1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/InstructionCost.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 static cl::opt<unsigned> 131 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 132 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 133 134 static cl::opt<int> 135 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 136 cl::desc("Maximum depth of the lookup for consecutive stores.")); 137 138 /// Limits the size of scheduling regions in a block. 139 /// It avoid long compile times for _very_ large blocks where vector 140 /// instructions are spread over a wide range. 141 /// This limit is way higher than needed by real-world functions. 142 static cl::opt<int> 143 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 144 cl::desc("Limit the size of the SLP scheduling region per block")); 145 146 static cl::opt<int> MinVectorRegSizeOption( 147 "slp-min-reg-size", cl::init(128), cl::Hidden, 148 cl::desc("Attempt to vectorize for this register size in bits")); 149 150 static cl::opt<unsigned> RecursionMaxDepth( 151 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 152 cl::desc("Limit the recursion depth when building a vectorizable tree")); 153 154 static cl::opt<unsigned> MinTreeSize( 155 "slp-min-tree-size", cl::init(3), cl::Hidden, 156 cl::desc("Only vectorize small trees if they are fully vectorizable")); 157 158 // The maximum depth that the look-ahead score heuristic will explore. 159 // The higher this value, the higher the compilation time overhead. 160 static cl::opt<int> LookAheadMaxDepth( 161 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 162 cl::desc("The maximum look-ahead depth for operand reordering scores")); 163 164 // The Look-ahead heuristic goes through the users of the bundle to calculate 165 // the users cost in getExternalUsesCost(). To avoid compilation time increase 166 // we limit the number of users visited to this value. 167 static cl::opt<unsigned> LookAheadUsersBudget( 168 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 169 cl::desc("The maximum number of users to visit while visiting the " 170 "predecessors. This prevents compilation time increase.")); 171 172 static cl::opt<bool> 173 ViewSLPTree("view-slp-tree", cl::Hidden, 174 cl::desc("Display the SLP trees with Graphviz")); 175 176 // Limit the number of alias checks. The limit is chosen so that 177 // it has no negative effect on the llvm benchmarks. 178 static const unsigned AliasedCheckLimit = 10; 179 180 // Another limit for the alias checks: The maximum distance between load/store 181 // instructions where alias checks are done. 182 // This limit is useful for very large basic blocks. 183 static const unsigned MaxMemDepDistance = 160; 184 185 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 186 /// regions to be handled. 187 static const int MinScheduleRegionSize = 16; 188 189 /// Predicate for the element types that the SLP vectorizer supports. 190 /// 191 /// The most important thing to filter here are types which are invalid in LLVM 192 /// vectors. We also filter target specific types which have absolutely no 193 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 194 /// avoids spending time checking the cost model and realizing that they will 195 /// be inevitably scalarized. 196 static bool isValidElementType(Type *Ty) { 197 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 198 !Ty->isPPC_FP128Ty(); 199 } 200 201 /// \returns true if all of the instructions in \p VL are in the same block or 202 /// false otherwise. 203 static bool allSameBlock(ArrayRef<Value *> VL) { 204 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 205 if (!I0) 206 return false; 207 BasicBlock *BB = I0->getParent(); 208 for (int I = 1, E = VL.size(); I < E; I++) { 209 auto *II = dyn_cast<Instruction>(VL[I]); 210 if (!II) 211 return false; 212 213 if (BB != II->getParent()) 214 return false; 215 } 216 return true; 217 } 218 219 /// \returns True if all of the values in \p VL are constants (but not 220 /// globals/constant expressions). 221 static bool allConstant(ArrayRef<Value *> VL) { 222 // Constant expressions and globals can't be vectorized like normal integer/FP 223 // constants. 224 for (Value *i : VL) 225 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 226 return false; 227 return true; 228 } 229 230 /// \returns True if all of the values in \p VL are identical. 231 static bool isSplat(ArrayRef<Value *> VL) { 232 for (unsigned i = 1, e = VL.size(); i < e; ++i) 233 if (VL[i] != VL[0]) 234 return false; 235 return true; 236 } 237 238 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 239 static bool isCommutative(Instruction *I) { 240 if (auto *Cmp = dyn_cast<CmpInst>(I)) 241 return Cmp->isCommutative(); 242 if (auto *BO = dyn_cast<BinaryOperator>(I)) 243 return BO->isCommutative(); 244 // TODO: This should check for generic Instruction::isCommutative(), but 245 // we need to confirm that the caller code correctly handles Intrinsics 246 // for example (does not have 2 operands). 247 return false; 248 } 249 250 /// Checks if the vector of instructions can be represented as a shuffle, like: 251 /// %x0 = extractelement <4 x i8> %x, i32 0 252 /// %x3 = extractelement <4 x i8> %x, i32 3 253 /// %y1 = extractelement <4 x i8> %y, i32 1 254 /// %y2 = extractelement <4 x i8> %y, i32 2 255 /// %x0x0 = mul i8 %x0, %x0 256 /// %x3x3 = mul i8 %x3, %x3 257 /// %y1y1 = mul i8 %y1, %y1 258 /// %y2y2 = mul i8 %y2, %y2 259 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 260 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 261 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 262 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 263 /// ret <4 x i8> %ins4 264 /// can be transformed into: 265 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 266 /// i32 6> 267 /// %2 = mul <4 x i8> %1, %1 268 /// ret <4 x i8> %2 269 /// We convert this initially to something like: 270 /// %x0 = extractelement <4 x i8> %x, i32 0 271 /// %x3 = extractelement <4 x i8> %x, i32 3 272 /// %y1 = extractelement <4 x i8> %y, i32 1 273 /// %y2 = extractelement <4 x i8> %y, i32 2 274 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 275 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 276 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 277 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 278 /// %5 = mul <4 x i8> %4, %4 279 /// %6 = extractelement <4 x i8> %5, i32 0 280 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 281 /// %7 = extractelement <4 x i8> %5, i32 1 282 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 283 /// %8 = extractelement <4 x i8> %5, i32 2 284 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 285 /// %9 = extractelement <4 x i8> %5, i32 3 286 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 287 /// ret <4 x i8> %ins4 288 /// InstCombiner transforms this into a shuffle and vector mul 289 /// TODO: Can we split off and reuse the shuffle mask detection from 290 /// TargetTransformInfo::getInstructionThroughput? 291 static Optional<TargetTransformInfo::ShuffleKind> 292 isShuffle(ArrayRef<Value *> VL) { 293 auto *EI0 = cast<ExtractElementInst>(VL[0]); 294 unsigned Size = 295 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 296 Value *Vec1 = nullptr; 297 Value *Vec2 = nullptr; 298 enum ShuffleMode { Unknown, Select, Permute }; 299 ShuffleMode CommonShuffleMode = Unknown; 300 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 301 auto *EI = cast<ExtractElementInst>(VL[I]); 302 auto *Vec = EI->getVectorOperand(); 303 // All vector operands must have the same number of vector elements. 304 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 305 return None; 306 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 307 if (!Idx) 308 return None; 309 // Undefined behavior if Idx is negative or >= Size. 310 if (Idx->getValue().uge(Size)) 311 continue; 312 unsigned IntIdx = Idx->getValue().getZExtValue(); 313 // We can extractelement from undef vector. 314 if (isa<UndefValue>(Vec)) 315 continue; 316 // For correct shuffling we have to have at most 2 different vector operands 317 // in all extractelement instructions. 318 if (!Vec1 || Vec1 == Vec) 319 Vec1 = Vec; 320 else if (!Vec2 || Vec2 == Vec) 321 Vec2 = Vec; 322 else 323 return None; 324 if (CommonShuffleMode == Permute) 325 continue; 326 // If the extract index is not the same as the operation number, it is a 327 // permutation. 328 if (IntIdx != I) { 329 CommonShuffleMode = Permute; 330 continue; 331 } 332 CommonShuffleMode = Select; 333 } 334 // If we're not crossing lanes in different vectors, consider it as blending. 335 if (CommonShuffleMode == Select && Vec2) 336 return TargetTransformInfo::SK_Select; 337 // If Vec2 was never used, we have a permutation of a single vector, otherwise 338 // we have permutation of 2 vectors. 339 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 340 : TargetTransformInfo::SK_PermuteSingleSrc; 341 } 342 343 namespace { 344 345 /// Main data required for vectorization of instructions. 346 struct InstructionsState { 347 /// The very first instruction in the list with the main opcode. 348 Value *OpValue = nullptr; 349 350 /// The main/alternate instruction. 351 Instruction *MainOp = nullptr; 352 Instruction *AltOp = nullptr; 353 354 /// The main/alternate opcodes for the list of instructions. 355 unsigned getOpcode() const { 356 return MainOp ? MainOp->getOpcode() : 0; 357 } 358 359 unsigned getAltOpcode() const { 360 return AltOp ? AltOp->getOpcode() : 0; 361 } 362 363 /// Some of the instructions in the list have alternate opcodes. 364 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 365 366 bool isOpcodeOrAlt(Instruction *I) const { 367 unsigned CheckedOpcode = I->getOpcode(); 368 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 369 } 370 371 InstructionsState() = delete; 372 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 373 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 374 }; 375 376 } // end anonymous namespace 377 378 /// Chooses the correct key for scheduling data. If \p Op has the same (or 379 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 380 /// OpValue. 381 static Value *isOneOf(const InstructionsState &S, Value *Op) { 382 auto *I = dyn_cast<Instruction>(Op); 383 if (I && S.isOpcodeOrAlt(I)) 384 return Op; 385 return S.OpValue; 386 } 387 388 /// \returns true if \p Opcode is allowed as part of of the main/alternate 389 /// instruction for SLP vectorization. 390 /// 391 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 392 /// "shuffled out" lane would result in division by zero. 393 static bool isValidForAlternation(unsigned Opcode) { 394 if (Instruction::isIntDivRem(Opcode)) 395 return false; 396 397 return true; 398 } 399 400 /// \returns analysis of the Instructions in \p VL described in 401 /// InstructionsState, the Opcode that we suppose the whole list 402 /// could be vectorized even if its structure is diverse. 403 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 404 unsigned BaseIndex = 0) { 405 // Make sure these are all Instructions. 406 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 407 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 408 409 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 410 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 411 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 412 unsigned AltOpcode = Opcode; 413 unsigned AltIndex = BaseIndex; 414 415 // Check for one alternate opcode from another BinaryOperator. 416 // TODO - generalize to support all operators (types, calls etc.). 417 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 418 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 419 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 420 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 421 continue; 422 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 423 isValidForAlternation(Opcode)) { 424 AltOpcode = InstOpcode; 425 AltIndex = Cnt; 426 continue; 427 } 428 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 429 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 430 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 431 if (Ty0 == Ty1) { 432 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 433 continue; 434 if (Opcode == AltOpcode) { 435 assert(isValidForAlternation(Opcode) && 436 isValidForAlternation(InstOpcode) && 437 "Cast isn't safe for alternation, logic needs to be updated!"); 438 AltOpcode = InstOpcode; 439 AltIndex = Cnt; 440 continue; 441 } 442 } 443 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 444 continue; 445 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 446 } 447 448 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 449 cast<Instruction>(VL[AltIndex])); 450 } 451 452 /// \returns true if all of the values in \p VL have the same type or false 453 /// otherwise. 454 static bool allSameType(ArrayRef<Value *> VL) { 455 Type *Ty = VL[0]->getType(); 456 for (int i = 1, e = VL.size(); i < e; i++) 457 if (VL[i]->getType() != Ty) 458 return false; 459 460 return true; 461 } 462 463 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 464 static Optional<unsigned> getExtractIndex(Instruction *E) { 465 unsigned Opcode = E->getOpcode(); 466 assert((Opcode == Instruction::ExtractElement || 467 Opcode == Instruction::ExtractValue) && 468 "Expected extractelement or extractvalue instruction."); 469 if (Opcode == Instruction::ExtractElement) { 470 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 471 if (!CI) 472 return None; 473 return CI->getZExtValue(); 474 } 475 ExtractValueInst *EI = cast<ExtractValueInst>(E); 476 if (EI->getNumIndices() != 1) 477 return None; 478 return *EI->idx_begin(); 479 } 480 481 /// \returns True if in-tree use also needs extract. This refers to 482 /// possible scalar operand in vectorized instruction. 483 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 484 TargetLibraryInfo *TLI) { 485 unsigned Opcode = UserInst->getOpcode(); 486 switch (Opcode) { 487 case Instruction::Load: { 488 LoadInst *LI = cast<LoadInst>(UserInst); 489 return (LI->getPointerOperand() == Scalar); 490 } 491 case Instruction::Store: { 492 StoreInst *SI = cast<StoreInst>(UserInst); 493 return (SI->getPointerOperand() == Scalar); 494 } 495 case Instruction::Call: { 496 CallInst *CI = cast<CallInst>(UserInst); 497 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 498 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 499 if (hasVectorInstrinsicScalarOpd(ID, i)) 500 return (CI->getArgOperand(i) == Scalar); 501 } 502 LLVM_FALLTHROUGH; 503 } 504 default: 505 return false; 506 } 507 } 508 509 /// \returns the AA location that is being access by the instruction. 510 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 511 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 512 return MemoryLocation::get(SI); 513 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 514 return MemoryLocation::get(LI); 515 return MemoryLocation(); 516 } 517 518 /// \returns True if the instruction is not a volatile or atomic load/store. 519 static bool isSimple(Instruction *I) { 520 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 521 return LI->isSimple(); 522 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 523 return SI->isSimple(); 524 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 525 return !MI->isVolatile(); 526 return true; 527 } 528 529 namespace llvm { 530 531 static void inversePermutation(ArrayRef<unsigned> Indices, 532 SmallVectorImpl<int> &Mask) { 533 Mask.clear(); 534 const unsigned E = Indices.size(); 535 Mask.resize(E, E + 1); 536 for (unsigned I = 0; I < E; ++I) 537 Mask[Indices[I]] = I; 538 } 539 540 namespace slpvectorizer { 541 542 /// Bottom Up SLP Vectorizer. 543 class BoUpSLP { 544 struct TreeEntry; 545 struct ScheduleData; 546 547 public: 548 using ValueList = SmallVector<Value *, 8>; 549 using InstrList = SmallVector<Instruction *, 16>; 550 using ValueSet = SmallPtrSet<Value *, 16>; 551 using StoreList = SmallVector<StoreInst *, 8>; 552 using ExtraValueToDebugLocsMap = 553 MapVector<Value *, SmallVector<Instruction *, 2>>; 554 using OrdersType = SmallVector<unsigned, 4>; 555 556 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 557 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 558 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 559 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 560 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 561 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 562 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 563 // Use the vector register size specified by the target unless overridden 564 // by a command-line option. 565 // TODO: It would be better to limit the vectorization factor based on 566 // data type rather than just register size. For example, x86 AVX has 567 // 256-bit registers, but it does not support integer operations 568 // at that width (that requires AVX2). 569 if (MaxVectorRegSizeOption.getNumOccurrences()) 570 MaxVecRegSize = MaxVectorRegSizeOption; 571 else 572 MaxVecRegSize = TTI->getRegisterBitWidth(true); 573 574 if (MinVectorRegSizeOption.getNumOccurrences()) 575 MinVecRegSize = MinVectorRegSizeOption; 576 else 577 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 578 } 579 580 /// Vectorize the tree that starts with the elements in \p VL. 581 /// Returns the vectorized root. 582 Value *vectorizeTree(); 583 584 /// Vectorize the tree but with the list of externally used values \p 585 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 586 /// generated extractvalue instructions. 587 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 588 589 /// \returns the cost incurred by unwanted spills and fills, caused by 590 /// holding live values over call sites. 591 InstructionCost getSpillCost() const; 592 593 /// \returns the vectorization cost of the subtree that starts at \p VL. 594 /// A negative number means that this is profitable. 595 InstructionCost getTreeCost(); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 599 void buildTree(ArrayRef<Value *> Roots, 600 ArrayRef<Value *> UserIgnoreLst = None); 601 602 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 603 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 604 /// into account (and updating it, if required) list of externally used 605 /// values stored in \p ExternallyUsedValues. 606 void buildTree(ArrayRef<Value *> Roots, 607 ExtraValueToDebugLocsMap &ExternallyUsedValues, 608 ArrayRef<Value *> UserIgnoreLst = None); 609 610 /// Clear the internal data structures that are created by 'buildTree'. 611 void deleteTree() { 612 VectorizableTree.clear(); 613 ScalarToTreeEntry.clear(); 614 MustGather.clear(); 615 ExternalUses.clear(); 616 NumOpsWantToKeepOrder.clear(); 617 NumOpsWantToKeepOriginalOrder = 0; 618 for (auto &Iter : BlocksSchedules) { 619 BlockScheduling *BS = Iter.second.get(); 620 BS->clear(); 621 } 622 MinBWs.clear(); 623 } 624 625 unsigned getTreeSize() const { return VectorizableTree.size(); } 626 627 /// Perform LICM and CSE on the newly generated gather sequences. 628 void optimizeGatherSequence(); 629 630 /// \returns The best order of instructions for vectorization. 631 Optional<ArrayRef<unsigned>> bestOrder() const { 632 assert(llvm::all_of( 633 NumOpsWantToKeepOrder, 634 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 635 return D.getFirst().size() == 636 VectorizableTree[0]->Scalars.size(); 637 }) && 638 "All orders must have the same size as number of instructions in " 639 "tree node."); 640 auto I = std::max_element( 641 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 642 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 643 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 644 return D1.second < D2.second; 645 }); 646 if (I == NumOpsWantToKeepOrder.end() || 647 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 648 return None; 649 650 return makeArrayRef(I->getFirst()); 651 } 652 653 /// Builds the correct order for root instructions. 654 /// If some leaves have the same instructions to be vectorized, we may 655 /// incorrectly evaluate the best order for the root node (it is built for the 656 /// vector of instructions without repeated instructions and, thus, has less 657 /// elements than the root node). This function builds the correct order for 658 /// the root node. 659 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 660 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 661 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 662 /// be reordered, the best order will be \<1, 0\>. We need to extend this 663 /// order for the root node. For the root node this order should look like 664 /// \<3, 0, 1, 2\>. This function extends the order for the reused 665 /// instructions. 666 void findRootOrder(OrdersType &Order) { 667 // If the leaf has the same number of instructions to vectorize as the root 668 // - order must be set already. 669 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 670 if (Order.size() == RootSize) 671 return; 672 SmallVector<unsigned, 4> RealOrder(Order.size()); 673 std::swap(Order, RealOrder); 674 SmallVector<int, 4> Mask; 675 inversePermutation(RealOrder, Mask); 676 Order.assign(Mask.begin(), Mask.end()); 677 // The leaf has less number of instructions - need to find the true order of 678 // the root. 679 // Scan the nodes starting from the leaf back to the root. 680 const TreeEntry *PNode = VectorizableTree.back().get(); 681 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 682 SmallPtrSet<const TreeEntry *, 4> Visited; 683 while (!Nodes.empty() && Order.size() != RootSize) { 684 const TreeEntry *PNode = Nodes.pop_back_val(); 685 if (!Visited.insert(PNode).second) 686 continue; 687 const TreeEntry &Node = *PNode; 688 for (const EdgeInfo &EI : Node.UserTreeIndices) 689 if (EI.UserTE) 690 Nodes.push_back(EI.UserTE); 691 if (Node.ReuseShuffleIndices.empty()) 692 continue; 693 // Build the order for the parent node. 694 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 695 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 696 // The algorithm of the order extension is: 697 // 1. Calculate the number of the same instructions for the order. 698 // 2. Calculate the index of the new order: total number of instructions 699 // with order less than the order of the current instruction + reuse 700 // number of the current instruction. 701 // 3. The new order is just the index of the instruction in the original 702 // vector of the instructions. 703 for (unsigned I : Node.ReuseShuffleIndices) 704 ++OrderCounter[Order[I]]; 705 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 706 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 707 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 708 unsigned OrderIdx = Order[ReusedIdx]; 709 unsigned NewIdx = 0; 710 for (unsigned J = 0; J < OrderIdx; ++J) 711 NewIdx += OrderCounter[J]; 712 NewIdx += CurrentCounter[OrderIdx]; 713 ++CurrentCounter[OrderIdx]; 714 assert(NewOrder[NewIdx] == RootSize && 715 "The order index should not be written already."); 716 NewOrder[NewIdx] = I; 717 } 718 std::swap(Order, NewOrder); 719 } 720 assert(Order.size() == RootSize && 721 "Root node is expected or the size of the order must be the same as " 722 "the number of elements in the root node."); 723 assert(llvm::all_of(Order, 724 [RootSize](unsigned Val) { return Val != RootSize; }) && 725 "All indices must be initialized"); 726 } 727 728 /// \return The vector element size in bits to use when vectorizing the 729 /// expression tree ending at \p V. If V is a store, the size is the width of 730 /// the stored value. Otherwise, the size is the width of the largest loaded 731 /// value reaching V. This method is used by the vectorizer to calculate 732 /// vectorization factors. 733 unsigned getVectorElementSize(Value *V); 734 735 /// Compute the minimum type sizes required to represent the entries in a 736 /// vectorizable tree. 737 void computeMinimumValueSizes(); 738 739 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 740 unsigned getMaxVecRegSize() const { 741 return MaxVecRegSize; 742 } 743 744 // \returns minimum vector register size as set by cl::opt. 745 unsigned getMinVecRegSize() const { 746 return MinVecRegSize; 747 } 748 749 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 750 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 751 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 752 return MaxVF ? MaxVF : UINT_MAX; 753 } 754 755 /// Check if homogeneous aggregate is isomorphic to some VectorType. 756 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 757 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 758 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 759 /// 760 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 761 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 762 763 /// \returns True if the VectorizableTree is both tiny and not fully 764 /// vectorizable. We do not vectorize such trees. 765 bool isTreeTinyAndNotFullyVectorizable() const; 766 767 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 768 /// can be load combined in the backend. Load combining may not be allowed in 769 /// the IR optimizer, so we do not want to alter the pattern. For example, 770 /// partially transforming a scalar bswap() pattern into vector code is 771 /// effectively impossible for the backend to undo. 772 /// TODO: If load combining is allowed in the IR optimizer, this analysis 773 /// may not be necessary. 774 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 775 776 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 777 /// can be load combined in the backend. Load combining may not be allowed in 778 /// the IR optimizer, so we do not want to alter the pattern. For example, 779 /// partially transforming a scalar bswap() pattern into vector code is 780 /// effectively impossible for the backend to undo. 781 /// TODO: If load combining is allowed in the IR optimizer, this analysis 782 /// may not be necessary. 783 bool isLoadCombineCandidate() const; 784 785 OptimizationRemarkEmitter *getORE() { return ORE; } 786 787 /// This structure holds any data we need about the edges being traversed 788 /// during buildTree_rec(). We keep track of: 789 /// (i) the user TreeEntry index, and 790 /// (ii) the index of the edge. 791 struct EdgeInfo { 792 EdgeInfo() = default; 793 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 794 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 795 /// The user TreeEntry. 796 TreeEntry *UserTE = nullptr; 797 /// The operand index of the use. 798 unsigned EdgeIdx = UINT_MAX; 799 #ifndef NDEBUG 800 friend inline raw_ostream &operator<<(raw_ostream &OS, 801 const BoUpSLP::EdgeInfo &EI) { 802 EI.dump(OS); 803 return OS; 804 } 805 /// Debug print. 806 void dump(raw_ostream &OS) const { 807 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 808 << " EdgeIdx:" << EdgeIdx << "}"; 809 } 810 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 811 #endif 812 }; 813 814 /// A helper data structure to hold the operands of a vector of instructions. 815 /// This supports a fixed vector length for all operand vectors. 816 class VLOperands { 817 /// For each operand we need (i) the value, and (ii) the opcode that it 818 /// would be attached to if the expression was in a left-linearized form. 819 /// This is required to avoid illegal operand reordering. 820 /// For example: 821 /// \verbatim 822 /// 0 Op1 823 /// |/ 824 /// Op1 Op2 Linearized + Op2 825 /// \ / ----------> |/ 826 /// - - 827 /// 828 /// Op1 - Op2 (0 + Op1) - Op2 829 /// \endverbatim 830 /// 831 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 832 /// 833 /// Another way to think of this is to track all the operations across the 834 /// path from the operand all the way to the root of the tree and to 835 /// calculate the operation that corresponds to this path. For example, the 836 /// path from Op2 to the root crosses the RHS of the '-', therefore the 837 /// corresponding operation is a '-' (which matches the one in the 838 /// linearized tree, as shown above). 839 /// 840 /// For lack of a better term, we refer to this operation as Accumulated 841 /// Path Operation (APO). 842 struct OperandData { 843 OperandData() = default; 844 OperandData(Value *V, bool APO, bool IsUsed) 845 : V(V), APO(APO), IsUsed(IsUsed) {} 846 /// The operand value. 847 Value *V = nullptr; 848 /// TreeEntries only allow a single opcode, or an alternate sequence of 849 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 850 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 851 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 852 /// (e.g., Add/Mul) 853 bool APO = false; 854 /// Helper data for the reordering function. 855 bool IsUsed = false; 856 }; 857 858 /// During operand reordering, we are trying to select the operand at lane 859 /// that matches best with the operand at the neighboring lane. Our 860 /// selection is based on the type of value we are looking for. For example, 861 /// if the neighboring lane has a load, we need to look for a load that is 862 /// accessing a consecutive address. These strategies are summarized in the 863 /// 'ReorderingMode' enumerator. 864 enum class ReorderingMode { 865 Load, ///< Matching loads to consecutive memory addresses 866 Opcode, ///< Matching instructions based on opcode (same or alternate) 867 Constant, ///< Matching constants 868 Splat, ///< Matching the same instruction multiple times (broadcast) 869 Failed, ///< We failed to create a vectorizable group 870 }; 871 872 using OperandDataVec = SmallVector<OperandData, 2>; 873 874 /// A vector of operand vectors. 875 SmallVector<OperandDataVec, 4> OpsVec; 876 877 const DataLayout &DL; 878 ScalarEvolution &SE; 879 const BoUpSLP &R; 880 881 /// \returns the operand data at \p OpIdx and \p Lane. 882 OperandData &getData(unsigned OpIdx, unsigned Lane) { 883 return OpsVec[OpIdx][Lane]; 884 } 885 886 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 887 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 888 return OpsVec[OpIdx][Lane]; 889 } 890 891 /// Clears the used flag for all entries. 892 void clearUsed() { 893 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 894 OpIdx != NumOperands; ++OpIdx) 895 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 896 ++Lane) 897 OpsVec[OpIdx][Lane].IsUsed = false; 898 } 899 900 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 901 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 902 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 903 } 904 905 // The hard-coded scores listed here are not very important. When computing 906 // the scores of matching one sub-tree with another, we are basically 907 // counting the number of values that are matching. So even if all scores 908 // are set to 1, we would still get a decent matching result. 909 // However, sometimes we have to break ties. For example we may have to 910 // choose between matching loads vs matching opcodes. This is what these 911 // scores are helping us with: they provide the order of preference. 912 913 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 914 static const int ScoreConsecutiveLoads = 3; 915 /// ExtractElementInst from same vector and consecutive indexes. 916 static const int ScoreConsecutiveExtracts = 3; 917 /// Constants. 918 static const int ScoreConstants = 2; 919 /// Instructions with the same opcode. 920 static const int ScoreSameOpcode = 2; 921 /// Instructions with alt opcodes (e.g, add + sub). 922 static const int ScoreAltOpcodes = 1; 923 /// Identical instructions (a.k.a. splat or broadcast). 924 static const int ScoreSplat = 1; 925 /// Matching with an undef is preferable to failing. 926 static const int ScoreUndef = 1; 927 /// Score for failing to find a decent match. 928 static const int ScoreFail = 0; 929 /// User exteranl to the vectorized code. 930 static const int ExternalUseCost = 1; 931 /// The user is internal but in a different lane. 932 static const int UserInDiffLaneCost = ExternalUseCost; 933 934 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 935 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 936 ScalarEvolution &SE) { 937 auto *LI1 = dyn_cast<LoadInst>(V1); 938 auto *LI2 = dyn_cast<LoadInst>(V2); 939 if (LI1 && LI2) 940 return isConsecutiveAccess(LI1, LI2, DL, SE) 941 ? VLOperands::ScoreConsecutiveLoads 942 : VLOperands::ScoreFail; 943 944 auto *C1 = dyn_cast<Constant>(V1); 945 auto *C2 = dyn_cast<Constant>(V2); 946 if (C1 && C2) 947 return VLOperands::ScoreConstants; 948 949 // Extracts from consecutive indexes of the same vector better score as 950 // the extracts could be optimized away. 951 Value *EV; 952 ConstantInt *Ex1Idx, *Ex2Idx; 953 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 954 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 955 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 956 return VLOperands::ScoreConsecutiveExtracts; 957 958 auto *I1 = dyn_cast<Instruction>(V1); 959 auto *I2 = dyn_cast<Instruction>(V2); 960 if (I1 && I2) { 961 if (I1 == I2) 962 return VLOperands::ScoreSplat; 963 InstructionsState S = getSameOpcode({I1, I2}); 964 // Note: Only consider instructions with <= 2 operands to avoid 965 // complexity explosion. 966 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 967 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 968 : VLOperands::ScoreSameOpcode; 969 } 970 971 if (isa<UndefValue>(V2)) 972 return VLOperands::ScoreUndef; 973 974 return VLOperands::ScoreFail; 975 } 976 977 /// Holds the values and their lane that are taking part in the look-ahead 978 /// score calculation. This is used in the external uses cost calculation. 979 SmallDenseMap<Value *, int> InLookAheadValues; 980 981 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 982 /// either external to the vectorized code, or require shuffling. 983 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 984 const std::pair<Value *, int> &RHS) { 985 int Cost = 0; 986 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 987 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 988 Value *V = Values[Idx].first; 989 // Calculate the absolute lane, using the minimum relative lane of LHS 990 // and RHS as base and Idx as the offset. 991 int Ln = std::min(LHS.second, RHS.second) + Idx; 992 assert(Ln >= 0 && "Bad lane calculation"); 993 unsigned UsersBudget = LookAheadUsersBudget; 994 for (User *U : V->users()) { 995 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 996 // The user is in the VectorizableTree. Check if we need to insert. 997 auto It = llvm::find(UserTE->Scalars, U); 998 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 999 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1000 assert(UserLn >= 0 && "Bad lane"); 1001 if (UserLn != Ln) 1002 Cost += UserInDiffLaneCost; 1003 } else { 1004 // Check if the user is in the look-ahead code. 1005 auto It2 = InLookAheadValues.find(U); 1006 if (It2 != InLookAheadValues.end()) { 1007 // The user is in the look-ahead code. Check the lane. 1008 if (It2->second != Ln) 1009 Cost += UserInDiffLaneCost; 1010 } else { 1011 // The user is neither in SLP tree nor in the look-ahead code. 1012 Cost += ExternalUseCost; 1013 } 1014 } 1015 // Limit the number of visited uses to cap compilation time. 1016 if (--UsersBudget == 0) 1017 break; 1018 } 1019 } 1020 return Cost; 1021 } 1022 1023 /// Go through the operands of \p LHS and \p RHS recursively until \p 1024 /// MaxLevel, and return the cummulative score. For example: 1025 /// \verbatim 1026 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1027 /// \ / \ / \ / \ / 1028 /// + + + + 1029 /// G1 G2 G3 G4 1030 /// \endverbatim 1031 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1032 /// each level recursively, accumulating the score. It starts from matching 1033 /// the additions at level 0, then moves on to the loads (level 1). The 1034 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1035 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1036 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1037 /// Please note that the order of the operands does not matter, as we 1038 /// evaluate the score of all profitable combinations of operands. In 1039 /// other words the score of G1 and G4 is the same as G1 and G2. This 1040 /// heuristic is based on ideas described in: 1041 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1042 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1043 /// Luís F. W. Góes 1044 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1045 const std::pair<Value *, int> &RHS, int CurrLevel, 1046 int MaxLevel) { 1047 1048 Value *V1 = LHS.first; 1049 Value *V2 = RHS.first; 1050 // Get the shallow score of V1 and V2. 1051 int ShallowScoreAtThisLevel = 1052 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1053 getExternalUsesCost(LHS, RHS)); 1054 int Lane1 = LHS.second; 1055 int Lane2 = RHS.second; 1056 1057 // If reached MaxLevel, 1058 // or if V1 and V2 are not instructions, 1059 // or if they are SPLAT, 1060 // or if they are not consecutive, early return the current cost. 1061 auto *I1 = dyn_cast<Instruction>(V1); 1062 auto *I2 = dyn_cast<Instruction>(V2); 1063 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1064 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1065 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1066 return ShallowScoreAtThisLevel; 1067 assert(I1 && I2 && "Should have early exited."); 1068 1069 // Keep track of in-tree values for determining the external-use cost. 1070 InLookAheadValues[V1] = Lane1; 1071 InLookAheadValues[V2] = Lane2; 1072 1073 // Contains the I2 operand indexes that got matched with I1 operands. 1074 SmallSet<unsigned, 4> Op2Used; 1075 1076 // Recursion towards the operands of I1 and I2. We are trying all possbile 1077 // operand pairs, and keeping track of the best score. 1078 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1079 OpIdx1 != NumOperands1; ++OpIdx1) { 1080 // Try to pair op1I with the best operand of I2. 1081 int MaxTmpScore = 0; 1082 unsigned MaxOpIdx2 = 0; 1083 bool FoundBest = false; 1084 // If I2 is commutative try all combinations. 1085 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1086 unsigned ToIdx = isCommutative(I2) 1087 ? I2->getNumOperands() 1088 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1089 assert(FromIdx <= ToIdx && "Bad index"); 1090 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1091 // Skip operands already paired with OpIdx1. 1092 if (Op2Used.count(OpIdx2)) 1093 continue; 1094 // Recursively calculate the cost at each level 1095 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1096 {I2->getOperand(OpIdx2), Lane2}, 1097 CurrLevel + 1, MaxLevel); 1098 // Look for the best score. 1099 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1100 MaxTmpScore = TmpScore; 1101 MaxOpIdx2 = OpIdx2; 1102 FoundBest = true; 1103 } 1104 } 1105 if (FoundBest) { 1106 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1107 Op2Used.insert(MaxOpIdx2); 1108 ShallowScoreAtThisLevel += MaxTmpScore; 1109 } 1110 } 1111 return ShallowScoreAtThisLevel; 1112 } 1113 1114 /// \Returns the look-ahead score, which tells us how much the sub-trees 1115 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1116 /// score. This helps break ties in an informed way when we cannot decide on 1117 /// the order of the operands by just considering the immediate 1118 /// predecessors. 1119 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1120 const std::pair<Value *, int> &RHS) { 1121 InLookAheadValues.clear(); 1122 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1123 } 1124 1125 // Search all operands in Ops[*][Lane] for the one that matches best 1126 // Ops[OpIdx][LastLane] and return its opreand index. 1127 // If no good match can be found, return None. 1128 Optional<unsigned> 1129 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1130 ArrayRef<ReorderingMode> ReorderingModes) { 1131 unsigned NumOperands = getNumOperands(); 1132 1133 // The operand of the previous lane at OpIdx. 1134 Value *OpLastLane = getData(OpIdx, LastLane).V; 1135 1136 // Our strategy mode for OpIdx. 1137 ReorderingMode RMode = ReorderingModes[OpIdx]; 1138 1139 // The linearized opcode of the operand at OpIdx, Lane. 1140 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1141 1142 // The best operand index and its score. 1143 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1144 // are using the score to differentiate between the two. 1145 struct BestOpData { 1146 Optional<unsigned> Idx = None; 1147 unsigned Score = 0; 1148 } BestOp; 1149 1150 // Iterate through all unused operands and look for the best. 1151 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1152 // Get the operand at Idx and Lane. 1153 OperandData &OpData = getData(Idx, Lane); 1154 Value *Op = OpData.V; 1155 bool OpAPO = OpData.APO; 1156 1157 // Skip already selected operands. 1158 if (OpData.IsUsed) 1159 continue; 1160 1161 // Skip if we are trying to move the operand to a position with a 1162 // different opcode in the linearized tree form. This would break the 1163 // semantics. 1164 if (OpAPO != OpIdxAPO) 1165 continue; 1166 1167 // Look for an operand that matches the current mode. 1168 switch (RMode) { 1169 case ReorderingMode::Load: 1170 case ReorderingMode::Constant: 1171 case ReorderingMode::Opcode: { 1172 bool LeftToRight = Lane > LastLane; 1173 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1174 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1175 unsigned Score = 1176 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1177 if (Score > BestOp.Score) { 1178 BestOp.Idx = Idx; 1179 BestOp.Score = Score; 1180 } 1181 break; 1182 } 1183 case ReorderingMode::Splat: 1184 if (Op == OpLastLane) 1185 BestOp.Idx = Idx; 1186 break; 1187 case ReorderingMode::Failed: 1188 return None; 1189 } 1190 } 1191 1192 if (BestOp.Idx) { 1193 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1194 return BestOp.Idx; 1195 } 1196 // If we could not find a good match return None. 1197 return None; 1198 } 1199 1200 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1201 /// reordering from. This is the one which has the least number of operands 1202 /// that can freely move about. 1203 unsigned getBestLaneToStartReordering() const { 1204 unsigned BestLane = 0; 1205 unsigned Min = UINT_MAX; 1206 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1207 ++Lane) { 1208 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1209 if (NumFreeOps < Min) { 1210 Min = NumFreeOps; 1211 BestLane = Lane; 1212 } 1213 } 1214 return BestLane; 1215 } 1216 1217 /// \Returns the maximum number of operands that are allowed to be reordered 1218 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1219 /// start operand reordering. 1220 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1221 unsigned CntTrue = 0; 1222 unsigned NumOperands = getNumOperands(); 1223 // Operands with the same APO can be reordered. We therefore need to count 1224 // how many of them we have for each APO, like this: Cnt[APO] = x. 1225 // Since we only have two APOs, namely true and false, we can avoid using 1226 // a map. Instead we can simply count the number of operands that 1227 // correspond to one of them (in this case the 'true' APO), and calculate 1228 // the other by subtracting it from the total number of operands. 1229 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1230 if (getData(OpIdx, Lane).APO) 1231 ++CntTrue; 1232 unsigned CntFalse = NumOperands - CntTrue; 1233 return std::max(CntTrue, CntFalse); 1234 } 1235 1236 /// Go through the instructions in VL and append their operands. 1237 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1238 assert(!VL.empty() && "Bad VL"); 1239 assert((empty() || VL.size() == getNumLanes()) && 1240 "Expected same number of lanes"); 1241 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1242 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1243 OpsVec.resize(NumOperands); 1244 unsigned NumLanes = VL.size(); 1245 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1246 OpsVec[OpIdx].resize(NumLanes); 1247 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1248 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1249 // Our tree has just 3 nodes: the root and two operands. 1250 // It is therefore trivial to get the APO. We only need to check the 1251 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1252 // RHS operand. The LHS operand of both add and sub is never attached 1253 // to an inversese operation in the linearized form, therefore its APO 1254 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1255 1256 // Since operand reordering is performed on groups of commutative 1257 // operations or alternating sequences (e.g., +, -), we can safely 1258 // tell the inverse operations by checking commutativity. 1259 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1260 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1261 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1262 APO, false}; 1263 } 1264 } 1265 } 1266 1267 /// \returns the number of operands. 1268 unsigned getNumOperands() const { return OpsVec.size(); } 1269 1270 /// \returns the number of lanes. 1271 unsigned getNumLanes() const { return OpsVec[0].size(); } 1272 1273 /// \returns the operand value at \p OpIdx and \p Lane. 1274 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1275 return getData(OpIdx, Lane).V; 1276 } 1277 1278 /// \returns true if the data structure is empty. 1279 bool empty() const { return OpsVec.empty(); } 1280 1281 /// Clears the data. 1282 void clear() { OpsVec.clear(); } 1283 1284 /// \Returns true if there are enough operands identical to \p Op to fill 1285 /// the whole vector. 1286 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1287 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1288 bool OpAPO = getData(OpIdx, Lane).APO; 1289 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1290 if (Ln == Lane) 1291 continue; 1292 // This is set to true if we found a candidate for broadcast at Lane. 1293 bool FoundCandidate = false; 1294 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1295 OperandData &Data = getData(OpI, Ln); 1296 if (Data.APO != OpAPO || Data.IsUsed) 1297 continue; 1298 if (Data.V == Op) { 1299 FoundCandidate = true; 1300 Data.IsUsed = true; 1301 break; 1302 } 1303 } 1304 if (!FoundCandidate) 1305 return false; 1306 } 1307 return true; 1308 } 1309 1310 public: 1311 /// Initialize with all the operands of the instruction vector \p RootVL. 1312 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1313 ScalarEvolution &SE, const BoUpSLP &R) 1314 : DL(DL), SE(SE), R(R) { 1315 // Append all the operands of RootVL. 1316 appendOperandsOfVL(RootVL); 1317 } 1318 1319 /// \Returns a value vector with the operands across all lanes for the 1320 /// opearnd at \p OpIdx. 1321 ValueList getVL(unsigned OpIdx) const { 1322 ValueList OpVL(OpsVec[OpIdx].size()); 1323 assert(OpsVec[OpIdx].size() == getNumLanes() && 1324 "Expected same num of lanes across all operands"); 1325 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1326 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1327 return OpVL; 1328 } 1329 1330 // Performs operand reordering for 2 or more operands. 1331 // The original operands are in OrigOps[OpIdx][Lane]. 1332 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1333 void reorder() { 1334 unsigned NumOperands = getNumOperands(); 1335 unsigned NumLanes = getNumLanes(); 1336 // Each operand has its own mode. We are using this mode to help us select 1337 // the instructions for each lane, so that they match best with the ones 1338 // we have selected so far. 1339 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1340 1341 // This is a greedy single-pass algorithm. We are going over each lane 1342 // once and deciding on the best order right away with no back-tracking. 1343 // However, in order to increase its effectiveness, we start with the lane 1344 // that has operands that can move the least. For example, given the 1345 // following lanes: 1346 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1347 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1348 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1349 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1350 // we will start at Lane 1, since the operands of the subtraction cannot 1351 // be reordered. Then we will visit the rest of the lanes in a circular 1352 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1353 1354 // Find the first lane that we will start our search from. 1355 unsigned FirstLane = getBestLaneToStartReordering(); 1356 1357 // Initialize the modes. 1358 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1359 Value *OpLane0 = getValue(OpIdx, FirstLane); 1360 // Keep track if we have instructions with all the same opcode on one 1361 // side. 1362 if (isa<LoadInst>(OpLane0)) 1363 ReorderingModes[OpIdx] = ReorderingMode::Load; 1364 else if (isa<Instruction>(OpLane0)) { 1365 // Check if OpLane0 should be broadcast. 1366 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1367 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1368 else 1369 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1370 } 1371 else if (isa<Constant>(OpLane0)) 1372 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1373 else if (isa<Argument>(OpLane0)) 1374 // Our best hope is a Splat. It may save some cost in some cases. 1375 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1376 else 1377 // NOTE: This should be unreachable. 1378 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1379 } 1380 1381 // If the initial strategy fails for any of the operand indexes, then we 1382 // perform reordering again in a second pass. This helps avoid assigning 1383 // high priority to the failed strategy, and should improve reordering for 1384 // the non-failed operand indexes. 1385 for (int Pass = 0; Pass != 2; ++Pass) { 1386 // Skip the second pass if the first pass did not fail. 1387 bool StrategyFailed = false; 1388 // Mark all operand data as free to use. 1389 clearUsed(); 1390 // We keep the original operand order for the FirstLane, so reorder the 1391 // rest of the lanes. We are visiting the nodes in a circular fashion, 1392 // using FirstLane as the center point and increasing the radius 1393 // distance. 1394 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1395 // Visit the lane on the right and then the lane on the left. 1396 for (int Direction : {+1, -1}) { 1397 int Lane = FirstLane + Direction * Distance; 1398 if (Lane < 0 || Lane >= (int)NumLanes) 1399 continue; 1400 int LastLane = Lane - Direction; 1401 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1402 "Out of bounds"); 1403 // Look for a good match for each operand. 1404 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1405 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1406 Optional<unsigned> BestIdx = 1407 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1408 // By not selecting a value, we allow the operands that follow to 1409 // select a better matching value. We will get a non-null value in 1410 // the next run of getBestOperand(). 1411 if (BestIdx) { 1412 // Swap the current operand with the one returned by 1413 // getBestOperand(). 1414 swap(OpIdx, BestIdx.getValue(), Lane); 1415 } else { 1416 // We failed to find a best operand, set mode to 'Failed'. 1417 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1418 // Enable the second pass. 1419 StrategyFailed = true; 1420 } 1421 } 1422 } 1423 } 1424 // Skip second pass if the strategy did not fail. 1425 if (!StrategyFailed) 1426 break; 1427 } 1428 } 1429 1430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1431 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1432 switch (RMode) { 1433 case ReorderingMode::Load: 1434 return "Load"; 1435 case ReorderingMode::Opcode: 1436 return "Opcode"; 1437 case ReorderingMode::Constant: 1438 return "Constant"; 1439 case ReorderingMode::Splat: 1440 return "Splat"; 1441 case ReorderingMode::Failed: 1442 return "Failed"; 1443 } 1444 llvm_unreachable("Unimplemented Reordering Type"); 1445 } 1446 1447 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1448 raw_ostream &OS) { 1449 return OS << getModeStr(RMode); 1450 } 1451 1452 /// Debug print. 1453 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1454 printMode(RMode, dbgs()); 1455 } 1456 1457 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1458 return printMode(RMode, OS); 1459 } 1460 1461 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1462 const unsigned Indent = 2; 1463 unsigned Cnt = 0; 1464 for (const OperandDataVec &OpDataVec : OpsVec) { 1465 OS << "Operand " << Cnt++ << "\n"; 1466 for (const OperandData &OpData : OpDataVec) { 1467 OS.indent(Indent) << "{"; 1468 if (Value *V = OpData.V) 1469 OS << *V; 1470 else 1471 OS << "null"; 1472 OS << ", APO:" << OpData.APO << "}\n"; 1473 } 1474 OS << "\n"; 1475 } 1476 return OS; 1477 } 1478 1479 /// Debug print. 1480 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1481 #endif 1482 }; 1483 1484 /// Checks if the instruction is marked for deletion. 1485 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1486 1487 /// Marks values operands for later deletion by replacing them with Undefs. 1488 void eraseInstructions(ArrayRef<Value *> AV); 1489 1490 ~BoUpSLP(); 1491 1492 private: 1493 /// Checks if all users of \p I are the part of the vectorization tree. 1494 bool areAllUsersVectorized(Instruction *I) const; 1495 1496 /// \returns the cost of the vectorizable entry. 1497 InstructionCost getEntryCost(TreeEntry *E); 1498 1499 /// This is the recursive part of buildTree. 1500 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1501 const EdgeInfo &EI); 1502 1503 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1504 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1505 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1506 /// returns false, setting \p CurrentOrder to either an empty vector or a 1507 /// non-identity permutation that allows to reuse extract instructions. 1508 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1509 SmallVectorImpl<unsigned> &CurrentOrder) const; 1510 1511 /// Vectorize a single entry in the tree. 1512 Value *vectorizeTree(TreeEntry *E); 1513 1514 /// Vectorize a single entry in the tree, starting in \p VL. 1515 Value *vectorizeTree(ArrayRef<Value *> VL); 1516 1517 /// \returns the scalarization cost for this type. Scalarization in this 1518 /// context means the creation of vectors from a group of scalars. 1519 InstructionCost 1520 getGatherCost(FixedVectorType *Ty, 1521 const DenseSet<unsigned> &ShuffledIndices) const; 1522 1523 /// \returns the scalarization cost for this list of values. Assuming that 1524 /// this subtree gets vectorized, we may need to extract the values from the 1525 /// roots. This method calculates the cost of extracting the values. 1526 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1527 1528 /// Set the Builder insert point to one after the last instruction in 1529 /// the bundle 1530 void setInsertPointAfterBundle(TreeEntry *E); 1531 1532 /// \returns a vector from a collection of scalars in \p VL. 1533 Value *gather(ArrayRef<Value *> VL); 1534 1535 /// \returns whether the VectorizableTree is fully vectorizable and will 1536 /// be beneficial even the tree height is tiny. 1537 bool isFullyVectorizableTinyTree() const; 1538 1539 /// Reorder commutative or alt operands to get better probability of 1540 /// generating vectorized code. 1541 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1542 SmallVectorImpl<Value *> &Left, 1543 SmallVectorImpl<Value *> &Right, 1544 const DataLayout &DL, 1545 ScalarEvolution &SE, 1546 const BoUpSLP &R); 1547 struct TreeEntry { 1548 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1549 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1550 1551 /// \returns true if the scalars in VL are equal to this entry. 1552 bool isSame(ArrayRef<Value *> VL) const { 1553 if (VL.size() == Scalars.size()) 1554 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1555 return VL.size() == ReuseShuffleIndices.size() && 1556 std::equal( 1557 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1558 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1559 } 1560 1561 /// A vector of scalars. 1562 ValueList Scalars; 1563 1564 /// The Scalars are vectorized into this value. It is initialized to Null. 1565 Value *VectorizedValue = nullptr; 1566 1567 /// Do we need to gather this sequence or vectorize it 1568 /// (either with vector instruction or with scatter/gather 1569 /// intrinsics for store/load)? 1570 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1571 EntryState State; 1572 1573 /// Does this sequence require some shuffling? 1574 SmallVector<int, 4> ReuseShuffleIndices; 1575 1576 /// Does this entry require reordering? 1577 SmallVector<unsigned, 4> ReorderIndices; 1578 1579 /// Points back to the VectorizableTree. 1580 /// 1581 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1582 /// to be a pointer and needs to be able to initialize the child iterator. 1583 /// Thus we need a reference back to the container to translate the indices 1584 /// to entries. 1585 VecTreeTy &Container; 1586 1587 /// The TreeEntry index containing the user of this entry. We can actually 1588 /// have multiple users so the data structure is not truly a tree. 1589 SmallVector<EdgeInfo, 1> UserTreeIndices; 1590 1591 /// The index of this treeEntry in VectorizableTree. 1592 int Idx = -1; 1593 1594 private: 1595 /// The operands of each instruction in each lane Operands[op_index][lane]. 1596 /// Note: This helps avoid the replication of the code that performs the 1597 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1598 SmallVector<ValueList, 2> Operands; 1599 1600 /// The main/alternate instruction. 1601 Instruction *MainOp = nullptr; 1602 Instruction *AltOp = nullptr; 1603 1604 public: 1605 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1606 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1607 if (Operands.size() < OpIdx + 1) 1608 Operands.resize(OpIdx + 1); 1609 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1610 Operands[OpIdx].resize(Scalars.size()); 1611 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1612 Operands[OpIdx][Lane] = OpVL[Lane]; 1613 } 1614 1615 /// Set the operands of this bundle in their original order. 1616 void setOperandsInOrder() { 1617 assert(Operands.empty() && "Already initialized?"); 1618 auto *I0 = cast<Instruction>(Scalars[0]); 1619 Operands.resize(I0->getNumOperands()); 1620 unsigned NumLanes = Scalars.size(); 1621 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1622 OpIdx != NumOperands; ++OpIdx) { 1623 Operands[OpIdx].resize(NumLanes); 1624 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1625 auto *I = cast<Instruction>(Scalars[Lane]); 1626 assert(I->getNumOperands() == NumOperands && 1627 "Expected same number of operands"); 1628 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1629 } 1630 } 1631 } 1632 1633 /// \returns the \p OpIdx operand of this TreeEntry. 1634 ValueList &getOperand(unsigned OpIdx) { 1635 assert(OpIdx < Operands.size() && "Off bounds"); 1636 return Operands[OpIdx]; 1637 } 1638 1639 /// \returns the number of operands. 1640 unsigned getNumOperands() const { return Operands.size(); } 1641 1642 /// \return the single \p OpIdx operand. 1643 Value *getSingleOperand(unsigned OpIdx) const { 1644 assert(OpIdx < Operands.size() && "Off bounds"); 1645 assert(!Operands[OpIdx].empty() && "No operand available"); 1646 return Operands[OpIdx][0]; 1647 } 1648 1649 /// Some of the instructions in the list have alternate opcodes. 1650 bool isAltShuffle() const { 1651 return getOpcode() != getAltOpcode(); 1652 } 1653 1654 bool isOpcodeOrAlt(Instruction *I) const { 1655 unsigned CheckedOpcode = I->getOpcode(); 1656 return (getOpcode() == CheckedOpcode || 1657 getAltOpcode() == CheckedOpcode); 1658 } 1659 1660 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1661 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1662 /// \p OpValue. 1663 Value *isOneOf(Value *Op) const { 1664 auto *I = dyn_cast<Instruction>(Op); 1665 if (I && isOpcodeOrAlt(I)) 1666 return Op; 1667 return MainOp; 1668 } 1669 1670 void setOperations(const InstructionsState &S) { 1671 MainOp = S.MainOp; 1672 AltOp = S.AltOp; 1673 } 1674 1675 Instruction *getMainOp() const { 1676 return MainOp; 1677 } 1678 1679 Instruction *getAltOp() const { 1680 return AltOp; 1681 } 1682 1683 /// The main/alternate opcodes for the list of instructions. 1684 unsigned getOpcode() const { 1685 return MainOp ? MainOp->getOpcode() : 0; 1686 } 1687 1688 unsigned getAltOpcode() const { 1689 return AltOp ? AltOp->getOpcode() : 0; 1690 } 1691 1692 /// Update operations state of this entry if reorder occurred. 1693 bool updateStateIfReorder() { 1694 if (ReorderIndices.empty()) 1695 return false; 1696 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1697 setOperations(S); 1698 return true; 1699 } 1700 1701 #ifndef NDEBUG 1702 /// Debug printer. 1703 LLVM_DUMP_METHOD void dump() const { 1704 dbgs() << Idx << ".\n"; 1705 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1706 dbgs() << "Operand " << OpI << ":\n"; 1707 for (const Value *V : Operands[OpI]) 1708 dbgs().indent(2) << *V << "\n"; 1709 } 1710 dbgs() << "Scalars: \n"; 1711 for (Value *V : Scalars) 1712 dbgs().indent(2) << *V << "\n"; 1713 dbgs() << "State: "; 1714 switch (State) { 1715 case Vectorize: 1716 dbgs() << "Vectorize\n"; 1717 break; 1718 case ScatterVectorize: 1719 dbgs() << "ScatterVectorize\n"; 1720 break; 1721 case NeedToGather: 1722 dbgs() << "NeedToGather\n"; 1723 break; 1724 } 1725 dbgs() << "MainOp: "; 1726 if (MainOp) 1727 dbgs() << *MainOp << "\n"; 1728 else 1729 dbgs() << "NULL\n"; 1730 dbgs() << "AltOp: "; 1731 if (AltOp) 1732 dbgs() << *AltOp << "\n"; 1733 else 1734 dbgs() << "NULL\n"; 1735 dbgs() << "VectorizedValue: "; 1736 if (VectorizedValue) 1737 dbgs() << *VectorizedValue << "\n"; 1738 else 1739 dbgs() << "NULL\n"; 1740 dbgs() << "ReuseShuffleIndices: "; 1741 if (ReuseShuffleIndices.empty()) 1742 dbgs() << "Empty"; 1743 else 1744 for (unsigned ReuseIdx : ReuseShuffleIndices) 1745 dbgs() << ReuseIdx << ", "; 1746 dbgs() << "\n"; 1747 dbgs() << "ReorderIndices: "; 1748 for (unsigned ReorderIdx : ReorderIndices) 1749 dbgs() << ReorderIdx << ", "; 1750 dbgs() << "\n"; 1751 dbgs() << "UserTreeIndices: "; 1752 for (const auto &EInfo : UserTreeIndices) 1753 dbgs() << EInfo << ", "; 1754 dbgs() << "\n"; 1755 } 1756 #endif 1757 }; 1758 1759 #ifndef NDEBUG 1760 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1761 InstructionCost VecCost, 1762 InstructionCost ScalarCost) const { 1763 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1764 dbgs() << "SLP: Costs:\n"; 1765 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1766 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1767 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1768 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1769 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1770 } 1771 #endif 1772 1773 /// Create a new VectorizableTree entry. 1774 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1775 const InstructionsState &S, 1776 const EdgeInfo &UserTreeIdx, 1777 ArrayRef<unsigned> ReuseShuffleIndices = None, 1778 ArrayRef<unsigned> ReorderIndices = None) { 1779 TreeEntry::EntryState EntryState = 1780 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1781 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1782 ReuseShuffleIndices, ReorderIndices); 1783 } 1784 1785 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1786 TreeEntry::EntryState EntryState, 1787 Optional<ScheduleData *> Bundle, 1788 const InstructionsState &S, 1789 const EdgeInfo &UserTreeIdx, 1790 ArrayRef<unsigned> ReuseShuffleIndices = None, 1791 ArrayRef<unsigned> ReorderIndices = None) { 1792 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1793 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1794 "Need to vectorize gather entry?"); 1795 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1796 TreeEntry *Last = VectorizableTree.back().get(); 1797 Last->Idx = VectorizableTree.size() - 1; 1798 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1799 Last->State = EntryState; 1800 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1801 ReuseShuffleIndices.end()); 1802 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1803 Last->setOperations(S); 1804 if (Last->State != TreeEntry::NeedToGather) { 1805 for (Value *V : VL) { 1806 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1807 ScalarToTreeEntry[V] = Last; 1808 } 1809 // Update the scheduler bundle to point to this TreeEntry. 1810 unsigned Lane = 0; 1811 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1812 BundleMember = BundleMember->NextInBundle) { 1813 BundleMember->TE = Last; 1814 BundleMember->Lane = Lane; 1815 ++Lane; 1816 } 1817 assert((!Bundle.getValue() || Lane == VL.size()) && 1818 "Bundle and VL out of sync"); 1819 } else { 1820 MustGather.insert(VL.begin(), VL.end()); 1821 } 1822 1823 if (UserTreeIdx.UserTE) 1824 Last->UserTreeIndices.push_back(UserTreeIdx); 1825 1826 return Last; 1827 } 1828 1829 /// -- Vectorization State -- 1830 /// Holds all of the tree entries. 1831 TreeEntry::VecTreeTy VectorizableTree; 1832 1833 #ifndef NDEBUG 1834 /// Debug printer. 1835 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1836 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1837 VectorizableTree[Id]->dump(); 1838 dbgs() << "\n"; 1839 } 1840 } 1841 #endif 1842 1843 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1844 1845 const TreeEntry *getTreeEntry(Value *V) const { 1846 return ScalarToTreeEntry.lookup(V); 1847 } 1848 1849 /// Maps a specific scalar to its tree entry. 1850 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1851 1852 /// Maps a value to the proposed vectorizable size. 1853 SmallDenseMap<Value *, unsigned> InstrElementSize; 1854 1855 /// A list of scalars that we found that we need to keep as scalars. 1856 ValueSet MustGather; 1857 1858 /// This POD struct describes one external user in the vectorized tree. 1859 struct ExternalUser { 1860 ExternalUser(Value *S, llvm::User *U, int L) 1861 : Scalar(S), User(U), Lane(L) {} 1862 1863 // Which scalar in our function. 1864 Value *Scalar; 1865 1866 // Which user that uses the scalar. 1867 llvm::User *User; 1868 1869 // Which lane does the scalar belong to. 1870 int Lane; 1871 }; 1872 using UserList = SmallVector<ExternalUser, 16>; 1873 1874 /// Checks if two instructions may access the same memory. 1875 /// 1876 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1877 /// is invariant in the calling loop. 1878 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1879 Instruction *Inst2) { 1880 // First check if the result is already in the cache. 1881 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1882 Optional<bool> &result = AliasCache[key]; 1883 if (result.hasValue()) { 1884 return result.getValue(); 1885 } 1886 MemoryLocation Loc2 = getLocation(Inst2, AA); 1887 bool aliased = true; 1888 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1889 // Do the alias check. 1890 aliased = AA->alias(Loc1, Loc2); 1891 } 1892 // Store the result in the cache. 1893 result = aliased; 1894 return aliased; 1895 } 1896 1897 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1898 1899 /// Cache for alias results. 1900 /// TODO: consider moving this to the AliasAnalysis itself. 1901 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1902 1903 /// Removes an instruction from its block and eventually deletes it. 1904 /// It's like Instruction::eraseFromParent() except that the actual deletion 1905 /// is delayed until BoUpSLP is destructed. 1906 /// This is required to ensure that there are no incorrect collisions in the 1907 /// AliasCache, which can happen if a new instruction is allocated at the 1908 /// same address as a previously deleted instruction. 1909 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1910 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1911 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1912 } 1913 1914 /// Temporary store for deleted instructions. Instructions will be deleted 1915 /// eventually when the BoUpSLP is destructed. 1916 DenseMap<Instruction *, bool> DeletedInstructions; 1917 1918 /// A list of values that need to extracted out of the tree. 1919 /// This list holds pairs of (Internal Scalar : External User). External User 1920 /// can be nullptr, it means that this Internal Scalar will be used later, 1921 /// after vectorization. 1922 UserList ExternalUses; 1923 1924 /// Values used only by @llvm.assume calls. 1925 SmallPtrSet<const Value *, 32> EphValues; 1926 1927 /// Holds all of the instructions that we gathered. 1928 SetVector<Instruction *> GatherSeq; 1929 1930 /// A list of blocks that we are going to CSE. 1931 SetVector<BasicBlock *> CSEBlocks; 1932 1933 /// Contains all scheduling relevant data for an instruction. 1934 /// A ScheduleData either represents a single instruction or a member of an 1935 /// instruction bundle (= a group of instructions which is combined into a 1936 /// vector instruction). 1937 struct ScheduleData { 1938 // The initial value for the dependency counters. It means that the 1939 // dependencies are not calculated yet. 1940 enum { InvalidDeps = -1 }; 1941 1942 ScheduleData() = default; 1943 1944 void init(int BlockSchedulingRegionID, Value *OpVal) { 1945 FirstInBundle = this; 1946 NextInBundle = nullptr; 1947 NextLoadStore = nullptr; 1948 IsScheduled = false; 1949 SchedulingRegionID = BlockSchedulingRegionID; 1950 UnscheduledDepsInBundle = UnscheduledDeps; 1951 clearDependencies(); 1952 OpValue = OpVal; 1953 TE = nullptr; 1954 Lane = -1; 1955 } 1956 1957 /// Returns true if the dependency information has been calculated. 1958 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1959 1960 /// Returns true for single instructions and for bundle representatives 1961 /// (= the head of a bundle). 1962 bool isSchedulingEntity() const { return FirstInBundle == this; } 1963 1964 /// Returns true if it represents an instruction bundle and not only a 1965 /// single instruction. 1966 bool isPartOfBundle() const { 1967 return NextInBundle != nullptr || FirstInBundle != this; 1968 } 1969 1970 /// Returns true if it is ready for scheduling, i.e. it has no more 1971 /// unscheduled depending instructions/bundles. 1972 bool isReady() const { 1973 assert(isSchedulingEntity() && 1974 "can't consider non-scheduling entity for ready list"); 1975 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1976 } 1977 1978 /// Modifies the number of unscheduled dependencies, also updating it for 1979 /// the whole bundle. 1980 int incrementUnscheduledDeps(int Incr) { 1981 UnscheduledDeps += Incr; 1982 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1983 } 1984 1985 /// Sets the number of unscheduled dependencies to the number of 1986 /// dependencies. 1987 void resetUnscheduledDeps() { 1988 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1989 } 1990 1991 /// Clears all dependency information. 1992 void clearDependencies() { 1993 Dependencies = InvalidDeps; 1994 resetUnscheduledDeps(); 1995 MemoryDependencies.clear(); 1996 } 1997 1998 void dump(raw_ostream &os) const { 1999 if (!isSchedulingEntity()) { 2000 os << "/ " << *Inst; 2001 } else if (NextInBundle) { 2002 os << '[' << *Inst; 2003 ScheduleData *SD = NextInBundle; 2004 while (SD) { 2005 os << ';' << *SD->Inst; 2006 SD = SD->NextInBundle; 2007 } 2008 os << ']'; 2009 } else { 2010 os << *Inst; 2011 } 2012 } 2013 2014 Instruction *Inst = nullptr; 2015 2016 /// Points to the head in an instruction bundle (and always to this for 2017 /// single instructions). 2018 ScheduleData *FirstInBundle = nullptr; 2019 2020 /// Single linked list of all instructions in a bundle. Null if it is a 2021 /// single instruction. 2022 ScheduleData *NextInBundle = nullptr; 2023 2024 /// Single linked list of all memory instructions (e.g. load, store, call) 2025 /// in the block - until the end of the scheduling region. 2026 ScheduleData *NextLoadStore = nullptr; 2027 2028 /// The dependent memory instructions. 2029 /// This list is derived on demand in calculateDependencies(). 2030 SmallVector<ScheduleData *, 4> MemoryDependencies; 2031 2032 /// This ScheduleData is in the current scheduling region if this matches 2033 /// the current SchedulingRegionID of BlockScheduling. 2034 int SchedulingRegionID = 0; 2035 2036 /// Used for getting a "good" final ordering of instructions. 2037 int SchedulingPriority = 0; 2038 2039 /// The number of dependencies. Constitutes of the number of users of the 2040 /// instruction plus the number of dependent memory instructions (if any). 2041 /// This value is calculated on demand. 2042 /// If InvalidDeps, the number of dependencies is not calculated yet. 2043 int Dependencies = InvalidDeps; 2044 2045 /// The number of dependencies minus the number of dependencies of scheduled 2046 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2047 /// for scheduling. 2048 /// Note that this is negative as long as Dependencies is not calculated. 2049 int UnscheduledDeps = InvalidDeps; 2050 2051 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2052 /// single instructions. 2053 int UnscheduledDepsInBundle = InvalidDeps; 2054 2055 /// True if this instruction is scheduled (or considered as scheduled in the 2056 /// dry-run). 2057 bool IsScheduled = false; 2058 2059 /// Opcode of the current instruction in the schedule data. 2060 Value *OpValue = nullptr; 2061 2062 /// The TreeEntry that this instruction corresponds to. 2063 TreeEntry *TE = nullptr; 2064 2065 /// The lane of this node in the TreeEntry. 2066 int Lane = -1; 2067 }; 2068 2069 #ifndef NDEBUG 2070 friend inline raw_ostream &operator<<(raw_ostream &os, 2071 const BoUpSLP::ScheduleData &SD) { 2072 SD.dump(os); 2073 return os; 2074 } 2075 #endif 2076 2077 friend struct GraphTraits<BoUpSLP *>; 2078 friend struct DOTGraphTraits<BoUpSLP *>; 2079 2080 /// Contains all scheduling data for a basic block. 2081 struct BlockScheduling { 2082 BlockScheduling(BasicBlock *BB) 2083 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2084 2085 void clear() { 2086 ReadyInsts.clear(); 2087 ScheduleStart = nullptr; 2088 ScheduleEnd = nullptr; 2089 FirstLoadStoreInRegion = nullptr; 2090 LastLoadStoreInRegion = nullptr; 2091 2092 // Reduce the maximum schedule region size by the size of the 2093 // previous scheduling run. 2094 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2095 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2096 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2097 ScheduleRegionSize = 0; 2098 2099 // Make a new scheduling region, i.e. all existing ScheduleData is not 2100 // in the new region yet. 2101 ++SchedulingRegionID; 2102 } 2103 2104 ScheduleData *getScheduleData(Value *V) { 2105 ScheduleData *SD = ScheduleDataMap[V]; 2106 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2107 return SD; 2108 return nullptr; 2109 } 2110 2111 ScheduleData *getScheduleData(Value *V, Value *Key) { 2112 if (V == Key) 2113 return getScheduleData(V); 2114 auto I = ExtraScheduleDataMap.find(V); 2115 if (I != ExtraScheduleDataMap.end()) { 2116 ScheduleData *SD = I->second[Key]; 2117 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2118 return SD; 2119 } 2120 return nullptr; 2121 } 2122 2123 bool isInSchedulingRegion(ScheduleData *SD) const { 2124 return SD->SchedulingRegionID == SchedulingRegionID; 2125 } 2126 2127 /// Marks an instruction as scheduled and puts all dependent ready 2128 /// instructions into the ready-list. 2129 template <typename ReadyListType> 2130 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2131 SD->IsScheduled = true; 2132 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2133 2134 ScheduleData *BundleMember = SD; 2135 while (BundleMember) { 2136 if (BundleMember->Inst != BundleMember->OpValue) { 2137 BundleMember = BundleMember->NextInBundle; 2138 continue; 2139 } 2140 // Handle the def-use chain dependencies. 2141 2142 // Decrement the unscheduled counter and insert to ready list if ready. 2143 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2144 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2145 if (OpDef && OpDef->hasValidDependencies() && 2146 OpDef->incrementUnscheduledDeps(-1) == 0) { 2147 // There are no more unscheduled dependencies after 2148 // decrementing, so we can put the dependent instruction 2149 // into the ready list. 2150 ScheduleData *DepBundle = OpDef->FirstInBundle; 2151 assert(!DepBundle->IsScheduled && 2152 "already scheduled bundle gets ready"); 2153 ReadyList.insert(DepBundle); 2154 LLVM_DEBUG(dbgs() 2155 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2156 } 2157 }); 2158 }; 2159 2160 // If BundleMember is a vector bundle, its operands may have been 2161 // reordered duiring buildTree(). We therefore need to get its operands 2162 // through the TreeEntry. 2163 if (TreeEntry *TE = BundleMember->TE) { 2164 int Lane = BundleMember->Lane; 2165 assert(Lane >= 0 && "Lane not set"); 2166 2167 // Since vectorization tree is being built recursively this assertion 2168 // ensures that the tree entry has all operands set before reaching 2169 // this code. Couple of exceptions known at the moment are extracts 2170 // where their second (immediate) operand is not added. Since 2171 // immediates do not affect scheduler behavior this is considered 2172 // okay. 2173 auto *In = TE->getMainOp(); 2174 assert(In && 2175 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2176 In->getNumOperands() == TE->getNumOperands()) && 2177 "Missed TreeEntry operands?"); 2178 (void)In; // fake use to avoid build failure when assertions disabled 2179 2180 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2181 OpIdx != NumOperands; ++OpIdx) 2182 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2183 DecrUnsched(I); 2184 } else { 2185 // If BundleMember is a stand-alone instruction, no operand reordering 2186 // has taken place, so we directly access its operands. 2187 for (Use &U : BundleMember->Inst->operands()) 2188 if (auto *I = dyn_cast<Instruction>(U.get())) 2189 DecrUnsched(I); 2190 } 2191 // Handle the memory dependencies. 2192 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2193 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2194 // There are no more unscheduled dependencies after decrementing, 2195 // so we can put the dependent instruction into the ready list. 2196 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2197 assert(!DepBundle->IsScheduled && 2198 "already scheduled bundle gets ready"); 2199 ReadyList.insert(DepBundle); 2200 LLVM_DEBUG(dbgs() 2201 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2202 } 2203 } 2204 BundleMember = BundleMember->NextInBundle; 2205 } 2206 } 2207 2208 void doForAllOpcodes(Value *V, 2209 function_ref<void(ScheduleData *SD)> Action) { 2210 if (ScheduleData *SD = getScheduleData(V)) 2211 Action(SD); 2212 auto I = ExtraScheduleDataMap.find(V); 2213 if (I != ExtraScheduleDataMap.end()) 2214 for (auto &P : I->second) 2215 if (P.second->SchedulingRegionID == SchedulingRegionID) 2216 Action(P.second); 2217 } 2218 2219 /// Put all instructions into the ReadyList which are ready for scheduling. 2220 template <typename ReadyListType> 2221 void initialFillReadyList(ReadyListType &ReadyList) { 2222 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2223 doForAllOpcodes(I, [&](ScheduleData *SD) { 2224 if (SD->isSchedulingEntity() && SD->isReady()) { 2225 ReadyList.insert(SD); 2226 LLVM_DEBUG(dbgs() 2227 << "SLP: initially in ready list: " << *I << "\n"); 2228 } 2229 }); 2230 } 2231 } 2232 2233 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2234 /// cyclic dependencies. This is only a dry-run, no instructions are 2235 /// actually moved at this stage. 2236 /// \returns the scheduling bundle. The returned Optional value is non-None 2237 /// if \p VL is allowed to be scheduled. 2238 Optional<ScheduleData *> 2239 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2240 const InstructionsState &S); 2241 2242 /// Un-bundles a group of instructions. 2243 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2244 2245 /// Allocates schedule data chunk. 2246 ScheduleData *allocateScheduleDataChunks(); 2247 2248 /// Extends the scheduling region so that V is inside the region. 2249 /// \returns true if the region size is within the limit. 2250 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2251 2252 /// Initialize the ScheduleData structures for new instructions in the 2253 /// scheduling region. 2254 void initScheduleData(Instruction *FromI, Instruction *ToI, 2255 ScheduleData *PrevLoadStore, 2256 ScheduleData *NextLoadStore); 2257 2258 /// Updates the dependency information of a bundle and of all instructions/ 2259 /// bundles which depend on the original bundle. 2260 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2261 BoUpSLP *SLP); 2262 2263 /// Sets all instruction in the scheduling region to un-scheduled. 2264 void resetSchedule(); 2265 2266 BasicBlock *BB; 2267 2268 /// Simple memory allocation for ScheduleData. 2269 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2270 2271 /// The size of a ScheduleData array in ScheduleDataChunks. 2272 int ChunkSize; 2273 2274 /// The allocator position in the current chunk, which is the last entry 2275 /// of ScheduleDataChunks. 2276 int ChunkPos; 2277 2278 /// Attaches ScheduleData to Instruction. 2279 /// Note that the mapping survives during all vectorization iterations, i.e. 2280 /// ScheduleData structures are recycled. 2281 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2282 2283 /// Attaches ScheduleData to Instruction with the leading key. 2284 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2285 ExtraScheduleDataMap; 2286 2287 struct ReadyList : SmallVector<ScheduleData *, 8> { 2288 void insert(ScheduleData *SD) { push_back(SD); } 2289 }; 2290 2291 /// The ready-list for scheduling (only used for the dry-run). 2292 ReadyList ReadyInsts; 2293 2294 /// The first instruction of the scheduling region. 2295 Instruction *ScheduleStart = nullptr; 2296 2297 /// The first instruction _after_ the scheduling region. 2298 Instruction *ScheduleEnd = nullptr; 2299 2300 /// The first memory accessing instruction in the scheduling region 2301 /// (can be null). 2302 ScheduleData *FirstLoadStoreInRegion = nullptr; 2303 2304 /// The last memory accessing instruction in the scheduling region 2305 /// (can be null). 2306 ScheduleData *LastLoadStoreInRegion = nullptr; 2307 2308 /// The current size of the scheduling region. 2309 int ScheduleRegionSize = 0; 2310 2311 /// The maximum size allowed for the scheduling region. 2312 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2313 2314 /// The ID of the scheduling region. For a new vectorization iteration this 2315 /// is incremented which "removes" all ScheduleData from the region. 2316 // Make sure that the initial SchedulingRegionID is greater than the 2317 // initial SchedulingRegionID in ScheduleData (which is 0). 2318 int SchedulingRegionID = 1; 2319 }; 2320 2321 /// Attaches the BlockScheduling structures to basic blocks. 2322 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2323 2324 /// Performs the "real" scheduling. Done before vectorization is actually 2325 /// performed in a basic block. 2326 void scheduleBlock(BlockScheduling *BS); 2327 2328 /// List of users to ignore during scheduling and that don't need extracting. 2329 ArrayRef<Value *> UserIgnoreList; 2330 2331 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2332 /// sorted SmallVectors of unsigned. 2333 struct OrdersTypeDenseMapInfo { 2334 static OrdersType getEmptyKey() { 2335 OrdersType V; 2336 V.push_back(~1U); 2337 return V; 2338 } 2339 2340 static OrdersType getTombstoneKey() { 2341 OrdersType V; 2342 V.push_back(~2U); 2343 return V; 2344 } 2345 2346 static unsigned getHashValue(const OrdersType &V) { 2347 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2348 } 2349 2350 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2351 return LHS == RHS; 2352 } 2353 }; 2354 2355 /// Contains orders of operations along with the number of bundles that have 2356 /// operations in this order. It stores only those orders that require 2357 /// reordering, if reordering is not required it is counted using \a 2358 /// NumOpsWantToKeepOriginalOrder. 2359 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2360 /// Number of bundles that do not require reordering. 2361 unsigned NumOpsWantToKeepOriginalOrder = 0; 2362 2363 // Analysis and block reference. 2364 Function *F; 2365 ScalarEvolution *SE; 2366 TargetTransformInfo *TTI; 2367 TargetLibraryInfo *TLI; 2368 AAResults *AA; 2369 LoopInfo *LI; 2370 DominatorTree *DT; 2371 AssumptionCache *AC; 2372 DemandedBits *DB; 2373 const DataLayout *DL; 2374 OptimizationRemarkEmitter *ORE; 2375 2376 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2377 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2378 2379 /// Instruction builder to construct the vectorized tree. 2380 IRBuilder<> Builder; 2381 2382 /// A map of scalar integer values to the smallest bit width with which they 2383 /// can legally be represented. The values map to (width, signed) pairs, 2384 /// where "width" indicates the minimum bit width and "signed" is True if the 2385 /// value must be signed-extended, rather than zero-extended, back to its 2386 /// original width. 2387 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2388 }; 2389 2390 } // end namespace slpvectorizer 2391 2392 template <> struct GraphTraits<BoUpSLP *> { 2393 using TreeEntry = BoUpSLP::TreeEntry; 2394 2395 /// NodeRef has to be a pointer per the GraphWriter. 2396 using NodeRef = TreeEntry *; 2397 2398 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2399 2400 /// Add the VectorizableTree to the index iterator to be able to return 2401 /// TreeEntry pointers. 2402 struct ChildIteratorType 2403 : public iterator_adaptor_base< 2404 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2405 ContainerTy &VectorizableTree; 2406 2407 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2408 ContainerTy &VT) 2409 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2410 2411 NodeRef operator*() { return I->UserTE; } 2412 }; 2413 2414 static NodeRef getEntryNode(BoUpSLP &R) { 2415 return R.VectorizableTree[0].get(); 2416 } 2417 2418 static ChildIteratorType child_begin(NodeRef N) { 2419 return {N->UserTreeIndices.begin(), N->Container}; 2420 } 2421 2422 static ChildIteratorType child_end(NodeRef N) { 2423 return {N->UserTreeIndices.end(), N->Container}; 2424 } 2425 2426 /// For the node iterator we just need to turn the TreeEntry iterator into a 2427 /// TreeEntry* iterator so that it dereferences to NodeRef. 2428 class nodes_iterator { 2429 using ItTy = ContainerTy::iterator; 2430 ItTy It; 2431 2432 public: 2433 nodes_iterator(const ItTy &It2) : It(It2) {} 2434 NodeRef operator*() { return It->get(); } 2435 nodes_iterator operator++() { 2436 ++It; 2437 return *this; 2438 } 2439 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2440 }; 2441 2442 static nodes_iterator nodes_begin(BoUpSLP *R) { 2443 return nodes_iterator(R->VectorizableTree.begin()); 2444 } 2445 2446 static nodes_iterator nodes_end(BoUpSLP *R) { 2447 return nodes_iterator(R->VectorizableTree.end()); 2448 } 2449 2450 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2451 }; 2452 2453 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2454 using TreeEntry = BoUpSLP::TreeEntry; 2455 2456 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2457 2458 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2459 std::string Str; 2460 raw_string_ostream OS(Str); 2461 if (isSplat(Entry->Scalars)) { 2462 OS << "<splat> " << *Entry->Scalars[0]; 2463 return Str; 2464 } 2465 for (auto V : Entry->Scalars) { 2466 OS << *V; 2467 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2468 return EU.Scalar == V; 2469 })) 2470 OS << " <extract>"; 2471 OS << "\n"; 2472 } 2473 return Str; 2474 } 2475 2476 static std::string getNodeAttributes(const TreeEntry *Entry, 2477 const BoUpSLP *) { 2478 if (Entry->State == TreeEntry::NeedToGather) 2479 return "color=red"; 2480 return ""; 2481 } 2482 }; 2483 2484 } // end namespace llvm 2485 2486 BoUpSLP::~BoUpSLP() { 2487 for (const auto &Pair : DeletedInstructions) { 2488 // Replace operands of ignored instructions with Undefs in case if they were 2489 // marked for deletion. 2490 if (Pair.getSecond()) { 2491 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2492 Pair.getFirst()->replaceAllUsesWith(Undef); 2493 } 2494 Pair.getFirst()->dropAllReferences(); 2495 } 2496 for (const auto &Pair : DeletedInstructions) { 2497 assert(Pair.getFirst()->use_empty() && 2498 "trying to erase instruction with users."); 2499 Pair.getFirst()->eraseFromParent(); 2500 } 2501 assert(!verifyFunction(*F, &dbgs())); 2502 } 2503 2504 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2505 for (auto *V : AV) { 2506 if (auto *I = dyn_cast<Instruction>(V)) 2507 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2508 }; 2509 } 2510 2511 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2512 ArrayRef<Value *> UserIgnoreLst) { 2513 ExtraValueToDebugLocsMap ExternallyUsedValues; 2514 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2515 } 2516 2517 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2518 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2519 ArrayRef<Value *> UserIgnoreLst) { 2520 deleteTree(); 2521 UserIgnoreList = UserIgnoreLst; 2522 if (!allSameType(Roots)) 2523 return; 2524 buildTree_rec(Roots, 0, EdgeInfo()); 2525 2526 // Collect the values that we need to extract from the tree. 2527 for (auto &TEPtr : VectorizableTree) { 2528 TreeEntry *Entry = TEPtr.get(); 2529 2530 // No need to handle users of gathered values. 2531 if (Entry->State == TreeEntry::NeedToGather) 2532 continue; 2533 2534 // For each lane: 2535 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2536 Value *Scalar = Entry->Scalars[Lane]; 2537 int FoundLane = Lane; 2538 if (!Entry->ReuseShuffleIndices.empty()) { 2539 FoundLane = 2540 std::distance(Entry->ReuseShuffleIndices.begin(), 2541 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2542 } 2543 2544 // Check if the scalar is externally used as an extra arg. 2545 auto ExtI = ExternallyUsedValues.find(Scalar); 2546 if (ExtI != ExternallyUsedValues.end()) { 2547 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2548 << Lane << " from " << *Scalar << ".\n"); 2549 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2550 } 2551 for (User *U : Scalar->users()) { 2552 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2553 2554 Instruction *UserInst = dyn_cast<Instruction>(U); 2555 if (!UserInst) 2556 continue; 2557 2558 // Skip in-tree scalars that become vectors 2559 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2560 Value *UseScalar = UseEntry->Scalars[0]; 2561 // Some in-tree scalars will remain as scalar in vectorized 2562 // instructions. If that is the case, the one in Lane 0 will 2563 // be used. 2564 if (UseScalar != U || 2565 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2566 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2567 << ".\n"); 2568 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2569 continue; 2570 } 2571 } 2572 2573 // Ignore users in the user ignore list. 2574 if (is_contained(UserIgnoreList, UserInst)) 2575 continue; 2576 2577 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2578 << Lane << " from " << *Scalar << ".\n"); 2579 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2580 } 2581 } 2582 } 2583 } 2584 2585 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2586 const EdgeInfo &UserTreeIdx) { 2587 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2588 2589 InstructionsState S = getSameOpcode(VL); 2590 if (Depth == RecursionMaxDepth) { 2591 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2592 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2593 return; 2594 } 2595 2596 // Don't handle vectors. 2597 if (S.OpValue->getType()->isVectorTy()) { 2598 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2599 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2600 return; 2601 } 2602 2603 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2604 if (SI->getValueOperand()->getType()->isVectorTy()) { 2605 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2607 return; 2608 } 2609 2610 // If all of the operands are identical or constant we have a simple solution. 2611 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2612 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2613 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2614 return; 2615 } 2616 2617 // We now know that this is a vector of instructions of the same type from 2618 // the same block. 2619 2620 // Don't vectorize ephemeral values. 2621 for (Value *V : VL) { 2622 if (EphValues.count(V)) { 2623 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2624 << ") is ephemeral.\n"); 2625 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2626 return; 2627 } 2628 } 2629 2630 // Check if this is a duplicate of another entry. 2631 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2632 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2633 if (!E->isSame(VL)) { 2634 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2635 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2636 return; 2637 } 2638 // Record the reuse of the tree node. FIXME, currently this is only used to 2639 // properly draw the graph rather than for the actual vectorization. 2640 E->UserTreeIndices.push_back(UserTreeIdx); 2641 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2642 << ".\n"); 2643 return; 2644 } 2645 2646 // Check that none of the instructions in the bundle are already in the tree. 2647 for (Value *V : VL) { 2648 auto *I = dyn_cast<Instruction>(V); 2649 if (!I) 2650 continue; 2651 if (getTreeEntry(I)) { 2652 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2653 << ") is already in tree.\n"); 2654 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2655 return; 2656 } 2657 } 2658 2659 // If any of the scalars is marked as a value that needs to stay scalar, then 2660 // we need to gather the scalars. 2661 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2662 for (Value *V : VL) { 2663 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2664 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2665 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2666 return; 2667 } 2668 } 2669 2670 // Check that all of the users of the scalars that we want to vectorize are 2671 // schedulable. 2672 auto *VL0 = cast<Instruction>(S.OpValue); 2673 BasicBlock *BB = VL0->getParent(); 2674 2675 if (!DT->isReachableFromEntry(BB)) { 2676 // Don't go into unreachable blocks. They may contain instructions with 2677 // dependency cycles which confuse the final scheduling. 2678 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2679 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2680 return; 2681 } 2682 2683 // Check that every instruction appears once in this bundle. 2684 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2685 SmallVector<Value *, 4> UniqueValues; 2686 DenseMap<Value *, unsigned> UniquePositions; 2687 for (Value *V : VL) { 2688 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2689 ReuseShuffleIndicies.emplace_back(Res.first->second); 2690 if (Res.second) 2691 UniqueValues.emplace_back(V); 2692 } 2693 size_t NumUniqueScalarValues = UniqueValues.size(); 2694 if (NumUniqueScalarValues == VL.size()) { 2695 ReuseShuffleIndicies.clear(); 2696 } else { 2697 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2698 if (NumUniqueScalarValues <= 1 || 2699 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2700 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2702 return; 2703 } 2704 VL = UniqueValues; 2705 } 2706 2707 auto &BSRef = BlocksSchedules[BB]; 2708 if (!BSRef) 2709 BSRef = std::make_unique<BlockScheduling>(BB); 2710 2711 BlockScheduling &BS = *BSRef.get(); 2712 2713 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2714 if (!Bundle) { 2715 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2716 assert((!BS.getScheduleData(VL0) || 2717 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2718 "tryScheduleBundle should cancelScheduling on failure"); 2719 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2720 ReuseShuffleIndicies); 2721 return; 2722 } 2723 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2724 2725 unsigned ShuffleOrOp = S.isAltShuffle() ? 2726 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2727 switch (ShuffleOrOp) { 2728 case Instruction::PHI: { 2729 auto *PH = cast<PHINode>(VL0); 2730 2731 // Check for terminator values (e.g. invoke). 2732 for (Value *V : VL) 2733 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2734 Instruction *Term = dyn_cast<Instruction>( 2735 cast<PHINode>(V)->getIncomingValueForBlock( 2736 PH->getIncomingBlock(I))); 2737 if (Term && Term->isTerminator()) { 2738 LLVM_DEBUG(dbgs() 2739 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2740 BS.cancelScheduling(VL, VL0); 2741 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2742 ReuseShuffleIndicies); 2743 return; 2744 } 2745 } 2746 2747 TreeEntry *TE = 2748 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2749 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2750 2751 // Keeps the reordered operands to avoid code duplication. 2752 SmallVector<ValueList, 2> OperandsVec; 2753 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2754 ValueList Operands; 2755 // Prepare the operand vector. 2756 for (Value *V : VL) 2757 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2758 PH->getIncomingBlock(I))); 2759 TE->setOperand(I, Operands); 2760 OperandsVec.push_back(Operands); 2761 } 2762 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2763 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2764 return; 2765 } 2766 case Instruction::ExtractValue: 2767 case Instruction::ExtractElement: { 2768 OrdersType CurrentOrder; 2769 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2770 if (Reuse) { 2771 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2772 ++NumOpsWantToKeepOriginalOrder; 2773 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2774 ReuseShuffleIndicies); 2775 // This is a special case, as it does not gather, but at the same time 2776 // we are not extending buildTree_rec() towards the operands. 2777 ValueList Op0; 2778 Op0.assign(VL.size(), VL0->getOperand(0)); 2779 VectorizableTree.back()->setOperand(0, Op0); 2780 return; 2781 } 2782 if (!CurrentOrder.empty()) { 2783 LLVM_DEBUG({ 2784 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2785 "with order"; 2786 for (unsigned Idx : CurrentOrder) 2787 dbgs() << " " << Idx; 2788 dbgs() << "\n"; 2789 }); 2790 // Insert new order with initial value 0, if it does not exist, 2791 // otherwise return the iterator to the existing one. 2792 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2793 ReuseShuffleIndicies, CurrentOrder); 2794 findRootOrder(CurrentOrder); 2795 ++NumOpsWantToKeepOrder[CurrentOrder]; 2796 // This is a special case, as it does not gather, but at the same time 2797 // we are not extending buildTree_rec() towards the operands. 2798 ValueList Op0; 2799 Op0.assign(VL.size(), VL0->getOperand(0)); 2800 VectorizableTree.back()->setOperand(0, Op0); 2801 return; 2802 } 2803 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2804 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2805 ReuseShuffleIndicies); 2806 BS.cancelScheduling(VL, VL0); 2807 return; 2808 } 2809 case Instruction::Load: { 2810 // Check that a vectorized load would load the same memory as a scalar 2811 // load. For example, we don't want to vectorize loads that are smaller 2812 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2813 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2814 // from such a struct, we read/write packed bits disagreeing with the 2815 // unvectorized version. 2816 Type *ScalarTy = VL0->getType(); 2817 2818 if (DL->getTypeSizeInBits(ScalarTy) != 2819 DL->getTypeAllocSizeInBits(ScalarTy)) { 2820 BS.cancelScheduling(VL, VL0); 2821 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2822 ReuseShuffleIndicies); 2823 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2824 return; 2825 } 2826 2827 // Make sure all loads in the bundle are simple - we can't vectorize 2828 // atomic or volatile loads. 2829 SmallVector<Value *, 4> PointerOps(VL.size()); 2830 auto POIter = PointerOps.begin(); 2831 for (Value *V : VL) { 2832 auto *L = cast<LoadInst>(V); 2833 if (!L->isSimple()) { 2834 BS.cancelScheduling(VL, VL0); 2835 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2836 ReuseShuffleIndicies); 2837 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2838 return; 2839 } 2840 *POIter = L->getPointerOperand(); 2841 ++POIter; 2842 } 2843 2844 OrdersType CurrentOrder; 2845 // Check the order of pointer operands. 2846 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2847 Value *Ptr0; 2848 Value *PtrN; 2849 if (CurrentOrder.empty()) { 2850 Ptr0 = PointerOps.front(); 2851 PtrN = PointerOps.back(); 2852 } else { 2853 Ptr0 = PointerOps[CurrentOrder.front()]; 2854 PtrN = PointerOps[CurrentOrder.back()]; 2855 } 2856 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2857 const SCEV *ScevN = SE->getSCEV(PtrN); 2858 const auto *Diff = 2859 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2860 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2861 // Check that the sorted loads are consecutive. 2862 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2863 if (CurrentOrder.empty()) { 2864 // Original loads are consecutive and does not require reordering. 2865 ++NumOpsWantToKeepOriginalOrder; 2866 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2867 UserTreeIdx, ReuseShuffleIndicies); 2868 TE->setOperandsInOrder(); 2869 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2870 } else { 2871 // Need to reorder. 2872 TreeEntry *TE = 2873 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2874 ReuseShuffleIndicies, CurrentOrder); 2875 TE->setOperandsInOrder(); 2876 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2877 findRootOrder(CurrentOrder); 2878 ++NumOpsWantToKeepOrder[CurrentOrder]; 2879 } 2880 return; 2881 } 2882 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2883 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2884 UserTreeIdx, ReuseShuffleIndicies); 2885 TE->setOperandsInOrder(); 2886 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2887 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2888 return; 2889 } 2890 2891 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2892 BS.cancelScheduling(VL, VL0); 2893 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2894 ReuseShuffleIndicies); 2895 return; 2896 } 2897 case Instruction::ZExt: 2898 case Instruction::SExt: 2899 case Instruction::FPToUI: 2900 case Instruction::FPToSI: 2901 case Instruction::FPExt: 2902 case Instruction::PtrToInt: 2903 case Instruction::IntToPtr: 2904 case Instruction::SIToFP: 2905 case Instruction::UIToFP: 2906 case Instruction::Trunc: 2907 case Instruction::FPTrunc: 2908 case Instruction::BitCast: { 2909 Type *SrcTy = VL0->getOperand(0)->getType(); 2910 for (Value *V : VL) { 2911 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2912 if (Ty != SrcTy || !isValidElementType(Ty)) { 2913 BS.cancelScheduling(VL, VL0); 2914 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2915 ReuseShuffleIndicies); 2916 LLVM_DEBUG(dbgs() 2917 << "SLP: Gathering casts with different src types.\n"); 2918 return; 2919 } 2920 } 2921 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2922 ReuseShuffleIndicies); 2923 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2924 2925 TE->setOperandsInOrder(); 2926 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2927 ValueList Operands; 2928 // Prepare the operand vector. 2929 for (Value *V : VL) 2930 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2931 2932 buildTree_rec(Operands, Depth + 1, {TE, i}); 2933 } 2934 return; 2935 } 2936 case Instruction::ICmp: 2937 case Instruction::FCmp: { 2938 // Check that all of the compares have the same predicate. 2939 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2940 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2941 Type *ComparedTy = VL0->getOperand(0)->getType(); 2942 for (Value *V : VL) { 2943 CmpInst *Cmp = cast<CmpInst>(V); 2944 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2945 Cmp->getOperand(0)->getType() != ComparedTy) { 2946 BS.cancelScheduling(VL, VL0); 2947 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2948 ReuseShuffleIndicies); 2949 LLVM_DEBUG(dbgs() 2950 << "SLP: Gathering cmp with different predicate.\n"); 2951 return; 2952 } 2953 } 2954 2955 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2956 ReuseShuffleIndicies); 2957 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2958 2959 ValueList Left, Right; 2960 if (cast<CmpInst>(VL0)->isCommutative()) { 2961 // Commutative predicate - collect + sort operands of the instructions 2962 // so that each side is more likely to have the same opcode. 2963 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2964 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2965 } else { 2966 // Collect operands - commute if it uses the swapped predicate. 2967 for (Value *V : VL) { 2968 auto *Cmp = cast<CmpInst>(V); 2969 Value *LHS = Cmp->getOperand(0); 2970 Value *RHS = Cmp->getOperand(1); 2971 if (Cmp->getPredicate() != P0) 2972 std::swap(LHS, RHS); 2973 Left.push_back(LHS); 2974 Right.push_back(RHS); 2975 } 2976 } 2977 TE->setOperand(0, Left); 2978 TE->setOperand(1, Right); 2979 buildTree_rec(Left, Depth + 1, {TE, 0}); 2980 buildTree_rec(Right, Depth + 1, {TE, 1}); 2981 return; 2982 } 2983 case Instruction::Select: 2984 case Instruction::FNeg: 2985 case Instruction::Add: 2986 case Instruction::FAdd: 2987 case Instruction::Sub: 2988 case Instruction::FSub: 2989 case Instruction::Mul: 2990 case Instruction::FMul: 2991 case Instruction::UDiv: 2992 case Instruction::SDiv: 2993 case Instruction::FDiv: 2994 case Instruction::URem: 2995 case Instruction::SRem: 2996 case Instruction::FRem: 2997 case Instruction::Shl: 2998 case Instruction::LShr: 2999 case Instruction::AShr: 3000 case Instruction::And: 3001 case Instruction::Or: 3002 case Instruction::Xor: { 3003 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3004 ReuseShuffleIndicies); 3005 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3006 3007 // Sort operands of the instructions so that each side is more likely to 3008 // have the same opcode. 3009 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3010 ValueList Left, Right; 3011 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3012 TE->setOperand(0, Left); 3013 TE->setOperand(1, Right); 3014 buildTree_rec(Left, Depth + 1, {TE, 0}); 3015 buildTree_rec(Right, Depth + 1, {TE, 1}); 3016 return; 3017 } 3018 3019 TE->setOperandsInOrder(); 3020 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3021 ValueList Operands; 3022 // Prepare the operand vector. 3023 for (Value *V : VL) 3024 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3025 3026 buildTree_rec(Operands, Depth + 1, {TE, i}); 3027 } 3028 return; 3029 } 3030 case Instruction::GetElementPtr: { 3031 // We don't combine GEPs with complicated (nested) indexing. 3032 for (Value *V : VL) { 3033 if (cast<Instruction>(V)->getNumOperands() != 2) { 3034 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3035 BS.cancelScheduling(VL, VL0); 3036 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3037 ReuseShuffleIndicies); 3038 return; 3039 } 3040 } 3041 3042 // We can't combine several GEPs into one vector if they operate on 3043 // different types. 3044 Type *Ty0 = VL0->getOperand(0)->getType(); 3045 for (Value *V : VL) { 3046 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3047 if (Ty0 != CurTy) { 3048 LLVM_DEBUG(dbgs() 3049 << "SLP: not-vectorizable GEP (different types).\n"); 3050 BS.cancelScheduling(VL, VL0); 3051 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3052 ReuseShuffleIndicies); 3053 return; 3054 } 3055 } 3056 3057 // We don't combine GEPs with non-constant indexes. 3058 Type *Ty1 = VL0->getOperand(1)->getType(); 3059 for (Value *V : VL) { 3060 auto Op = cast<Instruction>(V)->getOperand(1); 3061 if (!isa<ConstantInt>(Op) || 3062 (Op->getType() != Ty1 && 3063 Op->getType()->getScalarSizeInBits() > 3064 DL->getIndexSizeInBits( 3065 V->getType()->getPointerAddressSpace()))) { 3066 LLVM_DEBUG(dbgs() 3067 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3068 BS.cancelScheduling(VL, VL0); 3069 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3070 ReuseShuffleIndicies); 3071 return; 3072 } 3073 } 3074 3075 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3076 ReuseShuffleIndicies); 3077 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3078 TE->setOperandsInOrder(); 3079 for (unsigned i = 0, e = 2; i < e; ++i) { 3080 ValueList Operands; 3081 // Prepare the operand vector. 3082 for (Value *V : VL) 3083 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3084 3085 buildTree_rec(Operands, Depth + 1, {TE, i}); 3086 } 3087 return; 3088 } 3089 case Instruction::Store: { 3090 // Check if the stores are consecutive or if we need to swizzle them. 3091 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3092 // Make sure all stores in the bundle are simple - we can't vectorize 3093 // atomic or volatile stores. 3094 SmallVector<Value *, 4> PointerOps(VL.size()); 3095 ValueList Operands(VL.size()); 3096 auto POIter = PointerOps.begin(); 3097 auto OIter = Operands.begin(); 3098 for (Value *V : VL) { 3099 auto *SI = cast<StoreInst>(V); 3100 if (!SI->isSimple()) { 3101 BS.cancelScheduling(VL, VL0); 3102 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3103 ReuseShuffleIndicies); 3104 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3105 return; 3106 } 3107 *POIter = SI->getPointerOperand(); 3108 *OIter = SI->getValueOperand(); 3109 ++POIter; 3110 ++OIter; 3111 } 3112 3113 OrdersType CurrentOrder; 3114 // Check the order of pointer operands. 3115 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3116 Value *Ptr0; 3117 Value *PtrN; 3118 if (CurrentOrder.empty()) { 3119 Ptr0 = PointerOps.front(); 3120 PtrN = PointerOps.back(); 3121 } else { 3122 Ptr0 = PointerOps[CurrentOrder.front()]; 3123 PtrN = PointerOps[CurrentOrder.back()]; 3124 } 3125 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3126 const SCEV *ScevN = SE->getSCEV(PtrN); 3127 const auto *Diff = 3128 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3129 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3130 // Check that the sorted pointer operands are consecutive. 3131 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3132 if (CurrentOrder.empty()) { 3133 // Original stores are consecutive and does not require reordering. 3134 ++NumOpsWantToKeepOriginalOrder; 3135 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3136 UserTreeIdx, ReuseShuffleIndicies); 3137 TE->setOperandsInOrder(); 3138 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3139 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3140 } else { 3141 TreeEntry *TE = 3142 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3143 ReuseShuffleIndicies, CurrentOrder); 3144 TE->setOperandsInOrder(); 3145 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3146 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3147 findRootOrder(CurrentOrder); 3148 ++NumOpsWantToKeepOrder[CurrentOrder]; 3149 } 3150 return; 3151 } 3152 } 3153 3154 BS.cancelScheduling(VL, VL0); 3155 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3156 ReuseShuffleIndicies); 3157 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3158 return; 3159 } 3160 case Instruction::Call: { 3161 // Check if the calls are all to the same vectorizable intrinsic or 3162 // library function. 3163 CallInst *CI = cast<CallInst>(VL0); 3164 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3165 3166 VFShape Shape = VFShape::get( 3167 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3168 false /*HasGlobalPred*/); 3169 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3170 3171 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3172 BS.cancelScheduling(VL, VL0); 3173 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3174 ReuseShuffleIndicies); 3175 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3176 return; 3177 } 3178 Function *F = CI->getCalledFunction(); 3179 unsigned NumArgs = CI->getNumArgOperands(); 3180 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3181 for (unsigned j = 0; j != NumArgs; ++j) 3182 if (hasVectorInstrinsicScalarOpd(ID, j)) 3183 ScalarArgs[j] = CI->getArgOperand(j); 3184 for (Value *V : VL) { 3185 CallInst *CI2 = dyn_cast<CallInst>(V); 3186 if (!CI2 || CI2->getCalledFunction() != F || 3187 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3188 (VecFunc && 3189 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3190 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3191 BS.cancelScheduling(VL, VL0); 3192 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3193 ReuseShuffleIndicies); 3194 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3195 << "\n"); 3196 return; 3197 } 3198 // Some intrinsics have scalar arguments and should be same in order for 3199 // them to be vectorized. 3200 for (unsigned j = 0; j != NumArgs; ++j) { 3201 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3202 Value *A1J = CI2->getArgOperand(j); 3203 if (ScalarArgs[j] != A1J) { 3204 BS.cancelScheduling(VL, VL0); 3205 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3206 ReuseShuffleIndicies); 3207 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3208 << " argument " << ScalarArgs[j] << "!=" << A1J 3209 << "\n"); 3210 return; 3211 } 3212 } 3213 } 3214 // Verify that the bundle operands are identical between the two calls. 3215 if (CI->hasOperandBundles() && 3216 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3217 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3218 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3219 BS.cancelScheduling(VL, VL0); 3220 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3221 ReuseShuffleIndicies); 3222 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3223 << *CI << "!=" << *V << '\n'); 3224 return; 3225 } 3226 } 3227 3228 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3229 ReuseShuffleIndicies); 3230 TE->setOperandsInOrder(); 3231 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3232 ValueList Operands; 3233 // Prepare the operand vector. 3234 for (Value *V : VL) { 3235 auto *CI2 = cast<CallInst>(V); 3236 Operands.push_back(CI2->getArgOperand(i)); 3237 } 3238 buildTree_rec(Operands, Depth + 1, {TE, i}); 3239 } 3240 return; 3241 } 3242 case Instruction::ShuffleVector: { 3243 // If this is not an alternate sequence of opcode like add-sub 3244 // then do not vectorize this instruction. 3245 if (!S.isAltShuffle()) { 3246 BS.cancelScheduling(VL, VL0); 3247 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3248 ReuseShuffleIndicies); 3249 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3250 return; 3251 } 3252 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3253 ReuseShuffleIndicies); 3254 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3255 3256 // Reorder operands if reordering would enable vectorization. 3257 if (isa<BinaryOperator>(VL0)) { 3258 ValueList Left, Right; 3259 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3260 TE->setOperand(0, Left); 3261 TE->setOperand(1, Right); 3262 buildTree_rec(Left, Depth + 1, {TE, 0}); 3263 buildTree_rec(Right, Depth + 1, {TE, 1}); 3264 return; 3265 } 3266 3267 TE->setOperandsInOrder(); 3268 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3269 ValueList Operands; 3270 // Prepare the operand vector. 3271 for (Value *V : VL) 3272 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3273 3274 buildTree_rec(Operands, Depth + 1, {TE, i}); 3275 } 3276 return; 3277 } 3278 default: 3279 BS.cancelScheduling(VL, VL0); 3280 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3281 ReuseShuffleIndicies); 3282 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3283 return; 3284 } 3285 } 3286 3287 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3288 unsigned N = 1; 3289 Type *EltTy = T; 3290 3291 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3292 isa<VectorType>(EltTy)) { 3293 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3294 // Check that struct is homogeneous. 3295 for (const auto *Ty : ST->elements()) 3296 if (Ty != *ST->element_begin()) 3297 return 0; 3298 N *= ST->getNumElements(); 3299 EltTy = *ST->element_begin(); 3300 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3301 N *= AT->getNumElements(); 3302 EltTy = AT->getElementType(); 3303 } else { 3304 auto *VT = cast<FixedVectorType>(EltTy); 3305 N *= VT->getNumElements(); 3306 EltTy = VT->getElementType(); 3307 } 3308 } 3309 3310 if (!isValidElementType(EltTy)) 3311 return 0; 3312 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3313 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3314 return 0; 3315 return N; 3316 } 3317 3318 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3319 SmallVectorImpl<unsigned> &CurrentOrder) const { 3320 Instruction *E0 = cast<Instruction>(OpValue); 3321 assert(E0->getOpcode() == Instruction::ExtractElement || 3322 E0->getOpcode() == Instruction::ExtractValue); 3323 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3324 // Check if all of the extracts come from the same vector and from the 3325 // correct offset. 3326 Value *Vec = E0->getOperand(0); 3327 3328 CurrentOrder.clear(); 3329 3330 // We have to extract from a vector/aggregate with the same number of elements. 3331 unsigned NElts; 3332 if (E0->getOpcode() == Instruction::ExtractValue) { 3333 const DataLayout &DL = E0->getModule()->getDataLayout(); 3334 NElts = canMapToVector(Vec->getType(), DL); 3335 if (!NElts) 3336 return false; 3337 // Check if load can be rewritten as load of vector. 3338 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3339 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3340 return false; 3341 } else { 3342 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3343 } 3344 3345 if (NElts != VL.size()) 3346 return false; 3347 3348 // Check that all of the indices extract from the correct offset. 3349 bool ShouldKeepOrder = true; 3350 unsigned E = VL.size(); 3351 // Assign to all items the initial value E + 1 so we can check if the extract 3352 // instruction index was used already. 3353 // Also, later we can check that all the indices are used and we have a 3354 // consecutive access in the extract instructions, by checking that no 3355 // element of CurrentOrder still has value E + 1. 3356 CurrentOrder.assign(E, E + 1); 3357 unsigned I = 0; 3358 for (; I < E; ++I) { 3359 auto *Inst = cast<Instruction>(VL[I]); 3360 if (Inst->getOperand(0) != Vec) 3361 break; 3362 Optional<unsigned> Idx = getExtractIndex(Inst); 3363 if (!Idx) 3364 break; 3365 const unsigned ExtIdx = *Idx; 3366 if (ExtIdx != I) { 3367 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3368 break; 3369 ShouldKeepOrder = false; 3370 CurrentOrder[ExtIdx] = I; 3371 } else { 3372 if (CurrentOrder[I] != E + 1) 3373 break; 3374 CurrentOrder[I] = I; 3375 } 3376 } 3377 if (I < E) { 3378 CurrentOrder.clear(); 3379 return false; 3380 } 3381 3382 return ShouldKeepOrder; 3383 } 3384 3385 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3386 return I->hasOneUse() || 3387 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3388 return ScalarToTreeEntry.count(U) > 0; 3389 }); 3390 } 3391 3392 static std::pair<unsigned, unsigned> 3393 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3394 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3395 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3396 3397 // Calculate the cost of the scalar and vector calls. 3398 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3399 int IntrinsicCost = 3400 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3401 3402 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3403 VecTy->getNumElements())), 3404 false /*HasGlobalPred*/); 3405 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3406 int LibCost = IntrinsicCost; 3407 if (!CI->isNoBuiltin() && VecFunc) { 3408 // Calculate the cost of the vector library call. 3409 SmallVector<Type *, 4> VecTys; 3410 for (Use &Arg : CI->args()) 3411 VecTys.push_back( 3412 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3413 3414 // If the corresponding vector call is cheaper, return its cost. 3415 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3416 TTI::TCK_RecipThroughput); 3417 } 3418 return {IntrinsicCost, LibCost}; 3419 } 3420 3421 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3422 ArrayRef<Value*> VL = E->Scalars; 3423 3424 Type *ScalarTy = VL[0]->getType(); 3425 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3426 ScalarTy = SI->getValueOperand()->getType(); 3427 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3428 ScalarTy = CI->getOperand(0)->getType(); 3429 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3430 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3431 3432 // If we have computed a smaller type for the expression, update VecTy so 3433 // that the costs will be accurate. 3434 if (MinBWs.count(VL[0])) 3435 VecTy = FixedVectorType::get( 3436 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3437 3438 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3439 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3440 InstructionCost ReuseShuffleCost = 0; 3441 if (NeedToShuffleReuses) { 3442 ReuseShuffleCost = 3443 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3444 } 3445 if (E->State == TreeEntry::NeedToGather) { 3446 if (allConstant(VL)) 3447 return 0; 3448 if (isSplat(VL)) { 3449 return ReuseShuffleCost + 3450 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3451 } 3452 if (E->getOpcode() == Instruction::ExtractElement && 3453 allSameType(VL) && allSameBlock(VL)) { 3454 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3455 if (ShuffleKind.hasValue()) { 3456 InstructionCost Cost = 3457 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3458 for (auto *V : VL) { 3459 // If all users of instruction are going to be vectorized and this 3460 // instruction itself is not going to be vectorized, consider this 3461 // instruction as dead and remove its cost from the final cost of the 3462 // vectorized tree. 3463 if (areAllUsersVectorized(cast<Instruction>(V)) && 3464 !ScalarToTreeEntry.count(V)) { 3465 auto *IO = cast<ConstantInt>( 3466 cast<ExtractElementInst>(V)->getIndexOperand()); 3467 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3468 IO->getZExtValue()); 3469 } 3470 } 3471 return ReuseShuffleCost + Cost; 3472 } 3473 } 3474 return ReuseShuffleCost + getGatherCost(VL); 3475 } 3476 assert((E->State == TreeEntry::Vectorize || 3477 E->State == TreeEntry::ScatterVectorize) && 3478 "Unhandled state"); 3479 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3480 Instruction *VL0 = E->getMainOp(); 3481 unsigned ShuffleOrOp = 3482 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3483 switch (ShuffleOrOp) { 3484 case Instruction::PHI: 3485 return 0; 3486 3487 case Instruction::ExtractValue: 3488 case Instruction::ExtractElement: { 3489 InstructionCost DeadCost = 0; 3490 if (NeedToShuffleReuses) { 3491 unsigned Idx = 0; 3492 for (unsigned I : E->ReuseShuffleIndices) { 3493 if (ShuffleOrOp == Instruction::ExtractElement) { 3494 auto *IO = cast<ConstantInt>( 3495 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3496 Idx = IO->getZExtValue(); 3497 ReuseShuffleCost -= TTI->getVectorInstrCost( 3498 Instruction::ExtractElement, VecTy, Idx); 3499 } else { 3500 ReuseShuffleCost -= TTI->getVectorInstrCost( 3501 Instruction::ExtractElement, VecTy, Idx); 3502 ++Idx; 3503 } 3504 } 3505 Idx = ReuseShuffleNumbers; 3506 for (Value *V : VL) { 3507 if (ShuffleOrOp == Instruction::ExtractElement) { 3508 auto *IO = cast<ConstantInt>( 3509 cast<ExtractElementInst>(V)->getIndexOperand()); 3510 Idx = IO->getZExtValue(); 3511 } else { 3512 --Idx; 3513 } 3514 ReuseShuffleCost += 3515 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3516 } 3517 DeadCost = ReuseShuffleCost; 3518 } else if (!E->ReorderIndices.empty()) { 3519 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3520 VecTy); 3521 } 3522 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3523 Instruction *EI = cast<Instruction>(VL[I]); 3524 // If all users are going to be vectorized, instruction can be 3525 // considered as dead. 3526 // The same, if have only one user, it will be vectorized for sure. 3527 if (areAllUsersVectorized(EI)) { 3528 // Take credit for instruction that will become dead. 3529 if (EI->hasOneUse()) { 3530 Instruction *Ext = EI->user_back(); 3531 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3532 all_of(Ext->users(), 3533 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3534 // Use getExtractWithExtendCost() to calculate the cost of 3535 // extractelement/ext pair. 3536 DeadCost -= TTI->getExtractWithExtendCost( 3537 Ext->getOpcode(), Ext->getType(), VecTy, I); 3538 // Add back the cost of s|zext which is subtracted separately. 3539 DeadCost += TTI->getCastInstrCost( 3540 Ext->getOpcode(), Ext->getType(), EI->getType(), 3541 TTI::getCastContextHint(Ext), CostKind, Ext); 3542 continue; 3543 } 3544 } 3545 DeadCost -= 3546 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3547 } 3548 } 3549 return DeadCost; 3550 } 3551 case Instruction::ZExt: 3552 case Instruction::SExt: 3553 case Instruction::FPToUI: 3554 case Instruction::FPToSI: 3555 case Instruction::FPExt: 3556 case Instruction::PtrToInt: 3557 case Instruction::IntToPtr: 3558 case Instruction::SIToFP: 3559 case Instruction::UIToFP: 3560 case Instruction::Trunc: 3561 case Instruction::FPTrunc: 3562 case Instruction::BitCast: { 3563 Type *SrcTy = VL0->getOperand(0)->getType(); 3564 InstructionCost ScalarEltCost = 3565 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3566 TTI::getCastContextHint(VL0), CostKind, VL0); 3567 if (NeedToShuffleReuses) { 3568 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3569 } 3570 3571 // Calculate the cost of this instruction. 3572 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3573 3574 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3575 InstructionCost VecCost = 0; 3576 // Check if the values are candidates to demote. 3577 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3578 VecCost = 3579 ReuseShuffleCost + 3580 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3581 TTI::getCastContextHint(VL0), CostKind, VL0); 3582 } 3583 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3584 return VecCost - ScalarCost; 3585 } 3586 case Instruction::FCmp: 3587 case Instruction::ICmp: 3588 case Instruction::Select: { 3589 // Calculate the cost of this instruction. 3590 InstructionCost ScalarEltCost = 3591 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3592 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3593 if (NeedToShuffleReuses) { 3594 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3595 } 3596 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3597 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3598 3599 // Check if all entries in VL are either compares or selects with compares 3600 // as condition that have the same predicates. 3601 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3602 bool First = true; 3603 for (auto *V : VL) { 3604 CmpInst::Predicate CurrentPred; 3605 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3606 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3607 !match(V, MatchCmp)) || 3608 (!First && VecPred != CurrentPred)) { 3609 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3610 break; 3611 } 3612 First = false; 3613 VecPred = CurrentPred; 3614 } 3615 3616 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3617 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3618 // Check if it is possible and profitable to use min/max for selects in 3619 // VL. 3620 // 3621 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3622 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3623 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3624 {VecTy, VecTy}); 3625 InstructionCost IntrinsicCost = 3626 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3627 // If the selects are the only uses of the compares, they will be dead 3628 // and we can adjust the cost by removing their cost. 3629 if (IntrinsicAndUse.second) 3630 IntrinsicCost -= 3631 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3632 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3633 VecCost = std::min(VecCost, IntrinsicCost); 3634 } 3635 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3636 return ReuseShuffleCost + VecCost - ScalarCost; 3637 } 3638 case Instruction::FNeg: 3639 case Instruction::Add: 3640 case Instruction::FAdd: 3641 case Instruction::Sub: 3642 case Instruction::FSub: 3643 case Instruction::Mul: 3644 case Instruction::FMul: 3645 case Instruction::UDiv: 3646 case Instruction::SDiv: 3647 case Instruction::FDiv: 3648 case Instruction::URem: 3649 case Instruction::SRem: 3650 case Instruction::FRem: 3651 case Instruction::Shl: 3652 case Instruction::LShr: 3653 case Instruction::AShr: 3654 case Instruction::And: 3655 case Instruction::Or: 3656 case Instruction::Xor: { 3657 // Certain instructions can be cheaper to vectorize if they have a 3658 // constant second vector operand. 3659 TargetTransformInfo::OperandValueKind Op1VK = 3660 TargetTransformInfo::OK_AnyValue; 3661 TargetTransformInfo::OperandValueKind Op2VK = 3662 TargetTransformInfo::OK_UniformConstantValue; 3663 TargetTransformInfo::OperandValueProperties Op1VP = 3664 TargetTransformInfo::OP_None; 3665 TargetTransformInfo::OperandValueProperties Op2VP = 3666 TargetTransformInfo::OP_PowerOf2; 3667 3668 // If all operands are exactly the same ConstantInt then set the 3669 // operand kind to OK_UniformConstantValue. 3670 // If instead not all operands are constants, then set the operand kind 3671 // to OK_AnyValue. If all operands are constants but not the same, 3672 // then set the operand kind to OK_NonUniformConstantValue. 3673 ConstantInt *CInt0 = nullptr; 3674 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3675 const Instruction *I = cast<Instruction>(VL[i]); 3676 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3677 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3678 if (!CInt) { 3679 Op2VK = TargetTransformInfo::OK_AnyValue; 3680 Op2VP = TargetTransformInfo::OP_None; 3681 break; 3682 } 3683 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3684 !CInt->getValue().isPowerOf2()) 3685 Op2VP = TargetTransformInfo::OP_None; 3686 if (i == 0) { 3687 CInt0 = CInt; 3688 continue; 3689 } 3690 if (CInt0 != CInt) 3691 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3692 } 3693 3694 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3695 InstructionCost ScalarEltCost = 3696 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3697 Op2VK, Op1VP, Op2VP, Operands, VL0); 3698 if (NeedToShuffleReuses) { 3699 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3700 } 3701 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3702 InstructionCost VecCost = 3703 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3704 Op2VK, Op1VP, Op2VP, Operands, VL0); 3705 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3706 return ReuseShuffleCost + VecCost - ScalarCost; 3707 } 3708 case Instruction::GetElementPtr: { 3709 TargetTransformInfo::OperandValueKind Op1VK = 3710 TargetTransformInfo::OK_AnyValue; 3711 TargetTransformInfo::OperandValueKind Op2VK = 3712 TargetTransformInfo::OK_UniformConstantValue; 3713 3714 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3715 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3716 if (NeedToShuffleReuses) { 3717 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3718 } 3719 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3720 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3721 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3722 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3723 return ReuseShuffleCost + VecCost - ScalarCost; 3724 } 3725 case Instruction::Load: { 3726 // Cost of wide load - cost of scalar loads. 3727 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3728 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3729 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3730 if (NeedToShuffleReuses) { 3731 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3732 } 3733 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3734 InstructionCost VecLdCost; 3735 if (E->State == TreeEntry::Vectorize) { 3736 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3737 CostKind, VL0); 3738 } else { 3739 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3740 VecLdCost = TTI->getGatherScatterOpCost( 3741 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3742 /*VariableMask=*/false, alignment, CostKind, VL0); 3743 } 3744 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3745 VecLdCost += TTI->getShuffleCost( 3746 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3747 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3748 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3749 } 3750 case Instruction::Store: { 3751 // We know that we can merge the stores. Calculate the cost. 3752 bool IsReorder = !E->ReorderIndices.empty(); 3753 auto *SI = 3754 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3755 Align Alignment = SI->getAlign(); 3756 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3757 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3758 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3759 InstructionCost VecStCost = TTI->getMemoryOpCost( 3760 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3761 if (IsReorder) 3762 VecStCost += TTI->getShuffleCost( 3763 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3764 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3765 return VecStCost - ScalarStCost; 3766 } 3767 case Instruction::Call: { 3768 CallInst *CI = cast<CallInst>(VL0); 3769 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3770 3771 // Calculate the cost of the scalar and vector calls. 3772 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3773 InstructionCost ScalarEltCost = 3774 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3775 if (NeedToShuffleReuses) { 3776 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3777 } 3778 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3779 3780 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3781 InstructionCost VecCallCost = 3782 std::min(VecCallCosts.first, VecCallCosts.second); 3783 3784 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3785 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3786 << " for " << *CI << "\n"); 3787 3788 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3789 } 3790 case Instruction::ShuffleVector: { 3791 assert(E->isAltShuffle() && 3792 ((Instruction::isBinaryOp(E->getOpcode()) && 3793 Instruction::isBinaryOp(E->getAltOpcode())) || 3794 (Instruction::isCast(E->getOpcode()) && 3795 Instruction::isCast(E->getAltOpcode()))) && 3796 "Invalid Shuffle Vector Operand"); 3797 InstructionCost ScalarCost = 0; 3798 if (NeedToShuffleReuses) { 3799 for (unsigned Idx : E->ReuseShuffleIndices) { 3800 Instruction *I = cast<Instruction>(VL[Idx]); 3801 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3802 } 3803 for (Value *V : VL) { 3804 Instruction *I = cast<Instruction>(V); 3805 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3806 } 3807 } 3808 for (Value *V : VL) { 3809 Instruction *I = cast<Instruction>(V); 3810 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3811 ScalarCost += TTI->getInstructionCost(I, CostKind); 3812 } 3813 // VecCost is equal to sum of the cost of creating 2 vectors 3814 // and the cost of creating shuffle. 3815 InstructionCost VecCost = 0; 3816 if (Instruction::isBinaryOp(E->getOpcode())) { 3817 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3818 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3819 CostKind); 3820 } else { 3821 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3822 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3823 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3824 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3825 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3826 TTI::CastContextHint::None, CostKind); 3827 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3828 TTI::CastContextHint::None, CostKind); 3829 } 3830 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3831 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3832 return ReuseShuffleCost + VecCost - ScalarCost; 3833 } 3834 default: 3835 llvm_unreachable("Unknown instruction"); 3836 } 3837 } 3838 3839 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3840 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3841 << VectorizableTree.size() << " is fully vectorizable .\n"); 3842 3843 // We only handle trees of heights 1 and 2. 3844 if (VectorizableTree.size() == 1 && 3845 VectorizableTree[0]->State == TreeEntry::Vectorize) 3846 return true; 3847 3848 if (VectorizableTree.size() != 2) 3849 return false; 3850 3851 // Handle splat and all-constants stores. 3852 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3853 (allConstant(VectorizableTree[1]->Scalars) || 3854 isSplat(VectorizableTree[1]->Scalars))) 3855 return true; 3856 3857 // Gathering cost would be too much for tiny trees. 3858 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3859 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3860 return false; 3861 3862 return true; 3863 } 3864 3865 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3866 TargetTransformInfo *TTI) { 3867 // Look past the root to find a source value. Arbitrarily follow the 3868 // path through operand 0 of any 'or'. Also, peek through optional 3869 // shift-left-by-multiple-of-8-bits. 3870 Value *ZextLoad = Root; 3871 const APInt *ShAmtC; 3872 while (!isa<ConstantExpr>(ZextLoad) && 3873 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3874 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3875 ShAmtC->urem(8) == 0))) 3876 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3877 3878 // Check if the input is an extended load of the required or/shift expression. 3879 Value *LoadPtr; 3880 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3881 return false; 3882 3883 // Require that the total load bit width is a legal integer type. 3884 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3885 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3886 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3887 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3888 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3889 return false; 3890 3891 // Everything matched - assume that we can fold the whole sequence using 3892 // load combining. 3893 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3894 << *(cast<Instruction>(Root)) << "\n"); 3895 3896 return true; 3897 } 3898 3899 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3900 if (RdxOpcode != Instruction::Or) 3901 return false; 3902 3903 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3904 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3905 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3906 } 3907 3908 bool BoUpSLP::isLoadCombineCandidate() const { 3909 // Peek through a final sequence of stores and check if all operations are 3910 // likely to be load-combined. 3911 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3912 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3913 Value *X; 3914 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3915 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3916 return false; 3917 } 3918 return true; 3919 } 3920 3921 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3922 // We can vectorize the tree if its size is greater than or equal to the 3923 // minimum size specified by the MinTreeSize command line option. 3924 if (VectorizableTree.size() >= MinTreeSize) 3925 return false; 3926 3927 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3928 // can vectorize it if we can prove it fully vectorizable. 3929 if (isFullyVectorizableTinyTree()) 3930 return false; 3931 3932 assert(VectorizableTree.empty() 3933 ? ExternalUses.empty() 3934 : true && "We shouldn't have any external users"); 3935 3936 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3937 // vectorizable. 3938 return true; 3939 } 3940 3941 InstructionCost BoUpSLP::getSpillCost() const { 3942 // Walk from the bottom of the tree to the top, tracking which values are 3943 // live. When we see a call instruction that is not part of our tree, 3944 // query TTI to see if there is a cost to keeping values live over it 3945 // (for example, if spills and fills are required). 3946 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3947 InstructionCost Cost = 0; 3948 3949 SmallPtrSet<Instruction*, 4> LiveValues; 3950 Instruction *PrevInst = nullptr; 3951 3952 // The entries in VectorizableTree are not necessarily ordered by their 3953 // position in basic blocks. Collect them and order them by dominance so later 3954 // instructions are guaranteed to be visited first. For instructions in 3955 // different basic blocks, we only scan to the beginning of the block, so 3956 // their order does not matter, as long as all instructions in a basic block 3957 // are grouped together. Using dominance ensures a deterministic order. 3958 SmallVector<Instruction *, 16> OrderedScalars; 3959 for (const auto &TEPtr : VectorizableTree) { 3960 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3961 if (!Inst) 3962 continue; 3963 OrderedScalars.push_back(Inst); 3964 } 3965 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3966 return DT->dominates(B, A); 3967 }); 3968 3969 for (Instruction *Inst : OrderedScalars) { 3970 if (!PrevInst) { 3971 PrevInst = Inst; 3972 continue; 3973 } 3974 3975 // Update LiveValues. 3976 LiveValues.erase(PrevInst); 3977 for (auto &J : PrevInst->operands()) { 3978 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3979 LiveValues.insert(cast<Instruction>(&*J)); 3980 } 3981 3982 LLVM_DEBUG({ 3983 dbgs() << "SLP: #LV: " << LiveValues.size(); 3984 for (auto *X : LiveValues) 3985 dbgs() << " " << X->getName(); 3986 dbgs() << ", Looking at "; 3987 Inst->dump(); 3988 }); 3989 3990 // Now find the sequence of instructions between PrevInst and Inst. 3991 unsigned NumCalls = 0; 3992 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3993 PrevInstIt = 3994 PrevInst->getIterator().getReverse(); 3995 while (InstIt != PrevInstIt) { 3996 if (PrevInstIt == PrevInst->getParent()->rend()) { 3997 PrevInstIt = Inst->getParent()->rbegin(); 3998 continue; 3999 } 4000 4001 // Debug information does not impact spill cost. 4002 if ((isa<CallInst>(&*PrevInstIt) && 4003 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4004 &*PrevInstIt != PrevInst) 4005 NumCalls++; 4006 4007 ++PrevInstIt; 4008 } 4009 4010 if (NumCalls) { 4011 SmallVector<Type*, 4> V; 4012 for (auto *II : LiveValues) 4013 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4014 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4015 } 4016 4017 PrevInst = Inst; 4018 } 4019 4020 return Cost; 4021 } 4022 4023 InstructionCost BoUpSLP::getTreeCost() { 4024 InstructionCost Cost = 0; 4025 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4026 << VectorizableTree.size() << ".\n"); 4027 4028 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4029 4030 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4031 TreeEntry &TE = *VectorizableTree[I].get(); 4032 4033 // We create duplicate tree entries for gather sequences that have multiple 4034 // uses. However, we should not compute the cost of duplicate sequences. 4035 // For example, if we have a build vector (i.e., insertelement sequence) 4036 // that is used by more than one vector instruction, we only need to 4037 // compute the cost of the insertelement instructions once. The redundant 4038 // instructions will be eliminated by CSE. 4039 // 4040 // We should consider not creating duplicate tree entries for gather 4041 // sequences, and instead add additional edges to the tree representing 4042 // their uses. Since such an approach results in fewer total entries, 4043 // existing heuristics based on tree size may yield different results. 4044 // 4045 if (TE.State == TreeEntry::NeedToGather && 4046 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4047 VectorizableTree.end(), 4048 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4049 return EntryPtr->State == TreeEntry::NeedToGather && 4050 EntryPtr->isSame(TE.Scalars); 4051 })) 4052 continue; 4053 4054 InstructionCost C = getEntryCost(&TE); 4055 Cost += C; 4056 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4057 << " for bundle that starts with " << *TE.Scalars[0] 4058 << ".\n" 4059 << "SLP: Current total cost = " << Cost << "\n"); 4060 } 4061 4062 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4063 InstructionCost ExtractCost = 0; 4064 for (ExternalUser &EU : ExternalUses) { 4065 // We only add extract cost once for the same scalar. 4066 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4067 continue; 4068 4069 // Uses by ephemeral values are free (because the ephemeral value will be 4070 // removed prior to code generation, and so the extraction will be 4071 // removed as well). 4072 if (EphValues.count(EU.User)) 4073 continue; 4074 4075 // If we plan to rewrite the tree in a smaller type, we will need to sign 4076 // extend the extracted value back to the original type. Here, we account 4077 // for the extract and the added cost of the sign extend if needed. 4078 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4079 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4080 if (MinBWs.count(ScalarRoot)) { 4081 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4082 auto Extend = 4083 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4084 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4085 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4086 VecTy, EU.Lane); 4087 } else { 4088 ExtractCost += 4089 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4090 } 4091 } 4092 4093 InstructionCost SpillCost = getSpillCost(); 4094 Cost += SpillCost + ExtractCost; 4095 4096 #ifndef NDEBUG 4097 SmallString<256> Str; 4098 { 4099 raw_svector_ostream OS(Str); 4100 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4101 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4102 << "SLP: Total Cost = " << Cost << ".\n"; 4103 } 4104 LLVM_DEBUG(dbgs() << Str); 4105 if (ViewSLPTree) 4106 ViewGraph(this, "SLP" + F->getName(), false, Str); 4107 #endif 4108 4109 return Cost; 4110 } 4111 4112 InstructionCost 4113 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4114 const DenseSet<unsigned> &ShuffledIndices) const { 4115 unsigned NumElts = Ty->getNumElements(); 4116 APInt DemandedElts = APInt::getNullValue(NumElts); 4117 for (unsigned I = 0; I < NumElts; ++I) 4118 if (!ShuffledIndices.count(I)) 4119 DemandedElts.setBit(I); 4120 InstructionCost Cost = 4121 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4122 /*Extract*/ false); 4123 if (!ShuffledIndices.empty()) 4124 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4125 return Cost; 4126 } 4127 4128 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4129 // Find the type of the operands in VL. 4130 Type *ScalarTy = VL[0]->getType(); 4131 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4132 ScalarTy = SI->getValueOperand()->getType(); 4133 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4134 // Find the cost of inserting/extracting values from the vector. 4135 // Check if the same elements are inserted several times and count them as 4136 // shuffle candidates. 4137 DenseSet<unsigned> ShuffledElements; 4138 DenseSet<Value *> UniqueElements; 4139 // Iterate in reverse order to consider insert elements with the high cost. 4140 for (unsigned I = VL.size(); I > 0; --I) { 4141 unsigned Idx = I - 1; 4142 if (!UniqueElements.insert(VL[Idx]).second) 4143 ShuffledElements.insert(Idx); 4144 } 4145 return getGatherCost(VecTy, ShuffledElements); 4146 } 4147 4148 // Perform operand reordering on the instructions in VL and return the reordered 4149 // operands in Left and Right. 4150 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4151 SmallVectorImpl<Value *> &Left, 4152 SmallVectorImpl<Value *> &Right, 4153 const DataLayout &DL, 4154 ScalarEvolution &SE, 4155 const BoUpSLP &R) { 4156 if (VL.empty()) 4157 return; 4158 VLOperands Ops(VL, DL, SE, R); 4159 // Reorder the operands in place. 4160 Ops.reorder(); 4161 Left = Ops.getVL(0); 4162 Right = Ops.getVL(1); 4163 } 4164 4165 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4166 // Get the basic block this bundle is in. All instructions in the bundle 4167 // should be in this block. 4168 auto *Front = E->getMainOp(); 4169 auto *BB = Front->getParent(); 4170 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4171 [=](Value *V) -> bool { 4172 auto *I = cast<Instruction>(V); 4173 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4174 })); 4175 4176 // The last instruction in the bundle in program order. 4177 Instruction *LastInst = nullptr; 4178 4179 // Find the last instruction. The common case should be that BB has been 4180 // scheduled, and the last instruction is VL.back(). So we start with 4181 // VL.back() and iterate over schedule data until we reach the end of the 4182 // bundle. The end of the bundle is marked by null ScheduleData. 4183 if (BlocksSchedules.count(BB)) { 4184 auto *Bundle = 4185 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4186 if (Bundle && Bundle->isPartOfBundle()) 4187 for (; Bundle; Bundle = Bundle->NextInBundle) 4188 if (Bundle->OpValue == Bundle->Inst) 4189 LastInst = Bundle->Inst; 4190 } 4191 4192 // LastInst can still be null at this point if there's either not an entry 4193 // for BB in BlocksSchedules or there's no ScheduleData available for 4194 // VL.back(). This can be the case if buildTree_rec aborts for various 4195 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4196 // size is reached, etc.). ScheduleData is initialized in the scheduling 4197 // "dry-run". 4198 // 4199 // If this happens, we can still find the last instruction by brute force. We 4200 // iterate forwards from Front (inclusive) until we either see all 4201 // instructions in the bundle or reach the end of the block. If Front is the 4202 // last instruction in program order, LastInst will be set to Front, and we 4203 // will visit all the remaining instructions in the block. 4204 // 4205 // One of the reasons we exit early from buildTree_rec is to place an upper 4206 // bound on compile-time. Thus, taking an additional compile-time hit here is 4207 // not ideal. However, this should be exceedingly rare since it requires that 4208 // we both exit early from buildTree_rec and that the bundle be out-of-order 4209 // (causing us to iterate all the way to the end of the block). 4210 if (!LastInst) { 4211 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4212 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4213 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4214 LastInst = &I; 4215 if (Bundle.empty()) 4216 break; 4217 } 4218 } 4219 assert(LastInst && "Failed to find last instruction in bundle"); 4220 4221 // Set the insertion point after the last instruction in the bundle. Set the 4222 // debug location to Front. 4223 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4224 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4225 } 4226 4227 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4228 Value *Val0 = 4229 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4230 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4231 Value *Vec = UndefValue::get(VecTy); 4232 unsigned InsIndex = 0; 4233 for (Value *Val : VL) { 4234 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4235 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4236 if (!InsElt) 4237 continue; 4238 GatherSeq.insert(InsElt); 4239 CSEBlocks.insert(InsElt->getParent()); 4240 // Add to our 'need-to-extract' list. 4241 if (TreeEntry *Entry = getTreeEntry(Val)) { 4242 // Find which lane we need to extract. 4243 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4244 find(Entry->Scalars, Val)); 4245 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4246 if (!Entry->ReuseShuffleIndices.empty()) { 4247 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4248 find(Entry->ReuseShuffleIndices, FoundLane)); 4249 } 4250 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4251 } 4252 } 4253 4254 return Vec; 4255 } 4256 4257 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4258 InstructionsState S = getSameOpcode(VL); 4259 if (S.getOpcode()) { 4260 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4261 if (E->isSame(VL)) { 4262 Value *V = vectorizeTree(E); 4263 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4264 // We need to get the vectorized value but without shuffle. 4265 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4266 V = SV->getOperand(0); 4267 } else { 4268 // Reshuffle to get only unique values. 4269 SmallVector<int, 4> UniqueIdxs; 4270 SmallSet<int, 4> UsedIdxs; 4271 for (int Idx : E->ReuseShuffleIndices) 4272 if (UsedIdxs.insert(Idx).second) 4273 UniqueIdxs.emplace_back(Idx); 4274 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4275 } 4276 } 4277 return V; 4278 } 4279 } 4280 } 4281 4282 // Check that every instruction appears once in this bundle. 4283 SmallVector<int, 4> ReuseShuffleIndicies; 4284 SmallVector<Value *, 4> UniqueValues; 4285 if (VL.size() > 2) { 4286 DenseMap<Value *, unsigned> UniquePositions; 4287 for (Value *V : VL) { 4288 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4289 ReuseShuffleIndicies.emplace_back(Res.first->second); 4290 if (Res.second || isa<Constant>(V)) 4291 UniqueValues.emplace_back(V); 4292 } 4293 // Do not shuffle single element or if number of unique values is not power 4294 // of 2. 4295 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4296 !llvm::isPowerOf2_32(UniqueValues.size())) 4297 ReuseShuffleIndicies.clear(); 4298 else 4299 VL = UniqueValues; 4300 } 4301 4302 Value *Vec = gather(VL); 4303 if (!ReuseShuffleIndicies.empty()) { 4304 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4305 if (auto *I = dyn_cast<Instruction>(Vec)) { 4306 GatherSeq.insert(I); 4307 CSEBlocks.insert(I->getParent()); 4308 } 4309 } 4310 return Vec; 4311 } 4312 4313 namespace { 4314 /// Merges shuffle masks and emits final shuffle instruction, if required. 4315 class ShuffleInstructionBuilder { 4316 IRBuilderBase &Builder; 4317 bool IsFinalized = false; 4318 SmallVector<int, 4> Mask; 4319 4320 public: 4321 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4322 4323 /// Adds a mask, inverting it before applying. 4324 void addInversedMask(ArrayRef<unsigned> SubMask) { 4325 if (SubMask.empty()) 4326 return; 4327 SmallVector<int, 4> NewMask; 4328 inversePermutation(SubMask, NewMask); 4329 addMask(NewMask); 4330 } 4331 4332 /// Functions adds masks, merging them into single one. 4333 void addMask(ArrayRef<unsigned> SubMask) { 4334 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4335 addMask(NewMask); 4336 } 4337 4338 void addMask(ArrayRef<int> SubMask) { 4339 if (SubMask.empty()) 4340 return; 4341 if (Mask.empty()) { 4342 Mask.append(SubMask.begin(), SubMask.end()); 4343 return; 4344 } 4345 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4346 int TermValue = std::min(Mask.size(), SubMask.size()); 4347 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4348 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4349 NewMask[I] = E; 4350 continue; 4351 } 4352 NewMask[I] = Mask[SubMask[I]]; 4353 } 4354 Mask.swap(NewMask); 4355 } 4356 4357 Value *finalize(Value *V) { 4358 IsFinalized = true; 4359 if (Mask.empty()) 4360 return V; 4361 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4362 } 4363 4364 ~ShuffleInstructionBuilder() { 4365 assert((IsFinalized || Mask.empty()) && 4366 "Must be finalized construction of the shuffles."); 4367 } 4368 }; 4369 } // namespace 4370 4371 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4372 IRBuilder<>::InsertPointGuard Guard(Builder); 4373 4374 if (E->VectorizedValue) { 4375 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4376 return E->VectorizedValue; 4377 } 4378 4379 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4380 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4381 if (E->State == TreeEntry::NeedToGather) { 4382 setInsertPointAfterBundle(E); 4383 Value *Vec = gather(E->Scalars); 4384 if (NeedToShuffleReuses) { 4385 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4386 Vec = ShuffleBuilder.finalize(Vec); 4387 if (auto *I = dyn_cast<Instruction>(Vec)) { 4388 GatherSeq.insert(I); 4389 CSEBlocks.insert(I->getParent()); 4390 } 4391 } 4392 E->VectorizedValue = Vec; 4393 return Vec; 4394 } 4395 4396 assert((E->State == TreeEntry::Vectorize || 4397 E->State == TreeEntry::ScatterVectorize) && 4398 "Unhandled state"); 4399 unsigned ShuffleOrOp = 4400 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4401 Instruction *VL0 = E->getMainOp(); 4402 Type *ScalarTy = VL0->getType(); 4403 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4404 ScalarTy = Store->getValueOperand()->getType(); 4405 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4406 switch (ShuffleOrOp) { 4407 case Instruction::PHI: { 4408 auto *PH = cast<PHINode>(VL0); 4409 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4410 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4411 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4412 Value *V = NewPhi; 4413 if (NeedToShuffleReuses) 4414 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4415 4416 E->VectorizedValue = V; 4417 4418 // PHINodes may have multiple entries from the same block. We want to 4419 // visit every block once. 4420 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4421 4422 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4423 ValueList Operands; 4424 BasicBlock *IBB = PH->getIncomingBlock(i); 4425 4426 if (!VisitedBBs.insert(IBB).second) { 4427 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4428 continue; 4429 } 4430 4431 Builder.SetInsertPoint(IBB->getTerminator()); 4432 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4433 Value *Vec = vectorizeTree(E->getOperand(i)); 4434 NewPhi->addIncoming(Vec, IBB); 4435 } 4436 4437 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4438 "Invalid number of incoming values"); 4439 return V; 4440 } 4441 4442 case Instruction::ExtractElement: { 4443 Value *V = E->getSingleOperand(0); 4444 Builder.SetInsertPoint(VL0); 4445 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4446 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4447 V = ShuffleBuilder.finalize(V); 4448 E->VectorizedValue = V; 4449 return V; 4450 } 4451 case Instruction::ExtractValue: { 4452 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4453 Builder.SetInsertPoint(LI); 4454 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4455 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4456 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4457 Value *NewV = propagateMetadata(V, E->Scalars); 4458 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4459 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4460 NewV = ShuffleBuilder.finalize(NewV); 4461 E->VectorizedValue = NewV; 4462 return NewV; 4463 } 4464 case Instruction::ZExt: 4465 case Instruction::SExt: 4466 case Instruction::FPToUI: 4467 case Instruction::FPToSI: 4468 case Instruction::FPExt: 4469 case Instruction::PtrToInt: 4470 case Instruction::IntToPtr: 4471 case Instruction::SIToFP: 4472 case Instruction::UIToFP: 4473 case Instruction::Trunc: 4474 case Instruction::FPTrunc: 4475 case Instruction::BitCast: { 4476 setInsertPointAfterBundle(E); 4477 4478 Value *InVec = vectorizeTree(E->getOperand(0)); 4479 4480 if (E->VectorizedValue) { 4481 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4482 return E->VectorizedValue; 4483 } 4484 4485 auto *CI = cast<CastInst>(VL0); 4486 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4487 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4488 V = ShuffleBuilder.finalize(V); 4489 4490 E->VectorizedValue = V; 4491 ++NumVectorInstructions; 4492 return V; 4493 } 4494 case Instruction::FCmp: 4495 case Instruction::ICmp: { 4496 setInsertPointAfterBundle(E); 4497 4498 Value *L = vectorizeTree(E->getOperand(0)); 4499 Value *R = vectorizeTree(E->getOperand(1)); 4500 4501 if (E->VectorizedValue) { 4502 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4503 return E->VectorizedValue; 4504 } 4505 4506 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4507 Value *V = Builder.CreateCmp(P0, L, R); 4508 propagateIRFlags(V, E->Scalars, VL0); 4509 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4510 V = ShuffleBuilder.finalize(V); 4511 4512 E->VectorizedValue = V; 4513 ++NumVectorInstructions; 4514 return V; 4515 } 4516 case Instruction::Select: { 4517 setInsertPointAfterBundle(E); 4518 4519 Value *Cond = vectorizeTree(E->getOperand(0)); 4520 Value *True = vectorizeTree(E->getOperand(1)); 4521 Value *False = vectorizeTree(E->getOperand(2)); 4522 4523 if (E->VectorizedValue) { 4524 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4525 return E->VectorizedValue; 4526 } 4527 4528 Value *V = Builder.CreateSelect(Cond, True, False); 4529 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4530 V = ShuffleBuilder.finalize(V); 4531 4532 E->VectorizedValue = V; 4533 ++NumVectorInstructions; 4534 return V; 4535 } 4536 case Instruction::FNeg: { 4537 setInsertPointAfterBundle(E); 4538 4539 Value *Op = vectorizeTree(E->getOperand(0)); 4540 4541 if (E->VectorizedValue) { 4542 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4543 return E->VectorizedValue; 4544 } 4545 4546 Value *V = Builder.CreateUnOp( 4547 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4548 propagateIRFlags(V, E->Scalars, VL0); 4549 if (auto *I = dyn_cast<Instruction>(V)) 4550 V = propagateMetadata(I, E->Scalars); 4551 4552 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4553 V = ShuffleBuilder.finalize(V); 4554 4555 E->VectorizedValue = V; 4556 ++NumVectorInstructions; 4557 4558 return V; 4559 } 4560 case Instruction::Add: 4561 case Instruction::FAdd: 4562 case Instruction::Sub: 4563 case Instruction::FSub: 4564 case Instruction::Mul: 4565 case Instruction::FMul: 4566 case Instruction::UDiv: 4567 case Instruction::SDiv: 4568 case Instruction::FDiv: 4569 case Instruction::URem: 4570 case Instruction::SRem: 4571 case Instruction::FRem: 4572 case Instruction::Shl: 4573 case Instruction::LShr: 4574 case Instruction::AShr: 4575 case Instruction::And: 4576 case Instruction::Or: 4577 case Instruction::Xor: { 4578 setInsertPointAfterBundle(E); 4579 4580 Value *LHS = vectorizeTree(E->getOperand(0)); 4581 Value *RHS = vectorizeTree(E->getOperand(1)); 4582 4583 if (E->VectorizedValue) { 4584 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4585 return E->VectorizedValue; 4586 } 4587 4588 Value *V = Builder.CreateBinOp( 4589 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4590 RHS); 4591 propagateIRFlags(V, E->Scalars, VL0); 4592 if (auto *I = dyn_cast<Instruction>(V)) 4593 V = propagateMetadata(I, E->Scalars); 4594 4595 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4596 V = ShuffleBuilder.finalize(V); 4597 4598 E->VectorizedValue = V; 4599 ++NumVectorInstructions; 4600 4601 return V; 4602 } 4603 case Instruction::Load: { 4604 // Loads are inserted at the head of the tree because we don't want to 4605 // sink them all the way down past store instructions. 4606 bool IsReorder = E->updateStateIfReorder(); 4607 if (IsReorder) 4608 VL0 = E->getMainOp(); 4609 setInsertPointAfterBundle(E); 4610 4611 LoadInst *LI = cast<LoadInst>(VL0); 4612 Instruction *NewLI; 4613 unsigned AS = LI->getPointerAddressSpace(); 4614 Value *PO = LI->getPointerOperand(); 4615 if (E->State == TreeEntry::Vectorize) { 4616 4617 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4618 4619 // The pointer operand uses an in-tree scalar so we add the new BitCast 4620 // to ExternalUses list to make sure that an extract will be generated 4621 // in the future. 4622 if (getTreeEntry(PO)) 4623 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4624 4625 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4626 } else { 4627 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4628 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4629 // Use the minimum alignment of the gathered loads. 4630 Align CommonAlignment = LI->getAlign(); 4631 for (Value *V : E->Scalars) 4632 CommonAlignment = 4633 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4634 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4635 } 4636 Value *V = propagateMetadata(NewLI, E->Scalars); 4637 4638 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4639 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4640 V = ShuffleBuilder.finalize(V); 4641 E->VectorizedValue = V; 4642 ++NumVectorInstructions; 4643 return V; 4644 } 4645 case Instruction::Store: { 4646 bool IsReorder = !E->ReorderIndices.empty(); 4647 auto *SI = cast<StoreInst>( 4648 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4649 unsigned AS = SI->getPointerAddressSpace(); 4650 4651 setInsertPointAfterBundle(E); 4652 4653 Value *VecValue = vectorizeTree(E->getOperand(0)); 4654 ShuffleBuilder.addMask(E->ReorderIndices); 4655 VecValue = ShuffleBuilder.finalize(VecValue); 4656 4657 Value *ScalarPtr = SI->getPointerOperand(); 4658 Value *VecPtr = Builder.CreateBitCast( 4659 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4660 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4661 SI->getAlign()); 4662 4663 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4664 // ExternalUses to make sure that an extract will be generated in the 4665 // future. 4666 if (getTreeEntry(ScalarPtr)) 4667 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4668 4669 Value *V = propagateMetadata(ST, E->Scalars); 4670 4671 E->VectorizedValue = V; 4672 ++NumVectorInstructions; 4673 return V; 4674 } 4675 case Instruction::GetElementPtr: { 4676 setInsertPointAfterBundle(E); 4677 4678 Value *Op0 = vectorizeTree(E->getOperand(0)); 4679 4680 std::vector<Value *> OpVecs; 4681 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4682 ++j) { 4683 ValueList &VL = E->getOperand(j); 4684 // Need to cast all elements to the same type before vectorization to 4685 // avoid crash. 4686 Type *VL0Ty = VL0->getOperand(j)->getType(); 4687 Type *Ty = llvm::all_of( 4688 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4689 ? VL0Ty 4690 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4691 ->getPointerOperandType() 4692 ->getScalarType()); 4693 for (Value *&V : VL) { 4694 auto *CI = cast<ConstantInt>(V); 4695 V = ConstantExpr::getIntegerCast(CI, Ty, 4696 CI->getValue().isSignBitSet()); 4697 } 4698 Value *OpVec = vectorizeTree(VL); 4699 OpVecs.push_back(OpVec); 4700 } 4701 4702 Value *V = Builder.CreateGEP( 4703 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4704 if (Instruction *I = dyn_cast<Instruction>(V)) 4705 V = propagateMetadata(I, E->Scalars); 4706 4707 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4708 V = ShuffleBuilder.finalize(V); 4709 4710 E->VectorizedValue = V; 4711 ++NumVectorInstructions; 4712 4713 return V; 4714 } 4715 case Instruction::Call: { 4716 CallInst *CI = cast<CallInst>(VL0); 4717 setInsertPointAfterBundle(E); 4718 4719 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4720 if (Function *FI = CI->getCalledFunction()) 4721 IID = FI->getIntrinsicID(); 4722 4723 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4724 4725 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4726 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4727 VecCallCosts.first <= VecCallCosts.second; 4728 4729 Value *ScalarArg = nullptr; 4730 std::vector<Value *> OpVecs; 4731 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4732 ValueList OpVL; 4733 // Some intrinsics have scalar arguments. This argument should not be 4734 // vectorized. 4735 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4736 CallInst *CEI = cast<CallInst>(VL0); 4737 ScalarArg = CEI->getArgOperand(j); 4738 OpVecs.push_back(CEI->getArgOperand(j)); 4739 continue; 4740 } 4741 4742 Value *OpVec = vectorizeTree(E->getOperand(j)); 4743 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4744 OpVecs.push_back(OpVec); 4745 } 4746 4747 Function *CF; 4748 if (!UseIntrinsic) { 4749 VFShape Shape = 4750 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4751 VecTy->getNumElements())), 4752 false /*HasGlobalPred*/); 4753 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4754 } else { 4755 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4756 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4757 } 4758 4759 SmallVector<OperandBundleDef, 1> OpBundles; 4760 CI->getOperandBundlesAsDefs(OpBundles); 4761 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4762 4763 // The scalar argument uses an in-tree scalar so we add the new vectorized 4764 // call to ExternalUses list to make sure that an extract will be 4765 // generated in the future. 4766 if (ScalarArg && getTreeEntry(ScalarArg)) 4767 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4768 4769 propagateIRFlags(V, E->Scalars, VL0); 4770 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4771 V = ShuffleBuilder.finalize(V); 4772 4773 E->VectorizedValue = V; 4774 ++NumVectorInstructions; 4775 return V; 4776 } 4777 case Instruction::ShuffleVector: { 4778 assert(E->isAltShuffle() && 4779 ((Instruction::isBinaryOp(E->getOpcode()) && 4780 Instruction::isBinaryOp(E->getAltOpcode())) || 4781 (Instruction::isCast(E->getOpcode()) && 4782 Instruction::isCast(E->getAltOpcode()))) && 4783 "Invalid Shuffle Vector Operand"); 4784 4785 Value *LHS = nullptr, *RHS = nullptr; 4786 if (Instruction::isBinaryOp(E->getOpcode())) { 4787 setInsertPointAfterBundle(E); 4788 LHS = vectorizeTree(E->getOperand(0)); 4789 RHS = vectorizeTree(E->getOperand(1)); 4790 } else { 4791 setInsertPointAfterBundle(E); 4792 LHS = vectorizeTree(E->getOperand(0)); 4793 } 4794 4795 if (E->VectorizedValue) { 4796 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4797 return E->VectorizedValue; 4798 } 4799 4800 Value *V0, *V1; 4801 if (Instruction::isBinaryOp(E->getOpcode())) { 4802 V0 = Builder.CreateBinOp( 4803 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4804 V1 = Builder.CreateBinOp( 4805 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4806 } else { 4807 V0 = Builder.CreateCast( 4808 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4809 V1 = Builder.CreateCast( 4810 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4811 } 4812 4813 // Create shuffle to take alternate operations from the vector. 4814 // Also, gather up main and alt scalar ops to propagate IR flags to 4815 // each vector operation. 4816 ValueList OpScalars, AltScalars; 4817 unsigned e = E->Scalars.size(); 4818 SmallVector<int, 8> Mask(e); 4819 for (unsigned i = 0; i < e; ++i) { 4820 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4821 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4822 if (OpInst->getOpcode() == E->getAltOpcode()) { 4823 Mask[i] = e + i; 4824 AltScalars.push_back(E->Scalars[i]); 4825 } else { 4826 Mask[i] = i; 4827 OpScalars.push_back(E->Scalars[i]); 4828 } 4829 } 4830 4831 propagateIRFlags(V0, OpScalars); 4832 propagateIRFlags(V1, AltScalars); 4833 4834 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4835 if (Instruction *I = dyn_cast<Instruction>(V)) 4836 V = propagateMetadata(I, E->Scalars); 4837 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4838 V = ShuffleBuilder.finalize(V); 4839 4840 E->VectorizedValue = V; 4841 ++NumVectorInstructions; 4842 4843 return V; 4844 } 4845 default: 4846 llvm_unreachable("unknown inst"); 4847 } 4848 return nullptr; 4849 } 4850 4851 Value *BoUpSLP::vectorizeTree() { 4852 ExtraValueToDebugLocsMap ExternallyUsedValues; 4853 return vectorizeTree(ExternallyUsedValues); 4854 } 4855 4856 Value * 4857 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4858 // All blocks must be scheduled before any instructions are inserted. 4859 for (auto &BSIter : BlocksSchedules) { 4860 scheduleBlock(BSIter.second.get()); 4861 } 4862 4863 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4864 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4865 4866 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4867 // vectorized root. InstCombine will then rewrite the entire expression. We 4868 // sign extend the extracted values below. 4869 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4870 if (MinBWs.count(ScalarRoot)) { 4871 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4872 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4873 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4874 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4875 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4876 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4877 VectorizableTree[0]->VectorizedValue = Trunc; 4878 } 4879 4880 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4881 << " values .\n"); 4882 4883 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4884 // specified by ScalarType. 4885 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4886 if (!MinBWs.count(ScalarRoot)) 4887 return Ex; 4888 if (MinBWs[ScalarRoot].second) 4889 return Builder.CreateSExt(Ex, ScalarType); 4890 return Builder.CreateZExt(Ex, ScalarType); 4891 }; 4892 4893 // Extract all of the elements with the external uses. 4894 for (const auto &ExternalUse : ExternalUses) { 4895 Value *Scalar = ExternalUse.Scalar; 4896 llvm::User *User = ExternalUse.User; 4897 4898 // Skip users that we already RAUW. This happens when one instruction 4899 // has multiple uses of the same value. 4900 if (User && !is_contained(Scalar->users(), User)) 4901 continue; 4902 TreeEntry *E = getTreeEntry(Scalar); 4903 assert(E && "Invalid scalar"); 4904 assert(E->State != TreeEntry::NeedToGather && 4905 "Extracting from a gather list"); 4906 4907 Value *Vec = E->VectorizedValue; 4908 assert(Vec && "Can't find vectorizable value"); 4909 4910 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4911 // If User == nullptr, the Scalar is used as extra arg. Generate 4912 // ExtractElement instruction and update the record for this scalar in 4913 // ExternallyUsedValues. 4914 if (!User) { 4915 assert(ExternallyUsedValues.count(Scalar) && 4916 "Scalar with nullptr as an external user must be registered in " 4917 "ExternallyUsedValues map"); 4918 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4919 Builder.SetInsertPoint(VecI->getParent(), 4920 std::next(VecI->getIterator())); 4921 } else { 4922 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4923 } 4924 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4925 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4926 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4927 auto &Locs = ExternallyUsedValues[Scalar]; 4928 ExternallyUsedValues.insert({Ex, Locs}); 4929 ExternallyUsedValues.erase(Scalar); 4930 // Required to update internally referenced instructions. 4931 Scalar->replaceAllUsesWith(Ex); 4932 continue; 4933 } 4934 4935 // Generate extracts for out-of-tree users. 4936 // Find the insertion point for the extractelement lane. 4937 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4938 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4939 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4940 if (PH->getIncomingValue(i) == Scalar) { 4941 Instruction *IncomingTerminator = 4942 PH->getIncomingBlock(i)->getTerminator(); 4943 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4944 Builder.SetInsertPoint(VecI->getParent(), 4945 std::next(VecI->getIterator())); 4946 } else { 4947 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4948 } 4949 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4950 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4951 CSEBlocks.insert(PH->getIncomingBlock(i)); 4952 PH->setOperand(i, Ex); 4953 } 4954 } 4955 } else { 4956 Builder.SetInsertPoint(cast<Instruction>(User)); 4957 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4958 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4959 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4960 User->replaceUsesOfWith(Scalar, Ex); 4961 } 4962 } else { 4963 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4964 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4965 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4966 CSEBlocks.insert(&F->getEntryBlock()); 4967 User->replaceUsesOfWith(Scalar, Ex); 4968 } 4969 4970 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4971 } 4972 4973 // For each vectorized value: 4974 for (auto &TEPtr : VectorizableTree) { 4975 TreeEntry *Entry = TEPtr.get(); 4976 4977 // No need to handle users of gathered values. 4978 if (Entry->State == TreeEntry::NeedToGather) 4979 continue; 4980 4981 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4982 4983 // For each lane: 4984 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4985 Value *Scalar = Entry->Scalars[Lane]; 4986 4987 #ifndef NDEBUG 4988 Type *Ty = Scalar->getType(); 4989 if (!Ty->isVoidTy()) { 4990 for (User *U : Scalar->users()) { 4991 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4992 4993 // It is legal to delete users in the ignorelist. 4994 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4995 "Deleting out-of-tree value"); 4996 } 4997 } 4998 #endif 4999 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5000 eraseInstruction(cast<Instruction>(Scalar)); 5001 } 5002 } 5003 5004 Builder.ClearInsertionPoint(); 5005 InstrElementSize.clear(); 5006 5007 return VectorizableTree[0]->VectorizedValue; 5008 } 5009 5010 void BoUpSLP::optimizeGatherSequence() { 5011 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5012 << " gather sequences instructions.\n"); 5013 // LICM InsertElementInst sequences. 5014 for (Instruction *I : GatherSeq) { 5015 if (isDeleted(I)) 5016 continue; 5017 5018 // Check if this block is inside a loop. 5019 Loop *L = LI->getLoopFor(I->getParent()); 5020 if (!L) 5021 continue; 5022 5023 // Check if it has a preheader. 5024 BasicBlock *PreHeader = L->getLoopPreheader(); 5025 if (!PreHeader) 5026 continue; 5027 5028 // If the vector or the element that we insert into it are 5029 // instructions that are defined in this basic block then we can't 5030 // hoist this instruction. 5031 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5032 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5033 if (Op0 && L->contains(Op0)) 5034 continue; 5035 if (Op1 && L->contains(Op1)) 5036 continue; 5037 5038 // We can hoist this instruction. Move it to the pre-header. 5039 I->moveBefore(PreHeader->getTerminator()); 5040 } 5041 5042 // Make a list of all reachable blocks in our CSE queue. 5043 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5044 CSEWorkList.reserve(CSEBlocks.size()); 5045 for (BasicBlock *BB : CSEBlocks) 5046 if (DomTreeNode *N = DT->getNode(BB)) { 5047 assert(DT->isReachableFromEntry(N)); 5048 CSEWorkList.push_back(N); 5049 } 5050 5051 // Sort blocks by domination. This ensures we visit a block after all blocks 5052 // dominating it are visited. 5053 llvm::stable_sort(CSEWorkList, 5054 [this](const DomTreeNode *A, const DomTreeNode *B) { 5055 return DT->properlyDominates(A, B); 5056 }); 5057 5058 // Perform O(N^2) search over the gather sequences and merge identical 5059 // instructions. TODO: We can further optimize this scan if we split the 5060 // instructions into different buckets based on the insert lane. 5061 SmallVector<Instruction *, 16> Visited; 5062 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5063 assert(*I && 5064 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5065 "Worklist not sorted properly!"); 5066 BasicBlock *BB = (*I)->getBlock(); 5067 // For all instructions in blocks containing gather sequences: 5068 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5069 Instruction *In = &*it++; 5070 if (isDeleted(In)) 5071 continue; 5072 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5073 continue; 5074 5075 // Check if we can replace this instruction with any of the 5076 // visited instructions. 5077 for (Instruction *v : Visited) { 5078 if (In->isIdenticalTo(v) && 5079 DT->dominates(v->getParent(), In->getParent())) { 5080 In->replaceAllUsesWith(v); 5081 eraseInstruction(In); 5082 In = nullptr; 5083 break; 5084 } 5085 } 5086 if (In) { 5087 assert(!is_contained(Visited, In)); 5088 Visited.push_back(In); 5089 } 5090 } 5091 } 5092 CSEBlocks.clear(); 5093 GatherSeq.clear(); 5094 } 5095 5096 // Groups the instructions to a bundle (which is then a single scheduling entity) 5097 // and schedules instructions until the bundle gets ready. 5098 Optional<BoUpSLP::ScheduleData *> 5099 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5100 const InstructionsState &S) { 5101 if (isa<PHINode>(S.OpValue)) 5102 return nullptr; 5103 5104 // Initialize the instruction bundle. 5105 Instruction *OldScheduleEnd = ScheduleEnd; 5106 ScheduleData *PrevInBundle = nullptr; 5107 ScheduleData *Bundle = nullptr; 5108 bool ReSchedule = false; 5109 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5110 5111 // Make sure that the scheduling region contains all 5112 // instructions of the bundle. 5113 for (Value *V : VL) { 5114 if (!extendSchedulingRegion(V, S)) 5115 return None; 5116 } 5117 5118 for (Value *V : VL) { 5119 ScheduleData *BundleMember = getScheduleData(V); 5120 assert(BundleMember && 5121 "no ScheduleData for bundle member (maybe not in same basic block)"); 5122 if (BundleMember->IsScheduled) { 5123 // A bundle member was scheduled as single instruction before and now 5124 // needs to be scheduled as part of the bundle. We just get rid of the 5125 // existing schedule. 5126 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5127 << " was already scheduled\n"); 5128 ReSchedule = true; 5129 } 5130 assert(BundleMember->isSchedulingEntity() && 5131 "bundle member already part of other bundle"); 5132 if (PrevInBundle) { 5133 PrevInBundle->NextInBundle = BundleMember; 5134 } else { 5135 Bundle = BundleMember; 5136 } 5137 BundleMember->UnscheduledDepsInBundle = 0; 5138 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5139 5140 // Group the instructions to a bundle. 5141 BundleMember->FirstInBundle = Bundle; 5142 PrevInBundle = BundleMember; 5143 } 5144 if (ScheduleEnd != OldScheduleEnd) { 5145 // The scheduling region got new instructions at the lower end (or it is a 5146 // new region for the first bundle). This makes it necessary to 5147 // recalculate all dependencies. 5148 // It is seldom that this needs to be done a second time after adding the 5149 // initial bundle to the region. 5150 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5151 doForAllOpcodes(I, [](ScheduleData *SD) { 5152 SD->clearDependencies(); 5153 }); 5154 } 5155 ReSchedule = true; 5156 } 5157 if (ReSchedule) { 5158 resetSchedule(); 5159 initialFillReadyList(ReadyInsts); 5160 } 5161 assert(Bundle && "Failed to find schedule bundle"); 5162 5163 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5164 << BB->getName() << "\n"); 5165 5166 calculateDependencies(Bundle, true, SLP); 5167 5168 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5169 // means that there are no cyclic dependencies and we can schedule it. 5170 // Note that's important that we don't "schedule" the bundle yet (see 5171 // cancelScheduling). 5172 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5173 5174 ScheduleData *pickedSD = ReadyInsts.back(); 5175 ReadyInsts.pop_back(); 5176 5177 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5178 schedule(pickedSD, ReadyInsts); 5179 } 5180 } 5181 if (!Bundle->isReady()) { 5182 cancelScheduling(VL, S.OpValue); 5183 return None; 5184 } 5185 return Bundle; 5186 } 5187 5188 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5189 Value *OpValue) { 5190 if (isa<PHINode>(OpValue)) 5191 return; 5192 5193 ScheduleData *Bundle = getScheduleData(OpValue); 5194 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5195 assert(!Bundle->IsScheduled && 5196 "Can't cancel bundle which is already scheduled"); 5197 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5198 "tried to unbundle something which is not a bundle"); 5199 5200 // Un-bundle: make single instructions out of the bundle. 5201 ScheduleData *BundleMember = Bundle; 5202 while (BundleMember) { 5203 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5204 BundleMember->FirstInBundle = BundleMember; 5205 ScheduleData *Next = BundleMember->NextInBundle; 5206 BundleMember->NextInBundle = nullptr; 5207 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5208 if (BundleMember->UnscheduledDepsInBundle == 0) { 5209 ReadyInsts.insert(BundleMember); 5210 } 5211 BundleMember = Next; 5212 } 5213 } 5214 5215 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5216 // Allocate a new ScheduleData for the instruction. 5217 if (ChunkPos >= ChunkSize) { 5218 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5219 ChunkPos = 0; 5220 } 5221 return &(ScheduleDataChunks.back()[ChunkPos++]); 5222 } 5223 5224 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5225 const InstructionsState &S) { 5226 if (getScheduleData(V, isOneOf(S, V))) 5227 return true; 5228 Instruction *I = dyn_cast<Instruction>(V); 5229 assert(I && "bundle member must be an instruction"); 5230 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5231 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5232 ScheduleData *ISD = getScheduleData(I); 5233 if (!ISD) 5234 return false; 5235 assert(isInSchedulingRegion(ISD) && 5236 "ScheduleData not in scheduling region"); 5237 ScheduleData *SD = allocateScheduleDataChunks(); 5238 SD->Inst = I; 5239 SD->init(SchedulingRegionID, S.OpValue); 5240 ExtraScheduleDataMap[I][S.OpValue] = SD; 5241 return true; 5242 }; 5243 if (CheckSheduleForI(I)) 5244 return true; 5245 if (!ScheduleStart) { 5246 // It's the first instruction in the new region. 5247 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5248 ScheduleStart = I; 5249 ScheduleEnd = I->getNextNode(); 5250 if (isOneOf(S, I) != I) 5251 CheckSheduleForI(I); 5252 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5253 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5254 return true; 5255 } 5256 // Search up and down at the same time, because we don't know if the new 5257 // instruction is above or below the existing scheduling region. 5258 BasicBlock::reverse_iterator UpIter = 5259 ++ScheduleStart->getIterator().getReverse(); 5260 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5261 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5262 BasicBlock::iterator LowerEnd = BB->end(); 5263 while (true) { 5264 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5265 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5266 return false; 5267 } 5268 5269 if (UpIter != UpperEnd) { 5270 if (&*UpIter == I) { 5271 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5272 ScheduleStart = I; 5273 if (isOneOf(S, I) != I) 5274 CheckSheduleForI(I); 5275 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5276 << "\n"); 5277 return true; 5278 } 5279 ++UpIter; 5280 } 5281 if (DownIter != LowerEnd) { 5282 if (&*DownIter == I) { 5283 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5284 nullptr); 5285 ScheduleEnd = I->getNextNode(); 5286 if (isOneOf(S, I) != I) 5287 CheckSheduleForI(I); 5288 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5289 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5290 << "\n"); 5291 return true; 5292 } 5293 ++DownIter; 5294 } 5295 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5296 "instruction not found in block"); 5297 } 5298 return true; 5299 } 5300 5301 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5302 Instruction *ToI, 5303 ScheduleData *PrevLoadStore, 5304 ScheduleData *NextLoadStore) { 5305 ScheduleData *CurrentLoadStore = PrevLoadStore; 5306 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5307 ScheduleData *SD = ScheduleDataMap[I]; 5308 if (!SD) { 5309 SD = allocateScheduleDataChunks(); 5310 ScheduleDataMap[I] = SD; 5311 SD->Inst = I; 5312 } 5313 assert(!isInSchedulingRegion(SD) && 5314 "new ScheduleData already in scheduling region"); 5315 SD->init(SchedulingRegionID, I); 5316 5317 if (I->mayReadOrWriteMemory() && 5318 (!isa<IntrinsicInst>(I) || 5319 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5320 cast<IntrinsicInst>(I)->getIntrinsicID() != 5321 Intrinsic::pseudoprobe))) { 5322 // Update the linked list of memory accessing instructions. 5323 if (CurrentLoadStore) { 5324 CurrentLoadStore->NextLoadStore = SD; 5325 } else { 5326 FirstLoadStoreInRegion = SD; 5327 } 5328 CurrentLoadStore = SD; 5329 } 5330 } 5331 if (NextLoadStore) { 5332 if (CurrentLoadStore) 5333 CurrentLoadStore->NextLoadStore = NextLoadStore; 5334 } else { 5335 LastLoadStoreInRegion = CurrentLoadStore; 5336 } 5337 } 5338 5339 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5340 bool InsertInReadyList, 5341 BoUpSLP *SLP) { 5342 assert(SD->isSchedulingEntity()); 5343 5344 SmallVector<ScheduleData *, 10> WorkList; 5345 WorkList.push_back(SD); 5346 5347 while (!WorkList.empty()) { 5348 ScheduleData *SD = WorkList.back(); 5349 WorkList.pop_back(); 5350 5351 ScheduleData *BundleMember = SD; 5352 while (BundleMember) { 5353 assert(isInSchedulingRegion(BundleMember)); 5354 if (!BundleMember->hasValidDependencies()) { 5355 5356 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5357 << "\n"); 5358 BundleMember->Dependencies = 0; 5359 BundleMember->resetUnscheduledDeps(); 5360 5361 // Handle def-use chain dependencies. 5362 if (BundleMember->OpValue != BundleMember->Inst) { 5363 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5364 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5365 BundleMember->Dependencies++; 5366 ScheduleData *DestBundle = UseSD->FirstInBundle; 5367 if (!DestBundle->IsScheduled) 5368 BundleMember->incrementUnscheduledDeps(1); 5369 if (!DestBundle->hasValidDependencies()) 5370 WorkList.push_back(DestBundle); 5371 } 5372 } else { 5373 for (User *U : BundleMember->Inst->users()) { 5374 if (isa<Instruction>(U)) { 5375 ScheduleData *UseSD = getScheduleData(U); 5376 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5377 BundleMember->Dependencies++; 5378 ScheduleData *DestBundle = UseSD->FirstInBundle; 5379 if (!DestBundle->IsScheduled) 5380 BundleMember->incrementUnscheduledDeps(1); 5381 if (!DestBundle->hasValidDependencies()) 5382 WorkList.push_back(DestBundle); 5383 } 5384 } else { 5385 // I'm not sure if this can ever happen. But we need to be safe. 5386 // This lets the instruction/bundle never be scheduled and 5387 // eventually disable vectorization. 5388 BundleMember->Dependencies++; 5389 BundleMember->incrementUnscheduledDeps(1); 5390 } 5391 } 5392 } 5393 5394 // Handle the memory dependencies. 5395 ScheduleData *DepDest = BundleMember->NextLoadStore; 5396 if (DepDest) { 5397 Instruction *SrcInst = BundleMember->Inst; 5398 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5399 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5400 unsigned numAliased = 0; 5401 unsigned DistToSrc = 1; 5402 5403 while (DepDest) { 5404 assert(isInSchedulingRegion(DepDest)); 5405 5406 // We have two limits to reduce the complexity: 5407 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5408 // SLP->isAliased (which is the expensive part in this loop). 5409 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5410 // the whole loop (even if the loop is fast, it's quadratic). 5411 // It's important for the loop break condition (see below) to 5412 // check this limit even between two read-only instructions. 5413 if (DistToSrc >= MaxMemDepDistance || 5414 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5415 (numAliased >= AliasedCheckLimit || 5416 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5417 5418 // We increment the counter only if the locations are aliased 5419 // (instead of counting all alias checks). This gives a better 5420 // balance between reduced runtime and accurate dependencies. 5421 numAliased++; 5422 5423 DepDest->MemoryDependencies.push_back(BundleMember); 5424 BundleMember->Dependencies++; 5425 ScheduleData *DestBundle = DepDest->FirstInBundle; 5426 if (!DestBundle->IsScheduled) { 5427 BundleMember->incrementUnscheduledDeps(1); 5428 } 5429 if (!DestBundle->hasValidDependencies()) { 5430 WorkList.push_back(DestBundle); 5431 } 5432 } 5433 DepDest = DepDest->NextLoadStore; 5434 5435 // Example, explaining the loop break condition: Let's assume our 5436 // starting instruction is i0 and MaxMemDepDistance = 3. 5437 // 5438 // +--------v--v--v 5439 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5440 // +--------^--^--^ 5441 // 5442 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5443 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5444 // Previously we already added dependencies from i3 to i6,i7,i8 5445 // (because of MaxMemDepDistance). As we added a dependency from 5446 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5447 // and we can abort this loop at i6. 5448 if (DistToSrc >= 2 * MaxMemDepDistance) 5449 break; 5450 DistToSrc++; 5451 } 5452 } 5453 } 5454 BundleMember = BundleMember->NextInBundle; 5455 } 5456 if (InsertInReadyList && SD->isReady()) { 5457 ReadyInsts.push_back(SD); 5458 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5459 << "\n"); 5460 } 5461 } 5462 } 5463 5464 void BoUpSLP::BlockScheduling::resetSchedule() { 5465 assert(ScheduleStart && 5466 "tried to reset schedule on block which has not been scheduled"); 5467 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5468 doForAllOpcodes(I, [&](ScheduleData *SD) { 5469 assert(isInSchedulingRegion(SD) && 5470 "ScheduleData not in scheduling region"); 5471 SD->IsScheduled = false; 5472 SD->resetUnscheduledDeps(); 5473 }); 5474 } 5475 ReadyInsts.clear(); 5476 } 5477 5478 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5479 if (!BS->ScheduleStart) 5480 return; 5481 5482 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5483 5484 BS->resetSchedule(); 5485 5486 // For the real scheduling we use a more sophisticated ready-list: it is 5487 // sorted by the original instruction location. This lets the final schedule 5488 // be as close as possible to the original instruction order. 5489 struct ScheduleDataCompare { 5490 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5491 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5492 } 5493 }; 5494 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5495 5496 // Ensure that all dependency data is updated and fill the ready-list with 5497 // initial instructions. 5498 int Idx = 0; 5499 int NumToSchedule = 0; 5500 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5501 I = I->getNextNode()) { 5502 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5503 assert(SD->isPartOfBundle() == 5504 (getTreeEntry(SD->Inst) != nullptr) && 5505 "scheduler and vectorizer bundle mismatch"); 5506 SD->FirstInBundle->SchedulingPriority = Idx++; 5507 if (SD->isSchedulingEntity()) { 5508 BS->calculateDependencies(SD, false, this); 5509 NumToSchedule++; 5510 } 5511 }); 5512 } 5513 BS->initialFillReadyList(ReadyInsts); 5514 5515 Instruction *LastScheduledInst = BS->ScheduleEnd; 5516 5517 // Do the "real" scheduling. 5518 while (!ReadyInsts.empty()) { 5519 ScheduleData *picked = *ReadyInsts.begin(); 5520 ReadyInsts.erase(ReadyInsts.begin()); 5521 5522 // Move the scheduled instruction(s) to their dedicated places, if not 5523 // there yet. 5524 ScheduleData *BundleMember = picked; 5525 while (BundleMember) { 5526 Instruction *pickedInst = BundleMember->Inst; 5527 if (LastScheduledInst->getNextNode() != pickedInst) { 5528 BS->BB->getInstList().remove(pickedInst); 5529 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5530 pickedInst); 5531 } 5532 LastScheduledInst = pickedInst; 5533 BundleMember = BundleMember->NextInBundle; 5534 } 5535 5536 BS->schedule(picked, ReadyInsts); 5537 NumToSchedule--; 5538 } 5539 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5540 5541 // Avoid duplicate scheduling of the block. 5542 BS->ScheduleStart = nullptr; 5543 } 5544 5545 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5546 // If V is a store, just return the width of the stored value (or value 5547 // truncated just before storing) without traversing the expression tree. 5548 // This is the common case. 5549 if (auto *Store = dyn_cast<StoreInst>(V)) { 5550 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5551 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5552 else 5553 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5554 } 5555 5556 auto E = InstrElementSize.find(V); 5557 if (E != InstrElementSize.end()) 5558 return E->second; 5559 5560 // If V is not a store, we can traverse the expression tree to find loads 5561 // that feed it. The type of the loaded value may indicate a more suitable 5562 // width than V's type. We want to base the vector element size on the width 5563 // of memory operations where possible. 5564 SmallVector<Instruction *, 16> Worklist; 5565 SmallPtrSet<Instruction *, 16> Visited; 5566 if (auto *I = dyn_cast<Instruction>(V)) { 5567 Worklist.push_back(I); 5568 Visited.insert(I); 5569 } 5570 5571 // Traverse the expression tree in bottom-up order looking for loads. If we 5572 // encounter an instruction we don't yet handle, we give up. 5573 auto MaxWidth = 0u; 5574 auto FoundUnknownInst = false; 5575 while (!Worklist.empty() && !FoundUnknownInst) { 5576 auto *I = Worklist.pop_back_val(); 5577 5578 // We should only be looking at scalar instructions here. If the current 5579 // instruction has a vector type, give up. 5580 auto *Ty = I->getType(); 5581 if (isa<VectorType>(Ty)) 5582 FoundUnknownInst = true; 5583 5584 // If the current instruction is a load, update MaxWidth to reflect the 5585 // width of the loaded value. 5586 else if (isa<LoadInst>(I)) 5587 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5588 5589 // Otherwise, we need to visit the operands of the instruction. We only 5590 // handle the interesting cases from buildTree here. If an operand is an 5591 // instruction we haven't yet visited, we add it to the worklist. 5592 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5593 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5594 for (Use &U : I->operands()) 5595 if (auto *J = dyn_cast<Instruction>(U.get())) 5596 if (Visited.insert(J).second) 5597 Worklist.push_back(J); 5598 } 5599 5600 // If we don't yet handle the instruction, give up. 5601 else 5602 FoundUnknownInst = true; 5603 } 5604 5605 int Width = MaxWidth; 5606 // If we didn't encounter a memory access in the expression tree, or if we 5607 // gave up for some reason, just return the width of V. Otherwise, return the 5608 // maximum width we found. 5609 if (!MaxWidth || FoundUnknownInst) 5610 Width = DL->getTypeSizeInBits(V->getType()); 5611 5612 for (Instruction *I : Visited) 5613 InstrElementSize[I] = Width; 5614 5615 return Width; 5616 } 5617 5618 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5619 // smaller type with a truncation. We collect the values that will be demoted 5620 // in ToDemote and additional roots that require investigating in Roots. 5621 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5622 SmallVectorImpl<Value *> &ToDemote, 5623 SmallVectorImpl<Value *> &Roots) { 5624 // We can always demote constants. 5625 if (isa<Constant>(V)) { 5626 ToDemote.push_back(V); 5627 return true; 5628 } 5629 5630 // If the value is not an instruction in the expression with only one use, it 5631 // cannot be demoted. 5632 auto *I = dyn_cast<Instruction>(V); 5633 if (!I || !I->hasOneUse() || !Expr.count(I)) 5634 return false; 5635 5636 switch (I->getOpcode()) { 5637 5638 // We can always demote truncations and extensions. Since truncations can 5639 // seed additional demotion, we save the truncated value. 5640 case Instruction::Trunc: 5641 Roots.push_back(I->getOperand(0)); 5642 break; 5643 case Instruction::ZExt: 5644 case Instruction::SExt: 5645 break; 5646 5647 // We can demote certain binary operations if we can demote both of their 5648 // operands. 5649 case Instruction::Add: 5650 case Instruction::Sub: 5651 case Instruction::Mul: 5652 case Instruction::And: 5653 case Instruction::Or: 5654 case Instruction::Xor: 5655 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5656 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5657 return false; 5658 break; 5659 5660 // We can demote selects if we can demote their true and false values. 5661 case Instruction::Select: { 5662 SelectInst *SI = cast<SelectInst>(I); 5663 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5664 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5665 return false; 5666 break; 5667 } 5668 5669 // We can demote phis if we can demote all their incoming operands. Note that 5670 // we don't need to worry about cycles since we ensure single use above. 5671 case Instruction::PHI: { 5672 PHINode *PN = cast<PHINode>(I); 5673 for (Value *IncValue : PN->incoming_values()) 5674 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5675 return false; 5676 break; 5677 } 5678 5679 // Otherwise, conservatively give up. 5680 default: 5681 return false; 5682 } 5683 5684 // Record the value that we can demote. 5685 ToDemote.push_back(V); 5686 return true; 5687 } 5688 5689 void BoUpSLP::computeMinimumValueSizes() { 5690 // If there are no external uses, the expression tree must be rooted by a 5691 // store. We can't demote in-memory values, so there is nothing to do here. 5692 if (ExternalUses.empty()) 5693 return; 5694 5695 // We only attempt to truncate integer expressions. 5696 auto &TreeRoot = VectorizableTree[0]->Scalars; 5697 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5698 if (!TreeRootIT) 5699 return; 5700 5701 // If the expression is not rooted by a store, these roots should have 5702 // external uses. We will rely on InstCombine to rewrite the expression in 5703 // the narrower type. However, InstCombine only rewrites single-use values. 5704 // This means that if a tree entry other than a root is used externally, it 5705 // must have multiple uses and InstCombine will not rewrite it. The code 5706 // below ensures that only the roots are used externally. 5707 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5708 for (auto &EU : ExternalUses) 5709 if (!Expr.erase(EU.Scalar)) 5710 return; 5711 if (!Expr.empty()) 5712 return; 5713 5714 // Collect the scalar values of the vectorizable expression. We will use this 5715 // context to determine which values can be demoted. If we see a truncation, 5716 // we mark it as seeding another demotion. 5717 for (auto &EntryPtr : VectorizableTree) 5718 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5719 5720 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5721 // have a single external user that is not in the vectorizable tree. 5722 for (auto *Root : TreeRoot) 5723 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5724 return; 5725 5726 // Conservatively determine if we can actually truncate the roots of the 5727 // expression. Collect the values that can be demoted in ToDemote and 5728 // additional roots that require investigating in Roots. 5729 SmallVector<Value *, 32> ToDemote; 5730 SmallVector<Value *, 4> Roots; 5731 for (auto *Root : TreeRoot) 5732 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5733 return; 5734 5735 // The maximum bit width required to represent all the values that can be 5736 // demoted without loss of precision. It would be safe to truncate the roots 5737 // of the expression to this width. 5738 auto MaxBitWidth = 8u; 5739 5740 // We first check if all the bits of the roots are demanded. If they're not, 5741 // we can truncate the roots to this narrower type. 5742 for (auto *Root : TreeRoot) { 5743 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5744 MaxBitWidth = std::max<unsigned>( 5745 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5746 } 5747 5748 // True if the roots can be zero-extended back to their original type, rather 5749 // than sign-extended. We know that if the leading bits are not demanded, we 5750 // can safely zero-extend. So we initialize IsKnownPositive to True. 5751 bool IsKnownPositive = true; 5752 5753 // If all the bits of the roots are demanded, we can try a little harder to 5754 // compute a narrower type. This can happen, for example, if the roots are 5755 // getelementptr indices. InstCombine promotes these indices to the pointer 5756 // width. Thus, all their bits are technically demanded even though the 5757 // address computation might be vectorized in a smaller type. 5758 // 5759 // We start by looking at each entry that can be demoted. We compute the 5760 // maximum bit width required to store the scalar by using ValueTracking to 5761 // compute the number of high-order bits we can truncate. 5762 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5763 llvm::all_of(TreeRoot, [](Value *R) { 5764 assert(R->hasOneUse() && "Root should have only one use!"); 5765 return isa<GetElementPtrInst>(R->user_back()); 5766 })) { 5767 MaxBitWidth = 8u; 5768 5769 // Determine if the sign bit of all the roots is known to be zero. If not, 5770 // IsKnownPositive is set to False. 5771 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5772 KnownBits Known = computeKnownBits(R, *DL); 5773 return Known.isNonNegative(); 5774 }); 5775 5776 // Determine the maximum number of bits required to store the scalar 5777 // values. 5778 for (auto *Scalar : ToDemote) { 5779 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5780 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5781 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5782 } 5783 5784 // If we can't prove that the sign bit is zero, we must add one to the 5785 // maximum bit width to account for the unknown sign bit. This preserves 5786 // the existing sign bit so we can safely sign-extend the root back to the 5787 // original type. Otherwise, if we know the sign bit is zero, we will 5788 // zero-extend the root instead. 5789 // 5790 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5791 // one to the maximum bit width will yield a larger-than-necessary 5792 // type. In general, we need to add an extra bit only if we can't 5793 // prove that the upper bit of the original type is equal to the 5794 // upper bit of the proposed smaller type. If these two bits are the 5795 // same (either zero or one) we know that sign-extending from the 5796 // smaller type will result in the same value. Here, since we can't 5797 // yet prove this, we are just making the proposed smaller type 5798 // larger to ensure correctness. 5799 if (!IsKnownPositive) 5800 ++MaxBitWidth; 5801 } 5802 5803 // Round MaxBitWidth up to the next power-of-two. 5804 if (!isPowerOf2_64(MaxBitWidth)) 5805 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5806 5807 // If the maximum bit width we compute is less than the with of the roots' 5808 // type, we can proceed with the narrowing. Otherwise, do nothing. 5809 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5810 return; 5811 5812 // If we can truncate the root, we must collect additional values that might 5813 // be demoted as a result. That is, those seeded by truncations we will 5814 // modify. 5815 while (!Roots.empty()) 5816 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5817 5818 // Finally, map the values we can demote to the maximum bit with we computed. 5819 for (auto *Scalar : ToDemote) 5820 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5821 } 5822 5823 namespace { 5824 5825 /// The SLPVectorizer Pass. 5826 struct SLPVectorizer : public FunctionPass { 5827 SLPVectorizerPass Impl; 5828 5829 /// Pass identification, replacement for typeid 5830 static char ID; 5831 5832 explicit SLPVectorizer() : FunctionPass(ID) { 5833 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5834 } 5835 5836 bool doInitialization(Module &M) override { 5837 return false; 5838 } 5839 5840 bool runOnFunction(Function &F) override { 5841 if (skipFunction(F)) 5842 return false; 5843 5844 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5845 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5846 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5847 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5848 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5849 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5850 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5851 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5852 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5853 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5854 5855 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5856 } 5857 5858 void getAnalysisUsage(AnalysisUsage &AU) const override { 5859 FunctionPass::getAnalysisUsage(AU); 5860 AU.addRequired<AssumptionCacheTracker>(); 5861 AU.addRequired<ScalarEvolutionWrapperPass>(); 5862 AU.addRequired<AAResultsWrapperPass>(); 5863 AU.addRequired<TargetTransformInfoWrapperPass>(); 5864 AU.addRequired<LoopInfoWrapperPass>(); 5865 AU.addRequired<DominatorTreeWrapperPass>(); 5866 AU.addRequired<DemandedBitsWrapperPass>(); 5867 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5868 AU.addRequired<InjectTLIMappingsLegacy>(); 5869 AU.addPreserved<LoopInfoWrapperPass>(); 5870 AU.addPreserved<DominatorTreeWrapperPass>(); 5871 AU.addPreserved<AAResultsWrapperPass>(); 5872 AU.addPreserved<GlobalsAAWrapperPass>(); 5873 AU.setPreservesCFG(); 5874 } 5875 }; 5876 5877 } // end anonymous namespace 5878 5879 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5880 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5881 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5882 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5883 auto *AA = &AM.getResult<AAManager>(F); 5884 auto *LI = &AM.getResult<LoopAnalysis>(F); 5885 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5886 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5887 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5888 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5889 5890 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5891 if (!Changed) 5892 return PreservedAnalyses::all(); 5893 5894 PreservedAnalyses PA; 5895 PA.preserveSet<CFGAnalyses>(); 5896 PA.preserve<AAManager>(); 5897 PA.preserve<GlobalsAA>(); 5898 return PA; 5899 } 5900 5901 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5902 TargetTransformInfo *TTI_, 5903 TargetLibraryInfo *TLI_, AAResults *AA_, 5904 LoopInfo *LI_, DominatorTree *DT_, 5905 AssumptionCache *AC_, DemandedBits *DB_, 5906 OptimizationRemarkEmitter *ORE_) { 5907 if (!RunSLPVectorization) 5908 return false; 5909 SE = SE_; 5910 TTI = TTI_; 5911 TLI = TLI_; 5912 AA = AA_; 5913 LI = LI_; 5914 DT = DT_; 5915 AC = AC_; 5916 DB = DB_; 5917 DL = &F.getParent()->getDataLayout(); 5918 5919 Stores.clear(); 5920 GEPs.clear(); 5921 bool Changed = false; 5922 5923 // If the target claims to have no vector registers don't attempt 5924 // vectorization. 5925 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5926 return false; 5927 5928 // Don't vectorize when the attribute NoImplicitFloat is used. 5929 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5930 return false; 5931 5932 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5933 5934 // Use the bottom up slp vectorizer to construct chains that start with 5935 // store instructions. 5936 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5937 5938 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5939 // delete instructions. 5940 5941 // Scan the blocks in the function in post order. 5942 for (auto BB : post_order(&F.getEntryBlock())) { 5943 collectSeedInstructions(BB); 5944 5945 // Vectorize trees that end at stores. 5946 if (!Stores.empty()) { 5947 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5948 << " underlying objects.\n"); 5949 Changed |= vectorizeStoreChains(R); 5950 } 5951 5952 // Vectorize trees that end at reductions. 5953 Changed |= vectorizeChainsInBlock(BB, R); 5954 5955 // Vectorize the index computations of getelementptr instructions. This 5956 // is primarily intended to catch gather-like idioms ending at 5957 // non-consecutive loads. 5958 if (!GEPs.empty()) { 5959 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5960 << " underlying objects.\n"); 5961 Changed |= vectorizeGEPIndices(BB, R); 5962 } 5963 } 5964 5965 if (Changed) { 5966 R.optimizeGatherSequence(); 5967 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5968 } 5969 return Changed; 5970 } 5971 5972 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5973 unsigned Idx) { 5974 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5975 << "\n"); 5976 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5977 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5978 unsigned VF = Chain.size(); 5979 5980 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5981 return false; 5982 5983 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5984 << "\n"); 5985 5986 R.buildTree(Chain); 5987 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5988 // TODO: Handle orders of size less than number of elements in the vector. 5989 if (Order && Order->size() == Chain.size()) { 5990 // TODO: reorder tree nodes without tree rebuilding. 5991 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5992 llvm::transform(*Order, ReorderedOps.begin(), 5993 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5994 R.buildTree(ReorderedOps); 5995 } 5996 if (R.isTreeTinyAndNotFullyVectorizable()) 5997 return false; 5998 if (R.isLoadCombineCandidate()) 5999 return false; 6000 6001 R.computeMinimumValueSizes(); 6002 6003 InstructionCost Cost = R.getTreeCost(); 6004 6005 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6006 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6007 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6008 6009 using namespace ore; 6010 6011 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6012 cast<StoreInst>(Chain[0])) 6013 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6014 << " and with tree size " 6015 << NV("TreeSize", R.getTreeSize())); 6016 6017 R.vectorizeTree(); 6018 return true; 6019 } 6020 6021 return false; 6022 } 6023 6024 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6025 BoUpSLP &R) { 6026 // We may run into multiple chains that merge into a single chain. We mark the 6027 // stores that we vectorized so that we don't visit the same store twice. 6028 BoUpSLP::ValueSet VectorizedStores; 6029 bool Changed = false; 6030 6031 int E = Stores.size(); 6032 SmallBitVector Tails(E, false); 6033 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6034 int MaxIter = MaxStoreLookup.getValue(); 6035 int IterCnt; 6036 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6037 &ConsecutiveChain](int K, int Idx) { 6038 if (IterCnt >= MaxIter) 6039 return true; 6040 ++IterCnt; 6041 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6042 return false; 6043 6044 Tails.set(Idx); 6045 ConsecutiveChain[K] = Idx; 6046 return true; 6047 }; 6048 // Do a quadratic search on all of the given stores in reverse order and find 6049 // all of the pairs of stores that follow each other. 6050 for (int Idx = E - 1; Idx >= 0; --Idx) { 6051 // If a store has multiple consecutive store candidates, search according 6052 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6053 // This is because usually pairing with immediate succeeding or preceding 6054 // candidate create the best chance to find slp vectorization opportunity. 6055 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6056 IterCnt = 0; 6057 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6058 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6059 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6060 break; 6061 } 6062 6063 // For stores that start but don't end a link in the chain: 6064 for (int Cnt = E; Cnt > 0; --Cnt) { 6065 int I = Cnt - 1; 6066 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6067 continue; 6068 // We found a store instr that starts a chain. Now follow the chain and try 6069 // to vectorize it. 6070 BoUpSLP::ValueList Operands; 6071 // Collect the chain into a list. 6072 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6073 Operands.push_back(Stores[I]); 6074 // Move to the next value in the chain. 6075 I = ConsecutiveChain[I]; 6076 } 6077 6078 // If a vector register can't hold 1 element, we are done. 6079 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6080 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6081 if (MaxVecRegSize % EltSize != 0) 6082 continue; 6083 6084 unsigned MaxElts = MaxVecRegSize / EltSize; 6085 // FIXME: Is division-by-2 the correct step? Should we assert that the 6086 // register size is a power-of-2? 6087 unsigned StartIdx = 0; 6088 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6089 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6090 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6091 if (!VectorizedStores.count(Slice.front()) && 6092 !VectorizedStores.count(Slice.back()) && 6093 vectorizeStoreChain(Slice, R, Cnt)) { 6094 // Mark the vectorized stores so that we don't vectorize them again. 6095 VectorizedStores.insert(Slice.begin(), Slice.end()); 6096 Changed = true; 6097 // If we vectorized initial block, no need to try to vectorize it 6098 // again. 6099 if (Cnt == StartIdx) 6100 StartIdx += Size; 6101 Cnt += Size; 6102 continue; 6103 } 6104 ++Cnt; 6105 } 6106 // Check if the whole array was vectorized already - exit. 6107 if (StartIdx >= Operands.size()) 6108 break; 6109 } 6110 } 6111 6112 return Changed; 6113 } 6114 6115 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6116 // Initialize the collections. We will make a single pass over the block. 6117 Stores.clear(); 6118 GEPs.clear(); 6119 6120 // Visit the store and getelementptr instructions in BB and organize them in 6121 // Stores and GEPs according to the underlying objects of their pointer 6122 // operands. 6123 for (Instruction &I : *BB) { 6124 // Ignore store instructions that are volatile or have a pointer operand 6125 // that doesn't point to a scalar type. 6126 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6127 if (!SI->isSimple()) 6128 continue; 6129 if (!isValidElementType(SI->getValueOperand()->getType())) 6130 continue; 6131 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6132 } 6133 6134 // Ignore getelementptr instructions that have more than one index, a 6135 // constant index, or a pointer operand that doesn't point to a scalar 6136 // type. 6137 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6138 auto Idx = GEP->idx_begin()->get(); 6139 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6140 continue; 6141 if (!isValidElementType(Idx->getType())) 6142 continue; 6143 if (GEP->getType()->isVectorTy()) 6144 continue; 6145 GEPs[GEP->getPointerOperand()].push_back(GEP); 6146 } 6147 } 6148 } 6149 6150 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6151 if (!A || !B) 6152 return false; 6153 Value *VL[] = {A, B}; 6154 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6155 } 6156 6157 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6158 bool AllowReorder, 6159 ArrayRef<Value *> InsertUses) { 6160 if (VL.size() < 2) 6161 return false; 6162 6163 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6164 << VL.size() << ".\n"); 6165 6166 // Check that all of the parts are instructions of the same type, 6167 // we permit an alternate opcode via InstructionsState. 6168 InstructionsState S = getSameOpcode(VL); 6169 if (!S.getOpcode()) 6170 return false; 6171 6172 Instruction *I0 = cast<Instruction>(S.OpValue); 6173 // Make sure invalid types (including vector type) are rejected before 6174 // determining vectorization factor for scalar instructions. 6175 for (Value *V : VL) { 6176 Type *Ty = V->getType(); 6177 if (!isValidElementType(Ty)) { 6178 // NOTE: the following will give user internal llvm type name, which may 6179 // not be useful. 6180 R.getORE()->emit([&]() { 6181 std::string type_str; 6182 llvm::raw_string_ostream rso(type_str); 6183 Ty->print(rso); 6184 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6185 << "Cannot SLP vectorize list: type " 6186 << rso.str() + " is unsupported by vectorizer"; 6187 }); 6188 return false; 6189 } 6190 } 6191 6192 unsigned Sz = R.getVectorElementSize(I0); 6193 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6194 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6195 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6196 if (MaxVF < 2) { 6197 R.getORE()->emit([&]() { 6198 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6199 << "Cannot SLP vectorize list: vectorization factor " 6200 << "less than 2 is not supported"; 6201 }); 6202 return false; 6203 } 6204 6205 bool Changed = false; 6206 bool CandidateFound = false; 6207 InstructionCost MinCost = SLPCostThreshold.getValue(); 6208 6209 bool CompensateUseCost = 6210 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6211 return V && isa<InsertElementInst>(V); 6212 }); 6213 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6214 "Each scalar expected to have an associated InsertElement user."); 6215 6216 unsigned NextInst = 0, MaxInst = VL.size(); 6217 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6218 // No actual vectorization should happen, if number of parts is the same as 6219 // provided vectorization factor (i.e. the scalar type is used for vector 6220 // code during codegen). 6221 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6222 if (TTI->getNumberOfParts(VecTy) == VF) 6223 continue; 6224 for (unsigned I = NextInst; I < MaxInst; ++I) { 6225 unsigned OpsWidth = 0; 6226 6227 if (I + VF > MaxInst) 6228 OpsWidth = MaxInst - I; 6229 else 6230 OpsWidth = VF; 6231 6232 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6233 break; 6234 6235 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6236 // Check that a previous iteration of this loop did not delete the Value. 6237 if (llvm::any_of(Ops, [&R](Value *V) { 6238 auto *I = dyn_cast<Instruction>(V); 6239 return I && R.isDeleted(I); 6240 })) 6241 continue; 6242 6243 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6244 << "\n"); 6245 6246 R.buildTree(Ops); 6247 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6248 // TODO: check if we can allow reordering for more cases. 6249 if (AllowReorder && Order) { 6250 // TODO: reorder tree nodes without tree rebuilding. 6251 // Conceptually, there is nothing actually preventing us from trying to 6252 // reorder a larger list. In fact, we do exactly this when vectorizing 6253 // reductions. However, at this point, we only expect to get here when 6254 // there are exactly two operations. 6255 assert(Ops.size() == 2); 6256 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6257 R.buildTree(ReorderedOps, None); 6258 } 6259 if (R.isTreeTinyAndNotFullyVectorizable()) 6260 continue; 6261 6262 R.computeMinimumValueSizes(); 6263 InstructionCost Cost = R.getTreeCost(); 6264 CandidateFound = true; 6265 if (CompensateUseCost) { 6266 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6267 // rather than sum of single inserts as the latter may overestimate 6268 // cost. This work should imply improving cost estimation for extracts 6269 // that added in for external (for vectorization tree) users,i.e. that 6270 // part should also switch to same interface. 6271 // For example, the following case is projected code after SLP: 6272 // %4 = extractelement <4 x i64> %3, i32 0 6273 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6274 // %5 = extractelement <4 x i64> %3, i32 1 6275 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6276 // %6 = extractelement <4 x i64> %3, i32 2 6277 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6278 // %7 = extractelement <4 x i64> %3, i32 3 6279 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6280 // 6281 // Extracts here added by SLP in order to feed users (the inserts) of 6282 // original scalars and contribute to "ExtractCost" at cost evaluation. 6283 // The inserts in turn form sequence to build an aggregate that 6284 // detected by findBuildAggregate routine. 6285 // SLP makes an assumption that such sequence will be optimized away 6286 // later (instcombine) so it tries to compensate ExctractCost with 6287 // cost of insert sequence. 6288 // Current per element cost calculation approach is not quite accurate 6289 // and tends to create bias toward favoring vectorization. 6290 // Switching to the TTI interface might help a bit. 6291 // Alternative solution could be pattern-match to detect a no-op or 6292 // shuffle. 6293 InstructionCost UserCost = 0; 6294 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6295 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6296 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6297 UserCost += TTI->getVectorInstrCost( 6298 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6299 } 6300 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6301 << ".\n"); 6302 Cost -= UserCost; 6303 } 6304 6305 MinCost = InstructionCost::min(MinCost, Cost); 6306 6307 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6308 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6309 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6310 cast<Instruction>(Ops[0])) 6311 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6312 << " and with tree size " 6313 << ore::NV("TreeSize", R.getTreeSize())); 6314 6315 R.vectorizeTree(); 6316 // Move to the next bundle. 6317 I += VF - 1; 6318 NextInst = I + 1; 6319 Changed = true; 6320 } 6321 } 6322 } 6323 6324 if (!Changed && CandidateFound) { 6325 R.getORE()->emit([&]() { 6326 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6327 << "List vectorization was possible but not beneficial with cost " 6328 << ore::NV("Cost", MinCost) << " >= " 6329 << ore::NV("Treshold", -SLPCostThreshold); 6330 }); 6331 } else if (!Changed) { 6332 R.getORE()->emit([&]() { 6333 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6334 << "Cannot SLP vectorize list: vectorization was impossible" 6335 << " with available vectorization factors"; 6336 }); 6337 } 6338 return Changed; 6339 } 6340 6341 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6342 if (!I) 6343 return false; 6344 6345 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6346 return false; 6347 6348 Value *P = I->getParent(); 6349 6350 // Vectorize in current basic block only. 6351 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6352 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6353 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6354 return false; 6355 6356 // Try to vectorize V. 6357 if (tryToVectorizePair(Op0, Op1, R)) 6358 return true; 6359 6360 auto *A = dyn_cast<BinaryOperator>(Op0); 6361 auto *B = dyn_cast<BinaryOperator>(Op1); 6362 // Try to skip B. 6363 if (B && B->hasOneUse()) { 6364 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6365 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6366 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6367 return true; 6368 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6369 return true; 6370 } 6371 6372 // Try to skip A. 6373 if (A && A->hasOneUse()) { 6374 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6375 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6376 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6377 return true; 6378 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6379 return true; 6380 } 6381 return false; 6382 } 6383 6384 /// Generate a shuffle mask to be used in a reduction tree. 6385 /// 6386 /// \param VecLen The length of the vector to be reduced. 6387 /// \param NumEltsToRdx The number of elements that should be reduced in the 6388 /// vector. 6389 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6390 /// reduction. A pairwise reduction will generate a mask of 6391 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6392 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6393 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6394 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6395 unsigned NumEltsToRdx, 6396 bool IsPairwise, bool IsLeft) { 6397 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6398 6399 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6400 6401 if (IsPairwise) 6402 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6403 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6404 ShuffleMask[i] = 2 * i + !IsLeft; 6405 else 6406 // Move the upper half of the vector to the lower half. 6407 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6408 ShuffleMask[i] = NumEltsToRdx + i; 6409 6410 return ShuffleMask; 6411 } 6412 6413 namespace { 6414 6415 /// Model horizontal reductions. 6416 /// 6417 /// A horizontal reduction is a tree of reduction instructions that has values 6418 /// that can be put into a vector as its leaves. For example: 6419 /// 6420 /// mul mul mul mul 6421 /// \ / \ / 6422 /// + + 6423 /// \ / 6424 /// + 6425 /// This tree has "mul" as its leaf values and "+" as its reduction 6426 /// instructions. A reduction can feed into a store or a binary operation 6427 /// feeding a phi. 6428 /// ... 6429 /// \ / 6430 /// + 6431 /// | 6432 /// phi += 6433 /// 6434 /// Or: 6435 /// ... 6436 /// \ / 6437 /// + 6438 /// | 6439 /// *p = 6440 /// 6441 class HorizontalReduction { 6442 using ReductionOpsType = SmallVector<Value *, 16>; 6443 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6444 ReductionOpsListType ReductionOps; 6445 SmallVector<Value *, 32> ReducedVals; 6446 // Use map vector to make stable output. 6447 MapVector<Instruction *, Value *> ExtraArgs; 6448 6449 /// Kind of the reduction data. 6450 enum ReductionKind { 6451 RK_None, /// Not a reduction. 6452 RK_Arithmetic, /// Binary reduction data. 6453 RK_SMin, /// Signed minimum reduction data. 6454 RK_UMin, /// Unsigned minimum reduction data. 6455 RK_SMax, /// Signed maximum reduction data. 6456 RK_UMax, /// Unsigned maximum reduction data. 6457 }; 6458 6459 /// Contains info about operation, like its opcode, left and right operands. 6460 class OperationData { 6461 /// Opcode of the instruction. 6462 unsigned Opcode = 0; 6463 6464 /// Kind of the reduction operation. 6465 ReductionKind Kind = RK_None; 6466 6467 /// Checks if the reduction operation can be vectorized. 6468 bool isVectorizable() const { 6469 switch (Kind) { 6470 case RK_Arithmetic: 6471 return Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6472 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6473 Opcode == Instruction::And || Opcode == Instruction::Or || 6474 Opcode == Instruction::Xor; 6475 case RK_SMin: 6476 case RK_SMax: 6477 case RK_UMin: 6478 case RK_UMax: 6479 return Opcode == Instruction::ICmp; 6480 default: 6481 return false; 6482 } 6483 } 6484 6485 /// Creates reduction operation with the current opcode. 6486 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6487 const Twine &Name) const { 6488 assert(isVectorizable() && 6489 "Expected add|fadd or min/max reduction operation."); 6490 Value *Cmp = nullptr; 6491 switch (Kind) { 6492 case RK_Arithmetic: 6493 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6494 Name); 6495 case RK_SMin: 6496 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6497 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6498 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6499 case RK_SMax: 6500 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6501 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6502 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6503 case RK_UMin: 6504 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6505 Cmp = Builder.CreateICmpULT(LHS, RHS); 6506 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6507 case RK_UMax: 6508 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6509 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6510 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6511 case RK_None: 6512 break; 6513 } 6514 llvm_unreachable("Unknown reduction operation."); 6515 } 6516 6517 public: 6518 explicit OperationData() = default; 6519 6520 /// Construction for reduced values. They are identified by opcode only and 6521 /// don't have associated LHS/RHS values. 6522 explicit OperationData(Instruction &I) { 6523 Opcode = I.getOpcode(); 6524 } 6525 6526 /// Constructor for reduction operations with opcode and its left and 6527 /// right operands. 6528 OperationData(unsigned Opcode, ReductionKind Kind) 6529 : Opcode(Opcode), Kind(Kind) { 6530 assert(Kind != RK_None && "One of the reduction operations is expected."); 6531 } 6532 6533 explicit operator bool() const { return Opcode; } 6534 6535 /// Return true if this operation is any kind of minimum or maximum. 6536 bool isMinMax() const { 6537 switch (Kind) { 6538 case RK_Arithmetic: 6539 return false; 6540 case RK_SMin: 6541 case RK_SMax: 6542 case RK_UMin: 6543 case RK_UMax: 6544 return true; 6545 case RK_None: 6546 break; 6547 } 6548 llvm_unreachable("Reduction kind is not set"); 6549 } 6550 6551 /// Get the index of the first operand. 6552 unsigned getFirstOperandIndex() const { 6553 assert(!!*this && "The opcode is not set."); 6554 // We allow calling this before 'Kind' is set, so handle that specially. 6555 if (Kind == RK_None) 6556 return 0; 6557 return isMinMax() ? 1 : 0; 6558 } 6559 6560 /// Total number of operands in the reduction operation. 6561 unsigned getNumberOfOperands() const { 6562 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6563 return isMinMax() ? 3 : 2; 6564 } 6565 6566 /// Checks if the instruction is in basic block \p BB. 6567 /// For a min/max reduction check that both compare and select are in \p BB. 6568 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6569 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6570 if (IsRedOp && isMinMax()) { 6571 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6572 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6573 } 6574 return I->getParent() == BB; 6575 } 6576 6577 /// Expected number of uses for reduction operations/reduced values. 6578 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6579 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6580 // SelectInst must be used twice while the condition op must have single 6581 // use only. 6582 if (isMinMax()) 6583 return I->hasNUses(2) && 6584 (!IsReductionOp || 6585 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6586 6587 // Arithmetic reduction operation must be used once only. 6588 return I->hasOneUse(); 6589 } 6590 6591 /// Initializes the list of reduction operations. 6592 void initReductionOps(ReductionOpsListType &ReductionOps) { 6593 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6594 if (isMinMax()) 6595 ReductionOps.assign(2, ReductionOpsType()); 6596 else 6597 ReductionOps.assign(1, ReductionOpsType()); 6598 } 6599 6600 /// Add all reduction operations for the reduction instruction \p I. 6601 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6602 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6603 if (isMinMax()) { 6604 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6605 ReductionOps[1].emplace_back(I); 6606 } else { 6607 ReductionOps[0].emplace_back(I); 6608 } 6609 } 6610 6611 /// Checks if instruction is associative and can be vectorized. 6612 bool isAssociative(Instruction *I) const { 6613 assert(Kind != RK_None && *this && "Expected reduction operation."); 6614 switch (Kind) { 6615 case RK_Arithmetic: 6616 return I->isAssociative(); 6617 case RK_SMin: 6618 case RK_SMax: 6619 case RK_UMin: 6620 case RK_UMax: 6621 assert(Opcode == Instruction::ICmp && 6622 "Only integer compare operation is expected."); 6623 return true; 6624 case RK_None: 6625 break; 6626 } 6627 llvm_unreachable("Reduction kind is not set"); 6628 } 6629 6630 /// Checks if the reduction operation can be vectorized. 6631 bool isVectorizable(Instruction *I) const { 6632 return isVectorizable() && isAssociative(I); 6633 } 6634 6635 /// Checks if two operation data are both a reduction op or both a reduced 6636 /// value. 6637 bool operator==(const OperationData &OD) const { 6638 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6639 "One of the comparing operations is incorrect."); 6640 return Kind == OD.Kind && Opcode == OD.Opcode; 6641 } 6642 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6643 void clear() { 6644 Opcode = 0; 6645 Kind = RK_None; 6646 } 6647 6648 /// Get the opcode of the reduction operation. 6649 unsigned getOpcode() const { 6650 assert(isVectorizable() && "Expected vectorizable operation."); 6651 return Opcode; 6652 } 6653 6654 /// Get kind of reduction data. 6655 ReductionKind getKind() const { return Kind; } 6656 Value *getLHS(Instruction *I) const { 6657 if (Kind == RK_None) 6658 return nullptr; 6659 return I->getOperand(getFirstOperandIndex()); 6660 } 6661 Value *getRHS(Instruction *I) const { 6662 if (Kind == RK_None) 6663 return nullptr; 6664 return I->getOperand(getFirstOperandIndex() + 1); 6665 } 6666 6667 /// Creates reduction operation with the current opcode with the IR flags 6668 /// from \p ReductionOps. 6669 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6670 const Twine &Name, 6671 const ReductionOpsListType &ReductionOps) const { 6672 assert(isVectorizable() && 6673 "Expected add|fadd or min/max reduction operation."); 6674 auto *Op = createOp(Builder, LHS, RHS, Name); 6675 switch (Kind) { 6676 case RK_Arithmetic: 6677 propagateIRFlags(Op, ReductionOps[0]); 6678 return Op; 6679 case RK_SMin: 6680 case RK_SMax: 6681 case RK_UMin: 6682 case RK_UMax: 6683 if (auto *SI = dyn_cast<SelectInst>(Op)) 6684 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6685 propagateIRFlags(Op, ReductionOps[1]); 6686 return Op; 6687 case RK_None: 6688 break; 6689 } 6690 llvm_unreachable("Unknown reduction operation."); 6691 } 6692 /// Creates reduction operation with the current opcode with the IR flags 6693 /// from \p I. 6694 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6695 const Twine &Name, Instruction *I) const { 6696 assert(isVectorizable() && 6697 "Expected add|fadd or min/max reduction operation."); 6698 auto *Op = createOp(Builder, LHS, RHS, Name); 6699 switch (Kind) { 6700 case RK_Arithmetic: 6701 propagateIRFlags(Op, I); 6702 return Op; 6703 case RK_SMin: 6704 case RK_SMax: 6705 case RK_UMin: 6706 case RK_UMax: 6707 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6708 propagateIRFlags(SI->getCondition(), 6709 cast<SelectInst>(I)->getCondition()); 6710 } 6711 propagateIRFlags(Op, I); 6712 return Op; 6713 case RK_None: 6714 break; 6715 } 6716 llvm_unreachable("Unknown reduction operation."); 6717 } 6718 6719 TargetTransformInfo::ReductionFlags getFlags() const { 6720 TargetTransformInfo::ReductionFlags Flags; 6721 switch (Kind) { 6722 case RK_Arithmetic: 6723 break; 6724 case RK_SMin: 6725 Flags.IsSigned = true; 6726 Flags.IsMaxOp = false; 6727 break; 6728 case RK_SMax: 6729 Flags.IsSigned = true; 6730 Flags.IsMaxOp = true; 6731 break; 6732 case RK_UMin: 6733 Flags.IsSigned = false; 6734 Flags.IsMaxOp = false; 6735 break; 6736 case RK_UMax: 6737 Flags.IsSigned = false; 6738 Flags.IsMaxOp = true; 6739 break; 6740 case RK_None: 6741 llvm_unreachable("Reduction kind is not set"); 6742 } 6743 return Flags; 6744 } 6745 }; 6746 6747 WeakTrackingVH ReductionRoot; 6748 6749 /// The operation data of the reduction operation. 6750 OperationData RdxTreeInst; 6751 6752 /// The operation data for the leaf values that we perform a reduction on. 6753 OperationData RdxLeafVal; 6754 6755 /// Should we model this reduction as a pairwise reduction tree or a tree that 6756 /// splits the vector in halves and adds those halves. 6757 bool IsPairwiseReduction = false; 6758 6759 /// Checks if the ParentStackElem.first should be marked as a reduction 6760 /// operation with an extra argument or as extra argument itself. 6761 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6762 Value *ExtraArg) { 6763 if (ExtraArgs.count(ParentStackElem.first)) { 6764 ExtraArgs[ParentStackElem.first] = nullptr; 6765 // We ran into something like: 6766 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6767 // The whole ParentStackElem.first should be considered as an extra value 6768 // in this case. 6769 // Do not perform analysis of remaining operands of ParentStackElem.first 6770 // instruction, this whole instruction is an extra argument. 6771 OperationData OpData = getOperationData(ParentStackElem.first); 6772 ParentStackElem.second = OpData.getNumberOfOperands(); 6773 } else { 6774 // We ran into something like: 6775 // ParentStackElem.first += ... + ExtraArg + ... 6776 ExtraArgs[ParentStackElem.first] = ExtraArg; 6777 } 6778 } 6779 6780 static OperationData getOperationData(Instruction *I) { 6781 if (!I) 6782 return OperationData(); 6783 6784 Value *LHS; 6785 Value *RHS; 6786 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6787 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6788 } 6789 if (auto *Select = dyn_cast<SelectInst>(I)) { 6790 // Look for a min/max pattern. 6791 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6792 return OperationData(Instruction::ICmp, RK_UMin); 6793 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6794 return OperationData(Instruction::ICmp, RK_SMin); 6795 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6796 return OperationData(Instruction::ICmp, RK_UMax); 6797 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6798 return OperationData(Instruction::ICmp, RK_SMax); 6799 } else { 6800 // Try harder: look for min/max pattern based on instructions producing 6801 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6802 // During the intermediate stages of SLP, it's very common to have 6803 // pattern like this (since optimizeGatherSequence is run only once 6804 // at the end): 6805 // %1 = extractelement <2 x i32> %a, i32 0 6806 // %2 = extractelement <2 x i32> %a, i32 1 6807 // %cond = icmp sgt i32 %1, %2 6808 // %3 = extractelement <2 x i32> %a, i32 0 6809 // %4 = extractelement <2 x i32> %a, i32 1 6810 // %select = select i1 %cond, i32 %3, i32 %4 6811 CmpInst::Predicate Pred; 6812 Instruction *L1; 6813 Instruction *L2; 6814 6815 LHS = Select->getTrueValue(); 6816 RHS = Select->getFalseValue(); 6817 Value *Cond = Select->getCondition(); 6818 6819 // TODO: Support inverse predicates. 6820 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6821 if (!isa<ExtractElementInst>(RHS) || 6822 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6823 return OperationData(*I); 6824 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6825 if (!isa<ExtractElementInst>(LHS) || 6826 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6827 return OperationData(*I); 6828 } else { 6829 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6830 return OperationData(*I); 6831 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6832 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6833 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6834 return OperationData(*I); 6835 } 6836 switch (Pred) { 6837 default: 6838 return OperationData(*I); 6839 6840 case CmpInst::ICMP_ULT: 6841 case CmpInst::ICMP_ULE: 6842 return OperationData(Instruction::ICmp, RK_UMin); 6843 6844 case CmpInst::ICMP_SLT: 6845 case CmpInst::ICMP_SLE: 6846 return OperationData(Instruction::ICmp, RK_SMin); 6847 6848 case CmpInst::ICMP_UGT: 6849 case CmpInst::ICMP_UGE: 6850 return OperationData(Instruction::ICmp, RK_UMax); 6851 6852 case CmpInst::ICMP_SGT: 6853 case CmpInst::ICMP_SGE: 6854 return OperationData(Instruction::ICmp, RK_SMax); 6855 } 6856 } 6857 } 6858 return OperationData(*I); 6859 } 6860 6861 public: 6862 HorizontalReduction() = default; 6863 6864 /// Try to find a reduction tree. 6865 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6866 assert((!Phi || is_contained(Phi->operands(), B)) && 6867 "Thi phi needs to use the binary operator"); 6868 6869 RdxTreeInst = getOperationData(B); 6870 6871 // We could have a initial reductions that is not an add. 6872 // r *= v1 + v2 + v3 + v4 6873 // In such a case start looking for a tree rooted in the first '+'. 6874 if (Phi) { 6875 if (RdxTreeInst.getLHS(B) == Phi) { 6876 Phi = nullptr; 6877 B = dyn_cast<Instruction>(RdxTreeInst.getRHS(B)); 6878 RdxTreeInst = getOperationData(B); 6879 } else if (RdxTreeInst.getRHS(B) == Phi) { 6880 Phi = nullptr; 6881 B = dyn_cast<Instruction>(RdxTreeInst.getLHS(B)); 6882 RdxTreeInst = getOperationData(B); 6883 } 6884 } 6885 6886 if (!RdxTreeInst.isVectorizable(B)) 6887 return false; 6888 6889 Type *Ty = B->getType(); 6890 if (!isValidElementType(Ty)) 6891 return false; 6892 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6893 return false; 6894 6895 RdxLeafVal.clear(); 6896 ReductionRoot = B; 6897 6898 // Post order traverse the reduction tree starting at B. We only handle true 6899 // trees containing only binary operators. 6900 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6901 Stack.push_back(std::make_pair(B, RdxTreeInst.getFirstOperandIndex())); 6902 RdxTreeInst.initReductionOps(ReductionOps); 6903 while (!Stack.empty()) { 6904 Instruction *TreeN = Stack.back().first; 6905 unsigned EdgeToVisit = Stack.back().second++; 6906 OperationData OpData = getOperationData(TreeN); 6907 bool IsReducedValue = OpData != RdxTreeInst; 6908 6909 // Postorder vist. 6910 if (IsReducedValue || EdgeToVisit == OpData.getNumberOfOperands()) { 6911 if (IsReducedValue) 6912 ReducedVals.push_back(TreeN); 6913 else { 6914 auto I = ExtraArgs.find(TreeN); 6915 if (I != ExtraArgs.end() && !I->second) { 6916 // Check if TreeN is an extra argument of its parent operation. 6917 if (Stack.size() <= 1) { 6918 // TreeN can't be an extra argument as it is a root reduction 6919 // operation. 6920 return false; 6921 } 6922 // Yes, TreeN is an extra argument, do not add it to a list of 6923 // reduction operations. 6924 // Stack[Stack.size() - 2] always points to the parent operation. 6925 markExtraArg(Stack[Stack.size() - 2], TreeN); 6926 ExtraArgs.erase(TreeN); 6927 } else 6928 RdxTreeInst.addReductionOps(TreeN, ReductionOps); 6929 } 6930 // Retract. 6931 Stack.pop_back(); 6932 continue; 6933 } 6934 6935 // Visit left or right. 6936 Value *NextV = TreeN->getOperand(EdgeToVisit); 6937 if (NextV != Phi) { 6938 auto *I = dyn_cast<Instruction>(NextV); 6939 OpData = getOperationData(I); 6940 // Continue analysis if the next operand is a reduction operation or 6941 // (possibly) a reduced value. If the reduced value opcode is not set, 6942 // the first met operation != reduction operation is considered as the 6943 // reduced value class. 6944 const bool IsRdxInst = OpData == RdxTreeInst; 6945 if (I && (!RdxLeafVal || OpData == RdxLeafVal || IsRdxInst)) { 6946 // Only handle trees in the current basic block. 6947 if (!RdxTreeInst.hasSameParent(I, B->getParent(), IsRdxInst)) { 6948 // I is an extra argument for TreeN (its parent operation). 6949 markExtraArg(Stack.back(), I); 6950 continue; 6951 } 6952 6953 // Each tree node needs to have minimal number of users except for the 6954 // ultimate reduction. 6955 if (!RdxTreeInst.hasRequiredNumberOfUses(I, IsRdxInst) && I != B) { 6956 // I is an extra argument for TreeN (its parent operation). 6957 markExtraArg(Stack.back(), I); 6958 continue; 6959 } 6960 6961 if (IsRdxInst) { 6962 // We need to be able to reassociate the reduction operations. 6963 if (!OpData.isAssociative(I)) { 6964 // I is an extra argument for TreeN (its parent operation). 6965 markExtraArg(Stack.back(), I); 6966 continue; 6967 } 6968 } else if (RdxLeafVal && RdxLeafVal != OpData) { 6969 // Make sure that the opcodes of the operations that we are going to 6970 // reduce match. 6971 // I is an extra argument for TreeN (its parent operation). 6972 markExtraArg(Stack.back(), I); 6973 continue; 6974 } else if (!RdxLeafVal) { 6975 RdxLeafVal = OpData; 6976 } 6977 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6978 continue; 6979 } 6980 } 6981 // NextV is an extra argument for TreeN (its parent operation). 6982 markExtraArg(Stack.back(), NextV); 6983 } 6984 return true; 6985 } 6986 6987 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6988 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6989 // If there are a sufficient number of reduction values, reduce 6990 // to a nearby power-of-2. We can safely generate oversized 6991 // vectors and rely on the backend to split them to legal sizes. 6992 unsigned NumReducedVals = ReducedVals.size(); 6993 if (NumReducedVals < 4) 6994 return false; 6995 6996 // FIXME: Fast-math-flags should be set based on the instructions in the 6997 // reduction (not all of 'fast' are required). 6998 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6999 FastMathFlags Unsafe; 7000 Unsafe.setFast(); 7001 Builder.setFastMathFlags(Unsafe); 7002 7003 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7004 // The same extra argument may be used several times, so log each attempt 7005 // to use it. 7006 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7007 assert(Pair.first && "DebugLoc must be set."); 7008 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7009 } 7010 7011 // The compare instruction of a min/max is the insertion point for new 7012 // instructions and may be replaced with a new compare instruction. 7013 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7014 assert(isa<SelectInst>(RdxRootInst) && 7015 "Expected min/max reduction to have select root instruction"); 7016 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7017 assert(isa<Instruction>(ScalarCond) && 7018 "Expected min/max reduction to have compare condition"); 7019 return cast<Instruction>(ScalarCond); 7020 }; 7021 7022 // The reduction root is used as the insertion point for new instructions, 7023 // so set it as externally used to prevent it from being deleted. 7024 ExternallyUsedValues[ReductionRoot]; 7025 SmallVector<Value *, 16> IgnoreList; 7026 for (ReductionOpsType &RdxOp : ReductionOps) 7027 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7028 7029 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7030 if (NumReducedVals > ReduxWidth) { 7031 // In the loop below, we are building a tree based on a window of 7032 // 'ReduxWidth' values. 7033 // If the operands of those values have common traits (compare predicate, 7034 // constant operand, etc), then we want to group those together to 7035 // minimize the cost of the reduction. 7036 7037 // TODO: This should be extended to count common operands for 7038 // compares and binops. 7039 7040 // Step 1: Count the number of times each compare predicate occurs. 7041 SmallDenseMap<unsigned, unsigned> PredCountMap; 7042 for (Value *RdxVal : ReducedVals) { 7043 CmpInst::Predicate Pred; 7044 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7045 ++PredCountMap[Pred]; 7046 } 7047 // Step 2: Sort the values so the most common predicates come first. 7048 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7049 CmpInst::Predicate PredA, PredB; 7050 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7051 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7052 return PredCountMap[PredA] > PredCountMap[PredB]; 7053 } 7054 return false; 7055 }); 7056 } 7057 7058 Value *VectorizedTree = nullptr; 7059 unsigned i = 0; 7060 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7061 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7062 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7063 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7064 if (Order) { 7065 assert(Order->size() == VL.size() && 7066 "Order size must be the same as number of vectorized " 7067 "instructions."); 7068 // TODO: reorder tree nodes without tree rebuilding. 7069 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7070 llvm::transform(*Order, ReorderedOps.begin(), 7071 [VL](const unsigned Idx) { return VL[Idx]; }); 7072 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7073 } 7074 if (V.isTreeTinyAndNotFullyVectorizable()) 7075 break; 7076 if (V.isLoadCombineReductionCandidate(RdxTreeInst.getOpcode())) 7077 break; 7078 7079 V.computeMinimumValueSizes(); 7080 7081 // Estimate cost. 7082 InstructionCost TreeCost = V.getTreeCost(); 7083 InstructionCost ReductionCost = 7084 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7085 InstructionCost Cost = TreeCost + ReductionCost; 7086 if (!Cost.isValid()) { 7087 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7088 return false; 7089 } 7090 if (Cost >= -SLPCostThreshold) { 7091 V.getORE()->emit([&]() { 7092 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7093 cast<Instruction>(VL[0])) 7094 << "Vectorizing horizontal reduction is possible" 7095 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7096 << " and threshold " 7097 << ore::NV("Threshold", -SLPCostThreshold); 7098 }); 7099 break; 7100 } 7101 7102 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7103 << Cost << ". (HorRdx)\n"); 7104 V.getORE()->emit([&]() { 7105 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7106 cast<Instruction>(VL[0])) 7107 << "Vectorized horizontal reduction with cost " 7108 << ore::NV("Cost", Cost) << " and with tree size " 7109 << ore::NV("TreeSize", V.getTreeSize()); 7110 }); 7111 7112 // Vectorize a tree. 7113 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7114 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7115 7116 // Emit a reduction. For min/max, the root is a select, but the insertion 7117 // point is the compare condition of that select. 7118 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7119 if (RdxTreeInst.isMinMax()) 7120 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7121 else 7122 Builder.SetInsertPoint(RdxRootInst); 7123 7124 Value *ReducedSubTree = 7125 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7126 7127 if (!VectorizedTree) { 7128 // Initialize the final value in the reduction. 7129 VectorizedTree = ReducedSubTree; 7130 } else { 7131 // Update the final value in the reduction. 7132 Builder.SetCurrentDebugLocation(Loc); 7133 VectorizedTree = RdxTreeInst.createOp( 7134 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7135 } 7136 i += ReduxWidth; 7137 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7138 } 7139 7140 if (VectorizedTree) { 7141 // Finish the reduction. 7142 for (; i < NumReducedVals; ++i) { 7143 auto *I = cast<Instruction>(ReducedVals[i]); 7144 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7145 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, I, "", 7146 ReductionOps); 7147 } 7148 for (auto &Pair : ExternallyUsedValues) { 7149 // Add each externally used value to the final reduction. 7150 for (auto *I : Pair.second) { 7151 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7152 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, 7153 Pair.first, "op.extra", I); 7154 } 7155 } 7156 7157 // Update users. For a min/max reduction that ends with a compare and 7158 // select, we also have to RAUW for the compare instruction feeding the 7159 // reduction root. That's because the original compare may have extra uses 7160 // besides the final select of the reduction. 7161 if (RdxTreeInst.isMinMax()) { 7162 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7163 Instruction *ScalarCmp = 7164 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7165 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7166 } 7167 } 7168 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7169 7170 // Mark all scalar reduction ops for deletion, they are replaced by the 7171 // vector reductions. 7172 V.eraseInstructions(IgnoreList); 7173 } 7174 return VectorizedTree != nullptr; 7175 } 7176 7177 unsigned numReductionValues() const { 7178 return ReducedVals.size(); 7179 } 7180 7181 private: 7182 /// Calculate the cost of a reduction. 7183 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7184 unsigned ReduxWidth) { 7185 Type *ScalarTy = FirstReducedVal->getType(); 7186 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7187 7188 int PairwiseRdxCost; 7189 int SplittingRdxCost; 7190 switch (RdxTreeInst.getKind()) { 7191 case RK_Arithmetic: 7192 PairwiseRdxCost = 7193 TTI->getArithmeticReductionCost(RdxTreeInst.getOpcode(), VecTy, 7194 /*IsPairwiseForm=*/true); 7195 SplittingRdxCost = 7196 TTI->getArithmeticReductionCost(RdxTreeInst.getOpcode(), VecTy, 7197 /*IsPairwiseForm=*/false); 7198 break; 7199 case RK_SMin: 7200 case RK_SMax: 7201 case RK_UMin: 7202 case RK_UMax: { 7203 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7204 bool IsUnsigned = RdxTreeInst.getKind() == RK_UMin || 7205 RdxTreeInst.getKind() == RK_UMax; 7206 PairwiseRdxCost = 7207 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7208 /*IsPairwiseForm=*/true, IsUnsigned); 7209 SplittingRdxCost = 7210 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7211 /*IsPairwiseForm=*/false, IsUnsigned); 7212 break; 7213 } 7214 case RK_None: 7215 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7216 } 7217 7218 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7219 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7220 7221 int ScalarReduxCost = 0; 7222 switch (RdxTreeInst.getKind()) { 7223 case RK_Arithmetic: 7224 ScalarReduxCost = 7225 TTI->getArithmeticInstrCost(RdxTreeInst.getOpcode(), ScalarTy); 7226 break; 7227 case RK_SMin: 7228 case RK_SMax: 7229 case RK_UMin: 7230 case RK_UMax: 7231 ScalarReduxCost = 7232 TTI->getCmpSelInstrCost(RdxTreeInst.getOpcode(), ScalarTy) + 7233 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7234 CmpInst::makeCmpResultType(ScalarTy)); 7235 break; 7236 case RK_None: 7237 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7238 } 7239 ScalarReduxCost *= (ReduxWidth - 1); 7240 7241 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7242 << " for reduction that starts with " << *FirstReducedVal 7243 << " (It is a " 7244 << (IsPairwiseReduction ? "pairwise" : "splitting") 7245 << " reduction)\n"); 7246 7247 return VecReduxCost - ScalarReduxCost; 7248 } 7249 7250 /// Emit a horizontal reduction of the vectorized value. 7251 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7252 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7253 assert(VectorizedValue && "Need to have a vectorized tree node"); 7254 assert(isPowerOf2_32(ReduxWidth) && 7255 "We only handle power-of-two reductions for now"); 7256 7257 if (!IsPairwiseReduction) { 7258 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7259 // to 'fast'. 7260 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7261 return createSimpleTargetReduction( 7262 Builder, TTI, RdxTreeInst.getOpcode(), VectorizedValue, 7263 RdxTreeInst.getFlags(), ReductionOps.back()); 7264 } 7265 7266 Value *TmpVec = VectorizedValue; 7267 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7268 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7269 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7270 7271 Value *LeftShuf = 7272 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7273 Value *RightShuf = 7274 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7275 TmpVec = RdxTreeInst.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7276 ReductionOps); 7277 } 7278 7279 // The result is in the first element of the vector. 7280 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7281 } 7282 }; 7283 7284 } // end anonymous namespace 7285 7286 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7287 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7288 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7289 7290 unsigned AggregateSize = 1; 7291 auto *IV = cast<InsertValueInst>(InsertInst); 7292 Type *CurrentType = IV->getType(); 7293 do { 7294 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7295 for (auto *Elt : ST->elements()) 7296 if (Elt != ST->getElementType(0)) // check homogeneity 7297 return None; 7298 AggregateSize *= ST->getNumElements(); 7299 CurrentType = ST->getElementType(0); 7300 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7301 AggregateSize *= AT->getNumElements(); 7302 CurrentType = AT->getElementType(); 7303 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7304 AggregateSize *= VT->getNumElements(); 7305 return AggregateSize; 7306 } else if (CurrentType->isSingleValueType()) { 7307 return AggregateSize; 7308 } else { 7309 return None; 7310 } 7311 } while (true); 7312 } 7313 7314 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7315 unsigned OperandOffset) { 7316 unsigned OperandIndex = OperandOffset; 7317 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7318 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7319 auto *VT = cast<FixedVectorType>(IE->getType()); 7320 OperandIndex *= VT->getNumElements(); 7321 OperandIndex += CI->getZExtValue(); 7322 return OperandIndex; 7323 } 7324 return None; 7325 } 7326 7327 auto *IV = cast<InsertValueInst>(InsertInst); 7328 Type *CurrentType = IV->getType(); 7329 for (unsigned int Index : IV->indices()) { 7330 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7331 OperandIndex *= ST->getNumElements(); 7332 CurrentType = ST->getElementType(Index); 7333 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7334 OperandIndex *= AT->getNumElements(); 7335 CurrentType = AT->getElementType(); 7336 } else { 7337 return None; 7338 } 7339 OperandIndex += Index; 7340 } 7341 return OperandIndex; 7342 } 7343 7344 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7345 TargetTransformInfo *TTI, 7346 SmallVectorImpl<Value *> &BuildVectorOpds, 7347 SmallVectorImpl<Value *> &InsertElts, 7348 unsigned OperandOffset) { 7349 do { 7350 Value *InsertedOperand = LastInsertInst->getOperand(1); 7351 Optional<unsigned> OperandIndex = 7352 getOperandIndex(LastInsertInst, OperandOffset); 7353 if (!OperandIndex) 7354 return false; 7355 if (isa<InsertElementInst>(InsertedOperand) || 7356 isa<InsertValueInst>(InsertedOperand)) { 7357 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7358 BuildVectorOpds, InsertElts, *OperandIndex)) 7359 return false; 7360 } else { 7361 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7362 InsertElts[*OperandIndex] = LastInsertInst; 7363 } 7364 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7365 return true; 7366 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7367 } while (LastInsertInst != nullptr && 7368 (isa<InsertValueInst>(LastInsertInst) || 7369 isa<InsertElementInst>(LastInsertInst)) && 7370 LastInsertInst->hasOneUse()); 7371 return false; 7372 } 7373 7374 /// Recognize construction of vectors like 7375 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7376 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7377 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7378 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7379 /// starting from the last insertelement or insertvalue instruction. 7380 /// 7381 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7382 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7383 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7384 /// 7385 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7386 /// 7387 /// \return true if it matches. 7388 static bool findBuildAggregate(Instruction *LastInsertInst, 7389 TargetTransformInfo *TTI, 7390 SmallVectorImpl<Value *> &BuildVectorOpds, 7391 SmallVectorImpl<Value *> &InsertElts) { 7392 7393 assert((isa<InsertElementInst>(LastInsertInst) || 7394 isa<InsertValueInst>(LastInsertInst)) && 7395 "Expected insertelement or insertvalue instruction!"); 7396 7397 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7398 "Expected empty result vectors!"); 7399 7400 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7401 if (!AggregateSize) 7402 return false; 7403 BuildVectorOpds.resize(*AggregateSize); 7404 InsertElts.resize(*AggregateSize); 7405 7406 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7407 0)) { 7408 llvm::erase_value(BuildVectorOpds, nullptr); 7409 llvm::erase_value(InsertElts, nullptr); 7410 if (BuildVectorOpds.size() >= 2) 7411 return true; 7412 } 7413 7414 return false; 7415 } 7416 7417 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7418 return V->getType() < V2->getType(); 7419 } 7420 7421 /// Try and get a reduction value from a phi node. 7422 /// 7423 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7424 /// if they come from either \p ParentBB or a containing loop latch. 7425 /// 7426 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7427 /// if not possible. 7428 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7429 BasicBlock *ParentBB, LoopInfo *LI) { 7430 // There are situations where the reduction value is not dominated by the 7431 // reduction phi. Vectorizing such cases has been reported to cause 7432 // miscompiles. See PR25787. 7433 auto DominatedReduxValue = [&](Value *R) { 7434 return isa<Instruction>(R) && 7435 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7436 }; 7437 7438 Value *Rdx = nullptr; 7439 7440 // Return the incoming value if it comes from the same BB as the phi node. 7441 if (P->getIncomingBlock(0) == ParentBB) { 7442 Rdx = P->getIncomingValue(0); 7443 } else if (P->getIncomingBlock(1) == ParentBB) { 7444 Rdx = P->getIncomingValue(1); 7445 } 7446 7447 if (Rdx && DominatedReduxValue(Rdx)) 7448 return Rdx; 7449 7450 // Otherwise, check whether we have a loop latch to look at. 7451 Loop *BBL = LI->getLoopFor(ParentBB); 7452 if (!BBL) 7453 return nullptr; 7454 BasicBlock *BBLatch = BBL->getLoopLatch(); 7455 if (!BBLatch) 7456 return nullptr; 7457 7458 // There is a loop latch, return the incoming value if it comes from 7459 // that. This reduction pattern occasionally turns up. 7460 if (P->getIncomingBlock(0) == BBLatch) { 7461 Rdx = P->getIncomingValue(0); 7462 } else if (P->getIncomingBlock(1) == BBLatch) { 7463 Rdx = P->getIncomingValue(1); 7464 } 7465 7466 if (Rdx && DominatedReduxValue(Rdx)) 7467 return Rdx; 7468 7469 return nullptr; 7470 } 7471 7472 /// Attempt to reduce a horizontal reduction. 7473 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7474 /// with reduction operators \a Root (or one of its operands) in a basic block 7475 /// \a BB, then check if it can be done. If horizontal reduction is not found 7476 /// and root instruction is a binary operation, vectorization of the operands is 7477 /// attempted. 7478 /// \returns true if a horizontal reduction was matched and reduced or operands 7479 /// of one of the binary instruction were vectorized. 7480 /// \returns false if a horizontal reduction was not matched (or not possible) 7481 /// or no vectorization of any binary operation feeding \a Root instruction was 7482 /// performed. 7483 static bool tryToVectorizeHorReductionOrInstOperands( 7484 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7485 TargetTransformInfo *TTI, 7486 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7487 if (!ShouldVectorizeHor) 7488 return false; 7489 7490 if (!Root) 7491 return false; 7492 7493 if (Root->getParent() != BB || isa<PHINode>(Root)) 7494 return false; 7495 // Start analysis starting from Root instruction. If horizontal reduction is 7496 // found, try to vectorize it. If it is not a horizontal reduction or 7497 // vectorization is not possible or not effective, and currently analyzed 7498 // instruction is a binary operation, try to vectorize the operands, using 7499 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7500 // the same procedure considering each operand as a possible root of the 7501 // horizontal reduction. 7502 // Interrupt the process if the Root instruction itself was vectorized or all 7503 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7504 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7505 SmallPtrSet<Value *, 8> VisitedInstrs; 7506 bool Res = false; 7507 while (!Stack.empty()) { 7508 Instruction *Inst; 7509 unsigned Level; 7510 std::tie(Inst, Level) = Stack.pop_back_val(); 7511 Value *B0, *B1; 7512 bool IsBinop = match(Inst, m_BinOp(m_Value(B0), m_Value(B1))); 7513 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7514 if (IsBinop || IsSelect) { 7515 HorizontalReduction HorRdx; 7516 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7517 if (HorRdx.tryToReduce(R, TTI)) { 7518 Res = true; 7519 // Set P to nullptr to avoid re-analysis of phi node in 7520 // matchAssociativeReduction function unless this is the root node. 7521 P = nullptr; 7522 continue; 7523 } 7524 } 7525 if (P && IsBinop) { 7526 Inst = dyn_cast<Instruction>(B0); 7527 if (Inst == P) 7528 Inst = dyn_cast<Instruction>(B1); 7529 if (!Inst) { 7530 // Set P to nullptr to avoid re-analysis of phi node in 7531 // matchAssociativeReduction function unless this is the root node. 7532 P = nullptr; 7533 continue; 7534 } 7535 } 7536 } 7537 // Set P to nullptr to avoid re-analysis of phi node in 7538 // matchAssociativeReduction function unless this is the root node. 7539 P = nullptr; 7540 if (Vectorize(Inst, R)) { 7541 Res = true; 7542 continue; 7543 } 7544 7545 // Try to vectorize operands. 7546 // Continue analysis for the instruction from the same basic block only to 7547 // save compile time. 7548 if (++Level < RecursionMaxDepth) 7549 for (auto *Op : Inst->operand_values()) 7550 if (VisitedInstrs.insert(Op).second) 7551 if (auto *I = dyn_cast<Instruction>(Op)) 7552 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7553 Stack.emplace_back(I, Level); 7554 } 7555 return Res; 7556 } 7557 7558 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7559 BasicBlock *BB, BoUpSLP &R, 7560 TargetTransformInfo *TTI) { 7561 auto *I = dyn_cast_or_null<Instruction>(V); 7562 if (!I) 7563 return false; 7564 7565 if (!isa<BinaryOperator>(I)) 7566 P = nullptr; 7567 // Try to match and vectorize a horizontal reduction. 7568 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7569 return tryToVectorize(I, R); 7570 }; 7571 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7572 ExtraVectorization); 7573 } 7574 7575 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7576 BasicBlock *BB, BoUpSLP &R) { 7577 const DataLayout &DL = BB->getModule()->getDataLayout(); 7578 if (!R.canMapToVector(IVI->getType(), DL)) 7579 return false; 7580 7581 SmallVector<Value *, 16> BuildVectorOpds; 7582 SmallVector<Value *, 16> BuildVectorInsts; 7583 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7584 return false; 7585 7586 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7587 // Aggregate value is unlikely to be processed in vector register, we need to 7588 // extract scalars into scalar registers, so NeedExtraction is set true. 7589 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7590 BuildVectorInsts); 7591 } 7592 7593 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7594 BasicBlock *BB, BoUpSLP &R) { 7595 SmallVector<Value *, 16> BuildVectorInsts; 7596 SmallVector<Value *, 16> BuildVectorOpds; 7597 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7598 (llvm::all_of(BuildVectorOpds, 7599 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7600 isShuffle(BuildVectorOpds))) 7601 return false; 7602 7603 // Vectorize starting with the build vector operands ignoring the BuildVector 7604 // instructions for the purpose of scheduling and user extraction. 7605 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7606 BuildVectorInsts); 7607 } 7608 7609 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7610 BoUpSLP &R) { 7611 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7612 return true; 7613 7614 bool OpsChanged = false; 7615 for (int Idx = 0; Idx < 2; ++Idx) { 7616 OpsChanged |= 7617 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7618 } 7619 return OpsChanged; 7620 } 7621 7622 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7623 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7624 bool OpsChanged = false; 7625 for (auto *I : reverse(Instructions)) { 7626 if (R.isDeleted(I)) 7627 continue; 7628 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7629 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7630 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7631 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7632 else if (auto *CI = dyn_cast<CmpInst>(I)) 7633 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7634 } 7635 Instructions.clear(); 7636 return OpsChanged; 7637 } 7638 7639 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7640 bool Changed = false; 7641 SmallVector<Value *, 4> Incoming; 7642 SmallPtrSet<Value *, 16> VisitedInstrs; 7643 7644 bool HaveVectorizedPhiNodes = true; 7645 while (HaveVectorizedPhiNodes) { 7646 HaveVectorizedPhiNodes = false; 7647 7648 // Collect the incoming values from the PHIs. 7649 Incoming.clear(); 7650 for (Instruction &I : *BB) { 7651 PHINode *P = dyn_cast<PHINode>(&I); 7652 if (!P) 7653 break; 7654 7655 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7656 Incoming.push_back(P); 7657 } 7658 7659 // Sort by type. 7660 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7661 7662 // Try to vectorize elements base on their type. 7663 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7664 E = Incoming.end(); 7665 IncIt != E;) { 7666 7667 // Look for the next elements with the same type. 7668 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7669 while (SameTypeIt != E && 7670 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7671 VisitedInstrs.insert(*SameTypeIt); 7672 ++SameTypeIt; 7673 } 7674 7675 // Try to vectorize them. 7676 unsigned NumElts = (SameTypeIt - IncIt); 7677 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7678 << NumElts << ")\n"); 7679 // The order in which the phi nodes appear in the program does not matter. 7680 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7681 // is done when there are exactly two elements since tryToVectorizeList 7682 // asserts that there are only two values when AllowReorder is true. 7683 bool AllowReorder = NumElts == 2; 7684 if (NumElts > 1 && 7685 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7686 // Success start over because instructions might have been changed. 7687 HaveVectorizedPhiNodes = true; 7688 Changed = true; 7689 break; 7690 } 7691 7692 // Start over at the next instruction of a different type (or the end). 7693 IncIt = SameTypeIt; 7694 } 7695 } 7696 7697 VisitedInstrs.clear(); 7698 7699 SmallVector<Instruction *, 8> PostProcessInstructions; 7700 SmallDenseSet<Instruction *, 4> KeyNodes; 7701 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7702 // Skip instructions with scalable type. The num of elements is unknown at 7703 // compile-time for scalable type. 7704 if (isa<ScalableVectorType>(it->getType())) 7705 continue; 7706 7707 // Skip instructions marked for the deletion. 7708 if (R.isDeleted(&*it)) 7709 continue; 7710 // We may go through BB multiple times so skip the one we have checked. 7711 if (!VisitedInstrs.insert(&*it).second) { 7712 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7713 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7714 // We would like to start over since some instructions are deleted 7715 // and the iterator may become invalid value. 7716 Changed = true; 7717 it = BB->begin(); 7718 e = BB->end(); 7719 } 7720 continue; 7721 } 7722 7723 if (isa<DbgInfoIntrinsic>(it)) 7724 continue; 7725 7726 // Try to vectorize reductions that use PHINodes. 7727 if (PHINode *P = dyn_cast<PHINode>(it)) { 7728 // Check that the PHI is a reduction PHI. 7729 if (P->getNumIncomingValues() == 2) { 7730 // Try to match and vectorize a horizontal reduction. 7731 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7732 TTI)) { 7733 Changed = true; 7734 it = BB->begin(); 7735 e = BB->end(); 7736 continue; 7737 } 7738 } 7739 // Try to vectorize the incoming values of the PHI, to catch reductions 7740 // that feed into PHIs. 7741 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7742 // Skip if the incoming block is the current BB for now. Also, bypass 7743 // unreachable IR for efficiency and to avoid crashing. 7744 // TODO: Collect the skipped incoming values and try to vectorize them 7745 // after processing BB. 7746 if (BB == P->getIncomingBlock(I) || 7747 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7748 continue; 7749 7750 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7751 P->getIncomingBlock(I), R, TTI); 7752 } 7753 continue; 7754 } 7755 7756 // Ran into an instruction without users, like terminator, or function call 7757 // with ignored return value, store. Ignore unused instructions (basing on 7758 // instruction type, except for CallInst and InvokeInst). 7759 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7760 isa<InvokeInst>(it))) { 7761 KeyNodes.insert(&*it); 7762 bool OpsChanged = false; 7763 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7764 for (auto *V : it->operand_values()) { 7765 // Try to match and vectorize a horizontal reduction. 7766 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7767 } 7768 } 7769 // Start vectorization of post-process list of instructions from the 7770 // top-tree instructions to try to vectorize as many instructions as 7771 // possible. 7772 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7773 if (OpsChanged) { 7774 // We would like to start over since some instructions are deleted 7775 // and the iterator may become invalid value. 7776 Changed = true; 7777 it = BB->begin(); 7778 e = BB->end(); 7779 continue; 7780 } 7781 } 7782 7783 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7784 isa<InsertValueInst>(it)) 7785 PostProcessInstructions.push_back(&*it); 7786 } 7787 7788 return Changed; 7789 } 7790 7791 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7792 auto Changed = false; 7793 for (auto &Entry : GEPs) { 7794 // If the getelementptr list has fewer than two elements, there's nothing 7795 // to do. 7796 if (Entry.second.size() < 2) 7797 continue; 7798 7799 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7800 << Entry.second.size() << ".\n"); 7801 7802 // Process the GEP list in chunks suitable for the target's supported 7803 // vector size. If a vector register can't hold 1 element, we are done. We 7804 // are trying to vectorize the index computations, so the maximum number of 7805 // elements is based on the size of the index expression, rather than the 7806 // size of the GEP itself (the target's pointer size). 7807 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7808 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7809 if (MaxVecRegSize < EltSize) 7810 continue; 7811 7812 unsigned MaxElts = MaxVecRegSize / EltSize; 7813 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7814 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7815 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7816 7817 // Initialize a set a candidate getelementptrs. Note that we use a 7818 // SetVector here to preserve program order. If the index computations 7819 // are vectorizable and begin with loads, we want to minimize the chance 7820 // of having to reorder them later. 7821 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7822 7823 // Some of the candidates may have already been vectorized after we 7824 // initially collected them. If so, they are marked as deleted, so remove 7825 // them from the set of candidates. 7826 Candidates.remove_if( 7827 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7828 7829 // Remove from the set of candidates all pairs of getelementptrs with 7830 // constant differences. Such getelementptrs are likely not good 7831 // candidates for vectorization in a bottom-up phase since one can be 7832 // computed from the other. We also ensure all candidate getelementptr 7833 // indices are unique. 7834 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7835 auto *GEPI = GEPList[I]; 7836 if (!Candidates.count(GEPI)) 7837 continue; 7838 auto *SCEVI = SE->getSCEV(GEPList[I]); 7839 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7840 auto *GEPJ = GEPList[J]; 7841 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7842 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7843 Candidates.remove(GEPI); 7844 Candidates.remove(GEPJ); 7845 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7846 Candidates.remove(GEPJ); 7847 } 7848 } 7849 } 7850 7851 // We break out of the above computation as soon as we know there are 7852 // fewer than two candidates remaining. 7853 if (Candidates.size() < 2) 7854 continue; 7855 7856 // Add the single, non-constant index of each candidate to the bundle. We 7857 // ensured the indices met these constraints when we originally collected 7858 // the getelementptrs. 7859 SmallVector<Value *, 16> Bundle(Candidates.size()); 7860 auto BundleIndex = 0u; 7861 for (auto *V : Candidates) { 7862 auto *GEP = cast<GetElementPtrInst>(V); 7863 auto *GEPIdx = GEP->idx_begin()->get(); 7864 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7865 Bundle[BundleIndex++] = GEPIdx; 7866 } 7867 7868 // Try and vectorize the indices. We are currently only interested in 7869 // gather-like cases of the form: 7870 // 7871 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7872 // 7873 // where the loads of "a", the loads of "b", and the subtractions can be 7874 // performed in parallel. It's likely that detecting this pattern in a 7875 // bottom-up phase will be simpler and less costly than building a 7876 // full-blown top-down phase beginning at the consecutive loads. 7877 Changed |= tryToVectorizeList(Bundle, R); 7878 } 7879 } 7880 return Changed; 7881 } 7882 7883 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7884 bool Changed = false; 7885 // Attempt to sort and vectorize each of the store-groups. 7886 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7887 ++it) { 7888 if (it->second.size() < 2) 7889 continue; 7890 7891 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7892 << it->second.size() << ".\n"); 7893 7894 Changed |= vectorizeStores(it->second, R); 7895 } 7896 return Changed; 7897 } 7898 7899 char SLPVectorizer::ID = 0; 7900 7901 static const char lv_name[] = "SLP Vectorizer"; 7902 7903 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7904 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7905 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7906 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7907 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7908 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7909 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7910 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7911 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7912 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7913 7914 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7915