1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants. 198 static bool allConstant(ArrayRef<Value *> VL) { 199 for (Value *i : VL) 200 if (!isa<Constant>(i)) 201 return false; 202 return true; 203 } 204 205 /// \returns True if all of the values in \p VL are identical. 206 static bool isSplat(ArrayRef<Value *> VL) { 207 for (unsigned i = 1, e = VL.size(); i < e; ++i) 208 if (VL[i] != VL[0]) 209 return false; 210 return true; 211 } 212 213 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 214 static bool isCommutative(Instruction *I) { 215 if (auto *IC = dyn_cast<CmpInst>(I)) 216 return IC->isCommutative(); 217 return I->isCommutative(); 218 } 219 220 /// Checks if the vector of instructions can be represented as a shuffle, like: 221 /// %x0 = extractelement <4 x i8> %x, i32 0 222 /// %x3 = extractelement <4 x i8> %x, i32 3 223 /// %y1 = extractelement <4 x i8> %y, i32 1 224 /// %y2 = extractelement <4 x i8> %y, i32 2 225 /// %x0x0 = mul i8 %x0, %x0 226 /// %x3x3 = mul i8 %x3, %x3 227 /// %y1y1 = mul i8 %y1, %y1 228 /// %y2y2 = mul i8 %y2, %y2 229 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 230 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 231 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 232 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 233 /// ret <4 x i8> %ins4 234 /// can be transformed into: 235 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 236 /// i32 6> 237 /// %2 = mul <4 x i8> %1, %1 238 /// ret <4 x i8> %2 239 /// We convert this initially to something like: 240 /// %x0 = extractelement <4 x i8> %x, i32 0 241 /// %x3 = extractelement <4 x i8> %x, i32 3 242 /// %y1 = extractelement <4 x i8> %y, i32 1 243 /// %y2 = extractelement <4 x i8> %y, i32 2 244 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 245 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 246 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 247 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 248 /// %5 = mul <4 x i8> %4, %4 249 /// %6 = extractelement <4 x i8> %5, i32 0 250 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 251 /// %7 = extractelement <4 x i8> %5, i32 1 252 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 253 /// %8 = extractelement <4 x i8> %5, i32 2 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 255 /// %9 = extractelement <4 x i8> %5, i32 3 256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 257 /// ret <4 x i8> %ins4 258 /// InstCombiner transforms this into a shuffle and vector mul 259 /// TODO: Can we split off and reuse the shuffle mask detection from 260 /// TargetTransformInfo::getInstructionThroughput? 261 static Optional<TargetTransformInfo::ShuffleKind> 262 isShuffle(ArrayRef<Value *> VL) { 263 auto *EI0 = cast<ExtractElementInst>(VL[0]); 264 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 265 Value *Vec1 = nullptr; 266 Value *Vec2 = nullptr; 267 enum ShuffleMode { Unknown, Select, Permute }; 268 ShuffleMode CommonShuffleMode = Unknown; 269 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 270 auto *EI = cast<ExtractElementInst>(VL[I]); 271 auto *Vec = EI->getVectorOperand(); 272 // All vector operands must have the same number of vector elements. 273 if (Vec->getType()->getVectorNumElements() != Size) 274 return None; 275 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 276 if (!Idx) 277 return None; 278 // Undefined behavior if Idx is negative or >= Size. 279 if (Idx->getValue().uge(Size)) 280 continue; 281 unsigned IntIdx = Idx->getValue().getZExtValue(); 282 // We can extractelement from undef vector. 283 if (isa<UndefValue>(Vec)) 284 continue; 285 // For correct shuffling we have to have at most 2 different vector operands 286 // in all extractelement instructions. 287 if (!Vec1 || Vec1 == Vec) 288 Vec1 = Vec; 289 else if (!Vec2 || Vec2 == Vec) 290 Vec2 = Vec; 291 else 292 return None; 293 if (CommonShuffleMode == Permute) 294 continue; 295 // If the extract index is not the same as the operation number, it is a 296 // permutation. 297 if (IntIdx != I) { 298 CommonShuffleMode = Permute; 299 continue; 300 } 301 CommonShuffleMode = Select; 302 } 303 // If we're not crossing lanes in different vectors, consider it as blending. 304 if (CommonShuffleMode == Select && Vec2) 305 return TargetTransformInfo::SK_Select; 306 // If Vec2 was never used, we have a permutation of a single vector, otherwise 307 // we have permutation of 2 vectors. 308 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 309 : TargetTransformInfo::SK_PermuteSingleSrc; 310 } 311 312 namespace { 313 314 /// Main data required for vectorization of instructions. 315 struct InstructionsState { 316 /// The very first instruction in the list with the main opcode. 317 Value *OpValue = nullptr; 318 319 /// The main/alternate instruction. 320 Instruction *MainOp = nullptr; 321 Instruction *AltOp = nullptr; 322 323 /// The main/alternate opcodes for the list of instructions. 324 unsigned getOpcode() const { 325 return MainOp ? MainOp->getOpcode() : 0; 326 } 327 328 unsigned getAltOpcode() const { 329 return AltOp ? AltOp->getOpcode() : 0; 330 } 331 332 /// Some of the instructions in the list have alternate opcodes. 333 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 334 335 bool isOpcodeOrAlt(Instruction *I) const { 336 unsigned CheckedOpcode = I->getOpcode(); 337 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 338 } 339 340 InstructionsState() = delete; 341 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 342 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 343 }; 344 345 } // end anonymous namespace 346 347 /// Chooses the correct key for scheduling data. If \p Op has the same (or 348 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 349 /// OpValue. 350 static Value *isOneOf(const InstructionsState &S, Value *Op) { 351 auto *I = dyn_cast<Instruction>(Op); 352 if (I && S.isOpcodeOrAlt(I)) 353 return Op; 354 return S.OpValue; 355 } 356 357 /// \returns analysis of the Instructions in \p VL described in 358 /// InstructionsState, the Opcode that we suppose the whole list 359 /// could be vectorized even if its structure is diverse. 360 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 361 unsigned BaseIndex = 0) { 362 // Make sure these are all Instructions. 363 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 364 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 365 366 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 367 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 368 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 369 unsigned AltOpcode = Opcode; 370 unsigned AltIndex = BaseIndex; 371 372 // Check for one alternate opcode from another BinaryOperator. 373 // TODO - generalize to support all operators (types, calls etc.). 374 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 375 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 376 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 377 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 378 continue; 379 if (Opcode == AltOpcode) { 380 AltOpcode = InstOpcode; 381 AltIndex = Cnt; 382 continue; 383 } 384 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 385 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 386 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 387 if (Ty0 == Ty1) { 388 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 389 continue; 390 if (Opcode == AltOpcode) { 391 AltOpcode = InstOpcode; 392 AltIndex = Cnt; 393 continue; 394 } 395 } 396 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 397 continue; 398 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 399 } 400 401 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 402 cast<Instruction>(VL[AltIndex])); 403 } 404 405 /// \returns true if all of the values in \p VL have the same type or false 406 /// otherwise. 407 static bool allSameType(ArrayRef<Value *> VL) { 408 Type *Ty = VL[0]->getType(); 409 for (int i = 1, e = VL.size(); i < e; i++) 410 if (VL[i]->getType() != Ty) 411 return false; 412 413 return true; 414 } 415 416 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 417 static Optional<unsigned> getExtractIndex(Instruction *E) { 418 unsigned Opcode = E->getOpcode(); 419 assert((Opcode == Instruction::ExtractElement || 420 Opcode == Instruction::ExtractValue) && 421 "Expected extractelement or extractvalue instruction."); 422 if (Opcode == Instruction::ExtractElement) { 423 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 424 if (!CI) 425 return None; 426 return CI->getZExtValue(); 427 } 428 ExtractValueInst *EI = cast<ExtractValueInst>(E); 429 if (EI->getNumIndices() != 1) 430 return None; 431 return *EI->idx_begin(); 432 } 433 434 /// \returns True if in-tree use also needs extract. This refers to 435 /// possible scalar operand in vectorized instruction. 436 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 437 TargetLibraryInfo *TLI) { 438 unsigned Opcode = UserInst->getOpcode(); 439 switch (Opcode) { 440 case Instruction::Load: { 441 LoadInst *LI = cast<LoadInst>(UserInst); 442 return (LI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Store: { 445 StoreInst *SI = cast<StoreInst>(UserInst); 446 return (SI->getPointerOperand() == Scalar); 447 } 448 case Instruction::Call: { 449 CallInst *CI = cast<CallInst>(UserInst); 450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 452 if (hasVectorInstrinsicScalarOpd(ID, i)) 453 return (CI->getArgOperand(i) == Scalar); 454 } 455 LLVM_FALLTHROUGH; 456 } 457 default: 458 return false; 459 } 460 } 461 462 /// \returns the AA location that is being access by the instruction. 463 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return MemoryLocation::get(SI); 466 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 467 return MemoryLocation::get(LI); 468 return MemoryLocation(); 469 } 470 471 /// \returns True if the instruction is not a volatile or atomic load/store. 472 static bool isSimple(Instruction *I) { 473 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 474 return LI->isSimple(); 475 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 476 return SI->isSimple(); 477 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 478 return !MI->isVolatile(); 479 return true; 480 } 481 482 namespace llvm { 483 484 namespace slpvectorizer { 485 486 /// Bottom Up SLP Vectorizer. 487 class BoUpSLP { 488 struct TreeEntry; 489 490 public: 491 using ValueList = SmallVector<Value *, 8>; 492 using InstrList = SmallVector<Instruction *, 16>; 493 using ValueSet = SmallPtrSet<Value *, 16>; 494 using StoreList = SmallVector<StoreInst *, 8>; 495 using ExtraValueToDebugLocsMap = 496 MapVector<Value *, SmallVector<Instruction *, 2>>; 497 498 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 499 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 500 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 501 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 502 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 503 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 504 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 505 // Use the vector register size specified by the target unless overridden 506 // by a command-line option. 507 // TODO: It would be better to limit the vectorization factor based on 508 // data type rather than just register size. For example, x86 AVX has 509 // 256-bit registers, but it does not support integer operations 510 // at that width (that requires AVX2). 511 if (MaxVectorRegSizeOption.getNumOccurrences()) 512 MaxVecRegSize = MaxVectorRegSizeOption; 513 else 514 MaxVecRegSize = TTI->getRegisterBitWidth(true); 515 516 if (MinVectorRegSizeOption.getNumOccurrences()) 517 MinVecRegSize = MinVectorRegSizeOption; 518 else 519 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 520 } 521 522 /// Vectorize the tree that starts with the elements in \p VL. 523 /// Returns the vectorized root. 524 Value *vectorizeTree(); 525 526 /// Vectorize the tree but with the list of externally used values \p 527 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 528 /// generated extractvalue instructions. 529 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 530 531 /// \returns the cost incurred by unwanted spills and fills, caused by 532 /// holding live values over call sites. 533 int getSpillCost() const; 534 535 /// \returns the vectorization cost of the subtree that starts at \p VL. 536 /// A negative number means that this is profitable. 537 int getTreeCost(); 538 539 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 540 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 541 void buildTree(ArrayRef<Value *> Roots, 542 ArrayRef<Value *> UserIgnoreLst = None); 543 544 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 545 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 546 /// into account (anf updating it, if required) list of externally used 547 /// values stored in \p ExternallyUsedValues. 548 void buildTree(ArrayRef<Value *> Roots, 549 ExtraValueToDebugLocsMap &ExternallyUsedValues, 550 ArrayRef<Value *> UserIgnoreLst = None); 551 552 /// Clear the internal data structures that are created by 'buildTree'. 553 void deleteTree() { 554 VectorizableTree.clear(); 555 ScalarToTreeEntry.clear(); 556 MustGather.clear(); 557 ExternalUses.clear(); 558 NumOpsWantToKeepOrder.clear(); 559 NumOpsWantToKeepOriginalOrder = 0; 560 for (auto &Iter : BlocksSchedules) { 561 BlockScheduling *BS = Iter.second.get(); 562 BS->clear(); 563 } 564 MinBWs.clear(); 565 } 566 567 unsigned getTreeSize() const { return VectorizableTree.size(); } 568 569 /// Perform LICM and CSE on the newly generated gather sequences. 570 void optimizeGatherSequence(); 571 572 /// \returns The best order of instructions for vectorization. 573 Optional<ArrayRef<unsigned>> bestOrder() const { 574 auto I = std::max_element( 575 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 576 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 577 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 578 return D1.second < D2.second; 579 }); 580 if (I == NumOpsWantToKeepOrder.end() || 581 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 582 return None; 583 584 return makeArrayRef(I->getFirst()); 585 } 586 587 /// \return The vector element size in bits to use when vectorizing the 588 /// expression tree ending at \p V. If V is a store, the size is the width of 589 /// the stored value. Otherwise, the size is the width of the largest loaded 590 /// value reaching V. This method is used by the vectorizer to calculate 591 /// vectorization factors. 592 unsigned getVectorElementSize(Value *V) const; 593 594 /// Compute the minimum type sizes required to represent the entries in a 595 /// vectorizable tree. 596 void computeMinimumValueSizes(); 597 598 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 599 unsigned getMaxVecRegSize() const { 600 return MaxVecRegSize; 601 } 602 603 // \returns minimum vector register size as set by cl::opt. 604 unsigned getMinVecRegSize() const { 605 return MinVecRegSize; 606 } 607 608 /// Check if ArrayType or StructType is isomorphic to some VectorType. 609 /// 610 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 611 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 612 613 /// \returns True if the VectorizableTree is both tiny and not fully 614 /// vectorizable. We do not vectorize such trees. 615 bool isTreeTinyAndNotFullyVectorizable() const; 616 617 OptimizationRemarkEmitter *getORE() { return ORE; } 618 619 /// This structure holds any data we need about the edges being traversed 620 /// during buildTree_rec(). We keep track of: 621 /// (i) the user TreeEntry index, and 622 /// (ii) the index of the edge. 623 struct EdgeInfo { 624 EdgeInfo() = default; 625 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 626 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 627 /// The user TreeEntry. 628 TreeEntry *UserTE = nullptr; 629 /// The operand index of the use. 630 unsigned EdgeIdx = UINT_MAX; 631 #ifndef NDEBUG 632 friend inline raw_ostream &operator<<(raw_ostream &OS, 633 const BoUpSLP::EdgeInfo &EI) { 634 EI.dump(OS); 635 return OS; 636 } 637 /// Debug print. 638 void dump(raw_ostream &OS) const { 639 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 640 << " EdgeIdx:" << EdgeIdx << "}"; 641 } 642 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 643 #endif 644 }; 645 646 /// A helper data structure to hold the operands of a vector of instructions. 647 /// This supports a fixed vector length for all operand vectors. 648 class VLOperands { 649 /// For each operand we need (i) the value, and (ii) the opcode that it 650 /// would be attached to if the expression was in a left-linearized form. 651 /// This is required to avoid illegal operand reordering. 652 /// For example: 653 /// \verbatim 654 /// 0 Op1 655 /// |/ 656 /// Op1 Op2 Linearized + Op2 657 /// \ / ----------> |/ 658 /// - - 659 /// 660 /// Op1 - Op2 (0 + Op1) - Op2 661 /// \endverbatim 662 /// 663 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 664 /// 665 /// Another way to think of this is to track all the operations across the 666 /// path from the operand all the way to the root of the tree and to 667 /// calculate the operation that corresponds to this path. For example, the 668 /// path from Op2 to the root crosses the RHS of the '-', therefore the 669 /// corresponding operation is a '-' (which matches the one in the 670 /// linearized tree, as shown above). 671 /// 672 /// For lack of a better term, we refer to this operation as Accumulated 673 /// Path Operation (APO). 674 struct OperandData { 675 OperandData() = default; 676 OperandData(Value *V, bool APO, bool IsUsed) 677 : V(V), APO(APO), IsUsed(IsUsed) {} 678 /// The operand value. 679 Value *V = nullptr; 680 /// TreeEntries only allow a single opcode, or an alternate sequence of 681 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 682 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 683 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 684 /// (e.g., Add/Mul) 685 bool APO = false; 686 /// Helper data for the reordering function. 687 bool IsUsed = false; 688 }; 689 690 /// During operand reordering, we are trying to select the operand at lane 691 /// that matches best with the operand at the neighboring lane. Our 692 /// selection is based on the type of value we are looking for. For example, 693 /// if the neighboring lane has a load, we need to look for a load that is 694 /// accessing a consecutive address. These strategies are summarized in the 695 /// 'ReorderingMode' enumerator. 696 enum class ReorderingMode { 697 Load, ///< Matching loads to consecutive memory addresses 698 Opcode, ///< Matching instructions based on opcode (same or alternate) 699 Constant, ///< Matching constants 700 Splat, ///< Matching the same instruction multiple times (broadcast) 701 Failed, ///< We failed to create a vectorizable group 702 }; 703 704 using OperandDataVec = SmallVector<OperandData, 2>; 705 706 /// A vector of operand vectors. 707 SmallVector<OperandDataVec, 4> OpsVec; 708 709 const DataLayout &DL; 710 ScalarEvolution &SE; 711 712 /// \returns the operand data at \p OpIdx and \p Lane. 713 OperandData &getData(unsigned OpIdx, unsigned Lane) { 714 return OpsVec[OpIdx][Lane]; 715 } 716 717 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 718 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 719 return OpsVec[OpIdx][Lane]; 720 } 721 722 /// Clears the used flag for all entries. 723 void clearUsed() { 724 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 725 OpIdx != NumOperands; ++OpIdx) 726 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 727 ++Lane) 728 OpsVec[OpIdx][Lane].IsUsed = false; 729 } 730 731 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 732 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 733 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 734 } 735 736 // Search all operands in Ops[*][Lane] for the one that matches best 737 // Ops[OpIdx][LastLane] and return its opreand index. 738 // If no good match can be found, return None. 739 Optional<unsigned> 740 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 741 ArrayRef<ReorderingMode> ReorderingModes) { 742 unsigned NumOperands = getNumOperands(); 743 744 // The operand of the previous lane at OpIdx. 745 Value *OpLastLane = getData(OpIdx, LastLane).V; 746 747 // Our strategy mode for OpIdx. 748 ReorderingMode RMode = ReorderingModes[OpIdx]; 749 750 // The linearized opcode of the operand at OpIdx, Lane. 751 bool OpIdxAPO = getData(OpIdx, Lane).APO; 752 753 const unsigned BestScore = 2; 754 const unsigned GoodScore = 1; 755 756 // The best operand index and its score. 757 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 758 // are using the score to differentiate between the two. 759 struct BestOpData { 760 Optional<unsigned> Idx = None; 761 unsigned Score = 0; 762 } BestOp; 763 764 // Iterate through all unused operands and look for the best. 765 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 766 // Get the operand at Idx and Lane. 767 OperandData &OpData = getData(Idx, Lane); 768 Value *Op = OpData.V; 769 bool OpAPO = OpData.APO; 770 771 // Skip already selected operands. 772 if (OpData.IsUsed) 773 continue; 774 775 // Skip if we are trying to move the operand to a position with a 776 // different opcode in the linearized tree form. This would break the 777 // semantics. 778 if (OpAPO != OpIdxAPO) 779 continue; 780 781 // Look for an operand that matches the current mode. 782 switch (RMode) { 783 case ReorderingMode::Load: 784 if (isa<LoadInst>(Op)) { 785 // Figure out which is left and right, so that we can check for 786 // consecutive loads 787 bool LeftToRight = Lane > LastLane; 788 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 789 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 790 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 791 cast<LoadInst>(OpRight), DL, SE)) 792 BestOp.Idx = Idx; 793 } 794 break; 795 case ReorderingMode::Opcode: 796 // We accept both Instructions and Undefs, but with different scores. 797 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 798 cast<Instruction>(Op)->getOpcode() == 799 cast<Instruction>(OpLastLane)->getOpcode()) || 800 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 801 isa<UndefValue>(Op)) { 802 // An instruction has a higher score than an undef. 803 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 804 if (Score > BestOp.Score) { 805 BestOp.Idx = Idx; 806 BestOp.Score = Score; 807 } 808 } 809 break; 810 case ReorderingMode::Constant: 811 if (isa<Constant>(Op)) { 812 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 813 if (Score > BestOp.Score) { 814 BestOp.Idx = Idx; 815 BestOp.Score = Score; 816 } 817 } 818 break; 819 case ReorderingMode::Splat: 820 if (Op == OpLastLane) 821 BestOp.Idx = Idx; 822 break; 823 case ReorderingMode::Failed: 824 return None; 825 } 826 } 827 828 if (BestOp.Idx) { 829 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 830 return BestOp.Idx; 831 } 832 // If we could not find a good match return None. 833 return None; 834 } 835 836 /// Helper for reorderOperandVecs. \Returns the lane that we should start 837 /// reordering from. This is the one which has the least number of operands 838 /// that can freely move about. 839 unsigned getBestLaneToStartReordering() const { 840 unsigned BestLane = 0; 841 unsigned Min = UINT_MAX; 842 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 843 ++Lane) { 844 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 845 if (NumFreeOps < Min) { 846 Min = NumFreeOps; 847 BestLane = Lane; 848 } 849 } 850 return BestLane; 851 } 852 853 /// \Returns the maximum number of operands that are allowed to be reordered 854 /// for \p Lane. This is used as a heuristic for selecting the first lane to 855 /// start operand reordering. 856 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 857 unsigned CntTrue = 0; 858 unsigned NumOperands = getNumOperands(); 859 // Operands with the same APO can be reordered. We therefore need to count 860 // how many of them we have for each APO, like this: Cnt[APO] = x. 861 // Since we only have two APOs, namely true and false, we can avoid using 862 // a map. Instead we can simply count the number of operands that 863 // correspond to one of them (in this case the 'true' APO), and calculate 864 // the other by subtracting it from the total number of operands. 865 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 866 if (getData(OpIdx, Lane).APO) 867 ++CntTrue; 868 unsigned CntFalse = NumOperands - CntTrue; 869 return std::max(CntTrue, CntFalse); 870 } 871 872 /// Go through the instructions in VL and append their operands. 873 void appendOperandsOfVL(ArrayRef<Value *> VL) { 874 assert(!VL.empty() && "Bad VL"); 875 assert((empty() || VL.size() == getNumLanes()) && 876 "Expected same number of lanes"); 877 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 878 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 879 OpsVec.resize(NumOperands); 880 unsigned NumLanes = VL.size(); 881 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 882 OpsVec[OpIdx].resize(NumLanes); 883 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 884 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 885 // Our tree has just 3 nodes: the root and two operands. 886 // It is therefore trivial to get the APO. We only need to check the 887 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 888 // RHS operand. The LHS operand of both add and sub is never attached 889 // to an inversese operation in the linearized form, therefore its APO 890 // is false. The RHS is true only if VL[Lane] is an inverse operation. 891 892 // Since operand reordering is performed on groups of commutative 893 // operations or alternating sequences (e.g., +, -), we can safely 894 // tell the inverse operations by checking commutativity. 895 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 896 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 897 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 898 APO, false}; 899 } 900 } 901 } 902 903 /// \returns the number of operands. 904 unsigned getNumOperands() const { return OpsVec.size(); } 905 906 /// \returns the number of lanes. 907 unsigned getNumLanes() const { return OpsVec[0].size(); } 908 909 /// \returns the operand value at \p OpIdx and \p Lane. 910 Value *getValue(unsigned OpIdx, unsigned Lane) const { 911 return getData(OpIdx, Lane).V; 912 } 913 914 /// \returns true if the data structure is empty. 915 bool empty() const { return OpsVec.empty(); } 916 917 /// Clears the data. 918 void clear() { OpsVec.clear(); } 919 920 public: 921 /// Initialize with all the operands of the instruction vector \p RootVL. 922 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 923 ScalarEvolution &SE) 924 : DL(DL), SE(SE) { 925 // Append all the operands of RootVL. 926 appendOperandsOfVL(RootVL); 927 } 928 929 /// \Returns a value vector with the operands across all lanes for the 930 /// opearnd at \p OpIdx. 931 ValueList getVL(unsigned OpIdx) const { 932 ValueList OpVL(OpsVec[OpIdx].size()); 933 assert(OpsVec[OpIdx].size() == getNumLanes() && 934 "Expected same num of lanes across all operands"); 935 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 936 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 937 return OpVL; 938 } 939 940 // Performs operand reordering for 2 or more operands. 941 // The original operands are in OrigOps[OpIdx][Lane]. 942 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 943 void reorder() { 944 unsigned NumOperands = getNumOperands(); 945 unsigned NumLanes = getNumLanes(); 946 // Each operand has its own mode. We are using this mode to help us select 947 // the instructions for each lane, so that they match best with the ones 948 // we have selected so far. 949 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 950 951 // This is a greedy single-pass algorithm. We are going over each lane 952 // once and deciding on the best order right away with no back-tracking. 953 // However, in order to increase its effectiveness, we start with the lane 954 // that has operands that can move the least. For example, given the 955 // following lanes: 956 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 957 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 958 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 959 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 960 // we will start at Lane 1, since the operands of the subtraction cannot 961 // be reordered. Then we will visit the rest of the lanes in a circular 962 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 963 964 // Find the first lane that we will start our search from. 965 unsigned FirstLane = getBestLaneToStartReordering(); 966 967 // Initialize the modes. 968 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 969 Value *OpLane0 = getValue(OpIdx, FirstLane); 970 // Keep track if we have instructions with all the same opcode on one 971 // side. 972 if (isa<LoadInst>(OpLane0)) 973 ReorderingModes[OpIdx] = ReorderingMode::Load; 974 else if (isa<Instruction>(OpLane0)) 975 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 976 else if (isa<Constant>(OpLane0)) 977 ReorderingModes[OpIdx] = ReorderingMode::Constant; 978 else if (isa<Argument>(OpLane0)) 979 // Our best hope is a Splat. It may save some cost in some cases. 980 ReorderingModes[OpIdx] = ReorderingMode::Splat; 981 else 982 // NOTE: This should be unreachable. 983 ReorderingModes[OpIdx] = ReorderingMode::Failed; 984 } 985 986 // If the initial strategy fails for any of the operand indexes, then we 987 // perform reordering again in a second pass. This helps avoid assigning 988 // high priority to the failed strategy, and should improve reordering for 989 // the non-failed operand indexes. 990 for (int Pass = 0; Pass != 2; ++Pass) { 991 // Skip the second pass if the first pass did not fail. 992 bool StrategyFailed = false; 993 // Mark the operand data as free to use for all but the first pass. 994 if (Pass > 0) 995 clearUsed(); 996 // We keep the original operand order for the FirstLane, so reorder the 997 // rest of the lanes. We are visiting the nodes in a circular fashion, 998 // using FirstLane as the center point and increasing the radius 999 // distance. 1000 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1001 // Visit the lane on the right and then the lane on the left. 1002 for (int Direction : {+1, -1}) { 1003 int Lane = FirstLane + Direction * Distance; 1004 if (Lane < 0 || Lane >= (int)NumLanes) 1005 continue; 1006 int LastLane = Lane - Direction; 1007 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1008 "Out of bounds"); 1009 // Look for a good match for each operand. 1010 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1011 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1012 Optional<unsigned> BestIdx = 1013 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1014 // By not selecting a value, we allow the operands that follow to 1015 // select a better matching value. We will get a non-null value in 1016 // the next run of getBestOperand(). 1017 if (BestIdx) { 1018 // Swap the current operand with the one returned by 1019 // getBestOperand(). 1020 swap(OpIdx, BestIdx.getValue(), Lane); 1021 } else { 1022 // We failed to find a best operand, set mode to 'Failed'. 1023 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1024 // Enable the second pass. 1025 StrategyFailed = true; 1026 } 1027 } 1028 } 1029 } 1030 // Skip second pass if the strategy did not fail. 1031 if (!StrategyFailed) 1032 break; 1033 } 1034 } 1035 1036 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1037 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1038 switch (RMode) { 1039 case ReorderingMode::Load: 1040 return "Load"; 1041 case ReorderingMode::Opcode: 1042 return "Opcode"; 1043 case ReorderingMode::Constant: 1044 return "Constant"; 1045 case ReorderingMode::Splat: 1046 return "Splat"; 1047 case ReorderingMode::Failed: 1048 return "Failed"; 1049 } 1050 llvm_unreachable("Unimplemented Reordering Type"); 1051 } 1052 1053 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1054 raw_ostream &OS) { 1055 return OS << getModeStr(RMode); 1056 } 1057 1058 /// Debug print. 1059 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1060 printMode(RMode, dbgs()); 1061 } 1062 1063 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1064 return printMode(RMode, OS); 1065 } 1066 1067 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1068 const unsigned Indent = 2; 1069 unsigned Cnt = 0; 1070 for (const OperandDataVec &OpDataVec : OpsVec) { 1071 OS << "Operand " << Cnt++ << "\n"; 1072 for (const OperandData &OpData : OpDataVec) { 1073 OS.indent(Indent) << "{"; 1074 if (Value *V = OpData.V) 1075 OS << *V; 1076 else 1077 OS << "null"; 1078 OS << ", APO:" << OpData.APO << "}\n"; 1079 } 1080 OS << "\n"; 1081 } 1082 return OS; 1083 } 1084 1085 /// Debug print. 1086 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1087 #endif 1088 }; 1089 1090 private: 1091 /// Checks if all users of \p I are the part of the vectorization tree. 1092 bool areAllUsersVectorized(Instruction *I) const; 1093 1094 /// \returns the cost of the vectorizable entry. 1095 int getEntryCost(TreeEntry *E); 1096 1097 /// This is the recursive part of buildTree. 1098 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1099 const EdgeInfo &EI); 1100 1101 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1102 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1103 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1104 /// returns false, setting \p CurrentOrder to either an empty vector or a 1105 /// non-identity permutation that allows to reuse extract instructions. 1106 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1107 SmallVectorImpl<unsigned> &CurrentOrder) const; 1108 1109 /// Vectorize a single entry in the tree. 1110 Value *vectorizeTree(TreeEntry *E); 1111 1112 /// Vectorize a single entry in the tree, starting in \p VL. 1113 Value *vectorizeTree(ArrayRef<Value *> VL); 1114 1115 /// \returns the scalarization cost for this type. Scalarization in this 1116 /// context means the creation of vectors from a group of scalars. 1117 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1118 1119 /// \returns the scalarization cost for this list of values. Assuming that 1120 /// this subtree gets vectorized, we may need to extract the values from the 1121 /// roots. This method calculates the cost of extracting the values. 1122 int getGatherCost(ArrayRef<Value *> VL) const; 1123 1124 /// Set the Builder insert point to one after the last instruction in 1125 /// the bundle 1126 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 1127 const InstructionsState &S); 1128 1129 /// \returns a vector from a collection of scalars in \p VL. 1130 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1131 1132 /// \returns whether the VectorizableTree is fully vectorizable and will 1133 /// be beneficial even the tree height is tiny. 1134 bool isFullyVectorizableTinyTree() const; 1135 1136 /// Reorder commutative or alt operands to get better probability of 1137 /// generating vectorized code. 1138 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1139 SmallVectorImpl<Value *> &Left, 1140 SmallVectorImpl<Value *> &Right, 1141 const DataLayout &DL, 1142 ScalarEvolution &SE); 1143 struct TreeEntry { 1144 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1145 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1146 1147 /// \returns true if the scalars in VL are equal to this entry. 1148 bool isSame(ArrayRef<Value *> VL) const { 1149 if (VL.size() == Scalars.size()) 1150 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1151 return VL.size() == ReuseShuffleIndices.size() && 1152 std::equal( 1153 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1154 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1155 } 1156 1157 /// A vector of scalars. 1158 ValueList Scalars; 1159 1160 /// The Scalars are vectorized into this value. It is initialized to Null. 1161 Value *VectorizedValue = nullptr; 1162 1163 /// Do we need to gather this sequence ? 1164 bool NeedToGather = false; 1165 1166 /// Does this sequence require some shuffling? 1167 SmallVector<unsigned, 4> ReuseShuffleIndices; 1168 1169 /// Does this entry require reordering? 1170 ArrayRef<unsigned> ReorderIndices; 1171 1172 /// Points back to the VectorizableTree. 1173 /// 1174 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1175 /// to be a pointer and needs to be able to initialize the child iterator. 1176 /// Thus we need a reference back to the container to translate the indices 1177 /// to entries. 1178 VecTreeTy &Container; 1179 1180 /// The TreeEntry index containing the user of this entry. We can actually 1181 /// have multiple users so the data structure is not truly a tree. 1182 SmallVector<EdgeInfo, 1> UserTreeIndices; 1183 1184 /// The index of this treeEntry in VectorizableTree. 1185 int Idx = -1; 1186 1187 private: 1188 /// The operands of each instruction in each lane Operands[op_index][lane]. 1189 /// Note: This helps avoid the replication of the code that performs the 1190 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1191 SmallVector<ValueList, 2> Operands; 1192 1193 public: 1194 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1195 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 1196 ArrayRef<unsigned> ReuseShuffleIndices) { 1197 if (Operands.size() < OpIdx + 1) 1198 Operands.resize(OpIdx + 1); 1199 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1200 Operands[OpIdx].resize(Scalars.size()); 1201 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1202 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 1203 ? OpVL[ReuseShuffleIndices[Lane]] 1204 : OpVL[Lane]; 1205 } 1206 1207 /// If there is a user TreeEntry, then set its operand. 1208 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 1209 ArrayRef<Value *> OpVL, 1210 ArrayRef<unsigned> ReuseShuffleIndices) { 1211 if (UserTreeIdx.UserTE) 1212 UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL, 1213 ReuseShuffleIndices); 1214 } 1215 1216 /// \returns the \p OpIdx operand of this TreeEntry. 1217 ValueList &getOperand(unsigned OpIdx) { 1218 assert(OpIdx < Operands.size() && "Off bounds"); 1219 return Operands[OpIdx]; 1220 } 1221 1222 /// \return the single \p OpIdx operand. 1223 Value *getSingleOperand(unsigned OpIdx) const { 1224 assert(OpIdx < Operands.size() && "Off bounds"); 1225 assert(!Operands[OpIdx].empty() && "No operand availabe"); 1226 return Operands[OpIdx][0]; 1227 } 1228 1229 #ifndef NDEBUG 1230 /// Debug printer. 1231 LLVM_DUMP_METHOD void dump() const { 1232 dbgs() << Idx << ".\n"; 1233 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1234 dbgs() << "Operand " << OpI << ":\n"; 1235 for (const Value *V : Operands[OpI]) 1236 dbgs().indent(2) << *V << "\n"; 1237 } 1238 dbgs() << "Scalars: \n"; 1239 for (Value *V : Scalars) 1240 dbgs().indent(2) << *V << "\n"; 1241 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1242 dbgs() << "VectorizedValue: "; 1243 if (VectorizedValue) 1244 dbgs() << *VectorizedValue; 1245 else 1246 dbgs() << "NULL"; 1247 dbgs() << "\n"; 1248 dbgs() << "ReuseShuffleIndices: "; 1249 if (ReuseShuffleIndices.empty()) 1250 dbgs() << "Emtpy"; 1251 else 1252 for (unsigned Idx : ReuseShuffleIndices) 1253 dbgs() << Idx << ", "; 1254 dbgs() << "\n"; 1255 dbgs() << "ReorderIndices: "; 1256 for (unsigned Idx : ReorderIndices) 1257 dbgs() << Idx << ", "; 1258 dbgs() << "\n"; 1259 dbgs() << "UserTreeIndices: "; 1260 for (const auto &EInfo : UserTreeIndices) 1261 dbgs() << EInfo << ", "; 1262 dbgs() << "\n"; 1263 } 1264 #endif 1265 }; 1266 1267 /// Create a new VectorizableTree entry. 1268 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 1269 const EdgeInfo &UserTreeIdx, 1270 ArrayRef<unsigned> ReuseShuffleIndices = None, 1271 ArrayRef<unsigned> ReorderIndices = None) { 1272 VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree)); 1273 TreeEntry *Last = VectorizableTree.back().get(); 1274 Last->Idx = VectorizableTree.size() - 1; 1275 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1276 Last->NeedToGather = !Vectorized; 1277 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1278 ReuseShuffleIndices.end()); 1279 Last->ReorderIndices = ReorderIndices; 1280 if (Vectorized) { 1281 for (int i = 0, e = VL.size(); i != e; ++i) { 1282 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1283 ScalarToTreeEntry[VL[i]] = Last->Idx; 1284 } 1285 } else { 1286 MustGather.insert(VL.begin(), VL.end()); 1287 } 1288 1289 if (UserTreeIdx.UserTE) 1290 Last->UserTreeIndices.push_back(UserTreeIdx); 1291 1292 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 1293 return Last; 1294 } 1295 1296 /// -- Vectorization State -- 1297 /// Holds all of the tree entries. 1298 TreeEntry::VecTreeTy VectorizableTree; 1299 1300 #ifndef NDEBUG 1301 /// Debug printer. 1302 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1303 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1304 VectorizableTree[Id]->dump(); 1305 dbgs() << "\n"; 1306 } 1307 } 1308 #endif 1309 1310 TreeEntry *getTreeEntry(Value *V) { 1311 auto I = ScalarToTreeEntry.find(V); 1312 if (I != ScalarToTreeEntry.end()) 1313 return VectorizableTree[I->second].get(); 1314 return nullptr; 1315 } 1316 1317 const TreeEntry *getTreeEntry(Value *V) const { 1318 auto I = ScalarToTreeEntry.find(V); 1319 if (I != ScalarToTreeEntry.end()) 1320 return VectorizableTree[I->second].get(); 1321 return nullptr; 1322 } 1323 1324 /// Maps a specific scalar to its tree entry. 1325 SmallDenseMap<Value*, int> ScalarToTreeEntry; 1326 1327 /// A list of scalars that we found that we need to keep as scalars. 1328 ValueSet MustGather; 1329 1330 /// This POD struct describes one external user in the vectorized tree. 1331 struct ExternalUser { 1332 ExternalUser(Value *S, llvm::User *U, int L) 1333 : Scalar(S), User(U), Lane(L) {} 1334 1335 // Which scalar in our function. 1336 Value *Scalar; 1337 1338 // Which user that uses the scalar. 1339 llvm::User *User; 1340 1341 // Which lane does the scalar belong to. 1342 int Lane; 1343 }; 1344 using UserList = SmallVector<ExternalUser, 16>; 1345 1346 /// Checks if two instructions may access the same memory. 1347 /// 1348 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1349 /// is invariant in the calling loop. 1350 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1351 Instruction *Inst2) { 1352 // First check if the result is already in the cache. 1353 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1354 Optional<bool> &result = AliasCache[key]; 1355 if (result.hasValue()) { 1356 return result.getValue(); 1357 } 1358 MemoryLocation Loc2 = getLocation(Inst2, AA); 1359 bool aliased = true; 1360 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1361 // Do the alias check. 1362 aliased = AA->alias(Loc1, Loc2); 1363 } 1364 // Store the result in the cache. 1365 result = aliased; 1366 return aliased; 1367 } 1368 1369 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1370 1371 /// Cache for alias results. 1372 /// TODO: consider moving this to the AliasAnalysis itself. 1373 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1374 1375 /// Removes an instruction from its block and eventually deletes it. 1376 /// It's like Instruction::eraseFromParent() except that the actual deletion 1377 /// is delayed until BoUpSLP is destructed. 1378 /// This is required to ensure that there are no incorrect collisions in the 1379 /// AliasCache, which can happen if a new instruction is allocated at the 1380 /// same address as a previously deleted instruction. 1381 void eraseInstruction(Instruction *I) { 1382 I->removeFromParent(); 1383 I->dropAllReferences(); 1384 DeletedInstructions.emplace_back(I); 1385 } 1386 1387 /// Temporary store for deleted instructions. Instructions will be deleted 1388 /// eventually when the BoUpSLP is destructed. 1389 SmallVector<unique_value, 8> DeletedInstructions; 1390 1391 /// A list of values that need to extracted out of the tree. 1392 /// This list holds pairs of (Internal Scalar : External User). External User 1393 /// can be nullptr, it means that this Internal Scalar will be used later, 1394 /// after vectorization. 1395 UserList ExternalUses; 1396 1397 /// Values used only by @llvm.assume calls. 1398 SmallPtrSet<const Value *, 32> EphValues; 1399 1400 /// Holds all of the instructions that we gathered. 1401 SetVector<Instruction *> GatherSeq; 1402 1403 /// A list of blocks that we are going to CSE. 1404 SetVector<BasicBlock *> CSEBlocks; 1405 1406 /// Contains all scheduling relevant data for an instruction. 1407 /// A ScheduleData either represents a single instruction or a member of an 1408 /// instruction bundle (= a group of instructions which is combined into a 1409 /// vector instruction). 1410 struct ScheduleData { 1411 // The initial value for the dependency counters. It means that the 1412 // dependencies are not calculated yet. 1413 enum { InvalidDeps = -1 }; 1414 1415 ScheduleData() = default; 1416 1417 void init(int BlockSchedulingRegionID, Value *OpVal) { 1418 FirstInBundle = this; 1419 NextInBundle = nullptr; 1420 NextLoadStore = nullptr; 1421 IsScheduled = false; 1422 SchedulingRegionID = BlockSchedulingRegionID; 1423 UnscheduledDepsInBundle = UnscheduledDeps; 1424 clearDependencies(); 1425 OpValue = OpVal; 1426 } 1427 1428 /// Returns true if the dependency information has been calculated. 1429 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1430 1431 /// Returns true for single instructions and for bundle representatives 1432 /// (= the head of a bundle). 1433 bool isSchedulingEntity() const { return FirstInBundle == this; } 1434 1435 /// Returns true if it represents an instruction bundle and not only a 1436 /// single instruction. 1437 bool isPartOfBundle() const { 1438 return NextInBundle != nullptr || FirstInBundle != this; 1439 } 1440 1441 /// Returns true if it is ready for scheduling, i.e. it has no more 1442 /// unscheduled depending instructions/bundles. 1443 bool isReady() const { 1444 assert(isSchedulingEntity() && 1445 "can't consider non-scheduling entity for ready list"); 1446 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1447 } 1448 1449 /// Modifies the number of unscheduled dependencies, also updating it for 1450 /// the whole bundle. 1451 int incrementUnscheduledDeps(int Incr) { 1452 UnscheduledDeps += Incr; 1453 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1454 } 1455 1456 /// Sets the number of unscheduled dependencies to the number of 1457 /// dependencies. 1458 void resetUnscheduledDeps() { 1459 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1460 } 1461 1462 /// Clears all dependency information. 1463 void clearDependencies() { 1464 Dependencies = InvalidDeps; 1465 resetUnscheduledDeps(); 1466 MemoryDependencies.clear(); 1467 } 1468 1469 void dump(raw_ostream &os) const { 1470 if (!isSchedulingEntity()) { 1471 os << "/ " << *Inst; 1472 } else if (NextInBundle) { 1473 os << '[' << *Inst; 1474 ScheduleData *SD = NextInBundle; 1475 while (SD) { 1476 os << ';' << *SD->Inst; 1477 SD = SD->NextInBundle; 1478 } 1479 os << ']'; 1480 } else { 1481 os << *Inst; 1482 } 1483 } 1484 1485 Instruction *Inst = nullptr; 1486 1487 /// Points to the head in an instruction bundle (and always to this for 1488 /// single instructions). 1489 ScheduleData *FirstInBundle = nullptr; 1490 1491 /// Single linked list of all instructions in a bundle. Null if it is a 1492 /// single instruction. 1493 ScheduleData *NextInBundle = nullptr; 1494 1495 /// Single linked list of all memory instructions (e.g. load, store, call) 1496 /// in the block - until the end of the scheduling region. 1497 ScheduleData *NextLoadStore = nullptr; 1498 1499 /// The dependent memory instructions. 1500 /// This list is derived on demand in calculateDependencies(). 1501 SmallVector<ScheduleData *, 4> MemoryDependencies; 1502 1503 /// This ScheduleData is in the current scheduling region if this matches 1504 /// the current SchedulingRegionID of BlockScheduling. 1505 int SchedulingRegionID = 0; 1506 1507 /// Used for getting a "good" final ordering of instructions. 1508 int SchedulingPriority = 0; 1509 1510 /// The number of dependencies. Constitutes of the number of users of the 1511 /// instruction plus the number of dependent memory instructions (if any). 1512 /// This value is calculated on demand. 1513 /// If InvalidDeps, the number of dependencies is not calculated yet. 1514 int Dependencies = InvalidDeps; 1515 1516 /// The number of dependencies minus the number of dependencies of scheduled 1517 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1518 /// for scheduling. 1519 /// Note that this is negative as long as Dependencies is not calculated. 1520 int UnscheduledDeps = InvalidDeps; 1521 1522 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1523 /// single instructions. 1524 int UnscheduledDepsInBundle = InvalidDeps; 1525 1526 /// True if this instruction is scheduled (or considered as scheduled in the 1527 /// dry-run). 1528 bool IsScheduled = false; 1529 1530 /// Opcode of the current instruction in the schedule data. 1531 Value *OpValue = nullptr; 1532 }; 1533 1534 #ifndef NDEBUG 1535 friend inline raw_ostream &operator<<(raw_ostream &os, 1536 const BoUpSLP::ScheduleData &SD) { 1537 SD.dump(os); 1538 return os; 1539 } 1540 #endif 1541 1542 friend struct GraphTraits<BoUpSLP *>; 1543 friend struct DOTGraphTraits<BoUpSLP *>; 1544 1545 /// Contains all scheduling data for a basic block. 1546 struct BlockScheduling { 1547 BlockScheduling(BasicBlock *BB) 1548 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1549 1550 void clear() { 1551 ReadyInsts.clear(); 1552 ScheduleStart = nullptr; 1553 ScheduleEnd = nullptr; 1554 FirstLoadStoreInRegion = nullptr; 1555 LastLoadStoreInRegion = nullptr; 1556 1557 // Reduce the maximum schedule region size by the size of the 1558 // previous scheduling run. 1559 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1560 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1561 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1562 ScheduleRegionSize = 0; 1563 1564 // Make a new scheduling region, i.e. all existing ScheduleData is not 1565 // in the new region yet. 1566 ++SchedulingRegionID; 1567 } 1568 1569 ScheduleData *getScheduleData(Value *V) { 1570 ScheduleData *SD = ScheduleDataMap[V]; 1571 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1572 return SD; 1573 return nullptr; 1574 } 1575 1576 ScheduleData *getScheduleData(Value *V, Value *Key) { 1577 if (V == Key) 1578 return getScheduleData(V); 1579 auto I = ExtraScheduleDataMap.find(V); 1580 if (I != ExtraScheduleDataMap.end()) { 1581 ScheduleData *SD = I->second[Key]; 1582 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1583 return SD; 1584 } 1585 return nullptr; 1586 } 1587 1588 bool isInSchedulingRegion(ScheduleData *SD) { 1589 return SD->SchedulingRegionID == SchedulingRegionID; 1590 } 1591 1592 /// Marks an instruction as scheduled and puts all dependent ready 1593 /// instructions into the ready-list. 1594 template <typename ReadyListType> 1595 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1596 SD->IsScheduled = true; 1597 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1598 1599 ScheduleData *BundleMember = SD; 1600 while (BundleMember) { 1601 if (BundleMember->Inst != BundleMember->OpValue) { 1602 BundleMember = BundleMember->NextInBundle; 1603 continue; 1604 } 1605 // Handle the def-use chain dependencies. 1606 for (Use &U : BundleMember->Inst->operands()) { 1607 auto *I = dyn_cast<Instruction>(U.get()); 1608 if (!I) 1609 continue; 1610 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1611 if (OpDef && OpDef->hasValidDependencies() && 1612 OpDef->incrementUnscheduledDeps(-1) == 0) { 1613 // There are no more unscheduled dependencies after 1614 // decrementing, so we can put the dependent instruction 1615 // into the ready list. 1616 ScheduleData *DepBundle = OpDef->FirstInBundle; 1617 assert(!DepBundle->IsScheduled && 1618 "already scheduled bundle gets ready"); 1619 ReadyList.insert(DepBundle); 1620 LLVM_DEBUG(dbgs() 1621 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1622 } 1623 }); 1624 } 1625 // Handle the memory dependencies. 1626 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1627 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1628 // There are no more unscheduled dependencies after decrementing, 1629 // so we can put the dependent instruction into the ready list. 1630 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1631 assert(!DepBundle->IsScheduled && 1632 "already scheduled bundle gets ready"); 1633 ReadyList.insert(DepBundle); 1634 LLVM_DEBUG(dbgs() 1635 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1636 } 1637 } 1638 BundleMember = BundleMember->NextInBundle; 1639 } 1640 } 1641 1642 void doForAllOpcodes(Value *V, 1643 function_ref<void(ScheduleData *SD)> Action) { 1644 if (ScheduleData *SD = getScheduleData(V)) 1645 Action(SD); 1646 auto I = ExtraScheduleDataMap.find(V); 1647 if (I != ExtraScheduleDataMap.end()) 1648 for (auto &P : I->second) 1649 if (P.second->SchedulingRegionID == SchedulingRegionID) 1650 Action(P.second); 1651 } 1652 1653 /// Put all instructions into the ReadyList which are ready for scheduling. 1654 template <typename ReadyListType> 1655 void initialFillReadyList(ReadyListType &ReadyList) { 1656 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1657 doForAllOpcodes(I, [&](ScheduleData *SD) { 1658 if (SD->isSchedulingEntity() && SD->isReady()) { 1659 ReadyList.insert(SD); 1660 LLVM_DEBUG(dbgs() 1661 << "SLP: initially in ready list: " << *I << "\n"); 1662 } 1663 }); 1664 } 1665 } 1666 1667 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1668 /// cyclic dependencies. This is only a dry-run, no instructions are 1669 /// actually moved at this stage. 1670 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1671 const InstructionsState &S); 1672 1673 /// Un-bundles a group of instructions. 1674 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1675 1676 /// Allocates schedule data chunk. 1677 ScheduleData *allocateScheduleDataChunks(); 1678 1679 /// Extends the scheduling region so that V is inside the region. 1680 /// \returns true if the region size is within the limit. 1681 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1682 1683 /// Initialize the ScheduleData structures for new instructions in the 1684 /// scheduling region. 1685 void initScheduleData(Instruction *FromI, Instruction *ToI, 1686 ScheduleData *PrevLoadStore, 1687 ScheduleData *NextLoadStore); 1688 1689 /// Updates the dependency information of a bundle and of all instructions/ 1690 /// bundles which depend on the original bundle. 1691 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1692 BoUpSLP *SLP); 1693 1694 /// Sets all instruction in the scheduling region to un-scheduled. 1695 void resetSchedule(); 1696 1697 BasicBlock *BB; 1698 1699 /// Simple memory allocation for ScheduleData. 1700 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1701 1702 /// The size of a ScheduleData array in ScheduleDataChunks. 1703 int ChunkSize; 1704 1705 /// The allocator position in the current chunk, which is the last entry 1706 /// of ScheduleDataChunks. 1707 int ChunkPos; 1708 1709 /// Attaches ScheduleData to Instruction. 1710 /// Note that the mapping survives during all vectorization iterations, i.e. 1711 /// ScheduleData structures are recycled. 1712 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1713 1714 /// Attaches ScheduleData to Instruction with the leading key. 1715 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1716 ExtraScheduleDataMap; 1717 1718 struct ReadyList : SmallVector<ScheduleData *, 8> { 1719 void insert(ScheduleData *SD) { push_back(SD); } 1720 }; 1721 1722 /// The ready-list for scheduling (only used for the dry-run). 1723 ReadyList ReadyInsts; 1724 1725 /// The first instruction of the scheduling region. 1726 Instruction *ScheduleStart = nullptr; 1727 1728 /// The first instruction _after_ the scheduling region. 1729 Instruction *ScheduleEnd = nullptr; 1730 1731 /// The first memory accessing instruction in the scheduling region 1732 /// (can be null). 1733 ScheduleData *FirstLoadStoreInRegion = nullptr; 1734 1735 /// The last memory accessing instruction in the scheduling region 1736 /// (can be null). 1737 ScheduleData *LastLoadStoreInRegion = nullptr; 1738 1739 /// The current size of the scheduling region. 1740 int ScheduleRegionSize = 0; 1741 1742 /// The maximum size allowed for the scheduling region. 1743 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1744 1745 /// The ID of the scheduling region. For a new vectorization iteration this 1746 /// is incremented which "removes" all ScheduleData from the region. 1747 // Make sure that the initial SchedulingRegionID is greater than the 1748 // initial SchedulingRegionID in ScheduleData (which is 0). 1749 int SchedulingRegionID = 1; 1750 }; 1751 1752 /// Attaches the BlockScheduling structures to basic blocks. 1753 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1754 1755 /// Performs the "real" scheduling. Done before vectorization is actually 1756 /// performed in a basic block. 1757 void scheduleBlock(BlockScheduling *BS); 1758 1759 /// List of users to ignore during scheduling and that don't need extracting. 1760 ArrayRef<Value *> UserIgnoreList; 1761 1762 using OrdersType = SmallVector<unsigned, 4>; 1763 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1764 /// sorted SmallVectors of unsigned. 1765 struct OrdersTypeDenseMapInfo { 1766 static OrdersType getEmptyKey() { 1767 OrdersType V; 1768 V.push_back(~1U); 1769 return V; 1770 } 1771 1772 static OrdersType getTombstoneKey() { 1773 OrdersType V; 1774 V.push_back(~2U); 1775 return V; 1776 } 1777 1778 static unsigned getHashValue(const OrdersType &V) { 1779 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1780 } 1781 1782 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1783 return LHS == RHS; 1784 } 1785 }; 1786 1787 /// Contains orders of operations along with the number of bundles that have 1788 /// operations in this order. It stores only those orders that require 1789 /// reordering, if reordering is not required it is counted using \a 1790 /// NumOpsWantToKeepOriginalOrder. 1791 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1792 /// Number of bundles that do not require reordering. 1793 unsigned NumOpsWantToKeepOriginalOrder = 0; 1794 1795 // Analysis and block reference. 1796 Function *F; 1797 ScalarEvolution *SE; 1798 TargetTransformInfo *TTI; 1799 TargetLibraryInfo *TLI; 1800 AliasAnalysis *AA; 1801 LoopInfo *LI; 1802 DominatorTree *DT; 1803 AssumptionCache *AC; 1804 DemandedBits *DB; 1805 const DataLayout *DL; 1806 OptimizationRemarkEmitter *ORE; 1807 1808 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1809 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1810 1811 /// Instruction builder to construct the vectorized tree. 1812 IRBuilder<> Builder; 1813 1814 /// A map of scalar integer values to the smallest bit width with which they 1815 /// can legally be represented. The values map to (width, signed) pairs, 1816 /// where "width" indicates the minimum bit width and "signed" is True if the 1817 /// value must be signed-extended, rather than zero-extended, back to its 1818 /// original width. 1819 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1820 }; 1821 1822 } // end namespace slpvectorizer 1823 1824 template <> struct GraphTraits<BoUpSLP *> { 1825 using TreeEntry = BoUpSLP::TreeEntry; 1826 1827 /// NodeRef has to be a pointer per the GraphWriter. 1828 using NodeRef = TreeEntry *; 1829 1830 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1831 1832 /// Add the VectorizableTree to the index iterator to be able to return 1833 /// TreeEntry pointers. 1834 struct ChildIteratorType 1835 : public iterator_adaptor_base< 1836 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1837 ContainerTy &VectorizableTree; 1838 1839 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1840 ContainerTy &VT) 1841 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1842 1843 NodeRef operator*() { return I->UserTE; } 1844 }; 1845 1846 static NodeRef getEntryNode(BoUpSLP &R) { 1847 return R.VectorizableTree[0].get(); 1848 } 1849 1850 static ChildIteratorType child_begin(NodeRef N) { 1851 return {N->UserTreeIndices.begin(), N->Container}; 1852 } 1853 1854 static ChildIteratorType child_end(NodeRef N) { 1855 return {N->UserTreeIndices.end(), N->Container}; 1856 } 1857 1858 /// For the node iterator we just need to turn the TreeEntry iterator into a 1859 /// TreeEntry* iterator so that it dereferences to NodeRef. 1860 class nodes_iterator { 1861 using ItTy = ContainerTy::iterator; 1862 ItTy It; 1863 1864 public: 1865 nodes_iterator(const ItTy &It2) : It(It2) {} 1866 NodeRef operator*() { return It->get(); } 1867 nodes_iterator operator++() { 1868 ++It; 1869 return *this; 1870 } 1871 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 1872 }; 1873 1874 static nodes_iterator nodes_begin(BoUpSLP *R) { 1875 return nodes_iterator(R->VectorizableTree.begin()); 1876 } 1877 1878 static nodes_iterator nodes_end(BoUpSLP *R) { 1879 return nodes_iterator(R->VectorizableTree.end()); 1880 } 1881 1882 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1883 }; 1884 1885 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1886 using TreeEntry = BoUpSLP::TreeEntry; 1887 1888 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1889 1890 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1891 std::string Str; 1892 raw_string_ostream OS(Str); 1893 if (isSplat(Entry->Scalars)) { 1894 OS << "<splat> " << *Entry->Scalars[0]; 1895 return Str; 1896 } 1897 for (auto V : Entry->Scalars) { 1898 OS << *V; 1899 if (std::any_of( 1900 R->ExternalUses.begin(), R->ExternalUses.end(), 1901 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1902 OS << " <extract>"; 1903 OS << "\n"; 1904 } 1905 return Str; 1906 } 1907 1908 static std::string getNodeAttributes(const TreeEntry *Entry, 1909 const BoUpSLP *) { 1910 if (Entry->NeedToGather) 1911 return "color=red"; 1912 return ""; 1913 } 1914 }; 1915 1916 } // end namespace llvm 1917 1918 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1919 ArrayRef<Value *> UserIgnoreLst) { 1920 ExtraValueToDebugLocsMap ExternallyUsedValues; 1921 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1922 } 1923 1924 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1925 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1926 ArrayRef<Value *> UserIgnoreLst) { 1927 deleteTree(); 1928 UserIgnoreList = UserIgnoreLst; 1929 if (!allSameType(Roots)) 1930 return; 1931 buildTree_rec(Roots, 0, EdgeInfo()); 1932 1933 // Collect the values that we need to extract from the tree. 1934 for (auto &TEPtr : VectorizableTree) { 1935 TreeEntry *Entry = TEPtr.get(); 1936 1937 // No need to handle users of gathered values. 1938 if (Entry->NeedToGather) 1939 continue; 1940 1941 // For each lane: 1942 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1943 Value *Scalar = Entry->Scalars[Lane]; 1944 int FoundLane = Lane; 1945 if (!Entry->ReuseShuffleIndices.empty()) { 1946 FoundLane = 1947 std::distance(Entry->ReuseShuffleIndices.begin(), 1948 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1949 } 1950 1951 // Check if the scalar is externally used as an extra arg. 1952 auto ExtI = ExternallyUsedValues.find(Scalar); 1953 if (ExtI != ExternallyUsedValues.end()) { 1954 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1955 << Lane << " from " << *Scalar << ".\n"); 1956 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1957 } 1958 for (User *U : Scalar->users()) { 1959 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1960 1961 Instruction *UserInst = dyn_cast<Instruction>(U); 1962 if (!UserInst) 1963 continue; 1964 1965 // Skip in-tree scalars that become vectors 1966 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1967 Value *UseScalar = UseEntry->Scalars[0]; 1968 // Some in-tree scalars will remain as scalar in vectorized 1969 // instructions. If that is the case, the one in Lane 0 will 1970 // be used. 1971 if (UseScalar != U || 1972 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1973 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1974 << ".\n"); 1975 assert(!UseEntry->NeedToGather && "Bad state"); 1976 continue; 1977 } 1978 } 1979 1980 // Ignore users in the user ignore list. 1981 if (is_contained(UserIgnoreList, UserInst)) 1982 continue; 1983 1984 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1985 << Lane << " from " << *Scalar << ".\n"); 1986 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1987 } 1988 } 1989 } 1990 } 1991 1992 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1993 const EdgeInfo &UserTreeIdx) { 1994 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1995 1996 InstructionsState S = getSameOpcode(VL); 1997 if (Depth == RecursionMaxDepth) { 1998 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1999 newTreeEntry(VL, false, UserTreeIdx); 2000 return; 2001 } 2002 2003 // Don't handle vectors. 2004 if (S.OpValue->getType()->isVectorTy()) { 2005 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2006 newTreeEntry(VL, false, UserTreeIdx); 2007 return; 2008 } 2009 2010 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2011 if (SI->getValueOperand()->getType()->isVectorTy()) { 2012 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2013 newTreeEntry(VL, false, UserTreeIdx); 2014 return; 2015 } 2016 2017 // If all of the operands are identical or constant we have a simple solution. 2018 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2019 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2020 newTreeEntry(VL, false, UserTreeIdx); 2021 return; 2022 } 2023 2024 // We now know that this is a vector of instructions of the same type from 2025 // the same block. 2026 2027 // Don't vectorize ephemeral values. 2028 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2029 if (EphValues.count(VL[i])) { 2030 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2031 << ") is ephemeral.\n"); 2032 newTreeEntry(VL, false, UserTreeIdx); 2033 return; 2034 } 2035 } 2036 2037 // Check if this is a duplicate of another entry. 2038 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2039 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2040 if (!E->isSame(VL)) { 2041 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2042 newTreeEntry(VL, false, UserTreeIdx); 2043 return; 2044 } 2045 // Record the reuse of the tree node. FIXME, currently this is only used to 2046 // properly draw the graph rather than for the actual vectorization. 2047 E->UserTreeIndices.push_back(UserTreeIdx); 2048 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2049 << ".\n"); 2050 E->trySetUserTEOperand(UserTreeIdx, VL, None); 2051 return; 2052 } 2053 2054 // Check that none of the instructions in the bundle are already in the tree. 2055 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2056 auto *I = dyn_cast<Instruction>(VL[i]); 2057 if (!I) 2058 continue; 2059 if (getTreeEntry(I)) { 2060 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2061 << ") is already in tree.\n"); 2062 newTreeEntry(VL, false, UserTreeIdx); 2063 return; 2064 } 2065 } 2066 2067 // If any of the scalars is marked as a value that needs to stay scalar, then 2068 // we need to gather the scalars. 2069 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2070 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2071 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 2072 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2073 newTreeEntry(VL, false, UserTreeIdx); 2074 return; 2075 } 2076 } 2077 2078 // Check that all of the users of the scalars that we want to vectorize are 2079 // schedulable. 2080 auto *VL0 = cast<Instruction>(S.OpValue); 2081 BasicBlock *BB = VL0->getParent(); 2082 2083 if (!DT->isReachableFromEntry(BB)) { 2084 // Don't go into unreachable blocks. They may contain instructions with 2085 // dependency cycles which confuse the final scheduling. 2086 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2087 newTreeEntry(VL, false, UserTreeIdx); 2088 return; 2089 } 2090 2091 // Check that every instruction appears once in this bundle. 2092 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2093 SmallVector<Value *, 4> UniqueValues; 2094 DenseMap<Value *, unsigned> UniquePositions; 2095 for (Value *V : VL) { 2096 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2097 ReuseShuffleIndicies.emplace_back(Res.first->second); 2098 if (Res.second) 2099 UniqueValues.emplace_back(V); 2100 } 2101 if (UniqueValues.size() == VL.size()) { 2102 ReuseShuffleIndicies.clear(); 2103 } else { 2104 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2105 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 2106 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2107 newTreeEntry(VL, false, UserTreeIdx); 2108 return; 2109 } 2110 VL = UniqueValues; 2111 } 2112 2113 auto &BSRef = BlocksSchedules[BB]; 2114 if (!BSRef) 2115 BSRef = llvm::make_unique<BlockScheduling>(BB); 2116 2117 BlockScheduling &BS = *BSRef.get(); 2118 2119 if (!BS.tryScheduleBundle(VL, this, S)) { 2120 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2121 assert((!BS.getScheduleData(VL0) || 2122 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2123 "tryScheduleBundle should cancelScheduling on failure"); 2124 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2125 return; 2126 } 2127 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2128 2129 unsigned ShuffleOrOp = S.isAltShuffle() ? 2130 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2131 switch (ShuffleOrOp) { 2132 case Instruction::PHI: { 2133 PHINode *PH = dyn_cast<PHINode>(VL0); 2134 2135 // Check for terminator values (e.g. invoke). 2136 for (unsigned j = 0; j < VL.size(); ++j) 2137 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2138 Instruction *Term = dyn_cast<Instruction>( 2139 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2140 PH->getIncomingBlock(i))); 2141 if (Term && Term->isTerminator()) { 2142 LLVM_DEBUG(dbgs() 2143 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2144 BS.cancelScheduling(VL, VL0); 2145 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2146 return; 2147 } 2148 } 2149 2150 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2151 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2152 2153 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2154 ValueList Operands; 2155 // Prepare the operand vector. 2156 for (Value *j : VL) 2157 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2158 PH->getIncomingBlock(i))); 2159 2160 buildTree_rec(Operands, Depth + 1, {TE, i}); 2161 } 2162 return; 2163 } 2164 case Instruction::ExtractValue: 2165 case Instruction::ExtractElement: { 2166 OrdersType CurrentOrder; 2167 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2168 if (Reuse) { 2169 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2170 ++NumOpsWantToKeepOriginalOrder; 2171 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2172 ReuseShuffleIndicies); 2173 // This is a special case, as it does not gather, but at the same time 2174 // we are not extending buildTree_rec() towards the operands. 2175 ValueList Op0; 2176 Op0.assign(VL.size(), VL0->getOperand(0)); 2177 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2178 return; 2179 } 2180 if (!CurrentOrder.empty()) { 2181 LLVM_DEBUG({ 2182 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2183 "with order"; 2184 for (unsigned Idx : CurrentOrder) 2185 dbgs() << " " << Idx; 2186 dbgs() << "\n"; 2187 }); 2188 // Insert new order with initial value 0, if it does not exist, 2189 // otherwise return the iterator to the existing one. 2190 auto StoredCurrentOrderAndNum = 2191 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2192 ++StoredCurrentOrderAndNum->getSecond(); 2193 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 2194 StoredCurrentOrderAndNum->getFirst()); 2195 // This is a special case, as it does not gather, but at the same time 2196 // we are not extending buildTree_rec() towards the operands. 2197 ValueList Op0; 2198 Op0.assign(VL.size(), VL0->getOperand(0)); 2199 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2200 return; 2201 } 2202 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2203 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 2204 BS.cancelScheduling(VL, VL0); 2205 return; 2206 } 2207 case Instruction::Load: { 2208 // Check that a vectorized load would load the same memory as a scalar 2209 // load. For example, we don't want to vectorize loads that are smaller 2210 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2211 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2212 // from such a struct, we read/write packed bits disagreeing with the 2213 // unvectorized version. 2214 Type *ScalarTy = VL0->getType(); 2215 2216 if (DL->getTypeSizeInBits(ScalarTy) != 2217 DL->getTypeAllocSizeInBits(ScalarTy)) { 2218 BS.cancelScheduling(VL, VL0); 2219 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2220 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2221 return; 2222 } 2223 2224 // Make sure all loads in the bundle are simple - we can't vectorize 2225 // atomic or volatile loads. 2226 SmallVector<Value *, 4> PointerOps(VL.size()); 2227 auto POIter = PointerOps.begin(); 2228 for (Value *V : VL) { 2229 auto *L = cast<LoadInst>(V); 2230 if (!L->isSimple()) { 2231 BS.cancelScheduling(VL, VL0); 2232 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2233 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2234 return; 2235 } 2236 *POIter = L->getPointerOperand(); 2237 ++POIter; 2238 } 2239 2240 OrdersType CurrentOrder; 2241 // Check the order of pointer operands. 2242 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2243 Value *Ptr0; 2244 Value *PtrN; 2245 if (CurrentOrder.empty()) { 2246 Ptr0 = PointerOps.front(); 2247 PtrN = PointerOps.back(); 2248 } else { 2249 Ptr0 = PointerOps[CurrentOrder.front()]; 2250 PtrN = PointerOps[CurrentOrder.back()]; 2251 } 2252 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2253 const SCEV *ScevN = SE->getSCEV(PtrN); 2254 const auto *Diff = 2255 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2256 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2257 // Check that the sorted loads are consecutive. 2258 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2259 if (CurrentOrder.empty()) { 2260 // Original loads are consecutive and does not require reordering. 2261 ++NumOpsWantToKeepOriginalOrder; 2262 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2263 ReuseShuffleIndicies); 2264 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2265 } else { 2266 // Need to reorder. 2267 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2268 ++I->getSecond(); 2269 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2270 ReuseShuffleIndicies, I->getFirst()); 2271 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2272 } 2273 return; 2274 } 2275 } 2276 2277 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2278 BS.cancelScheduling(VL, VL0); 2279 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2280 return; 2281 } 2282 case Instruction::ZExt: 2283 case Instruction::SExt: 2284 case Instruction::FPToUI: 2285 case Instruction::FPToSI: 2286 case Instruction::FPExt: 2287 case Instruction::PtrToInt: 2288 case Instruction::IntToPtr: 2289 case Instruction::SIToFP: 2290 case Instruction::UIToFP: 2291 case Instruction::Trunc: 2292 case Instruction::FPTrunc: 2293 case Instruction::BitCast: { 2294 Type *SrcTy = VL0->getOperand(0)->getType(); 2295 for (unsigned i = 0; i < VL.size(); ++i) { 2296 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 2297 if (Ty != SrcTy || !isValidElementType(Ty)) { 2298 BS.cancelScheduling(VL, VL0); 2299 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2300 LLVM_DEBUG(dbgs() 2301 << "SLP: Gathering casts with different src types.\n"); 2302 return; 2303 } 2304 } 2305 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2306 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2307 2308 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2309 ValueList Operands; 2310 // Prepare the operand vector. 2311 for (Value *j : VL) 2312 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2313 2314 buildTree_rec(Operands, Depth + 1, {TE, i}); 2315 } 2316 return; 2317 } 2318 case Instruction::ICmp: 2319 case Instruction::FCmp: { 2320 // Check that all of the compares have the same predicate. 2321 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2322 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2323 Type *ComparedTy = VL0->getOperand(0)->getType(); 2324 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 2325 CmpInst *Cmp = cast<CmpInst>(VL[i]); 2326 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2327 Cmp->getOperand(0)->getType() != ComparedTy) { 2328 BS.cancelScheduling(VL, VL0); 2329 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2330 LLVM_DEBUG(dbgs() 2331 << "SLP: Gathering cmp with different predicate.\n"); 2332 return; 2333 } 2334 } 2335 2336 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2337 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2338 2339 ValueList Left, Right; 2340 if (cast<CmpInst>(VL0)->isCommutative()) { 2341 // Commutative predicate - collect + sort operands of the instructions 2342 // so that each side is more likely to have the same opcode. 2343 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2344 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2345 } else { 2346 // Collect operands - commute if it uses the swapped predicate. 2347 for (Value *V : VL) { 2348 auto *Cmp = cast<CmpInst>(V); 2349 Value *LHS = Cmp->getOperand(0); 2350 Value *RHS = Cmp->getOperand(1); 2351 if (Cmp->getPredicate() != P0) 2352 std::swap(LHS, RHS); 2353 Left.push_back(LHS); 2354 Right.push_back(RHS); 2355 } 2356 } 2357 2358 buildTree_rec(Left, Depth + 1, {TE, 0}); 2359 buildTree_rec(Right, Depth + 1, {TE, 1}); 2360 return; 2361 } 2362 case Instruction::Select: 2363 case Instruction::Add: 2364 case Instruction::FAdd: 2365 case Instruction::Sub: 2366 case Instruction::FSub: 2367 case Instruction::Mul: 2368 case Instruction::FMul: 2369 case Instruction::UDiv: 2370 case Instruction::SDiv: 2371 case Instruction::FDiv: 2372 case Instruction::URem: 2373 case Instruction::SRem: 2374 case Instruction::FRem: 2375 case Instruction::Shl: 2376 case Instruction::LShr: 2377 case Instruction::AShr: 2378 case Instruction::And: 2379 case Instruction::Or: 2380 case Instruction::Xor: { 2381 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2382 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 2383 2384 // Sort operands of the instructions so that each side is more likely to 2385 // have the same opcode. 2386 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2387 ValueList Left, Right; 2388 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2389 buildTree_rec(Left, Depth + 1, {TE, 0}); 2390 buildTree_rec(Right, Depth + 1, {TE, 1}); 2391 return; 2392 } 2393 2394 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2395 ValueList Operands; 2396 // Prepare the operand vector. 2397 for (Value *j : VL) 2398 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2399 2400 buildTree_rec(Operands, Depth + 1, {TE, i}); 2401 } 2402 return; 2403 } 2404 case Instruction::GetElementPtr: { 2405 // We don't combine GEPs with complicated (nested) indexing. 2406 for (unsigned j = 0; j < VL.size(); ++j) { 2407 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 2408 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2409 BS.cancelScheduling(VL, VL0); 2410 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2411 return; 2412 } 2413 } 2414 2415 // We can't combine several GEPs into one vector if they operate on 2416 // different types. 2417 Type *Ty0 = VL0->getOperand(0)->getType(); 2418 for (unsigned j = 0; j < VL.size(); ++j) { 2419 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 2420 if (Ty0 != CurTy) { 2421 LLVM_DEBUG(dbgs() 2422 << "SLP: not-vectorizable GEP (different types).\n"); 2423 BS.cancelScheduling(VL, VL0); 2424 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2425 return; 2426 } 2427 } 2428 2429 // We don't combine GEPs with non-constant indexes. 2430 for (unsigned j = 0; j < VL.size(); ++j) { 2431 auto Op = cast<Instruction>(VL[j])->getOperand(1); 2432 if (!isa<ConstantInt>(Op)) { 2433 LLVM_DEBUG(dbgs() 2434 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2435 BS.cancelScheduling(VL, VL0); 2436 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2437 return; 2438 } 2439 } 2440 2441 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2442 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2443 for (unsigned i = 0, e = 2; i < e; ++i) { 2444 ValueList Operands; 2445 // Prepare the operand vector. 2446 for (Value *j : VL) 2447 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2448 2449 buildTree_rec(Operands, Depth + 1, {TE, i}); 2450 } 2451 return; 2452 } 2453 case Instruction::Store: { 2454 // Check if the stores are consecutive or of we need to swizzle them. 2455 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2456 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2457 BS.cancelScheduling(VL, VL0); 2458 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2459 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2460 return; 2461 } 2462 2463 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2464 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2465 2466 ValueList Operands; 2467 for (Value *j : VL) 2468 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2469 2470 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2471 return; 2472 } 2473 case Instruction::Call: { 2474 // Check if the calls are all to the same vectorizable intrinsic. 2475 CallInst *CI = cast<CallInst>(VL0); 2476 // Check if this is an Intrinsic call or something that can be 2477 // represented by an intrinsic call 2478 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2479 if (!isTriviallyVectorizable(ID)) { 2480 BS.cancelScheduling(VL, VL0); 2481 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2482 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2483 return; 2484 } 2485 Function *Int = CI->getCalledFunction(); 2486 unsigned NumArgs = CI->getNumArgOperands(); 2487 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2488 for (unsigned j = 0; j != NumArgs; ++j) 2489 if (hasVectorInstrinsicScalarOpd(ID, j)) 2490 ScalarArgs[j] = CI->getArgOperand(j); 2491 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2492 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2493 if (!CI2 || CI2->getCalledFunction() != Int || 2494 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2495 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2496 BS.cancelScheduling(VL, VL0); 2497 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2498 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2499 << "\n"); 2500 return; 2501 } 2502 // Some intrinsics have scalar arguments and should be same in order for 2503 // them to be vectorized. 2504 for (unsigned j = 0; j != NumArgs; ++j) { 2505 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2506 Value *A1J = CI2->getArgOperand(j); 2507 if (ScalarArgs[j] != A1J) { 2508 BS.cancelScheduling(VL, VL0); 2509 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2510 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2511 << " argument " << ScalarArgs[j] << "!=" << A1J 2512 << "\n"); 2513 return; 2514 } 2515 } 2516 } 2517 // Verify that the bundle operands are identical between the two calls. 2518 if (CI->hasOperandBundles() && 2519 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2520 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2521 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2522 BS.cancelScheduling(VL, VL0); 2523 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2524 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2525 << *CI << "!=" << *VL[i] << '\n'); 2526 return; 2527 } 2528 } 2529 2530 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2531 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2532 ValueList Operands; 2533 // Prepare the operand vector. 2534 for (Value *j : VL) { 2535 CallInst *CI2 = dyn_cast<CallInst>(j); 2536 Operands.push_back(CI2->getArgOperand(i)); 2537 } 2538 buildTree_rec(Operands, Depth + 1, {TE, i}); 2539 } 2540 return; 2541 } 2542 case Instruction::ShuffleVector: { 2543 // If this is not an alternate sequence of opcode like add-sub 2544 // then do not vectorize this instruction. 2545 if (!S.isAltShuffle()) { 2546 BS.cancelScheduling(VL, VL0); 2547 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2548 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2549 return; 2550 } 2551 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2552 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2553 2554 // Reorder operands if reordering would enable vectorization. 2555 if (isa<BinaryOperator>(VL0)) { 2556 ValueList Left, Right; 2557 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2558 buildTree_rec(Left, Depth + 1, {TE, 0}); 2559 buildTree_rec(Right, Depth + 1, {TE, 1}); 2560 return; 2561 } 2562 2563 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2564 ValueList Operands; 2565 // Prepare the operand vector. 2566 for (Value *j : VL) 2567 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2568 2569 buildTree_rec(Operands, Depth + 1, {TE, i}); 2570 } 2571 return; 2572 } 2573 default: 2574 BS.cancelScheduling(VL, VL0); 2575 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2576 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2577 return; 2578 } 2579 } 2580 2581 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2582 unsigned N; 2583 Type *EltTy; 2584 auto *ST = dyn_cast<StructType>(T); 2585 if (ST) { 2586 N = ST->getNumElements(); 2587 EltTy = *ST->element_begin(); 2588 } else { 2589 N = cast<ArrayType>(T)->getNumElements(); 2590 EltTy = cast<ArrayType>(T)->getElementType(); 2591 } 2592 if (!isValidElementType(EltTy)) 2593 return 0; 2594 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2595 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2596 return 0; 2597 if (ST) { 2598 // Check that struct is homogeneous. 2599 for (const auto *Ty : ST->elements()) 2600 if (Ty != EltTy) 2601 return 0; 2602 } 2603 return N; 2604 } 2605 2606 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2607 SmallVectorImpl<unsigned> &CurrentOrder) const { 2608 Instruction *E0 = cast<Instruction>(OpValue); 2609 assert(E0->getOpcode() == Instruction::ExtractElement || 2610 E0->getOpcode() == Instruction::ExtractValue); 2611 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2612 // Check if all of the extracts come from the same vector and from the 2613 // correct offset. 2614 Value *Vec = E0->getOperand(0); 2615 2616 CurrentOrder.clear(); 2617 2618 // We have to extract from a vector/aggregate with the same number of elements. 2619 unsigned NElts; 2620 if (E0->getOpcode() == Instruction::ExtractValue) { 2621 const DataLayout &DL = E0->getModule()->getDataLayout(); 2622 NElts = canMapToVector(Vec->getType(), DL); 2623 if (!NElts) 2624 return false; 2625 // Check if load can be rewritten as load of vector. 2626 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2627 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2628 return false; 2629 } else { 2630 NElts = Vec->getType()->getVectorNumElements(); 2631 } 2632 2633 if (NElts != VL.size()) 2634 return false; 2635 2636 // Check that all of the indices extract from the correct offset. 2637 bool ShouldKeepOrder = true; 2638 unsigned E = VL.size(); 2639 // Assign to all items the initial value E + 1 so we can check if the extract 2640 // instruction index was used already. 2641 // Also, later we can check that all the indices are used and we have a 2642 // consecutive access in the extract instructions, by checking that no 2643 // element of CurrentOrder still has value E + 1. 2644 CurrentOrder.assign(E, E + 1); 2645 unsigned I = 0; 2646 for (; I < E; ++I) { 2647 auto *Inst = cast<Instruction>(VL[I]); 2648 if (Inst->getOperand(0) != Vec) 2649 break; 2650 Optional<unsigned> Idx = getExtractIndex(Inst); 2651 if (!Idx) 2652 break; 2653 const unsigned ExtIdx = *Idx; 2654 if (ExtIdx != I) { 2655 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2656 break; 2657 ShouldKeepOrder = false; 2658 CurrentOrder[ExtIdx] = I; 2659 } else { 2660 if (CurrentOrder[I] != E + 1) 2661 break; 2662 CurrentOrder[I] = I; 2663 } 2664 } 2665 if (I < E) { 2666 CurrentOrder.clear(); 2667 return false; 2668 } 2669 2670 return ShouldKeepOrder; 2671 } 2672 2673 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2674 return I->hasOneUse() || 2675 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2676 return ScalarToTreeEntry.count(U) > 0; 2677 }); 2678 } 2679 2680 int BoUpSLP::getEntryCost(TreeEntry *E) { 2681 ArrayRef<Value*> VL = E->Scalars; 2682 2683 Type *ScalarTy = VL[0]->getType(); 2684 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2685 ScalarTy = SI->getValueOperand()->getType(); 2686 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2687 ScalarTy = CI->getOperand(0)->getType(); 2688 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2689 2690 // If we have computed a smaller type for the expression, update VecTy so 2691 // that the costs will be accurate. 2692 if (MinBWs.count(VL[0])) 2693 VecTy = VectorType::get( 2694 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2695 2696 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2697 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2698 int ReuseShuffleCost = 0; 2699 if (NeedToShuffleReuses) { 2700 ReuseShuffleCost = 2701 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2702 } 2703 if (E->NeedToGather) { 2704 if (allConstant(VL)) 2705 return 0; 2706 if (isSplat(VL)) { 2707 return ReuseShuffleCost + 2708 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2709 } 2710 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2711 allSameType(VL) && allSameBlock(VL)) { 2712 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2713 if (ShuffleKind.hasValue()) { 2714 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2715 for (auto *V : VL) { 2716 // If all users of instruction are going to be vectorized and this 2717 // instruction itself is not going to be vectorized, consider this 2718 // instruction as dead and remove its cost from the final cost of the 2719 // vectorized tree. 2720 if (areAllUsersVectorized(cast<Instruction>(V)) && 2721 !ScalarToTreeEntry.count(V)) { 2722 auto *IO = cast<ConstantInt>( 2723 cast<ExtractElementInst>(V)->getIndexOperand()); 2724 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2725 IO->getZExtValue()); 2726 } 2727 } 2728 return ReuseShuffleCost + Cost; 2729 } 2730 } 2731 return ReuseShuffleCost + getGatherCost(VL); 2732 } 2733 InstructionsState S = getSameOpcode(VL); 2734 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2735 Instruction *VL0 = cast<Instruction>(S.OpValue); 2736 unsigned ShuffleOrOp = S.isAltShuffle() ? 2737 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2738 switch (ShuffleOrOp) { 2739 case Instruction::PHI: 2740 return 0; 2741 2742 case Instruction::ExtractValue: 2743 case Instruction::ExtractElement: 2744 if (NeedToShuffleReuses) { 2745 unsigned Idx = 0; 2746 for (unsigned I : E->ReuseShuffleIndices) { 2747 if (ShuffleOrOp == Instruction::ExtractElement) { 2748 auto *IO = cast<ConstantInt>( 2749 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2750 Idx = IO->getZExtValue(); 2751 ReuseShuffleCost -= TTI->getVectorInstrCost( 2752 Instruction::ExtractElement, VecTy, Idx); 2753 } else { 2754 ReuseShuffleCost -= TTI->getVectorInstrCost( 2755 Instruction::ExtractElement, VecTy, Idx); 2756 ++Idx; 2757 } 2758 } 2759 Idx = ReuseShuffleNumbers; 2760 for (Value *V : VL) { 2761 if (ShuffleOrOp == Instruction::ExtractElement) { 2762 auto *IO = cast<ConstantInt>( 2763 cast<ExtractElementInst>(V)->getIndexOperand()); 2764 Idx = IO->getZExtValue(); 2765 } else { 2766 --Idx; 2767 } 2768 ReuseShuffleCost += 2769 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2770 } 2771 } 2772 if (!E->NeedToGather) { 2773 int DeadCost = ReuseShuffleCost; 2774 if (!E->ReorderIndices.empty()) { 2775 // TODO: Merge this shuffle with the ReuseShuffleCost. 2776 DeadCost += TTI->getShuffleCost( 2777 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2778 } 2779 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2780 Instruction *E = cast<Instruction>(VL[i]); 2781 // If all users are going to be vectorized, instruction can be 2782 // considered as dead. 2783 // The same, if have only one user, it will be vectorized for sure. 2784 if (areAllUsersVectorized(E)) { 2785 // Take credit for instruction that will become dead. 2786 if (E->hasOneUse()) { 2787 Instruction *Ext = E->user_back(); 2788 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2789 all_of(Ext->users(), 2790 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2791 // Use getExtractWithExtendCost() to calculate the cost of 2792 // extractelement/ext pair. 2793 DeadCost -= TTI->getExtractWithExtendCost( 2794 Ext->getOpcode(), Ext->getType(), VecTy, i); 2795 // Add back the cost of s|zext which is subtracted separately. 2796 DeadCost += TTI->getCastInstrCost( 2797 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2798 continue; 2799 } 2800 } 2801 DeadCost -= 2802 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2803 } 2804 } 2805 return DeadCost; 2806 } 2807 return ReuseShuffleCost + getGatherCost(VL); 2808 2809 case Instruction::ZExt: 2810 case Instruction::SExt: 2811 case Instruction::FPToUI: 2812 case Instruction::FPToSI: 2813 case Instruction::FPExt: 2814 case Instruction::PtrToInt: 2815 case Instruction::IntToPtr: 2816 case Instruction::SIToFP: 2817 case Instruction::UIToFP: 2818 case Instruction::Trunc: 2819 case Instruction::FPTrunc: 2820 case Instruction::BitCast: { 2821 Type *SrcTy = VL0->getOperand(0)->getType(); 2822 int ScalarEltCost = 2823 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2824 if (NeedToShuffleReuses) { 2825 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2826 } 2827 2828 // Calculate the cost of this instruction. 2829 int ScalarCost = VL.size() * ScalarEltCost; 2830 2831 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2832 int VecCost = 0; 2833 // Check if the values are candidates to demote. 2834 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2835 VecCost = ReuseShuffleCost + 2836 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2837 } 2838 return VecCost - ScalarCost; 2839 } 2840 case Instruction::FCmp: 2841 case Instruction::ICmp: 2842 case Instruction::Select: { 2843 // Calculate the cost of this instruction. 2844 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2845 Builder.getInt1Ty(), VL0); 2846 if (NeedToShuffleReuses) { 2847 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2848 } 2849 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2850 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2851 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2852 return ReuseShuffleCost + VecCost - ScalarCost; 2853 } 2854 case Instruction::Add: 2855 case Instruction::FAdd: 2856 case Instruction::Sub: 2857 case Instruction::FSub: 2858 case Instruction::Mul: 2859 case Instruction::FMul: 2860 case Instruction::UDiv: 2861 case Instruction::SDiv: 2862 case Instruction::FDiv: 2863 case Instruction::URem: 2864 case Instruction::SRem: 2865 case Instruction::FRem: 2866 case Instruction::Shl: 2867 case Instruction::LShr: 2868 case Instruction::AShr: 2869 case Instruction::And: 2870 case Instruction::Or: 2871 case Instruction::Xor: { 2872 // Certain instructions can be cheaper to vectorize if they have a 2873 // constant second vector operand. 2874 TargetTransformInfo::OperandValueKind Op1VK = 2875 TargetTransformInfo::OK_AnyValue; 2876 TargetTransformInfo::OperandValueKind Op2VK = 2877 TargetTransformInfo::OK_UniformConstantValue; 2878 TargetTransformInfo::OperandValueProperties Op1VP = 2879 TargetTransformInfo::OP_None; 2880 TargetTransformInfo::OperandValueProperties Op2VP = 2881 TargetTransformInfo::OP_PowerOf2; 2882 2883 // If all operands are exactly the same ConstantInt then set the 2884 // operand kind to OK_UniformConstantValue. 2885 // If instead not all operands are constants, then set the operand kind 2886 // to OK_AnyValue. If all operands are constants but not the same, 2887 // then set the operand kind to OK_NonUniformConstantValue. 2888 ConstantInt *CInt0 = nullptr; 2889 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2890 const Instruction *I = cast<Instruction>(VL[i]); 2891 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2892 if (!CInt) { 2893 Op2VK = TargetTransformInfo::OK_AnyValue; 2894 Op2VP = TargetTransformInfo::OP_None; 2895 break; 2896 } 2897 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2898 !CInt->getValue().isPowerOf2()) 2899 Op2VP = TargetTransformInfo::OP_None; 2900 if (i == 0) { 2901 CInt0 = CInt; 2902 continue; 2903 } 2904 if (CInt0 != CInt) 2905 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2906 } 2907 2908 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2909 int ScalarEltCost = TTI->getArithmeticInstrCost( 2910 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2911 if (NeedToShuffleReuses) { 2912 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2913 } 2914 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2915 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2916 Op2VK, Op1VP, Op2VP, Operands); 2917 return ReuseShuffleCost + VecCost - ScalarCost; 2918 } 2919 case Instruction::GetElementPtr: { 2920 TargetTransformInfo::OperandValueKind Op1VK = 2921 TargetTransformInfo::OK_AnyValue; 2922 TargetTransformInfo::OperandValueKind Op2VK = 2923 TargetTransformInfo::OK_UniformConstantValue; 2924 2925 int ScalarEltCost = 2926 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2927 if (NeedToShuffleReuses) { 2928 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2929 } 2930 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2931 int VecCost = 2932 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2933 return ReuseShuffleCost + VecCost - ScalarCost; 2934 } 2935 case Instruction::Load: { 2936 // Cost of wide load - cost of scalar loads. 2937 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2938 int ScalarEltCost = 2939 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2940 if (NeedToShuffleReuses) { 2941 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2942 } 2943 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2944 int VecLdCost = 2945 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2946 if (!E->ReorderIndices.empty()) { 2947 // TODO: Merge this shuffle with the ReuseShuffleCost. 2948 VecLdCost += TTI->getShuffleCost( 2949 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2950 } 2951 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2952 } 2953 case Instruction::Store: { 2954 // We know that we can merge the stores. Calculate the cost. 2955 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2956 int ScalarEltCost = 2957 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2958 if (NeedToShuffleReuses) { 2959 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2960 } 2961 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2962 int VecStCost = 2963 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2964 return ReuseShuffleCost + VecStCost - ScalarStCost; 2965 } 2966 case Instruction::Call: { 2967 CallInst *CI = cast<CallInst>(VL0); 2968 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2969 2970 // Calculate the cost of the scalar and vector calls. 2971 SmallVector<Type *, 4> ScalarTys; 2972 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2973 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2974 2975 FastMathFlags FMF; 2976 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2977 FMF = FPMO->getFastMathFlags(); 2978 2979 int ScalarEltCost = 2980 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2981 if (NeedToShuffleReuses) { 2982 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2983 } 2984 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2985 2986 SmallVector<Value *, 4> Args(CI->arg_operands()); 2987 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2988 VecTy->getNumElements()); 2989 2990 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2991 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2992 << " for " << *CI << "\n"); 2993 2994 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2995 } 2996 case Instruction::ShuffleVector: { 2997 assert(S.isAltShuffle() && 2998 ((Instruction::isBinaryOp(S.getOpcode()) && 2999 Instruction::isBinaryOp(S.getAltOpcode())) || 3000 (Instruction::isCast(S.getOpcode()) && 3001 Instruction::isCast(S.getAltOpcode()))) && 3002 "Invalid Shuffle Vector Operand"); 3003 int ScalarCost = 0; 3004 if (NeedToShuffleReuses) { 3005 for (unsigned Idx : E->ReuseShuffleIndices) { 3006 Instruction *I = cast<Instruction>(VL[Idx]); 3007 ReuseShuffleCost -= TTI->getInstructionCost( 3008 I, TargetTransformInfo::TCK_RecipThroughput); 3009 } 3010 for (Value *V : VL) { 3011 Instruction *I = cast<Instruction>(V); 3012 ReuseShuffleCost += TTI->getInstructionCost( 3013 I, TargetTransformInfo::TCK_RecipThroughput); 3014 } 3015 } 3016 for (Value *i : VL) { 3017 Instruction *I = cast<Instruction>(i); 3018 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3019 ScalarCost += TTI->getInstructionCost( 3020 I, TargetTransformInfo::TCK_RecipThroughput); 3021 } 3022 // VecCost is equal to sum of the cost of creating 2 vectors 3023 // and the cost of creating shuffle. 3024 int VecCost = 0; 3025 if (Instruction::isBinaryOp(S.getOpcode())) { 3026 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 3027 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 3028 } else { 3029 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 3030 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 3031 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3032 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3033 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 3034 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 3035 } 3036 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3037 return ReuseShuffleCost + VecCost - ScalarCost; 3038 } 3039 default: 3040 llvm_unreachable("Unknown instruction"); 3041 } 3042 } 3043 3044 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3045 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3046 << VectorizableTree.size() << " is fully vectorizable .\n"); 3047 3048 // We only handle trees of heights 1 and 2. 3049 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3050 return true; 3051 3052 if (VectorizableTree.size() != 2) 3053 return false; 3054 3055 // Handle splat and all-constants stores. 3056 if (!VectorizableTree[0]->NeedToGather && 3057 (allConstant(VectorizableTree[1]->Scalars) || 3058 isSplat(VectorizableTree[1]->Scalars))) 3059 return true; 3060 3061 // Gathering cost would be too much for tiny trees. 3062 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3063 return false; 3064 3065 return true; 3066 } 3067 3068 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3069 // We can vectorize the tree if its size is greater than or equal to the 3070 // minimum size specified by the MinTreeSize command line option. 3071 if (VectorizableTree.size() >= MinTreeSize) 3072 return false; 3073 3074 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3075 // can vectorize it if we can prove it fully vectorizable. 3076 if (isFullyVectorizableTinyTree()) 3077 return false; 3078 3079 assert(VectorizableTree.empty() 3080 ? ExternalUses.empty() 3081 : true && "We shouldn't have any external users"); 3082 3083 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3084 // vectorizable. 3085 return true; 3086 } 3087 3088 int BoUpSLP::getSpillCost() const { 3089 // Walk from the bottom of the tree to the top, tracking which values are 3090 // live. When we see a call instruction that is not part of our tree, 3091 // query TTI to see if there is a cost to keeping values live over it 3092 // (for example, if spills and fills are required). 3093 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3094 int Cost = 0; 3095 3096 SmallPtrSet<Instruction*, 4> LiveValues; 3097 Instruction *PrevInst = nullptr; 3098 3099 for (const auto &TEPtr : VectorizableTree) { 3100 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3101 if (!Inst) 3102 continue; 3103 3104 if (!PrevInst) { 3105 PrevInst = Inst; 3106 continue; 3107 } 3108 3109 // Update LiveValues. 3110 LiveValues.erase(PrevInst); 3111 for (auto &J : PrevInst->operands()) { 3112 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3113 LiveValues.insert(cast<Instruction>(&*J)); 3114 } 3115 3116 LLVM_DEBUG({ 3117 dbgs() << "SLP: #LV: " << LiveValues.size(); 3118 for (auto *X : LiveValues) 3119 dbgs() << " " << X->getName(); 3120 dbgs() << ", Looking at "; 3121 Inst->dump(); 3122 }); 3123 3124 // Now find the sequence of instructions between PrevInst and Inst. 3125 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3126 PrevInstIt = 3127 PrevInst->getIterator().getReverse(); 3128 while (InstIt != PrevInstIt) { 3129 if (PrevInstIt == PrevInst->getParent()->rend()) { 3130 PrevInstIt = Inst->getParent()->rbegin(); 3131 continue; 3132 } 3133 3134 // Debug informations don't impact spill cost. 3135 if ((isa<CallInst>(&*PrevInstIt) && 3136 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3137 &*PrevInstIt != PrevInst) { 3138 SmallVector<Type*, 4> V; 3139 for (auto *II : LiveValues) 3140 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3141 Cost += TTI->getCostOfKeepingLiveOverCall(V); 3142 } 3143 3144 ++PrevInstIt; 3145 } 3146 3147 PrevInst = Inst; 3148 } 3149 3150 return Cost; 3151 } 3152 3153 int BoUpSLP::getTreeCost() { 3154 int Cost = 0; 3155 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3156 << VectorizableTree.size() << ".\n"); 3157 3158 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3159 3160 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3161 TreeEntry &TE = *VectorizableTree[I].get(); 3162 3163 // We create duplicate tree entries for gather sequences that have multiple 3164 // uses. However, we should not compute the cost of duplicate sequences. 3165 // For example, if we have a build vector (i.e., insertelement sequence) 3166 // that is used by more than one vector instruction, we only need to 3167 // compute the cost of the insertelement instructions once. The redundant 3168 // instructions will be eliminated by CSE. 3169 // 3170 // We should consider not creating duplicate tree entries for gather 3171 // sequences, and instead add additional edges to the tree representing 3172 // their uses. Since such an approach results in fewer total entries, 3173 // existing heuristics based on tree size may yield different results. 3174 // 3175 if (TE.NeedToGather && 3176 std::any_of( 3177 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3178 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3179 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3180 })) 3181 continue; 3182 3183 int C = getEntryCost(&TE); 3184 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3185 << " for bundle that starts with " << *TE.Scalars[0] 3186 << ".\n"); 3187 Cost += C; 3188 } 3189 3190 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3191 int ExtractCost = 0; 3192 for (ExternalUser &EU : ExternalUses) { 3193 // We only add extract cost once for the same scalar. 3194 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3195 continue; 3196 3197 // Uses by ephemeral values are free (because the ephemeral value will be 3198 // removed prior to code generation, and so the extraction will be 3199 // removed as well). 3200 if (EphValues.count(EU.User)) 3201 continue; 3202 3203 // If we plan to rewrite the tree in a smaller type, we will need to sign 3204 // extend the extracted value back to the original type. Here, we account 3205 // for the extract and the added cost of the sign extend if needed. 3206 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3207 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3208 if (MinBWs.count(ScalarRoot)) { 3209 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3210 auto Extend = 3211 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3212 VecTy = VectorType::get(MinTy, BundleWidth); 3213 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3214 VecTy, EU.Lane); 3215 } else { 3216 ExtractCost += 3217 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3218 } 3219 } 3220 3221 int SpillCost = getSpillCost(); 3222 Cost += SpillCost + ExtractCost; 3223 3224 std::string Str; 3225 { 3226 raw_string_ostream OS(Str); 3227 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3228 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3229 << "SLP: Total Cost = " << Cost << ".\n"; 3230 } 3231 LLVM_DEBUG(dbgs() << Str); 3232 3233 if (ViewSLPTree) 3234 ViewGraph(this, "SLP" + F->getName(), false, Str); 3235 3236 return Cost; 3237 } 3238 3239 int BoUpSLP::getGatherCost(Type *Ty, 3240 const DenseSet<unsigned> &ShuffledIndices) const { 3241 int Cost = 0; 3242 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3243 if (!ShuffledIndices.count(i)) 3244 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3245 if (!ShuffledIndices.empty()) 3246 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3247 return Cost; 3248 } 3249 3250 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3251 // Find the type of the operands in VL. 3252 Type *ScalarTy = VL[0]->getType(); 3253 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3254 ScalarTy = SI->getValueOperand()->getType(); 3255 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3256 // Find the cost of inserting/extracting values from the vector. 3257 // Check if the same elements are inserted several times and count them as 3258 // shuffle candidates. 3259 DenseSet<unsigned> ShuffledElements; 3260 DenseSet<Value *> UniqueElements; 3261 // Iterate in reverse order to consider insert elements with the high cost. 3262 for (unsigned I = VL.size(); I > 0; --I) { 3263 unsigned Idx = I - 1; 3264 if (!UniqueElements.insert(VL[Idx]).second) 3265 ShuffledElements.insert(Idx); 3266 } 3267 return getGatherCost(VecTy, ShuffledElements); 3268 } 3269 3270 // Perform operand reordering on the instructions in VL and return the reordered 3271 // operands in Left and Right. 3272 void BoUpSLP::reorderInputsAccordingToOpcode( 3273 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3274 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3275 ScalarEvolution &SE) { 3276 if (VL.empty()) 3277 return; 3278 VLOperands Ops(VL, DL, SE); 3279 // Reorder the operands in place. 3280 Ops.reorder(); 3281 Left = Ops.getVL(0); 3282 Right = Ops.getVL(1); 3283 } 3284 3285 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 3286 const InstructionsState &S) { 3287 // Get the basic block this bundle is in. All instructions in the bundle 3288 // should be in this block. 3289 auto *Front = cast<Instruction>(S.OpValue); 3290 auto *BB = Front->getParent(); 3291 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 3292 auto *I = cast<Instruction>(V); 3293 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 3294 })); 3295 3296 // The last instruction in the bundle in program order. 3297 Instruction *LastInst = nullptr; 3298 3299 // Find the last instruction. The common case should be that BB has been 3300 // scheduled, and the last instruction is VL.back(). So we start with 3301 // VL.back() and iterate over schedule data until we reach the end of the 3302 // bundle. The end of the bundle is marked by null ScheduleData. 3303 if (BlocksSchedules.count(BB)) { 3304 auto *Bundle = 3305 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 3306 if (Bundle && Bundle->isPartOfBundle()) 3307 for (; Bundle; Bundle = Bundle->NextInBundle) 3308 if (Bundle->OpValue == Bundle->Inst) 3309 LastInst = Bundle->Inst; 3310 } 3311 3312 // LastInst can still be null at this point if there's either not an entry 3313 // for BB in BlocksSchedules or there's no ScheduleData available for 3314 // VL.back(). This can be the case if buildTree_rec aborts for various 3315 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3316 // size is reached, etc.). ScheduleData is initialized in the scheduling 3317 // "dry-run". 3318 // 3319 // If this happens, we can still find the last instruction by brute force. We 3320 // iterate forwards from Front (inclusive) until we either see all 3321 // instructions in the bundle or reach the end of the block. If Front is the 3322 // last instruction in program order, LastInst will be set to Front, and we 3323 // will visit all the remaining instructions in the block. 3324 // 3325 // One of the reasons we exit early from buildTree_rec is to place an upper 3326 // bound on compile-time. Thus, taking an additional compile-time hit here is 3327 // not ideal. However, this should be exceedingly rare since it requires that 3328 // we both exit early from buildTree_rec and that the bundle be out-of-order 3329 // (causing us to iterate all the way to the end of the block). 3330 if (!LastInst) { 3331 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 3332 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3333 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3334 LastInst = &I; 3335 if (Bundle.empty()) 3336 break; 3337 } 3338 } 3339 3340 // Set the insertion point after the last instruction in the bundle. Set the 3341 // debug location to Front. 3342 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3343 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3344 } 3345 3346 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3347 Value *Vec = UndefValue::get(Ty); 3348 // Generate the 'InsertElement' instruction. 3349 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3350 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3351 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3352 GatherSeq.insert(Insrt); 3353 CSEBlocks.insert(Insrt->getParent()); 3354 3355 // Add to our 'need-to-extract' list. 3356 if (TreeEntry *E = getTreeEntry(VL[i])) { 3357 // Find which lane we need to extract. 3358 int FoundLane = -1; 3359 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3360 // Is this the lane of the scalar that we are looking for ? 3361 if (E->Scalars[Lane] == VL[i]) { 3362 FoundLane = Lane; 3363 break; 3364 } 3365 } 3366 assert(FoundLane >= 0 && "Could not find the correct lane"); 3367 if (!E->ReuseShuffleIndices.empty()) { 3368 FoundLane = 3369 std::distance(E->ReuseShuffleIndices.begin(), 3370 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3371 } 3372 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3373 } 3374 } 3375 } 3376 3377 return Vec; 3378 } 3379 3380 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3381 InstructionsState S = getSameOpcode(VL); 3382 if (S.getOpcode()) { 3383 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3384 if (E->isSame(VL)) { 3385 Value *V = vectorizeTree(E); 3386 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3387 // We need to get the vectorized value but without shuffle. 3388 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3389 V = SV->getOperand(0); 3390 } else { 3391 // Reshuffle to get only unique values. 3392 SmallVector<unsigned, 4> UniqueIdxs; 3393 SmallSet<unsigned, 4> UsedIdxs; 3394 for(unsigned Idx : E->ReuseShuffleIndices) 3395 if (UsedIdxs.insert(Idx).second) 3396 UniqueIdxs.emplace_back(Idx); 3397 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3398 UniqueIdxs); 3399 } 3400 } 3401 return V; 3402 } 3403 } 3404 } 3405 3406 Type *ScalarTy = S.OpValue->getType(); 3407 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3408 ScalarTy = SI->getValueOperand()->getType(); 3409 3410 // Check that every instruction appears once in this bundle. 3411 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3412 SmallVector<Value *, 4> UniqueValues; 3413 if (VL.size() > 2) { 3414 DenseMap<Value *, unsigned> UniquePositions; 3415 for (Value *V : VL) { 3416 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3417 ReuseShuffleIndicies.emplace_back(Res.first->second); 3418 if (Res.second || isa<Constant>(V)) 3419 UniqueValues.emplace_back(V); 3420 } 3421 // Do not shuffle single element or if number of unique values is not power 3422 // of 2. 3423 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3424 !llvm::isPowerOf2_32(UniqueValues.size())) 3425 ReuseShuffleIndicies.clear(); 3426 else 3427 VL = UniqueValues; 3428 } 3429 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3430 3431 Value *V = Gather(VL, VecTy); 3432 if (!ReuseShuffleIndicies.empty()) { 3433 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3434 ReuseShuffleIndicies, "shuffle"); 3435 if (auto *I = dyn_cast<Instruction>(V)) { 3436 GatherSeq.insert(I); 3437 CSEBlocks.insert(I->getParent()); 3438 } 3439 } 3440 return V; 3441 } 3442 3443 static void inversePermutation(ArrayRef<unsigned> Indices, 3444 SmallVectorImpl<unsigned> &Mask) { 3445 Mask.clear(); 3446 const unsigned E = Indices.size(); 3447 Mask.resize(E); 3448 for (unsigned I = 0; I < E; ++I) 3449 Mask[Indices[I]] = I; 3450 } 3451 3452 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3453 IRBuilder<>::InsertPointGuard Guard(Builder); 3454 3455 if (E->VectorizedValue) { 3456 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3457 return E->VectorizedValue; 3458 } 3459 3460 InstructionsState S = getSameOpcode(E->Scalars); 3461 Instruction *VL0 = cast<Instruction>(S.OpValue); 3462 Type *ScalarTy = VL0->getType(); 3463 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3464 ScalarTy = SI->getValueOperand()->getType(); 3465 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3466 3467 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3468 3469 if (E->NeedToGather) { 3470 setInsertPointAfterBundle(E->Scalars, S); 3471 auto *V = Gather(E->Scalars, VecTy); 3472 if (NeedToShuffleReuses) { 3473 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3474 E->ReuseShuffleIndices, "shuffle"); 3475 if (auto *I = dyn_cast<Instruction>(V)) { 3476 GatherSeq.insert(I); 3477 CSEBlocks.insert(I->getParent()); 3478 } 3479 } 3480 E->VectorizedValue = V; 3481 return V; 3482 } 3483 3484 unsigned ShuffleOrOp = S.isAltShuffle() ? 3485 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3486 switch (ShuffleOrOp) { 3487 case Instruction::PHI: { 3488 PHINode *PH = dyn_cast<PHINode>(VL0); 3489 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3490 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3491 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3492 Value *V = NewPhi; 3493 if (NeedToShuffleReuses) { 3494 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3495 E->ReuseShuffleIndices, "shuffle"); 3496 } 3497 E->VectorizedValue = V; 3498 3499 // PHINodes may have multiple entries from the same block. We want to 3500 // visit every block once. 3501 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3502 3503 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3504 ValueList Operands; 3505 BasicBlock *IBB = PH->getIncomingBlock(i); 3506 3507 if (!VisitedBBs.insert(IBB).second) { 3508 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3509 continue; 3510 } 3511 3512 Builder.SetInsertPoint(IBB->getTerminator()); 3513 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3514 Value *Vec = vectorizeTree(E->getOperand(i)); 3515 NewPhi->addIncoming(Vec, IBB); 3516 } 3517 3518 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3519 "Invalid number of incoming values"); 3520 return V; 3521 } 3522 3523 case Instruction::ExtractElement: { 3524 if (!E->NeedToGather) { 3525 Value *V = E->getSingleOperand(0); 3526 if (!E->ReorderIndices.empty()) { 3527 OrdersType Mask; 3528 inversePermutation(E->ReorderIndices, Mask); 3529 Builder.SetInsertPoint(VL0); 3530 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3531 "reorder_shuffle"); 3532 } 3533 if (NeedToShuffleReuses) { 3534 // TODO: Merge this shuffle with the ReorderShuffleMask. 3535 if (E->ReorderIndices.empty()) 3536 Builder.SetInsertPoint(VL0); 3537 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3538 E->ReuseShuffleIndices, "shuffle"); 3539 } 3540 E->VectorizedValue = V; 3541 return V; 3542 } 3543 setInsertPointAfterBundle(E->Scalars, S); 3544 auto *V = Gather(E->Scalars, VecTy); 3545 if (NeedToShuffleReuses) { 3546 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3547 E->ReuseShuffleIndices, "shuffle"); 3548 if (auto *I = dyn_cast<Instruction>(V)) { 3549 GatherSeq.insert(I); 3550 CSEBlocks.insert(I->getParent()); 3551 } 3552 } 3553 E->VectorizedValue = V; 3554 return V; 3555 } 3556 case Instruction::ExtractValue: { 3557 if (!E->NeedToGather) { 3558 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3559 Builder.SetInsertPoint(LI); 3560 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3561 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3562 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3563 Value *NewV = propagateMetadata(V, E->Scalars); 3564 if (!E->ReorderIndices.empty()) { 3565 OrdersType Mask; 3566 inversePermutation(E->ReorderIndices, Mask); 3567 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3568 "reorder_shuffle"); 3569 } 3570 if (NeedToShuffleReuses) { 3571 // TODO: Merge this shuffle with the ReorderShuffleMask. 3572 NewV = Builder.CreateShuffleVector( 3573 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3574 } 3575 E->VectorizedValue = NewV; 3576 return NewV; 3577 } 3578 setInsertPointAfterBundle(E->Scalars, S); 3579 auto *V = Gather(E->Scalars, VecTy); 3580 if (NeedToShuffleReuses) { 3581 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3582 E->ReuseShuffleIndices, "shuffle"); 3583 if (auto *I = dyn_cast<Instruction>(V)) { 3584 GatherSeq.insert(I); 3585 CSEBlocks.insert(I->getParent()); 3586 } 3587 } 3588 E->VectorizedValue = V; 3589 return V; 3590 } 3591 case Instruction::ZExt: 3592 case Instruction::SExt: 3593 case Instruction::FPToUI: 3594 case Instruction::FPToSI: 3595 case Instruction::FPExt: 3596 case Instruction::PtrToInt: 3597 case Instruction::IntToPtr: 3598 case Instruction::SIToFP: 3599 case Instruction::UIToFP: 3600 case Instruction::Trunc: 3601 case Instruction::FPTrunc: 3602 case Instruction::BitCast: { 3603 setInsertPointAfterBundle(E->Scalars, S); 3604 3605 Value *InVec = vectorizeTree(E->getOperand(0)); 3606 3607 if (E->VectorizedValue) { 3608 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3609 return E->VectorizedValue; 3610 } 3611 3612 CastInst *CI = dyn_cast<CastInst>(VL0); 3613 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3614 if (NeedToShuffleReuses) { 3615 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3616 E->ReuseShuffleIndices, "shuffle"); 3617 } 3618 E->VectorizedValue = V; 3619 ++NumVectorInstructions; 3620 return V; 3621 } 3622 case Instruction::FCmp: 3623 case Instruction::ICmp: { 3624 setInsertPointAfterBundle(E->Scalars, S); 3625 3626 Value *L = vectorizeTree(E->getOperand(0)); 3627 Value *R = vectorizeTree(E->getOperand(1)); 3628 3629 if (E->VectorizedValue) { 3630 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3631 return E->VectorizedValue; 3632 } 3633 3634 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3635 Value *V; 3636 if (S.getOpcode() == Instruction::FCmp) 3637 V = Builder.CreateFCmp(P0, L, R); 3638 else 3639 V = Builder.CreateICmp(P0, L, R); 3640 3641 propagateIRFlags(V, E->Scalars, VL0); 3642 if (NeedToShuffleReuses) { 3643 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3644 E->ReuseShuffleIndices, "shuffle"); 3645 } 3646 E->VectorizedValue = V; 3647 ++NumVectorInstructions; 3648 return V; 3649 } 3650 case Instruction::Select: { 3651 setInsertPointAfterBundle(E->Scalars, S); 3652 3653 Value *Cond = vectorizeTree(E->getOperand(0)); 3654 Value *True = vectorizeTree(E->getOperand(1)); 3655 Value *False = vectorizeTree(E->getOperand(2)); 3656 3657 if (E->VectorizedValue) { 3658 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3659 return E->VectorizedValue; 3660 } 3661 3662 Value *V = Builder.CreateSelect(Cond, True, False); 3663 if (NeedToShuffleReuses) { 3664 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3665 E->ReuseShuffleIndices, "shuffle"); 3666 } 3667 E->VectorizedValue = V; 3668 ++NumVectorInstructions; 3669 return V; 3670 } 3671 case Instruction::Add: 3672 case Instruction::FAdd: 3673 case Instruction::Sub: 3674 case Instruction::FSub: 3675 case Instruction::Mul: 3676 case Instruction::FMul: 3677 case Instruction::UDiv: 3678 case Instruction::SDiv: 3679 case Instruction::FDiv: 3680 case Instruction::URem: 3681 case Instruction::SRem: 3682 case Instruction::FRem: 3683 case Instruction::Shl: 3684 case Instruction::LShr: 3685 case Instruction::AShr: 3686 case Instruction::And: 3687 case Instruction::Or: 3688 case Instruction::Xor: { 3689 setInsertPointAfterBundle(E->Scalars, S); 3690 3691 Value *LHS = vectorizeTree(E->getOperand(0)); 3692 Value *RHS = vectorizeTree(E->getOperand(1)); 3693 3694 if (E->VectorizedValue) { 3695 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3696 return E->VectorizedValue; 3697 } 3698 3699 Value *V = Builder.CreateBinOp( 3700 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3701 propagateIRFlags(V, E->Scalars, VL0); 3702 if (auto *I = dyn_cast<Instruction>(V)) 3703 V = propagateMetadata(I, E->Scalars); 3704 3705 if (NeedToShuffleReuses) { 3706 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3707 E->ReuseShuffleIndices, "shuffle"); 3708 } 3709 E->VectorizedValue = V; 3710 ++NumVectorInstructions; 3711 3712 return V; 3713 } 3714 case Instruction::Load: { 3715 // Loads are inserted at the head of the tree because we don't want to 3716 // sink them all the way down past store instructions. 3717 bool IsReorder = !E->ReorderIndices.empty(); 3718 if (IsReorder) { 3719 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3720 VL0 = cast<Instruction>(S.OpValue); 3721 } 3722 setInsertPointAfterBundle(E->Scalars, S); 3723 3724 LoadInst *LI = cast<LoadInst>(VL0); 3725 Type *ScalarLoadTy = LI->getType(); 3726 unsigned AS = LI->getPointerAddressSpace(); 3727 3728 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3729 VecTy->getPointerTo(AS)); 3730 3731 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3732 // ExternalUses list to make sure that an extract will be generated in the 3733 // future. 3734 Value *PO = LI->getPointerOperand(); 3735 if (getTreeEntry(PO)) 3736 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3737 3738 unsigned Alignment = LI->getAlignment(); 3739 LI = Builder.CreateLoad(VecTy, VecPtr); 3740 if (!Alignment) { 3741 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3742 } 3743 LI->setAlignment(Alignment); 3744 Value *V = propagateMetadata(LI, E->Scalars); 3745 if (IsReorder) { 3746 OrdersType Mask; 3747 inversePermutation(E->ReorderIndices, Mask); 3748 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3749 Mask, "reorder_shuffle"); 3750 } 3751 if (NeedToShuffleReuses) { 3752 // TODO: Merge this shuffle with the ReorderShuffleMask. 3753 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3754 E->ReuseShuffleIndices, "shuffle"); 3755 } 3756 E->VectorizedValue = V; 3757 ++NumVectorInstructions; 3758 return V; 3759 } 3760 case Instruction::Store: { 3761 StoreInst *SI = cast<StoreInst>(VL0); 3762 unsigned Alignment = SI->getAlignment(); 3763 unsigned AS = SI->getPointerAddressSpace(); 3764 3765 setInsertPointAfterBundle(E->Scalars, S); 3766 3767 Value *VecValue = vectorizeTree(E->getOperand(0)); 3768 Value *ScalarPtr = SI->getPointerOperand(); 3769 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3770 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3771 3772 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3773 // ExternalUses to make sure that an extract will be generated in the 3774 // future. 3775 if (getTreeEntry(ScalarPtr)) 3776 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3777 3778 if (!Alignment) 3779 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3780 3781 ST->setAlignment(Alignment); 3782 Value *V = propagateMetadata(ST, E->Scalars); 3783 if (NeedToShuffleReuses) { 3784 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3785 E->ReuseShuffleIndices, "shuffle"); 3786 } 3787 E->VectorizedValue = V; 3788 ++NumVectorInstructions; 3789 return V; 3790 } 3791 case Instruction::GetElementPtr: { 3792 setInsertPointAfterBundle(E->Scalars, S); 3793 3794 Value *Op0 = vectorizeTree(E->getOperand(0)); 3795 3796 std::vector<Value *> OpVecs; 3797 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3798 ++j) { 3799 Value *OpVec = vectorizeTree(E->getOperand(j)); 3800 OpVecs.push_back(OpVec); 3801 } 3802 3803 Value *V = Builder.CreateGEP( 3804 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3805 if (Instruction *I = dyn_cast<Instruction>(V)) 3806 V = propagateMetadata(I, E->Scalars); 3807 3808 if (NeedToShuffleReuses) { 3809 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3810 E->ReuseShuffleIndices, "shuffle"); 3811 } 3812 E->VectorizedValue = V; 3813 ++NumVectorInstructions; 3814 3815 return V; 3816 } 3817 case Instruction::Call: { 3818 CallInst *CI = cast<CallInst>(VL0); 3819 setInsertPointAfterBundle(E->Scalars, S); 3820 Function *FI; 3821 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3822 Value *ScalarArg = nullptr; 3823 if (CI && (FI = CI->getCalledFunction())) { 3824 IID = FI->getIntrinsicID(); 3825 } 3826 std::vector<Value *> OpVecs; 3827 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3828 ValueList OpVL; 3829 // Some intrinsics have scalar arguments. This argument should not be 3830 // vectorized. 3831 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3832 CallInst *CEI = cast<CallInst>(VL0); 3833 ScalarArg = CEI->getArgOperand(j); 3834 OpVecs.push_back(CEI->getArgOperand(j)); 3835 continue; 3836 } 3837 3838 Value *OpVec = vectorizeTree(E->getOperand(j)); 3839 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3840 OpVecs.push_back(OpVec); 3841 } 3842 3843 Module *M = F->getParent(); 3844 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3845 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3846 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3847 SmallVector<OperandBundleDef, 1> OpBundles; 3848 CI->getOperandBundlesAsDefs(OpBundles); 3849 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3850 3851 // The scalar argument uses an in-tree scalar so we add the new vectorized 3852 // call to ExternalUses list to make sure that an extract will be 3853 // generated in the future. 3854 if (ScalarArg && getTreeEntry(ScalarArg)) 3855 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3856 3857 propagateIRFlags(V, E->Scalars, VL0); 3858 if (NeedToShuffleReuses) { 3859 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3860 E->ReuseShuffleIndices, "shuffle"); 3861 } 3862 E->VectorizedValue = V; 3863 ++NumVectorInstructions; 3864 return V; 3865 } 3866 case Instruction::ShuffleVector: { 3867 assert(S.isAltShuffle() && 3868 ((Instruction::isBinaryOp(S.getOpcode()) && 3869 Instruction::isBinaryOp(S.getAltOpcode())) || 3870 (Instruction::isCast(S.getOpcode()) && 3871 Instruction::isCast(S.getAltOpcode()))) && 3872 "Invalid Shuffle Vector Operand"); 3873 3874 Value *LHS, *RHS; 3875 if (Instruction::isBinaryOp(S.getOpcode())) { 3876 setInsertPointAfterBundle(E->Scalars, S); 3877 LHS = vectorizeTree(E->getOperand(0)); 3878 RHS = vectorizeTree(E->getOperand(1)); 3879 } else { 3880 setInsertPointAfterBundle(E->Scalars, S); 3881 LHS = vectorizeTree(E->getOperand(0)); 3882 } 3883 3884 if (E->VectorizedValue) { 3885 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3886 return E->VectorizedValue; 3887 } 3888 3889 Value *V0, *V1; 3890 if (Instruction::isBinaryOp(S.getOpcode())) { 3891 V0 = Builder.CreateBinOp( 3892 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3893 V1 = Builder.CreateBinOp( 3894 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3895 } else { 3896 V0 = Builder.CreateCast( 3897 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3898 V1 = Builder.CreateCast( 3899 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3900 } 3901 3902 // Create shuffle to take alternate operations from the vector. 3903 // Also, gather up main and alt scalar ops to propagate IR flags to 3904 // each vector operation. 3905 ValueList OpScalars, AltScalars; 3906 unsigned e = E->Scalars.size(); 3907 SmallVector<Constant *, 8> Mask(e); 3908 for (unsigned i = 0; i < e; ++i) { 3909 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3910 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3911 if (OpInst->getOpcode() == S.getAltOpcode()) { 3912 Mask[i] = Builder.getInt32(e + i); 3913 AltScalars.push_back(E->Scalars[i]); 3914 } else { 3915 Mask[i] = Builder.getInt32(i); 3916 OpScalars.push_back(E->Scalars[i]); 3917 } 3918 } 3919 3920 Value *ShuffleMask = ConstantVector::get(Mask); 3921 propagateIRFlags(V0, OpScalars); 3922 propagateIRFlags(V1, AltScalars); 3923 3924 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3925 if (Instruction *I = dyn_cast<Instruction>(V)) 3926 V = propagateMetadata(I, E->Scalars); 3927 if (NeedToShuffleReuses) { 3928 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3929 E->ReuseShuffleIndices, "shuffle"); 3930 } 3931 E->VectorizedValue = V; 3932 ++NumVectorInstructions; 3933 3934 return V; 3935 } 3936 default: 3937 llvm_unreachable("unknown inst"); 3938 } 3939 return nullptr; 3940 } 3941 3942 Value *BoUpSLP::vectorizeTree() { 3943 ExtraValueToDebugLocsMap ExternallyUsedValues; 3944 return vectorizeTree(ExternallyUsedValues); 3945 } 3946 3947 Value * 3948 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3949 // All blocks must be scheduled before any instructions are inserted. 3950 for (auto &BSIter : BlocksSchedules) { 3951 scheduleBlock(BSIter.second.get()); 3952 } 3953 3954 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3955 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 3956 3957 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3958 // vectorized root. InstCombine will then rewrite the entire expression. We 3959 // sign extend the extracted values below. 3960 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3961 if (MinBWs.count(ScalarRoot)) { 3962 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3963 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3964 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 3965 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3966 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3967 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3968 VectorizableTree[0]->VectorizedValue = Trunc; 3969 } 3970 3971 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3972 << " values .\n"); 3973 3974 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3975 // specified by ScalarType. 3976 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3977 if (!MinBWs.count(ScalarRoot)) 3978 return Ex; 3979 if (MinBWs[ScalarRoot].second) 3980 return Builder.CreateSExt(Ex, ScalarType); 3981 return Builder.CreateZExt(Ex, ScalarType); 3982 }; 3983 3984 // Extract all of the elements with the external uses. 3985 for (const auto &ExternalUse : ExternalUses) { 3986 Value *Scalar = ExternalUse.Scalar; 3987 llvm::User *User = ExternalUse.User; 3988 3989 // Skip users that we already RAUW. This happens when one instruction 3990 // has multiple uses of the same value. 3991 if (User && !is_contained(Scalar->users(), User)) 3992 continue; 3993 TreeEntry *E = getTreeEntry(Scalar); 3994 assert(E && "Invalid scalar"); 3995 assert(!E->NeedToGather && "Extracting from a gather list"); 3996 3997 Value *Vec = E->VectorizedValue; 3998 assert(Vec && "Can't find vectorizable value"); 3999 4000 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4001 // If User == nullptr, the Scalar is used as extra arg. Generate 4002 // ExtractElement instruction and update the record for this scalar in 4003 // ExternallyUsedValues. 4004 if (!User) { 4005 assert(ExternallyUsedValues.count(Scalar) && 4006 "Scalar with nullptr as an external user must be registered in " 4007 "ExternallyUsedValues map"); 4008 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4009 Builder.SetInsertPoint(VecI->getParent(), 4010 std::next(VecI->getIterator())); 4011 } else { 4012 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4013 } 4014 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4015 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4016 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4017 auto &Locs = ExternallyUsedValues[Scalar]; 4018 ExternallyUsedValues.insert({Ex, Locs}); 4019 ExternallyUsedValues.erase(Scalar); 4020 // Required to update internally referenced instructions. 4021 Scalar->replaceAllUsesWith(Ex); 4022 continue; 4023 } 4024 4025 // Generate extracts for out-of-tree users. 4026 // Find the insertion point for the extractelement lane. 4027 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4028 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4029 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4030 if (PH->getIncomingValue(i) == Scalar) { 4031 Instruction *IncomingTerminator = 4032 PH->getIncomingBlock(i)->getTerminator(); 4033 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4034 Builder.SetInsertPoint(VecI->getParent(), 4035 std::next(VecI->getIterator())); 4036 } else { 4037 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4038 } 4039 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4040 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4041 CSEBlocks.insert(PH->getIncomingBlock(i)); 4042 PH->setOperand(i, Ex); 4043 } 4044 } 4045 } else { 4046 Builder.SetInsertPoint(cast<Instruction>(User)); 4047 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4048 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4049 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4050 User->replaceUsesOfWith(Scalar, Ex); 4051 } 4052 } else { 4053 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4054 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4055 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4056 CSEBlocks.insert(&F->getEntryBlock()); 4057 User->replaceUsesOfWith(Scalar, Ex); 4058 } 4059 4060 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4061 } 4062 4063 // For each vectorized value: 4064 for (auto &TEPtr : VectorizableTree) { 4065 TreeEntry *Entry = TEPtr.get(); 4066 4067 // No need to handle users of gathered values. 4068 if (Entry->NeedToGather) 4069 continue; 4070 4071 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4072 4073 // For each lane: 4074 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4075 Value *Scalar = Entry->Scalars[Lane]; 4076 4077 Type *Ty = Scalar->getType(); 4078 if (!Ty->isVoidTy()) { 4079 #ifndef NDEBUG 4080 for (User *U : Scalar->users()) { 4081 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4082 4083 // It is legal to replace users in the ignorelist by undef. 4084 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4085 "Replacing out-of-tree value with undef"); 4086 } 4087 #endif 4088 Value *Undef = UndefValue::get(Ty); 4089 Scalar->replaceAllUsesWith(Undef); 4090 } 4091 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4092 eraseInstruction(cast<Instruction>(Scalar)); 4093 } 4094 } 4095 4096 Builder.ClearInsertionPoint(); 4097 4098 return VectorizableTree[0]->VectorizedValue; 4099 } 4100 4101 void BoUpSLP::optimizeGatherSequence() { 4102 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4103 << " gather sequences instructions.\n"); 4104 // LICM InsertElementInst sequences. 4105 for (Instruction *I : GatherSeq) { 4106 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4107 continue; 4108 4109 // Check if this block is inside a loop. 4110 Loop *L = LI->getLoopFor(I->getParent()); 4111 if (!L) 4112 continue; 4113 4114 // Check if it has a preheader. 4115 BasicBlock *PreHeader = L->getLoopPreheader(); 4116 if (!PreHeader) 4117 continue; 4118 4119 // If the vector or the element that we insert into it are 4120 // instructions that are defined in this basic block then we can't 4121 // hoist this instruction. 4122 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4123 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4124 if (Op0 && L->contains(Op0)) 4125 continue; 4126 if (Op1 && L->contains(Op1)) 4127 continue; 4128 4129 // We can hoist this instruction. Move it to the pre-header. 4130 I->moveBefore(PreHeader->getTerminator()); 4131 } 4132 4133 // Make a list of all reachable blocks in our CSE queue. 4134 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4135 CSEWorkList.reserve(CSEBlocks.size()); 4136 for (BasicBlock *BB : CSEBlocks) 4137 if (DomTreeNode *N = DT->getNode(BB)) { 4138 assert(DT->isReachableFromEntry(N)); 4139 CSEWorkList.push_back(N); 4140 } 4141 4142 // Sort blocks by domination. This ensures we visit a block after all blocks 4143 // dominating it are visited. 4144 llvm::stable_sort(CSEWorkList, 4145 [this](const DomTreeNode *A, const DomTreeNode *B) { 4146 return DT->properlyDominates(A, B); 4147 }); 4148 4149 // Perform O(N^2) search over the gather sequences and merge identical 4150 // instructions. TODO: We can further optimize this scan if we split the 4151 // instructions into different buckets based on the insert lane. 4152 SmallVector<Instruction *, 16> Visited; 4153 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4154 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4155 "Worklist not sorted properly!"); 4156 BasicBlock *BB = (*I)->getBlock(); 4157 // For all instructions in blocks containing gather sequences: 4158 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4159 Instruction *In = &*it++; 4160 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4161 continue; 4162 4163 // Check if we can replace this instruction with any of the 4164 // visited instructions. 4165 for (Instruction *v : Visited) { 4166 if (In->isIdenticalTo(v) && 4167 DT->dominates(v->getParent(), In->getParent())) { 4168 In->replaceAllUsesWith(v); 4169 eraseInstruction(In); 4170 In = nullptr; 4171 break; 4172 } 4173 } 4174 if (In) { 4175 assert(!is_contained(Visited, In)); 4176 Visited.push_back(In); 4177 } 4178 } 4179 } 4180 CSEBlocks.clear(); 4181 GatherSeq.clear(); 4182 } 4183 4184 // Groups the instructions to a bundle (which is then a single scheduling entity) 4185 // and schedules instructions until the bundle gets ready. 4186 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 4187 BoUpSLP *SLP, 4188 const InstructionsState &S) { 4189 if (isa<PHINode>(S.OpValue)) 4190 return true; 4191 4192 // Initialize the instruction bundle. 4193 Instruction *OldScheduleEnd = ScheduleEnd; 4194 ScheduleData *PrevInBundle = nullptr; 4195 ScheduleData *Bundle = nullptr; 4196 bool ReSchedule = false; 4197 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4198 4199 // Make sure that the scheduling region contains all 4200 // instructions of the bundle. 4201 for (Value *V : VL) { 4202 if (!extendSchedulingRegion(V, S)) 4203 return false; 4204 } 4205 4206 for (Value *V : VL) { 4207 ScheduleData *BundleMember = getScheduleData(V); 4208 assert(BundleMember && 4209 "no ScheduleData for bundle member (maybe not in same basic block)"); 4210 if (BundleMember->IsScheduled) { 4211 // A bundle member was scheduled as single instruction before and now 4212 // needs to be scheduled as part of the bundle. We just get rid of the 4213 // existing schedule. 4214 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4215 << " was already scheduled\n"); 4216 ReSchedule = true; 4217 } 4218 assert(BundleMember->isSchedulingEntity() && 4219 "bundle member already part of other bundle"); 4220 if (PrevInBundle) { 4221 PrevInBundle->NextInBundle = BundleMember; 4222 } else { 4223 Bundle = BundleMember; 4224 } 4225 BundleMember->UnscheduledDepsInBundle = 0; 4226 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4227 4228 // Group the instructions to a bundle. 4229 BundleMember->FirstInBundle = Bundle; 4230 PrevInBundle = BundleMember; 4231 } 4232 if (ScheduleEnd != OldScheduleEnd) { 4233 // The scheduling region got new instructions at the lower end (or it is a 4234 // new region for the first bundle). This makes it necessary to 4235 // recalculate all dependencies. 4236 // It is seldom that this needs to be done a second time after adding the 4237 // initial bundle to the region. 4238 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4239 doForAllOpcodes(I, [](ScheduleData *SD) { 4240 SD->clearDependencies(); 4241 }); 4242 } 4243 ReSchedule = true; 4244 } 4245 if (ReSchedule) { 4246 resetSchedule(); 4247 initialFillReadyList(ReadyInsts); 4248 } 4249 4250 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4251 << BB->getName() << "\n"); 4252 4253 calculateDependencies(Bundle, true, SLP); 4254 4255 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4256 // means that there are no cyclic dependencies and we can schedule it. 4257 // Note that's important that we don't "schedule" the bundle yet (see 4258 // cancelScheduling). 4259 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4260 4261 ScheduleData *pickedSD = ReadyInsts.back(); 4262 ReadyInsts.pop_back(); 4263 4264 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4265 schedule(pickedSD, ReadyInsts); 4266 } 4267 } 4268 if (!Bundle->isReady()) { 4269 cancelScheduling(VL, S.OpValue); 4270 return false; 4271 } 4272 return true; 4273 } 4274 4275 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4276 Value *OpValue) { 4277 if (isa<PHINode>(OpValue)) 4278 return; 4279 4280 ScheduleData *Bundle = getScheduleData(OpValue); 4281 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4282 assert(!Bundle->IsScheduled && 4283 "Can't cancel bundle which is already scheduled"); 4284 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4285 "tried to unbundle something which is not a bundle"); 4286 4287 // Un-bundle: make single instructions out of the bundle. 4288 ScheduleData *BundleMember = Bundle; 4289 while (BundleMember) { 4290 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4291 BundleMember->FirstInBundle = BundleMember; 4292 ScheduleData *Next = BundleMember->NextInBundle; 4293 BundleMember->NextInBundle = nullptr; 4294 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4295 if (BundleMember->UnscheduledDepsInBundle == 0) { 4296 ReadyInsts.insert(BundleMember); 4297 } 4298 BundleMember = Next; 4299 } 4300 } 4301 4302 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4303 // Allocate a new ScheduleData for the instruction. 4304 if (ChunkPos >= ChunkSize) { 4305 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 4306 ChunkPos = 0; 4307 } 4308 return &(ScheduleDataChunks.back()[ChunkPos++]); 4309 } 4310 4311 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4312 const InstructionsState &S) { 4313 if (getScheduleData(V, isOneOf(S, V))) 4314 return true; 4315 Instruction *I = dyn_cast<Instruction>(V); 4316 assert(I && "bundle member must be an instruction"); 4317 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4318 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4319 ScheduleData *ISD = getScheduleData(I); 4320 if (!ISD) 4321 return false; 4322 assert(isInSchedulingRegion(ISD) && 4323 "ScheduleData not in scheduling region"); 4324 ScheduleData *SD = allocateScheduleDataChunks(); 4325 SD->Inst = I; 4326 SD->init(SchedulingRegionID, S.OpValue); 4327 ExtraScheduleDataMap[I][S.OpValue] = SD; 4328 return true; 4329 }; 4330 if (CheckSheduleForI(I)) 4331 return true; 4332 if (!ScheduleStart) { 4333 // It's the first instruction in the new region. 4334 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4335 ScheduleStart = I; 4336 ScheduleEnd = I->getNextNode(); 4337 if (isOneOf(S, I) != I) 4338 CheckSheduleForI(I); 4339 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4340 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4341 return true; 4342 } 4343 // Search up and down at the same time, because we don't know if the new 4344 // instruction is above or below the existing scheduling region. 4345 BasicBlock::reverse_iterator UpIter = 4346 ++ScheduleStart->getIterator().getReverse(); 4347 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4348 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4349 BasicBlock::iterator LowerEnd = BB->end(); 4350 while (true) { 4351 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4352 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4353 return false; 4354 } 4355 4356 if (UpIter != UpperEnd) { 4357 if (&*UpIter == I) { 4358 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4359 ScheduleStart = I; 4360 if (isOneOf(S, I) != I) 4361 CheckSheduleForI(I); 4362 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4363 << "\n"); 4364 return true; 4365 } 4366 ++UpIter; 4367 } 4368 if (DownIter != LowerEnd) { 4369 if (&*DownIter == I) { 4370 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4371 nullptr); 4372 ScheduleEnd = I->getNextNode(); 4373 if (isOneOf(S, I) != I) 4374 CheckSheduleForI(I); 4375 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4376 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4377 << "\n"); 4378 return true; 4379 } 4380 ++DownIter; 4381 } 4382 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4383 "instruction not found in block"); 4384 } 4385 return true; 4386 } 4387 4388 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4389 Instruction *ToI, 4390 ScheduleData *PrevLoadStore, 4391 ScheduleData *NextLoadStore) { 4392 ScheduleData *CurrentLoadStore = PrevLoadStore; 4393 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4394 ScheduleData *SD = ScheduleDataMap[I]; 4395 if (!SD) { 4396 SD = allocateScheduleDataChunks(); 4397 ScheduleDataMap[I] = SD; 4398 SD->Inst = I; 4399 } 4400 assert(!isInSchedulingRegion(SD) && 4401 "new ScheduleData already in scheduling region"); 4402 SD->init(SchedulingRegionID, I); 4403 4404 if (I->mayReadOrWriteMemory() && 4405 (!isa<IntrinsicInst>(I) || 4406 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4407 // Update the linked list of memory accessing instructions. 4408 if (CurrentLoadStore) { 4409 CurrentLoadStore->NextLoadStore = SD; 4410 } else { 4411 FirstLoadStoreInRegion = SD; 4412 } 4413 CurrentLoadStore = SD; 4414 } 4415 } 4416 if (NextLoadStore) { 4417 if (CurrentLoadStore) 4418 CurrentLoadStore->NextLoadStore = NextLoadStore; 4419 } else { 4420 LastLoadStoreInRegion = CurrentLoadStore; 4421 } 4422 } 4423 4424 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4425 bool InsertInReadyList, 4426 BoUpSLP *SLP) { 4427 assert(SD->isSchedulingEntity()); 4428 4429 SmallVector<ScheduleData *, 10> WorkList; 4430 WorkList.push_back(SD); 4431 4432 while (!WorkList.empty()) { 4433 ScheduleData *SD = WorkList.back(); 4434 WorkList.pop_back(); 4435 4436 ScheduleData *BundleMember = SD; 4437 while (BundleMember) { 4438 assert(isInSchedulingRegion(BundleMember)); 4439 if (!BundleMember->hasValidDependencies()) { 4440 4441 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4442 << "\n"); 4443 BundleMember->Dependencies = 0; 4444 BundleMember->resetUnscheduledDeps(); 4445 4446 // Handle def-use chain dependencies. 4447 if (BundleMember->OpValue != BundleMember->Inst) { 4448 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4449 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4450 BundleMember->Dependencies++; 4451 ScheduleData *DestBundle = UseSD->FirstInBundle; 4452 if (!DestBundle->IsScheduled) 4453 BundleMember->incrementUnscheduledDeps(1); 4454 if (!DestBundle->hasValidDependencies()) 4455 WorkList.push_back(DestBundle); 4456 } 4457 } else { 4458 for (User *U : BundleMember->Inst->users()) { 4459 if (isa<Instruction>(U)) { 4460 ScheduleData *UseSD = getScheduleData(U); 4461 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4462 BundleMember->Dependencies++; 4463 ScheduleData *DestBundle = UseSD->FirstInBundle; 4464 if (!DestBundle->IsScheduled) 4465 BundleMember->incrementUnscheduledDeps(1); 4466 if (!DestBundle->hasValidDependencies()) 4467 WorkList.push_back(DestBundle); 4468 } 4469 } else { 4470 // I'm not sure if this can ever happen. But we need to be safe. 4471 // This lets the instruction/bundle never be scheduled and 4472 // eventually disable vectorization. 4473 BundleMember->Dependencies++; 4474 BundleMember->incrementUnscheduledDeps(1); 4475 } 4476 } 4477 } 4478 4479 // Handle the memory dependencies. 4480 ScheduleData *DepDest = BundleMember->NextLoadStore; 4481 if (DepDest) { 4482 Instruction *SrcInst = BundleMember->Inst; 4483 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4484 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4485 unsigned numAliased = 0; 4486 unsigned DistToSrc = 1; 4487 4488 while (DepDest) { 4489 assert(isInSchedulingRegion(DepDest)); 4490 4491 // We have two limits to reduce the complexity: 4492 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4493 // SLP->isAliased (which is the expensive part in this loop). 4494 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4495 // the whole loop (even if the loop is fast, it's quadratic). 4496 // It's important for the loop break condition (see below) to 4497 // check this limit even between two read-only instructions. 4498 if (DistToSrc >= MaxMemDepDistance || 4499 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4500 (numAliased >= AliasedCheckLimit || 4501 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4502 4503 // We increment the counter only if the locations are aliased 4504 // (instead of counting all alias checks). This gives a better 4505 // balance between reduced runtime and accurate dependencies. 4506 numAliased++; 4507 4508 DepDest->MemoryDependencies.push_back(BundleMember); 4509 BundleMember->Dependencies++; 4510 ScheduleData *DestBundle = DepDest->FirstInBundle; 4511 if (!DestBundle->IsScheduled) { 4512 BundleMember->incrementUnscheduledDeps(1); 4513 } 4514 if (!DestBundle->hasValidDependencies()) { 4515 WorkList.push_back(DestBundle); 4516 } 4517 } 4518 DepDest = DepDest->NextLoadStore; 4519 4520 // Example, explaining the loop break condition: Let's assume our 4521 // starting instruction is i0 and MaxMemDepDistance = 3. 4522 // 4523 // +--------v--v--v 4524 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4525 // +--------^--^--^ 4526 // 4527 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4528 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4529 // Previously we already added dependencies from i3 to i6,i7,i8 4530 // (because of MaxMemDepDistance). As we added a dependency from 4531 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4532 // and we can abort this loop at i6. 4533 if (DistToSrc >= 2 * MaxMemDepDistance) 4534 break; 4535 DistToSrc++; 4536 } 4537 } 4538 } 4539 BundleMember = BundleMember->NextInBundle; 4540 } 4541 if (InsertInReadyList && SD->isReady()) { 4542 ReadyInsts.push_back(SD); 4543 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4544 << "\n"); 4545 } 4546 } 4547 } 4548 4549 void BoUpSLP::BlockScheduling::resetSchedule() { 4550 assert(ScheduleStart && 4551 "tried to reset schedule on block which has not been scheduled"); 4552 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4553 doForAllOpcodes(I, [&](ScheduleData *SD) { 4554 assert(isInSchedulingRegion(SD) && 4555 "ScheduleData not in scheduling region"); 4556 SD->IsScheduled = false; 4557 SD->resetUnscheduledDeps(); 4558 }); 4559 } 4560 ReadyInsts.clear(); 4561 } 4562 4563 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4564 if (!BS->ScheduleStart) 4565 return; 4566 4567 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4568 4569 BS->resetSchedule(); 4570 4571 // For the real scheduling we use a more sophisticated ready-list: it is 4572 // sorted by the original instruction location. This lets the final schedule 4573 // be as close as possible to the original instruction order. 4574 struct ScheduleDataCompare { 4575 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4576 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4577 } 4578 }; 4579 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4580 4581 // Ensure that all dependency data is updated and fill the ready-list with 4582 // initial instructions. 4583 int Idx = 0; 4584 int NumToSchedule = 0; 4585 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4586 I = I->getNextNode()) { 4587 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4588 assert(SD->isPartOfBundle() == 4589 (getTreeEntry(SD->Inst) != nullptr) && 4590 "scheduler and vectorizer bundle mismatch"); 4591 SD->FirstInBundle->SchedulingPriority = Idx++; 4592 if (SD->isSchedulingEntity()) { 4593 BS->calculateDependencies(SD, false, this); 4594 NumToSchedule++; 4595 } 4596 }); 4597 } 4598 BS->initialFillReadyList(ReadyInsts); 4599 4600 Instruction *LastScheduledInst = BS->ScheduleEnd; 4601 4602 // Do the "real" scheduling. 4603 while (!ReadyInsts.empty()) { 4604 ScheduleData *picked = *ReadyInsts.begin(); 4605 ReadyInsts.erase(ReadyInsts.begin()); 4606 4607 // Move the scheduled instruction(s) to their dedicated places, if not 4608 // there yet. 4609 ScheduleData *BundleMember = picked; 4610 while (BundleMember) { 4611 Instruction *pickedInst = BundleMember->Inst; 4612 if (LastScheduledInst->getNextNode() != pickedInst) { 4613 BS->BB->getInstList().remove(pickedInst); 4614 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4615 pickedInst); 4616 } 4617 LastScheduledInst = pickedInst; 4618 BundleMember = BundleMember->NextInBundle; 4619 } 4620 4621 BS->schedule(picked, ReadyInsts); 4622 NumToSchedule--; 4623 } 4624 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4625 4626 // Avoid duplicate scheduling of the block. 4627 BS->ScheduleStart = nullptr; 4628 } 4629 4630 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4631 // If V is a store, just return the width of the stored value without 4632 // traversing the expression tree. This is the common case. 4633 if (auto *Store = dyn_cast<StoreInst>(V)) 4634 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4635 4636 // If V is not a store, we can traverse the expression tree to find loads 4637 // that feed it. The type of the loaded value may indicate a more suitable 4638 // width than V's type. We want to base the vector element size on the width 4639 // of memory operations where possible. 4640 SmallVector<Instruction *, 16> Worklist; 4641 SmallPtrSet<Instruction *, 16> Visited; 4642 if (auto *I = dyn_cast<Instruction>(V)) 4643 Worklist.push_back(I); 4644 4645 // Traverse the expression tree in bottom-up order looking for loads. If we 4646 // encounter an instruction we don't yet handle, we give up. 4647 auto MaxWidth = 0u; 4648 auto FoundUnknownInst = false; 4649 while (!Worklist.empty() && !FoundUnknownInst) { 4650 auto *I = Worklist.pop_back_val(); 4651 Visited.insert(I); 4652 4653 // We should only be looking at scalar instructions here. If the current 4654 // instruction has a vector type, give up. 4655 auto *Ty = I->getType(); 4656 if (isa<VectorType>(Ty)) 4657 FoundUnknownInst = true; 4658 4659 // If the current instruction is a load, update MaxWidth to reflect the 4660 // width of the loaded value. 4661 else if (isa<LoadInst>(I)) 4662 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4663 4664 // Otherwise, we need to visit the operands of the instruction. We only 4665 // handle the interesting cases from buildTree here. If an operand is an 4666 // instruction we haven't yet visited, we add it to the worklist. 4667 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4668 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4669 for (Use &U : I->operands()) 4670 if (auto *J = dyn_cast<Instruction>(U.get())) 4671 if (!Visited.count(J)) 4672 Worklist.push_back(J); 4673 } 4674 4675 // If we don't yet handle the instruction, give up. 4676 else 4677 FoundUnknownInst = true; 4678 } 4679 4680 // If we didn't encounter a memory access in the expression tree, or if we 4681 // gave up for some reason, just return the width of V. 4682 if (!MaxWidth || FoundUnknownInst) 4683 return DL->getTypeSizeInBits(V->getType()); 4684 4685 // Otherwise, return the maximum width we found. 4686 return MaxWidth; 4687 } 4688 4689 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4690 // smaller type with a truncation. We collect the values that will be demoted 4691 // in ToDemote and additional roots that require investigating in Roots. 4692 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4693 SmallVectorImpl<Value *> &ToDemote, 4694 SmallVectorImpl<Value *> &Roots) { 4695 // We can always demote constants. 4696 if (isa<Constant>(V)) { 4697 ToDemote.push_back(V); 4698 return true; 4699 } 4700 4701 // If the value is not an instruction in the expression with only one use, it 4702 // cannot be demoted. 4703 auto *I = dyn_cast<Instruction>(V); 4704 if (!I || !I->hasOneUse() || !Expr.count(I)) 4705 return false; 4706 4707 switch (I->getOpcode()) { 4708 4709 // We can always demote truncations and extensions. Since truncations can 4710 // seed additional demotion, we save the truncated value. 4711 case Instruction::Trunc: 4712 Roots.push_back(I->getOperand(0)); 4713 break; 4714 case Instruction::ZExt: 4715 case Instruction::SExt: 4716 break; 4717 4718 // We can demote certain binary operations if we can demote both of their 4719 // operands. 4720 case Instruction::Add: 4721 case Instruction::Sub: 4722 case Instruction::Mul: 4723 case Instruction::And: 4724 case Instruction::Or: 4725 case Instruction::Xor: 4726 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4727 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4728 return false; 4729 break; 4730 4731 // We can demote selects if we can demote their true and false values. 4732 case Instruction::Select: { 4733 SelectInst *SI = cast<SelectInst>(I); 4734 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4735 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4736 return false; 4737 break; 4738 } 4739 4740 // We can demote phis if we can demote all their incoming operands. Note that 4741 // we don't need to worry about cycles since we ensure single use above. 4742 case Instruction::PHI: { 4743 PHINode *PN = cast<PHINode>(I); 4744 for (Value *IncValue : PN->incoming_values()) 4745 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4746 return false; 4747 break; 4748 } 4749 4750 // Otherwise, conservatively give up. 4751 default: 4752 return false; 4753 } 4754 4755 // Record the value that we can demote. 4756 ToDemote.push_back(V); 4757 return true; 4758 } 4759 4760 void BoUpSLP::computeMinimumValueSizes() { 4761 // If there are no external uses, the expression tree must be rooted by a 4762 // store. We can't demote in-memory values, so there is nothing to do here. 4763 if (ExternalUses.empty()) 4764 return; 4765 4766 // We only attempt to truncate integer expressions. 4767 auto &TreeRoot = VectorizableTree[0]->Scalars; 4768 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4769 if (!TreeRootIT) 4770 return; 4771 4772 // If the expression is not rooted by a store, these roots should have 4773 // external uses. We will rely on InstCombine to rewrite the expression in 4774 // the narrower type. However, InstCombine only rewrites single-use values. 4775 // This means that if a tree entry other than a root is used externally, it 4776 // must have multiple uses and InstCombine will not rewrite it. The code 4777 // below ensures that only the roots are used externally. 4778 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4779 for (auto &EU : ExternalUses) 4780 if (!Expr.erase(EU.Scalar)) 4781 return; 4782 if (!Expr.empty()) 4783 return; 4784 4785 // Collect the scalar values of the vectorizable expression. We will use this 4786 // context to determine which values can be demoted. If we see a truncation, 4787 // we mark it as seeding another demotion. 4788 for (auto &EntryPtr : VectorizableTree) 4789 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 4790 4791 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4792 // have a single external user that is not in the vectorizable tree. 4793 for (auto *Root : TreeRoot) 4794 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4795 return; 4796 4797 // Conservatively determine if we can actually truncate the roots of the 4798 // expression. Collect the values that can be demoted in ToDemote and 4799 // additional roots that require investigating in Roots. 4800 SmallVector<Value *, 32> ToDemote; 4801 SmallVector<Value *, 4> Roots; 4802 for (auto *Root : TreeRoot) 4803 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4804 return; 4805 4806 // The maximum bit width required to represent all the values that can be 4807 // demoted without loss of precision. It would be safe to truncate the roots 4808 // of the expression to this width. 4809 auto MaxBitWidth = 8u; 4810 4811 // We first check if all the bits of the roots are demanded. If they're not, 4812 // we can truncate the roots to this narrower type. 4813 for (auto *Root : TreeRoot) { 4814 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4815 MaxBitWidth = std::max<unsigned>( 4816 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4817 } 4818 4819 // True if the roots can be zero-extended back to their original type, rather 4820 // than sign-extended. We know that if the leading bits are not demanded, we 4821 // can safely zero-extend. So we initialize IsKnownPositive to True. 4822 bool IsKnownPositive = true; 4823 4824 // If all the bits of the roots are demanded, we can try a little harder to 4825 // compute a narrower type. This can happen, for example, if the roots are 4826 // getelementptr indices. InstCombine promotes these indices to the pointer 4827 // width. Thus, all their bits are technically demanded even though the 4828 // address computation might be vectorized in a smaller type. 4829 // 4830 // We start by looking at each entry that can be demoted. We compute the 4831 // maximum bit width required to store the scalar by using ValueTracking to 4832 // compute the number of high-order bits we can truncate. 4833 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4834 llvm::all_of(TreeRoot, [](Value *R) { 4835 assert(R->hasOneUse() && "Root should have only one use!"); 4836 return isa<GetElementPtrInst>(R->user_back()); 4837 })) { 4838 MaxBitWidth = 8u; 4839 4840 // Determine if the sign bit of all the roots is known to be zero. If not, 4841 // IsKnownPositive is set to False. 4842 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4843 KnownBits Known = computeKnownBits(R, *DL); 4844 return Known.isNonNegative(); 4845 }); 4846 4847 // Determine the maximum number of bits required to store the scalar 4848 // values. 4849 for (auto *Scalar : ToDemote) { 4850 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4851 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4852 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4853 } 4854 4855 // If we can't prove that the sign bit is zero, we must add one to the 4856 // maximum bit width to account for the unknown sign bit. This preserves 4857 // the existing sign bit so we can safely sign-extend the root back to the 4858 // original type. Otherwise, if we know the sign bit is zero, we will 4859 // zero-extend the root instead. 4860 // 4861 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4862 // one to the maximum bit width will yield a larger-than-necessary 4863 // type. In general, we need to add an extra bit only if we can't 4864 // prove that the upper bit of the original type is equal to the 4865 // upper bit of the proposed smaller type. If these two bits are the 4866 // same (either zero or one) we know that sign-extending from the 4867 // smaller type will result in the same value. Here, since we can't 4868 // yet prove this, we are just making the proposed smaller type 4869 // larger to ensure correctness. 4870 if (!IsKnownPositive) 4871 ++MaxBitWidth; 4872 } 4873 4874 // Round MaxBitWidth up to the next power-of-two. 4875 if (!isPowerOf2_64(MaxBitWidth)) 4876 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4877 4878 // If the maximum bit width we compute is less than the with of the roots' 4879 // type, we can proceed with the narrowing. Otherwise, do nothing. 4880 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4881 return; 4882 4883 // If we can truncate the root, we must collect additional values that might 4884 // be demoted as a result. That is, those seeded by truncations we will 4885 // modify. 4886 while (!Roots.empty()) 4887 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4888 4889 // Finally, map the values we can demote to the maximum bit with we computed. 4890 for (auto *Scalar : ToDemote) 4891 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4892 } 4893 4894 namespace { 4895 4896 /// The SLPVectorizer Pass. 4897 struct SLPVectorizer : public FunctionPass { 4898 SLPVectorizerPass Impl; 4899 4900 /// Pass identification, replacement for typeid 4901 static char ID; 4902 4903 explicit SLPVectorizer() : FunctionPass(ID) { 4904 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4905 } 4906 4907 bool doInitialization(Module &M) override { 4908 return false; 4909 } 4910 4911 bool runOnFunction(Function &F) override { 4912 if (skipFunction(F)) 4913 return false; 4914 4915 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4916 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4917 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4918 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4919 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4920 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4921 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4922 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4923 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4924 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4925 4926 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4927 } 4928 4929 void getAnalysisUsage(AnalysisUsage &AU) const override { 4930 FunctionPass::getAnalysisUsage(AU); 4931 AU.addRequired<AssumptionCacheTracker>(); 4932 AU.addRequired<ScalarEvolutionWrapperPass>(); 4933 AU.addRequired<AAResultsWrapperPass>(); 4934 AU.addRequired<TargetTransformInfoWrapperPass>(); 4935 AU.addRequired<LoopInfoWrapperPass>(); 4936 AU.addRequired<DominatorTreeWrapperPass>(); 4937 AU.addRequired<DemandedBitsWrapperPass>(); 4938 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4939 AU.addPreserved<LoopInfoWrapperPass>(); 4940 AU.addPreserved<DominatorTreeWrapperPass>(); 4941 AU.addPreserved<AAResultsWrapperPass>(); 4942 AU.addPreserved<GlobalsAAWrapperPass>(); 4943 AU.setPreservesCFG(); 4944 } 4945 }; 4946 4947 } // end anonymous namespace 4948 4949 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4950 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4951 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4952 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4953 auto *AA = &AM.getResult<AAManager>(F); 4954 auto *LI = &AM.getResult<LoopAnalysis>(F); 4955 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4956 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4957 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4958 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4959 4960 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4961 if (!Changed) 4962 return PreservedAnalyses::all(); 4963 4964 PreservedAnalyses PA; 4965 PA.preserveSet<CFGAnalyses>(); 4966 PA.preserve<AAManager>(); 4967 PA.preserve<GlobalsAA>(); 4968 return PA; 4969 } 4970 4971 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4972 TargetTransformInfo *TTI_, 4973 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4974 LoopInfo *LI_, DominatorTree *DT_, 4975 AssumptionCache *AC_, DemandedBits *DB_, 4976 OptimizationRemarkEmitter *ORE_) { 4977 SE = SE_; 4978 TTI = TTI_; 4979 TLI = TLI_; 4980 AA = AA_; 4981 LI = LI_; 4982 DT = DT_; 4983 AC = AC_; 4984 DB = DB_; 4985 DL = &F.getParent()->getDataLayout(); 4986 4987 Stores.clear(); 4988 GEPs.clear(); 4989 bool Changed = false; 4990 4991 // If the target claims to have no vector registers don't attempt 4992 // vectorization. 4993 if (!TTI->getNumberOfRegisters(true)) 4994 return false; 4995 4996 // Don't vectorize when the attribute NoImplicitFloat is used. 4997 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4998 return false; 4999 5000 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5001 5002 // Use the bottom up slp vectorizer to construct chains that start with 5003 // store instructions. 5004 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5005 5006 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5007 // delete instructions. 5008 5009 // Scan the blocks in the function in post order. 5010 for (auto BB : post_order(&F.getEntryBlock())) { 5011 collectSeedInstructions(BB); 5012 5013 // Vectorize trees that end at stores. 5014 if (!Stores.empty()) { 5015 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5016 << " underlying objects.\n"); 5017 Changed |= vectorizeStoreChains(R); 5018 } 5019 5020 // Vectorize trees that end at reductions. 5021 Changed |= vectorizeChainsInBlock(BB, R); 5022 5023 // Vectorize the index computations of getelementptr instructions. This 5024 // is primarily intended to catch gather-like idioms ending at 5025 // non-consecutive loads. 5026 if (!GEPs.empty()) { 5027 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5028 << " underlying objects.\n"); 5029 Changed |= vectorizeGEPIndices(BB, R); 5030 } 5031 } 5032 5033 if (Changed) { 5034 R.optimizeGatherSequence(); 5035 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5036 LLVM_DEBUG(verifyFunction(F)); 5037 } 5038 return Changed; 5039 } 5040 5041 /// Check that the Values in the slice in VL array are still existent in 5042 /// the WeakTrackingVH array. 5043 /// Vectorization of part of the VL array may cause later values in the VL array 5044 /// to become invalid. We track when this has happened in the WeakTrackingVH 5045 /// array. 5046 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5047 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5048 unsigned SliceSize) { 5049 VL = VL.slice(SliceBegin, SliceSize); 5050 VH = VH.slice(SliceBegin, SliceSize); 5051 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5052 } 5053 5054 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5055 unsigned VecRegSize) { 5056 const unsigned ChainLen = Chain.size(); 5057 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5058 << "\n"); 5059 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5060 const unsigned VF = VecRegSize / Sz; 5061 5062 if (!isPowerOf2_32(Sz) || VF < 2) 5063 return false; 5064 5065 // Keep track of values that were deleted by vectorizing in the loop below. 5066 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5067 5068 bool Changed = false; 5069 // Look for profitable vectorizable trees at all offsets, starting at zero. 5070 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5071 5072 // Check that a previous iteration of this loop did not delete the Value. 5073 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5074 continue; 5075 5076 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5077 << "\n"); 5078 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5079 5080 R.buildTree(Operands); 5081 if (R.isTreeTinyAndNotFullyVectorizable()) 5082 continue; 5083 5084 R.computeMinimumValueSizes(); 5085 5086 int Cost = R.getTreeCost(); 5087 5088 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5089 << "\n"); 5090 if (Cost < -SLPCostThreshold) { 5091 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5092 5093 using namespace ore; 5094 5095 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5096 cast<StoreInst>(Chain[i])) 5097 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5098 << " and with tree size " 5099 << NV("TreeSize", R.getTreeSize())); 5100 5101 R.vectorizeTree(); 5102 5103 // Move to the next bundle. 5104 i += VF - 1; 5105 Changed = true; 5106 } 5107 } 5108 5109 return Changed; 5110 } 5111 5112 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5113 BoUpSLP &R) { 5114 SetVector<StoreInst *> Heads; 5115 SmallDenseSet<StoreInst *> Tails; 5116 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5117 5118 // We may run into multiple chains that merge into a single chain. We mark the 5119 // stores that we vectorized so that we don't visit the same store twice. 5120 BoUpSLP::ValueSet VectorizedStores; 5121 bool Changed = false; 5122 5123 auto &&FindConsecutiveAccess = 5124 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5125 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5126 return false; 5127 5128 Tails.insert(Stores[Idx]); 5129 Heads.insert(Stores[K]); 5130 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5131 return true; 5132 }; 5133 5134 // Do a quadratic search on all of the given stores in reverse order and find 5135 // all of the pairs of stores that follow each other. 5136 int E = Stores.size(); 5137 for (int Idx = E - 1; Idx >= 0; --Idx) { 5138 // If a store has multiple consecutive store candidates, search according 5139 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5140 // This is because usually pairing with immediate succeeding or preceding 5141 // candidate create the best chance to find slp vectorization opportunity. 5142 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5143 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5144 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5145 break; 5146 } 5147 5148 // For stores that start but don't end a link in the chain: 5149 for (auto *SI : llvm::reverse(Heads)) { 5150 if (Tails.count(SI)) 5151 continue; 5152 5153 // We found a store instr that starts a chain. Now follow the chain and try 5154 // to vectorize it. 5155 BoUpSLP::ValueList Operands; 5156 StoreInst *I = SI; 5157 // Collect the chain into a list. 5158 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5159 Operands.push_back(I); 5160 // Move to the next value in the chain. 5161 I = ConsecutiveChain[I]; 5162 } 5163 5164 // FIXME: Is division-by-2 the correct step? Should we assert that the 5165 // register size is a power-of-2? 5166 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5167 Size /= 2) { 5168 if (vectorizeStoreChain(Operands, R, Size)) { 5169 // Mark the vectorized stores so that we don't vectorize them again. 5170 VectorizedStores.insert(Operands.begin(), Operands.end()); 5171 Changed = true; 5172 break; 5173 } 5174 } 5175 } 5176 5177 return Changed; 5178 } 5179 5180 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5181 // Initialize the collections. We will make a single pass over the block. 5182 Stores.clear(); 5183 GEPs.clear(); 5184 5185 // Visit the store and getelementptr instructions in BB and organize them in 5186 // Stores and GEPs according to the underlying objects of their pointer 5187 // operands. 5188 for (Instruction &I : *BB) { 5189 // Ignore store instructions that are volatile or have a pointer operand 5190 // that doesn't point to a scalar type. 5191 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5192 if (!SI->isSimple()) 5193 continue; 5194 if (!isValidElementType(SI->getValueOperand()->getType())) 5195 continue; 5196 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5197 } 5198 5199 // Ignore getelementptr instructions that have more than one index, a 5200 // constant index, or a pointer operand that doesn't point to a scalar 5201 // type. 5202 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5203 auto Idx = GEP->idx_begin()->get(); 5204 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5205 continue; 5206 if (!isValidElementType(Idx->getType())) 5207 continue; 5208 if (GEP->getType()->isVectorTy()) 5209 continue; 5210 GEPs[GEP->getPointerOperand()].push_back(GEP); 5211 } 5212 } 5213 } 5214 5215 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5216 if (!A || !B) 5217 return false; 5218 Value *VL[] = { A, B }; 5219 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5220 } 5221 5222 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5223 int UserCost, bool AllowReorder) { 5224 if (VL.size() < 2) 5225 return false; 5226 5227 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5228 << VL.size() << ".\n"); 5229 5230 // Check that all of the parts are scalar instructions of the same type, 5231 // we permit an alternate opcode via InstructionsState. 5232 InstructionsState S = getSameOpcode(VL); 5233 if (!S.getOpcode()) 5234 return false; 5235 5236 Instruction *I0 = cast<Instruction>(S.OpValue); 5237 unsigned Sz = R.getVectorElementSize(I0); 5238 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5239 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5240 if (MaxVF < 2) { 5241 R.getORE()->emit([&]() { 5242 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5243 << "Cannot SLP vectorize list: vectorization factor " 5244 << "less than 2 is not supported"; 5245 }); 5246 return false; 5247 } 5248 5249 for (Value *V : VL) { 5250 Type *Ty = V->getType(); 5251 if (!isValidElementType(Ty)) { 5252 // NOTE: the following will give user internal llvm type name, which may 5253 // not be useful. 5254 R.getORE()->emit([&]() { 5255 std::string type_str; 5256 llvm::raw_string_ostream rso(type_str); 5257 Ty->print(rso); 5258 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5259 << "Cannot SLP vectorize list: type " 5260 << rso.str() + " is unsupported by vectorizer"; 5261 }); 5262 return false; 5263 } 5264 } 5265 5266 bool Changed = false; 5267 bool CandidateFound = false; 5268 int MinCost = SLPCostThreshold; 5269 5270 // Keep track of values that were deleted by vectorizing in the loop below. 5271 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5272 5273 unsigned NextInst = 0, MaxInst = VL.size(); 5274 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 5275 VF /= 2) { 5276 // No actual vectorization should happen, if number of parts is the same as 5277 // provided vectorization factor (i.e. the scalar type is used for vector 5278 // code during codegen). 5279 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5280 if (TTI->getNumberOfParts(VecTy) == VF) 5281 continue; 5282 for (unsigned I = NextInst; I < MaxInst; ++I) { 5283 unsigned OpsWidth = 0; 5284 5285 if (I + VF > MaxInst) 5286 OpsWidth = MaxInst - I; 5287 else 5288 OpsWidth = VF; 5289 5290 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5291 break; 5292 5293 // Check that a previous iteration of this loop did not delete the Value. 5294 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5295 continue; 5296 5297 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5298 << "\n"); 5299 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5300 5301 R.buildTree(Ops); 5302 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5303 // TODO: check if we can allow reordering for more cases. 5304 if (AllowReorder && Order) { 5305 // TODO: reorder tree nodes without tree rebuilding. 5306 // Conceptually, there is nothing actually preventing us from trying to 5307 // reorder a larger list. In fact, we do exactly this when vectorizing 5308 // reductions. However, at this point, we only expect to get here when 5309 // there are exactly two operations. 5310 assert(Ops.size() == 2); 5311 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5312 R.buildTree(ReorderedOps, None); 5313 } 5314 if (R.isTreeTinyAndNotFullyVectorizable()) 5315 continue; 5316 5317 R.computeMinimumValueSizes(); 5318 int Cost = R.getTreeCost() - UserCost; 5319 CandidateFound = true; 5320 MinCost = std::min(MinCost, Cost); 5321 5322 if (Cost < -SLPCostThreshold) { 5323 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5324 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5325 cast<Instruction>(Ops[0])) 5326 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5327 << " and with tree size " 5328 << ore::NV("TreeSize", R.getTreeSize())); 5329 5330 R.vectorizeTree(); 5331 // Move to the next bundle. 5332 I += VF - 1; 5333 NextInst = I + 1; 5334 Changed = true; 5335 } 5336 } 5337 } 5338 5339 if (!Changed && CandidateFound) { 5340 R.getORE()->emit([&]() { 5341 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5342 << "List vectorization was possible but not beneficial with cost " 5343 << ore::NV("Cost", MinCost) << " >= " 5344 << ore::NV("Treshold", -SLPCostThreshold); 5345 }); 5346 } else if (!Changed) { 5347 R.getORE()->emit([&]() { 5348 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5349 << "Cannot SLP vectorize list: vectorization was impossible" 5350 << " with available vectorization factors"; 5351 }); 5352 } 5353 return Changed; 5354 } 5355 5356 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5357 if (!I) 5358 return false; 5359 5360 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5361 return false; 5362 5363 Value *P = I->getParent(); 5364 5365 // Vectorize in current basic block only. 5366 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5367 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5368 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5369 return false; 5370 5371 // Try to vectorize V. 5372 if (tryToVectorizePair(Op0, Op1, R)) 5373 return true; 5374 5375 auto *A = dyn_cast<BinaryOperator>(Op0); 5376 auto *B = dyn_cast<BinaryOperator>(Op1); 5377 // Try to skip B. 5378 if (B && B->hasOneUse()) { 5379 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5380 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5381 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5382 return true; 5383 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5384 return true; 5385 } 5386 5387 // Try to skip A. 5388 if (A && A->hasOneUse()) { 5389 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5390 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5391 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5392 return true; 5393 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5394 return true; 5395 } 5396 return false; 5397 } 5398 5399 /// Generate a shuffle mask to be used in a reduction tree. 5400 /// 5401 /// \param VecLen The length of the vector to be reduced. 5402 /// \param NumEltsToRdx The number of elements that should be reduced in the 5403 /// vector. 5404 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5405 /// reduction. A pairwise reduction will generate a mask of 5406 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5407 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5408 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5409 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5410 bool IsPairwise, bool IsLeft, 5411 IRBuilder<> &Builder) { 5412 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5413 5414 SmallVector<Constant *, 32> ShuffleMask( 5415 VecLen, UndefValue::get(Builder.getInt32Ty())); 5416 5417 if (IsPairwise) 5418 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5419 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5420 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5421 else 5422 // Move the upper half of the vector to the lower half. 5423 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5424 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5425 5426 return ConstantVector::get(ShuffleMask); 5427 } 5428 5429 namespace { 5430 5431 /// Model horizontal reductions. 5432 /// 5433 /// A horizontal reduction is a tree of reduction operations (currently add and 5434 /// fadd) that has operations that can be put into a vector as its leaf. 5435 /// For example, this tree: 5436 /// 5437 /// mul mul mul mul 5438 /// \ / \ / 5439 /// + + 5440 /// \ / 5441 /// + 5442 /// This tree has "mul" as its reduced values and "+" as its reduction 5443 /// operations. A reduction might be feeding into a store or a binary operation 5444 /// feeding a phi. 5445 /// ... 5446 /// \ / 5447 /// + 5448 /// | 5449 /// phi += 5450 /// 5451 /// Or: 5452 /// ... 5453 /// \ / 5454 /// + 5455 /// | 5456 /// *p = 5457 /// 5458 class HorizontalReduction { 5459 using ReductionOpsType = SmallVector<Value *, 16>; 5460 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5461 ReductionOpsListType ReductionOps; 5462 SmallVector<Value *, 32> ReducedVals; 5463 // Use map vector to make stable output. 5464 MapVector<Instruction *, Value *> ExtraArgs; 5465 5466 /// Kind of the reduction data. 5467 enum ReductionKind { 5468 RK_None, /// Not a reduction. 5469 RK_Arithmetic, /// Binary reduction data. 5470 RK_Min, /// Minimum reduction data. 5471 RK_UMin, /// Unsigned minimum reduction data. 5472 RK_Max, /// Maximum reduction data. 5473 RK_UMax, /// Unsigned maximum reduction data. 5474 }; 5475 5476 /// Contains info about operation, like its opcode, left and right operands. 5477 class OperationData { 5478 /// Opcode of the instruction. 5479 unsigned Opcode = 0; 5480 5481 /// Left operand of the reduction operation. 5482 Value *LHS = nullptr; 5483 5484 /// Right operand of the reduction operation. 5485 Value *RHS = nullptr; 5486 5487 /// Kind of the reduction operation. 5488 ReductionKind Kind = RK_None; 5489 5490 /// True if float point min/max reduction has no NaNs. 5491 bool NoNaN = false; 5492 5493 /// Checks if the reduction operation can be vectorized. 5494 bool isVectorizable() const { 5495 return LHS && RHS && 5496 // We currently only support add/mul/logical && min/max reductions. 5497 ((Kind == RK_Arithmetic && 5498 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5499 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5500 Opcode == Instruction::And || Opcode == Instruction::Or || 5501 Opcode == Instruction::Xor)) || 5502 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5503 (Kind == RK_Min || Kind == RK_Max)) || 5504 (Opcode == Instruction::ICmp && 5505 (Kind == RK_UMin || Kind == RK_UMax))); 5506 } 5507 5508 /// Creates reduction operation with the current opcode. 5509 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5510 assert(isVectorizable() && 5511 "Expected add|fadd or min/max reduction operation."); 5512 Value *Cmp; 5513 switch (Kind) { 5514 case RK_Arithmetic: 5515 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5516 Name); 5517 case RK_Min: 5518 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5519 : Builder.CreateFCmpOLT(LHS, RHS); 5520 break; 5521 case RK_Max: 5522 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5523 : Builder.CreateFCmpOGT(LHS, RHS); 5524 break; 5525 case RK_UMin: 5526 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5527 Cmp = Builder.CreateICmpULT(LHS, RHS); 5528 break; 5529 case RK_UMax: 5530 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5531 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5532 break; 5533 case RK_None: 5534 llvm_unreachable("Unknown reduction operation."); 5535 } 5536 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5537 } 5538 5539 public: 5540 explicit OperationData() = default; 5541 5542 /// Construction for reduced values. They are identified by opcode only and 5543 /// don't have associated LHS/RHS values. 5544 explicit OperationData(Value *V) { 5545 if (auto *I = dyn_cast<Instruction>(V)) 5546 Opcode = I->getOpcode(); 5547 } 5548 5549 /// Constructor for reduction operations with opcode and its left and 5550 /// right operands. 5551 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5552 bool NoNaN = false) 5553 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5554 assert(Kind != RK_None && "One of the reduction operations is expected."); 5555 } 5556 5557 explicit operator bool() const { return Opcode; } 5558 5559 /// Get the index of the first operand. 5560 unsigned getFirstOperandIndex() const { 5561 assert(!!*this && "The opcode is not set."); 5562 switch (Kind) { 5563 case RK_Min: 5564 case RK_UMin: 5565 case RK_Max: 5566 case RK_UMax: 5567 return 1; 5568 case RK_Arithmetic: 5569 case RK_None: 5570 break; 5571 } 5572 return 0; 5573 } 5574 5575 /// Total number of operands in the reduction operation. 5576 unsigned getNumberOfOperands() const { 5577 assert(Kind != RK_None && !!*this && LHS && RHS && 5578 "Expected reduction operation."); 5579 switch (Kind) { 5580 case RK_Arithmetic: 5581 return 2; 5582 case RK_Min: 5583 case RK_UMin: 5584 case RK_Max: 5585 case RK_UMax: 5586 return 3; 5587 case RK_None: 5588 break; 5589 } 5590 llvm_unreachable("Reduction kind is not set"); 5591 } 5592 5593 /// Checks if the operation has the same parent as \p P. 5594 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5595 assert(Kind != RK_None && !!*this && LHS && RHS && 5596 "Expected reduction operation."); 5597 if (!IsRedOp) 5598 return I->getParent() == P; 5599 switch (Kind) { 5600 case RK_Arithmetic: 5601 // Arithmetic reduction operation must be used once only. 5602 return I->getParent() == P; 5603 case RK_Min: 5604 case RK_UMin: 5605 case RK_Max: 5606 case RK_UMax: { 5607 // SelectInst must be used twice while the condition op must have single 5608 // use only. 5609 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5610 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5611 } 5612 case RK_None: 5613 break; 5614 } 5615 llvm_unreachable("Reduction kind is not set"); 5616 } 5617 /// Expected number of uses for reduction operations/reduced values. 5618 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5619 assert(Kind != RK_None && !!*this && LHS && RHS && 5620 "Expected reduction operation."); 5621 switch (Kind) { 5622 case RK_Arithmetic: 5623 return I->hasOneUse(); 5624 case RK_Min: 5625 case RK_UMin: 5626 case RK_Max: 5627 case RK_UMax: 5628 return I->hasNUses(2) && 5629 (!IsReductionOp || 5630 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5631 case RK_None: 5632 break; 5633 } 5634 llvm_unreachable("Reduction kind is not set"); 5635 } 5636 5637 /// Initializes the list of reduction operations. 5638 void initReductionOps(ReductionOpsListType &ReductionOps) { 5639 assert(Kind != RK_None && !!*this && LHS && RHS && 5640 "Expected reduction operation."); 5641 switch (Kind) { 5642 case RK_Arithmetic: 5643 ReductionOps.assign(1, ReductionOpsType()); 5644 break; 5645 case RK_Min: 5646 case RK_UMin: 5647 case RK_Max: 5648 case RK_UMax: 5649 ReductionOps.assign(2, ReductionOpsType()); 5650 break; 5651 case RK_None: 5652 llvm_unreachable("Reduction kind is not set"); 5653 } 5654 } 5655 /// Add all reduction operations for the reduction instruction \p I. 5656 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5657 assert(Kind != RK_None && !!*this && LHS && RHS && 5658 "Expected reduction operation."); 5659 switch (Kind) { 5660 case RK_Arithmetic: 5661 ReductionOps[0].emplace_back(I); 5662 break; 5663 case RK_Min: 5664 case RK_UMin: 5665 case RK_Max: 5666 case RK_UMax: 5667 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5668 ReductionOps[1].emplace_back(I); 5669 break; 5670 case RK_None: 5671 llvm_unreachable("Reduction kind is not set"); 5672 } 5673 } 5674 5675 /// Checks if instruction is associative and can be vectorized. 5676 bool isAssociative(Instruction *I) const { 5677 assert(Kind != RK_None && *this && LHS && RHS && 5678 "Expected reduction operation."); 5679 switch (Kind) { 5680 case RK_Arithmetic: 5681 return I->isAssociative(); 5682 case RK_Min: 5683 case RK_Max: 5684 return Opcode == Instruction::ICmp || 5685 cast<Instruction>(I->getOperand(0))->isFast(); 5686 case RK_UMin: 5687 case RK_UMax: 5688 assert(Opcode == Instruction::ICmp && 5689 "Only integer compare operation is expected."); 5690 return true; 5691 case RK_None: 5692 break; 5693 } 5694 llvm_unreachable("Reduction kind is not set"); 5695 } 5696 5697 /// Checks if the reduction operation can be vectorized. 5698 bool isVectorizable(Instruction *I) const { 5699 return isVectorizable() && isAssociative(I); 5700 } 5701 5702 /// Checks if two operation data are both a reduction op or both a reduced 5703 /// value. 5704 bool operator==(const OperationData &OD) { 5705 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5706 "One of the comparing operations is incorrect."); 5707 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5708 } 5709 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5710 void clear() { 5711 Opcode = 0; 5712 LHS = nullptr; 5713 RHS = nullptr; 5714 Kind = RK_None; 5715 NoNaN = false; 5716 } 5717 5718 /// Get the opcode of the reduction operation. 5719 unsigned getOpcode() const { 5720 assert(isVectorizable() && "Expected vectorizable operation."); 5721 return Opcode; 5722 } 5723 5724 /// Get kind of reduction data. 5725 ReductionKind getKind() const { return Kind; } 5726 Value *getLHS() const { return LHS; } 5727 Value *getRHS() const { return RHS; } 5728 Type *getConditionType() const { 5729 switch (Kind) { 5730 case RK_Arithmetic: 5731 return nullptr; 5732 case RK_Min: 5733 case RK_Max: 5734 case RK_UMin: 5735 case RK_UMax: 5736 return CmpInst::makeCmpResultType(LHS->getType()); 5737 case RK_None: 5738 break; 5739 } 5740 llvm_unreachable("Reduction kind is not set"); 5741 } 5742 5743 /// Creates reduction operation with the current opcode with the IR flags 5744 /// from \p ReductionOps. 5745 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5746 const ReductionOpsListType &ReductionOps) const { 5747 assert(isVectorizable() && 5748 "Expected add|fadd or min/max reduction operation."); 5749 auto *Op = createOp(Builder, Name); 5750 switch (Kind) { 5751 case RK_Arithmetic: 5752 propagateIRFlags(Op, ReductionOps[0]); 5753 return Op; 5754 case RK_Min: 5755 case RK_Max: 5756 case RK_UMin: 5757 case RK_UMax: 5758 if (auto *SI = dyn_cast<SelectInst>(Op)) 5759 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5760 propagateIRFlags(Op, ReductionOps[1]); 5761 return Op; 5762 case RK_None: 5763 break; 5764 } 5765 llvm_unreachable("Unknown reduction operation."); 5766 } 5767 /// Creates reduction operation with the current opcode with the IR flags 5768 /// from \p I. 5769 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5770 Instruction *I) const { 5771 assert(isVectorizable() && 5772 "Expected add|fadd or min/max reduction operation."); 5773 auto *Op = createOp(Builder, Name); 5774 switch (Kind) { 5775 case RK_Arithmetic: 5776 propagateIRFlags(Op, I); 5777 return Op; 5778 case RK_Min: 5779 case RK_Max: 5780 case RK_UMin: 5781 case RK_UMax: 5782 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5783 propagateIRFlags(SI->getCondition(), 5784 cast<SelectInst>(I)->getCondition()); 5785 } 5786 propagateIRFlags(Op, I); 5787 return Op; 5788 case RK_None: 5789 break; 5790 } 5791 llvm_unreachable("Unknown reduction operation."); 5792 } 5793 5794 TargetTransformInfo::ReductionFlags getFlags() const { 5795 TargetTransformInfo::ReductionFlags Flags; 5796 Flags.NoNaN = NoNaN; 5797 switch (Kind) { 5798 case RK_Arithmetic: 5799 break; 5800 case RK_Min: 5801 Flags.IsSigned = Opcode == Instruction::ICmp; 5802 Flags.IsMaxOp = false; 5803 break; 5804 case RK_Max: 5805 Flags.IsSigned = Opcode == Instruction::ICmp; 5806 Flags.IsMaxOp = true; 5807 break; 5808 case RK_UMin: 5809 Flags.IsSigned = false; 5810 Flags.IsMaxOp = false; 5811 break; 5812 case RK_UMax: 5813 Flags.IsSigned = false; 5814 Flags.IsMaxOp = true; 5815 break; 5816 case RK_None: 5817 llvm_unreachable("Reduction kind is not set"); 5818 } 5819 return Flags; 5820 } 5821 }; 5822 5823 WeakTrackingVH ReductionRoot; 5824 5825 /// The operation data of the reduction operation. 5826 OperationData ReductionData; 5827 5828 /// The operation data of the values we perform a reduction on. 5829 OperationData ReducedValueData; 5830 5831 /// Should we model this reduction as a pairwise reduction tree or a tree that 5832 /// splits the vector in halves and adds those halves. 5833 bool IsPairwiseReduction = false; 5834 5835 /// Checks if the ParentStackElem.first should be marked as a reduction 5836 /// operation with an extra argument or as extra argument itself. 5837 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5838 Value *ExtraArg) { 5839 if (ExtraArgs.count(ParentStackElem.first)) { 5840 ExtraArgs[ParentStackElem.first] = nullptr; 5841 // We ran into something like: 5842 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5843 // The whole ParentStackElem.first should be considered as an extra value 5844 // in this case. 5845 // Do not perform analysis of remaining operands of ParentStackElem.first 5846 // instruction, this whole instruction is an extra argument. 5847 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5848 } else { 5849 // We ran into something like: 5850 // ParentStackElem.first += ... + ExtraArg + ... 5851 ExtraArgs[ParentStackElem.first] = ExtraArg; 5852 } 5853 } 5854 5855 static OperationData getOperationData(Value *V) { 5856 if (!V) 5857 return OperationData(); 5858 5859 Value *LHS; 5860 Value *RHS; 5861 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5862 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5863 RK_Arithmetic); 5864 } 5865 if (auto *Select = dyn_cast<SelectInst>(V)) { 5866 // Look for a min/max pattern. 5867 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5868 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5869 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5870 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5871 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5872 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5873 return OperationData( 5874 Instruction::FCmp, LHS, RHS, RK_Min, 5875 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5876 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5877 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5878 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5879 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5880 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5881 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5882 return OperationData( 5883 Instruction::FCmp, LHS, RHS, RK_Max, 5884 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5885 } else { 5886 // Try harder: look for min/max pattern based on instructions producing 5887 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5888 // During the intermediate stages of SLP, it's very common to have 5889 // pattern like this (since optimizeGatherSequence is run only once 5890 // at the end): 5891 // %1 = extractelement <2 x i32> %a, i32 0 5892 // %2 = extractelement <2 x i32> %a, i32 1 5893 // %cond = icmp sgt i32 %1, %2 5894 // %3 = extractelement <2 x i32> %a, i32 0 5895 // %4 = extractelement <2 x i32> %a, i32 1 5896 // %select = select i1 %cond, i32 %3, i32 %4 5897 CmpInst::Predicate Pred; 5898 Instruction *L1; 5899 Instruction *L2; 5900 5901 LHS = Select->getTrueValue(); 5902 RHS = Select->getFalseValue(); 5903 Value *Cond = Select->getCondition(); 5904 5905 // TODO: Support inverse predicates. 5906 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5907 if (!isa<ExtractElementInst>(RHS) || 5908 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5909 return OperationData(V); 5910 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5911 if (!isa<ExtractElementInst>(LHS) || 5912 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5913 return OperationData(V); 5914 } else { 5915 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5916 return OperationData(V); 5917 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5918 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5919 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5920 return OperationData(V); 5921 } 5922 switch (Pred) { 5923 default: 5924 return OperationData(V); 5925 5926 case CmpInst::ICMP_ULT: 5927 case CmpInst::ICMP_ULE: 5928 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5929 5930 case CmpInst::ICMP_SLT: 5931 case CmpInst::ICMP_SLE: 5932 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5933 5934 case CmpInst::FCMP_OLT: 5935 case CmpInst::FCMP_OLE: 5936 case CmpInst::FCMP_ULT: 5937 case CmpInst::FCMP_ULE: 5938 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5939 cast<Instruction>(Cond)->hasNoNaNs()); 5940 5941 case CmpInst::ICMP_UGT: 5942 case CmpInst::ICMP_UGE: 5943 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5944 5945 case CmpInst::ICMP_SGT: 5946 case CmpInst::ICMP_SGE: 5947 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5948 5949 case CmpInst::FCMP_OGT: 5950 case CmpInst::FCMP_OGE: 5951 case CmpInst::FCMP_UGT: 5952 case CmpInst::FCMP_UGE: 5953 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5954 cast<Instruction>(Cond)->hasNoNaNs()); 5955 } 5956 } 5957 } 5958 return OperationData(V); 5959 } 5960 5961 public: 5962 HorizontalReduction() = default; 5963 5964 /// Try to find a reduction tree. 5965 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5966 assert((!Phi || is_contained(Phi->operands(), B)) && 5967 "Thi phi needs to use the binary operator"); 5968 5969 ReductionData = getOperationData(B); 5970 5971 // We could have a initial reductions that is not an add. 5972 // r *= v1 + v2 + v3 + v4 5973 // In such a case start looking for a tree rooted in the first '+'. 5974 if (Phi) { 5975 if (ReductionData.getLHS() == Phi) { 5976 Phi = nullptr; 5977 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5978 ReductionData = getOperationData(B); 5979 } else if (ReductionData.getRHS() == Phi) { 5980 Phi = nullptr; 5981 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5982 ReductionData = getOperationData(B); 5983 } 5984 } 5985 5986 if (!ReductionData.isVectorizable(B)) 5987 return false; 5988 5989 Type *Ty = B->getType(); 5990 if (!isValidElementType(Ty)) 5991 return false; 5992 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5993 return false; 5994 5995 ReducedValueData.clear(); 5996 ReductionRoot = B; 5997 5998 // Post order traverse the reduction tree starting at B. We only handle true 5999 // trees containing only binary operators. 6000 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6001 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6002 ReductionData.initReductionOps(ReductionOps); 6003 while (!Stack.empty()) { 6004 Instruction *TreeN = Stack.back().first; 6005 unsigned EdgeToVist = Stack.back().second++; 6006 OperationData OpData = getOperationData(TreeN); 6007 bool IsReducedValue = OpData != ReductionData; 6008 6009 // Postorder vist. 6010 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6011 if (IsReducedValue) 6012 ReducedVals.push_back(TreeN); 6013 else { 6014 auto I = ExtraArgs.find(TreeN); 6015 if (I != ExtraArgs.end() && !I->second) { 6016 // Check if TreeN is an extra argument of its parent operation. 6017 if (Stack.size() <= 1) { 6018 // TreeN can't be an extra argument as it is a root reduction 6019 // operation. 6020 return false; 6021 } 6022 // Yes, TreeN is an extra argument, do not add it to a list of 6023 // reduction operations. 6024 // Stack[Stack.size() - 2] always points to the parent operation. 6025 markExtraArg(Stack[Stack.size() - 2], TreeN); 6026 ExtraArgs.erase(TreeN); 6027 } else 6028 ReductionData.addReductionOps(TreeN, ReductionOps); 6029 } 6030 // Retract. 6031 Stack.pop_back(); 6032 continue; 6033 } 6034 6035 // Visit left or right. 6036 Value *NextV = TreeN->getOperand(EdgeToVist); 6037 if (NextV != Phi) { 6038 auto *I = dyn_cast<Instruction>(NextV); 6039 OpData = getOperationData(I); 6040 // Continue analysis if the next operand is a reduction operation or 6041 // (possibly) a reduced value. If the reduced value opcode is not set, 6042 // the first met operation != reduction operation is considered as the 6043 // reduced value class. 6044 if (I && (!ReducedValueData || OpData == ReducedValueData || 6045 OpData == ReductionData)) { 6046 const bool IsReductionOperation = OpData == ReductionData; 6047 // Only handle trees in the current basic block. 6048 if (!ReductionData.hasSameParent(I, B->getParent(), 6049 IsReductionOperation)) { 6050 // I is an extra argument for TreeN (its parent operation). 6051 markExtraArg(Stack.back(), I); 6052 continue; 6053 } 6054 6055 // Each tree node needs to have minimal number of users except for the 6056 // ultimate reduction. 6057 if (!ReductionData.hasRequiredNumberOfUses(I, 6058 OpData == ReductionData) && 6059 I != B) { 6060 // I is an extra argument for TreeN (its parent operation). 6061 markExtraArg(Stack.back(), I); 6062 continue; 6063 } 6064 6065 if (IsReductionOperation) { 6066 // We need to be able to reassociate the reduction operations. 6067 if (!OpData.isAssociative(I)) { 6068 // I is an extra argument for TreeN (its parent operation). 6069 markExtraArg(Stack.back(), I); 6070 continue; 6071 } 6072 } else if (ReducedValueData && 6073 ReducedValueData != OpData) { 6074 // Make sure that the opcodes of the operations that we are going to 6075 // reduce match. 6076 // I is an extra argument for TreeN (its parent operation). 6077 markExtraArg(Stack.back(), I); 6078 continue; 6079 } else if (!ReducedValueData) 6080 ReducedValueData = OpData; 6081 6082 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6083 continue; 6084 } 6085 } 6086 // NextV is an extra argument for TreeN (its parent operation). 6087 markExtraArg(Stack.back(), NextV); 6088 } 6089 return true; 6090 } 6091 6092 /// Attempt to vectorize the tree found by 6093 /// matchAssociativeReduction. 6094 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6095 if (ReducedVals.empty()) 6096 return false; 6097 6098 // If there is a sufficient number of reduction values, reduce 6099 // to a nearby power-of-2. Can safely generate oversized 6100 // vectors and rely on the backend to split them to legal sizes. 6101 unsigned NumReducedVals = ReducedVals.size(); 6102 if (NumReducedVals < 4) 6103 return false; 6104 6105 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6106 6107 Value *VectorizedTree = nullptr; 6108 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6109 FastMathFlags Unsafe; 6110 Unsafe.setFast(); 6111 Builder.setFastMathFlags(Unsafe); 6112 unsigned i = 0; 6113 6114 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6115 // The same extra argument may be used several time, so log each attempt 6116 // to use it. 6117 for (auto &Pair : ExtraArgs) { 6118 assert(Pair.first && "DebugLoc must be set."); 6119 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6120 } 6121 // The reduction root is used as the insertion point for new instructions, 6122 // so set it as externally used to prevent it from being deleted. 6123 ExternallyUsedValues[ReductionRoot]; 6124 SmallVector<Value *, 16> IgnoreList; 6125 for (auto &V : ReductionOps) 6126 IgnoreList.append(V.begin(), V.end()); 6127 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6128 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6129 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6130 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6131 // TODO: Handle orders of size less than number of elements in the vector. 6132 if (Order && Order->size() == VL.size()) { 6133 // TODO: reorder tree nodes without tree rebuilding. 6134 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6135 llvm::transform(*Order, ReorderedOps.begin(), 6136 [VL](const unsigned Idx) { return VL[Idx]; }); 6137 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6138 } 6139 if (V.isTreeTinyAndNotFullyVectorizable()) 6140 break; 6141 6142 V.computeMinimumValueSizes(); 6143 6144 // Estimate cost. 6145 int TreeCost = V.getTreeCost(); 6146 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6147 int Cost = TreeCost + ReductionCost; 6148 if (Cost >= -SLPCostThreshold) { 6149 V.getORE()->emit([&]() { 6150 return OptimizationRemarkMissed( 6151 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6152 << "Vectorizing horizontal reduction is possible" 6153 << "but not beneficial with cost " 6154 << ore::NV("Cost", Cost) << " and threshold " 6155 << ore::NV("Threshold", -SLPCostThreshold); 6156 }); 6157 break; 6158 } 6159 6160 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6161 << Cost << ". (HorRdx)\n"); 6162 V.getORE()->emit([&]() { 6163 return OptimizationRemark( 6164 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6165 << "Vectorized horizontal reduction with cost " 6166 << ore::NV("Cost", Cost) << " and with tree size " 6167 << ore::NV("TreeSize", V.getTreeSize()); 6168 }); 6169 6170 // Vectorize a tree. 6171 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6172 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6173 6174 // Emit a reduction. 6175 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6176 Value *ReducedSubTree = 6177 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6178 if (VectorizedTree) { 6179 Builder.SetCurrentDebugLocation(Loc); 6180 OperationData VectReductionData(ReductionData.getOpcode(), 6181 VectorizedTree, ReducedSubTree, 6182 ReductionData.getKind()); 6183 VectorizedTree = 6184 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6185 } else 6186 VectorizedTree = ReducedSubTree; 6187 i += ReduxWidth; 6188 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6189 } 6190 6191 if (VectorizedTree) { 6192 // Finish the reduction. 6193 for (; i < NumReducedVals; ++i) { 6194 auto *I = cast<Instruction>(ReducedVals[i]); 6195 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6196 OperationData VectReductionData(ReductionData.getOpcode(), 6197 VectorizedTree, I, 6198 ReductionData.getKind()); 6199 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6200 } 6201 for (auto &Pair : ExternallyUsedValues) { 6202 // Add each externally used value to the final reduction. 6203 for (auto *I : Pair.second) { 6204 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6205 OperationData VectReductionData(ReductionData.getOpcode(), 6206 VectorizedTree, Pair.first, 6207 ReductionData.getKind()); 6208 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6209 } 6210 } 6211 // Update users. 6212 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6213 } 6214 return VectorizedTree != nullptr; 6215 } 6216 6217 unsigned numReductionValues() const { 6218 return ReducedVals.size(); 6219 } 6220 6221 private: 6222 /// Calculate the cost of a reduction. 6223 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6224 unsigned ReduxWidth) { 6225 Type *ScalarTy = FirstReducedVal->getType(); 6226 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6227 6228 int PairwiseRdxCost; 6229 int SplittingRdxCost; 6230 switch (ReductionData.getKind()) { 6231 case RK_Arithmetic: 6232 PairwiseRdxCost = 6233 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6234 /*IsPairwiseForm=*/true); 6235 SplittingRdxCost = 6236 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6237 /*IsPairwiseForm=*/false); 6238 break; 6239 case RK_Min: 6240 case RK_Max: 6241 case RK_UMin: 6242 case RK_UMax: { 6243 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6244 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6245 ReductionData.getKind() == RK_UMax; 6246 PairwiseRdxCost = 6247 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6248 /*IsPairwiseForm=*/true, IsUnsigned); 6249 SplittingRdxCost = 6250 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6251 /*IsPairwiseForm=*/false, IsUnsigned); 6252 break; 6253 } 6254 case RK_None: 6255 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6256 } 6257 6258 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6259 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6260 6261 int ScalarReduxCost; 6262 switch (ReductionData.getKind()) { 6263 case RK_Arithmetic: 6264 ScalarReduxCost = 6265 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6266 break; 6267 case RK_Min: 6268 case RK_Max: 6269 case RK_UMin: 6270 case RK_UMax: 6271 ScalarReduxCost = 6272 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6273 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6274 CmpInst::makeCmpResultType(ScalarTy)); 6275 break; 6276 case RK_None: 6277 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6278 } 6279 ScalarReduxCost *= (ReduxWidth - 1); 6280 6281 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6282 << " for reduction that starts with " << *FirstReducedVal 6283 << " (It is a " 6284 << (IsPairwiseReduction ? "pairwise" : "splitting") 6285 << " reduction)\n"); 6286 6287 return VecReduxCost - ScalarReduxCost; 6288 } 6289 6290 /// Emit a horizontal reduction of the vectorized value. 6291 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6292 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6293 assert(VectorizedValue && "Need to have a vectorized tree node"); 6294 assert(isPowerOf2_32(ReduxWidth) && 6295 "We only handle power-of-two reductions for now"); 6296 6297 if (!IsPairwiseReduction) 6298 return createSimpleTargetReduction( 6299 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6300 ReductionData.getFlags(), FastMathFlags::getFast(), 6301 ReductionOps.back()); 6302 6303 Value *TmpVec = VectorizedValue; 6304 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6305 Value *LeftMask = 6306 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6307 Value *RightMask = 6308 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6309 6310 Value *LeftShuf = Builder.CreateShuffleVector( 6311 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6312 Value *RightShuf = Builder.CreateShuffleVector( 6313 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6314 "rdx.shuf.r"); 6315 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6316 RightShuf, ReductionData.getKind()); 6317 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6318 } 6319 6320 // The result is in the first element of the vector. 6321 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6322 } 6323 }; 6324 6325 } // end anonymous namespace 6326 6327 /// Recognize construction of vectors like 6328 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6329 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6330 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6331 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6332 /// starting from the last insertelement instruction. 6333 /// 6334 /// Returns true if it matches 6335 static bool findBuildVector(InsertElementInst *LastInsertElem, 6336 TargetTransformInfo *TTI, 6337 SmallVectorImpl<Value *> &BuildVectorOpds, 6338 int &UserCost) { 6339 UserCost = 0; 6340 Value *V = nullptr; 6341 do { 6342 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6343 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6344 LastInsertElem->getType(), 6345 CI->getZExtValue()); 6346 } 6347 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6348 V = LastInsertElem->getOperand(0); 6349 if (isa<UndefValue>(V)) 6350 break; 6351 LastInsertElem = dyn_cast<InsertElementInst>(V); 6352 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6353 return false; 6354 } while (true); 6355 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6356 return true; 6357 } 6358 6359 /// Like findBuildVector, but looks for construction of aggregate. 6360 /// 6361 /// \return true if it matches. 6362 static bool findBuildAggregate(InsertValueInst *IV, 6363 SmallVectorImpl<Value *> &BuildVectorOpds) { 6364 Value *V; 6365 do { 6366 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6367 V = IV->getAggregateOperand(); 6368 if (isa<UndefValue>(V)) 6369 break; 6370 IV = dyn_cast<InsertValueInst>(V); 6371 if (!IV || !IV->hasOneUse()) 6372 return false; 6373 } while (true); 6374 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6375 return true; 6376 } 6377 6378 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6379 return V->getType() < V2->getType(); 6380 } 6381 6382 /// Try and get a reduction value from a phi node. 6383 /// 6384 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6385 /// if they come from either \p ParentBB or a containing loop latch. 6386 /// 6387 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6388 /// if not possible. 6389 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6390 BasicBlock *ParentBB, LoopInfo *LI) { 6391 // There are situations where the reduction value is not dominated by the 6392 // reduction phi. Vectorizing such cases has been reported to cause 6393 // miscompiles. See PR25787. 6394 auto DominatedReduxValue = [&](Value *R) { 6395 return isa<Instruction>(R) && 6396 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6397 }; 6398 6399 Value *Rdx = nullptr; 6400 6401 // Return the incoming value if it comes from the same BB as the phi node. 6402 if (P->getIncomingBlock(0) == ParentBB) { 6403 Rdx = P->getIncomingValue(0); 6404 } else if (P->getIncomingBlock(1) == ParentBB) { 6405 Rdx = P->getIncomingValue(1); 6406 } 6407 6408 if (Rdx && DominatedReduxValue(Rdx)) 6409 return Rdx; 6410 6411 // Otherwise, check whether we have a loop latch to look at. 6412 Loop *BBL = LI->getLoopFor(ParentBB); 6413 if (!BBL) 6414 return nullptr; 6415 BasicBlock *BBLatch = BBL->getLoopLatch(); 6416 if (!BBLatch) 6417 return nullptr; 6418 6419 // There is a loop latch, return the incoming value if it comes from 6420 // that. This reduction pattern occasionally turns up. 6421 if (P->getIncomingBlock(0) == BBLatch) { 6422 Rdx = P->getIncomingValue(0); 6423 } else if (P->getIncomingBlock(1) == BBLatch) { 6424 Rdx = P->getIncomingValue(1); 6425 } 6426 6427 if (Rdx && DominatedReduxValue(Rdx)) 6428 return Rdx; 6429 6430 return nullptr; 6431 } 6432 6433 /// Attempt to reduce a horizontal reduction. 6434 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6435 /// with reduction operators \a Root (or one of its operands) in a basic block 6436 /// \a BB, then check if it can be done. If horizontal reduction is not found 6437 /// and root instruction is a binary operation, vectorization of the operands is 6438 /// attempted. 6439 /// \returns true if a horizontal reduction was matched and reduced or operands 6440 /// of one of the binary instruction were vectorized. 6441 /// \returns false if a horizontal reduction was not matched (or not possible) 6442 /// or no vectorization of any binary operation feeding \a Root instruction was 6443 /// performed. 6444 static bool tryToVectorizeHorReductionOrInstOperands( 6445 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6446 TargetTransformInfo *TTI, 6447 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6448 if (!ShouldVectorizeHor) 6449 return false; 6450 6451 if (!Root) 6452 return false; 6453 6454 if (Root->getParent() != BB || isa<PHINode>(Root)) 6455 return false; 6456 // Start analysis starting from Root instruction. If horizontal reduction is 6457 // found, try to vectorize it. If it is not a horizontal reduction or 6458 // vectorization is not possible or not effective, and currently analyzed 6459 // instruction is a binary operation, try to vectorize the operands, using 6460 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6461 // the same procedure considering each operand as a possible root of the 6462 // horizontal reduction. 6463 // Interrupt the process if the Root instruction itself was vectorized or all 6464 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6465 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6466 SmallPtrSet<Value *, 8> VisitedInstrs; 6467 bool Res = false; 6468 while (!Stack.empty()) { 6469 Value *V; 6470 unsigned Level; 6471 std::tie(V, Level) = Stack.pop_back_val(); 6472 if (!V) 6473 continue; 6474 auto *Inst = dyn_cast<Instruction>(V); 6475 if (!Inst) 6476 continue; 6477 auto *BI = dyn_cast<BinaryOperator>(Inst); 6478 auto *SI = dyn_cast<SelectInst>(Inst); 6479 if (BI || SI) { 6480 HorizontalReduction HorRdx; 6481 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6482 if (HorRdx.tryToReduce(R, TTI)) { 6483 Res = true; 6484 // Set P to nullptr to avoid re-analysis of phi node in 6485 // matchAssociativeReduction function unless this is the root node. 6486 P = nullptr; 6487 continue; 6488 } 6489 } 6490 if (P && BI) { 6491 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6492 if (Inst == P) 6493 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6494 if (!Inst) { 6495 // Set P to nullptr to avoid re-analysis of phi node in 6496 // matchAssociativeReduction function unless this is the root node. 6497 P = nullptr; 6498 continue; 6499 } 6500 } 6501 } 6502 // Set P to nullptr to avoid re-analysis of phi node in 6503 // matchAssociativeReduction function unless this is the root node. 6504 P = nullptr; 6505 if (Vectorize(Inst, R)) { 6506 Res = true; 6507 continue; 6508 } 6509 6510 // Try to vectorize operands. 6511 // Continue analysis for the instruction from the same basic block only to 6512 // save compile time. 6513 if (++Level < RecursionMaxDepth) 6514 for (auto *Op : Inst->operand_values()) 6515 if (VisitedInstrs.insert(Op).second) 6516 if (auto *I = dyn_cast<Instruction>(Op)) 6517 if (!isa<PHINode>(I) && I->getParent() == BB) 6518 Stack.emplace_back(Op, Level); 6519 } 6520 return Res; 6521 } 6522 6523 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6524 BasicBlock *BB, BoUpSLP &R, 6525 TargetTransformInfo *TTI) { 6526 if (!V) 6527 return false; 6528 auto *I = dyn_cast<Instruction>(V); 6529 if (!I) 6530 return false; 6531 6532 if (!isa<BinaryOperator>(I)) 6533 P = nullptr; 6534 // Try to match and vectorize a horizontal reduction. 6535 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6536 return tryToVectorize(I, R); 6537 }; 6538 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6539 ExtraVectorization); 6540 } 6541 6542 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6543 BasicBlock *BB, BoUpSLP &R) { 6544 const DataLayout &DL = BB->getModule()->getDataLayout(); 6545 if (!R.canMapToVector(IVI->getType(), DL)) 6546 return false; 6547 6548 SmallVector<Value *, 16> BuildVectorOpds; 6549 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6550 return false; 6551 6552 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6553 // Aggregate value is unlikely to be processed in vector register, we need to 6554 // extract scalars into scalar registers, so NeedExtraction is set true. 6555 return tryToVectorizeList(BuildVectorOpds, R); 6556 } 6557 6558 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6559 BasicBlock *BB, BoUpSLP &R) { 6560 int UserCost; 6561 SmallVector<Value *, 16> BuildVectorOpds; 6562 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6563 (llvm::all_of(BuildVectorOpds, 6564 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6565 isShuffle(BuildVectorOpds))) 6566 return false; 6567 6568 // Vectorize starting with the build vector operands ignoring the BuildVector 6569 // instructions for the purpose of scheduling and user extraction. 6570 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6571 } 6572 6573 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6574 BoUpSLP &R) { 6575 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6576 return true; 6577 6578 bool OpsChanged = false; 6579 for (int Idx = 0; Idx < 2; ++Idx) { 6580 OpsChanged |= 6581 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6582 } 6583 return OpsChanged; 6584 } 6585 6586 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6587 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6588 bool OpsChanged = false; 6589 for (auto &VH : reverse(Instructions)) { 6590 auto *I = dyn_cast_or_null<Instruction>(VH); 6591 if (!I) 6592 continue; 6593 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6594 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6595 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6596 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6597 else if (auto *CI = dyn_cast<CmpInst>(I)) 6598 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6599 } 6600 Instructions.clear(); 6601 return OpsChanged; 6602 } 6603 6604 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6605 bool Changed = false; 6606 SmallVector<Value *, 4> Incoming; 6607 SmallPtrSet<Value *, 16> VisitedInstrs; 6608 6609 bool HaveVectorizedPhiNodes = true; 6610 while (HaveVectorizedPhiNodes) { 6611 HaveVectorizedPhiNodes = false; 6612 6613 // Collect the incoming values from the PHIs. 6614 Incoming.clear(); 6615 for (Instruction &I : *BB) { 6616 PHINode *P = dyn_cast<PHINode>(&I); 6617 if (!P) 6618 break; 6619 6620 if (!VisitedInstrs.count(P)) 6621 Incoming.push_back(P); 6622 } 6623 6624 // Sort by type. 6625 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6626 6627 // Try to vectorize elements base on their type. 6628 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6629 E = Incoming.end(); 6630 IncIt != E;) { 6631 6632 // Look for the next elements with the same type. 6633 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6634 while (SameTypeIt != E && 6635 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6636 VisitedInstrs.insert(*SameTypeIt); 6637 ++SameTypeIt; 6638 } 6639 6640 // Try to vectorize them. 6641 unsigned NumElts = (SameTypeIt - IncIt); 6642 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6643 << NumElts << ")\n"); 6644 // The order in which the phi nodes appear in the program does not matter. 6645 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6646 // is done when there are exactly two elements since tryToVectorizeList 6647 // asserts that there are only two values when AllowReorder is true. 6648 bool AllowReorder = NumElts == 2; 6649 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6650 /*UserCost=*/0, AllowReorder)) { 6651 // Success start over because instructions might have been changed. 6652 HaveVectorizedPhiNodes = true; 6653 Changed = true; 6654 break; 6655 } 6656 6657 // Start over at the next instruction of a different type (or the end). 6658 IncIt = SameTypeIt; 6659 } 6660 } 6661 6662 VisitedInstrs.clear(); 6663 6664 SmallVector<WeakVH, 8> PostProcessInstructions; 6665 SmallDenseSet<Instruction *, 4> KeyNodes; 6666 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6667 // We may go through BB multiple times so skip the one we have checked. 6668 if (!VisitedInstrs.insert(&*it).second) { 6669 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6670 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6671 // We would like to start over since some instructions are deleted 6672 // and the iterator may become invalid value. 6673 Changed = true; 6674 it = BB->begin(); 6675 e = BB->end(); 6676 } 6677 continue; 6678 } 6679 6680 if (isa<DbgInfoIntrinsic>(it)) 6681 continue; 6682 6683 // Try to vectorize reductions that use PHINodes. 6684 if (PHINode *P = dyn_cast<PHINode>(it)) { 6685 // Check that the PHI is a reduction PHI. 6686 if (P->getNumIncomingValues() != 2) 6687 return Changed; 6688 6689 // Try to match and vectorize a horizontal reduction. 6690 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6691 TTI)) { 6692 Changed = true; 6693 it = BB->begin(); 6694 e = BB->end(); 6695 continue; 6696 } 6697 continue; 6698 } 6699 6700 // Ran into an instruction without users, like terminator, or function call 6701 // with ignored return value, store. Ignore unused instructions (basing on 6702 // instruction type, except for CallInst and InvokeInst). 6703 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6704 isa<InvokeInst>(it))) { 6705 KeyNodes.insert(&*it); 6706 bool OpsChanged = false; 6707 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6708 for (auto *V : it->operand_values()) { 6709 // Try to match and vectorize a horizontal reduction. 6710 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6711 } 6712 } 6713 // Start vectorization of post-process list of instructions from the 6714 // top-tree instructions to try to vectorize as many instructions as 6715 // possible. 6716 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6717 if (OpsChanged) { 6718 // We would like to start over since some instructions are deleted 6719 // and the iterator may become invalid value. 6720 Changed = true; 6721 it = BB->begin(); 6722 e = BB->end(); 6723 continue; 6724 } 6725 } 6726 6727 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6728 isa<InsertValueInst>(it)) 6729 PostProcessInstructions.push_back(&*it); 6730 } 6731 6732 return Changed; 6733 } 6734 6735 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6736 auto Changed = false; 6737 for (auto &Entry : GEPs) { 6738 // If the getelementptr list has fewer than two elements, there's nothing 6739 // to do. 6740 if (Entry.second.size() < 2) 6741 continue; 6742 6743 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6744 << Entry.second.size() << ".\n"); 6745 6746 // We process the getelementptr list in chunks of 16 (like we do for 6747 // stores) to minimize compile-time. 6748 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6749 auto Len = std::min<unsigned>(BE - BI, 16); 6750 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6751 6752 // Initialize a set a candidate getelementptrs. Note that we use a 6753 // SetVector here to preserve program order. If the index computations 6754 // are vectorizable and begin with loads, we want to minimize the chance 6755 // of having to reorder them later. 6756 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6757 6758 // Some of the candidates may have already been vectorized after we 6759 // initially collected them. If so, the WeakTrackingVHs will have 6760 // nullified the 6761 // values, so remove them from the set of candidates. 6762 Candidates.remove(nullptr); 6763 6764 // Remove from the set of candidates all pairs of getelementptrs with 6765 // constant differences. Such getelementptrs are likely not good 6766 // candidates for vectorization in a bottom-up phase since one can be 6767 // computed from the other. We also ensure all candidate getelementptr 6768 // indices are unique. 6769 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6770 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6771 if (!Candidates.count(GEPI)) 6772 continue; 6773 auto *SCEVI = SE->getSCEV(GEPList[I]); 6774 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6775 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6776 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6777 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6778 Candidates.remove(GEPList[I]); 6779 Candidates.remove(GEPList[J]); 6780 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6781 Candidates.remove(GEPList[J]); 6782 } 6783 } 6784 } 6785 6786 // We break out of the above computation as soon as we know there are 6787 // fewer than two candidates remaining. 6788 if (Candidates.size() < 2) 6789 continue; 6790 6791 // Add the single, non-constant index of each candidate to the bundle. We 6792 // ensured the indices met these constraints when we originally collected 6793 // the getelementptrs. 6794 SmallVector<Value *, 16> Bundle(Candidates.size()); 6795 auto BundleIndex = 0u; 6796 for (auto *V : Candidates) { 6797 auto *GEP = cast<GetElementPtrInst>(V); 6798 auto *GEPIdx = GEP->idx_begin()->get(); 6799 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6800 Bundle[BundleIndex++] = GEPIdx; 6801 } 6802 6803 // Try and vectorize the indices. We are currently only interested in 6804 // gather-like cases of the form: 6805 // 6806 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6807 // 6808 // where the loads of "a", the loads of "b", and the subtractions can be 6809 // performed in parallel. It's likely that detecting this pattern in a 6810 // bottom-up phase will be simpler and less costly than building a 6811 // full-blown top-down phase beginning at the consecutive loads. 6812 Changed |= tryToVectorizeList(Bundle, R); 6813 } 6814 } 6815 return Changed; 6816 } 6817 6818 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6819 bool Changed = false; 6820 // Attempt to sort and vectorize each of the store-groups. 6821 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6822 ++it) { 6823 if (it->second.size() < 2) 6824 continue; 6825 6826 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6827 << it->second.size() << ".\n"); 6828 6829 // Process the stores in chunks of 16. 6830 // TODO: The limit of 16 inhibits greater vectorization factors. 6831 // For example, AVX2 supports v32i8. Increasing this limit, however, 6832 // may cause a significant compile-time increase. 6833 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6834 unsigned Len = std::min<unsigned>(CE - CI, 16); 6835 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6836 } 6837 } 6838 return Changed; 6839 } 6840 6841 char SLPVectorizer::ID = 0; 6842 6843 static const char lv_name[] = "SLP Vectorizer"; 6844 6845 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6846 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6847 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6848 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6849 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6850 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6851 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6852 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6853 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6854 6855 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6856