1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/MemorySSA.h" 45 #include "llvm/Analysis/MemorySSAUpdater.h" 46 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 47 #include "llvm/Analysis/ScalarEvolution.h" 48 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/Analysis/VectorUtils.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/Constant.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/IRBuilder.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Intrinsics.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/Verifier.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 static cl::opt<bool> EnableMSSAInSLPVectorizer( 172 "enable-mssa-in-slp-vectorizer", cl::Hidden, cl::init(false), 173 cl::desc("Enable MemorySSA for SLPVectorizer in new pass manager")); 174 175 // Limit the number of alias checks. The limit is chosen so that 176 // it has no negative effect on the llvm benchmarks. 177 static const unsigned AliasedCheckLimit = 10; 178 179 // Another limit for the alias checks: The maximum distance between load/store 180 // instructions where alias checks are done. 181 // This limit is useful for very large basic blocks. 182 static const unsigned MaxMemDepDistance = 160; 183 184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 185 /// regions to be handled. 186 static const int MinScheduleRegionSize = 16; 187 188 /// Predicate for the element types that the SLP vectorizer supports. 189 /// 190 /// The most important thing to filter here are types which are invalid in LLVM 191 /// vectors. We also filter target specific types which have absolutely no 192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 193 /// avoids spending time checking the cost model and realizing that they will 194 /// be inevitably scalarized. 195 static bool isValidElementType(Type *Ty) { 196 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 197 !Ty->isPPC_FP128Ty(); 198 } 199 200 /// \returns True if the value is a constant (but not globals/constant 201 /// expressions). 202 static bool isConstant(Value *V) { 203 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 204 } 205 206 /// Checks if \p V is one of vector-like instructions, i.e. undef, 207 /// insertelement/extractelement with constant indices for fixed vector type or 208 /// extractvalue instruction. 209 static bool isVectorLikeInstWithConstOps(Value *V) { 210 if (!isa<InsertElementInst, ExtractElementInst>(V) && 211 !isa<ExtractValueInst, UndefValue>(V)) 212 return false; 213 auto *I = dyn_cast<Instruction>(V); 214 if (!I || isa<ExtractValueInst>(I)) 215 return true; 216 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 217 return false; 218 if (isa<ExtractElementInst>(I)) 219 return isConstant(I->getOperand(1)); 220 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 221 return isConstant(I->getOperand(2)); 222 } 223 224 /// \returns true if all of the instructions in \p VL are in the same block or 225 /// false otherwise. 226 static bool allSameBlock(ArrayRef<Value *> VL) { 227 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 228 if (!I0) 229 return false; 230 if (all_of(VL, isVectorLikeInstWithConstOps)) 231 return true; 232 233 BasicBlock *BB = I0->getParent(); 234 for (int I = 1, E = VL.size(); I < E; I++) { 235 auto *II = dyn_cast<Instruction>(VL[I]); 236 if (!II) 237 return false; 238 239 if (BB != II->getParent()) 240 return false; 241 } 242 return true; 243 } 244 245 /// \returns True if all of the values in \p VL are constants (but not 246 /// globals/constant expressions). 247 static bool allConstant(ArrayRef<Value *> VL) { 248 // Constant expressions and globals can't be vectorized like normal integer/FP 249 // constants. 250 return all_of(VL, isConstant); 251 } 252 253 /// \returns True if all of the values in \p VL are identical or some of them 254 /// are UndefValue. 255 static bool isSplat(ArrayRef<Value *> VL) { 256 Value *FirstNonUndef = nullptr; 257 for (Value *V : VL) { 258 if (isa<UndefValue>(V)) 259 continue; 260 if (!FirstNonUndef) { 261 FirstNonUndef = V; 262 continue; 263 } 264 if (V != FirstNonUndef) 265 return false; 266 } 267 return FirstNonUndef != nullptr; 268 } 269 270 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 271 static bool isCommutative(Instruction *I) { 272 if (auto *Cmp = dyn_cast<CmpInst>(I)) 273 return Cmp->isCommutative(); 274 if (auto *BO = dyn_cast<BinaryOperator>(I)) 275 return BO->isCommutative(); 276 // TODO: This should check for generic Instruction::isCommutative(), but 277 // we need to confirm that the caller code correctly handles Intrinsics 278 // for example (does not have 2 operands). 279 return false; 280 } 281 282 /// Checks if the given value is actually an undefined constant vector. 283 static bool isUndefVector(const Value *V) { 284 if (isa<UndefValue>(V)) 285 return true; 286 auto *C = dyn_cast<Constant>(V); 287 if (!C) 288 return false; 289 if (!C->containsUndefOrPoisonElement()) 290 return false; 291 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 292 if (!VecTy) 293 return false; 294 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 295 if (Constant *Elem = C->getAggregateElement(I)) 296 if (!isa<UndefValue>(Elem)) 297 return false; 298 } 299 return true; 300 } 301 302 /// Checks if the vector of instructions can be represented as a shuffle, like: 303 /// %x0 = extractelement <4 x i8> %x, i32 0 304 /// %x3 = extractelement <4 x i8> %x, i32 3 305 /// %y1 = extractelement <4 x i8> %y, i32 1 306 /// %y2 = extractelement <4 x i8> %y, i32 2 307 /// %x0x0 = mul i8 %x0, %x0 308 /// %x3x3 = mul i8 %x3, %x3 309 /// %y1y1 = mul i8 %y1, %y1 310 /// %y2y2 = mul i8 %y2, %y2 311 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 312 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 313 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 314 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 315 /// ret <4 x i8> %ins4 316 /// can be transformed into: 317 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 318 /// i32 6> 319 /// %2 = mul <4 x i8> %1, %1 320 /// ret <4 x i8> %2 321 /// We convert this initially to something like: 322 /// %x0 = extractelement <4 x i8> %x, i32 0 323 /// %x3 = extractelement <4 x i8> %x, i32 3 324 /// %y1 = extractelement <4 x i8> %y, i32 1 325 /// %y2 = extractelement <4 x i8> %y, i32 2 326 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 327 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 328 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 329 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 330 /// %5 = mul <4 x i8> %4, %4 331 /// %6 = extractelement <4 x i8> %5, i32 0 332 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 333 /// %7 = extractelement <4 x i8> %5, i32 1 334 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 335 /// %8 = extractelement <4 x i8> %5, i32 2 336 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 337 /// %9 = extractelement <4 x i8> %5, i32 3 338 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 339 /// ret <4 x i8> %ins4 340 /// InstCombiner transforms this into a shuffle and vector mul 341 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 342 /// TODO: Can we split off and reuse the shuffle mask detection from 343 /// TargetTransformInfo::getInstructionThroughput? 344 static Optional<TargetTransformInfo::ShuffleKind> 345 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 346 const auto *It = 347 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 348 if (It == VL.end()) 349 return None; 350 auto *EI0 = cast<ExtractElementInst>(*It); 351 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 352 return None; 353 unsigned Size = 354 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 355 Value *Vec1 = nullptr; 356 Value *Vec2 = nullptr; 357 enum ShuffleMode { Unknown, Select, Permute }; 358 ShuffleMode CommonShuffleMode = Unknown; 359 Mask.assign(VL.size(), UndefMaskElem); 360 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 361 // Undef can be represented as an undef element in a vector. 362 if (isa<UndefValue>(VL[I])) 363 continue; 364 auto *EI = cast<ExtractElementInst>(VL[I]); 365 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 366 return None; 367 auto *Vec = EI->getVectorOperand(); 368 // We can extractelement from undef or poison vector. 369 if (isUndefVector(Vec)) 370 continue; 371 // All vector operands must have the same number of vector elements. 372 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 373 return None; 374 if (isa<UndefValue>(EI->getIndexOperand())) 375 continue; 376 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 377 if (!Idx) 378 return None; 379 // Undefined behavior if Idx is negative or >= Size. 380 if (Idx->getValue().uge(Size)) 381 continue; 382 unsigned IntIdx = Idx->getValue().getZExtValue(); 383 Mask[I] = IntIdx; 384 // For correct shuffling we have to have at most 2 different vector operands 385 // in all extractelement instructions. 386 if (!Vec1 || Vec1 == Vec) { 387 Vec1 = Vec; 388 } else if (!Vec2 || Vec2 == Vec) { 389 Vec2 = Vec; 390 Mask[I] += Size; 391 } else { 392 return None; 393 } 394 if (CommonShuffleMode == Permute) 395 continue; 396 // If the extract index is not the same as the operation number, it is a 397 // permutation. 398 if (IntIdx != I) { 399 CommonShuffleMode = Permute; 400 continue; 401 } 402 CommonShuffleMode = Select; 403 } 404 // If we're not crossing lanes in different vectors, consider it as blending. 405 if (CommonShuffleMode == Select && Vec2) 406 return TargetTransformInfo::SK_Select; 407 // If Vec2 was never used, we have a permutation of a single vector, otherwise 408 // we have permutation of 2 vectors. 409 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 410 : TargetTransformInfo::SK_PermuteSingleSrc; 411 } 412 413 namespace { 414 415 /// Main data required for vectorization of instructions. 416 struct InstructionsState { 417 /// The very first instruction in the list with the main opcode. 418 Value *OpValue = nullptr; 419 420 /// The main/alternate instruction. 421 Instruction *MainOp = nullptr; 422 Instruction *AltOp = nullptr; 423 424 /// The main/alternate opcodes for the list of instructions. 425 unsigned getOpcode() const { 426 return MainOp ? MainOp->getOpcode() : 0; 427 } 428 429 unsigned getAltOpcode() const { 430 return AltOp ? AltOp->getOpcode() : 0; 431 } 432 433 /// Some of the instructions in the list have alternate opcodes. 434 bool isAltShuffle() const { return AltOp != MainOp; } 435 436 bool isOpcodeOrAlt(Instruction *I) const { 437 unsigned CheckedOpcode = I->getOpcode(); 438 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 439 } 440 441 InstructionsState() = delete; 442 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 443 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 444 }; 445 446 } // end anonymous namespace 447 448 /// Chooses the correct key for scheduling data. If \p Op has the same (or 449 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 450 /// OpValue. 451 static Value *isOneOf(const InstructionsState &S, Value *Op) { 452 auto *I = dyn_cast<Instruction>(Op); 453 if (I && S.isOpcodeOrAlt(I)) 454 return Op; 455 return S.OpValue; 456 } 457 458 /// \returns true if \p Opcode is allowed as part of of the main/alternate 459 /// instruction for SLP vectorization. 460 /// 461 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 462 /// "shuffled out" lane would result in division by zero. 463 static bool isValidForAlternation(unsigned Opcode) { 464 if (Instruction::isIntDivRem(Opcode)) 465 return false; 466 467 return true; 468 } 469 470 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 471 unsigned BaseIndex = 0); 472 473 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 474 /// compatible instructions or constants, or just some other regular values. 475 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 476 Value *Op1) { 477 return (isConstant(BaseOp0) && isConstant(Op0)) || 478 (isConstant(BaseOp1) && isConstant(Op1)) || 479 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 480 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 481 getSameOpcode({BaseOp0, Op0}).getOpcode() || 482 getSameOpcode({BaseOp1, Op1}).getOpcode(); 483 } 484 485 /// \returns analysis of the Instructions in \p VL described in 486 /// InstructionsState, the Opcode that we suppose the whole list 487 /// could be vectorized even if its structure is diverse. 488 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 489 unsigned BaseIndex) { 490 // Make sure these are all Instructions. 491 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 492 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 493 494 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 495 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 496 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 497 CmpInst::Predicate BasePred = 498 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 499 : CmpInst::BAD_ICMP_PREDICATE; 500 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 501 unsigned AltOpcode = Opcode; 502 unsigned AltIndex = BaseIndex; 503 504 // Check for one alternate opcode from another BinaryOperator. 505 // TODO - generalize to support all operators (types, calls etc.). 506 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 507 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 508 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 509 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 510 continue; 511 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 512 isValidForAlternation(Opcode)) { 513 AltOpcode = InstOpcode; 514 AltIndex = Cnt; 515 continue; 516 } 517 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 518 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 519 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 520 if (Ty0 == Ty1) { 521 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 522 continue; 523 if (Opcode == AltOpcode) { 524 assert(isValidForAlternation(Opcode) && 525 isValidForAlternation(InstOpcode) && 526 "Cast isn't safe for alternation, logic needs to be updated!"); 527 AltOpcode = InstOpcode; 528 AltIndex = Cnt; 529 continue; 530 } 531 } 532 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 533 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 534 auto *Inst = cast<Instruction>(VL[Cnt]); 535 Type *Ty0 = BaseInst->getOperand(0)->getType(); 536 Type *Ty1 = Inst->getOperand(0)->getType(); 537 if (Ty0 == Ty1) { 538 Value *BaseOp0 = BaseInst->getOperand(0); 539 Value *BaseOp1 = BaseInst->getOperand(1); 540 Value *Op0 = Inst->getOperand(0); 541 Value *Op1 = Inst->getOperand(1); 542 CmpInst::Predicate CurrentPred = 543 cast<CmpInst>(VL[Cnt])->getPredicate(); 544 CmpInst::Predicate SwappedCurrentPred = 545 CmpInst::getSwappedPredicate(CurrentPred); 546 // Check for compatible operands. If the corresponding operands are not 547 // compatible - need to perform alternate vectorization. 548 if (InstOpcode == Opcode) { 549 if (BasePred == CurrentPred && 550 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 551 continue; 552 if (BasePred == SwappedCurrentPred && 553 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 554 continue; 555 if (E == 2 && 556 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 557 continue; 558 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 559 CmpInst::Predicate AltPred = AltInst->getPredicate(); 560 Value *AltOp0 = AltInst->getOperand(0); 561 Value *AltOp1 = AltInst->getOperand(1); 562 // Check if operands are compatible with alternate operands. 563 if (AltPred == CurrentPred && 564 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 565 continue; 566 if (AltPred == SwappedCurrentPred && 567 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 568 continue; 569 } 570 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 571 assert(isValidForAlternation(Opcode) && 572 isValidForAlternation(InstOpcode) && 573 "Cast isn't safe for alternation, logic needs to be updated!"); 574 AltIndex = Cnt; 575 continue; 576 } 577 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 578 CmpInst::Predicate AltPred = AltInst->getPredicate(); 579 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 580 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 581 continue; 582 } 583 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 584 continue; 585 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 586 } 587 588 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 589 cast<Instruction>(VL[AltIndex])); 590 } 591 592 /// \returns true if all of the values in \p VL have the same type or false 593 /// otherwise. 594 static bool allSameType(ArrayRef<Value *> VL) { 595 Type *Ty = VL[0]->getType(); 596 for (int i = 1, e = VL.size(); i < e; i++) 597 if (VL[i]->getType() != Ty) 598 return false; 599 600 return true; 601 } 602 603 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 604 static Optional<unsigned> getExtractIndex(Instruction *E) { 605 unsigned Opcode = E->getOpcode(); 606 assert((Opcode == Instruction::ExtractElement || 607 Opcode == Instruction::ExtractValue) && 608 "Expected extractelement or extractvalue instruction."); 609 if (Opcode == Instruction::ExtractElement) { 610 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 611 if (!CI) 612 return None; 613 return CI->getZExtValue(); 614 } 615 ExtractValueInst *EI = cast<ExtractValueInst>(E); 616 if (EI->getNumIndices() != 1) 617 return None; 618 return *EI->idx_begin(); 619 } 620 621 /// \returns True if in-tree use also needs extract. This refers to 622 /// possible scalar operand in vectorized instruction. 623 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 624 TargetLibraryInfo *TLI) { 625 unsigned Opcode = UserInst->getOpcode(); 626 switch (Opcode) { 627 case Instruction::Load: { 628 LoadInst *LI = cast<LoadInst>(UserInst); 629 return (LI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Store: { 632 StoreInst *SI = cast<StoreInst>(UserInst); 633 return (SI->getPointerOperand() == Scalar); 634 } 635 case Instruction::Call: { 636 CallInst *CI = cast<CallInst>(UserInst); 637 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 638 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 639 if (hasVectorInstrinsicScalarOpd(ID, i)) 640 return (CI->getArgOperand(i) == Scalar); 641 } 642 LLVM_FALLTHROUGH; 643 } 644 default: 645 return false; 646 } 647 } 648 649 /// \returns the AA location that is being access by the instruction. 650 static MemoryLocation getLocation(Instruction *I) { 651 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 652 return MemoryLocation::get(SI); 653 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 654 return MemoryLocation::get(LI); 655 return MemoryLocation(); 656 } 657 658 /// \returns True if the instruction is not a volatile or atomic load/store. 659 static bool isSimple(Instruction *I) { 660 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 661 return LI->isSimple(); 662 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 663 return SI->isSimple(); 664 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 665 return !MI->isVolatile(); 666 return true; 667 } 668 669 /// Shuffles \p Mask in accordance with the given \p SubMask. 670 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 671 if (SubMask.empty()) 672 return; 673 if (Mask.empty()) { 674 Mask.append(SubMask.begin(), SubMask.end()); 675 return; 676 } 677 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 678 int TermValue = std::min(Mask.size(), SubMask.size()); 679 for (int I = 0, E = SubMask.size(); I < E; ++I) { 680 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 681 Mask[SubMask[I]] >= TermValue) 682 continue; 683 NewMask[I] = Mask[SubMask[I]]; 684 } 685 Mask.swap(NewMask); 686 } 687 688 /// Order may have elements assigned special value (size) which is out of 689 /// bounds. Such indices only appear on places which correspond to undef values 690 /// (see canReuseExtract for details) and used in order to avoid undef values 691 /// have effect on operands ordering. 692 /// The first loop below simply finds all unused indices and then the next loop 693 /// nest assigns these indices for undef values positions. 694 /// As an example below Order has two undef positions and they have assigned 695 /// values 3 and 7 respectively: 696 /// before: 6 9 5 4 9 2 1 0 697 /// after: 6 3 5 4 7 2 1 0 698 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 699 const unsigned Sz = Order.size(); 700 SmallBitVector UnusedIndices(Sz, /*t=*/true); 701 SmallBitVector MaskedIndices(Sz); 702 for (unsigned I = 0; I < Sz; ++I) { 703 if (Order[I] < Sz) 704 UnusedIndices.reset(Order[I]); 705 else 706 MaskedIndices.set(I); 707 } 708 if (MaskedIndices.none()) 709 return; 710 assert(UnusedIndices.count() == MaskedIndices.count() && 711 "Non-synced masked/available indices."); 712 int Idx = UnusedIndices.find_first(); 713 int MIdx = MaskedIndices.find_first(); 714 while (MIdx >= 0) { 715 assert(Idx >= 0 && "Indices must be synced."); 716 Order[MIdx] = Idx; 717 Idx = UnusedIndices.find_next(Idx); 718 MIdx = MaskedIndices.find_next(MIdx); 719 } 720 } 721 722 namespace llvm { 723 724 static void inversePermutation(ArrayRef<unsigned> Indices, 725 SmallVectorImpl<int> &Mask) { 726 Mask.clear(); 727 const unsigned E = Indices.size(); 728 Mask.resize(E, UndefMaskElem); 729 for (unsigned I = 0; I < E; ++I) 730 Mask[Indices[I]] = I; 731 } 732 733 /// \returns inserting index of InsertElement or InsertValue instruction, 734 /// using Offset as base offset for index. 735 static Optional<unsigned> getInsertIndex(Value *InsertInst, 736 unsigned Offset = 0) { 737 int Index = Offset; 738 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 739 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 740 auto *VT = cast<FixedVectorType>(IE->getType()); 741 if (CI->getValue().uge(VT->getNumElements())) 742 return None; 743 Index *= VT->getNumElements(); 744 Index += CI->getZExtValue(); 745 return Index; 746 } 747 return None; 748 } 749 750 auto *IV = cast<InsertValueInst>(InsertInst); 751 Type *CurrentType = IV->getType(); 752 for (unsigned I : IV->indices()) { 753 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 754 Index *= ST->getNumElements(); 755 CurrentType = ST->getElementType(I); 756 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 757 Index *= AT->getNumElements(); 758 CurrentType = AT->getElementType(); 759 } else { 760 return None; 761 } 762 Index += I; 763 } 764 return Index; 765 } 766 767 /// Reorders the list of scalars in accordance with the given \p Mask. 768 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 769 ArrayRef<int> Mask) { 770 assert(!Mask.empty() && "Expected non-empty mask."); 771 SmallVector<Value *> Prev(Scalars.size(), 772 UndefValue::get(Scalars.front()->getType())); 773 Prev.swap(Scalars); 774 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 775 if (Mask[I] != UndefMaskElem) 776 Scalars[Mask[I]] = Prev[I]; 777 } 778 779 namespace slpvectorizer { 780 781 /// Bottom Up SLP Vectorizer. 782 class BoUpSLP { 783 struct TreeEntry; 784 struct ScheduleData; 785 786 public: 787 using ValueList = SmallVector<Value *, 8>; 788 using InstrList = SmallVector<Instruction *, 16>; 789 using ValueSet = SmallPtrSet<Value *, 16>; 790 using StoreList = SmallVector<StoreInst *, 8>; 791 using ExtraValueToDebugLocsMap = 792 MapVector<Value *, SmallVector<Instruction *, 2>>; 793 using OrdersType = SmallVector<unsigned, 4>; 794 795 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 796 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 797 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 798 MemorySSA *MSSA, const DataLayout *DL, OptimizationRemarkEmitter *ORE) 799 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 800 DT(Dt), AC(AC), DB(DB), MSSA(MSSA), DL(DL), ORE(ORE), 801 Builder(Se->getContext()) { 802 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 803 // Use the vector register size specified by the target unless overridden 804 // by a command-line option. 805 // TODO: It would be better to limit the vectorization factor based on 806 // data type rather than just register size. For example, x86 AVX has 807 // 256-bit registers, but it does not support integer operations 808 // at that width (that requires AVX2). 809 if (MaxVectorRegSizeOption.getNumOccurrences()) 810 MaxVecRegSize = MaxVectorRegSizeOption; 811 else 812 MaxVecRegSize = 813 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 814 .getFixedSize(); 815 816 if (MinVectorRegSizeOption.getNumOccurrences()) 817 MinVecRegSize = MinVectorRegSizeOption; 818 else 819 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 820 } 821 822 /// Vectorize the tree that starts with the elements in \p VL. 823 /// Returns the vectorized root. 824 Value *vectorizeTree(); 825 826 /// Vectorize the tree but with the list of externally used values \p 827 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 828 /// generated extractvalue instructions. 829 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 830 831 /// \returns the cost incurred by unwanted spills and fills, caused by 832 /// holding live values over call sites. 833 InstructionCost getSpillCost() const; 834 835 /// \returns the vectorization cost of the subtree that starts at \p VL. 836 /// A negative number means that this is profitable. 837 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 838 839 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 840 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 841 void buildTree(ArrayRef<Value *> Roots, 842 ArrayRef<Value *> UserIgnoreLst = None); 843 844 /// Builds external uses of the vectorized scalars, i.e. the list of 845 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 846 /// ExternallyUsedValues contains additional list of external uses to handle 847 /// vectorization of reductions. 848 void 849 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 850 851 /// Clear the internal data structures that are created by 'buildTree'. 852 void deleteTree() { 853 VectorizableTree.clear(); 854 ScalarToTreeEntry.clear(); 855 MustGather.clear(); 856 ExternalUses.clear(); 857 for (auto &Iter : BlocksSchedules) { 858 BlockScheduling *BS = Iter.second.get(); 859 BS->clear(); 860 } 861 MinBWs.clear(); 862 InstrElementSize.clear(); 863 } 864 865 unsigned getTreeSize() const { return VectorizableTree.size(); } 866 867 /// Perform LICM and CSE on the newly generated gather sequences. 868 void optimizeGatherSequence(); 869 870 /// Checks if the specified gather tree entry \p TE can be represented as a 871 /// shuffled vector entry + (possibly) permutation with other gathers. It 872 /// implements the checks only for possibly ordered scalars (Loads, 873 /// ExtractElement, ExtractValue), which can be part of the graph. 874 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 875 876 /// Gets reordering data for the given tree entry. If the entry is vectorized 877 /// - just return ReorderIndices, otherwise check if the scalars can be 878 /// reordered and return the most optimal order. 879 /// \param TopToBottom If true, include the order of vectorized stores and 880 /// insertelement nodes, otherwise skip them. 881 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 882 883 /// Reorders the current graph to the most profitable order starting from the 884 /// root node to the leaf nodes. The best order is chosen only from the nodes 885 /// of the same size (vectorization factor). Smaller nodes are considered 886 /// parts of subgraph with smaller VF and they are reordered independently. We 887 /// can make it because we still need to extend smaller nodes to the wider VF 888 /// and we can merge reordering shuffles with the widening shuffles. 889 void reorderTopToBottom(); 890 891 /// Reorders the current graph to the most profitable order starting from 892 /// leaves to the root. It allows to rotate small subgraphs and reduce the 893 /// number of reshuffles if the leaf nodes use the same order. In this case we 894 /// can merge the orders and just shuffle user node instead of shuffling its 895 /// operands. Plus, even the leaf nodes have different orders, it allows to 896 /// sink reordering in the graph closer to the root node and merge it later 897 /// during analysis. 898 void reorderBottomToTop(bool IgnoreReorder = false); 899 900 /// \return The vector element size in bits to use when vectorizing the 901 /// expression tree ending at \p V. If V is a store, the size is the width of 902 /// the stored value. Otherwise, the size is the width of the largest loaded 903 /// value reaching V. This method is used by the vectorizer to calculate 904 /// vectorization factors. 905 unsigned getVectorElementSize(Value *V); 906 907 /// Compute the minimum type sizes required to represent the entries in a 908 /// vectorizable tree. 909 void computeMinimumValueSizes(); 910 911 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 912 unsigned getMaxVecRegSize() const { 913 return MaxVecRegSize; 914 } 915 916 // \returns minimum vector register size as set by cl::opt. 917 unsigned getMinVecRegSize() const { 918 return MinVecRegSize; 919 } 920 921 unsigned getMinVF(unsigned Sz) const { 922 return std::max(2U, getMinVecRegSize() / Sz); 923 } 924 925 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 926 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 927 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 928 return MaxVF ? MaxVF : UINT_MAX; 929 } 930 931 /// Check if homogeneous aggregate is isomorphic to some VectorType. 932 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 933 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 934 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 935 /// 936 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 937 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 938 939 /// \returns True if the VectorizableTree is both tiny and not fully 940 /// vectorizable. We do not vectorize such trees. 941 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 942 943 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 944 /// can be load combined in the backend. Load combining may not be allowed in 945 /// the IR optimizer, so we do not want to alter the pattern. For example, 946 /// partially transforming a scalar bswap() pattern into vector code is 947 /// effectively impossible for the backend to undo. 948 /// TODO: If load combining is allowed in the IR optimizer, this analysis 949 /// may not be necessary. 950 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 951 952 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 953 /// can be load combined in the backend. Load combining may not be allowed in 954 /// the IR optimizer, so we do not want to alter the pattern. For example, 955 /// partially transforming a scalar bswap() pattern into vector code is 956 /// effectively impossible for the backend to undo. 957 /// TODO: If load combining is allowed in the IR optimizer, this analysis 958 /// may not be necessary. 959 bool isLoadCombineCandidate() const; 960 961 OptimizationRemarkEmitter *getORE() { return ORE; } 962 963 /// This structure holds any data we need about the edges being traversed 964 /// during buildTree_rec(). We keep track of: 965 /// (i) the user TreeEntry index, and 966 /// (ii) the index of the edge. 967 struct EdgeInfo { 968 EdgeInfo() = default; 969 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 970 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 971 /// The user TreeEntry. 972 TreeEntry *UserTE = nullptr; 973 /// The operand index of the use. 974 unsigned EdgeIdx = UINT_MAX; 975 #ifndef NDEBUG 976 friend inline raw_ostream &operator<<(raw_ostream &OS, 977 const BoUpSLP::EdgeInfo &EI) { 978 EI.dump(OS); 979 return OS; 980 } 981 /// Debug print. 982 void dump(raw_ostream &OS) const { 983 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 984 << " EdgeIdx:" << EdgeIdx << "}"; 985 } 986 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 987 #endif 988 }; 989 990 /// A helper data structure to hold the operands of a vector of instructions. 991 /// This supports a fixed vector length for all operand vectors. 992 class VLOperands { 993 /// For each operand we need (i) the value, and (ii) the opcode that it 994 /// would be attached to if the expression was in a left-linearized form. 995 /// This is required to avoid illegal operand reordering. 996 /// For example: 997 /// \verbatim 998 /// 0 Op1 999 /// |/ 1000 /// Op1 Op2 Linearized + Op2 1001 /// \ / ----------> |/ 1002 /// - - 1003 /// 1004 /// Op1 - Op2 (0 + Op1) - Op2 1005 /// \endverbatim 1006 /// 1007 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1008 /// 1009 /// Another way to think of this is to track all the operations across the 1010 /// path from the operand all the way to the root of the tree and to 1011 /// calculate the operation that corresponds to this path. For example, the 1012 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1013 /// corresponding operation is a '-' (which matches the one in the 1014 /// linearized tree, as shown above). 1015 /// 1016 /// For lack of a better term, we refer to this operation as Accumulated 1017 /// Path Operation (APO). 1018 struct OperandData { 1019 OperandData() = default; 1020 OperandData(Value *V, bool APO, bool IsUsed) 1021 : V(V), APO(APO), IsUsed(IsUsed) {} 1022 /// The operand value. 1023 Value *V = nullptr; 1024 /// TreeEntries only allow a single opcode, or an alternate sequence of 1025 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1026 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1027 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1028 /// (e.g., Add/Mul) 1029 bool APO = false; 1030 /// Helper data for the reordering function. 1031 bool IsUsed = false; 1032 }; 1033 1034 /// During operand reordering, we are trying to select the operand at lane 1035 /// that matches best with the operand at the neighboring lane. Our 1036 /// selection is based on the type of value we are looking for. For example, 1037 /// if the neighboring lane has a load, we need to look for a load that is 1038 /// accessing a consecutive address. These strategies are summarized in the 1039 /// 'ReorderingMode' enumerator. 1040 enum class ReorderingMode { 1041 Load, ///< Matching loads to consecutive memory addresses 1042 Opcode, ///< Matching instructions based on opcode (same or alternate) 1043 Constant, ///< Matching constants 1044 Splat, ///< Matching the same instruction multiple times (broadcast) 1045 Failed, ///< We failed to create a vectorizable group 1046 }; 1047 1048 using OperandDataVec = SmallVector<OperandData, 2>; 1049 1050 /// A vector of operand vectors. 1051 SmallVector<OperandDataVec, 4> OpsVec; 1052 1053 const DataLayout &DL; 1054 ScalarEvolution &SE; 1055 const BoUpSLP &R; 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. 1058 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1063 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1064 return OpsVec[OpIdx][Lane]; 1065 } 1066 1067 /// Clears the used flag for all entries. 1068 void clearUsed() { 1069 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1070 OpIdx != NumOperands; ++OpIdx) 1071 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1072 ++Lane) 1073 OpsVec[OpIdx][Lane].IsUsed = false; 1074 } 1075 1076 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1077 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1078 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1079 } 1080 1081 // The hard-coded scores listed here are not very important, though it shall 1082 // be higher for better matches to improve the resulting cost. When 1083 // computing the scores of matching one sub-tree with another, we are 1084 // basically counting the number of values that are matching. So even if all 1085 // scores are set to 1, we would still get a decent matching result. 1086 // However, sometimes we have to break ties. For example we may have to 1087 // choose between matching loads vs matching opcodes. This is what these 1088 // scores are helping us with: they provide the order of preference. Also, 1089 // this is important if the scalar is externally used or used in another 1090 // tree entry node in the different lane. 1091 1092 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1093 static const int ScoreConsecutiveLoads = 4; 1094 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1095 static const int ScoreReversedLoads = 3; 1096 /// ExtractElementInst from same vector and consecutive indexes. 1097 static const int ScoreConsecutiveExtracts = 4; 1098 /// ExtractElementInst from same vector and reversed indices. 1099 static const int ScoreReversedExtracts = 3; 1100 /// Constants. 1101 static const int ScoreConstants = 2; 1102 /// Instructions with the same opcode. 1103 static const int ScoreSameOpcode = 2; 1104 /// Instructions with alt opcodes (e.g, add + sub). 1105 static const int ScoreAltOpcodes = 1; 1106 /// Identical instructions (a.k.a. splat or broadcast). 1107 static const int ScoreSplat = 1; 1108 /// Matching with an undef is preferable to failing. 1109 static const int ScoreUndef = 1; 1110 /// Score for failing to find a decent match. 1111 static const int ScoreFail = 0; 1112 /// Score if all users are vectorized. 1113 static const int ScoreAllUserVectorized = 1; 1114 1115 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1116 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1117 /// MainAltOps. 1118 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1119 ScalarEvolution &SE, int NumLanes, 1120 ArrayRef<Value *> MainAltOps) { 1121 if (V1 == V2) 1122 return VLOperands::ScoreSplat; 1123 1124 auto *LI1 = dyn_cast<LoadInst>(V1); 1125 auto *LI2 = dyn_cast<LoadInst>(V2); 1126 if (LI1 && LI2) { 1127 if (LI1->getParent() != LI2->getParent()) 1128 return VLOperands::ScoreFail; 1129 1130 Optional<int> Dist = getPointersDiff( 1131 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1132 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1133 if (!Dist || *Dist == 0) 1134 return VLOperands::ScoreFail; 1135 // The distance is too large - still may be profitable to use masked 1136 // loads/gathers. 1137 if (std::abs(*Dist) > NumLanes / 2) 1138 return VLOperands::ScoreAltOpcodes; 1139 // This still will detect consecutive loads, but we might have "holes" 1140 // in some cases. It is ok for non-power-2 vectorization and may produce 1141 // better results. It should not affect current vectorization. 1142 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1143 : VLOperands::ScoreReversedLoads; 1144 } 1145 1146 auto *C1 = dyn_cast<Constant>(V1); 1147 auto *C2 = dyn_cast<Constant>(V2); 1148 if (C1 && C2) 1149 return VLOperands::ScoreConstants; 1150 1151 // Extracts from consecutive indexes of the same vector better score as 1152 // the extracts could be optimized away. 1153 Value *EV1; 1154 ConstantInt *Ex1Idx; 1155 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1156 // Undefs are always profitable for extractelements. 1157 if (isa<UndefValue>(V2)) 1158 return VLOperands::ScoreConsecutiveExtracts; 1159 Value *EV2 = nullptr; 1160 ConstantInt *Ex2Idx = nullptr; 1161 if (match(V2, 1162 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1163 m_Undef())))) { 1164 // Undefs are always profitable for extractelements. 1165 if (!Ex2Idx) 1166 return VLOperands::ScoreConsecutiveExtracts; 1167 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1168 return VLOperands::ScoreConsecutiveExtracts; 1169 if (EV2 == EV1) { 1170 int Idx1 = Ex1Idx->getZExtValue(); 1171 int Idx2 = Ex2Idx->getZExtValue(); 1172 int Dist = Idx2 - Idx1; 1173 // The distance is too large - still may be profitable to use 1174 // shuffles. 1175 if (std::abs(Dist) == 0) 1176 return VLOperands::ScoreSplat; 1177 if (std::abs(Dist) > NumLanes / 2) 1178 return VLOperands::ScoreSameOpcode; 1179 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1180 : VLOperands::ScoreReversedExtracts; 1181 } 1182 return VLOperands::ScoreAltOpcodes; 1183 } 1184 return VLOperands::ScoreFail; 1185 } 1186 1187 auto *I1 = dyn_cast<Instruction>(V1); 1188 auto *I2 = dyn_cast<Instruction>(V2); 1189 if (I1 && I2) { 1190 if (I1->getParent() != I2->getParent()) 1191 return VLOperands::ScoreFail; 1192 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1193 Ops.push_back(I1); 1194 Ops.push_back(I2); 1195 InstructionsState S = getSameOpcode(Ops); 1196 // Note: Only consider instructions with <= 2 operands to avoid 1197 // complexity explosion. 1198 if (S.getOpcode() && 1199 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1200 !S.isAltShuffle()) && 1201 all_of(Ops, [&S](Value *V) { 1202 return cast<Instruction>(V)->getNumOperands() == 1203 S.MainOp->getNumOperands(); 1204 })) 1205 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1206 : VLOperands::ScoreSameOpcode; 1207 } 1208 1209 if (isa<UndefValue>(V2)) 1210 return VLOperands::ScoreUndef; 1211 1212 return VLOperands::ScoreFail; 1213 } 1214 1215 /// \param Lane lane of the operands under analysis. 1216 /// \param OpIdx operand index in \p Lane lane we're looking the best 1217 /// candidate for. 1218 /// \param Idx operand index of the current candidate value. 1219 /// \returns The additional score due to possible broadcasting of the 1220 /// elements in the lane. It is more profitable to have power-of-2 unique 1221 /// elements in the lane, it will be vectorized with higher probability 1222 /// after removing duplicates. Currently the SLP vectorizer supports only 1223 /// vectorization of the power-of-2 number of unique scalars. 1224 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1225 Value *IdxLaneV = getData(Idx, Lane).V; 1226 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1227 return 0; 1228 SmallPtrSet<Value *, 4> Uniques; 1229 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1230 if (Ln == Lane) 1231 continue; 1232 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1233 if (!isa<Instruction>(OpIdxLnV)) 1234 return 0; 1235 Uniques.insert(OpIdxLnV); 1236 } 1237 int UniquesCount = Uniques.size(); 1238 int UniquesCntWithIdxLaneV = 1239 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1240 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1241 int UniquesCntWithOpIdxLaneV = 1242 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1243 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1244 return 0; 1245 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1246 UniquesCntWithOpIdxLaneV) - 1247 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1248 } 1249 1250 /// \param Lane lane of the operands under analysis. 1251 /// \param OpIdx operand index in \p Lane lane we're looking the best 1252 /// candidate for. 1253 /// \param Idx operand index of the current candidate value. 1254 /// \returns The additional score for the scalar which users are all 1255 /// vectorized. 1256 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1257 Value *IdxLaneV = getData(Idx, Lane).V; 1258 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1259 // Do not care about number of uses for vector-like instructions 1260 // (extractelement/extractvalue with constant indices), they are extracts 1261 // themselves and already externally used. Vectorization of such 1262 // instructions does not add extra extractelement instruction, just may 1263 // remove it. 1264 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1265 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1266 return VLOperands::ScoreAllUserVectorized; 1267 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1268 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1269 return 0; 1270 return R.areAllUsersVectorized(IdxLaneI, None) 1271 ? VLOperands::ScoreAllUserVectorized 1272 : 0; 1273 } 1274 1275 /// Go through the operands of \p LHS and \p RHS recursively until \p 1276 /// MaxLevel, and return the cummulative score. For example: 1277 /// \verbatim 1278 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1279 /// \ / \ / \ / \ / 1280 /// + + + + 1281 /// G1 G2 G3 G4 1282 /// \endverbatim 1283 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1284 /// each level recursively, accumulating the score. It starts from matching 1285 /// the additions at level 0, then moves on to the loads (level 1). The 1286 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1287 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1288 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1289 /// Please note that the order of the operands does not matter, as we 1290 /// evaluate the score of all profitable combinations of operands. In 1291 /// other words the score of G1 and G4 is the same as G1 and G2. This 1292 /// heuristic is based on ideas described in: 1293 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1294 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1295 /// Luís F. W. Góes 1296 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1297 ArrayRef<Value *> MainAltOps) { 1298 1299 // Get the shallow score of V1 and V2. 1300 int ShallowScoreAtThisLevel = 1301 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1302 1303 // If reached MaxLevel, 1304 // or if V1 and V2 are not instructions, 1305 // or if they are SPLAT, 1306 // or if they are not consecutive, 1307 // or if profitable to vectorize loads or extractelements, early return 1308 // the current cost. 1309 auto *I1 = dyn_cast<Instruction>(LHS); 1310 auto *I2 = dyn_cast<Instruction>(RHS); 1311 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1312 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1313 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1314 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1315 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1316 ShallowScoreAtThisLevel)) 1317 return ShallowScoreAtThisLevel; 1318 assert(I1 && I2 && "Should have early exited."); 1319 1320 // Contains the I2 operand indexes that got matched with I1 operands. 1321 SmallSet<unsigned, 4> Op2Used; 1322 1323 // Recursion towards the operands of I1 and I2. We are trying all possible 1324 // operand pairs, and keeping track of the best score. 1325 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1326 OpIdx1 != NumOperands1; ++OpIdx1) { 1327 // Try to pair op1I with the best operand of I2. 1328 int MaxTmpScore = 0; 1329 unsigned MaxOpIdx2 = 0; 1330 bool FoundBest = false; 1331 // If I2 is commutative try all combinations. 1332 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1333 unsigned ToIdx = isCommutative(I2) 1334 ? I2->getNumOperands() 1335 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1336 assert(FromIdx <= ToIdx && "Bad index"); 1337 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1338 // Skip operands already paired with OpIdx1. 1339 if (Op2Used.count(OpIdx2)) 1340 continue; 1341 // Recursively calculate the cost at each level 1342 int TmpScore = 1343 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1344 CurrLevel + 1, MaxLevel, None); 1345 // Look for the best score. 1346 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1347 MaxTmpScore = TmpScore; 1348 MaxOpIdx2 = OpIdx2; 1349 FoundBest = true; 1350 } 1351 } 1352 if (FoundBest) { 1353 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1354 Op2Used.insert(MaxOpIdx2); 1355 ShallowScoreAtThisLevel += MaxTmpScore; 1356 } 1357 } 1358 return ShallowScoreAtThisLevel; 1359 } 1360 1361 /// Score scaling factor for fully compatible instructions but with 1362 /// different number of external uses. Allows better selection of the 1363 /// instructions with less external uses. 1364 static const int ScoreScaleFactor = 10; 1365 1366 /// \Returns the look-ahead score, which tells us how much the sub-trees 1367 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1368 /// score. This helps break ties in an informed way when we cannot decide on 1369 /// the order of the operands by just considering the immediate 1370 /// predecessors. 1371 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1372 int Lane, unsigned OpIdx, unsigned Idx, 1373 bool &IsUsed) { 1374 int Score = 1375 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1376 if (Score) { 1377 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1378 if (Score <= -SplatScore) { 1379 // Set the minimum score for splat-like sequence to avoid setting 1380 // failed state. 1381 Score = 1; 1382 } else { 1383 Score += SplatScore; 1384 // Scale score to see the difference between different operands 1385 // and similar operands but all vectorized/not all vectorized 1386 // uses. It does not affect actual selection of the best 1387 // compatible operand in general, just allows to select the 1388 // operand with all vectorized uses. 1389 Score *= ScoreScaleFactor; 1390 Score += getExternalUseScore(Lane, OpIdx, Idx); 1391 IsUsed = true; 1392 } 1393 } 1394 return Score; 1395 } 1396 1397 /// Best defined scores per lanes between the passes. Used to choose the 1398 /// best operand (with the highest score) between the passes. 1399 /// The key - {Operand Index, Lane}. 1400 /// The value - the best score between the passes for the lane and the 1401 /// operand. 1402 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1403 BestScoresPerLanes; 1404 1405 // Search all operands in Ops[*][Lane] for the one that matches best 1406 // Ops[OpIdx][LastLane] and return its opreand index. 1407 // If no good match can be found, return None. 1408 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1409 ArrayRef<ReorderingMode> ReorderingModes, 1410 ArrayRef<Value *> MainAltOps) { 1411 unsigned NumOperands = getNumOperands(); 1412 1413 // The operand of the previous lane at OpIdx. 1414 Value *OpLastLane = getData(OpIdx, LastLane).V; 1415 1416 // Our strategy mode for OpIdx. 1417 ReorderingMode RMode = ReorderingModes[OpIdx]; 1418 if (RMode == ReorderingMode::Failed) 1419 return None; 1420 1421 // The linearized opcode of the operand at OpIdx, Lane. 1422 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1423 1424 // The best operand index and its score. 1425 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1426 // are using the score to differentiate between the two. 1427 struct BestOpData { 1428 Optional<unsigned> Idx = None; 1429 unsigned Score = 0; 1430 } BestOp; 1431 BestOp.Score = 1432 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1433 .first->second; 1434 1435 // Track if the operand must be marked as used. If the operand is set to 1436 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1437 // want to reestimate the operands again on the following iterations). 1438 bool IsUsed = 1439 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1440 // Iterate through all unused operands and look for the best. 1441 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1442 // Get the operand at Idx and Lane. 1443 OperandData &OpData = getData(Idx, Lane); 1444 Value *Op = OpData.V; 1445 bool OpAPO = OpData.APO; 1446 1447 // Skip already selected operands. 1448 if (OpData.IsUsed) 1449 continue; 1450 1451 // Skip if we are trying to move the operand to a position with a 1452 // different opcode in the linearized tree form. This would break the 1453 // semantics. 1454 if (OpAPO != OpIdxAPO) 1455 continue; 1456 1457 // Look for an operand that matches the current mode. 1458 switch (RMode) { 1459 case ReorderingMode::Load: 1460 case ReorderingMode::Constant: 1461 case ReorderingMode::Opcode: { 1462 bool LeftToRight = Lane > LastLane; 1463 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1464 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1465 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1466 OpIdx, Idx, IsUsed); 1467 if (Score > static_cast<int>(BestOp.Score)) { 1468 BestOp.Idx = Idx; 1469 BestOp.Score = Score; 1470 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1471 } 1472 break; 1473 } 1474 case ReorderingMode::Splat: 1475 if (Op == OpLastLane) 1476 BestOp.Idx = Idx; 1477 break; 1478 case ReorderingMode::Failed: 1479 llvm_unreachable("Not expected Failed reordering mode."); 1480 } 1481 } 1482 1483 if (BestOp.Idx) { 1484 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1485 return BestOp.Idx; 1486 } 1487 // If we could not find a good match return None. 1488 return None; 1489 } 1490 1491 /// Helper for reorderOperandVecs. 1492 /// \returns the lane that we should start reordering from. This is the one 1493 /// which has the least number of operands that can freely move about or 1494 /// less profitable because it already has the most optimal set of operands. 1495 unsigned getBestLaneToStartReordering() const { 1496 unsigned Min = UINT_MAX; 1497 unsigned SameOpNumber = 0; 1498 // std::pair<unsigned, unsigned> is used to implement a simple voting 1499 // algorithm and choose the lane with the least number of operands that 1500 // can freely move about or less profitable because it already has the 1501 // most optimal set of operands. The first unsigned is a counter for 1502 // voting, the second unsigned is the counter of lanes with instructions 1503 // with same/alternate opcodes and same parent basic block. 1504 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1505 // Try to be closer to the original results, if we have multiple lanes 1506 // with same cost. If 2 lanes have the same cost, use the one with the 1507 // lowest index. 1508 for (int I = getNumLanes(); I > 0; --I) { 1509 unsigned Lane = I - 1; 1510 OperandsOrderData NumFreeOpsHash = 1511 getMaxNumOperandsThatCanBeReordered(Lane); 1512 // Compare the number of operands that can move and choose the one with 1513 // the least number. 1514 if (NumFreeOpsHash.NumOfAPOs < Min) { 1515 Min = NumFreeOpsHash.NumOfAPOs; 1516 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1517 HashMap.clear(); 1518 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1519 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1520 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1521 // Select the most optimal lane in terms of number of operands that 1522 // should be moved around. 1523 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1526 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1527 auto It = HashMap.find(NumFreeOpsHash.Hash); 1528 if (It == HashMap.end()) 1529 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1530 else 1531 ++It->second.first; 1532 } 1533 } 1534 // Select the lane with the minimum counter. 1535 unsigned BestLane = 0; 1536 unsigned CntMin = UINT_MAX; 1537 for (const auto &Data : reverse(HashMap)) { 1538 if (Data.second.first < CntMin) { 1539 CntMin = Data.second.first; 1540 BestLane = Data.second.second; 1541 } 1542 } 1543 return BestLane; 1544 } 1545 1546 /// Data structure that helps to reorder operands. 1547 struct OperandsOrderData { 1548 /// The best number of operands with the same APOs, which can be 1549 /// reordered. 1550 unsigned NumOfAPOs = UINT_MAX; 1551 /// Number of operands with the same/alternate instruction opcode and 1552 /// parent. 1553 unsigned NumOpsWithSameOpcodeParent = 0; 1554 /// Hash for the actual operands ordering. 1555 /// Used to count operands, actually their position id and opcode 1556 /// value. It is used in the voting mechanism to find the lane with the 1557 /// least number of operands that can freely move about or less profitable 1558 /// because it already has the most optimal set of operands. Can be 1559 /// replaced with SmallVector<unsigned> instead but hash code is faster 1560 /// and requires less memory. 1561 unsigned Hash = 0; 1562 }; 1563 /// \returns the maximum number of operands that are allowed to be reordered 1564 /// for \p Lane and the number of compatible instructions(with the same 1565 /// parent/opcode). This is used as a heuristic for selecting the first lane 1566 /// to start operand reordering. 1567 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1568 unsigned CntTrue = 0; 1569 unsigned NumOperands = getNumOperands(); 1570 // Operands with the same APO can be reordered. We therefore need to count 1571 // how many of them we have for each APO, like this: Cnt[APO] = x. 1572 // Since we only have two APOs, namely true and false, we can avoid using 1573 // a map. Instead we can simply count the number of operands that 1574 // correspond to one of them (in this case the 'true' APO), and calculate 1575 // the other by subtracting it from the total number of operands. 1576 // Operands with the same instruction opcode and parent are more 1577 // profitable since we don't need to move them in many cases, with a high 1578 // probability such lane already can be vectorized effectively. 1579 bool AllUndefs = true; 1580 unsigned NumOpsWithSameOpcodeParent = 0; 1581 Instruction *OpcodeI = nullptr; 1582 BasicBlock *Parent = nullptr; 1583 unsigned Hash = 0; 1584 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1585 const OperandData &OpData = getData(OpIdx, Lane); 1586 if (OpData.APO) 1587 ++CntTrue; 1588 // Use Boyer-Moore majority voting for finding the majority opcode and 1589 // the number of times it occurs. 1590 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1591 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1592 I->getParent() != Parent) { 1593 if (NumOpsWithSameOpcodeParent == 0) { 1594 NumOpsWithSameOpcodeParent = 1; 1595 OpcodeI = I; 1596 Parent = I->getParent(); 1597 } else { 1598 --NumOpsWithSameOpcodeParent; 1599 } 1600 } else { 1601 ++NumOpsWithSameOpcodeParent; 1602 } 1603 } 1604 Hash = hash_combine( 1605 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1606 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1607 } 1608 if (AllUndefs) 1609 return {}; 1610 OperandsOrderData Data; 1611 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1612 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1613 Data.Hash = Hash; 1614 return Data; 1615 } 1616 1617 /// Go through the instructions in VL and append their operands. 1618 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1619 assert(!VL.empty() && "Bad VL"); 1620 assert((empty() || VL.size() == getNumLanes()) && 1621 "Expected same number of lanes"); 1622 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1623 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1624 OpsVec.resize(NumOperands); 1625 unsigned NumLanes = VL.size(); 1626 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1627 OpsVec[OpIdx].resize(NumLanes); 1628 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1629 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1630 // Our tree has just 3 nodes: the root and two operands. 1631 // It is therefore trivial to get the APO. We only need to check the 1632 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1633 // RHS operand. The LHS operand of both add and sub is never attached 1634 // to an inversese operation in the linearized form, therefore its APO 1635 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1636 1637 // Since operand reordering is performed on groups of commutative 1638 // operations or alternating sequences (e.g., +, -), we can safely 1639 // tell the inverse operations by checking commutativity. 1640 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1641 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1642 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1643 APO, false}; 1644 } 1645 } 1646 } 1647 1648 /// \returns the number of operands. 1649 unsigned getNumOperands() const { return OpsVec.size(); } 1650 1651 /// \returns the number of lanes. 1652 unsigned getNumLanes() const { return OpsVec[0].size(); } 1653 1654 /// \returns the operand value at \p OpIdx and \p Lane. 1655 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1656 return getData(OpIdx, Lane).V; 1657 } 1658 1659 /// \returns true if the data structure is empty. 1660 bool empty() const { return OpsVec.empty(); } 1661 1662 /// Clears the data. 1663 void clear() { OpsVec.clear(); } 1664 1665 /// \Returns true if there are enough operands identical to \p Op to fill 1666 /// the whole vector. 1667 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1668 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1669 bool OpAPO = getData(OpIdx, Lane).APO; 1670 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1671 if (Ln == Lane) 1672 continue; 1673 // This is set to true if we found a candidate for broadcast at Lane. 1674 bool FoundCandidate = false; 1675 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1676 OperandData &Data = getData(OpI, Ln); 1677 if (Data.APO != OpAPO || Data.IsUsed) 1678 continue; 1679 if (Data.V == Op) { 1680 FoundCandidate = true; 1681 Data.IsUsed = true; 1682 break; 1683 } 1684 } 1685 if (!FoundCandidate) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 public: 1692 /// Initialize with all the operands of the instruction vector \p RootVL. 1693 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1694 ScalarEvolution &SE, const BoUpSLP &R) 1695 : DL(DL), SE(SE), R(R) { 1696 // Append all the operands of RootVL. 1697 appendOperandsOfVL(RootVL); 1698 } 1699 1700 /// \Returns a value vector with the operands across all lanes for the 1701 /// opearnd at \p OpIdx. 1702 ValueList getVL(unsigned OpIdx) const { 1703 ValueList OpVL(OpsVec[OpIdx].size()); 1704 assert(OpsVec[OpIdx].size() == getNumLanes() && 1705 "Expected same num of lanes across all operands"); 1706 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1707 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1708 return OpVL; 1709 } 1710 1711 // Performs operand reordering for 2 or more operands. 1712 // The original operands are in OrigOps[OpIdx][Lane]. 1713 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1714 void reorder() { 1715 unsigned NumOperands = getNumOperands(); 1716 unsigned NumLanes = getNumLanes(); 1717 // Each operand has its own mode. We are using this mode to help us select 1718 // the instructions for each lane, so that they match best with the ones 1719 // we have selected so far. 1720 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1721 1722 // This is a greedy single-pass algorithm. We are going over each lane 1723 // once and deciding on the best order right away with no back-tracking. 1724 // However, in order to increase its effectiveness, we start with the lane 1725 // that has operands that can move the least. For example, given the 1726 // following lanes: 1727 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1728 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1729 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1730 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1731 // we will start at Lane 1, since the operands of the subtraction cannot 1732 // be reordered. Then we will visit the rest of the lanes in a circular 1733 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1734 1735 // Find the first lane that we will start our search from. 1736 unsigned FirstLane = getBestLaneToStartReordering(); 1737 1738 // Initialize the modes. 1739 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1740 Value *OpLane0 = getValue(OpIdx, FirstLane); 1741 // Keep track if we have instructions with all the same opcode on one 1742 // side. 1743 if (isa<LoadInst>(OpLane0)) 1744 ReorderingModes[OpIdx] = ReorderingMode::Load; 1745 else if (isa<Instruction>(OpLane0)) { 1746 // Check if OpLane0 should be broadcast. 1747 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1749 else 1750 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1751 } 1752 else if (isa<Constant>(OpLane0)) 1753 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1754 else if (isa<Argument>(OpLane0)) 1755 // Our best hope is a Splat. It may save some cost in some cases. 1756 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1757 else 1758 // NOTE: This should be unreachable. 1759 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1760 } 1761 1762 // Check that we don't have same operands. No need to reorder if operands 1763 // are just perfect diamond or shuffled diamond match. Do not do it only 1764 // for possible broadcasts or non-power of 2 number of scalars (just for 1765 // now). 1766 auto &&SkipReordering = [this]() { 1767 SmallPtrSet<Value *, 4> UniqueValues; 1768 ArrayRef<OperandData> Op0 = OpsVec.front(); 1769 for (const OperandData &Data : Op0) 1770 UniqueValues.insert(Data.V); 1771 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1772 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1773 return !UniqueValues.contains(Data.V); 1774 })) 1775 return false; 1776 } 1777 // TODO: Check if we can remove a check for non-power-2 number of 1778 // scalars after full support of non-power-2 vectorization. 1779 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1780 }; 1781 1782 // If the initial strategy fails for any of the operand indexes, then we 1783 // perform reordering again in a second pass. This helps avoid assigning 1784 // high priority to the failed strategy, and should improve reordering for 1785 // the non-failed operand indexes. 1786 for (int Pass = 0; Pass != 2; ++Pass) { 1787 // Check if no need to reorder operands since they're are perfect or 1788 // shuffled diamond match. 1789 // Need to to do it to avoid extra external use cost counting for 1790 // shuffled matches, which may cause regressions. 1791 if (SkipReordering()) 1792 break; 1793 // Skip the second pass if the first pass did not fail. 1794 bool StrategyFailed = false; 1795 // Mark all operand data as free to use. 1796 clearUsed(); 1797 // We keep the original operand order for the FirstLane, so reorder the 1798 // rest of the lanes. We are visiting the nodes in a circular fashion, 1799 // using FirstLane as the center point and increasing the radius 1800 // distance. 1801 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1802 for (unsigned I = 0; I < NumOperands; ++I) 1803 MainAltOps[I].push_back(getData(I, FirstLane).V); 1804 1805 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1806 // Visit the lane on the right and then the lane on the left. 1807 for (int Direction : {+1, -1}) { 1808 int Lane = FirstLane + Direction * Distance; 1809 if (Lane < 0 || Lane >= (int)NumLanes) 1810 continue; 1811 int LastLane = Lane - Direction; 1812 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1813 "Out of bounds"); 1814 // Look for a good match for each operand. 1815 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1816 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1817 Optional<unsigned> BestIdx = getBestOperand( 1818 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1819 // By not selecting a value, we allow the operands that follow to 1820 // select a better matching value. We will get a non-null value in 1821 // the next run of getBestOperand(). 1822 if (BestIdx) { 1823 // Swap the current operand with the one returned by 1824 // getBestOperand(). 1825 swap(OpIdx, BestIdx.getValue(), Lane); 1826 } else { 1827 // We failed to find a best operand, set mode to 'Failed'. 1828 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1829 // Enable the second pass. 1830 StrategyFailed = true; 1831 } 1832 // Try to get the alternate opcode and follow it during analysis. 1833 if (MainAltOps[OpIdx].size() != 2) { 1834 OperandData &AltOp = getData(OpIdx, Lane); 1835 InstructionsState OpS = 1836 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1837 if (OpS.getOpcode() && OpS.isAltShuffle()) 1838 MainAltOps[OpIdx].push_back(AltOp.V); 1839 } 1840 } 1841 } 1842 } 1843 // Skip second pass if the strategy did not fail. 1844 if (!StrategyFailed) 1845 break; 1846 } 1847 } 1848 1849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1850 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1851 switch (RMode) { 1852 case ReorderingMode::Load: 1853 return "Load"; 1854 case ReorderingMode::Opcode: 1855 return "Opcode"; 1856 case ReorderingMode::Constant: 1857 return "Constant"; 1858 case ReorderingMode::Splat: 1859 return "Splat"; 1860 case ReorderingMode::Failed: 1861 return "Failed"; 1862 } 1863 llvm_unreachable("Unimplemented Reordering Type"); 1864 } 1865 1866 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1867 raw_ostream &OS) { 1868 return OS << getModeStr(RMode); 1869 } 1870 1871 /// Debug print. 1872 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1873 printMode(RMode, dbgs()); 1874 } 1875 1876 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1877 return printMode(RMode, OS); 1878 } 1879 1880 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1881 const unsigned Indent = 2; 1882 unsigned Cnt = 0; 1883 for (const OperandDataVec &OpDataVec : OpsVec) { 1884 OS << "Operand " << Cnt++ << "\n"; 1885 for (const OperandData &OpData : OpDataVec) { 1886 OS.indent(Indent) << "{"; 1887 if (Value *V = OpData.V) 1888 OS << *V; 1889 else 1890 OS << "null"; 1891 OS << ", APO:" << OpData.APO << "}\n"; 1892 } 1893 OS << "\n"; 1894 } 1895 return OS; 1896 } 1897 1898 /// Debug print. 1899 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1900 #endif 1901 }; 1902 1903 /// Checks if the instruction is marked for deletion. 1904 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1905 1906 /// Marks values operands for later deletion by replacing them with Undefs. 1907 void eraseInstructions(ArrayRef<Value *> AV); 1908 1909 ~BoUpSLP(); 1910 1911 private: 1912 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1913 /// reordering (i.e. the operands can be reordered because they have only one 1914 /// user and reordarable). 1915 /// \param NonVectorized List of all gather nodes that require reordering 1916 /// (e.g., gather of extractlements or partially vectorizable loads). 1917 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1918 /// reordering, subset of \p NonVectorized. 1919 bool 1920 canReorderOperands(TreeEntry *UserTE, 1921 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1922 ArrayRef<TreeEntry *> ReorderableGathers, 1923 SmallVectorImpl<TreeEntry *> &GatherOps); 1924 1925 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1926 /// if any. If it is not vectorized (gather node), returns nullptr. 1927 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1928 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1929 TreeEntry *TE = nullptr; 1930 const auto *It = find_if(VL, [this, &TE](Value *V) { 1931 TE = getTreeEntry(V); 1932 return TE; 1933 }); 1934 if (It != VL.end() && TE->isSame(VL)) 1935 return TE; 1936 return nullptr; 1937 } 1938 1939 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1940 /// if any. If it is not vectorized (gather node), returns nullptr. 1941 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1942 unsigned OpIdx) const { 1943 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1944 const_cast<TreeEntry *>(UserTE), OpIdx); 1945 } 1946 1947 /// Checks if all users of \p I are the part of the vectorization tree. 1948 bool areAllUsersVectorized(Instruction *I, 1949 ArrayRef<Value *> VectorizedVals) const; 1950 1951 /// \returns the cost of the vectorizable entry. 1952 InstructionCost getEntryCost(const TreeEntry *E, 1953 ArrayRef<Value *> VectorizedVals); 1954 1955 /// This is the recursive part of buildTree. 1956 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1957 const EdgeInfo &EI); 1958 1959 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1960 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1961 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1962 /// returns false, setting \p CurrentOrder to either an empty vector or a 1963 /// non-identity permutation that allows to reuse extract instructions. 1964 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1965 SmallVectorImpl<unsigned> &CurrentOrder) const; 1966 1967 /// Vectorize a single entry in the tree. 1968 Value *vectorizeTree(TreeEntry *E); 1969 1970 /// Vectorize a single entry in the tree, starting in \p VL. 1971 Value *vectorizeTree(ArrayRef<Value *> VL); 1972 1973 /// Create a new vector from a list of scalar values. Produces a sequence 1974 /// which exploits values reused across lanes, and arranges the inserts 1975 /// for ease of later optimization. 1976 Value *createBuildVector(ArrayRef<Value *> VL); 1977 1978 /// \returns the scalarization cost for this type. Scalarization in this 1979 /// context means the creation of vectors from a group of scalars. If \p 1980 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1981 /// vector elements. 1982 InstructionCost getGatherCost(FixedVectorType *Ty, 1983 const APInt &ShuffledIndices, 1984 bool NeedToShuffle) const; 1985 1986 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1987 /// tree entries. 1988 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1989 /// previous tree entries. \p Mask is filled with the shuffle mask. 1990 Optional<TargetTransformInfo::ShuffleKind> 1991 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1992 SmallVectorImpl<const TreeEntry *> &Entries); 1993 1994 /// \returns the scalarization cost for this list of values. Assuming that 1995 /// this subtree gets vectorized, we may need to extract the values from the 1996 /// roots. This method calculates the cost of extracting the values. 1997 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1998 1999 /// Set the Builder insert point to one after the last instruction in 2000 /// the bundle 2001 void setInsertPointAfterBundle(const TreeEntry *E); 2002 2003 /// \returns a vector from a collection of scalars in \p VL. 2004 Value *gather(ArrayRef<Value *> VL); 2005 2006 /// \returns whether the VectorizableTree is fully vectorizable and will 2007 /// be beneficial even the tree height is tiny. 2008 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2009 2010 /// Reorder commutative or alt operands to get better probability of 2011 /// generating vectorized code. 2012 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2013 SmallVectorImpl<Value *> &Left, 2014 SmallVectorImpl<Value *> &Right, 2015 const DataLayout &DL, 2016 ScalarEvolution &SE, 2017 const BoUpSLP &R); 2018 struct TreeEntry { 2019 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2020 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2021 2022 /// \returns true if the scalars in VL are equal to this entry. 2023 bool isSame(ArrayRef<Value *> VL) const { 2024 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2025 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2026 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2027 return VL.size() == Mask.size() && 2028 std::equal(VL.begin(), VL.end(), Mask.begin(), 2029 [Scalars](Value *V, int Idx) { 2030 return (isa<UndefValue>(V) && 2031 Idx == UndefMaskElem) || 2032 (Idx != UndefMaskElem && V == Scalars[Idx]); 2033 }); 2034 }; 2035 if (!ReorderIndices.empty()) { 2036 // TODO: implement matching if the nodes are just reordered, still can 2037 // treat the vector as the same if the list of scalars matches VL 2038 // directly, without reordering. 2039 SmallVector<int> Mask; 2040 inversePermutation(ReorderIndices, Mask); 2041 if (VL.size() == Scalars.size()) 2042 return IsSame(Scalars, Mask); 2043 if (VL.size() == ReuseShuffleIndices.size()) { 2044 ::addMask(Mask, ReuseShuffleIndices); 2045 return IsSame(Scalars, Mask); 2046 } 2047 return false; 2048 } 2049 return IsSame(Scalars, ReuseShuffleIndices); 2050 } 2051 2052 /// \returns true if current entry has same operands as \p TE. 2053 bool hasEqualOperands(const TreeEntry &TE) const { 2054 if (TE.getNumOperands() != getNumOperands()) 2055 return false; 2056 SmallBitVector Used(getNumOperands()); 2057 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2058 unsigned PrevCount = Used.count(); 2059 for (unsigned K = 0; K < E; ++K) { 2060 if (Used.test(K)) 2061 continue; 2062 if (getOperand(K) == TE.getOperand(I)) { 2063 Used.set(K); 2064 break; 2065 } 2066 } 2067 // Check if we actually found the matching operand. 2068 if (PrevCount == Used.count()) 2069 return false; 2070 } 2071 return true; 2072 } 2073 2074 /// \return Final vectorization factor for the node. Defined by the total 2075 /// number of vectorized scalars, including those, used several times in the 2076 /// entry and counted in the \a ReuseShuffleIndices, if any. 2077 unsigned getVectorFactor() const { 2078 if (!ReuseShuffleIndices.empty()) 2079 return ReuseShuffleIndices.size(); 2080 return Scalars.size(); 2081 }; 2082 2083 /// A vector of scalars. 2084 ValueList Scalars; 2085 2086 /// The Scalars are vectorized into this value. It is initialized to Null. 2087 Value *VectorizedValue = nullptr; 2088 2089 /// Do we need to gather this sequence or vectorize it 2090 /// (either with vector instruction or with scatter/gather 2091 /// intrinsics for store/load)? 2092 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2093 EntryState State; 2094 2095 /// Does this sequence require some shuffling? 2096 SmallVector<int, 4> ReuseShuffleIndices; 2097 2098 /// Does this entry require reordering? 2099 SmallVector<unsigned, 4> ReorderIndices; 2100 2101 /// Points back to the VectorizableTree. 2102 /// 2103 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2104 /// to be a pointer and needs to be able to initialize the child iterator. 2105 /// Thus we need a reference back to the container to translate the indices 2106 /// to entries. 2107 VecTreeTy &Container; 2108 2109 /// The TreeEntry index containing the user of this entry. We can actually 2110 /// have multiple users so the data structure is not truly a tree. 2111 SmallVector<EdgeInfo, 1> UserTreeIndices; 2112 2113 /// The index of this treeEntry in VectorizableTree. 2114 int Idx = -1; 2115 2116 private: 2117 /// The operands of each instruction in each lane Operands[op_index][lane]. 2118 /// Note: This helps avoid the replication of the code that performs the 2119 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2120 SmallVector<ValueList, 2> Operands; 2121 2122 /// The main/alternate instruction. 2123 Instruction *MainOp = nullptr; 2124 Instruction *AltOp = nullptr; 2125 2126 public: 2127 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2128 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2129 if (Operands.size() < OpIdx + 1) 2130 Operands.resize(OpIdx + 1); 2131 assert(Operands[OpIdx].empty() && "Already resized?"); 2132 assert(OpVL.size() <= Scalars.size() && 2133 "Number of operands is greater than the number of scalars."); 2134 Operands[OpIdx].resize(OpVL.size()); 2135 copy(OpVL, Operands[OpIdx].begin()); 2136 } 2137 2138 /// Set the operands of this bundle in their original order. 2139 void setOperandsInOrder() { 2140 assert(Operands.empty() && "Already initialized?"); 2141 auto *I0 = cast<Instruction>(Scalars[0]); 2142 Operands.resize(I0->getNumOperands()); 2143 unsigned NumLanes = Scalars.size(); 2144 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2145 OpIdx != NumOperands; ++OpIdx) { 2146 Operands[OpIdx].resize(NumLanes); 2147 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2148 auto *I = cast<Instruction>(Scalars[Lane]); 2149 assert(I->getNumOperands() == NumOperands && 2150 "Expected same number of operands"); 2151 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2152 } 2153 } 2154 } 2155 2156 /// Reorders operands of the node to the given mask \p Mask. 2157 void reorderOperands(ArrayRef<int> Mask) { 2158 for (ValueList &Operand : Operands) 2159 reorderScalars(Operand, Mask); 2160 } 2161 2162 /// \returns the \p OpIdx operand of this TreeEntry. 2163 ValueList &getOperand(unsigned OpIdx) { 2164 assert(OpIdx < Operands.size() && "Off bounds"); 2165 return Operands[OpIdx]; 2166 } 2167 2168 /// \returns the \p OpIdx operand of this TreeEntry. 2169 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2170 assert(OpIdx < Operands.size() && "Off bounds"); 2171 return Operands[OpIdx]; 2172 } 2173 2174 /// \returns the number of operands. 2175 unsigned getNumOperands() const { return Operands.size(); } 2176 2177 /// \return the single \p OpIdx operand. 2178 Value *getSingleOperand(unsigned OpIdx) const { 2179 assert(OpIdx < Operands.size() && "Off bounds"); 2180 assert(!Operands[OpIdx].empty() && "No operand available"); 2181 return Operands[OpIdx][0]; 2182 } 2183 2184 /// Some of the instructions in the list have alternate opcodes. 2185 bool isAltShuffle() const { return MainOp != AltOp; } 2186 2187 bool isOpcodeOrAlt(Instruction *I) const { 2188 unsigned CheckedOpcode = I->getOpcode(); 2189 return (getOpcode() == CheckedOpcode || 2190 getAltOpcode() == CheckedOpcode); 2191 } 2192 2193 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2194 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2195 /// \p OpValue. 2196 Value *isOneOf(Value *Op) const { 2197 auto *I = dyn_cast<Instruction>(Op); 2198 if (I && isOpcodeOrAlt(I)) 2199 return Op; 2200 return MainOp; 2201 } 2202 2203 void setOperations(const InstructionsState &S) { 2204 MainOp = S.MainOp; 2205 AltOp = S.AltOp; 2206 } 2207 2208 Instruction *getMainOp() const { 2209 return MainOp; 2210 } 2211 2212 Instruction *getAltOp() const { 2213 return AltOp; 2214 } 2215 2216 /// The main/alternate opcodes for the list of instructions. 2217 unsigned getOpcode() const { 2218 return MainOp ? MainOp->getOpcode() : 0; 2219 } 2220 2221 unsigned getAltOpcode() const { 2222 return AltOp ? AltOp->getOpcode() : 0; 2223 } 2224 2225 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2226 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2227 int findLaneForValue(Value *V) const { 2228 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2229 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2230 if (!ReorderIndices.empty()) 2231 FoundLane = ReorderIndices[FoundLane]; 2232 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2233 if (!ReuseShuffleIndices.empty()) { 2234 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2235 find(ReuseShuffleIndices, FoundLane)); 2236 } 2237 return FoundLane; 2238 } 2239 2240 #ifndef NDEBUG 2241 /// Debug printer. 2242 LLVM_DUMP_METHOD void dump() const { 2243 dbgs() << Idx << ".\n"; 2244 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2245 dbgs() << "Operand " << OpI << ":\n"; 2246 for (const Value *V : Operands[OpI]) 2247 dbgs().indent(2) << *V << "\n"; 2248 } 2249 dbgs() << "Scalars: \n"; 2250 for (Value *V : Scalars) 2251 dbgs().indent(2) << *V << "\n"; 2252 dbgs() << "State: "; 2253 switch (State) { 2254 case Vectorize: 2255 dbgs() << "Vectorize\n"; 2256 break; 2257 case ScatterVectorize: 2258 dbgs() << "ScatterVectorize\n"; 2259 break; 2260 case NeedToGather: 2261 dbgs() << "NeedToGather\n"; 2262 break; 2263 } 2264 dbgs() << "MainOp: "; 2265 if (MainOp) 2266 dbgs() << *MainOp << "\n"; 2267 else 2268 dbgs() << "NULL\n"; 2269 dbgs() << "AltOp: "; 2270 if (AltOp) 2271 dbgs() << *AltOp << "\n"; 2272 else 2273 dbgs() << "NULL\n"; 2274 dbgs() << "VectorizedValue: "; 2275 if (VectorizedValue) 2276 dbgs() << *VectorizedValue << "\n"; 2277 else 2278 dbgs() << "NULL\n"; 2279 dbgs() << "ReuseShuffleIndices: "; 2280 if (ReuseShuffleIndices.empty()) 2281 dbgs() << "Empty"; 2282 else 2283 for (int ReuseIdx : ReuseShuffleIndices) 2284 dbgs() << ReuseIdx << ", "; 2285 dbgs() << "\n"; 2286 dbgs() << "ReorderIndices: "; 2287 for (unsigned ReorderIdx : ReorderIndices) 2288 dbgs() << ReorderIdx << ", "; 2289 dbgs() << "\n"; 2290 dbgs() << "UserTreeIndices: "; 2291 for (const auto &EInfo : UserTreeIndices) 2292 dbgs() << EInfo << ", "; 2293 dbgs() << "\n"; 2294 } 2295 #endif 2296 }; 2297 2298 #ifndef NDEBUG 2299 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2300 InstructionCost VecCost, 2301 InstructionCost ScalarCost) const { 2302 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2303 dbgs() << "SLP: Costs:\n"; 2304 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2305 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2306 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2307 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2308 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2309 } 2310 #endif 2311 2312 /// Create a new VectorizableTree entry. 2313 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2314 const InstructionsState &S, 2315 const EdgeInfo &UserTreeIdx, 2316 ArrayRef<int> ReuseShuffleIndices = None, 2317 ArrayRef<unsigned> ReorderIndices = None) { 2318 TreeEntry::EntryState EntryState = 2319 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2320 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2321 ReuseShuffleIndices, ReorderIndices); 2322 } 2323 2324 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2325 TreeEntry::EntryState EntryState, 2326 Optional<ScheduleData *> Bundle, 2327 const InstructionsState &S, 2328 const EdgeInfo &UserTreeIdx, 2329 ArrayRef<int> ReuseShuffleIndices = None, 2330 ArrayRef<unsigned> ReorderIndices = None) { 2331 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2332 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2333 "Need to vectorize gather entry?"); 2334 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2335 TreeEntry *Last = VectorizableTree.back().get(); 2336 Last->Idx = VectorizableTree.size() - 1; 2337 Last->State = EntryState; 2338 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2339 ReuseShuffleIndices.end()); 2340 if (ReorderIndices.empty()) { 2341 Last->Scalars.assign(VL.begin(), VL.end()); 2342 Last->setOperations(S); 2343 } else { 2344 // Reorder scalars and build final mask. 2345 Last->Scalars.assign(VL.size(), nullptr); 2346 transform(ReorderIndices, Last->Scalars.begin(), 2347 [VL](unsigned Idx) -> Value * { 2348 if (Idx >= VL.size()) 2349 return UndefValue::get(VL.front()->getType()); 2350 return VL[Idx]; 2351 }); 2352 InstructionsState S = getSameOpcode(Last->Scalars); 2353 Last->setOperations(S); 2354 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2355 } 2356 if (Last->State != TreeEntry::NeedToGather) { 2357 for (Value *V : VL) { 2358 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2359 ScalarToTreeEntry[V] = Last; 2360 } 2361 // Update the scheduler bundle to point to this TreeEntry. 2362 unsigned Lane = 0; 2363 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2364 BundleMember = BundleMember->NextInBundle) { 2365 BundleMember->TE = Last; 2366 BundleMember->Lane = Lane; 2367 ++Lane; 2368 } 2369 assert((!Bundle.getValue() || Lane == VL.size()) && 2370 "Bundle and VL out of sync"); 2371 } else { 2372 MustGather.insert(VL.begin(), VL.end()); 2373 } 2374 2375 if (UserTreeIdx.UserTE) 2376 Last->UserTreeIndices.push_back(UserTreeIdx); 2377 2378 return Last; 2379 } 2380 2381 /// -- Vectorization State -- 2382 /// Holds all of the tree entries. 2383 TreeEntry::VecTreeTy VectorizableTree; 2384 2385 #ifndef NDEBUG 2386 /// Debug printer. 2387 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2388 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2389 VectorizableTree[Id]->dump(); 2390 dbgs() << "\n"; 2391 } 2392 } 2393 #endif 2394 2395 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2396 2397 const TreeEntry *getTreeEntry(Value *V) const { 2398 return ScalarToTreeEntry.lookup(V); 2399 } 2400 2401 /// Maps a specific scalar to its tree entry. 2402 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2403 2404 /// Maps a value to the proposed vectorizable size. 2405 SmallDenseMap<Value *, unsigned> InstrElementSize; 2406 2407 /// A list of scalars that we found that we need to keep as scalars. 2408 ValueSet MustGather; 2409 2410 /// This POD struct describes one external user in the vectorized tree. 2411 struct ExternalUser { 2412 ExternalUser(Value *S, llvm::User *U, int L) 2413 : Scalar(S), User(U), Lane(L) {} 2414 2415 // Which scalar in our function. 2416 Value *Scalar; 2417 2418 // Which user that uses the scalar. 2419 llvm::User *User; 2420 2421 // Which lane does the scalar belong to. 2422 int Lane; 2423 }; 2424 using UserList = SmallVector<ExternalUser, 16>; 2425 2426 /// Checks if two instructions may access the same memory. 2427 /// 2428 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2429 /// is invariant in the calling loop. 2430 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2431 Instruction *Inst2) { 2432 // First check if the result is already in the cache. 2433 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2434 Optional<bool> &result = AliasCache[key]; 2435 if (result.hasValue()) { 2436 return result.getValue(); 2437 } 2438 bool aliased = true; 2439 if (Loc1.Ptr && isSimple(Inst1)) 2440 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2441 // Store the result in the cache. 2442 result = aliased; 2443 return aliased; 2444 } 2445 2446 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2447 2448 /// Cache for alias results. 2449 /// TODO: consider moving this to the AliasAnalysis itself. 2450 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2451 2452 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2453 // globally through SLP because we don't perform any action which 2454 // invalidates capture results. 2455 BatchAAResults BatchAA; 2456 2457 /// Removes an instruction from its block and eventually deletes it. 2458 /// It's like Instruction::eraseFromParent() except that the actual deletion 2459 /// is delayed until BoUpSLP is destructed. 2460 /// This is required to ensure that there are no incorrect collisions in the 2461 /// AliasCache, which can happen if a new instruction is allocated at the 2462 /// same address as a previously deleted instruction. 2463 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2464 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2465 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2466 } 2467 2468 /// Temporary store for deleted instructions. Instructions will be deleted 2469 /// eventually when the BoUpSLP is destructed. 2470 DenseMap<Instruction *, bool> DeletedInstructions; 2471 2472 /// A list of values that need to extracted out of the tree. 2473 /// This list holds pairs of (Internal Scalar : External User). External User 2474 /// can be nullptr, it means that this Internal Scalar will be used later, 2475 /// after vectorization. 2476 UserList ExternalUses; 2477 2478 /// Values used only by @llvm.assume calls. 2479 SmallPtrSet<const Value *, 32> EphValues; 2480 2481 /// Holds all of the instructions that we gathered. 2482 SetVector<Instruction *> GatherShuffleSeq; 2483 2484 /// A list of blocks that we are going to CSE. 2485 SetVector<BasicBlock *> CSEBlocks; 2486 2487 /// Contains all scheduling relevant data for an instruction. 2488 /// A ScheduleData either represents a single instruction or a member of an 2489 /// instruction bundle (= a group of instructions which is combined into a 2490 /// vector instruction). 2491 struct ScheduleData { 2492 // The initial value for the dependency counters. It means that the 2493 // dependencies are not calculated yet. 2494 enum { InvalidDeps = -1 }; 2495 2496 ScheduleData() = default; 2497 2498 void init(int BlockSchedulingRegionID, Value *OpVal) { 2499 FirstInBundle = this; 2500 NextInBundle = nullptr; 2501 NextLoadStore = nullptr; 2502 IsScheduled = false; 2503 SchedulingRegionID = BlockSchedulingRegionID; 2504 clearDependencies(); 2505 OpValue = OpVal; 2506 TE = nullptr; 2507 Lane = -1; 2508 } 2509 2510 /// Verify basic self consistency properties 2511 void verify() { 2512 if (hasValidDependencies()) { 2513 assert(UnscheduledDeps <= Dependencies && "invariant"); 2514 } else { 2515 assert(UnscheduledDeps == Dependencies && "invariant"); 2516 } 2517 2518 if (IsScheduled) { 2519 assert(isSchedulingEntity() && 2520 "unexpected scheduled state"); 2521 for (const ScheduleData *BundleMember = this; BundleMember; 2522 BundleMember = BundleMember->NextInBundle) { 2523 assert(BundleMember->hasValidDependencies() && 2524 BundleMember->UnscheduledDeps == 0 && 2525 "unexpected scheduled state"); 2526 assert((BundleMember == this || !BundleMember->IsScheduled) && 2527 "only bundle is marked scheduled"); 2528 } 2529 } 2530 2531 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2532 "all bundle members must be in same basic block"); 2533 } 2534 2535 /// Returns true if the dependency information has been calculated. 2536 /// Note that depenendency validity can vary between instructions within 2537 /// a single bundle. 2538 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2539 2540 /// Returns true for single instructions and for bundle representatives 2541 /// (= the head of a bundle). 2542 bool isSchedulingEntity() const { return FirstInBundle == this; } 2543 2544 /// Returns true if it represents an instruction bundle and not only a 2545 /// single instruction. 2546 bool isPartOfBundle() const { 2547 return NextInBundle != nullptr || FirstInBundle != this; 2548 } 2549 2550 /// Returns true if it is ready for scheduling, i.e. it has no more 2551 /// unscheduled depending instructions/bundles. 2552 bool isReady() const { 2553 assert(isSchedulingEntity() && 2554 "can't consider non-scheduling entity for ready list"); 2555 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2556 } 2557 2558 /// Modifies the number of unscheduled dependencies for this instruction, 2559 /// and returns the number of remaining dependencies for the containing 2560 /// bundle. 2561 int incrementUnscheduledDeps(int Incr) { 2562 assert(hasValidDependencies() && 2563 "increment of unscheduled deps would be meaningless"); 2564 UnscheduledDeps += Incr; 2565 return FirstInBundle->unscheduledDepsInBundle(); 2566 } 2567 2568 /// Sets the number of unscheduled dependencies to the number of 2569 /// dependencies. 2570 void resetUnscheduledDeps() { 2571 UnscheduledDeps = Dependencies; 2572 } 2573 2574 /// Clears all dependency information. 2575 void clearDependencies() { 2576 Dependencies = InvalidDeps; 2577 resetUnscheduledDeps(); 2578 MemoryDependencies.clear(); 2579 } 2580 2581 int unscheduledDepsInBundle() const { 2582 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2583 int Sum = 0; 2584 for (const ScheduleData *BundleMember = this; BundleMember; 2585 BundleMember = BundleMember->NextInBundle) { 2586 if (BundleMember->UnscheduledDeps == InvalidDeps) 2587 return InvalidDeps; 2588 Sum += BundleMember->UnscheduledDeps; 2589 } 2590 return Sum; 2591 } 2592 2593 void dump(raw_ostream &os) const { 2594 if (!isSchedulingEntity()) { 2595 os << "/ " << *Inst; 2596 } else if (NextInBundle) { 2597 os << '[' << *Inst; 2598 ScheduleData *SD = NextInBundle; 2599 while (SD) { 2600 os << ';' << *SD->Inst; 2601 SD = SD->NextInBundle; 2602 } 2603 os << ']'; 2604 } else { 2605 os << *Inst; 2606 } 2607 } 2608 2609 Instruction *Inst = nullptr; 2610 2611 /// Opcode of the current instruction in the schedule data. 2612 Value *OpValue = nullptr; 2613 2614 /// The TreeEntry that this instruction corresponds to. 2615 TreeEntry *TE = nullptr; 2616 2617 /// Points to the head in an instruction bundle (and always to this for 2618 /// single instructions). 2619 ScheduleData *FirstInBundle = nullptr; 2620 2621 /// Single linked list of all instructions in a bundle. Null if it is a 2622 /// single instruction. 2623 ScheduleData *NextInBundle = nullptr; 2624 2625 /// Single linked list of all memory instructions (e.g. load, store, call) 2626 /// in the block - until the end of the scheduling region. 2627 ScheduleData *NextLoadStore = nullptr; 2628 2629 /// The dependent memory instructions. 2630 /// This list is derived on demand in calculateDependencies(). 2631 SmallVector<ScheduleData *, 4> MemoryDependencies; 2632 2633 /// This ScheduleData is in the current scheduling region if this matches 2634 /// the current SchedulingRegionID of BlockScheduling. 2635 int SchedulingRegionID = 0; 2636 2637 /// Used for getting a "good" final ordering of instructions. 2638 int SchedulingPriority = 0; 2639 2640 /// The number of dependencies. Constitutes of the number of users of the 2641 /// instruction plus the number of dependent memory instructions (if any). 2642 /// This value is calculated on demand. 2643 /// If InvalidDeps, the number of dependencies is not calculated yet. 2644 int Dependencies = InvalidDeps; 2645 2646 /// The number of dependencies minus the number of dependencies of scheduled 2647 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2648 /// for scheduling. 2649 /// Note that this is negative as long as Dependencies is not calculated. 2650 int UnscheduledDeps = InvalidDeps; 2651 2652 /// The lane of this node in the TreeEntry. 2653 int Lane = -1; 2654 2655 /// True if this instruction is scheduled (or considered as scheduled in the 2656 /// dry-run). 2657 bool IsScheduled = false; 2658 }; 2659 2660 #ifndef NDEBUG 2661 friend inline raw_ostream &operator<<(raw_ostream &os, 2662 const BoUpSLP::ScheduleData &SD) { 2663 SD.dump(os); 2664 return os; 2665 } 2666 #endif 2667 2668 friend struct GraphTraits<BoUpSLP *>; 2669 friend struct DOTGraphTraits<BoUpSLP *>; 2670 2671 /// Contains all scheduling data for a basic block. 2672 struct BlockScheduling { 2673 BlockScheduling(BasicBlock *BB) 2674 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2675 2676 void clear() { 2677 ReadyInsts.clear(); 2678 ScheduleStart = nullptr; 2679 ScheduleEnd = nullptr; 2680 FirstLoadStoreInRegion = nullptr; 2681 LastLoadStoreInRegion = nullptr; 2682 2683 // Reduce the maximum schedule region size by the size of the 2684 // previous scheduling run. 2685 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2686 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2687 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2688 ScheduleRegionSize = 0; 2689 2690 // Make a new scheduling region, i.e. all existing ScheduleData is not 2691 // in the new region yet. 2692 ++SchedulingRegionID; 2693 } 2694 2695 ScheduleData *getScheduleData(Instruction *I) { 2696 if (BB != I->getParent()) 2697 // Avoid lookup if can't possibly be in map. 2698 return nullptr; 2699 ScheduleData *SD = ScheduleDataMap[I]; 2700 if (SD && isInSchedulingRegion(SD)) 2701 return SD; 2702 return nullptr; 2703 } 2704 2705 ScheduleData *getScheduleData(Value *V) { 2706 if (auto *I = dyn_cast<Instruction>(V)) 2707 return getScheduleData(I); 2708 return nullptr; 2709 } 2710 2711 ScheduleData *getScheduleData(Value *V, Value *Key) { 2712 if (V == Key) 2713 return getScheduleData(V); 2714 auto I = ExtraScheduleDataMap.find(V); 2715 if (I != ExtraScheduleDataMap.end()) { 2716 ScheduleData *SD = I->second[Key]; 2717 if (SD && isInSchedulingRegion(SD)) 2718 return SD; 2719 } 2720 return nullptr; 2721 } 2722 2723 bool isInSchedulingRegion(ScheduleData *SD) const { 2724 return SD->SchedulingRegionID == SchedulingRegionID; 2725 } 2726 2727 /// Marks an instruction as scheduled and puts all dependent ready 2728 /// instructions into the ready-list. 2729 template <typename ReadyListType> 2730 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2731 SD->IsScheduled = true; 2732 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2733 2734 for (ScheduleData *BundleMember = SD; BundleMember; 2735 BundleMember = BundleMember->NextInBundle) { 2736 if (BundleMember->Inst != BundleMember->OpValue) 2737 continue; 2738 2739 // Handle the def-use chain dependencies. 2740 2741 // Decrement the unscheduled counter and insert to ready list if ready. 2742 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2743 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2744 if (OpDef && OpDef->hasValidDependencies() && 2745 OpDef->incrementUnscheduledDeps(-1) == 0) { 2746 // There are no more unscheduled dependencies after 2747 // decrementing, so we can put the dependent instruction 2748 // into the ready list. 2749 ScheduleData *DepBundle = OpDef->FirstInBundle; 2750 assert(!DepBundle->IsScheduled && 2751 "already scheduled bundle gets ready"); 2752 ReadyList.insert(DepBundle); 2753 LLVM_DEBUG(dbgs() 2754 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2755 } 2756 }); 2757 }; 2758 2759 // If BundleMember is a vector bundle, its operands may have been 2760 // reordered during buildTree(). We therefore need to get its operands 2761 // through the TreeEntry. 2762 if (TreeEntry *TE = BundleMember->TE) { 2763 int Lane = BundleMember->Lane; 2764 assert(Lane >= 0 && "Lane not set"); 2765 2766 // Since vectorization tree is being built recursively this assertion 2767 // ensures that the tree entry has all operands set before reaching 2768 // this code. Couple of exceptions known at the moment are extracts 2769 // where their second (immediate) operand is not added. Since 2770 // immediates do not affect scheduler behavior this is considered 2771 // okay. 2772 auto *In = TE->getMainOp(); 2773 assert(In && 2774 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2775 In->getNumOperands() == TE->getNumOperands()) && 2776 "Missed TreeEntry operands?"); 2777 (void)In; // fake use to avoid build failure when assertions disabled 2778 2779 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2780 OpIdx != NumOperands; ++OpIdx) 2781 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2782 DecrUnsched(I); 2783 } else { 2784 // If BundleMember is a stand-alone instruction, no operand reordering 2785 // has taken place, so we directly access its operands. 2786 for (Use &U : BundleMember->Inst->operands()) 2787 if (auto *I = dyn_cast<Instruction>(U.get())) 2788 DecrUnsched(I); 2789 } 2790 // Handle the memory dependencies. 2791 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2792 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2793 // There are no more unscheduled dependencies after decrementing, 2794 // so we can put the dependent instruction into the ready list. 2795 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2796 assert(!DepBundle->IsScheduled && 2797 "already scheduled bundle gets ready"); 2798 ReadyList.insert(DepBundle); 2799 LLVM_DEBUG(dbgs() 2800 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2801 } 2802 } 2803 } 2804 } 2805 2806 /// Verify basic self consistency properties of the data structure. 2807 void verify() { 2808 if (!ScheduleStart) 2809 return; 2810 2811 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2812 ScheduleStart->comesBefore(ScheduleEnd) && 2813 "Not a valid scheduling region?"); 2814 2815 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2816 auto *SD = getScheduleData(I); 2817 assert(SD && "primary scheduledata must exist in window"); 2818 assert(isInSchedulingRegion(SD) && 2819 "primary schedule data not in window?"); 2820 assert(isInSchedulingRegion(SD->FirstInBundle) && 2821 "entire bundle in window!"); 2822 (void)SD; 2823 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2824 } 2825 2826 for (auto *SD : ReadyInsts) { 2827 assert(SD->isSchedulingEntity() && SD->isReady() && 2828 "item in ready list not ready?"); 2829 (void)SD; 2830 } 2831 } 2832 2833 void doForAllOpcodes(Value *V, 2834 function_ref<void(ScheduleData *SD)> Action) { 2835 if (ScheduleData *SD = getScheduleData(V)) 2836 Action(SD); 2837 auto I = ExtraScheduleDataMap.find(V); 2838 if (I != ExtraScheduleDataMap.end()) 2839 for (auto &P : I->second) 2840 if (isInSchedulingRegion(P.second)) 2841 Action(P.second); 2842 } 2843 2844 /// Put all instructions into the ReadyList which are ready for scheduling. 2845 template <typename ReadyListType> 2846 void initialFillReadyList(ReadyListType &ReadyList) { 2847 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2848 doForAllOpcodes(I, [&](ScheduleData *SD) { 2849 if (SD->isSchedulingEntity() && SD->isReady()) { 2850 ReadyList.insert(SD); 2851 LLVM_DEBUG(dbgs() 2852 << "SLP: initially in ready list: " << *SD << "\n"); 2853 } 2854 }); 2855 } 2856 } 2857 2858 /// Build a bundle from the ScheduleData nodes corresponding to the 2859 /// scalar instruction for each lane. 2860 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2861 2862 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2863 /// cyclic dependencies. This is only a dry-run, no instructions are 2864 /// actually moved at this stage. 2865 /// \returns the scheduling bundle. The returned Optional value is non-None 2866 /// if \p VL is allowed to be scheduled. 2867 Optional<ScheduleData *> 2868 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2869 const InstructionsState &S); 2870 2871 /// Un-bundles a group of instructions. 2872 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2873 2874 /// Allocates schedule data chunk. 2875 ScheduleData *allocateScheduleDataChunks(); 2876 2877 /// Extends the scheduling region so that V is inside the region. 2878 /// \returns true if the region size is within the limit. 2879 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2880 2881 /// Initialize the ScheduleData structures for new instructions in the 2882 /// scheduling region. 2883 void initScheduleData(Instruction *FromI, Instruction *ToI, 2884 ScheduleData *PrevLoadStore, 2885 ScheduleData *NextLoadStore); 2886 2887 /// Updates the dependency information of a bundle and of all instructions/ 2888 /// bundles which depend on the original bundle. 2889 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2890 BoUpSLP *SLP); 2891 2892 /// Sets all instruction in the scheduling region to un-scheduled. 2893 void resetSchedule(); 2894 2895 BasicBlock *BB; 2896 2897 /// Simple memory allocation for ScheduleData. 2898 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2899 2900 /// The size of a ScheduleData array in ScheduleDataChunks. 2901 int ChunkSize; 2902 2903 /// The allocator position in the current chunk, which is the last entry 2904 /// of ScheduleDataChunks. 2905 int ChunkPos; 2906 2907 /// Attaches ScheduleData to Instruction. 2908 /// Note that the mapping survives during all vectorization iterations, i.e. 2909 /// ScheduleData structures are recycled. 2910 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2911 2912 /// Attaches ScheduleData to Instruction with the leading key. 2913 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2914 ExtraScheduleDataMap; 2915 2916 /// The ready-list for scheduling (only used for the dry-run). 2917 SetVector<ScheduleData *> ReadyInsts; 2918 2919 /// The first instruction of the scheduling region. 2920 Instruction *ScheduleStart = nullptr; 2921 2922 /// The first instruction _after_ the scheduling region. 2923 Instruction *ScheduleEnd = nullptr; 2924 2925 /// The first memory accessing instruction in the scheduling region 2926 /// (can be null). 2927 ScheduleData *FirstLoadStoreInRegion = nullptr; 2928 2929 /// The last memory accessing instruction in the scheduling region 2930 /// (can be null). 2931 ScheduleData *LastLoadStoreInRegion = nullptr; 2932 2933 /// The current size of the scheduling region. 2934 int ScheduleRegionSize = 0; 2935 2936 /// The maximum size allowed for the scheduling region. 2937 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2938 2939 /// The ID of the scheduling region. For a new vectorization iteration this 2940 /// is incremented which "removes" all ScheduleData from the region. 2941 /// Make sure that the initial SchedulingRegionID is greater than the 2942 /// initial SchedulingRegionID in ScheduleData (which is 0). 2943 int SchedulingRegionID = 1; 2944 }; 2945 2946 /// Attaches the BlockScheduling structures to basic blocks. 2947 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2948 2949 /// Performs the "real" scheduling. Done before vectorization is actually 2950 /// performed in a basic block. 2951 void scheduleBlock(BlockScheduling *BS); 2952 2953 /// List of users to ignore during scheduling and that don't need extracting. 2954 ArrayRef<Value *> UserIgnoreList; 2955 2956 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2957 /// sorted SmallVectors of unsigned. 2958 struct OrdersTypeDenseMapInfo { 2959 static OrdersType getEmptyKey() { 2960 OrdersType V; 2961 V.push_back(~1U); 2962 return V; 2963 } 2964 2965 static OrdersType getTombstoneKey() { 2966 OrdersType V; 2967 V.push_back(~2U); 2968 return V; 2969 } 2970 2971 static unsigned getHashValue(const OrdersType &V) { 2972 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2973 } 2974 2975 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2976 return LHS == RHS; 2977 } 2978 }; 2979 2980 // Analysis and block reference. 2981 Function *F; 2982 ScalarEvolution *SE; 2983 TargetTransformInfo *TTI; 2984 TargetLibraryInfo *TLI; 2985 LoopInfo *LI; 2986 DominatorTree *DT; 2987 AssumptionCache *AC; 2988 DemandedBits *DB; 2989 MemorySSA *MSSA; 2990 const DataLayout *DL; 2991 OptimizationRemarkEmitter *ORE; 2992 2993 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2994 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2995 2996 /// Instruction builder to construct the vectorized tree. 2997 IRBuilder<> Builder; 2998 2999 /// A map of scalar integer values to the smallest bit width with which they 3000 /// can legally be represented. The values map to (width, signed) pairs, 3001 /// where "width" indicates the minimum bit width and "signed" is True if the 3002 /// value must be signed-extended, rather than zero-extended, back to its 3003 /// original width. 3004 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3005 }; 3006 3007 } // end namespace slpvectorizer 3008 3009 template <> struct GraphTraits<BoUpSLP *> { 3010 using TreeEntry = BoUpSLP::TreeEntry; 3011 3012 /// NodeRef has to be a pointer per the GraphWriter. 3013 using NodeRef = TreeEntry *; 3014 3015 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3016 3017 /// Add the VectorizableTree to the index iterator to be able to return 3018 /// TreeEntry pointers. 3019 struct ChildIteratorType 3020 : public iterator_adaptor_base< 3021 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3022 ContainerTy &VectorizableTree; 3023 3024 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3025 ContainerTy &VT) 3026 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3027 3028 NodeRef operator*() { return I->UserTE; } 3029 }; 3030 3031 static NodeRef getEntryNode(BoUpSLP &R) { 3032 return R.VectorizableTree[0].get(); 3033 } 3034 3035 static ChildIteratorType child_begin(NodeRef N) { 3036 return {N->UserTreeIndices.begin(), N->Container}; 3037 } 3038 3039 static ChildIteratorType child_end(NodeRef N) { 3040 return {N->UserTreeIndices.end(), N->Container}; 3041 } 3042 3043 /// For the node iterator we just need to turn the TreeEntry iterator into a 3044 /// TreeEntry* iterator so that it dereferences to NodeRef. 3045 class nodes_iterator { 3046 using ItTy = ContainerTy::iterator; 3047 ItTy It; 3048 3049 public: 3050 nodes_iterator(const ItTy &It2) : It(It2) {} 3051 NodeRef operator*() { return It->get(); } 3052 nodes_iterator operator++() { 3053 ++It; 3054 return *this; 3055 } 3056 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3057 }; 3058 3059 static nodes_iterator nodes_begin(BoUpSLP *R) { 3060 return nodes_iterator(R->VectorizableTree.begin()); 3061 } 3062 3063 static nodes_iterator nodes_end(BoUpSLP *R) { 3064 return nodes_iterator(R->VectorizableTree.end()); 3065 } 3066 3067 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3068 }; 3069 3070 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3071 using TreeEntry = BoUpSLP::TreeEntry; 3072 3073 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3074 3075 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3076 std::string Str; 3077 raw_string_ostream OS(Str); 3078 if (isSplat(Entry->Scalars)) 3079 OS << "<splat> "; 3080 for (auto V : Entry->Scalars) { 3081 OS << *V; 3082 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3083 return EU.Scalar == V; 3084 })) 3085 OS << " <extract>"; 3086 OS << "\n"; 3087 } 3088 return Str; 3089 } 3090 3091 static std::string getNodeAttributes(const TreeEntry *Entry, 3092 const BoUpSLP *) { 3093 if (Entry->State == TreeEntry::NeedToGather) 3094 return "color=red"; 3095 return ""; 3096 } 3097 }; 3098 3099 } // end namespace llvm 3100 3101 BoUpSLP::~BoUpSLP() { 3102 if (MSSA) { 3103 MemorySSAUpdater MSSAU(MSSA); 3104 for (const auto &Pair : DeletedInstructions) { 3105 if (auto *Access = MSSA->getMemoryAccess(Pair.first)) 3106 MSSAU.removeMemoryAccess(Access); 3107 } 3108 } 3109 for (const auto &Pair : DeletedInstructions) { 3110 // Replace operands of ignored instructions with Undefs in case if they were 3111 // marked for deletion. 3112 if (Pair.getSecond()) { 3113 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3114 Pair.getFirst()->replaceAllUsesWith(Undef); 3115 } 3116 Pair.getFirst()->dropAllReferences(); 3117 } 3118 for (const auto &Pair : DeletedInstructions) { 3119 assert(Pair.getFirst()->use_empty() && 3120 "trying to erase instruction with users."); 3121 Pair.getFirst()->eraseFromParent(); 3122 } 3123 #ifdef EXPENSIVE_CHECKS 3124 // If we could guarantee that this call is not extremely slow, we could 3125 // remove the ifdef limitation (see PR47712). 3126 assert(!verifyFunction(*F, &dbgs())); 3127 #endif 3128 } 3129 3130 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3131 for (auto *V : AV) { 3132 if (auto *I = dyn_cast<Instruction>(V)) 3133 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3134 }; 3135 } 3136 3137 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3138 /// contains original mask for the scalars reused in the node. Procedure 3139 /// transform this mask in accordance with the given \p Mask. 3140 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3141 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3142 "Expected non-empty mask."); 3143 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3144 Prev.swap(Reuses); 3145 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3146 if (Mask[I] != UndefMaskElem) 3147 Reuses[Mask[I]] = Prev[I]; 3148 } 3149 3150 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3151 /// the original order of the scalars. Procedure transforms the provided order 3152 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3153 /// identity order, \p Order is cleared. 3154 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3155 assert(!Mask.empty() && "Expected non-empty mask."); 3156 SmallVector<int> MaskOrder; 3157 if (Order.empty()) { 3158 MaskOrder.resize(Mask.size()); 3159 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3160 } else { 3161 inversePermutation(Order, MaskOrder); 3162 } 3163 reorderReuses(MaskOrder, Mask); 3164 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3165 Order.clear(); 3166 return; 3167 } 3168 Order.assign(Mask.size(), Mask.size()); 3169 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3170 if (MaskOrder[I] != UndefMaskElem) 3171 Order[MaskOrder[I]] = I; 3172 fixupOrderingIndices(Order); 3173 } 3174 3175 Optional<BoUpSLP::OrdersType> 3176 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3177 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3178 unsigned NumScalars = TE.Scalars.size(); 3179 OrdersType CurrentOrder(NumScalars, NumScalars); 3180 SmallVector<int> Positions; 3181 SmallBitVector UsedPositions(NumScalars); 3182 const TreeEntry *STE = nullptr; 3183 // Try to find all gathered scalars that are gets vectorized in other 3184 // vectorize node. Here we can have only one single tree vector node to 3185 // correctly identify order of the gathered scalars. 3186 for (unsigned I = 0; I < NumScalars; ++I) { 3187 Value *V = TE.Scalars[I]; 3188 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3189 continue; 3190 if (const auto *LocalSTE = getTreeEntry(V)) { 3191 if (!STE) 3192 STE = LocalSTE; 3193 else if (STE != LocalSTE) 3194 // Take the order only from the single vector node. 3195 return None; 3196 unsigned Lane = 3197 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3198 if (Lane >= NumScalars) 3199 return None; 3200 if (CurrentOrder[Lane] != NumScalars) { 3201 if (Lane != I) 3202 continue; 3203 UsedPositions.reset(CurrentOrder[Lane]); 3204 } 3205 // The partial identity (where only some elements of the gather node are 3206 // in the identity order) is good. 3207 CurrentOrder[Lane] = I; 3208 UsedPositions.set(I); 3209 } 3210 } 3211 // Need to keep the order if we have a vector entry and at least 2 scalars or 3212 // the vectorized entry has just 2 scalars. 3213 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3214 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3215 for (unsigned I = 0; I < NumScalars; ++I) 3216 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3217 return false; 3218 return true; 3219 }; 3220 if (IsIdentityOrder(CurrentOrder)) { 3221 CurrentOrder.clear(); 3222 return CurrentOrder; 3223 } 3224 auto *It = CurrentOrder.begin(); 3225 for (unsigned I = 0; I < NumScalars;) { 3226 if (UsedPositions.test(I)) { 3227 ++I; 3228 continue; 3229 } 3230 if (*It == NumScalars) { 3231 *It = I; 3232 ++I; 3233 } 3234 ++It; 3235 } 3236 return CurrentOrder; 3237 } 3238 return None; 3239 } 3240 3241 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3242 bool TopToBottom) { 3243 // No need to reorder if need to shuffle reuses, still need to shuffle the 3244 // node. 3245 if (!TE.ReuseShuffleIndices.empty()) 3246 return None; 3247 if (TE.State == TreeEntry::Vectorize && 3248 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3249 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3250 !TE.isAltShuffle()) 3251 return TE.ReorderIndices; 3252 if (TE.State == TreeEntry::NeedToGather) { 3253 // TODO: add analysis of other gather nodes with extractelement 3254 // instructions and other values/instructions, not only undefs. 3255 if (((TE.getOpcode() == Instruction::ExtractElement && 3256 !TE.isAltShuffle()) || 3257 (all_of(TE.Scalars, 3258 [](Value *V) { 3259 return isa<UndefValue, ExtractElementInst>(V); 3260 }) && 3261 any_of(TE.Scalars, 3262 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3263 all_of(TE.Scalars, 3264 [](Value *V) { 3265 auto *EE = dyn_cast<ExtractElementInst>(V); 3266 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3267 }) && 3268 allSameType(TE.Scalars)) { 3269 // Check that gather of extractelements can be represented as 3270 // just a shuffle of a single vector. 3271 OrdersType CurrentOrder; 3272 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3273 if (Reuse || !CurrentOrder.empty()) { 3274 if (!CurrentOrder.empty()) 3275 fixupOrderingIndices(CurrentOrder); 3276 return CurrentOrder; 3277 } 3278 } 3279 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3280 return CurrentOrder; 3281 } 3282 return None; 3283 } 3284 3285 void BoUpSLP::reorderTopToBottom() { 3286 // Maps VF to the graph nodes. 3287 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3288 // ExtractElement gather nodes which can be vectorized and need to handle 3289 // their ordering. 3290 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3291 // Find all reorderable nodes with the given VF. 3292 // Currently the are vectorized stores,loads,extracts + some gathering of 3293 // extracts. 3294 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3295 const std::unique_ptr<TreeEntry> &TE) { 3296 if (Optional<OrdersType> CurrentOrder = 3297 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3298 // Do not include ordering for nodes used in the alt opcode vectorization, 3299 // better to reorder them during bottom-to-top stage. If follow the order 3300 // here, it causes reordering of the whole graph though actually it is 3301 // profitable just to reorder the subgraph that starts from the alternate 3302 // opcode vectorization node. Such nodes already end-up with the shuffle 3303 // instruction and it is just enough to change this shuffle rather than 3304 // rotate the scalars for the whole graph. 3305 unsigned Cnt = 0; 3306 const TreeEntry *UserTE = TE.get(); 3307 while (UserTE && Cnt < RecursionMaxDepth) { 3308 if (UserTE->UserTreeIndices.size() != 1) 3309 break; 3310 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3311 return EI.UserTE->State == TreeEntry::Vectorize && 3312 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3313 })) 3314 return; 3315 if (UserTE->UserTreeIndices.empty()) 3316 UserTE = nullptr; 3317 else 3318 UserTE = UserTE->UserTreeIndices.back().UserTE; 3319 ++Cnt; 3320 } 3321 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3322 if (TE->State != TreeEntry::Vectorize) 3323 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3324 } 3325 }); 3326 3327 // Reorder the graph nodes according to their vectorization factor. 3328 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3329 VF /= 2) { 3330 auto It = VFToOrderedEntries.find(VF); 3331 if (It == VFToOrderedEntries.end()) 3332 continue; 3333 // Try to find the most profitable order. We just are looking for the most 3334 // used order and reorder scalar elements in the nodes according to this 3335 // mostly used order. 3336 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3337 // All operands are reordered and used only in this node - propagate the 3338 // most used order to the user node. 3339 MapVector<OrdersType, unsigned, 3340 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3341 OrdersUses; 3342 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3343 for (const TreeEntry *OpTE : OrderedEntries) { 3344 // No need to reorder this nodes, still need to extend and to use shuffle, 3345 // just need to merge reordering shuffle and the reuse shuffle. 3346 if (!OpTE->ReuseShuffleIndices.empty()) 3347 continue; 3348 // Count number of orders uses. 3349 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3350 if (OpTE->State == TreeEntry::NeedToGather) 3351 return GathersToOrders.find(OpTE)->second; 3352 return OpTE->ReorderIndices; 3353 }(); 3354 // Stores actually store the mask, not the order, need to invert. 3355 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3356 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3357 SmallVector<int> Mask; 3358 inversePermutation(Order, Mask); 3359 unsigned E = Order.size(); 3360 OrdersType CurrentOrder(E, E); 3361 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3362 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3363 }); 3364 fixupOrderingIndices(CurrentOrder); 3365 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3366 } else { 3367 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3368 } 3369 } 3370 // Set order of the user node. 3371 if (OrdersUses.empty()) 3372 continue; 3373 // Choose the most used order. 3374 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3375 unsigned Cnt = OrdersUses.front().second; 3376 for (const auto &Pair : drop_begin(OrdersUses)) { 3377 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3378 BestOrder = Pair.first; 3379 Cnt = Pair.second; 3380 } 3381 } 3382 // Set order of the user node. 3383 if (BestOrder.empty()) 3384 continue; 3385 SmallVector<int> Mask; 3386 inversePermutation(BestOrder, Mask); 3387 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3388 unsigned E = BestOrder.size(); 3389 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3390 return I < E ? static_cast<int>(I) : UndefMaskElem; 3391 }); 3392 // Do an actual reordering, if profitable. 3393 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3394 // Just do the reordering for the nodes with the given VF. 3395 if (TE->Scalars.size() != VF) { 3396 if (TE->ReuseShuffleIndices.size() == VF) { 3397 // Need to reorder the reuses masks of the operands with smaller VF to 3398 // be able to find the match between the graph nodes and scalar 3399 // operands of the given node during vectorization/cost estimation. 3400 assert(all_of(TE->UserTreeIndices, 3401 [VF, &TE](const EdgeInfo &EI) { 3402 return EI.UserTE->Scalars.size() == VF || 3403 EI.UserTE->Scalars.size() == 3404 TE->Scalars.size(); 3405 }) && 3406 "All users must be of VF size."); 3407 // Update ordering of the operands with the smaller VF than the given 3408 // one. 3409 reorderReuses(TE->ReuseShuffleIndices, Mask); 3410 } 3411 continue; 3412 } 3413 if (TE->State == TreeEntry::Vectorize && 3414 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3415 InsertElementInst>(TE->getMainOp()) && 3416 !TE->isAltShuffle()) { 3417 // Build correct orders for extract{element,value}, loads and 3418 // stores. 3419 reorderOrder(TE->ReorderIndices, Mask); 3420 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3421 TE->reorderOperands(Mask); 3422 } else { 3423 // Reorder the node and its operands. 3424 TE->reorderOperands(Mask); 3425 assert(TE->ReorderIndices.empty() && 3426 "Expected empty reorder sequence."); 3427 reorderScalars(TE->Scalars, Mask); 3428 } 3429 if (!TE->ReuseShuffleIndices.empty()) { 3430 // Apply reversed order to keep the original ordering of the reused 3431 // elements to avoid extra reorder indices shuffling. 3432 OrdersType CurrentOrder; 3433 reorderOrder(CurrentOrder, MaskOrder); 3434 SmallVector<int> NewReuses; 3435 inversePermutation(CurrentOrder, NewReuses); 3436 addMask(NewReuses, TE->ReuseShuffleIndices); 3437 TE->ReuseShuffleIndices.swap(NewReuses); 3438 } 3439 } 3440 } 3441 } 3442 3443 bool BoUpSLP::canReorderOperands( 3444 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3445 ArrayRef<TreeEntry *> ReorderableGathers, 3446 SmallVectorImpl<TreeEntry *> &GatherOps) { 3447 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3448 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3449 return OpData.first == I && 3450 OpData.second->State == TreeEntry::Vectorize; 3451 })) 3452 continue; 3453 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3454 // Do not reorder if operand node is used by many user nodes. 3455 if (any_of(TE->UserTreeIndices, 3456 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3457 return false; 3458 // Add the node to the list of the ordered nodes with the identity 3459 // order. 3460 Edges.emplace_back(I, TE); 3461 continue; 3462 } 3463 ArrayRef<Value *> VL = UserTE->getOperand(I); 3464 TreeEntry *Gather = nullptr; 3465 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3466 assert(TE->State != TreeEntry::Vectorize && 3467 "Only non-vectorized nodes are expected."); 3468 if (TE->isSame(VL)) { 3469 Gather = TE; 3470 return true; 3471 } 3472 return false; 3473 }) > 1) 3474 return false; 3475 if (Gather) 3476 GatherOps.push_back(Gather); 3477 } 3478 return true; 3479 } 3480 3481 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3482 SetVector<TreeEntry *> OrderedEntries; 3483 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3484 // Find all reorderable leaf nodes with the given VF. 3485 // Currently the are vectorized loads,extracts without alternate operands + 3486 // some gathering of extracts. 3487 SmallVector<TreeEntry *> NonVectorized; 3488 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3489 &NonVectorized]( 3490 const std::unique_ptr<TreeEntry> &TE) { 3491 if (TE->State != TreeEntry::Vectorize) 3492 NonVectorized.push_back(TE.get()); 3493 if (Optional<OrdersType> CurrentOrder = 3494 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3495 OrderedEntries.insert(TE.get()); 3496 if (TE->State != TreeEntry::Vectorize) 3497 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3498 } 3499 }); 3500 3501 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3502 // I.e., if the node has operands, that are reordered, try to make at least 3503 // one operand order in the natural order and reorder others + reorder the 3504 // user node itself. 3505 SmallPtrSet<const TreeEntry *, 4> Visited; 3506 while (!OrderedEntries.empty()) { 3507 // 1. Filter out only reordered nodes. 3508 // 2. If the entry has multiple uses - skip it and jump to the next node. 3509 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3510 SmallVector<TreeEntry *> Filtered; 3511 for (TreeEntry *TE : OrderedEntries) { 3512 if (!(TE->State == TreeEntry::Vectorize || 3513 (TE->State == TreeEntry::NeedToGather && 3514 GathersToOrders.count(TE))) || 3515 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3516 !all_of(drop_begin(TE->UserTreeIndices), 3517 [TE](const EdgeInfo &EI) { 3518 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3519 }) || 3520 !Visited.insert(TE).second) { 3521 Filtered.push_back(TE); 3522 continue; 3523 } 3524 // Build a map between user nodes and their operands order to speedup 3525 // search. The graph currently does not provide this dependency directly. 3526 for (EdgeInfo &EI : TE->UserTreeIndices) { 3527 TreeEntry *UserTE = EI.UserTE; 3528 auto It = Users.find(UserTE); 3529 if (It == Users.end()) 3530 It = Users.insert({UserTE, {}}).first; 3531 It->second.emplace_back(EI.EdgeIdx, TE); 3532 } 3533 } 3534 // Erase filtered entries. 3535 for_each(Filtered, 3536 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3537 for (auto &Data : Users) { 3538 // Check that operands are used only in the User node. 3539 SmallVector<TreeEntry *> GatherOps; 3540 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3541 GatherOps)) { 3542 for_each(Data.second, 3543 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3544 OrderedEntries.remove(Op.second); 3545 }); 3546 continue; 3547 } 3548 // All operands are reordered and used only in this node - propagate the 3549 // most used order to the user node. 3550 MapVector<OrdersType, unsigned, 3551 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3552 OrdersUses; 3553 // Do the analysis for each tree entry only once, otherwise the order of 3554 // the same node my be considered several times, though might be not 3555 // profitable. 3556 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3557 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3558 for (const auto &Op : Data.second) { 3559 TreeEntry *OpTE = Op.second; 3560 if (!VisitedOps.insert(OpTE).second) 3561 continue; 3562 if (!OpTE->ReuseShuffleIndices.empty() || 3563 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3564 continue; 3565 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3566 if (OpTE->State == TreeEntry::NeedToGather) 3567 return GathersToOrders.find(OpTE)->second; 3568 return OpTE->ReorderIndices; 3569 }(); 3570 unsigned NumOps = count_if( 3571 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3572 return P.second == OpTE; 3573 }); 3574 // Stores actually store the mask, not the order, need to invert. 3575 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3576 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3577 SmallVector<int> Mask; 3578 inversePermutation(Order, Mask); 3579 unsigned E = Order.size(); 3580 OrdersType CurrentOrder(E, E); 3581 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3582 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3583 }); 3584 fixupOrderingIndices(CurrentOrder); 3585 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3586 NumOps; 3587 } else { 3588 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3589 } 3590 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3591 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3592 const TreeEntry *TE) { 3593 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3594 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3595 (IgnoreReorder && TE->Idx == 0)) 3596 return true; 3597 if (TE->State == TreeEntry::NeedToGather) { 3598 auto It = GathersToOrders.find(TE); 3599 if (It != GathersToOrders.end()) 3600 return !It->second.empty(); 3601 return true; 3602 } 3603 return false; 3604 }; 3605 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3606 TreeEntry *UserTE = EI.UserTE; 3607 if (!VisitedUsers.insert(UserTE).second) 3608 continue; 3609 // May reorder user node if it requires reordering, has reused 3610 // scalars, is an alternate op vectorize node or its op nodes require 3611 // reordering. 3612 if (AllowsReordering(UserTE)) 3613 continue; 3614 // Check if users allow reordering. 3615 // Currently look up just 1 level of operands to avoid increase of 3616 // the compile time. 3617 // Profitable to reorder if definitely more operands allow 3618 // reordering rather than those with natural order. 3619 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3620 if (static_cast<unsigned>(count_if( 3621 Ops, [UserTE, &AllowsReordering]( 3622 const std::pair<unsigned, TreeEntry *> &Op) { 3623 return AllowsReordering(Op.second) && 3624 all_of(Op.second->UserTreeIndices, 3625 [UserTE](const EdgeInfo &EI) { 3626 return EI.UserTE == UserTE; 3627 }); 3628 })) <= Ops.size() / 2) 3629 ++Res.first->second; 3630 } 3631 } 3632 // If no orders - skip current nodes and jump to the next one, if any. 3633 if (OrdersUses.empty()) { 3634 for_each(Data.second, 3635 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3636 OrderedEntries.remove(Op.second); 3637 }); 3638 continue; 3639 } 3640 // Choose the best order. 3641 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3642 unsigned Cnt = OrdersUses.front().second; 3643 for (const auto &Pair : drop_begin(OrdersUses)) { 3644 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3645 BestOrder = Pair.first; 3646 Cnt = Pair.second; 3647 } 3648 } 3649 // Set order of the user node (reordering of operands and user nodes). 3650 if (BestOrder.empty()) { 3651 for_each(Data.second, 3652 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3653 OrderedEntries.remove(Op.second); 3654 }); 3655 continue; 3656 } 3657 // Erase operands from OrderedEntries list and adjust their orders. 3658 VisitedOps.clear(); 3659 SmallVector<int> Mask; 3660 inversePermutation(BestOrder, Mask); 3661 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3662 unsigned E = BestOrder.size(); 3663 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3664 return I < E ? static_cast<int>(I) : UndefMaskElem; 3665 }); 3666 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3667 TreeEntry *TE = Op.second; 3668 OrderedEntries.remove(TE); 3669 if (!VisitedOps.insert(TE).second) 3670 continue; 3671 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3672 // Just reorder reuses indices. 3673 reorderReuses(TE->ReuseShuffleIndices, Mask); 3674 continue; 3675 } 3676 // Gathers are processed separately. 3677 if (TE->State != TreeEntry::Vectorize) 3678 continue; 3679 assert((BestOrder.size() == TE->ReorderIndices.size() || 3680 TE->ReorderIndices.empty()) && 3681 "Non-matching sizes of user/operand entries."); 3682 reorderOrder(TE->ReorderIndices, Mask); 3683 } 3684 // For gathers just need to reorder its scalars. 3685 for (TreeEntry *Gather : GatherOps) { 3686 assert(Gather->ReorderIndices.empty() && 3687 "Unexpected reordering of gathers."); 3688 if (!Gather->ReuseShuffleIndices.empty()) { 3689 // Just reorder reuses indices. 3690 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3691 continue; 3692 } 3693 reorderScalars(Gather->Scalars, Mask); 3694 OrderedEntries.remove(Gather); 3695 } 3696 // Reorder operands of the user node and set the ordering for the user 3697 // node itself. 3698 if (Data.first->State != TreeEntry::Vectorize || 3699 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3700 Data.first->getMainOp()) || 3701 Data.first->isAltShuffle()) 3702 Data.first->reorderOperands(Mask); 3703 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3704 Data.first->isAltShuffle()) { 3705 reorderScalars(Data.first->Scalars, Mask); 3706 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3707 if (Data.first->ReuseShuffleIndices.empty() && 3708 !Data.first->ReorderIndices.empty() && 3709 !Data.first->isAltShuffle()) { 3710 // Insert user node to the list to try to sink reordering deeper in 3711 // the graph. 3712 OrderedEntries.insert(Data.first); 3713 } 3714 } else { 3715 reorderOrder(Data.first->ReorderIndices, Mask); 3716 } 3717 } 3718 } 3719 // If the reordering is unnecessary, just remove the reorder. 3720 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3721 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3722 VectorizableTree.front()->ReorderIndices.clear(); 3723 } 3724 3725 void BoUpSLP::buildExternalUses( 3726 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3727 // Collect the values that we need to extract from the tree. 3728 for (auto &TEPtr : VectorizableTree) { 3729 TreeEntry *Entry = TEPtr.get(); 3730 3731 // No need to handle users of gathered values. 3732 if (Entry->State == TreeEntry::NeedToGather) 3733 continue; 3734 3735 // For each lane: 3736 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3737 Value *Scalar = Entry->Scalars[Lane]; 3738 int FoundLane = Entry->findLaneForValue(Scalar); 3739 3740 // Check if the scalar is externally used as an extra arg. 3741 auto ExtI = ExternallyUsedValues.find(Scalar); 3742 if (ExtI != ExternallyUsedValues.end()) { 3743 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3744 << Lane << " from " << *Scalar << ".\n"); 3745 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3746 } 3747 for (User *U : Scalar->users()) { 3748 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3749 3750 Instruction *UserInst = dyn_cast<Instruction>(U); 3751 if (!UserInst) 3752 continue; 3753 3754 if (isDeleted(UserInst)) 3755 continue; 3756 3757 // Skip in-tree scalars that become vectors 3758 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3759 Value *UseScalar = UseEntry->Scalars[0]; 3760 // Some in-tree scalars will remain as scalar in vectorized 3761 // instructions. If that is the case, the one in Lane 0 will 3762 // be used. 3763 if (UseScalar != U || 3764 UseEntry->State == TreeEntry::ScatterVectorize || 3765 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3766 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3767 << ".\n"); 3768 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3769 continue; 3770 } 3771 } 3772 3773 // Ignore users in the user ignore list. 3774 if (is_contained(UserIgnoreList, UserInst)) 3775 continue; 3776 3777 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3778 << Lane << " from " << *Scalar << ".\n"); 3779 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3780 } 3781 } 3782 } 3783 } 3784 3785 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3786 ArrayRef<Value *> UserIgnoreLst) { 3787 deleteTree(); 3788 UserIgnoreList = UserIgnoreLst; 3789 if (!allSameType(Roots)) 3790 return; 3791 buildTree_rec(Roots, 0, EdgeInfo()); 3792 } 3793 3794 namespace { 3795 /// Tracks the state we can represent the loads in the given sequence. 3796 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3797 } // anonymous namespace 3798 3799 /// Checks if the given array of loads can be represented as a vectorized, 3800 /// scatter or just simple gather. 3801 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3802 const TargetTransformInfo &TTI, 3803 const DataLayout &DL, ScalarEvolution &SE, 3804 SmallVectorImpl<unsigned> &Order, 3805 SmallVectorImpl<Value *> &PointerOps) { 3806 // Check that a vectorized load would load the same memory as a scalar 3807 // load. For example, we don't want to vectorize loads that are smaller 3808 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3809 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3810 // from such a struct, we read/write packed bits disagreeing with the 3811 // unvectorized version. 3812 Type *ScalarTy = VL0->getType(); 3813 3814 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3815 return LoadsState::Gather; 3816 3817 // Make sure all loads in the bundle are simple - we can't vectorize 3818 // atomic or volatile loads. 3819 PointerOps.clear(); 3820 PointerOps.resize(VL.size()); 3821 auto *POIter = PointerOps.begin(); 3822 for (Value *V : VL) { 3823 auto *L = cast<LoadInst>(V); 3824 if (!L->isSimple()) 3825 return LoadsState::Gather; 3826 *POIter = L->getPointerOperand(); 3827 ++POIter; 3828 } 3829 3830 Order.clear(); 3831 // Check the order of pointer operands. 3832 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3833 Value *Ptr0; 3834 Value *PtrN; 3835 if (Order.empty()) { 3836 Ptr0 = PointerOps.front(); 3837 PtrN = PointerOps.back(); 3838 } else { 3839 Ptr0 = PointerOps[Order.front()]; 3840 PtrN = PointerOps[Order.back()]; 3841 } 3842 Optional<int> Diff = 3843 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3844 // Check that the sorted loads are consecutive. 3845 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3846 return LoadsState::Vectorize; 3847 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3848 for (Value *V : VL) 3849 CommonAlignment = 3850 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3851 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3852 CommonAlignment)) 3853 return LoadsState::ScatterVectorize; 3854 } 3855 3856 return LoadsState::Gather; 3857 } 3858 3859 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3860 const EdgeInfo &UserTreeIdx) { 3861 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3862 3863 SmallVector<int> ReuseShuffleIndicies; 3864 SmallVector<Value *> UniqueValues; 3865 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3866 &UserTreeIdx, 3867 this](const InstructionsState &S) { 3868 // Check that every instruction appears once in this bundle. 3869 DenseMap<Value *, unsigned> UniquePositions; 3870 for (Value *V : VL) { 3871 if (isConstant(V)) { 3872 ReuseShuffleIndicies.emplace_back( 3873 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3874 UniqueValues.emplace_back(V); 3875 continue; 3876 } 3877 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3878 ReuseShuffleIndicies.emplace_back(Res.first->second); 3879 if (Res.second) 3880 UniqueValues.emplace_back(V); 3881 } 3882 size_t NumUniqueScalarValues = UniqueValues.size(); 3883 if (NumUniqueScalarValues == VL.size()) { 3884 ReuseShuffleIndicies.clear(); 3885 } else { 3886 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3887 if (NumUniqueScalarValues <= 1 || 3888 (UniquePositions.size() == 1 && all_of(UniqueValues, 3889 [](Value *V) { 3890 return isa<UndefValue>(V) || 3891 !isConstant(V); 3892 })) || 3893 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3894 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3895 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3896 return false; 3897 } 3898 VL = UniqueValues; 3899 } 3900 return true; 3901 }; 3902 3903 InstructionsState S = getSameOpcode(VL); 3904 if (Depth == RecursionMaxDepth) { 3905 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3906 if (TryToFindDuplicates(S)) 3907 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3908 ReuseShuffleIndicies); 3909 return; 3910 } 3911 3912 // Don't handle scalable vectors 3913 if (S.getOpcode() == Instruction::ExtractElement && 3914 isa<ScalableVectorType>( 3915 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3916 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3917 if (TryToFindDuplicates(S)) 3918 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3919 ReuseShuffleIndicies); 3920 return; 3921 } 3922 3923 // Don't handle vectors. 3924 if (S.OpValue->getType()->isVectorTy() && 3925 !isa<InsertElementInst>(S.OpValue)) { 3926 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3927 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3928 return; 3929 } 3930 3931 // Avoid attempting to schedule allocas; there are unmodeled dependencies 3932 // for "static" alloca status and for reordering with stacksave calls. 3933 for (Value *V : VL) { 3934 if (isa<AllocaInst>(V)) { 3935 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 3936 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3937 return; 3938 } 3939 } 3940 3941 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3942 if (SI->getValueOperand()->getType()->isVectorTy()) { 3943 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3944 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3945 return; 3946 } 3947 3948 // If all of the operands are identical or constant we have a simple solution. 3949 // If we deal with insert/extract instructions, they all must have constant 3950 // indices, otherwise we should gather them, not try to vectorize. 3951 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3952 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3953 !all_of(VL, isVectorLikeInstWithConstOps))) { 3954 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3955 if (TryToFindDuplicates(S)) 3956 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3957 ReuseShuffleIndicies); 3958 return; 3959 } 3960 3961 // We now know that this is a vector of instructions of the same type from 3962 // the same block. 3963 3964 // Don't vectorize ephemeral values. 3965 for (Value *V : VL) { 3966 if (EphValues.count(V)) { 3967 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3968 << ") is ephemeral.\n"); 3969 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3970 return; 3971 } 3972 } 3973 3974 // Check if this is a duplicate of another entry. 3975 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3976 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3977 if (!E->isSame(VL)) { 3978 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3979 if (TryToFindDuplicates(S)) 3980 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3981 ReuseShuffleIndicies); 3982 return; 3983 } 3984 // Record the reuse of the tree node. FIXME, currently this is only used to 3985 // properly draw the graph rather than for the actual vectorization. 3986 E->UserTreeIndices.push_back(UserTreeIdx); 3987 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3988 << ".\n"); 3989 return; 3990 } 3991 3992 // Check that none of the instructions in the bundle are already in the tree. 3993 for (Value *V : VL) { 3994 auto *I = dyn_cast<Instruction>(V); 3995 if (!I) 3996 continue; 3997 if (getTreeEntry(I)) { 3998 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3999 << ") is already in tree.\n"); 4000 if (TryToFindDuplicates(S)) 4001 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4002 ReuseShuffleIndicies); 4003 return; 4004 } 4005 } 4006 4007 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4008 for (Value *V : VL) { 4009 if (is_contained(UserIgnoreList, V)) { 4010 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4011 if (TryToFindDuplicates(S)) 4012 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4013 ReuseShuffleIndicies); 4014 return; 4015 } 4016 } 4017 4018 // Check that all of the users of the scalars that we want to vectorize are 4019 // schedulable. 4020 auto *VL0 = cast<Instruction>(S.OpValue); 4021 BasicBlock *BB = VL0->getParent(); 4022 4023 if (!DT->isReachableFromEntry(BB)) { 4024 // Don't go into unreachable blocks. They may contain instructions with 4025 // dependency cycles which confuse the final scheduling. 4026 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4027 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4028 return; 4029 } 4030 4031 // Check that every instruction appears once in this bundle. 4032 if (!TryToFindDuplicates(S)) 4033 return; 4034 4035 auto &BSRef = BlocksSchedules[BB]; 4036 if (!BSRef) 4037 BSRef = std::make_unique<BlockScheduling>(BB); 4038 4039 BlockScheduling &BS = *BSRef.get(); 4040 4041 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4042 #ifdef EXPENSIVE_CHECKS 4043 // Make sure we didn't break any internal invariants 4044 BS.verify(); 4045 #endif 4046 if (!Bundle) { 4047 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4048 assert((!BS.getScheduleData(VL0) || 4049 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4050 "tryScheduleBundle should cancelScheduling on failure"); 4051 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4052 ReuseShuffleIndicies); 4053 return; 4054 } 4055 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4056 4057 unsigned ShuffleOrOp = S.isAltShuffle() ? 4058 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4059 switch (ShuffleOrOp) { 4060 case Instruction::PHI: { 4061 auto *PH = cast<PHINode>(VL0); 4062 4063 // Check for terminator values (e.g. invoke). 4064 for (Value *V : VL) 4065 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4066 Instruction *Term = dyn_cast<Instruction>(Incoming); 4067 if (Term && Term->isTerminator()) { 4068 LLVM_DEBUG(dbgs() 4069 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4070 BS.cancelScheduling(VL, VL0); 4071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4072 ReuseShuffleIndicies); 4073 return; 4074 } 4075 } 4076 4077 TreeEntry *TE = 4078 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4079 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4080 4081 // Keeps the reordered operands to avoid code duplication. 4082 SmallVector<ValueList, 2> OperandsVec; 4083 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4084 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4085 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4086 TE->setOperand(I, Operands); 4087 OperandsVec.push_back(Operands); 4088 continue; 4089 } 4090 ValueList Operands; 4091 // Prepare the operand vector. 4092 for (Value *V : VL) 4093 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4094 PH->getIncomingBlock(I))); 4095 TE->setOperand(I, Operands); 4096 OperandsVec.push_back(Operands); 4097 } 4098 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4099 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4100 return; 4101 } 4102 case Instruction::ExtractValue: 4103 case Instruction::ExtractElement: { 4104 OrdersType CurrentOrder; 4105 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4106 if (Reuse) { 4107 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4108 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4109 ReuseShuffleIndicies); 4110 // This is a special case, as it does not gather, but at the same time 4111 // we are not extending buildTree_rec() towards the operands. 4112 ValueList Op0; 4113 Op0.assign(VL.size(), VL0->getOperand(0)); 4114 VectorizableTree.back()->setOperand(0, Op0); 4115 return; 4116 } 4117 if (!CurrentOrder.empty()) { 4118 LLVM_DEBUG({ 4119 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4120 "with order"; 4121 for (unsigned Idx : CurrentOrder) 4122 dbgs() << " " << Idx; 4123 dbgs() << "\n"; 4124 }); 4125 fixupOrderingIndices(CurrentOrder); 4126 // Insert new order with initial value 0, if it does not exist, 4127 // otherwise return the iterator to the existing one. 4128 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4129 ReuseShuffleIndicies, CurrentOrder); 4130 // This is a special case, as it does not gather, but at the same time 4131 // we are not extending buildTree_rec() towards the operands. 4132 ValueList Op0; 4133 Op0.assign(VL.size(), VL0->getOperand(0)); 4134 VectorizableTree.back()->setOperand(0, Op0); 4135 return; 4136 } 4137 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4138 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4139 ReuseShuffleIndicies); 4140 BS.cancelScheduling(VL, VL0); 4141 return; 4142 } 4143 case Instruction::InsertElement: { 4144 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4145 4146 // Check that we have a buildvector and not a shuffle of 2 or more 4147 // different vectors. 4148 ValueSet SourceVectors; 4149 for (Value *V : VL) { 4150 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4151 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4152 } 4153 4154 if (count_if(VL, [&SourceVectors](Value *V) { 4155 return !SourceVectors.contains(V); 4156 }) >= 2) { 4157 // Found 2nd source vector - cancel. 4158 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4159 "different source vectors.\n"); 4160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4161 BS.cancelScheduling(VL, VL0); 4162 return; 4163 } 4164 4165 auto OrdCompare = [](const std::pair<int, int> &P1, 4166 const std::pair<int, int> &P2) { 4167 return P1.first > P2.first; 4168 }; 4169 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4170 decltype(OrdCompare)> 4171 Indices(OrdCompare); 4172 for (int I = 0, E = VL.size(); I < E; ++I) { 4173 unsigned Idx = *getInsertIndex(VL[I]); 4174 Indices.emplace(Idx, I); 4175 } 4176 OrdersType CurrentOrder(VL.size(), VL.size()); 4177 bool IsIdentity = true; 4178 for (int I = 0, E = VL.size(); I < E; ++I) { 4179 CurrentOrder[Indices.top().second] = I; 4180 IsIdentity &= Indices.top().second == I; 4181 Indices.pop(); 4182 } 4183 if (IsIdentity) 4184 CurrentOrder.clear(); 4185 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4186 None, CurrentOrder); 4187 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4188 4189 constexpr int NumOps = 2; 4190 ValueList VectorOperands[NumOps]; 4191 for (int I = 0; I < NumOps; ++I) { 4192 for (Value *V : VL) 4193 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4194 4195 TE->setOperand(I, VectorOperands[I]); 4196 } 4197 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4198 return; 4199 } 4200 case Instruction::Load: { 4201 // Check that a vectorized load would load the same memory as a scalar 4202 // load. For example, we don't want to vectorize loads that are smaller 4203 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4204 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4205 // from such a struct, we read/write packed bits disagreeing with the 4206 // unvectorized version. 4207 SmallVector<Value *> PointerOps; 4208 OrdersType CurrentOrder; 4209 TreeEntry *TE = nullptr; 4210 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4211 PointerOps)) { 4212 case LoadsState::Vectorize: 4213 if (CurrentOrder.empty()) { 4214 // Original loads are consecutive and does not require reordering. 4215 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4216 ReuseShuffleIndicies); 4217 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4218 } else { 4219 fixupOrderingIndices(CurrentOrder); 4220 // Need to reorder. 4221 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4222 ReuseShuffleIndicies, CurrentOrder); 4223 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4224 } 4225 TE->setOperandsInOrder(); 4226 break; 4227 case LoadsState::ScatterVectorize: 4228 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4229 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4230 UserTreeIdx, ReuseShuffleIndicies); 4231 TE->setOperandsInOrder(); 4232 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4233 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4234 break; 4235 case LoadsState::Gather: 4236 BS.cancelScheduling(VL, VL0); 4237 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4238 ReuseShuffleIndicies); 4239 #ifndef NDEBUG 4240 Type *ScalarTy = VL0->getType(); 4241 if (DL->getTypeSizeInBits(ScalarTy) != 4242 DL->getTypeAllocSizeInBits(ScalarTy)) 4243 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4244 else if (any_of(VL, [](Value *V) { 4245 return !cast<LoadInst>(V)->isSimple(); 4246 })) 4247 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4248 else 4249 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4250 #endif // NDEBUG 4251 break; 4252 } 4253 return; 4254 } 4255 case Instruction::ZExt: 4256 case Instruction::SExt: 4257 case Instruction::FPToUI: 4258 case Instruction::FPToSI: 4259 case Instruction::FPExt: 4260 case Instruction::PtrToInt: 4261 case Instruction::IntToPtr: 4262 case Instruction::SIToFP: 4263 case Instruction::UIToFP: 4264 case Instruction::Trunc: 4265 case Instruction::FPTrunc: 4266 case Instruction::BitCast: { 4267 Type *SrcTy = VL0->getOperand(0)->getType(); 4268 for (Value *V : VL) { 4269 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4270 if (Ty != SrcTy || !isValidElementType(Ty)) { 4271 BS.cancelScheduling(VL, VL0); 4272 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4273 ReuseShuffleIndicies); 4274 LLVM_DEBUG(dbgs() 4275 << "SLP: Gathering casts with different src types.\n"); 4276 return; 4277 } 4278 } 4279 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4280 ReuseShuffleIndicies); 4281 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4282 4283 TE->setOperandsInOrder(); 4284 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4285 ValueList Operands; 4286 // Prepare the operand vector. 4287 for (Value *V : VL) 4288 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4289 4290 buildTree_rec(Operands, Depth + 1, {TE, i}); 4291 } 4292 return; 4293 } 4294 case Instruction::ICmp: 4295 case Instruction::FCmp: { 4296 // Check that all of the compares have the same predicate. 4297 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4298 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4299 Type *ComparedTy = VL0->getOperand(0)->getType(); 4300 for (Value *V : VL) { 4301 CmpInst *Cmp = cast<CmpInst>(V); 4302 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4303 Cmp->getOperand(0)->getType() != ComparedTy) { 4304 BS.cancelScheduling(VL, VL0); 4305 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4306 ReuseShuffleIndicies); 4307 LLVM_DEBUG(dbgs() 4308 << "SLP: Gathering cmp with different predicate.\n"); 4309 return; 4310 } 4311 } 4312 4313 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4314 ReuseShuffleIndicies); 4315 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4316 4317 ValueList Left, Right; 4318 if (cast<CmpInst>(VL0)->isCommutative()) { 4319 // Commutative predicate - collect + sort operands of the instructions 4320 // so that each side is more likely to have the same opcode. 4321 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4322 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4323 } else { 4324 // Collect operands - commute if it uses the swapped predicate. 4325 for (Value *V : VL) { 4326 auto *Cmp = cast<CmpInst>(V); 4327 Value *LHS = Cmp->getOperand(0); 4328 Value *RHS = Cmp->getOperand(1); 4329 if (Cmp->getPredicate() != P0) 4330 std::swap(LHS, RHS); 4331 Left.push_back(LHS); 4332 Right.push_back(RHS); 4333 } 4334 } 4335 TE->setOperand(0, Left); 4336 TE->setOperand(1, Right); 4337 buildTree_rec(Left, Depth + 1, {TE, 0}); 4338 buildTree_rec(Right, Depth + 1, {TE, 1}); 4339 return; 4340 } 4341 case Instruction::Select: 4342 case Instruction::FNeg: 4343 case Instruction::Add: 4344 case Instruction::FAdd: 4345 case Instruction::Sub: 4346 case Instruction::FSub: 4347 case Instruction::Mul: 4348 case Instruction::FMul: 4349 case Instruction::UDiv: 4350 case Instruction::SDiv: 4351 case Instruction::FDiv: 4352 case Instruction::URem: 4353 case Instruction::SRem: 4354 case Instruction::FRem: 4355 case Instruction::Shl: 4356 case Instruction::LShr: 4357 case Instruction::AShr: 4358 case Instruction::And: 4359 case Instruction::Or: 4360 case Instruction::Xor: { 4361 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4362 ReuseShuffleIndicies); 4363 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4364 4365 // Sort operands of the instructions so that each side is more likely to 4366 // have the same opcode. 4367 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4368 ValueList Left, Right; 4369 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4370 TE->setOperand(0, Left); 4371 TE->setOperand(1, Right); 4372 buildTree_rec(Left, Depth + 1, {TE, 0}); 4373 buildTree_rec(Right, Depth + 1, {TE, 1}); 4374 return; 4375 } 4376 4377 TE->setOperandsInOrder(); 4378 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4379 ValueList Operands; 4380 // Prepare the operand vector. 4381 for (Value *V : VL) 4382 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4383 4384 buildTree_rec(Operands, Depth + 1, {TE, i}); 4385 } 4386 return; 4387 } 4388 case Instruction::GetElementPtr: { 4389 // We don't combine GEPs with complicated (nested) indexing. 4390 for (Value *V : VL) { 4391 if (cast<Instruction>(V)->getNumOperands() != 2) { 4392 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4393 BS.cancelScheduling(VL, VL0); 4394 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4395 ReuseShuffleIndicies); 4396 return; 4397 } 4398 } 4399 4400 // We can't combine several GEPs into one vector if they operate on 4401 // different types. 4402 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4403 for (Value *V : VL) { 4404 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4405 if (Ty0 != CurTy) { 4406 LLVM_DEBUG(dbgs() 4407 << "SLP: not-vectorizable GEP (different types).\n"); 4408 BS.cancelScheduling(VL, VL0); 4409 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4410 ReuseShuffleIndicies); 4411 return; 4412 } 4413 } 4414 4415 // We don't combine GEPs with non-constant indexes. 4416 Type *Ty1 = VL0->getOperand(1)->getType(); 4417 for (Value *V : VL) { 4418 auto Op = cast<Instruction>(V)->getOperand(1); 4419 if (!isa<ConstantInt>(Op) || 4420 (Op->getType() != Ty1 && 4421 Op->getType()->getScalarSizeInBits() > 4422 DL->getIndexSizeInBits( 4423 V->getType()->getPointerAddressSpace()))) { 4424 LLVM_DEBUG(dbgs() 4425 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4426 BS.cancelScheduling(VL, VL0); 4427 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4428 ReuseShuffleIndicies); 4429 return; 4430 } 4431 } 4432 4433 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4434 ReuseShuffleIndicies); 4435 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4436 SmallVector<ValueList, 2> Operands(2); 4437 // Prepare the operand vector for pointer operands. 4438 for (Value *V : VL) 4439 Operands.front().push_back( 4440 cast<GetElementPtrInst>(V)->getPointerOperand()); 4441 TE->setOperand(0, Operands.front()); 4442 // Need to cast all indices to the same type before vectorization to 4443 // avoid crash. 4444 // Required to be able to find correct matches between different gather 4445 // nodes and reuse the vectorized values rather than trying to gather them 4446 // again. 4447 int IndexIdx = 1; 4448 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4449 Type *Ty = all_of(VL, 4450 [VL0Ty, IndexIdx](Value *V) { 4451 return VL0Ty == cast<GetElementPtrInst>(V) 4452 ->getOperand(IndexIdx) 4453 ->getType(); 4454 }) 4455 ? VL0Ty 4456 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4457 ->getPointerOperandType() 4458 ->getScalarType()); 4459 // Prepare the operand vector. 4460 for (Value *V : VL) { 4461 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4462 auto *CI = cast<ConstantInt>(Op); 4463 Operands.back().push_back(ConstantExpr::getIntegerCast( 4464 CI, Ty, CI->getValue().isSignBitSet())); 4465 } 4466 TE->setOperand(IndexIdx, Operands.back()); 4467 4468 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4469 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4470 return; 4471 } 4472 case Instruction::Store: { 4473 // Check if the stores are consecutive or if we need to swizzle them. 4474 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4475 // Avoid types that are padded when being allocated as scalars, while 4476 // being packed together in a vector (such as i1). 4477 if (DL->getTypeSizeInBits(ScalarTy) != 4478 DL->getTypeAllocSizeInBits(ScalarTy)) { 4479 BS.cancelScheduling(VL, VL0); 4480 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4481 ReuseShuffleIndicies); 4482 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4483 return; 4484 } 4485 // Make sure all stores in the bundle are simple - we can't vectorize 4486 // atomic or volatile stores. 4487 SmallVector<Value *, 4> PointerOps(VL.size()); 4488 ValueList Operands(VL.size()); 4489 auto POIter = PointerOps.begin(); 4490 auto OIter = Operands.begin(); 4491 for (Value *V : VL) { 4492 auto *SI = cast<StoreInst>(V); 4493 if (!SI->isSimple()) { 4494 BS.cancelScheduling(VL, VL0); 4495 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4496 ReuseShuffleIndicies); 4497 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4498 return; 4499 } 4500 *POIter = SI->getPointerOperand(); 4501 *OIter = SI->getValueOperand(); 4502 ++POIter; 4503 ++OIter; 4504 } 4505 4506 OrdersType CurrentOrder; 4507 // Check the order of pointer operands. 4508 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4509 Value *Ptr0; 4510 Value *PtrN; 4511 if (CurrentOrder.empty()) { 4512 Ptr0 = PointerOps.front(); 4513 PtrN = PointerOps.back(); 4514 } else { 4515 Ptr0 = PointerOps[CurrentOrder.front()]; 4516 PtrN = PointerOps[CurrentOrder.back()]; 4517 } 4518 Optional<int> Dist = 4519 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4520 // Check that the sorted pointer operands are consecutive. 4521 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4522 if (CurrentOrder.empty()) { 4523 // Original stores are consecutive and does not require reordering. 4524 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4525 UserTreeIdx, ReuseShuffleIndicies); 4526 TE->setOperandsInOrder(); 4527 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4528 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4529 } else { 4530 fixupOrderingIndices(CurrentOrder); 4531 TreeEntry *TE = 4532 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4533 ReuseShuffleIndicies, CurrentOrder); 4534 TE->setOperandsInOrder(); 4535 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4536 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4537 } 4538 return; 4539 } 4540 } 4541 4542 BS.cancelScheduling(VL, VL0); 4543 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4544 ReuseShuffleIndicies); 4545 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4546 return; 4547 } 4548 case Instruction::Call: { 4549 // Check if the calls are all to the same vectorizable intrinsic or 4550 // library function. 4551 CallInst *CI = cast<CallInst>(VL0); 4552 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4553 4554 VFShape Shape = VFShape::get( 4555 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4556 false /*HasGlobalPred*/); 4557 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4558 4559 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4560 BS.cancelScheduling(VL, VL0); 4561 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4562 ReuseShuffleIndicies); 4563 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4564 return; 4565 } 4566 Function *F = CI->getCalledFunction(); 4567 unsigned NumArgs = CI->arg_size(); 4568 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4569 for (unsigned j = 0; j != NumArgs; ++j) 4570 if (hasVectorInstrinsicScalarOpd(ID, j)) 4571 ScalarArgs[j] = CI->getArgOperand(j); 4572 for (Value *V : VL) { 4573 CallInst *CI2 = dyn_cast<CallInst>(V); 4574 if (!CI2 || CI2->getCalledFunction() != F || 4575 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4576 (VecFunc && 4577 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4578 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4579 BS.cancelScheduling(VL, VL0); 4580 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4581 ReuseShuffleIndicies); 4582 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4583 << "\n"); 4584 return; 4585 } 4586 // Some intrinsics have scalar arguments and should be same in order for 4587 // them to be vectorized. 4588 for (unsigned j = 0; j != NumArgs; ++j) { 4589 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4590 Value *A1J = CI2->getArgOperand(j); 4591 if (ScalarArgs[j] != A1J) { 4592 BS.cancelScheduling(VL, VL0); 4593 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4594 ReuseShuffleIndicies); 4595 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4596 << " argument " << ScalarArgs[j] << "!=" << A1J 4597 << "\n"); 4598 return; 4599 } 4600 } 4601 } 4602 // Verify that the bundle operands are identical between the two calls. 4603 if (CI->hasOperandBundles() && 4604 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4605 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4606 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4607 BS.cancelScheduling(VL, VL0); 4608 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4609 ReuseShuffleIndicies); 4610 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4611 << *CI << "!=" << *V << '\n'); 4612 return; 4613 } 4614 } 4615 4616 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4617 ReuseShuffleIndicies); 4618 TE->setOperandsInOrder(); 4619 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4620 // For scalar operands no need to to create an entry since no need to 4621 // vectorize it. 4622 if (hasVectorInstrinsicScalarOpd(ID, i)) 4623 continue; 4624 ValueList Operands; 4625 // Prepare the operand vector. 4626 for (Value *V : VL) { 4627 auto *CI2 = cast<CallInst>(V); 4628 Operands.push_back(CI2->getArgOperand(i)); 4629 } 4630 buildTree_rec(Operands, Depth + 1, {TE, i}); 4631 } 4632 return; 4633 } 4634 case Instruction::ShuffleVector: { 4635 // If this is not an alternate sequence of opcode like add-sub 4636 // then do not vectorize this instruction. 4637 if (!S.isAltShuffle()) { 4638 BS.cancelScheduling(VL, VL0); 4639 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4640 ReuseShuffleIndicies); 4641 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4642 return; 4643 } 4644 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4645 ReuseShuffleIndicies); 4646 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4647 4648 // Reorder operands if reordering would enable vectorization. 4649 auto *CI = dyn_cast<CmpInst>(VL0); 4650 if (isa<BinaryOperator>(VL0) || CI) { 4651 ValueList Left, Right; 4652 if (!CI || all_of(VL, [](Value *V) { 4653 return cast<CmpInst>(V)->isCommutative(); 4654 })) { 4655 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4656 } else { 4657 CmpInst::Predicate P0 = CI->getPredicate(); 4658 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4659 assert(P0 != AltP0 && 4660 "Expected different main/alternate predicates."); 4661 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4662 Value *BaseOp0 = VL0->getOperand(0); 4663 Value *BaseOp1 = VL0->getOperand(1); 4664 // Collect operands - commute if it uses the swapped predicate or 4665 // alternate operation. 4666 for (Value *V : VL) { 4667 auto *Cmp = cast<CmpInst>(V); 4668 Value *LHS = Cmp->getOperand(0); 4669 Value *RHS = Cmp->getOperand(1); 4670 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4671 if (P0 == AltP0Swapped) { 4672 if (CI != Cmp && S.AltOp != Cmp && 4673 ((P0 == CurrentPred && 4674 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4675 (AltP0 == CurrentPred && 4676 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4677 std::swap(LHS, RHS); 4678 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4679 std::swap(LHS, RHS); 4680 } 4681 Left.push_back(LHS); 4682 Right.push_back(RHS); 4683 } 4684 } 4685 TE->setOperand(0, Left); 4686 TE->setOperand(1, Right); 4687 buildTree_rec(Left, Depth + 1, {TE, 0}); 4688 buildTree_rec(Right, Depth + 1, {TE, 1}); 4689 return; 4690 } 4691 4692 TE->setOperandsInOrder(); 4693 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4694 ValueList Operands; 4695 // Prepare the operand vector. 4696 for (Value *V : VL) 4697 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4698 4699 buildTree_rec(Operands, Depth + 1, {TE, i}); 4700 } 4701 return; 4702 } 4703 default: 4704 BS.cancelScheduling(VL, VL0); 4705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4706 ReuseShuffleIndicies); 4707 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4708 return; 4709 } 4710 } 4711 4712 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4713 unsigned N = 1; 4714 Type *EltTy = T; 4715 4716 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4717 isa<VectorType>(EltTy)) { 4718 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4719 // Check that struct is homogeneous. 4720 for (const auto *Ty : ST->elements()) 4721 if (Ty != *ST->element_begin()) 4722 return 0; 4723 N *= ST->getNumElements(); 4724 EltTy = *ST->element_begin(); 4725 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4726 N *= AT->getNumElements(); 4727 EltTy = AT->getElementType(); 4728 } else { 4729 auto *VT = cast<FixedVectorType>(EltTy); 4730 N *= VT->getNumElements(); 4731 EltTy = VT->getElementType(); 4732 } 4733 } 4734 4735 if (!isValidElementType(EltTy)) 4736 return 0; 4737 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4738 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4739 return 0; 4740 return N; 4741 } 4742 4743 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4744 SmallVectorImpl<unsigned> &CurrentOrder) const { 4745 const auto *It = find_if(VL, [](Value *V) { 4746 return isa<ExtractElementInst, ExtractValueInst>(V); 4747 }); 4748 assert(It != VL.end() && "Expected at least one extract instruction."); 4749 auto *E0 = cast<Instruction>(*It); 4750 assert(all_of(VL, 4751 [](Value *V) { 4752 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4753 V); 4754 }) && 4755 "Invalid opcode"); 4756 // Check if all of the extracts come from the same vector and from the 4757 // correct offset. 4758 Value *Vec = E0->getOperand(0); 4759 4760 CurrentOrder.clear(); 4761 4762 // We have to extract from a vector/aggregate with the same number of elements. 4763 unsigned NElts; 4764 if (E0->getOpcode() == Instruction::ExtractValue) { 4765 const DataLayout &DL = E0->getModule()->getDataLayout(); 4766 NElts = canMapToVector(Vec->getType(), DL); 4767 if (!NElts) 4768 return false; 4769 // Check if load can be rewritten as load of vector. 4770 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4771 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4772 return false; 4773 } else { 4774 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4775 } 4776 4777 if (NElts != VL.size()) 4778 return false; 4779 4780 // Check that all of the indices extract from the correct offset. 4781 bool ShouldKeepOrder = true; 4782 unsigned E = VL.size(); 4783 // Assign to all items the initial value E + 1 so we can check if the extract 4784 // instruction index was used already. 4785 // Also, later we can check that all the indices are used and we have a 4786 // consecutive access in the extract instructions, by checking that no 4787 // element of CurrentOrder still has value E + 1. 4788 CurrentOrder.assign(E, E); 4789 unsigned I = 0; 4790 for (; I < E; ++I) { 4791 auto *Inst = dyn_cast<Instruction>(VL[I]); 4792 if (!Inst) 4793 continue; 4794 if (Inst->getOperand(0) != Vec) 4795 break; 4796 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4797 if (isa<UndefValue>(EE->getIndexOperand())) 4798 continue; 4799 Optional<unsigned> Idx = getExtractIndex(Inst); 4800 if (!Idx) 4801 break; 4802 const unsigned ExtIdx = *Idx; 4803 if (ExtIdx != I) { 4804 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4805 break; 4806 ShouldKeepOrder = false; 4807 CurrentOrder[ExtIdx] = I; 4808 } else { 4809 if (CurrentOrder[I] != E) 4810 break; 4811 CurrentOrder[I] = I; 4812 } 4813 } 4814 if (I < E) { 4815 CurrentOrder.clear(); 4816 return false; 4817 } 4818 if (ShouldKeepOrder) 4819 CurrentOrder.clear(); 4820 4821 return ShouldKeepOrder; 4822 } 4823 4824 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4825 ArrayRef<Value *> VectorizedVals) const { 4826 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4827 all_of(I->users(), [this](User *U) { 4828 return ScalarToTreeEntry.count(U) > 0 || 4829 isVectorLikeInstWithConstOps(U) || 4830 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4831 }); 4832 } 4833 4834 static std::pair<InstructionCost, InstructionCost> 4835 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4836 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4837 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4838 4839 // Calculate the cost of the scalar and vector calls. 4840 SmallVector<Type *, 4> VecTys; 4841 for (Use &Arg : CI->args()) 4842 VecTys.push_back( 4843 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4844 FastMathFlags FMF; 4845 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4846 FMF = FPCI->getFastMathFlags(); 4847 SmallVector<const Value *> Arguments(CI->args()); 4848 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4849 dyn_cast<IntrinsicInst>(CI)); 4850 auto IntrinsicCost = 4851 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4852 4853 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4854 VecTy->getNumElements())), 4855 false /*HasGlobalPred*/); 4856 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4857 auto LibCost = IntrinsicCost; 4858 if (!CI->isNoBuiltin() && VecFunc) { 4859 // Calculate the cost of the vector library call. 4860 // If the corresponding vector call is cheaper, return its cost. 4861 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4862 TTI::TCK_RecipThroughput); 4863 } 4864 return {IntrinsicCost, LibCost}; 4865 } 4866 4867 /// Compute the cost of creating a vector of type \p VecTy containing the 4868 /// extracted values from \p VL. 4869 static InstructionCost 4870 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4871 TargetTransformInfo::ShuffleKind ShuffleKind, 4872 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4873 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4874 4875 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4876 VecTy->getNumElements() < NumOfParts) 4877 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4878 4879 bool AllConsecutive = true; 4880 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4881 unsigned Idx = -1; 4882 InstructionCost Cost = 0; 4883 4884 // Process extracts in blocks of EltsPerVector to check if the source vector 4885 // operand can be re-used directly. If not, add the cost of creating a shuffle 4886 // to extract the values into a vector register. 4887 for (auto *V : VL) { 4888 ++Idx; 4889 4890 // Need to exclude undefs from analysis. 4891 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4892 continue; 4893 4894 // Reached the start of a new vector registers. 4895 if (Idx % EltsPerVector == 0) { 4896 AllConsecutive = true; 4897 continue; 4898 } 4899 4900 // Check all extracts for a vector register on the target directly 4901 // extract values in order. 4902 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4903 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4904 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4905 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4906 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4907 } 4908 4909 if (AllConsecutive) 4910 continue; 4911 4912 // Skip all indices, except for the last index per vector block. 4913 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4914 continue; 4915 4916 // If we have a series of extracts which are not consecutive and hence 4917 // cannot re-use the source vector register directly, compute the shuffle 4918 // cost to extract the a vector with EltsPerVector elements. 4919 Cost += TTI.getShuffleCost( 4920 TargetTransformInfo::SK_PermuteSingleSrc, 4921 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4922 } 4923 return Cost; 4924 } 4925 4926 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4927 /// operations operands. 4928 static void 4929 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4930 ArrayRef<int> ReusesIndices, 4931 const function_ref<bool(Instruction *)> IsAltOp, 4932 SmallVectorImpl<int> &Mask, 4933 SmallVectorImpl<Value *> *OpScalars = nullptr, 4934 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4935 unsigned Sz = VL.size(); 4936 Mask.assign(Sz, UndefMaskElem); 4937 SmallVector<int> OrderMask; 4938 if (!ReorderIndices.empty()) 4939 inversePermutation(ReorderIndices, OrderMask); 4940 for (unsigned I = 0; I < Sz; ++I) { 4941 unsigned Idx = I; 4942 if (!ReorderIndices.empty()) 4943 Idx = OrderMask[I]; 4944 auto *OpInst = cast<Instruction>(VL[Idx]); 4945 if (IsAltOp(OpInst)) { 4946 Mask[I] = Sz + Idx; 4947 if (AltScalars) 4948 AltScalars->push_back(OpInst); 4949 } else { 4950 Mask[I] = Idx; 4951 if (OpScalars) 4952 OpScalars->push_back(OpInst); 4953 } 4954 } 4955 if (!ReusesIndices.empty()) { 4956 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4957 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4958 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4959 }); 4960 Mask.swap(NewMask); 4961 } 4962 } 4963 4964 /// Checks if the specified instruction \p I is an alternate operation for the 4965 /// given \p MainOp and \p AltOp instructions. 4966 static bool isAlternateInstruction(const Instruction *I, 4967 const Instruction *MainOp, 4968 const Instruction *AltOp) { 4969 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4970 auto *AltCI0 = cast<CmpInst>(AltOp); 4971 auto *CI = cast<CmpInst>(I); 4972 CmpInst::Predicate P0 = CI0->getPredicate(); 4973 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4974 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4975 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4976 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4977 if (P0 == AltP0Swapped) 4978 return I == AltCI0 || 4979 (I != MainOp && 4980 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4981 CI->getOperand(0), CI->getOperand(1))); 4982 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4983 } 4984 return I->getOpcode() == AltOp->getOpcode(); 4985 } 4986 4987 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4988 ArrayRef<Value *> VectorizedVals) { 4989 ArrayRef<Value*> VL = E->Scalars; 4990 4991 Type *ScalarTy = VL[0]->getType(); 4992 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4993 ScalarTy = SI->getValueOperand()->getType(); 4994 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4995 ScalarTy = CI->getOperand(0)->getType(); 4996 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4997 ScalarTy = IE->getOperand(1)->getType(); 4998 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4999 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5000 5001 // If we have computed a smaller type for the expression, update VecTy so 5002 // that the costs will be accurate. 5003 if (MinBWs.count(VL[0])) 5004 VecTy = FixedVectorType::get( 5005 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5006 unsigned EntryVF = E->getVectorFactor(); 5007 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5008 5009 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5010 // FIXME: it tries to fix a problem with MSVC buildbots. 5011 TargetTransformInfo &TTIRef = *TTI; 5012 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5013 VectorizedVals, E](InstructionCost &Cost) { 5014 DenseMap<Value *, int> ExtractVectorsTys; 5015 SmallPtrSet<Value *, 4> CheckedExtracts; 5016 for (auto *V : VL) { 5017 if (isa<UndefValue>(V)) 5018 continue; 5019 // If all users of instruction are going to be vectorized and this 5020 // instruction itself is not going to be vectorized, consider this 5021 // instruction as dead and remove its cost from the final cost of the 5022 // vectorized tree. 5023 // Also, avoid adjusting the cost for extractelements with multiple uses 5024 // in different graph entries. 5025 const TreeEntry *VE = getTreeEntry(V); 5026 if (!CheckedExtracts.insert(V).second || 5027 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5028 (VE && VE != E)) 5029 continue; 5030 auto *EE = cast<ExtractElementInst>(V); 5031 Optional<unsigned> EEIdx = getExtractIndex(EE); 5032 if (!EEIdx) 5033 continue; 5034 unsigned Idx = *EEIdx; 5035 if (TTIRef.getNumberOfParts(VecTy) != 5036 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5037 auto It = 5038 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5039 It->getSecond() = std::min<int>(It->second, Idx); 5040 } 5041 // Take credit for instruction that will become dead. 5042 if (EE->hasOneUse()) { 5043 Instruction *Ext = EE->user_back(); 5044 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5045 all_of(Ext->users(), 5046 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5047 // Use getExtractWithExtendCost() to calculate the cost of 5048 // extractelement/ext pair. 5049 Cost -= 5050 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5051 EE->getVectorOperandType(), Idx); 5052 // Add back the cost of s|zext which is subtracted separately. 5053 Cost += TTIRef.getCastInstrCost( 5054 Ext->getOpcode(), Ext->getType(), EE->getType(), 5055 TTI::getCastContextHint(Ext), CostKind, Ext); 5056 continue; 5057 } 5058 } 5059 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5060 EE->getVectorOperandType(), Idx); 5061 } 5062 // Add a cost for subvector extracts/inserts if required. 5063 for (const auto &Data : ExtractVectorsTys) { 5064 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5065 unsigned NumElts = VecTy->getNumElements(); 5066 if (Data.second % NumElts == 0) 5067 continue; 5068 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5069 unsigned Idx = (Data.second / NumElts) * NumElts; 5070 unsigned EENumElts = EEVTy->getNumElements(); 5071 if (Idx + NumElts <= EENumElts) { 5072 Cost += 5073 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5074 EEVTy, None, Idx, VecTy); 5075 } else { 5076 // Need to round up the subvector type vectorization factor to avoid a 5077 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5078 // <= EENumElts. 5079 auto *SubVT = 5080 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5081 Cost += 5082 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5083 EEVTy, None, Idx, SubVT); 5084 } 5085 } else { 5086 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5087 VecTy, None, 0, EEVTy); 5088 } 5089 } 5090 }; 5091 if (E->State == TreeEntry::NeedToGather) { 5092 if (allConstant(VL)) 5093 return 0; 5094 if (isa<InsertElementInst>(VL[0])) 5095 return InstructionCost::getInvalid(); 5096 SmallVector<int> Mask; 5097 SmallVector<const TreeEntry *> Entries; 5098 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5099 isGatherShuffledEntry(E, Mask, Entries); 5100 if (Shuffle.hasValue()) { 5101 InstructionCost GatherCost = 0; 5102 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5103 // Perfect match in the graph, will reuse the previously vectorized 5104 // node. Cost is 0. 5105 LLVM_DEBUG( 5106 dbgs() 5107 << "SLP: perfect diamond match for gather bundle that starts with " 5108 << *VL.front() << ".\n"); 5109 if (NeedToShuffleReuses) 5110 GatherCost = 5111 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5112 FinalVecTy, E->ReuseShuffleIndices); 5113 } else { 5114 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5115 << " entries for bundle that starts with " 5116 << *VL.front() << ".\n"); 5117 // Detected that instead of gather we can emit a shuffle of single/two 5118 // previously vectorized nodes. Add the cost of the permutation rather 5119 // than gather. 5120 ::addMask(Mask, E->ReuseShuffleIndices); 5121 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5122 } 5123 return GatherCost; 5124 } 5125 if ((E->getOpcode() == Instruction::ExtractElement || 5126 all_of(E->Scalars, 5127 [](Value *V) { 5128 return isa<ExtractElementInst, UndefValue>(V); 5129 })) && 5130 allSameType(VL)) { 5131 // Check that gather of extractelements can be represented as just a 5132 // shuffle of a single/two vectors the scalars are extracted from. 5133 SmallVector<int> Mask; 5134 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5135 isFixedVectorShuffle(VL, Mask); 5136 if (ShuffleKind.hasValue()) { 5137 // Found the bunch of extractelement instructions that must be gathered 5138 // into a vector and can be represented as a permutation elements in a 5139 // single input vector or of 2 input vectors. 5140 InstructionCost Cost = 5141 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5142 AdjustExtractsCost(Cost); 5143 if (NeedToShuffleReuses) 5144 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5145 FinalVecTy, E->ReuseShuffleIndices); 5146 return Cost; 5147 } 5148 } 5149 if (isSplat(VL)) { 5150 // Found the broadcasting of the single scalar, calculate the cost as the 5151 // broadcast. 5152 assert(VecTy == FinalVecTy && 5153 "No reused scalars expected for broadcast."); 5154 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5155 } 5156 InstructionCost ReuseShuffleCost = 0; 5157 if (NeedToShuffleReuses) 5158 ReuseShuffleCost = TTI->getShuffleCost( 5159 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5160 // Improve gather cost for gather of loads, if we can group some of the 5161 // loads into vector loads. 5162 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5163 !E->isAltShuffle()) { 5164 BoUpSLP::ValueSet VectorizedLoads; 5165 unsigned StartIdx = 0; 5166 unsigned VF = VL.size() / 2; 5167 unsigned VectorizedCnt = 0; 5168 unsigned ScatterVectorizeCnt = 0; 5169 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5170 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5171 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5172 Cnt += VF) { 5173 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5174 if (!VectorizedLoads.count(Slice.front()) && 5175 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5176 SmallVector<Value *> PointerOps; 5177 OrdersType CurrentOrder; 5178 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5179 *SE, CurrentOrder, PointerOps); 5180 switch (LS) { 5181 case LoadsState::Vectorize: 5182 case LoadsState::ScatterVectorize: 5183 // Mark the vectorized loads so that we don't vectorize them 5184 // again. 5185 if (LS == LoadsState::Vectorize) 5186 ++VectorizedCnt; 5187 else 5188 ++ScatterVectorizeCnt; 5189 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5190 // If we vectorized initial block, no need to try to vectorize it 5191 // again. 5192 if (Cnt == StartIdx) 5193 StartIdx += VF; 5194 break; 5195 case LoadsState::Gather: 5196 break; 5197 } 5198 } 5199 } 5200 // Check if the whole array was vectorized already - exit. 5201 if (StartIdx >= VL.size()) 5202 break; 5203 // Found vectorizable parts - exit. 5204 if (!VectorizedLoads.empty()) 5205 break; 5206 } 5207 if (!VectorizedLoads.empty()) { 5208 InstructionCost GatherCost = 0; 5209 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5210 bool NeedInsertSubvectorAnalysis = 5211 !NumParts || (VL.size() / VF) > NumParts; 5212 // Get the cost for gathered loads. 5213 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5214 if (VectorizedLoads.contains(VL[I])) 5215 continue; 5216 GatherCost += getGatherCost(VL.slice(I, VF)); 5217 } 5218 // The cost for vectorized loads. 5219 InstructionCost ScalarsCost = 0; 5220 for (Value *V : VectorizedLoads) { 5221 auto *LI = cast<LoadInst>(V); 5222 ScalarsCost += TTI->getMemoryOpCost( 5223 Instruction::Load, LI->getType(), LI->getAlign(), 5224 LI->getPointerAddressSpace(), CostKind, LI); 5225 } 5226 auto *LI = cast<LoadInst>(E->getMainOp()); 5227 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5228 Align Alignment = LI->getAlign(); 5229 GatherCost += 5230 VectorizedCnt * 5231 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5232 LI->getPointerAddressSpace(), CostKind, LI); 5233 GatherCost += ScatterVectorizeCnt * 5234 TTI->getGatherScatterOpCost( 5235 Instruction::Load, LoadTy, LI->getPointerOperand(), 5236 /*VariableMask=*/false, Alignment, CostKind, LI); 5237 if (NeedInsertSubvectorAnalysis) { 5238 // Add the cost for the subvectors insert. 5239 for (int I = VF, E = VL.size(); I < E; I += VF) 5240 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5241 None, I, LoadTy); 5242 } 5243 return ReuseShuffleCost + GatherCost - ScalarsCost; 5244 } 5245 } 5246 return ReuseShuffleCost + getGatherCost(VL); 5247 } 5248 InstructionCost CommonCost = 0; 5249 SmallVector<int> Mask; 5250 if (!E->ReorderIndices.empty()) { 5251 SmallVector<int> NewMask; 5252 if (E->getOpcode() == Instruction::Store) { 5253 // For stores the order is actually a mask. 5254 NewMask.resize(E->ReorderIndices.size()); 5255 copy(E->ReorderIndices, NewMask.begin()); 5256 } else { 5257 inversePermutation(E->ReorderIndices, NewMask); 5258 } 5259 ::addMask(Mask, NewMask); 5260 } 5261 if (NeedToShuffleReuses) 5262 ::addMask(Mask, E->ReuseShuffleIndices); 5263 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5264 CommonCost = 5265 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5266 assert((E->State == TreeEntry::Vectorize || 5267 E->State == TreeEntry::ScatterVectorize) && 5268 "Unhandled state"); 5269 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5270 Instruction *VL0 = E->getMainOp(); 5271 unsigned ShuffleOrOp = 5272 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5273 switch (ShuffleOrOp) { 5274 case Instruction::PHI: 5275 return 0; 5276 5277 case Instruction::ExtractValue: 5278 case Instruction::ExtractElement: { 5279 // The common cost of removal ExtractElement/ExtractValue instructions + 5280 // the cost of shuffles, if required to resuffle the original vector. 5281 if (NeedToShuffleReuses) { 5282 unsigned Idx = 0; 5283 for (unsigned I : E->ReuseShuffleIndices) { 5284 if (ShuffleOrOp == Instruction::ExtractElement) { 5285 auto *EE = cast<ExtractElementInst>(VL[I]); 5286 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5287 EE->getVectorOperandType(), 5288 *getExtractIndex(EE)); 5289 } else { 5290 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5291 VecTy, Idx); 5292 ++Idx; 5293 } 5294 } 5295 Idx = EntryVF; 5296 for (Value *V : VL) { 5297 if (ShuffleOrOp == Instruction::ExtractElement) { 5298 auto *EE = cast<ExtractElementInst>(V); 5299 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5300 EE->getVectorOperandType(), 5301 *getExtractIndex(EE)); 5302 } else { 5303 --Idx; 5304 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5305 VecTy, Idx); 5306 } 5307 } 5308 } 5309 if (ShuffleOrOp == Instruction::ExtractValue) { 5310 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5311 auto *EI = cast<Instruction>(VL[I]); 5312 // Take credit for instruction that will become dead. 5313 if (EI->hasOneUse()) { 5314 Instruction *Ext = EI->user_back(); 5315 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5316 all_of(Ext->users(), 5317 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5318 // Use getExtractWithExtendCost() to calculate the cost of 5319 // extractelement/ext pair. 5320 CommonCost -= TTI->getExtractWithExtendCost( 5321 Ext->getOpcode(), Ext->getType(), VecTy, I); 5322 // Add back the cost of s|zext which is subtracted separately. 5323 CommonCost += TTI->getCastInstrCost( 5324 Ext->getOpcode(), Ext->getType(), EI->getType(), 5325 TTI::getCastContextHint(Ext), CostKind, Ext); 5326 continue; 5327 } 5328 } 5329 CommonCost -= 5330 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5331 } 5332 } else { 5333 AdjustExtractsCost(CommonCost); 5334 } 5335 return CommonCost; 5336 } 5337 case Instruction::InsertElement: { 5338 assert(E->ReuseShuffleIndices.empty() && 5339 "Unique insertelements only are expected."); 5340 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5341 5342 unsigned const NumElts = SrcVecTy->getNumElements(); 5343 unsigned const NumScalars = VL.size(); 5344 APInt DemandedElts = APInt::getZero(NumElts); 5345 // TODO: Add support for Instruction::InsertValue. 5346 SmallVector<int> Mask; 5347 if (!E->ReorderIndices.empty()) { 5348 inversePermutation(E->ReorderIndices, Mask); 5349 Mask.append(NumElts - NumScalars, UndefMaskElem); 5350 } else { 5351 Mask.assign(NumElts, UndefMaskElem); 5352 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5353 } 5354 unsigned Offset = *getInsertIndex(VL0); 5355 bool IsIdentity = true; 5356 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5357 Mask.swap(PrevMask); 5358 for (unsigned I = 0; I < NumScalars; ++I) { 5359 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5360 DemandedElts.setBit(InsertIdx); 5361 IsIdentity &= InsertIdx - Offset == I; 5362 Mask[InsertIdx - Offset] = I; 5363 } 5364 assert(Offset < NumElts && "Failed to find vector index offset"); 5365 5366 InstructionCost Cost = 0; 5367 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5368 /*Insert*/ true, /*Extract*/ false); 5369 5370 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5371 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5372 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5373 Cost += TTI->getShuffleCost( 5374 TargetTransformInfo::SK_PermuteSingleSrc, 5375 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5376 } else if (!IsIdentity) { 5377 auto *FirstInsert = 5378 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5379 return !is_contained(E->Scalars, 5380 cast<Instruction>(V)->getOperand(0)); 5381 })); 5382 if (isUndefVector(FirstInsert->getOperand(0))) { 5383 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5384 } else { 5385 SmallVector<int> InsertMask(NumElts); 5386 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5387 for (unsigned I = 0; I < NumElts; I++) { 5388 if (Mask[I] != UndefMaskElem) 5389 InsertMask[Offset + I] = NumElts + I; 5390 } 5391 Cost += 5392 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5393 } 5394 } 5395 5396 return Cost; 5397 } 5398 case Instruction::ZExt: 5399 case Instruction::SExt: 5400 case Instruction::FPToUI: 5401 case Instruction::FPToSI: 5402 case Instruction::FPExt: 5403 case Instruction::PtrToInt: 5404 case Instruction::IntToPtr: 5405 case Instruction::SIToFP: 5406 case Instruction::UIToFP: 5407 case Instruction::Trunc: 5408 case Instruction::FPTrunc: 5409 case Instruction::BitCast: { 5410 Type *SrcTy = VL0->getOperand(0)->getType(); 5411 InstructionCost ScalarEltCost = 5412 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5413 TTI::getCastContextHint(VL0), CostKind, VL0); 5414 if (NeedToShuffleReuses) { 5415 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5416 } 5417 5418 // Calculate the cost of this instruction. 5419 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5420 5421 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5422 InstructionCost VecCost = 0; 5423 // Check if the values are candidates to demote. 5424 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5425 VecCost = CommonCost + TTI->getCastInstrCost( 5426 E->getOpcode(), VecTy, SrcVecTy, 5427 TTI::getCastContextHint(VL0), CostKind, VL0); 5428 } 5429 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5430 return VecCost - ScalarCost; 5431 } 5432 case Instruction::FCmp: 5433 case Instruction::ICmp: 5434 case Instruction::Select: { 5435 // Calculate the cost of this instruction. 5436 InstructionCost ScalarEltCost = 5437 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5438 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5439 if (NeedToShuffleReuses) { 5440 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5441 } 5442 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5443 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5444 5445 // Check if all entries in VL are either compares or selects with compares 5446 // as condition that have the same predicates. 5447 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5448 bool First = true; 5449 for (auto *V : VL) { 5450 CmpInst::Predicate CurrentPred; 5451 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5452 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5453 !match(V, MatchCmp)) || 5454 (!First && VecPred != CurrentPred)) { 5455 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5456 break; 5457 } 5458 First = false; 5459 VecPred = CurrentPred; 5460 } 5461 5462 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5463 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5464 // Check if it is possible and profitable to use min/max for selects in 5465 // VL. 5466 // 5467 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5468 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5469 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5470 {VecTy, VecTy}); 5471 InstructionCost IntrinsicCost = 5472 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5473 // If the selects are the only uses of the compares, they will be dead 5474 // and we can adjust the cost by removing their cost. 5475 if (IntrinsicAndUse.second) 5476 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5477 MaskTy, VecPred, CostKind); 5478 VecCost = std::min(VecCost, IntrinsicCost); 5479 } 5480 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5481 return CommonCost + VecCost - ScalarCost; 5482 } 5483 case Instruction::FNeg: 5484 case Instruction::Add: 5485 case Instruction::FAdd: 5486 case Instruction::Sub: 5487 case Instruction::FSub: 5488 case Instruction::Mul: 5489 case Instruction::FMul: 5490 case Instruction::UDiv: 5491 case Instruction::SDiv: 5492 case Instruction::FDiv: 5493 case Instruction::URem: 5494 case Instruction::SRem: 5495 case Instruction::FRem: 5496 case Instruction::Shl: 5497 case Instruction::LShr: 5498 case Instruction::AShr: 5499 case Instruction::And: 5500 case Instruction::Or: 5501 case Instruction::Xor: { 5502 // Certain instructions can be cheaper to vectorize if they have a 5503 // constant second vector operand. 5504 TargetTransformInfo::OperandValueKind Op1VK = 5505 TargetTransformInfo::OK_AnyValue; 5506 TargetTransformInfo::OperandValueKind Op2VK = 5507 TargetTransformInfo::OK_UniformConstantValue; 5508 TargetTransformInfo::OperandValueProperties Op1VP = 5509 TargetTransformInfo::OP_None; 5510 TargetTransformInfo::OperandValueProperties Op2VP = 5511 TargetTransformInfo::OP_PowerOf2; 5512 5513 // If all operands are exactly the same ConstantInt then set the 5514 // operand kind to OK_UniformConstantValue. 5515 // If instead not all operands are constants, then set the operand kind 5516 // to OK_AnyValue. If all operands are constants but not the same, 5517 // then set the operand kind to OK_NonUniformConstantValue. 5518 ConstantInt *CInt0 = nullptr; 5519 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5520 const Instruction *I = cast<Instruction>(VL[i]); 5521 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5522 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5523 if (!CInt) { 5524 Op2VK = TargetTransformInfo::OK_AnyValue; 5525 Op2VP = TargetTransformInfo::OP_None; 5526 break; 5527 } 5528 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5529 !CInt->getValue().isPowerOf2()) 5530 Op2VP = TargetTransformInfo::OP_None; 5531 if (i == 0) { 5532 CInt0 = CInt; 5533 continue; 5534 } 5535 if (CInt0 != CInt) 5536 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5537 } 5538 5539 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5540 InstructionCost ScalarEltCost = 5541 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5542 Op2VK, Op1VP, Op2VP, Operands, VL0); 5543 if (NeedToShuffleReuses) { 5544 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5545 } 5546 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5547 InstructionCost VecCost = 5548 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5549 Op2VK, Op1VP, Op2VP, Operands, VL0); 5550 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5551 return CommonCost + VecCost - ScalarCost; 5552 } 5553 case Instruction::GetElementPtr: { 5554 TargetTransformInfo::OperandValueKind Op1VK = 5555 TargetTransformInfo::OK_AnyValue; 5556 TargetTransformInfo::OperandValueKind Op2VK = 5557 TargetTransformInfo::OK_UniformConstantValue; 5558 5559 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5560 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5561 if (NeedToShuffleReuses) { 5562 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5563 } 5564 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5565 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5566 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5567 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5568 return CommonCost + VecCost - ScalarCost; 5569 } 5570 case Instruction::Load: { 5571 // Cost of wide load - cost of scalar loads. 5572 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5573 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5574 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5575 if (NeedToShuffleReuses) { 5576 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5577 } 5578 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5579 InstructionCost VecLdCost; 5580 if (E->State == TreeEntry::Vectorize) { 5581 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5582 CostKind, VL0); 5583 } else { 5584 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5585 Align CommonAlignment = Alignment; 5586 for (Value *V : VL) 5587 CommonAlignment = 5588 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5589 VecLdCost = TTI->getGatherScatterOpCost( 5590 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5591 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5592 } 5593 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5594 return CommonCost + VecLdCost - ScalarLdCost; 5595 } 5596 case Instruction::Store: { 5597 // We know that we can merge the stores. Calculate the cost. 5598 bool IsReorder = !E->ReorderIndices.empty(); 5599 auto *SI = 5600 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5601 Align Alignment = SI->getAlign(); 5602 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5603 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5604 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5605 InstructionCost VecStCost = TTI->getMemoryOpCost( 5606 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5607 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5608 return CommonCost + VecStCost - ScalarStCost; 5609 } 5610 case Instruction::Call: { 5611 CallInst *CI = cast<CallInst>(VL0); 5612 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5613 5614 // Calculate the cost of the scalar and vector calls. 5615 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5616 InstructionCost ScalarEltCost = 5617 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5618 if (NeedToShuffleReuses) { 5619 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5620 } 5621 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5622 5623 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5624 InstructionCost VecCallCost = 5625 std::min(VecCallCosts.first, VecCallCosts.second); 5626 5627 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5628 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5629 << " for " << *CI << "\n"); 5630 5631 return CommonCost + VecCallCost - ScalarCallCost; 5632 } 5633 case Instruction::ShuffleVector: { 5634 assert(E->isAltShuffle() && 5635 ((Instruction::isBinaryOp(E->getOpcode()) && 5636 Instruction::isBinaryOp(E->getAltOpcode())) || 5637 (Instruction::isCast(E->getOpcode()) && 5638 Instruction::isCast(E->getAltOpcode())) || 5639 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5640 "Invalid Shuffle Vector Operand"); 5641 InstructionCost ScalarCost = 0; 5642 if (NeedToShuffleReuses) { 5643 for (unsigned Idx : E->ReuseShuffleIndices) { 5644 Instruction *I = cast<Instruction>(VL[Idx]); 5645 CommonCost -= TTI->getInstructionCost(I, CostKind); 5646 } 5647 for (Value *V : VL) { 5648 Instruction *I = cast<Instruction>(V); 5649 CommonCost += TTI->getInstructionCost(I, CostKind); 5650 } 5651 } 5652 for (Value *V : VL) { 5653 Instruction *I = cast<Instruction>(V); 5654 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5655 ScalarCost += TTI->getInstructionCost(I, CostKind); 5656 } 5657 // VecCost is equal to sum of the cost of creating 2 vectors 5658 // and the cost of creating shuffle. 5659 InstructionCost VecCost = 0; 5660 // Try to find the previous shuffle node with the same operands and same 5661 // main/alternate ops. 5662 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5663 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5664 if (TE.get() == E) 5665 break; 5666 if (TE->isAltShuffle() && 5667 ((TE->getOpcode() == E->getOpcode() && 5668 TE->getAltOpcode() == E->getAltOpcode()) || 5669 (TE->getOpcode() == E->getAltOpcode() && 5670 TE->getAltOpcode() == E->getOpcode())) && 5671 TE->hasEqualOperands(*E)) 5672 return true; 5673 } 5674 return false; 5675 }; 5676 if (TryFindNodeWithEqualOperands()) { 5677 LLVM_DEBUG({ 5678 dbgs() << "SLP: diamond match for alternate node found.\n"; 5679 E->dump(); 5680 }); 5681 // No need to add new vector costs here since we're going to reuse 5682 // same main/alternate vector ops, just do different shuffling. 5683 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5684 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5685 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5686 CostKind); 5687 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5688 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5689 Builder.getInt1Ty(), 5690 CI0->getPredicate(), CostKind, VL0); 5691 VecCost += TTI->getCmpSelInstrCost( 5692 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5693 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5694 E->getAltOp()); 5695 } else { 5696 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5697 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5698 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5699 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5700 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5701 TTI::CastContextHint::None, CostKind); 5702 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5703 TTI::CastContextHint::None, CostKind); 5704 } 5705 5706 SmallVector<int> Mask; 5707 buildShuffleEntryMask( 5708 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5709 [E](Instruction *I) { 5710 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5711 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5712 }, 5713 Mask); 5714 CommonCost = 5715 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5716 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5717 return CommonCost + VecCost - ScalarCost; 5718 } 5719 default: 5720 llvm_unreachable("Unknown instruction"); 5721 } 5722 } 5723 5724 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5725 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5726 << VectorizableTree.size() << " is fully vectorizable .\n"); 5727 5728 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5729 SmallVector<int> Mask; 5730 return TE->State == TreeEntry::NeedToGather && 5731 !any_of(TE->Scalars, 5732 [this](Value *V) { return EphValues.contains(V); }) && 5733 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5734 TE->Scalars.size() < Limit || 5735 ((TE->getOpcode() == Instruction::ExtractElement || 5736 all_of(TE->Scalars, 5737 [](Value *V) { 5738 return isa<ExtractElementInst, UndefValue>(V); 5739 })) && 5740 isFixedVectorShuffle(TE->Scalars, Mask)) || 5741 (TE->State == TreeEntry::NeedToGather && 5742 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5743 }; 5744 5745 // We only handle trees of heights 1 and 2. 5746 if (VectorizableTree.size() == 1 && 5747 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5748 (ForReduction && 5749 AreVectorizableGathers(VectorizableTree[0].get(), 5750 VectorizableTree[0]->Scalars.size()) && 5751 VectorizableTree[0]->getVectorFactor() > 2))) 5752 return true; 5753 5754 if (VectorizableTree.size() != 2) 5755 return false; 5756 5757 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5758 // with the second gather nodes if they have less scalar operands rather than 5759 // the initial tree element (may be profitable to shuffle the second gather) 5760 // or they are extractelements, which form shuffle. 5761 SmallVector<int> Mask; 5762 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5763 AreVectorizableGathers(VectorizableTree[1].get(), 5764 VectorizableTree[0]->Scalars.size())) 5765 return true; 5766 5767 // Gathering cost would be too much for tiny trees. 5768 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5769 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5770 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5771 return false; 5772 5773 return true; 5774 } 5775 5776 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5777 TargetTransformInfo *TTI, 5778 bool MustMatchOrInst) { 5779 // Look past the root to find a source value. Arbitrarily follow the 5780 // path through operand 0 of any 'or'. Also, peek through optional 5781 // shift-left-by-multiple-of-8-bits. 5782 Value *ZextLoad = Root; 5783 const APInt *ShAmtC; 5784 bool FoundOr = false; 5785 while (!isa<ConstantExpr>(ZextLoad) && 5786 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5787 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5788 ShAmtC->urem(8) == 0))) { 5789 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5790 ZextLoad = BinOp->getOperand(0); 5791 if (BinOp->getOpcode() == Instruction::Or) 5792 FoundOr = true; 5793 } 5794 // Check if the input is an extended load of the required or/shift expression. 5795 Value *Load; 5796 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5797 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5798 return false; 5799 5800 // Require that the total load bit width is a legal integer type. 5801 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5802 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5803 Type *SrcTy = Load->getType(); 5804 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5805 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5806 return false; 5807 5808 // Everything matched - assume that we can fold the whole sequence using 5809 // load combining. 5810 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5811 << *(cast<Instruction>(Root)) << "\n"); 5812 5813 return true; 5814 } 5815 5816 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5817 if (RdxKind != RecurKind::Or) 5818 return false; 5819 5820 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5821 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5822 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5823 /* MatchOr */ false); 5824 } 5825 5826 bool BoUpSLP::isLoadCombineCandidate() const { 5827 // Peek through a final sequence of stores and check if all operations are 5828 // likely to be load-combined. 5829 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5830 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5831 Value *X; 5832 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5833 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5834 return false; 5835 } 5836 return true; 5837 } 5838 5839 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5840 // No need to vectorize inserts of gathered values. 5841 if (VectorizableTree.size() == 2 && 5842 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5843 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5844 return true; 5845 5846 // We can vectorize the tree if its size is greater than or equal to the 5847 // minimum size specified by the MinTreeSize command line option. 5848 if (VectorizableTree.size() >= MinTreeSize) 5849 return false; 5850 5851 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5852 // can vectorize it if we can prove it fully vectorizable. 5853 if (isFullyVectorizableTinyTree(ForReduction)) 5854 return false; 5855 5856 assert(VectorizableTree.empty() 5857 ? ExternalUses.empty() 5858 : true && "We shouldn't have any external users"); 5859 5860 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5861 // vectorizable. 5862 return true; 5863 } 5864 5865 InstructionCost BoUpSLP::getSpillCost() const { 5866 // Walk from the bottom of the tree to the top, tracking which values are 5867 // live. When we see a call instruction that is not part of our tree, 5868 // query TTI to see if there is a cost to keeping values live over it 5869 // (for example, if spills and fills are required). 5870 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5871 InstructionCost Cost = 0; 5872 5873 SmallPtrSet<Instruction*, 4> LiveValues; 5874 Instruction *PrevInst = nullptr; 5875 5876 // The entries in VectorizableTree are not necessarily ordered by their 5877 // position in basic blocks. Collect them and order them by dominance so later 5878 // instructions are guaranteed to be visited first. For instructions in 5879 // different basic blocks, we only scan to the beginning of the block, so 5880 // their order does not matter, as long as all instructions in a basic block 5881 // are grouped together. Using dominance ensures a deterministic order. 5882 SmallVector<Instruction *, 16> OrderedScalars; 5883 for (const auto &TEPtr : VectorizableTree) { 5884 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5885 if (!Inst) 5886 continue; 5887 OrderedScalars.push_back(Inst); 5888 } 5889 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5890 auto *NodeA = DT->getNode(A->getParent()); 5891 auto *NodeB = DT->getNode(B->getParent()); 5892 assert(NodeA && "Should only process reachable instructions"); 5893 assert(NodeB && "Should only process reachable instructions"); 5894 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5895 "Different nodes should have different DFS numbers"); 5896 if (NodeA != NodeB) 5897 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5898 return B->comesBefore(A); 5899 }); 5900 5901 for (Instruction *Inst : OrderedScalars) { 5902 if (!PrevInst) { 5903 PrevInst = Inst; 5904 continue; 5905 } 5906 5907 // Update LiveValues. 5908 LiveValues.erase(PrevInst); 5909 for (auto &J : PrevInst->operands()) { 5910 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5911 LiveValues.insert(cast<Instruction>(&*J)); 5912 } 5913 5914 LLVM_DEBUG({ 5915 dbgs() << "SLP: #LV: " << LiveValues.size(); 5916 for (auto *X : LiveValues) 5917 dbgs() << " " << X->getName(); 5918 dbgs() << ", Looking at "; 5919 Inst->dump(); 5920 }); 5921 5922 // Now find the sequence of instructions between PrevInst and Inst. 5923 unsigned NumCalls = 0; 5924 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5925 PrevInstIt = 5926 PrevInst->getIterator().getReverse(); 5927 while (InstIt != PrevInstIt) { 5928 if (PrevInstIt == PrevInst->getParent()->rend()) { 5929 PrevInstIt = Inst->getParent()->rbegin(); 5930 continue; 5931 } 5932 5933 // Debug information does not impact spill cost. 5934 if ((isa<CallInst>(&*PrevInstIt) && 5935 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5936 &*PrevInstIt != PrevInst) 5937 NumCalls++; 5938 5939 ++PrevInstIt; 5940 } 5941 5942 if (NumCalls) { 5943 SmallVector<Type*, 4> V; 5944 for (auto *II : LiveValues) { 5945 auto *ScalarTy = II->getType(); 5946 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5947 ScalarTy = VectorTy->getElementType(); 5948 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5949 } 5950 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5951 } 5952 5953 PrevInst = Inst; 5954 } 5955 5956 return Cost; 5957 } 5958 5959 /// Check if two insertelement instructions are from the same buildvector. 5960 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5961 InsertElementInst *V) { 5962 // Instructions must be from the same basic blocks. 5963 if (VU->getParent() != V->getParent()) 5964 return false; 5965 // Checks if 2 insertelements are from the same buildvector. 5966 if (VU->getType() != V->getType()) 5967 return false; 5968 // Multiple used inserts are separate nodes. 5969 if (!VU->hasOneUse() && !V->hasOneUse()) 5970 return false; 5971 auto *IE1 = VU; 5972 auto *IE2 = V; 5973 // Go through the vector operand of insertelement instructions trying to find 5974 // either VU as the original vector for IE2 or V as the original vector for 5975 // IE1. 5976 do { 5977 if (IE2 == VU || IE1 == V) 5978 return true; 5979 if (IE1) { 5980 if (IE1 != VU && !IE1->hasOneUse()) 5981 IE1 = nullptr; 5982 else 5983 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5984 } 5985 if (IE2) { 5986 if (IE2 != V && !IE2->hasOneUse()) 5987 IE2 = nullptr; 5988 else 5989 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5990 } 5991 } while (IE1 || IE2); 5992 return false; 5993 } 5994 5995 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5996 InstructionCost Cost = 0; 5997 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5998 << VectorizableTree.size() << ".\n"); 5999 6000 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6001 6002 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6003 TreeEntry &TE = *VectorizableTree[I].get(); 6004 6005 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6006 Cost += C; 6007 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6008 << " for bundle that starts with " << *TE.Scalars[0] 6009 << ".\n" 6010 << "SLP: Current total cost = " << Cost << "\n"); 6011 } 6012 6013 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6014 InstructionCost ExtractCost = 0; 6015 SmallVector<unsigned> VF; 6016 SmallVector<SmallVector<int>> ShuffleMask; 6017 SmallVector<Value *> FirstUsers; 6018 SmallVector<APInt> DemandedElts; 6019 for (ExternalUser &EU : ExternalUses) { 6020 // We only add extract cost once for the same scalar. 6021 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6022 !ExtractCostCalculated.insert(EU.Scalar).second) 6023 continue; 6024 6025 // Uses by ephemeral values are free (because the ephemeral value will be 6026 // removed prior to code generation, and so the extraction will be 6027 // removed as well). 6028 if (EphValues.count(EU.User)) 6029 continue; 6030 6031 // No extract cost for vector "scalar" 6032 if (isa<FixedVectorType>(EU.Scalar->getType())) 6033 continue; 6034 6035 // Already counted the cost for external uses when tried to adjust the cost 6036 // for extractelements, no need to add it again. 6037 if (isa<ExtractElementInst>(EU.Scalar)) 6038 continue; 6039 6040 // If found user is an insertelement, do not calculate extract cost but try 6041 // to detect it as a final shuffled/identity match. 6042 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6043 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6044 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6045 if (InsertIdx) { 6046 auto *It = find_if(FirstUsers, [VU](Value *V) { 6047 return areTwoInsertFromSameBuildVector(VU, 6048 cast<InsertElementInst>(V)); 6049 }); 6050 int VecId = -1; 6051 if (It == FirstUsers.end()) { 6052 VF.push_back(FTy->getNumElements()); 6053 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6054 // Find the insertvector, vectorized in tree, if any. 6055 Value *Base = VU; 6056 while (isa<InsertElementInst>(Base)) { 6057 // Build the mask for the vectorized insertelement instructions. 6058 if (const TreeEntry *E = getTreeEntry(Base)) { 6059 VU = cast<InsertElementInst>(Base); 6060 do { 6061 int Idx = E->findLaneForValue(Base); 6062 ShuffleMask.back()[Idx] = Idx; 6063 Base = cast<InsertElementInst>(Base)->getOperand(0); 6064 } while (E == getTreeEntry(Base)); 6065 break; 6066 } 6067 Base = cast<InsertElementInst>(Base)->getOperand(0); 6068 } 6069 FirstUsers.push_back(VU); 6070 DemandedElts.push_back(APInt::getZero(VF.back())); 6071 VecId = FirstUsers.size() - 1; 6072 } else { 6073 VecId = std::distance(FirstUsers.begin(), It); 6074 } 6075 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6076 DemandedElts[VecId].setBit(*InsertIdx); 6077 continue; 6078 } 6079 } 6080 } 6081 6082 // If we plan to rewrite the tree in a smaller type, we will need to sign 6083 // extend the extracted value back to the original type. Here, we account 6084 // for the extract and the added cost of the sign extend if needed. 6085 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6086 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6087 if (MinBWs.count(ScalarRoot)) { 6088 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6089 auto Extend = 6090 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6091 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6092 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6093 VecTy, EU.Lane); 6094 } else { 6095 ExtractCost += 6096 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6097 } 6098 } 6099 6100 InstructionCost SpillCost = getSpillCost(); 6101 Cost += SpillCost + ExtractCost; 6102 if (FirstUsers.size() == 1) { 6103 int Limit = ShuffleMask.front().size() * 2; 6104 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6105 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6106 InstructionCost C = TTI->getShuffleCost( 6107 TTI::SK_PermuteSingleSrc, 6108 cast<FixedVectorType>(FirstUsers.front()->getType()), 6109 ShuffleMask.front()); 6110 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6111 << " for final shuffle of insertelement external users " 6112 << *VectorizableTree.front()->Scalars.front() << ".\n" 6113 << "SLP: Current total cost = " << Cost << "\n"); 6114 Cost += C; 6115 } 6116 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6117 cast<FixedVectorType>(FirstUsers.front()->getType()), 6118 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6119 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6120 << " for insertelements gather.\n" 6121 << "SLP: Current total cost = " << Cost << "\n"); 6122 Cost -= InsertCost; 6123 } else if (FirstUsers.size() >= 2) { 6124 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6125 // Combined masks of the first 2 vectors. 6126 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6127 copy(ShuffleMask.front(), CombinedMask.begin()); 6128 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6129 auto *VecTy = FixedVectorType::get( 6130 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6131 MaxVF); 6132 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6133 if (ShuffleMask[1][I] != UndefMaskElem) { 6134 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6135 CombinedDemandedElts.setBit(I); 6136 } 6137 } 6138 InstructionCost C = 6139 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6140 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6141 << " for final shuffle of vector node and external " 6142 "insertelement users " 6143 << *VectorizableTree.front()->Scalars.front() << ".\n" 6144 << "SLP: Current total cost = " << Cost << "\n"); 6145 Cost += C; 6146 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6147 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6148 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6149 << " for insertelements gather.\n" 6150 << "SLP: Current total cost = " << Cost << "\n"); 6151 Cost -= InsertCost; 6152 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6153 // Other elements - permutation of 2 vectors (the initial one and the 6154 // next Ith incoming vector). 6155 unsigned VF = ShuffleMask[I].size(); 6156 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6157 int Mask = ShuffleMask[I][Idx]; 6158 if (Mask != UndefMaskElem) 6159 CombinedMask[Idx] = MaxVF + Mask; 6160 else if (CombinedMask[Idx] != UndefMaskElem) 6161 CombinedMask[Idx] = Idx; 6162 } 6163 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6164 if (CombinedMask[Idx] != UndefMaskElem) 6165 CombinedMask[Idx] = Idx; 6166 InstructionCost C = 6167 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6168 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6169 << " for final shuffle of vector node and external " 6170 "insertelement users " 6171 << *VectorizableTree.front()->Scalars.front() << ".\n" 6172 << "SLP: Current total cost = " << Cost << "\n"); 6173 Cost += C; 6174 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6175 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6176 /*Insert*/ true, /*Extract*/ false); 6177 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6178 << " for insertelements gather.\n" 6179 << "SLP: Current total cost = " << Cost << "\n"); 6180 Cost -= InsertCost; 6181 } 6182 } 6183 6184 #ifndef NDEBUG 6185 SmallString<256> Str; 6186 { 6187 raw_svector_ostream OS(Str); 6188 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6189 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6190 << "SLP: Total Cost = " << Cost << ".\n"; 6191 } 6192 LLVM_DEBUG(dbgs() << Str); 6193 if (ViewSLPTree) 6194 ViewGraph(this, "SLP" + F->getName(), false, Str); 6195 #endif 6196 6197 return Cost; 6198 } 6199 6200 Optional<TargetTransformInfo::ShuffleKind> 6201 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6202 SmallVectorImpl<const TreeEntry *> &Entries) { 6203 // TODO: currently checking only for Scalars in the tree entry, need to count 6204 // reused elements too for better cost estimation. 6205 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6206 Entries.clear(); 6207 // Build a lists of values to tree entries. 6208 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6209 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6210 if (EntryPtr.get() == TE) 6211 break; 6212 if (EntryPtr->State != TreeEntry::NeedToGather) 6213 continue; 6214 for (Value *V : EntryPtr->Scalars) 6215 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6216 } 6217 // Find all tree entries used by the gathered values. If no common entries 6218 // found - not a shuffle. 6219 // Here we build a set of tree nodes for each gathered value and trying to 6220 // find the intersection between these sets. If we have at least one common 6221 // tree node for each gathered value - we have just a permutation of the 6222 // single vector. If we have 2 different sets, we're in situation where we 6223 // have a permutation of 2 input vectors. 6224 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6225 DenseMap<Value *, int> UsedValuesEntry; 6226 for (Value *V : TE->Scalars) { 6227 if (isa<UndefValue>(V)) 6228 continue; 6229 // Build a list of tree entries where V is used. 6230 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6231 auto It = ValueToTEs.find(V); 6232 if (It != ValueToTEs.end()) 6233 VToTEs = It->second; 6234 if (const TreeEntry *VTE = getTreeEntry(V)) 6235 VToTEs.insert(VTE); 6236 if (VToTEs.empty()) 6237 return None; 6238 if (UsedTEs.empty()) { 6239 // The first iteration, just insert the list of nodes to vector. 6240 UsedTEs.push_back(VToTEs); 6241 } else { 6242 // Need to check if there are any previously used tree nodes which use V. 6243 // If there are no such nodes, consider that we have another one input 6244 // vector. 6245 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6246 unsigned Idx = 0; 6247 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6248 // Do we have a non-empty intersection of previously listed tree entries 6249 // and tree entries using current V? 6250 set_intersect(VToTEs, Set); 6251 if (!VToTEs.empty()) { 6252 // Yes, write the new subset and continue analysis for the next 6253 // scalar. 6254 Set.swap(VToTEs); 6255 break; 6256 } 6257 VToTEs = SavedVToTEs; 6258 ++Idx; 6259 } 6260 // No non-empty intersection found - need to add a second set of possible 6261 // source vectors. 6262 if (Idx == UsedTEs.size()) { 6263 // If the number of input vectors is greater than 2 - not a permutation, 6264 // fallback to the regular gather. 6265 if (UsedTEs.size() == 2) 6266 return None; 6267 UsedTEs.push_back(SavedVToTEs); 6268 Idx = UsedTEs.size() - 1; 6269 } 6270 UsedValuesEntry.try_emplace(V, Idx); 6271 } 6272 } 6273 6274 unsigned VF = 0; 6275 if (UsedTEs.size() == 1) { 6276 // Try to find the perfect match in another gather node at first. 6277 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6278 return EntryPtr->isSame(TE->Scalars); 6279 }); 6280 if (It != UsedTEs.front().end()) { 6281 Entries.push_back(*It); 6282 std::iota(Mask.begin(), Mask.end(), 0); 6283 return TargetTransformInfo::SK_PermuteSingleSrc; 6284 } 6285 // No perfect match, just shuffle, so choose the first tree node. 6286 Entries.push_back(*UsedTEs.front().begin()); 6287 } else { 6288 // Try to find nodes with the same vector factor. 6289 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6290 DenseMap<int, const TreeEntry *> VFToTE; 6291 for (const TreeEntry *TE : UsedTEs.front()) 6292 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6293 for (const TreeEntry *TE : UsedTEs.back()) { 6294 auto It = VFToTE.find(TE->getVectorFactor()); 6295 if (It != VFToTE.end()) { 6296 VF = It->first; 6297 Entries.push_back(It->second); 6298 Entries.push_back(TE); 6299 break; 6300 } 6301 } 6302 // No 2 source vectors with the same vector factor - give up and do regular 6303 // gather. 6304 if (Entries.empty()) 6305 return None; 6306 } 6307 6308 // Build a shuffle mask for better cost estimation and vector emission. 6309 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6310 Value *V = TE->Scalars[I]; 6311 if (isa<UndefValue>(V)) 6312 continue; 6313 unsigned Idx = UsedValuesEntry.lookup(V); 6314 const TreeEntry *VTE = Entries[Idx]; 6315 int FoundLane = VTE->findLaneForValue(V); 6316 Mask[I] = Idx * VF + FoundLane; 6317 // Extra check required by isSingleSourceMaskImpl function (called by 6318 // ShuffleVectorInst::isSingleSourceMask). 6319 if (Mask[I] >= 2 * E) 6320 return None; 6321 } 6322 switch (Entries.size()) { 6323 case 1: 6324 return TargetTransformInfo::SK_PermuteSingleSrc; 6325 case 2: 6326 return TargetTransformInfo::SK_PermuteTwoSrc; 6327 default: 6328 break; 6329 } 6330 return None; 6331 } 6332 6333 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6334 const APInt &ShuffledIndices, 6335 bool NeedToShuffle) const { 6336 InstructionCost Cost = 6337 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6338 /*Extract*/ false); 6339 if (NeedToShuffle) 6340 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6341 return Cost; 6342 } 6343 6344 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6345 // Find the type of the operands in VL. 6346 Type *ScalarTy = VL[0]->getType(); 6347 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6348 ScalarTy = SI->getValueOperand()->getType(); 6349 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6350 bool DuplicateNonConst = false; 6351 // Find the cost of inserting/extracting values from the vector. 6352 // Check if the same elements are inserted several times and count them as 6353 // shuffle candidates. 6354 APInt ShuffledElements = APInt::getZero(VL.size()); 6355 DenseSet<Value *> UniqueElements; 6356 // Iterate in reverse order to consider insert elements with the high cost. 6357 for (unsigned I = VL.size(); I > 0; --I) { 6358 unsigned Idx = I - 1; 6359 // No need to shuffle duplicates for constants. 6360 if (isConstant(VL[Idx])) { 6361 ShuffledElements.setBit(Idx); 6362 continue; 6363 } 6364 if (!UniqueElements.insert(VL[Idx]).second) { 6365 DuplicateNonConst = true; 6366 ShuffledElements.setBit(Idx); 6367 } 6368 } 6369 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6370 } 6371 6372 // Perform operand reordering on the instructions in VL and return the reordered 6373 // operands in Left and Right. 6374 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6375 SmallVectorImpl<Value *> &Left, 6376 SmallVectorImpl<Value *> &Right, 6377 const DataLayout &DL, 6378 ScalarEvolution &SE, 6379 const BoUpSLP &R) { 6380 if (VL.empty()) 6381 return; 6382 VLOperands Ops(VL, DL, SE, R); 6383 // Reorder the operands in place. 6384 Ops.reorder(); 6385 Left = Ops.getVL(0); 6386 Right = Ops.getVL(1); 6387 } 6388 6389 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6390 // Get the basic block this bundle is in. All instructions in the bundle 6391 // should be in this block. 6392 auto *Front = E->getMainOp(); 6393 auto *BB = Front->getParent(); 6394 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6395 auto *I = cast<Instruction>(V); 6396 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6397 })); 6398 6399 // The last instruction in the bundle in program order. 6400 Instruction *LastInst = nullptr; 6401 6402 // Find the last instruction. The common case should be that BB has been 6403 // scheduled, and the last instruction is VL.back(). So we start with 6404 // VL.back() and iterate over schedule data until we reach the end of the 6405 // bundle. The end of the bundle is marked by null ScheduleData. 6406 if (BlocksSchedules.count(BB)) { 6407 auto *Bundle = 6408 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6409 if (Bundle && Bundle->isPartOfBundle()) 6410 for (; Bundle; Bundle = Bundle->NextInBundle) 6411 if (Bundle->OpValue == Bundle->Inst) 6412 LastInst = Bundle->Inst; 6413 } 6414 6415 // LastInst can still be null at this point if there's either not an entry 6416 // for BB in BlocksSchedules or there's no ScheduleData available for 6417 // VL.back(). This can be the case if buildTree_rec aborts for various 6418 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6419 // size is reached, etc.). ScheduleData is initialized in the scheduling 6420 // "dry-run". 6421 // 6422 // If this happens, we can still find the last instruction by brute force. We 6423 // iterate forwards from Front (inclusive) until we either see all 6424 // instructions in the bundle or reach the end of the block. If Front is the 6425 // last instruction in program order, LastInst will be set to Front, and we 6426 // will visit all the remaining instructions in the block. 6427 // 6428 // One of the reasons we exit early from buildTree_rec is to place an upper 6429 // bound on compile-time. Thus, taking an additional compile-time hit here is 6430 // not ideal. However, this should be exceedingly rare since it requires that 6431 // we both exit early from buildTree_rec and that the bundle be out-of-order 6432 // (causing us to iterate all the way to the end of the block). 6433 if (!LastInst) { 6434 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6435 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6436 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6437 LastInst = &I; 6438 if (Bundle.empty()) 6439 break; 6440 } 6441 } 6442 assert(LastInst && "Failed to find last instruction in bundle"); 6443 6444 // Set the insertion point after the last instruction in the bundle. Set the 6445 // debug location to Front. 6446 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6447 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6448 } 6449 6450 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6451 // List of instructions/lanes from current block and/or the blocks which are 6452 // part of the current loop. These instructions will be inserted at the end to 6453 // make it possible to optimize loops and hoist invariant instructions out of 6454 // the loops body with better chances for success. 6455 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6456 SmallSet<int, 4> PostponedIndices; 6457 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6458 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6459 SmallPtrSet<BasicBlock *, 4> Visited; 6460 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6461 InsertBB = InsertBB->getSinglePredecessor(); 6462 return InsertBB && InsertBB == InstBB; 6463 }; 6464 for (int I = 0, E = VL.size(); I < E; ++I) { 6465 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6466 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6467 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6468 PostponedIndices.insert(I).second) 6469 PostponedInsts.emplace_back(Inst, I); 6470 } 6471 6472 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6473 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6474 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6475 if (!InsElt) 6476 return Vec; 6477 GatherShuffleSeq.insert(InsElt); 6478 CSEBlocks.insert(InsElt->getParent()); 6479 // Add to our 'need-to-extract' list. 6480 if (TreeEntry *Entry = getTreeEntry(V)) { 6481 // Find which lane we need to extract. 6482 unsigned FoundLane = Entry->findLaneForValue(V); 6483 ExternalUses.emplace_back(V, InsElt, FoundLane); 6484 } 6485 return Vec; 6486 }; 6487 Value *Val0 = 6488 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6489 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6490 Value *Vec = PoisonValue::get(VecTy); 6491 SmallVector<int> NonConsts; 6492 // Insert constant values at first. 6493 for (int I = 0, E = VL.size(); I < E; ++I) { 6494 if (PostponedIndices.contains(I)) 6495 continue; 6496 if (!isConstant(VL[I])) { 6497 NonConsts.push_back(I); 6498 continue; 6499 } 6500 Vec = CreateInsertElement(Vec, VL[I], I); 6501 } 6502 // Insert non-constant values. 6503 for (int I : NonConsts) 6504 Vec = CreateInsertElement(Vec, VL[I], I); 6505 // Append instructions, which are/may be part of the loop, in the end to make 6506 // it possible to hoist non-loop-based instructions. 6507 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6508 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6509 6510 return Vec; 6511 } 6512 6513 namespace { 6514 /// Merges shuffle masks and emits final shuffle instruction, if required. 6515 class ShuffleInstructionBuilder { 6516 IRBuilderBase &Builder; 6517 const unsigned VF = 0; 6518 bool IsFinalized = false; 6519 SmallVector<int, 4> Mask; 6520 /// Holds all of the instructions that we gathered. 6521 SetVector<Instruction *> &GatherShuffleSeq; 6522 /// A list of blocks that we are going to CSE. 6523 SetVector<BasicBlock *> &CSEBlocks; 6524 6525 public: 6526 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6527 SetVector<Instruction *> &GatherShuffleSeq, 6528 SetVector<BasicBlock *> &CSEBlocks) 6529 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6530 CSEBlocks(CSEBlocks) {} 6531 6532 /// Adds a mask, inverting it before applying. 6533 void addInversedMask(ArrayRef<unsigned> SubMask) { 6534 if (SubMask.empty()) 6535 return; 6536 SmallVector<int, 4> NewMask; 6537 inversePermutation(SubMask, NewMask); 6538 addMask(NewMask); 6539 } 6540 6541 /// Functions adds masks, merging them into single one. 6542 void addMask(ArrayRef<unsigned> SubMask) { 6543 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6544 addMask(NewMask); 6545 } 6546 6547 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6548 6549 Value *finalize(Value *V) { 6550 IsFinalized = true; 6551 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6552 if (VF == ValueVF && Mask.empty()) 6553 return V; 6554 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6555 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6556 addMask(NormalizedMask); 6557 6558 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6559 return V; 6560 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6561 if (auto *I = dyn_cast<Instruction>(Vec)) { 6562 GatherShuffleSeq.insert(I); 6563 CSEBlocks.insert(I->getParent()); 6564 } 6565 return Vec; 6566 } 6567 6568 ~ShuffleInstructionBuilder() { 6569 assert((IsFinalized || Mask.empty()) && 6570 "Shuffle construction must be finalized."); 6571 } 6572 }; 6573 } // namespace 6574 6575 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6576 const unsigned VF = VL.size(); 6577 InstructionsState S = getSameOpcode(VL); 6578 if (S.getOpcode()) { 6579 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6580 if (E->isSame(VL)) { 6581 Value *V = vectorizeTree(E); 6582 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6583 if (!E->ReuseShuffleIndices.empty()) { 6584 // Reshuffle to get only unique values. 6585 // If some of the scalars are duplicated in the vectorization tree 6586 // entry, we do not vectorize them but instead generate a mask for 6587 // the reuses. But if there are several users of the same entry, 6588 // they may have different vectorization factors. This is especially 6589 // important for PHI nodes. In this case, we need to adapt the 6590 // resulting instruction for the user vectorization factor and have 6591 // to reshuffle it again to take only unique elements of the vector. 6592 // Without this code the function incorrectly returns reduced vector 6593 // instruction with the same elements, not with the unique ones. 6594 6595 // block: 6596 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6597 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6598 // ... (use %2) 6599 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6600 // br %block 6601 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6602 SmallSet<int, 4> UsedIdxs; 6603 int Pos = 0; 6604 int Sz = VL.size(); 6605 for (int Idx : E->ReuseShuffleIndices) { 6606 if (Idx != Sz && Idx != UndefMaskElem && 6607 UsedIdxs.insert(Idx).second) 6608 UniqueIdxs[Idx] = Pos; 6609 ++Pos; 6610 } 6611 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6612 "less than original vector size."); 6613 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6614 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6615 } else { 6616 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6617 "Expected vectorization factor less " 6618 "than original vector size."); 6619 SmallVector<int> UniformMask(VF, 0); 6620 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6621 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6622 } 6623 if (auto *I = dyn_cast<Instruction>(V)) { 6624 GatherShuffleSeq.insert(I); 6625 CSEBlocks.insert(I->getParent()); 6626 } 6627 } 6628 return V; 6629 } 6630 } 6631 6632 // Can't vectorize this, so simply build a new vector with each lane 6633 // corresponding to the requested value. 6634 return createBuildVector(VL); 6635 } 6636 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6637 unsigned VF = VL.size(); 6638 // Exploit possible reuse of values across lanes. 6639 SmallVector<int> ReuseShuffleIndicies; 6640 SmallVector<Value *> UniqueValues; 6641 if (VL.size() > 2) { 6642 DenseMap<Value *, unsigned> UniquePositions; 6643 unsigned NumValues = 6644 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6645 return !isa<UndefValue>(V); 6646 }).base()); 6647 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6648 int UniqueVals = 0; 6649 for (Value *V : VL.drop_back(VL.size() - VF)) { 6650 if (isa<UndefValue>(V)) { 6651 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6652 continue; 6653 } 6654 if (isConstant(V)) { 6655 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6656 UniqueValues.emplace_back(V); 6657 continue; 6658 } 6659 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6660 ReuseShuffleIndicies.emplace_back(Res.first->second); 6661 if (Res.second) { 6662 UniqueValues.emplace_back(V); 6663 ++UniqueVals; 6664 } 6665 } 6666 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6667 // Emit pure splat vector. 6668 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6669 UndefMaskElem); 6670 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6671 ReuseShuffleIndicies.clear(); 6672 UniqueValues.clear(); 6673 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6674 } 6675 UniqueValues.append(VF - UniqueValues.size(), 6676 PoisonValue::get(VL[0]->getType())); 6677 VL = UniqueValues; 6678 } 6679 6680 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6681 CSEBlocks); 6682 Value *Vec = gather(VL); 6683 if (!ReuseShuffleIndicies.empty()) { 6684 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6685 Vec = ShuffleBuilder.finalize(Vec); 6686 } 6687 return Vec; 6688 } 6689 6690 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6691 IRBuilder<>::InsertPointGuard Guard(Builder); 6692 6693 if (E->VectorizedValue) { 6694 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6695 return E->VectorizedValue; 6696 } 6697 6698 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6699 unsigned VF = E->getVectorFactor(); 6700 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6701 CSEBlocks); 6702 if (E->State == TreeEntry::NeedToGather) { 6703 if (E->getMainOp()) 6704 setInsertPointAfterBundle(E); 6705 Value *Vec; 6706 SmallVector<int> Mask; 6707 SmallVector<const TreeEntry *> Entries; 6708 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6709 isGatherShuffledEntry(E, Mask, Entries); 6710 if (Shuffle.hasValue()) { 6711 assert((Entries.size() == 1 || Entries.size() == 2) && 6712 "Expected shuffle of 1 or 2 entries."); 6713 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6714 Entries.back()->VectorizedValue, Mask); 6715 if (auto *I = dyn_cast<Instruction>(Vec)) { 6716 GatherShuffleSeq.insert(I); 6717 CSEBlocks.insert(I->getParent()); 6718 } 6719 } else { 6720 Vec = gather(E->Scalars); 6721 } 6722 if (NeedToShuffleReuses) { 6723 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6724 Vec = ShuffleBuilder.finalize(Vec); 6725 } 6726 E->VectorizedValue = Vec; 6727 return Vec; 6728 } 6729 6730 assert((E->State == TreeEntry::Vectorize || 6731 E->State == TreeEntry::ScatterVectorize) && 6732 "Unhandled state"); 6733 unsigned ShuffleOrOp = 6734 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6735 Instruction *VL0 = E->getMainOp(); 6736 Type *ScalarTy = VL0->getType(); 6737 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6738 ScalarTy = Store->getValueOperand()->getType(); 6739 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6740 ScalarTy = IE->getOperand(1)->getType(); 6741 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6742 switch (ShuffleOrOp) { 6743 case Instruction::PHI: { 6744 assert( 6745 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6746 "PHI reordering is free."); 6747 auto *PH = cast<PHINode>(VL0); 6748 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6749 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6750 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6751 Value *V = NewPhi; 6752 6753 // Adjust insertion point once all PHI's have been generated. 6754 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6755 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6756 6757 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6758 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6759 V = ShuffleBuilder.finalize(V); 6760 6761 E->VectorizedValue = V; 6762 6763 // PHINodes may have multiple entries from the same block. We want to 6764 // visit every block once. 6765 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6766 6767 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6768 ValueList Operands; 6769 BasicBlock *IBB = PH->getIncomingBlock(i); 6770 6771 if (!VisitedBBs.insert(IBB).second) { 6772 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6773 continue; 6774 } 6775 6776 Builder.SetInsertPoint(IBB->getTerminator()); 6777 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6778 Value *Vec = vectorizeTree(E->getOperand(i)); 6779 NewPhi->addIncoming(Vec, IBB); 6780 } 6781 6782 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6783 "Invalid number of incoming values"); 6784 return V; 6785 } 6786 6787 case Instruction::ExtractElement: { 6788 Value *V = E->getSingleOperand(0); 6789 Builder.SetInsertPoint(VL0); 6790 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6791 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6792 V = ShuffleBuilder.finalize(V); 6793 E->VectorizedValue = V; 6794 return V; 6795 } 6796 case Instruction::ExtractValue: { 6797 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6798 Builder.SetInsertPoint(LI); 6799 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6800 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6801 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6802 if (MSSA) { 6803 MemorySSAUpdater MSSAU(MSSA); 6804 auto *Access = MSSA->getMemoryAccess(LI); 6805 assert(Access); 6806 MemoryUseOrDef *NewAccess = 6807 MSSAU.createMemoryAccessBefore(V, Access->getDefiningAccess(), 6808 Access); 6809 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 6810 } 6811 Value *NewV = propagateMetadata(V, E->Scalars); 6812 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6813 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6814 NewV = ShuffleBuilder.finalize(NewV); 6815 E->VectorizedValue = NewV; 6816 return NewV; 6817 } 6818 case Instruction::InsertElement: { 6819 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6820 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6821 Value *V = vectorizeTree(E->getOperand(1)); 6822 6823 // Create InsertVector shuffle if necessary 6824 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6825 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6826 })); 6827 const unsigned NumElts = 6828 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6829 const unsigned NumScalars = E->Scalars.size(); 6830 6831 unsigned Offset = *getInsertIndex(VL0); 6832 assert(Offset < NumElts && "Failed to find vector index offset"); 6833 6834 // Create shuffle to resize vector 6835 SmallVector<int> Mask; 6836 if (!E->ReorderIndices.empty()) { 6837 inversePermutation(E->ReorderIndices, Mask); 6838 Mask.append(NumElts - NumScalars, UndefMaskElem); 6839 } else { 6840 Mask.assign(NumElts, UndefMaskElem); 6841 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6842 } 6843 // Create InsertVector shuffle if necessary 6844 bool IsIdentity = true; 6845 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6846 Mask.swap(PrevMask); 6847 for (unsigned I = 0; I < NumScalars; ++I) { 6848 Value *Scalar = E->Scalars[PrevMask[I]]; 6849 unsigned InsertIdx = *getInsertIndex(Scalar); 6850 IsIdentity &= InsertIdx - Offset == I; 6851 Mask[InsertIdx - Offset] = I; 6852 } 6853 if (!IsIdentity || NumElts != NumScalars) { 6854 V = Builder.CreateShuffleVector(V, Mask); 6855 if (auto *I = dyn_cast<Instruction>(V)) { 6856 GatherShuffleSeq.insert(I); 6857 CSEBlocks.insert(I->getParent()); 6858 } 6859 } 6860 6861 if ((!IsIdentity || Offset != 0 || 6862 !isUndefVector(FirstInsert->getOperand(0))) && 6863 NumElts != NumScalars) { 6864 SmallVector<int> InsertMask(NumElts); 6865 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6866 for (unsigned I = 0; I < NumElts; I++) { 6867 if (Mask[I] != UndefMaskElem) 6868 InsertMask[Offset + I] = NumElts + I; 6869 } 6870 6871 V = Builder.CreateShuffleVector( 6872 FirstInsert->getOperand(0), V, InsertMask, 6873 cast<Instruction>(E->Scalars.back())->getName()); 6874 if (auto *I = dyn_cast<Instruction>(V)) { 6875 GatherShuffleSeq.insert(I); 6876 CSEBlocks.insert(I->getParent()); 6877 } 6878 } 6879 6880 ++NumVectorInstructions; 6881 E->VectorizedValue = V; 6882 return V; 6883 } 6884 case Instruction::ZExt: 6885 case Instruction::SExt: 6886 case Instruction::FPToUI: 6887 case Instruction::FPToSI: 6888 case Instruction::FPExt: 6889 case Instruction::PtrToInt: 6890 case Instruction::IntToPtr: 6891 case Instruction::SIToFP: 6892 case Instruction::UIToFP: 6893 case Instruction::Trunc: 6894 case Instruction::FPTrunc: 6895 case Instruction::BitCast: { 6896 setInsertPointAfterBundle(E); 6897 6898 Value *InVec = vectorizeTree(E->getOperand(0)); 6899 6900 if (E->VectorizedValue) { 6901 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6902 return E->VectorizedValue; 6903 } 6904 6905 auto *CI = cast<CastInst>(VL0); 6906 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6907 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6908 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6909 V = ShuffleBuilder.finalize(V); 6910 6911 E->VectorizedValue = V; 6912 ++NumVectorInstructions; 6913 return V; 6914 } 6915 case Instruction::FCmp: 6916 case Instruction::ICmp: { 6917 setInsertPointAfterBundle(E); 6918 6919 Value *L = vectorizeTree(E->getOperand(0)); 6920 Value *R = vectorizeTree(E->getOperand(1)); 6921 6922 if (E->VectorizedValue) { 6923 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6924 return E->VectorizedValue; 6925 } 6926 6927 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6928 Value *V = Builder.CreateCmp(P0, L, R); 6929 propagateIRFlags(V, E->Scalars, VL0); 6930 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6931 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6932 V = ShuffleBuilder.finalize(V); 6933 6934 E->VectorizedValue = V; 6935 ++NumVectorInstructions; 6936 return V; 6937 } 6938 case Instruction::Select: { 6939 setInsertPointAfterBundle(E); 6940 6941 Value *Cond = vectorizeTree(E->getOperand(0)); 6942 Value *True = vectorizeTree(E->getOperand(1)); 6943 Value *False = vectorizeTree(E->getOperand(2)); 6944 6945 if (E->VectorizedValue) { 6946 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6947 return E->VectorizedValue; 6948 } 6949 6950 Value *V = Builder.CreateSelect(Cond, True, False); 6951 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6952 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6953 V = ShuffleBuilder.finalize(V); 6954 6955 E->VectorizedValue = V; 6956 ++NumVectorInstructions; 6957 return V; 6958 } 6959 case Instruction::FNeg: { 6960 setInsertPointAfterBundle(E); 6961 6962 Value *Op = vectorizeTree(E->getOperand(0)); 6963 6964 if (E->VectorizedValue) { 6965 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6966 return E->VectorizedValue; 6967 } 6968 6969 Value *V = Builder.CreateUnOp( 6970 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6971 propagateIRFlags(V, E->Scalars, VL0); 6972 if (auto *I = dyn_cast<Instruction>(V)) 6973 V = propagateMetadata(I, E->Scalars); 6974 6975 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6976 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6977 V = ShuffleBuilder.finalize(V); 6978 6979 E->VectorizedValue = V; 6980 ++NumVectorInstructions; 6981 6982 return V; 6983 } 6984 case Instruction::Add: 6985 case Instruction::FAdd: 6986 case Instruction::Sub: 6987 case Instruction::FSub: 6988 case Instruction::Mul: 6989 case Instruction::FMul: 6990 case Instruction::UDiv: 6991 case Instruction::SDiv: 6992 case Instruction::FDiv: 6993 case Instruction::URem: 6994 case Instruction::SRem: 6995 case Instruction::FRem: 6996 case Instruction::Shl: 6997 case Instruction::LShr: 6998 case Instruction::AShr: 6999 case Instruction::And: 7000 case Instruction::Or: 7001 case Instruction::Xor: { 7002 setInsertPointAfterBundle(E); 7003 7004 Value *LHS = vectorizeTree(E->getOperand(0)); 7005 Value *RHS = vectorizeTree(E->getOperand(1)); 7006 7007 if (E->VectorizedValue) { 7008 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7009 return E->VectorizedValue; 7010 } 7011 7012 Value *V = Builder.CreateBinOp( 7013 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7014 RHS); 7015 propagateIRFlags(V, E->Scalars, VL0); 7016 if (auto *I = dyn_cast<Instruction>(V)) 7017 V = propagateMetadata(I, E->Scalars); 7018 7019 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7020 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7021 V = ShuffleBuilder.finalize(V); 7022 7023 E->VectorizedValue = V; 7024 ++NumVectorInstructions; 7025 7026 return V; 7027 } 7028 case Instruction::Load: { 7029 // Loads are inserted at the head of the tree because we don't want to 7030 // sink them all the way down past store instructions. 7031 setInsertPointAfterBundle(E); 7032 7033 LoadInst *LI = cast<LoadInst>(VL0); 7034 Instruction *NewLI; 7035 unsigned AS = LI->getPointerAddressSpace(); 7036 Value *PO = LI->getPointerOperand(); 7037 if (E->State == TreeEntry::Vectorize) { 7038 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7039 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7040 7041 // The pointer operand uses an in-tree scalar so we add the new BitCast 7042 // or LoadInst to ExternalUses list to make sure that an extract will 7043 // be generated in the future. 7044 if (TreeEntry *Entry = getTreeEntry(PO)) { 7045 // Find which lane we need to extract. 7046 unsigned FoundLane = Entry->findLaneForValue(PO); 7047 ExternalUses.emplace_back( 7048 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7049 } 7050 } else { 7051 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7052 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7053 // Use the minimum alignment of the gathered loads. 7054 Align CommonAlignment = LI->getAlign(); 7055 for (Value *V : E->Scalars) 7056 CommonAlignment = 7057 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7058 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7059 } 7060 7061 if (MSSA) { 7062 MemorySSAUpdater MSSAU(MSSA); 7063 auto *Access = MSSA->getMemoryAccess(LI); 7064 assert(Access); 7065 MemoryUseOrDef *NewAccess = 7066 MSSAU.createMemoryAccessAfter(NewLI, Access->getDefiningAccess(), 7067 Access); 7068 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 7069 } 7070 7071 Value *V = propagateMetadata(NewLI, E->Scalars); 7072 7073 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7074 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7075 V = ShuffleBuilder.finalize(V); 7076 E->VectorizedValue = V; 7077 ++NumVectorInstructions; 7078 return V; 7079 } 7080 case Instruction::Store: { 7081 auto *SI = cast<StoreInst>(VL0); 7082 unsigned AS = SI->getPointerAddressSpace(); 7083 7084 setInsertPointAfterBundle(E); 7085 7086 Value *VecValue = vectorizeTree(E->getOperand(0)); 7087 ShuffleBuilder.addMask(E->ReorderIndices); 7088 VecValue = ShuffleBuilder.finalize(VecValue); 7089 7090 Value *ScalarPtr = SI->getPointerOperand(); 7091 Value *VecPtr = Builder.CreateBitCast( 7092 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7093 StoreInst *ST = 7094 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7095 7096 if (MSSA) { 7097 MemorySSAUpdater MSSAU(MSSA); 7098 auto *Access = MSSA->getMemoryAccess(SI); 7099 assert(Access); 7100 MemoryUseOrDef *NewAccess = 7101 MSSAU.createMemoryAccessAfter(ST, Access->getDefiningAccess(), 7102 Access); 7103 MSSAU.insertDef(cast<MemoryDef>(NewAccess), true); 7104 } 7105 7106 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7107 // StoreInst to ExternalUses to make sure that an extract will be 7108 // generated in the future. 7109 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7110 // Find which lane we need to extract. 7111 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7112 ExternalUses.push_back(ExternalUser( 7113 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7114 FoundLane)); 7115 } 7116 7117 Value *V = propagateMetadata(ST, E->Scalars); 7118 7119 E->VectorizedValue = V; 7120 ++NumVectorInstructions; 7121 return V; 7122 } 7123 case Instruction::GetElementPtr: { 7124 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7125 setInsertPointAfterBundle(E); 7126 7127 Value *Op0 = vectorizeTree(E->getOperand(0)); 7128 7129 SmallVector<Value *> OpVecs; 7130 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7131 Value *OpVec = vectorizeTree(E->getOperand(J)); 7132 OpVecs.push_back(OpVec); 7133 } 7134 7135 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7136 if (Instruction *I = dyn_cast<Instruction>(V)) 7137 V = propagateMetadata(I, E->Scalars); 7138 7139 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7140 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7141 V = ShuffleBuilder.finalize(V); 7142 7143 E->VectorizedValue = V; 7144 ++NumVectorInstructions; 7145 7146 return V; 7147 } 7148 case Instruction::Call: { 7149 CallInst *CI = cast<CallInst>(VL0); 7150 setInsertPointAfterBundle(E); 7151 7152 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7153 if (Function *FI = CI->getCalledFunction()) 7154 IID = FI->getIntrinsicID(); 7155 7156 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7157 7158 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7159 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7160 VecCallCosts.first <= VecCallCosts.second; 7161 7162 Value *ScalarArg = nullptr; 7163 std::vector<Value *> OpVecs; 7164 SmallVector<Type *, 2> TysForDecl = 7165 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7166 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7167 ValueList OpVL; 7168 // Some intrinsics have scalar arguments. This argument should not be 7169 // vectorized. 7170 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7171 CallInst *CEI = cast<CallInst>(VL0); 7172 ScalarArg = CEI->getArgOperand(j); 7173 OpVecs.push_back(CEI->getArgOperand(j)); 7174 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7175 TysForDecl.push_back(ScalarArg->getType()); 7176 continue; 7177 } 7178 7179 Value *OpVec = vectorizeTree(E->getOperand(j)); 7180 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7181 OpVecs.push_back(OpVec); 7182 } 7183 7184 Function *CF; 7185 if (!UseIntrinsic) { 7186 VFShape Shape = 7187 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7188 VecTy->getNumElements())), 7189 false /*HasGlobalPred*/); 7190 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7191 } else { 7192 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7193 } 7194 7195 SmallVector<OperandBundleDef, 1> OpBundles; 7196 CI->getOperandBundlesAsDefs(OpBundles); 7197 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7198 7199 // The scalar argument uses an in-tree scalar so we add the new vectorized 7200 // call to ExternalUses list to make sure that an extract will be 7201 // generated in the future. 7202 if (ScalarArg) { 7203 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7204 // Find which lane we need to extract. 7205 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7206 ExternalUses.push_back( 7207 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7208 } 7209 } 7210 7211 propagateIRFlags(V, E->Scalars, VL0); 7212 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7213 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7214 V = ShuffleBuilder.finalize(V); 7215 7216 E->VectorizedValue = V; 7217 ++NumVectorInstructions; 7218 return V; 7219 } 7220 case Instruction::ShuffleVector: { 7221 assert(E->isAltShuffle() && 7222 ((Instruction::isBinaryOp(E->getOpcode()) && 7223 Instruction::isBinaryOp(E->getAltOpcode())) || 7224 (Instruction::isCast(E->getOpcode()) && 7225 Instruction::isCast(E->getAltOpcode())) || 7226 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7227 "Invalid Shuffle Vector Operand"); 7228 7229 Value *LHS = nullptr, *RHS = nullptr; 7230 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7231 setInsertPointAfterBundle(E); 7232 LHS = vectorizeTree(E->getOperand(0)); 7233 RHS = vectorizeTree(E->getOperand(1)); 7234 } else { 7235 setInsertPointAfterBundle(E); 7236 LHS = vectorizeTree(E->getOperand(0)); 7237 } 7238 7239 if (E->VectorizedValue) { 7240 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7241 return E->VectorizedValue; 7242 } 7243 7244 Value *V0, *V1; 7245 if (Instruction::isBinaryOp(E->getOpcode())) { 7246 V0 = Builder.CreateBinOp( 7247 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7248 V1 = Builder.CreateBinOp( 7249 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7250 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7251 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7252 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7253 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7254 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7255 } else { 7256 V0 = Builder.CreateCast( 7257 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7258 V1 = Builder.CreateCast( 7259 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7260 } 7261 // Add V0 and V1 to later analysis to try to find and remove matching 7262 // instruction, if any. 7263 for (Value *V : {V0, V1}) { 7264 if (auto *I = dyn_cast<Instruction>(V)) { 7265 GatherShuffleSeq.insert(I); 7266 CSEBlocks.insert(I->getParent()); 7267 } 7268 } 7269 7270 // Create shuffle to take alternate operations from the vector. 7271 // Also, gather up main and alt scalar ops to propagate IR flags to 7272 // each vector operation. 7273 ValueList OpScalars, AltScalars; 7274 SmallVector<int> Mask; 7275 buildShuffleEntryMask( 7276 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7277 [E](Instruction *I) { 7278 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7279 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7280 }, 7281 Mask, &OpScalars, &AltScalars); 7282 7283 propagateIRFlags(V0, OpScalars); 7284 propagateIRFlags(V1, AltScalars); 7285 7286 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7287 if (auto *I = dyn_cast<Instruction>(V)) { 7288 V = propagateMetadata(I, E->Scalars); 7289 GatherShuffleSeq.insert(I); 7290 CSEBlocks.insert(I->getParent()); 7291 } 7292 V = ShuffleBuilder.finalize(V); 7293 7294 E->VectorizedValue = V; 7295 ++NumVectorInstructions; 7296 7297 return V; 7298 } 7299 default: 7300 llvm_unreachable("unknown inst"); 7301 } 7302 return nullptr; 7303 } 7304 7305 Value *BoUpSLP::vectorizeTree() { 7306 ExtraValueToDebugLocsMap ExternallyUsedValues; 7307 return vectorizeTree(ExternallyUsedValues); 7308 } 7309 7310 Value * 7311 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7312 // All blocks must be scheduled before any instructions are inserted. 7313 for (auto &BSIter : BlocksSchedules) { 7314 scheduleBlock(BSIter.second.get()); 7315 } 7316 7317 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7318 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7319 7320 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7321 // vectorized root. InstCombine will then rewrite the entire expression. We 7322 // sign extend the extracted values below. 7323 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7324 if (MinBWs.count(ScalarRoot)) { 7325 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7326 // If current instr is a phi and not the last phi, insert it after the 7327 // last phi node. 7328 if (isa<PHINode>(I)) 7329 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7330 else 7331 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7332 } 7333 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7334 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7335 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7336 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7337 VectorizableTree[0]->VectorizedValue = Trunc; 7338 } 7339 7340 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7341 << " values .\n"); 7342 7343 // Extract all of the elements with the external uses. 7344 for (const auto &ExternalUse : ExternalUses) { 7345 Value *Scalar = ExternalUse.Scalar; 7346 llvm::User *User = ExternalUse.User; 7347 7348 // Skip users that we already RAUW. This happens when one instruction 7349 // has multiple uses of the same value. 7350 if (User && !is_contained(Scalar->users(), User)) 7351 continue; 7352 TreeEntry *E = getTreeEntry(Scalar); 7353 assert(E && "Invalid scalar"); 7354 assert(E->State != TreeEntry::NeedToGather && 7355 "Extracting from a gather list"); 7356 7357 Value *Vec = E->VectorizedValue; 7358 assert(Vec && "Can't find vectorizable value"); 7359 7360 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7361 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7362 if (Scalar->getType() != Vec->getType()) { 7363 Value *Ex; 7364 // "Reuse" the existing extract to improve final codegen. 7365 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7366 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7367 ES->getOperand(1)); 7368 } else { 7369 Ex = Builder.CreateExtractElement(Vec, Lane); 7370 } 7371 // If necessary, sign-extend or zero-extend ScalarRoot 7372 // to the larger type. 7373 if (!MinBWs.count(ScalarRoot)) 7374 return Ex; 7375 if (MinBWs[ScalarRoot].second) 7376 return Builder.CreateSExt(Ex, Scalar->getType()); 7377 return Builder.CreateZExt(Ex, Scalar->getType()); 7378 } 7379 assert(isa<FixedVectorType>(Scalar->getType()) && 7380 isa<InsertElementInst>(Scalar) && 7381 "In-tree scalar of vector type is not insertelement?"); 7382 return Vec; 7383 }; 7384 // If User == nullptr, the Scalar is used as extra arg. Generate 7385 // ExtractElement instruction and update the record for this scalar in 7386 // ExternallyUsedValues. 7387 if (!User) { 7388 assert(ExternallyUsedValues.count(Scalar) && 7389 "Scalar with nullptr as an external user must be registered in " 7390 "ExternallyUsedValues map"); 7391 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7392 Builder.SetInsertPoint(VecI->getParent(), 7393 std::next(VecI->getIterator())); 7394 } else { 7395 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7396 } 7397 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7398 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7399 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7400 auto It = ExternallyUsedValues.find(Scalar); 7401 assert(It != ExternallyUsedValues.end() && 7402 "Externally used scalar is not found in ExternallyUsedValues"); 7403 NewInstLocs.append(It->second); 7404 ExternallyUsedValues.erase(Scalar); 7405 // Required to update internally referenced instructions. 7406 Scalar->replaceAllUsesWith(NewInst); 7407 continue; 7408 } 7409 7410 // Generate extracts for out-of-tree users. 7411 // Find the insertion point for the extractelement lane. 7412 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7413 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7414 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7415 if (PH->getIncomingValue(i) == Scalar) { 7416 Instruction *IncomingTerminator = 7417 PH->getIncomingBlock(i)->getTerminator(); 7418 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7419 Builder.SetInsertPoint(VecI->getParent(), 7420 std::next(VecI->getIterator())); 7421 } else { 7422 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7423 } 7424 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7425 CSEBlocks.insert(PH->getIncomingBlock(i)); 7426 PH->setOperand(i, NewInst); 7427 } 7428 } 7429 } else { 7430 Builder.SetInsertPoint(cast<Instruction>(User)); 7431 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7432 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7433 User->replaceUsesOfWith(Scalar, NewInst); 7434 } 7435 } else { 7436 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7437 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7438 CSEBlocks.insert(&F->getEntryBlock()); 7439 User->replaceUsesOfWith(Scalar, NewInst); 7440 } 7441 7442 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7443 } 7444 7445 // For each vectorized value: 7446 for (auto &TEPtr : VectorizableTree) { 7447 TreeEntry *Entry = TEPtr.get(); 7448 7449 // No need to handle users of gathered values. 7450 if (Entry->State == TreeEntry::NeedToGather) 7451 continue; 7452 7453 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7454 7455 // For each lane: 7456 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7457 Value *Scalar = Entry->Scalars[Lane]; 7458 7459 #ifndef NDEBUG 7460 Type *Ty = Scalar->getType(); 7461 if (!Ty->isVoidTy()) { 7462 for (User *U : Scalar->users()) { 7463 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7464 7465 // It is legal to delete users in the ignorelist. 7466 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7467 (isa_and_nonnull<Instruction>(U) && 7468 isDeleted(cast<Instruction>(U)))) && 7469 "Deleting out-of-tree value"); 7470 } 7471 } 7472 #endif 7473 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7474 eraseInstruction(cast<Instruction>(Scalar)); 7475 } 7476 } 7477 7478 Builder.ClearInsertionPoint(); 7479 InstrElementSize.clear(); 7480 7481 return VectorizableTree[0]->VectorizedValue; 7482 } 7483 7484 void BoUpSLP::optimizeGatherSequence() { 7485 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7486 << " gather sequences instructions.\n"); 7487 // LICM InsertElementInst sequences. 7488 for (Instruction *I : GatherShuffleSeq) { 7489 if (isDeleted(I)) 7490 continue; 7491 7492 // Check if this block is inside a loop. 7493 Loop *L = LI->getLoopFor(I->getParent()); 7494 if (!L) 7495 continue; 7496 7497 // Check if it has a preheader. 7498 BasicBlock *PreHeader = L->getLoopPreheader(); 7499 if (!PreHeader) 7500 continue; 7501 7502 // If the vector or the element that we insert into it are 7503 // instructions that are defined in this basic block then we can't 7504 // hoist this instruction. 7505 if (any_of(I->operands(), [L](Value *V) { 7506 auto *OpI = dyn_cast<Instruction>(V); 7507 return OpI && L->contains(OpI); 7508 })) 7509 continue; 7510 7511 // We can hoist this instruction. Move it to the pre-header. 7512 I->moveBefore(PreHeader->getTerminator()); 7513 } 7514 7515 // Make a list of all reachable blocks in our CSE queue. 7516 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7517 CSEWorkList.reserve(CSEBlocks.size()); 7518 for (BasicBlock *BB : CSEBlocks) 7519 if (DomTreeNode *N = DT->getNode(BB)) { 7520 assert(DT->isReachableFromEntry(N)); 7521 CSEWorkList.push_back(N); 7522 } 7523 7524 // Sort blocks by domination. This ensures we visit a block after all blocks 7525 // dominating it are visited. 7526 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7527 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7528 "Different nodes should have different DFS numbers"); 7529 return A->getDFSNumIn() < B->getDFSNumIn(); 7530 }); 7531 7532 // Less defined shuffles can be replaced by the more defined copies. 7533 // Between two shuffles one is less defined if it has the same vector operands 7534 // and its mask indeces are the same as in the first one or undefs. E.g. 7535 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7536 // poison, <0, 0, 0, 0>. 7537 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7538 SmallVectorImpl<int> &NewMask) { 7539 if (I1->getType() != I2->getType()) 7540 return false; 7541 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7542 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7543 if (!SI1 || !SI2) 7544 return I1->isIdenticalTo(I2); 7545 if (SI1->isIdenticalTo(SI2)) 7546 return true; 7547 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7548 if (SI1->getOperand(I) != SI2->getOperand(I)) 7549 return false; 7550 // Check if the second instruction is more defined than the first one. 7551 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7552 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7553 // Count trailing undefs in the mask to check the final number of used 7554 // registers. 7555 unsigned LastUndefsCnt = 0; 7556 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7557 if (SM1[I] == UndefMaskElem) 7558 ++LastUndefsCnt; 7559 else 7560 LastUndefsCnt = 0; 7561 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7562 NewMask[I] != SM1[I]) 7563 return false; 7564 if (NewMask[I] == UndefMaskElem) 7565 NewMask[I] = SM1[I]; 7566 } 7567 // Check if the last undefs actually change the final number of used vector 7568 // registers. 7569 return SM1.size() - LastUndefsCnt > 1 && 7570 TTI->getNumberOfParts(SI1->getType()) == 7571 TTI->getNumberOfParts( 7572 FixedVectorType::get(SI1->getType()->getElementType(), 7573 SM1.size() - LastUndefsCnt)); 7574 }; 7575 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7576 // instructions. TODO: We can further optimize this scan if we split the 7577 // instructions into different buckets based on the insert lane. 7578 SmallVector<Instruction *, 16> Visited; 7579 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7580 assert(*I && 7581 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7582 "Worklist not sorted properly!"); 7583 BasicBlock *BB = (*I)->getBlock(); 7584 // For all instructions in blocks containing gather sequences: 7585 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7586 if (isDeleted(&In)) 7587 continue; 7588 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7589 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7590 continue; 7591 7592 // Check if we can replace this instruction with any of the 7593 // visited instructions. 7594 bool Replaced = false; 7595 for (Instruction *&V : Visited) { 7596 SmallVector<int> NewMask; 7597 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7598 DT->dominates(V->getParent(), In.getParent())) { 7599 In.replaceAllUsesWith(V); 7600 eraseInstruction(&In); 7601 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7602 if (!NewMask.empty()) 7603 SI->setShuffleMask(NewMask); 7604 Replaced = true; 7605 break; 7606 } 7607 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7608 GatherShuffleSeq.contains(V) && 7609 IsIdenticalOrLessDefined(V, &In, NewMask) && 7610 DT->dominates(In.getParent(), V->getParent())) { 7611 In.moveAfter(V); 7612 V->replaceAllUsesWith(&In); 7613 eraseInstruction(V); 7614 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7615 if (!NewMask.empty()) 7616 SI->setShuffleMask(NewMask); 7617 V = &In; 7618 Replaced = true; 7619 break; 7620 } 7621 } 7622 if (!Replaced) { 7623 assert(!is_contained(Visited, &In)); 7624 Visited.push_back(&In); 7625 } 7626 } 7627 } 7628 CSEBlocks.clear(); 7629 GatherShuffleSeq.clear(); 7630 } 7631 7632 BoUpSLP::ScheduleData * 7633 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7634 ScheduleData *Bundle = nullptr; 7635 ScheduleData *PrevInBundle = nullptr; 7636 for (Value *V : VL) { 7637 ScheduleData *BundleMember = getScheduleData(V); 7638 assert(BundleMember && 7639 "no ScheduleData for bundle member " 7640 "(maybe not in same basic block)"); 7641 assert(BundleMember->isSchedulingEntity() && 7642 "bundle member already part of other bundle"); 7643 if (PrevInBundle) { 7644 PrevInBundle->NextInBundle = BundleMember; 7645 } else { 7646 Bundle = BundleMember; 7647 } 7648 7649 // Group the instructions to a bundle. 7650 BundleMember->FirstInBundle = Bundle; 7651 PrevInBundle = BundleMember; 7652 } 7653 assert(Bundle && "Failed to find schedule bundle"); 7654 return Bundle; 7655 } 7656 7657 // Groups the instructions to a bundle (which is then a single scheduling entity) 7658 // and schedules instructions until the bundle gets ready. 7659 Optional<BoUpSLP::ScheduleData *> 7660 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7661 const InstructionsState &S) { 7662 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7663 // instructions. 7664 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7665 return nullptr; 7666 7667 // Initialize the instruction bundle. 7668 Instruction *OldScheduleEnd = ScheduleEnd; 7669 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7670 7671 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7672 ScheduleData *Bundle) { 7673 // The scheduling region got new instructions at the lower end (or it is a 7674 // new region for the first bundle). This makes it necessary to 7675 // recalculate all dependencies. 7676 // It is seldom that this needs to be done a second time after adding the 7677 // initial bundle to the region. 7678 if (ScheduleEnd != OldScheduleEnd) { 7679 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7680 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7681 ReSchedule = true; 7682 } 7683 if (Bundle) { 7684 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7685 << " in block " << BB->getName() << "\n"); 7686 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7687 } 7688 7689 if (ReSchedule) { 7690 resetSchedule(); 7691 initialFillReadyList(ReadyInsts); 7692 } 7693 7694 // Now try to schedule the new bundle or (if no bundle) just calculate 7695 // dependencies. As soon as the bundle is "ready" it means that there are no 7696 // cyclic dependencies and we can schedule it. Note that's important that we 7697 // don't "schedule" the bundle yet (see cancelScheduling). 7698 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7699 !ReadyInsts.empty()) { 7700 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7701 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7702 "must be ready to schedule"); 7703 schedule(Picked, ReadyInsts); 7704 } 7705 }; 7706 7707 // Make sure that the scheduling region contains all 7708 // instructions of the bundle. 7709 for (Value *V : VL) { 7710 if (!extendSchedulingRegion(V, S)) { 7711 // If the scheduling region got new instructions at the lower end (or it 7712 // is a new region for the first bundle). This makes it necessary to 7713 // recalculate all dependencies. 7714 // Otherwise the compiler may crash trying to incorrectly calculate 7715 // dependencies and emit instruction in the wrong order at the actual 7716 // scheduling. 7717 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7718 return None; 7719 } 7720 } 7721 7722 bool ReSchedule = false; 7723 for (Value *V : VL) { 7724 ScheduleData *BundleMember = getScheduleData(V); 7725 assert(BundleMember && 7726 "no ScheduleData for bundle member (maybe not in same basic block)"); 7727 7728 // Make sure we don't leave the pieces of the bundle in the ready list when 7729 // whole bundle might not be ready. 7730 ReadyInsts.remove(BundleMember); 7731 7732 if (!BundleMember->IsScheduled) 7733 continue; 7734 // A bundle member was scheduled as single instruction before and now 7735 // needs to be scheduled as part of the bundle. We just get rid of the 7736 // existing schedule. 7737 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7738 << " was already scheduled\n"); 7739 ReSchedule = true; 7740 } 7741 7742 auto *Bundle = buildBundle(VL); 7743 TryScheduleBundleImpl(ReSchedule, Bundle); 7744 if (!Bundle->isReady()) { 7745 cancelScheduling(VL, S.OpValue); 7746 return None; 7747 } 7748 return Bundle; 7749 } 7750 7751 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7752 Value *OpValue) { 7753 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7754 return; 7755 7756 ScheduleData *Bundle = getScheduleData(OpValue); 7757 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7758 assert(!Bundle->IsScheduled && 7759 "Can't cancel bundle which is already scheduled"); 7760 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7761 "tried to unbundle something which is not a bundle"); 7762 7763 // Remove the bundle from the ready list. 7764 if (Bundle->isReady()) 7765 ReadyInsts.remove(Bundle); 7766 7767 // Un-bundle: make single instructions out of the bundle. 7768 ScheduleData *BundleMember = Bundle; 7769 while (BundleMember) { 7770 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7771 BundleMember->FirstInBundle = BundleMember; 7772 ScheduleData *Next = BundleMember->NextInBundle; 7773 BundleMember->NextInBundle = nullptr; 7774 if (BundleMember->unscheduledDepsInBundle() == 0) { 7775 ReadyInsts.insert(BundleMember); 7776 } 7777 BundleMember = Next; 7778 } 7779 } 7780 7781 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7782 // Allocate a new ScheduleData for the instruction. 7783 if (ChunkPos >= ChunkSize) { 7784 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7785 ChunkPos = 0; 7786 } 7787 return &(ScheduleDataChunks.back()[ChunkPos++]); 7788 } 7789 7790 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7791 const InstructionsState &S) { 7792 if (getScheduleData(V, isOneOf(S, V))) 7793 return true; 7794 Instruction *I = dyn_cast<Instruction>(V); 7795 assert(I && "bundle member must be an instruction"); 7796 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7797 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7798 "be scheduled"); 7799 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7800 ScheduleData *ISD = getScheduleData(I); 7801 if (!ISD) 7802 return false; 7803 assert(isInSchedulingRegion(ISD) && 7804 "ScheduleData not in scheduling region"); 7805 ScheduleData *SD = allocateScheduleDataChunks(); 7806 SD->Inst = I; 7807 SD->init(SchedulingRegionID, S.OpValue); 7808 ExtraScheduleDataMap[I][S.OpValue] = SD; 7809 return true; 7810 }; 7811 if (CheckScheduleForI(I)) 7812 return true; 7813 if (!ScheduleStart) { 7814 // It's the first instruction in the new region. 7815 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7816 ScheduleStart = I; 7817 ScheduleEnd = I->getNextNode(); 7818 if (isOneOf(S, I) != I) 7819 CheckScheduleForI(I); 7820 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7821 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7822 return true; 7823 } 7824 // Search up and down at the same time, because we don't know if the new 7825 // instruction is above or below the existing scheduling region. 7826 BasicBlock::reverse_iterator UpIter = 7827 ++ScheduleStart->getIterator().getReverse(); 7828 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7829 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7830 BasicBlock::iterator LowerEnd = BB->end(); 7831 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7832 &*DownIter != I) { 7833 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7834 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7835 return false; 7836 } 7837 7838 ++UpIter; 7839 ++DownIter; 7840 } 7841 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7842 assert(I->getParent() == ScheduleStart->getParent() && 7843 "Instruction is in wrong basic block."); 7844 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7845 ScheduleStart = I; 7846 if (isOneOf(S, I) != I) 7847 CheckScheduleForI(I); 7848 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7849 << "\n"); 7850 return true; 7851 } 7852 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7853 "Expected to reach top of the basic block or instruction down the " 7854 "lower end."); 7855 assert(I->getParent() == ScheduleEnd->getParent() && 7856 "Instruction is in wrong basic block."); 7857 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7858 nullptr); 7859 ScheduleEnd = I->getNextNode(); 7860 if (isOneOf(S, I) != I) 7861 CheckScheduleForI(I); 7862 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7863 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7864 return true; 7865 } 7866 7867 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7868 Instruction *ToI, 7869 ScheduleData *PrevLoadStore, 7870 ScheduleData *NextLoadStore) { 7871 ScheduleData *CurrentLoadStore = PrevLoadStore; 7872 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7873 ScheduleData *SD = ScheduleDataMap[I]; 7874 if (!SD) { 7875 SD = allocateScheduleDataChunks(); 7876 ScheduleDataMap[I] = SD; 7877 SD->Inst = I; 7878 } 7879 assert(!isInSchedulingRegion(SD) && 7880 "new ScheduleData already in scheduling region"); 7881 SD->init(SchedulingRegionID, I); 7882 7883 if (I->mayReadOrWriteMemory() && 7884 (!isa<IntrinsicInst>(I) || 7885 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7886 cast<IntrinsicInst>(I)->getIntrinsicID() != 7887 Intrinsic::pseudoprobe))) { 7888 // Update the linked list of memory accessing instructions. 7889 if (CurrentLoadStore) { 7890 CurrentLoadStore->NextLoadStore = SD; 7891 } else { 7892 FirstLoadStoreInRegion = SD; 7893 } 7894 CurrentLoadStore = SD; 7895 } 7896 } 7897 if (NextLoadStore) { 7898 if (CurrentLoadStore) 7899 CurrentLoadStore->NextLoadStore = NextLoadStore; 7900 } else { 7901 LastLoadStoreInRegion = CurrentLoadStore; 7902 } 7903 } 7904 7905 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7906 bool InsertInReadyList, 7907 BoUpSLP *SLP) { 7908 assert(SD->isSchedulingEntity()); 7909 7910 SmallVector<ScheduleData *, 10> WorkList; 7911 WorkList.push_back(SD); 7912 7913 while (!WorkList.empty()) { 7914 ScheduleData *SD = WorkList.pop_back_val(); 7915 for (ScheduleData *BundleMember = SD; BundleMember; 7916 BundleMember = BundleMember->NextInBundle) { 7917 assert(isInSchedulingRegion(BundleMember)); 7918 if (BundleMember->hasValidDependencies()) 7919 continue; 7920 7921 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7922 << "\n"); 7923 BundleMember->Dependencies = 0; 7924 BundleMember->resetUnscheduledDeps(); 7925 7926 // Handle def-use chain dependencies. 7927 if (BundleMember->OpValue != BundleMember->Inst) { 7928 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7929 BundleMember->Dependencies++; 7930 ScheduleData *DestBundle = UseSD->FirstInBundle; 7931 if (!DestBundle->IsScheduled) 7932 BundleMember->incrementUnscheduledDeps(1); 7933 if (!DestBundle->hasValidDependencies()) 7934 WorkList.push_back(DestBundle); 7935 } 7936 } else { 7937 for (User *U : BundleMember->Inst->users()) { 7938 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7939 BundleMember->Dependencies++; 7940 ScheduleData *DestBundle = UseSD->FirstInBundle; 7941 if (!DestBundle->IsScheduled) 7942 BundleMember->incrementUnscheduledDeps(1); 7943 if (!DestBundle->hasValidDependencies()) 7944 WorkList.push_back(DestBundle); 7945 } 7946 } 7947 } 7948 7949 // Handle the memory dependencies (if any). 7950 ScheduleData *DepDest = BundleMember->NextLoadStore; 7951 if (!DepDest) 7952 continue; 7953 Instruction *SrcInst = BundleMember->Inst; 7954 assert(SrcInst->mayReadOrWriteMemory() && 7955 "NextLoadStore list for non memory effecting bundle?"); 7956 MemoryLocation SrcLoc = getLocation(SrcInst); 7957 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7958 unsigned numAliased = 0; 7959 unsigned DistToSrc = 1; 7960 7961 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7962 assert(isInSchedulingRegion(DepDest)); 7963 7964 // We have two limits to reduce the complexity: 7965 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7966 // SLP->isAliased (which is the expensive part in this loop). 7967 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7968 // the whole loop (even if the loop is fast, it's quadratic). 7969 // It's important for the loop break condition (see below) to 7970 // check this limit even between two read-only instructions. 7971 if (DistToSrc >= MaxMemDepDistance || 7972 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7973 (numAliased >= AliasedCheckLimit || 7974 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7975 7976 // We increment the counter only if the locations are aliased 7977 // (instead of counting all alias checks). This gives a better 7978 // balance between reduced runtime and accurate dependencies. 7979 numAliased++; 7980 7981 DepDest->MemoryDependencies.push_back(BundleMember); 7982 BundleMember->Dependencies++; 7983 ScheduleData *DestBundle = DepDest->FirstInBundle; 7984 if (!DestBundle->IsScheduled) { 7985 BundleMember->incrementUnscheduledDeps(1); 7986 } 7987 if (!DestBundle->hasValidDependencies()) { 7988 WorkList.push_back(DestBundle); 7989 } 7990 } 7991 7992 // Example, explaining the loop break condition: Let's assume our 7993 // starting instruction is i0 and MaxMemDepDistance = 3. 7994 // 7995 // +--------v--v--v 7996 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7997 // +--------^--^--^ 7998 // 7999 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8000 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8001 // Previously we already added dependencies from i3 to i6,i7,i8 8002 // (because of MaxMemDepDistance). As we added a dependency from 8003 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8004 // and we can abort this loop at i6. 8005 if (DistToSrc >= 2 * MaxMemDepDistance) 8006 break; 8007 DistToSrc++; 8008 } 8009 } 8010 if (InsertInReadyList && SD->isReady()) { 8011 ReadyInsts.insert(SD); 8012 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8013 << "\n"); 8014 } 8015 } 8016 } 8017 8018 void BoUpSLP::BlockScheduling::resetSchedule() { 8019 assert(ScheduleStart && 8020 "tried to reset schedule on block which has not been scheduled"); 8021 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8022 doForAllOpcodes(I, [&](ScheduleData *SD) { 8023 assert(isInSchedulingRegion(SD) && 8024 "ScheduleData not in scheduling region"); 8025 SD->IsScheduled = false; 8026 SD->resetUnscheduledDeps(); 8027 }); 8028 } 8029 ReadyInsts.clear(); 8030 } 8031 8032 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8033 if (!BS->ScheduleStart) 8034 return; 8035 8036 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8037 8038 BS->resetSchedule(); 8039 8040 // For the real scheduling we use a more sophisticated ready-list: it is 8041 // sorted by the original instruction location. This lets the final schedule 8042 // be as close as possible to the original instruction order. 8043 struct ScheduleDataCompare { 8044 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8045 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8046 } 8047 }; 8048 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8049 8050 // Ensure that all dependency data is updated and fill the ready-list with 8051 // initial instructions. 8052 int Idx = 0; 8053 int NumToSchedule = 0; 8054 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8055 I = I->getNextNode()) { 8056 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8057 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8058 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 8059 "scheduler and vectorizer bundle mismatch"); 8060 SD->FirstInBundle->SchedulingPriority = Idx++; 8061 if (SD->isSchedulingEntity()) { 8062 BS->calculateDependencies(SD, false, this); 8063 NumToSchedule++; 8064 } 8065 }); 8066 } 8067 BS->initialFillReadyList(ReadyInsts); 8068 8069 Instruction *LastScheduledInst = BS->ScheduleEnd; 8070 MemoryAccess *MemInsertPt = nullptr; 8071 if (MSSA) { 8072 for (auto I = LastScheduledInst->getIterator(); I != BS->BB->end(); I++) { 8073 if (auto *Access = MSSA->getMemoryAccess(&*I)) { 8074 MemInsertPt = Access; 8075 break; 8076 } 8077 } 8078 } 8079 8080 // Do the "real" scheduling. 8081 while (!ReadyInsts.empty()) { 8082 ScheduleData *picked = *ReadyInsts.begin(); 8083 ReadyInsts.erase(ReadyInsts.begin()); 8084 8085 // Move the scheduled instruction(s) to their dedicated places, if not 8086 // there yet. 8087 for (ScheduleData *BundleMember = picked; BundleMember; 8088 BundleMember = BundleMember->NextInBundle) { 8089 Instruction *pickedInst = BundleMember->Inst; 8090 if (pickedInst->getNextNode() != LastScheduledInst) { 8091 pickedInst->moveBefore(LastScheduledInst); 8092 if (MSSA) { 8093 MemorySSAUpdater MSSAU(MSSA); 8094 if (auto *Access = MSSA->getMemoryAccess(pickedInst)) { 8095 if (MemInsertPt) 8096 MSSAU.moveBefore(Access, cast<MemoryUseOrDef>(MemInsertPt)); 8097 else 8098 MSSAU.moveToPlace(Access, BS->BB, 8099 MemorySSA::InsertionPlace::End); 8100 } 8101 } 8102 } 8103 8104 LastScheduledInst = pickedInst; 8105 if (MSSA) 8106 if (auto *Access = MSSA->getMemoryAccess(LastScheduledInst)) 8107 MemInsertPt = Access; 8108 } 8109 8110 BS->schedule(picked, ReadyInsts); 8111 NumToSchedule--; 8112 } 8113 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8114 8115 // Check that we didn't break any of our invariants. 8116 #ifdef EXPENSIVE_CHECKS 8117 BS->verify(); 8118 #endif 8119 8120 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8121 // Check that all schedulable entities got scheduled 8122 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8123 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8124 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8125 assert(SD->IsScheduled && "must be scheduled at this point"); 8126 } 8127 }); 8128 } 8129 #endif 8130 8131 // Avoid duplicate scheduling of the block. 8132 BS->ScheduleStart = nullptr; 8133 } 8134 8135 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8136 // If V is a store, just return the width of the stored value (or value 8137 // truncated just before storing) without traversing the expression tree. 8138 // This is the common case. 8139 if (auto *Store = dyn_cast<StoreInst>(V)) { 8140 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8141 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8142 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8143 } 8144 8145 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8146 return getVectorElementSize(IEI->getOperand(1)); 8147 8148 auto E = InstrElementSize.find(V); 8149 if (E != InstrElementSize.end()) 8150 return E->second; 8151 8152 // If V is not a store, we can traverse the expression tree to find loads 8153 // that feed it. The type of the loaded value may indicate a more suitable 8154 // width than V's type. We want to base the vector element size on the width 8155 // of memory operations where possible. 8156 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8157 SmallPtrSet<Instruction *, 16> Visited; 8158 if (auto *I = dyn_cast<Instruction>(V)) { 8159 Worklist.emplace_back(I, I->getParent()); 8160 Visited.insert(I); 8161 } 8162 8163 // Traverse the expression tree in bottom-up order looking for loads. If we 8164 // encounter an instruction we don't yet handle, we give up. 8165 auto Width = 0u; 8166 while (!Worklist.empty()) { 8167 Instruction *I; 8168 BasicBlock *Parent; 8169 std::tie(I, Parent) = Worklist.pop_back_val(); 8170 8171 // We should only be looking at scalar instructions here. If the current 8172 // instruction has a vector type, skip. 8173 auto *Ty = I->getType(); 8174 if (isa<VectorType>(Ty)) 8175 continue; 8176 8177 // If the current instruction is a load, update MaxWidth to reflect the 8178 // width of the loaded value. 8179 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8180 isa<ExtractValueInst>(I)) 8181 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8182 8183 // Otherwise, we need to visit the operands of the instruction. We only 8184 // handle the interesting cases from buildTree here. If an operand is an 8185 // instruction we haven't yet visited and from the same basic block as the 8186 // user or the use is a PHI node, we add it to the worklist. 8187 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8188 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8189 isa<UnaryOperator>(I)) { 8190 for (Use &U : I->operands()) 8191 if (auto *J = dyn_cast<Instruction>(U.get())) 8192 if (Visited.insert(J).second && 8193 (isa<PHINode>(I) || J->getParent() == Parent)) 8194 Worklist.emplace_back(J, J->getParent()); 8195 } else { 8196 break; 8197 } 8198 } 8199 8200 // If we didn't encounter a memory access in the expression tree, or if we 8201 // gave up for some reason, just return the width of V. Otherwise, return the 8202 // maximum width we found. 8203 if (!Width) { 8204 if (auto *CI = dyn_cast<CmpInst>(V)) 8205 V = CI->getOperand(0); 8206 Width = DL->getTypeSizeInBits(V->getType()); 8207 } 8208 8209 for (Instruction *I : Visited) 8210 InstrElementSize[I] = Width; 8211 8212 return Width; 8213 } 8214 8215 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8216 // smaller type with a truncation. We collect the values that will be demoted 8217 // in ToDemote and additional roots that require investigating in Roots. 8218 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8219 SmallVectorImpl<Value *> &ToDemote, 8220 SmallVectorImpl<Value *> &Roots) { 8221 // We can always demote constants. 8222 if (isa<Constant>(V)) { 8223 ToDemote.push_back(V); 8224 return true; 8225 } 8226 8227 // If the value is not an instruction in the expression with only one use, it 8228 // cannot be demoted. 8229 auto *I = dyn_cast<Instruction>(V); 8230 if (!I || !I->hasOneUse() || !Expr.count(I)) 8231 return false; 8232 8233 switch (I->getOpcode()) { 8234 8235 // We can always demote truncations and extensions. Since truncations can 8236 // seed additional demotion, we save the truncated value. 8237 case Instruction::Trunc: 8238 Roots.push_back(I->getOperand(0)); 8239 break; 8240 case Instruction::ZExt: 8241 case Instruction::SExt: 8242 if (isa<ExtractElementInst>(I->getOperand(0)) || 8243 isa<InsertElementInst>(I->getOperand(0))) 8244 return false; 8245 break; 8246 8247 // We can demote certain binary operations if we can demote both of their 8248 // operands. 8249 case Instruction::Add: 8250 case Instruction::Sub: 8251 case Instruction::Mul: 8252 case Instruction::And: 8253 case Instruction::Or: 8254 case Instruction::Xor: 8255 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8256 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8257 return false; 8258 break; 8259 8260 // We can demote selects if we can demote their true and false values. 8261 case Instruction::Select: { 8262 SelectInst *SI = cast<SelectInst>(I); 8263 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8264 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8265 return false; 8266 break; 8267 } 8268 8269 // We can demote phis if we can demote all their incoming operands. Note that 8270 // we don't need to worry about cycles since we ensure single use above. 8271 case Instruction::PHI: { 8272 PHINode *PN = cast<PHINode>(I); 8273 for (Value *IncValue : PN->incoming_values()) 8274 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8275 return false; 8276 break; 8277 } 8278 8279 // Otherwise, conservatively give up. 8280 default: 8281 return false; 8282 } 8283 8284 // Record the value that we can demote. 8285 ToDemote.push_back(V); 8286 return true; 8287 } 8288 8289 void BoUpSLP::computeMinimumValueSizes() { 8290 // If there are no external uses, the expression tree must be rooted by a 8291 // store. We can't demote in-memory values, so there is nothing to do here. 8292 if (ExternalUses.empty()) 8293 return; 8294 8295 // We only attempt to truncate integer expressions. 8296 auto &TreeRoot = VectorizableTree[0]->Scalars; 8297 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8298 if (!TreeRootIT) 8299 return; 8300 8301 // If the expression is not rooted by a store, these roots should have 8302 // external uses. We will rely on InstCombine to rewrite the expression in 8303 // the narrower type. However, InstCombine only rewrites single-use values. 8304 // This means that if a tree entry other than a root is used externally, it 8305 // must have multiple uses and InstCombine will not rewrite it. The code 8306 // below ensures that only the roots are used externally. 8307 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8308 for (auto &EU : ExternalUses) 8309 if (!Expr.erase(EU.Scalar)) 8310 return; 8311 if (!Expr.empty()) 8312 return; 8313 8314 // Collect the scalar values of the vectorizable expression. We will use this 8315 // context to determine which values can be demoted. If we see a truncation, 8316 // we mark it as seeding another demotion. 8317 for (auto &EntryPtr : VectorizableTree) 8318 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8319 8320 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8321 // have a single external user that is not in the vectorizable tree. 8322 for (auto *Root : TreeRoot) 8323 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8324 return; 8325 8326 // Conservatively determine if we can actually truncate the roots of the 8327 // expression. Collect the values that can be demoted in ToDemote and 8328 // additional roots that require investigating in Roots. 8329 SmallVector<Value *, 32> ToDemote; 8330 SmallVector<Value *, 4> Roots; 8331 for (auto *Root : TreeRoot) 8332 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8333 return; 8334 8335 // The maximum bit width required to represent all the values that can be 8336 // demoted without loss of precision. It would be safe to truncate the roots 8337 // of the expression to this width. 8338 auto MaxBitWidth = 8u; 8339 8340 // We first check if all the bits of the roots are demanded. If they're not, 8341 // we can truncate the roots to this narrower type. 8342 for (auto *Root : TreeRoot) { 8343 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8344 MaxBitWidth = std::max<unsigned>( 8345 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8346 } 8347 8348 // True if the roots can be zero-extended back to their original type, rather 8349 // than sign-extended. We know that if the leading bits are not demanded, we 8350 // can safely zero-extend. So we initialize IsKnownPositive to True. 8351 bool IsKnownPositive = true; 8352 8353 // If all the bits of the roots are demanded, we can try a little harder to 8354 // compute a narrower type. This can happen, for example, if the roots are 8355 // getelementptr indices. InstCombine promotes these indices to the pointer 8356 // width. Thus, all their bits are technically demanded even though the 8357 // address computation might be vectorized in a smaller type. 8358 // 8359 // We start by looking at each entry that can be demoted. We compute the 8360 // maximum bit width required to store the scalar by using ValueTracking to 8361 // compute the number of high-order bits we can truncate. 8362 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8363 llvm::all_of(TreeRoot, [](Value *R) { 8364 assert(R->hasOneUse() && "Root should have only one use!"); 8365 return isa<GetElementPtrInst>(R->user_back()); 8366 })) { 8367 MaxBitWidth = 8u; 8368 8369 // Determine if the sign bit of all the roots is known to be zero. If not, 8370 // IsKnownPositive is set to False. 8371 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8372 KnownBits Known = computeKnownBits(R, *DL); 8373 return Known.isNonNegative(); 8374 }); 8375 8376 // Determine the maximum number of bits required to store the scalar 8377 // values. 8378 for (auto *Scalar : ToDemote) { 8379 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8380 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8381 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8382 } 8383 8384 // If we can't prove that the sign bit is zero, we must add one to the 8385 // maximum bit width to account for the unknown sign bit. This preserves 8386 // the existing sign bit so we can safely sign-extend the root back to the 8387 // original type. Otherwise, if we know the sign bit is zero, we will 8388 // zero-extend the root instead. 8389 // 8390 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8391 // one to the maximum bit width will yield a larger-than-necessary 8392 // type. In general, we need to add an extra bit only if we can't 8393 // prove that the upper bit of the original type is equal to the 8394 // upper bit of the proposed smaller type. If these two bits are the 8395 // same (either zero or one) we know that sign-extending from the 8396 // smaller type will result in the same value. Here, since we can't 8397 // yet prove this, we are just making the proposed smaller type 8398 // larger to ensure correctness. 8399 if (!IsKnownPositive) 8400 ++MaxBitWidth; 8401 } 8402 8403 // Round MaxBitWidth up to the next power-of-two. 8404 if (!isPowerOf2_64(MaxBitWidth)) 8405 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8406 8407 // If the maximum bit width we compute is less than the with of the roots' 8408 // type, we can proceed with the narrowing. Otherwise, do nothing. 8409 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8410 return; 8411 8412 // If we can truncate the root, we must collect additional values that might 8413 // be demoted as a result. That is, those seeded by truncations we will 8414 // modify. 8415 while (!Roots.empty()) 8416 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8417 8418 // Finally, map the values we can demote to the maximum bit with we computed. 8419 for (auto *Scalar : ToDemote) 8420 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8421 } 8422 8423 namespace { 8424 8425 /// The SLPVectorizer Pass. 8426 struct SLPVectorizer : public FunctionPass { 8427 SLPVectorizerPass Impl; 8428 8429 /// Pass identification, replacement for typeid 8430 static char ID; 8431 8432 explicit SLPVectorizer() : FunctionPass(ID) { 8433 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8434 } 8435 8436 bool doInitialization(Module &M) override { return false; } 8437 8438 bool runOnFunction(Function &F) override { 8439 if (skipFunction(F)) 8440 return false; 8441 8442 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8443 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8444 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8445 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8446 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8447 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8448 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8449 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8450 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8451 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8452 8453 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, /*MSSA*/nullptr, ORE); 8454 } 8455 8456 void getAnalysisUsage(AnalysisUsage &AU) const override { 8457 FunctionPass::getAnalysisUsage(AU); 8458 AU.addRequired<AssumptionCacheTracker>(); 8459 AU.addRequired<ScalarEvolutionWrapperPass>(); 8460 AU.addRequired<AAResultsWrapperPass>(); 8461 AU.addRequired<TargetTransformInfoWrapperPass>(); 8462 AU.addRequired<LoopInfoWrapperPass>(); 8463 AU.addRequired<DominatorTreeWrapperPass>(); 8464 AU.addRequired<DemandedBitsWrapperPass>(); 8465 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8466 AU.addRequired<InjectTLIMappingsLegacy>(); 8467 AU.addPreserved<LoopInfoWrapperPass>(); 8468 AU.addPreserved<DominatorTreeWrapperPass>(); 8469 AU.addPreserved<AAResultsWrapperPass>(); 8470 AU.addPreserved<GlobalsAAWrapperPass>(); 8471 AU.setPreservesCFG(); 8472 } 8473 }; 8474 8475 } // end anonymous namespace 8476 8477 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8478 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8479 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8480 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8481 auto *AA = &AM.getResult<AAManager>(F); 8482 auto *LI = &AM.getResult<LoopAnalysis>(F); 8483 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8484 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8485 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8486 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8487 auto *MSSA = EnableMSSAInSLPVectorizer ? 8488 &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : (MemorySSA*)nullptr; 8489 8490 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, ORE); 8491 if (!Changed) 8492 return PreservedAnalyses::all(); 8493 8494 PreservedAnalyses PA; 8495 PA.preserveSet<CFGAnalyses>(); 8496 if (MSSA) { 8497 #ifdef EXPENSIVE_CHECKS 8498 MSSA->verifyMemorySSA(); 8499 #endif 8500 PA.preserve<MemorySSAAnalysis>(); 8501 } 8502 return PA; 8503 } 8504 8505 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8506 TargetTransformInfo *TTI_, 8507 TargetLibraryInfo *TLI_, AAResults *AA_, 8508 LoopInfo *LI_, DominatorTree *DT_, 8509 AssumptionCache *AC_, DemandedBits *DB_, 8510 MemorySSA *MSSA, 8511 OptimizationRemarkEmitter *ORE_) { 8512 if (!RunSLPVectorization) 8513 return false; 8514 SE = SE_; 8515 TTI = TTI_; 8516 TLI = TLI_; 8517 AA = AA_; 8518 LI = LI_; 8519 DT = DT_; 8520 AC = AC_; 8521 DB = DB_; 8522 DL = &F.getParent()->getDataLayout(); 8523 8524 Stores.clear(); 8525 GEPs.clear(); 8526 bool Changed = false; 8527 8528 // If the target claims to have no vector registers don't attempt 8529 // vectorization. 8530 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8531 LLVM_DEBUG( 8532 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8533 return false; 8534 } 8535 8536 // Don't vectorize when the attribute NoImplicitFloat is used. 8537 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8538 return false; 8539 8540 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8541 8542 // Use the bottom up slp vectorizer to construct chains that start with 8543 // store instructions. 8544 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, DL, ORE_); 8545 8546 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8547 // delete instructions. 8548 8549 // Update DFS numbers now so that we can use them for ordering. 8550 DT->updateDFSNumbers(); 8551 8552 // Scan the blocks in the function in post order. 8553 for (auto BB : post_order(&F.getEntryBlock())) { 8554 collectSeedInstructions(BB); 8555 8556 // Vectorize trees that end at stores. 8557 if (!Stores.empty()) { 8558 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8559 << " underlying objects.\n"); 8560 Changed |= vectorizeStoreChains(R); 8561 } 8562 8563 // Vectorize trees that end at reductions. 8564 Changed |= vectorizeChainsInBlock(BB, R); 8565 8566 // Vectorize the index computations of getelementptr instructions. This 8567 // is primarily intended to catch gather-like idioms ending at 8568 // non-consecutive loads. 8569 if (!GEPs.empty()) { 8570 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8571 << " underlying objects.\n"); 8572 Changed |= vectorizeGEPIndices(BB, R); 8573 } 8574 } 8575 8576 if (Changed) { 8577 R.optimizeGatherSequence(); 8578 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8579 } 8580 return Changed; 8581 } 8582 8583 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8584 unsigned Idx) { 8585 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8586 << "\n"); 8587 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8588 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8589 unsigned VF = Chain.size(); 8590 8591 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8592 return false; 8593 8594 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8595 << "\n"); 8596 8597 R.buildTree(Chain); 8598 if (R.isTreeTinyAndNotFullyVectorizable()) 8599 return false; 8600 if (R.isLoadCombineCandidate()) 8601 return false; 8602 R.reorderTopToBottom(); 8603 R.reorderBottomToTop(); 8604 R.buildExternalUses(); 8605 8606 R.computeMinimumValueSizes(); 8607 8608 InstructionCost Cost = R.getTreeCost(); 8609 8610 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8611 if (Cost < -SLPCostThreshold) { 8612 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8613 8614 using namespace ore; 8615 8616 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8617 cast<StoreInst>(Chain[0])) 8618 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8619 << " and with tree size " 8620 << NV("TreeSize", R.getTreeSize())); 8621 8622 R.vectorizeTree(); 8623 return true; 8624 } 8625 8626 return false; 8627 } 8628 8629 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8630 BoUpSLP &R) { 8631 // We may run into multiple chains that merge into a single chain. We mark the 8632 // stores that we vectorized so that we don't visit the same store twice. 8633 BoUpSLP::ValueSet VectorizedStores; 8634 bool Changed = false; 8635 8636 int E = Stores.size(); 8637 SmallBitVector Tails(E, false); 8638 int MaxIter = MaxStoreLookup.getValue(); 8639 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8640 E, std::make_pair(E, INT_MAX)); 8641 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8642 int IterCnt; 8643 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8644 &CheckedPairs, 8645 &ConsecutiveChain](int K, int Idx) { 8646 if (IterCnt >= MaxIter) 8647 return true; 8648 if (CheckedPairs[Idx].test(K)) 8649 return ConsecutiveChain[K].second == 1 && 8650 ConsecutiveChain[K].first == Idx; 8651 ++IterCnt; 8652 CheckedPairs[Idx].set(K); 8653 CheckedPairs[K].set(Idx); 8654 Optional<int> Diff = getPointersDiff( 8655 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8656 Stores[Idx]->getValueOperand()->getType(), 8657 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8658 if (!Diff || *Diff == 0) 8659 return false; 8660 int Val = *Diff; 8661 if (Val < 0) { 8662 if (ConsecutiveChain[Idx].second > -Val) { 8663 Tails.set(K); 8664 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8665 } 8666 return false; 8667 } 8668 if (ConsecutiveChain[K].second <= Val) 8669 return false; 8670 8671 Tails.set(Idx); 8672 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8673 return Val == 1; 8674 }; 8675 // Do a quadratic search on all of the given stores in reverse order and find 8676 // all of the pairs of stores that follow each other. 8677 for (int Idx = E - 1; Idx >= 0; --Idx) { 8678 // If a store has multiple consecutive store candidates, search according 8679 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8680 // This is because usually pairing with immediate succeeding or preceding 8681 // candidate create the best chance to find slp vectorization opportunity. 8682 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8683 IterCnt = 0; 8684 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8685 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8686 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8687 break; 8688 } 8689 8690 // Tracks if we tried to vectorize stores starting from the given tail 8691 // already. 8692 SmallBitVector TriedTails(E, false); 8693 // For stores that start but don't end a link in the chain: 8694 for (int Cnt = E; Cnt > 0; --Cnt) { 8695 int I = Cnt - 1; 8696 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8697 continue; 8698 // We found a store instr that starts a chain. Now follow the chain and try 8699 // to vectorize it. 8700 BoUpSLP::ValueList Operands; 8701 // Collect the chain into a list. 8702 while (I != E && !VectorizedStores.count(Stores[I])) { 8703 Operands.push_back(Stores[I]); 8704 Tails.set(I); 8705 if (ConsecutiveChain[I].second != 1) { 8706 // Mark the new end in the chain and go back, if required. It might be 8707 // required if the original stores come in reversed order, for example. 8708 if (ConsecutiveChain[I].first != E && 8709 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8710 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8711 TriedTails.set(I); 8712 Tails.reset(ConsecutiveChain[I].first); 8713 if (Cnt < ConsecutiveChain[I].first + 2) 8714 Cnt = ConsecutiveChain[I].first + 2; 8715 } 8716 break; 8717 } 8718 // Move to the next value in the chain. 8719 I = ConsecutiveChain[I].first; 8720 } 8721 assert(!Operands.empty() && "Expected non-empty list of stores."); 8722 8723 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8724 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8725 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8726 8727 unsigned MinVF = R.getMinVF(EltSize); 8728 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8729 MaxElts); 8730 8731 // FIXME: Is division-by-2 the correct step? Should we assert that the 8732 // register size is a power-of-2? 8733 unsigned StartIdx = 0; 8734 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8735 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8736 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8737 if (!VectorizedStores.count(Slice.front()) && 8738 !VectorizedStores.count(Slice.back()) && 8739 vectorizeStoreChain(Slice, R, Cnt)) { 8740 // Mark the vectorized stores so that we don't vectorize them again. 8741 VectorizedStores.insert(Slice.begin(), Slice.end()); 8742 Changed = true; 8743 // If we vectorized initial block, no need to try to vectorize it 8744 // again. 8745 if (Cnt == StartIdx) 8746 StartIdx += Size; 8747 Cnt += Size; 8748 continue; 8749 } 8750 ++Cnt; 8751 } 8752 // Check if the whole array was vectorized already - exit. 8753 if (StartIdx >= Operands.size()) 8754 break; 8755 } 8756 } 8757 8758 return Changed; 8759 } 8760 8761 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8762 // Initialize the collections. We will make a single pass over the block. 8763 Stores.clear(); 8764 GEPs.clear(); 8765 8766 // Visit the store and getelementptr instructions in BB and organize them in 8767 // Stores and GEPs according to the underlying objects of their pointer 8768 // operands. 8769 for (Instruction &I : *BB) { 8770 // Ignore store instructions that are volatile or have a pointer operand 8771 // that doesn't point to a scalar type. 8772 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8773 if (!SI->isSimple()) 8774 continue; 8775 if (!isValidElementType(SI->getValueOperand()->getType())) 8776 continue; 8777 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8778 } 8779 8780 // Ignore getelementptr instructions that have more than one index, a 8781 // constant index, or a pointer operand that doesn't point to a scalar 8782 // type. 8783 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8784 auto Idx = GEP->idx_begin()->get(); 8785 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8786 continue; 8787 if (!isValidElementType(Idx->getType())) 8788 continue; 8789 if (GEP->getType()->isVectorTy()) 8790 continue; 8791 GEPs[GEP->getPointerOperand()].push_back(GEP); 8792 } 8793 } 8794 } 8795 8796 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8797 if (!A || !B) 8798 return false; 8799 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8800 return false; 8801 Value *VL[] = {A, B}; 8802 return tryToVectorizeList(VL, R); 8803 } 8804 8805 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8806 bool LimitForRegisterSize) { 8807 if (VL.size() < 2) 8808 return false; 8809 8810 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8811 << VL.size() << ".\n"); 8812 8813 // Check that all of the parts are instructions of the same type, 8814 // we permit an alternate opcode via InstructionsState. 8815 InstructionsState S = getSameOpcode(VL); 8816 if (!S.getOpcode()) 8817 return false; 8818 8819 Instruction *I0 = cast<Instruction>(S.OpValue); 8820 // Make sure invalid types (including vector type) are rejected before 8821 // determining vectorization factor for scalar instructions. 8822 for (Value *V : VL) { 8823 Type *Ty = V->getType(); 8824 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8825 // NOTE: the following will give user internal llvm type name, which may 8826 // not be useful. 8827 R.getORE()->emit([&]() { 8828 std::string type_str; 8829 llvm::raw_string_ostream rso(type_str); 8830 Ty->print(rso); 8831 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8832 << "Cannot SLP vectorize list: type " 8833 << rso.str() + " is unsupported by vectorizer"; 8834 }); 8835 return false; 8836 } 8837 } 8838 8839 unsigned Sz = R.getVectorElementSize(I0); 8840 unsigned MinVF = R.getMinVF(Sz); 8841 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8842 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8843 if (MaxVF < 2) { 8844 R.getORE()->emit([&]() { 8845 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8846 << "Cannot SLP vectorize list: vectorization factor " 8847 << "less than 2 is not supported"; 8848 }); 8849 return false; 8850 } 8851 8852 bool Changed = false; 8853 bool CandidateFound = false; 8854 InstructionCost MinCost = SLPCostThreshold.getValue(); 8855 Type *ScalarTy = VL[0]->getType(); 8856 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8857 ScalarTy = IE->getOperand(1)->getType(); 8858 8859 unsigned NextInst = 0, MaxInst = VL.size(); 8860 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8861 // No actual vectorization should happen, if number of parts is the same as 8862 // provided vectorization factor (i.e. the scalar type is used for vector 8863 // code during codegen). 8864 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8865 if (TTI->getNumberOfParts(VecTy) == VF) 8866 continue; 8867 for (unsigned I = NextInst; I < MaxInst; ++I) { 8868 unsigned OpsWidth = 0; 8869 8870 if (I + VF > MaxInst) 8871 OpsWidth = MaxInst - I; 8872 else 8873 OpsWidth = VF; 8874 8875 if (!isPowerOf2_32(OpsWidth)) 8876 continue; 8877 8878 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8879 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8880 break; 8881 8882 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8883 // Check that a previous iteration of this loop did not delete the Value. 8884 if (llvm::any_of(Ops, [&R](Value *V) { 8885 auto *I = dyn_cast<Instruction>(V); 8886 return I && R.isDeleted(I); 8887 })) 8888 continue; 8889 8890 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8891 << "\n"); 8892 8893 R.buildTree(Ops); 8894 if (R.isTreeTinyAndNotFullyVectorizable()) 8895 continue; 8896 R.reorderTopToBottom(); 8897 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8898 R.buildExternalUses(); 8899 8900 R.computeMinimumValueSizes(); 8901 InstructionCost Cost = R.getTreeCost(); 8902 CandidateFound = true; 8903 MinCost = std::min(MinCost, Cost); 8904 8905 if (Cost < -SLPCostThreshold) { 8906 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8907 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8908 cast<Instruction>(Ops[0])) 8909 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8910 << " and with tree size " 8911 << ore::NV("TreeSize", R.getTreeSize())); 8912 8913 R.vectorizeTree(); 8914 // Move to the next bundle. 8915 I += VF - 1; 8916 NextInst = I + 1; 8917 Changed = true; 8918 } 8919 } 8920 } 8921 8922 if (!Changed && CandidateFound) { 8923 R.getORE()->emit([&]() { 8924 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8925 << "List vectorization was possible but not beneficial with cost " 8926 << ore::NV("Cost", MinCost) << " >= " 8927 << ore::NV("Treshold", -SLPCostThreshold); 8928 }); 8929 } else if (!Changed) { 8930 R.getORE()->emit([&]() { 8931 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8932 << "Cannot SLP vectorize list: vectorization was impossible" 8933 << " with available vectorization factors"; 8934 }); 8935 } 8936 return Changed; 8937 } 8938 8939 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8940 if (!I) 8941 return false; 8942 8943 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8944 return false; 8945 8946 Value *P = I->getParent(); 8947 8948 // Vectorize in current basic block only. 8949 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8950 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8951 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8952 return false; 8953 8954 // Try to vectorize V. 8955 if (tryToVectorizePair(Op0, Op1, R)) 8956 return true; 8957 8958 auto *A = dyn_cast<BinaryOperator>(Op0); 8959 auto *B = dyn_cast<BinaryOperator>(Op1); 8960 // Try to skip B. 8961 if (B && B->hasOneUse()) { 8962 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8963 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8964 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8965 return true; 8966 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8967 return true; 8968 } 8969 8970 // Try to skip A. 8971 if (A && A->hasOneUse()) { 8972 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8973 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8974 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8975 return true; 8976 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8977 return true; 8978 } 8979 return false; 8980 } 8981 8982 namespace { 8983 8984 /// Model horizontal reductions. 8985 /// 8986 /// A horizontal reduction is a tree of reduction instructions that has values 8987 /// that can be put into a vector as its leaves. For example: 8988 /// 8989 /// mul mul mul mul 8990 /// \ / \ / 8991 /// + + 8992 /// \ / 8993 /// + 8994 /// This tree has "mul" as its leaf values and "+" as its reduction 8995 /// instructions. A reduction can feed into a store or a binary operation 8996 /// feeding a phi. 8997 /// ... 8998 /// \ / 8999 /// + 9000 /// | 9001 /// phi += 9002 /// 9003 /// Or: 9004 /// ... 9005 /// \ / 9006 /// + 9007 /// | 9008 /// *p = 9009 /// 9010 class HorizontalReduction { 9011 using ReductionOpsType = SmallVector<Value *, 16>; 9012 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9013 ReductionOpsListType ReductionOps; 9014 SmallVector<Value *, 32> ReducedVals; 9015 // Use map vector to make stable output. 9016 MapVector<Instruction *, Value *> ExtraArgs; 9017 WeakTrackingVH ReductionRoot; 9018 /// The type of reduction operation. 9019 RecurKind RdxKind; 9020 9021 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9022 9023 static bool isCmpSelMinMax(Instruction *I) { 9024 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9025 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9026 } 9027 9028 // And/or are potentially poison-safe logical patterns like: 9029 // select x, y, false 9030 // select x, true, y 9031 static bool isBoolLogicOp(Instruction *I) { 9032 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9033 match(I, m_LogicalOr(m_Value(), m_Value())); 9034 } 9035 9036 /// Checks if instruction is associative and can be vectorized. 9037 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9038 if (Kind == RecurKind::None) 9039 return false; 9040 9041 // Integer ops that map to select instructions or intrinsics are fine. 9042 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9043 isBoolLogicOp(I)) 9044 return true; 9045 9046 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9047 // FP min/max are associative except for NaN and -0.0. We do not 9048 // have to rule out -0.0 here because the intrinsic semantics do not 9049 // specify a fixed result for it. 9050 return I->getFastMathFlags().noNaNs(); 9051 } 9052 9053 return I->isAssociative(); 9054 } 9055 9056 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9057 // Poison-safe 'or' takes the form: select X, true, Y 9058 // To make that work with the normal operand processing, we skip the 9059 // true value operand. 9060 // TODO: Change the code and data structures to handle this without a hack. 9061 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9062 return I->getOperand(2); 9063 return I->getOperand(Index); 9064 } 9065 9066 /// Checks if the ParentStackElem.first should be marked as a reduction 9067 /// operation with an extra argument or as extra argument itself. 9068 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9069 Value *ExtraArg) { 9070 if (ExtraArgs.count(ParentStackElem.first)) { 9071 ExtraArgs[ParentStackElem.first] = nullptr; 9072 // We ran into something like: 9073 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9074 // The whole ParentStackElem.first should be considered as an extra value 9075 // in this case. 9076 // Do not perform analysis of remaining operands of ParentStackElem.first 9077 // instruction, this whole instruction is an extra argument. 9078 ParentStackElem.second = INVALID_OPERAND_INDEX; 9079 } else { 9080 // We ran into something like: 9081 // ParentStackElem.first += ... + ExtraArg + ... 9082 ExtraArgs[ParentStackElem.first] = ExtraArg; 9083 } 9084 } 9085 9086 /// Creates reduction operation with the current opcode. 9087 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9088 Value *RHS, const Twine &Name, bool UseSelect) { 9089 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9090 switch (Kind) { 9091 case RecurKind::Or: 9092 if (UseSelect && 9093 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9094 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9095 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9096 Name); 9097 case RecurKind::And: 9098 if (UseSelect && 9099 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9100 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9101 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9102 Name); 9103 case RecurKind::Add: 9104 case RecurKind::Mul: 9105 case RecurKind::Xor: 9106 case RecurKind::FAdd: 9107 case RecurKind::FMul: 9108 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9109 Name); 9110 case RecurKind::FMax: 9111 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9112 case RecurKind::FMin: 9113 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9114 case RecurKind::SMax: 9115 if (UseSelect) { 9116 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9117 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9118 } 9119 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9120 case RecurKind::SMin: 9121 if (UseSelect) { 9122 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9123 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9124 } 9125 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9126 case RecurKind::UMax: 9127 if (UseSelect) { 9128 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9129 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9130 } 9131 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9132 case RecurKind::UMin: 9133 if (UseSelect) { 9134 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9135 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9136 } 9137 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9138 default: 9139 llvm_unreachable("Unknown reduction operation."); 9140 } 9141 } 9142 9143 /// Creates reduction operation with the current opcode with the IR flags 9144 /// from \p ReductionOps. 9145 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9146 Value *RHS, const Twine &Name, 9147 const ReductionOpsListType &ReductionOps) { 9148 bool UseSelect = ReductionOps.size() == 2 || 9149 // Logical or/and. 9150 (ReductionOps.size() == 1 && 9151 isa<SelectInst>(ReductionOps.front().front())); 9152 assert((!UseSelect || ReductionOps.size() != 2 || 9153 isa<SelectInst>(ReductionOps[1][0])) && 9154 "Expected cmp + select pairs for reduction"); 9155 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9156 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9157 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9158 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9159 propagateIRFlags(Op, ReductionOps[1]); 9160 return Op; 9161 } 9162 } 9163 propagateIRFlags(Op, ReductionOps[0]); 9164 return Op; 9165 } 9166 9167 /// Creates reduction operation with the current opcode with the IR flags 9168 /// from \p I. 9169 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9170 Value *RHS, const Twine &Name, Instruction *I) { 9171 auto *SelI = dyn_cast<SelectInst>(I); 9172 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9173 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9174 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9175 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9176 } 9177 propagateIRFlags(Op, I); 9178 return Op; 9179 } 9180 9181 static RecurKind getRdxKind(Instruction *I) { 9182 assert(I && "Expected instruction for reduction matching"); 9183 if (match(I, m_Add(m_Value(), m_Value()))) 9184 return RecurKind::Add; 9185 if (match(I, m_Mul(m_Value(), m_Value()))) 9186 return RecurKind::Mul; 9187 if (match(I, m_And(m_Value(), m_Value())) || 9188 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9189 return RecurKind::And; 9190 if (match(I, m_Or(m_Value(), m_Value())) || 9191 match(I, m_LogicalOr(m_Value(), m_Value()))) 9192 return RecurKind::Or; 9193 if (match(I, m_Xor(m_Value(), m_Value()))) 9194 return RecurKind::Xor; 9195 if (match(I, m_FAdd(m_Value(), m_Value()))) 9196 return RecurKind::FAdd; 9197 if (match(I, m_FMul(m_Value(), m_Value()))) 9198 return RecurKind::FMul; 9199 9200 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9201 return RecurKind::FMax; 9202 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9203 return RecurKind::FMin; 9204 9205 // This matches either cmp+select or intrinsics. SLP is expected to handle 9206 // either form. 9207 // TODO: If we are canonicalizing to intrinsics, we can remove several 9208 // special-case paths that deal with selects. 9209 if (match(I, m_SMax(m_Value(), m_Value()))) 9210 return RecurKind::SMax; 9211 if (match(I, m_SMin(m_Value(), m_Value()))) 9212 return RecurKind::SMin; 9213 if (match(I, m_UMax(m_Value(), m_Value()))) 9214 return RecurKind::UMax; 9215 if (match(I, m_UMin(m_Value(), m_Value()))) 9216 return RecurKind::UMin; 9217 9218 if (auto *Select = dyn_cast<SelectInst>(I)) { 9219 // Try harder: look for min/max pattern based on instructions producing 9220 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9221 // During the intermediate stages of SLP, it's very common to have 9222 // pattern like this (since optimizeGatherSequence is run only once 9223 // at the end): 9224 // %1 = extractelement <2 x i32> %a, i32 0 9225 // %2 = extractelement <2 x i32> %a, i32 1 9226 // %cond = icmp sgt i32 %1, %2 9227 // %3 = extractelement <2 x i32> %a, i32 0 9228 // %4 = extractelement <2 x i32> %a, i32 1 9229 // %select = select i1 %cond, i32 %3, i32 %4 9230 CmpInst::Predicate Pred; 9231 Instruction *L1; 9232 Instruction *L2; 9233 9234 Value *LHS = Select->getTrueValue(); 9235 Value *RHS = Select->getFalseValue(); 9236 Value *Cond = Select->getCondition(); 9237 9238 // TODO: Support inverse predicates. 9239 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9240 if (!isa<ExtractElementInst>(RHS) || 9241 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9242 return RecurKind::None; 9243 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9244 if (!isa<ExtractElementInst>(LHS) || 9245 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9246 return RecurKind::None; 9247 } else { 9248 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9249 return RecurKind::None; 9250 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9251 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9252 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9253 return RecurKind::None; 9254 } 9255 9256 switch (Pred) { 9257 default: 9258 return RecurKind::None; 9259 case CmpInst::ICMP_SGT: 9260 case CmpInst::ICMP_SGE: 9261 return RecurKind::SMax; 9262 case CmpInst::ICMP_SLT: 9263 case CmpInst::ICMP_SLE: 9264 return RecurKind::SMin; 9265 case CmpInst::ICMP_UGT: 9266 case CmpInst::ICMP_UGE: 9267 return RecurKind::UMax; 9268 case CmpInst::ICMP_ULT: 9269 case CmpInst::ICMP_ULE: 9270 return RecurKind::UMin; 9271 } 9272 } 9273 return RecurKind::None; 9274 } 9275 9276 /// Get the index of the first operand. 9277 static unsigned getFirstOperandIndex(Instruction *I) { 9278 return isCmpSelMinMax(I) ? 1 : 0; 9279 } 9280 9281 /// Total number of operands in the reduction operation. 9282 static unsigned getNumberOfOperands(Instruction *I) { 9283 return isCmpSelMinMax(I) ? 3 : 2; 9284 } 9285 9286 /// Checks if the instruction is in basic block \p BB. 9287 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9288 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9289 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9290 auto *Sel = cast<SelectInst>(I); 9291 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9292 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9293 } 9294 return I->getParent() == BB; 9295 } 9296 9297 /// Expected number of uses for reduction operations/reduced values. 9298 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9299 if (IsCmpSelMinMax) { 9300 // SelectInst must be used twice while the condition op must have single 9301 // use only. 9302 if (auto *Sel = dyn_cast<SelectInst>(I)) 9303 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9304 return I->hasNUses(2); 9305 } 9306 9307 // Arithmetic reduction operation must be used once only. 9308 return I->hasOneUse(); 9309 } 9310 9311 /// Initializes the list of reduction operations. 9312 void initReductionOps(Instruction *I) { 9313 if (isCmpSelMinMax(I)) 9314 ReductionOps.assign(2, ReductionOpsType()); 9315 else 9316 ReductionOps.assign(1, ReductionOpsType()); 9317 } 9318 9319 /// Add all reduction operations for the reduction instruction \p I. 9320 void addReductionOps(Instruction *I) { 9321 if (isCmpSelMinMax(I)) { 9322 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9323 ReductionOps[1].emplace_back(I); 9324 } else { 9325 ReductionOps[0].emplace_back(I); 9326 } 9327 } 9328 9329 static Value *getLHS(RecurKind Kind, Instruction *I) { 9330 if (Kind == RecurKind::None) 9331 return nullptr; 9332 return I->getOperand(getFirstOperandIndex(I)); 9333 } 9334 static Value *getRHS(RecurKind Kind, Instruction *I) { 9335 if (Kind == RecurKind::None) 9336 return nullptr; 9337 return I->getOperand(getFirstOperandIndex(I) + 1); 9338 } 9339 9340 public: 9341 HorizontalReduction() = default; 9342 9343 /// Try to find a reduction tree. 9344 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9345 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9346 "Phi needs to use the binary operator"); 9347 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9348 isa<IntrinsicInst>(Inst)) && 9349 "Expected binop, select, or intrinsic for reduction matching"); 9350 RdxKind = getRdxKind(Inst); 9351 9352 // We could have a initial reductions that is not an add. 9353 // r *= v1 + v2 + v3 + v4 9354 // In such a case start looking for a tree rooted in the first '+'. 9355 if (Phi) { 9356 if (getLHS(RdxKind, Inst) == Phi) { 9357 Phi = nullptr; 9358 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9359 if (!Inst) 9360 return false; 9361 RdxKind = getRdxKind(Inst); 9362 } else if (getRHS(RdxKind, Inst) == Phi) { 9363 Phi = nullptr; 9364 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9365 if (!Inst) 9366 return false; 9367 RdxKind = getRdxKind(Inst); 9368 } 9369 } 9370 9371 if (!isVectorizable(RdxKind, Inst)) 9372 return false; 9373 9374 // Analyze "regular" integer/FP types for reductions - no target-specific 9375 // types or pointers. 9376 Type *Ty = Inst->getType(); 9377 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9378 return false; 9379 9380 // Though the ultimate reduction may have multiple uses, its condition must 9381 // have only single use. 9382 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9383 if (!Sel->getCondition()->hasOneUse()) 9384 return false; 9385 9386 ReductionRoot = Inst; 9387 9388 // The opcode for leaf values that we perform a reduction on. 9389 // For example: load(x) + load(y) + load(z) + fptoui(w) 9390 // The leaf opcode for 'w' does not match, so we don't include it as a 9391 // potential candidate for the reduction. 9392 unsigned LeafOpcode = 0; 9393 9394 // Post-order traverse the reduction tree starting at Inst. We only handle 9395 // true trees containing binary operators or selects. 9396 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9397 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9398 initReductionOps(Inst); 9399 while (!Stack.empty()) { 9400 Instruction *TreeN = Stack.back().first; 9401 unsigned EdgeToVisit = Stack.back().second++; 9402 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9403 bool IsReducedValue = TreeRdxKind != RdxKind; 9404 9405 // Postorder visit. 9406 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9407 if (IsReducedValue) 9408 ReducedVals.push_back(TreeN); 9409 else { 9410 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9411 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9412 // Check if TreeN is an extra argument of its parent operation. 9413 if (Stack.size() <= 1) { 9414 // TreeN can't be an extra argument as it is a root reduction 9415 // operation. 9416 return false; 9417 } 9418 // Yes, TreeN is an extra argument, do not add it to a list of 9419 // reduction operations. 9420 // Stack[Stack.size() - 2] always points to the parent operation. 9421 markExtraArg(Stack[Stack.size() - 2], TreeN); 9422 ExtraArgs.erase(TreeN); 9423 } else 9424 addReductionOps(TreeN); 9425 } 9426 // Retract. 9427 Stack.pop_back(); 9428 continue; 9429 } 9430 9431 // Visit operands. 9432 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9433 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9434 if (!EdgeInst) { 9435 // Edge value is not a reduction instruction or a leaf instruction. 9436 // (It may be a constant, function argument, or something else.) 9437 markExtraArg(Stack.back(), EdgeVal); 9438 continue; 9439 } 9440 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9441 // Continue analysis if the next operand is a reduction operation or 9442 // (possibly) a leaf value. If the leaf value opcode is not set, 9443 // the first met operation != reduction operation is considered as the 9444 // leaf opcode. 9445 // Only handle trees in the current basic block. 9446 // Each tree node needs to have minimal number of users except for the 9447 // ultimate reduction. 9448 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9449 if (EdgeInst != Phi && EdgeInst != Inst && 9450 hasSameParent(EdgeInst, Inst->getParent()) && 9451 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9452 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9453 if (IsRdxInst) { 9454 // We need to be able to reassociate the reduction operations. 9455 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9456 // I is an extra argument for TreeN (its parent operation). 9457 markExtraArg(Stack.back(), EdgeInst); 9458 continue; 9459 } 9460 } else if (!LeafOpcode) { 9461 LeafOpcode = EdgeInst->getOpcode(); 9462 } 9463 Stack.push_back( 9464 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9465 continue; 9466 } 9467 // I is an extra argument for TreeN (its parent operation). 9468 markExtraArg(Stack.back(), EdgeInst); 9469 } 9470 return true; 9471 } 9472 9473 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9474 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9475 // If there are a sufficient number of reduction values, reduce 9476 // to a nearby power-of-2. We can safely generate oversized 9477 // vectors and rely on the backend to split them to legal sizes. 9478 unsigned NumReducedVals = ReducedVals.size(); 9479 if (NumReducedVals < 4) 9480 return nullptr; 9481 9482 // Intersect the fast-math-flags from all reduction operations. 9483 FastMathFlags RdxFMF; 9484 RdxFMF.set(); 9485 for (ReductionOpsType &RdxOp : ReductionOps) { 9486 for (Value *RdxVal : RdxOp) { 9487 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9488 RdxFMF &= FPMO->getFastMathFlags(); 9489 } 9490 } 9491 9492 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9493 Builder.setFastMathFlags(RdxFMF); 9494 9495 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9496 // The same extra argument may be used several times, so log each attempt 9497 // to use it. 9498 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9499 assert(Pair.first && "DebugLoc must be set."); 9500 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9501 } 9502 9503 // The compare instruction of a min/max is the insertion point for new 9504 // instructions and may be replaced with a new compare instruction. 9505 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9506 assert(isa<SelectInst>(RdxRootInst) && 9507 "Expected min/max reduction to have select root instruction"); 9508 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9509 assert(isa<Instruction>(ScalarCond) && 9510 "Expected min/max reduction to have compare condition"); 9511 return cast<Instruction>(ScalarCond); 9512 }; 9513 9514 // The reduction root is used as the insertion point for new instructions, 9515 // so set it as externally used to prevent it from being deleted. 9516 ExternallyUsedValues[ReductionRoot]; 9517 SmallVector<Value *, 16> IgnoreList; 9518 for (ReductionOpsType &RdxOp : ReductionOps) 9519 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9520 9521 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9522 if (NumReducedVals > ReduxWidth) { 9523 // In the loop below, we are building a tree based on a window of 9524 // 'ReduxWidth' values. 9525 // If the operands of those values have common traits (compare predicate, 9526 // constant operand, etc), then we want to group those together to 9527 // minimize the cost of the reduction. 9528 9529 // TODO: This should be extended to count common operands for 9530 // compares and binops. 9531 9532 // Step 1: Count the number of times each compare predicate occurs. 9533 SmallDenseMap<unsigned, unsigned> PredCountMap; 9534 for (Value *RdxVal : ReducedVals) { 9535 CmpInst::Predicate Pred; 9536 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9537 ++PredCountMap[Pred]; 9538 } 9539 // Step 2: Sort the values so the most common predicates come first. 9540 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9541 CmpInst::Predicate PredA, PredB; 9542 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9543 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9544 return PredCountMap[PredA] > PredCountMap[PredB]; 9545 } 9546 return false; 9547 }); 9548 } 9549 9550 Value *VectorizedTree = nullptr; 9551 unsigned i = 0; 9552 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9553 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9554 V.buildTree(VL, IgnoreList); 9555 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9556 break; 9557 if (V.isLoadCombineReductionCandidate(RdxKind)) 9558 break; 9559 V.reorderTopToBottom(); 9560 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9561 V.buildExternalUses(ExternallyUsedValues); 9562 9563 // For a poison-safe boolean logic reduction, do not replace select 9564 // instructions with logic ops. All reduced values will be frozen (see 9565 // below) to prevent leaking poison. 9566 if (isa<SelectInst>(ReductionRoot) && 9567 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9568 NumReducedVals != ReduxWidth) 9569 break; 9570 9571 V.computeMinimumValueSizes(); 9572 9573 // Estimate cost. 9574 InstructionCost TreeCost = 9575 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9576 InstructionCost ReductionCost = 9577 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9578 InstructionCost Cost = TreeCost + ReductionCost; 9579 if (!Cost.isValid()) { 9580 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9581 return nullptr; 9582 } 9583 if (Cost >= -SLPCostThreshold) { 9584 V.getORE()->emit([&]() { 9585 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9586 cast<Instruction>(VL[0])) 9587 << "Vectorizing horizontal reduction is possible" 9588 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9589 << " and threshold " 9590 << ore::NV("Threshold", -SLPCostThreshold); 9591 }); 9592 break; 9593 } 9594 9595 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9596 << Cost << ". (HorRdx)\n"); 9597 V.getORE()->emit([&]() { 9598 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9599 cast<Instruction>(VL[0])) 9600 << "Vectorized horizontal reduction with cost " 9601 << ore::NV("Cost", Cost) << " and with tree size " 9602 << ore::NV("TreeSize", V.getTreeSize()); 9603 }); 9604 9605 // Vectorize a tree. 9606 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9607 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9608 9609 // Emit a reduction. If the root is a select (min/max idiom), the insert 9610 // point is the compare condition of that select. 9611 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9612 if (isCmpSelMinMax(RdxRootInst)) 9613 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9614 else 9615 Builder.SetInsertPoint(RdxRootInst); 9616 9617 // To prevent poison from leaking across what used to be sequential, safe, 9618 // scalar boolean logic operations, the reduction operand must be frozen. 9619 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9620 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9621 9622 Value *ReducedSubTree = 9623 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9624 9625 if (!VectorizedTree) { 9626 // Initialize the final value in the reduction. 9627 VectorizedTree = ReducedSubTree; 9628 } else { 9629 // Update the final value in the reduction. 9630 Builder.SetCurrentDebugLocation(Loc); 9631 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9632 ReducedSubTree, "op.rdx", ReductionOps); 9633 } 9634 i += ReduxWidth; 9635 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9636 } 9637 9638 if (VectorizedTree) { 9639 // Finish the reduction. 9640 for (; i < NumReducedVals; ++i) { 9641 auto *I = cast<Instruction>(ReducedVals[i]); 9642 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9643 VectorizedTree = 9644 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9645 } 9646 for (auto &Pair : ExternallyUsedValues) { 9647 // Add each externally used value to the final reduction. 9648 for (auto *I : Pair.second) { 9649 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9650 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9651 Pair.first, "op.extra", I); 9652 } 9653 } 9654 9655 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9656 9657 // Mark all scalar reduction ops for deletion, they are replaced by the 9658 // vector reductions. 9659 V.eraseInstructions(IgnoreList); 9660 } 9661 return VectorizedTree; 9662 } 9663 9664 unsigned numReductionValues() const { return ReducedVals.size(); } 9665 9666 private: 9667 /// Calculate the cost of a reduction. 9668 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9669 Value *FirstReducedVal, unsigned ReduxWidth, 9670 FastMathFlags FMF) { 9671 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9672 Type *ScalarTy = FirstReducedVal->getType(); 9673 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9674 InstructionCost VectorCost, ScalarCost; 9675 switch (RdxKind) { 9676 case RecurKind::Add: 9677 case RecurKind::Mul: 9678 case RecurKind::Or: 9679 case RecurKind::And: 9680 case RecurKind::Xor: 9681 case RecurKind::FAdd: 9682 case RecurKind::FMul: { 9683 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9684 VectorCost = 9685 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9686 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9687 break; 9688 } 9689 case RecurKind::FMax: 9690 case RecurKind::FMin: { 9691 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9692 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9693 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9694 /*IsUnsigned=*/false, CostKind); 9695 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9696 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9697 SclCondTy, RdxPred, CostKind) + 9698 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9699 SclCondTy, RdxPred, CostKind); 9700 break; 9701 } 9702 case RecurKind::SMax: 9703 case RecurKind::SMin: 9704 case RecurKind::UMax: 9705 case RecurKind::UMin: { 9706 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9707 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9708 bool IsUnsigned = 9709 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9710 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9711 CostKind); 9712 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9713 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9714 SclCondTy, RdxPred, CostKind) + 9715 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9716 SclCondTy, RdxPred, CostKind); 9717 break; 9718 } 9719 default: 9720 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9721 } 9722 9723 // Scalar cost is repeated for N-1 elements. 9724 ScalarCost *= (ReduxWidth - 1); 9725 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9726 << " for reduction that starts with " << *FirstReducedVal 9727 << " (It is a splitting reduction)\n"); 9728 return VectorCost - ScalarCost; 9729 } 9730 9731 /// Emit a horizontal reduction of the vectorized value. 9732 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9733 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9734 assert(VectorizedValue && "Need to have a vectorized tree node"); 9735 assert(isPowerOf2_32(ReduxWidth) && 9736 "We only handle power-of-two reductions for now"); 9737 assert(RdxKind != RecurKind::FMulAdd && 9738 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9739 9740 ++NumVectorInstructions; 9741 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9742 } 9743 }; 9744 9745 } // end anonymous namespace 9746 9747 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9748 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9749 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9750 9751 unsigned AggregateSize = 1; 9752 auto *IV = cast<InsertValueInst>(InsertInst); 9753 Type *CurrentType = IV->getType(); 9754 do { 9755 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9756 for (auto *Elt : ST->elements()) 9757 if (Elt != ST->getElementType(0)) // check homogeneity 9758 return None; 9759 AggregateSize *= ST->getNumElements(); 9760 CurrentType = ST->getElementType(0); 9761 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9762 AggregateSize *= AT->getNumElements(); 9763 CurrentType = AT->getElementType(); 9764 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9765 AggregateSize *= VT->getNumElements(); 9766 return AggregateSize; 9767 } else if (CurrentType->isSingleValueType()) { 9768 return AggregateSize; 9769 } else { 9770 return None; 9771 } 9772 } while (true); 9773 } 9774 9775 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9776 TargetTransformInfo *TTI, 9777 SmallVectorImpl<Value *> &BuildVectorOpds, 9778 SmallVectorImpl<Value *> &InsertElts, 9779 unsigned OperandOffset) { 9780 do { 9781 Value *InsertedOperand = LastInsertInst->getOperand(1); 9782 Optional<unsigned> OperandIndex = 9783 getInsertIndex(LastInsertInst, OperandOffset); 9784 if (!OperandIndex) 9785 return; 9786 if (isa<InsertElementInst>(InsertedOperand) || 9787 isa<InsertValueInst>(InsertedOperand)) { 9788 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9789 BuildVectorOpds, InsertElts, *OperandIndex); 9790 9791 } else { 9792 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9793 InsertElts[*OperandIndex] = LastInsertInst; 9794 } 9795 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9796 } while (LastInsertInst != nullptr && 9797 (isa<InsertValueInst>(LastInsertInst) || 9798 isa<InsertElementInst>(LastInsertInst)) && 9799 LastInsertInst->hasOneUse()); 9800 } 9801 9802 /// Recognize construction of vectors like 9803 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9804 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9805 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9806 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9807 /// starting from the last insertelement or insertvalue instruction. 9808 /// 9809 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9810 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9811 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9812 /// 9813 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9814 /// 9815 /// \return true if it matches. 9816 static bool findBuildAggregate(Instruction *LastInsertInst, 9817 TargetTransformInfo *TTI, 9818 SmallVectorImpl<Value *> &BuildVectorOpds, 9819 SmallVectorImpl<Value *> &InsertElts) { 9820 9821 assert((isa<InsertElementInst>(LastInsertInst) || 9822 isa<InsertValueInst>(LastInsertInst)) && 9823 "Expected insertelement or insertvalue instruction!"); 9824 9825 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9826 "Expected empty result vectors!"); 9827 9828 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9829 if (!AggregateSize) 9830 return false; 9831 BuildVectorOpds.resize(*AggregateSize); 9832 InsertElts.resize(*AggregateSize); 9833 9834 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9835 llvm::erase_value(BuildVectorOpds, nullptr); 9836 llvm::erase_value(InsertElts, nullptr); 9837 if (BuildVectorOpds.size() >= 2) 9838 return true; 9839 9840 return false; 9841 } 9842 9843 /// Try and get a reduction value from a phi node. 9844 /// 9845 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9846 /// if they come from either \p ParentBB or a containing loop latch. 9847 /// 9848 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9849 /// if not possible. 9850 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9851 BasicBlock *ParentBB, LoopInfo *LI) { 9852 // There are situations where the reduction value is not dominated by the 9853 // reduction phi. Vectorizing such cases has been reported to cause 9854 // miscompiles. See PR25787. 9855 auto DominatedReduxValue = [&](Value *R) { 9856 return isa<Instruction>(R) && 9857 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9858 }; 9859 9860 Value *Rdx = nullptr; 9861 9862 // Return the incoming value if it comes from the same BB as the phi node. 9863 if (P->getIncomingBlock(0) == ParentBB) { 9864 Rdx = P->getIncomingValue(0); 9865 } else if (P->getIncomingBlock(1) == ParentBB) { 9866 Rdx = P->getIncomingValue(1); 9867 } 9868 9869 if (Rdx && DominatedReduxValue(Rdx)) 9870 return Rdx; 9871 9872 // Otherwise, check whether we have a loop latch to look at. 9873 Loop *BBL = LI->getLoopFor(ParentBB); 9874 if (!BBL) 9875 return nullptr; 9876 BasicBlock *BBLatch = BBL->getLoopLatch(); 9877 if (!BBLatch) 9878 return nullptr; 9879 9880 // There is a loop latch, return the incoming value if it comes from 9881 // that. This reduction pattern occasionally turns up. 9882 if (P->getIncomingBlock(0) == BBLatch) { 9883 Rdx = P->getIncomingValue(0); 9884 } else if (P->getIncomingBlock(1) == BBLatch) { 9885 Rdx = P->getIncomingValue(1); 9886 } 9887 9888 if (Rdx && DominatedReduxValue(Rdx)) 9889 return Rdx; 9890 9891 return nullptr; 9892 } 9893 9894 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9895 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9896 return true; 9897 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9898 return true; 9899 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9900 return true; 9901 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9902 return true; 9903 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9904 return true; 9905 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9906 return true; 9907 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9908 return true; 9909 return false; 9910 } 9911 9912 /// Attempt to reduce a horizontal reduction. 9913 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9914 /// with reduction operators \a Root (or one of its operands) in a basic block 9915 /// \a BB, then check if it can be done. If horizontal reduction is not found 9916 /// and root instruction is a binary operation, vectorization of the operands is 9917 /// attempted. 9918 /// \returns true if a horizontal reduction was matched and reduced or operands 9919 /// of one of the binary instruction were vectorized. 9920 /// \returns false if a horizontal reduction was not matched (or not possible) 9921 /// or no vectorization of any binary operation feeding \a Root instruction was 9922 /// performed. 9923 static bool tryToVectorizeHorReductionOrInstOperands( 9924 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9925 TargetTransformInfo *TTI, 9926 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9927 if (!ShouldVectorizeHor) 9928 return false; 9929 9930 if (!Root) 9931 return false; 9932 9933 if (Root->getParent() != BB || isa<PHINode>(Root)) 9934 return false; 9935 // Start analysis starting from Root instruction. If horizontal reduction is 9936 // found, try to vectorize it. If it is not a horizontal reduction or 9937 // vectorization is not possible or not effective, and currently analyzed 9938 // instruction is a binary operation, try to vectorize the operands, using 9939 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9940 // the same procedure considering each operand as a possible root of the 9941 // horizontal reduction. 9942 // Interrupt the process if the Root instruction itself was vectorized or all 9943 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9944 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9945 // CmpInsts so we can skip extra attempts in 9946 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9947 std::queue<std::pair<Instruction *, unsigned>> Stack; 9948 Stack.emplace(Root, 0); 9949 SmallPtrSet<Value *, 8> VisitedInstrs; 9950 SmallVector<WeakTrackingVH> PostponedInsts; 9951 bool Res = false; 9952 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9953 Value *&B1) -> Value * { 9954 bool IsBinop = matchRdxBop(Inst, B0, B1); 9955 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9956 if (IsBinop || IsSelect) { 9957 HorizontalReduction HorRdx; 9958 if (HorRdx.matchAssociativeReduction(P, Inst)) 9959 return HorRdx.tryToReduce(R, TTI); 9960 } 9961 return nullptr; 9962 }; 9963 while (!Stack.empty()) { 9964 Instruction *Inst; 9965 unsigned Level; 9966 std::tie(Inst, Level) = Stack.front(); 9967 Stack.pop(); 9968 // Do not try to analyze instruction that has already been vectorized. 9969 // This may happen when we vectorize instruction operands on a previous 9970 // iteration while stack was populated before that happened. 9971 if (R.isDeleted(Inst)) 9972 continue; 9973 Value *B0 = nullptr, *B1 = nullptr; 9974 if (Value *V = TryToReduce(Inst, B0, B1)) { 9975 Res = true; 9976 // Set P to nullptr to avoid re-analysis of phi node in 9977 // matchAssociativeReduction function unless this is the root node. 9978 P = nullptr; 9979 if (auto *I = dyn_cast<Instruction>(V)) { 9980 // Try to find another reduction. 9981 Stack.emplace(I, Level); 9982 continue; 9983 } 9984 } else { 9985 bool IsBinop = B0 && B1; 9986 if (P && IsBinop) { 9987 Inst = dyn_cast<Instruction>(B0); 9988 if (Inst == P) 9989 Inst = dyn_cast<Instruction>(B1); 9990 if (!Inst) { 9991 // Set P to nullptr to avoid re-analysis of phi node in 9992 // matchAssociativeReduction function unless this is the root node. 9993 P = nullptr; 9994 continue; 9995 } 9996 } 9997 // Set P to nullptr to avoid re-analysis of phi node in 9998 // matchAssociativeReduction function unless this is the root node. 9999 P = nullptr; 10000 // Do not try to vectorize CmpInst operands, this is done separately. 10001 // Final attempt for binop args vectorization should happen after the loop 10002 // to try to find reductions. 10003 if (!isa<CmpInst>(Inst)) 10004 PostponedInsts.push_back(Inst); 10005 } 10006 10007 // Try to vectorize operands. 10008 // Continue analysis for the instruction from the same basic block only to 10009 // save compile time. 10010 if (++Level < RecursionMaxDepth) 10011 for (auto *Op : Inst->operand_values()) 10012 if (VisitedInstrs.insert(Op).second) 10013 if (auto *I = dyn_cast<Instruction>(Op)) 10014 // Do not try to vectorize CmpInst operands, this is done 10015 // separately. 10016 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10017 I->getParent() == BB) 10018 Stack.emplace(I, Level); 10019 } 10020 // Try to vectorized binops where reductions were not found. 10021 for (Value *V : PostponedInsts) 10022 if (auto *Inst = dyn_cast<Instruction>(V)) 10023 if (!R.isDeleted(Inst)) 10024 Res |= Vectorize(Inst, R); 10025 return Res; 10026 } 10027 10028 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10029 BasicBlock *BB, BoUpSLP &R, 10030 TargetTransformInfo *TTI) { 10031 auto *I = dyn_cast_or_null<Instruction>(V); 10032 if (!I) 10033 return false; 10034 10035 if (!isa<BinaryOperator>(I)) 10036 P = nullptr; 10037 // Try to match and vectorize a horizontal reduction. 10038 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10039 return tryToVectorize(I, R); 10040 }; 10041 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10042 ExtraVectorization); 10043 } 10044 10045 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10046 BasicBlock *BB, BoUpSLP &R) { 10047 const DataLayout &DL = BB->getModule()->getDataLayout(); 10048 if (!R.canMapToVector(IVI->getType(), DL)) 10049 return false; 10050 10051 SmallVector<Value *, 16> BuildVectorOpds; 10052 SmallVector<Value *, 16> BuildVectorInsts; 10053 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10054 return false; 10055 10056 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10057 // Aggregate value is unlikely to be processed in vector register. 10058 return tryToVectorizeList(BuildVectorOpds, R); 10059 } 10060 10061 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10062 BasicBlock *BB, BoUpSLP &R) { 10063 SmallVector<Value *, 16> BuildVectorInsts; 10064 SmallVector<Value *, 16> BuildVectorOpds; 10065 SmallVector<int> Mask; 10066 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10067 (llvm::all_of( 10068 BuildVectorOpds, 10069 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10070 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10071 return false; 10072 10073 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10074 return tryToVectorizeList(BuildVectorInsts, R); 10075 } 10076 10077 template <typename T> 10078 static bool 10079 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10080 function_ref<unsigned(T *)> Limit, 10081 function_ref<bool(T *, T *)> Comparator, 10082 function_ref<bool(T *, T *)> AreCompatible, 10083 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10084 bool LimitForRegisterSize) { 10085 bool Changed = false; 10086 // Sort by type, parent, operands. 10087 stable_sort(Incoming, Comparator); 10088 10089 // Try to vectorize elements base on their type. 10090 SmallVector<T *> Candidates; 10091 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10092 // Look for the next elements with the same type, parent and operand 10093 // kinds. 10094 auto *SameTypeIt = IncIt; 10095 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10096 ++SameTypeIt; 10097 10098 // Try to vectorize them. 10099 unsigned NumElts = (SameTypeIt - IncIt); 10100 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10101 << NumElts << ")\n"); 10102 // The vectorization is a 3-state attempt: 10103 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10104 // size of maximal register at first. 10105 // 2. Try to vectorize remaining instructions with the same type, if 10106 // possible. This may result in the better vectorization results rather than 10107 // if we try just to vectorize instructions with the same/alternate opcodes. 10108 // 3. Final attempt to try to vectorize all instructions with the 10109 // same/alternate ops only, this may result in some extra final 10110 // vectorization. 10111 if (NumElts > 1 && 10112 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10113 // Success start over because instructions might have been changed. 10114 Changed = true; 10115 } else if (NumElts < Limit(*IncIt) && 10116 (Candidates.empty() || 10117 Candidates.front()->getType() == (*IncIt)->getType())) { 10118 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10119 } 10120 // Final attempt to vectorize instructions with the same types. 10121 if (Candidates.size() > 1 && 10122 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10123 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10124 // Success start over because instructions might have been changed. 10125 Changed = true; 10126 } else if (LimitForRegisterSize) { 10127 // Try to vectorize using small vectors. 10128 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10129 It != End;) { 10130 auto *SameTypeIt = It; 10131 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10132 ++SameTypeIt; 10133 unsigned NumElts = (SameTypeIt - It); 10134 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10135 /*LimitForRegisterSize=*/false)) 10136 Changed = true; 10137 It = SameTypeIt; 10138 } 10139 } 10140 Candidates.clear(); 10141 } 10142 10143 // Start over at the next instruction of a different type (or the end). 10144 IncIt = SameTypeIt; 10145 } 10146 return Changed; 10147 } 10148 10149 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10150 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10151 /// operands. If IsCompatibility is false, function implements strict weak 10152 /// ordering relation between two cmp instructions, returning true if the first 10153 /// instruction is "less" than the second, i.e. its predicate is less than the 10154 /// predicate of the second or the operands IDs are less than the operands IDs 10155 /// of the second cmp instruction. 10156 template <bool IsCompatibility> 10157 static bool compareCmp(Value *V, Value *V2, 10158 function_ref<bool(Instruction *)> IsDeleted) { 10159 auto *CI1 = cast<CmpInst>(V); 10160 auto *CI2 = cast<CmpInst>(V2); 10161 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10162 return false; 10163 if (CI1->getOperand(0)->getType()->getTypeID() < 10164 CI2->getOperand(0)->getType()->getTypeID()) 10165 return !IsCompatibility; 10166 if (CI1->getOperand(0)->getType()->getTypeID() > 10167 CI2->getOperand(0)->getType()->getTypeID()) 10168 return false; 10169 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10170 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10171 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10172 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10173 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10174 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10175 if (BasePred1 < BasePred2) 10176 return !IsCompatibility; 10177 if (BasePred1 > BasePred2) 10178 return false; 10179 // Compare operands. 10180 bool LEPreds = Pred1 <= Pred2; 10181 bool GEPreds = Pred1 >= Pred2; 10182 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10183 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10184 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10185 if (Op1->getValueID() < Op2->getValueID()) 10186 return !IsCompatibility; 10187 if (Op1->getValueID() > Op2->getValueID()) 10188 return false; 10189 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10190 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10191 if (I1->getParent() != I2->getParent()) 10192 return false; 10193 InstructionsState S = getSameOpcode({I1, I2}); 10194 if (S.getOpcode()) 10195 continue; 10196 return false; 10197 } 10198 } 10199 return IsCompatibility; 10200 } 10201 10202 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10203 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10204 bool AtTerminator) { 10205 bool OpsChanged = false; 10206 SmallVector<Instruction *, 4> PostponedCmps; 10207 for (auto *I : reverse(Instructions)) { 10208 if (R.isDeleted(I)) 10209 continue; 10210 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10211 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10212 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10213 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10214 else if (isa<CmpInst>(I)) 10215 PostponedCmps.push_back(I); 10216 } 10217 if (AtTerminator) { 10218 // Try to find reductions first. 10219 for (Instruction *I : PostponedCmps) { 10220 if (R.isDeleted(I)) 10221 continue; 10222 for (Value *Op : I->operands()) 10223 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10224 } 10225 // Try to vectorize operands as vector bundles. 10226 for (Instruction *I : PostponedCmps) { 10227 if (R.isDeleted(I)) 10228 continue; 10229 OpsChanged |= tryToVectorize(I, R); 10230 } 10231 // Try to vectorize list of compares. 10232 // Sort by type, compare predicate, etc. 10233 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10234 return compareCmp<false>(V, V2, 10235 [&R](Instruction *I) { return R.isDeleted(I); }); 10236 }; 10237 10238 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10239 if (V1 == V2) 10240 return true; 10241 return compareCmp<true>(V1, V2, 10242 [&R](Instruction *I) { return R.isDeleted(I); }); 10243 }; 10244 auto Limit = [&R](Value *V) { 10245 unsigned EltSize = R.getVectorElementSize(V); 10246 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10247 }; 10248 10249 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10250 OpsChanged |= tryToVectorizeSequence<Value>( 10251 Vals, Limit, CompareSorter, AreCompatibleCompares, 10252 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10253 // Exclude possible reductions from other blocks. 10254 bool ArePossiblyReducedInOtherBlock = 10255 any_of(Candidates, [](Value *V) { 10256 return any_of(V->users(), [V](User *U) { 10257 return isa<SelectInst>(U) && 10258 cast<SelectInst>(U)->getParent() != 10259 cast<Instruction>(V)->getParent(); 10260 }); 10261 }); 10262 if (ArePossiblyReducedInOtherBlock) 10263 return false; 10264 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10265 }, 10266 /*LimitForRegisterSize=*/true); 10267 Instructions.clear(); 10268 } else { 10269 // Insert in reverse order since the PostponedCmps vector was filled in 10270 // reverse order. 10271 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10272 } 10273 return OpsChanged; 10274 } 10275 10276 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10277 bool Changed = false; 10278 SmallVector<Value *, 4> Incoming; 10279 SmallPtrSet<Value *, 16> VisitedInstrs; 10280 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10281 // node. Allows better to identify the chains that can be vectorized in the 10282 // better way. 10283 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10284 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10285 assert(isValidElementType(V1->getType()) && 10286 isValidElementType(V2->getType()) && 10287 "Expected vectorizable types only."); 10288 // It is fine to compare type IDs here, since we expect only vectorizable 10289 // types, like ints, floats and pointers, we don't care about other type. 10290 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10291 return true; 10292 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10293 return false; 10294 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10295 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10296 if (Opcodes1.size() < Opcodes2.size()) 10297 return true; 10298 if (Opcodes1.size() > Opcodes2.size()) 10299 return false; 10300 Optional<bool> ConstOrder; 10301 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10302 // Undefs are compatible with any other value. 10303 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10304 if (!ConstOrder) 10305 ConstOrder = 10306 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10307 continue; 10308 } 10309 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10310 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10311 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10312 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10313 if (!NodeI1) 10314 return NodeI2 != nullptr; 10315 if (!NodeI2) 10316 return false; 10317 assert((NodeI1 == NodeI2) == 10318 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10319 "Different nodes should have different DFS numbers"); 10320 if (NodeI1 != NodeI2) 10321 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10322 InstructionsState S = getSameOpcode({I1, I2}); 10323 if (S.getOpcode()) 10324 continue; 10325 return I1->getOpcode() < I2->getOpcode(); 10326 } 10327 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10328 if (!ConstOrder) 10329 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10330 continue; 10331 } 10332 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10333 return true; 10334 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10335 return false; 10336 } 10337 return ConstOrder && *ConstOrder; 10338 }; 10339 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10340 if (V1 == V2) 10341 return true; 10342 if (V1->getType() != V2->getType()) 10343 return false; 10344 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10345 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10346 if (Opcodes1.size() != Opcodes2.size()) 10347 return false; 10348 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10349 // Undefs are compatible with any other value. 10350 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10351 continue; 10352 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10353 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10354 if (I1->getParent() != I2->getParent()) 10355 return false; 10356 InstructionsState S = getSameOpcode({I1, I2}); 10357 if (S.getOpcode()) 10358 continue; 10359 return false; 10360 } 10361 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10362 continue; 10363 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10364 return false; 10365 } 10366 return true; 10367 }; 10368 auto Limit = [&R](Value *V) { 10369 unsigned EltSize = R.getVectorElementSize(V); 10370 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10371 }; 10372 10373 bool HaveVectorizedPhiNodes = false; 10374 do { 10375 // Collect the incoming values from the PHIs. 10376 Incoming.clear(); 10377 for (Instruction &I : *BB) { 10378 PHINode *P = dyn_cast<PHINode>(&I); 10379 if (!P) 10380 break; 10381 10382 // No need to analyze deleted, vectorized and non-vectorizable 10383 // instructions. 10384 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10385 isValidElementType(P->getType())) 10386 Incoming.push_back(P); 10387 } 10388 10389 // Find the corresponding non-phi nodes for better matching when trying to 10390 // build the tree. 10391 for (Value *V : Incoming) { 10392 SmallVectorImpl<Value *> &Opcodes = 10393 PHIToOpcodes.try_emplace(V).first->getSecond(); 10394 if (!Opcodes.empty()) 10395 continue; 10396 SmallVector<Value *, 4> Nodes(1, V); 10397 SmallPtrSet<Value *, 4> Visited; 10398 while (!Nodes.empty()) { 10399 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10400 if (!Visited.insert(PHI).second) 10401 continue; 10402 for (Value *V : PHI->incoming_values()) { 10403 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10404 Nodes.push_back(PHI1); 10405 continue; 10406 } 10407 Opcodes.emplace_back(V); 10408 } 10409 } 10410 } 10411 10412 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10413 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10414 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10415 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10416 }, 10417 /*LimitForRegisterSize=*/true); 10418 Changed |= HaveVectorizedPhiNodes; 10419 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10420 } while (HaveVectorizedPhiNodes); 10421 10422 VisitedInstrs.clear(); 10423 10424 SmallVector<Instruction *, 8> PostProcessInstructions; 10425 SmallDenseSet<Instruction *, 4> KeyNodes; 10426 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10427 // Skip instructions with scalable type. The num of elements is unknown at 10428 // compile-time for scalable type. 10429 if (isa<ScalableVectorType>(it->getType())) 10430 continue; 10431 10432 // Skip instructions marked for the deletion. 10433 if (R.isDeleted(&*it)) 10434 continue; 10435 // We may go through BB multiple times so skip the one we have checked. 10436 if (!VisitedInstrs.insert(&*it).second) { 10437 if (it->use_empty() && KeyNodes.contains(&*it) && 10438 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10439 it->isTerminator())) { 10440 // We would like to start over since some instructions are deleted 10441 // and the iterator may become invalid value. 10442 Changed = true; 10443 it = BB->begin(); 10444 e = BB->end(); 10445 } 10446 continue; 10447 } 10448 10449 if (isa<DbgInfoIntrinsic>(it)) 10450 continue; 10451 10452 // Try to vectorize reductions that use PHINodes. 10453 if (PHINode *P = dyn_cast<PHINode>(it)) { 10454 // Check that the PHI is a reduction PHI. 10455 if (P->getNumIncomingValues() == 2) { 10456 // Try to match and vectorize a horizontal reduction. 10457 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10458 TTI)) { 10459 Changed = true; 10460 it = BB->begin(); 10461 e = BB->end(); 10462 continue; 10463 } 10464 } 10465 // Try to vectorize the incoming values of the PHI, to catch reductions 10466 // that feed into PHIs. 10467 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10468 // Skip if the incoming block is the current BB for now. Also, bypass 10469 // unreachable IR for efficiency and to avoid crashing. 10470 // TODO: Collect the skipped incoming values and try to vectorize them 10471 // after processing BB. 10472 if (BB == P->getIncomingBlock(I) || 10473 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10474 continue; 10475 10476 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10477 P->getIncomingBlock(I), R, TTI); 10478 } 10479 continue; 10480 } 10481 10482 // Ran into an instruction without users, like terminator, or function call 10483 // with ignored return value, store. Ignore unused instructions (basing on 10484 // instruction type, except for CallInst and InvokeInst). 10485 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10486 isa<InvokeInst>(it))) { 10487 KeyNodes.insert(&*it); 10488 bool OpsChanged = false; 10489 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10490 for (auto *V : it->operand_values()) { 10491 // Try to match and vectorize a horizontal reduction. 10492 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10493 } 10494 } 10495 // Start vectorization of post-process list of instructions from the 10496 // top-tree instructions to try to vectorize as many instructions as 10497 // possible. 10498 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10499 it->isTerminator()); 10500 if (OpsChanged) { 10501 // We would like to start over since some instructions are deleted 10502 // and the iterator may become invalid value. 10503 Changed = true; 10504 it = BB->begin(); 10505 e = BB->end(); 10506 continue; 10507 } 10508 } 10509 10510 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10511 isa<InsertValueInst>(it)) 10512 PostProcessInstructions.push_back(&*it); 10513 } 10514 10515 return Changed; 10516 } 10517 10518 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10519 auto Changed = false; 10520 for (auto &Entry : GEPs) { 10521 // If the getelementptr list has fewer than two elements, there's nothing 10522 // to do. 10523 if (Entry.second.size() < 2) 10524 continue; 10525 10526 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10527 << Entry.second.size() << ".\n"); 10528 10529 // Process the GEP list in chunks suitable for the target's supported 10530 // vector size. If a vector register can't hold 1 element, we are done. We 10531 // are trying to vectorize the index computations, so the maximum number of 10532 // elements is based on the size of the index expression, rather than the 10533 // size of the GEP itself (the target's pointer size). 10534 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10535 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10536 if (MaxVecRegSize < EltSize) 10537 continue; 10538 10539 unsigned MaxElts = MaxVecRegSize / EltSize; 10540 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10541 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10542 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10543 10544 // Initialize a set a candidate getelementptrs. Note that we use a 10545 // SetVector here to preserve program order. If the index computations 10546 // are vectorizable and begin with loads, we want to minimize the chance 10547 // of having to reorder them later. 10548 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10549 10550 // Some of the candidates may have already been vectorized after we 10551 // initially collected them. If so, they are marked as deleted, so remove 10552 // them from the set of candidates. 10553 Candidates.remove_if( 10554 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10555 10556 // Remove from the set of candidates all pairs of getelementptrs with 10557 // constant differences. Such getelementptrs are likely not good 10558 // candidates for vectorization in a bottom-up phase since one can be 10559 // computed from the other. We also ensure all candidate getelementptr 10560 // indices are unique. 10561 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10562 auto *GEPI = GEPList[I]; 10563 if (!Candidates.count(GEPI)) 10564 continue; 10565 auto *SCEVI = SE->getSCEV(GEPList[I]); 10566 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10567 auto *GEPJ = GEPList[J]; 10568 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10569 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10570 Candidates.remove(GEPI); 10571 Candidates.remove(GEPJ); 10572 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10573 Candidates.remove(GEPJ); 10574 } 10575 } 10576 } 10577 10578 // We break out of the above computation as soon as we know there are 10579 // fewer than two candidates remaining. 10580 if (Candidates.size() < 2) 10581 continue; 10582 10583 // Add the single, non-constant index of each candidate to the bundle. We 10584 // ensured the indices met these constraints when we originally collected 10585 // the getelementptrs. 10586 SmallVector<Value *, 16> Bundle(Candidates.size()); 10587 auto BundleIndex = 0u; 10588 for (auto *V : Candidates) { 10589 auto *GEP = cast<GetElementPtrInst>(V); 10590 auto *GEPIdx = GEP->idx_begin()->get(); 10591 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10592 Bundle[BundleIndex++] = GEPIdx; 10593 } 10594 10595 // Try and vectorize the indices. We are currently only interested in 10596 // gather-like cases of the form: 10597 // 10598 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10599 // 10600 // where the loads of "a", the loads of "b", and the subtractions can be 10601 // performed in parallel. It's likely that detecting this pattern in a 10602 // bottom-up phase will be simpler and less costly than building a 10603 // full-blown top-down phase beginning at the consecutive loads. 10604 Changed |= tryToVectorizeList(Bundle, R); 10605 } 10606 } 10607 return Changed; 10608 } 10609 10610 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10611 bool Changed = false; 10612 // Sort by type, base pointers and values operand. Value operands must be 10613 // compatible (have the same opcode, same parent), otherwise it is 10614 // definitely not profitable to try to vectorize them. 10615 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10616 if (V->getPointerOperandType()->getTypeID() < 10617 V2->getPointerOperandType()->getTypeID()) 10618 return true; 10619 if (V->getPointerOperandType()->getTypeID() > 10620 V2->getPointerOperandType()->getTypeID()) 10621 return false; 10622 // UndefValues are compatible with all other values. 10623 if (isa<UndefValue>(V->getValueOperand()) || 10624 isa<UndefValue>(V2->getValueOperand())) 10625 return false; 10626 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10627 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10628 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10629 DT->getNode(I1->getParent()); 10630 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10631 DT->getNode(I2->getParent()); 10632 assert(NodeI1 && "Should only process reachable instructions"); 10633 assert(NodeI1 && "Should only process reachable instructions"); 10634 assert((NodeI1 == NodeI2) == 10635 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10636 "Different nodes should have different DFS numbers"); 10637 if (NodeI1 != NodeI2) 10638 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10639 InstructionsState S = getSameOpcode({I1, I2}); 10640 if (S.getOpcode()) 10641 return false; 10642 return I1->getOpcode() < I2->getOpcode(); 10643 } 10644 if (isa<Constant>(V->getValueOperand()) && 10645 isa<Constant>(V2->getValueOperand())) 10646 return false; 10647 return V->getValueOperand()->getValueID() < 10648 V2->getValueOperand()->getValueID(); 10649 }; 10650 10651 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10652 if (V1 == V2) 10653 return true; 10654 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10655 return false; 10656 // Undefs are compatible with any other value. 10657 if (isa<UndefValue>(V1->getValueOperand()) || 10658 isa<UndefValue>(V2->getValueOperand())) 10659 return true; 10660 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10661 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10662 if (I1->getParent() != I2->getParent()) 10663 return false; 10664 InstructionsState S = getSameOpcode({I1, I2}); 10665 return S.getOpcode() > 0; 10666 } 10667 if (isa<Constant>(V1->getValueOperand()) && 10668 isa<Constant>(V2->getValueOperand())) 10669 return true; 10670 return V1->getValueOperand()->getValueID() == 10671 V2->getValueOperand()->getValueID(); 10672 }; 10673 auto Limit = [&R, this](StoreInst *SI) { 10674 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10675 return R.getMinVF(EltSize); 10676 }; 10677 10678 // Attempt to sort and vectorize each of the store-groups. 10679 for (auto &Pair : Stores) { 10680 if (Pair.second.size() < 2) 10681 continue; 10682 10683 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10684 << Pair.second.size() << ".\n"); 10685 10686 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10687 continue; 10688 10689 Changed |= tryToVectorizeSequence<StoreInst>( 10690 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10691 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10692 return vectorizeStores(Candidates, R); 10693 }, 10694 /*LimitForRegisterSize=*/false); 10695 } 10696 return Changed; 10697 } 10698 10699 char SLPVectorizer::ID = 0; 10700 10701 static const char lv_name[] = "SLP Vectorizer"; 10702 10703 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10704 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10705 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10706 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10707 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10708 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10709 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10710 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10711 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10712 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10713 10714 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10715