1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(const Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 const auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (const auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 ArrayRef<Value *> UserIgnoreLst = None); 899 900 /// Builds external uses of the vectorized scalars, i.e. the list of 901 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 902 /// ExternallyUsedValues contains additional list of external uses to handle 903 /// vectorization of reductions. 904 void 905 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 906 907 /// Clear the internal data structures that are created by 'buildTree'. 908 void deleteTree() { 909 VectorizableTree.clear(); 910 ScalarToTreeEntry.clear(); 911 MustGather.clear(); 912 ExternalUses.clear(); 913 for (auto &Iter : BlocksSchedules) { 914 BlockScheduling *BS = Iter.second.get(); 915 BS->clear(); 916 } 917 MinBWs.clear(); 918 InstrElementSize.clear(); 919 } 920 921 unsigned getTreeSize() const { return VectorizableTree.size(); } 922 923 /// Perform LICM and CSE on the newly generated gather sequences. 924 void optimizeGatherSequence(); 925 926 /// Checks if the specified gather tree entry \p TE can be represented as a 927 /// shuffled vector entry + (possibly) permutation with other gathers. It 928 /// implements the checks only for possibly ordered scalars (Loads, 929 /// ExtractElement, ExtractValue), which can be part of the graph. 930 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 931 932 /// Sort loads into increasing pointers offsets to allow greater clustering. 933 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 934 935 /// Gets reordering data for the given tree entry. If the entry is vectorized 936 /// - just return ReorderIndices, otherwise check if the scalars can be 937 /// reordered and return the most optimal order. 938 /// \param TopToBottom If true, include the order of vectorized stores and 939 /// insertelement nodes, otherwise skip them. 940 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 941 942 /// Reorders the current graph to the most profitable order starting from the 943 /// root node to the leaf nodes. The best order is chosen only from the nodes 944 /// of the same size (vectorization factor). Smaller nodes are considered 945 /// parts of subgraph with smaller VF and they are reordered independently. We 946 /// can make it because we still need to extend smaller nodes to the wider VF 947 /// and we can merge reordering shuffles with the widening shuffles. 948 void reorderTopToBottom(); 949 950 /// Reorders the current graph to the most profitable order starting from 951 /// leaves to the root. It allows to rotate small subgraphs and reduce the 952 /// number of reshuffles if the leaf nodes use the same order. In this case we 953 /// can merge the orders and just shuffle user node instead of shuffling its 954 /// operands. Plus, even the leaf nodes have different orders, it allows to 955 /// sink reordering in the graph closer to the root node and merge it later 956 /// during analysis. 957 void reorderBottomToTop(bool IgnoreReorder = false); 958 959 /// \return The vector element size in bits to use when vectorizing the 960 /// expression tree ending at \p V. If V is a store, the size is the width of 961 /// the stored value. Otherwise, the size is the width of the largest loaded 962 /// value reaching V. This method is used by the vectorizer to calculate 963 /// vectorization factors. 964 unsigned getVectorElementSize(Value *V); 965 966 /// Compute the minimum type sizes required to represent the entries in a 967 /// vectorizable tree. 968 void computeMinimumValueSizes(); 969 970 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 971 unsigned getMaxVecRegSize() const { 972 return MaxVecRegSize; 973 } 974 975 // \returns minimum vector register size as set by cl::opt. 976 unsigned getMinVecRegSize() const { 977 return MinVecRegSize; 978 } 979 980 unsigned getMinVF(unsigned Sz) const { 981 return std::max(2U, getMinVecRegSize() / Sz); 982 } 983 984 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 985 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 986 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 987 return MaxVF ? MaxVF : UINT_MAX; 988 } 989 990 /// Check if homogeneous aggregate is isomorphic to some VectorType. 991 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 992 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 993 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 994 /// 995 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 996 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 997 998 /// \returns True if the VectorizableTree is both tiny and not fully 999 /// vectorizable. We do not vectorize such trees. 1000 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1001 1002 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1003 /// can be load combined in the backend. Load combining may not be allowed in 1004 /// the IR optimizer, so we do not want to alter the pattern. For example, 1005 /// partially transforming a scalar bswap() pattern into vector code is 1006 /// effectively impossible for the backend to undo. 1007 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1008 /// may not be necessary. 1009 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1010 1011 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1012 /// can be load combined in the backend. Load combining may not be allowed in 1013 /// the IR optimizer, so we do not want to alter the pattern. For example, 1014 /// partially transforming a scalar bswap() pattern into vector code is 1015 /// effectively impossible for the backend to undo. 1016 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1017 /// may not be necessary. 1018 bool isLoadCombineCandidate() const; 1019 1020 OptimizationRemarkEmitter *getORE() { return ORE; } 1021 1022 /// This structure holds any data we need about the edges being traversed 1023 /// during buildTree_rec(). We keep track of: 1024 /// (i) the user TreeEntry index, and 1025 /// (ii) the index of the edge. 1026 struct EdgeInfo { 1027 EdgeInfo() = default; 1028 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1029 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1030 /// The user TreeEntry. 1031 TreeEntry *UserTE = nullptr; 1032 /// The operand index of the use. 1033 unsigned EdgeIdx = UINT_MAX; 1034 #ifndef NDEBUG 1035 friend inline raw_ostream &operator<<(raw_ostream &OS, 1036 const BoUpSLP::EdgeInfo &EI) { 1037 EI.dump(OS); 1038 return OS; 1039 } 1040 /// Debug print. 1041 void dump(raw_ostream &OS) const { 1042 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1043 << " EdgeIdx:" << EdgeIdx << "}"; 1044 } 1045 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1046 #endif 1047 }; 1048 1049 /// A helper class used for scoring candidates for two consecutive lanes. 1050 class LookAheadHeuristics { 1051 const DataLayout &DL; 1052 ScalarEvolution &SE; 1053 const BoUpSLP &R; 1054 int NumLanes; // Total number of lanes (aka vectorization factor). 1055 int MaxLevel; // The maximum recursion depth for accumulating score. 1056 1057 public: 1058 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1059 const BoUpSLP &R, int NumLanes, int MaxLevel) 1060 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1061 1062 // The hard-coded scores listed here are not very important, though it shall 1063 // be higher for better matches to improve the resulting cost. When 1064 // computing the scores of matching one sub-tree with another, we are 1065 // basically counting the number of values that are matching. So even if all 1066 // scores are set to 1, we would still get a decent matching result. 1067 // However, sometimes we have to break ties. For example we may have to 1068 // choose between matching loads vs matching opcodes. This is what these 1069 // scores are helping us with: they provide the order of preference. Also, 1070 // this is important if the scalar is externally used or used in another 1071 // tree entry node in the different lane. 1072 1073 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1074 static const int ScoreConsecutiveLoads = 4; 1075 /// The same load multiple times. This should have a better score than 1076 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1077 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1078 /// a vector load and 1.0 for a broadcast. 1079 static const int ScoreSplatLoads = 3; 1080 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1081 static const int ScoreReversedLoads = 3; 1082 /// ExtractElementInst from same vector and consecutive indexes. 1083 static const int ScoreConsecutiveExtracts = 4; 1084 /// ExtractElementInst from same vector and reversed indices. 1085 static const int ScoreReversedExtracts = 3; 1086 /// Constants. 1087 static const int ScoreConstants = 2; 1088 /// Instructions with the same opcode. 1089 static const int ScoreSameOpcode = 2; 1090 /// Instructions with alt opcodes (e.g, add + sub). 1091 static const int ScoreAltOpcodes = 1; 1092 /// Identical instructions (a.k.a. splat or broadcast). 1093 static const int ScoreSplat = 1; 1094 /// Matching with an undef is preferable to failing. 1095 static const int ScoreUndef = 1; 1096 /// Score for failing to find a decent match. 1097 static const int ScoreFail = 0; 1098 /// Score if all users are vectorized. 1099 static const int ScoreAllUserVectorized = 1; 1100 1101 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1102 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1103 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1104 /// MainAltOps. 1105 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1106 ArrayRef<Value *> MainAltOps) const { 1107 if (V1 == V2) { 1108 if (isa<LoadInst>(V1)) { 1109 // Retruns true if the users of V1 and V2 won't need to be extracted. 1110 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1111 // Bail out if we have too many uses to save compilation time. 1112 static constexpr unsigned Limit = 8; 1113 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1114 return false; 1115 1116 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1117 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1118 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1119 }); 1120 }; 1121 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1122 }; 1123 // A broadcast of a load can be cheaper on some targets. 1124 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1125 ElementCount::getFixed(NumLanes)) && 1126 ((int)V1->getNumUses() == NumLanes || 1127 AllUsersAreInternal(V1, V2))) 1128 return LookAheadHeuristics::ScoreSplatLoads; 1129 } 1130 return LookAheadHeuristics::ScoreSplat; 1131 } 1132 1133 auto *LI1 = dyn_cast<LoadInst>(V1); 1134 auto *LI2 = dyn_cast<LoadInst>(V2); 1135 if (LI1 && LI2) { 1136 if (LI1->getParent() != LI2->getParent()) 1137 return LookAheadHeuristics::ScoreFail; 1138 1139 Optional<int> Dist = getPointersDiff( 1140 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1141 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1142 if (!Dist || *Dist == 0) 1143 return LookAheadHeuristics::ScoreFail; 1144 // The distance is too large - still may be profitable to use masked 1145 // loads/gathers. 1146 if (std::abs(*Dist) > NumLanes / 2) 1147 return LookAheadHeuristics::ScoreAltOpcodes; 1148 // This still will detect consecutive loads, but we might have "holes" 1149 // in some cases. It is ok for non-power-2 vectorization and may produce 1150 // better results. It should not affect current vectorization. 1151 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1152 : LookAheadHeuristics::ScoreReversedLoads; 1153 } 1154 1155 auto *C1 = dyn_cast<Constant>(V1); 1156 auto *C2 = dyn_cast<Constant>(V2); 1157 if (C1 && C2) 1158 return LookAheadHeuristics::ScoreConstants; 1159 1160 // Extracts from consecutive indexes of the same vector better score as 1161 // the extracts could be optimized away. 1162 Value *EV1; 1163 ConstantInt *Ex1Idx; 1164 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1165 // Undefs are always profitable for extractelements. 1166 if (isa<UndefValue>(V2)) 1167 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1168 Value *EV2 = nullptr; 1169 ConstantInt *Ex2Idx = nullptr; 1170 if (match(V2, 1171 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1172 m_Undef())))) { 1173 // Undefs are always profitable for extractelements. 1174 if (!Ex2Idx) 1175 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1176 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1177 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1178 if (EV2 == EV1) { 1179 int Idx1 = Ex1Idx->getZExtValue(); 1180 int Idx2 = Ex2Idx->getZExtValue(); 1181 int Dist = Idx2 - Idx1; 1182 // The distance is too large - still may be profitable to use 1183 // shuffles. 1184 if (std::abs(Dist) == 0) 1185 return LookAheadHeuristics::ScoreSplat; 1186 if (std::abs(Dist) > NumLanes / 2) 1187 return LookAheadHeuristics::ScoreSameOpcode; 1188 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1189 : LookAheadHeuristics::ScoreReversedExtracts; 1190 } 1191 return LookAheadHeuristics::ScoreAltOpcodes; 1192 } 1193 return LookAheadHeuristics::ScoreFail; 1194 } 1195 1196 auto *I1 = dyn_cast<Instruction>(V1); 1197 auto *I2 = dyn_cast<Instruction>(V2); 1198 if (I1 && I2) { 1199 if (I1->getParent() != I2->getParent()) 1200 return LookAheadHeuristics::ScoreFail; 1201 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1202 Ops.push_back(I1); 1203 Ops.push_back(I2); 1204 InstructionsState S = getSameOpcode(Ops); 1205 // Note: Only consider instructions with <= 2 operands to avoid 1206 // complexity explosion. 1207 if (S.getOpcode() && 1208 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1209 !S.isAltShuffle()) && 1210 all_of(Ops, [&S](Value *V) { 1211 return cast<Instruction>(V)->getNumOperands() == 1212 S.MainOp->getNumOperands(); 1213 })) 1214 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1215 : LookAheadHeuristics::ScoreSameOpcode; 1216 } 1217 1218 if (isa<UndefValue>(V2)) 1219 return LookAheadHeuristics::ScoreUndef; 1220 1221 return LookAheadHeuristics::ScoreFail; 1222 } 1223 1224 /// Go through the operands of \p LHS and \p RHS recursively until 1225 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1226 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1227 /// of \p U1 and \p U2), except at the beginning of the recursion where 1228 /// these are set to nullptr. 1229 /// 1230 /// For example: 1231 /// \verbatim 1232 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1233 /// \ / \ / \ / \ / 1234 /// + + + + 1235 /// G1 G2 G3 G4 1236 /// \endverbatim 1237 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1238 /// each level recursively, accumulating the score. It starts from matching 1239 /// the additions at level 0, then moves on to the loads (level 1). The 1240 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1241 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1242 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1243 /// Please note that the order of the operands does not matter, as we 1244 /// evaluate the score of all profitable combinations of operands. In 1245 /// other words the score of G1 and G4 is the same as G1 and G2. This 1246 /// heuristic is based on ideas described in: 1247 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1248 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1249 /// Luís F. W. Góes 1250 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1251 Instruction *U2, int CurrLevel, 1252 ArrayRef<Value *> MainAltOps) const { 1253 1254 // Get the shallow score of V1 and V2. 1255 int ShallowScoreAtThisLevel = 1256 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1257 1258 // If reached MaxLevel, 1259 // or if V1 and V2 are not instructions, 1260 // or if they are SPLAT, 1261 // or if they are not consecutive, 1262 // or if profitable to vectorize loads or extractelements, early return 1263 // the current cost. 1264 auto *I1 = dyn_cast<Instruction>(LHS); 1265 auto *I2 = dyn_cast<Instruction>(RHS); 1266 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1267 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1268 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1269 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1270 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1271 ShallowScoreAtThisLevel)) 1272 return ShallowScoreAtThisLevel; 1273 assert(I1 && I2 && "Should have early exited."); 1274 1275 // Contains the I2 operand indexes that got matched with I1 operands. 1276 SmallSet<unsigned, 4> Op2Used; 1277 1278 // Recursion towards the operands of I1 and I2. We are trying all possible 1279 // operand pairs, and keeping track of the best score. 1280 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1281 OpIdx1 != NumOperands1; ++OpIdx1) { 1282 // Try to pair op1I with the best operand of I2. 1283 int MaxTmpScore = 0; 1284 unsigned MaxOpIdx2 = 0; 1285 bool FoundBest = false; 1286 // If I2 is commutative try all combinations. 1287 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1288 unsigned ToIdx = isCommutative(I2) 1289 ? I2->getNumOperands() 1290 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1291 assert(FromIdx <= ToIdx && "Bad index"); 1292 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1293 // Skip operands already paired with OpIdx1. 1294 if (Op2Used.count(OpIdx2)) 1295 continue; 1296 // Recursively calculate the cost at each level 1297 int TmpScore = 1298 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1299 I1, I2, CurrLevel + 1, None); 1300 // Look for the best score. 1301 if (TmpScore > LookAheadHeuristics::ScoreFail && 1302 TmpScore > MaxTmpScore) { 1303 MaxTmpScore = TmpScore; 1304 MaxOpIdx2 = OpIdx2; 1305 FoundBest = true; 1306 } 1307 } 1308 if (FoundBest) { 1309 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1310 Op2Used.insert(MaxOpIdx2); 1311 ShallowScoreAtThisLevel += MaxTmpScore; 1312 } 1313 } 1314 return ShallowScoreAtThisLevel; 1315 } 1316 }; 1317 /// A helper data structure to hold the operands of a vector of instructions. 1318 /// This supports a fixed vector length for all operand vectors. 1319 class VLOperands { 1320 /// For each operand we need (i) the value, and (ii) the opcode that it 1321 /// would be attached to if the expression was in a left-linearized form. 1322 /// This is required to avoid illegal operand reordering. 1323 /// For example: 1324 /// \verbatim 1325 /// 0 Op1 1326 /// |/ 1327 /// Op1 Op2 Linearized + Op2 1328 /// \ / ----------> |/ 1329 /// - - 1330 /// 1331 /// Op1 - Op2 (0 + Op1) - Op2 1332 /// \endverbatim 1333 /// 1334 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1335 /// 1336 /// Another way to think of this is to track all the operations across the 1337 /// path from the operand all the way to the root of the tree and to 1338 /// calculate the operation that corresponds to this path. For example, the 1339 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1340 /// corresponding operation is a '-' (which matches the one in the 1341 /// linearized tree, as shown above). 1342 /// 1343 /// For lack of a better term, we refer to this operation as Accumulated 1344 /// Path Operation (APO). 1345 struct OperandData { 1346 OperandData() = default; 1347 OperandData(Value *V, bool APO, bool IsUsed) 1348 : V(V), APO(APO), IsUsed(IsUsed) {} 1349 /// The operand value. 1350 Value *V = nullptr; 1351 /// TreeEntries only allow a single opcode, or an alternate sequence of 1352 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1353 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1354 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1355 /// (e.g., Add/Mul) 1356 bool APO = false; 1357 /// Helper data for the reordering function. 1358 bool IsUsed = false; 1359 }; 1360 1361 /// During operand reordering, we are trying to select the operand at lane 1362 /// that matches best with the operand at the neighboring lane. Our 1363 /// selection is based on the type of value we are looking for. For example, 1364 /// if the neighboring lane has a load, we need to look for a load that is 1365 /// accessing a consecutive address. These strategies are summarized in the 1366 /// 'ReorderingMode' enumerator. 1367 enum class ReorderingMode { 1368 Load, ///< Matching loads to consecutive memory addresses 1369 Opcode, ///< Matching instructions based on opcode (same or alternate) 1370 Constant, ///< Matching constants 1371 Splat, ///< Matching the same instruction multiple times (broadcast) 1372 Failed, ///< We failed to create a vectorizable group 1373 }; 1374 1375 using OperandDataVec = SmallVector<OperandData, 2>; 1376 1377 /// A vector of operand vectors. 1378 SmallVector<OperandDataVec, 4> OpsVec; 1379 1380 const DataLayout &DL; 1381 ScalarEvolution &SE; 1382 const BoUpSLP &R; 1383 1384 /// \returns the operand data at \p OpIdx and \p Lane. 1385 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1386 return OpsVec[OpIdx][Lane]; 1387 } 1388 1389 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1390 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1391 return OpsVec[OpIdx][Lane]; 1392 } 1393 1394 /// Clears the used flag for all entries. 1395 void clearUsed() { 1396 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1397 OpIdx != NumOperands; ++OpIdx) 1398 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1399 ++Lane) 1400 OpsVec[OpIdx][Lane].IsUsed = false; 1401 } 1402 1403 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1404 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1405 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1406 } 1407 1408 /// \param Lane lane of the operands under analysis. 1409 /// \param OpIdx operand index in \p Lane lane we're looking the best 1410 /// candidate for. 1411 /// \param Idx operand index of the current candidate value. 1412 /// \returns The additional score due to possible broadcasting of the 1413 /// elements in the lane. It is more profitable to have power-of-2 unique 1414 /// elements in the lane, it will be vectorized with higher probability 1415 /// after removing duplicates. Currently the SLP vectorizer supports only 1416 /// vectorization of the power-of-2 number of unique scalars. 1417 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1418 Value *IdxLaneV = getData(Idx, Lane).V; 1419 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1420 return 0; 1421 SmallPtrSet<Value *, 4> Uniques; 1422 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1423 if (Ln == Lane) 1424 continue; 1425 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1426 if (!isa<Instruction>(OpIdxLnV)) 1427 return 0; 1428 Uniques.insert(OpIdxLnV); 1429 } 1430 int UniquesCount = Uniques.size(); 1431 int UniquesCntWithIdxLaneV = 1432 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1433 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1434 int UniquesCntWithOpIdxLaneV = 1435 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1436 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1437 return 0; 1438 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1439 UniquesCntWithOpIdxLaneV) - 1440 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1441 } 1442 1443 /// \param Lane lane of the operands under analysis. 1444 /// \param OpIdx operand index in \p Lane lane we're looking the best 1445 /// candidate for. 1446 /// \param Idx operand index of the current candidate value. 1447 /// \returns The additional score for the scalar which users are all 1448 /// vectorized. 1449 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1450 Value *IdxLaneV = getData(Idx, Lane).V; 1451 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1452 // Do not care about number of uses for vector-like instructions 1453 // (extractelement/extractvalue with constant indices), they are extracts 1454 // themselves and already externally used. Vectorization of such 1455 // instructions does not add extra extractelement instruction, just may 1456 // remove it. 1457 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1458 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1459 return LookAheadHeuristics::ScoreAllUserVectorized; 1460 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1461 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1462 return 0; 1463 return R.areAllUsersVectorized(IdxLaneI, None) 1464 ? LookAheadHeuristics::ScoreAllUserVectorized 1465 : 0; 1466 } 1467 1468 /// Score scaling factor for fully compatible instructions but with 1469 /// different number of external uses. Allows better selection of the 1470 /// instructions with less external uses. 1471 static const int ScoreScaleFactor = 10; 1472 1473 /// \Returns the look-ahead score, which tells us how much the sub-trees 1474 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1475 /// score. This helps break ties in an informed way when we cannot decide on 1476 /// the order of the operands by just considering the immediate 1477 /// predecessors. 1478 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1479 int Lane, unsigned OpIdx, unsigned Idx, 1480 bool &IsUsed) { 1481 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1482 LookAheadMaxDepth); 1483 // Keep track of the instruction stack as we recurse into the operands 1484 // during the look-ahead score exploration. 1485 int Score = 1486 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1487 /*CurrLevel=*/1, MainAltOps); 1488 if (Score) { 1489 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1490 if (Score <= -SplatScore) { 1491 // Set the minimum score for splat-like sequence to avoid setting 1492 // failed state. 1493 Score = 1; 1494 } else { 1495 Score += SplatScore; 1496 // Scale score to see the difference between different operands 1497 // and similar operands but all vectorized/not all vectorized 1498 // uses. It does not affect actual selection of the best 1499 // compatible operand in general, just allows to select the 1500 // operand with all vectorized uses. 1501 Score *= ScoreScaleFactor; 1502 Score += getExternalUseScore(Lane, OpIdx, Idx); 1503 IsUsed = true; 1504 } 1505 } 1506 return Score; 1507 } 1508 1509 /// Best defined scores per lanes between the passes. Used to choose the 1510 /// best operand (with the highest score) between the passes. 1511 /// The key - {Operand Index, Lane}. 1512 /// The value - the best score between the passes for the lane and the 1513 /// operand. 1514 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1515 BestScoresPerLanes; 1516 1517 // Search all operands in Ops[*][Lane] for the one that matches best 1518 // Ops[OpIdx][LastLane] and return its opreand index. 1519 // If no good match can be found, return None. 1520 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1521 ArrayRef<ReorderingMode> ReorderingModes, 1522 ArrayRef<Value *> MainAltOps) { 1523 unsigned NumOperands = getNumOperands(); 1524 1525 // The operand of the previous lane at OpIdx. 1526 Value *OpLastLane = getData(OpIdx, LastLane).V; 1527 1528 // Our strategy mode for OpIdx. 1529 ReorderingMode RMode = ReorderingModes[OpIdx]; 1530 if (RMode == ReorderingMode::Failed) 1531 return None; 1532 1533 // The linearized opcode of the operand at OpIdx, Lane. 1534 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1535 1536 // The best operand index and its score. 1537 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1538 // are using the score to differentiate between the two. 1539 struct BestOpData { 1540 Optional<unsigned> Idx = None; 1541 unsigned Score = 0; 1542 } BestOp; 1543 BestOp.Score = 1544 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1545 .first->second; 1546 1547 // Track if the operand must be marked as used. If the operand is set to 1548 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1549 // want to reestimate the operands again on the following iterations). 1550 bool IsUsed = 1551 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1552 // Iterate through all unused operands and look for the best. 1553 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1554 // Get the operand at Idx and Lane. 1555 OperandData &OpData = getData(Idx, Lane); 1556 Value *Op = OpData.V; 1557 bool OpAPO = OpData.APO; 1558 1559 // Skip already selected operands. 1560 if (OpData.IsUsed) 1561 continue; 1562 1563 // Skip if we are trying to move the operand to a position with a 1564 // different opcode in the linearized tree form. This would break the 1565 // semantics. 1566 if (OpAPO != OpIdxAPO) 1567 continue; 1568 1569 // Look for an operand that matches the current mode. 1570 switch (RMode) { 1571 case ReorderingMode::Load: 1572 case ReorderingMode::Constant: 1573 case ReorderingMode::Opcode: { 1574 bool LeftToRight = Lane > LastLane; 1575 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1576 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1577 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1578 OpIdx, Idx, IsUsed); 1579 if (Score > static_cast<int>(BestOp.Score)) { 1580 BestOp.Idx = Idx; 1581 BestOp.Score = Score; 1582 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1583 } 1584 break; 1585 } 1586 case ReorderingMode::Splat: 1587 if (Op == OpLastLane) 1588 BestOp.Idx = Idx; 1589 break; 1590 case ReorderingMode::Failed: 1591 llvm_unreachable("Not expected Failed reordering mode."); 1592 } 1593 } 1594 1595 if (BestOp.Idx) { 1596 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1597 return BestOp.Idx; 1598 } 1599 // If we could not find a good match return None. 1600 return None; 1601 } 1602 1603 /// Helper for reorderOperandVecs. 1604 /// \returns the lane that we should start reordering from. This is the one 1605 /// which has the least number of operands that can freely move about or 1606 /// less profitable because it already has the most optimal set of operands. 1607 unsigned getBestLaneToStartReordering() const { 1608 unsigned Min = UINT_MAX; 1609 unsigned SameOpNumber = 0; 1610 // std::pair<unsigned, unsigned> is used to implement a simple voting 1611 // algorithm and choose the lane with the least number of operands that 1612 // can freely move about or less profitable because it already has the 1613 // most optimal set of operands. The first unsigned is a counter for 1614 // voting, the second unsigned is the counter of lanes with instructions 1615 // with same/alternate opcodes and same parent basic block. 1616 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1617 // Try to be closer to the original results, if we have multiple lanes 1618 // with same cost. If 2 lanes have the same cost, use the one with the 1619 // lowest index. 1620 for (int I = getNumLanes(); I > 0; --I) { 1621 unsigned Lane = I - 1; 1622 OperandsOrderData NumFreeOpsHash = 1623 getMaxNumOperandsThatCanBeReordered(Lane); 1624 // Compare the number of operands that can move and choose the one with 1625 // the least number. 1626 if (NumFreeOpsHash.NumOfAPOs < Min) { 1627 Min = NumFreeOpsHash.NumOfAPOs; 1628 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1629 HashMap.clear(); 1630 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1631 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1632 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1633 // Select the most optimal lane in terms of number of operands that 1634 // should be moved around. 1635 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1636 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1637 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1638 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1639 auto It = HashMap.find(NumFreeOpsHash.Hash); 1640 if (It == HashMap.end()) 1641 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1642 else 1643 ++It->second.first; 1644 } 1645 } 1646 // Select the lane with the minimum counter. 1647 unsigned BestLane = 0; 1648 unsigned CntMin = UINT_MAX; 1649 for (const auto &Data : reverse(HashMap)) { 1650 if (Data.second.first < CntMin) { 1651 CntMin = Data.second.first; 1652 BestLane = Data.second.second; 1653 } 1654 } 1655 return BestLane; 1656 } 1657 1658 /// Data structure that helps to reorder operands. 1659 struct OperandsOrderData { 1660 /// The best number of operands with the same APOs, which can be 1661 /// reordered. 1662 unsigned NumOfAPOs = UINT_MAX; 1663 /// Number of operands with the same/alternate instruction opcode and 1664 /// parent. 1665 unsigned NumOpsWithSameOpcodeParent = 0; 1666 /// Hash for the actual operands ordering. 1667 /// Used to count operands, actually their position id and opcode 1668 /// value. It is used in the voting mechanism to find the lane with the 1669 /// least number of operands that can freely move about or less profitable 1670 /// because it already has the most optimal set of operands. Can be 1671 /// replaced with SmallVector<unsigned> instead but hash code is faster 1672 /// and requires less memory. 1673 unsigned Hash = 0; 1674 }; 1675 /// \returns the maximum number of operands that are allowed to be reordered 1676 /// for \p Lane and the number of compatible instructions(with the same 1677 /// parent/opcode). This is used as a heuristic for selecting the first lane 1678 /// to start operand reordering. 1679 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1680 unsigned CntTrue = 0; 1681 unsigned NumOperands = getNumOperands(); 1682 // Operands with the same APO can be reordered. We therefore need to count 1683 // how many of them we have for each APO, like this: Cnt[APO] = x. 1684 // Since we only have two APOs, namely true and false, we can avoid using 1685 // a map. Instead we can simply count the number of operands that 1686 // correspond to one of them (in this case the 'true' APO), and calculate 1687 // the other by subtracting it from the total number of operands. 1688 // Operands with the same instruction opcode and parent are more 1689 // profitable since we don't need to move them in many cases, with a high 1690 // probability such lane already can be vectorized effectively. 1691 bool AllUndefs = true; 1692 unsigned NumOpsWithSameOpcodeParent = 0; 1693 Instruction *OpcodeI = nullptr; 1694 BasicBlock *Parent = nullptr; 1695 unsigned Hash = 0; 1696 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1697 const OperandData &OpData = getData(OpIdx, Lane); 1698 if (OpData.APO) 1699 ++CntTrue; 1700 // Use Boyer-Moore majority voting for finding the majority opcode and 1701 // the number of times it occurs. 1702 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1703 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1704 I->getParent() != Parent) { 1705 if (NumOpsWithSameOpcodeParent == 0) { 1706 NumOpsWithSameOpcodeParent = 1; 1707 OpcodeI = I; 1708 Parent = I->getParent(); 1709 } else { 1710 --NumOpsWithSameOpcodeParent; 1711 } 1712 } else { 1713 ++NumOpsWithSameOpcodeParent; 1714 } 1715 } 1716 Hash = hash_combine( 1717 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1718 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1719 } 1720 if (AllUndefs) 1721 return {}; 1722 OperandsOrderData Data; 1723 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1724 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1725 Data.Hash = Hash; 1726 return Data; 1727 } 1728 1729 /// Go through the instructions in VL and append their operands. 1730 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1731 assert(!VL.empty() && "Bad VL"); 1732 assert((empty() || VL.size() == getNumLanes()) && 1733 "Expected same number of lanes"); 1734 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1735 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1736 OpsVec.resize(NumOperands); 1737 unsigned NumLanes = VL.size(); 1738 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1739 OpsVec[OpIdx].resize(NumLanes); 1740 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1741 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1742 // Our tree has just 3 nodes: the root and two operands. 1743 // It is therefore trivial to get the APO. We only need to check the 1744 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1745 // RHS operand. The LHS operand of both add and sub is never attached 1746 // to an inversese operation in the linearized form, therefore its APO 1747 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1748 1749 // Since operand reordering is performed on groups of commutative 1750 // operations or alternating sequences (e.g., +, -), we can safely 1751 // tell the inverse operations by checking commutativity. 1752 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1753 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1754 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1755 APO, false}; 1756 } 1757 } 1758 } 1759 1760 /// \returns the number of operands. 1761 unsigned getNumOperands() const { return OpsVec.size(); } 1762 1763 /// \returns the number of lanes. 1764 unsigned getNumLanes() const { return OpsVec[0].size(); } 1765 1766 /// \returns the operand value at \p OpIdx and \p Lane. 1767 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1768 return getData(OpIdx, Lane).V; 1769 } 1770 1771 /// \returns true if the data structure is empty. 1772 bool empty() const { return OpsVec.empty(); } 1773 1774 /// Clears the data. 1775 void clear() { OpsVec.clear(); } 1776 1777 /// \Returns true if there are enough operands identical to \p Op to fill 1778 /// the whole vector. 1779 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1780 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1781 bool OpAPO = getData(OpIdx, Lane).APO; 1782 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1783 if (Ln == Lane) 1784 continue; 1785 // This is set to true if we found a candidate for broadcast at Lane. 1786 bool FoundCandidate = false; 1787 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1788 OperandData &Data = getData(OpI, Ln); 1789 if (Data.APO != OpAPO || Data.IsUsed) 1790 continue; 1791 if (Data.V == Op) { 1792 FoundCandidate = true; 1793 Data.IsUsed = true; 1794 break; 1795 } 1796 } 1797 if (!FoundCandidate) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 public: 1804 /// Initialize with all the operands of the instruction vector \p RootVL. 1805 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1806 ScalarEvolution &SE, const BoUpSLP &R) 1807 : DL(DL), SE(SE), R(R) { 1808 // Append all the operands of RootVL. 1809 appendOperandsOfVL(RootVL); 1810 } 1811 1812 /// \Returns a value vector with the operands across all lanes for the 1813 /// opearnd at \p OpIdx. 1814 ValueList getVL(unsigned OpIdx) const { 1815 ValueList OpVL(OpsVec[OpIdx].size()); 1816 assert(OpsVec[OpIdx].size() == getNumLanes() && 1817 "Expected same num of lanes across all operands"); 1818 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1819 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1820 return OpVL; 1821 } 1822 1823 // Performs operand reordering for 2 or more operands. 1824 // The original operands are in OrigOps[OpIdx][Lane]. 1825 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1826 void reorder() { 1827 unsigned NumOperands = getNumOperands(); 1828 unsigned NumLanes = getNumLanes(); 1829 // Each operand has its own mode. We are using this mode to help us select 1830 // the instructions for each lane, so that they match best with the ones 1831 // we have selected so far. 1832 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1833 1834 // This is a greedy single-pass algorithm. We are going over each lane 1835 // once and deciding on the best order right away with no back-tracking. 1836 // However, in order to increase its effectiveness, we start with the lane 1837 // that has operands that can move the least. For example, given the 1838 // following lanes: 1839 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1840 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1841 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1842 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1843 // we will start at Lane 1, since the operands of the subtraction cannot 1844 // be reordered. Then we will visit the rest of the lanes in a circular 1845 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1846 1847 // Find the first lane that we will start our search from. 1848 unsigned FirstLane = getBestLaneToStartReordering(); 1849 1850 // Initialize the modes. 1851 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1852 Value *OpLane0 = getValue(OpIdx, FirstLane); 1853 // Keep track if we have instructions with all the same opcode on one 1854 // side. 1855 if (isa<LoadInst>(OpLane0)) 1856 ReorderingModes[OpIdx] = ReorderingMode::Load; 1857 else if (isa<Instruction>(OpLane0)) { 1858 // Check if OpLane0 should be broadcast. 1859 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1861 else 1862 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1863 } 1864 else if (isa<Constant>(OpLane0)) 1865 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1866 else if (isa<Argument>(OpLane0)) 1867 // Our best hope is a Splat. It may save some cost in some cases. 1868 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1869 else 1870 // NOTE: This should be unreachable. 1871 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1872 } 1873 1874 // Check that we don't have same operands. No need to reorder if operands 1875 // are just perfect diamond or shuffled diamond match. Do not do it only 1876 // for possible broadcasts or non-power of 2 number of scalars (just for 1877 // now). 1878 auto &&SkipReordering = [this]() { 1879 SmallPtrSet<Value *, 4> UniqueValues; 1880 ArrayRef<OperandData> Op0 = OpsVec.front(); 1881 for (const OperandData &Data : Op0) 1882 UniqueValues.insert(Data.V); 1883 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1884 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1885 return !UniqueValues.contains(Data.V); 1886 })) 1887 return false; 1888 } 1889 // TODO: Check if we can remove a check for non-power-2 number of 1890 // scalars after full support of non-power-2 vectorization. 1891 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1892 }; 1893 1894 // If the initial strategy fails for any of the operand indexes, then we 1895 // perform reordering again in a second pass. This helps avoid assigning 1896 // high priority to the failed strategy, and should improve reordering for 1897 // the non-failed operand indexes. 1898 for (int Pass = 0; Pass != 2; ++Pass) { 1899 // Check if no need to reorder operands since they're are perfect or 1900 // shuffled diamond match. 1901 // Need to to do it to avoid extra external use cost counting for 1902 // shuffled matches, which may cause regressions. 1903 if (SkipReordering()) 1904 break; 1905 // Skip the second pass if the first pass did not fail. 1906 bool StrategyFailed = false; 1907 // Mark all operand data as free to use. 1908 clearUsed(); 1909 // We keep the original operand order for the FirstLane, so reorder the 1910 // rest of the lanes. We are visiting the nodes in a circular fashion, 1911 // using FirstLane as the center point and increasing the radius 1912 // distance. 1913 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1914 for (unsigned I = 0; I < NumOperands; ++I) 1915 MainAltOps[I].push_back(getData(I, FirstLane).V); 1916 1917 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1918 // Visit the lane on the right and then the lane on the left. 1919 for (int Direction : {+1, -1}) { 1920 int Lane = FirstLane + Direction * Distance; 1921 if (Lane < 0 || Lane >= (int)NumLanes) 1922 continue; 1923 int LastLane = Lane - Direction; 1924 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1925 "Out of bounds"); 1926 // Look for a good match for each operand. 1927 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1928 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1929 Optional<unsigned> BestIdx = getBestOperand( 1930 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1931 // By not selecting a value, we allow the operands that follow to 1932 // select a better matching value. We will get a non-null value in 1933 // the next run of getBestOperand(). 1934 if (BestIdx) { 1935 // Swap the current operand with the one returned by 1936 // getBestOperand(). 1937 swap(OpIdx, BestIdx.getValue(), Lane); 1938 } else { 1939 // We failed to find a best operand, set mode to 'Failed'. 1940 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1941 // Enable the second pass. 1942 StrategyFailed = true; 1943 } 1944 // Try to get the alternate opcode and follow it during analysis. 1945 if (MainAltOps[OpIdx].size() != 2) { 1946 OperandData &AltOp = getData(OpIdx, Lane); 1947 InstructionsState OpS = 1948 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1949 if (OpS.getOpcode() && OpS.isAltShuffle()) 1950 MainAltOps[OpIdx].push_back(AltOp.V); 1951 } 1952 } 1953 } 1954 } 1955 // Skip second pass if the strategy did not fail. 1956 if (!StrategyFailed) 1957 break; 1958 } 1959 } 1960 1961 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1962 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1963 switch (RMode) { 1964 case ReorderingMode::Load: 1965 return "Load"; 1966 case ReorderingMode::Opcode: 1967 return "Opcode"; 1968 case ReorderingMode::Constant: 1969 return "Constant"; 1970 case ReorderingMode::Splat: 1971 return "Splat"; 1972 case ReorderingMode::Failed: 1973 return "Failed"; 1974 } 1975 llvm_unreachable("Unimplemented Reordering Type"); 1976 } 1977 1978 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1979 raw_ostream &OS) { 1980 return OS << getModeStr(RMode); 1981 } 1982 1983 /// Debug print. 1984 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1985 printMode(RMode, dbgs()); 1986 } 1987 1988 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1989 return printMode(RMode, OS); 1990 } 1991 1992 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1993 const unsigned Indent = 2; 1994 unsigned Cnt = 0; 1995 for (const OperandDataVec &OpDataVec : OpsVec) { 1996 OS << "Operand " << Cnt++ << "\n"; 1997 for (const OperandData &OpData : OpDataVec) { 1998 OS.indent(Indent) << "{"; 1999 if (Value *V = OpData.V) 2000 OS << *V; 2001 else 2002 OS << "null"; 2003 OS << ", APO:" << OpData.APO << "}\n"; 2004 } 2005 OS << "\n"; 2006 } 2007 return OS; 2008 } 2009 2010 /// Debug print. 2011 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2012 #endif 2013 }; 2014 2015 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2016 /// for a pair which have highest score deemed to have best chance to form 2017 /// root of profitable tree to vectorize. Return None if no candidate scored 2018 /// above the LookAheadHeuristics::ScoreFail. 2019 /// \param Limit Lower limit of the cost, considered to be good enough score. 2020 Optional<int> 2021 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, 2022 int Limit = LookAheadHeuristics::ScoreFail) { 2023 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2024 RootLookAheadMaxDepth); 2025 int BestScore = Limit; 2026 Optional<int> Index = None; 2027 for (int I : seq<int>(0, Candidates.size())) { 2028 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2029 Candidates[I].second, 2030 /*U1=*/nullptr, /*U2=*/nullptr, 2031 /*Level=*/1, None); 2032 if (Score > BestScore) { 2033 BestScore = Score; 2034 Index = I; 2035 } 2036 } 2037 return Index; 2038 } 2039 2040 /// Checks if the instruction is marked for deletion. 2041 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2042 2043 /// Removes an instruction from its block and eventually deletes it. 2044 /// It's like Instruction::eraseFromParent() except that the actual deletion 2045 /// is delayed until BoUpSLP is destructed. 2046 void eraseInstruction(Instruction *I) { 2047 DeletedInstructions.insert(I); 2048 } 2049 2050 /// Checks if the instruction was already analyzed for being possible 2051 /// reduction root. 2052 bool isAnalyzedReductionRoot(Instruction *I) const { 2053 return AnalyzedReductionsRoots.count(I); 2054 } 2055 /// Register given instruction as already analyzed for being possible 2056 /// reduction root. 2057 void analyzedReductionRoot(Instruction *I) { 2058 AnalyzedReductionsRoots.insert(I); 2059 } 2060 /// Checks if the provided list of reduced values was checked already for 2061 /// vectorization. 2062 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2063 return AnalyzedReductionVals.contains(hash_value(VL)); 2064 } 2065 /// Adds the list of reduced values to list of already checked values for the 2066 /// vectorization. 2067 void analyzedReductionVals(ArrayRef<Value *> VL) { 2068 AnalyzedReductionVals.insert(hash_value(VL)); 2069 } 2070 /// Clear the list of the analyzed reduction root instructions. 2071 void clearReductionData() { 2072 AnalyzedReductionsRoots.clear(); 2073 AnalyzedReductionVals.clear(); 2074 } 2075 /// Checks if the given value is gathered in one of the nodes. 2076 bool isGathered(Value *V) const { 2077 return MustGather.contains(V); 2078 } 2079 2080 ~BoUpSLP(); 2081 2082 private: 2083 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2084 /// reordering (i.e. the operands can be reordered because they have only one 2085 /// user and reordarable). 2086 /// \param ReorderableGathers List of all gather nodes that require reordering 2087 /// (e.g., gather of extractlements or partially vectorizable loads). 2088 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2089 /// reordering, subset of \p NonVectorized. 2090 bool 2091 canReorderOperands(TreeEntry *UserTE, 2092 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2093 ArrayRef<TreeEntry *> ReorderableGathers, 2094 SmallVectorImpl<TreeEntry *> &GatherOps); 2095 2096 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2097 /// if any. If it is not vectorized (gather node), returns nullptr. 2098 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2099 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2100 TreeEntry *TE = nullptr; 2101 const auto *It = find_if(VL, [this, &TE](Value *V) { 2102 TE = getTreeEntry(V); 2103 return TE; 2104 }); 2105 if (It != VL.end() && TE->isSame(VL)) 2106 return TE; 2107 return nullptr; 2108 } 2109 2110 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2111 /// if any. If it is not vectorized (gather node), returns nullptr. 2112 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2113 unsigned OpIdx) const { 2114 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2115 const_cast<TreeEntry *>(UserTE), OpIdx); 2116 } 2117 2118 /// Checks if all users of \p I are the part of the vectorization tree. 2119 bool areAllUsersVectorized(Instruction *I, 2120 ArrayRef<Value *> VectorizedVals) const; 2121 2122 /// \returns the cost of the vectorizable entry. 2123 InstructionCost getEntryCost(const TreeEntry *E, 2124 ArrayRef<Value *> VectorizedVals); 2125 2126 /// This is the recursive part of buildTree. 2127 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2128 const EdgeInfo &EI); 2129 2130 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2131 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2132 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2133 /// returns false, setting \p CurrentOrder to either an empty vector or a 2134 /// non-identity permutation that allows to reuse extract instructions. 2135 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2136 SmallVectorImpl<unsigned> &CurrentOrder) const; 2137 2138 /// Vectorize a single entry in the tree. 2139 Value *vectorizeTree(TreeEntry *E); 2140 2141 /// Vectorize a single entry in the tree, starting in \p VL. 2142 Value *vectorizeTree(ArrayRef<Value *> VL); 2143 2144 /// Create a new vector from a list of scalar values. Produces a sequence 2145 /// which exploits values reused across lanes, and arranges the inserts 2146 /// for ease of later optimization. 2147 Value *createBuildVector(ArrayRef<Value *> VL); 2148 2149 /// \returns the scalarization cost for this type. Scalarization in this 2150 /// context means the creation of vectors from a group of scalars. If \p 2151 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2152 /// vector elements. 2153 InstructionCost getGatherCost(FixedVectorType *Ty, 2154 const APInt &ShuffledIndices, 2155 bool NeedToShuffle) const; 2156 2157 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2158 /// tree entries. 2159 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2160 /// previous tree entries. \p Mask is filled with the shuffle mask. 2161 Optional<TargetTransformInfo::ShuffleKind> 2162 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2163 SmallVectorImpl<const TreeEntry *> &Entries); 2164 2165 /// \returns the scalarization cost for this list of values. Assuming that 2166 /// this subtree gets vectorized, we may need to extract the values from the 2167 /// roots. This method calculates the cost of extracting the values. 2168 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2169 2170 /// Set the Builder insert point to one after the last instruction in 2171 /// the bundle 2172 void setInsertPointAfterBundle(const TreeEntry *E); 2173 2174 /// \returns a vector from a collection of scalars in \p VL. 2175 Value *gather(ArrayRef<Value *> VL); 2176 2177 /// \returns whether the VectorizableTree is fully vectorizable and will 2178 /// be beneficial even the tree height is tiny. 2179 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2180 2181 /// Reorder commutative or alt operands to get better probability of 2182 /// generating vectorized code. 2183 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2184 SmallVectorImpl<Value *> &Left, 2185 SmallVectorImpl<Value *> &Right, 2186 const DataLayout &DL, 2187 ScalarEvolution &SE, 2188 const BoUpSLP &R); 2189 2190 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2191 /// users of \p TE and collects the stores. It returns the map from the store 2192 /// pointers to the collected stores. 2193 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2194 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2195 2196 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2197 /// stores in \p StoresVec can for a vector instruction. If so it returns true 2198 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2199 /// when compared to the sorted vector. 2200 bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2201 OrdersType &ReorderIndices) const; 2202 2203 /// Iterates through the users of \p TE, looking for scalar stores that can be 2204 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2205 /// their order and builds an order index vector for each store bundle. It 2206 /// returns all these order vectors found. 2207 /// We run this after the tree has formed, otherwise we may come across user 2208 /// instructions that are not yet in the tree. 2209 SmallVector<OrdersType, 1> 2210 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2211 2212 struct TreeEntry { 2213 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2214 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2215 2216 /// \returns true if the scalars in VL are equal to this entry. 2217 bool isSame(ArrayRef<Value *> VL) const { 2218 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2219 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2220 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2221 return VL.size() == Mask.size() && 2222 std::equal(VL.begin(), VL.end(), Mask.begin(), 2223 [Scalars](Value *V, int Idx) { 2224 return (isa<UndefValue>(V) && 2225 Idx == UndefMaskElem) || 2226 (Idx != UndefMaskElem && V == Scalars[Idx]); 2227 }); 2228 }; 2229 if (!ReorderIndices.empty()) { 2230 // TODO: implement matching if the nodes are just reordered, still can 2231 // treat the vector as the same if the list of scalars matches VL 2232 // directly, without reordering. 2233 SmallVector<int> Mask; 2234 inversePermutation(ReorderIndices, Mask); 2235 if (VL.size() == Scalars.size()) 2236 return IsSame(Scalars, Mask); 2237 if (VL.size() == ReuseShuffleIndices.size()) { 2238 ::addMask(Mask, ReuseShuffleIndices); 2239 return IsSame(Scalars, Mask); 2240 } 2241 return false; 2242 } 2243 return IsSame(Scalars, ReuseShuffleIndices); 2244 } 2245 2246 /// \returns true if current entry has same operands as \p TE. 2247 bool hasEqualOperands(const TreeEntry &TE) const { 2248 if (TE.getNumOperands() != getNumOperands()) 2249 return false; 2250 SmallBitVector Used(getNumOperands()); 2251 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2252 unsigned PrevCount = Used.count(); 2253 for (unsigned K = 0; K < E; ++K) { 2254 if (Used.test(K)) 2255 continue; 2256 if (getOperand(K) == TE.getOperand(I)) { 2257 Used.set(K); 2258 break; 2259 } 2260 } 2261 // Check if we actually found the matching operand. 2262 if (PrevCount == Used.count()) 2263 return false; 2264 } 2265 return true; 2266 } 2267 2268 /// \return Final vectorization factor for the node. Defined by the total 2269 /// number of vectorized scalars, including those, used several times in the 2270 /// entry and counted in the \a ReuseShuffleIndices, if any. 2271 unsigned getVectorFactor() const { 2272 if (!ReuseShuffleIndices.empty()) 2273 return ReuseShuffleIndices.size(); 2274 return Scalars.size(); 2275 }; 2276 2277 /// A vector of scalars. 2278 ValueList Scalars; 2279 2280 /// The Scalars are vectorized into this value. It is initialized to Null. 2281 Value *VectorizedValue = nullptr; 2282 2283 /// Do we need to gather this sequence or vectorize it 2284 /// (either with vector instruction or with scatter/gather 2285 /// intrinsics for store/load)? 2286 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2287 EntryState State; 2288 2289 /// Does this sequence require some shuffling? 2290 SmallVector<int, 4> ReuseShuffleIndices; 2291 2292 /// Does this entry require reordering? 2293 SmallVector<unsigned, 4> ReorderIndices; 2294 2295 /// Points back to the VectorizableTree. 2296 /// 2297 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2298 /// to be a pointer and needs to be able to initialize the child iterator. 2299 /// Thus we need a reference back to the container to translate the indices 2300 /// to entries. 2301 VecTreeTy &Container; 2302 2303 /// The TreeEntry index containing the user of this entry. We can actually 2304 /// have multiple users so the data structure is not truly a tree. 2305 SmallVector<EdgeInfo, 1> UserTreeIndices; 2306 2307 /// The index of this treeEntry in VectorizableTree. 2308 int Idx = -1; 2309 2310 private: 2311 /// The operands of each instruction in each lane Operands[op_index][lane]. 2312 /// Note: This helps avoid the replication of the code that performs the 2313 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2314 SmallVector<ValueList, 2> Operands; 2315 2316 /// The main/alternate instruction. 2317 Instruction *MainOp = nullptr; 2318 Instruction *AltOp = nullptr; 2319 2320 public: 2321 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2322 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2323 if (Operands.size() < OpIdx + 1) 2324 Operands.resize(OpIdx + 1); 2325 assert(Operands[OpIdx].empty() && "Already resized?"); 2326 assert(OpVL.size() <= Scalars.size() && 2327 "Number of operands is greater than the number of scalars."); 2328 Operands[OpIdx].resize(OpVL.size()); 2329 copy(OpVL, Operands[OpIdx].begin()); 2330 } 2331 2332 /// Set the operands of this bundle in their original order. 2333 void setOperandsInOrder() { 2334 assert(Operands.empty() && "Already initialized?"); 2335 auto *I0 = cast<Instruction>(Scalars[0]); 2336 Operands.resize(I0->getNumOperands()); 2337 unsigned NumLanes = Scalars.size(); 2338 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2339 OpIdx != NumOperands; ++OpIdx) { 2340 Operands[OpIdx].resize(NumLanes); 2341 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2342 auto *I = cast<Instruction>(Scalars[Lane]); 2343 assert(I->getNumOperands() == NumOperands && 2344 "Expected same number of operands"); 2345 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2346 } 2347 } 2348 } 2349 2350 /// Reorders operands of the node to the given mask \p Mask. 2351 void reorderOperands(ArrayRef<int> Mask) { 2352 for (ValueList &Operand : Operands) 2353 reorderScalars(Operand, Mask); 2354 } 2355 2356 /// \returns the \p OpIdx operand of this TreeEntry. 2357 ValueList &getOperand(unsigned OpIdx) { 2358 assert(OpIdx < Operands.size() && "Off bounds"); 2359 return Operands[OpIdx]; 2360 } 2361 2362 /// \returns the \p OpIdx operand of this TreeEntry. 2363 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2364 assert(OpIdx < Operands.size() && "Off bounds"); 2365 return Operands[OpIdx]; 2366 } 2367 2368 /// \returns the number of operands. 2369 unsigned getNumOperands() const { return Operands.size(); } 2370 2371 /// \return the single \p OpIdx operand. 2372 Value *getSingleOperand(unsigned OpIdx) const { 2373 assert(OpIdx < Operands.size() && "Off bounds"); 2374 assert(!Operands[OpIdx].empty() && "No operand available"); 2375 return Operands[OpIdx][0]; 2376 } 2377 2378 /// Some of the instructions in the list have alternate opcodes. 2379 bool isAltShuffle() const { return MainOp != AltOp; } 2380 2381 bool isOpcodeOrAlt(Instruction *I) const { 2382 unsigned CheckedOpcode = I->getOpcode(); 2383 return (getOpcode() == CheckedOpcode || 2384 getAltOpcode() == CheckedOpcode); 2385 } 2386 2387 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2389 /// \p OpValue. 2390 Value *isOneOf(Value *Op) const { 2391 auto *I = dyn_cast<Instruction>(Op); 2392 if (I && isOpcodeOrAlt(I)) 2393 return Op; 2394 return MainOp; 2395 } 2396 2397 void setOperations(const InstructionsState &S) { 2398 MainOp = S.MainOp; 2399 AltOp = S.AltOp; 2400 } 2401 2402 Instruction *getMainOp() const { 2403 return MainOp; 2404 } 2405 2406 Instruction *getAltOp() const { 2407 return AltOp; 2408 } 2409 2410 /// The main/alternate opcodes for the list of instructions. 2411 unsigned getOpcode() const { 2412 return MainOp ? MainOp->getOpcode() : 0; 2413 } 2414 2415 unsigned getAltOpcode() const { 2416 return AltOp ? AltOp->getOpcode() : 0; 2417 } 2418 2419 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2420 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2421 int findLaneForValue(Value *V) const { 2422 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2423 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2424 if (!ReorderIndices.empty()) 2425 FoundLane = ReorderIndices[FoundLane]; 2426 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2427 if (!ReuseShuffleIndices.empty()) { 2428 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2429 find(ReuseShuffleIndices, FoundLane)); 2430 } 2431 return FoundLane; 2432 } 2433 2434 #ifndef NDEBUG 2435 /// Debug printer. 2436 LLVM_DUMP_METHOD void dump() const { 2437 dbgs() << Idx << ".\n"; 2438 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2439 dbgs() << "Operand " << OpI << ":\n"; 2440 for (const Value *V : Operands[OpI]) 2441 dbgs().indent(2) << *V << "\n"; 2442 } 2443 dbgs() << "Scalars: \n"; 2444 for (Value *V : Scalars) 2445 dbgs().indent(2) << *V << "\n"; 2446 dbgs() << "State: "; 2447 switch (State) { 2448 case Vectorize: 2449 dbgs() << "Vectorize\n"; 2450 break; 2451 case ScatterVectorize: 2452 dbgs() << "ScatterVectorize\n"; 2453 break; 2454 case NeedToGather: 2455 dbgs() << "NeedToGather\n"; 2456 break; 2457 } 2458 dbgs() << "MainOp: "; 2459 if (MainOp) 2460 dbgs() << *MainOp << "\n"; 2461 else 2462 dbgs() << "NULL\n"; 2463 dbgs() << "AltOp: "; 2464 if (AltOp) 2465 dbgs() << *AltOp << "\n"; 2466 else 2467 dbgs() << "NULL\n"; 2468 dbgs() << "VectorizedValue: "; 2469 if (VectorizedValue) 2470 dbgs() << *VectorizedValue << "\n"; 2471 else 2472 dbgs() << "NULL\n"; 2473 dbgs() << "ReuseShuffleIndices: "; 2474 if (ReuseShuffleIndices.empty()) 2475 dbgs() << "Empty"; 2476 else 2477 for (int ReuseIdx : ReuseShuffleIndices) 2478 dbgs() << ReuseIdx << ", "; 2479 dbgs() << "\n"; 2480 dbgs() << "ReorderIndices: "; 2481 for (unsigned ReorderIdx : ReorderIndices) 2482 dbgs() << ReorderIdx << ", "; 2483 dbgs() << "\n"; 2484 dbgs() << "UserTreeIndices: "; 2485 for (const auto &EInfo : UserTreeIndices) 2486 dbgs() << EInfo << ", "; 2487 dbgs() << "\n"; 2488 } 2489 #endif 2490 }; 2491 2492 #ifndef NDEBUG 2493 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2494 InstructionCost VecCost, 2495 InstructionCost ScalarCost) const { 2496 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2497 dbgs() << "SLP: Costs:\n"; 2498 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2499 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2500 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2501 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2502 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2503 } 2504 #endif 2505 2506 /// Create a new VectorizableTree entry. 2507 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2508 const InstructionsState &S, 2509 const EdgeInfo &UserTreeIdx, 2510 ArrayRef<int> ReuseShuffleIndices = None, 2511 ArrayRef<unsigned> ReorderIndices = None) { 2512 TreeEntry::EntryState EntryState = 2513 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2514 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2515 ReuseShuffleIndices, ReorderIndices); 2516 } 2517 2518 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2519 TreeEntry::EntryState EntryState, 2520 Optional<ScheduleData *> Bundle, 2521 const InstructionsState &S, 2522 const EdgeInfo &UserTreeIdx, 2523 ArrayRef<int> ReuseShuffleIndices = None, 2524 ArrayRef<unsigned> ReorderIndices = None) { 2525 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2526 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2527 "Need to vectorize gather entry?"); 2528 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2529 TreeEntry *Last = VectorizableTree.back().get(); 2530 Last->Idx = VectorizableTree.size() - 1; 2531 Last->State = EntryState; 2532 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2533 ReuseShuffleIndices.end()); 2534 if (ReorderIndices.empty()) { 2535 Last->Scalars.assign(VL.begin(), VL.end()); 2536 Last->setOperations(S); 2537 } else { 2538 // Reorder scalars and build final mask. 2539 Last->Scalars.assign(VL.size(), nullptr); 2540 transform(ReorderIndices, Last->Scalars.begin(), 2541 [VL](unsigned Idx) -> Value * { 2542 if (Idx >= VL.size()) 2543 return UndefValue::get(VL.front()->getType()); 2544 return VL[Idx]; 2545 }); 2546 InstructionsState S = getSameOpcode(Last->Scalars); 2547 Last->setOperations(S); 2548 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2549 } 2550 if (Last->State != TreeEntry::NeedToGather) { 2551 for (Value *V : VL) { 2552 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2553 ScalarToTreeEntry[V] = Last; 2554 } 2555 // Update the scheduler bundle to point to this TreeEntry. 2556 ScheduleData *BundleMember = Bundle.getValue(); 2557 assert((BundleMember || isa<PHINode>(S.MainOp) || 2558 isVectorLikeInstWithConstOps(S.MainOp) || 2559 doesNotNeedToSchedule(VL)) && 2560 "Bundle and VL out of sync"); 2561 if (BundleMember) { 2562 for (Value *V : VL) { 2563 if (doesNotNeedToBeScheduled(V)) 2564 continue; 2565 assert(BundleMember && "Unexpected end of bundle."); 2566 BundleMember->TE = Last; 2567 BundleMember = BundleMember->NextInBundle; 2568 } 2569 } 2570 assert(!BundleMember && "Bundle and VL out of sync"); 2571 } else { 2572 MustGather.insert(VL.begin(), VL.end()); 2573 } 2574 2575 if (UserTreeIdx.UserTE) 2576 Last->UserTreeIndices.push_back(UserTreeIdx); 2577 2578 return Last; 2579 } 2580 2581 /// -- Vectorization State -- 2582 /// Holds all of the tree entries. 2583 TreeEntry::VecTreeTy VectorizableTree; 2584 2585 #ifndef NDEBUG 2586 /// Debug printer. 2587 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2588 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2589 VectorizableTree[Id]->dump(); 2590 dbgs() << "\n"; 2591 } 2592 } 2593 #endif 2594 2595 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2596 2597 const TreeEntry *getTreeEntry(Value *V) const { 2598 return ScalarToTreeEntry.lookup(V); 2599 } 2600 2601 /// Maps a specific scalar to its tree entry. 2602 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2603 2604 /// Maps a value to the proposed vectorizable size. 2605 SmallDenseMap<Value *, unsigned> InstrElementSize; 2606 2607 /// A list of scalars that we found that we need to keep as scalars. 2608 ValueSet MustGather; 2609 2610 /// This POD struct describes one external user in the vectorized tree. 2611 struct ExternalUser { 2612 ExternalUser(Value *S, llvm::User *U, int L) 2613 : Scalar(S), User(U), Lane(L) {} 2614 2615 // Which scalar in our function. 2616 Value *Scalar; 2617 2618 // Which user that uses the scalar. 2619 llvm::User *User; 2620 2621 // Which lane does the scalar belong to. 2622 int Lane; 2623 }; 2624 using UserList = SmallVector<ExternalUser, 16>; 2625 2626 /// Checks if two instructions may access the same memory. 2627 /// 2628 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2629 /// is invariant in the calling loop. 2630 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2631 Instruction *Inst2) { 2632 // First check if the result is already in the cache. 2633 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2634 Optional<bool> &result = AliasCache[key]; 2635 if (result.hasValue()) { 2636 return result.getValue(); 2637 } 2638 bool aliased = true; 2639 if (Loc1.Ptr && isSimple(Inst1)) 2640 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2641 // Store the result in the cache. 2642 result = aliased; 2643 return aliased; 2644 } 2645 2646 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2647 2648 /// Cache for alias results. 2649 /// TODO: consider moving this to the AliasAnalysis itself. 2650 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2651 2652 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2653 // globally through SLP because we don't perform any action which 2654 // invalidates capture results. 2655 BatchAAResults BatchAA; 2656 2657 /// Temporary store for deleted instructions. Instructions will be deleted 2658 /// eventually when the BoUpSLP is destructed. The deferral is required to 2659 /// ensure that there are no incorrect collisions in the AliasCache, which 2660 /// can happen if a new instruction is allocated at the same address as a 2661 /// previously deleted instruction. 2662 DenseSet<Instruction *> DeletedInstructions; 2663 2664 /// Set of the instruction, being analyzed already for reductions. 2665 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; 2666 2667 /// Set of hashes for the list of reduction values already being analyzed. 2668 DenseSet<size_t> AnalyzedReductionVals; 2669 2670 /// A list of values that need to extracted out of the tree. 2671 /// This list holds pairs of (Internal Scalar : External User). External User 2672 /// can be nullptr, it means that this Internal Scalar will be used later, 2673 /// after vectorization. 2674 UserList ExternalUses; 2675 2676 /// Values used only by @llvm.assume calls. 2677 SmallPtrSet<const Value *, 32> EphValues; 2678 2679 /// Holds all of the instructions that we gathered. 2680 SetVector<Instruction *> GatherShuffleSeq; 2681 2682 /// A list of blocks that we are going to CSE. 2683 SetVector<BasicBlock *> CSEBlocks; 2684 2685 /// Contains all scheduling relevant data for an instruction. 2686 /// A ScheduleData either represents a single instruction or a member of an 2687 /// instruction bundle (= a group of instructions which is combined into a 2688 /// vector instruction). 2689 struct ScheduleData { 2690 // The initial value for the dependency counters. It means that the 2691 // dependencies are not calculated yet. 2692 enum { InvalidDeps = -1 }; 2693 2694 ScheduleData() = default; 2695 2696 void init(int BlockSchedulingRegionID, Value *OpVal) { 2697 FirstInBundle = this; 2698 NextInBundle = nullptr; 2699 NextLoadStore = nullptr; 2700 IsScheduled = false; 2701 SchedulingRegionID = BlockSchedulingRegionID; 2702 clearDependencies(); 2703 OpValue = OpVal; 2704 TE = nullptr; 2705 } 2706 2707 /// Verify basic self consistency properties 2708 void verify() { 2709 if (hasValidDependencies()) { 2710 assert(UnscheduledDeps <= Dependencies && "invariant"); 2711 } else { 2712 assert(UnscheduledDeps == Dependencies && "invariant"); 2713 } 2714 2715 if (IsScheduled) { 2716 assert(isSchedulingEntity() && 2717 "unexpected scheduled state"); 2718 for (const ScheduleData *BundleMember = this; BundleMember; 2719 BundleMember = BundleMember->NextInBundle) { 2720 assert(BundleMember->hasValidDependencies() && 2721 BundleMember->UnscheduledDeps == 0 && 2722 "unexpected scheduled state"); 2723 assert((BundleMember == this || !BundleMember->IsScheduled) && 2724 "only bundle is marked scheduled"); 2725 } 2726 } 2727 2728 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2729 "all bundle members must be in same basic block"); 2730 } 2731 2732 /// Returns true if the dependency information has been calculated. 2733 /// Note that depenendency validity can vary between instructions within 2734 /// a single bundle. 2735 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2736 2737 /// Returns true for single instructions and for bundle representatives 2738 /// (= the head of a bundle). 2739 bool isSchedulingEntity() const { return FirstInBundle == this; } 2740 2741 /// Returns true if it represents an instruction bundle and not only a 2742 /// single instruction. 2743 bool isPartOfBundle() const { 2744 return NextInBundle != nullptr || FirstInBundle != this || TE; 2745 } 2746 2747 /// Returns true if it is ready for scheduling, i.e. it has no more 2748 /// unscheduled depending instructions/bundles. 2749 bool isReady() const { 2750 assert(isSchedulingEntity() && 2751 "can't consider non-scheduling entity for ready list"); 2752 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2753 } 2754 2755 /// Modifies the number of unscheduled dependencies for this instruction, 2756 /// and returns the number of remaining dependencies for the containing 2757 /// bundle. 2758 int incrementUnscheduledDeps(int Incr) { 2759 assert(hasValidDependencies() && 2760 "increment of unscheduled deps would be meaningless"); 2761 UnscheduledDeps += Incr; 2762 return FirstInBundle->unscheduledDepsInBundle(); 2763 } 2764 2765 /// Sets the number of unscheduled dependencies to the number of 2766 /// dependencies. 2767 void resetUnscheduledDeps() { 2768 UnscheduledDeps = Dependencies; 2769 } 2770 2771 /// Clears all dependency information. 2772 void clearDependencies() { 2773 Dependencies = InvalidDeps; 2774 resetUnscheduledDeps(); 2775 MemoryDependencies.clear(); 2776 ControlDependencies.clear(); 2777 } 2778 2779 int unscheduledDepsInBundle() const { 2780 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2781 int Sum = 0; 2782 for (const ScheduleData *BundleMember = this; BundleMember; 2783 BundleMember = BundleMember->NextInBundle) { 2784 if (BundleMember->UnscheduledDeps == InvalidDeps) 2785 return InvalidDeps; 2786 Sum += BundleMember->UnscheduledDeps; 2787 } 2788 return Sum; 2789 } 2790 2791 void dump(raw_ostream &os) const { 2792 if (!isSchedulingEntity()) { 2793 os << "/ " << *Inst; 2794 } else if (NextInBundle) { 2795 os << '[' << *Inst; 2796 ScheduleData *SD = NextInBundle; 2797 while (SD) { 2798 os << ';' << *SD->Inst; 2799 SD = SD->NextInBundle; 2800 } 2801 os << ']'; 2802 } else { 2803 os << *Inst; 2804 } 2805 } 2806 2807 Instruction *Inst = nullptr; 2808 2809 /// Opcode of the current instruction in the schedule data. 2810 Value *OpValue = nullptr; 2811 2812 /// The TreeEntry that this instruction corresponds to. 2813 TreeEntry *TE = nullptr; 2814 2815 /// Points to the head in an instruction bundle (and always to this for 2816 /// single instructions). 2817 ScheduleData *FirstInBundle = nullptr; 2818 2819 /// Single linked list of all instructions in a bundle. Null if it is a 2820 /// single instruction. 2821 ScheduleData *NextInBundle = nullptr; 2822 2823 /// Single linked list of all memory instructions (e.g. load, store, call) 2824 /// in the block - until the end of the scheduling region. 2825 ScheduleData *NextLoadStore = nullptr; 2826 2827 /// The dependent memory instructions. 2828 /// This list is derived on demand in calculateDependencies(). 2829 SmallVector<ScheduleData *, 4> MemoryDependencies; 2830 2831 /// List of instructions which this instruction could be control dependent 2832 /// on. Allowing such nodes to be scheduled below this one could introduce 2833 /// a runtime fault which didn't exist in the original program. 2834 /// ex: this is a load or udiv following a readonly call which inf loops 2835 SmallVector<ScheduleData *, 4> ControlDependencies; 2836 2837 /// This ScheduleData is in the current scheduling region if this matches 2838 /// the current SchedulingRegionID of BlockScheduling. 2839 int SchedulingRegionID = 0; 2840 2841 /// Used for getting a "good" final ordering of instructions. 2842 int SchedulingPriority = 0; 2843 2844 /// The number of dependencies. Constitutes of the number of users of the 2845 /// instruction plus the number of dependent memory instructions (if any). 2846 /// This value is calculated on demand. 2847 /// If InvalidDeps, the number of dependencies is not calculated yet. 2848 int Dependencies = InvalidDeps; 2849 2850 /// The number of dependencies minus the number of dependencies of scheduled 2851 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2852 /// for scheduling. 2853 /// Note that this is negative as long as Dependencies is not calculated. 2854 int UnscheduledDeps = InvalidDeps; 2855 2856 /// True if this instruction is scheduled (or considered as scheduled in the 2857 /// dry-run). 2858 bool IsScheduled = false; 2859 }; 2860 2861 #ifndef NDEBUG 2862 friend inline raw_ostream &operator<<(raw_ostream &os, 2863 const BoUpSLP::ScheduleData &SD) { 2864 SD.dump(os); 2865 return os; 2866 } 2867 #endif 2868 2869 friend struct GraphTraits<BoUpSLP *>; 2870 friend struct DOTGraphTraits<BoUpSLP *>; 2871 2872 /// Contains all scheduling data for a basic block. 2873 /// It does not schedules instructions, which are not memory read/write 2874 /// instructions and their operands are either constants, or arguments, or 2875 /// phis, or instructions from others blocks, or their users are phis or from 2876 /// the other blocks. The resulting vector instructions can be placed at the 2877 /// beginning of the basic block without scheduling (if operands does not need 2878 /// to be scheduled) or at the end of the block (if users are outside of the 2879 /// block). It allows to save some compile time and memory used by the 2880 /// compiler. 2881 /// ScheduleData is assigned for each instruction in between the boundaries of 2882 /// the tree entry, even for those, which are not part of the graph. It is 2883 /// required to correctly follow the dependencies between the instructions and 2884 /// their correct scheduling. The ScheduleData is not allocated for the 2885 /// instructions, which do not require scheduling, like phis, nodes with 2886 /// extractelements/insertelements only or nodes with instructions, with 2887 /// uses/operands outside of the block. 2888 struct BlockScheduling { 2889 BlockScheduling(BasicBlock *BB) 2890 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2891 2892 void clear() { 2893 ReadyInsts.clear(); 2894 ScheduleStart = nullptr; 2895 ScheduleEnd = nullptr; 2896 FirstLoadStoreInRegion = nullptr; 2897 LastLoadStoreInRegion = nullptr; 2898 RegionHasStackSave = false; 2899 2900 // Reduce the maximum schedule region size by the size of the 2901 // previous scheduling run. 2902 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2903 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2904 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2905 ScheduleRegionSize = 0; 2906 2907 // Make a new scheduling region, i.e. all existing ScheduleData is not 2908 // in the new region yet. 2909 ++SchedulingRegionID; 2910 } 2911 2912 ScheduleData *getScheduleData(Instruction *I) { 2913 if (BB != I->getParent()) 2914 // Avoid lookup if can't possibly be in map. 2915 return nullptr; 2916 ScheduleData *SD = ScheduleDataMap.lookup(I); 2917 if (SD && isInSchedulingRegion(SD)) 2918 return SD; 2919 return nullptr; 2920 } 2921 2922 ScheduleData *getScheduleData(Value *V) { 2923 if (auto *I = dyn_cast<Instruction>(V)) 2924 return getScheduleData(I); 2925 return nullptr; 2926 } 2927 2928 ScheduleData *getScheduleData(Value *V, Value *Key) { 2929 if (V == Key) 2930 return getScheduleData(V); 2931 auto I = ExtraScheduleDataMap.find(V); 2932 if (I != ExtraScheduleDataMap.end()) { 2933 ScheduleData *SD = I->second.lookup(Key); 2934 if (SD && isInSchedulingRegion(SD)) 2935 return SD; 2936 } 2937 return nullptr; 2938 } 2939 2940 bool isInSchedulingRegion(ScheduleData *SD) const { 2941 return SD->SchedulingRegionID == SchedulingRegionID; 2942 } 2943 2944 /// Marks an instruction as scheduled and puts all dependent ready 2945 /// instructions into the ready-list. 2946 template <typename ReadyListType> 2947 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2948 SD->IsScheduled = true; 2949 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2950 2951 for (ScheduleData *BundleMember = SD; BundleMember; 2952 BundleMember = BundleMember->NextInBundle) { 2953 if (BundleMember->Inst != BundleMember->OpValue) 2954 continue; 2955 2956 // Handle the def-use chain dependencies. 2957 2958 // Decrement the unscheduled counter and insert to ready list if ready. 2959 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2960 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2961 if (OpDef && OpDef->hasValidDependencies() && 2962 OpDef->incrementUnscheduledDeps(-1) == 0) { 2963 // There are no more unscheduled dependencies after 2964 // decrementing, so we can put the dependent instruction 2965 // into the ready list. 2966 ScheduleData *DepBundle = OpDef->FirstInBundle; 2967 assert(!DepBundle->IsScheduled && 2968 "already scheduled bundle gets ready"); 2969 ReadyList.insert(DepBundle); 2970 LLVM_DEBUG(dbgs() 2971 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2972 } 2973 }); 2974 }; 2975 2976 // If BundleMember is a vector bundle, its operands may have been 2977 // reordered during buildTree(). We therefore need to get its operands 2978 // through the TreeEntry. 2979 if (TreeEntry *TE = BundleMember->TE) { 2980 // Need to search for the lane since the tree entry can be reordered. 2981 int Lane = std::distance(TE->Scalars.begin(), 2982 find(TE->Scalars, BundleMember->Inst)); 2983 assert(Lane >= 0 && "Lane not set"); 2984 2985 // Since vectorization tree is being built recursively this assertion 2986 // ensures that the tree entry has all operands set before reaching 2987 // this code. Couple of exceptions known at the moment are extracts 2988 // where their second (immediate) operand is not added. Since 2989 // immediates do not affect scheduler behavior this is considered 2990 // okay. 2991 auto *In = BundleMember->Inst; 2992 assert(In && 2993 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2994 In->getNumOperands() == TE->getNumOperands()) && 2995 "Missed TreeEntry operands?"); 2996 (void)In; // fake use to avoid build failure when assertions disabled 2997 2998 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2999 OpIdx != NumOperands; ++OpIdx) 3000 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 3001 DecrUnsched(I); 3002 } else { 3003 // If BundleMember is a stand-alone instruction, no operand reordering 3004 // has taken place, so we directly access its operands. 3005 for (Use &U : BundleMember->Inst->operands()) 3006 if (auto *I = dyn_cast<Instruction>(U.get())) 3007 DecrUnsched(I); 3008 } 3009 // Handle the memory dependencies. 3010 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3011 if (MemoryDepSD->hasValidDependencies() && 3012 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3013 // There are no more unscheduled dependencies after decrementing, 3014 // so we can put the dependent instruction into the ready list. 3015 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3016 assert(!DepBundle->IsScheduled && 3017 "already scheduled bundle gets ready"); 3018 ReadyList.insert(DepBundle); 3019 LLVM_DEBUG(dbgs() 3020 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3021 } 3022 } 3023 // Handle the control dependencies. 3024 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3025 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3026 // There are no more unscheduled dependencies after decrementing, 3027 // so we can put the dependent instruction into the ready list. 3028 ScheduleData *DepBundle = DepSD->FirstInBundle; 3029 assert(!DepBundle->IsScheduled && 3030 "already scheduled bundle gets ready"); 3031 ReadyList.insert(DepBundle); 3032 LLVM_DEBUG(dbgs() 3033 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3034 } 3035 } 3036 3037 } 3038 } 3039 3040 /// Verify basic self consistency properties of the data structure. 3041 void verify() { 3042 if (!ScheduleStart) 3043 return; 3044 3045 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3046 ScheduleStart->comesBefore(ScheduleEnd) && 3047 "Not a valid scheduling region?"); 3048 3049 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3050 auto *SD = getScheduleData(I); 3051 if (!SD) 3052 continue; 3053 assert(isInSchedulingRegion(SD) && 3054 "primary schedule data not in window?"); 3055 assert(isInSchedulingRegion(SD->FirstInBundle) && 3056 "entire bundle in window!"); 3057 (void)SD; 3058 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3059 } 3060 3061 for (auto *SD : ReadyInsts) { 3062 assert(SD->isSchedulingEntity() && SD->isReady() && 3063 "item in ready list not ready?"); 3064 (void)SD; 3065 } 3066 } 3067 3068 void doForAllOpcodes(Value *V, 3069 function_ref<void(ScheduleData *SD)> Action) { 3070 if (ScheduleData *SD = getScheduleData(V)) 3071 Action(SD); 3072 auto I = ExtraScheduleDataMap.find(V); 3073 if (I != ExtraScheduleDataMap.end()) 3074 for (auto &P : I->second) 3075 if (isInSchedulingRegion(P.second)) 3076 Action(P.second); 3077 } 3078 3079 /// Put all instructions into the ReadyList which are ready for scheduling. 3080 template <typename ReadyListType> 3081 void initialFillReadyList(ReadyListType &ReadyList) { 3082 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3083 doForAllOpcodes(I, [&](ScheduleData *SD) { 3084 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3085 SD->isReady()) { 3086 ReadyList.insert(SD); 3087 LLVM_DEBUG(dbgs() 3088 << "SLP: initially in ready list: " << *SD << "\n"); 3089 } 3090 }); 3091 } 3092 } 3093 3094 /// Build a bundle from the ScheduleData nodes corresponding to the 3095 /// scalar instruction for each lane. 3096 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3097 3098 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3099 /// cyclic dependencies. This is only a dry-run, no instructions are 3100 /// actually moved at this stage. 3101 /// \returns the scheduling bundle. The returned Optional value is non-None 3102 /// if \p VL is allowed to be scheduled. 3103 Optional<ScheduleData *> 3104 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3105 const InstructionsState &S); 3106 3107 /// Un-bundles a group of instructions. 3108 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3109 3110 /// Allocates schedule data chunk. 3111 ScheduleData *allocateScheduleDataChunks(); 3112 3113 /// Extends the scheduling region so that V is inside the region. 3114 /// \returns true if the region size is within the limit. 3115 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3116 3117 /// Initialize the ScheduleData structures for new instructions in the 3118 /// scheduling region. 3119 void initScheduleData(Instruction *FromI, Instruction *ToI, 3120 ScheduleData *PrevLoadStore, 3121 ScheduleData *NextLoadStore); 3122 3123 /// Updates the dependency information of a bundle and of all instructions/ 3124 /// bundles which depend on the original bundle. 3125 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3126 BoUpSLP *SLP); 3127 3128 /// Sets all instruction in the scheduling region to un-scheduled. 3129 void resetSchedule(); 3130 3131 BasicBlock *BB; 3132 3133 /// Simple memory allocation for ScheduleData. 3134 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3135 3136 /// The size of a ScheduleData array in ScheduleDataChunks. 3137 int ChunkSize; 3138 3139 /// The allocator position in the current chunk, which is the last entry 3140 /// of ScheduleDataChunks. 3141 int ChunkPos; 3142 3143 /// Attaches ScheduleData to Instruction. 3144 /// Note that the mapping survives during all vectorization iterations, i.e. 3145 /// ScheduleData structures are recycled. 3146 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3147 3148 /// Attaches ScheduleData to Instruction with the leading key. 3149 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3150 ExtraScheduleDataMap; 3151 3152 /// The ready-list for scheduling (only used for the dry-run). 3153 SetVector<ScheduleData *> ReadyInsts; 3154 3155 /// The first instruction of the scheduling region. 3156 Instruction *ScheduleStart = nullptr; 3157 3158 /// The first instruction _after_ the scheduling region. 3159 Instruction *ScheduleEnd = nullptr; 3160 3161 /// The first memory accessing instruction in the scheduling region 3162 /// (can be null). 3163 ScheduleData *FirstLoadStoreInRegion = nullptr; 3164 3165 /// The last memory accessing instruction in the scheduling region 3166 /// (can be null). 3167 ScheduleData *LastLoadStoreInRegion = nullptr; 3168 3169 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3170 /// region? Used to optimize the dependence calculation for the 3171 /// common case where there isn't. 3172 bool RegionHasStackSave = false; 3173 3174 /// The current size of the scheduling region. 3175 int ScheduleRegionSize = 0; 3176 3177 /// The maximum size allowed for the scheduling region. 3178 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3179 3180 /// The ID of the scheduling region. For a new vectorization iteration this 3181 /// is incremented which "removes" all ScheduleData from the region. 3182 /// Make sure that the initial SchedulingRegionID is greater than the 3183 /// initial SchedulingRegionID in ScheduleData (which is 0). 3184 int SchedulingRegionID = 1; 3185 }; 3186 3187 /// Attaches the BlockScheduling structures to basic blocks. 3188 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3189 3190 /// Performs the "real" scheduling. Done before vectorization is actually 3191 /// performed in a basic block. 3192 void scheduleBlock(BlockScheduling *BS); 3193 3194 /// List of users to ignore during scheduling and that don't need extracting. 3195 SmallPtrSet<Value *, 4> UserIgnoreList; 3196 3197 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3198 /// sorted SmallVectors of unsigned. 3199 struct OrdersTypeDenseMapInfo { 3200 static OrdersType getEmptyKey() { 3201 OrdersType V; 3202 V.push_back(~1U); 3203 return V; 3204 } 3205 3206 static OrdersType getTombstoneKey() { 3207 OrdersType V; 3208 V.push_back(~2U); 3209 return V; 3210 } 3211 3212 static unsigned getHashValue(const OrdersType &V) { 3213 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3214 } 3215 3216 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3217 return LHS == RHS; 3218 } 3219 }; 3220 3221 // Analysis and block reference. 3222 Function *F; 3223 ScalarEvolution *SE; 3224 TargetTransformInfo *TTI; 3225 TargetLibraryInfo *TLI; 3226 LoopInfo *LI; 3227 DominatorTree *DT; 3228 AssumptionCache *AC; 3229 DemandedBits *DB; 3230 const DataLayout *DL; 3231 OptimizationRemarkEmitter *ORE; 3232 3233 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3234 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3235 3236 /// Instruction builder to construct the vectorized tree. 3237 IRBuilder<> Builder; 3238 3239 /// A map of scalar integer values to the smallest bit width with which they 3240 /// can legally be represented. The values map to (width, signed) pairs, 3241 /// where "width" indicates the minimum bit width and "signed" is True if the 3242 /// value must be signed-extended, rather than zero-extended, back to its 3243 /// original width. 3244 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3245 }; 3246 3247 } // end namespace slpvectorizer 3248 3249 template <> struct GraphTraits<BoUpSLP *> { 3250 using TreeEntry = BoUpSLP::TreeEntry; 3251 3252 /// NodeRef has to be a pointer per the GraphWriter. 3253 using NodeRef = TreeEntry *; 3254 3255 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3256 3257 /// Add the VectorizableTree to the index iterator to be able to return 3258 /// TreeEntry pointers. 3259 struct ChildIteratorType 3260 : public iterator_adaptor_base< 3261 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3262 ContainerTy &VectorizableTree; 3263 3264 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3265 ContainerTy &VT) 3266 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3267 3268 NodeRef operator*() { return I->UserTE; } 3269 }; 3270 3271 static NodeRef getEntryNode(BoUpSLP &R) { 3272 return R.VectorizableTree[0].get(); 3273 } 3274 3275 static ChildIteratorType child_begin(NodeRef N) { 3276 return {N->UserTreeIndices.begin(), N->Container}; 3277 } 3278 3279 static ChildIteratorType child_end(NodeRef N) { 3280 return {N->UserTreeIndices.end(), N->Container}; 3281 } 3282 3283 /// For the node iterator we just need to turn the TreeEntry iterator into a 3284 /// TreeEntry* iterator so that it dereferences to NodeRef. 3285 class nodes_iterator { 3286 using ItTy = ContainerTy::iterator; 3287 ItTy It; 3288 3289 public: 3290 nodes_iterator(const ItTy &It2) : It(It2) {} 3291 NodeRef operator*() { return It->get(); } 3292 nodes_iterator operator++() { 3293 ++It; 3294 return *this; 3295 } 3296 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3297 }; 3298 3299 static nodes_iterator nodes_begin(BoUpSLP *R) { 3300 return nodes_iterator(R->VectorizableTree.begin()); 3301 } 3302 3303 static nodes_iterator nodes_end(BoUpSLP *R) { 3304 return nodes_iterator(R->VectorizableTree.end()); 3305 } 3306 3307 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3308 }; 3309 3310 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3311 using TreeEntry = BoUpSLP::TreeEntry; 3312 3313 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3314 3315 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3316 std::string Str; 3317 raw_string_ostream OS(Str); 3318 if (isSplat(Entry->Scalars)) 3319 OS << "<splat> "; 3320 for (auto V : Entry->Scalars) { 3321 OS << *V; 3322 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3323 return EU.Scalar == V; 3324 })) 3325 OS << " <extract>"; 3326 OS << "\n"; 3327 } 3328 return Str; 3329 } 3330 3331 static std::string getNodeAttributes(const TreeEntry *Entry, 3332 const BoUpSLP *) { 3333 if (Entry->State == TreeEntry::NeedToGather) 3334 return "color=red"; 3335 return ""; 3336 } 3337 }; 3338 3339 } // end namespace llvm 3340 3341 BoUpSLP::~BoUpSLP() { 3342 SmallVector<WeakTrackingVH> DeadInsts; 3343 for (auto *I : DeletedInstructions) { 3344 for (Use &U : I->operands()) { 3345 auto *Op = dyn_cast<Instruction>(U.get()); 3346 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3347 wouldInstructionBeTriviallyDead(Op, TLI)) 3348 DeadInsts.emplace_back(Op); 3349 } 3350 I->dropAllReferences(); 3351 } 3352 for (auto *I : DeletedInstructions) { 3353 assert(I->use_empty() && 3354 "trying to erase instruction with users."); 3355 I->eraseFromParent(); 3356 } 3357 3358 // Cleanup any dead scalar code feeding the vectorized instructions 3359 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3360 3361 #ifdef EXPENSIVE_CHECKS 3362 // If we could guarantee that this call is not extremely slow, we could 3363 // remove the ifdef limitation (see PR47712). 3364 assert(!verifyFunction(*F, &dbgs())); 3365 #endif 3366 } 3367 3368 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3369 /// contains original mask for the scalars reused in the node. Procedure 3370 /// transform this mask in accordance with the given \p Mask. 3371 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3372 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3373 "Expected non-empty mask."); 3374 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3375 Prev.swap(Reuses); 3376 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3377 if (Mask[I] != UndefMaskElem) 3378 Reuses[Mask[I]] = Prev[I]; 3379 } 3380 3381 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3382 /// the original order of the scalars. Procedure transforms the provided order 3383 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3384 /// identity order, \p Order is cleared. 3385 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3386 assert(!Mask.empty() && "Expected non-empty mask."); 3387 SmallVector<int> MaskOrder; 3388 if (Order.empty()) { 3389 MaskOrder.resize(Mask.size()); 3390 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3391 } else { 3392 inversePermutation(Order, MaskOrder); 3393 } 3394 reorderReuses(MaskOrder, Mask); 3395 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3396 Order.clear(); 3397 return; 3398 } 3399 Order.assign(Mask.size(), Mask.size()); 3400 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3401 if (MaskOrder[I] != UndefMaskElem) 3402 Order[MaskOrder[I]] = I; 3403 fixupOrderingIndices(Order); 3404 } 3405 3406 Optional<BoUpSLP::OrdersType> 3407 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3408 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3409 unsigned NumScalars = TE.Scalars.size(); 3410 OrdersType CurrentOrder(NumScalars, NumScalars); 3411 SmallVector<int> Positions; 3412 SmallBitVector UsedPositions(NumScalars); 3413 const TreeEntry *STE = nullptr; 3414 // Try to find all gathered scalars that are gets vectorized in other 3415 // vectorize node. Here we can have only one single tree vector node to 3416 // correctly identify order of the gathered scalars. 3417 for (unsigned I = 0; I < NumScalars; ++I) { 3418 Value *V = TE.Scalars[I]; 3419 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3420 continue; 3421 if (const auto *LocalSTE = getTreeEntry(V)) { 3422 if (!STE) 3423 STE = LocalSTE; 3424 else if (STE != LocalSTE) 3425 // Take the order only from the single vector node. 3426 return None; 3427 unsigned Lane = 3428 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3429 if (Lane >= NumScalars) 3430 return None; 3431 if (CurrentOrder[Lane] != NumScalars) { 3432 if (Lane != I) 3433 continue; 3434 UsedPositions.reset(CurrentOrder[Lane]); 3435 } 3436 // The partial identity (where only some elements of the gather node are 3437 // in the identity order) is good. 3438 CurrentOrder[Lane] = I; 3439 UsedPositions.set(I); 3440 } 3441 } 3442 // Need to keep the order if we have a vector entry and at least 2 scalars or 3443 // the vectorized entry has just 2 scalars. 3444 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3445 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3446 for (unsigned I = 0; I < NumScalars; ++I) 3447 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3448 return false; 3449 return true; 3450 }; 3451 if (IsIdentityOrder(CurrentOrder)) { 3452 CurrentOrder.clear(); 3453 return CurrentOrder; 3454 } 3455 auto *It = CurrentOrder.begin(); 3456 for (unsigned I = 0; I < NumScalars;) { 3457 if (UsedPositions.test(I)) { 3458 ++I; 3459 continue; 3460 } 3461 if (*It == NumScalars) { 3462 *It = I; 3463 ++I; 3464 } 3465 ++It; 3466 } 3467 return CurrentOrder; 3468 } 3469 return None; 3470 } 3471 3472 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3473 const DataLayout &DL, ScalarEvolution &SE, 3474 SmallVectorImpl<unsigned> &SortedIndices) { 3475 assert(llvm::all_of( 3476 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3477 "Expected list of pointer operands."); 3478 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3479 // Ptr into, sort and return the sorted indices with values next to one 3480 // another. 3481 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3482 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3483 3484 unsigned Cnt = 1; 3485 for (Value *Ptr : VL.drop_front()) { 3486 bool Found = any_of(Bases, [&](auto &Base) { 3487 Optional<int> Diff = 3488 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3489 /*StrictCheck=*/true); 3490 if (!Diff) 3491 return false; 3492 3493 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3494 return true; 3495 }); 3496 3497 if (!Found) { 3498 // If we haven't found enough to usefully cluster, return early. 3499 if (Bases.size() > VL.size() / 2 - 1) 3500 return false; 3501 3502 // Not found already - add a new Base 3503 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3504 } 3505 } 3506 3507 // For each of the bases sort the pointers by Offset and check if any of the 3508 // base become consecutively allocated. 3509 bool AnyConsecutive = false; 3510 for (auto &Base : Bases) { 3511 auto &Vec = Base.second; 3512 if (Vec.size() > 1) { 3513 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3514 const std::tuple<Value *, int, unsigned> &Y) { 3515 return std::get<1>(X) < std::get<1>(Y); 3516 }); 3517 int InitialOffset = std::get<1>(Vec[0]); 3518 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3519 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3520 }); 3521 } 3522 } 3523 3524 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3525 SortedIndices.clear(); 3526 if (!AnyConsecutive) 3527 return false; 3528 3529 for (auto &Base : Bases) { 3530 for (auto &T : Base.second) 3531 SortedIndices.push_back(std::get<2>(T)); 3532 } 3533 3534 assert(SortedIndices.size() == VL.size() && 3535 "Expected SortedIndices to be the size of VL"); 3536 return true; 3537 } 3538 3539 Optional<BoUpSLP::OrdersType> 3540 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3541 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3542 Type *ScalarTy = TE.Scalars[0]->getType(); 3543 3544 SmallVector<Value *> Ptrs; 3545 Ptrs.reserve(TE.Scalars.size()); 3546 for (Value *V : TE.Scalars) { 3547 auto *L = dyn_cast<LoadInst>(V); 3548 if (!L || !L->isSimple()) 3549 return None; 3550 Ptrs.push_back(L->getPointerOperand()); 3551 } 3552 3553 BoUpSLP::OrdersType Order; 3554 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3555 return Order; 3556 return None; 3557 } 3558 3559 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3560 bool TopToBottom) { 3561 // No need to reorder if need to shuffle reuses, still need to shuffle the 3562 // node. 3563 if (!TE.ReuseShuffleIndices.empty()) 3564 return None; 3565 if (TE.State == TreeEntry::Vectorize && 3566 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3567 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3568 !TE.isAltShuffle()) 3569 return TE.ReorderIndices; 3570 if (TE.State == TreeEntry::NeedToGather) { 3571 // TODO: add analysis of other gather nodes with extractelement 3572 // instructions and other values/instructions, not only undefs. 3573 if (((TE.getOpcode() == Instruction::ExtractElement && 3574 !TE.isAltShuffle()) || 3575 (all_of(TE.Scalars, 3576 [](Value *V) { 3577 return isa<UndefValue, ExtractElementInst>(V); 3578 }) && 3579 any_of(TE.Scalars, 3580 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3581 all_of(TE.Scalars, 3582 [](Value *V) { 3583 auto *EE = dyn_cast<ExtractElementInst>(V); 3584 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3585 }) && 3586 allSameType(TE.Scalars)) { 3587 // Check that gather of extractelements can be represented as 3588 // just a shuffle of a single vector. 3589 OrdersType CurrentOrder; 3590 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3591 if (Reuse || !CurrentOrder.empty()) { 3592 if (!CurrentOrder.empty()) 3593 fixupOrderingIndices(CurrentOrder); 3594 return CurrentOrder; 3595 } 3596 } 3597 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3598 return CurrentOrder; 3599 if (TE.Scalars.size() >= 4) 3600 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3601 return Order; 3602 } 3603 return None; 3604 } 3605 3606 void BoUpSLP::reorderTopToBottom() { 3607 // Maps VF to the graph nodes. 3608 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3609 // ExtractElement gather nodes which can be vectorized and need to handle 3610 // their ordering. 3611 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3612 3613 // Maps a TreeEntry to the reorder indices of external users. 3614 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 3615 ExternalUserReorderMap; 3616 // Find all reorderable nodes with the given VF. 3617 // Currently the are vectorized stores,loads,extracts + some gathering of 3618 // extracts. 3619 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders, 3620 &ExternalUserReorderMap]( 3621 const std::unique_ptr<TreeEntry> &TE) { 3622 // Look for external users that will probably be vectorized. 3623 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 3624 findExternalStoreUsersReorderIndices(TE.get()); 3625 if (!ExternalUserReorderIndices.empty()) { 3626 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3627 ExternalUserReorderMap.try_emplace(TE.get(), 3628 std::move(ExternalUserReorderIndices)); 3629 } 3630 3631 if (Optional<OrdersType> CurrentOrder = 3632 getReorderingData(*TE, /*TopToBottom=*/true)) { 3633 // Do not include ordering for nodes used in the alt opcode vectorization, 3634 // better to reorder them during bottom-to-top stage. If follow the order 3635 // here, it causes reordering of the whole graph though actually it is 3636 // profitable just to reorder the subgraph that starts from the alternate 3637 // opcode vectorization node. Such nodes already end-up with the shuffle 3638 // instruction and it is just enough to change this shuffle rather than 3639 // rotate the scalars for the whole graph. 3640 unsigned Cnt = 0; 3641 const TreeEntry *UserTE = TE.get(); 3642 while (UserTE && Cnt < RecursionMaxDepth) { 3643 if (UserTE->UserTreeIndices.size() != 1) 3644 break; 3645 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3646 return EI.UserTE->State == TreeEntry::Vectorize && 3647 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3648 })) 3649 return; 3650 if (UserTE->UserTreeIndices.empty()) 3651 UserTE = nullptr; 3652 else 3653 UserTE = UserTE->UserTreeIndices.back().UserTE; 3654 ++Cnt; 3655 } 3656 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3657 if (TE->State != TreeEntry::Vectorize) 3658 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3659 } 3660 }); 3661 3662 // Reorder the graph nodes according to their vectorization factor. 3663 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3664 VF /= 2) { 3665 auto It = VFToOrderedEntries.find(VF); 3666 if (It == VFToOrderedEntries.end()) 3667 continue; 3668 // Try to find the most profitable order. We just are looking for the most 3669 // used order and reorder scalar elements in the nodes according to this 3670 // mostly used order. 3671 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3672 // All operands are reordered and used only in this node - propagate the 3673 // most used order to the user node. 3674 MapVector<OrdersType, unsigned, 3675 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3676 OrdersUses; 3677 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3678 for (const TreeEntry *OpTE : OrderedEntries) { 3679 // No need to reorder this nodes, still need to extend and to use shuffle, 3680 // just need to merge reordering shuffle and the reuse shuffle. 3681 if (!OpTE->ReuseShuffleIndices.empty()) 3682 continue; 3683 // Count number of orders uses. 3684 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3685 if (OpTE->State == TreeEntry::NeedToGather) { 3686 auto It = GathersToOrders.find(OpTE); 3687 if (It != GathersToOrders.end()) 3688 return It->second; 3689 } 3690 return OpTE->ReorderIndices; 3691 }(); 3692 // First consider the order of the external scalar users. 3693 auto It = ExternalUserReorderMap.find(OpTE); 3694 if (It != ExternalUserReorderMap.end()) { 3695 const auto &ExternalUserReorderIndices = It->second; 3696 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 3697 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 3698 // No other useful reorder data in this entry. 3699 if (Order.empty()) 3700 continue; 3701 } 3702 // Stores actually store the mask, not the order, need to invert. 3703 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3704 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3705 SmallVector<int> Mask; 3706 inversePermutation(Order, Mask); 3707 unsigned E = Order.size(); 3708 OrdersType CurrentOrder(E, E); 3709 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3710 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3711 }); 3712 fixupOrderingIndices(CurrentOrder); 3713 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3714 } else { 3715 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3716 } 3717 } 3718 // Set order of the user node. 3719 if (OrdersUses.empty()) 3720 continue; 3721 // Choose the most used order. 3722 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3723 unsigned Cnt = OrdersUses.front().second; 3724 for (const auto &Pair : drop_begin(OrdersUses)) { 3725 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3726 BestOrder = Pair.first; 3727 Cnt = Pair.second; 3728 } 3729 } 3730 // Set order of the user node. 3731 if (BestOrder.empty()) 3732 continue; 3733 SmallVector<int> Mask; 3734 inversePermutation(BestOrder, Mask); 3735 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3736 unsigned E = BestOrder.size(); 3737 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3738 return I < E ? static_cast<int>(I) : UndefMaskElem; 3739 }); 3740 // Do an actual reordering, if profitable. 3741 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3742 // Just do the reordering for the nodes with the given VF. 3743 if (TE->Scalars.size() != VF) { 3744 if (TE->ReuseShuffleIndices.size() == VF) { 3745 // Need to reorder the reuses masks of the operands with smaller VF to 3746 // be able to find the match between the graph nodes and scalar 3747 // operands of the given node during vectorization/cost estimation. 3748 assert(all_of(TE->UserTreeIndices, 3749 [VF, &TE](const EdgeInfo &EI) { 3750 return EI.UserTE->Scalars.size() == VF || 3751 EI.UserTE->Scalars.size() == 3752 TE->Scalars.size(); 3753 }) && 3754 "All users must be of VF size."); 3755 // Update ordering of the operands with the smaller VF than the given 3756 // one. 3757 reorderReuses(TE->ReuseShuffleIndices, Mask); 3758 } 3759 continue; 3760 } 3761 if (TE->State == TreeEntry::Vectorize && 3762 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3763 InsertElementInst>(TE->getMainOp()) && 3764 !TE->isAltShuffle()) { 3765 // Build correct orders for extract{element,value}, loads and 3766 // stores. 3767 reorderOrder(TE->ReorderIndices, Mask); 3768 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3769 TE->reorderOperands(Mask); 3770 } else { 3771 // Reorder the node and its operands. 3772 TE->reorderOperands(Mask); 3773 assert(TE->ReorderIndices.empty() && 3774 "Expected empty reorder sequence."); 3775 reorderScalars(TE->Scalars, Mask); 3776 } 3777 if (!TE->ReuseShuffleIndices.empty()) { 3778 // Apply reversed order to keep the original ordering of the reused 3779 // elements to avoid extra reorder indices shuffling. 3780 OrdersType CurrentOrder; 3781 reorderOrder(CurrentOrder, MaskOrder); 3782 SmallVector<int> NewReuses; 3783 inversePermutation(CurrentOrder, NewReuses); 3784 addMask(NewReuses, TE->ReuseShuffleIndices); 3785 TE->ReuseShuffleIndices.swap(NewReuses); 3786 } 3787 } 3788 } 3789 } 3790 3791 bool BoUpSLP::canReorderOperands( 3792 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3793 ArrayRef<TreeEntry *> ReorderableGathers, 3794 SmallVectorImpl<TreeEntry *> &GatherOps) { 3795 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3796 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3797 return OpData.first == I && 3798 OpData.second->State == TreeEntry::Vectorize; 3799 })) 3800 continue; 3801 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3802 // Do not reorder if operand node is used by many user nodes. 3803 if (any_of(TE->UserTreeIndices, 3804 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3805 return false; 3806 // Add the node to the list of the ordered nodes with the identity 3807 // order. 3808 Edges.emplace_back(I, TE); 3809 continue; 3810 } 3811 ArrayRef<Value *> VL = UserTE->getOperand(I); 3812 TreeEntry *Gather = nullptr; 3813 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3814 assert(TE->State != TreeEntry::Vectorize && 3815 "Only non-vectorized nodes are expected."); 3816 if (TE->isSame(VL)) { 3817 Gather = TE; 3818 return true; 3819 } 3820 return false; 3821 }) > 1) 3822 return false; 3823 if (Gather) 3824 GatherOps.push_back(Gather); 3825 } 3826 return true; 3827 } 3828 3829 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3830 SetVector<TreeEntry *> OrderedEntries; 3831 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3832 // Find all reorderable leaf nodes with the given VF. 3833 // Currently the are vectorized loads,extracts without alternate operands + 3834 // some gathering of extracts. 3835 SmallVector<TreeEntry *> NonVectorized; 3836 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3837 &NonVectorized]( 3838 const std::unique_ptr<TreeEntry> &TE) { 3839 if (TE->State != TreeEntry::Vectorize) 3840 NonVectorized.push_back(TE.get()); 3841 if (Optional<OrdersType> CurrentOrder = 3842 getReorderingData(*TE, /*TopToBottom=*/false)) { 3843 OrderedEntries.insert(TE.get()); 3844 if (TE->State != TreeEntry::Vectorize) 3845 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3846 } 3847 }); 3848 3849 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3850 // I.e., if the node has operands, that are reordered, try to make at least 3851 // one operand order in the natural order and reorder others + reorder the 3852 // user node itself. 3853 SmallPtrSet<const TreeEntry *, 4> Visited; 3854 while (!OrderedEntries.empty()) { 3855 // 1. Filter out only reordered nodes. 3856 // 2. If the entry has multiple uses - skip it and jump to the next node. 3857 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3858 SmallVector<TreeEntry *> Filtered; 3859 for (TreeEntry *TE : OrderedEntries) { 3860 if (!(TE->State == TreeEntry::Vectorize || 3861 (TE->State == TreeEntry::NeedToGather && 3862 GathersToOrders.count(TE))) || 3863 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3864 !all_of(drop_begin(TE->UserTreeIndices), 3865 [TE](const EdgeInfo &EI) { 3866 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3867 }) || 3868 !Visited.insert(TE).second) { 3869 Filtered.push_back(TE); 3870 continue; 3871 } 3872 // Build a map between user nodes and their operands order to speedup 3873 // search. The graph currently does not provide this dependency directly. 3874 for (EdgeInfo &EI : TE->UserTreeIndices) { 3875 TreeEntry *UserTE = EI.UserTE; 3876 auto It = Users.find(UserTE); 3877 if (It == Users.end()) 3878 It = Users.insert({UserTE, {}}).first; 3879 It->second.emplace_back(EI.EdgeIdx, TE); 3880 } 3881 } 3882 // Erase filtered entries. 3883 for_each(Filtered, 3884 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3885 for (auto &Data : Users) { 3886 // Check that operands are used only in the User node. 3887 SmallVector<TreeEntry *> GatherOps; 3888 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3889 GatherOps)) { 3890 for_each(Data.second, 3891 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3892 OrderedEntries.remove(Op.second); 3893 }); 3894 continue; 3895 } 3896 // All operands are reordered and used only in this node - propagate the 3897 // most used order to the user node. 3898 MapVector<OrdersType, unsigned, 3899 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3900 OrdersUses; 3901 // Do the analysis for each tree entry only once, otherwise the order of 3902 // the same node my be considered several times, though might be not 3903 // profitable. 3904 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3905 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3906 for (const auto &Op : Data.second) { 3907 TreeEntry *OpTE = Op.second; 3908 if (!VisitedOps.insert(OpTE).second) 3909 continue; 3910 if (!OpTE->ReuseShuffleIndices.empty() || 3911 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3912 continue; 3913 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3914 if (OpTE->State == TreeEntry::NeedToGather) 3915 return GathersToOrders.find(OpTE)->second; 3916 return OpTE->ReorderIndices; 3917 }(); 3918 unsigned NumOps = count_if( 3919 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3920 return P.second == OpTE; 3921 }); 3922 // Stores actually store the mask, not the order, need to invert. 3923 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3924 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3925 SmallVector<int> Mask; 3926 inversePermutation(Order, Mask); 3927 unsigned E = Order.size(); 3928 OrdersType CurrentOrder(E, E); 3929 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3930 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3931 }); 3932 fixupOrderingIndices(CurrentOrder); 3933 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3934 NumOps; 3935 } else { 3936 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3937 } 3938 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3939 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3940 const TreeEntry *TE) { 3941 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3942 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3943 (IgnoreReorder && TE->Idx == 0)) 3944 return true; 3945 if (TE->State == TreeEntry::NeedToGather) { 3946 auto It = GathersToOrders.find(TE); 3947 if (It != GathersToOrders.end()) 3948 return !It->second.empty(); 3949 return true; 3950 } 3951 return false; 3952 }; 3953 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3954 TreeEntry *UserTE = EI.UserTE; 3955 if (!VisitedUsers.insert(UserTE).second) 3956 continue; 3957 // May reorder user node if it requires reordering, has reused 3958 // scalars, is an alternate op vectorize node or its op nodes require 3959 // reordering. 3960 if (AllowsReordering(UserTE)) 3961 continue; 3962 // Check if users allow reordering. 3963 // Currently look up just 1 level of operands to avoid increase of 3964 // the compile time. 3965 // Profitable to reorder if definitely more operands allow 3966 // reordering rather than those with natural order. 3967 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3968 if (static_cast<unsigned>(count_if( 3969 Ops, [UserTE, &AllowsReordering]( 3970 const std::pair<unsigned, TreeEntry *> &Op) { 3971 return AllowsReordering(Op.second) && 3972 all_of(Op.second->UserTreeIndices, 3973 [UserTE](const EdgeInfo &EI) { 3974 return EI.UserTE == UserTE; 3975 }); 3976 })) <= Ops.size() / 2) 3977 ++Res.first->second; 3978 } 3979 } 3980 // If no orders - skip current nodes and jump to the next one, if any. 3981 if (OrdersUses.empty()) { 3982 for_each(Data.second, 3983 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3984 OrderedEntries.remove(Op.second); 3985 }); 3986 continue; 3987 } 3988 // Choose the best order. 3989 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3990 unsigned Cnt = OrdersUses.front().second; 3991 for (const auto &Pair : drop_begin(OrdersUses)) { 3992 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3993 BestOrder = Pair.first; 3994 Cnt = Pair.second; 3995 } 3996 } 3997 // Set order of the user node (reordering of operands and user nodes). 3998 if (BestOrder.empty()) { 3999 for_each(Data.second, 4000 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4001 OrderedEntries.remove(Op.second); 4002 }); 4003 continue; 4004 } 4005 // Erase operands from OrderedEntries list and adjust their orders. 4006 VisitedOps.clear(); 4007 SmallVector<int> Mask; 4008 inversePermutation(BestOrder, Mask); 4009 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4010 unsigned E = BestOrder.size(); 4011 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4012 return I < E ? static_cast<int>(I) : UndefMaskElem; 4013 }); 4014 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4015 TreeEntry *TE = Op.second; 4016 OrderedEntries.remove(TE); 4017 if (!VisitedOps.insert(TE).second) 4018 continue; 4019 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4020 // Just reorder reuses indices. 4021 reorderReuses(TE->ReuseShuffleIndices, Mask); 4022 continue; 4023 } 4024 // Gathers are processed separately. 4025 if (TE->State != TreeEntry::Vectorize) 4026 continue; 4027 assert((BestOrder.size() == TE->ReorderIndices.size() || 4028 TE->ReorderIndices.empty()) && 4029 "Non-matching sizes of user/operand entries."); 4030 reorderOrder(TE->ReorderIndices, Mask); 4031 } 4032 // For gathers just need to reorder its scalars. 4033 for (TreeEntry *Gather : GatherOps) { 4034 assert(Gather->ReorderIndices.empty() && 4035 "Unexpected reordering of gathers."); 4036 if (!Gather->ReuseShuffleIndices.empty()) { 4037 // Just reorder reuses indices. 4038 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4039 continue; 4040 } 4041 reorderScalars(Gather->Scalars, Mask); 4042 OrderedEntries.remove(Gather); 4043 } 4044 // Reorder operands of the user node and set the ordering for the user 4045 // node itself. 4046 if (Data.first->State != TreeEntry::Vectorize || 4047 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4048 Data.first->getMainOp()) || 4049 Data.first->isAltShuffle()) 4050 Data.first->reorderOperands(Mask); 4051 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4052 Data.first->isAltShuffle()) { 4053 reorderScalars(Data.first->Scalars, Mask); 4054 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4055 if (Data.first->ReuseShuffleIndices.empty() && 4056 !Data.first->ReorderIndices.empty() && 4057 !Data.first->isAltShuffle()) { 4058 // Insert user node to the list to try to sink reordering deeper in 4059 // the graph. 4060 OrderedEntries.insert(Data.first); 4061 } 4062 } else { 4063 reorderOrder(Data.first->ReorderIndices, Mask); 4064 } 4065 } 4066 } 4067 // If the reordering is unnecessary, just remove the reorder. 4068 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4069 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4070 VectorizableTree.front()->ReorderIndices.clear(); 4071 } 4072 4073 void BoUpSLP::buildExternalUses( 4074 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4075 // Collect the values that we need to extract from the tree. 4076 for (auto &TEPtr : VectorizableTree) { 4077 TreeEntry *Entry = TEPtr.get(); 4078 4079 // No need to handle users of gathered values. 4080 if (Entry->State == TreeEntry::NeedToGather) 4081 continue; 4082 4083 // For each lane: 4084 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4085 Value *Scalar = Entry->Scalars[Lane]; 4086 int FoundLane = Entry->findLaneForValue(Scalar); 4087 4088 // Check if the scalar is externally used as an extra arg. 4089 auto ExtI = ExternallyUsedValues.find(Scalar); 4090 if (ExtI != ExternallyUsedValues.end()) { 4091 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4092 << Lane << " from " << *Scalar << ".\n"); 4093 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4094 } 4095 for (User *U : Scalar->users()) { 4096 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4097 4098 Instruction *UserInst = dyn_cast<Instruction>(U); 4099 if (!UserInst) 4100 continue; 4101 4102 if (isDeleted(UserInst)) 4103 continue; 4104 4105 // Skip in-tree scalars that become vectors 4106 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4107 Value *UseScalar = UseEntry->Scalars[0]; 4108 // Some in-tree scalars will remain as scalar in vectorized 4109 // instructions. If that is the case, the one in Lane 0 will 4110 // be used. 4111 if (UseScalar != U || 4112 UseEntry->State == TreeEntry::ScatterVectorize || 4113 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4114 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4115 << ".\n"); 4116 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4117 continue; 4118 } 4119 } 4120 4121 // Ignore users in the user ignore list. 4122 if (UserIgnoreList.contains(UserInst)) 4123 continue; 4124 4125 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4126 << Lane << " from " << *Scalar << ".\n"); 4127 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4128 } 4129 } 4130 } 4131 } 4132 4133 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4134 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4135 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4136 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4137 Value *V = TE->Scalars[Lane]; 4138 // To save compilation time we don't visit if we have too many users. 4139 static constexpr unsigned UsersLimit = 4; 4140 if (V->hasNUsesOrMore(UsersLimit)) 4141 break; 4142 4143 // Collect stores per pointer object. 4144 for (User *U : V->users()) { 4145 auto *SI = dyn_cast<StoreInst>(U); 4146 if (SI == nullptr || !SI->isSimple() || 4147 !isValidElementType(SI->getValueOperand()->getType())) 4148 continue; 4149 // Skip entry if already 4150 if (getTreeEntry(U)) 4151 continue; 4152 4153 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4154 auto &StoresVec = PtrToStoresMap[Ptr]; 4155 // For now just keep one store per pointer object per lane. 4156 // TODO: Extend this to support multiple stores per pointer per lane 4157 if (StoresVec.size() > Lane) 4158 continue; 4159 // Skip if in different BBs. 4160 if (!StoresVec.empty() && 4161 SI->getParent() != StoresVec.back()->getParent()) 4162 continue; 4163 // Make sure that the stores are of the same type. 4164 if (!StoresVec.empty() && 4165 SI->getValueOperand()->getType() != 4166 StoresVec.back()->getValueOperand()->getType()) 4167 continue; 4168 StoresVec.push_back(SI); 4169 } 4170 } 4171 return PtrToStoresMap; 4172 } 4173 4174 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4175 OrdersType &ReorderIndices) const { 4176 // We check whether the stores in StoreVec can form a vector by sorting them 4177 // and checking whether they are consecutive. 4178 4179 // To avoid calling getPointersDiff() while sorting we create a vector of 4180 // pairs {store, offset from first} and sort this instead. 4181 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4182 StoreInst *S0 = StoresVec[0]; 4183 StoreOffsetVec[0] = {S0, 0}; 4184 Type *S0Ty = S0->getValueOperand()->getType(); 4185 Value *S0Ptr = S0->getPointerOperand(); 4186 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4187 StoreInst *SI = StoresVec[Idx]; 4188 Optional<int> Diff = 4189 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4190 SI->getPointerOperand(), *DL, *SE, 4191 /*StrictCheck=*/true); 4192 // We failed to compare the pointers so just abandon this StoresVec. 4193 if (!Diff) 4194 return false; 4195 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4196 } 4197 4198 // Sort the vector based on the pointers. We create a copy because we may 4199 // need the original later for calculating the reorder (shuffle) indices. 4200 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4201 const std::pair<StoreInst *, int> &Pair2) { 4202 int Offset1 = Pair1.second; 4203 int Offset2 = Pair2.second; 4204 return Offset1 < Offset2; 4205 }); 4206 4207 // Check if the stores are consecutive by checking if their difference is 1. 4208 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4209 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4210 return false; 4211 4212 // Calculate the shuffle indices according to their offset against the sorted 4213 // StoreOffsetVec. 4214 ReorderIndices.reserve(StoresVec.size()); 4215 for (StoreInst *SI : StoresVec) { 4216 unsigned Idx = find_if(StoreOffsetVec, 4217 [SI](const std::pair<StoreInst *, int> &Pair) { 4218 return Pair.first == SI; 4219 }) - 4220 StoreOffsetVec.begin(); 4221 ReorderIndices.push_back(Idx); 4222 } 4223 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4224 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4225 // same convention here. 4226 auto IsIdentityOrder = [](const OrdersType &Order) { 4227 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4228 if (Idx != Order[Idx]) 4229 return false; 4230 return true; 4231 }; 4232 if (IsIdentityOrder(ReorderIndices)) 4233 ReorderIndices.clear(); 4234 4235 return true; 4236 } 4237 4238 #ifndef NDEBUG 4239 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4240 for (unsigned Idx : Order) 4241 dbgs() << Idx << ", "; 4242 dbgs() << "\n"; 4243 } 4244 #endif 4245 4246 SmallVector<BoUpSLP::OrdersType, 1> 4247 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4248 unsigned NumLanes = TE->Scalars.size(); 4249 4250 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4251 collectUserStores(TE); 4252 4253 // Holds the reorder indices for each candidate store vector that is a user of 4254 // the current TreeEntry. 4255 SmallVector<OrdersType, 1> ExternalReorderIndices; 4256 4257 // Now inspect the stores collected per pointer and look for vectorization 4258 // candidates. For each candidate calculate the reorder index vector and push 4259 // it into `ExternalReorderIndices` 4260 for (const auto &Pair : PtrToStoresMap) { 4261 auto &StoresVec = Pair.second; 4262 // If we have fewer than NumLanes stores, then we can't form a vector. 4263 if (StoresVec.size() != NumLanes) 4264 continue; 4265 4266 // If the stores are not consecutive then abandon this StoresVec. 4267 OrdersType ReorderIndices; 4268 if (!CanFormVector(StoresVec, ReorderIndices)) 4269 continue; 4270 4271 // We now know that the scalars in StoresVec can form a vector instruction, 4272 // so set the reorder indices. 4273 ExternalReorderIndices.push_back(ReorderIndices); 4274 } 4275 return ExternalReorderIndices; 4276 } 4277 4278 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4279 ArrayRef<Value *> UserIgnoreLst) { 4280 deleteTree(); 4281 UserIgnoreList.clear(); 4282 UserIgnoreList.insert(UserIgnoreLst.begin(), UserIgnoreLst.end()); 4283 if (!allSameType(Roots)) 4284 return; 4285 buildTree_rec(Roots, 0, EdgeInfo()); 4286 } 4287 4288 namespace { 4289 /// Tracks the state we can represent the loads in the given sequence. 4290 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 4291 } // anonymous namespace 4292 4293 /// Checks if the given array of loads can be represented as a vectorized, 4294 /// scatter or just simple gather. 4295 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 4296 const TargetTransformInfo &TTI, 4297 const DataLayout &DL, ScalarEvolution &SE, 4298 SmallVectorImpl<unsigned> &Order, 4299 SmallVectorImpl<Value *> &PointerOps) { 4300 // Check that a vectorized load would load the same memory as a scalar 4301 // load. For example, we don't want to vectorize loads that are smaller 4302 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4303 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4304 // from such a struct, we read/write packed bits disagreeing with the 4305 // unvectorized version. 4306 Type *ScalarTy = VL0->getType(); 4307 4308 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 4309 return LoadsState::Gather; 4310 4311 // Make sure all loads in the bundle are simple - we can't vectorize 4312 // atomic or volatile loads. 4313 PointerOps.clear(); 4314 PointerOps.resize(VL.size()); 4315 auto *POIter = PointerOps.begin(); 4316 for (Value *V : VL) { 4317 auto *L = cast<LoadInst>(V); 4318 if (!L->isSimple()) 4319 return LoadsState::Gather; 4320 *POIter = L->getPointerOperand(); 4321 ++POIter; 4322 } 4323 4324 Order.clear(); 4325 // Check the order of pointer operands. 4326 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 4327 Value *Ptr0; 4328 Value *PtrN; 4329 if (Order.empty()) { 4330 Ptr0 = PointerOps.front(); 4331 PtrN = PointerOps.back(); 4332 } else { 4333 Ptr0 = PointerOps[Order.front()]; 4334 PtrN = PointerOps[Order.back()]; 4335 } 4336 Optional<int> Diff = 4337 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 4338 // Check that the sorted loads are consecutive. 4339 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 4340 return LoadsState::Vectorize; 4341 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 4342 for (Value *V : VL) 4343 CommonAlignment = 4344 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4345 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 4346 CommonAlignment)) 4347 return LoadsState::ScatterVectorize; 4348 } 4349 4350 return LoadsState::Gather; 4351 } 4352 4353 /// \return true if the specified list of values has only one instruction that 4354 /// requires scheduling, false otherwise. 4355 #ifndef NDEBUG 4356 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4357 Value *NeedsScheduling = nullptr; 4358 for (Value *V : VL) { 4359 if (doesNotNeedToBeScheduled(V)) 4360 continue; 4361 if (!NeedsScheduling) { 4362 NeedsScheduling = V; 4363 continue; 4364 } 4365 return false; 4366 } 4367 return NeedsScheduling; 4368 } 4369 #endif 4370 4371 /// Generates key/subkey pair for the given value to provide effective sorting 4372 /// of the values and better detection of the vectorizable values sequences. The 4373 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4374 /// and in values subgroups (subkeys). 4375 static std::pair<size_t, size_t> generateKeySubkey( 4376 Value *V, const TargetLibraryInfo *TLI, 4377 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4378 bool AllowAlternate) { 4379 hash_code Key = hash_value(V->getValueID() + 2); 4380 hash_code SubKey = hash_value(0); 4381 // Sort the loads by the distance between the pointers. 4382 if (auto *LI = dyn_cast<LoadInst>(V)) { 4383 Key = hash_combine(hash_value(Instruction::Load), Key); 4384 if (LI->isSimple()) 4385 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4386 else 4387 SubKey = hash_value(LI); 4388 } else if (isVectorLikeInstWithConstOps(V)) { 4389 // Sort extracts by the vector operands. 4390 if (isa<ExtractElementInst, UndefValue>(V)) 4391 Key = hash_value(Value::UndefValueVal + 1); 4392 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4393 if (!isUndefVector(EI->getVectorOperand()) && 4394 !isa<UndefValue>(EI->getIndexOperand())) 4395 SubKey = hash_value(EI->getVectorOperand()); 4396 } 4397 } else if (auto *I = dyn_cast<Instruction>(V)) { 4398 // Sort other instructions just by the opcodes except for CMPInst. 4399 // For CMP also sort by the predicate kind. 4400 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4401 isValidForAlternation(I->getOpcode())) { 4402 if (AllowAlternate) 4403 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4404 else 4405 Key = hash_combine(hash_value(I->getOpcode()), Key); 4406 SubKey = hash_combine( 4407 hash_value(I->getOpcode()), hash_value(I->getType()), 4408 hash_value(isa<BinaryOperator>(I) 4409 ? I->getType() 4410 : cast<CastInst>(I)->getOperand(0)->getType())); 4411 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4412 CmpInst::Predicate Pred = CI->getPredicate(); 4413 if (CI->isCommutative()) 4414 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4415 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4416 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4417 hash_value(SwapPred), 4418 hash_value(CI->getOperand(0)->getType())); 4419 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4420 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4421 if (isTriviallyVectorizable(ID)) 4422 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4423 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4424 SubKey = hash_combine(hash_value(I->getOpcode()), 4425 hash_value(Call->getCalledFunction())); 4426 else 4427 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4428 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4429 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4430 hash_value(Op.Tag), SubKey); 4431 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4432 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4433 SubKey = hash_value(Gep->getPointerOperand()); 4434 else 4435 SubKey = hash_value(Gep); 4436 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4437 !isa<ConstantInt>(I->getOperand(1))) { 4438 // Do not try to vectorize instructions with potentially high cost. 4439 SubKey = hash_value(I); 4440 } else { 4441 SubKey = hash_value(I->getOpcode()); 4442 } 4443 Key = hash_combine(hash_value(I->getParent()), Key); 4444 } 4445 return std::make_pair(Key, SubKey); 4446 } 4447 4448 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4449 const EdgeInfo &UserTreeIdx) { 4450 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4451 4452 SmallVector<int> ReuseShuffleIndicies; 4453 SmallVector<Value *> UniqueValues; 4454 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4455 &UserTreeIdx, 4456 this](const InstructionsState &S) { 4457 // Check that every instruction appears once in this bundle. 4458 DenseMap<Value *, unsigned> UniquePositions; 4459 for (Value *V : VL) { 4460 if (isConstant(V)) { 4461 ReuseShuffleIndicies.emplace_back( 4462 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4463 UniqueValues.emplace_back(V); 4464 continue; 4465 } 4466 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4467 ReuseShuffleIndicies.emplace_back(Res.first->second); 4468 if (Res.second) 4469 UniqueValues.emplace_back(V); 4470 } 4471 size_t NumUniqueScalarValues = UniqueValues.size(); 4472 if (NumUniqueScalarValues == VL.size()) { 4473 ReuseShuffleIndicies.clear(); 4474 } else { 4475 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4476 if (NumUniqueScalarValues <= 1 || 4477 (UniquePositions.size() == 1 && all_of(UniqueValues, 4478 [](Value *V) { 4479 return isa<UndefValue>(V) || 4480 !isConstant(V); 4481 })) || 4482 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4483 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4484 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4485 return false; 4486 } 4487 VL = UniqueValues; 4488 } 4489 return true; 4490 }; 4491 4492 InstructionsState S = getSameOpcode(VL); 4493 if (Depth == RecursionMaxDepth) { 4494 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4495 if (TryToFindDuplicates(S)) 4496 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4497 ReuseShuffleIndicies); 4498 return; 4499 } 4500 4501 // Don't handle scalable vectors 4502 if (S.getOpcode() == Instruction::ExtractElement && 4503 isa<ScalableVectorType>( 4504 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4505 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4506 if (TryToFindDuplicates(S)) 4507 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4508 ReuseShuffleIndicies); 4509 return; 4510 } 4511 4512 // Don't handle vectors. 4513 if (S.OpValue->getType()->isVectorTy() && 4514 !isa<InsertElementInst>(S.OpValue)) { 4515 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4516 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4517 return; 4518 } 4519 4520 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4521 if (SI->getValueOperand()->getType()->isVectorTy()) { 4522 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4523 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4524 return; 4525 } 4526 4527 // If all of the operands are identical or constant we have a simple solution. 4528 // If we deal with insert/extract instructions, they all must have constant 4529 // indices, otherwise we should gather them, not try to vectorize. 4530 // If alternate op node with 2 elements with gathered operands - do not 4531 // vectorize. 4532 auto &&NotProfitableForVectorization = [&S, this, 4533 Depth](ArrayRef<Value *> VL) { 4534 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) 4535 return false; 4536 if (VectorizableTree.size() < MinTreeSize) 4537 return false; 4538 if (Depth >= RecursionMaxDepth - 1) 4539 return true; 4540 // Check if all operands are extracts, part of vector node or can build a 4541 // regular vectorize node. 4542 SmallVector<unsigned, 2> InstsCount(VL.size(), 0); 4543 for (Value *V : VL) { 4544 auto *I = cast<Instruction>(V); 4545 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { 4546 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); 4547 })); 4548 } 4549 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); 4550 if ((IsCommutative && 4551 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || 4552 (!IsCommutative && 4553 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) 4554 return true; 4555 assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); 4556 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; 4557 auto *I1 = cast<Instruction>(VL.front()); 4558 auto *I2 = cast<Instruction>(VL.back()); 4559 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4560 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4561 I2->getOperand(Op)); 4562 if (count_if( 4563 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4564 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4565 }) >= S.MainOp->getNumOperands() / 2) 4566 return false; 4567 if (S.MainOp->getNumOperands() > 2) 4568 return true; 4569 if (IsCommutative) { 4570 // Check permuted operands. 4571 Candidates.clear(); 4572 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4573 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4574 I2->getOperand((Op + 1) % E)); 4575 if (any_of( 4576 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4577 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4578 })) 4579 return false; 4580 } 4581 return true; 4582 }; 4583 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4584 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4585 !all_of(VL, isVectorLikeInstWithConstOps)) || 4586 NotProfitableForVectorization(VL)) { 4587 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); 4588 if (TryToFindDuplicates(S)) 4589 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4590 ReuseShuffleIndicies); 4591 return; 4592 } 4593 4594 // We now know that this is a vector of instructions of the same type from 4595 // the same block. 4596 4597 // Don't vectorize ephemeral values. 4598 for (Value *V : VL) { 4599 if (EphValues.count(V)) { 4600 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4601 << ") is ephemeral.\n"); 4602 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4603 return; 4604 } 4605 } 4606 4607 // Check if this is a duplicate of another entry. 4608 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4609 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4610 if (!E->isSame(VL)) { 4611 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4612 if (TryToFindDuplicates(S)) 4613 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4614 ReuseShuffleIndicies); 4615 return; 4616 } 4617 // Record the reuse of the tree node. FIXME, currently this is only used to 4618 // properly draw the graph rather than for the actual vectorization. 4619 E->UserTreeIndices.push_back(UserTreeIdx); 4620 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4621 << ".\n"); 4622 return; 4623 } 4624 4625 // Check that none of the instructions in the bundle are already in the tree. 4626 for (Value *V : VL) { 4627 auto *I = dyn_cast<Instruction>(V); 4628 if (!I) 4629 continue; 4630 if (getTreeEntry(I)) { 4631 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4632 << ") is already in tree.\n"); 4633 if (TryToFindDuplicates(S)) 4634 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4635 ReuseShuffleIndicies); 4636 return; 4637 } 4638 } 4639 4640 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4641 for (Value *V : VL) { 4642 if (UserIgnoreList.contains(V)) { 4643 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4644 if (TryToFindDuplicates(S)) 4645 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4646 ReuseShuffleIndicies); 4647 return; 4648 } 4649 } 4650 4651 // Check that all of the users of the scalars that we want to vectorize are 4652 // schedulable. 4653 auto *VL0 = cast<Instruction>(S.OpValue); 4654 BasicBlock *BB = VL0->getParent(); 4655 4656 if (!DT->isReachableFromEntry(BB)) { 4657 // Don't go into unreachable blocks. They may contain instructions with 4658 // dependency cycles which confuse the final scheduling. 4659 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4660 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4661 return; 4662 } 4663 4664 // Check that every instruction appears once in this bundle. 4665 if (!TryToFindDuplicates(S)) 4666 return; 4667 4668 auto &BSRef = BlocksSchedules[BB]; 4669 if (!BSRef) 4670 BSRef = std::make_unique<BlockScheduling>(BB); 4671 4672 BlockScheduling &BS = *BSRef; 4673 4674 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4675 #ifdef EXPENSIVE_CHECKS 4676 // Make sure we didn't break any internal invariants 4677 BS.verify(); 4678 #endif 4679 if (!Bundle) { 4680 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4681 assert((!BS.getScheduleData(VL0) || 4682 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4683 "tryScheduleBundle should cancelScheduling on failure"); 4684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4685 ReuseShuffleIndicies); 4686 return; 4687 } 4688 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4689 4690 unsigned ShuffleOrOp = S.isAltShuffle() ? 4691 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4692 switch (ShuffleOrOp) { 4693 case Instruction::PHI: { 4694 auto *PH = cast<PHINode>(VL0); 4695 4696 // Check for terminator values (e.g. invoke). 4697 for (Value *V : VL) 4698 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4699 Instruction *Term = dyn_cast<Instruction>(Incoming); 4700 if (Term && Term->isTerminator()) { 4701 LLVM_DEBUG(dbgs() 4702 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4703 BS.cancelScheduling(VL, VL0); 4704 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4705 ReuseShuffleIndicies); 4706 return; 4707 } 4708 } 4709 4710 TreeEntry *TE = 4711 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4712 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4713 4714 // Keeps the reordered operands to avoid code duplication. 4715 SmallVector<ValueList, 2> OperandsVec; 4716 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4717 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4718 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4719 TE->setOperand(I, Operands); 4720 OperandsVec.push_back(Operands); 4721 continue; 4722 } 4723 ValueList Operands; 4724 // Prepare the operand vector. 4725 for (Value *V : VL) 4726 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4727 PH->getIncomingBlock(I))); 4728 TE->setOperand(I, Operands); 4729 OperandsVec.push_back(Operands); 4730 } 4731 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4732 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4733 return; 4734 } 4735 case Instruction::ExtractValue: 4736 case Instruction::ExtractElement: { 4737 OrdersType CurrentOrder; 4738 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4739 if (Reuse) { 4740 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4741 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4742 ReuseShuffleIndicies); 4743 // This is a special case, as it does not gather, but at the same time 4744 // we are not extending buildTree_rec() towards the operands. 4745 ValueList Op0; 4746 Op0.assign(VL.size(), VL0->getOperand(0)); 4747 VectorizableTree.back()->setOperand(0, Op0); 4748 return; 4749 } 4750 if (!CurrentOrder.empty()) { 4751 LLVM_DEBUG({ 4752 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4753 "with order"; 4754 for (unsigned Idx : CurrentOrder) 4755 dbgs() << " " << Idx; 4756 dbgs() << "\n"; 4757 }); 4758 fixupOrderingIndices(CurrentOrder); 4759 // Insert new order with initial value 0, if it does not exist, 4760 // otherwise return the iterator to the existing one. 4761 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4762 ReuseShuffleIndicies, CurrentOrder); 4763 // This is a special case, as it does not gather, but at the same time 4764 // we are not extending buildTree_rec() towards the operands. 4765 ValueList Op0; 4766 Op0.assign(VL.size(), VL0->getOperand(0)); 4767 VectorizableTree.back()->setOperand(0, Op0); 4768 return; 4769 } 4770 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4771 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4772 ReuseShuffleIndicies); 4773 BS.cancelScheduling(VL, VL0); 4774 return; 4775 } 4776 case Instruction::InsertElement: { 4777 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4778 4779 // Check that we have a buildvector and not a shuffle of 2 or more 4780 // different vectors. 4781 ValueSet SourceVectors; 4782 for (Value *V : VL) { 4783 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4784 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4785 } 4786 4787 if (count_if(VL, [&SourceVectors](Value *V) { 4788 return !SourceVectors.contains(V); 4789 }) >= 2) { 4790 // Found 2nd source vector - cancel. 4791 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4792 "different source vectors.\n"); 4793 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4794 BS.cancelScheduling(VL, VL0); 4795 return; 4796 } 4797 4798 auto OrdCompare = [](const std::pair<int, int> &P1, 4799 const std::pair<int, int> &P2) { 4800 return P1.first > P2.first; 4801 }; 4802 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4803 decltype(OrdCompare)> 4804 Indices(OrdCompare); 4805 for (int I = 0, E = VL.size(); I < E; ++I) { 4806 unsigned Idx = *getInsertIndex(VL[I]); 4807 Indices.emplace(Idx, I); 4808 } 4809 OrdersType CurrentOrder(VL.size(), VL.size()); 4810 bool IsIdentity = true; 4811 for (int I = 0, E = VL.size(); I < E; ++I) { 4812 CurrentOrder[Indices.top().second] = I; 4813 IsIdentity &= Indices.top().second == I; 4814 Indices.pop(); 4815 } 4816 if (IsIdentity) 4817 CurrentOrder.clear(); 4818 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4819 None, CurrentOrder); 4820 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4821 4822 constexpr int NumOps = 2; 4823 ValueList VectorOperands[NumOps]; 4824 for (int I = 0; I < NumOps; ++I) { 4825 for (Value *V : VL) 4826 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4827 4828 TE->setOperand(I, VectorOperands[I]); 4829 } 4830 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4831 return; 4832 } 4833 case Instruction::Load: { 4834 // Check that a vectorized load would load the same memory as a scalar 4835 // load. For example, we don't want to vectorize loads that are smaller 4836 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4837 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4838 // from such a struct, we read/write packed bits disagreeing with the 4839 // unvectorized version. 4840 SmallVector<Value *> PointerOps; 4841 OrdersType CurrentOrder; 4842 TreeEntry *TE = nullptr; 4843 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4844 PointerOps)) { 4845 case LoadsState::Vectorize: 4846 if (CurrentOrder.empty()) { 4847 // Original loads are consecutive and does not require reordering. 4848 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4849 ReuseShuffleIndicies); 4850 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4851 } else { 4852 fixupOrderingIndices(CurrentOrder); 4853 // Need to reorder. 4854 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4855 ReuseShuffleIndicies, CurrentOrder); 4856 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4857 } 4858 TE->setOperandsInOrder(); 4859 break; 4860 case LoadsState::ScatterVectorize: 4861 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4862 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4863 UserTreeIdx, ReuseShuffleIndicies); 4864 TE->setOperandsInOrder(); 4865 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4866 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4867 break; 4868 case LoadsState::Gather: 4869 BS.cancelScheduling(VL, VL0); 4870 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4871 ReuseShuffleIndicies); 4872 #ifndef NDEBUG 4873 Type *ScalarTy = VL0->getType(); 4874 if (DL->getTypeSizeInBits(ScalarTy) != 4875 DL->getTypeAllocSizeInBits(ScalarTy)) 4876 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4877 else if (any_of(VL, [](Value *V) { 4878 return !cast<LoadInst>(V)->isSimple(); 4879 })) 4880 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4881 else 4882 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4883 #endif // NDEBUG 4884 break; 4885 } 4886 return; 4887 } 4888 case Instruction::ZExt: 4889 case Instruction::SExt: 4890 case Instruction::FPToUI: 4891 case Instruction::FPToSI: 4892 case Instruction::FPExt: 4893 case Instruction::PtrToInt: 4894 case Instruction::IntToPtr: 4895 case Instruction::SIToFP: 4896 case Instruction::UIToFP: 4897 case Instruction::Trunc: 4898 case Instruction::FPTrunc: 4899 case Instruction::BitCast: { 4900 Type *SrcTy = VL0->getOperand(0)->getType(); 4901 for (Value *V : VL) { 4902 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4903 if (Ty != SrcTy || !isValidElementType(Ty)) { 4904 BS.cancelScheduling(VL, VL0); 4905 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4906 ReuseShuffleIndicies); 4907 LLVM_DEBUG(dbgs() 4908 << "SLP: Gathering casts with different src types.\n"); 4909 return; 4910 } 4911 } 4912 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4913 ReuseShuffleIndicies); 4914 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4915 4916 TE->setOperandsInOrder(); 4917 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4918 ValueList Operands; 4919 // Prepare the operand vector. 4920 for (Value *V : VL) 4921 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4922 4923 buildTree_rec(Operands, Depth + 1, {TE, i}); 4924 } 4925 return; 4926 } 4927 case Instruction::ICmp: 4928 case Instruction::FCmp: { 4929 // Check that all of the compares have the same predicate. 4930 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4931 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4932 Type *ComparedTy = VL0->getOperand(0)->getType(); 4933 for (Value *V : VL) { 4934 CmpInst *Cmp = cast<CmpInst>(V); 4935 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4936 Cmp->getOperand(0)->getType() != ComparedTy) { 4937 BS.cancelScheduling(VL, VL0); 4938 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4939 ReuseShuffleIndicies); 4940 LLVM_DEBUG(dbgs() 4941 << "SLP: Gathering cmp with different predicate.\n"); 4942 return; 4943 } 4944 } 4945 4946 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4947 ReuseShuffleIndicies); 4948 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4949 4950 ValueList Left, Right; 4951 if (cast<CmpInst>(VL0)->isCommutative()) { 4952 // Commutative predicate - collect + sort operands of the instructions 4953 // so that each side is more likely to have the same opcode. 4954 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4955 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4956 } else { 4957 // Collect operands - commute if it uses the swapped predicate. 4958 for (Value *V : VL) { 4959 auto *Cmp = cast<CmpInst>(V); 4960 Value *LHS = Cmp->getOperand(0); 4961 Value *RHS = Cmp->getOperand(1); 4962 if (Cmp->getPredicate() != P0) 4963 std::swap(LHS, RHS); 4964 Left.push_back(LHS); 4965 Right.push_back(RHS); 4966 } 4967 } 4968 TE->setOperand(0, Left); 4969 TE->setOperand(1, Right); 4970 buildTree_rec(Left, Depth + 1, {TE, 0}); 4971 buildTree_rec(Right, Depth + 1, {TE, 1}); 4972 return; 4973 } 4974 case Instruction::Select: 4975 case Instruction::FNeg: 4976 case Instruction::Add: 4977 case Instruction::FAdd: 4978 case Instruction::Sub: 4979 case Instruction::FSub: 4980 case Instruction::Mul: 4981 case Instruction::FMul: 4982 case Instruction::UDiv: 4983 case Instruction::SDiv: 4984 case Instruction::FDiv: 4985 case Instruction::URem: 4986 case Instruction::SRem: 4987 case Instruction::FRem: 4988 case Instruction::Shl: 4989 case Instruction::LShr: 4990 case Instruction::AShr: 4991 case Instruction::And: 4992 case Instruction::Or: 4993 case Instruction::Xor: { 4994 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4995 ReuseShuffleIndicies); 4996 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4997 4998 // Sort operands of the instructions so that each side is more likely to 4999 // have the same opcode. 5000 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 5001 ValueList Left, Right; 5002 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5003 TE->setOperand(0, Left); 5004 TE->setOperand(1, Right); 5005 buildTree_rec(Left, Depth + 1, {TE, 0}); 5006 buildTree_rec(Right, Depth + 1, {TE, 1}); 5007 return; 5008 } 5009 5010 TE->setOperandsInOrder(); 5011 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5012 ValueList Operands; 5013 // Prepare the operand vector. 5014 for (Value *V : VL) 5015 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5016 5017 buildTree_rec(Operands, Depth + 1, {TE, i}); 5018 } 5019 return; 5020 } 5021 case Instruction::GetElementPtr: { 5022 // We don't combine GEPs with complicated (nested) indexing. 5023 for (Value *V : VL) { 5024 if (cast<Instruction>(V)->getNumOperands() != 2) { 5025 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 5026 BS.cancelScheduling(VL, VL0); 5027 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5028 ReuseShuffleIndicies); 5029 return; 5030 } 5031 } 5032 5033 // We can't combine several GEPs into one vector if they operate on 5034 // different types. 5035 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 5036 for (Value *V : VL) { 5037 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 5038 if (Ty0 != CurTy) { 5039 LLVM_DEBUG(dbgs() 5040 << "SLP: not-vectorizable GEP (different types).\n"); 5041 BS.cancelScheduling(VL, VL0); 5042 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5043 ReuseShuffleIndicies); 5044 return; 5045 } 5046 } 5047 5048 // We don't combine GEPs with non-constant indexes. 5049 Type *Ty1 = VL0->getOperand(1)->getType(); 5050 for (Value *V : VL) { 5051 auto Op = cast<Instruction>(V)->getOperand(1); 5052 if (!isa<ConstantInt>(Op) || 5053 (Op->getType() != Ty1 && 5054 Op->getType()->getScalarSizeInBits() > 5055 DL->getIndexSizeInBits( 5056 V->getType()->getPointerAddressSpace()))) { 5057 LLVM_DEBUG(dbgs() 5058 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5059 BS.cancelScheduling(VL, VL0); 5060 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5061 ReuseShuffleIndicies); 5062 return; 5063 } 5064 } 5065 5066 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5067 ReuseShuffleIndicies); 5068 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5069 SmallVector<ValueList, 2> Operands(2); 5070 // Prepare the operand vector for pointer operands. 5071 for (Value *V : VL) 5072 Operands.front().push_back( 5073 cast<GetElementPtrInst>(V)->getPointerOperand()); 5074 TE->setOperand(0, Operands.front()); 5075 // Need to cast all indices to the same type before vectorization to 5076 // avoid crash. 5077 // Required to be able to find correct matches between different gather 5078 // nodes and reuse the vectorized values rather than trying to gather them 5079 // again. 5080 int IndexIdx = 1; 5081 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5082 Type *Ty = all_of(VL, 5083 [VL0Ty, IndexIdx](Value *V) { 5084 return VL0Ty == cast<GetElementPtrInst>(V) 5085 ->getOperand(IndexIdx) 5086 ->getType(); 5087 }) 5088 ? VL0Ty 5089 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5090 ->getPointerOperandType() 5091 ->getScalarType()); 5092 // Prepare the operand vector. 5093 for (Value *V : VL) { 5094 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 5095 auto *CI = cast<ConstantInt>(Op); 5096 Operands.back().push_back(ConstantExpr::getIntegerCast( 5097 CI, Ty, CI->getValue().isSignBitSet())); 5098 } 5099 TE->setOperand(IndexIdx, Operands.back()); 5100 5101 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5102 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5103 return; 5104 } 5105 case Instruction::Store: { 5106 // Check if the stores are consecutive or if we need to swizzle them. 5107 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5108 // Avoid types that are padded when being allocated as scalars, while 5109 // being packed together in a vector (such as i1). 5110 if (DL->getTypeSizeInBits(ScalarTy) != 5111 DL->getTypeAllocSizeInBits(ScalarTy)) { 5112 BS.cancelScheduling(VL, VL0); 5113 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5114 ReuseShuffleIndicies); 5115 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5116 return; 5117 } 5118 // Make sure all stores in the bundle are simple - we can't vectorize 5119 // atomic or volatile stores. 5120 SmallVector<Value *, 4> PointerOps(VL.size()); 5121 ValueList Operands(VL.size()); 5122 auto POIter = PointerOps.begin(); 5123 auto OIter = Operands.begin(); 5124 for (Value *V : VL) { 5125 auto *SI = cast<StoreInst>(V); 5126 if (!SI->isSimple()) { 5127 BS.cancelScheduling(VL, VL0); 5128 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5129 ReuseShuffleIndicies); 5130 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5131 return; 5132 } 5133 *POIter = SI->getPointerOperand(); 5134 *OIter = SI->getValueOperand(); 5135 ++POIter; 5136 ++OIter; 5137 } 5138 5139 OrdersType CurrentOrder; 5140 // Check the order of pointer operands. 5141 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5142 Value *Ptr0; 5143 Value *PtrN; 5144 if (CurrentOrder.empty()) { 5145 Ptr0 = PointerOps.front(); 5146 PtrN = PointerOps.back(); 5147 } else { 5148 Ptr0 = PointerOps[CurrentOrder.front()]; 5149 PtrN = PointerOps[CurrentOrder.back()]; 5150 } 5151 Optional<int> Dist = 5152 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5153 // Check that the sorted pointer operands are consecutive. 5154 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5155 if (CurrentOrder.empty()) { 5156 // Original stores are consecutive and does not require reordering. 5157 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5158 UserTreeIdx, ReuseShuffleIndicies); 5159 TE->setOperandsInOrder(); 5160 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5161 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5162 } else { 5163 fixupOrderingIndices(CurrentOrder); 5164 TreeEntry *TE = 5165 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5166 ReuseShuffleIndicies, CurrentOrder); 5167 TE->setOperandsInOrder(); 5168 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5169 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5170 } 5171 return; 5172 } 5173 } 5174 5175 BS.cancelScheduling(VL, VL0); 5176 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5177 ReuseShuffleIndicies); 5178 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5179 return; 5180 } 5181 case Instruction::Call: { 5182 // Check if the calls are all to the same vectorizable intrinsic or 5183 // library function. 5184 CallInst *CI = cast<CallInst>(VL0); 5185 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5186 5187 VFShape Shape = VFShape::get( 5188 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5189 false /*HasGlobalPred*/); 5190 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5191 5192 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5193 BS.cancelScheduling(VL, VL0); 5194 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5195 ReuseShuffleIndicies); 5196 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5197 return; 5198 } 5199 Function *F = CI->getCalledFunction(); 5200 unsigned NumArgs = CI->arg_size(); 5201 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5202 for (unsigned j = 0; j != NumArgs; ++j) 5203 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5204 ScalarArgs[j] = CI->getArgOperand(j); 5205 for (Value *V : VL) { 5206 CallInst *CI2 = dyn_cast<CallInst>(V); 5207 if (!CI2 || CI2->getCalledFunction() != F || 5208 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5209 (VecFunc && 5210 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5211 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5212 BS.cancelScheduling(VL, VL0); 5213 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5214 ReuseShuffleIndicies); 5215 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5216 << "\n"); 5217 return; 5218 } 5219 // Some intrinsics have scalar arguments and should be same in order for 5220 // them to be vectorized. 5221 for (unsigned j = 0; j != NumArgs; ++j) { 5222 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5223 Value *A1J = CI2->getArgOperand(j); 5224 if (ScalarArgs[j] != A1J) { 5225 BS.cancelScheduling(VL, VL0); 5226 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5227 ReuseShuffleIndicies); 5228 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5229 << " argument " << ScalarArgs[j] << "!=" << A1J 5230 << "\n"); 5231 return; 5232 } 5233 } 5234 } 5235 // Verify that the bundle operands are identical between the two calls. 5236 if (CI->hasOperandBundles() && 5237 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5238 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5239 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5240 BS.cancelScheduling(VL, VL0); 5241 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5242 ReuseShuffleIndicies); 5243 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5244 << *CI << "!=" << *V << '\n'); 5245 return; 5246 } 5247 } 5248 5249 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5250 ReuseShuffleIndicies); 5251 TE->setOperandsInOrder(); 5252 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5253 // For scalar operands no need to to create an entry since no need to 5254 // vectorize it. 5255 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5256 continue; 5257 ValueList Operands; 5258 // Prepare the operand vector. 5259 for (Value *V : VL) { 5260 auto *CI2 = cast<CallInst>(V); 5261 Operands.push_back(CI2->getArgOperand(i)); 5262 } 5263 buildTree_rec(Operands, Depth + 1, {TE, i}); 5264 } 5265 return; 5266 } 5267 case Instruction::ShuffleVector: { 5268 // If this is not an alternate sequence of opcode like add-sub 5269 // then do not vectorize this instruction. 5270 if (!S.isAltShuffle()) { 5271 BS.cancelScheduling(VL, VL0); 5272 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5273 ReuseShuffleIndicies); 5274 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5275 return; 5276 } 5277 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5278 ReuseShuffleIndicies); 5279 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5280 5281 // Reorder operands if reordering would enable vectorization. 5282 auto *CI = dyn_cast<CmpInst>(VL0); 5283 if (isa<BinaryOperator>(VL0) || CI) { 5284 ValueList Left, Right; 5285 if (!CI || all_of(VL, [](Value *V) { 5286 return cast<CmpInst>(V)->isCommutative(); 5287 })) { 5288 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5289 } else { 5290 CmpInst::Predicate P0 = CI->getPredicate(); 5291 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5292 assert(P0 != AltP0 && 5293 "Expected different main/alternate predicates."); 5294 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5295 Value *BaseOp0 = VL0->getOperand(0); 5296 Value *BaseOp1 = VL0->getOperand(1); 5297 // Collect operands - commute if it uses the swapped predicate or 5298 // alternate operation. 5299 for (Value *V : VL) { 5300 auto *Cmp = cast<CmpInst>(V); 5301 Value *LHS = Cmp->getOperand(0); 5302 Value *RHS = Cmp->getOperand(1); 5303 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5304 if (P0 == AltP0Swapped) { 5305 if (CI != Cmp && S.AltOp != Cmp && 5306 ((P0 == CurrentPred && 5307 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5308 (AltP0 == CurrentPred && 5309 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5310 std::swap(LHS, RHS); 5311 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5312 std::swap(LHS, RHS); 5313 } 5314 Left.push_back(LHS); 5315 Right.push_back(RHS); 5316 } 5317 } 5318 TE->setOperand(0, Left); 5319 TE->setOperand(1, Right); 5320 buildTree_rec(Left, Depth + 1, {TE, 0}); 5321 buildTree_rec(Right, Depth + 1, {TE, 1}); 5322 return; 5323 } 5324 5325 TE->setOperandsInOrder(); 5326 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5327 ValueList Operands; 5328 // Prepare the operand vector. 5329 for (Value *V : VL) 5330 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5331 5332 buildTree_rec(Operands, Depth + 1, {TE, i}); 5333 } 5334 return; 5335 } 5336 default: 5337 BS.cancelScheduling(VL, VL0); 5338 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5339 ReuseShuffleIndicies); 5340 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5341 return; 5342 } 5343 } 5344 5345 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5346 unsigned N = 1; 5347 Type *EltTy = T; 5348 5349 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5350 isa<VectorType>(EltTy)) { 5351 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5352 // Check that struct is homogeneous. 5353 for (const auto *Ty : ST->elements()) 5354 if (Ty != *ST->element_begin()) 5355 return 0; 5356 N *= ST->getNumElements(); 5357 EltTy = *ST->element_begin(); 5358 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5359 N *= AT->getNumElements(); 5360 EltTy = AT->getElementType(); 5361 } else { 5362 auto *VT = cast<FixedVectorType>(EltTy); 5363 N *= VT->getNumElements(); 5364 EltTy = VT->getElementType(); 5365 } 5366 } 5367 5368 if (!isValidElementType(EltTy)) 5369 return 0; 5370 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5371 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5372 return 0; 5373 return N; 5374 } 5375 5376 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5377 SmallVectorImpl<unsigned> &CurrentOrder) const { 5378 const auto *It = find_if(VL, [](Value *V) { 5379 return isa<ExtractElementInst, ExtractValueInst>(V); 5380 }); 5381 assert(It != VL.end() && "Expected at least one extract instruction."); 5382 auto *E0 = cast<Instruction>(*It); 5383 assert(all_of(VL, 5384 [](Value *V) { 5385 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5386 V); 5387 }) && 5388 "Invalid opcode"); 5389 // Check if all of the extracts come from the same vector and from the 5390 // correct offset. 5391 Value *Vec = E0->getOperand(0); 5392 5393 CurrentOrder.clear(); 5394 5395 // We have to extract from a vector/aggregate with the same number of elements. 5396 unsigned NElts; 5397 if (E0->getOpcode() == Instruction::ExtractValue) { 5398 const DataLayout &DL = E0->getModule()->getDataLayout(); 5399 NElts = canMapToVector(Vec->getType(), DL); 5400 if (!NElts) 5401 return false; 5402 // Check if load can be rewritten as load of vector. 5403 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5404 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5405 return false; 5406 } else { 5407 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5408 } 5409 5410 if (NElts != VL.size()) 5411 return false; 5412 5413 // Check that all of the indices extract from the correct offset. 5414 bool ShouldKeepOrder = true; 5415 unsigned E = VL.size(); 5416 // Assign to all items the initial value E + 1 so we can check if the extract 5417 // instruction index was used already. 5418 // Also, later we can check that all the indices are used and we have a 5419 // consecutive access in the extract instructions, by checking that no 5420 // element of CurrentOrder still has value E + 1. 5421 CurrentOrder.assign(E, E); 5422 unsigned I = 0; 5423 for (; I < E; ++I) { 5424 auto *Inst = dyn_cast<Instruction>(VL[I]); 5425 if (!Inst) 5426 continue; 5427 if (Inst->getOperand(0) != Vec) 5428 break; 5429 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5430 if (isa<UndefValue>(EE->getIndexOperand())) 5431 continue; 5432 Optional<unsigned> Idx = getExtractIndex(Inst); 5433 if (!Idx) 5434 break; 5435 const unsigned ExtIdx = *Idx; 5436 if (ExtIdx != I) { 5437 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5438 break; 5439 ShouldKeepOrder = false; 5440 CurrentOrder[ExtIdx] = I; 5441 } else { 5442 if (CurrentOrder[I] != E) 5443 break; 5444 CurrentOrder[I] = I; 5445 } 5446 } 5447 if (I < E) { 5448 CurrentOrder.clear(); 5449 return false; 5450 } 5451 if (ShouldKeepOrder) 5452 CurrentOrder.clear(); 5453 5454 return ShouldKeepOrder; 5455 } 5456 5457 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5458 ArrayRef<Value *> VectorizedVals) const { 5459 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5460 all_of(I->users(), [this](User *U) { 5461 return ScalarToTreeEntry.count(U) > 0 || 5462 isVectorLikeInstWithConstOps(U) || 5463 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5464 }); 5465 } 5466 5467 static std::pair<InstructionCost, InstructionCost> 5468 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5469 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5470 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5471 5472 // Calculate the cost of the scalar and vector calls. 5473 SmallVector<Type *, 4> VecTys; 5474 for (Use &Arg : CI->args()) 5475 VecTys.push_back( 5476 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5477 FastMathFlags FMF; 5478 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5479 FMF = FPCI->getFastMathFlags(); 5480 SmallVector<const Value *> Arguments(CI->args()); 5481 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5482 dyn_cast<IntrinsicInst>(CI)); 5483 auto IntrinsicCost = 5484 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5485 5486 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5487 VecTy->getNumElements())), 5488 false /*HasGlobalPred*/); 5489 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5490 auto LibCost = IntrinsicCost; 5491 if (!CI->isNoBuiltin() && VecFunc) { 5492 // Calculate the cost of the vector library call. 5493 // If the corresponding vector call is cheaper, return its cost. 5494 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5495 TTI::TCK_RecipThroughput); 5496 } 5497 return {IntrinsicCost, LibCost}; 5498 } 5499 5500 /// Compute the cost of creating a vector of type \p VecTy containing the 5501 /// extracted values from \p VL. 5502 static InstructionCost 5503 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5504 TargetTransformInfo::ShuffleKind ShuffleKind, 5505 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5506 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5507 5508 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5509 VecTy->getNumElements() < NumOfParts) 5510 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5511 5512 bool AllConsecutive = true; 5513 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5514 unsigned Idx = -1; 5515 InstructionCost Cost = 0; 5516 5517 // Process extracts in blocks of EltsPerVector to check if the source vector 5518 // operand can be re-used directly. If not, add the cost of creating a shuffle 5519 // to extract the values into a vector register. 5520 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5521 for (auto *V : VL) { 5522 ++Idx; 5523 5524 // Need to exclude undefs from analysis. 5525 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5526 continue; 5527 5528 // Reached the start of a new vector registers. 5529 if (Idx % EltsPerVector == 0) { 5530 RegMask.assign(EltsPerVector, UndefMaskElem); 5531 AllConsecutive = true; 5532 continue; 5533 } 5534 5535 // Check all extracts for a vector register on the target directly 5536 // extract values in order. 5537 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5538 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5539 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5540 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5541 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5542 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5543 } 5544 5545 if (AllConsecutive) 5546 continue; 5547 5548 // Skip all indices, except for the last index per vector block. 5549 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5550 continue; 5551 5552 // If we have a series of extracts which are not consecutive and hence 5553 // cannot re-use the source vector register directly, compute the shuffle 5554 // cost to extract the vector with EltsPerVector elements. 5555 Cost += TTI.getShuffleCost( 5556 TargetTransformInfo::SK_PermuteSingleSrc, 5557 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5558 } 5559 return Cost; 5560 } 5561 5562 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5563 /// operations operands. 5564 static void 5565 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5566 ArrayRef<int> ReusesIndices, 5567 const function_ref<bool(Instruction *)> IsAltOp, 5568 SmallVectorImpl<int> &Mask, 5569 SmallVectorImpl<Value *> *OpScalars = nullptr, 5570 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5571 unsigned Sz = VL.size(); 5572 Mask.assign(Sz, UndefMaskElem); 5573 SmallVector<int> OrderMask; 5574 if (!ReorderIndices.empty()) 5575 inversePermutation(ReorderIndices, OrderMask); 5576 for (unsigned I = 0; I < Sz; ++I) { 5577 unsigned Idx = I; 5578 if (!ReorderIndices.empty()) 5579 Idx = OrderMask[I]; 5580 auto *OpInst = cast<Instruction>(VL[Idx]); 5581 if (IsAltOp(OpInst)) { 5582 Mask[I] = Sz + Idx; 5583 if (AltScalars) 5584 AltScalars->push_back(OpInst); 5585 } else { 5586 Mask[I] = Idx; 5587 if (OpScalars) 5588 OpScalars->push_back(OpInst); 5589 } 5590 } 5591 if (!ReusesIndices.empty()) { 5592 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5593 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5594 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5595 }); 5596 Mask.swap(NewMask); 5597 } 5598 } 5599 5600 /// Checks if the specified instruction \p I is an alternate operation for the 5601 /// given \p MainOp and \p AltOp instructions. 5602 static bool isAlternateInstruction(const Instruction *I, 5603 const Instruction *MainOp, 5604 const Instruction *AltOp) { 5605 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5606 auto *AltCI0 = cast<CmpInst>(AltOp); 5607 auto *CI = cast<CmpInst>(I); 5608 CmpInst::Predicate P0 = CI0->getPredicate(); 5609 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5610 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5611 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5612 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5613 if (P0 == AltP0Swapped) 5614 return I == AltCI0 || 5615 (I != MainOp && 5616 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5617 CI->getOperand(0), CI->getOperand(1))); 5618 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5619 } 5620 return I->getOpcode() == AltOp->getOpcode(); 5621 } 5622 5623 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5624 ArrayRef<Value *> VectorizedVals) { 5625 ArrayRef<Value*> VL = E->Scalars; 5626 5627 Type *ScalarTy = VL[0]->getType(); 5628 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5629 ScalarTy = SI->getValueOperand()->getType(); 5630 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5631 ScalarTy = CI->getOperand(0)->getType(); 5632 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5633 ScalarTy = IE->getOperand(1)->getType(); 5634 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5635 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5636 5637 // If we have computed a smaller type for the expression, update VecTy so 5638 // that the costs will be accurate. 5639 if (MinBWs.count(VL[0])) 5640 VecTy = FixedVectorType::get( 5641 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5642 unsigned EntryVF = E->getVectorFactor(); 5643 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5644 5645 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5646 // FIXME: it tries to fix a problem with MSVC buildbots. 5647 TargetTransformInfo &TTIRef = *TTI; 5648 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5649 VectorizedVals, E](InstructionCost &Cost) { 5650 DenseMap<Value *, int> ExtractVectorsTys; 5651 SmallPtrSet<Value *, 4> CheckedExtracts; 5652 for (auto *V : VL) { 5653 if (isa<UndefValue>(V)) 5654 continue; 5655 // If all users of instruction are going to be vectorized and this 5656 // instruction itself is not going to be vectorized, consider this 5657 // instruction as dead and remove its cost from the final cost of the 5658 // vectorized tree. 5659 // Also, avoid adjusting the cost for extractelements with multiple uses 5660 // in different graph entries. 5661 const TreeEntry *VE = getTreeEntry(V); 5662 if (!CheckedExtracts.insert(V).second || 5663 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5664 (VE && VE != E)) 5665 continue; 5666 auto *EE = cast<ExtractElementInst>(V); 5667 Optional<unsigned> EEIdx = getExtractIndex(EE); 5668 if (!EEIdx) 5669 continue; 5670 unsigned Idx = *EEIdx; 5671 if (TTIRef.getNumberOfParts(VecTy) != 5672 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5673 auto It = 5674 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5675 It->getSecond() = std::min<int>(It->second, Idx); 5676 } 5677 // Take credit for instruction that will become dead. 5678 if (EE->hasOneUse()) { 5679 Instruction *Ext = EE->user_back(); 5680 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5681 all_of(Ext->users(), 5682 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5683 // Use getExtractWithExtendCost() to calculate the cost of 5684 // extractelement/ext pair. 5685 Cost -= 5686 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5687 EE->getVectorOperandType(), Idx); 5688 // Add back the cost of s|zext which is subtracted separately. 5689 Cost += TTIRef.getCastInstrCost( 5690 Ext->getOpcode(), Ext->getType(), EE->getType(), 5691 TTI::getCastContextHint(Ext), CostKind, Ext); 5692 continue; 5693 } 5694 } 5695 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5696 EE->getVectorOperandType(), Idx); 5697 } 5698 // Add a cost for subvector extracts/inserts if required. 5699 for (const auto &Data : ExtractVectorsTys) { 5700 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5701 unsigned NumElts = VecTy->getNumElements(); 5702 if (Data.second % NumElts == 0) 5703 continue; 5704 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5705 unsigned Idx = (Data.second / NumElts) * NumElts; 5706 unsigned EENumElts = EEVTy->getNumElements(); 5707 if (Idx + NumElts <= EENumElts) { 5708 Cost += 5709 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5710 EEVTy, None, Idx, VecTy); 5711 } else { 5712 // Need to round up the subvector type vectorization factor to avoid a 5713 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5714 // <= EENumElts. 5715 auto *SubVT = 5716 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5717 Cost += 5718 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5719 EEVTy, None, Idx, SubVT); 5720 } 5721 } else { 5722 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5723 VecTy, None, 0, EEVTy); 5724 } 5725 } 5726 }; 5727 if (E->State == TreeEntry::NeedToGather) { 5728 if (allConstant(VL)) 5729 return 0; 5730 if (isa<InsertElementInst>(VL[0])) 5731 return InstructionCost::getInvalid(); 5732 SmallVector<int> Mask; 5733 SmallVector<const TreeEntry *> Entries; 5734 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5735 isGatherShuffledEntry(E, Mask, Entries); 5736 if (Shuffle.hasValue()) { 5737 InstructionCost GatherCost = 0; 5738 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5739 // Perfect match in the graph, will reuse the previously vectorized 5740 // node. Cost is 0. 5741 LLVM_DEBUG( 5742 dbgs() 5743 << "SLP: perfect diamond match for gather bundle that starts with " 5744 << *VL.front() << ".\n"); 5745 if (NeedToShuffleReuses) 5746 GatherCost = 5747 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5748 FinalVecTy, E->ReuseShuffleIndices); 5749 } else { 5750 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5751 << " entries for bundle that starts with " 5752 << *VL.front() << ".\n"); 5753 // Detected that instead of gather we can emit a shuffle of single/two 5754 // previously vectorized nodes. Add the cost of the permutation rather 5755 // than gather. 5756 ::addMask(Mask, E->ReuseShuffleIndices); 5757 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5758 } 5759 return GatherCost; 5760 } 5761 if ((E->getOpcode() == Instruction::ExtractElement || 5762 all_of(E->Scalars, 5763 [](Value *V) { 5764 return isa<ExtractElementInst, UndefValue>(V); 5765 })) && 5766 allSameType(VL)) { 5767 // Check that gather of extractelements can be represented as just a 5768 // shuffle of a single/two vectors the scalars are extracted from. 5769 SmallVector<int> Mask; 5770 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5771 isFixedVectorShuffle(VL, Mask); 5772 if (ShuffleKind.hasValue()) { 5773 // Found the bunch of extractelement instructions that must be gathered 5774 // into a vector and can be represented as a permutation elements in a 5775 // single input vector or of 2 input vectors. 5776 InstructionCost Cost = 5777 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5778 AdjustExtractsCost(Cost); 5779 if (NeedToShuffleReuses) 5780 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5781 FinalVecTy, E->ReuseShuffleIndices); 5782 return Cost; 5783 } 5784 } 5785 if (isSplat(VL)) { 5786 // Found the broadcasting of the single scalar, calculate the cost as the 5787 // broadcast. 5788 assert(VecTy == FinalVecTy && 5789 "No reused scalars expected for broadcast."); 5790 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5791 /*Mask=*/None, /*Index=*/0, 5792 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5793 } 5794 InstructionCost ReuseShuffleCost = 0; 5795 if (NeedToShuffleReuses) 5796 ReuseShuffleCost = TTI->getShuffleCost( 5797 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5798 // Improve gather cost for gather of loads, if we can group some of the 5799 // loads into vector loads. 5800 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5801 !E->isAltShuffle()) { 5802 BoUpSLP::ValueSet VectorizedLoads; 5803 unsigned StartIdx = 0; 5804 unsigned VF = VL.size() / 2; 5805 unsigned VectorizedCnt = 0; 5806 unsigned ScatterVectorizeCnt = 0; 5807 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5808 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5809 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5810 Cnt += VF) { 5811 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5812 if (!VectorizedLoads.count(Slice.front()) && 5813 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5814 SmallVector<Value *> PointerOps; 5815 OrdersType CurrentOrder; 5816 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5817 *SE, CurrentOrder, PointerOps); 5818 switch (LS) { 5819 case LoadsState::Vectorize: 5820 case LoadsState::ScatterVectorize: 5821 // Mark the vectorized loads so that we don't vectorize them 5822 // again. 5823 if (LS == LoadsState::Vectorize) 5824 ++VectorizedCnt; 5825 else 5826 ++ScatterVectorizeCnt; 5827 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5828 // If we vectorized initial block, no need to try to vectorize it 5829 // again. 5830 if (Cnt == StartIdx) 5831 StartIdx += VF; 5832 break; 5833 case LoadsState::Gather: 5834 break; 5835 } 5836 } 5837 } 5838 // Check if the whole array was vectorized already - exit. 5839 if (StartIdx >= VL.size()) 5840 break; 5841 // Found vectorizable parts - exit. 5842 if (!VectorizedLoads.empty()) 5843 break; 5844 } 5845 if (!VectorizedLoads.empty()) { 5846 InstructionCost GatherCost = 0; 5847 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5848 bool NeedInsertSubvectorAnalysis = 5849 !NumParts || (VL.size() / VF) > NumParts; 5850 // Get the cost for gathered loads. 5851 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5852 if (VectorizedLoads.contains(VL[I])) 5853 continue; 5854 GatherCost += getGatherCost(VL.slice(I, VF)); 5855 } 5856 // The cost for vectorized loads. 5857 InstructionCost ScalarsCost = 0; 5858 for (Value *V : VectorizedLoads) { 5859 auto *LI = cast<LoadInst>(V); 5860 ScalarsCost += TTI->getMemoryOpCost( 5861 Instruction::Load, LI->getType(), LI->getAlign(), 5862 LI->getPointerAddressSpace(), CostKind, LI); 5863 } 5864 auto *LI = cast<LoadInst>(E->getMainOp()); 5865 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5866 Align Alignment = LI->getAlign(); 5867 GatherCost += 5868 VectorizedCnt * 5869 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5870 LI->getPointerAddressSpace(), CostKind, LI); 5871 GatherCost += ScatterVectorizeCnt * 5872 TTI->getGatherScatterOpCost( 5873 Instruction::Load, LoadTy, LI->getPointerOperand(), 5874 /*VariableMask=*/false, Alignment, CostKind, LI); 5875 if (NeedInsertSubvectorAnalysis) { 5876 // Add the cost for the subvectors insert. 5877 for (int I = VF, E = VL.size(); I < E; I += VF) 5878 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5879 None, I, LoadTy); 5880 } 5881 return ReuseShuffleCost + GatherCost - ScalarsCost; 5882 } 5883 } 5884 return ReuseShuffleCost + getGatherCost(VL); 5885 } 5886 InstructionCost CommonCost = 0; 5887 SmallVector<int> Mask; 5888 if (!E->ReorderIndices.empty()) { 5889 SmallVector<int> NewMask; 5890 if (E->getOpcode() == Instruction::Store) { 5891 // For stores the order is actually a mask. 5892 NewMask.resize(E->ReorderIndices.size()); 5893 copy(E->ReorderIndices, NewMask.begin()); 5894 } else { 5895 inversePermutation(E->ReorderIndices, NewMask); 5896 } 5897 ::addMask(Mask, NewMask); 5898 } 5899 if (NeedToShuffleReuses) 5900 ::addMask(Mask, E->ReuseShuffleIndices); 5901 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5902 CommonCost = 5903 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5904 assert((E->State == TreeEntry::Vectorize || 5905 E->State == TreeEntry::ScatterVectorize) && 5906 "Unhandled state"); 5907 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5908 Instruction *VL0 = E->getMainOp(); 5909 unsigned ShuffleOrOp = 5910 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5911 switch (ShuffleOrOp) { 5912 case Instruction::PHI: 5913 return 0; 5914 5915 case Instruction::ExtractValue: 5916 case Instruction::ExtractElement: { 5917 // The common cost of removal ExtractElement/ExtractValue instructions + 5918 // the cost of shuffles, if required to resuffle the original vector. 5919 if (NeedToShuffleReuses) { 5920 unsigned Idx = 0; 5921 for (unsigned I : E->ReuseShuffleIndices) { 5922 if (ShuffleOrOp == Instruction::ExtractElement) { 5923 auto *EE = cast<ExtractElementInst>(VL[I]); 5924 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5925 EE->getVectorOperandType(), 5926 *getExtractIndex(EE)); 5927 } else { 5928 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5929 VecTy, Idx); 5930 ++Idx; 5931 } 5932 } 5933 Idx = EntryVF; 5934 for (Value *V : VL) { 5935 if (ShuffleOrOp == Instruction::ExtractElement) { 5936 auto *EE = cast<ExtractElementInst>(V); 5937 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5938 EE->getVectorOperandType(), 5939 *getExtractIndex(EE)); 5940 } else { 5941 --Idx; 5942 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5943 VecTy, Idx); 5944 } 5945 } 5946 } 5947 if (ShuffleOrOp == Instruction::ExtractValue) { 5948 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5949 auto *EI = cast<Instruction>(VL[I]); 5950 // Take credit for instruction that will become dead. 5951 if (EI->hasOneUse()) { 5952 Instruction *Ext = EI->user_back(); 5953 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5954 all_of(Ext->users(), 5955 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5956 // Use getExtractWithExtendCost() to calculate the cost of 5957 // extractelement/ext pair. 5958 CommonCost -= TTI->getExtractWithExtendCost( 5959 Ext->getOpcode(), Ext->getType(), VecTy, I); 5960 // Add back the cost of s|zext which is subtracted separately. 5961 CommonCost += TTI->getCastInstrCost( 5962 Ext->getOpcode(), Ext->getType(), EI->getType(), 5963 TTI::getCastContextHint(Ext), CostKind, Ext); 5964 continue; 5965 } 5966 } 5967 CommonCost -= 5968 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5969 } 5970 } else { 5971 AdjustExtractsCost(CommonCost); 5972 } 5973 return CommonCost; 5974 } 5975 case Instruction::InsertElement: { 5976 assert(E->ReuseShuffleIndices.empty() && 5977 "Unique insertelements only are expected."); 5978 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5979 5980 unsigned const NumElts = SrcVecTy->getNumElements(); 5981 unsigned const NumScalars = VL.size(); 5982 APInt DemandedElts = APInt::getZero(NumElts); 5983 // TODO: Add support for Instruction::InsertValue. 5984 SmallVector<int> Mask; 5985 if (!E->ReorderIndices.empty()) { 5986 inversePermutation(E->ReorderIndices, Mask); 5987 Mask.append(NumElts - NumScalars, UndefMaskElem); 5988 } else { 5989 Mask.assign(NumElts, UndefMaskElem); 5990 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5991 } 5992 unsigned Offset = *getInsertIndex(VL0); 5993 bool IsIdentity = true; 5994 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5995 Mask.swap(PrevMask); 5996 for (unsigned I = 0; I < NumScalars; ++I) { 5997 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5998 DemandedElts.setBit(InsertIdx); 5999 IsIdentity &= InsertIdx - Offset == I; 6000 Mask[InsertIdx - Offset] = I; 6001 } 6002 assert(Offset < NumElts && "Failed to find vector index offset"); 6003 6004 InstructionCost Cost = 0; 6005 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 6006 /*Insert*/ true, /*Extract*/ false); 6007 6008 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 6009 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 6010 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 6011 Cost += TTI->getShuffleCost( 6012 TargetTransformInfo::SK_PermuteSingleSrc, 6013 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 6014 } else if (!IsIdentity) { 6015 auto *FirstInsert = 6016 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6017 return !is_contained(E->Scalars, 6018 cast<Instruction>(V)->getOperand(0)); 6019 })); 6020 if (isUndefVector(FirstInsert->getOperand(0))) { 6021 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 6022 } else { 6023 SmallVector<int> InsertMask(NumElts); 6024 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6025 for (unsigned I = 0; I < NumElts; I++) { 6026 if (Mask[I] != UndefMaskElem) 6027 InsertMask[Offset + I] = NumElts + I; 6028 } 6029 Cost += 6030 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 6031 } 6032 } 6033 6034 return Cost; 6035 } 6036 case Instruction::ZExt: 6037 case Instruction::SExt: 6038 case Instruction::FPToUI: 6039 case Instruction::FPToSI: 6040 case Instruction::FPExt: 6041 case Instruction::PtrToInt: 6042 case Instruction::IntToPtr: 6043 case Instruction::SIToFP: 6044 case Instruction::UIToFP: 6045 case Instruction::Trunc: 6046 case Instruction::FPTrunc: 6047 case Instruction::BitCast: { 6048 Type *SrcTy = VL0->getOperand(0)->getType(); 6049 InstructionCost ScalarEltCost = 6050 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 6051 TTI::getCastContextHint(VL0), CostKind, VL0); 6052 if (NeedToShuffleReuses) { 6053 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6054 } 6055 6056 // Calculate the cost of this instruction. 6057 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 6058 6059 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 6060 InstructionCost VecCost = 0; 6061 // Check if the values are candidates to demote. 6062 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 6063 VecCost = CommonCost + TTI->getCastInstrCost( 6064 E->getOpcode(), VecTy, SrcVecTy, 6065 TTI::getCastContextHint(VL0), CostKind, VL0); 6066 } 6067 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6068 return VecCost - ScalarCost; 6069 } 6070 case Instruction::FCmp: 6071 case Instruction::ICmp: 6072 case Instruction::Select: { 6073 // Calculate the cost of this instruction. 6074 InstructionCost ScalarEltCost = 6075 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6076 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 6077 if (NeedToShuffleReuses) { 6078 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6079 } 6080 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 6081 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6082 6083 // Check if all entries in VL are either compares or selects with compares 6084 // as condition that have the same predicates. 6085 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 6086 bool First = true; 6087 for (auto *V : VL) { 6088 CmpInst::Predicate CurrentPred; 6089 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 6090 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 6091 !match(V, MatchCmp)) || 6092 (!First && VecPred != CurrentPred)) { 6093 VecPred = CmpInst::BAD_ICMP_PREDICATE; 6094 break; 6095 } 6096 First = false; 6097 VecPred = CurrentPred; 6098 } 6099 6100 InstructionCost VecCost = TTI->getCmpSelInstrCost( 6101 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 6102 // Check if it is possible and profitable to use min/max for selects in 6103 // VL. 6104 // 6105 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 6106 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 6107 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 6108 {VecTy, VecTy}); 6109 InstructionCost IntrinsicCost = 6110 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6111 // If the selects are the only uses of the compares, they will be dead 6112 // and we can adjust the cost by removing their cost. 6113 if (IntrinsicAndUse.second) 6114 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 6115 MaskTy, VecPred, CostKind); 6116 VecCost = std::min(VecCost, IntrinsicCost); 6117 } 6118 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6119 return CommonCost + VecCost - ScalarCost; 6120 } 6121 case Instruction::FNeg: 6122 case Instruction::Add: 6123 case Instruction::FAdd: 6124 case Instruction::Sub: 6125 case Instruction::FSub: 6126 case Instruction::Mul: 6127 case Instruction::FMul: 6128 case Instruction::UDiv: 6129 case Instruction::SDiv: 6130 case Instruction::FDiv: 6131 case Instruction::URem: 6132 case Instruction::SRem: 6133 case Instruction::FRem: 6134 case Instruction::Shl: 6135 case Instruction::LShr: 6136 case Instruction::AShr: 6137 case Instruction::And: 6138 case Instruction::Or: 6139 case Instruction::Xor: { 6140 // Certain instructions can be cheaper to vectorize if they have a 6141 // constant second vector operand. 6142 TargetTransformInfo::OperandValueKind Op1VK = 6143 TargetTransformInfo::OK_AnyValue; 6144 TargetTransformInfo::OperandValueKind Op2VK = 6145 TargetTransformInfo::OK_UniformConstantValue; 6146 TargetTransformInfo::OperandValueProperties Op1VP = 6147 TargetTransformInfo::OP_None; 6148 TargetTransformInfo::OperandValueProperties Op2VP = 6149 TargetTransformInfo::OP_PowerOf2; 6150 6151 // If all operands are exactly the same ConstantInt then set the 6152 // operand kind to OK_UniformConstantValue. 6153 // If instead not all operands are constants, then set the operand kind 6154 // to OK_AnyValue. If all operands are constants but not the same, 6155 // then set the operand kind to OK_NonUniformConstantValue. 6156 ConstantInt *CInt0 = nullptr; 6157 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 6158 const Instruction *I = cast<Instruction>(VL[i]); 6159 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 6160 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 6161 if (!CInt) { 6162 Op2VK = TargetTransformInfo::OK_AnyValue; 6163 Op2VP = TargetTransformInfo::OP_None; 6164 break; 6165 } 6166 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 6167 !CInt->getValue().isPowerOf2()) 6168 Op2VP = TargetTransformInfo::OP_None; 6169 if (i == 0) { 6170 CInt0 = CInt; 6171 continue; 6172 } 6173 if (CInt0 != CInt) 6174 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6175 } 6176 6177 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 6178 InstructionCost ScalarEltCost = 6179 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 6180 Op2VK, Op1VP, Op2VP, Operands, VL0); 6181 if (NeedToShuffleReuses) { 6182 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6183 } 6184 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6185 InstructionCost VecCost = 6186 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 6187 Op2VK, Op1VP, Op2VP, Operands, VL0); 6188 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6189 return CommonCost + VecCost - ScalarCost; 6190 } 6191 case Instruction::GetElementPtr: { 6192 TargetTransformInfo::OperandValueKind Op1VK = 6193 TargetTransformInfo::OK_AnyValue; 6194 TargetTransformInfo::OperandValueKind Op2VK = 6195 TargetTransformInfo::OK_UniformConstantValue; 6196 6197 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 6198 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 6199 if (NeedToShuffleReuses) { 6200 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6201 } 6202 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6203 InstructionCost VecCost = TTI->getArithmeticInstrCost( 6204 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 6205 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6206 return CommonCost + VecCost - ScalarCost; 6207 } 6208 case Instruction::Load: { 6209 // Cost of wide load - cost of scalar loads. 6210 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 6211 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6212 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 6213 if (NeedToShuffleReuses) { 6214 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6215 } 6216 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 6217 InstructionCost VecLdCost; 6218 if (E->State == TreeEntry::Vectorize) { 6219 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 6220 CostKind, VL0); 6221 } else { 6222 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 6223 Align CommonAlignment = Alignment; 6224 for (Value *V : VL) 6225 CommonAlignment = 6226 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6227 VecLdCost = TTI->getGatherScatterOpCost( 6228 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 6229 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 6230 } 6231 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 6232 return CommonCost + VecLdCost - ScalarLdCost; 6233 } 6234 case Instruction::Store: { 6235 // We know that we can merge the stores. Calculate the cost. 6236 bool IsReorder = !E->ReorderIndices.empty(); 6237 auto *SI = 6238 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 6239 Align Alignment = SI->getAlign(); 6240 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6241 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 6242 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 6243 InstructionCost VecStCost = TTI->getMemoryOpCost( 6244 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 6245 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 6246 return CommonCost + VecStCost - ScalarStCost; 6247 } 6248 case Instruction::Call: { 6249 CallInst *CI = cast<CallInst>(VL0); 6250 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6251 6252 // Calculate the cost of the scalar and vector calls. 6253 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6254 InstructionCost ScalarEltCost = 6255 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6256 if (NeedToShuffleReuses) { 6257 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6258 } 6259 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6260 6261 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6262 InstructionCost VecCallCost = 6263 std::min(VecCallCosts.first, VecCallCosts.second); 6264 6265 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6266 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6267 << " for " << *CI << "\n"); 6268 6269 return CommonCost + VecCallCost - ScalarCallCost; 6270 } 6271 case Instruction::ShuffleVector: { 6272 assert(E->isAltShuffle() && 6273 ((Instruction::isBinaryOp(E->getOpcode()) && 6274 Instruction::isBinaryOp(E->getAltOpcode())) || 6275 (Instruction::isCast(E->getOpcode()) && 6276 Instruction::isCast(E->getAltOpcode())) || 6277 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6278 "Invalid Shuffle Vector Operand"); 6279 InstructionCost ScalarCost = 0; 6280 if (NeedToShuffleReuses) { 6281 for (unsigned Idx : E->ReuseShuffleIndices) { 6282 Instruction *I = cast<Instruction>(VL[Idx]); 6283 CommonCost -= TTI->getInstructionCost(I, CostKind); 6284 } 6285 for (Value *V : VL) { 6286 Instruction *I = cast<Instruction>(V); 6287 CommonCost += TTI->getInstructionCost(I, CostKind); 6288 } 6289 } 6290 for (Value *V : VL) { 6291 Instruction *I = cast<Instruction>(V); 6292 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6293 ScalarCost += TTI->getInstructionCost(I, CostKind); 6294 } 6295 // VecCost is equal to sum of the cost of creating 2 vectors 6296 // and the cost of creating shuffle. 6297 InstructionCost VecCost = 0; 6298 // Try to find the previous shuffle node with the same operands and same 6299 // main/alternate ops. 6300 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6301 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6302 if (TE.get() == E) 6303 break; 6304 if (TE->isAltShuffle() && 6305 ((TE->getOpcode() == E->getOpcode() && 6306 TE->getAltOpcode() == E->getAltOpcode()) || 6307 (TE->getOpcode() == E->getAltOpcode() && 6308 TE->getAltOpcode() == E->getOpcode())) && 6309 TE->hasEqualOperands(*E)) 6310 return true; 6311 } 6312 return false; 6313 }; 6314 if (TryFindNodeWithEqualOperands()) { 6315 LLVM_DEBUG({ 6316 dbgs() << "SLP: diamond match for alternate node found.\n"; 6317 E->dump(); 6318 }); 6319 // No need to add new vector costs here since we're going to reuse 6320 // same main/alternate vector ops, just do different shuffling. 6321 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6322 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6323 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6324 CostKind); 6325 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6326 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6327 Builder.getInt1Ty(), 6328 CI0->getPredicate(), CostKind, VL0); 6329 VecCost += TTI->getCmpSelInstrCost( 6330 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6331 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6332 E->getAltOp()); 6333 } else { 6334 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6335 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6336 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6337 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6338 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6339 TTI::CastContextHint::None, CostKind); 6340 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6341 TTI::CastContextHint::None, CostKind); 6342 } 6343 6344 if (E->ReuseShuffleIndices.empty()) { 6345 CommonCost = 6346 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6347 } else { 6348 SmallVector<int> Mask; 6349 buildShuffleEntryMask( 6350 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6351 [E](Instruction *I) { 6352 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6353 return I->getOpcode() == E->getAltOpcode(); 6354 }, 6355 Mask); 6356 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6357 FinalVecTy, Mask); 6358 } 6359 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6360 return CommonCost + VecCost - ScalarCost; 6361 } 6362 default: 6363 llvm_unreachable("Unknown instruction"); 6364 } 6365 } 6366 6367 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6368 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6369 << VectorizableTree.size() << " is fully vectorizable .\n"); 6370 6371 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6372 SmallVector<int> Mask; 6373 return TE->State == TreeEntry::NeedToGather && 6374 !any_of(TE->Scalars, 6375 [this](Value *V) { return EphValues.contains(V); }) && 6376 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6377 TE->Scalars.size() < Limit || 6378 ((TE->getOpcode() == Instruction::ExtractElement || 6379 all_of(TE->Scalars, 6380 [](Value *V) { 6381 return isa<ExtractElementInst, UndefValue>(V); 6382 })) && 6383 isFixedVectorShuffle(TE->Scalars, Mask)) || 6384 (TE->State == TreeEntry::NeedToGather && 6385 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6386 }; 6387 6388 // We only handle trees of heights 1 and 2. 6389 if (VectorizableTree.size() == 1 && 6390 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6391 (ForReduction && 6392 AreVectorizableGathers(VectorizableTree[0].get(), 6393 VectorizableTree[0]->Scalars.size()) && 6394 VectorizableTree[0]->getVectorFactor() > 2))) 6395 return true; 6396 6397 if (VectorizableTree.size() != 2) 6398 return false; 6399 6400 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6401 // with the second gather nodes if they have less scalar operands rather than 6402 // the initial tree element (may be profitable to shuffle the second gather) 6403 // or they are extractelements, which form shuffle. 6404 SmallVector<int> Mask; 6405 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6406 AreVectorizableGathers(VectorizableTree[1].get(), 6407 VectorizableTree[0]->Scalars.size())) 6408 return true; 6409 6410 // Gathering cost would be too much for tiny trees. 6411 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6412 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6413 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6414 return false; 6415 6416 return true; 6417 } 6418 6419 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6420 TargetTransformInfo *TTI, 6421 bool MustMatchOrInst) { 6422 // Look past the root to find a source value. Arbitrarily follow the 6423 // path through operand 0 of any 'or'. Also, peek through optional 6424 // shift-left-by-multiple-of-8-bits. 6425 Value *ZextLoad = Root; 6426 const APInt *ShAmtC; 6427 bool FoundOr = false; 6428 while (!isa<ConstantExpr>(ZextLoad) && 6429 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6430 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6431 ShAmtC->urem(8) == 0))) { 6432 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6433 ZextLoad = BinOp->getOperand(0); 6434 if (BinOp->getOpcode() == Instruction::Or) 6435 FoundOr = true; 6436 } 6437 // Check if the input is an extended load of the required or/shift expression. 6438 Value *Load; 6439 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6440 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6441 return false; 6442 6443 // Require that the total load bit width is a legal integer type. 6444 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6445 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6446 Type *SrcTy = Load->getType(); 6447 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6448 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6449 return false; 6450 6451 // Everything matched - assume that we can fold the whole sequence using 6452 // load combining. 6453 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6454 << *(cast<Instruction>(Root)) << "\n"); 6455 6456 return true; 6457 } 6458 6459 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6460 if (RdxKind != RecurKind::Or) 6461 return false; 6462 6463 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6464 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6465 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6466 /* MatchOr */ false); 6467 } 6468 6469 bool BoUpSLP::isLoadCombineCandidate() const { 6470 // Peek through a final sequence of stores and check if all operations are 6471 // likely to be load-combined. 6472 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6473 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6474 Value *X; 6475 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6476 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6477 return false; 6478 } 6479 return true; 6480 } 6481 6482 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6483 // No need to vectorize inserts of gathered values. 6484 if (VectorizableTree.size() == 2 && 6485 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6486 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6487 return true; 6488 6489 // We can vectorize the tree if its size is greater than or equal to the 6490 // minimum size specified by the MinTreeSize command line option. 6491 if (VectorizableTree.size() >= MinTreeSize) 6492 return false; 6493 6494 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6495 // can vectorize it if we can prove it fully vectorizable. 6496 if (isFullyVectorizableTinyTree(ForReduction)) 6497 return false; 6498 6499 assert(VectorizableTree.empty() 6500 ? ExternalUses.empty() 6501 : true && "We shouldn't have any external users"); 6502 6503 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6504 // vectorizable. 6505 return true; 6506 } 6507 6508 InstructionCost BoUpSLP::getSpillCost() const { 6509 // Walk from the bottom of the tree to the top, tracking which values are 6510 // live. When we see a call instruction that is not part of our tree, 6511 // query TTI to see if there is a cost to keeping values live over it 6512 // (for example, if spills and fills are required). 6513 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6514 InstructionCost Cost = 0; 6515 6516 SmallPtrSet<Instruction*, 4> LiveValues; 6517 Instruction *PrevInst = nullptr; 6518 6519 // The entries in VectorizableTree are not necessarily ordered by their 6520 // position in basic blocks. Collect them and order them by dominance so later 6521 // instructions are guaranteed to be visited first. For instructions in 6522 // different basic blocks, we only scan to the beginning of the block, so 6523 // their order does not matter, as long as all instructions in a basic block 6524 // are grouped together. Using dominance ensures a deterministic order. 6525 SmallVector<Instruction *, 16> OrderedScalars; 6526 for (const auto &TEPtr : VectorizableTree) { 6527 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6528 if (!Inst) 6529 continue; 6530 OrderedScalars.push_back(Inst); 6531 } 6532 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6533 auto *NodeA = DT->getNode(A->getParent()); 6534 auto *NodeB = DT->getNode(B->getParent()); 6535 assert(NodeA && "Should only process reachable instructions"); 6536 assert(NodeB && "Should only process reachable instructions"); 6537 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6538 "Different nodes should have different DFS numbers"); 6539 if (NodeA != NodeB) 6540 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6541 return B->comesBefore(A); 6542 }); 6543 6544 for (Instruction *Inst : OrderedScalars) { 6545 if (!PrevInst) { 6546 PrevInst = Inst; 6547 continue; 6548 } 6549 6550 // Update LiveValues. 6551 LiveValues.erase(PrevInst); 6552 for (auto &J : PrevInst->operands()) { 6553 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6554 LiveValues.insert(cast<Instruction>(&*J)); 6555 } 6556 6557 LLVM_DEBUG({ 6558 dbgs() << "SLP: #LV: " << LiveValues.size(); 6559 for (auto *X : LiveValues) 6560 dbgs() << " " << X->getName(); 6561 dbgs() << ", Looking at "; 6562 Inst->dump(); 6563 }); 6564 6565 // Now find the sequence of instructions between PrevInst and Inst. 6566 unsigned NumCalls = 0; 6567 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6568 PrevInstIt = 6569 PrevInst->getIterator().getReverse(); 6570 while (InstIt != PrevInstIt) { 6571 if (PrevInstIt == PrevInst->getParent()->rend()) { 6572 PrevInstIt = Inst->getParent()->rbegin(); 6573 continue; 6574 } 6575 6576 // Debug information does not impact spill cost. 6577 if ((isa<CallInst>(&*PrevInstIt) && 6578 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6579 &*PrevInstIt != PrevInst) 6580 NumCalls++; 6581 6582 ++PrevInstIt; 6583 } 6584 6585 if (NumCalls) { 6586 SmallVector<Type*, 4> V; 6587 for (auto *II : LiveValues) { 6588 auto *ScalarTy = II->getType(); 6589 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6590 ScalarTy = VectorTy->getElementType(); 6591 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6592 } 6593 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6594 } 6595 6596 PrevInst = Inst; 6597 } 6598 6599 return Cost; 6600 } 6601 6602 /// Check if two insertelement instructions are from the same buildvector. 6603 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6604 InsertElementInst *V) { 6605 // Instructions must be from the same basic blocks. 6606 if (VU->getParent() != V->getParent()) 6607 return false; 6608 // Checks if 2 insertelements are from the same buildvector. 6609 if (VU->getType() != V->getType()) 6610 return false; 6611 // Multiple used inserts are separate nodes. 6612 if (!VU->hasOneUse() && !V->hasOneUse()) 6613 return false; 6614 auto *IE1 = VU; 6615 auto *IE2 = V; 6616 unsigned Idx1 = *getInsertIndex(IE1); 6617 unsigned Idx2 = *getInsertIndex(IE2); 6618 // Go through the vector operand of insertelement instructions trying to find 6619 // either VU as the original vector for IE2 or V as the original vector for 6620 // IE1. 6621 do { 6622 if (IE2 == VU) 6623 return VU->hasOneUse(); 6624 if (IE1 == V) 6625 return V->hasOneUse(); 6626 if (IE1) { 6627 if ((IE1 != VU && !IE1->hasOneUse()) || 6628 getInsertIndex(IE1).getValueOr(Idx2) == Idx2) 6629 IE1 = nullptr; 6630 else 6631 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6632 } 6633 if (IE2) { 6634 if ((IE2 != V && !IE2->hasOneUse()) || 6635 getInsertIndex(IE2).getValueOr(Idx1) == Idx1) 6636 IE2 = nullptr; 6637 else 6638 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6639 } 6640 } while (IE1 || IE2); 6641 return false; 6642 } 6643 6644 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6645 /// buildvector sequence. 6646 static bool isFirstInsertElement(const InsertElementInst *IE1, 6647 const InsertElementInst *IE2) { 6648 const auto *I1 = IE1; 6649 const auto *I2 = IE2; 6650 const InsertElementInst *PrevI1; 6651 const InsertElementInst *PrevI2; 6652 unsigned Idx1 = *getInsertIndex(IE1); 6653 unsigned Idx2 = *getInsertIndex(IE2); 6654 do { 6655 if (I2 == IE1) 6656 return true; 6657 if (I1 == IE2) 6658 return false; 6659 PrevI1 = I1; 6660 PrevI2 = I2; 6661 if (I1 && (I1 == IE1 || I1->hasOneUse()) && 6662 getInsertIndex(I1).getValueOr(Idx2) != Idx2) 6663 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6664 if (I2 && ((I2 == IE2 || I2->hasOneUse())) && 6665 getInsertIndex(I2).getValueOr(Idx1) != Idx1) 6666 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6667 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 6668 llvm_unreachable("Two different buildvectors not expected."); 6669 } 6670 6671 namespace { 6672 /// Returns incoming Value *, if the requested type is Value * too, or a default 6673 /// value, otherwise. 6674 struct ValueSelect { 6675 template <typename U> 6676 static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type 6677 get(Value *V) { 6678 return V; 6679 } 6680 template <typename U> 6681 static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type 6682 get(Value *) { 6683 return U(); 6684 } 6685 }; 6686 } // namespace 6687 6688 /// Does the analysis of the provided shuffle masks and performs the requested 6689 /// actions on the vectors with the given shuffle masks. It tries to do it in 6690 /// several steps. 6691 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6692 /// have common VF and perform action for 2 input vectors (including non-undef 6693 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6694 /// and processed as a shuffle of 2 elements. 6695 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6696 /// action only for 1 vector with the given mask, if it is not the identity 6697 /// mask. 6698 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6699 /// vectors, combing the masks properly between the steps. 6700 template <typename T> 6701 static T *performExtractsShuffleAction( 6702 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6703 function_ref<unsigned(T *)> GetVF, 6704 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6705 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6706 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6707 SmallVector<int> Mask(ShuffleMask.begin()->second); 6708 auto VMIt = std::next(ShuffleMask.begin()); 6709 T *Prev = nullptr; 6710 bool IsBaseNotUndef = !isUndefVector(Base); 6711 if (IsBaseNotUndef) { 6712 // Base is not undef, need to combine it with the next subvectors. 6713 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6714 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6715 if (Mask[Idx] == UndefMaskElem) 6716 Mask[Idx] = Idx; 6717 else 6718 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6719 } 6720 auto *V = ValueSelect::get<T *>(Base); 6721 (void)V; 6722 assert((!V || GetVF(V) == Mask.size()) && 6723 "Expected base vector of VF number of elements."); 6724 Prev = Action(Mask, {nullptr, Res.first}); 6725 } else if (ShuffleMask.size() == 1) { 6726 // Base is undef and only 1 vector is shuffled - perform the action only for 6727 // single vector, if the mask is not the identity mask. 6728 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6729 if (Res.second) 6730 // Identity mask is found. 6731 Prev = Res.first; 6732 else 6733 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6734 } else { 6735 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6736 // shuffles step by step, combining shuffle between the steps. 6737 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6738 unsigned Vec2VF = GetVF(VMIt->first); 6739 if (Vec1VF == Vec2VF) { 6740 // No need to resize the input vectors since they are of the same size, we 6741 // can shuffle them directly. 6742 ArrayRef<int> SecMask = VMIt->second; 6743 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6744 if (SecMask[I] != UndefMaskElem) { 6745 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6746 Mask[I] = SecMask[I] + Vec1VF; 6747 } 6748 } 6749 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6750 } else { 6751 // Vectors of different sizes - resize and reshuffle. 6752 std::pair<T *, bool> Res1 = 6753 ResizeAction(ShuffleMask.begin()->first, Mask); 6754 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6755 ArrayRef<int> SecMask = VMIt->second; 6756 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6757 if (Mask[I] != UndefMaskElem) { 6758 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6759 if (Res1.second) 6760 Mask[I] = I; 6761 } else if (SecMask[I] != UndefMaskElem) { 6762 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6763 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 6764 } 6765 } 6766 Prev = Action(Mask, {Res1.first, Res2.first}); 6767 } 6768 VMIt = std::next(VMIt); 6769 } 6770 // Perform requested actions for the remaining masks/vectors. 6771 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 6772 // Shuffle other input vectors, if any. 6773 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 6774 ArrayRef<int> SecMask = VMIt->second; 6775 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6776 if (SecMask[I] != UndefMaskElem) { 6777 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 6778 "Multiple uses of scalars."); 6779 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 6780 } else if (Mask[I] != UndefMaskElem) { 6781 Mask[I] = I; 6782 } 6783 } 6784 Prev = Action(Mask, {Prev, Res.first}); 6785 } 6786 return Prev; 6787 } 6788 6789 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6790 InstructionCost Cost = 0; 6791 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6792 << VectorizableTree.size() << ".\n"); 6793 6794 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6795 6796 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6797 TreeEntry &TE = *VectorizableTree[I]; 6798 6799 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6800 Cost += C; 6801 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6802 << " for bundle that starts with " << *TE.Scalars[0] 6803 << ".\n" 6804 << "SLP: Current total cost = " << Cost << "\n"); 6805 } 6806 6807 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6808 InstructionCost ExtractCost = 0; 6809 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 6810 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 6811 SmallVector<APInt> DemandedElts; 6812 for (ExternalUser &EU : ExternalUses) { 6813 // We only add extract cost once for the same scalar. 6814 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6815 !ExtractCostCalculated.insert(EU.Scalar).second) 6816 continue; 6817 6818 // Uses by ephemeral values are free (because the ephemeral value will be 6819 // removed prior to code generation, and so the extraction will be 6820 // removed as well). 6821 if (EphValues.count(EU.User)) 6822 continue; 6823 6824 // No extract cost for vector "scalar" 6825 if (isa<FixedVectorType>(EU.Scalar->getType())) 6826 continue; 6827 6828 // Already counted the cost for external uses when tried to adjust the cost 6829 // for extractelements, no need to add it again. 6830 if (isa<ExtractElementInst>(EU.Scalar)) 6831 continue; 6832 6833 // If found user is an insertelement, do not calculate extract cost but try 6834 // to detect it as a final shuffled/identity match. 6835 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6836 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6837 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6838 if (InsertIdx) { 6839 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 6840 auto *It = 6841 find_if(FirstUsers, 6842 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 6843 return areTwoInsertFromSameBuildVector( 6844 VU, cast<InsertElementInst>(Pair.first)); 6845 }); 6846 int VecId = -1; 6847 if (It == FirstUsers.end()) { 6848 (void)ShuffleMasks.emplace_back(); 6849 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 6850 if (Mask.empty()) 6851 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6852 // Find the insertvector, vectorized in tree, if any. 6853 Value *Base = VU; 6854 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 6855 if (IEBase != EU.User && 6856 (!IEBase->hasOneUse() || 6857 getInsertIndex(IEBase).getValueOr(*InsertIdx) == *InsertIdx)) 6858 break; 6859 // Build the mask for the vectorized insertelement instructions. 6860 if (const TreeEntry *E = getTreeEntry(IEBase)) { 6861 VU = IEBase; 6862 do { 6863 IEBase = cast<InsertElementInst>(Base); 6864 int Idx = *getInsertIndex(IEBase); 6865 assert(Mask[Idx] == UndefMaskElem && 6866 "InsertElementInstruction used already."); 6867 Mask[Idx] = Idx; 6868 Base = IEBase->getOperand(0); 6869 } while (E == getTreeEntry(Base)); 6870 break; 6871 } 6872 Base = cast<InsertElementInst>(Base)->getOperand(0); 6873 } 6874 FirstUsers.emplace_back(VU, ScalarTE); 6875 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 6876 VecId = FirstUsers.size() - 1; 6877 } else { 6878 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 6879 It->first = VU; 6880 VecId = std::distance(FirstUsers.begin(), It); 6881 } 6882 int InIdx = *InsertIdx; 6883 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 6884 if (Mask.empty()) 6885 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6886 Mask[InIdx] = EU.Lane; 6887 DemandedElts[VecId].setBit(InIdx); 6888 continue; 6889 } 6890 } 6891 } 6892 6893 // If we plan to rewrite the tree in a smaller type, we will need to sign 6894 // extend the extracted value back to the original type. Here, we account 6895 // for the extract and the added cost of the sign extend if needed. 6896 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6897 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6898 if (MinBWs.count(ScalarRoot)) { 6899 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6900 auto Extend = 6901 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6902 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6903 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6904 VecTy, EU.Lane); 6905 } else { 6906 ExtractCost += 6907 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6908 } 6909 } 6910 6911 InstructionCost SpillCost = getSpillCost(); 6912 Cost += SpillCost + ExtractCost; 6913 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 6914 InstructionCost C = 0; 6915 unsigned VF = Mask.size(); 6916 unsigned VecVF = TE->getVectorFactor(); 6917 if (VF != VecVF && 6918 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 6919 (all_of(Mask, 6920 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 6921 !ShuffleVectorInst::isIdentityMask(Mask)))) { 6922 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 6923 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 6924 OrigMask.begin()); 6925 C = TTI->getShuffleCost( 6926 TTI::SK_PermuteSingleSrc, 6927 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 6928 LLVM_DEBUG( 6929 dbgs() << "SLP: Adding cost " << C 6930 << " for final shuffle of insertelement external users.\n"; 6931 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6932 Cost += C; 6933 return std::make_pair(TE, true); 6934 } 6935 return std::make_pair(TE, false); 6936 }; 6937 // Calculate the cost of the reshuffled vectors, if any. 6938 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 6939 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 6940 unsigned VF = ShuffleMasks[I].begin()->second.size(); 6941 auto *FTy = FixedVectorType::get( 6942 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 6943 auto Vector = ShuffleMasks[I].takeVector(); 6944 auto &&EstimateShufflesCost = [this, FTy, 6945 &Cost](ArrayRef<int> Mask, 6946 ArrayRef<const TreeEntry *> TEs) { 6947 assert((TEs.size() == 1 || TEs.size() == 2) && 6948 "Expected exactly 1 or 2 tree entries."); 6949 if (TEs.size() == 1) { 6950 int Limit = 2 * Mask.size(); 6951 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 6952 !ShuffleVectorInst::isIdentityMask(Mask)) { 6953 InstructionCost C = 6954 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 6955 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6956 << " for final shuffle of insertelement " 6957 "external users.\n"; 6958 TEs.front()->dump(); 6959 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6960 Cost += C; 6961 } 6962 } else { 6963 InstructionCost C = 6964 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 6965 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6966 << " for final shuffle of vector node and external " 6967 "insertelement users.\n"; 6968 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 6969 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6970 Cost += C; 6971 } 6972 return TEs.back(); 6973 }; 6974 (void)performExtractsShuffleAction<const TreeEntry>( 6975 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 6976 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 6977 EstimateShufflesCost); 6978 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6979 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 6980 /*Insert*/ true, /*Extract*/ false); 6981 Cost -= InsertCost; 6982 } 6983 6984 #ifndef NDEBUG 6985 SmallString<256> Str; 6986 { 6987 raw_svector_ostream OS(Str); 6988 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6989 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6990 << "SLP: Total Cost = " << Cost << ".\n"; 6991 } 6992 LLVM_DEBUG(dbgs() << Str); 6993 if (ViewSLPTree) 6994 ViewGraph(this, "SLP" + F->getName(), false, Str); 6995 #endif 6996 6997 return Cost; 6998 } 6999 7000 Optional<TargetTransformInfo::ShuffleKind> 7001 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 7002 SmallVectorImpl<const TreeEntry *> &Entries) { 7003 // TODO: currently checking only for Scalars in the tree entry, need to count 7004 // reused elements too for better cost estimation. 7005 Mask.assign(TE->Scalars.size(), UndefMaskElem); 7006 Entries.clear(); 7007 // Build a lists of values to tree entries. 7008 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 7009 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 7010 if (EntryPtr.get() == TE) 7011 break; 7012 if (EntryPtr->State != TreeEntry::NeedToGather) 7013 continue; 7014 for (Value *V : EntryPtr->Scalars) 7015 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 7016 } 7017 // Find all tree entries used by the gathered values. If no common entries 7018 // found - not a shuffle. 7019 // Here we build a set of tree nodes for each gathered value and trying to 7020 // find the intersection between these sets. If we have at least one common 7021 // tree node for each gathered value - we have just a permutation of the 7022 // single vector. If we have 2 different sets, we're in situation where we 7023 // have a permutation of 2 input vectors. 7024 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 7025 DenseMap<Value *, int> UsedValuesEntry; 7026 for (Value *V : TE->Scalars) { 7027 if (isa<UndefValue>(V)) 7028 continue; 7029 // Build a list of tree entries where V is used. 7030 SmallPtrSet<const TreeEntry *, 4> VToTEs; 7031 auto It = ValueToTEs.find(V); 7032 if (It != ValueToTEs.end()) 7033 VToTEs = It->second; 7034 if (const TreeEntry *VTE = getTreeEntry(V)) 7035 VToTEs.insert(VTE); 7036 if (VToTEs.empty()) 7037 return None; 7038 if (UsedTEs.empty()) { 7039 // The first iteration, just insert the list of nodes to vector. 7040 UsedTEs.push_back(VToTEs); 7041 } else { 7042 // Need to check if there are any previously used tree nodes which use V. 7043 // If there are no such nodes, consider that we have another one input 7044 // vector. 7045 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 7046 unsigned Idx = 0; 7047 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 7048 // Do we have a non-empty intersection of previously listed tree entries 7049 // and tree entries using current V? 7050 set_intersect(VToTEs, Set); 7051 if (!VToTEs.empty()) { 7052 // Yes, write the new subset and continue analysis for the next 7053 // scalar. 7054 Set.swap(VToTEs); 7055 break; 7056 } 7057 VToTEs = SavedVToTEs; 7058 ++Idx; 7059 } 7060 // No non-empty intersection found - need to add a second set of possible 7061 // source vectors. 7062 if (Idx == UsedTEs.size()) { 7063 // If the number of input vectors is greater than 2 - not a permutation, 7064 // fallback to the regular gather. 7065 if (UsedTEs.size() == 2) 7066 return None; 7067 UsedTEs.push_back(SavedVToTEs); 7068 Idx = UsedTEs.size() - 1; 7069 } 7070 UsedValuesEntry.try_emplace(V, Idx); 7071 } 7072 } 7073 7074 if (UsedTEs.empty()) { 7075 assert(all_of(TE->Scalars, UndefValue::classof) && 7076 "Expected vector of undefs only."); 7077 return None; 7078 } 7079 7080 unsigned VF = 0; 7081 if (UsedTEs.size() == 1) { 7082 // Try to find the perfect match in another gather node at first. 7083 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 7084 return EntryPtr->isSame(TE->Scalars); 7085 }); 7086 if (It != UsedTEs.front().end()) { 7087 Entries.push_back(*It); 7088 std::iota(Mask.begin(), Mask.end(), 0); 7089 return TargetTransformInfo::SK_PermuteSingleSrc; 7090 } 7091 // No perfect match, just shuffle, so choose the first tree node. 7092 Entries.push_back(*UsedTEs.front().begin()); 7093 } else { 7094 // Try to find nodes with the same vector factor. 7095 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 7096 DenseMap<int, const TreeEntry *> VFToTE; 7097 for (const TreeEntry *TE : UsedTEs.front()) 7098 VFToTE.try_emplace(TE->getVectorFactor(), TE); 7099 for (const TreeEntry *TE : UsedTEs.back()) { 7100 auto It = VFToTE.find(TE->getVectorFactor()); 7101 if (It != VFToTE.end()) { 7102 VF = It->first; 7103 Entries.push_back(It->second); 7104 Entries.push_back(TE); 7105 break; 7106 } 7107 } 7108 // No 2 source vectors with the same vector factor - give up and do regular 7109 // gather. 7110 if (Entries.empty()) 7111 return None; 7112 } 7113 7114 // Build a shuffle mask for better cost estimation and vector emission. 7115 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 7116 Value *V = TE->Scalars[I]; 7117 if (isa<UndefValue>(V)) 7118 continue; 7119 unsigned Idx = UsedValuesEntry.lookup(V); 7120 const TreeEntry *VTE = Entries[Idx]; 7121 int FoundLane = VTE->findLaneForValue(V); 7122 Mask[I] = Idx * VF + FoundLane; 7123 // Extra check required by isSingleSourceMaskImpl function (called by 7124 // ShuffleVectorInst::isSingleSourceMask). 7125 if (Mask[I] >= 2 * E) 7126 return None; 7127 } 7128 switch (Entries.size()) { 7129 case 1: 7130 return TargetTransformInfo::SK_PermuteSingleSrc; 7131 case 2: 7132 return TargetTransformInfo::SK_PermuteTwoSrc; 7133 default: 7134 break; 7135 } 7136 return None; 7137 } 7138 7139 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 7140 const APInt &ShuffledIndices, 7141 bool NeedToShuffle) const { 7142 InstructionCost Cost = 7143 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 7144 /*Extract*/ false); 7145 if (NeedToShuffle) 7146 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 7147 return Cost; 7148 } 7149 7150 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 7151 // Find the type of the operands in VL. 7152 Type *ScalarTy = VL[0]->getType(); 7153 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 7154 ScalarTy = SI->getValueOperand()->getType(); 7155 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 7156 bool DuplicateNonConst = false; 7157 // Find the cost of inserting/extracting values from the vector. 7158 // Check if the same elements are inserted several times and count them as 7159 // shuffle candidates. 7160 APInt ShuffledElements = APInt::getZero(VL.size()); 7161 DenseSet<Value *> UniqueElements; 7162 // Iterate in reverse order to consider insert elements with the high cost. 7163 for (unsigned I = VL.size(); I > 0; --I) { 7164 unsigned Idx = I - 1; 7165 // No need to shuffle duplicates for constants. 7166 if (isConstant(VL[Idx])) { 7167 ShuffledElements.setBit(Idx); 7168 continue; 7169 } 7170 if (!UniqueElements.insert(VL[Idx]).second) { 7171 DuplicateNonConst = true; 7172 ShuffledElements.setBit(Idx); 7173 } 7174 } 7175 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 7176 } 7177 7178 // Perform operand reordering on the instructions in VL and return the reordered 7179 // operands in Left and Right. 7180 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 7181 SmallVectorImpl<Value *> &Left, 7182 SmallVectorImpl<Value *> &Right, 7183 const DataLayout &DL, 7184 ScalarEvolution &SE, 7185 const BoUpSLP &R) { 7186 if (VL.empty()) 7187 return; 7188 VLOperands Ops(VL, DL, SE, R); 7189 // Reorder the operands in place. 7190 Ops.reorder(); 7191 Left = Ops.getVL(0); 7192 Right = Ops.getVL(1); 7193 } 7194 7195 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 7196 // Get the basic block this bundle is in. All instructions in the bundle 7197 // should be in this block. 7198 auto *Front = E->getMainOp(); 7199 auto *BB = Front->getParent(); 7200 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 7201 auto *I = cast<Instruction>(V); 7202 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 7203 })); 7204 7205 auto &&FindLastInst = [E, Front]() { 7206 Instruction *LastInst = Front; 7207 for (Value *V : E->Scalars) { 7208 auto *I = dyn_cast<Instruction>(V); 7209 if (!I) 7210 continue; 7211 if (LastInst->comesBefore(I)) 7212 LastInst = I; 7213 } 7214 return LastInst; 7215 }; 7216 7217 auto &&FindFirstInst = [E, Front]() { 7218 Instruction *FirstInst = Front; 7219 for (Value *V : E->Scalars) { 7220 auto *I = dyn_cast<Instruction>(V); 7221 if (!I) 7222 continue; 7223 if (I->comesBefore(FirstInst)) 7224 FirstInst = I; 7225 } 7226 return FirstInst; 7227 }; 7228 7229 // Set the insert point to the beginning of the basic block if the entry 7230 // should not be scheduled. 7231 if (E->State != TreeEntry::NeedToGather && 7232 doesNotNeedToSchedule(E->Scalars)) { 7233 Instruction *InsertInst; 7234 if (all_of(E->Scalars, isUsedOutsideBlock)) 7235 InsertInst = FindLastInst(); 7236 else 7237 InsertInst = FindFirstInst(); 7238 // If the instruction is PHI, set the insert point after all the PHIs. 7239 if (isa<PHINode>(InsertInst)) 7240 InsertInst = BB->getFirstNonPHI(); 7241 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 7242 Builder.SetInsertPoint(BB, InsertPt); 7243 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7244 return; 7245 } 7246 7247 // The last instruction in the bundle in program order. 7248 Instruction *LastInst = nullptr; 7249 7250 // Find the last instruction. The common case should be that BB has been 7251 // scheduled, and the last instruction is VL.back(). So we start with 7252 // VL.back() and iterate over schedule data until we reach the end of the 7253 // bundle. The end of the bundle is marked by null ScheduleData. 7254 if (BlocksSchedules.count(BB)) { 7255 Value *V = E->isOneOf(E->Scalars.back()); 7256 if (doesNotNeedToBeScheduled(V)) 7257 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 7258 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 7259 if (Bundle && Bundle->isPartOfBundle()) 7260 for (; Bundle; Bundle = Bundle->NextInBundle) 7261 if (Bundle->OpValue == Bundle->Inst) 7262 LastInst = Bundle->Inst; 7263 } 7264 7265 // LastInst can still be null at this point if there's either not an entry 7266 // for BB in BlocksSchedules or there's no ScheduleData available for 7267 // VL.back(). This can be the case if buildTree_rec aborts for various 7268 // reasons (e.g., the maximum recursion depth is reached, the maximum region 7269 // size is reached, etc.). ScheduleData is initialized in the scheduling 7270 // "dry-run". 7271 // 7272 // If this happens, we can still find the last instruction by brute force. We 7273 // iterate forwards from Front (inclusive) until we either see all 7274 // instructions in the bundle or reach the end of the block. If Front is the 7275 // last instruction in program order, LastInst will be set to Front, and we 7276 // will visit all the remaining instructions in the block. 7277 // 7278 // One of the reasons we exit early from buildTree_rec is to place an upper 7279 // bound on compile-time. Thus, taking an additional compile-time hit here is 7280 // not ideal. However, this should be exceedingly rare since it requires that 7281 // we both exit early from buildTree_rec and that the bundle be out-of-order 7282 // (causing us to iterate all the way to the end of the block). 7283 if (!LastInst) { 7284 LastInst = FindLastInst(); 7285 // If the instruction is PHI, set the insert point after all the PHIs. 7286 if (isa<PHINode>(LastInst)) 7287 LastInst = BB->getFirstNonPHI()->getPrevNode(); 7288 } 7289 assert(LastInst && "Failed to find last instruction in bundle"); 7290 7291 // Set the insertion point after the last instruction in the bundle. Set the 7292 // debug location to Front. 7293 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7294 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7295 } 7296 7297 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7298 // List of instructions/lanes from current block and/or the blocks which are 7299 // part of the current loop. These instructions will be inserted at the end to 7300 // make it possible to optimize loops and hoist invariant instructions out of 7301 // the loops body with better chances for success. 7302 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7303 SmallSet<int, 4> PostponedIndices; 7304 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7305 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7306 SmallPtrSet<BasicBlock *, 4> Visited; 7307 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7308 InsertBB = InsertBB->getSinglePredecessor(); 7309 return InsertBB && InsertBB == InstBB; 7310 }; 7311 for (int I = 0, E = VL.size(); I < E; ++I) { 7312 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7313 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7314 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7315 PostponedIndices.insert(I).second) 7316 PostponedInsts.emplace_back(Inst, I); 7317 } 7318 7319 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7320 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7321 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7322 if (!InsElt) 7323 return Vec; 7324 GatherShuffleSeq.insert(InsElt); 7325 CSEBlocks.insert(InsElt->getParent()); 7326 // Add to our 'need-to-extract' list. 7327 if (TreeEntry *Entry = getTreeEntry(V)) { 7328 // Find which lane we need to extract. 7329 unsigned FoundLane = Entry->findLaneForValue(V); 7330 ExternalUses.emplace_back(V, InsElt, FoundLane); 7331 } 7332 return Vec; 7333 }; 7334 Value *Val0 = 7335 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7336 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7337 Value *Vec = PoisonValue::get(VecTy); 7338 SmallVector<int> NonConsts; 7339 // Insert constant values at first. 7340 for (int I = 0, E = VL.size(); I < E; ++I) { 7341 if (PostponedIndices.contains(I)) 7342 continue; 7343 if (!isConstant(VL[I])) { 7344 NonConsts.push_back(I); 7345 continue; 7346 } 7347 Vec = CreateInsertElement(Vec, VL[I], I); 7348 } 7349 // Insert non-constant values. 7350 for (int I : NonConsts) 7351 Vec = CreateInsertElement(Vec, VL[I], I); 7352 // Append instructions, which are/may be part of the loop, in the end to make 7353 // it possible to hoist non-loop-based instructions. 7354 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7355 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7356 7357 return Vec; 7358 } 7359 7360 namespace { 7361 /// Merges shuffle masks and emits final shuffle instruction, if required. 7362 class ShuffleInstructionBuilder { 7363 IRBuilderBase &Builder; 7364 const unsigned VF = 0; 7365 bool IsFinalized = false; 7366 SmallVector<int, 4> Mask; 7367 /// Holds all of the instructions that we gathered. 7368 SetVector<Instruction *> &GatherShuffleSeq; 7369 /// A list of blocks that we are going to CSE. 7370 SetVector<BasicBlock *> &CSEBlocks; 7371 7372 public: 7373 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7374 SetVector<Instruction *> &GatherShuffleSeq, 7375 SetVector<BasicBlock *> &CSEBlocks) 7376 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7377 CSEBlocks(CSEBlocks) {} 7378 7379 /// Adds a mask, inverting it before applying. 7380 void addInversedMask(ArrayRef<unsigned> SubMask) { 7381 if (SubMask.empty()) 7382 return; 7383 SmallVector<int, 4> NewMask; 7384 inversePermutation(SubMask, NewMask); 7385 addMask(NewMask); 7386 } 7387 7388 /// Functions adds masks, merging them into single one. 7389 void addMask(ArrayRef<unsigned> SubMask) { 7390 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7391 addMask(NewMask); 7392 } 7393 7394 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7395 7396 Value *finalize(Value *V) { 7397 IsFinalized = true; 7398 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7399 if (VF == ValueVF && Mask.empty()) 7400 return V; 7401 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7402 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7403 addMask(NormalizedMask); 7404 7405 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7406 return V; 7407 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7408 if (auto *I = dyn_cast<Instruction>(Vec)) { 7409 GatherShuffleSeq.insert(I); 7410 CSEBlocks.insert(I->getParent()); 7411 } 7412 return Vec; 7413 } 7414 7415 ~ShuffleInstructionBuilder() { 7416 assert((IsFinalized || Mask.empty()) && 7417 "Shuffle construction must be finalized."); 7418 } 7419 }; 7420 } // namespace 7421 7422 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7423 const unsigned VF = VL.size(); 7424 InstructionsState S = getSameOpcode(VL); 7425 if (S.getOpcode()) { 7426 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7427 if (E->isSame(VL)) { 7428 Value *V = vectorizeTree(E); 7429 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7430 if (!E->ReuseShuffleIndices.empty()) { 7431 // Reshuffle to get only unique values. 7432 // If some of the scalars are duplicated in the vectorization tree 7433 // entry, we do not vectorize them but instead generate a mask for 7434 // the reuses. But if there are several users of the same entry, 7435 // they may have different vectorization factors. This is especially 7436 // important for PHI nodes. In this case, we need to adapt the 7437 // resulting instruction for the user vectorization factor and have 7438 // to reshuffle it again to take only unique elements of the vector. 7439 // Without this code the function incorrectly returns reduced vector 7440 // instruction with the same elements, not with the unique ones. 7441 7442 // block: 7443 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7444 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7445 // ... (use %2) 7446 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7447 // br %block 7448 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7449 SmallSet<int, 4> UsedIdxs; 7450 int Pos = 0; 7451 int Sz = VL.size(); 7452 for (int Idx : E->ReuseShuffleIndices) { 7453 if (Idx != Sz && Idx != UndefMaskElem && 7454 UsedIdxs.insert(Idx).second) 7455 UniqueIdxs[Idx] = Pos; 7456 ++Pos; 7457 } 7458 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7459 "less than original vector size."); 7460 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7461 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7462 } else { 7463 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7464 "Expected vectorization factor less " 7465 "than original vector size."); 7466 SmallVector<int> UniformMask(VF, 0); 7467 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7468 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7469 } 7470 if (auto *I = dyn_cast<Instruction>(V)) { 7471 GatherShuffleSeq.insert(I); 7472 CSEBlocks.insert(I->getParent()); 7473 } 7474 } 7475 return V; 7476 } 7477 } 7478 7479 // Can't vectorize this, so simply build a new vector with each lane 7480 // corresponding to the requested value. 7481 return createBuildVector(VL); 7482 } 7483 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7484 unsigned VF = VL.size(); 7485 // Exploit possible reuse of values across lanes. 7486 SmallVector<int> ReuseShuffleIndicies; 7487 SmallVector<Value *> UniqueValues; 7488 if (VL.size() > 2) { 7489 DenseMap<Value *, unsigned> UniquePositions; 7490 unsigned NumValues = 7491 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7492 return !isa<UndefValue>(V); 7493 }).base()); 7494 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7495 int UniqueVals = 0; 7496 for (Value *V : VL.drop_back(VL.size() - VF)) { 7497 if (isa<UndefValue>(V)) { 7498 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7499 continue; 7500 } 7501 if (isConstant(V)) { 7502 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7503 UniqueValues.emplace_back(V); 7504 continue; 7505 } 7506 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7507 ReuseShuffleIndicies.emplace_back(Res.first->second); 7508 if (Res.second) { 7509 UniqueValues.emplace_back(V); 7510 ++UniqueVals; 7511 } 7512 } 7513 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7514 // Emit pure splat vector. 7515 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7516 UndefMaskElem); 7517 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7518 ReuseShuffleIndicies.clear(); 7519 UniqueValues.clear(); 7520 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7521 } 7522 UniqueValues.append(VF - UniqueValues.size(), 7523 PoisonValue::get(VL[0]->getType())); 7524 VL = UniqueValues; 7525 } 7526 7527 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7528 CSEBlocks); 7529 Value *Vec = gather(VL); 7530 if (!ReuseShuffleIndicies.empty()) { 7531 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7532 Vec = ShuffleBuilder.finalize(Vec); 7533 } 7534 return Vec; 7535 } 7536 7537 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7538 IRBuilder<>::InsertPointGuard Guard(Builder); 7539 7540 if (E->VectorizedValue) { 7541 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7542 return E->VectorizedValue; 7543 } 7544 7545 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7546 unsigned VF = E->getVectorFactor(); 7547 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7548 CSEBlocks); 7549 if (E->State == TreeEntry::NeedToGather) { 7550 if (E->getMainOp()) 7551 setInsertPointAfterBundle(E); 7552 Value *Vec; 7553 SmallVector<int> Mask; 7554 SmallVector<const TreeEntry *> Entries; 7555 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7556 isGatherShuffledEntry(E, Mask, Entries); 7557 if (Shuffle.hasValue()) { 7558 assert((Entries.size() == 1 || Entries.size() == 2) && 7559 "Expected shuffle of 1 or 2 entries."); 7560 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7561 Entries.back()->VectorizedValue, Mask); 7562 if (auto *I = dyn_cast<Instruction>(Vec)) { 7563 GatherShuffleSeq.insert(I); 7564 CSEBlocks.insert(I->getParent()); 7565 } 7566 } else { 7567 Vec = gather(E->Scalars); 7568 } 7569 if (NeedToShuffleReuses) { 7570 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7571 Vec = ShuffleBuilder.finalize(Vec); 7572 } 7573 E->VectorizedValue = Vec; 7574 return Vec; 7575 } 7576 7577 assert((E->State == TreeEntry::Vectorize || 7578 E->State == TreeEntry::ScatterVectorize) && 7579 "Unhandled state"); 7580 unsigned ShuffleOrOp = 7581 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7582 Instruction *VL0 = E->getMainOp(); 7583 Type *ScalarTy = VL0->getType(); 7584 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7585 ScalarTy = Store->getValueOperand()->getType(); 7586 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7587 ScalarTy = IE->getOperand(1)->getType(); 7588 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7589 switch (ShuffleOrOp) { 7590 case Instruction::PHI: { 7591 assert( 7592 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 7593 "PHI reordering is free."); 7594 auto *PH = cast<PHINode>(VL0); 7595 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7596 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7597 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7598 Value *V = NewPhi; 7599 7600 // Adjust insertion point once all PHI's have been generated. 7601 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7602 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7603 7604 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7605 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7606 V = ShuffleBuilder.finalize(V); 7607 7608 E->VectorizedValue = V; 7609 7610 // PHINodes may have multiple entries from the same block. We want to 7611 // visit every block once. 7612 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7613 7614 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7615 ValueList Operands; 7616 BasicBlock *IBB = PH->getIncomingBlock(i); 7617 7618 if (!VisitedBBs.insert(IBB).second) { 7619 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7620 continue; 7621 } 7622 7623 Builder.SetInsertPoint(IBB->getTerminator()); 7624 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7625 Value *Vec = vectorizeTree(E->getOperand(i)); 7626 NewPhi->addIncoming(Vec, IBB); 7627 } 7628 7629 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7630 "Invalid number of incoming values"); 7631 return V; 7632 } 7633 7634 case Instruction::ExtractElement: { 7635 Value *V = E->getSingleOperand(0); 7636 Builder.SetInsertPoint(VL0); 7637 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7638 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7639 V = ShuffleBuilder.finalize(V); 7640 E->VectorizedValue = V; 7641 return V; 7642 } 7643 case Instruction::ExtractValue: { 7644 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7645 Builder.SetInsertPoint(LI); 7646 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7647 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7648 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7649 Value *NewV = propagateMetadata(V, E->Scalars); 7650 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7651 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7652 NewV = ShuffleBuilder.finalize(NewV); 7653 E->VectorizedValue = NewV; 7654 return NewV; 7655 } 7656 case Instruction::InsertElement: { 7657 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7658 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7659 Value *V = vectorizeTree(E->getOperand(1)); 7660 7661 // Create InsertVector shuffle if necessary 7662 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7663 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7664 })); 7665 const unsigned NumElts = 7666 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7667 const unsigned NumScalars = E->Scalars.size(); 7668 7669 unsigned Offset = *getInsertIndex(VL0); 7670 assert(Offset < NumElts && "Failed to find vector index offset"); 7671 7672 // Create shuffle to resize vector 7673 SmallVector<int> Mask; 7674 if (!E->ReorderIndices.empty()) { 7675 inversePermutation(E->ReorderIndices, Mask); 7676 Mask.append(NumElts - NumScalars, UndefMaskElem); 7677 } else { 7678 Mask.assign(NumElts, UndefMaskElem); 7679 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7680 } 7681 // Create InsertVector shuffle if necessary 7682 bool IsIdentity = true; 7683 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7684 Mask.swap(PrevMask); 7685 for (unsigned I = 0; I < NumScalars; ++I) { 7686 Value *Scalar = E->Scalars[PrevMask[I]]; 7687 unsigned InsertIdx = *getInsertIndex(Scalar); 7688 IsIdentity &= InsertIdx - Offset == I; 7689 Mask[InsertIdx - Offset] = I; 7690 } 7691 if (!IsIdentity || NumElts != NumScalars) { 7692 V = Builder.CreateShuffleVector(V, Mask); 7693 if (auto *I = dyn_cast<Instruction>(V)) { 7694 GatherShuffleSeq.insert(I); 7695 CSEBlocks.insert(I->getParent()); 7696 } 7697 } 7698 7699 if ((!IsIdentity || Offset != 0 || 7700 !isUndefVector(FirstInsert->getOperand(0))) && 7701 NumElts != NumScalars) { 7702 SmallVector<int> InsertMask(NumElts); 7703 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7704 for (unsigned I = 0; I < NumElts; I++) { 7705 if (Mask[I] != UndefMaskElem) 7706 InsertMask[Offset + I] = NumElts + I; 7707 } 7708 7709 V = Builder.CreateShuffleVector( 7710 FirstInsert->getOperand(0), V, InsertMask, 7711 cast<Instruction>(E->Scalars.back())->getName()); 7712 if (auto *I = dyn_cast<Instruction>(V)) { 7713 GatherShuffleSeq.insert(I); 7714 CSEBlocks.insert(I->getParent()); 7715 } 7716 } 7717 7718 ++NumVectorInstructions; 7719 E->VectorizedValue = V; 7720 return V; 7721 } 7722 case Instruction::ZExt: 7723 case Instruction::SExt: 7724 case Instruction::FPToUI: 7725 case Instruction::FPToSI: 7726 case Instruction::FPExt: 7727 case Instruction::PtrToInt: 7728 case Instruction::IntToPtr: 7729 case Instruction::SIToFP: 7730 case Instruction::UIToFP: 7731 case Instruction::Trunc: 7732 case Instruction::FPTrunc: 7733 case Instruction::BitCast: { 7734 setInsertPointAfterBundle(E); 7735 7736 Value *InVec = vectorizeTree(E->getOperand(0)); 7737 7738 if (E->VectorizedValue) { 7739 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7740 return E->VectorizedValue; 7741 } 7742 7743 auto *CI = cast<CastInst>(VL0); 7744 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7745 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7746 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7747 V = ShuffleBuilder.finalize(V); 7748 7749 E->VectorizedValue = V; 7750 ++NumVectorInstructions; 7751 return V; 7752 } 7753 case Instruction::FCmp: 7754 case Instruction::ICmp: { 7755 setInsertPointAfterBundle(E); 7756 7757 Value *L = vectorizeTree(E->getOperand(0)); 7758 Value *R = vectorizeTree(E->getOperand(1)); 7759 7760 if (E->VectorizedValue) { 7761 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7762 return E->VectorizedValue; 7763 } 7764 7765 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7766 Value *V = Builder.CreateCmp(P0, L, R); 7767 propagateIRFlags(V, E->Scalars, VL0); 7768 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7769 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7770 V = ShuffleBuilder.finalize(V); 7771 7772 E->VectorizedValue = V; 7773 ++NumVectorInstructions; 7774 return V; 7775 } 7776 case Instruction::Select: { 7777 setInsertPointAfterBundle(E); 7778 7779 Value *Cond = vectorizeTree(E->getOperand(0)); 7780 Value *True = vectorizeTree(E->getOperand(1)); 7781 Value *False = vectorizeTree(E->getOperand(2)); 7782 7783 if (E->VectorizedValue) { 7784 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7785 return E->VectorizedValue; 7786 } 7787 7788 Value *V = Builder.CreateSelect(Cond, True, False); 7789 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7790 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7791 V = ShuffleBuilder.finalize(V); 7792 7793 E->VectorizedValue = V; 7794 ++NumVectorInstructions; 7795 return V; 7796 } 7797 case Instruction::FNeg: { 7798 setInsertPointAfterBundle(E); 7799 7800 Value *Op = vectorizeTree(E->getOperand(0)); 7801 7802 if (E->VectorizedValue) { 7803 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7804 return E->VectorizedValue; 7805 } 7806 7807 Value *V = Builder.CreateUnOp( 7808 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7809 propagateIRFlags(V, E->Scalars, VL0); 7810 if (auto *I = dyn_cast<Instruction>(V)) 7811 V = propagateMetadata(I, E->Scalars); 7812 7813 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7814 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7815 V = ShuffleBuilder.finalize(V); 7816 7817 E->VectorizedValue = V; 7818 ++NumVectorInstructions; 7819 7820 return V; 7821 } 7822 case Instruction::Add: 7823 case Instruction::FAdd: 7824 case Instruction::Sub: 7825 case Instruction::FSub: 7826 case Instruction::Mul: 7827 case Instruction::FMul: 7828 case Instruction::UDiv: 7829 case Instruction::SDiv: 7830 case Instruction::FDiv: 7831 case Instruction::URem: 7832 case Instruction::SRem: 7833 case Instruction::FRem: 7834 case Instruction::Shl: 7835 case Instruction::LShr: 7836 case Instruction::AShr: 7837 case Instruction::And: 7838 case Instruction::Or: 7839 case Instruction::Xor: { 7840 setInsertPointAfterBundle(E); 7841 7842 Value *LHS = vectorizeTree(E->getOperand(0)); 7843 Value *RHS = vectorizeTree(E->getOperand(1)); 7844 7845 if (E->VectorizedValue) { 7846 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7847 return E->VectorizedValue; 7848 } 7849 7850 Value *V = Builder.CreateBinOp( 7851 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7852 RHS); 7853 propagateIRFlags(V, E->Scalars, VL0); 7854 if (auto *I = dyn_cast<Instruction>(V)) 7855 V = propagateMetadata(I, E->Scalars); 7856 7857 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7858 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7859 V = ShuffleBuilder.finalize(V); 7860 7861 E->VectorizedValue = V; 7862 ++NumVectorInstructions; 7863 7864 return V; 7865 } 7866 case Instruction::Load: { 7867 // Loads are inserted at the head of the tree because we don't want to 7868 // sink them all the way down past store instructions. 7869 setInsertPointAfterBundle(E); 7870 7871 LoadInst *LI = cast<LoadInst>(VL0); 7872 Instruction *NewLI; 7873 unsigned AS = LI->getPointerAddressSpace(); 7874 Value *PO = LI->getPointerOperand(); 7875 if (E->State == TreeEntry::Vectorize) { 7876 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7877 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7878 7879 // The pointer operand uses an in-tree scalar so we add the new BitCast 7880 // or LoadInst to ExternalUses list to make sure that an extract will 7881 // be generated in the future. 7882 if (TreeEntry *Entry = getTreeEntry(PO)) { 7883 // Find which lane we need to extract. 7884 unsigned FoundLane = Entry->findLaneForValue(PO); 7885 ExternalUses.emplace_back( 7886 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7887 } 7888 } else { 7889 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7890 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7891 // Use the minimum alignment of the gathered loads. 7892 Align CommonAlignment = LI->getAlign(); 7893 for (Value *V : E->Scalars) 7894 CommonAlignment = 7895 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7896 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7897 } 7898 Value *V = propagateMetadata(NewLI, E->Scalars); 7899 7900 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7901 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7902 V = ShuffleBuilder.finalize(V); 7903 E->VectorizedValue = V; 7904 ++NumVectorInstructions; 7905 return V; 7906 } 7907 case Instruction::Store: { 7908 auto *SI = cast<StoreInst>(VL0); 7909 unsigned AS = SI->getPointerAddressSpace(); 7910 7911 setInsertPointAfterBundle(E); 7912 7913 Value *VecValue = vectorizeTree(E->getOperand(0)); 7914 ShuffleBuilder.addMask(E->ReorderIndices); 7915 VecValue = ShuffleBuilder.finalize(VecValue); 7916 7917 Value *ScalarPtr = SI->getPointerOperand(); 7918 Value *VecPtr = Builder.CreateBitCast( 7919 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7920 StoreInst *ST = 7921 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7922 7923 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7924 // StoreInst to ExternalUses to make sure that an extract will be 7925 // generated in the future. 7926 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7927 // Find which lane we need to extract. 7928 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7929 ExternalUses.push_back(ExternalUser( 7930 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7931 FoundLane)); 7932 } 7933 7934 Value *V = propagateMetadata(ST, E->Scalars); 7935 7936 E->VectorizedValue = V; 7937 ++NumVectorInstructions; 7938 return V; 7939 } 7940 case Instruction::GetElementPtr: { 7941 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7942 setInsertPointAfterBundle(E); 7943 7944 Value *Op0 = vectorizeTree(E->getOperand(0)); 7945 7946 SmallVector<Value *> OpVecs; 7947 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7948 Value *OpVec = vectorizeTree(E->getOperand(J)); 7949 OpVecs.push_back(OpVec); 7950 } 7951 7952 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7953 if (Instruction *I = dyn_cast<Instruction>(V)) 7954 V = propagateMetadata(I, E->Scalars); 7955 7956 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7957 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7958 V = ShuffleBuilder.finalize(V); 7959 7960 E->VectorizedValue = V; 7961 ++NumVectorInstructions; 7962 7963 return V; 7964 } 7965 case Instruction::Call: { 7966 CallInst *CI = cast<CallInst>(VL0); 7967 setInsertPointAfterBundle(E); 7968 7969 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7970 if (Function *FI = CI->getCalledFunction()) 7971 IID = FI->getIntrinsicID(); 7972 7973 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7974 7975 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7976 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7977 VecCallCosts.first <= VecCallCosts.second; 7978 7979 Value *ScalarArg = nullptr; 7980 std::vector<Value *> OpVecs; 7981 SmallVector<Type *, 2> TysForDecl = 7982 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7983 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7984 ValueList OpVL; 7985 // Some intrinsics have scalar arguments. This argument should not be 7986 // vectorized. 7987 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 7988 CallInst *CEI = cast<CallInst>(VL0); 7989 ScalarArg = CEI->getArgOperand(j); 7990 OpVecs.push_back(CEI->getArgOperand(j)); 7991 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7992 TysForDecl.push_back(ScalarArg->getType()); 7993 continue; 7994 } 7995 7996 Value *OpVec = vectorizeTree(E->getOperand(j)); 7997 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7998 OpVecs.push_back(OpVec); 7999 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8000 TysForDecl.push_back(OpVec->getType()); 8001 } 8002 8003 Function *CF; 8004 if (!UseIntrinsic) { 8005 VFShape Shape = 8006 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 8007 VecTy->getNumElements())), 8008 false /*HasGlobalPred*/); 8009 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 8010 } else { 8011 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 8012 } 8013 8014 SmallVector<OperandBundleDef, 1> OpBundles; 8015 CI->getOperandBundlesAsDefs(OpBundles); 8016 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 8017 8018 // The scalar argument uses an in-tree scalar so we add the new vectorized 8019 // call to ExternalUses list to make sure that an extract will be 8020 // generated in the future. 8021 if (ScalarArg) { 8022 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 8023 // Find which lane we need to extract. 8024 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 8025 ExternalUses.push_back( 8026 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 8027 } 8028 } 8029 8030 propagateIRFlags(V, E->Scalars, VL0); 8031 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8032 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8033 V = ShuffleBuilder.finalize(V); 8034 8035 E->VectorizedValue = V; 8036 ++NumVectorInstructions; 8037 return V; 8038 } 8039 case Instruction::ShuffleVector: { 8040 assert(E->isAltShuffle() && 8041 ((Instruction::isBinaryOp(E->getOpcode()) && 8042 Instruction::isBinaryOp(E->getAltOpcode())) || 8043 (Instruction::isCast(E->getOpcode()) && 8044 Instruction::isCast(E->getAltOpcode())) || 8045 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 8046 "Invalid Shuffle Vector Operand"); 8047 8048 Value *LHS = nullptr, *RHS = nullptr; 8049 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 8050 setInsertPointAfterBundle(E); 8051 LHS = vectorizeTree(E->getOperand(0)); 8052 RHS = vectorizeTree(E->getOperand(1)); 8053 } else { 8054 setInsertPointAfterBundle(E); 8055 LHS = vectorizeTree(E->getOperand(0)); 8056 } 8057 8058 if (E->VectorizedValue) { 8059 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8060 return E->VectorizedValue; 8061 } 8062 8063 Value *V0, *V1; 8064 if (Instruction::isBinaryOp(E->getOpcode())) { 8065 V0 = Builder.CreateBinOp( 8066 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 8067 V1 = Builder.CreateBinOp( 8068 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 8069 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 8070 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 8071 auto *AltCI = cast<CmpInst>(E->getAltOp()); 8072 CmpInst::Predicate AltPred = AltCI->getPredicate(); 8073 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 8074 } else { 8075 V0 = Builder.CreateCast( 8076 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 8077 V1 = Builder.CreateCast( 8078 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 8079 } 8080 // Add V0 and V1 to later analysis to try to find and remove matching 8081 // instruction, if any. 8082 for (Value *V : {V0, V1}) { 8083 if (auto *I = dyn_cast<Instruction>(V)) { 8084 GatherShuffleSeq.insert(I); 8085 CSEBlocks.insert(I->getParent()); 8086 } 8087 } 8088 8089 // Create shuffle to take alternate operations from the vector. 8090 // Also, gather up main and alt scalar ops to propagate IR flags to 8091 // each vector operation. 8092 ValueList OpScalars, AltScalars; 8093 SmallVector<int> Mask; 8094 buildShuffleEntryMask( 8095 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 8096 [E](Instruction *I) { 8097 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 8098 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 8099 }, 8100 Mask, &OpScalars, &AltScalars); 8101 8102 propagateIRFlags(V0, OpScalars); 8103 propagateIRFlags(V1, AltScalars); 8104 8105 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 8106 if (auto *I = dyn_cast<Instruction>(V)) { 8107 V = propagateMetadata(I, E->Scalars); 8108 GatherShuffleSeq.insert(I); 8109 CSEBlocks.insert(I->getParent()); 8110 } 8111 V = ShuffleBuilder.finalize(V); 8112 8113 E->VectorizedValue = V; 8114 ++NumVectorInstructions; 8115 8116 return V; 8117 } 8118 default: 8119 llvm_unreachable("unknown inst"); 8120 } 8121 return nullptr; 8122 } 8123 8124 Value *BoUpSLP::vectorizeTree() { 8125 ExtraValueToDebugLocsMap ExternallyUsedValues; 8126 return vectorizeTree(ExternallyUsedValues); 8127 } 8128 8129 namespace { 8130 /// Data type for handling buildvector sequences with the reused scalars from 8131 /// other tree entries. 8132 struct ShuffledInsertData { 8133 /// List of insertelements to be replaced by shuffles. 8134 SmallVector<InsertElementInst *> InsertElements; 8135 /// The parent vectors and shuffle mask for the given list of inserts. 8136 MapVector<Value *, SmallVector<int>> ValueMasks; 8137 }; 8138 } // namespace 8139 8140 Value * 8141 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 8142 // All blocks must be scheduled before any instructions are inserted. 8143 for (auto &BSIter : BlocksSchedules) { 8144 scheduleBlock(BSIter.second.get()); 8145 } 8146 8147 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8148 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 8149 8150 // If the vectorized tree can be rewritten in a smaller type, we truncate the 8151 // vectorized root. InstCombine will then rewrite the entire expression. We 8152 // sign extend the extracted values below. 8153 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8154 if (MinBWs.count(ScalarRoot)) { 8155 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 8156 // If current instr is a phi and not the last phi, insert it after the 8157 // last phi node. 8158 if (isa<PHINode>(I)) 8159 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 8160 else 8161 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 8162 } 8163 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 8164 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8165 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 8166 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 8167 VectorizableTree[0]->VectorizedValue = Trunc; 8168 } 8169 8170 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 8171 << " values .\n"); 8172 8173 SmallVector<ShuffledInsertData> ShuffledInserts; 8174 // Maps vector instruction to original insertelement instruction 8175 DenseMap<Value *, InsertElementInst *> VectorToInsertElement; 8176 // Extract all of the elements with the external uses. 8177 for (const auto &ExternalUse : ExternalUses) { 8178 Value *Scalar = ExternalUse.Scalar; 8179 llvm::User *User = ExternalUse.User; 8180 8181 // Skip users that we already RAUW. This happens when one instruction 8182 // has multiple uses of the same value. 8183 if (User && !is_contained(Scalar->users(), User)) 8184 continue; 8185 TreeEntry *E = getTreeEntry(Scalar); 8186 assert(E && "Invalid scalar"); 8187 assert(E->State != TreeEntry::NeedToGather && 8188 "Extracting from a gather list"); 8189 8190 Value *Vec = E->VectorizedValue; 8191 assert(Vec && "Can't find vectorizable value"); 8192 8193 Value *Lane = Builder.getInt32(ExternalUse.Lane); 8194 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 8195 if (Scalar->getType() != Vec->getType()) { 8196 Value *Ex; 8197 // "Reuse" the existing extract to improve final codegen. 8198 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 8199 Ex = Builder.CreateExtractElement(ES->getOperand(0), 8200 ES->getOperand(1)); 8201 } else { 8202 Ex = Builder.CreateExtractElement(Vec, Lane); 8203 } 8204 // If necessary, sign-extend or zero-extend ScalarRoot 8205 // to the larger type. 8206 if (!MinBWs.count(ScalarRoot)) 8207 return Ex; 8208 if (MinBWs[ScalarRoot].second) 8209 return Builder.CreateSExt(Ex, Scalar->getType()); 8210 return Builder.CreateZExt(Ex, Scalar->getType()); 8211 } 8212 assert(isa<FixedVectorType>(Scalar->getType()) && 8213 isa<InsertElementInst>(Scalar) && 8214 "In-tree scalar of vector type is not insertelement?"); 8215 auto *IE = cast<InsertElementInst>(Scalar); 8216 VectorToInsertElement.try_emplace(Vec, IE); 8217 return Vec; 8218 }; 8219 // If User == nullptr, the Scalar is used as extra arg. Generate 8220 // ExtractElement instruction and update the record for this scalar in 8221 // ExternallyUsedValues. 8222 if (!User) { 8223 assert(ExternallyUsedValues.count(Scalar) && 8224 "Scalar with nullptr as an external user must be registered in " 8225 "ExternallyUsedValues map"); 8226 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8227 Builder.SetInsertPoint(VecI->getParent(), 8228 std::next(VecI->getIterator())); 8229 } else { 8230 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8231 } 8232 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8233 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 8234 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 8235 auto It = ExternallyUsedValues.find(Scalar); 8236 assert(It != ExternallyUsedValues.end() && 8237 "Externally used scalar is not found in ExternallyUsedValues"); 8238 NewInstLocs.append(It->second); 8239 ExternallyUsedValues.erase(Scalar); 8240 // Required to update internally referenced instructions. 8241 Scalar->replaceAllUsesWith(NewInst); 8242 continue; 8243 } 8244 8245 if (auto *VU = dyn_cast<InsertElementInst>(User)) { 8246 if (!Scalar->getType()->isVectorTy()) { 8247 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { 8248 Optional<unsigned> InsertIdx = getInsertIndex(VU); 8249 if (InsertIdx) { 8250 auto *It = 8251 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { 8252 // Checks if 2 insertelements are from the same buildvector. 8253 InsertElementInst *VecInsert = Data.InsertElements.front(); 8254 return areTwoInsertFromSameBuildVector(VU, VecInsert); 8255 }); 8256 unsigned Idx = *InsertIdx; 8257 if (It == ShuffledInserts.end()) { 8258 (void)ShuffledInserts.emplace_back(); 8259 It = std::next(ShuffledInserts.begin(), 8260 ShuffledInserts.size() - 1); 8261 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8262 if (Mask.empty()) 8263 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8264 // Find the insertvector, vectorized in tree, if any. 8265 Value *Base = VU; 8266 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 8267 if (IEBase != User && 8268 (!IEBase->hasOneUse() || 8269 getInsertIndex(IEBase).getValueOr(Idx) == Idx)) 8270 break; 8271 // Build the mask for the vectorized insertelement instructions. 8272 if (const TreeEntry *E = getTreeEntry(IEBase)) { 8273 do { 8274 IEBase = cast<InsertElementInst>(Base); 8275 int IEIdx = *getInsertIndex(IEBase); 8276 assert(Mask[Idx] == UndefMaskElem && 8277 "InsertElementInstruction used already."); 8278 Mask[IEIdx] = IEIdx; 8279 Base = IEBase->getOperand(0); 8280 } while (E == getTreeEntry(Base)); 8281 break; 8282 } 8283 Base = cast<InsertElementInst>(Base)->getOperand(0); 8284 // After the vectorization the def-use chain has changed, need 8285 // to look through original insertelement instructions, if they 8286 // get replaced by vector instructions. 8287 auto It = VectorToInsertElement.find(Base); 8288 if (It != VectorToInsertElement.end()) 8289 Base = It->second; 8290 } 8291 } 8292 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8293 if (Mask.empty()) 8294 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8295 Mask[Idx] = ExternalUse.Lane; 8296 It->InsertElements.push_back(cast<InsertElementInst>(User)); 8297 continue; 8298 } 8299 } 8300 } 8301 } 8302 8303 // Generate extracts for out-of-tree users. 8304 // Find the insertion point for the extractelement lane. 8305 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8306 if (PHINode *PH = dyn_cast<PHINode>(User)) { 8307 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 8308 if (PH->getIncomingValue(i) == Scalar) { 8309 Instruction *IncomingTerminator = 8310 PH->getIncomingBlock(i)->getTerminator(); 8311 if (isa<CatchSwitchInst>(IncomingTerminator)) { 8312 Builder.SetInsertPoint(VecI->getParent(), 8313 std::next(VecI->getIterator())); 8314 } else { 8315 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 8316 } 8317 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8318 CSEBlocks.insert(PH->getIncomingBlock(i)); 8319 PH->setOperand(i, NewInst); 8320 } 8321 } 8322 } else { 8323 Builder.SetInsertPoint(cast<Instruction>(User)); 8324 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8325 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 8326 User->replaceUsesOfWith(Scalar, NewInst); 8327 } 8328 } else { 8329 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8330 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8331 CSEBlocks.insert(&F->getEntryBlock()); 8332 User->replaceUsesOfWith(Scalar, NewInst); 8333 } 8334 8335 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 8336 } 8337 8338 // Checks if the mask is an identity mask. 8339 auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) { 8340 int Limit = Mask.size(); 8341 return VecTy->getNumElements() == Mask.size() && 8342 all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && 8343 ShuffleVectorInst::isIdentityMask(Mask); 8344 }; 8345 // Tries to combine 2 different masks into single one. 8346 auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) { 8347 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); 8348 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { 8349 if (ExtMask[I] == UndefMaskElem) 8350 continue; 8351 NewMask[I] = Mask[ExtMask[I]]; 8352 } 8353 Mask.swap(NewMask); 8354 }; 8355 // Peek through shuffles, trying to simplify the final shuffle code. 8356 auto &&PeekThroughShuffles = 8357 [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask, 8358 bool CheckForLengthChange = false) { 8359 while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 8360 // Exit if not a fixed vector type or changing size shuffle. 8361 if (!isa<FixedVectorType>(SV->getType()) || 8362 (CheckForLengthChange && SV->changesLength())) 8363 break; 8364 // Exit if the identity or broadcast mask is found. 8365 if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) || 8366 SV->isZeroEltSplat()) 8367 break; 8368 bool IsOp1Undef = isUndefVector(SV->getOperand(0)); 8369 bool IsOp2Undef = isUndefVector(SV->getOperand(1)); 8370 if (!IsOp1Undef && !IsOp2Undef) 8371 break; 8372 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), 8373 SV->getShuffleMask().end()); 8374 CombineMasks(ShuffleMask, Mask); 8375 Mask.swap(ShuffleMask); 8376 if (IsOp2Undef) 8377 V = SV->getOperand(0); 8378 else 8379 V = SV->getOperand(1); 8380 } 8381 }; 8382 // Smart shuffle instruction emission, walks through shuffles trees and 8383 // tries to find the best matching vector for the actual shuffle 8384 // instruction. 8385 auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles, 8386 &CombineMasks](Value *V1, Value *V2, 8387 ArrayRef<int> Mask) -> Value * { 8388 assert(V1 && "Expected at least one vector value."); 8389 if (V2 && !isUndefVector(V2)) { 8390 // Peek through shuffles. 8391 Value *Op1 = V1; 8392 Value *Op2 = V2; 8393 int VF = 8394 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 8395 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); 8396 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); 8397 for (int I = 0, E = Mask.size(); I < E; ++I) { 8398 if (Mask[I] < VF) 8399 CombinedMask1[I] = Mask[I]; 8400 else 8401 CombinedMask2[I] = Mask[I] - VF; 8402 } 8403 Value *PrevOp1; 8404 Value *PrevOp2; 8405 do { 8406 PrevOp1 = Op1; 8407 PrevOp2 = Op2; 8408 PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true); 8409 PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true); 8410 // Check if we have 2 resizing shuffles - need to peek through operands 8411 // again. 8412 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) 8413 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) 8414 if (SV1->getOperand(0)->getType() == 8415 SV2->getOperand(0)->getType() && 8416 SV1->getOperand(0)->getType() != SV1->getType() && 8417 isUndefVector(SV1->getOperand(1)) && 8418 isUndefVector(SV2->getOperand(1))) { 8419 Op1 = SV1->getOperand(0); 8420 Op2 = SV2->getOperand(0); 8421 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), 8422 SV1->getShuffleMask().end()); 8423 CombineMasks(ShuffleMask1, CombinedMask1); 8424 CombinedMask1.swap(ShuffleMask1); 8425 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), 8426 SV2->getShuffleMask().end()); 8427 CombineMasks(ShuffleMask2, CombinedMask2); 8428 CombinedMask2.swap(ShuffleMask2); 8429 } 8430 } while (PrevOp1 != Op1 || PrevOp2 != Op2); 8431 VF = cast<VectorType>(Op1->getType()) 8432 ->getElementCount() 8433 .getKnownMinValue(); 8434 for (int I = 0, E = Mask.size(); I < E; ++I) { 8435 if (CombinedMask2[I] != UndefMaskElem) { 8436 assert(CombinedMask1[I] == UndefMaskElem && 8437 "Expected undefined mask element"); 8438 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); 8439 } 8440 } 8441 Value *Vec = Builder.CreateShuffleVector( 8442 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, 8443 CombinedMask1); 8444 if (auto *I = dyn_cast<Instruction>(Vec)) { 8445 GatherShuffleSeq.insert(I); 8446 CSEBlocks.insert(I->getParent()); 8447 } 8448 return Vec; 8449 } 8450 if (isa<PoisonValue>(V1)) 8451 return PoisonValue::get(FixedVectorType::get( 8452 cast<VectorType>(V1->getType())->getElementType(), Mask.size())); 8453 Value *Op = V1; 8454 SmallVector<int> CombinedMask(Mask.begin(), Mask.end()); 8455 PeekThroughShuffles(Op, CombinedMask); 8456 if (!isa<FixedVectorType>(Op->getType()) || 8457 !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) { 8458 Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask); 8459 if (auto *I = dyn_cast<Instruction>(Vec)) { 8460 GatherShuffleSeq.insert(I); 8461 CSEBlocks.insert(I->getParent()); 8462 } 8463 return Vec; 8464 } 8465 return Op; 8466 }; 8467 8468 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) { 8469 unsigned VF = Mask.size(); 8470 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); 8471 if (VF != VecVF) { 8472 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { 8473 Vec = CreateShuffle(Vec, nullptr, Mask); 8474 return std::make_pair(Vec, true); 8475 } 8476 SmallVector<int> ResizeMask(VF, UndefMaskElem); 8477 for (unsigned I = 0; I < VF; ++I) { 8478 if (Mask[I] != UndefMaskElem) 8479 ResizeMask[Mask[I]] = Mask[I]; 8480 } 8481 Vec = CreateShuffle(Vec, nullptr, ResizeMask); 8482 } 8483 8484 return std::make_pair(Vec, false); 8485 }; 8486 // Perform shuffling of the vectorize tree entries for better handling of 8487 // external extracts. 8488 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { 8489 // Find the first and the last instruction in the list of insertelements. 8490 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); 8491 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); 8492 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); 8493 Builder.SetInsertPoint(LastInsert); 8494 auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); 8495 Value *NewInst = performExtractsShuffleAction<Value>( 8496 makeMutableArrayRef(Vector.data(), Vector.size()), 8497 FirstInsert->getOperand(0), 8498 [](Value *Vec) { 8499 return cast<VectorType>(Vec->getType()) 8500 ->getElementCount() 8501 .getKnownMinValue(); 8502 }, 8503 ResizeToVF, 8504 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, 8505 ArrayRef<Value *> Vals) { 8506 assert((Vals.size() == 1 || Vals.size() == 2) && 8507 "Expected exactly 1 or 2 input values."); 8508 if (Vals.size() == 1) { 8509 // Do not create shuffle if the mask is a simple identity 8510 // non-resizing mask. 8511 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) 8512 ->getNumElements() || 8513 !ShuffleVectorInst::isIdentityMask(Mask)) 8514 return CreateShuffle(Vals.front(), nullptr, Mask); 8515 return Vals.front(); 8516 } 8517 return CreateShuffle(Vals.front() ? Vals.front() 8518 : FirstInsert->getOperand(0), 8519 Vals.back(), Mask); 8520 }); 8521 auto It = ShuffledInserts[I].InsertElements.rbegin(); 8522 // Rebuild buildvector chain. 8523 InsertElementInst *II = nullptr; 8524 if (It != ShuffledInserts[I].InsertElements.rend()) 8525 II = *It; 8526 SmallVector<Instruction *> Inserts; 8527 while (It != ShuffledInserts[I].InsertElements.rend()) { 8528 assert(II && "Must be an insertelement instruction."); 8529 if (*It == II) 8530 ++It; 8531 else 8532 Inserts.push_back(cast<Instruction>(II)); 8533 II = dyn_cast<InsertElementInst>(II->getOperand(0)); 8534 } 8535 for (Instruction *II : reverse(Inserts)) { 8536 II->replaceUsesOfWith(II->getOperand(0), NewInst); 8537 if (auto *NewI = dyn_cast<Instruction>(NewInst)) 8538 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) 8539 II->moveAfter(NewI); 8540 NewInst = II; 8541 } 8542 LastInsert->replaceAllUsesWith(NewInst); 8543 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { 8544 IE->replaceUsesOfWith(IE->getOperand(1), 8545 PoisonValue::get(IE->getOperand(1)->getType())); 8546 eraseInstruction(IE); 8547 } 8548 CSEBlocks.insert(LastInsert->getParent()); 8549 } 8550 8551 // For each vectorized value: 8552 for (auto &TEPtr : VectorizableTree) { 8553 TreeEntry *Entry = TEPtr.get(); 8554 8555 // No need to handle users of gathered values. 8556 if (Entry->State == TreeEntry::NeedToGather) 8557 continue; 8558 8559 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 8560 8561 // For each lane: 8562 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 8563 Value *Scalar = Entry->Scalars[Lane]; 8564 8565 #ifndef NDEBUG 8566 Type *Ty = Scalar->getType(); 8567 if (!Ty->isVoidTy()) { 8568 for (User *U : Scalar->users()) { 8569 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 8570 8571 // It is legal to delete users in the ignorelist. 8572 assert((getTreeEntry(U) || UserIgnoreList.contains(U) || 8573 (isa_and_nonnull<Instruction>(U) && 8574 isDeleted(cast<Instruction>(U)))) && 8575 "Deleting out-of-tree value"); 8576 } 8577 } 8578 #endif 8579 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8580 eraseInstruction(cast<Instruction>(Scalar)); 8581 } 8582 } 8583 8584 Builder.ClearInsertionPoint(); 8585 InstrElementSize.clear(); 8586 8587 return VectorizableTree[0]->VectorizedValue; 8588 } 8589 8590 void BoUpSLP::optimizeGatherSequence() { 8591 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8592 << " gather sequences instructions.\n"); 8593 // LICM InsertElementInst sequences. 8594 for (Instruction *I : GatherShuffleSeq) { 8595 if (isDeleted(I)) 8596 continue; 8597 8598 // Check if this block is inside a loop. 8599 Loop *L = LI->getLoopFor(I->getParent()); 8600 if (!L) 8601 continue; 8602 8603 // Check if it has a preheader. 8604 BasicBlock *PreHeader = L->getLoopPreheader(); 8605 if (!PreHeader) 8606 continue; 8607 8608 // If the vector or the element that we insert into it are 8609 // instructions that are defined in this basic block then we can't 8610 // hoist this instruction. 8611 if (any_of(I->operands(), [L](Value *V) { 8612 auto *OpI = dyn_cast<Instruction>(V); 8613 return OpI && L->contains(OpI); 8614 })) 8615 continue; 8616 8617 // We can hoist this instruction. Move it to the pre-header. 8618 I->moveBefore(PreHeader->getTerminator()); 8619 } 8620 8621 // Make a list of all reachable blocks in our CSE queue. 8622 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8623 CSEWorkList.reserve(CSEBlocks.size()); 8624 for (BasicBlock *BB : CSEBlocks) 8625 if (DomTreeNode *N = DT->getNode(BB)) { 8626 assert(DT->isReachableFromEntry(N)); 8627 CSEWorkList.push_back(N); 8628 } 8629 8630 // Sort blocks by domination. This ensures we visit a block after all blocks 8631 // dominating it are visited. 8632 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8633 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8634 "Different nodes should have different DFS numbers"); 8635 return A->getDFSNumIn() < B->getDFSNumIn(); 8636 }); 8637 8638 // Less defined shuffles can be replaced by the more defined copies. 8639 // Between two shuffles one is less defined if it has the same vector operands 8640 // and its mask indeces are the same as in the first one or undefs. E.g. 8641 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8642 // poison, <0, 0, 0, 0>. 8643 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8644 SmallVectorImpl<int> &NewMask) { 8645 if (I1->getType() != I2->getType()) 8646 return false; 8647 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8648 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8649 if (!SI1 || !SI2) 8650 return I1->isIdenticalTo(I2); 8651 if (SI1->isIdenticalTo(SI2)) 8652 return true; 8653 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8654 if (SI1->getOperand(I) != SI2->getOperand(I)) 8655 return false; 8656 // Check if the second instruction is more defined than the first one. 8657 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8658 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8659 // Count trailing undefs in the mask to check the final number of used 8660 // registers. 8661 unsigned LastUndefsCnt = 0; 8662 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8663 if (SM1[I] == UndefMaskElem) 8664 ++LastUndefsCnt; 8665 else 8666 LastUndefsCnt = 0; 8667 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8668 NewMask[I] != SM1[I]) 8669 return false; 8670 if (NewMask[I] == UndefMaskElem) 8671 NewMask[I] = SM1[I]; 8672 } 8673 // Check if the last undefs actually change the final number of used vector 8674 // registers. 8675 return SM1.size() - LastUndefsCnt > 1 && 8676 TTI->getNumberOfParts(SI1->getType()) == 8677 TTI->getNumberOfParts( 8678 FixedVectorType::get(SI1->getType()->getElementType(), 8679 SM1.size() - LastUndefsCnt)); 8680 }; 8681 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8682 // instructions. TODO: We can further optimize this scan if we split the 8683 // instructions into different buckets based on the insert lane. 8684 SmallVector<Instruction *, 16> Visited; 8685 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8686 assert(*I && 8687 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8688 "Worklist not sorted properly!"); 8689 BasicBlock *BB = (*I)->getBlock(); 8690 // For all instructions in blocks containing gather sequences: 8691 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8692 if (isDeleted(&In)) 8693 continue; 8694 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8695 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 8696 continue; 8697 8698 // Check if we can replace this instruction with any of the 8699 // visited instructions. 8700 bool Replaced = false; 8701 for (Instruction *&V : Visited) { 8702 SmallVector<int> NewMask; 8703 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 8704 DT->dominates(V->getParent(), In.getParent())) { 8705 In.replaceAllUsesWith(V); 8706 eraseInstruction(&In); 8707 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 8708 if (!NewMask.empty()) 8709 SI->setShuffleMask(NewMask); 8710 Replaced = true; 8711 break; 8712 } 8713 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 8714 GatherShuffleSeq.contains(V) && 8715 IsIdenticalOrLessDefined(V, &In, NewMask) && 8716 DT->dominates(In.getParent(), V->getParent())) { 8717 In.moveAfter(V); 8718 V->replaceAllUsesWith(&In); 8719 eraseInstruction(V); 8720 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 8721 if (!NewMask.empty()) 8722 SI->setShuffleMask(NewMask); 8723 V = &In; 8724 Replaced = true; 8725 break; 8726 } 8727 } 8728 if (!Replaced) { 8729 assert(!is_contained(Visited, &In)); 8730 Visited.push_back(&In); 8731 } 8732 } 8733 } 8734 CSEBlocks.clear(); 8735 GatherShuffleSeq.clear(); 8736 } 8737 8738 BoUpSLP::ScheduleData * 8739 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 8740 ScheduleData *Bundle = nullptr; 8741 ScheduleData *PrevInBundle = nullptr; 8742 for (Value *V : VL) { 8743 if (doesNotNeedToBeScheduled(V)) 8744 continue; 8745 ScheduleData *BundleMember = getScheduleData(V); 8746 assert(BundleMember && 8747 "no ScheduleData for bundle member " 8748 "(maybe not in same basic block)"); 8749 assert(BundleMember->isSchedulingEntity() && 8750 "bundle member already part of other bundle"); 8751 if (PrevInBundle) { 8752 PrevInBundle->NextInBundle = BundleMember; 8753 } else { 8754 Bundle = BundleMember; 8755 } 8756 8757 // Group the instructions to a bundle. 8758 BundleMember->FirstInBundle = Bundle; 8759 PrevInBundle = BundleMember; 8760 } 8761 assert(Bundle && "Failed to find schedule bundle"); 8762 return Bundle; 8763 } 8764 8765 // Groups the instructions to a bundle (which is then a single scheduling entity) 8766 // and schedules instructions until the bundle gets ready. 8767 Optional<BoUpSLP::ScheduleData *> 8768 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 8769 const InstructionsState &S) { 8770 // No need to schedule PHIs, insertelement, extractelement and extractvalue 8771 // instructions. 8772 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 8773 doesNotNeedToSchedule(VL)) 8774 return nullptr; 8775 8776 // Initialize the instruction bundle. 8777 Instruction *OldScheduleEnd = ScheduleEnd; 8778 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 8779 8780 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 8781 ScheduleData *Bundle) { 8782 // The scheduling region got new instructions at the lower end (or it is a 8783 // new region for the first bundle). This makes it necessary to 8784 // recalculate all dependencies. 8785 // It is seldom that this needs to be done a second time after adding the 8786 // initial bundle to the region. 8787 if (ScheduleEnd != OldScheduleEnd) { 8788 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 8789 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 8790 ReSchedule = true; 8791 } 8792 if (Bundle) { 8793 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 8794 << " in block " << BB->getName() << "\n"); 8795 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 8796 } 8797 8798 if (ReSchedule) { 8799 resetSchedule(); 8800 initialFillReadyList(ReadyInsts); 8801 } 8802 8803 // Now try to schedule the new bundle or (if no bundle) just calculate 8804 // dependencies. As soon as the bundle is "ready" it means that there are no 8805 // cyclic dependencies and we can schedule it. Note that's important that we 8806 // don't "schedule" the bundle yet (see cancelScheduling). 8807 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 8808 !ReadyInsts.empty()) { 8809 ScheduleData *Picked = ReadyInsts.pop_back_val(); 8810 assert(Picked->isSchedulingEntity() && Picked->isReady() && 8811 "must be ready to schedule"); 8812 schedule(Picked, ReadyInsts); 8813 } 8814 }; 8815 8816 // Make sure that the scheduling region contains all 8817 // instructions of the bundle. 8818 for (Value *V : VL) { 8819 if (doesNotNeedToBeScheduled(V)) 8820 continue; 8821 if (!extendSchedulingRegion(V, S)) { 8822 // If the scheduling region got new instructions at the lower end (or it 8823 // is a new region for the first bundle). This makes it necessary to 8824 // recalculate all dependencies. 8825 // Otherwise the compiler may crash trying to incorrectly calculate 8826 // dependencies and emit instruction in the wrong order at the actual 8827 // scheduling. 8828 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 8829 return None; 8830 } 8831 } 8832 8833 bool ReSchedule = false; 8834 for (Value *V : VL) { 8835 if (doesNotNeedToBeScheduled(V)) 8836 continue; 8837 ScheduleData *BundleMember = getScheduleData(V); 8838 assert(BundleMember && 8839 "no ScheduleData for bundle member (maybe not in same basic block)"); 8840 8841 // Make sure we don't leave the pieces of the bundle in the ready list when 8842 // whole bundle might not be ready. 8843 ReadyInsts.remove(BundleMember); 8844 8845 if (!BundleMember->IsScheduled) 8846 continue; 8847 // A bundle member was scheduled as single instruction before and now 8848 // needs to be scheduled as part of the bundle. We just get rid of the 8849 // existing schedule. 8850 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 8851 << " was already scheduled\n"); 8852 ReSchedule = true; 8853 } 8854 8855 auto *Bundle = buildBundle(VL); 8856 TryScheduleBundleImpl(ReSchedule, Bundle); 8857 if (!Bundle->isReady()) { 8858 cancelScheduling(VL, S.OpValue); 8859 return None; 8860 } 8861 return Bundle; 8862 } 8863 8864 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 8865 Value *OpValue) { 8866 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 8867 doesNotNeedToSchedule(VL)) 8868 return; 8869 8870 if (doesNotNeedToBeScheduled(OpValue)) 8871 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 8872 ScheduleData *Bundle = getScheduleData(OpValue); 8873 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 8874 assert(!Bundle->IsScheduled && 8875 "Can't cancel bundle which is already scheduled"); 8876 assert(Bundle->isSchedulingEntity() && 8877 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 8878 "tried to unbundle something which is not a bundle"); 8879 8880 // Remove the bundle from the ready list. 8881 if (Bundle->isReady()) 8882 ReadyInsts.remove(Bundle); 8883 8884 // Un-bundle: make single instructions out of the bundle. 8885 ScheduleData *BundleMember = Bundle; 8886 while (BundleMember) { 8887 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 8888 BundleMember->FirstInBundle = BundleMember; 8889 ScheduleData *Next = BundleMember->NextInBundle; 8890 BundleMember->NextInBundle = nullptr; 8891 BundleMember->TE = nullptr; 8892 if (BundleMember->unscheduledDepsInBundle() == 0) { 8893 ReadyInsts.insert(BundleMember); 8894 } 8895 BundleMember = Next; 8896 } 8897 } 8898 8899 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8900 // Allocate a new ScheduleData for the instruction. 8901 if (ChunkPos >= ChunkSize) { 8902 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8903 ChunkPos = 0; 8904 } 8905 return &(ScheduleDataChunks.back()[ChunkPos++]); 8906 } 8907 8908 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8909 const InstructionsState &S) { 8910 if (getScheduleData(V, isOneOf(S, V))) 8911 return true; 8912 Instruction *I = dyn_cast<Instruction>(V); 8913 assert(I && "bundle member must be an instruction"); 8914 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8915 !doesNotNeedToBeScheduled(I) && 8916 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8917 "be scheduled"); 8918 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8919 ScheduleData *ISD = getScheduleData(I); 8920 if (!ISD) 8921 return false; 8922 assert(isInSchedulingRegion(ISD) && 8923 "ScheduleData not in scheduling region"); 8924 ScheduleData *SD = allocateScheduleDataChunks(); 8925 SD->Inst = I; 8926 SD->init(SchedulingRegionID, S.OpValue); 8927 ExtraScheduleDataMap[I][S.OpValue] = SD; 8928 return true; 8929 }; 8930 if (CheckScheduleForI(I)) 8931 return true; 8932 if (!ScheduleStart) { 8933 // It's the first instruction in the new region. 8934 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8935 ScheduleStart = I; 8936 ScheduleEnd = I->getNextNode(); 8937 if (isOneOf(S, I) != I) 8938 CheckScheduleForI(I); 8939 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8940 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8941 return true; 8942 } 8943 // Search up and down at the same time, because we don't know if the new 8944 // instruction is above or below the existing scheduling region. 8945 BasicBlock::reverse_iterator UpIter = 8946 ++ScheduleStart->getIterator().getReverse(); 8947 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8948 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8949 BasicBlock::iterator LowerEnd = BB->end(); 8950 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8951 &*DownIter != I) { 8952 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8953 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8954 return false; 8955 } 8956 8957 ++UpIter; 8958 ++DownIter; 8959 } 8960 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8961 assert(I->getParent() == ScheduleStart->getParent() && 8962 "Instruction is in wrong basic block."); 8963 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8964 ScheduleStart = I; 8965 if (isOneOf(S, I) != I) 8966 CheckScheduleForI(I); 8967 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8968 << "\n"); 8969 return true; 8970 } 8971 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8972 "Expected to reach top of the basic block or instruction down the " 8973 "lower end."); 8974 assert(I->getParent() == ScheduleEnd->getParent() && 8975 "Instruction is in wrong basic block."); 8976 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8977 nullptr); 8978 ScheduleEnd = I->getNextNode(); 8979 if (isOneOf(S, I) != I) 8980 CheckScheduleForI(I); 8981 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8982 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8983 return true; 8984 } 8985 8986 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8987 Instruction *ToI, 8988 ScheduleData *PrevLoadStore, 8989 ScheduleData *NextLoadStore) { 8990 ScheduleData *CurrentLoadStore = PrevLoadStore; 8991 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8992 // No need to allocate data for non-schedulable instructions. 8993 if (doesNotNeedToBeScheduled(I)) 8994 continue; 8995 ScheduleData *SD = ScheduleDataMap.lookup(I); 8996 if (!SD) { 8997 SD = allocateScheduleDataChunks(); 8998 ScheduleDataMap[I] = SD; 8999 SD->Inst = I; 9000 } 9001 assert(!isInSchedulingRegion(SD) && 9002 "new ScheduleData already in scheduling region"); 9003 SD->init(SchedulingRegionID, I); 9004 9005 if (I->mayReadOrWriteMemory() && 9006 (!isa<IntrinsicInst>(I) || 9007 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 9008 cast<IntrinsicInst>(I)->getIntrinsicID() != 9009 Intrinsic::pseudoprobe))) { 9010 // Update the linked list of memory accessing instructions. 9011 if (CurrentLoadStore) { 9012 CurrentLoadStore->NextLoadStore = SD; 9013 } else { 9014 FirstLoadStoreInRegion = SD; 9015 } 9016 CurrentLoadStore = SD; 9017 } 9018 9019 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9020 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9021 RegionHasStackSave = true; 9022 } 9023 if (NextLoadStore) { 9024 if (CurrentLoadStore) 9025 CurrentLoadStore->NextLoadStore = NextLoadStore; 9026 } else { 9027 LastLoadStoreInRegion = CurrentLoadStore; 9028 } 9029 } 9030 9031 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 9032 bool InsertInReadyList, 9033 BoUpSLP *SLP) { 9034 assert(SD->isSchedulingEntity()); 9035 9036 SmallVector<ScheduleData *, 10> WorkList; 9037 WorkList.push_back(SD); 9038 9039 while (!WorkList.empty()) { 9040 ScheduleData *SD = WorkList.pop_back_val(); 9041 for (ScheduleData *BundleMember = SD; BundleMember; 9042 BundleMember = BundleMember->NextInBundle) { 9043 assert(isInSchedulingRegion(BundleMember)); 9044 if (BundleMember->hasValidDependencies()) 9045 continue; 9046 9047 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 9048 << "\n"); 9049 BundleMember->Dependencies = 0; 9050 BundleMember->resetUnscheduledDeps(); 9051 9052 // Handle def-use chain dependencies. 9053 if (BundleMember->OpValue != BundleMember->Inst) { 9054 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 9055 BundleMember->Dependencies++; 9056 ScheduleData *DestBundle = UseSD->FirstInBundle; 9057 if (!DestBundle->IsScheduled) 9058 BundleMember->incrementUnscheduledDeps(1); 9059 if (!DestBundle->hasValidDependencies()) 9060 WorkList.push_back(DestBundle); 9061 } 9062 } else { 9063 for (User *U : BundleMember->Inst->users()) { 9064 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 9065 BundleMember->Dependencies++; 9066 ScheduleData *DestBundle = UseSD->FirstInBundle; 9067 if (!DestBundle->IsScheduled) 9068 BundleMember->incrementUnscheduledDeps(1); 9069 if (!DestBundle->hasValidDependencies()) 9070 WorkList.push_back(DestBundle); 9071 } 9072 } 9073 } 9074 9075 auto makeControlDependent = [&](Instruction *I) { 9076 auto *DepDest = getScheduleData(I); 9077 assert(DepDest && "must be in schedule window"); 9078 DepDest->ControlDependencies.push_back(BundleMember); 9079 BundleMember->Dependencies++; 9080 ScheduleData *DestBundle = DepDest->FirstInBundle; 9081 if (!DestBundle->IsScheduled) 9082 BundleMember->incrementUnscheduledDeps(1); 9083 if (!DestBundle->hasValidDependencies()) 9084 WorkList.push_back(DestBundle); 9085 }; 9086 9087 // Any instruction which isn't safe to speculate at the begining of the 9088 // block is control dependend on any early exit or non-willreturn call 9089 // which proceeds it. 9090 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 9091 for (Instruction *I = BundleMember->Inst->getNextNode(); 9092 I != ScheduleEnd; I = I->getNextNode()) { 9093 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 9094 continue; 9095 9096 // Add the dependency 9097 makeControlDependent(I); 9098 9099 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 9100 // Everything past here must be control dependent on I. 9101 break; 9102 } 9103 } 9104 9105 if (RegionHasStackSave) { 9106 // If we have an inalloc alloca instruction, it needs to be scheduled 9107 // after any preceeding stacksave. We also need to prevent any alloca 9108 // from reordering above a preceeding stackrestore. 9109 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 9110 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 9111 for (Instruction *I = BundleMember->Inst->getNextNode(); 9112 I != ScheduleEnd; I = I->getNextNode()) { 9113 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9114 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9115 // Any allocas past here must be control dependent on I, and I 9116 // must be memory dependend on BundleMember->Inst. 9117 break; 9118 9119 if (!isa<AllocaInst>(I)) 9120 continue; 9121 9122 // Add the dependency 9123 makeControlDependent(I); 9124 } 9125 } 9126 9127 // In addition to the cases handle just above, we need to prevent 9128 // allocas from moving below a stacksave. The stackrestore case 9129 // is currently thought to be conservatism. 9130 if (isa<AllocaInst>(BundleMember->Inst)) { 9131 for (Instruction *I = BundleMember->Inst->getNextNode(); 9132 I != ScheduleEnd; I = I->getNextNode()) { 9133 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 9134 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9135 continue; 9136 9137 // Add the dependency 9138 makeControlDependent(I); 9139 break; 9140 } 9141 } 9142 } 9143 9144 // Handle the memory dependencies (if any). 9145 ScheduleData *DepDest = BundleMember->NextLoadStore; 9146 if (!DepDest) 9147 continue; 9148 Instruction *SrcInst = BundleMember->Inst; 9149 assert(SrcInst->mayReadOrWriteMemory() && 9150 "NextLoadStore list for non memory effecting bundle?"); 9151 MemoryLocation SrcLoc = getLocation(SrcInst); 9152 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 9153 unsigned numAliased = 0; 9154 unsigned DistToSrc = 1; 9155 9156 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 9157 assert(isInSchedulingRegion(DepDest)); 9158 9159 // We have two limits to reduce the complexity: 9160 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 9161 // SLP->isAliased (which is the expensive part in this loop). 9162 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 9163 // the whole loop (even if the loop is fast, it's quadratic). 9164 // It's important for the loop break condition (see below) to 9165 // check this limit even between two read-only instructions. 9166 if (DistToSrc >= MaxMemDepDistance || 9167 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 9168 (numAliased >= AliasedCheckLimit || 9169 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 9170 9171 // We increment the counter only if the locations are aliased 9172 // (instead of counting all alias checks). This gives a better 9173 // balance between reduced runtime and accurate dependencies. 9174 numAliased++; 9175 9176 DepDest->MemoryDependencies.push_back(BundleMember); 9177 BundleMember->Dependencies++; 9178 ScheduleData *DestBundle = DepDest->FirstInBundle; 9179 if (!DestBundle->IsScheduled) { 9180 BundleMember->incrementUnscheduledDeps(1); 9181 } 9182 if (!DestBundle->hasValidDependencies()) { 9183 WorkList.push_back(DestBundle); 9184 } 9185 } 9186 9187 // Example, explaining the loop break condition: Let's assume our 9188 // starting instruction is i0 and MaxMemDepDistance = 3. 9189 // 9190 // +--------v--v--v 9191 // i0,i1,i2,i3,i4,i5,i6,i7,i8 9192 // +--------^--^--^ 9193 // 9194 // MaxMemDepDistance let us stop alias-checking at i3 and we add 9195 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 9196 // Previously we already added dependencies from i3 to i6,i7,i8 9197 // (because of MaxMemDepDistance). As we added a dependency from 9198 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 9199 // and we can abort this loop at i6. 9200 if (DistToSrc >= 2 * MaxMemDepDistance) 9201 break; 9202 DistToSrc++; 9203 } 9204 } 9205 if (InsertInReadyList && SD->isReady()) { 9206 ReadyInsts.insert(SD); 9207 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 9208 << "\n"); 9209 } 9210 } 9211 } 9212 9213 void BoUpSLP::BlockScheduling::resetSchedule() { 9214 assert(ScheduleStart && 9215 "tried to reset schedule on block which has not been scheduled"); 9216 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 9217 doForAllOpcodes(I, [&](ScheduleData *SD) { 9218 assert(isInSchedulingRegion(SD) && 9219 "ScheduleData not in scheduling region"); 9220 SD->IsScheduled = false; 9221 SD->resetUnscheduledDeps(); 9222 }); 9223 } 9224 ReadyInsts.clear(); 9225 } 9226 9227 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 9228 if (!BS->ScheduleStart) 9229 return; 9230 9231 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 9232 9233 // A key point - if we got here, pre-scheduling was able to find a valid 9234 // scheduling of the sub-graph of the scheduling window which consists 9235 // of all vector bundles and their transitive users. As such, we do not 9236 // need to reschedule anything *outside of* that subgraph. 9237 9238 BS->resetSchedule(); 9239 9240 // For the real scheduling we use a more sophisticated ready-list: it is 9241 // sorted by the original instruction location. This lets the final schedule 9242 // be as close as possible to the original instruction order. 9243 // WARNING: If changing this order causes a correctness issue, that means 9244 // there is some missing dependence edge in the schedule data graph. 9245 struct ScheduleDataCompare { 9246 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 9247 return SD2->SchedulingPriority < SD1->SchedulingPriority; 9248 } 9249 }; 9250 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 9251 9252 // Ensure that all dependency data is updated (for nodes in the sub-graph) 9253 // and fill the ready-list with initial instructions. 9254 int Idx = 0; 9255 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 9256 I = I->getNextNode()) { 9257 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 9258 TreeEntry *SDTE = getTreeEntry(SD->Inst); 9259 (void)SDTE; 9260 assert((isVectorLikeInstWithConstOps(SD->Inst) || 9261 SD->isPartOfBundle() == 9262 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 9263 "scheduler and vectorizer bundle mismatch"); 9264 SD->FirstInBundle->SchedulingPriority = Idx++; 9265 9266 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 9267 BS->calculateDependencies(SD, false, this); 9268 }); 9269 } 9270 BS->initialFillReadyList(ReadyInsts); 9271 9272 Instruction *LastScheduledInst = BS->ScheduleEnd; 9273 9274 // Do the "real" scheduling. 9275 while (!ReadyInsts.empty()) { 9276 ScheduleData *picked = *ReadyInsts.begin(); 9277 ReadyInsts.erase(ReadyInsts.begin()); 9278 9279 // Move the scheduled instruction(s) to their dedicated places, if not 9280 // there yet. 9281 for (ScheduleData *BundleMember = picked; BundleMember; 9282 BundleMember = BundleMember->NextInBundle) { 9283 Instruction *pickedInst = BundleMember->Inst; 9284 if (pickedInst->getNextNode() != LastScheduledInst) 9285 pickedInst->moveBefore(LastScheduledInst); 9286 LastScheduledInst = pickedInst; 9287 } 9288 9289 BS->schedule(picked, ReadyInsts); 9290 } 9291 9292 // Check that we didn't break any of our invariants. 9293 #ifdef EXPENSIVE_CHECKS 9294 BS->verify(); 9295 #endif 9296 9297 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 9298 // Check that all schedulable entities got scheduled 9299 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 9300 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 9301 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 9302 assert(SD->IsScheduled && "must be scheduled at this point"); 9303 } 9304 }); 9305 } 9306 #endif 9307 9308 // Avoid duplicate scheduling of the block. 9309 BS->ScheduleStart = nullptr; 9310 } 9311 9312 unsigned BoUpSLP::getVectorElementSize(Value *V) { 9313 // If V is a store, just return the width of the stored value (or value 9314 // truncated just before storing) without traversing the expression tree. 9315 // This is the common case. 9316 if (auto *Store = dyn_cast<StoreInst>(V)) 9317 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 9318 9319 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 9320 return getVectorElementSize(IEI->getOperand(1)); 9321 9322 auto E = InstrElementSize.find(V); 9323 if (E != InstrElementSize.end()) 9324 return E->second; 9325 9326 // If V is not a store, we can traverse the expression tree to find loads 9327 // that feed it. The type of the loaded value may indicate a more suitable 9328 // width than V's type. We want to base the vector element size on the width 9329 // of memory operations where possible. 9330 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 9331 SmallPtrSet<Instruction *, 16> Visited; 9332 if (auto *I = dyn_cast<Instruction>(V)) { 9333 Worklist.emplace_back(I, I->getParent()); 9334 Visited.insert(I); 9335 } 9336 9337 // Traverse the expression tree in bottom-up order looking for loads. If we 9338 // encounter an instruction we don't yet handle, we give up. 9339 auto Width = 0u; 9340 while (!Worklist.empty()) { 9341 Instruction *I; 9342 BasicBlock *Parent; 9343 std::tie(I, Parent) = Worklist.pop_back_val(); 9344 9345 // We should only be looking at scalar instructions here. If the current 9346 // instruction has a vector type, skip. 9347 auto *Ty = I->getType(); 9348 if (isa<VectorType>(Ty)) 9349 continue; 9350 9351 // If the current instruction is a load, update MaxWidth to reflect the 9352 // width of the loaded value. 9353 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 9354 isa<ExtractValueInst>(I)) 9355 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 9356 9357 // Otherwise, we need to visit the operands of the instruction. We only 9358 // handle the interesting cases from buildTree here. If an operand is an 9359 // instruction we haven't yet visited and from the same basic block as the 9360 // user or the use is a PHI node, we add it to the worklist. 9361 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9362 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 9363 isa<UnaryOperator>(I)) { 9364 for (Use &U : I->operands()) 9365 if (auto *J = dyn_cast<Instruction>(U.get())) 9366 if (Visited.insert(J).second && 9367 (isa<PHINode>(I) || J->getParent() == Parent)) 9368 Worklist.emplace_back(J, J->getParent()); 9369 } else { 9370 break; 9371 } 9372 } 9373 9374 // If we didn't encounter a memory access in the expression tree, or if we 9375 // gave up for some reason, just return the width of V. Otherwise, return the 9376 // maximum width we found. 9377 if (!Width) { 9378 if (auto *CI = dyn_cast<CmpInst>(V)) 9379 V = CI->getOperand(0); 9380 Width = DL->getTypeSizeInBits(V->getType()); 9381 } 9382 9383 for (Instruction *I : Visited) 9384 InstrElementSize[I] = Width; 9385 9386 return Width; 9387 } 9388 9389 // Determine if a value V in a vectorizable expression Expr can be demoted to a 9390 // smaller type with a truncation. We collect the values that will be demoted 9391 // in ToDemote and additional roots that require investigating in Roots. 9392 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 9393 SmallVectorImpl<Value *> &ToDemote, 9394 SmallVectorImpl<Value *> &Roots) { 9395 // We can always demote constants. 9396 if (isa<Constant>(V)) { 9397 ToDemote.push_back(V); 9398 return true; 9399 } 9400 9401 // If the value is not an instruction in the expression with only one use, it 9402 // cannot be demoted. 9403 auto *I = dyn_cast<Instruction>(V); 9404 if (!I || !I->hasOneUse() || !Expr.count(I)) 9405 return false; 9406 9407 switch (I->getOpcode()) { 9408 9409 // We can always demote truncations and extensions. Since truncations can 9410 // seed additional demotion, we save the truncated value. 9411 case Instruction::Trunc: 9412 Roots.push_back(I->getOperand(0)); 9413 break; 9414 case Instruction::ZExt: 9415 case Instruction::SExt: 9416 if (isa<ExtractElementInst>(I->getOperand(0)) || 9417 isa<InsertElementInst>(I->getOperand(0))) 9418 return false; 9419 break; 9420 9421 // We can demote certain binary operations if we can demote both of their 9422 // operands. 9423 case Instruction::Add: 9424 case Instruction::Sub: 9425 case Instruction::Mul: 9426 case Instruction::And: 9427 case Instruction::Or: 9428 case Instruction::Xor: 9429 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 9430 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 9431 return false; 9432 break; 9433 9434 // We can demote selects if we can demote their true and false values. 9435 case Instruction::Select: { 9436 SelectInst *SI = cast<SelectInst>(I); 9437 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 9438 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 9439 return false; 9440 break; 9441 } 9442 9443 // We can demote phis if we can demote all their incoming operands. Note that 9444 // we don't need to worry about cycles since we ensure single use above. 9445 case Instruction::PHI: { 9446 PHINode *PN = cast<PHINode>(I); 9447 for (Value *IncValue : PN->incoming_values()) 9448 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 9449 return false; 9450 break; 9451 } 9452 9453 // Otherwise, conservatively give up. 9454 default: 9455 return false; 9456 } 9457 9458 // Record the value that we can demote. 9459 ToDemote.push_back(V); 9460 return true; 9461 } 9462 9463 void BoUpSLP::computeMinimumValueSizes() { 9464 // If there are no external uses, the expression tree must be rooted by a 9465 // store. We can't demote in-memory values, so there is nothing to do here. 9466 if (ExternalUses.empty()) 9467 return; 9468 9469 // We only attempt to truncate integer expressions. 9470 auto &TreeRoot = VectorizableTree[0]->Scalars; 9471 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 9472 if (!TreeRootIT) 9473 return; 9474 9475 // If the expression is not rooted by a store, these roots should have 9476 // external uses. We will rely on InstCombine to rewrite the expression in 9477 // the narrower type. However, InstCombine only rewrites single-use values. 9478 // This means that if a tree entry other than a root is used externally, it 9479 // must have multiple uses and InstCombine will not rewrite it. The code 9480 // below ensures that only the roots are used externally. 9481 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 9482 for (auto &EU : ExternalUses) 9483 if (!Expr.erase(EU.Scalar)) 9484 return; 9485 if (!Expr.empty()) 9486 return; 9487 9488 // Collect the scalar values of the vectorizable expression. We will use this 9489 // context to determine which values can be demoted. If we see a truncation, 9490 // we mark it as seeding another demotion. 9491 for (auto &EntryPtr : VectorizableTree) 9492 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 9493 9494 // Ensure the roots of the vectorizable tree don't form a cycle. They must 9495 // have a single external user that is not in the vectorizable tree. 9496 for (auto *Root : TreeRoot) 9497 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 9498 return; 9499 9500 // Conservatively determine if we can actually truncate the roots of the 9501 // expression. Collect the values that can be demoted in ToDemote and 9502 // additional roots that require investigating in Roots. 9503 SmallVector<Value *, 32> ToDemote; 9504 SmallVector<Value *, 4> Roots; 9505 for (auto *Root : TreeRoot) 9506 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 9507 return; 9508 9509 // The maximum bit width required to represent all the values that can be 9510 // demoted without loss of precision. It would be safe to truncate the roots 9511 // of the expression to this width. 9512 auto MaxBitWidth = 8u; 9513 9514 // We first check if all the bits of the roots are demanded. If they're not, 9515 // we can truncate the roots to this narrower type. 9516 for (auto *Root : TreeRoot) { 9517 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 9518 MaxBitWidth = std::max<unsigned>( 9519 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 9520 } 9521 9522 // True if the roots can be zero-extended back to their original type, rather 9523 // than sign-extended. We know that if the leading bits are not demanded, we 9524 // can safely zero-extend. So we initialize IsKnownPositive to True. 9525 bool IsKnownPositive = true; 9526 9527 // If all the bits of the roots are demanded, we can try a little harder to 9528 // compute a narrower type. This can happen, for example, if the roots are 9529 // getelementptr indices. InstCombine promotes these indices to the pointer 9530 // width. Thus, all their bits are technically demanded even though the 9531 // address computation might be vectorized in a smaller type. 9532 // 9533 // We start by looking at each entry that can be demoted. We compute the 9534 // maximum bit width required to store the scalar by using ValueTracking to 9535 // compute the number of high-order bits we can truncate. 9536 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 9537 llvm::all_of(TreeRoot, [](Value *R) { 9538 assert(R->hasOneUse() && "Root should have only one use!"); 9539 return isa<GetElementPtrInst>(R->user_back()); 9540 })) { 9541 MaxBitWidth = 8u; 9542 9543 // Determine if the sign bit of all the roots is known to be zero. If not, 9544 // IsKnownPositive is set to False. 9545 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 9546 KnownBits Known = computeKnownBits(R, *DL); 9547 return Known.isNonNegative(); 9548 }); 9549 9550 // Determine the maximum number of bits required to store the scalar 9551 // values. 9552 for (auto *Scalar : ToDemote) { 9553 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 9554 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 9555 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 9556 } 9557 9558 // If we can't prove that the sign bit is zero, we must add one to the 9559 // maximum bit width to account for the unknown sign bit. This preserves 9560 // the existing sign bit so we can safely sign-extend the root back to the 9561 // original type. Otherwise, if we know the sign bit is zero, we will 9562 // zero-extend the root instead. 9563 // 9564 // FIXME: This is somewhat suboptimal, as there will be cases where adding 9565 // one to the maximum bit width will yield a larger-than-necessary 9566 // type. In general, we need to add an extra bit only if we can't 9567 // prove that the upper bit of the original type is equal to the 9568 // upper bit of the proposed smaller type. If these two bits are the 9569 // same (either zero or one) we know that sign-extending from the 9570 // smaller type will result in the same value. Here, since we can't 9571 // yet prove this, we are just making the proposed smaller type 9572 // larger to ensure correctness. 9573 if (!IsKnownPositive) 9574 ++MaxBitWidth; 9575 } 9576 9577 // Round MaxBitWidth up to the next power-of-two. 9578 if (!isPowerOf2_64(MaxBitWidth)) 9579 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9580 9581 // If the maximum bit width we compute is less than the with of the roots' 9582 // type, we can proceed with the narrowing. Otherwise, do nothing. 9583 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9584 return; 9585 9586 // If we can truncate the root, we must collect additional values that might 9587 // be demoted as a result. That is, those seeded by truncations we will 9588 // modify. 9589 while (!Roots.empty()) 9590 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9591 9592 // Finally, map the values we can demote to the maximum bit with we computed. 9593 for (auto *Scalar : ToDemote) 9594 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9595 } 9596 9597 namespace { 9598 9599 /// The SLPVectorizer Pass. 9600 struct SLPVectorizer : public FunctionPass { 9601 SLPVectorizerPass Impl; 9602 9603 /// Pass identification, replacement for typeid 9604 static char ID; 9605 9606 explicit SLPVectorizer() : FunctionPass(ID) { 9607 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9608 } 9609 9610 bool doInitialization(Module &M) override { return false; } 9611 9612 bool runOnFunction(Function &F) override { 9613 if (skipFunction(F)) 9614 return false; 9615 9616 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9617 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9618 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9619 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9620 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9621 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9622 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9623 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9624 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9625 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9626 9627 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9628 } 9629 9630 void getAnalysisUsage(AnalysisUsage &AU) const override { 9631 FunctionPass::getAnalysisUsage(AU); 9632 AU.addRequired<AssumptionCacheTracker>(); 9633 AU.addRequired<ScalarEvolutionWrapperPass>(); 9634 AU.addRequired<AAResultsWrapperPass>(); 9635 AU.addRequired<TargetTransformInfoWrapperPass>(); 9636 AU.addRequired<LoopInfoWrapperPass>(); 9637 AU.addRequired<DominatorTreeWrapperPass>(); 9638 AU.addRequired<DemandedBitsWrapperPass>(); 9639 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9640 AU.addRequired<InjectTLIMappingsLegacy>(); 9641 AU.addPreserved<LoopInfoWrapperPass>(); 9642 AU.addPreserved<DominatorTreeWrapperPass>(); 9643 AU.addPreserved<AAResultsWrapperPass>(); 9644 AU.addPreserved<GlobalsAAWrapperPass>(); 9645 AU.setPreservesCFG(); 9646 } 9647 }; 9648 9649 } // end anonymous namespace 9650 9651 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9652 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9653 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9654 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9655 auto *AA = &AM.getResult<AAManager>(F); 9656 auto *LI = &AM.getResult<LoopAnalysis>(F); 9657 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9658 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9659 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9660 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9661 9662 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9663 if (!Changed) 9664 return PreservedAnalyses::all(); 9665 9666 PreservedAnalyses PA; 9667 PA.preserveSet<CFGAnalyses>(); 9668 return PA; 9669 } 9670 9671 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9672 TargetTransformInfo *TTI_, 9673 TargetLibraryInfo *TLI_, AAResults *AA_, 9674 LoopInfo *LI_, DominatorTree *DT_, 9675 AssumptionCache *AC_, DemandedBits *DB_, 9676 OptimizationRemarkEmitter *ORE_) { 9677 if (!RunSLPVectorization) 9678 return false; 9679 SE = SE_; 9680 TTI = TTI_; 9681 TLI = TLI_; 9682 AA = AA_; 9683 LI = LI_; 9684 DT = DT_; 9685 AC = AC_; 9686 DB = DB_; 9687 DL = &F.getParent()->getDataLayout(); 9688 9689 Stores.clear(); 9690 GEPs.clear(); 9691 bool Changed = false; 9692 9693 // If the target claims to have no vector registers don't attempt 9694 // vectorization. 9695 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 9696 LLVM_DEBUG( 9697 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 9698 return false; 9699 } 9700 9701 // Don't vectorize when the attribute NoImplicitFloat is used. 9702 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 9703 return false; 9704 9705 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 9706 9707 // Use the bottom up slp vectorizer to construct chains that start with 9708 // store instructions. 9709 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 9710 9711 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 9712 // delete instructions. 9713 9714 // Update DFS numbers now so that we can use them for ordering. 9715 DT->updateDFSNumbers(); 9716 9717 // Scan the blocks in the function in post order. 9718 for (auto BB : post_order(&F.getEntryBlock())) { 9719 // Start new block - clear the list of reduction roots. 9720 R.clearReductionData(); 9721 collectSeedInstructions(BB); 9722 9723 // Vectorize trees that end at stores. 9724 if (!Stores.empty()) { 9725 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 9726 << " underlying objects.\n"); 9727 Changed |= vectorizeStoreChains(R); 9728 } 9729 9730 // Vectorize trees that end at reductions. 9731 Changed |= vectorizeChainsInBlock(BB, R); 9732 9733 // Vectorize the index computations of getelementptr instructions. This 9734 // is primarily intended to catch gather-like idioms ending at 9735 // non-consecutive loads. 9736 if (!GEPs.empty()) { 9737 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 9738 << " underlying objects.\n"); 9739 Changed |= vectorizeGEPIndices(BB, R); 9740 } 9741 } 9742 9743 if (Changed) { 9744 R.optimizeGatherSequence(); 9745 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 9746 } 9747 return Changed; 9748 } 9749 9750 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 9751 unsigned Idx, unsigned MinVF) { 9752 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 9753 << "\n"); 9754 const unsigned Sz = R.getVectorElementSize(Chain[0]); 9755 unsigned VF = Chain.size(); 9756 9757 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 9758 return false; 9759 9760 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 9761 << "\n"); 9762 9763 R.buildTree(Chain); 9764 if (R.isTreeTinyAndNotFullyVectorizable()) 9765 return false; 9766 if (R.isLoadCombineCandidate()) 9767 return false; 9768 R.reorderTopToBottom(); 9769 R.reorderBottomToTop(); 9770 R.buildExternalUses(); 9771 9772 R.computeMinimumValueSizes(); 9773 9774 InstructionCost Cost = R.getTreeCost(); 9775 9776 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 9777 if (Cost < -SLPCostThreshold) { 9778 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 9779 9780 using namespace ore; 9781 9782 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 9783 cast<StoreInst>(Chain[0])) 9784 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 9785 << " and with tree size " 9786 << NV("TreeSize", R.getTreeSize())); 9787 9788 R.vectorizeTree(); 9789 return true; 9790 } 9791 9792 return false; 9793 } 9794 9795 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 9796 BoUpSLP &R) { 9797 // We may run into multiple chains that merge into a single chain. We mark the 9798 // stores that we vectorized so that we don't visit the same store twice. 9799 BoUpSLP::ValueSet VectorizedStores; 9800 bool Changed = false; 9801 9802 int E = Stores.size(); 9803 SmallBitVector Tails(E, false); 9804 int MaxIter = MaxStoreLookup.getValue(); 9805 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 9806 E, std::make_pair(E, INT_MAX)); 9807 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 9808 int IterCnt; 9809 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 9810 &CheckedPairs, 9811 &ConsecutiveChain](int K, int Idx) { 9812 if (IterCnt >= MaxIter) 9813 return true; 9814 if (CheckedPairs[Idx].test(K)) 9815 return ConsecutiveChain[K].second == 1 && 9816 ConsecutiveChain[K].first == Idx; 9817 ++IterCnt; 9818 CheckedPairs[Idx].set(K); 9819 CheckedPairs[K].set(Idx); 9820 Optional<int> Diff = getPointersDiff( 9821 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 9822 Stores[Idx]->getValueOperand()->getType(), 9823 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 9824 if (!Diff || *Diff == 0) 9825 return false; 9826 int Val = *Diff; 9827 if (Val < 0) { 9828 if (ConsecutiveChain[Idx].second > -Val) { 9829 Tails.set(K); 9830 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 9831 } 9832 return false; 9833 } 9834 if (ConsecutiveChain[K].second <= Val) 9835 return false; 9836 9837 Tails.set(Idx); 9838 ConsecutiveChain[K] = std::make_pair(Idx, Val); 9839 return Val == 1; 9840 }; 9841 // Do a quadratic search on all of the given stores in reverse order and find 9842 // all of the pairs of stores that follow each other. 9843 for (int Idx = E - 1; Idx >= 0; --Idx) { 9844 // If a store has multiple consecutive store candidates, search according 9845 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 9846 // This is because usually pairing with immediate succeeding or preceding 9847 // candidate create the best chance to find slp vectorization opportunity. 9848 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 9849 IterCnt = 0; 9850 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 9851 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 9852 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 9853 break; 9854 } 9855 9856 // Tracks if we tried to vectorize stores starting from the given tail 9857 // already. 9858 SmallBitVector TriedTails(E, false); 9859 // For stores that start but don't end a link in the chain: 9860 for (int Cnt = E; Cnt > 0; --Cnt) { 9861 int I = Cnt - 1; 9862 if (ConsecutiveChain[I].first == E || Tails.test(I)) 9863 continue; 9864 // We found a store instr that starts a chain. Now follow the chain and try 9865 // to vectorize it. 9866 BoUpSLP::ValueList Operands; 9867 // Collect the chain into a list. 9868 while (I != E && !VectorizedStores.count(Stores[I])) { 9869 Operands.push_back(Stores[I]); 9870 Tails.set(I); 9871 if (ConsecutiveChain[I].second != 1) { 9872 // Mark the new end in the chain and go back, if required. It might be 9873 // required if the original stores come in reversed order, for example. 9874 if (ConsecutiveChain[I].first != E && 9875 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 9876 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 9877 TriedTails.set(I); 9878 Tails.reset(ConsecutiveChain[I].first); 9879 if (Cnt < ConsecutiveChain[I].first + 2) 9880 Cnt = ConsecutiveChain[I].first + 2; 9881 } 9882 break; 9883 } 9884 // Move to the next value in the chain. 9885 I = ConsecutiveChain[I].first; 9886 } 9887 assert(!Operands.empty() && "Expected non-empty list of stores."); 9888 9889 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9890 unsigned EltSize = R.getVectorElementSize(Operands[0]); 9891 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 9892 9893 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9894 MaxElts); 9895 auto *Store = cast<StoreInst>(Operands[0]); 9896 Type *StoreTy = Store->getValueOperand()->getType(); 9897 Type *ValueTy = StoreTy; 9898 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 9899 ValueTy = Trunc->getSrcTy(); 9900 unsigned MinVF = TTI->getStoreMinimumVF( 9901 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 9902 9903 // FIXME: Is division-by-2 the correct step? Should we assert that the 9904 // register size is a power-of-2? 9905 unsigned StartIdx = 0; 9906 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9907 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9908 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9909 if (!VectorizedStores.count(Slice.front()) && 9910 !VectorizedStores.count(Slice.back()) && 9911 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 9912 // Mark the vectorized stores so that we don't vectorize them again. 9913 VectorizedStores.insert(Slice.begin(), Slice.end()); 9914 Changed = true; 9915 // If we vectorized initial block, no need to try to vectorize it 9916 // again. 9917 if (Cnt == StartIdx) 9918 StartIdx += Size; 9919 Cnt += Size; 9920 continue; 9921 } 9922 ++Cnt; 9923 } 9924 // Check if the whole array was vectorized already - exit. 9925 if (StartIdx >= Operands.size()) 9926 break; 9927 } 9928 } 9929 9930 return Changed; 9931 } 9932 9933 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9934 // Initialize the collections. We will make a single pass over the block. 9935 Stores.clear(); 9936 GEPs.clear(); 9937 9938 // Visit the store and getelementptr instructions in BB and organize them in 9939 // Stores and GEPs according to the underlying objects of their pointer 9940 // operands. 9941 for (Instruction &I : *BB) { 9942 // Ignore store instructions that are volatile or have a pointer operand 9943 // that doesn't point to a scalar type. 9944 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9945 if (!SI->isSimple()) 9946 continue; 9947 if (!isValidElementType(SI->getValueOperand()->getType())) 9948 continue; 9949 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9950 } 9951 9952 // Ignore getelementptr instructions that have more than one index, a 9953 // constant index, or a pointer operand that doesn't point to a scalar 9954 // type. 9955 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9956 auto Idx = GEP->idx_begin()->get(); 9957 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9958 continue; 9959 if (!isValidElementType(Idx->getType())) 9960 continue; 9961 if (GEP->getType()->isVectorTy()) 9962 continue; 9963 GEPs[GEP->getPointerOperand()].push_back(GEP); 9964 } 9965 } 9966 } 9967 9968 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9969 if (!A || !B) 9970 return false; 9971 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9972 return false; 9973 Value *VL[] = {A, B}; 9974 return tryToVectorizeList(VL, R); 9975 } 9976 9977 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9978 bool LimitForRegisterSize) { 9979 if (VL.size() < 2) 9980 return false; 9981 9982 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9983 << VL.size() << ".\n"); 9984 9985 // Check that all of the parts are instructions of the same type, 9986 // we permit an alternate opcode via InstructionsState. 9987 InstructionsState S = getSameOpcode(VL); 9988 if (!S.getOpcode()) 9989 return false; 9990 9991 Instruction *I0 = cast<Instruction>(S.OpValue); 9992 // Make sure invalid types (including vector type) are rejected before 9993 // determining vectorization factor for scalar instructions. 9994 for (Value *V : VL) { 9995 Type *Ty = V->getType(); 9996 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9997 // NOTE: the following will give user internal llvm type name, which may 9998 // not be useful. 9999 R.getORE()->emit([&]() { 10000 std::string type_str; 10001 llvm::raw_string_ostream rso(type_str); 10002 Ty->print(rso); 10003 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 10004 << "Cannot SLP vectorize list: type " 10005 << rso.str() + " is unsupported by vectorizer"; 10006 }); 10007 return false; 10008 } 10009 } 10010 10011 unsigned Sz = R.getVectorElementSize(I0); 10012 unsigned MinVF = R.getMinVF(Sz); 10013 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 10014 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 10015 if (MaxVF < 2) { 10016 R.getORE()->emit([&]() { 10017 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 10018 << "Cannot SLP vectorize list: vectorization factor " 10019 << "less than 2 is not supported"; 10020 }); 10021 return false; 10022 } 10023 10024 bool Changed = false; 10025 bool CandidateFound = false; 10026 InstructionCost MinCost = SLPCostThreshold.getValue(); 10027 Type *ScalarTy = VL[0]->getType(); 10028 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 10029 ScalarTy = IE->getOperand(1)->getType(); 10030 10031 unsigned NextInst = 0, MaxInst = VL.size(); 10032 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 10033 // No actual vectorization should happen, if number of parts is the same as 10034 // provided vectorization factor (i.e. the scalar type is used for vector 10035 // code during codegen). 10036 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 10037 if (TTI->getNumberOfParts(VecTy) == VF) 10038 continue; 10039 for (unsigned I = NextInst; I < MaxInst; ++I) { 10040 unsigned OpsWidth = 0; 10041 10042 if (I + VF > MaxInst) 10043 OpsWidth = MaxInst - I; 10044 else 10045 OpsWidth = VF; 10046 10047 if (!isPowerOf2_32(OpsWidth)) 10048 continue; 10049 10050 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 10051 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 10052 break; 10053 10054 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 10055 // Check that a previous iteration of this loop did not delete the Value. 10056 if (llvm::any_of(Ops, [&R](Value *V) { 10057 auto *I = dyn_cast<Instruction>(V); 10058 return I && R.isDeleted(I); 10059 })) 10060 continue; 10061 10062 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 10063 << "\n"); 10064 10065 R.buildTree(Ops); 10066 if (R.isTreeTinyAndNotFullyVectorizable()) 10067 continue; 10068 R.reorderTopToBottom(); 10069 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 10070 R.buildExternalUses(); 10071 10072 R.computeMinimumValueSizes(); 10073 InstructionCost Cost = R.getTreeCost(); 10074 CandidateFound = true; 10075 MinCost = std::min(MinCost, Cost); 10076 10077 if (Cost < -SLPCostThreshold) { 10078 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 10079 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 10080 cast<Instruction>(Ops[0])) 10081 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 10082 << " and with tree size " 10083 << ore::NV("TreeSize", R.getTreeSize())); 10084 10085 R.vectorizeTree(); 10086 // Move to the next bundle. 10087 I += VF - 1; 10088 NextInst = I + 1; 10089 Changed = true; 10090 } 10091 } 10092 } 10093 10094 if (!Changed && CandidateFound) { 10095 R.getORE()->emit([&]() { 10096 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 10097 << "List vectorization was possible but not beneficial with cost " 10098 << ore::NV("Cost", MinCost) << " >= " 10099 << ore::NV("Treshold", -SLPCostThreshold); 10100 }); 10101 } else if (!Changed) { 10102 R.getORE()->emit([&]() { 10103 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 10104 << "Cannot SLP vectorize list: vectorization was impossible" 10105 << " with available vectorization factors"; 10106 }); 10107 } 10108 return Changed; 10109 } 10110 10111 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 10112 if (!I) 10113 return false; 10114 10115 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 10116 isa<VectorType>(I->getType())) 10117 return false; 10118 10119 Value *P = I->getParent(); 10120 10121 // Vectorize in current basic block only. 10122 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 10123 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 10124 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 10125 return false; 10126 10127 // First collect all possible candidates 10128 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 10129 Candidates.emplace_back(Op0, Op1); 10130 10131 auto *A = dyn_cast<BinaryOperator>(Op0); 10132 auto *B = dyn_cast<BinaryOperator>(Op1); 10133 // Try to skip B. 10134 if (A && B && B->hasOneUse()) { 10135 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 10136 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 10137 if (B0 && B0->getParent() == P) 10138 Candidates.emplace_back(A, B0); 10139 if (B1 && B1->getParent() == P) 10140 Candidates.emplace_back(A, B1); 10141 } 10142 // Try to skip A. 10143 if (B && A && A->hasOneUse()) { 10144 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 10145 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 10146 if (A0 && A0->getParent() == P) 10147 Candidates.emplace_back(A0, B); 10148 if (A1 && A1->getParent() == P) 10149 Candidates.emplace_back(A1, B); 10150 } 10151 10152 if (Candidates.size() == 1) 10153 return tryToVectorizePair(Op0, Op1, R); 10154 10155 // We have multiple options. Try to pick the single best. 10156 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 10157 if (!BestCandidate) 10158 return false; 10159 return tryToVectorizePair(Candidates[*BestCandidate].first, 10160 Candidates[*BestCandidate].second, R); 10161 } 10162 10163 namespace { 10164 10165 /// Model horizontal reductions. 10166 /// 10167 /// A horizontal reduction is a tree of reduction instructions that has values 10168 /// that can be put into a vector as its leaves. For example: 10169 /// 10170 /// mul mul mul mul 10171 /// \ / \ / 10172 /// + + 10173 /// \ / 10174 /// + 10175 /// This tree has "mul" as its leaf values and "+" as its reduction 10176 /// instructions. A reduction can feed into a store or a binary operation 10177 /// feeding a phi. 10178 /// ... 10179 /// \ / 10180 /// + 10181 /// | 10182 /// phi += 10183 /// 10184 /// Or: 10185 /// ... 10186 /// \ / 10187 /// + 10188 /// | 10189 /// *p = 10190 /// 10191 class HorizontalReduction { 10192 using ReductionOpsType = SmallVector<Value *, 16>; 10193 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 10194 ReductionOpsListType ReductionOps; 10195 /// List of possibly reduced values. 10196 SmallVector<SmallVector<Value *>> ReducedVals; 10197 /// Maps reduced value to the corresponding reduction operation. 10198 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 10199 // Use map vector to make stable output. 10200 MapVector<Instruction *, Value *> ExtraArgs; 10201 WeakTrackingVH ReductionRoot; 10202 /// The type of reduction operation. 10203 RecurKind RdxKind; 10204 10205 static bool isCmpSelMinMax(Instruction *I) { 10206 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 10207 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 10208 } 10209 10210 // And/or are potentially poison-safe logical patterns like: 10211 // select x, y, false 10212 // select x, true, y 10213 static bool isBoolLogicOp(Instruction *I) { 10214 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 10215 match(I, m_LogicalOr(m_Value(), m_Value())); 10216 } 10217 10218 /// Checks if instruction is associative and can be vectorized. 10219 static bool isVectorizable(RecurKind Kind, Instruction *I) { 10220 if (Kind == RecurKind::None) 10221 return false; 10222 10223 // Integer ops that map to select instructions or intrinsics are fine. 10224 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 10225 isBoolLogicOp(I)) 10226 return true; 10227 10228 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 10229 // FP min/max are associative except for NaN and -0.0. We do not 10230 // have to rule out -0.0 here because the intrinsic semantics do not 10231 // specify a fixed result for it. 10232 return I->getFastMathFlags().noNaNs(); 10233 } 10234 10235 return I->isAssociative(); 10236 } 10237 10238 static Value *getRdxOperand(Instruction *I, unsigned Index) { 10239 // Poison-safe 'or' takes the form: select X, true, Y 10240 // To make that work with the normal operand processing, we skip the 10241 // true value operand. 10242 // TODO: Change the code and data structures to handle this without a hack. 10243 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 10244 return I->getOperand(2); 10245 return I->getOperand(Index); 10246 } 10247 10248 /// Creates reduction operation with the current opcode. 10249 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 10250 Value *RHS, const Twine &Name, bool UseSelect) { 10251 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 10252 switch (Kind) { 10253 case RecurKind::Or: 10254 if (UseSelect && 10255 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10256 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 10257 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10258 Name); 10259 case RecurKind::And: 10260 if (UseSelect && 10261 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10262 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 10263 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10264 Name); 10265 case RecurKind::Add: 10266 case RecurKind::Mul: 10267 case RecurKind::Xor: 10268 case RecurKind::FAdd: 10269 case RecurKind::FMul: 10270 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10271 Name); 10272 case RecurKind::FMax: 10273 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 10274 case RecurKind::FMin: 10275 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 10276 case RecurKind::SMax: 10277 if (UseSelect) { 10278 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 10279 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10280 } 10281 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 10282 case RecurKind::SMin: 10283 if (UseSelect) { 10284 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 10285 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10286 } 10287 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 10288 case RecurKind::UMax: 10289 if (UseSelect) { 10290 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 10291 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10292 } 10293 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 10294 case RecurKind::UMin: 10295 if (UseSelect) { 10296 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 10297 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10298 } 10299 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 10300 default: 10301 llvm_unreachable("Unknown reduction operation."); 10302 } 10303 } 10304 10305 /// Creates reduction operation with the current opcode with the IR flags 10306 /// from \p ReductionOps. 10307 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 10308 Value *RHS, const Twine &Name, 10309 const ReductionOpsListType &ReductionOps) { 10310 bool UseSelect = ReductionOps.size() == 2 || 10311 // Logical or/and. 10312 (ReductionOps.size() == 1 && 10313 isa<SelectInst>(ReductionOps.front().front())); 10314 assert((!UseSelect || ReductionOps.size() != 2 || 10315 isa<SelectInst>(ReductionOps[1][0])) && 10316 "Expected cmp + select pairs for reduction"); 10317 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 10318 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10319 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 10320 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 10321 propagateIRFlags(Op, ReductionOps[1]); 10322 return Op; 10323 } 10324 } 10325 propagateIRFlags(Op, ReductionOps[0]); 10326 return Op; 10327 } 10328 10329 /// Creates reduction operation with the current opcode with the IR flags 10330 /// from \p I. 10331 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 10332 Value *RHS, const Twine &Name, Value *I) { 10333 auto *SelI = dyn_cast<SelectInst>(I); 10334 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 10335 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10336 if (auto *Sel = dyn_cast<SelectInst>(Op)) 10337 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 10338 } 10339 propagateIRFlags(Op, I); 10340 return Op; 10341 } 10342 10343 static RecurKind getRdxKind(Value *V) { 10344 auto *I = dyn_cast<Instruction>(V); 10345 if (!I) 10346 return RecurKind::None; 10347 if (match(I, m_Add(m_Value(), m_Value()))) 10348 return RecurKind::Add; 10349 if (match(I, m_Mul(m_Value(), m_Value()))) 10350 return RecurKind::Mul; 10351 if (match(I, m_And(m_Value(), m_Value())) || 10352 match(I, m_LogicalAnd(m_Value(), m_Value()))) 10353 return RecurKind::And; 10354 if (match(I, m_Or(m_Value(), m_Value())) || 10355 match(I, m_LogicalOr(m_Value(), m_Value()))) 10356 return RecurKind::Or; 10357 if (match(I, m_Xor(m_Value(), m_Value()))) 10358 return RecurKind::Xor; 10359 if (match(I, m_FAdd(m_Value(), m_Value()))) 10360 return RecurKind::FAdd; 10361 if (match(I, m_FMul(m_Value(), m_Value()))) 10362 return RecurKind::FMul; 10363 10364 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 10365 return RecurKind::FMax; 10366 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 10367 return RecurKind::FMin; 10368 10369 // This matches either cmp+select or intrinsics. SLP is expected to handle 10370 // either form. 10371 // TODO: If we are canonicalizing to intrinsics, we can remove several 10372 // special-case paths that deal with selects. 10373 if (match(I, m_SMax(m_Value(), m_Value()))) 10374 return RecurKind::SMax; 10375 if (match(I, m_SMin(m_Value(), m_Value()))) 10376 return RecurKind::SMin; 10377 if (match(I, m_UMax(m_Value(), m_Value()))) 10378 return RecurKind::UMax; 10379 if (match(I, m_UMin(m_Value(), m_Value()))) 10380 return RecurKind::UMin; 10381 10382 if (auto *Select = dyn_cast<SelectInst>(I)) { 10383 // Try harder: look for min/max pattern based on instructions producing 10384 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 10385 // During the intermediate stages of SLP, it's very common to have 10386 // pattern like this (since optimizeGatherSequence is run only once 10387 // at the end): 10388 // %1 = extractelement <2 x i32> %a, i32 0 10389 // %2 = extractelement <2 x i32> %a, i32 1 10390 // %cond = icmp sgt i32 %1, %2 10391 // %3 = extractelement <2 x i32> %a, i32 0 10392 // %4 = extractelement <2 x i32> %a, i32 1 10393 // %select = select i1 %cond, i32 %3, i32 %4 10394 CmpInst::Predicate Pred; 10395 Instruction *L1; 10396 Instruction *L2; 10397 10398 Value *LHS = Select->getTrueValue(); 10399 Value *RHS = Select->getFalseValue(); 10400 Value *Cond = Select->getCondition(); 10401 10402 // TODO: Support inverse predicates. 10403 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 10404 if (!isa<ExtractElementInst>(RHS) || 10405 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10406 return RecurKind::None; 10407 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 10408 if (!isa<ExtractElementInst>(LHS) || 10409 !L1->isIdenticalTo(cast<Instruction>(LHS))) 10410 return RecurKind::None; 10411 } else { 10412 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 10413 return RecurKind::None; 10414 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 10415 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 10416 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10417 return RecurKind::None; 10418 } 10419 10420 switch (Pred) { 10421 default: 10422 return RecurKind::None; 10423 case CmpInst::ICMP_SGT: 10424 case CmpInst::ICMP_SGE: 10425 return RecurKind::SMax; 10426 case CmpInst::ICMP_SLT: 10427 case CmpInst::ICMP_SLE: 10428 return RecurKind::SMin; 10429 case CmpInst::ICMP_UGT: 10430 case CmpInst::ICMP_UGE: 10431 return RecurKind::UMax; 10432 case CmpInst::ICMP_ULT: 10433 case CmpInst::ICMP_ULE: 10434 return RecurKind::UMin; 10435 } 10436 } 10437 return RecurKind::None; 10438 } 10439 10440 /// Get the index of the first operand. 10441 static unsigned getFirstOperandIndex(Instruction *I) { 10442 return isCmpSelMinMax(I) ? 1 : 0; 10443 } 10444 10445 /// Total number of operands in the reduction operation. 10446 static unsigned getNumberOfOperands(Instruction *I) { 10447 return isCmpSelMinMax(I) ? 3 : 2; 10448 } 10449 10450 /// Checks if the instruction is in basic block \p BB. 10451 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 10452 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 10453 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 10454 auto *Sel = cast<SelectInst>(I); 10455 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 10456 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 10457 } 10458 return I->getParent() == BB; 10459 } 10460 10461 /// Expected number of uses for reduction operations/reduced values. 10462 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 10463 if (IsCmpSelMinMax) { 10464 // SelectInst must be used twice while the condition op must have single 10465 // use only. 10466 if (auto *Sel = dyn_cast<SelectInst>(I)) 10467 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 10468 return I->hasNUses(2); 10469 } 10470 10471 // Arithmetic reduction operation must be used once only. 10472 return I->hasOneUse(); 10473 } 10474 10475 /// Initializes the list of reduction operations. 10476 void initReductionOps(Instruction *I) { 10477 if (isCmpSelMinMax(I)) 10478 ReductionOps.assign(2, ReductionOpsType()); 10479 else 10480 ReductionOps.assign(1, ReductionOpsType()); 10481 } 10482 10483 /// Add all reduction operations for the reduction instruction \p I. 10484 void addReductionOps(Instruction *I) { 10485 if (isCmpSelMinMax(I)) { 10486 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 10487 ReductionOps[1].emplace_back(I); 10488 } else { 10489 ReductionOps[0].emplace_back(I); 10490 } 10491 } 10492 10493 static Value *getLHS(RecurKind Kind, Instruction *I) { 10494 if (Kind == RecurKind::None) 10495 return nullptr; 10496 return I->getOperand(getFirstOperandIndex(I)); 10497 } 10498 static Value *getRHS(RecurKind Kind, Instruction *I) { 10499 if (Kind == RecurKind::None) 10500 return nullptr; 10501 return I->getOperand(getFirstOperandIndex(I) + 1); 10502 } 10503 10504 public: 10505 HorizontalReduction() = default; 10506 10507 /// Try to find a reduction tree. 10508 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 10509 ScalarEvolution &SE, const DataLayout &DL, 10510 const TargetLibraryInfo &TLI) { 10511 assert((!Phi || is_contained(Phi->operands(), Inst)) && 10512 "Phi needs to use the binary operator"); 10513 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 10514 isa<IntrinsicInst>(Inst)) && 10515 "Expected binop, select, or intrinsic for reduction matching"); 10516 RdxKind = getRdxKind(Inst); 10517 10518 // We could have a initial reductions that is not an add. 10519 // r *= v1 + v2 + v3 + v4 10520 // In such a case start looking for a tree rooted in the first '+'. 10521 if (Phi) { 10522 if (getLHS(RdxKind, Inst) == Phi) { 10523 Phi = nullptr; 10524 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 10525 if (!Inst) 10526 return false; 10527 RdxKind = getRdxKind(Inst); 10528 } else if (getRHS(RdxKind, Inst) == Phi) { 10529 Phi = nullptr; 10530 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 10531 if (!Inst) 10532 return false; 10533 RdxKind = getRdxKind(Inst); 10534 } 10535 } 10536 10537 if (!isVectorizable(RdxKind, Inst)) 10538 return false; 10539 10540 // Analyze "regular" integer/FP types for reductions - no target-specific 10541 // types or pointers. 10542 Type *Ty = Inst->getType(); 10543 if (!isValidElementType(Ty) || Ty->isPointerTy()) 10544 return false; 10545 10546 // Though the ultimate reduction may have multiple uses, its condition must 10547 // have only single use. 10548 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 10549 if (!Sel->getCondition()->hasOneUse()) 10550 return false; 10551 10552 ReductionRoot = Inst; 10553 10554 // Iterate through all the operands of the possible reduction tree and 10555 // gather all the reduced values, sorting them by their value id. 10556 BasicBlock *BB = Inst->getParent(); 10557 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 10558 SmallVector<Instruction *> Worklist(1, Inst); 10559 // Checks if the operands of the \p TreeN instruction are also reduction 10560 // operations or should be treated as reduced values or an extra argument, 10561 // which is not part of the reduction. 10562 auto &&CheckOperands = [this, IsCmpSelMinMax, 10563 BB](Instruction *TreeN, 10564 SmallVectorImpl<Value *> &ExtraArgs, 10565 SmallVectorImpl<Value *> &PossibleReducedVals, 10566 SmallVectorImpl<Instruction *> &ReductionOps) { 10567 for (int I = getFirstOperandIndex(TreeN), 10568 End = getNumberOfOperands(TreeN); 10569 I < End; ++I) { 10570 Value *EdgeVal = getRdxOperand(TreeN, I); 10571 ReducedValsToOps[EdgeVal].push_back(TreeN); 10572 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 10573 // Edge has wrong parent - mark as an extra argument. 10574 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 10575 !hasSameParent(EdgeInst, BB)) { 10576 ExtraArgs.push_back(EdgeVal); 10577 continue; 10578 } 10579 // If the edge is not an instruction, or it is different from the main 10580 // reduction opcode or has too many uses - possible reduced value. 10581 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10582 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || 10583 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10584 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10585 PossibleReducedVals.push_back(EdgeVal); 10586 continue; 10587 } 10588 ReductionOps.push_back(EdgeInst); 10589 } 10590 }; 10591 // Try to regroup reduced values so that it gets more profitable to try to 10592 // reduce them. Values are grouped by their value ids, instructions - by 10593 // instruction op id and/or alternate op id, plus do extra analysis for 10594 // loads (grouping them by the distabce between pointers) and cmp 10595 // instructions (grouping them by the predicate). 10596 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10597 PossibleReducedVals; 10598 initReductionOps(Inst); 10599 while (!Worklist.empty()) { 10600 Instruction *TreeN = Worklist.pop_back_val(); 10601 SmallVector<Value *> Args; 10602 SmallVector<Value *> PossibleRedVals; 10603 SmallVector<Instruction *> PossibleReductionOps; 10604 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10605 // If too many extra args - mark the instruction itself as a reduction 10606 // value, not a reduction operation. 10607 if (Args.size() < 2) { 10608 addReductionOps(TreeN); 10609 // Add extra args. 10610 if (!Args.empty()) { 10611 assert(Args.size() == 1 && "Expected only single argument."); 10612 ExtraArgs[TreeN] = Args.front(); 10613 } 10614 // Add reduction values. The values are sorted for better vectorization 10615 // results. 10616 for (Value *V : PossibleRedVals) { 10617 size_t Key, Idx; 10618 std::tie(Key, Idx) = generateKeySubkey( 10619 V, &TLI, 10620 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10621 for (const auto &LoadData : PossibleReducedVals[Key]) { 10622 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10623 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10624 LI->getType(), LI->getPointerOperand(), 10625 DL, SE, /*StrictCheck=*/true)) 10626 return hash_value(RLI->getPointerOperand()); 10627 } 10628 return hash_value(LI->getPointerOperand()); 10629 }, 10630 /*AllowAlternate=*/false); 10631 ++PossibleReducedVals[Key][Idx] 10632 .insert(std::make_pair(V, 0)) 10633 .first->second; 10634 } 10635 Worklist.append(PossibleReductionOps.rbegin(), 10636 PossibleReductionOps.rend()); 10637 } else { 10638 size_t Key, Idx; 10639 std::tie(Key, Idx) = generateKeySubkey( 10640 TreeN, &TLI, 10641 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10642 for (const auto &LoadData : PossibleReducedVals[Key]) { 10643 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10644 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10645 LI->getType(), LI->getPointerOperand(), DL, 10646 SE, /*StrictCheck=*/true)) 10647 return hash_value(RLI->getPointerOperand()); 10648 } 10649 return hash_value(LI->getPointerOperand()); 10650 }, 10651 /*AllowAlternate=*/false); 10652 ++PossibleReducedVals[Key][Idx] 10653 .insert(std::make_pair(TreeN, 0)) 10654 .first->second; 10655 } 10656 } 10657 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10658 // Sort values by the total number of values kinds to start the reduction 10659 // from the longest possible reduced values sequences. 10660 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10661 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10662 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10663 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10664 It != E; ++It) { 10665 PossibleRedValsVect.emplace_back(); 10666 auto RedValsVect = It->second.takeVector(); 10667 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10668 return P1.second < P2.second; 10669 }); 10670 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10671 PossibleRedValsVect.back().append(Data.second, Data.first); 10672 } 10673 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10674 return P1.size() > P2.size(); 10675 }); 10676 ReducedVals.emplace_back(); 10677 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10678 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10679 } 10680 // Sort the reduced values by number of same/alternate opcode and/or pointer 10681 // operand. 10682 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10683 return P1.size() > P2.size(); 10684 }); 10685 return true; 10686 } 10687 10688 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10689 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10690 constexpr int ReductionLimit = 4; 10691 // If there are a sufficient number of reduction values, reduce 10692 // to a nearby power-of-2. We can safely generate oversized 10693 // vectors and rely on the backend to split them to legal sizes. 10694 unsigned NumReducedVals = std::accumulate( 10695 ReducedVals.begin(), ReducedVals.end(), 0, 10696 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10697 if (NumReducedVals < ReductionLimit) 10698 return nullptr; 10699 10700 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 10701 10702 // Track the reduced values in case if they are replaced by extractelement 10703 // because of the vectorization. 10704 DenseMap<Value *, WeakTrackingVH> TrackedVals; 10705 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 10706 // The same extra argument may be used several times, so log each attempt 10707 // to use it. 10708 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 10709 assert(Pair.first && "DebugLoc must be set."); 10710 ExternallyUsedValues[Pair.second].push_back(Pair.first); 10711 TrackedVals.try_emplace(Pair.second, Pair.second); 10712 } 10713 10714 // The compare instruction of a min/max is the insertion point for new 10715 // instructions and may be replaced with a new compare instruction. 10716 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 10717 assert(isa<SelectInst>(RdxRootInst) && 10718 "Expected min/max reduction to have select root instruction"); 10719 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 10720 assert(isa<Instruction>(ScalarCond) && 10721 "Expected min/max reduction to have compare condition"); 10722 return cast<Instruction>(ScalarCond); 10723 }; 10724 10725 // The reduction root is used as the insertion point for new instructions, 10726 // so set it as externally used to prevent it from being deleted. 10727 ExternallyUsedValues[ReductionRoot]; 10728 SmallVector<Value *> IgnoreList; 10729 for (ReductionOpsType &RdxOps : ReductionOps) 10730 for (Value *RdxOp : RdxOps) { 10731 if (!RdxOp) 10732 continue; 10733 IgnoreList.push_back(RdxOp); 10734 } 10735 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 10736 10737 // Need to track reduced vals, they may be changed during vectorization of 10738 // subvectors. 10739 for (ArrayRef<Value *> Candidates : ReducedVals) 10740 for (Value *V : Candidates) 10741 TrackedVals.try_emplace(V, V); 10742 10743 DenseMap<Value *, unsigned> VectorizedVals; 10744 Value *VectorizedTree = nullptr; 10745 bool CheckForReusedReductionOps = false; 10746 // Try to vectorize elements based on their type. 10747 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10748 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 10749 InstructionsState S = getSameOpcode(OrigReducedVals); 10750 SmallVector<Value *> Candidates; 10751 DenseMap<Value *, Value *> TrackedToOrig; 10752 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 10753 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 10754 // Check if the reduction value was not overriden by the extractelement 10755 // instruction because of the vectorization and exclude it, if it is not 10756 // compatible with other values. 10757 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10758 if (isVectorLikeInstWithConstOps(Inst) && 10759 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 10760 continue; 10761 Candidates.push_back(RdxVal); 10762 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 10763 } 10764 bool ShuffledExtracts = false; 10765 // Try to handle shuffled extractelements. 10766 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 10767 I + 1 < E) { 10768 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 10769 if (NextS.getOpcode() == Instruction::ExtractElement && 10770 !NextS.isAltShuffle()) { 10771 SmallVector<Value *> CommonCandidates(Candidates); 10772 for (Value *RV : ReducedVals[I + 1]) { 10773 Value *RdxVal = TrackedVals.find(RV)->second; 10774 // Check if the reduction value was not overriden by the 10775 // extractelement instruction because of the vectorization and 10776 // exclude it, if it is not compatible with other values. 10777 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10778 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 10779 continue; 10780 CommonCandidates.push_back(RdxVal); 10781 TrackedToOrig.try_emplace(RdxVal, RV); 10782 } 10783 SmallVector<int> Mask; 10784 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 10785 ++I; 10786 Candidates.swap(CommonCandidates); 10787 ShuffledExtracts = true; 10788 } 10789 } 10790 } 10791 unsigned NumReducedVals = Candidates.size(); 10792 if (NumReducedVals < ReductionLimit) 10793 continue; 10794 10795 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 10796 unsigned Start = 0; 10797 unsigned Pos = Start; 10798 // Restarts vectorization attempt with lower vector factor. 10799 unsigned PrevReduxWidth = ReduxWidth; 10800 bool CheckForReusedReductionOpsLocal = false; 10801 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 10802 &CheckForReusedReductionOpsLocal, 10803 &PrevReduxWidth, &V, 10804 &IgnoreList](bool IgnoreVL = false) { 10805 bool IsAnyRedOpGathered = 10806 !IgnoreVL && any_of(IgnoreList, [&V](Value *RedOp) { 10807 return V.isGathered(RedOp); 10808 }); 10809 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 10810 // Check if any of the reduction ops are gathered. If so, worth 10811 // trying again with less number of reduction ops. 10812 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 10813 } 10814 ++Pos; 10815 if (Pos < NumReducedVals - ReduxWidth + 1) 10816 return IsAnyRedOpGathered; 10817 Pos = Start; 10818 ReduxWidth /= 2; 10819 return IsAnyRedOpGathered; 10820 }; 10821 while (Pos < NumReducedVals - ReduxWidth + 1 && 10822 ReduxWidth >= ReductionLimit) { 10823 // Dependency in tree of the reduction ops - drop this attempt, try 10824 // later. 10825 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 10826 Start == 0) { 10827 CheckForReusedReductionOps = true; 10828 break; 10829 } 10830 PrevReduxWidth = ReduxWidth; 10831 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 10832 // Beeing analyzed already - skip. 10833 if (V.areAnalyzedReductionVals(VL)) { 10834 (void)AdjustReducedVals(/*IgnoreVL=*/true); 10835 continue; 10836 } 10837 // Early exit if any of the reduction values were deleted during 10838 // previous vectorization attempts. 10839 if (any_of(VL, [&V](Value *RedVal) { 10840 auto *RedValI = dyn_cast<Instruction>(RedVal); 10841 if (!RedValI) 10842 return false; 10843 return V.isDeleted(RedValI); 10844 })) 10845 break; 10846 V.buildTree(VL, IgnoreList); 10847 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 10848 if (!AdjustReducedVals()) 10849 V.analyzedReductionVals(VL); 10850 continue; 10851 } 10852 if (V.isLoadCombineReductionCandidate(RdxKind)) { 10853 if (!AdjustReducedVals()) 10854 V.analyzedReductionVals(VL); 10855 continue; 10856 } 10857 V.reorderTopToBottom(); 10858 // No need to reorder the root node at all. 10859 V.reorderBottomToTop(/*IgnoreReorder=*/true); 10860 // Keep extracted other reduction values, if they are used in the 10861 // vectorization trees. 10862 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 10863 ExternallyUsedValues); 10864 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 10865 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 10866 continue; 10867 for_each(ReducedVals[Cnt], 10868 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 10869 if (isa<Instruction>(V)) 10870 LocalExternallyUsedValues[TrackedVals[V]]; 10871 }); 10872 } 10873 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 10874 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 10875 continue; 10876 unsigned NumOps = VectorizedVals.lookup(Candidates[Cnt]) + 10877 std::count(VL.begin(), VL.end(), Candidates[Cnt]); 10878 if (NumOps != ReducedValsToOps.find(Candidates[Cnt])->second.size()) 10879 LocalExternallyUsedValues[Candidates[Cnt]]; 10880 } 10881 V.buildExternalUses(LocalExternallyUsedValues); 10882 10883 V.computeMinimumValueSizes(); 10884 10885 // Intersect the fast-math-flags from all reduction operations. 10886 FastMathFlags RdxFMF; 10887 RdxFMF.set(); 10888 for (Value *U : IgnoreList) 10889 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 10890 RdxFMF &= FPMO->getFastMathFlags(); 10891 // Estimate cost. 10892 InstructionCost TreeCost = V.getTreeCost(VL); 10893 InstructionCost ReductionCost = 10894 getReductionCost(TTI, VL, ReduxWidth, RdxFMF); 10895 InstructionCost Cost = TreeCost + ReductionCost; 10896 if (!Cost.isValid()) { 10897 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 10898 return nullptr; 10899 } 10900 if (Cost >= -SLPCostThreshold) { 10901 V.getORE()->emit([&]() { 10902 return OptimizationRemarkMissed( 10903 SV_NAME, "HorSLPNotBeneficial", 10904 ReducedValsToOps.find(VL[0])->second.front()) 10905 << "Vectorizing horizontal reduction is possible" 10906 << "but not beneficial with cost " << ore::NV("Cost", Cost) 10907 << " and threshold " 10908 << ore::NV("Threshold", -SLPCostThreshold); 10909 }); 10910 if (!AdjustReducedVals()) 10911 V.analyzedReductionVals(VL); 10912 continue; 10913 } 10914 10915 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 10916 << Cost << ". (HorRdx)\n"); 10917 V.getORE()->emit([&]() { 10918 return OptimizationRemark( 10919 SV_NAME, "VectorizedHorizontalReduction", 10920 ReducedValsToOps.find(VL[0])->second.front()) 10921 << "Vectorized horizontal reduction with cost " 10922 << ore::NV("Cost", Cost) << " and with tree size " 10923 << ore::NV("TreeSize", V.getTreeSize()); 10924 }); 10925 10926 Builder.setFastMathFlags(RdxFMF); 10927 10928 // Vectorize a tree. 10929 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 10930 10931 // Emit a reduction. If the root is a select (min/max idiom), the insert 10932 // point is the compare condition of that select. 10933 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 10934 if (IsCmpSelMinMax) 10935 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 10936 else 10937 Builder.SetInsertPoint(RdxRootInst); 10938 10939 // To prevent poison from leaking across what used to be sequential, 10940 // safe, scalar boolean logic operations, the reduction operand must be 10941 // frozen. 10942 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 10943 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 10944 10945 Value *ReducedSubTree = 10946 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 10947 10948 if (!VectorizedTree) { 10949 // Initialize the final value in the reduction. 10950 VectorizedTree = ReducedSubTree; 10951 } else { 10952 // Update the final value in the reduction. 10953 Builder.SetCurrentDebugLocation( 10954 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 10955 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10956 ReducedSubTree, "op.rdx", ReductionOps); 10957 } 10958 // Count vectorized reduced values to exclude them from final reduction. 10959 for (Value *V : VL) 10960 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 10961 .first->getSecond(); 10962 Pos += ReduxWidth; 10963 Start = Pos; 10964 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 10965 } 10966 } 10967 if (VectorizedTree) { 10968 // Finish the reduction. 10969 // Need to add extra arguments and not vectorized possible reduction 10970 // values. 10971 // Try to avoid dependencies between the scalar remainders after 10972 // reductions. 10973 auto &&FinalGen = 10974 [this, &Builder, 10975 &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) { 10976 unsigned Sz = InstVals.size(); 10977 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + 10978 Sz % 2); 10979 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { 10980 Instruction *RedOp = InstVals[I + 1].first; 10981 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10982 ReductionOpsListType Ops; 10983 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10984 Ops.emplace_back().push_back(Sel->getCondition()); 10985 Ops.emplace_back().push_back(RedOp); 10986 Value *RdxVal1 = InstVals[I].second; 10987 Value *StableRdxVal1 = RdxVal1; 10988 auto It1 = TrackedVals.find(RdxVal1); 10989 if (It1 != TrackedVals.end()) 10990 StableRdxVal1 = It1->second; 10991 Value *RdxVal2 = InstVals[I + 1].second; 10992 Value *StableRdxVal2 = RdxVal2; 10993 auto It2 = TrackedVals.find(RdxVal2); 10994 if (It2 != TrackedVals.end()) 10995 StableRdxVal2 = It2->second; 10996 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, 10997 StableRdxVal2, "op.rdx", Ops); 10998 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); 10999 } 11000 if (Sz % 2 == 1) 11001 ExtraReds[Sz / 2] = InstVals.back(); 11002 return ExtraReds; 11003 }; 11004 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; 11005 SmallPtrSet<Value *, 8> Visited; 11006 for (ArrayRef<Value *> Candidates : ReducedVals) { 11007 for (Value *RdxVal : Candidates) { 11008 if (!Visited.insert(RdxVal).second) 11009 continue; 11010 unsigned NumOps = VectorizedVals.lookup(RdxVal); 11011 for (Instruction *RedOp : 11012 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 11013 .drop_back(NumOps)) 11014 ExtraReductions.emplace_back(RedOp, RdxVal); 11015 } 11016 } 11017 for (auto &Pair : ExternallyUsedValues) { 11018 // Add each externally used value to the final reduction. 11019 for (auto *I : Pair.second) 11020 ExtraReductions.emplace_back(I, Pair.first); 11021 } 11022 // Iterate through all not-vectorized reduction values/extra arguments. 11023 while (ExtraReductions.size() > 1) { 11024 SmallVector<std::pair<Instruction *, Value *>> NewReds = 11025 FinalGen(ExtraReductions); 11026 ExtraReductions.swap(NewReds); 11027 } 11028 // Final reduction. 11029 if (ExtraReductions.size() == 1) { 11030 Instruction *RedOp = ExtraReductions.back().first; 11031 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11032 ReductionOpsListType Ops; 11033 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 11034 Ops.emplace_back().push_back(Sel->getCondition()); 11035 Ops.emplace_back().push_back(RedOp); 11036 Value *RdxVal = ExtraReductions.back().second; 11037 Value *StableRdxVal = RdxVal; 11038 auto It = TrackedVals.find(RdxVal); 11039 if (It != TrackedVals.end()) 11040 StableRdxVal = It->second; 11041 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11042 StableRdxVal, "op.rdx", Ops); 11043 } 11044 11045 ReductionRoot->replaceAllUsesWith(VectorizedTree); 11046 11047 // The original scalar reduction is expected to have no remaining 11048 // uses outside the reduction tree itself. Assert that we got this 11049 // correct, replace internal uses with undef, and mark for eventual 11050 // deletion. 11051 #ifndef NDEBUG 11052 SmallSet<Value *, 4> IgnoreSet; 11053 for (ArrayRef<Value *> RdxOps : ReductionOps) 11054 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 11055 #endif 11056 for (ArrayRef<Value *> RdxOps : ReductionOps) { 11057 for (Value *Ignore : RdxOps) { 11058 if (!Ignore) 11059 continue; 11060 #ifndef NDEBUG 11061 for (auto *U : Ignore->users()) { 11062 assert(IgnoreSet.count(U) && 11063 "All users must be either in the reduction ops list."); 11064 } 11065 #endif 11066 if (!Ignore->use_empty()) { 11067 Value *Undef = UndefValue::get(Ignore->getType()); 11068 Ignore->replaceAllUsesWith(Undef); 11069 } 11070 V.eraseInstruction(cast<Instruction>(Ignore)); 11071 } 11072 } 11073 } else if (!CheckForReusedReductionOps) { 11074 for (ReductionOpsType &RdxOps : ReductionOps) 11075 for (Value *RdxOp : RdxOps) 11076 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 11077 } 11078 return VectorizedTree; 11079 } 11080 11081 private: 11082 /// Calculate the cost of a reduction. 11083 InstructionCost getReductionCost(TargetTransformInfo *TTI, 11084 ArrayRef<Value *> ReducedVals, 11085 unsigned ReduxWidth, FastMathFlags FMF) { 11086 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 11087 Value *FirstReducedVal = ReducedVals.front(); 11088 Type *ScalarTy = FirstReducedVal->getType(); 11089 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 11090 InstructionCost VectorCost = 0, ScalarCost; 11091 // If all of the reduced values are constant, the vector cost is 0, since 11092 // the reduction value can be calculated at the compile time. 11093 bool AllConsts = all_of(ReducedVals, isConstant); 11094 switch (RdxKind) { 11095 case RecurKind::Add: 11096 case RecurKind::Mul: 11097 case RecurKind::Or: 11098 case RecurKind::And: 11099 case RecurKind::Xor: 11100 case RecurKind::FAdd: 11101 case RecurKind::FMul: { 11102 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 11103 if (!AllConsts) 11104 VectorCost = 11105 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 11106 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 11107 break; 11108 } 11109 case RecurKind::FMax: 11110 case RecurKind::FMin: { 11111 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11112 if (!AllConsts) { 11113 auto *VecCondTy = 11114 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11115 VectorCost = 11116 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11117 /*IsUnsigned=*/false, CostKind); 11118 } 11119 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11120 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 11121 SclCondTy, RdxPred, CostKind) + 11122 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11123 SclCondTy, RdxPred, CostKind); 11124 break; 11125 } 11126 case RecurKind::SMax: 11127 case RecurKind::SMin: 11128 case RecurKind::UMax: 11129 case RecurKind::UMin: { 11130 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11131 if (!AllConsts) { 11132 auto *VecCondTy = 11133 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11134 bool IsUnsigned = 11135 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 11136 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11137 IsUnsigned, CostKind); 11138 } 11139 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11140 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 11141 SclCondTy, RdxPred, CostKind) + 11142 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11143 SclCondTy, RdxPred, CostKind); 11144 break; 11145 } 11146 default: 11147 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 11148 } 11149 11150 // Scalar cost is repeated for N-1 elements. 11151 ScalarCost *= (ReduxWidth - 1); 11152 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 11153 << " for reduction that starts with " << *FirstReducedVal 11154 << " (It is a splitting reduction)\n"); 11155 return VectorCost - ScalarCost; 11156 } 11157 11158 /// Emit a horizontal reduction of the vectorized value. 11159 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 11160 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 11161 assert(VectorizedValue && "Need to have a vectorized tree node"); 11162 assert(isPowerOf2_32(ReduxWidth) && 11163 "We only handle power-of-two reductions for now"); 11164 assert(RdxKind != RecurKind::FMulAdd && 11165 "A call to the llvm.fmuladd intrinsic is not handled yet"); 11166 11167 ++NumVectorInstructions; 11168 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 11169 } 11170 }; 11171 11172 } // end anonymous namespace 11173 11174 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 11175 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 11176 return cast<FixedVectorType>(IE->getType())->getNumElements(); 11177 11178 unsigned AggregateSize = 1; 11179 auto *IV = cast<InsertValueInst>(InsertInst); 11180 Type *CurrentType = IV->getType(); 11181 do { 11182 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 11183 for (auto *Elt : ST->elements()) 11184 if (Elt != ST->getElementType(0)) // check homogeneity 11185 return None; 11186 AggregateSize *= ST->getNumElements(); 11187 CurrentType = ST->getElementType(0); 11188 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 11189 AggregateSize *= AT->getNumElements(); 11190 CurrentType = AT->getElementType(); 11191 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 11192 AggregateSize *= VT->getNumElements(); 11193 return AggregateSize; 11194 } else if (CurrentType->isSingleValueType()) { 11195 return AggregateSize; 11196 } else { 11197 return None; 11198 } 11199 } while (true); 11200 } 11201 11202 static void findBuildAggregate_rec(Instruction *LastInsertInst, 11203 TargetTransformInfo *TTI, 11204 SmallVectorImpl<Value *> &BuildVectorOpds, 11205 SmallVectorImpl<Value *> &InsertElts, 11206 unsigned OperandOffset) { 11207 do { 11208 Value *InsertedOperand = LastInsertInst->getOperand(1); 11209 Optional<unsigned> OperandIndex = 11210 getInsertIndex(LastInsertInst, OperandOffset); 11211 if (!OperandIndex) 11212 return; 11213 if (isa<InsertElementInst>(InsertedOperand) || 11214 isa<InsertValueInst>(InsertedOperand)) { 11215 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 11216 BuildVectorOpds, InsertElts, *OperandIndex); 11217 11218 } else { 11219 BuildVectorOpds[*OperandIndex] = InsertedOperand; 11220 InsertElts[*OperandIndex] = LastInsertInst; 11221 } 11222 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 11223 } while (LastInsertInst != nullptr && 11224 (isa<InsertValueInst>(LastInsertInst) || 11225 isa<InsertElementInst>(LastInsertInst)) && 11226 LastInsertInst->hasOneUse()); 11227 } 11228 11229 /// Recognize construction of vectors like 11230 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 11231 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 11232 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 11233 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 11234 /// starting from the last insertelement or insertvalue instruction. 11235 /// 11236 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 11237 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 11238 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 11239 /// 11240 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 11241 /// 11242 /// \return true if it matches. 11243 static bool findBuildAggregate(Instruction *LastInsertInst, 11244 TargetTransformInfo *TTI, 11245 SmallVectorImpl<Value *> &BuildVectorOpds, 11246 SmallVectorImpl<Value *> &InsertElts) { 11247 11248 assert((isa<InsertElementInst>(LastInsertInst) || 11249 isa<InsertValueInst>(LastInsertInst)) && 11250 "Expected insertelement or insertvalue instruction!"); 11251 11252 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 11253 "Expected empty result vectors!"); 11254 11255 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 11256 if (!AggregateSize) 11257 return false; 11258 BuildVectorOpds.resize(*AggregateSize); 11259 InsertElts.resize(*AggregateSize); 11260 11261 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 11262 llvm::erase_value(BuildVectorOpds, nullptr); 11263 llvm::erase_value(InsertElts, nullptr); 11264 if (BuildVectorOpds.size() >= 2) 11265 return true; 11266 11267 return false; 11268 } 11269 11270 /// Try and get a reduction value from a phi node. 11271 /// 11272 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 11273 /// if they come from either \p ParentBB or a containing loop latch. 11274 /// 11275 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 11276 /// if not possible. 11277 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 11278 BasicBlock *ParentBB, LoopInfo *LI) { 11279 // There are situations where the reduction value is not dominated by the 11280 // reduction phi. Vectorizing such cases has been reported to cause 11281 // miscompiles. See PR25787. 11282 auto DominatedReduxValue = [&](Value *R) { 11283 return isa<Instruction>(R) && 11284 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 11285 }; 11286 11287 Value *Rdx = nullptr; 11288 11289 // Return the incoming value if it comes from the same BB as the phi node. 11290 if (P->getIncomingBlock(0) == ParentBB) { 11291 Rdx = P->getIncomingValue(0); 11292 } else if (P->getIncomingBlock(1) == ParentBB) { 11293 Rdx = P->getIncomingValue(1); 11294 } 11295 11296 if (Rdx && DominatedReduxValue(Rdx)) 11297 return Rdx; 11298 11299 // Otherwise, check whether we have a loop latch to look at. 11300 Loop *BBL = LI->getLoopFor(ParentBB); 11301 if (!BBL) 11302 return nullptr; 11303 BasicBlock *BBLatch = BBL->getLoopLatch(); 11304 if (!BBLatch) 11305 return nullptr; 11306 11307 // There is a loop latch, return the incoming value if it comes from 11308 // that. This reduction pattern occasionally turns up. 11309 if (P->getIncomingBlock(0) == BBLatch) { 11310 Rdx = P->getIncomingValue(0); 11311 } else if (P->getIncomingBlock(1) == BBLatch) { 11312 Rdx = P->getIncomingValue(1); 11313 } 11314 11315 if (Rdx && DominatedReduxValue(Rdx)) 11316 return Rdx; 11317 11318 return nullptr; 11319 } 11320 11321 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 11322 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 11323 return true; 11324 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 11325 return true; 11326 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 11327 return true; 11328 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 11329 return true; 11330 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 11331 return true; 11332 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 11333 return true; 11334 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 11335 return true; 11336 return false; 11337 } 11338 11339 /// Attempt to reduce a horizontal reduction. 11340 /// If it is legal to match a horizontal reduction feeding the phi node \a P 11341 /// with reduction operators \a Root (or one of its operands) in a basic block 11342 /// \a BB, then check if it can be done. If horizontal reduction is not found 11343 /// and root instruction is a binary operation, vectorization of the operands is 11344 /// attempted. 11345 /// \returns true if a horizontal reduction was matched and reduced or operands 11346 /// of one of the binary instruction were vectorized. 11347 /// \returns false if a horizontal reduction was not matched (or not possible) 11348 /// or no vectorization of any binary operation feeding \a Root instruction was 11349 /// performed. 11350 static bool tryToVectorizeHorReductionOrInstOperands( 11351 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 11352 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 11353 const TargetLibraryInfo &TLI, 11354 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 11355 if (!ShouldVectorizeHor) 11356 return false; 11357 11358 if (!Root) 11359 return false; 11360 11361 if (Root->getParent() != BB || isa<PHINode>(Root)) 11362 return false; 11363 // Start analysis starting from Root instruction. If horizontal reduction is 11364 // found, try to vectorize it. If it is not a horizontal reduction or 11365 // vectorization is not possible or not effective, and currently analyzed 11366 // instruction is a binary operation, try to vectorize the operands, using 11367 // pre-order DFS traversal order. If the operands were not vectorized, repeat 11368 // the same procedure considering each operand as a possible root of the 11369 // horizontal reduction. 11370 // Interrupt the process if the Root instruction itself was vectorized or all 11371 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 11372 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 11373 // CmpInsts so we can skip extra attempts in 11374 // tryToVectorizeHorReductionOrInstOperands and save compile time. 11375 std::queue<std::pair<Instruction *, unsigned>> Stack; 11376 Stack.emplace(Root, 0); 11377 SmallPtrSet<Value *, 8> VisitedInstrs; 11378 SmallVector<WeakTrackingVH> PostponedInsts; 11379 bool Res = false; 11380 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 11381 Value *&B0, 11382 Value *&B1) -> Value * { 11383 if (R.isAnalyzedReductionRoot(Inst)) 11384 return nullptr; 11385 bool IsBinop = matchRdxBop(Inst, B0, B1); 11386 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 11387 if (IsBinop || IsSelect) { 11388 HorizontalReduction HorRdx; 11389 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 11390 return HorRdx.tryToReduce(R, TTI); 11391 } 11392 return nullptr; 11393 }; 11394 while (!Stack.empty()) { 11395 Instruction *Inst; 11396 unsigned Level; 11397 std::tie(Inst, Level) = Stack.front(); 11398 Stack.pop(); 11399 // Do not try to analyze instruction that has already been vectorized. 11400 // This may happen when we vectorize instruction operands on a previous 11401 // iteration while stack was populated before that happened. 11402 if (R.isDeleted(Inst)) 11403 continue; 11404 Value *B0 = nullptr, *B1 = nullptr; 11405 if (Value *V = TryToReduce(Inst, B0, B1)) { 11406 Res = true; 11407 // Set P to nullptr to avoid re-analysis of phi node in 11408 // matchAssociativeReduction function unless this is the root node. 11409 P = nullptr; 11410 if (auto *I = dyn_cast<Instruction>(V)) { 11411 // Try to find another reduction. 11412 Stack.emplace(I, Level); 11413 continue; 11414 } 11415 } else { 11416 bool IsBinop = B0 && B1; 11417 if (P && IsBinop) { 11418 Inst = dyn_cast<Instruction>(B0); 11419 if (Inst == P) 11420 Inst = dyn_cast<Instruction>(B1); 11421 if (!Inst) { 11422 // Set P to nullptr to avoid re-analysis of phi node in 11423 // matchAssociativeReduction function unless this is the root node. 11424 P = nullptr; 11425 continue; 11426 } 11427 } 11428 // Set P to nullptr to avoid re-analysis of phi node in 11429 // matchAssociativeReduction function unless this is the root node. 11430 P = nullptr; 11431 // Do not try to vectorize CmpInst operands, this is done separately. 11432 // Final attempt for binop args vectorization should happen after the loop 11433 // to try to find reductions. 11434 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 11435 PostponedInsts.push_back(Inst); 11436 } 11437 11438 // Try to vectorize operands. 11439 // Continue analysis for the instruction from the same basic block only to 11440 // save compile time. 11441 if (++Level < RecursionMaxDepth) 11442 for (auto *Op : Inst->operand_values()) 11443 if (VisitedInstrs.insert(Op).second) 11444 if (auto *I = dyn_cast<Instruction>(Op)) 11445 // Do not try to vectorize CmpInst operands, this is done 11446 // separately. 11447 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 11448 !R.isDeleted(I) && I->getParent() == BB) 11449 Stack.emplace(I, Level); 11450 } 11451 // Try to vectorized binops where reductions were not found. 11452 for (Value *V : PostponedInsts) 11453 if (auto *Inst = dyn_cast<Instruction>(V)) 11454 if (!R.isDeleted(Inst)) 11455 Res |= Vectorize(Inst, R); 11456 return Res; 11457 } 11458 11459 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 11460 BasicBlock *BB, BoUpSLP &R, 11461 TargetTransformInfo *TTI) { 11462 auto *I = dyn_cast_or_null<Instruction>(V); 11463 if (!I) 11464 return false; 11465 11466 if (!isa<BinaryOperator>(I)) 11467 P = nullptr; 11468 // Try to match and vectorize a horizontal reduction. 11469 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 11470 return tryToVectorize(I, R); 11471 }; 11472 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 11473 *TLI, ExtraVectorization); 11474 } 11475 11476 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 11477 BasicBlock *BB, BoUpSLP &R) { 11478 const DataLayout &DL = BB->getModule()->getDataLayout(); 11479 if (!R.canMapToVector(IVI->getType(), DL)) 11480 return false; 11481 11482 SmallVector<Value *, 16> BuildVectorOpds; 11483 SmallVector<Value *, 16> BuildVectorInsts; 11484 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 11485 return false; 11486 11487 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 11488 // Aggregate value is unlikely to be processed in vector register. 11489 return tryToVectorizeList(BuildVectorOpds, R); 11490 } 11491 11492 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 11493 BasicBlock *BB, BoUpSLP &R) { 11494 SmallVector<Value *, 16> BuildVectorInsts; 11495 SmallVector<Value *, 16> BuildVectorOpds; 11496 SmallVector<int> Mask; 11497 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 11498 (llvm::all_of( 11499 BuildVectorOpds, 11500 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 11501 isFixedVectorShuffle(BuildVectorOpds, Mask))) 11502 return false; 11503 11504 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 11505 return tryToVectorizeList(BuildVectorInsts, R); 11506 } 11507 11508 template <typename T> 11509 static bool 11510 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 11511 function_ref<unsigned(T *)> Limit, 11512 function_ref<bool(T *, T *)> Comparator, 11513 function_ref<bool(T *, T *)> AreCompatible, 11514 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 11515 bool LimitForRegisterSize) { 11516 bool Changed = false; 11517 // Sort by type, parent, operands. 11518 stable_sort(Incoming, Comparator); 11519 11520 // Try to vectorize elements base on their type. 11521 SmallVector<T *> Candidates; 11522 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 11523 // Look for the next elements with the same type, parent and operand 11524 // kinds. 11525 auto *SameTypeIt = IncIt; 11526 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 11527 ++SameTypeIt; 11528 11529 // Try to vectorize them. 11530 unsigned NumElts = (SameTypeIt - IncIt); 11531 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 11532 << NumElts << ")\n"); 11533 // The vectorization is a 3-state attempt: 11534 // 1. Try to vectorize instructions with the same/alternate opcodes with the 11535 // size of maximal register at first. 11536 // 2. Try to vectorize remaining instructions with the same type, if 11537 // possible. This may result in the better vectorization results rather than 11538 // if we try just to vectorize instructions with the same/alternate opcodes. 11539 // 3. Final attempt to try to vectorize all instructions with the 11540 // same/alternate ops only, this may result in some extra final 11541 // vectorization. 11542 if (NumElts > 1 && 11543 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 11544 // Success start over because instructions might have been changed. 11545 Changed = true; 11546 } else if (NumElts < Limit(*IncIt) && 11547 (Candidates.empty() || 11548 Candidates.front()->getType() == (*IncIt)->getType())) { 11549 Candidates.append(IncIt, std::next(IncIt, NumElts)); 11550 } 11551 // Final attempt to vectorize instructions with the same types. 11552 if (Candidates.size() > 1 && 11553 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 11554 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 11555 // Success start over because instructions might have been changed. 11556 Changed = true; 11557 } else if (LimitForRegisterSize) { 11558 // Try to vectorize using small vectors. 11559 for (auto *It = Candidates.begin(), *End = Candidates.end(); 11560 It != End;) { 11561 auto *SameTypeIt = It; 11562 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 11563 ++SameTypeIt; 11564 unsigned NumElts = (SameTypeIt - It); 11565 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 11566 /*LimitForRegisterSize=*/false)) 11567 Changed = true; 11568 It = SameTypeIt; 11569 } 11570 } 11571 Candidates.clear(); 11572 } 11573 11574 // Start over at the next instruction of a different type (or the end). 11575 IncIt = SameTypeIt; 11576 } 11577 return Changed; 11578 } 11579 11580 /// Compare two cmp instructions. If IsCompatibility is true, function returns 11581 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 11582 /// operands. If IsCompatibility is false, function implements strict weak 11583 /// ordering relation between two cmp instructions, returning true if the first 11584 /// instruction is "less" than the second, i.e. its predicate is less than the 11585 /// predicate of the second or the operands IDs are less than the operands IDs 11586 /// of the second cmp instruction. 11587 template <bool IsCompatibility> 11588 static bool compareCmp(Value *V, Value *V2, 11589 function_ref<bool(Instruction *)> IsDeleted) { 11590 auto *CI1 = cast<CmpInst>(V); 11591 auto *CI2 = cast<CmpInst>(V2); 11592 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 11593 return false; 11594 if (CI1->getOperand(0)->getType()->getTypeID() < 11595 CI2->getOperand(0)->getType()->getTypeID()) 11596 return !IsCompatibility; 11597 if (CI1->getOperand(0)->getType()->getTypeID() > 11598 CI2->getOperand(0)->getType()->getTypeID()) 11599 return false; 11600 CmpInst::Predicate Pred1 = CI1->getPredicate(); 11601 CmpInst::Predicate Pred2 = CI2->getPredicate(); 11602 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 11603 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 11604 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 11605 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 11606 if (BasePred1 < BasePred2) 11607 return !IsCompatibility; 11608 if (BasePred1 > BasePred2) 11609 return false; 11610 // Compare operands. 11611 bool LEPreds = Pred1 <= Pred2; 11612 bool GEPreds = Pred1 >= Pred2; 11613 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 11614 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 11615 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 11616 if (Op1->getValueID() < Op2->getValueID()) 11617 return !IsCompatibility; 11618 if (Op1->getValueID() > Op2->getValueID()) 11619 return false; 11620 if (auto *I1 = dyn_cast<Instruction>(Op1)) 11621 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 11622 if (I1->getParent() != I2->getParent()) 11623 return false; 11624 InstructionsState S = getSameOpcode({I1, I2}); 11625 if (S.getOpcode()) 11626 continue; 11627 return false; 11628 } 11629 } 11630 return IsCompatibility; 11631 } 11632 11633 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11634 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11635 bool AtTerminator) { 11636 bool OpsChanged = false; 11637 SmallVector<Instruction *, 4> PostponedCmps; 11638 for (auto *I : reverse(Instructions)) { 11639 if (R.isDeleted(I)) 11640 continue; 11641 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11642 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11643 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11644 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11645 } else if (isa<CmpInst>(I)) { 11646 PostponedCmps.push_back(I); 11647 continue; 11648 } 11649 // Try to find reductions in buildvector sequnces. 11650 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11651 } 11652 if (AtTerminator) { 11653 // Try to find reductions first. 11654 for (Instruction *I : PostponedCmps) { 11655 if (R.isDeleted(I)) 11656 continue; 11657 for (Value *Op : I->operands()) 11658 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11659 } 11660 // Try to vectorize operands as vector bundles. 11661 for (Instruction *I : PostponedCmps) { 11662 if (R.isDeleted(I)) 11663 continue; 11664 OpsChanged |= tryToVectorize(I, R); 11665 } 11666 // Try to vectorize list of compares. 11667 // Sort by type, compare predicate, etc. 11668 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11669 return compareCmp<false>(V, V2, 11670 [&R](Instruction *I) { return R.isDeleted(I); }); 11671 }; 11672 11673 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11674 if (V1 == V2) 11675 return true; 11676 return compareCmp<true>(V1, V2, 11677 [&R](Instruction *I) { return R.isDeleted(I); }); 11678 }; 11679 auto Limit = [&R](Value *V) { 11680 unsigned EltSize = R.getVectorElementSize(V); 11681 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11682 }; 11683 11684 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 11685 OpsChanged |= tryToVectorizeSequence<Value>( 11686 Vals, Limit, CompareSorter, AreCompatibleCompares, 11687 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11688 // Exclude possible reductions from other blocks. 11689 bool ArePossiblyReducedInOtherBlock = 11690 any_of(Candidates, [](Value *V) { 11691 return any_of(V->users(), [V](User *U) { 11692 return isa<SelectInst>(U) && 11693 cast<SelectInst>(U)->getParent() != 11694 cast<Instruction>(V)->getParent(); 11695 }); 11696 }); 11697 if (ArePossiblyReducedInOtherBlock) 11698 return false; 11699 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11700 }, 11701 /*LimitForRegisterSize=*/true); 11702 Instructions.clear(); 11703 } else { 11704 // Insert in reverse order since the PostponedCmps vector was filled in 11705 // reverse order. 11706 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 11707 } 11708 return OpsChanged; 11709 } 11710 11711 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 11712 bool Changed = false; 11713 SmallVector<Value *, 4> Incoming; 11714 SmallPtrSet<Value *, 16> VisitedInstrs; 11715 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 11716 // node. Allows better to identify the chains that can be vectorized in the 11717 // better way. 11718 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 11719 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 11720 assert(isValidElementType(V1->getType()) && 11721 isValidElementType(V2->getType()) && 11722 "Expected vectorizable types only."); 11723 // It is fine to compare type IDs here, since we expect only vectorizable 11724 // types, like ints, floats and pointers, we don't care about other type. 11725 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 11726 return true; 11727 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 11728 return false; 11729 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11730 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11731 if (Opcodes1.size() < Opcodes2.size()) 11732 return true; 11733 if (Opcodes1.size() > Opcodes2.size()) 11734 return false; 11735 Optional<bool> ConstOrder; 11736 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11737 // Undefs are compatible with any other value. 11738 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 11739 if (!ConstOrder) 11740 ConstOrder = 11741 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 11742 continue; 11743 } 11744 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11745 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11746 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 11747 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 11748 if (!NodeI1) 11749 return NodeI2 != nullptr; 11750 if (!NodeI2) 11751 return false; 11752 assert((NodeI1 == NodeI2) == 11753 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11754 "Different nodes should have different DFS numbers"); 11755 if (NodeI1 != NodeI2) 11756 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11757 InstructionsState S = getSameOpcode({I1, I2}); 11758 if (S.getOpcode()) 11759 continue; 11760 return I1->getOpcode() < I2->getOpcode(); 11761 } 11762 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 11763 if (!ConstOrder) 11764 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 11765 continue; 11766 } 11767 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 11768 return true; 11769 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 11770 return false; 11771 } 11772 return ConstOrder && *ConstOrder; 11773 }; 11774 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 11775 if (V1 == V2) 11776 return true; 11777 if (V1->getType() != V2->getType()) 11778 return false; 11779 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11780 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11781 if (Opcodes1.size() != Opcodes2.size()) 11782 return false; 11783 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11784 // Undefs are compatible with any other value. 11785 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 11786 continue; 11787 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11788 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11789 if (I1->getParent() != I2->getParent()) 11790 return false; 11791 InstructionsState S = getSameOpcode({I1, I2}); 11792 if (S.getOpcode()) 11793 continue; 11794 return false; 11795 } 11796 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 11797 continue; 11798 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 11799 return false; 11800 } 11801 return true; 11802 }; 11803 auto Limit = [&R](Value *V) { 11804 unsigned EltSize = R.getVectorElementSize(V); 11805 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11806 }; 11807 11808 bool HaveVectorizedPhiNodes = false; 11809 do { 11810 // Collect the incoming values from the PHIs. 11811 Incoming.clear(); 11812 for (Instruction &I : *BB) { 11813 PHINode *P = dyn_cast<PHINode>(&I); 11814 if (!P) 11815 break; 11816 11817 // No need to analyze deleted, vectorized and non-vectorizable 11818 // instructions. 11819 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 11820 isValidElementType(P->getType())) 11821 Incoming.push_back(P); 11822 } 11823 11824 // Find the corresponding non-phi nodes for better matching when trying to 11825 // build the tree. 11826 for (Value *V : Incoming) { 11827 SmallVectorImpl<Value *> &Opcodes = 11828 PHIToOpcodes.try_emplace(V).first->getSecond(); 11829 if (!Opcodes.empty()) 11830 continue; 11831 SmallVector<Value *, 4> Nodes(1, V); 11832 SmallPtrSet<Value *, 4> Visited; 11833 while (!Nodes.empty()) { 11834 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 11835 if (!Visited.insert(PHI).second) 11836 continue; 11837 for (Value *V : PHI->incoming_values()) { 11838 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 11839 Nodes.push_back(PHI1); 11840 continue; 11841 } 11842 Opcodes.emplace_back(V); 11843 } 11844 } 11845 } 11846 11847 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 11848 Incoming, Limit, PHICompare, AreCompatiblePHIs, 11849 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11850 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11851 }, 11852 /*LimitForRegisterSize=*/true); 11853 Changed |= HaveVectorizedPhiNodes; 11854 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 11855 } while (HaveVectorizedPhiNodes); 11856 11857 VisitedInstrs.clear(); 11858 11859 SmallVector<Instruction *, 8> PostProcessInstructions; 11860 SmallDenseSet<Instruction *, 4> KeyNodes; 11861 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 11862 // Skip instructions with scalable type. The num of elements is unknown at 11863 // compile-time for scalable type. 11864 if (isa<ScalableVectorType>(it->getType())) 11865 continue; 11866 11867 // Skip instructions marked for the deletion. 11868 if (R.isDeleted(&*it)) 11869 continue; 11870 // We may go through BB multiple times so skip the one we have checked. 11871 if (!VisitedInstrs.insert(&*it).second) { 11872 if (it->use_empty() && KeyNodes.contains(&*it) && 11873 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11874 it->isTerminator())) { 11875 // We would like to start over since some instructions are deleted 11876 // and the iterator may become invalid value. 11877 Changed = true; 11878 it = BB->begin(); 11879 e = BB->end(); 11880 } 11881 continue; 11882 } 11883 11884 if (isa<DbgInfoIntrinsic>(it)) 11885 continue; 11886 11887 // Try to vectorize reductions that use PHINodes. 11888 if (PHINode *P = dyn_cast<PHINode>(it)) { 11889 // Check that the PHI is a reduction PHI. 11890 if (P->getNumIncomingValues() == 2) { 11891 // Try to match and vectorize a horizontal reduction. 11892 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 11893 TTI)) { 11894 Changed = true; 11895 it = BB->begin(); 11896 e = BB->end(); 11897 continue; 11898 } 11899 } 11900 // Try to vectorize the incoming values of the PHI, to catch reductions 11901 // that feed into PHIs. 11902 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 11903 // Skip if the incoming block is the current BB for now. Also, bypass 11904 // unreachable IR for efficiency and to avoid crashing. 11905 // TODO: Collect the skipped incoming values and try to vectorize them 11906 // after processing BB. 11907 if (BB == P->getIncomingBlock(I) || 11908 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 11909 continue; 11910 11911 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 11912 P->getIncomingBlock(I), R, TTI); 11913 } 11914 continue; 11915 } 11916 11917 // Ran into an instruction without users, like terminator, or function call 11918 // with ignored return value, store. Ignore unused instructions (basing on 11919 // instruction type, except for CallInst and InvokeInst). 11920 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 11921 isa<InvokeInst>(it))) { 11922 KeyNodes.insert(&*it); 11923 bool OpsChanged = false; 11924 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 11925 for (auto *V : it->operand_values()) { 11926 // Try to match and vectorize a horizontal reduction. 11927 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 11928 } 11929 } 11930 // Start vectorization of post-process list of instructions from the 11931 // top-tree instructions to try to vectorize as many instructions as 11932 // possible. 11933 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11934 it->isTerminator()); 11935 if (OpsChanged) { 11936 // We would like to start over since some instructions are deleted 11937 // and the iterator may become invalid value. 11938 Changed = true; 11939 it = BB->begin(); 11940 e = BB->end(); 11941 continue; 11942 } 11943 } 11944 11945 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 11946 isa<InsertValueInst>(it)) 11947 PostProcessInstructions.push_back(&*it); 11948 } 11949 11950 return Changed; 11951 } 11952 11953 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 11954 auto Changed = false; 11955 for (auto &Entry : GEPs) { 11956 // If the getelementptr list has fewer than two elements, there's nothing 11957 // to do. 11958 if (Entry.second.size() < 2) 11959 continue; 11960 11961 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 11962 << Entry.second.size() << ".\n"); 11963 11964 // Process the GEP list in chunks suitable for the target's supported 11965 // vector size. If a vector register can't hold 1 element, we are done. We 11966 // are trying to vectorize the index computations, so the maximum number of 11967 // elements is based on the size of the index expression, rather than the 11968 // size of the GEP itself (the target's pointer size). 11969 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 11970 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 11971 if (MaxVecRegSize < EltSize) 11972 continue; 11973 11974 unsigned MaxElts = MaxVecRegSize / EltSize; 11975 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 11976 auto Len = std::min<unsigned>(BE - BI, MaxElts); 11977 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 11978 11979 // Initialize a set a candidate getelementptrs. Note that we use a 11980 // SetVector here to preserve program order. If the index computations 11981 // are vectorizable and begin with loads, we want to minimize the chance 11982 // of having to reorder them later. 11983 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 11984 11985 // Some of the candidates may have already been vectorized after we 11986 // initially collected them. If so, they are marked as deleted, so remove 11987 // them from the set of candidates. 11988 Candidates.remove_if( 11989 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 11990 11991 // Remove from the set of candidates all pairs of getelementptrs with 11992 // constant differences. Such getelementptrs are likely not good 11993 // candidates for vectorization in a bottom-up phase since one can be 11994 // computed from the other. We also ensure all candidate getelementptr 11995 // indices are unique. 11996 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 11997 auto *GEPI = GEPList[I]; 11998 if (!Candidates.count(GEPI)) 11999 continue; 12000 auto *SCEVI = SE->getSCEV(GEPList[I]); 12001 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 12002 auto *GEPJ = GEPList[J]; 12003 auto *SCEVJ = SE->getSCEV(GEPList[J]); 12004 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 12005 Candidates.remove(GEPI); 12006 Candidates.remove(GEPJ); 12007 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 12008 Candidates.remove(GEPJ); 12009 } 12010 } 12011 } 12012 12013 // We break out of the above computation as soon as we know there are 12014 // fewer than two candidates remaining. 12015 if (Candidates.size() < 2) 12016 continue; 12017 12018 // Add the single, non-constant index of each candidate to the bundle. We 12019 // ensured the indices met these constraints when we originally collected 12020 // the getelementptrs. 12021 SmallVector<Value *, 16> Bundle(Candidates.size()); 12022 auto BundleIndex = 0u; 12023 for (auto *V : Candidates) { 12024 auto *GEP = cast<GetElementPtrInst>(V); 12025 auto *GEPIdx = GEP->idx_begin()->get(); 12026 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 12027 Bundle[BundleIndex++] = GEPIdx; 12028 } 12029 12030 // Try and vectorize the indices. We are currently only interested in 12031 // gather-like cases of the form: 12032 // 12033 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 12034 // 12035 // where the loads of "a", the loads of "b", and the subtractions can be 12036 // performed in parallel. It's likely that detecting this pattern in a 12037 // bottom-up phase will be simpler and less costly than building a 12038 // full-blown top-down phase beginning at the consecutive loads. 12039 Changed |= tryToVectorizeList(Bundle, R); 12040 } 12041 } 12042 return Changed; 12043 } 12044 12045 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 12046 bool Changed = false; 12047 // Sort by type, base pointers and values operand. Value operands must be 12048 // compatible (have the same opcode, same parent), otherwise it is 12049 // definitely not profitable to try to vectorize them. 12050 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 12051 if (V->getPointerOperandType()->getTypeID() < 12052 V2->getPointerOperandType()->getTypeID()) 12053 return true; 12054 if (V->getPointerOperandType()->getTypeID() > 12055 V2->getPointerOperandType()->getTypeID()) 12056 return false; 12057 // UndefValues are compatible with all other values. 12058 if (isa<UndefValue>(V->getValueOperand()) || 12059 isa<UndefValue>(V2->getValueOperand())) 12060 return false; 12061 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 12062 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12063 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 12064 DT->getNode(I1->getParent()); 12065 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 12066 DT->getNode(I2->getParent()); 12067 assert(NodeI1 && "Should only process reachable instructions"); 12068 assert(NodeI2 && "Should only process reachable instructions"); 12069 assert((NodeI1 == NodeI2) == 12070 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 12071 "Different nodes should have different DFS numbers"); 12072 if (NodeI1 != NodeI2) 12073 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 12074 InstructionsState S = getSameOpcode({I1, I2}); 12075 if (S.getOpcode()) 12076 return false; 12077 return I1->getOpcode() < I2->getOpcode(); 12078 } 12079 if (isa<Constant>(V->getValueOperand()) && 12080 isa<Constant>(V2->getValueOperand())) 12081 return false; 12082 return V->getValueOperand()->getValueID() < 12083 V2->getValueOperand()->getValueID(); 12084 }; 12085 12086 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 12087 if (V1 == V2) 12088 return true; 12089 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 12090 return false; 12091 // Undefs are compatible with any other value. 12092 if (isa<UndefValue>(V1->getValueOperand()) || 12093 isa<UndefValue>(V2->getValueOperand())) 12094 return true; 12095 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 12096 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12097 if (I1->getParent() != I2->getParent()) 12098 return false; 12099 InstructionsState S = getSameOpcode({I1, I2}); 12100 return S.getOpcode() > 0; 12101 } 12102 if (isa<Constant>(V1->getValueOperand()) && 12103 isa<Constant>(V2->getValueOperand())) 12104 return true; 12105 return V1->getValueOperand()->getValueID() == 12106 V2->getValueOperand()->getValueID(); 12107 }; 12108 auto Limit = [&R, this](StoreInst *SI) { 12109 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 12110 return R.getMinVF(EltSize); 12111 }; 12112 12113 // Attempt to sort and vectorize each of the store-groups. 12114 for (auto &Pair : Stores) { 12115 if (Pair.second.size() < 2) 12116 continue; 12117 12118 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 12119 << Pair.second.size() << ".\n"); 12120 12121 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 12122 continue; 12123 12124 Changed |= tryToVectorizeSequence<StoreInst>( 12125 Pair.second, Limit, StoreSorter, AreCompatibleStores, 12126 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 12127 return vectorizeStores(Candidates, R); 12128 }, 12129 /*LimitForRegisterSize=*/false); 12130 } 12131 return Changed; 12132 } 12133 12134 char SLPVectorizer::ID = 0; 12135 12136 static const char lv_name[] = "SLP Vectorizer"; 12137 12138 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 12139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 12140 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 12141 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12142 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 12143 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 12144 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 12145 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 12146 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 12147 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 12148 12149 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 12150