs to have minimal number of users except for the 7746 // ultimate reduction. 7747 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7748 if (EdgeInst != Phi && EdgeInst != Inst && 7749 hasSameParent(EdgeInst, Inst->getParent()) && 7750 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 7751 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7752 if (IsRdxInst) { 7753 // We need to be able to reassociate the reduction operations. 7754 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7755 // I is an extra argument for TreeN (its parent operation). 7756 markExtraArg(Stack.back(), EdgeInst); 7757 continue; 7758 } 7759 } else if (!LeafOpcode) { 7760 LeafOpcode = EdgeInst->getOpcode(); 7761 } 7762 Stack.push_back( 7763 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7764 continue; 7765 } 7766 // I is an extra argument for TreeN (its parent operation). 7767 markExtraArg(Stack.back(), EdgeInst); 7768 } 7769 return true; 7770 } 7771 7772 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7773 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7774 // If there are a sufficient number of reduction values, reduce 7775 // to a nearby power-of-2. We can safely generate oversized 7776 // vectors and rely on the backend to split them to legal sizes. 7777 unsigned NumReducedVals = ReducedVals.size(); 7778 if (NumReducedVals < 4) 7779 return false; 7780 7781 // Intersect the fast-math-flags from all reduction operations. 7782 FastMathFlags RdxFMF; 7783 RdxFMF.set(); 7784 for (ReductionOpsType &RdxOp : ReductionOps) { 7785 for (Value *RdxVal : RdxOp) { 7786 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7787 RdxFMF &= FPMO->getFastMathFlags(); 7788 } 7789 } 7790 7791 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7792 Builder.setFastMathFlags(RdxFMF); 7793 7794 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7795 // The same extra argument may be used several times, so log each attempt 7796 // to use it. 7797 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7798 assert(Pair.first && "DebugLoc must be set."); 7799 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7800 } 7801 7802 // The compare instruction of a min/max is the insertion point for new 7803 // instructions and may be replaced with a new compare instruction. 7804 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7805 assert(isa<SelectInst>(RdxRootInst) && 7806 "Expected min/max reduction to have select root instruction"); 7807 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7808 assert(isa<Instruction>(ScalarCond) && 7809 "Expected min/max reduction to have compare condition"); 7810 return cast<Instruction>(ScalarCond); 7811 }; 7812 7813 // The reduction root is used as the insertion point for new instructions, 7814 // so set it as externally used to prevent it from being deleted. 7815 ExternallyUsedValues[ReductionRoot]; 7816 SmallVector<Value *, 16> IgnoreList; 7817 for (ReductionOpsType &RdxOp : ReductionOps) 7818 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7819 7820 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7821 if (NumReducedVals > ReduxWidth) { 7822 // In the loop below, we are building a tree based on a window of 7823 // 'ReduxWidth' values. 7824 // If the operands of those values have common traits (compare predicate, 7825 // constant operand, etc), then we want to group those together to 7826 // minimize the cost of the reduction. 7827 7828 // TODO: This should be extended to count common operands for 7829 // compares and binops. 7830 7831 // Step 1: Count the number of times each compare predicate occurs. 7832 SmallDenseMap<unsigned, unsigned> PredCountMap; 7833 for (Value *RdxVal : ReducedVals) { 7834 CmpInst::Predicate Pred; 7835 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7836 ++PredCountMap[Pred]; 7837 } 7838 // Step 2: Sort the values so the most common predicates come first. 7839 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7840 CmpInst::Predicate PredA, PredB; 7841 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7842 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7843 return PredCountMap[PredA] > PredCountMap[PredB]; 7844 } 7845 return false; 7846 }); 7847 } 7848 7849 Value *VectorizedTree = nullptr; 7850 unsigned i = 0; 7851 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7852 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7853 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7854 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7855 if (Order) { 7856 assert(Order->size() == VL.size() && 7857 "Order size must be the same as number of vectorized " 7858 "instructions."); 7859 // TODO: reorder tree nodes without tree rebuilding. 7860 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7861 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7862 [VL](const unsigned Idx) { return VL[Idx]; }); 7863 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7864 } 7865 if (V.isTreeTinyAndNotFullyVectorizable()) 7866 break; 7867 if (V.isLoadCombineReductionCandidate(RdxKind)) 7868 break; 7869 7870 // For a poison-safe boolean logic reduction, do not replace select 7871 // instructions with logic ops. All reduced values will be frozen (see 7872 // below) to prevent leaking poison. 7873 if (isa<SelectInst>(ReductionRoot) && 7874 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 7875 NumReducedVals != ReduxWidth) 7876 break; 7877 7878 V.computeMinimumValueSizes(); 7879 7880 // Estimate cost. 7881 InstructionCost TreeCost = 7882 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 7883 InstructionCost ReductionCost = 7884 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 7885 InstructionCost Cost = TreeCost + ReductionCost; 7886 if (!Cost.isValid()) { 7887 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7888 return false; 7889 } 7890 if (Cost >= -SLPCostThreshold) { 7891 V.getORE()->emit([&]() { 7892 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7893 cast<Instruction>(VL[0])) 7894 << "Vectorizing horizontal reduction is possible" 7895 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7896 << " and threshold " 7897 << ore::NV("Threshold", -SLPCostThreshold); 7898 }); 7899 break; 7900 } 7901 7902 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7903 << Cost << ". (HorRdx)\n"); 7904 V.getORE()->emit([&]() { 7905 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7906 cast<Instruction>(VL[0])) 7907 << "Vectorized horizontal reduction with cost " 7908 << ore::NV("Cost", Cost) << " and with tree size " 7909 << ore::NV("TreeSize", V.getTreeSize()); 7910 }); 7911 7912 // Vectorize a tree. 7913 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7914 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7915 7916 // Emit a reduction. If the root is a select (min/max idiom), the insert 7917 // point is the compare condition of that select. 7918 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7919 if (isCmpSelMinMax(RdxRootInst)) 7920 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7921 else 7922 Builder.SetInsertPoint(RdxRootInst); 7923 7924 // To prevent poison from leaking across what used to be sequential, safe, 7925 // scalar boolean logic operations, the reduction operand must be frozen. 7926 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 7927 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 7928 7929 Value *ReducedSubTree = 7930 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7931 7932 if (!VectorizedTree) { 7933 // Initialize the final value in the reduction. 7934 VectorizedTree = ReducedSubTree; 7935 } else { 7936 // Update the final value in the reduction. 7937 Builder.SetCurrentDebugLocation(Loc); 7938 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7939 ReducedSubTree, "op.rdx", ReductionOps); 7940 } 7941 i += ReduxWidth; 7942 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7943 } 7944 7945 if (VectorizedTree) { 7946 // Finish the reduction. 7947 for (; i < NumReducedVals; ++i) { 7948 auto *I = cast<Instruction>(ReducedVals[i]); 7949 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7950 VectorizedTree = 7951 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7952 } 7953 for (auto &Pair : ExternallyUsedValues) { 7954 // Add each externally used value to the final reduction. 7955 for (auto *I : Pair.second) { 7956 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7957 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7958 Pair.first, "op.extra", I); 7959 } 7960 } 7961 7962 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7963 7964 // Mark all scalar reduction ops for deletion, they are replaced by the 7965 // vector reductions. 7966 V.eraseInstructions(IgnoreList); 7967 } 7968 return VectorizedTree != nullptr; 7969 } 7970 7971 unsigned numReductionValues() const { return ReducedVals.size(); } 7972 7973 private: 7974 /// Calculate the cost of a reduction. 7975 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7976 Value *FirstReducedVal, unsigned ReduxWidth, 7977 FastMathFlags FMF) { 7978 Type *ScalarTy = FirstReducedVal->getType(); 7979 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7980 InstructionCost VectorCost, ScalarCost; 7981 switch (RdxKind) { 7982 case RecurKind::Add: 7983 case RecurKind::Mul: 7984 case RecurKind::Or: 7985 case RecurKind::And: 7986 case RecurKind::Xor: 7987 case RecurKind::FAdd: 7988 case RecurKind::FMul: { 7989 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7990 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF); 7991 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7992 break; 7993 } 7994 case RecurKind::FMax: 7995 case RecurKind::FMin: { 7996 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7997 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7998 /*unsigned=*/false); 7999 ScalarCost = 8000 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 8001 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8002 CmpInst::makeCmpResultType(ScalarTy)); 8003 break; 8004 } 8005 case RecurKind::SMax: 8006 case RecurKind::SMin: 8007 case RecurKind::UMax: 8008 case RecurKind::UMin: { 8009 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8010 bool IsUnsigned = 8011 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8012 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned); 8013 ScalarCost = 8014 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 8015 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8016 CmpInst::makeCmpResultType(ScalarTy)); 8017 break; 8018 } 8019 default: 8020 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8021 } 8022 8023 // Scalar cost is repeated for N-1 elements. 8024 ScalarCost *= (ReduxWidth - 1); 8025 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8026 << " for reduction that starts with " << *FirstReducedVal 8027 << " (It is a splitting reduction)\n"); 8028 return VectorCost - ScalarCost; 8029 } 8030 8031 /// Emit a horizontal reduction of the vectorized value. 8032 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8033 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8034 assert(VectorizedValue && "Need to have a vectorized tree node"); 8035 assert(isPowerOf2_32(ReduxWidth) && 8036 "We only handle power-of-two reductions for now"); 8037 8038 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8039 ReductionOps.back()); 8040 } 8041 }; 8042 8043 } // end anonymous namespace 8044 8045 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8046 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8047 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8048 8049 unsigned AggregateSize = 1; 8050 auto *IV = cast<InsertValueInst>(InsertInst); 8051 Type *CurrentType = IV->getType(); 8052 do { 8053 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8054 for (auto *Elt : ST->elements()) 8055 if (Elt != ST->getElementType(0)) // check homogeneity 8056 return None; 8057 AggregateSize *= ST->getNumElements(); 8058 CurrentType = ST->getElementType(0); 8059 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8060 AggregateSize *= AT->getNumElements(); 8061 CurrentType = AT->getElementType(); 8062 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8063 AggregateSize *= VT->getNumElements(); 8064 return AggregateSize; 8065 } else if (CurrentType->isSingleValueType()) { 8066 return AggregateSize; 8067 } else { 8068 return None; 8069 } 8070 } while (true); 8071 } 8072 8073 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8074 TargetTransformInfo *TTI, 8075 SmallVectorImpl<Value *> &BuildVectorOpds, 8076 SmallVectorImpl<Value *> &InsertElts, 8077 unsigned OperandOffset) { 8078 do { 8079 Value *InsertedOperand = LastInsertInst->getOperand(1); 8080 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8081 if (!OperandIndex) 8082 return false; 8083 if (isa<InsertElementInst>(InsertedOperand) || 8084 isa<InsertValueInst>(InsertedOperand)) { 8085 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8086 BuildVectorOpds, InsertElts, *OperandIndex)) 8087 return false; 8088 } else { 8089 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8090 InsertElts[*OperandIndex] = LastInsertInst; 8091 } 8092 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8093 } while (LastInsertInst != nullptr && 8094 (isa<InsertValueInst>(LastInsertInst) || 8095 isa<InsertElementInst>(LastInsertInst)) && 8096 LastInsertInst->hasOneUse()); 8097 return true; 8098 } 8099 8100 /// Recognize construction of vectors like 8101 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8102 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8103 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8104 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8105 /// starting from the last insertelement or insertvalue instruction. 8106 /// 8107 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8108 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8109 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8110 /// 8111 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8112 /// 8113 /// \return true if it matches. 8114 static bool findBuildAggregate(Instruction *LastInsertInst, 8115 TargetTransformInfo *TTI, 8116 SmallVectorImpl<Value *> &BuildVectorOpds, 8117 SmallVectorImpl<Value *> &InsertElts) { 8118 8119 assert((isa<InsertElementInst>(LastInsertInst) || 8120 isa<InsertValueInst>(LastInsertInst)) && 8121 "Expected insertelement or insertvalue instruction!"); 8122 8123 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8124 "Expected empty result vectors!"); 8125 8126 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8127 if (!AggregateSize) 8128 return false; 8129 BuildVectorOpds.resize(*AggregateSize); 8130 InsertElts.resize(*AggregateSize); 8131 8132 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8133 0)) { 8134 llvm::erase_value(BuildVectorOpds, nullptr); 8135 llvm::erase_value(InsertElts, nullptr); 8136 if (BuildVectorOpds.size() >= 2) 8137 return true; 8138 } 8139 8140 return false; 8141 } 8142 8143 /// Try and get a reduction value from a phi node. 8144 /// 8145 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8146 /// if they come from either \p ParentBB or a containing loop latch. 8147 /// 8148 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8149 /// if not possible. 8150 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8151 BasicBlock *ParentBB, LoopInfo *LI) { 8152 // There are situations where the reduction value is not dominated by the 8153 // reduction phi. Vectorizing such cases has been reported to cause 8154 // miscompiles. See PR25787. 8155 auto DominatedReduxValue = [&](Value *R) { 8156 return isa<Instruction>(R) && 8157 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8158 }; 8159 8160 Value *Rdx = nullptr; 8161 8162 // Return the incoming value if it comes from the same BB as the phi node. 8163 if (P->getIncomingBlock(0) == ParentBB) { 8164 Rdx = P->getIncomingValue(0); 8165 } else if (P->getIncomingBlock(1) == ParentBB) { 8166 Rdx = P->getIncomingValue(1); 8167 } 8168 8169 if (Rdx && DominatedReduxValue(Rdx)) 8170 return Rdx; 8171 8172 // Otherwise, check whether we have a loop latch to look at. 8173 Loop *BBL = LI->getLoopFor(ParentBB); 8174 if (!BBL) 8175 return nullptr; 8176 BasicBlock *BBLatch = BBL->getLoopLatch(); 8177 if (!BBLatch) 8178 return nullptr; 8179 8180 // There is a loop latch, return the incoming value if it comes from 8181 // that. This reduction pattern occasionally turns up. 8182 if (P->getIncomingBlock(0) == BBLatch) { 8183 Rdx = P->getIncomingValue(0); 8184 } else if (P->getIncomingBlock(1) == BBLatch) { 8185 Rdx = P->getIncomingValue(1); 8186 } 8187 8188 if (Rdx && DominatedReduxValue(Rdx)) 8189 return Rdx; 8190 8191 return nullptr; 8192 } 8193 8194 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8195 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8196 return true; 8197 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8198 return true; 8199 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8200 return true; 8201 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8202 return true; 8203 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8204 return true; 8205 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8206 return true; 8207 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8208 return true; 8209 return false; 8210 } 8211 8212 /// Attempt to reduce a horizontal reduction. 8213 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8214 /// with reduction operators \a Root (or one of its operands) in a basic block 8215 /// \a BB, then check if it can be done. If horizontal reduction is not found 8216 /// and root instruction is a binary operation, vectorization of the operands is 8217 /// attempted. 8218 /// \returns true if a horizontal reduction was matched and reduced or operands 8219 /// of one of the binary instruction were vectorized. 8220 /// \returns false if a horizontal reduction was not matched (or not possible) 8221 /// or no vectorization of any binary operation feeding \a Root instruction was 8222 /// performed. 8223 static bool tryToVectorizeHorReductionOrInstOperands( 8224 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8225 TargetTransformInfo *TTI, 8226 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8227 if (!ShouldVectorizeHor) 8228 return false; 8229 8230 if (!Root) 8231 return false; 8232 8233 if (Root->getParent() != BB || isa<PHINode>(Root)) 8234 return false; 8235 // Start analysis starting from Root instruction. If horizontal reduction is 8236 // found, try to vectorize it. If it is not a horizontal reduction or 8237 // vectorization is not possible or not effective, and currently analyzed 8238 // instruction is a binary operation, try to vectorize the operands, using 8239 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8240 // the same procedure considering each operand as a possible root of the 8241 // horizontal reduction. 8242 // Interrupt the process if the Root instruction itself was vectorized or all 8243 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8244 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8245 // CmpInsts so we can skip extra attempts in 8246 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8247 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8248 SmallPtrSet<Value *, 8> VisitedInstrs; 8249 bool Res = false; 8250 while (!Stack.empty()) { 8251 Instruction *Inst; 8252 unsigned Level; 8253 std::tie(Inst, Level) = Stack.pop_back_val(); 8254 // Do not try to analyze instruction that has already been vectorized. 8255 // This may happen when we vectorize instruction operands on a previous 8256 // iteration while stack was populated before that happened. 8257 if (R.isDeleted(Inst)) 8258 continue; 8259 Value *B0, *B1; 8260 bool IsBinop = matchRdxBop(Inst, B0, B1); 8261 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8262 if (IsBinop || IsSelect) { 8263 HorizontalReduction HorRdx; 8264 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8265 if (HorRdx.tryToReduce(R, TTI)) { 8266 Res = true; 8267 // Set P to nullptr to avoid re-analysis of phi node in 8268 // matchAssociativeReduction function unless this is the root node. 8269 P = nullptr; 8270 continue; 8271 } 8272 } 8273 if (P && IsBinop) { 8274 Inst = dyn_cast<Instruction>(B0); 8275 if (Inst == P) 8276 Inst = dyn_cast<Instruction>(B1); 8277 if (!Inst) { 8278 // Set P to nullptr to avoid re-analysis of phi node in 8279 // matchAssociativeReduction function unless this is the root node. 8280 P = nullptr; 8281 continue; 8282 } 8283 } 8284 } 8285 // Set P to nullptr to avoid re-analysis of phi node in 8286 // matchAssociativeReduction function unless this is the root node. 8287 P = nullptr; 8288 // Do not try to vectorize CmpInst operands, this is done separately. 8289 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8290 Res = true; 8291 continue; 8292 } 8293 8294 // Try to vectorize operands. 8295 // Continue analysis for the instruction from the same basic block only to 8296 // save compile time. 8297 if (++Level < RecursionMaxDepth) 8298 for (auto *Op : Inst->operand_values()) 8299 if (VisitedInstrs.insert(Op).second) 8300 if (auto *I = dyn_cast<Instruction>(Op)) 8301 // Do not try to vectorize CmpInst operands, this is done 8302 // separately. 8303 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8304 I->getParent() == BB) 8305 Stack.emplace_back(I, Level); 8306 } 8307 return Res; 8308 } 8309 8310 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8311 BasicBlock *BB, BoUpSLP &R, 8312 TargetTransformInfo *TTI) { 8313 auto *I = dyn_cast_or_null<Instruction>(V); 8314 if (!I) 8315 return false; 8316 8317 if (!isa<BinaryOperator>(I)) 8318 P = nullptr; 8319 // Try to match and vectorize a horizontal reduction. 8320 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8321 return tryToVectorize(I, R); 8322 }; 8323 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8324 ExtraVectorization); 8325 } 8326 8327 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8328 BasicBlock *BB, BoUpSLP &R) { 8329 const DataLayout &DL = BB->getModule()->getDataLayout(); 8330 if (!R.canMapToVector(IVI->getType(), DL)) 8331 return false; 8332 8333 SmallVector<Value *, 16> BuildVectorOpds; 8334 SmallVector<Value *, 16> BuildVectorInsts; 8335 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8336 return false; 8337 8338 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8339 // Aggregate value is unlikely to be processed in vector register, we need to 8340 // extract scalars into scalar registers, so NeedExtraction is set true. 8341 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false); 8342 } 8343 8344 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8345 BasicBlock *BB, BoUpSLP &R) { 8346 SmallVector<Value *, 16> BuildVectorInsts; 8347 SmallVector<Value *, 16> BuildVectorOpds; 8348 SmallVector<int> Mask; 8349 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8350 (llvm::all_of(BuildVectorOpds, 8351 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8352 isShuffle(BuildVectorOpds, Mask))) 8353 return false; 8354 8355 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8356 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true); 8357 } 8358 8359 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8360 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8361 bool AtTerminator) { 8362 bool OpsChanged = false; 8363 SmallVector<Instruction *, 4> PostponedCmps; 8364 for (auto *I : reverse(Instructions)) { 8365 if (R.isDeleted(I)) 8366 continue; 8367 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8368 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8369 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8370 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8371 else if (isa<CmpInst>(I)) 8372 PostponedCmps.push_back(I); 8373 } 8374 if (AtTerminator) { 8375 // Try to find reductions first. 8376 for (Instruction *I : PostponedCmps) { 8377 if (R.isDeleted(I)) 8378 continue; 8379 for (Value *Op : I->operands()) 8380 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8381 } 8382 // Try to vectorize operands as vector bundles. 8383 for (Instruction *I : PostponedCmps) { 8384 if (R.isDeleted(I)) 8385 continue; 8386 OpsChanged |= tryToVectorize(I, R); 8387 } 8388 Instructions.clear(); 8389 } else { 8390 // Insert in reverse order since the PostponedCmps vector was filled in 8391 // reverse order. 8392 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8393 } 8394 return OpsChanged; 8395 } 8396 8397 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8398 bool Changed = false; 8399 SmallVector<Value *, 4> Incoming; 8400 SmallPtrSet<Value *, 16> VisitedInstrs; 8401 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 8402 // node. Allows better to identify the chains that can be vectorized in the 8403 // better way. 8404 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 8405 8406 bool HaveVectorizedPhiNodes = true; 8407 while (HaveVectorizedPhiNodes) { 8408 HaveVectorizedPhiNodes = false; 8409 8410 // Collect the incoming values from the PHIs. 8411 Incoming.clear(); 8412 for (Instruction &I : *BB) { 8413 PHINode *P = dyn_cast<PHINode>(&I); 8414 if (!P) 8415 break; 8416 8417 // No need to analyze deleted, vectorized and non-vectorizable 8418 // instructions. 8419 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 8420 isValidElementType(P->getType())) 8421 Incoming.push_back(P); 8422 } 8423 8424 // Find the corresponding non-phi nodes for better matching when trying to 8425 // build the tree. 8426 for (Value *V : Incoming) { 8427 SmallVectorImpl<Value *> &Opcodes = 8428 PHIToOpcodes.try_emplace(V).first->getSecond(); 8429 if (!Opcodes.empty()) 8430 continue; 8431 SmallVector<Value *, 4> Nodes(1, V); 8432 SmallPtrSet<Value *, 4> Visited; 8433 while (!Nodes.empty()) { 8434 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 8435 if (!Visited.insert(PHI).second) 8436 continue; 8437 for (Value *V : PHI->incoming_values()) { 8438 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 8439 Nodes.push_back(PHI1); 8440 continue; 8441 } 8442 Opcodes.emplace_back(V); 8443 } 8444 } 8445 } 8446 8447 // Sort by type, parent, operands. 8448 stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) { 8449 assert(isValidElementType(V1->getType()) && 8450 isValidElementType(V2->getType()) && 8451 "Expected vectorizable types only."); 8452 // It is fine to compare type IDs here, since we expect only vectorizable 8453 // types, like ints, floats and pointers, we don't care about other type. 8454 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 8455 return true; 8456 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 8457 return false; 8458 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8459 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8460 if (Opcodes1.size() < Opcodes2.size()) 8461 return true; 8462 if (Opcodes1.size() > Opcodes2.size()) 8463 return false; 8464 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8465 // Undefs are compatible with any other value. 8466 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8467 continue; 8468 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8469 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8470 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 8471 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 8472 if (!NodeI1) 8473 return NodeI2 != nullptr; 8474 if (!NodeI2) 8475 return false; 8476 assert((NodeI1 == NodeI2) == 8477 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 8478 "Different nodes should have different DFS numbers"); 8479 if (NodeI1 != NodeI2) 8480 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 8481 InstructionsState S = getSameOpcode({I1, I2}); 8482 if (S.getOpcode()) 8483 continue; 8484 return I1->getOpcode() < I2->getOpcode(); 8485 } 8486 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8487 continue; 8488 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 8489 return true; 8490 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 8491 return false; 8492 } 8493 return false; 8494 }); 8495 8496 auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 8497 if (V1 == V2) 8498 return true; 8499 if (V1->getType() != V2->getType()) 8500 return false; 8501 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8502 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8503 if (Opcodes1.size() != Opcodes2.size()) 8504 return false; 8505 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8506 // Undefs are compatible with any other value. 8507 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8508 continue; 8509 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8510 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8511 if (I1->getParent() != I2->getParent()) 8512 return false; 8513 InstructionsState S = getSameOpcode({I1, I2}); 8514 if (S.getOpcode()) 8515 continue; 8516 return false; 8517 } 8518 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8519 continue; 8520 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 8521 return false; 8522 } 8523 return true; 8524 }; 8525 8526 // Try to vectorize elements base on their type. 8527 SmallVector<Value *, 4> Candidates; 8528 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 8529 E = Incoming.end(); 8530 IncIt != E;) { 8531 8532 // Look for the next elements with the same type, parent and operand 8533 // kinds. 8534 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 8535 while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) { 8536 VisitedInstrs.insert(*SameTypeIt); 8537 ++SameTypeIt; 8538 } 8539 8540 // Try to vectorize them. 8541 unsigned NumElts = (SameTypeIt - IncIt); 8542 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 8543 << NumElts << ")\n"); 8544 // The order in which the phi nodes appear in the program does not matter. 8545 // So allow tryToVectorizeList to reorder them if it is beneficial. This 8546 // is done when there are exactly two elements since tryToVectorizeList 8547 // asserts that there are only two values when AllowReorder is true. 8548 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 8549 /*AllowReorder=*/true)) { 8550 // Success start over because instructions might have been changed. 8551 HaveVectorizedPhiNodes = true; 8552 Changed = true; 8553 } else if (NumElts < 4 && 8554 (Candidates.empty() || 8555 Candidates.front()->getType() == (*IncIt)->getType())) { 8556 Candidates.append(IncIt, std::next(IncIt, NumElts)); 8557 } 8558 // Final attempt to vectorize phis with the same types. 8559 if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) { 8560 if (Candidates.size() > 1 && 8561 tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) { 8562 // Success start over because instructions might have been changed. 8563 HaveVectorizedPhiNodes = true; 8564 Changed = true; 8565 } 8566 Candidates.clear(); 8567 } 8568 8569 // Start over at the next instruction of a different type (or the end). 8570 IncIt = SameTypeIt; 8571 } 8572 } 8573 8574 VisitedInstrs.clear(); 8575 8576 SmallVector<Instruction *, 8> PostProcessInstructions; 8577 SmallDenseSet<Instruction *, 4> KeyNodes; 8578 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 8579 // Skip instructions with scalable type. The num of elements is unknown at 8580 // compile-time for scalable type. 8581 if (isa<ScalableVectorType>(it->getType())) 8582 continue; 8583 8584 // Skip instructions marked for the deletion. 8585 if (R.isDeleted(&*it)) 8586 continue; 8587 // We may go through BB multiple times so skip the one we have checked. 8588 if (!VisitedInstrs.insert(&*it).second) { 8589 if (it->use_empty() && KeyNodes.contains(&*it) && 8590 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8591 it->isTerminator())) { 8592 // We would like to start over since some instructions are deleted 8593 // and the iterator may become invalid value. 8594 Changed = true; 8595 it = BB->begin(); 8596 e = BB->end(); 8597 } 8598 continue; 8599 } 8600 8601 if (isa<DbgInfoIntrinsic>(it)) 8602 continue; 8603 8604 // Try to vectorize reductions that use PHINodes. 8605 if (PHINode *P = dyn_cast<PHINode>(it)) { 8606 // Check that the PHI is a reduction PHI. 8607 if (P->getNumIncomingValues() == 2) { 8608 // Try to match and vectorize a horizontal reduction. 8609 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 8610 TTI)) { 8611 Changed = true; 8612 it = BB->begin(); 8613 e = BB->end(); 8614 continue; 8615 } 8616 } 8617 // Try to vectorize the incoming values of the PHI, to catch reductions 8618 // that feed into PHIs. 8619 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 8620 // Skip if the incoming block is the current BB for now. Also, bypass 8621 // unreachable IR for efficiency and to avoid crashing. 8622 // TODO: Collect the skipped incoming values and try to vectorize them 8623 // after processing BB. 8624 if (BB == P->getIncomingBlock(I) || 8625 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 8626 continue; 8627 8628 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 8629 P->getIncomingBlock(I), R, TTI); 8630 } 8631 continue; 8632 } 8633 8634 // Ran into an instruction without users, like terminator, or function call 8635 // with ignored return value, store. Ignore unused instructions (basing on 8636 // instruction type, except for CallInst and InvokeInst). 8637 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 8638 isa<InvokeInst>(it))) { 8639 KeyNodes.insert(&*it); 8640 bool OpsChanged = false; 8641 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 8642 for (auto *V : it->operand_values()) { 8643 // Try to match and vectorize a horizontal reduction. 8644 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 8645 } 8646 } 8647 // Start vectorization of post-process list of instructions from the 8648 // top-tree instructions to try to vectorize as many instructions as 8649 // possible. 8650 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8651 it->isTerminator()); 8652 if (OpsChanged) { 8653 // We would like to start over since some instructions are deleted 8654 // and the iterator may become invalid value. 8655 Changed = true; 8656 it = BB->begin(); 8657 e = BB->end(); 8658 continue; 8659 } 8660 } 8661 8662 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 8663 isa<InsertValueInst>(it)) 8664 PostProcessInstructions.push_back(&*it); 8665 } 8666 8667 return Changed; 8668 } 8669 8670 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 8671 auto Changed = false; 8672 for (auto &Entry : GEPs) { 8673 // If the getelementptr list has fewer than two elements, there's nothing 8674 // to do. 8675 if (Entry.second.size() < 2) 8676 continue; 8677 8678 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 8679 << Entry.second.size() << ".\n"); 8680 8681 // Process the GEP list in chunks suitable for the target's supported 8682 // vector size. If a vector register can't hold 1 element, we are done. We 8683 // are trying to vectorize the index computations, so the maximum number of 8684 // elements is based on the size of the index expression, rather than the 8685 // size of the GEP itself (the target's pointer size). 8686 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8687 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 8688 if (MaxVecRegSize < EltSize) 8689 continue; 8690 8691 unsigned MaxElts = MaxVecRegSize / EltSize; 8692 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 8693 auto Len = std::min<unsigned>(BE - BI, MaxElts); 8694 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 8695 8696 // Initialize a set a candidate getelementptrs. Note that we use a 8697 // SetVector here to preserve program order. If the index computations 8698 // are vectorizable and begin with loads, we want to minimize the chance 8699 // of having to reorder them later. 8700 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 8701 8702 // Some of the candidates may have already been vectorized after we 8703 // initially collected them. If so, they are marked as deleted, so remove 8704 // them from the set of candidates. 8705 Candidates.remove_if( 8706 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 8707 8708 // Remove from the set of candidates all pairs of getelementptrs with 8709 // constant differences. Such getelementptrs are likely not good 8710 // candidates for vectorization in a bottom-up phase since one can be 8711 // computed from the other. We also ensure all candidate getelementptr 8712 // indices are unique. 8713 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 8714 auto *GEPI = GEPList[I]; 8715 if (!Candidates.count(GEPI)) 8716 continue; 8717 auto *SCEVI = SE->getSCEV(GEPList[I]); 8718 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 8719 auto *GEPJ = GEPList[J]; 8720 auto *SCEVJ = SE->getSCEV(GEPList[J]); 8721 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 8722 Candidates.remove(GEPI); 8723 Candidates.remove(GEPJ); 8724 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 8725 Candidates.remove(GEPJ); 8726 } 8727 } 8728 } 8729 8730 // We break out of the above computation as soon as we know there are 8731 // fewer than two candidates remaining. 8732 if (Candidates.size() < 2) 8733 continue; 8734 8735 // Add the single, non-constant index of each candidate to the bundle. We 8736 // ensured the indices met these constraints when we originally collected 8737 // the getelementptrs. 8738 SmallVector<Value *, 16> Bundle(Candidates.size()); 8739 auto BundleIndex = 0u; 8740 for (auto *V : Candidates) { 8741 auto *GEP = cast<GetElementPtrInst>(V); 8742 auto *GEPIdx = GEP->idx_begin()->get(); 8743 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 8744 Bundle[BundleIndex++] = GEPIdx; 8745 } 8746 8747 // Try and vectorize the indices. We are currently only interested in 8748 // gather-like cases of the form: 8749 // 8750 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8751 // 8752 // where the loads of "a", the loads of "b", and the subtractions can be 8753 // performed in parallel. It's likely that detecting this pattern in a 8754 // bottom-up phase will be simpler and less costly than building a 8755 // full-blown top-down phase beginning at the consecutive loads. 8756 Changed |= tryToVectorizeList(Bundle, R); 8757 } 8758 } 8759 return Changed; 8760 } 8761 8762 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8763 bool Changed = false; 8764 // Sort by type, base pointers and values operand. Value operands must be 8765 // compatible (have the same opcode, same parent), otherwise it is 8766 // definitely not profitable to try to vectorize them. 8767 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 8768 if (V->getPointerOperandType()->getTypeID() < 8769 V2->getPointerOperandType()->getTypeID()) 8770 return true; 8771 if (V->getPointerOperandType()->getTypeID() > 8772 V2->getPointerOperandType()->getTypeID()) 8773 return false; 8774 // UndefValues are compatible with all other values. 8775 if (isa<UndefValue>(V->getValueOperand()) || 8776 isa<UndefValue>(V2->getValueOperand())) 8777 return false; 8778 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 8779 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 8780 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 8781 DT->getNode(I1->getParent()); 8782 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 8783 DT->getNode(I2->getParent()); 8784 assert(NodeI1 && "Should only process reachable instructions"); 8785 assert(NodeI1 && "Should only process reachable instructions"); 8786 assert((NodeI1 == NodeI2) == 8787 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 8788 "Different nodes should have different DFS numbers"); 8789 if (NodeI1 != NodeI2) 8790 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 8791 InstructionsState S = getSameOpcode({I1, I2}); 8792 if (S.getOpcode()) 8793 return false; 8794 return I1->getOpcode() < I2->getOpcode(); 8795 } 8796 if (isa<Constant>(V->getValueOperand()) && 8797 isa<Constant>(V2->getValueOperand())) 8798 return false; 8799 return V->getValueOperand()->getValueID() < 8800 V2->getValueOperand()->getValueID(); 8801 }; 8802 8803 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 8804 if (V1 == V2) 8805 return true; 8806 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 8807 return false; 8808 // Undefs are compatible with any other value. 8809 if (isa<UndefValue>(V1->getValueOperand()) || 8810 isa<UndefValue>(V2->getValueOperand())) 8811 return true; 8812 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 8813 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 8814 if (I1->getParent() != I2->getParent()) 8815 return false; 8816 InstructionsState S = getSameOpcode({I1, I2}); 8817 return S.getOpcode() > 0; 8818 } 8819 if (isa<Constant>(V1->getValueOperand()) && 8820 isa<Constant>(V2->getValueOperand())) 8821 return true; 8822 return V1->getValueOperand()->getValueID() == 8823 V2->getValueOperand()->getValueID(); 8824 }; 8825 8826 // Attempt to sort and vectorize each of the store-groups. 8827 for (auto &Pair : Stores) { 8828 if (Pair.second.size() < 2) 8829 continue; 8830 8831 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8832 << Pair.second.size() << ".\n"); 8833 8834 stable_sort(Pair.second, StoreSorter); 8835 8836 // Try to vectorize elements based on their compatibility. 8837 for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(), 8838 E = Pair.second.end(); 8839 IncIt != E;) { 8840 8841 // Look for the next elements with the same type. 8842 ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt; 8843 Type *EltTy = (*IncIt)->getPointerOperand()->getType(); 8844 8845 while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt)) 8846 ++SameTypeIt; 8847 8848 // Try to vectorize them. 8849 unsigned NumElts = (SameTypeIt - IncIt); 8850 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores (" 8851 << NumElts << ")\n"); 8852 if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() && 8853 vectorizeStores(makeArrayRef(IncIt, NumElts), R)) { 8854 // Success start over because instructions might have been changed. 8855 Changed = true; 8856 } 8857 8858 // Start over at the next instruction of a different type (or the end). 8859 IncIt = SameTypeIt; 8860 } 8861 } 8862 return Changed; 8863 } 8864 8865 char SLPVectorizer::ID = 0; 8866 8867 static const char lv_name[] = "SLP Vectorizer"; 8868 8869 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8870 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8871 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8872 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8873 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8874 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8875 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8876 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8877 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8878 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8879 8880 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8881