1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 291 /// TODO: Can we split off and reuse the shuffle mask detection from 292 /// TargetTransformInfo::getInstructionThroughput? 293 static Optional<TargetTransformInfo::ShuffleKind> 294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 295 auto *EI0 = cast<ExtractElementInst>(VL[0]); 296 unsigned Size = 297 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 298 Value *Vec1 = nullptr; 299 Value *Vec2 = nullptr; 300 enum ShuffleMode { Unknown, Select, Permute }; 301 ShuffleMode CommonShuffleMode = Unknown; 302 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 303 auto *EI = cast<ExtractElementInst>(VL[I]); 304 auto *Vec = EI->getVectorOperand(); 305 // All vector operands must have the same number of vector elements. 306 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 307 return None; 308 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 309 if (!Idx) 310 return None; 311 // Undefined behavior if Idx is negative or >= Size. 312 if (Idx->getValue().uge(Size)) { 313 Mask.push_back(UndefMaskElem); 314 continue; 315 } 316 unsigned IntIdx = Idx->getValue().getZExtValue(); 317 Mask.push_back(IntIdx); 318 // We can extractelement from undef or poison vector. 319 if (isa<UndefValue>(Vec)) 320 continue; 321 // For correct shuffling we have to have at most 2 different vector operands 322 // in all extractelement instructions. 323 if (!Vec1 || Vec1 == Vec) 324 Vec1 = Vec; 325 else if (!Vec2 || Vec2 == Vec) 326 Vec2 = Vec; 327 else 328 return None; 329 if (CommonShuffleMode == Permute) 330 continue; 331 // If the extract index is not the same as the operation number, it is a 332 // permutation. 333 if (IntIdx != I) { 334 CommonShuffleMode = Permute; 335 continue; 336 } 337 CommonShuffleMode = Select; 338 } 339 // If we're not crossing lanes in different vectors, consider it as blending. 340 if (CommonShuffleMode == Select && Vec2) 341 return TargetTransformInfo::SK_Select; 342 // If Vec2 was never used, we have a permutation of a single vector, otherwise 343 // we have permutation of 2 vectors. 344 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 345 : TargetTransformInfo::SK_PermuteSingleSrc; 346 } 347 348 namespace { 349 350 /// Main data required for vectorization of instructions. 351 struct InstructionsState { 352 /// The very first instruction in the list with the main opcode. 353 Value *OpValue = nullptr; 354 355 /// The main/alternate instruction. 356 Instruction *MainOp = nullptr; 357 Instruction *AltOp = nullptr; 358 359 /// The main/alternate opcodes for the list of instructions. 360 unsigned getOpcode() const { 361 return MainOp ? MainOp->getOpcode() : 0; 362 } 363 364 unsigned getAltOpcode() const { 365 return AltOp ? AltOp->getOpcode() : 0; 366 } 367 368 /// Some of the instructions in the list have alternate opcodes. 369 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 370 371 bool isOpcodeOrAlt(Instruction *I) const { 372 unsigned CheckedOpcode = I->getOpcode(); 373 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 374 } 375 376 InstructionsState() = delete; 377 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 378 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 379 }; 380 381 } // end anonymous namespace 382 383 /// Chooses the correct key for scheduling data. If \p Op has the same (or 384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 385 /// OpValue. 386 static Value *isOneOf(const InstructionsState &S, Value *Op) { 387 auto *I = dyn_cast<Instruction>(Op); 388 if (I && S.isOpcodeOrAlt(I)) 389 return Op; 390 return S.OpValue; 391 } 392 393 /// \returns true if \p Opcode is allowed as part of of the main/alternate 394 /// instruction for SLP vectorization. 395 /// 396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 397 /// "shuffled out" lane would result in division by zero. 398 static bool isValidForAlternation(unsigned Opcode) { 399 if (Instruction::isIntDivRem(Opcode)) 400 return false; 401 402 return true; 403 } 404 405 /// \returns analysis of the Instructions in \p VL described in 406 /// InstructionsState, the Opcode that we suppose the whole list 407 /// could be vectorized even if its structure is diverse. 408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 409 unsigned BaseIndex = 0) { 410 // Make sure these are all Instructions. 411 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 412 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 413 414 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 415 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 416 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 417 unsigned AltOpcode = Opcode; 418 unsigned AltIndex = BaseIndex; 419 420 // Check for one alternate opcode from another BinaryOperator. 421 // TODO - generalize to support all operators (types, calls etc.). 422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 423 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 424 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 425 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 426 continue; 427 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 428 isValidForAlternation(Opcode)) { 429 AltOpcode = InstOpcode; 430 AltIndex = Cnt; 431 continue; 432 } 433 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 434 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 435 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 436 if (Ty0 == Ty1) { 437 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 438 continue; 439 if (Opcode == AltOpcode) { 440 assert(isValidForAlternation(Opcode) && 441 isValidForAlternation(InstOpcode) && 442 "Cast isn't safe for alternation, logic needs to be updated!"); 443 AltOpcode = InstOpcode; 444 AltIndex = Cnt; 445 continue; 446 } 447 } 448 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 449 continue; 450 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 451 } 452 453 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 454 cast<Instruction>(VL[AltIndex])); 455 } 456 457 /// \returns true if all of the values in \p VL have the same type or false 458 /// otherwise. 459 static bool allSameType(ArrayRef<Value *> VL) { 460 Type *Ty = VL[0]->getType(); 461 for (int i = 1, e = VL.size(); i < e; i++) 462 if (VL[i]->getType() != Ty) 463 return false; 464 465 return true; 466 } 467 468 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 469 static Optional<unsigned> getExtractIndex(Instruction *E) { 470 unsigned Opcode = E->getOpcode(); 471 assert((Opcode == Instruction::ExtractElement || 472 Opcode == Instruction::ExtractValue) && 473 "Expected extractelement or extractvalue instruction."); 474 if (Opcode == Instruction::ExtractElement) { 475 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 476 if (!CI) 477 return None; 478 return CI->getZExtValue(); 479 } 480 ExtractValueInst *EI = cast<ExtractValueInst>(E); 481 if (EI->getNumIndices() != 1) 482 return None; 483 return *EI->idx_begin(); 484 } 485 486 /// \returns True if in-tree use also needs extract. This refers to 487 /// possible scalar operand in vectorized instruction. 488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 489 TargetLibraryInfo *TLI) { 490 unsigned Opcode = UserInst->getOpcode(); 491 switch (Opcode) { 492 case Instruction::Load: { 493 LoadInst *LI = cast<LoadInst>(UserInst); 494 return (LI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Store: { 497 StoreInst *SI = cast<StoreInst>(UserInst); 498 return (SI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Call: { 501 CallInst *CI = cast<CallInst>(UserInst); 502 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 503 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 504 if (hasVectorInstrinsicScalarOpd(ID, i)) 505 return (CI->getArgOperand(i) == Scalar); 506 } 507 LLVM_FALLTHROUGH; 508 } 509 default: 510 return false; 511 } 512 } 513 514 /// \returns the AA location that is being access by the instruction. 515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 516 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 517 return MemoryLocation::get(SI); 518 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 519 return MemoryLocation::get(LI); 520 return MemoryLocation(); 521 } 522 523 /// \returns True if the instruction is not a volatile or atomic load/store. 524 static bool isSimple(Instruction *I) { 525 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 526 return LI->isSimple(); 527 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 528 return SI->isSimple(); 529 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 530 return !MI->isVolatile(); 531 return true; 532 } 533 534 namespace llvm { 535 536 static void inversePermutation(ArrayRef<unsigned> Indices, 537 SmallVectorImpl<int> &Mask) { 538 Mask.clear(); 539 const unsigned E = Indices.size(); 540 Mask.resize(E, E + 1); 541 for (unsigned I = 0; I < E; ++I) 542 Mask[Indices[I]] = I; 543 } 544 545 namespace slpvectorizer { 546 547 /// Bottom Up SLP Vectorizer. 548 class BoUpSLP { 549 struct TreeEntry; 550 struct ScheduleData; 551 552 public: 553 using ValueList = SmallVector<Value *, 8>; 554 using InstrList = SmallVector<Instruction *, 16>; 555 using ValueSet = SmallPtrSet<Value *, 16>; 556 using StoreList = SmallVector<StoreInst *, 8>; 557 using ExtraValueToDebugLocsMap = 558 MapVector<Value *, SmallVector<Instruction *, 2>>; 559 using OrdersType = SmallVector<unsigned, 4>; 560 561 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 562 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 563 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 564 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 565 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 566 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 567 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 568 // Use the vector register size specified by the target unless overridden 569 // by a command-line option. 570 // TODO: It would be better to limit the vectorization factor based on 571 // data type rather than just register size. For example, x86 AVX has 572 // 256-bit registers, but it does not support integer operations 573 // at that width (that requires AVX2). 574 if (MaxVectorRegSizeOption.getNumOccurrences()) 575 MaxVecRegSize = MaxVectorRegSizeOption; 576 else 577 MaxVecRegSize = 578 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 579 .getFixedSize(); 580 581 if (MinVectorRegSizeOption.getNumOccurrences()) 582 MinVecRegSize = MinVectorRegSizeOption; 583 else 584 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 585 } 586 587 /// Vectorize the tree that starts with the elements in \p VL. 588 /// Returns the vectorized root. 589 Value *vectorizeTree(); 590 591 /// Vectorize the tree but with the list of externally used values \p 592 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 593 /// generated extractvalue instructions. 594 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 595 596 /// \returns the cost incurred by unwanted spills and fills, caused by 597 /// holding live values over call sites. 598 InstructionCost getSpillCost() const; 599 600 /// \returns the vectorization cost of the subtree that starts at \p VL. 601 /// A negative number means that this is profitable. 602 InstructionCost getTreeCost(); 603 604 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 605 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 606 void buildTree(ArrayRef<Value *> Roots, 607 ArrayRef<Value *> UserIgnoreLst = None); 608 609 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 610 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 611 /// into account (and updating it, if required) list of externally used 612 /// values stored in \p ExternallyUsedValues. 613 void buildTree(ArrayRef<Value *> Roots, 614 ExtraValueToDebugLocsMap &ExternallyUsedValues, 615 ArrayRef<Value *> UserIgnoreLst = None); 616 617 /// Clear the internal data structures that are created by 'buildTree'. 618 void deleteTree() { 619 VectorizableTree.clear(); 620 ScalarToTreeEntry.clear(); 621 MustGather.clear(); 622 ExternalUses.clear(); 623 NumOpsWantToKeepOrder.clear(); 624 NumOpsWantToKeepOriginalOrder = 0; 625 for (auto &Iter : BlocksSchedules) { 626 BlockScheduling *BS = Iter.second.get(); 627 BS->clear(); 628 } 629 MinBWs.clear(); 630 } 631 632 unsigned getTreeSize() const { return VectorizableTree.size(); } 633 634 /// Perform LICM and CSE on the newly generated gather sequences. 635 void optimizeGatherSequence(); 636 637 /// \returns The best order of instructions for vectorization. 638 Optional<ArrayRef<unsigned>> bestOrder() const { 639 assert(llvm::all_of( 640 NumOpsWantToKeepOrder, 641 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 642 return D.getFirst().size() == 643 VectorizableTree[0]->Scalars.size(); 644 }) && 645 "All orders must have the same size as number of instructions in " 646 "tree node."); 647 auto I = std::max_element( 648 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 649 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 650 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 651 return D1.second < D2.second; 652 }); 653 if (I == NumOpsWantToKeepOrder.end() || 654 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 655 return None; 656 657 return makeArrayRef(I->getFirst()); 658 } 659 660 /// Builds the correct order for root instructions. 661 /// If some leaves have the same instructions to be vectorized, we may 662 /// incorrectly evaluate the best order for the root node (it is built for the 663 /// vector of instructions without repeated instructions and, thus, has less 664 /// elements than the root node). This function builds the correct order for 665 /// the root node. 666 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 667 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 668 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 669 /// be reordered, the best order will be \<1, 0\>. We need to extend this 670 /// order for the root node. For the root node this order should look like 671 /// \<3, 0, 1, 2\>. This function extends the order for the reused 672 /// instructions. 673 void findRootOrder(OrdersType &Order) { 674 // If the leaf has the same number of instructions to vectorize as the root 675 // - order must be set already. 676 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 677 if (Order.size() == RootSize) 678 return; 679 SmallVector<unsigned, 4> RealOrder(Order.size()); 680 std::swap(Order, RealOrder); 681 SmallVector<int, 4> Mask; 682 inversePermutation(RealOrder, Mask); 683 Order.assign(Mask.begin(), Mask.end()); 684 // The leaf has less number of instructions - need to find the true order of 685 // the root. 686 // Scan the nodes starting from the leaf back to the root. 687 const TreeEntry *PNode = VectorizableTree.back().get(); 688 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 689 SmallPtrSet<const TreeEntry *, 4> Visited; 690 while (!Nodes.empty() && Order.size() != RootSize) { 691 const TreeEntry *PNode = Nodes.pop_back_val(); 692 if (!Visited.insert(PNode).second) 693 continue; 694 const TreeEntry &Node = *PNode; 695 for (const EdgeInfo &EI : Node.UserTreeIndices) 696 if (EI.UserTE) 697 Nodes.push_back(EI.UserTE); 698 if (Node.ReuseShuffleIndices.empty()) 699 continue; 700 // Build the order for the parent node. 701 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 702 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 703 // The algorithm of the order extension is: 704 // 1. Calculate the number of the same instructions for the order. 705 // 2. Calculate the index of the new order: total number of instructions 706 // with order less than the order of the current instruction + reuse 707 // number of the current instruction. 708 // 3. The new order is just the index of the instruction in the original 709 // vector of the instructions. 710 for (unsigned I : Node.ReuseShuffleIndices) 711 ++OrderCounter[Order[I]]; 712 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 713 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 714 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 715 unsigned OrderIdx = Order[ReusedIdx]; 716 unsigned NewIdx = 0; 717 for (unsigned J = 0; J < OrderIdx; ++J) 718 NewIdx += OrderCounter[J]; 719 NewIdx += CurrentCounter[OrderIdx]; 720 ++CurrentCounter[OrderIdx]; 721 assert(NewOrder[NewIdx] == RootSize && 722 "The order index should not be written already."); 723 NewOrder[NewIdx] = I; 724 } 725 std::swap(Order, NewOrder); 726 } 727 assert(Order.size() == RootSize && 728 "Root node is expected or the size of the order must be the same as " 729 "the number of elements in the root node."); 730 assert(llvm::all_of(Order, 731 [RootSize](unsigned Val) { return Val != RootSize; }) && 732 "All indices must be initialized"); 733 } 734 735 /// \return The vector element size in bits to use when vectorizing the 736 /// expression tree ending at \p V. If V is a store, the size is the width of 737 /// the stored value. Otherwise, the size is the width of the largest loaded 738 /// value reaching V. This method is used by the vectorizer to calculate 739 /// vectorization factors. 740 unsigned getVectorElementSize(Value *V); 741 742 /// Compute the minimum type sizes required to represent the entries in a 743 /// vectorizable tree. 744 void computeMinimumValueSizes(); 745 746 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 747 unsigned getMaxVecRegSize() const { 748 return MaxVecRegSize; 749 } 750 751 // \returns minimum vector register size as set by cl::opt. 752 unsigned getMinVecRegSize() const { 753 return MinVecRegSize; 754 } 755 756 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 757 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 758 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 759 return MaxVF ? MaxVF : UINT_MAX; 760 } 761 762 /// Check if homogeneous aggregate is isomorphic to some VectorType. 763 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 764 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 765 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 766 /// 767 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 768 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 769 770 /// \returns True if the VectorizableTree is both tiny and not fully 771 /// vectorizable. We do not vectorize such trees. 772 bool isTreeTinyAndNotFullyVectorizable() const; 773 774 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 775 /// can be load combined in the backend. Load combining may not be allowed in 776 /// the IR optimizer, so we do not want to alter the pattern. For example, 777 /// partially transforming a scalar bswap() pattern into vector code is 778 /// effectively impossible for the backend to undo. 779 /// TODO: If load combining is allowed in the IR optimizer, this analysis 780 /// may not be necessary. 781 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 782 783 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 784 /// can be load combined in the backend. Load combining may not be allowed in 785 /// the IR optimizer, so we do not want to alter the pattern. For example, 786 /// partially transforming a scalar bswap() pattern into vector code is 787 /// effectively impossible for the backend to undo. 788 /// TODO: If load combining is allowed in the IR optimizer, this analysis 789 /// may not be necessary. 790 bool isLoadCombineCandidate() const; 791 792 OptimizationRemarkEmitter *getORE() { return ORE; } 793 794 /// This structure holds any data we need about the edges being traversed 795 /// during buildTree_rec(). We keep track of: 796 /// (i) the user TreeEntry index, and 797 /// (ii) the index of the edge. 798 struct EdgeInfo { 799 EdgeInfo() = default; 800 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 801 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 802 /// The user TreeEntry. 803 TreeEntry *UserTE = nullptr; 804 /// The operand index of the use. 805 unsigned EdgeIdx = UINT_MAX; 806 #ifndef NDEBUG 807 friend inline raw_ostream &operator<<(raw_ostream &OS, 808 const BoUpSLP::EdgeInfo &EI) { 809 EI.dump(OS); 810 return OS; 811 } 812 /// Debug print. 813 void dump(raw_ostream &OS) const { 814 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 815 << " EdgeIdx:" << EdgeIdx << "}"; 816 } 817 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 818 #endif 819 }; 820 821 /// A helper data structure to hold the operands of a vector of instructions. 822 /// This supports a fixed vector length for all operand vectors. 823 class VLOperands { 824 /// For each operand we need (i) the value, and (ii) the opcode that it 825 /// would be attached to if the expression was in a left-linearized form. 826 /// This is required to avoid illegal operand reordering. 827 /// For example: 828 /// \verbatim 829 /// 0 Op1 830 /// |/ 831 /// Op1 Op2 Linearized + Op2 832 /// \ / ----------> |/ 833 /// - - 834 /// 835 /// Op1 - Op2 (0 + Op1) - Op2 836 /// \endverbatim 837 /// 838 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 839 /// 840 /// Another way to think of this is to track all the operations across the 841 /// path from the operand all the way to the root of the tree and to 842 /// calculate the operation that corresponds to this path. For example, the 843 /// path from Op2 to the root crosses the RHS of the '-', therefore the 844 /// corresponding operation is a '-' (which matches the one in the 845 /// linearized tree, as shown above). 846 /// 847 /// For lack of a better term, we refer to this operation as Accumulated 848 /// Path Operation (APO). 849 struct OperandData { 850 OperandData() = default; 851 OperandData(Value *V, bool APO, bool IsUsed) 852 : V(V), APO(APO), IsUsed(IsUsed) {} 853 /// The operand value. 854 Value *V = nullptr; 855 /// TreeEntries only allow a single opcode, or an alternate sequence of 856 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 857 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 858 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 859 /// (e.g., Add/Mul) 860 bool APO = false; 861 /// Helper data for the reordering function. 862 bool IsUsed = false; 863 }; 864 865 /// During operand reordering, we are trying to select the operand at lane 866 /// that matches best with the operand at the neighboring lane. Our 867 /// selection is based on the type of value we are looking for. For example, 868 /// if the neighboring lane has a load, we need to look for a load that is 869 /// accessing a consecutive address. These strategies are summarized in the 870 /// 'ReorderingMode' enumerator. 871 enum class ReorderingMode { 872 Load, ///< Matching loads to consecutive memory addresses 873 Opcode, ///< Matching instructions based on opcode (same or alternate) 874 Constant, ///< Matching constants 875 Splat, ///< Matching the same instruction multiple times (broadcast) 876 Failed, ///< We failed to create a vectorizable group 877 }; 878 879 using OperandDataVec = SmallVector<OperandData, 2>; 880 881 /// A vector of operand vectors. 882 SmallVector<OperandDataVec, 4> OpsVec; 883 884 const DataLayout &DL; 885 ScalarEvolution &SE; 886 const BoUpSLP &R; 887 888 /// \returns the operand data at \p OpIdx and \p Lane. 889 OperandData &getData(unsigned OpIdx, unsigned Lane) { 890 return OpsVec[OpIdx][Lane]; 891 } 892 893 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 894 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 895 return OpsVec[OpIdx][Lane]; 896 } 897 898 /// Clears the used flag for all entries. 899 void clearUsed() { 900 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 901 OpIdx != NumOperands; ++OpIdx) 902 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 903 ++Lane) 904 OpsVec[OpIdx][Lane].IsUsed = false; 905 } 906 907 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 908 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 909 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 910 } 911 912 // The hard-coded scores listed here are not very important. When computing 913 // the scores of matching one sub-tree with another, we are basically 914 // counting the number of values that are matching. So even if all scores 915 // are set to 1, we would still get a decent matching result. 916 // However, sometimes we have to break ties. For example we may have to 917 // choose between matching loads vs matching opcodes. This is what these 918 // scores are helping us with: they provide the order of preference. 919 920 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 921 static const int ScoreConsecutiveLoads = 3; 922 /// ExtractElementInst from same vector and consecutive indexes. 923 static const int ScoreConsecutiveExtracts = 3; 924 /// Constants. 925 static const int ScoreConstants = 2; 926 /// Instructions with the same opcode. 927 static const int ScoreSameOpcode = 2; 928 /// Instructions with alt opcodes (e.g, add + sub). 929 static const int ScoreAltOpcodes = 1; 930 /// Identical instructions (a.k.a. splat or broadcast). 931 static const int ScoreSplat = 1; 932 /// Matching with an undef is preferable to failing. 933 static const int ScoreUndef = 1; 934 /// Score for failing to find a decent match. 935 static const int ScoreFail = 0; 936 /// User exteranl to the vectorized code. 937 static const int ExternalUseCost = 1; 938 /// The user is internal but in a different lane. 939 static const int UserInDiffLaneCost = ExternalUseCost; 940 941 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 942 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 943 ScalarEvolution &SE) { 944 auto *LI1 = dyn_cast<LoadInst>(V1); 945 auto *LI2 = dyn_cast<LoadInst>(V2); 946 if (LI1 && LI2) { 947 if (LI1->getParent() != LI2->getParent()) 948 return VLOperands::ScoreFail; 949 950 Optional<int> Dist = 951 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(), 952 DL, SE, /*StrictCheck=*/true); 953 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 954 : VLOperands::ScoreFail; 955 } 956 957 auto *C1 = dyn_cast<Constant>(V1); 958 auto *C2 = dyn_cast<Constant>(V2); 959 if (C1 && C2) 960 return VLOperands::ScoreConstants; 961 962 // Extracts from consecutive indexes of the same vector better score as 963 // the extracts could be optimized away. 964 Value *EV; 965 ConstantInt *Ex1Idx, *Ex2Idx; 966 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 967 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 968 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 969 return VLOperands::ScoreConsecutiveExtracts; 970 971 auto *I1 = dyn_cast<Instruction>(V1); 972 auto *I2 = dyn_cast<Instruction>(V2); 973 if (I1 && I2) { 974 if (I1 == I2) 975 return VLOperands::ScoreSplat; 976 InstructionsState S = getSameOpcode({I1, I2}); 977 // Note: Only consider instructions with <= 2 operands to avoid 978 // complexity explosion. 979 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 980 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 981 : VLOperands::ScoreSameOpcode; 982 } 983 984 if (isa<UndefValue>(V2)) 985 return VLOperands::ScoreUndef; 986 987 return VLOperands::ScoreFail; 988 } 989 990 /// Holds the values and their lane that are taking part in the look-ahead 991 /// score calculation. This is used in the external uses cost calculation. 992 SmallDenseMap<Value *, int> InLookAheadValues; 993 994 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 995 /// either external to the vectorized code, or require shuffling. 996 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 997 const std::pair<Value *, int> &RHS) { 998 int Cost = 0; 999 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1000 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1001 Value *V = Values[Idx].first; 1002 if (isa<Constant>(V)) { 1003 // Since this is a function pass, it doesn't make semantic sense to 1004 // walk the users of a subclass of Constant. The users could be in 1005 // another function, or even another module that happens to be in 1006 // the same LLVMContext. 1007 continue; 1008 } 1009 1010 // Calculate the absolute lane, using the minimum relative lane of LHS 1011 // and RHS as base and Idx as the offset. 1012 int Ln = std::min(LHS.second, RHS.second) + Idx; 1013 assert(Ln >= 0 && "Bad lane calculation"); 1014 unsigned UsersBudget = LookAheadUsersBudget; 1015 for (User *U : V->users()) { 1016 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1017 // The user is in the VectorizableTree. Check if we need to insert. 1018 auto It = llvm::find(UserTE->Scalars, U); 1019 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1020 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1021 assert(UserLn >= 0 && "Bad lane"); 1022 if (UserLn != Ln) 1023 Cost += UserInDiffLaneCost; 1024 } else { 1025 // Check if the user is in the look-ahead code. 1026 auto It2 = InLookAheadValues.find(U); 1027 if (It2 != InLookAheadValues.end()) { 1028 // The user is in the look-ahead code. Check the lane. 1029 if (It2->second != Ln) 1030 Cost += UserInDiffLaneCost; 1031 } else { 1032 // The user is neither in SLP tree nor in the look-ahead code. 1033 Cost += ExternalUseCost; 1034 } 1035 } 1036 // Limit the number of visited uses to cap compilation time. 1037 if (--UsersBudget == 0) 1038 break; 1039 } 1040 } 1041 return Cost; 1042 } 1043 1044 /// Go through the operands of \p LHS and \p RHS recursively until \p 1045 /// MaxLevel, and return the cummulative score. For example: 1046 /// \verbatim 1047 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1048 /// \ / \ / \ / \ / 1049 /// + + + + 1050 /// G1 G2 G3 G4 1051 /// \endverbatim 1052 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1053 /// each level recursively, accumulating the score. It starts from matching 1054 /// the additions at level 0, then moves on to the loads (level 1). The 1055 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1056 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1057 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1058 /// Please note that the order of the operands does not matter, as we 1059 /// evaluate the score of all profitable combinations of operands. In 1060 /// other words the score of G1 and G4 is the same as G1 and G2. This 1061 /// heuristic is based on ideas described in: 1062 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1063 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1064 /// Luís F. W. Góes 1065 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1066 const std::pair<Value *, int> &RHS, int CurrLevel, 1067 int MaxLevel) { 1068 1069 Value *V1 = LHS.first; 1070 Value *V2 = RHS.first; 1071 // Get the shallow score of V1 and V2. 1072 int ShallowScoreAtThisLevel = 1073 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1074 getExternalUsesCost(LHS, RHS)); 1075 int Lane1 = LHS.second; 1076 int Lane2 = RHS.second; 1077 1078 // If reached MaxLevel, 1079 // or if V1 and V2 are not instructions, 1080 // or if they are SPLAT, 1081 // or if they are not consecutive, early return the current cost. 1082 auto *I1 = dyn_cast<Instruction>(V1); 1083 auto *I2 = dyn_cast<Instruction>(V2); 1084 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1085 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1086 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1087 return ShallowScoreAtThisLevel; 1088 assert(I1 && I2 && "Should have early exited."); 1089 1090 // Keep track of in-tree values for determining the external-use cost. 1091 InLookAheadValues[V1] = Lane1; 1092 InLookAheadValues[V2] = Lane2; 1093 1094 // Contains the I2 operand indexes that got matched with I1 operands. 1095 SmallSet<unsigned, 4> Op2Used; 1096 1097 // Recursion towards the operands of I1 and I2. We are trying all possbile 1098 // operand pairs, and keeping track of the best score. 1099 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1100 OpIdx1 != NumOperands1; ++OpIdx1) { 1101 // Try to pair op1I with the best operand of I2. 1102 int MaxTmpScore = 0; 1103 unsigned MaxOpIdx2 = 0; 1104 bool FoundBest = false; 1105 // If I2 is commutative try all combinations. 1106 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1107 unsigned ToIdx = isCommutative(I2) 1108 ? I2->getNumOperands() 1109 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1110 assert(FromIdx <= ToIdx && "Bad index"); 1111 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1112 // Skip operands already paired with OpIdx1. 1113 if (Op2Used.count(OpIdx2)) 1114 continue; 1115 // Recursively calculate the cost at each level 1116 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1117 {I2->getOperand(OpIdx2), Lane2}, 1118 CurrLevel + 1, MaxLevel); 1119 // Look for the best score. 1120 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1121 MaxTmpScore = TmpScore; 1122 MaxOpIdx2 = OpIdx2; 1123 FoundBest = true; 1124 } 1125 } 1126 if (FoundBest) { 1127 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1128 Op2Used.insert(MaxOpIdx2); 1129 ShallowScoreAtThisLevel += MaxTmpScore; 1130 } 1131 } 1132 return ShallowScoreAtThisLevel; 1133 } 1134 1135 /// \Returns the look-ahead score, which tells us how much the sub-trees 1136 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1137 /// score. This helps break ties in an informed way when we cannot decide on 1138 /// the order of the operands by just considering the immediate 1139 /// predecessors. 1140 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1141 const std::pair<Value *, int> &RHS) { 1142 InLookAheadValues.clear(); 1143 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1144 } 1145 1146 // Search all operands in Ops[*][Lane] for the one that matches best 1147 // Ops[OpIdx][LastLane] and return its opreand index. 1148 // If no good match can be found, return None. 1149 Optional<unsigned> 1150 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1151 ArrayRef<ReorderingMode> ReorderingModes) { 1152 unsigned NumOperands = getNumOperands(); 1153 1154 // The operand of the previous lane at OpIdx. 1155 Value *OpLastLane = getData(OpIdx, LastLane).V; 1156 1157 // Our strategy mode for OpIdx. 1158 ReorderingMode RMode = ReorderingModes[OpIdx]; 1159 1160 // The linearized opcode of the operand at OpIdx, Lane. 1161 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1162 1163 // The best operand index and its score. 1164 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1165 // are using the score to differentiate between the two. 1166 struct BestOpData { 1167 Optional<unsigned> Idx = None; 1168 unsigned Score = 0; 1169 } BestOp; 1170 1171 // Iterate through all unused operands and look for the best. 1172 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1173 // Get the operand at Idx and Lane. 1174 OperandData &OpData = getData(Idx, Lane); 1175 Value *Op = OpData.V; 1176 bool OpAPO = OpData.APO; 1177 1178 // Skip already selected operands. 1179 if (OpData.IsUsed) 1180 continue; 1181 1182 // Skip if we are trying to move the operand to a position with a 1183 // different opcode in the linearized tree form. This would break the 1184 // semantics. 1185 if (OpAPO != OpIdxAPO) 1186 continue; 1187 1188 // Look for an operand that matches the current mode. 1189 switch (RMode) { 1190 case ReorderingMode::Load: 1191 case ReorderingMode::Constant: 1192 case ReorderingMode::Opcode: { 1193 bool LeftToRight = Lane > LastLane; 1194 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1195 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1196 unsigned Score = 1197 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1198 if (Score > BestOp.Score) { 1199 BestOp.Idx = Idx; 1200 BestOp.Score = Score; 1201 } 1202 break; 1203 } 1204 case ReorderingMode::Splat: 1205 if (Op == OpLastLane) 1206 BestOp.Idx = Idx; 1207 break; 1208 case ReorderingMode::Failed: 1209 return None; 1210 } 1211 } 1212 1213 if (BestOp.Idx) { 1214 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1215 return BestOp.Idx; 1216 } 1217 // If we could not find a good match return None. 1218 return None; 1219 } 1220 1221 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1222 /// reordering from. This is the one which has the least number of operands 1223 /// that can freely move about. 1224 unsigned getBestLaneToStartReordering() const { 1225 unsigned BestLane = 0; 1226 unsigned Min = UINT_MAX; 1227 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1228 ++Lane) { 1229 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1230 if (NumFreeOps < Min) { 1231 Min = NumFreeOps; 1232 BestLane = Lane; 1233 } 1234 } 1235 return BestLane; 1236 } 1237 1238 /// \Returns the maximum number of operands that are allowed to be reordered 1239 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1240 /// start operand reordering. 1241 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1242 unsigned CntTrue = 0; 1243 unsigned NumOperands = getNumOperands(); 1244 // Operands with the same APO can be reordered. We therefore need to count 1245 // how many of them we have for each APO, like this: Cnt[APO] = x. 1246 // Since we only have two APOs, namely true and false, we can avoid using 1247 // a map. Instead we can simply count the number of operands that 1248 // correspond to one of them (in this case the 'true' APO), and calculate 1249 // the other by subtracting it from the total number of operands. 1250 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1251 if (getData(OpIdx, Lane).APO) 1252 ++CntTrue; 1253 unsigned CntFalse = NumOperands - CntTrue; 1254 return std::max(CntTrue, CntFalse); 1255 } 1256 1257 /// Go through the instructions in VL and append their operands. 1258 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1259 assert(!VL.empty() && "Bad VL"); 1260 assert((empty() || VL.size() == getNumLanes()) && 1261 "Expected same number of lanes"); 1262 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1263 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1264 OpsVec.resize(NumOperands); 1265 unsigned NumLanes = VL.size(); 1266 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1267 OpsVec[OpIdx].resize(NumLanes); 1268 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1269 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1270 // Our tree has just 3 nodes: the root and two operands. 1271 // It is therefore trivial to get the APO. We only need to check the 1272 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1273 // RHS operand. The LHS operand of both add and sub is never attached 1274 // to an inversese operation in the linearized form, therefore its APO 1275 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1276 1277 // Since operand reordering is performed on groups of commutative 1278 // operations or alternating sequences (e.g., +, -), we can safely 1279 // tell the inverse operations by checking commutativity. 1280 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1281 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1282 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1283 APO, false}; 1284 } 1285 } 1286 } 1287 1288 /// \returns the number of operands. 1289 unsigned getNumOperands() const { return OpsVec.size(); } 1290 1291 /// \returns the number of lanes. 1292 unsigned getNumLanes() const { return OpsVec[0].size(); } 1293 1294 /// \returns the operand value at \p OpIdx and \p Lane. 1295 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1296 return getData(OpIdx, Lane).V; 1297 } 1298 1299 /// \returns true if the data structure is empty. 1300 bool empty() const { return OpsVec.empty(); } 1301 1302 /// Clears the data. 1303 void clear() { OpsVec.clear(); } 1304 1305 /// \Returns true if there are enough operands identical to \p Op to fill 1306 /// the whole vector. 1307 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1308 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1309 bool OpAPO = getData(OpIdx, Lane).APO; 1310 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1311 if (Ln == Lane) 1312 continue; 1313 // This is set to true if we found a candidate for broadcast at Lane. 1314 bool FoundCandidate = false; 1315 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1316 OperandData &Data = getData(OpI, Ln); 1317 if (Data.APO != OpAPO || Data.IsUsed) 1318 continue; 1319 if (Data.V == Op) { 1320 FoundCandidate = true; 1321 Data.IsUsed = true; 1322 break; 1323 } 1324 } 1325 if (!FoundCandidate) 1326 return false; 1327 } 1328 return true; 1329 } 1330 1331 public: 1332 /// Initialize with all the operands of the instruction vector \p RootVL. 1333 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1334 ScalarEvolution &SE, const BoUpSLP &R) 1335 : DL(DL), SE(SE), R(R) { 1336 // Append all the operands of RootVL. 1337 appendOperandsOfVL(RootVL); 1338 } 1339 1340 /// \Returns a value vector with the operands across all lanes for the 1341 /// opearnd at \p OpIdx. 1342 ValueList getVL(unsigned OpIdx) const { 1343 ValueList OpVL(OpsVec[OpIdx].size()); 1344 assert(OpsVec[OpIdx].size() == getNumLanes() && 1345 "Expected same num of lanes across all operands"); 1346 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1347 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1348 return OpVL; 1349 } 1350 1351 // Performs operand reordering for 2 or more operands. 1352 // The original operands are in OrigOps[OpIdx][Lane]. 1353 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1354 void reorder() { 1355 unsigned NumOperands = getNumOperands(); 1356 unsigned NumLanes = getNumLanes(); 1357 // Each operand has its own mode. We are using this mode to help us select 1358 // the instructions for each lane, so that they match best with the ones 1359 // we have selected so far. 1360 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1361 1362 // This is a greedy single-pass algorithm. We are going over each lane 1363 // once and deciding on the best order right away with no back-tracking. 1364 // However, in order to increase its effectiveness, we start with the lane 1365 // that has operands that can move the least. For example, given the 1366 // following lanes: 1367 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1368 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1369 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1370 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1371 // we will start at Lane 1, since the operands of the subtraction cannot 1372 // be reordered. Then we will visit the rest of the lanes in a circular 1373 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1374 1375 // Find the first lane that we will start our search from. 1376 unsigned FirstLane = getBestLaneToStartReordering(); 1377 1378 // Initialize the modes. 1379 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1380 Value *OpLane0 = getValue(OpIdx, FirstLane); 1381 // Keep track if we have instructions with all the same opcode on one 1382 // side. 1383 if (isa<LoadInst>(OpLane0)) 1384 ReorderingModes[OpIdx] = ReorderingMode::Load; 1385 else if (isa<Instruction>(OpLane0)) { 1386 // Check if OpLane0 should be broadcast. 1387 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1388 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1389 else 1390 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1391 } 1392 else if (isa<Constant>(OpLane0)) 1393 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1394 else if (isa<Argument>(OpLane0)) 1395 // Our best hope is a Splat. It may save some cost in some cases. 1396 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1397 else 1398 // NOTE: This should be unreachable. 1399 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1400 } 1401 1402 // If the initial strategy fails for any of the operand indexes, then we 1403 // perform reordering again in a second pass. This helps avoid assigning 1404 // high priority to the failed strategy, and should improve reordering for 1405 // the non-failed operand indexes. 1406 for (int Pass = 0; Pass != 2; ++Pass) { 1407 // Skip the second pass if the first pass did not fail. 1408 bool StrategyFailed = false; 1409 // Mark all operand data as free to use. 1410 clearUsed(); 1411 // We keep the original operand order for the FirstLane, so reorder the 1412 // rest of the lanes. We are visiting the nodes in a circular fashion, 1413 // using FirstLane as the center point and increasing the radius 1414 // distance. 1415 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1416 // Visit the lane on the right and then the lane on the left. 1417 for (int Direction : {+1, -1}) { 1418 int Lane = FirstLane + Direction * Distance; 1419 if (Lane < 0 || Lane >= (int)NumLanes) 1420 continue; 1421 int LastLane = Lane - Direction; 1422 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1423 "Out of bounds"); 1424 // Look for a good match for each operand. 1425 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1426 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1427 Optional<unsigned> BestIdx = 1428 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1429 // By not selecting a value, we allow the operands that follow to 1430 // select a better matching value. We will get a non-null value in 1431 // the next run of getBestOperand(). 1432 if (BestIdx) { 1433 // Swap the current operand with the one returned by 1434 // getBestOperand(). 1435 swap(OpIdx, BestIdx.getValue(), Lane); 1436 } else { 1437 // We failed to find a best operand, set mode to 'Failed'. 1438 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1439 // Enable the second pass. 1440 StrategyFailed = true; 1441 } 1442 } 1443 } 1444 } 1445 // Skip second pass if the strategy did not fail. 1446 if (!StrategyFailed) 1447 break; 1448 } 1449 } 1450 1451 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1452 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 return "Load"; 1456 case ReorderingMode::Opcode: 1457 return "Opcode"; 1458 case ReorderingMode::Constant: 1459 return "Constant"; 1460 case ReorderingMode::Splat: 1461 return "Splat"; 1462 case ReorderingMode::Failed: 1463 return "Failed"; 1464 } 1465 llvm_unreachable("Unimplemented Reordering Type"); 1466 } 1467 1468 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1469 raw_ostream &OS) { 1470 return OS << getModeStr(RMode); 1471 } 1472 1473 /// Debug print. 1474 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1475 printMode(RMode, dbgs()); 1476 } 1477 1478 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1479 return printMode(RMode, OS); 1480 } 1481 1482 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1483 const unsigned Indent = 2; 1484 unsigned Cnt = 0; 1485 for (const OperandDataVec &OpDataVec : OpsVec) { 1486 OS << "Operand " << Cnt++ << "\n"; 1487 for (const OperandData &OpData : OpDataVec) { 1488 OS.indent(Indent) << "{"; 1489 if (Value *V = OpData.V) 1490 OS << *V; 1491 else 1492 OS << "null"; 1493 OS << ", APO:" << OpData.APO << "}\n"; 1494 } 1495 OS << "\n"; 1496 } 1497 return OS; 1498 } 1499 1500 /// Debug print. 1501 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1502 #endif 1503 }; 1504 1505 /// Checks if the instruction is marked for deletion. 1506 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1507 1508 /// Marks values operands for later deletion by replacing them with Undefs. 1509 void eraseInstructions(ArrayRef<Value *> AV); 1510 1511 ~BoUpSLP(); 1512 1513 private: 1514 /// Checks if all users of \p I are the part of the vectorization tree. 1515 bool areAllUsersVectorized(Instruction *I) const; 1516 1517 /// \returns the cost of the vectorizable entry. 1518 InstructionCost getEntryCost(TreeEntry *E); 1519 1520 /// This is the recursive part of buildTree. 1521 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1522 const EdgeInfo &EI); 1523 1524 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1525 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1526 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1527 /// returns false, setting \p CurrentOrder to either an empty vector or a 1528 /// non-identity permutation that allows to reuse extract instructions. 1529 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1530 SmallVectorImpl<unsigned> &CurrentOrder) const; 1531 1532 /// Vectorize a single entry in the tree. 1533 Value *vectorizeTree(TreeEntry *E); 1534 1535 /// Vectorize a single entry in the tree, starting in \p VL. 1536 Value *vectorizeTree(ArrayRef<Value *> VL); 1537 1538 /// \returns the scalarization cost for this type. Scalarization in this 1539 /// context means the creation of vectors from a group of scalars. 1540 InstructionCost 1541 getGatherCost(FixedVectorType *Ty, 1542 const DenseSet<unsigned> &ShuffledIndices) const; 1543 1544 /// \returns the scalarization cost for this list of values. Assuming that 1545 /// this subtree gets vectorized, we may need to extract the values from the 1546 /// roots. This method calculates the cost of extracting the values. 1547 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1548 1549 /// Set the Builder insert point to one after the last instruction in 1550 /// the bundle 1551 void setInsertPointAfterBundle(TreeEntry *E); 1552 1553 /// \returns a vector from a collection of scalars in \p VL. 1554 Value *gather(ArrayRef<Value *> VL); 1555 1556 /// \returns whether the VectorizableTree is fully vectorizable and will 1557 /// be beneficial even the tree height is tiny. 1558 bool isFullyVectorizableTinyTree() const; 1559 1560 /// Reorder commutative or alt operands to get better probability of 1561 /// generating vectorized code. 1562 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1563 SmallVectorImpl<Value *> &Left, 1564 SmallVectorImpl<Value *> &Right, 1565 const DataLayout &DL, 1566 ScalarEvolution &SE, 1567 const BoUpSLP &R); 1568 struct TreeEntry { 1569 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1570 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1571 1572 /// \returns true if the scalars in VL are equal to this entry. 1573 bool isSame(ArrayRef<Value *> VL) const { 1574 if (VL.size() == Scalars.size()) 1575 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1576 return VL.size() == ReuseShuffleIndices.size() && 1577 std::equal( 1578 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1579 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1580 } 1581 1582 /// A vector of scalars. 1583 ValueList Scalars; 1584 1585 /// The Scalars are vectorized into this value. It is initialized to Null. 1586 Value *VectorizedValue = nullptr; 1587 1588 /// Do we need to gather this sequence or vectorize it 1589 /// (either with vector instruction or with scatter/gather 1590 /// intrinsics for store/load)? 1591 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1592 EntryState State; 1593 1594 /// Does this sequence require some shuffling? 1595 SmallVector<int, 4> ReuseShuffleIndices; 1596 1597 /// Does this entry require reordering? 1598 SmallVector<unsigned, 4> ReorderIndices; 1599 1600 /// Points back to the VectorizableTree. 1601 /// 1602 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1603 /// to be a pointer and needs to be able to initialize the child iterator. 1604 /// Thus we need a reference back to the container to translate the indices 1605 /// to entries. 1606 VecTreeTy &Container; 1607 1608 /// The TreeEntry index containing the user of this entry. We can actually 1609 /// have multiple users so the data structure is not truly a tree. 1610 SmallVector<EdgeInfo, 1> UserTreeIndices; 1611 1612 /// The index of this treeEntry in VectorizableTree. 1613 int Idx = -1; 1614 1615 private: 1616 /// The operands of each instruction in each lane Operands[op_index][lane]. 1617 /// Note: This helps avoid the replication of the code that performs the 1618 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1619 SmallVector<ValueList, 2> Operands; 1620 1621 /// The main/alternate instruction. 1622 Instruction *MainOp = nullptr; 1623 Instruction *AltOp = nullptr; 1624 1625 public: 1626 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1627 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1628 if (Operands.size() < OpIdx + 1) 1629 Operands.resize(OpIdx + 1); 1630 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1631 Operands[OpIdx].resize(Scalars.size()); 1632 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1633 Operands[OpIdx][Lane] = OpVL[Lane]; 1634 } 1635 1636 /// Set the operands of this bundle in their original order. 1637 void setOperandsInOrder() { 1638 assert(Operands.empty() && "Already initialized?"); 1639 auto *I0 = cast<Instruction>(Scalars[0]); 1640 Operands.resize(I0->getNumOperands()); 1641 unsigned NumLanes = Scalars.size(); 1642 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1643 OpIdx != NumOperands; ++OpIdx) { 1644 Operands[OpIdx].resize(NumLanes); 1645 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1646 auto *I = cast<Instruction>(Scalars[Lane]); 1647 assert(I->getNumOperands() == NumOperands && 1648 "Expected same number of operands"); 1649 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1650 } 1651 } 1652 } 1653 1654 /// \returns the \p OpIdx operand of this TreeEntry. 1655 ValueList &getOperand(unsigned OpIdx) { 1656 assert(OpIdx < Operands.size() && "Off bounds"); 1657 return Operands[OpIdx]; 1658 } 1659 1660 /// \returns the number of operands. 1661 unsigned getNumOperands() const { return Operands.size(); } 1662 1663 /// \return the single \p OpIdx operand. 1664 Value *getSingleOperand(unsigned OpIdx) const { 1665 assert(OpIdx < Operands.size() && "Off bounds"); 1666 assert(!Operands[OpIdx].empty() && "No operand available"); 1667 return Operands[OpIdx][0]; 1668 } 1669 1670 /// Some of the instructions in the list have alternate opcodes. 1671 bool isAltShuffle() const { 1672 return getOpcode() != getAltOpcode(); 1673 } 1674 1675 bool isOpcodeOrAlt(Instruction *I) const { 1676 unsigned CheckedOpcode = I->getOpcode(); 1677 return (getOpcode() == CheckedOpcode || 1678 getAltOpcode() == CheckedOpcode); 1679 } 1680 1681 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1682 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1683 /// \p OpValue. 1684 Value *isOneOf(Value *Op) const { 1685 auto *I = dyn_cast<Instruction>(Op); 1686 if (I && isOpcodeOrAlt(I)) 1687 return Op; 1688 return MainOp; 1689 } 1690 1691 void setOperations(const InstructionsState &S) { 1692 MainOp = S.MainOp; 1693 AltOp = S.AltOp; 1694 } 1695 1696 Instruction *getMainOp() const { 1697 return MainOp; 1698 } 1699 1700 Instruction *getAltOp() const { 1701 return AltOp; 1702 } 1703 1704 /// The main/alternate opcodes for the list of instructions. 1705 unsigned getOpcode() const { 1706 return MainOp ? MainOp->getOpcode() : 0; 1707 } 1708 1709 unsigned getAltOpcode() const { 1710 return AltOp ? AltOp->getOpcode() : 0; 1711 } 1712 1713 /// Update operations state of this entry if reorder occurred. 1714 bool updateStateIfReorder() { 1715 if (ReorderIndices.empty()) 1716 return false; 1717 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1718 setOperations(S); 1719 return true; 1720 } 1721 1722 #ifndef NDEBUG 1723 /// Debug printer. 1724 LLVM_DUMP_METHOD void dump() const { 1725 dbgs() << Idx << ".\n"; 1726 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1727 dbgs() << "Operand " << OpI << ":\n"; 1728 for (const Value *V : Operands[OpI]) 1729 dbgs().indent(2) << *V << "\n"; 1730 } 1731 dbgs() << "Scalars: \n"; 1732 for (Value *V : Scalars) 1733 dbgs().indent(2) << *V << "\n"; 1734 dbgs() << "State: "; 1735 switch (State) { 1736 case Vectorize: 1737 dbgs() << "Vectorize\n"; 1738 break; 1739 case ScatterVectorize: 1740 dbgs() << "ScatterVectorize\n"; 1741 break; 1742 case NeedToGather: 1743 dbgs() << "NeedToGather\n"; 1744 break; 1745 } 1746 dbgs() << "MainOp: "; 1747 if (MainOp) 1748 dbgs() << *MainOp << "\n"; 1749 else 1750 dbgs() << "NULL\n"; 1751 dbgs() << "AltOp: "; 1752 if (AltOp) 1753 dbgs() << *AltOp << "\n"; 1754 else 1755 dbgs() << "NULL\n"; 1756 dbgs() << "VectorizedValue: "; 1757 if (VectorizedValue) 1758 dbgs() << *VectorizedValue << "\n"; 1759 else 1760 dbgs() << "NULL\n"; 1761 dbgs() << "ReuseShuffleIndices: "; 1762 if (ReuseShuffleIndices.empty()) 1763 dbgs() << "Empty"; 1764 else 1765 for (unsigned ReuseIdx : ReuseShuffleIndices) 1766 dbgs() << ReuseIdx << ", "; 1767 dbgs() << "\n"; 1768 dbgs() << "ReorderIndices: "; 1769 for (unsigned ReorderIdx : ReorderIndices) 1770 dbgs() << ReorderIdx << ", "; 1771 dbgs() << "\n"; 1772 dbgs() << "UserTreeIndices: "; 1773 for (const auto &EInfo : UserTreeIndices) 1774 dbgs() << EInfo << ", "; 1775 dbgs() << "\n"; 1776 } 1777 #endif 1778 }; 1779 1780 #ifndef NDEBUG 1781 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1782 InstructionCost VecCost, 1783 InstructionCost ScalarCost) const { 1784 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1785 dbgs() << "SLP: Costs:\n"; 1786 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1787 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1788 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1789 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1790 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1791 } 1792 #endif 1793 1794 /// Create a new VectorizableTree entry. 1795 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1796 const InstructionsState &S, 1797 const EdgeInfo &UserTreeIdx, 1798 ArrayRef<unsigned> ReuseShuffleIndices = None, 1799 ArrayRef<unsigned> ReorderIndices = None) { 1800 TreeEntry::EntryState EntryState = 1801 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1802 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1803 ReuseShuffleIndices, ReorderIndices); 1804 } 1805 1806 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1807 TreeEntry::EntryState EntryState, 1808 Optional<ScheduleData *> Bundle, 1809 const InstructionsState &S, 1810 const EdgeInfo &UserTreeIdx, 1811 ArrayRef<unsigned> ReuseShuffleIndices = None, 1812 ArrayRef<unsigned> ReorderIndices = None) { 1813 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1814 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1815 "Need to vectorize gather entry?"); 1816 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1817 TreeEntry *Last = VectorizableTree.back().get(); 1818 Last->Idx = VectorizableTree.size() - 1; 1819 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1820 Last->State = EntryState; 1821 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1822 ReuseShuffleIndices.end()); 1823 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1824 Last->setOperations(S); 1825 if (Last->State != TreeEntry::NeedToGather) { 1826 for (Value *V : VL) { 1827 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1828 ScalarToTreeEntry[V] = Last; 1829 } 1830 // Update the scheduler bundle to point to this TreeEntry. 1831 unsigned Lane = 0; 1832 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1833 BundleMember = BundleMember->NextInBundle) { 1834 BundleMember->TE = Last; 1835 BundleMember->Lane = Lane; 1836 ++Lane; 1837 } 1838 assert((!Bundle.getValue() || Lane == VL.size()) && 1839 "Bundle and VL out of sync"); 1840 } else { 1841 MustGather.insert(VL.begin(), VL.end()); 1842 } 1843 1844 if (UserTreeIdx.UserTE) 1845 Last->UserTreeIndices.push_back(UserTreeIdx); 1846 1847 return Last; 1848 } 1849 1850 /// -- Vectorization State -- 1851 /// Holds all of the tree entries. 1852 TreeEntry::VecTreeTy VectorizableTree; 1853 1854 #ifndef NDEBUG 1855 /// Debug printer. 1856 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1857 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1858 VectorizableTree[Id]->dump(); 1859 dbgs() << "\n"; 1860 } 1861 } 1862 #endif 1863 1864 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1865 1866 const TreeEntry *getTreeEntry(Value *V) const { 1867 return ScalarToTreeEntry.lookup(V); 1868 } 1869 1870 /// Maps a specific scalar to its tree entry. 1871 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1872 1873 /// Maps a value to the proposed vectorizable size. 1874 SmallDenseMap<Value *, unsigned> InstrElementSize; 1875 1876 /// A list of scalars that we found that we need to keep as scalars. 1877 ValueSet MustGather; 1878 1879 /// This POD struct describes one external user in the vectorized tree. 1880 struct ExternalUser { 1881 ExternalUser(Value *S, llvm::User *U, int L) 1882 : Scalar(S), User(U), Lane(L) {} 1883 1884 // Which scalar in our function. 1885 Value *Scalar; 1886 1887 // Which user that uses the scalar. 1888 llvm::User *User; 1889 1890 // Which lane does the scalar belong to. 1891 int Lane; 1892 }; 1893 using UserList = SmallVector<ExternalUser, 16>; 1894 1895 /// Checks if two instructions may access the same memory. 1896 /// 1897 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1898 /// is invariant in the calling loop. 1899 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1900 Instruction *Inst2) { 1901 // First check if the result is already in the cache. 1902 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1903 Optional<bool> &result = AliasCache[key]; 1904 if (result.hasValue()) { 1905 return result.getValue(); 1906 } 1907 MemoryLocation Loc2 = getLocation(Inst2, AA); 1908 bool aliased = true; 1909 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1910 // Do the alias check. 1911 aliased = AA->alias(Loc1, Loc2); 1912 } 1913 // Store the result in the cache. 1914 result = aliased; 1915 return aliased; 1916 } 1917 1918 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1919 1920 /// Cache for alias results. 1921 /// TODO: consider moving this to the AliasAnalysis itself. 1922 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1923 1924 /// Removes an instruction from its block and eventually deletes it. 1925 /// It's like Instruction::eraseFromParent() except that the actual deletion 1926 /// is delayed until BoUpSLP is destructed. 1927 /// This is required to ensure that there are no incorrect collisions in the 1928 /// AliasCache, which can happen if a new instruction is allocated at the 1929 /// same address as a previously deleted instruction. 1930 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1931 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1932 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1933 } 1934 1935 /// Temporary store for deleted instructions. Instructions will be deleted 1936 /// eventually when the BoUpSLP is destructed. 1937 DenseMap<Instruction *, bool> DeletedInstructions; 1938 1939 /// A list of values that need to extracted out of the tree. 1940 /// This list holds pairs of (Internal Scalar : External User). External User 1941 /// can be nullptr, it means that this Internal Scalar will be used later, 1942 /// after vectorization. 1943 UserList ExternalUses; 1944 1945 /// Values used only by @llvm.assume calls. 1946 SmallPtrSet<const Value *, 32> EphValues; 1947 1948 /// Holds all of the instructions that we gathered. 1949 SetVector<Instruction *> GatherSeq; 1950 1951 /// A list of blocks that we are going to CSE. 1952 SetVector<BasicBlock *> CSEBlocks; 1953 1954 /// Contains all scheduling relevant data for an instruction. 1955 /// A ScheduleData either represents a single instruction or a member of an 1956 /// instruction bundle (= a group of instructions which is combined into a 1957 /// vector instruction). 1958 struct ScheduleData { 1959 // The initial value for the dependency counters. It means that the 1960 // dependencies are not calculated yet. 1961 enum { InvalidDeps = -1 }; 1962 1963 ScheduleData() = default; 1964 1965 void init(int BlockSchedulingRegionID, Value *OpVal) { 1966 FirstInBundle = this; 1967 NextInBundle = nullptr; 1968 NextLoadStore = nullptr; 1969 IsScheduled = false; 1970 SchedulingRegionID = BlockSchedulingRegionID; 1971 UnscheduledDepsInBundle = UnscheduledDeps; 1972 clearDependencies(); 1973 OpValue = OpVal; 1974 TE = nullptr; 1975 Lane = -1; 1976 } 1977 1978 /// Returns true if the dependency information has been calculated. 1979 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1980 1981 /// Returns true for single instructions and for bundle representatives 1982 /// (= the head of a bundle). 1983 bool isSchedulingEntity() const { return FirstInBundle == this; } 1984 1985 /// Returns true if it represents an instruction bundle and not only a 1986 /// single instruction. 1987 bool isPartOfBundle() const { 1988 return NextInBundle != nullptr || FirstInBundle != this; 1989 } 1990 1991 /// Returns true if it is ready for scheduling, i.e. it has no more 1992 /// unscheduled depending instructions/bundles. 1993 bool isReady() const { 1994 assert(isSchedulingEntity() && 1995 "can't consider non-scheduling entity for ready list"); 1996 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1997 } 1998 1999 /// Modifies the number of unscheduled dependencies, also updating it for 2000 /// the whole bundle. 2001 int incrementUnscheduledDeps(int Incr) { 2002 UnscheduledDeps += Incr; 2003 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2004 } 2005 2006 /// Sets the number of unscheduled dependencies to the number of 2007 /// dependencies. 2008 void resetUnscheduledDeps() { 2009 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2010 } 2011 2012 /// Clears all dependency information. 2013 void clearDependencies() { 2014 Dependencies = InvalidDeps; 2015 resetUnscheduledDeps(); 2016 MemoryDependencies.clear(); 2017 } 2018 2019 void dump(raw_ostream &os) const { 2020 if (!isSchedulingEntity()) { 2021 os << "/ " << *Inst; 2022 } else if (NextInBundle) { 2023 os << '[' << *Inst; 2024 ScheduleData *SD = NextInBundle; 2025 while (SD) { 2026 os << ';' << *SD->Inst; 2027 SD = SD->NextInBundle; 2028 } 2029 os << ']'; 2030 } else { 2031 os << *Inst; 2032 } 2033 } 2034 2035 Instruction *Inst = nullptr; 2036 2037 /// Points to the head in an instruction bundle (and always to this for 2038 /// single instructions). 2039 ScheduleData *FirstInBundle = nullptr; 2040 2041 /// Single linked list of all instructions in a bundle. Null if it is a 2042 /// single instruction. 2043 ScheduleData *NextInBundle = nullptr; 2044 2045 /// Single linked list of all memory instructions (e.g. load, store, call) 2046 /// in the block - until the end of the scheduling region. 2047 ScheduleData *NextLoadStore = nullptr; 2048 2049 /// The dependent memory instructions. 2050 /// This list is derived on demand in calculateDependencies(). 2051 SmallVector<ScheduleData *, 4> MemoryDependencies; 2052 2053 /// This ScheduleData is in the current scheduling region if this matches 2054 /// the current SchedulingRegionID of BlockScheduling. 2055 int SchedulingRegionID = 0; 2056 2057 /// Used for getting a "good" final ordering of instructions. 2058 int SchedulingPriority = 0; 2059 2060 /// The number of dependencies. Constitutes of the number of users of the 2061 /// instruction plus the number of dependent memory instructions (if any). 2062 /// This value is calculated on demand. 2063 /// If InvalidDeps, the number of dependencies is not calculated yet. 2064 int Dependencies = InvalidDeps; 2065 2066 /// The number of dependencies minus the number of dependencies of scheduled 2067 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2068 /// for scheduling. 2069 /// Note that this is negative as long as Dependencies is not calculated. 2070 int UnscheduledDeps = InvalidDeps; 2071 2072 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2073 /// single instructions. 2074 int UnscheduledDepsInBundle = InvalidDeps; 2075 2076 /// True if this instruction is scheduled (or considered as scheduled in the 2077 /// dry-run). 2078 bool IsScheduled = false; 2079 2080 /// Opcode of the current instruction in the schedule data. 2081 Value *OpValue = nullptr; 2082 2083 /// The TreeEntry that this instruction corresponds to. 2084 TreeEntry *TE = nullptr; 2085 2086 /// The lane of this node in the TreeEntry. 2087 int Lane = -1; 2088 }; 2089 2090 #ifndef NDEBUG 2091 friend inline raw_ostream &operator<<(raw_ostream &os, 2092 const BoUpSLP::ScheduleData &SD) { 2093 SD.dump(os); 2094 return os; 2095 } 2096 #endif 2097 2098 friend struct GraphTraits<BoUpSLP *>; 2099 friend struct DOTGraphTraits<BoUpSLP *>; 2100 2101 /// Contains all scheduling data for a basic block. 2102 struct BlockScheduling { 2103 BlockScheduling(BasicBlock *BB) 2104 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2105 2106 void clear() { 2107 ReadyInsts.clear(); 2108 ScheduleStart = nullptr; 2109 ScheduleEnd = nullptr; 2110 FirstLoadStoreInRegion = nullptr; 2111 LastLoadStoreInRegion = nullptr; 2112 2113 // Reduce the maximum schedule region size by the size of the 2114 // previous scheduling run. 2115 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2116 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2117 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2118 ScheduleRegionSize = 0; 2119 2120 // Make a new scheduling region, i.e. all existing ScheduleData is not 2121 // in the new region yet. 2122 ++SchedulingRegionID; 2123 } 2124 2125 ScheduleData *getScheduleData(Value *V) { 2126 ScheduleData *SD = ScheduleDataMap[V]; 2127 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2128 return SD; 2129 return nullptr; 2130 } 2131 2132 ScheduleData *getScheduleData(Value *V, Value *Key) { 2133 if (V == Key) 2134 return getScheduleData(V); 2135 auto I = ExtraScheduleDataMap.find(V); 2136 if (I != ExtraScheduleDataMap.end()) { 2137 ScheduleData *SD = I->second[Key]; 2138 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2139 return SD; 2140 } 2141 return nullptr; 2142 } 2143 2144 bool isInSchedulingRegion(ScheduleData *SD) const { 2145 return SD->SchedulingRegionID == SchedulingRegionID; 2146 } 2147 2148 /// Marks an instruction as scheduled and puts all dependent ready 2149 /// instructions into the ready-list. 2150 template <typename ReadyListType> 2151 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2152 SD->IsScheduled = true; 2153 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2154 2155 ScheduleData *BundleMember = SD; 2156 while (BundleMember) { 2157 if (BundleMember->Inst != BundleMember->OpValue) { 2158 BundleMember = BundleMember->NextInBundle; 2159 continue; 2160 } 2161 // Handle the def-use chain dependencies. 2162 2163 // Decrement the unscheduled counter and insert to ready list if ready. 2164 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2165 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2166 if (OpDef && OpDef->hasValidDependencies() && 2167 OpDef->incrementUnscheduledDeps(-1) == 0) { 2168 // There are no more unscheduled dependencies after 2169 // decrementing, so we can put the dependent instruction 2170 // into the ready list. 2171 ScheduleData *DepBundle = OpDef->FirstInBundle; 2172 assert(!DepBundle->IsScheduled && 2173 "already scheduled bundle gets ready"); 2174 ReadyList.insert(DepBundle); 2175 LLVM_DEBUG(dbgs() 2176 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2177 } 2178 }); 2179 }; 2180 2181 // If BundleMember is a vector bundle, its operands may have been 2182 // reordered duiring buildTree(). We therefore need to get its operands 2183 // through the TreeEntry. 2184 if (TreeEntry *TE = BundleMember->TE) { 2185 int Lane = BundleMember->Lane; 2186 assert(Lane >= 0 && "Lane not set"); 2187 2188 // Since vectorization tree is being built recursively this assertion 2189 // ensures that the tree entry has all operands set before reaching 2190 // this code. Couple of exceptions known at the moment are extracts 2191 // where their second (immediate) operand is not added. Since 2192 // immediates do not affect scheduler behavior this is considered 2193 // okay. 2194 auto *In = TE->getMainOp(); 2195 assert(In && 2196 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2197 In->getNumOperands() == TE->getNumOperands()) && 2198 "Missed TreeEntry operands?"); 2199 (void)In; // fake use to avoid build failure when assertions disabled 2200 2201 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2202 OpIdx != NumOperands; ++OpIdx) 2203 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2204 DecrUnsched(I); 2205 } else { 2206 // If BundleMember is a stand-alone instruction, no operand reordering 2207 // has taken place, so we directly access its operands. 2208 for (Use &U : BundleMember->Inst->operands()) 2209 if (auto *I = dyn_cast<Instruction>(U.get())) 2210 DecrUnsched(I); 2211 } 2212 // Handle the memory dependencies. 2213 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2214 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2215 // There are no more unscheduled dependencies after decrementing, 2216 // so we can put the dependent instruction into the ready list. 2217 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2218 assert(!DepBundle->IsScheduled && 2219 "already scheduled bundle gets ready"); 2220 ReadyList.insert(DepBundle); 2221 LLVM_DEBUG(dbgs() 2222 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2223 } 2224 } 2225 BundleMember = BundleMember->NextInBundle; 2226 } 2227 } 2228 2229 void doForAllOpcodes(Value *V, 2230 function_ref<void(ScheduleData *SD)> Action) { 2231 if (ScheduleData *SD = getScheduleData(V)) 2232 Action(SD); 2233 auto I = ExtraScheduleDataMap.find(V); 2234 if (I != ExtraScheduleDataMap.end()) 2235 for (auto &P : I->second) 2236 if (P.second->SchedulingRegionID == SchedulingRegionID) 2237 Action(P.second); 2238 } 2239 2240 /// Put all instructions into the ReadyList which are ready for scheduling. 2241 template <typename ReadyListType> 2242 void initialFillReadyList(ReadyListType &ReadyList) { 2243 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2244 doForAllOpcodes(I, [&](ScheduleData *SD) { 2245 if (SD->isSchedulingEntity() && SD->isReady()) { 2246 ReadyList.insert(SD); 2247 LLVM_DEBUG(dbgs() 2248 << "SLP: initially in ready list: " << *I << "\n"); 2249 } 2250 }); 2251 } 2252 } 2253 2254 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2255 /// cyclic dependencies. This is only a dry-run, no instructions are 2256 /// actually moved at this stage. 2257 /// \returns the scheduling bundle. The returned Optional value is non-None 2258 /// if \p VL is allowed to be scheduled. 2259 Optional<ScheduleData *> 2260 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2261 const InstructionsState &S); 2262 2263 /// Un-bundles a group of instructions. 2264 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2265 2266 /// Allocates schedule data chunk. 2267 ScheduleData *allocateScheduleDataChunks(); 2268 2269 /// Extends the scheduling region so that V is inside the region. 2270 /// \returns true if the region size is within the limit. 2271 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2272 2273 /// Initialize the ScheduleData structures for new instructions in the 2274 /// scheduling region. 2275 void initScheduleData(Instruction *FromI, Instruction *ToI, 2276 ScheduleData *PrevLoadStore, 2277 ScheduleData *NextLoadStore); 2278 2279 /// Updates the dependency information of a bundle and of all instructions/ 2280 /// bundles which depend on the original bundle. 2281 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2282 BoUpSLP *SLP); 2283 2284 /// Sets all instruction in the scheduling region to un-scheduled. 2285 void resetSchedule(); 2286 2287 BasicBlock *BB; 2288 2289 /// Simple memory allocation for ScheduleData. 2290 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2291 2292 /// The size of a ScheduleData array in ScheduleDataChunks. 2293 int ChunkSize; 2294 2295 /// The allocator position in the current chunk, which is the last entry 2296 /// of ScheduleDataChunks. 2297 int ChunkPos; 2298 2299 /// Attaches ScheduleData to Instruction. 2300 /// Note that the mapping survives during all vectorization iterations, i.e. 2301 /// ScheduleData structures are recycled. 2302 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2303 2304 /// Attaches ScheduleData to Instruction with the leading key. 2305 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2306 ExtraScheduleDataMap; 2307 2308 struct ReadyList : SmallVector<ScheduleData *, 8> { 2309 void insert(ScheduleData *SD) { push_back(SD); } 2310 }; 2311 2312 /// The ready-list for scheduling (only used for the dry-run). 2313 ReadyList ReadyInsts; 2314 2315 /// The first instruction of the scheduling region. 2316 Instruction *ScheduleStart = nullptr; 2317 2318 /// The first instruction _after_ the scheduling region. 2319 Instruction *ScheduleEnd = nullptr; 2320 2321 /// The first memory accessing instruction in the scheduling region 2322 /// (can be null). 2323 ScheduleData *FirstLoadStoreInRegion = nullptr; 2324 2325 /// The last memory accessing instruction in the scheduling region 2326 /// (can be null). 2327 ScheduleData *LastLoadStoreInRegion = nullptr; 2328 2329 /// The current size of the scheduling region. 2330 int ScheduleRegionSize = 0; 2331 2332 /// The maximum size allowed for the scheduling region. 2333 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2334 2335 /// The ID of the scheduling region. For a new vectorization iteration this 2336 /// is incremented which "removes" all ScheduleData from the region. 2337 // Make sure that the initial SchedulingRegionID is greater than the 2338 // initial SchedulingRegionID in ScheduleData (which is 0). 2339 int SchedulingRegionID = 1; 2340 }; 2341 2342 /// Attaches the BlockScheduling structures to basic blocks. 2343 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2344 2345 /// Performs the "real" scheduling. Done before vectorization is actually 2346 /// performed in a basic block. 2347 void scheduleBlock(BlockScheduling *BS); 2348 2349 /// List of users to ignore during scheduling and that don't need extracting. 2350 ArrayRef<Value *> UserIgnoreList; 2351 2352 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2353 /// sorted SmallVectors of unsigned. 2354 struct OrdersTypeDenseMapInfo { 2355 static OrdersType getEmptyKey() { 2356 OrdersType V; 2357 V.push_back(~1U); 2358 return V; 2359 } 2360 2361 static OrdersType getTombstoneKey() { 2362 OrdersType V; 2363 V.push_back(~2U); 2364 return V; 2365 } 2366 2367 static unsigned getHashValue(const OrdersType &V) { 2368 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2369 } 2370 2371 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2372 return LHS == RHS; 2373 } 2374 }; 2375 2376 /// Contains orders of operations along with the number of bundles that have 2377 /// operations in this order. It stores only those orders that require 2378 /// reordering, if reordering is not required it is counted using \a 2379 /// NumOpsWantToKeepOriginalOrder. 2380 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2381 /// Number of bundles that do not require reordering. 2382 unsigned NumOpsWantToKeepOriginalOrder = 0; 2383 2384 // Analysis and block reference. 2385 Function *F; 2386 ScalarEvolution *SE; 2387 TargetTransformInfo *TTI; 2388 TargetLibraryInfo *TLI; 2389 AAResults *AA; 2390 LoopInfo *LI; 2391 DominatorTree *DT; 2392 AssumptionCache *AC; 2393 DemandedBits *DB; 2394 const DataLayout *DL; 2395 OptimizationRemarkEmitter *ORE; 2396 2397 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2398 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2399 2400 /// Instruction builder to construct the vectorized tree. 2401 IRBuilder<> Builder; 2402 2403 /// A map of scalar integer values to the smallest bit width with which they 2404 /// can legally be represented. The values map to (width, signed) pairs, 2405 /// where "width" indicates the minimum bit width and "signed" is True if the 2406 /// value must be signed-extended, rather than zero-extended, back to its 2407 /// original width. 2408 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2409 }; 2410 2411 } // end namespace slpvectorizer 2412 2413 template <> struct GraphTraits<BoUpSLP *> { 2414 using TreeEntry = BoUpSLP::TreeEntry; 2415 2416 /// NodeRef has to be a pointer per the GraphWriter. 2417 using NodeRef = TreeEntry *; 2418 2419 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2420 2421 /// Add the VectorizableTree to the index iterator to be able to return 2422 /// TreeEntry pointers. 2423 struct ChildIteratorType 2424 : public iterator_adaptor_base< 2425 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2426 ContainerTy &VectorizableTree; 2427 2428 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2429 ContainerTy &VT) 2430 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2431 2432 NodeRef operator*() { return I->UserTE; } 2433 }; 2434 2435 static NodeRef getEntryNode(BoUpSLP &R) { 2436 return R.VectorizableTree[0].get(); 2437 } 2438 2439 static ChildIteratorType child_begin(NodeRef N) { 2440 return {N->UserTreeIndices.begin(), N->Container}; 2441 } 2442 2443 static ChildIteratorType child_end(NodeRef N) { 2444 return {N->UserTreeIndices.end(), N->Container}; 2445 } 2446 2447 /// For the node iterator we just need to turn the TreeEntry iterator into a 2448 /// TreeEntry* iterator so that it dereferences to NodeRef. 2449 class nodes_iterator { 2450 using ItTy = ContainerTy::iterator; 2451 ItTy It; 2452 2453 public: 2454 nodes_iterator(const ItTy &It2) : It(It2) {} 2455 NodeRef operator*() { return It->get(); } 2456 nodes_iterator operator++() { 2457 ++It; 2458 return *this; 2459 } 2460 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2461 }; 2462 2463 static nodes_iterator nodes_begin(BoUpSLP *R) { 2464 return nodes_iterator(R->VectorizableTree.begin()); 2465 } 2466 2467 static nodes_iterator nodes_end(BoUpSLP *R) { 2468 return nodes_iterator(R->VectorizableTree.end()); 2469 } 2470 2471 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2472 }; 2473 2474 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2475 using TreeEntry = BoUpSLP::TreeEntry; 2476 2477 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2478 2479 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2480 std::string Str; 2481 raw_string_ostream OS(Str); 2482 if (isSplat(Entry->Scalars)) { 2483 OS << "<splat> " << *Entry->Scalars[0]; 2484 return Str; 2485 } 2486 for (auto V : Entry->Scalars) { 2487 OS << *V; 2488 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2489 return EU.Scalar == V; 2490 })) 2491 OS << " <extract>"; 2492 OS << "\n"; 2493 } 2494 return Str; 2495 } 2496 2497 static std::string getNodeAttributes(const TreeEntry *Entry, 2498 const BoUpSLP *) { 2499 if (Entry->State == TreeEntry::NeedToGather) 2500 return "color=red"; 2501 return ""; 2502 } 2503 }; 2504 2505 } // end namespace llvm 2506 2507 BoUpSLP::~BoUpSLP() { 2508 for (const auto &Pair : DeletedInstructions) { 2509 // Replace operands of ignored instructions with Undefs in case if they were 2510 // marked for deletion. 2511 if (Pair.getSecond()) { 2512 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2513 Pair.getFirst()->replaceAllUsesWith(Undef); 2514 } 2515 Pair.getFirst()->dropAllReferences(); 2516 } 2517 for (const auto &Pair : DeletedInstructions) { 2518 assert(Pair.getFirst()->use_empty() && 2519 "trying to erase instruction with users."); 2520 Pair.getFirst()->eraseFromParent(); 2521 } 2522 #ifdef EXPENSIVE_CHECKS 2523 // If we could guarantee that this call is not extremely slow, we could 2524 // remove the ifdef limitation (see PR47712). 2525 assert(!verifyFunction(*F, &dbgs())); 2526 #endif 2527 } 2528 2529 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2530 for (auto *V : AV) { 2531 if (auto *I = dyn_cast<Instruction>(V)) 2532 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2533 }; 2534 } 2535 2536 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2537 ArrayRef<Value *> UserIgnoreLst) { 2538 ExtraValueToDebugLocsMap ExternallyUsedValues; 2539 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2540 } 2541 2542 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2543 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2544 ArrayRef<Value *> UserIgnoreLst) { 2545 deleteTree(); 2546 UserIgnoreList = UserIgnoreLst; 2547 if (!allSameType(Roots)) 2548 return; 2549 buildTree_rec(Roots, 0, EdgeInfo()); 2550 2551 // Collect the values that we need to extract from the tree. 2552 for (auto &TEPtr : VectorizableTree) { 2553 TreeEntry *Entry = TEPtr.get(); 2554 2555 // No need to handle users of gathered values. 2556 if (Entry->State == TreeEntry::NeedToGather) 2557 continue; 2558 2559 // For each lane: 2560 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2561 Value *Scalar = Entry->Scalars[Lane]; 2562 int FoundLane = Lane; 2563 if (!Entry->ReuseShuffleIndices.empty()) { 2564 FoundLane = 2565 std::distance(Entry->ReuseShuffleIndices.begin(), 2566 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2567 } 2568 2569 // Check if the scalar is externally used as an extra arg. 2570 auto ExtI = ExternallyUsedValues.find(Scalar); 2571 if (ExtI != ExternallyUsedValues.end()) { 2572 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2573 << Lane << " from " << *Scalar << ".\n"); 2574 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2575 } 2576 for (User *U : Scalar->users()) { 2577 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2578 2579 Instruction *UserInst = dyn_cast<Instruction>(U); 2580 if (!UserInst) 2581 continue; 2582 2583 // Skip in-tree scalars that become vectors 2584 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2585 Value *UseScalar = UseEntry->Scalars[0]; 2586 // Some in-tree scalars will remain as scalar in vectorized 2587 // instructions. If that is the case, the one in Lane 0 will 2588 // be used. 2589 if (UseScalar != U || 2590 UseEntry->State == TreeEntry::ScatterVectorize || 2591 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2592 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2593 << ".\n"); 2594 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2595 continue; 2596 } 2597 } 2598 2599 // Ignore users in the user ignore list. 2600 if (is_contained(UserIgnoreList, UserInst)) 2601 continue; 2602 2603 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2604 << Lane << " from " << *Scalar << ".\n"); 2605 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2606 } 2607 } 2608 } 2609 } 2610 2611 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2612 const EdgeInfo &UserTreeIdx) { 2613 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2614 2615 InstructionsState S = getSameOpcode(VL); 2616 if (Depth == RecursionMaxDepth) { 2617 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2619 return; 2620 } 2621 2622 // Don't handle vectors. 2623 if (S.OpValue->getType()->isVectorTy()) { 2624 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2625 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2626 return; 2627 } 2628 2629 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2630 if (SI->getValueOperand()->getType()->isVectorTy()) { 2631 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2632 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2633 return; 2634 } 2635 2636 // If all of the operands are identical or constant we have a simple solution. 2637 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2638 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2639 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2640 return; 2641 } 2642 2643 // We now know that this is a vector of instructions of the same type from 2644 // the same block. 2645 2646 // Don't vectorize ephemeral values. 2647 for (Value *V : VL) { 2648 if (EphValues.count(V)) { 2649 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2650 << ") is ephemeral.\n"); 2651 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2652 return; 2653 } 2654 } 2655 2656 // Check if this is a duplicate of another entry. 2657 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2658 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2659 if (!E->isSame(VL)) { 2660 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2661 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2662 return; 2663 } 2664 // Record the reuse of the tree node. FIXME, currently this is only used to 2665 // properly draw the graph rather than for the actual vectorization. 2666 E->UserTreeIndices.push_back(UserTreeIdx); 2667 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2668 << ".\n"); 2669 return; 2670 } 2671 2672 // Check that none of the instructions in the bundle are already in the tree. 2673 for (Value *V : VL) { 2674 auto *I = dyn_cast<Instruction>(V); 2675 if (!I) 2676 continue; 2677 if (getTreeEntry(I)) { 2678 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2679 << ") is already in tree.\n"); 2680 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2681 return; 2682 } 2683 } 2684 2685 // If any of the scalars is marked as a value that needs to stay scalar, then 2686 // we need to gather the scalars. 2687 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2688 for (Value *V : VL) { 2689 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2690 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2692 return; 2693 } 2694 } 2695 2696 // Check that all of the users of the scalars that we want to vectorize are 2697 // schedulable. 2698 auto *VL0 = cast<Instruction>(S.OpValue); 2699 BasicBlock *BB = VL0->getParent(); 2700 2701 if (!DT->isReachableFromEntry(BB)) { 2702 // Don't go into unreachable blocks. They may contain instructions with 2703 // dependency cycles which confuse the final scheduling. 2704 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2706 return; 2707 } 2708 2709 // Check that every instruction appears once in this bundle. 2710 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2711 SmallVector<Value *, 4> UniqueValues; 2712 DenseMap<Value *, unsigned> UniquePositions; 2713 for (Value *V : VL) { 2714 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2715 ReuseShuffleIndicies.emplace_back(Res.first->second); 2716 if (Res.second) 2717 UniqueValues.emplace_back(V); 2718 } 2719 size_t NumUniqueScalarValues = UniqueValues.size(); 2720 if (NumUniqueScalarValues == VL.size()) { 2721 ReuseShuffleIndicies.clear(); 2722 } else { 2723 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2724 if (NumUniqueScalarValues <= 1 || 2725 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2726 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2727 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2728 return; 2729 } 2730 VL = UniqueValues; 2731 } 2732 2733 auto &BSRef = BlocksSchedules[BB]; 2734 if (!BSRef) 2735 BSRef = std::make_unique<BlockScheduling>(BB); 2736 2737 BlockScheduling &BS = *BSRef.get(); 2738 2739 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2740 if (!Bundle) { 2741 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2742 assert((!BS.getScheduleData(VL0) || 2743 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2744 "tryScheduleBundle should cancelScheduling on failure"); 2745 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2746 ReuseShuffleIndicies); 2747 return; 2748 } 2749 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2750 2751 unsigned ShuffleOrOp = S.isAltShuffle() ? 2752 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2753 switch (ShuffleOrOp) { 2754 case Instruction::PHI: { 2755 auto *PH = cast<PHINode>(VL0); 2756 2757 // Check for terminator values (e.g. invoke). 2758 for (Value *V : VL) 2759 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2760 Instruction *Term = dyn_cast<Instruction>( 2761 cast<PHINode>(V)->getIncomingValueForBlock( 2762 PH->getIncomingBlock(I))); 2763 if (Term && Term->isTerminator()) { 2764 LLVM_DEBUG(dbgs() 2765 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2766 BS.cancelScheduling(VL, VL0); 2767 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2768 ReuseShuffleIndicies); 2769 return; 2770 } 2771 } 2772 2773 TreeEntry *TE = 2774 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2775 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2776 2777 // Keeps the reordered operands to avoid code duplication. 2778 SmallVector<ValueList, 2> OperandsVec; 2779 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2780 ValueList Operands; 2781 // Prepare the operand vector. 2782 for (Value *V : VL) 2783 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2784 PH->getIncomingBlock(I))); 2785 TE->setOperand(I, Operands); 2786 OperandsVec.push_back(Operands); 2787 } 2788 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2789 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2790 return; 2791 } 2792 case Instruction::ExtractValue: 2793 case Instruction::ExtractElement: { 2794 OrdersType CurrentOrder; 2795 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2796 if (Reuse) { 2797 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2798 ++NumOpsWantToKeepOriginalOrder; 2799 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2800 ReuseShuffleIndicies); 2801 // This is a special case, as it does not gather, but at the same time 2802 // we are not extending buildTree_rec() towards the operands. 2803 ValueList Op0; 2804 Op0.assign(VL.size(), VL0->getOperand(0)); 2805 VectorizableTree.back()->setOperand(0, Op0); 2806 return; 2807 } 2808 if (!CurrentOrder.empty()) { 2809 LLVM_DEBUG({ 2810 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2811 "with order"; 2812 for (unsigned Idx : CurrentOrder) 2813 dbgs() << " " << Idx; 2814 dbgs() << "\n"; 2815 }); 2816 // Insert new order with initial value 0, if it does not exist, 2817 // otherwise return the iterator to the existing one. 2818 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2819 ReuseShuffleIndicies, CurrentOrder); 2820 findRootOrder(CurrentOrder); 2821 ++NumOpsWantToKeepOrder[CurrentOrder]; 2822 // This is a special case, as it does not gather, but at the same time 2823 // we are not extending buildTree_rec() towards the operands. 2824 ValueList Op0; 2825 Op0.assign(VL.size(), VL0->getOperand(0)); 2826 VectorizableTree.back()->setOperand(0, Op0); 2827 return; 2828 } 2829 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2830 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2831 ReuseShuffleIndicies); 2832 BS.cancelScheduling(VL, VL0); 2833 return; 2834 } 2835 case Instruction::Load: { 2836 // Check that a vectorized load would load the same memory as a scalar 2837 // load. For example, we don't want to vectorize loads that are smaller 2838 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2839 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2840 // from such a struct, we read/write packed bits disagreeing with the 2841 // unvectorized version. 2842 Type *ScalarTy = VL0->getType(); 2843 2844 if (DL->getTypeSizeInBits(ScalarTy) != 2845 DL->getTypeAllocSizeInBits(ScalarTy)) { 2846 BS.cancelScheduling(VL, VL0); 2847 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2848 ReuseShuffleIndicies); 2849 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2850 return; 2851 } 2852 2853 // Make sure all loads in the bundle are simple - we can't vectorize 2854 // atomic or volatile loads. 2855 SmallVector<Value *, 4> PointerOps(VL.size()); 2856 auto POIter = PointerOps.begin(); 2857 for (Value *V : VL) { 2858 auto *L = cast<LoadInst>(V); 2859 if (!L->isSimple()) { 2860 BS.cancelScheduling(VL, VL0); 2861 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2862 ReuseShuffleIndicies); 2863 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2864 return; 2865 } 2866 *POIter = L->getPointerOperand(); 2867 ++POIter; 2868 } 2869 2870 OrdersType CurrentOrder; 2871 // Check the order of pointer operands. 2872 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2873 Value *Ptr0; 2874 Value *PtrN; 2875 if (CurrentOrder.empty()) { 2876 Ptr0 = PointerOps.front(); 2877 PtrN = PointerOps.back(); 2878 } else { 2879 Ptr0 = PointerOps[CurrentOrder.front()]; 2880 PtrN = PointerOps[CurrentOrder.back()]; 2881 } 2882 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE); 2883 // Check that the sorted loads are consecutive. 2884 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2885 if (CurrentOrder.empty()) { 2886 // Original loads are consecutive and does not require reordering. 2887 ++NumOpsWantToKeepOriginalOrder; 2888 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2889 UserTreeIdx, ReuseShuffleIndicies); 2890 TE->setOperandsInOrder(); 2891 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2892 } else { 2893 // Need to reorder. 2894 TreeEntry *TE = 2895 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2896 ReuseShuffleIndicies, CurrentOrder); 2897 TE->setOperandsInOrder(); 2898 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2899 findRootOrder(CurrentOrder); 2900 ++NumOpsWantToKeepOrder[CurrentOrder]; 2901 } 2902 return; 2903 } 2904 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2905 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2906 UserTreeIdx, ReuseShuffleIndicies); 2907 TE->setOperandsInOrder(); 2908 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2909 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2910 return; 2911 } 2912 2913 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2914 BS.cancelScheduling(VL, VL0); 2915 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2916 ReuseShuffleIndicies); 2917 return; 2918 } 2919 case Instruction::ZExt: 2920 case Instruction::SExt: 2921 case Instruction::FPToUI: 2922 case Instruction::FPToSI: 2923 case Instruction::FPExt: 2924 case Instruction::PtrToInt: 2925 case Instruction::IntToPtr: 2926 case Instruction::SIToFP: 2927 case Instruction::UIToFP: 2928 case Instruction::Trunc: 2929 case Instruction::FPTrunc: 2930 case Instruction::BitCast: { 2931 Type *SrcTy = VL0->getOperand(0)->getType(); 2932 for (Value *V : VL) { 2933 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2934 if (Ty != SrcTy || !isValidElementType(Ty)) { 2935 BS.cancelScheduling(VL, VL0); 2936 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2937 ReuseShuffleIndicies); 2938 LLVM_DEBUG(dbgs() 2939 << "SLP: Gathering casts with different src types.\n"); 2940 return; 2941 } 2942 } 2943 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2944 ReuseShuffleIndicies); 2945 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2946 2947 TE->setOperandsInOrder(); 2948 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2949 ValueList Operands; 2950 // Prepare the operand vector. 2951 for (Value *V : VL) 2952 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2953 2954 buildTree_rec(Operands, Depth + 1, {TE, i}); 2955 } 2956 return; 2957 } 2958 case Instruction::ICmp: 2959 case Instruction::FCmp: { 2960 // Check that all of the compares have the same predicate. 2961 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2962 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2963 Type *ComparedTy = VL0->getOperand(0)->getType(); 2964 for (Value *V : VL) { 2965 CmpInst *Cmp = cast<CmpInst>(V); 2966 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2967 Cmp->getOperand(0)->getType() != ComparedTy) { 2968 BS.cancelScheduling(VL, VL0); 2969 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2970 ReuseShuffleIndicies); 2971 LLVM_DEBUG(dbgs() 2972 << "SLP: Gathering cmp with different predicate.\n"); 2973 return; 2974 } 2975 } 2976 2977 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2978 ReuseShuffleIndicies); 2979 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2980 2981 ValueList Left, Right; 2982 if (cast<CmpInst>(VL0)->isCommutative()) { 2983 // Commutative predicate - collect + sort operands of the instructions 2984 // so that each side is more likely to have the same opcode. 2985 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2986 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2987 } else { 2988 // Collect operands - commute if it uses the swapped predicate. 2989 for (Value *V : VL) { 2990 auto *Cmp = cast<CmpInst>(V); 2991 Value *LHS = Cmp->getOperand(0); 2992 Value *RHS = Cmp->getOperand(1); 2993 if (Cmp->getPredicate() != P0) 2994 std::swap(LHS, RHS); 2995 Left.push_back(LHS); 2996 Right.push_back(RHS); 2997 } 2998 } 2999 TE->setOperand(0, Left); 3000 TE->setOperand(1, Right); 3001 buildTree_rec(Left, Depth + 1, {TE, 0}); 3002 buildTree_rec(Right, Depth + 1, {TE, 1}); 3003 return; 3004 } 3005 case Instruction::Select: 3006 case Instruction::FNeg: 3007 case Instruction::Add: 3008 case Instruction::FAdd: 3009 case Instruction::Sub: 3010 case Instruction::FSub: 3011 case Instruction::Mul: 3012 case Instruction::FMul: 3013 case Instruction::UDiv: 3014 case Instruction::SDiv: 3015 case Instruction::FDiv: 3016 case Instruction::URem: 3017 case Instruction::SRem: 3018 case Instruction::FRem: 3019 case Instruction::Shl: 3020 case Instruction::LShr: 3021 case Instruction::AShr: 3022 case Instruction::And: 3023 case Instruction::Or: 3024 case Instruction::Xor: { 3025 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3026 ReuseShuffleIndicies); 3027 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3028 3029 // Sort operands of the instructions so that each side is more likely to 3030 // have the same opcode. 3031 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3032 ValueList Left, Right; 3033 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3034 TE->setOperand(0, Left); 3035 TE->setOperand(1, Right); 3036 buildTree_rec(Left, Depth + 1, {TE, 0}); 3037 buildTree_rec(Right, Depth + 1, {TE, 1}); 3038 return; 3039 } 3040 3041 TE->setOperandsInOrder(); 3042 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3043 ValueList Operands; 3044 // Prepare the operand vector. 3045 for (Value *V : VL) 3046 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3047 3048 buildTree_rec(Operands, Depth + 1, {TE, i}); 3049 } 3050 return; 3051 } 3052 case Instruction::GetElementPtr: { 3053 // We don't combine GEPs with complicated (nested) indexing. 3054 for (Value *V : VL) { 3055 if (cast<Instruction>(V)->getNumOperands() != 2) { 3056 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3057 BS.cancelScheduling(VL, VL0); 3058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3059 ReuseShuffleIndicies); 3060 return; 3061 } 3062 } 3063 3064 // We can't combine several GEPs into one vector if they operate on 3065 // different types. 3066 Type *Ty0 = VL0->getOperand(0)->getType(); 3067 for (Value *V : VL) { 3068 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3069 if (Ty0 != CurTy) { 3070 LLVM_DEBUG(dbgs() 3071 << "SLP: not-vectorizable GEP (different types).\n"); 3072 BS.cancelScheduling(VL, VL0); 3073 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3074 ReuseShuffleIndicies); 3075 return; 3076 } 3077 } 3078 3079 // We don't combine GEPs with non-constant indexes. 3080 Type *Ty1 = VL0->getOperand(1)->getType(); 3081 for (Value *V : VL) { 3082 auto Op = cast<Instruction>(V)->getOperand(1); 3083 if (!isa<ConstantInt>(Op) || 3084 (Op->getType() != Ty1 && 3085 Op->getType()->getScalarSizeInBits() > 3086 DL->getIndexSizeInBits( 3087 V->getType()->getPointerAddressSpace()))) { 3088 LLVM_DEBUG(dbgs() 3089 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3090 BS.cancelScheduling(VL, VL0); 3091 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3092 ReuseShuffleIndicies); 3093 return; 3094 } 3095 } 3096 3097 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3098 ReuseShuffleIndicies); 3099 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3100 TE->setOperandsInOrder(); 3101 for (unsigned i = 0, e = 2; i < e; ++i) { 3102 ValueList Operands; 3103 // Prepare the operand vector. 3104 for (Value *V : VL) 3105 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3106 3107 buildTree_rec(Operands, Depth + 1, {TE, i}); 3108 } 3109 return; 3110 } 3111 case Instruction::Store: { 3112 // Check if the stores are consecutive or if we need to swizzle them. 3113 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3114 // Avoid types that are padded when being allocated as scalars, while 3115 // being packed together in a vector (such as i1). 3116 if (DL->getTypeSizeInBits(ScalarTy) != 3117 DL->getTypeAllocSizeInBits(ScalarTy)) { 3118 BS.cancelScheduling(VL, VL0); 3119 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3120 ReuseShuffleIndicies); 3121 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3122 return; 3123 } 3124 // Make sure all stores in the bundle are simple - we can't vectorize 3125 // atomic or volatile stores. 3126 SmallVector<Value *, 4> PointerOps(VL.size()); 3127 ValueList Operands(VL.size()); 3128 auto POIter = PointerOps.begin(); 3129 auto OIter = Operands.begin(); 3130 for (Value *V : VL) { 3131 auto *SI = cast<StoreInst>(V); 3132 if (!SI->isSimple()) { 3133 BS.cancelScheduling(VL, VL0); 3134 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3135 ReuseShuffleIndicies); 3136 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3137 return; 3138 } 3139 *POIter = SI->getPointerOperand(); 3140 *OIter = SI->getValueOperand(); 3141 ++POIter; 3142 ++OIter; 3143 } 3144 3145 OrdersType CurrentOrder; 3146 // Check the order of pointer operands. 3147 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3148 Value *Ptr0; 3149 Value *PtrN; 3150 if (CurrentOrder.empty()) { 3151 Ptr0 = PointerOps.front(); 3152 PtrN = PointerOps.back(); 3153 } else { 3154 Ptr0 = PointerOps[CurrentOrder.front()]; 3155 PtrN = PointerOps[CurrentOrder.back()]; 3156 } 3157 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE); 3158 // Check that the sorted pointer operands are consecutive. 3159 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3160 if (CurrentOrder.empty()) { 3161 // Original stores are consecutive and does not require reordering. 3162 ++NumOpsWantToKeepOriginalOrder; 3163 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3164 UserTreeIdx, ReuseShuffleIndicies); 3165 TE->setOperandsInOrder(); 3166 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3167 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3168 } else { 3169 TreeEntry *TE = 3170 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3171 ReuseShuffleIndicies, CurrentOrder); 3172 TE->setOperandsInOrder(); 3173 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3174 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3175 findRootOrder(CurrentOrder); 3176 ++NumOpsWantToKeepOrder[CurrentOrder]; 3177 } 3178 return; 3179 } 3180 } 3181 3182 BS.cancelScheduling(VL, VL0); 3183 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3184 ReuseShuffleIndicies); 3185 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3186 return; 3187 } 3188 case Instruction::Call: { 3189 // Check if the calls are all to the same vectorizable intrinsic or 3190 // library function. 3191 CallInst *CI = cast<CallInst>(VL0); 3192 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3193 3194 VFShape Shape = VFShape::get( 3195 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3196 false /*HasGlobalPred*/); 3197 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3198 3199 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3200 BS.cancelScheduling(VL, VL0); 3201 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3202 ReuseShuffleIndicies); 3203 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3204 return; 3205 } 3206 Function *F = CI->getCalledFunction(); 3207 unsigned NumArgs = CI->getNumArgOperands(); 3208 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3209 for (unsigned j = 0; j != NumArgs; ++j) 3210 if (hasVectorInstrinsicScalarOpd(ID, j)) 3211 ScalarArgs[j] = CI->getArgOperand(j); 3212 for (Value *V : VL) { 3213 CallInst *CI2 = dyn_cast<CallInst>(V); 3214 if (!CI2 || CI2->getCalledFunction() != F || 3215 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3216 (VecFunc && 3217 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3218 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3219 BS.cancelScheduling(VL, VL0); 3220 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3221 ReuseShuffleIndicies); 3222 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3223 << "\n"); 3224 return; 3225 } 3226 // Some intrinsics have scalar arguments and should be same in order for 3227 // them to be vectorized. 3228 for (unsigned j = 0; j != NumArgs; ++j) { 3229 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3230 Value *A1J = CI2->getArgOperand(j); 3231 if (ScalarArgs[j] != A1J) { 3232 BS.cancelScheduling(VL, VL0); 3233 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3234 ReuseShuffleIndicies); 3235 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3236 << " argument " << ScalarArgs[j] << "!=" << A1J 3237 << "\n"); 3238 return; 3239 } 3240 } 3241 } 3242 // Verify that the bundle operands are identical between the two calls. 3243 if (CI->hasOperandBundles() && 3244 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3245 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3246 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3247 BS.cancelScheduling(VL, VL0); 3248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3249 ReuseShuffleIndicies); 3250 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3251 << *CI << "!=" << *V << '\n'); 3252 return; 3253 } 3254 } 3255 3256 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3257 ReuseShuffleIndicies); 3258 TE->setOperandsInOrder(); 3259 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3260 ValueList Operands; 3261 // Prepare the operand vector. 3262 for (Value *V : VL) { 3263 auto *CI2 = cast<CallInst>(V); 3264 Operands.push_back(CI2->getArgOperand(i)); 3265 } 3266 buildTree_rec(Operands, Depth + 1, {TE, i}); 3267 } 3268 return; 3269 } 3270 case Instruction::ShuffleVector: { 3271 // If this is not an alternate sequence of opcode like add-sub 3272 // then do not vectorize this instruction. 3273 if (!S.isAltShuffle()) { 3274 BS.cancelScheduling(VL, VL0); 3275 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3276 ReuseShuffleIndicies); 3277 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3278 return; 3279 } 3280 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3281 ReuseShuffleIndicies); 3282 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3283 3284 // Reorder operands if reordering would enable vectorization. 3285 if (isa<BinaryOperator>(VL0)) { 3286 ValueList Left, Right; 3287 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3288 TE->setOperand(0, Left); 3289 TE->setOperand(1, Right); 3290 buildTree_rec(Left, Depth + 1, {TE, 0}); 3291 buildTree_rec(Right, Depth + 1, {TE, 1}); 3292 return; 3293 } 3294 3295 TE->setOperandsInOrder(); 3296 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3297 ValueList Operands; 3298 // Prepare the operand vector. 3299 for (Value *V : VL) 3300 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3301 3302 buildTree_rec(Operands, Depth + 1, {TE, i}); 3303 } 3304 return; 3305 } 3306 default: 3307 BS.cancelScheduling(VL, VL0); 3308 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3309 ReuseShuffleIndicies); 3310 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3311 return; 3312 } 3313 } 3314 3315 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3316 unsigned N = 1; 3317 Type *EltTy = T; 3318 3319 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3320 isa<VectorType>(EltTy)) { 3321 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3322 // Check that struct is homogeneous. 3323 for (const auto *Ty : ST->elements()) 3324 if (Ty != *ST->element_begin()) 3325 return 0; 3326 N *= ST->getNumElements(); 3327 EltTy = *ST->element_begin(); 3328 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3329 N *= AT->getNumElements(); 3330 EltTy = AT->getElementType(); 3331 } else { 3332 auto *VT = cast<FixedVectorType>(EltTy); 3333 N *= VT->getNumElements(); 3334 EltTy = VT->getElementType(); 3335 } 3336 } 3337 3338 if (!isValidElementType(EltTy)) 3339 return 0; 3340 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3341 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3342 return 0; 3343 return N; 3344 } 3345 3346 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3347 SmallVectorImpl<unsigned> &CurrentOrder) const { 3348 Instruction *E0 = cast<Instruction>(OpValue); 3349 assert(E0->getOpcode() == Instruction::ExtractElement || 3350 E0->getOpcode() == Instruction::ExtractValue); 3351 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3352 // Check if all of the extracts come from the same vector and from the 3353 // correct offset. 3354 Value *Vec = E0->getOperand(0); 3355 3356 CurrentOrder.clear(); 3357 3358 // We have to extract from a vector/aggregate with the same number of elements. 3359 unsigned NElts; 3360 if (E0->getOpcode() == Instruction::ExtractValue) { 3361 const DataLayout &DL = E0->getModule()->getDataLayout(); 3362 NElts = canMapToVector(Vec->getType(), DL); 3363 if (!NElts) 3364 return false; 3365 // Check if load can be rewritten as load of vector. 3366 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3367 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3368 return false; 3369 } else { 3370 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3371 } 3372 3373 if (NElts != VL.size()) 3374 return false; 3375 3376 // Check that all of the indices extract from the correct offset. 3377 bool ShouldKeepOrder = true; 3378 unsigned E = VL.size(); 3379 // Assign to all items the initial value E + 1 so we can check if the extract 3380 // instruction index was used already. 3381 // Also, later we can check that all the indices are used and we have a 3382 // consecutive access in the extract instructions, by checking that no 3383 // element of CurrentOrder still has value E + 1. 3384 CurrentOrder.assign(E, E + 1); 3385 unsigned I = 0; 3386 for (; I < E; ++I) { 3387 auto *Inst = cast<Instruction>(VL[I]); 3388 if (Inst->getOperand(0) != Vec) 3389 break; 3390 Optional<unsigned> Idx = getExtractIndex(Inst); 3391 if (!Idx) 3392 break; 3393 const unsigned ExtIdx = *Idx; 3394 if (ExtIdx != I) { 3395 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3396 break; 3397 ShouldKeepOrder = false; 3398 CurrentOrder[ExtIdx] = I; 3399 } else { 3400 if (CurrentOrder[I] != E + 1) 3401 break; 3402 CurrentOrder[I] = I; 3403 } 3404 } 3405 if (I < E) { 3406 CurrentOrder.clear(); 3407 return false; 3408 } 3409 3410 return ShouldKeepOrder; 3411 } 3412 3413 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3414 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3415 return ScalarToTreeEntry.count(U) > 0; 3416 }); 3417 } 3418 3419 static std::pair<InstructionCost, InstructionCost> 3420 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3421 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3422 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3423 3424 // Calculate the cost of the scalar and vector calls. 3425 SmallVector<Type *, 4> VecTys; 3426 for (Use &Arg : CI->args()) 3427 VecTys.push_back( 3428 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3429 FastMathFlags FMF; 3430 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3431 FMF = FPCI->getFastMathFlags(); 3432 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3433 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3434 dyn_cast<IntrinsicInst>(CI)); 3435 auto IntrinsicCost = 3436 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3437 3438 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3439 VecTy->getNumElements())), 3440 false /*HasGlobalPred*/); 3441 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3442 auto LibCost = IntrinsicCost; 3443 if (!CI->isNoBuiltin() && VecFunc) { 3444 // Calculate the cost of the vector library call. 3445 // If the corresponding vector call is cheaper, return its cost. 3446 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3447 TTI::TCK_RecipThroughput); 3448 } 3449 return {IntrinsicCost, LibCost}; 3450 } 3451 3452 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3453 ArrayRef<Value*> VL = E->Scalars; 3454 3455 Type *ScalarTy = VL[0]->getType(); 3456 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3457 ScalarTy = SI->getValueOperand()->getType(); 3458 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3459 ScalarTy = CI->getOperand(0)->getType(); 3460 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3461 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3462 3463 // If we have computed a smaller type for the expression, update VecTy so 3464 // that the costs will be accurate. 3465 if (MinBWs.count(VL[0])) 3466 VecTy = FixedVectorType::get( 3467 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3468 3469 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3470 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3471 InstructionCost ReuseShuffleCost = 0; 3472 if (NeedToShuffleReuses) { 3473 ReuseShuffleCost = 3474 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3475 E->ReuseShuffleIndices); 3476 } 3477 if (E->State == TreeEntry::NeedToGather) { 3478 if (allConstant(VL)) 3479 return 0; 3480 if (isSplat(VL)) { 3481 return ReuseShuffleCost + 3482 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3483 0); 3484 } 3485 if (E->getOpcode() == Instruction::ExtractElement && 3486 allSameType(VL) && allSameBlock(VL)) { 3487 SmallVector<int> Mask; 3488 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3489 isShuffle(VL, Mask); 3490 if (ShuffleKind.hasValue()) { 3491 InstructionCost Cost = 3492 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy, Mask); 3493 for (auto *V : VL) { 3494 // If all users of instruction are going to be vectorized and this 3495 // instruction itself is not going to be vectorized, consider this 3496 // instruction as dead and remove its cost from the final cost of the 3497 // vectorized tree. 3498 if (areAllUsersVectorized(cast<Instruction>(V)) && 3499 !ScalarToTreeEntry.count(V)) { 3500 auto *IO = cast<ConstantInt>( 3501 cast<ExtractElementInst>(V)->getIndexOperand()); 3502 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3503 IO->getZExtValue()); 3504 } 3505 } 3506 return ReuseShuffleCost + Cost; 3507 } 3508 } 3509 return ReuseShuffleCost + getGatherCost(VL); 3510 } 3511 assert((E->State == TreeEntry::Vectorize || 3512 E->State == TreeEntry::ScatterVectorize) && 3513 "Unhandled state"); 3514 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3515 Instruction *VL0 = E->getMainOp(); 3516 unsigned ShuffleOrOp = 3517 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3518 switch (ShuffleOrOp) { 3519 case Instruction::PHI: 3520 return 0; 3521 3522 case Instruction::ExtractValue: 3523 case Instruction::ExtractElement: { 3524 // The common cost of removal ExtractElement/ExtractValue instructions + 3525 // the cost of shuffles, if required to resuffle the original vector. 3526 InstructionCost CommonCost = 0; 3527 if (NeedToShuffleReuses) { 3528 unsigned Idx = 0; 3529 for (unsigned I : E->ReuseShuffleIndices) { 3530 if (ShuffleOrOp == Instruction::ExtractElement) { 3531 auto *IO = cast<ConstantInt>( 3532 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3533 Idx = IO->getZExtValue(); 3534 ReuseShuffleCost -= TTI->getVectorInstrCost( 3535 Instruction::ExtractElement, VecTy, Idx); 3536 } else { 3537 ReuseShuffleCost -= TTI->getVectorInstrCost( 3538 Instruction::ExtractElement, VecTy, Idx); 3539 ++Idx; 3540 } 3541 } 3542 Idx = ReuseShuffleNumbers; 3543 for (Value *V : VL) { 3544 if (ShuffleOrOp == Instruction::ExtractElement) { 3545 auto *IO = cast<ConstantInt>( 3546 cast<ExtractElementInst>(V)->getIndexOperand()); 3547 Idx = IO->getZExtValue(); 3548 } else { 3549 --Idx; 3550 } 3551 ReuseShuffleCost += 3552 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3553 } 3554 CommonCost = ReuseShuffleCost; 3555 } else if (!E->ReorderIndices.empty()) { 3556 SmallVector<int> NewMask; 3557 inversePermutation(E->ReorderIndices, NewMask); 3558 CommonCost = TTI->getShuffleCost( 3559 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3560 } 3561 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3562 Instruction *EI = cast<Instruction>(VL[I]); 3563 // If all users are going to be vectorized, instruction can be 3564 // considered as dead. 3565 // The same, if have only one user, it will be vectorized for sure. 3566 if (areAllUsersVectorized(EI)) { 3567 // Take credit for instruction that will become dead. 3568 if (EI->hasOneUse()) { 3569 Instruction *Ext = EI->user_back(); 3570 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3571 all_of(Ext->users(), 3572 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3573 // Use getExtractWithExtendCost() to calculate the cost of 3574 // extractelement/ext pair. 3575 CommonCost -= TTI->getExtractWithExtendCost( 3576 Ext->getOpcode(), Ext->getType(), VecTy, I); 3577 // Add back the cost of s|zext which is subtracted separately. 3578 CommonCost += TTI->getCastInstrCost( 3579 Ext->getOpcode(), Ext->getType(), EI->getType(), 3580 TTI::getCastContextHint(Ext), CostKind, Ext); 3581 continue; 3582 } 3583 } 3584 CommonCost -= 3585 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3586 } 3587 } 3588 return CommonCost; 3589 } 3590 case Instruction::ZExt: 3591 case Instruction::SExt: 3592 case Instruction::FPToUI: 3593 case Instruction::FPToSI: 3594 case Instruction::FPExt: 3595 case Instruction::PtrToInt: 3596 case Instruction::IntToPtr: 3597 case Instruction::SIToFP: 3598 case Instruction::UIToFP: 3599 case Instruction::Trunc: 3600 case Instruction::FPTrunc: 3601 case Instruction::BitCast: { 3602 Type *SrcTy = VL0->getOperand(0)->getType(); 3603 InstructionCost ScalarEltCost = 3604 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3605 TTI::getCastContextHint(VL0), CostKind, VL0); 3606 if (NeedToShuffleReuses) { 3607 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3608 } 3609 3610 // Calculate the cost of this instruction. 3611 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3612 3613 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3614 InstructionCost VecCost = 0; 3615 // Check if the values are candidates to demote. 3616 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3617 VecCost = 3618 ReuseShuffleCost + 3619 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3620 TTI::getCastContextHint(VL0), CostKind, VL0); 3621 } 3622 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3623 return VecCost - ScalarCost; 3624 } 3625 case Instruction::FCmp: 3626 case Instruction::ICmp: 3627 case Instruction::Select: { 3628 // Calculate the cost of this instruction. 3629 InstructionCost ScalarEltCost = 3630 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3631 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3632 if (NeedToShuffleReuses) { 3633 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3634 } 3635 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3636 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3637 3638 // Check if all entries in VL are either compares or selects with compares 3639 // as condition that have the same predicates. 3640 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3641 bool First = true; 3642 for (auto *V : VL) { 3643 CmpInst::Predicate CurrentPred; 3644 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3645 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3646 !match(V, MatchCmp)) || 3647 (!First && VecPred != CurrentPred)) { 3648 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3649 break; 3650 } 3651 First = false; 3652 VecPred = CurrentPred; 3653 } 3654 3655 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3656 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3657 // Check if it is possible and profitable to use min/max for selects in 3658 // VL. 3659 // 3660 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3661 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3662 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3663 {VecTy, VecTy}); 3664 InstructionCost IntrinsicCost = 3665 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3666 // If the selects are the only uses of the compares, they will be dead 3667 // and we can adjust the cost by removing their cost. 3668 if (IntrinsicAndUse.second) 3669 IntrinsicCost -= 3670 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3671 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3672 VecCost = std::min(VecCost, IntrinsicCost); 3673 } 3674 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3675 return ReuseShuffleCost + VecCost - ScalarCost; 3676 } 3677 case Instruction::FNeg: 3678 case Instruction::Add: 3679 case Instruction::FAdd: 3680 case Instruction::Sub: 3681 case Instruction::FSub: 3682 case Instruction::Mul: 3683 case Instruction::FMul: 3684 case Instruction::UDiv: 3685 case Instruction::SDiv: 3686 case Instruction::FDiv: 3687 case Instruction::URem: 3688 case Instruction::SRem: 3689 case Instruction::FRem: 3690 case Instruction::Shl: 3691 case Instruction::LShr: 3692 case Instruction::AShr: 3693 case Instruction::And: 3694 case Instruction::Or: 3695 case Instruction::Xor: { 3696 // Certain instructions can be cheaper to vectorize if they have a 3697 // constant second vector operand. 3698 TargetTransformInfo::OperandValueKind Op1VK = 3699 TargetTransformInfo::OK_AnyValue; 3700 TargetTransformInfo::OperandValueKind Op2VK = 3701 TargetTransformInfo::OK_UniformConstantValue; 3702 TargetTransformInfo::OperandValueProperties Op1VP = 3703 TargetTransformInfo::OP_None; 3704 TargetTransformInfo::OperandValueProperties Op2VP = 3705 TargetTransformInfo::OP_PowerOf2; 3706 3707 // If all operands are exactly the same ConstantInt then set the 3708 // operand kind to OK_UniformConstantValue. 3709 // If instead not all operands are constants, then set the operand kind 3710 // to OK_AnyValue. If all operands are constants but not the same, 3711 // then set the operand kind to OK_NonUniformConstantValue. 3712 ConstantInt *CInt0 = nullptr; 3713 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3714 const Instruction *I = cast<Instruction>(VL[i]); 3715 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3716 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3717 if (!CInt) { 3718 Op2VK = TargetTransformInfo::OK_AnyValue; 3719 Op2VP = TargetTransformInfo::OP_None; 3720 break; 3721 } 3722 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3723 !CInt->getValue().isPowerOf2()) 3724 Op2VP = TargetTransformInfo::OP_None; 3725 if (i == 0) { 3726 CInt0 = CInt; 3727 continue; 3728 } 3729 if (CInt0 != CInt) 3730 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3731 } 3732 3733 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3734 InstructionCost ScalarEltCost = 3735 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3736 Op2VK, Op1VP, Op2VP, Operands, VL0); 3737 if (NeedToShuffleReuses) { 3738 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3739 } 3740 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3741 InstructionCost VecCost = 3742 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3743 Op2VK, Op1VP, Op2VP, Operands, VL0); 3744 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3745 return ReuseShuffleCost + VecCost - ScalarCost; 3746 } 3747 case Instruction::GetElementPtr: { 3748 TargetTransformInfo::OperandValueKind Op1VK = 3749 TargetTransformInfo::OK_AnyValue; 3750 TargetTransformInfo::OperandValueKind Op2VK = 3751 TargetTransformInfo::OK_UniformConstantValue; 3752 3753 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3754 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3755 if (NeedToShuffleReuses) { 3756 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3757 } 3758 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3759 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3760 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3761 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3762 return ReuseShuffleCost + VecCost - ScalarCost; 3763 } 3764 case Instruction::Load: { 3765 // Cost of wide load - cost of scalar loads. 3766 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3767 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3768 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3769 if (NeedToShuffleReuses) { 3770 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3771 } 3772 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3773 InstructionCost VecLdCost; 3774 if (E->State == TreeEntry::Vectorize) { 3775 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3776 CostKind, VL0); 3777 } else { 3778 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3779 VecLdCost = TTI->getGatherScatterOpCost( 3780 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3781 /*VariableMask=*/false, alignment, CostKind, VL0); 3782 } 3783 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 3784 SmallVector<int> NewMask; 3785 inversePermutation(E->ReorderIndices, NewMask); 3786 VecLdCost += TTI->getShuffleCost( 3787 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3788 } 3789 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3790 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3791 } 3792 case Instruction::Store: { 3793 // We know that we can merge the stores. Calculate the cost. 3794 bool IsReorder = !E->ReorderIndices.empty(); 3795 auto *SI = 3796 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3797 Align Alignment = SI->getAlign(); 3798 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3799 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3800 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3801 InstructionCost VecStCost = TTI->getMemoryOpCost( 3802 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3803 if (IsReorder) { 3804 SmallVector<int> NewMask; 3805 inversePermutation(E->ReorderIndices, NewMask); 3806 VecStCost += TTI->getShuffleCost( 3807 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3808 } 3809 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3810 return VecStCost - ScalarStCost; 3811 } 3812 case Instruction::Call: { 3813 CallInst *CI = cast<CallInst>(VL0); 3814 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3815 3816 // Calculate the cost of the scalar and vector calls. 3817 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 3818 InstructionCost ScalarEltCost = 3819 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3820 if (NeedToShuffleReuses) { 3821 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3822 } 3823 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3824 3825 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3826 InstructionCost VecCallCost = 3827 std::min(VecCallCosts.first, VecCallCosts.second); 3828 3829 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3830 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3831 << " for " << *CI << "\n"); 3832 3833 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3834 } 3835 case Instruction::ShuffleVector: { 3836 assert(E->isAltShuffle() && 3837 ((Instruction::isBinaryOp(E->getOpcode()) && 3838 Instruction::isBinaryOp(E->getAltOpcode())) || 3839 (Instruction::isCast(E->getOpcode()) && 3840 Instruction::isCast(E->getAltOpcode()))) && 3841 "Invalid Shuffle Vector Operand"); 3842 InstructionCost ScalarCost = 0; 3843 if (NeedToShuffleReuses) { 3844 for (unsigned Idx : E->ReuseShuffleIndices) { 3845 Instruction *I = cast<Instruction>(VL[Idx]); 3846 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3847 } 3848 for (Value *V : VL) { 3849 Instruction *I = cast<Instruction>(V); 3850 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3851 } 3852 } 3853 for (Value *V : VL) { 3854 Instruction *I = cast<Instruction>(V); 3855 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3856 ScalarCost += TTI->getInstructionCost(I, CostKind); 3857 } 3858 // VecCost is equal to sum of the cost of creating 2 vectors 3859 // and the cost of creating shuffle. 3860 InstructionCost VecCost = 0; 3861 if (Instruction::isBinaryOp(E->getOpcode())) { 3862 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3863 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3864 CostKind); 3865 } else { 3866 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3867 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3868 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3869 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3870 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3871 TTI::CastContextHint::None, CostKind); 3872 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3873 TTI::CastContextHint::None, CostKind); 3874 } 3875 3876 SmallVector<int> Mask(E->Scalars.size()); 3877 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 3878 auto *OpInst = cast<Instruction>(E->Scalars[I]); 3879 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3880 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 3881 } 3882 VecCost += 3883 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 3884 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3885 return ReuseShuffleCost + VecCost - ScalarCost; 3886 } 3887 default: 3888 llvm_unreachable("Unknown instruction"); 3889 } 3890 } 3891 3892 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3893 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3894 << VectorizableTree.size() << " is fully vectorizable .\n"); 3895 3896 // We only handle trees of heights 1 and 2. 3897 if (VectorizableTree.size() == 1 && 3898 VectorizableTree[0]->State == TreeEntry::Vectorize) 3899 return true; 3900 3901 if (VectorizableTree.size() != 2) 3902 return false; 3903 3904 // Handle splat and all-constants stores. 3905 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3906 (allConstant(VectorizableTree[1]->Scalars) || 3907 isSplat(VectorizableTree[1]->Scalars))) 3908 return true; 3909 3910 // Gathering cost would be too much for tiny trees. 3911 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3912 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3913 return false; 3914 3915 return true; 3916 } 3917 3918 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3919 TargetTransformInfo *TTI) { 3920 // Look past the root to find a source value. Arbitrarily follow the 3921 // path through operand 0 of any 'or'. Also, peek through optional 3922 // shift-left-by-multiple-of-8-bits. 3923 Value *ZextLoad = Root; 3924 const APInt *ShAmtC; 3925 while (!isa<ConstantExpr>(ZextLoad) && 3926 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3927 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3928 ShAmtC->urem(8) == 0))) 3929 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3930 3931 // Check if the input is an extended load of the required or/shift expression. 3932 Value *LoadPtr; 3933 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3934 return false; 3935 3936 // Require that the total load bit width is a legal integer type. 3937 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3938 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3939 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3940 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3941 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3942 return false; 3943 3944 // Everything matched - assume that we can fold the whole sequence using 3945 // load combining. 3946 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3947 << *(cast<Instruction>(Root)) << "\n"); 3948 3949 return true; 3950 } 3951 3952 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 3953 if (RdxKind != RecurKind::Or) 3954 return false; 3955 3956 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3957 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3958 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3959 } 3960 3961 bool BoUpSLP::isLoadCombineCandidate() const { 3962 // Peek through a final sequence of stores and check if all operations are 3963 // likely to be load-combined. 3964 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3965 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3966 Value *X; 3967 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3968 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3969 return false; 3970 } 3971 return true; 3972 } 3973 3974 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3975 // We can vectorize the tree if its size is greater than or equal to the 3976 // minimum size specified by the MinTreeSize command line option. 3977 if (VectorizableTree.size() >= MinTreeSize) 3978 return false; 3979 3980 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3981 // can vectorize it if we can prove it fully vectorizable. 3982 if (isFullyVectorizableTinyTree()) 3983 return false; 3984 3985 assert(VectorizableTree.empty() 3986 ? ExternalUses.empty() 3987 : true && "We shouldn't have any external users"); 3988 3989 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3990 // vectorizable. 3991 return true; 3992 } 3993 3994 InstructionCost BoUpSLP::getSpillCost() const { 3995 // Walk from the bottom of the tree to the top, tracking which values are 3996 // live. When we see a call instruction that is not part of our tree, 3997 // query TTI to see if there is a cost to keeping values live over it 3998 // (for example, if spills and fills are required). 3999 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4000 InstructionCost Cost = 0; 4001 4002 SmallPtrSet<Instruction*, 4> LiveValues; 4003 Instruction *PrevInst = nullptr; 4004 4005 // The entries in VectorizableTree are not necessarily ordered by their 4006 // position in basic blocks. Collect them and order them by dominance so later 4007 // instructions are guaranteed to be visited first. For instructions in 4008 // different basic blocks, we only scan to the beginning of the block, so 4009 // their order does not matter, as long as all instructions in a basic block 4010 // are grouped together. Using dominance ensures a deterministic order. 4011 SmallVector<Instruction *, 16> OrderedScalars; 4012 for (const auto &TEPtr : VectorizableTree) { 4013 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4014 if (!Inst) 4015 continue; 4016 OrderedScalars.push_back(Inst); 4017 } 4018 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 4019 return DT->dominates(B, A); 4020 }); 4021 4022 for (Instruction *Inst : OrderedScalars) { 4023 if (!PrevInst) { 4024 PrevInst = Inst; 4025 continue; 4026 } 4027 4028 // Update LiveValues. 4029 LiveValues.erase(PrevInst); 4030 for (auto &J : PrevInst->operands()) { 4031 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4032 LiveValues.insert(cast<Instruction>(&*J)); 4033 } 4034 4035 LLVM_DEBUG({ 4036 dbgs() << "SLP: #LV: " << LiveValues.size(); 4037 for (auto *X : LiveValues) 4038 dbgs() << " " << X->getName(); 4039 dbgs() << ", Looking at "; 4040 Inst->dump(); 4041 }); 4042 4043 // Now find the sequence of instructions between PrevInst and Inst. 4044 unsigned NumCalls = 0; 4045 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4046 PrevInstIt = 4047 PrevInst->getIterator().getReverse(); 4048 while (InstIt != PrevInstIt) { 4049 if (PrevInstIt == PrevInst->getParent()->rend()) { 4050 PrevInstIt = Inst->getParent()->rbegin(); 4051 continue; 4052 } 4053 4054 // Debug information does not impact spill cost. 4055 if ((isa<CallInst>(&*PrevInstIt) && 4056 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4057 &*PrevInstIt != PrevInst) 4058 NumCalls++; 4059 4060 ++PrevInstIt; 4061 } 4062 4063 if (NumCalls) { 4064 SmallVector<Type*, 4> V; 4065 for (auto *II : LiveValues) 4066 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4067 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4068 } 4069 4070 PrevInst = Inst; 4071 } 4072 4073 return Cost; 4074 } 4075 4076 InstructionCost BoUpSLP::getTreeCost() { 4077 InstructionCost Cost = 0; 4078 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4079 << VectorizableTree.size() << ".\n"); 4080 4081 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4082 4083 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4084 TreeEntry &TE = *VectorizableTree[I].get(); 4085 4086 // We create duplicate tree entries for gather sequences that have multiple 4087 // uses. However, we should not compute the cost of duplicate sequences. 4088 // For example, if we have a build vector (i.e., insertelement sequence) 4089 // that is used by more than one vector instruction, we only need to 4090 // compute the cost of the insertelement instructions once. The redundant 4091 // instructions will be eliminated by CSE. 4092 // 4093 // We should consider not creating duplicate tree entries for gather 4094 // sequences, and instead add additional edges to the tree representing 4095 // their uses. Since such an approach results in fewer total entries, 4096 // existing heuristics based on tree size may yield different results. 4097 // 4098 if (TE.State == TreeEntry::NeedToGather && 4099 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4100 VectorizableTree.end(), 4101 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4102 return EntryPtr->State == TreeEntry::NeedToGather && 4103 EntryPtr->isSame(TE.Scalars); 4104 })) 4105 continue; 4106 4107 InstructionCost C = getEntryCost(&TE); 4108 Cost += C; 4109 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4110 << " for bundle that starts with " << *TE.Scalars[0] 4111 << ".\n" 4112 << "SLP: Current total cost = " << Cost << "\n"); 4113 } 4114 4115 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4116 InstructionCost ExtractCost = 0; 4117 for (ExternalUser &EU : ExternalUses) { 4118 // We only add extract cost once for the same scalar. 4119 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4120 continue; 4121 4122 // Uses by ephemeral values are free (because the ephemeral value will be 4123 // removed prior to code generation, and so the extraction will be 4124 // removed as well). 4125 if (EphValues.count(EU.User)) 4126 continue; 4127 4128 // If we plan to rewrite the tree in a smaller type, we will need to sign 4129 // extend the extracted value back to the original type. Here, we account 4130 // for the extract and the added cost of the sign extend if needed. 4131 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4132 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4133 if (MinBWs.count(ScalarRoot)) { 4134 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4135 auto Extend = 4136 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4137 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4138 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4139 VecTy, EU.Lane); 4140 } else { 4141 ExtractCost += 4142 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4143 } 4144 } 4145 4146 InstructionCost SpillCost = getSpillCost(); 4147 Cost += SpillCost + ExtractCost; 4148 4149 #ifndef NDEBUG 4150 SmallString<256> Str; 4151 { 4152 raw_svector_ostream OS(Str); 4153 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4154 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4155 << "SLP: Total Cost = " << Cost << ".\n"; 4156 } 4157 LLVM_DEBUG(dbgs() << Str); 4158 if (ViewSLPTree) 4159 ViewGraph(this, "SLP" + F->getName(), false, Str); 4160 #endif 4161 4162 return Cost; 4163 } 4164 4165 InstructionCost 4166 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4167 const DenseSet<unsigned> &ShuffledIndices) const { 4168 unsigned NumElts = Ty->getNumElements(); 4169 APInt DemandedElts = APInt::getNullValue(NumElts); 4170 for (unsigned I = 0; I < NumElts; ++I) 4171 if (!ShuffledIndices.count(I)) 4172 DemandedElts.setBit(I); 4173 InstructionCost Cost = 4174 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4175 /*Extract*/ false); 4176 if (!ShuffledIndices.empty()) 4177 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4178 return Cost; 4179 } 4180 4181 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4182 // Find the type of the operands in VL. 4183 Type *ScalarTy = VL[0]->getType(); 4184 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4185 ScalarTy = SI->getValueOperand()->getType(); 4186 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4187 // Find the cost of inserting/extracting values from the vector. 4188 // Check if the same elements are inserted several times and count them as 4189 // shuffle candidates. 4190 DenseSet<unsigned> ShuffledElements; 4191 DenseSet<Value *> UniqueElements; 4192 // Iterate in reverse order to consider insert elements with the high cost. 4193 for (unsigned I = VL.size(); I > 0; --I) { 4194 unsigned Idx = I - 1; 4195 if (!UniqueElements.insert(VL[Idx]).second) 4196 ShuffledElements.insert(Idx); 4197 } 4198 return getGatherCost(VecTy, ShuffledElements); 4199 } 4200 4201 // Perform operand reordering on the instructions in VL and return the reordered 4202 // operands in Left and Right. 4203 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4204 SmallVectorImpl<Value *> &Left, 4205 SmallVectorImpl<Value *> &Right, 4206 const DataLayout &DL, 4207 ScalarEvolution &SE, 4208 const BoUpSLP &R) { 4209 if (VL.empty()) 4210 return; 4211 VLOperands Ops(VL, DL, SE, R); 4212 // Reorder the operands in place. 4213 Ops.reorder(); 4214 Left = Ops.getVL(0); 4215 Right = Ops.getVL(1); 4216 } 4217 4218 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4219 // Get the basic block this bundle is in. All instructions in the bundle 4220 // should be in this block. 4221 auto *Front = E->getMainOp(); 4222 auto *BB = Front->getParent(); 4223 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4224 auto *I = cast<Instruction>(V); 4225 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4226 })); 4227 4228 // The last instruction in the bundle in program order. 4229 Instruction *LastInst = nullptr; 4230 4231 // Find the last instruction. The common case should be that BB has been 4232 // scheduled, and the last instruction is VL.back(). So we start with 4233 // VL.back() and iterate over schedule data until we reach the end of the 4234 // bundle. The end of the bundle is marked by null ScheduleData. 4235 if (BlocksSchedules.count(BB)) { 4236 auto *Bundle = 4237 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4238 if (Bundle && Bundle->isPartOfBundle()) 4239 for (; Bundle; Bundle = Bundle->NextInBundle) 4240 if (Bundle->OpValue == Bundle->Inst) 4241 LastInst = Bundle->Inst; 4242 } 4243 4244 // LastInst can still be null at this point if there's either not an entry 4245 // for BB in BlocksSchedules or there's no ScheduleData available for 4246 // VL.back(). This can be the case if buildTree_rec aborts for various 4247 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4248 // size is reached, etc.). ScheduleData is initialized in the scheduling 4249 // "dry-run". 4250 // 4251 // If this happens, we can still find the last instruction by brute force. We 4252 // iterate forwards from Front (inclusive) until we either see all 4253 // instructions in the bundle or reach the end of the block. If Front is the 4254 // last instruction in program order, LastInst will be set to Front, and we 4255 // will visit all the remaining instructions in the block. 4256 // 4257 // One of the reasons we exit early from buildTree_rec is to place an upper 4258 // bound on compile-time. Thus, taking an additional compile-time hit here is 4259 // not ideal. However, this should be exceedingly rare since it requires that 4260 // we both exit early from buildTree_rec and that the bundle be out-of-order 4261 // (causing us to iterate all the way to the end of the block). 4262 if (!LastInst) { 4263 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4264 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4265 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4266 LastInst = &I; 4267 if (Bundle.empty()) 4268 break; 4269 } 4270 } 4271 assert(LastInst && "Failed to find last instruction in bundle"); 4272 4273 // Set the insertion point after the last instruction in the bundle. Set the 4274 // debug location to Front. 4275 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4276 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4277 } 4278 4279 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4280 Value *Val0 = 4281 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4282 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4283 Value *Vec = PoisonValue::get(VecTy); 4284 unsigned InsIndex = 0; 4285 for (Value *Val : VL) { 4286 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4287 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4288 if (!InsElt) 4289 continue; 4290 GatherSeq.insert(InsElt); 4291 CSEBlocks.insert(InsElt->getParent()); 4292 // Add to our 'need-to-extract' list. 4293 if (TreeEntry *Entry = getTreeEntry(Val)) { 4294 // Find which lane we need to extract. 4295 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4296 find(Entry->Scalars, Val)); 4297 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4298 if (!Entry->ReuseShuffleIndices.empty()) { 4299 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4300 find(Entry->ReuseShuffleIndices, FoundLane)); 4301 } 4302 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4303 } 4304 } 4305 4306 return Vec; 4307 } 4308 4309 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4310 InstructionsState S = getSameOpcode(VL); 4311 if (S.getOpcode()) { 4312 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4313 if (E->isSame(VL)) { 4314 Value *V = vectorizeTree(E); 4315 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4316 // Reshuffle to get only unique values. 4317 // If some of the scalars are duplicated in the vectorization tree 4318 // entry, we do not vectorize them but instead generate a mask for the 4319 // reuses. But if there are several users of the same entry, they may 4320 // have different vectorization factors. This is especially important 4321 // for PHI nodes. In this case, we need to adapt the resulting 4322 // instruction for the user vectorization factor and have to reshuffle 4323 // it again to take only unique elements of the vector. Without this 4324 // code the function incorrectly returns reduced vector instruction 4325 // with the same elements, not with the unique ones. 4326 // block: 4327 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4328 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4329 // ... (use %2) 4330 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4331 // br %block 4332 SmallVector<int, 4> UniqueIdxs; 4333 SmallSet<int, 4> UsedIdxs; 4334 int Pos = 0; 4335 for (int Idx : E->ReuseShuffleIndices) { 4336 if (UsedIdxs.insert(Idx).second) 4337 UniqueIdxs.emplace_back(Pos); 4338 ++Pos; 4339 } 4340 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4341 } 4342 return V; 4343 } 4344 } 4345 } 4346 4347 // Check that every instruction appears once in this bundle. 4348 SmallVector<int, 4> ReuseShuffleIndicies; 4349 SmallVector<Value *, 4> UniqueValues; 4350 if (VL.size() > 2) { 4351 DenseMap<Value *, unsigned> UniquePositions; 4352 for (Value *V : VL) { 4353 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4354 ReuseShuffleIndicies.emplace_back(Res.first->second); 4355 if (Res.second || isa<Constant>(V)) 4356 UniqueValues.emplace_back(V); 4357 } 4358 // Do not shuffle single element or if number of unique values is not power 4359 // of 2. 4360 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4361 !llvm::isPowerOf2_32(UniqueValues.size())) 4362 ReuseShuffleIndicies.clear(); 4363 else 4364 VL = UniqueValues; 4365 } 4366 4367 Value *Vec = gather(VL); 4368 if (!ReuseShuffleIndicies.empty()) { 4369 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4370 if (auto *I = dyn_cast<Instruction>(Vec)) { 4371 GatherSeq.insert(I); 4372 CSEBlocks.insert(I->getParent()); 4373 } 4374 } 4375 return Vec; 4376 } 4377 4378 namespace { 4379 /// Merges shuffle masks and emits final shuffle instruction, if required. 4380 class ShuffleInstructionBuilder { 4381 IRBuilderBase &Builder; 4382 bool IsFinalized = false; 4383 SmallVector<int, 4> Mask; 4384 4385 public: 4386 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4387 4388 /// Adds a mask, inverting it before applying. 4389 void addInversedMask(ArrayRef<unsigned> SubMask) { 4390 if (SubMask.empty()) 4391 return; 4392 SmallVector<int, 4> NewMask; 4393 inversePermutation(SubMask, NewMask); 4394 addMask(NewMask); 4395 } 4396 4397 /// Functions adds masks, merging them into single one. 4398 void addMask(ArrayRef<unsigned> SubMask) { 4399 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4400 addMask(NewMask); 4401 } 4402 4403 void addMask(ArrayRef<int> SubMask) { 4404 if (SubMask.empty()) 4405 return; 4406 if (Mask.empty()) { 4407 Mask.append(SubMask.begin(), SubMask.end()); 4408 return; 4409 } 4410 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4411 int TermValue = std::min(Mask.size(), SubMask.size()); 4412 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4413 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4414 NewMask[I] = E; 4415 continue; 4416 } 4417 NewMask[I] = Mask[SubMask[I]]; 4418 } 4419 Mask.swap(NewMask); 4420 } 4421 4422 Value *finalize(Value *V) { 4423 IsFinalized = true; 4424 if (Mask.empty()) 4425 return V; 4426 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4427 } 4428 4429 ~ShuffleInstructionBuilder() { 4430 assert((IsFinalized || Mask.empty()) && 4431 "Shuffle construction must be finalized."); 4432 } 4433 }; 4434 } // namespace 4435 4436 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4437 IRBuilder<>::InsertPointGuard Guard(Builder); 4438 4439 if (E->VectorizedValue) { 4440 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4441 return E->VectorizedValue; 4442 } 4443 4444 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4445 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4446 if (E->State == TreeEntry::NeedToGather) { 4447 setInsertPointAfterBundle(E); 4448 Value *Vec = gather(E->Scalars); 4449 if (NeedToShuffleReuses) { 4450 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4451 Vec = ShuffleBuilder.finalize(Vec); 4452 if (auto *I = dyn_cast<Instruction>(Vec)) { 4453 GatherSeq.insert(I); 4454 CSEBlocks.insert(I->getParent()); 4455 } 4456 } 4457 E->VectorizedValue = Vec; 4458 return Vec; 4459 } 4460 4461 assert((E->State == TreeEntry::Vectorize || 4462 E->State == TreeEntry::ScatterVectorize) && 4463 "Unhandled state"); 4464 unsigned ShuffleOrOp = 4465 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4466 Instruction *VL0 = E->getMainOp(); 4467 Type *ScalarTy = VL0->getType(); 4468 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4469 ScalarTy = Store->getValueOperand()->getType(); 4470 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4471 switch (ShuffleOrOp) { 4472 case Instruction::PHI: { 4473 auto *PH = cast<PHINode>(VL0); 4474 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4475 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4476 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4477 Value *V = NewPhi; 4478 if (NeedToShuffleReuses) 4479 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4480 4481 E->VectorizedValue = V; 4482 4483 // PHINodes may have multiple entries from the same block. We want to 4484 // visit every block once. 4485 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4486 4487 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4488 ValueList Operands; 4489 BasicBlock *IBB = PH->getIncomingBlock(i); 4490 4491 if (!VisitedBBs.insert(IBB).second) { 4492 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4493 continue; 4494 } 4495 4496 Builder.SetInsertPoint(IBB->getTerminator()); 4497 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4498 Value *Vec = vectorizeTree(E->getOperand(i)); 4499 NewPhi->addIncoming(Vec, IBB); 4500 } 4501 4502 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4503 "Invalid number of incoming values"); 4504 return V; 4505 } 4506 4507 case Instruction::ExtractElement: { 4508 Value *V = E->getSingleOperand(0); 4509 Builder.SetInsertPoint(VL0); 4510 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4511 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4512 V = ShuffleBuilder.finalize(V); 4513 E->VectorizedValue = V; 4514 return V; 4515 } 4516 case Instruction::ExtractValue: { 4517 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4518 Builder.SetInsertPoint(LI); 4519 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4520 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4521 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4522 Value *NewV = propagateMetadata(V, E->Scalars); 4523 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4524 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4525 NewV = ShuffleBuilder.finalize(NewV); 4526 E->VectorizedValue = NewV; 4527 return NewV; 4528 } 4529 case Instruction::ZExt: 4530 case Instruction::SExt: 4531 case Instruction::FPToUI: 4532 case Instruction::FPToSI: 4533 case Instruction::FPExt: 4534 case Instruction::PtrToInt: 4535 case Instruction::IntToPtr: 4536 case Instruction::SIToFP: 4537 case Instruction::UIToFP: 4538 case Instruction::Trunc: 4539 case Instruction::FPTrunc: 4540 case Instruction::BitCast: { 4541 setInsertPointAfterBundle(E); 4542 4543 Value *InVec = vectorizeTree(E->getOperand(0)); 4544 4545 if (E->VectorizedValue) { 4546 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4547 return E->VectorizedValue; 4548 } 4549 4550 auto *CI = cast<CastInst>(VL0); 4551 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4552 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4553 V = ShuffleBuilder.finalize(V); 4554 4555 E->VectorizedValue = V; 4556 ++NumVectorInstructions; 4557 return V; 4558 } 4559 case Instruction::FCmp: 4560 case Instruction::ICmp: { 4561 setInsertPointAfterBundle(E); 4562 4563 Value *L = vectorizeTree(E->getOperand(0)); 4564 Value *R = vectorizeTree(E->getOperand(1)); 4565 4566 if (E->VectorizedValue) { 4567 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4568 return E->VectorizedValue; 4569 } 4570 4571 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4572 Value *V = Builder.CreateCmp(P0, L, R); 4573 propagateIRFlags(V, E->Scalars, VL0); 4574 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4575 V = ShuffleBuilder.finalize(V); 4576 4577 E->VectorizedValue = V; 4578 ++NumVectorInstructions; 4579 return V; 4580 } 4581 case Instruction::Select: { 4582 setInsertPointAfterBundle(E); 4583 4584 Value *Cond = vectorizeTree(E->getOperand(0)); 4585 Value *True = vectorizeTree(E->getOperand(1)); 4586 Value *False = vectorizeTree(E->getOperand(2)); 4587 4588 if (E->VectorizedValue) { 4589 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4590 return E->VectorizedValue; 4591 } 4592 4593 Value *V = Builder.CreateSelect(Cond, True, False); 4594 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4595 V = ShuffleBuilder.finalize(V); 4596 4597 E->VectorizedValue = V; 4598 ++NumVectorInstructions; 4599 return V; 4600 } 4601 case Instruction::FNeg: { 4602 setInsertPointAfterBundle(E); 4603 4604 Value *Op = vectorizeTree(E->getOperand(0)); 4605 4606 if (E->VectorizedValue) { 4607 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4608 return E->VectorizedValue; 4609 } 4610 4611 Value *V = Builder.CreateUnOp( 4612 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4613 propagateIRFlags(V, E->Scalars, VL0); 4614 if (auto *I = dyn_cast<Instruction>(V)) 4615 V = propagateMetadata(I, E->Scalars); 4616 4617 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4618 V = ShuffleBuilder.finalize(V); 4619 4620 E->VectorizedValue = V; 4621 ++NumVectorInstructions; 4622 4623 return V; 4624 } 4625 case Instruction::Add: 4626 case Instruction::FAdd: 4627 case Instruction::Sub: 4628 case Instruction::FSub: 4629 case Instruction::Mul: 4630 case Instruction::FMul: 4631 case Instruction::UDiv: 4632 case Instruction::SDiv: 4633 case Instruction::FDiv: 4634 case Instruction::URem: 4635 case Instruction::SRem: 4636 case Instruction::FRem: 4637 case Instruction::Shl: 4638 case Instruction::LShr: 4639 case Instruction::AShr: 4640 case Instruction::And: 4641 case Instruction::Or: 4642 case Instruction::Xor: { 4643 setInsertPointAfterBundle(E); 4644 4645 Value *LHS = vectorizeTree(E->getOperand(0)); 4646 Value *RHS = vectorizeTree(E->getOperand(1)); 4647 4648 if (E->VectorizedValue) { 4649 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4650 return E->VectorizedValue; 4651 } 4652 4653 Value *V = Builder.CreateBinOp( 4654 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4655 RHS); 4656 propagateIRFlags(V, E->Scalars, VL0); 4657 if (auto *I = dyn_cast<Instruction>(V)) 4658 V = propagateMetadata(I, E->Scalars); 4659 4660 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4661 V = ShuffleBuilder.finalize(V); 4662 4663 E->VectorizedValue = V; 4664 ++NumVectorInstructions; 4665 4666 return V; 4667 } 4668 case Instruction::Load: { 4669 // Loads are inserted at the head of the tree because we don't want to 4670 // sink them all the way down past store instructions. 4671 bool IsReorder = E->updateStateIfReorder(); 4672 if (IsReorder) 4673 VL0 = E->getMainOp(); 4674 setInsertPointAfterBundle(E); 4675 4676 LoadInst *LI = cast<LoadInst>(VL0); 4677 Instruction *NewLI; 4678 unsigned AS = LI->getPointerAddressSpace(); 4679 Value *PO = LI->getPointerOperand(); 4680 if (E->State == TreeEntry::Vectorize) { 4681 4682 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4683 4684 // The pointer operand uses an in-tree scalar so we add the new BitCast 4685 // to ExternalUses list to make sure that an extract will be generated 4686 // in the future. 4687 if (getTreeEntry(PO)) 4688 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4689 4690 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4691 } else { 4692 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4693 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4694 // Use the minimum alignment of the gathered loads. 4695 Align CommonAlignment = LI->getAlign(); 4696 for (Value *V : E->Scalars) 4697 CommonAlignment = 4698 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4699 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4700 } 4701 Value *V = propagateMetadata(NewLI, E->Scalars); 4702 4703 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4704 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4705 V = ShuffleBuilder.finalize(V); 4706 E->VectorizedValue = V; 4707 ++NumVectorInstructions; 4708 return V; 4709 } 4710 case Instruction::Store: { 4711 bool IsReorder = !E->ReorderIndices.empty(); 4712 auto *SI = cast<StoreInst>( 4713 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4714 unsigned AS = SI->getPointerAddressSpace(); 4715 4716 setInsertPointAfterBundle(E); 4717 4718 Value *VecValue = vectorizeTree(E->getOperand(0)); 4719 ShuffleBuilder.addMask(E->ReorderIndices); 4720 VecValue = ShuffleBuilder.finalize(VecValue); 4721 4722 Value *ScalarPtr = SI->getPointerOperand(); 4723 Value *VecPtr = Builder.CreateBitCast( 4724 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4725 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4726 SI->getAlign()); 4727 4728 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4729 // ExternalUses to make sure that an extract will be generated in the 4730 // future. 4731 if (getTreeEntry(ScalarPtr)) 4732 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4733 4734 Value *V = propagateMetadata(ST, E->Scalars); 4735 4736 E->VectorizedValue = V; 4737 ++NumVectorInstructions; 4738 return V; 4739 } 4740 case Instruction::GetElementPtr: { 4741 setInsertPointAfterBundle(E); 4742 4743 Value *Op0 = vectorizeTree(E->getOperand(0)); 4744 4745 std::vector<Value *> OpVecs; 4746 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4747 ++j) { 4748 ValueList &VL = E->getOperand(j); 4749 // Need to cast all elements to the same type before vectorization to 4750 // avoid crash. 4751 Type *VL0Ty = VL0->getOperand(j)->getType(); 4752 Type *Ty = llvm::all_of( 4753 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4754 ? VL0Ty 4755 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4756 ->getPointerOperandType() 4757 ->getScalarType()); 4758 for (Value *&V : VL) { 4759 auto *CI = cast<ConstantInt>(V); 4760 V = ConstantExpr::getIntegerCast(CI, Ty, 4761 CI->getValue().isSignBitSet()); 4762 } 4763 Value *OpVec = vectorizeTree(VL); 4764 OpVecs.push_back(OpVec); 4765 } 4766 4767 Value *V = Builder.CreateGEP( 4768 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4769 if (Instruction *I = dyn_cast<Instruction>(V)) 4770 V = propagateMetadata(I, E->Scalars); 4771 4772 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4773 V = ShuffleBuilder.finalize(V); 4774 4775 E->VectorizedValue = V; 4776 ++NumVectorInstructions; 4777 4778 return V; 4779 } 4780 case Instruction::Call: { 4781 CallInst *CI = cast<CallInst>(VL0); 4782 setInsertPointAfterBundle(E); 4783 4784 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4785 if (Function *FI = CI->getCalledFunction()) 4786 IID = FI->getIntrinsicID(); 4787 4788 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4789 4790 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4791 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4792 VecCallCosts.first <= VecCallCosts.second; 4793 4794 Value *ScalarArg = nullptr; 4795 std::vector<Value *> OpVecs; 4796 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4797 ValueList OpVL; 4798 // Some intrinsics have scalar arguments. This argument should not be 4799 // vectorized. 4800 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4801 CallInst *CEI = cast<CallInst>(VL0); 4802 ScalarArg = CEI->getArgOperand(j); 4803 OpVecs.push_back(CEI->getArgOperand(j)); 4804 continue; 4805 } 4806 4807 Value *OpVec = vectorizeTree(E->getOperand(j)); 4808 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4809 OpVecs.push_back(OpVec); 4810 } 4811 4812 Function *CF; 4813 if (!UseIntrinsic) { 4814 VFShape Shape = 4815 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4816 VecTy->getNumElements())), 4817 false /*HasGlobalPred*/); 4818 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4819 } else { 4820 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4821 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4822 } 4823 4824 SmallVector<OperandBundleDef, 1> OpBundles; 4825 CI->getOperandBundlesAsDefs(OpBundles); 4826 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4827 4828 // The scalar argument uses an in-tree scalar so we add the new vectorized 4829 // call to ExternalUses list to make sure that an extract will be 4830 // generated in the future. 4831 if (ScalarArg && getTreeEntry(ScalarArg)) 4832 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4833 4834 propagateIRFlags(V, E->Scalars, VL0); 4835 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4836 V = ShuffleBuilder.finalize(V); 4837 4838 E->VectorizedValue = V; 4839 ++NumVectorInstructions; 4840 return V; 4841 } 4842 case Instruction::ShuffleVector: { 4843 assert(E->isAltShuffle() && 4844 ((Instruction::isBinaryOp(E->getOpcode()) && 4845 Instruction::isBinaryOp(E->getAltOpcode())) || 4846 (Instruction::isCast(E->getOpcode()) && 4847 Instruction::isCast(E->getAltOpcode()))) && 4848 "Invalid Shuffle Vector Operand"); 4849 4850 Value *LHS = nullptr, *RHS = nullptr; 4851 if (Instruction::isBinaryOp(E->getOpcode())) { 4852 setInsertPointAfterBundle(E); 4853 LHS = vectorizeTree(E->getOperand(0)); 4854 RHS = vectorizeTree(E->getOperand(1)); 4855 } else { 4856 setInsertPointAfterBundle(E); 4857 LHS = vectorizeTree(E->getOperand(0)); 4858 } 4859 4860 if (E->VectorizedValue) { 4861 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4862 return E->VectorizedValue; 4863 } 4864 4865 Value *V0, *V1; 4866 if (Instruction::isBinaryOp(E->getOpcode())) { 4867 V0 = Builder.CreateBinOp( 4868 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4869 V1 = Builder.CreateBinOp( 4870 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4871 } else { 4872 V0 = Builder.CreateCast( 4873 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4874 V1 = Builder.CreateCast( 4875 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4876 } 4877 4878 // Create shuffle to take alternate operations from the vector. 4879 // Also, gather up main and alt scalar ops to propagate IR flags to 4880 // each vector operation. 4881 ValueList OpScalars, AltScalars; 4882 unsigned e = E->Scalars.size(); 4883 SmallVector<int, 8> Mask(e); 4884 for (unsigned i = 0; i < e; ++i) { 4885 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4886 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4887 if (OpInst->getOpcode() == E->getAltOpcode()) { 4888 Mask[i] = e + i; 4889 AltScalars.push_back(E->Scalars[i]); 4890 } else { 4891 Mask[i] = i; 4892 OpScalars.push_back(E->Scalars[i]); 4893 } 4894 } 4895 4896 propagateIRFlags(V0, OpScalars); 4897 propagateIRFlags(V1, AltScalars); 4898 4899 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4900 if (Instruction *I = dyn_cast<Instruction>(V)) 4901 V = propagateMetadata(I, E->Scalars); 4902 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4903 V = ShuffleBuilder.finalize(V); 4904 4905 E->VectorizedValue = V; 4906 ++NumVectorInstructions; 4907 4908 return V; 4909 } 4910 default: 4911 llvm_unreachable("unknown inst"); 4912 } 4913 return nullptr; 4914 } 4915 4916 Value *BoUpSLP::vectorizeTree() { 4917 ExtraValueToDebugLocsMap ExternallyUsedValues; 4918 return vectorizeTree(ExternallyUsedValues); 4919 } 4920 4921 Value * 4922 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4923 // All blocks must be scheduled before any instructions are inserted. 4924 for (auto &BSIter : BlocksSchedules) { 4925 scheduleBlock(BSIter.second.get()); 4926 } 4927 4928 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4929 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4930 4931 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4932 // vectorized root. InstCombine will then rewrite the entire expression. We 4933 // sign extend the extracted values below. 4934 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4935 if (MinBWs.count(ScalarRoot)) { 4936 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 4937 // If current instr is a phi and not the last phi, insert it after the 4938 // last phi node. 4939 if (isa<PHINode>(I)) 4940 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 4941 else 4942 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4943 } 4944 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4945 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4946 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4947 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4948 VectorizableTree[0]->VectorizedValue = Trunc; 4949 } 4950 4951 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4952 << " values .\n"); 4953 4954 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4955 // specified by ScalarType. 4956 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4957 if (!MinBWs.count(ScalarRoot)) 4958 return Ex; 4959 if (MinBWs[ScalarRoot].second) 4960 return Builder.CreateSExt(Ex, ScalarType); 4961 return Builder.CreateZExt(Ex, ScalarType); 4962 }; 4963 4964 // Extract all of the elements with the external uses. 4965 for (const auto &ExternalUse : ExternalUses) { 4966 Value *Scalar = ExternalUse.Scalar; 4967 llvm::User *User = ExternalUse.User; 4968 4969 // Skip users that we already RAUW. This happens when one instruction 4970 // has multiple uses of the same value. 4971 if (User && !is_contained(Scalar->users(), User)) 4972 continue; 4973 TreeEntry *E = getTreeEntry(Scalar); 4974 assert(E && "Invalid scalar"); 4975 assert(E->State != TreeEntry::NeedToGather && 4976 "Extracting from a gather list"); 4977 4978 Value *Vec = E->VectorizedValue; 4979 assert(Vec && "Can't find vectorizable value"); 4980 4981 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4982 // If User == nullptr, the Scalar is used as extra arg. Generate 4983 // ExtractElement instruction and update the record for this scalar in 4984 // ExternallyUsedValues. 4985 if (!User) { 4986 assert(ExternallyUsedValues.count(Scalar) && 4987 "Scalar with nullptr as an external user must be registered in " 4988 "ExternallyUsedValues map"); 4989 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4990 Builder.SetInsertPoint(VecI->getParent(), 4991 std::next(VecI->getIterator())); 4992 } else { 4993 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4994 } 4995 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4996 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4997 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4998 auto &Locs = ExternallyUsedValues[Scalar]; 4999 ExternallyUsedValues.insert({Ex, Locs}); 5000 ExternallyUsedValues.erase(Scalar); 5001 // Required to update internally referenced instructions. 5002 Scalar->replaceAllUsesWith(Ex); 5003 continue; 5004 } 5005 5006 // Generate extracts for out-of-tree users. 5007 // Find the insertion point for the extractelement lane. 5008 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5009 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5010 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5011 if (PH->getIncomingValue(i) == Scalar) { 5012 Instruction *IncomingTerminator = 5013 PH->getIncomingBlock(i)->getTerminator(); 5014 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5015 Builder.SetInsertPoint(VecI->getParent(), 5016 std::next(VecI->getIterator())); 5017 } else { 5018 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5019 } 5020 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5021 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5022 CSEBlocks.insert(PH->getIncomingBlock(i)); 5023 PH->setOperand(i, Ex); 5024 } 5025 } 5026 } else { 5027 Builder.SetInsertPoint(cast<Instruction>(User)); 5028 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5029 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5030 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5031 User->replaceUsesOfWith(Scalar, Ex); 5032 } 5033 } else { 5034 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5035 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5036 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5037 CSEBlocks.insert(&F->getEntryBlock()); 5038 User->replaceUsesOfWith(Scalar, Ex); 5039 } 5040 5041 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5042 } 5043 5044 // For each vectorized value: 5045 for (auto &TEPtr : VectorizableTree) { 5046 TreeEntry *Entry = TEPtr.get(); 5047 5048 // No need to handle users of gathered values. 5049 if (Entry->State == TreeEntry::NeedToGather) 5050 continue; 5051 5052 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5053 5054 // For each lane: 5055 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5056 Value *Scalar = Entry->Scalars[Lane]; 5057 5058 #ifndef NDEBUG 5059 Type *Ty = Scalar->getType(); 5060 if (!Ty->isVoidTy()) { 5061 for (User *U : Scalar->users()) { 5062 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5063 5064 // It is legal to delete users in the ignorelist. 5065 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5066 "Deleting out-of-tree value"); 5067 } 5068 } 5069 #endif 5070 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5071 eraseInstruction(cast<Instruction>(Scalar)); 5072 } 5073 } 5074 5075 Builder.ClearInsertionPoint(); 5076 InstrElementSize.clear(); 5077 5078 return VectorizableTree[0]->VectorizedValue; 5079 } 5080 5081 void BoUpSLP::optimizeGatherSequence() { 5082 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5083 << " gather sequences instructions.\n"); 5084 // LICM InsertElementInst sequences. 5085 for (Instruction *I : GatherSeq) { 5086 if (isDeleted(I)) 5087 continue; 5088 5089 // Check if this block is inside a loop. 5090 Loop *L = LI->getLoopFor(I->getParent()); 5091 if (!L) 5092 continue; 5093 5094 // Check if it has a preheader. 5095 BasicBlock *PreHeader = L->getLoopPreheader(); 5096 if (!PreHeader) 5097 continue; 5098 5099 // If the vector or the element that we insert into it are 5100 // instructions that are defined in this basic block then we can't 5101 // hoist this instruction. 5102 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5103 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5104 if (Op0 && L->contains(Op0)) 5105 continue; 5106 if (Op1 && L->contains(Op1)) 5107 continue; 5108 5109 // We can hoist this instruction. Move it to the pre-header. 5110 I->moveBefore(PreHeader->getTerminator()); 5111 } 5112 5113 // Make a list of all reachable blocks in our CSE queue. 5114 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5115 CSEWorkList.reserve(CSEBlocks.size()); 5116 for (BasicBlock *BB : CSEBlocks) 5117 if (DomTreeNode *N = DT->getNode(BB)) { 5118 assert(DT->isReachableFromEntry(N)); 5119 CSEWorkList.push_back(N); 5120 } 5121 5122 // Sort blocks by domination. This ensures we visit a block after all blocks 5123 // dominating it are visited. 5124 llvm::stable_sort(CSEWorkList, 5125 [this](const DomTreeNode *A, const DomTreeNode *B) { 5126 return DT->properlyDominates(A, B); 5127 }); 5128 5129 // Perform O(N^2) search over the gather sequences and merge identical 5130 // instructions. TODO: We can further optimize this scan if we split the 5131 // instructions into different buckets based on the insert lane. 5132 SmallVector<Instruction *, 16> Visited; 5133 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5134 assert(*I && 5135 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5136 "Worklist not sorted properly!"); 5137 BasicBlock *BB = (*I)->getBlock(); 5138 // For all instructions in blocks containing gather sequences: 5139 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5140 Instruction *In = &*it++; 5141 if (isDeleted(In)) 5142 continue; 5143 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5144 continue; 5145 5146 // Check if we can replace this instruction with any of the 5147 // visited instructions. 5148 for (Instruction *v : Visited) { 5149 if (In->isIdenticalTo(v) && 5150 DT->dominates(v->getParent(), In->getParent())) { 5151 In->replaceAllUsesWith(v); 5152 eraseInstruction(In); 5153 In = nullptr; 5154 break; 5155 } 5156 } 5157 if (In) { 5158 assert(!is_contained(Visited, In)); 5159 Visited.push_back(In); 5160 } 5161 } 5162 } 5163 CSEBlocks.clear(); 5164 GatherSeq.clear(); 5165 } 5166 5167 // Groups the instructions to a bundle (which is then a single scheduling entity) 5168 // and schedules instructions until the bundle gets ready. 5169 Optional<BoUpSLP::ScheduleData *> 5170 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5171 const InstructionsState &S) { 5172 if (isa<PHINode>(S.OpValue)) 5173 return nullptr; 5174 5175 // Initialize the instruction bundle. 5176 Instruction *OldScheduleEnd = ScheduleEnd; 5177 ScheduleData *PrevInBundle = nullptr; 5178 ScheduleData *Bundle = nullptr; 5179 bool ReSchedule = false; 5180 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5181 5182 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5183 ScheduleData *Bundle) { 5184 // The scheduling region got new instructions at the lower end (or it is a 5185 // new region for the first bundle). This makes it necessary to 5186 // recalculate all dependencies. 5187 // It is seldom that this needs to be done a second time after adding the 5188 // initial bundle to the region. 5189 if (ScheduleEnd != OldScheduleEnd) { 5190 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5191 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5192 ReSchedule = true; 5193 } 5194 if (ReSchedule) { 5195 resetSchedule(); 5196 initialFillReadyList(ReadyInsts); 5197 } 5198 if (Bundle) { 5199 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5200 << " in block " << BB->getName() << "\n"); 5201 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5202 } 5203 5204 // Now try to schedule the new bundle or (if no bundle) just calculate 5205 // dependencies. As soon as the bundle is "ready" it means that there are no 5206 // cyclic dependencies and we can schedule it. Note that's important that we 5207 // don't "schedule" the bundle yet (see cancelScheduling). 5208 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5209 !ReadyInsts.empty()) { 5210 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5211 if (Picked->isSchedulingEntity() && Picked->isReady()) 5212 schedule(Picked, ReadyInsts); 5213 } 5214 }; 5215 5216 // Make sure that the scheduling region contains all 5217 // instructions of the bundle. 5218 for (Value *V : VL) { 5219 if (!extendSchedulingRegion(V, S)) { 5220 // If the scheduling region got new instructions at the lower end (or it 5221 // is a new region for the first bundle). This makes it necessary to 5222 // recalculate all dependencies. 5223 // Otherwise the compiler may crash trying to incorrectly calculate 5224 // dependencies and emit instruction in the wrong order at the actual 5225 // scheduling. 5226 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5227 return None; 5228 } 5229 } 5230 5231 for (Value *V : VL) { 5232 ScheduleData *BundleMember = getScheduleData(V); 5233 assert(BundleMember && 5234 "no ScheduleData for bundle member (maybe not in same basic block)"); 5235 if (BundleMember->IsScheduled) { 5236 // A bundle member was scheduled as single instruction before and now 5237 // needs to be scheduled as part of the bundle. We just get rid of the 5238 // existing schedule. 5239 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5240 << " was already scheduled\n"); 5241 ReSchedule = true; 5242 } 5243 assert(BundleMember->isSchedulingEntity() && 5244 "bundle member already part of other bundle"); 5245 if (PrevInBundle) { 5246 PrevInBundle->NextInBundle = BundleMember; 5247 } else { 5248 Bundle = BundleMember; 5249 } 5250 BundleMember->UnscheduledDepsInBundle = 0; 5251 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5252 5253 // Group the instructions to a bundle. 5254 BundleMember->FirstInBundle = Bundle; 5255 PrevInBundle = BundleMember; 5256 } 5257 assert(Bundle && "Failed to find schedule bundle"); 5258 TryScheduleBundle(ReSchedule, Bundle); 5259 if (!Bundle->isReady()) { 5260 cancelScheduling(VL, S.OpValue); 5261 return None; 5262 } 5263 return Bundle; 5264 } 5265 5266 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5267 Value *OpValue) { 5268 if (isa<PHINode>(OpValue)) 5269 return; 5270 5271 ScheduleData *Bundle = getScheduleData(OpValue); 5272 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5273 assert(!Bundle->IsScheduled && 5274 "Can't cancel bundle which is already scheduled"); 5275 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5276 "tried to unbundle something which is not a bundle"); 5277 5278 // Un-bundle: make single instructions out of the bundle. 5279 ScheduleData *BundleMember = Bundle; 5280 while (BundleMember) { 5281 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5282 BundleMember->FirstInBundle = BundleMember; 5283 ScheduleData *Next = BundleMember->NextInBundle; 5284 BundleMember->NextInBundle = nullptr; 5285 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5286 if (BundleMember->UnscheduledDepsInBundle == 0) { 5287 ReadyInsts.insert(BundleMember); 5288 } 5289 BundleMember = Next; 5290 } 5291 } 5292 5293 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5294 // Allocate a new ScheduleData for the instruction. 5295 if (ChunkPos >= ChunkSize) { 5296 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5297 ChunkPos = 0; 5298 } 5299 return &(ScheduleDataChunks.back()[ChunkPos++]); 5300 } 5301 5302 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5303 const InstructionsState &S) { 5304 if (getScheduleData(V, isOneOf(S, V))) 5305 return true; 5306 Instruction *I = dyn_cast<Instruction>(V); 5307 assert(I && "bundle member must be an instruction"); 5308 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5309 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5310 ScheduleData *ISD = getScheduleData(I); 5311 if (!ISD) 5312 return false; 5313 assert(isInSchedulingRegion(ISD) && 5314 "ScheduleData not in scheduling region"); 5315 ScheduleData *SD = allocateScheduleDataChunks(); 5316 SD->Inst = I; 5317 SD->init(SchedulingRegionID, S.OpValue); 5318 ExtraScheduleDataMap[I][S.OpValue] = SD; 5319 return true; 5320 }; 5321 if (CheckSheduleForI(I)) 5322 return true; 5323 if (!ScheduleStart) { 5324 // It's the first instruction in the new region. 5325 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5326 ScheduleStart = I; 5327 ScheduleEnd = I->getNextNode(); 5328 if (isOneOf(S, I) != I) 5329 CheckSheduleForI(I); 5330 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5331 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5332 return true; 5333 } 5334 // Search up and down at the same time, because we don't know if the new 5335 // instruction is above or below the existing scheduling region. 5336 BasicBlock::reverse_iterator UpIter = 5337 ++ScheduleStart->getIterator().getReverse(); 5338 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5339 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5340 BasicBlock::iterator LowerEnd = BB->end(); 5341 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 5342 &*DownIter != I) { 5343 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5344 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5345 return false; 5346 } 5347 5348 ++UpIter; 5349 ++DownIter; 5350 } 5351 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 5352 assert(I->getParent() == ScheduleStart->getParent() && 5353 "Instruction is in wrong basic block."); 5354 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5355 ScheduleStart = I; 5356 if (isOneOf(S, I) != I) 5357 CheckSheduleForI(I); 5358 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5359 << "\n"); 5360 return true; 5361 } 5362 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 5363 "Expected to reach top of the basic block or instruction down the " 5364 "lower end."); 5365 assert(I->getParent() == ScheduleEnd->getParent() && 5366 "Instruction is in wrong basic block."); 5367 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5368 nullptr); 5369 ScheduleEnd = I->getNextNode(); 5370 if (isOneOf(S, I) != I) 5371 CheckSheduleForI(I); 5372 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5373 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 5374 return true; 5375 } 5376 5377 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5378 Instruction *ToI, 5379 ScheduleData *PrevLoadStore, 5380 ScheduleData *NextLoadStore) { 5381 ScheduleData *CurrentLoadStore = PrevLoadStore; 5382 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5383 ScheduleData *SD = ScheduleDataMap[I]; 5384 if (!SD) { 5385 SD = allocateScheduleDataChunks(); 5386 ScheduleDataMap[I] = SD; 5387 SD->Inst = I; 5388 } 5389 assert(!isInSchedulingRegion(SD) && 5390 "new ScheduleData already in scheduling region"); 5391 SD->init(SchedulingRegionID, I); 5392 5393 if (I->mayReadOrWriteMemory() && 5394 (!isa<IntrinsicInst>(I) || 5395 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5396 cast<IntrinsicInst>(I)->getIntrinsicID() != 5397 Intrinsic::pseudoprobe))) { 5398 // Update the linked list of memory accessing instructions. 5399 if (CurrentLoadStore) { 5400 CurrentLoadStore->NextLoadStore = SD; 5401 } else { 5402 FirstLoadStoreInRegion = SD; 5403 } 5404 CurrentLoadStore = SD; 5405 } 5406 } 5407 if (NextLoadStore) { 5408 if (CurrentLoadStore) 5409 CurrentLoadStore->NextLoadStore = NextLoadStore; 5410 } else { 5411 LastLoadStoreInRegion = CurrentLoadStore; 5412 } 5413 } 5414 5415 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5416 bool InsertInReadyList, 5417 BoUpSLP *SLP) { 5418 assert(SD->isSchedulingEntity()); 5419 5420 SmallVector<ScheduleData *, 10> WorkList; 5421 WorkList.push_back(SD); 5422 5423 while (!WorkList.empty()) { 5424 ScheduleData *SD = WorkList.pop_back_val(); 5425 5426 ScheduleData *BundleMember = SD; 5427 while (BundleMember) { 5428 assert(isInSchedulingRegion(BundleMember)); 5429 if (!BundleMember->hasValidDependencies()) { 5430 5431 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5432 << "\n"); 5433 BundleMember->Dependencies = 0; 5434 BundleMember->resetUnscheduledDeps(); 5435 5436 // Handle def-use chain dependencies. 5437 if (BundleMember->OpValue != BundleMember->Inst) { 5438 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5439 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5440 BundleMember->Dependencies++; 5441 ScheduleData *DestBundle = UseSD->FirstInBundle; 5442 if (!DestBundle->IsScheduled) 5443 BundleMember->incrementUnscheduledDeps(1); 5444 if (!DestBundle->hasValidDependencies()) 5445 WorkList.push_back(DestBundle); 5446 } 5447 } else { 5448 for (User *U : BundleMember->Inst->users()) { 5449 if (isa<Instruction>(U)) { 5450 ScheduleData *UseSD = getScheduleData(U); 5451 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5452 BundleMember->Dependencies++; 5453 ScheduleData *DestBundle = UseSD->FirstInBundle; 5454 if (!DestBundle->IsScheduled) 5455 BundleMember->incrementUnscheduledDeps(1); 5456 if (!DestBundle->hasValidDependencies()) 5457 WorkList.push_back(DestBundle); 5458 } 5459 } else { 5460 // I'm not sure if this can ever happen. But we need to be safe. 5461 // This lets the instruction/bundle never be scheduled and 5462 // eventually disable vectorization. 5463 BundleMember->Dependencies++; 5464 BundleMember->incrementUnscheduledDeps(1); 5465 } 5466 } 5467 } 5468 5469 // Handle the memory dependencies. 5470 ScheduleData *DepDest = BundleMember->NextLoadStore; 5471 if (DepDest) { 5472 Instruction *SrcInst = BundleMember->Inst; 5473 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5474 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5475 unsigned numAliased = 0; 5476 unsigned DistToSrc = 1; 5477 5478 while (DepDest) { 5479 assert(isInSchedulingRegion(DepDest)); 5480 5481 // We have two limits to reduce the complexity: 5482 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5483 // SLP->isAliased (which is the expensive part in this loop). 5484 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5485 // the whole loop (even if the loop is fast, it's quadratic). 5486 // It's important for the loop break condition (see below) to 5487 // check this limit even between two read-only instructions. 5488 if (DistToSrc >= MaxMemDepDistance || 5489 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5490 (numAliased >= AliasedCheckLimit || 5491 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5492 5493 // We increment the counter only if the locations are aliased 5494 // (instead of counting all alias checks). This gives a better 5495 // balance between reduced runtime and accurate dependencies. 5496 numAliased++; 5497 5498 DepDest->MemoryDependencies.push_back(BundleMember); 5499 BundleMember->Dependencies++; 5500 ScheduleData *DestBundle = DepDest->FirstInBundle; 5501 if (!DestBundle->IsScheduled) { 5502 BundleMember->incrementUnscheduledDeps(1); 5503 } 5504 if (!DestBundle->hasValidDependencies()) { 5505 WorkList.push_back(DestBundle); 5506 } 5507 } 5508 DepDest = DepDest->NextLoadStore; 5509 5510 // Example, explaining the loop break condition: Let's assume our 5511 // starting instruction is i0 and MaxMemDepDistance = 3. 5512 // 5513 // +--------v--v--v 5514 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5515 // +--------^--^--^ 5516 // 5517 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5518 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5519 // Previously we already added dependencies from i3 to i6,i7,i8 5520 // (because of MaxMemDepDistance). As we added a dependency from 5521 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5522 // and we can abort this loop at i6. 5523 if (DistToSrc >= 2 * MaxMemDepDistance) 5524 break; 5525 DistToSrc++; 5526 } 5527 } 5528 } 5529 BundleMember = BundleMember->NextInBundle; 5530 } 5531 if (InsertInReadyList && SD->isReady()) { 5532 ReadyInsts.push_back(SD); 5533 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5534 << "\n"); 5535 } 5536 } 5537 } 5538 5539 void BoUpSLP::BlockScheduling::resetSchedule() { 5540 assert(ScheduleStart && 5541 "tried to reset schedule on block which has not been scheduled"); 5542 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5543 doForAllOpcodes(I, [&](ScheduleData *SD) { 5544 assert(isInSchedulingRegion(SD) && 5545 "ScheduleData not in scheduling region"); 5546 SD->IsScheduled = false; 5547 SD->resetUnscheduledDeps(); 5548 }); 5549 } 5550 ReadyInsts.clear(); 5551 } 5552 5553 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5554 if (!BS->ScheduleStart) 5555 return; 5556 5557 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5558 5559 BS->resetSchedule(); 5560 5561 // For the real scheduling we use a more sophisticated ready-list: it is 5562 // sorted by the original instruction location. This lets the final schedule 5563 // be as close as possible to the original instruction order. 5564 struct ScheduleDataCompare { 5565 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5566 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5567 } 5568 }; 5569 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5570 5571 // Ensure that all dependency data is updated and fill the ready-list with 5572 // initial instructions. 5573 int Idx = 0; 5574 int NumToSchedule = 0; 5575 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5576 I = I->getNextNode()) { 5577 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5578 assert(SD->isPartOfBundle() == 5579 (getTreeEntry(SD->Inst) != nullptr) && 5580 "scheduler and vectorizer bundle mismatch"); 5581 SD->FirstInBundle->SchedulingPriority = Idx++; 5582 if (SD->isSchedulingEntity()) { 5583 BS->calculateDependencies(SD, false, this); 5584 NumToSchedule++; 5585 } 5586 }); 5587 } 5588 BS->initialFillReadyList(ReadyInsts); 5589 5590 Instruction *LastScheduledInst = BS->ScheduleEnd; 5591 5592 // Do the "real" scheduling. 5593 while (!ReadyInsts.empty()) { 5594 ScheduleData *picked = *ReadyInsts.begin(); 5595 ReadyInsts.erase(ReadyInsts.begin()); 5596 5597 // Move the scheduled instruction(s) to their dedicated places, if not 5598 // there yet. 5599 ScheduleData *BundleMember = picked; 5600 while (BundleMember) { 5601 Instruction *pickedInst = BundleMember->Inst; 5602 if (LastScheduledInst->getNextNode() != pickedInst) { 5603 BS->BB->getInstList().remove(pickedInst); 5604 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5605 pickedInst); 5606 } 5607 LastScheduledInst = pickedInst; 5608 BundleMember = BundleMember->NextInBundle; 5609 } 5610 5611 BS->schedule(picked, ReadyInsts); 5612 NumToSchedule--; 5613 } 5614 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5615 5616 // Avoid duplicate scheduling of the block. 5617 BS->ScheduleStart = nullptr; 5618 } 5619 5620 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5621 // If V is a store, just return the width of the stored value (or value 5622 // truncated just before storing) without traversing the expression tree. 5623 // This is the common case. 5624 if (auto *Store = dyn_cast<StoreInst>(V)) { 5625 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5626 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5627 else 5628 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5629 } 5630 5631 auto E = InstrElementSize.find(V); 5632 if (E != InstrElementSize.end()) 5633 return E->second; 5634 5635 // If V is not a store, we can traverse the expression tree to find loads 5636 // that feed it. The type of the loaded value may indicate a more suitable 5637 // width than V's type. We want to base the vector element size on the width 5638 // of memory operations where possible. 5639 SmallVector<Instruction *, 16> Worklist; 5640 SmallPtrSet<Instruction *, 16> Visited; 5641 if (auto *I = dyn_cast<Instruction>(V)) { 5642 Worklist.push_back(I); 5643 Visited.insert(I); 5644 } 5645 5646 // Traverse the expression tree in bottom-up order looking for loads. If we 5647 // encounter an instruction we don't yet handle, we give up. 5648 auto MaxWidth = 0u; 5649 auto FoundUnknownInst = false; 5650 while (!Worklist.empty() && !FoundUnknownInst) { 5651 auto *I = Worklist.pop_back_val(); 5652 5653 // We should only be looking at scalar instructions here. If the current 5654 // instruction has a vector type, give up. 5655 auto *Ty = I->getType(); 5656 if (isa<VectorType>(Ty)) 5657 FoundUnknownInst = true; 5658 5659 // If the current instruction is a load, update MaxWidth to reflect the 5660 // width of the loaded value. 5661 else if (isa<LoadInst>(I)) 5662 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5663 5664 // Otherwise, we need to visit the operands of the instruction. We only 5665 // handle the interesting cases from buildTree here. If an operand is an 5666 // instruction we haven't yet visited, we add it to the worklist. 5667 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5668 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5669 for (Use &U : I->operands()) 5670 if (auto *J = dyn_cast<Instruction>(U.get())) 5671 if (Visited.insert(J).second) 5672 Worklist.push_back(J); 5673 } 5674 5675 // If we don't yet handle the instruction, give up. 5676 else 5677 FoundUnknownInst = true; 5678 } 5679 5680 int Width = MaxWidth; 5681 // If we didn't encounter a memory access in the expression tree, or if we 5682 // gave up for some reason, just return the width of V. Otherwise, return the 5683 // maximum width we found. 5684 if (!MaxWidth || FoundUnknownInst) 5685 Width = DL->getTypeSizeInBits(V->getType()); 5686 5687 for (Instruction *I : Visited) 5688 InstrElementSize[I] = Width; 5689 5690 return Width; 5691 } 5692 5693 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5694 // smaller type with a truncation. We collect the values that will be demoted 5695 // in ToDemote and additional roots that require investigating in Roots. 5696 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5697 SmallVectorImpl<Value *> &ToDemote, 5698 SmallVectorImpl<Value *> &Roots) { 5699 // We can always demote constants. 5700 if (isa<Constant>(V)) { 5701 ToDemote.push_back(V); 5702 return true; 5703 } 5704 5705 // If the value is not an instruction in the expression with only one use, it 5706 // cannot be demoted. 5707 auto *I = dyn_cast<Instruction>(V); 5708 if (!I || !I->hasOneUse() || !Expr.count(I)) 5709 return false; 5710 5711 switch (I->getOpcode()) { 5712 5713 // We can always demote truncations and extensions. Since truncations can 5714 // seed additional demotion, we save the truncated value. 5715 case Instruction::Trunc: 5716 Roots.push_back(I->getOperand(0)); 5717 break; 5718 case Instruction::ZExt: 5719 case Instruction::SExt: 5720 break; 5721 5722 // We can demote certain binary operations if we can demote both of their 5723 // operands. 5724 case Instruction::Add: 5725 case Instruction::Sub: 5726 case Instruction::Mul: 5727 case Instruction::And: 5728 case Instruction::Or: 5729 case Instruction::Xor: 5730 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5731 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5732 return false; 5733 break; 5734 5735 // We can demote selects if we can demote their true and false values. 5736 case Instruction::Select: { 5737 SelectInst *SI = cast<SelectInst>(I); 5738 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5739 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5740 return false; 5741 break; 5742 } 5743 5744 // We can demote phis if we can demote all their incoming operands. Note that 5745 // we don't need to worry about cycles since we ensure single use above. 5746 case Instruction::PHI: { 5747 PHINode *PN = cast<PHINode>(I); 5748 for (Value *IncValue : PN->incoming_values()) 5749 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5750 return false; 5751 break; 5752 } 5753 5754 // Otherwise, conservatively give up. 5755 default: 5756 return false; 5757 } 5758 5759 // Record the value that we can demote. 5760 ToDemote.push_back(V); 5761 return true; 5762 } 5763 5764 void BoUpSLP::computeMinimumValueSizes() { 5765 // If there are no external uses, the expression tree must be rooted by a 5766 // store. We can't demote in-memory values, so there is nothing to do here. 5767 if (ExternalUses.empty()) 5768 return; 5769 5770 // We only attempt to truncate integer expressions. 5771 auto &TreeRoot = VectorizableTree[0]->Scalars; 5772 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5773 if (!TreeRootIT) 5774 return; 5775 5776 // If the expression is not rooted by a store, these roots should have 5777 // external uses. We will rely on InstCombine to rewrite the expression in 5778 // the narrower type. However, InstCombine only rewrites single-use values. 5779 // This means that if a tree entry other than a root is used externally, it 5780 // must have multiple uses and InstCombine will not rewrite it. The code 5781 // below ensures that only the roots are used externally. 5782 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5783 for (auto &EU : ExternalUses) 5784 if (!Expr.erase(EU.Scalar)) 5785 return; 5786 if (!Expr.empty()) 5787 return; 5788 5789 // Collect the scalar values of the vectorizable expression. We will use this 5790 // context to determine which values can be demoted. If we see a truncation, 5791 // we mark it as seeding another demotion. 5792 for (auto &EntryPtr : VectorizableTree) 5793 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5794 5795 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5796 // have a single external user that is not in the vectorizable tree. 5797 for (auto *Root : TreeRoot) 5798 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5799 return; 5800 5801 // Conservatively determine if we can actually truncate the roots of the 5802 // expression. Collect the values that can be demoted in ToDemote and 5803 // additional roots that require investigating in Roots. 5804 SmallVector<Value *, 32> ToDemote; 5805 SmallVector<Value *, 4> Roots; 5806 for (auto *Root : TreeRoot) 5807 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5808 return; 5809 5810 // The maximum bit width required to represent all the values that can be 5811 // demoted without loss of precision. It would be safe to truncate the roots 5812 // of the expression to this width. 5813 auto MaxBitWidth = 8u; 5814 5815 // We first check if all the bits of the roots are demanded. If they're not, 5816 // we can truncate the roots to this narrower type. 5817 for (auto *Root : TreeRoot) { 5818 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5819 MaxBitWidth = std::max<unsigned>( 5820 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5821 } 5822 5823 // True if the roots can be zero-extended back to their original type, rather 5824 // than sign-extended. We know that if the leading bits are not demanded, we 5825 // can safely zero-extend. So we initialize IsKnownPositive to True. 5826 bool IsKnownPositive = true; 5827 5828 // If all the bits of the roots are demanded, we can try a little harder to 5829 // compute a narrower type. This can happen, for example, if the roots are 5830 // getelementptr indices. InstCombine promotes these indices to the pointer 5831 // width. Thus, all their bits are technically demanded even though the 5832 // address computation might be vectorized in a smaller type. 5833 // 5834 // We start by looking at each entry that can be demoted. We compute the 5835 // maximum bit width required to store the scalar by using ValueTracking to 5836 // compute the number of high-order bits we can truncate. 5837 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5838 llvm::all_of(TreeRoot, [](Value *R) { 5839 assert(R->hasOneUse() && "Root should have only one use!"); 5840 return isa<GetElementPtrInst>(R->user_back()); 5841 })) { 5842 MaxBitWidth = 8u; 5843 5844 // Determine if the sign bit of all the roots is known to be zero. If not, 5845 // IsKnownPositive is set to False. 5846 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5847 KnownBits Known = computeKnownBits(R, *DL); 5848 return Known.isNonNegative(); 5849 }); 5850 5851 // Determine the maximum number of bits required to store the scalar 5852 // values. 5853 for (auto *Scalar : ToDemote) { 5854 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5855 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5856 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5857 } 5858 5859 // If we can't prove that the sign bit is zero, we must add one to the 5860 // maximum bit width to account for the unknown sign bit. This preserves 5861 // the existing sign bit so we can safely sign-extend the root back to the 5862 // original type. Otherwise, if we know the sign bit is zero, we will 5863 // zero-extend the root instead. 5864 // 5865 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5866 // one to the maximum bit width will yield a larger-than-necessary 5867 // type. In general, we need to add an extra bit only if we can't 5868 // prove that the upper bit of the original type is equal to the 5869 // upper bit of the proposed smaller type. If these two bits are the 5870 // same (either zero or one) we know that sign-extending from the 5871 // smaller type will result in the same value. Here, since we can't 5872 // yet prove this, we are just making the proposed smaller type 5873 // larger to ensure correctness. 5874 if (!IsKnownPositive) 5875 ++MaxBitWidth; 5876 } 5877 5878 // Round MaxBitWidth up to the next power-of-two. 5879 if (!isPowerOf2_64(MaxBitWidth)) 5880 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5881 5882 // If the maximum bit width we compute is less than the with of the roots' 5883 // type, we can proceed with the narrowing. Otherwise, do nothing. 5884 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5885 return; 5886 5887 // If we can truncate the root, we must collect additional values that might 5888 // be demoted as a result. That is, those seeded by truncations we will 5889 // modify. 5890 while (!Roots.empty()) 5891 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5892 5893 // Finally, map the values we can demote to the maximum bit with we computed. 5894 for (auto *Scalar : ToDemote) 5895 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5896 } 5897 5898 namespace { 5899 5900 /// The SLPVectorizer Pass. 5901 struct SLPVectorizer : public FunctionPass { 5902 SLPVectorizerPass Impl; 5903 5904 /// Pass identification, replacement for typeid 5905 static char ID; 5906 5907 explicit SLPVectorizer() : FunctionPass(ID) { 5908 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5909 } 5910 5911 bool doInitialization(Module &M) override { 5912 return false; 5913 } 5914 5915 bool runOnFunction(Function &F) override { 5916 if (skipFunction(F)) 5917 return false; 5918 5919 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5920 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5921 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5922 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5923 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5924 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5925 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5926 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5927 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5928 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5929 5930 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5931 } 5932 5933 void getAnalysisUsage(AnalysisUsage &AU) const override { 5934 FunctionPass::getAnalysisUsage(AU); 5935 AU.addRequired<AssumptionCacheTracker>(); 5936 AU.addRequired<ScalarEvolutionWrapperPass>(); 5937 AU.addRequired<AAResultsWrapperPass>(); 5938 AU.addRequired<TargetTransformInfoWrapperPass>(); 5939 AU.addRequired<LoopInfoWrapperPass>(); 5940 AU.addRequired<DominatorTreeWrapperPass>(); 5941 AU.addRequired<DemandedBitsWrapperPass>(); 5942 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5943 AU.addRequired<InjectTLIMappingsLegacy>(); 5944 AU.addPreserved<LoopInfoWrapperPass>(); 5945 AU.addPreserved<DominatorTreeWrapperPass>(); 5946 AU.addPreserved<AAResultsWrapperPass>(); 5947 AU.addPreserved<GlobalsAAWrapperPass>(); 5948 AU.setPreservesCFG(); 5949 } 5950 }; 5951 5952 } // end anonymous namespace 5953 5954 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5955 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5956 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5957 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5958 auto *AA = &AM.getResult<AAManager>(F); 5959 auto *LI = &AM.getResult<LoopAnalysis>(F); 5960 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5961 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5962 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5963 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5964 5965 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5966 if (!Changed) 5967 return PreservedAnalyses::all(); 5968 5969 PreservedAnalyses PA; 5970 PA.preserveSet<CFGAnalyses>(); 5971 PA.preserve<AAManager>(); 5972 PA.preserve<GlobalsAA>(); 5973 return PA; 5974 } 5975 5976 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5977 TargetTransformInfo *TTI_, 5978 TargetLibraryInfo *TLI_, AAResults *AA_, 5979 LoopInfo *LI_, DominatorTree *DT_, 5980 AssumptionCache *AC_, DemandedBits *DB_, 5981 OptimizationRemarkEmitter *ORE_) { 5982 if (!RunSLPVectorization) 5983 return false; 5984 SE = SE_; 5985 TTI = TTI_; 5986 TLI = TLI_; 5987 AA = AA_; 5988 LI = LI_; 5989 DT = DT_; 5990 AC = AC_; 5991 DB = DB_; 5992 DL = &F.getParent()->getDataLayout(); 5993 5994 Stores.clear(); 5995 GEPs.clear(); 5996 bool Changed = false; 5997 5998 // If the target claims to have no vector registers don't attempt 5999 // vectorization. 6000 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6001 return false; 6002 6003 // Don't vectorize when the attribute NoImplicitFloat is used. 6004 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6005 return false; 6006 6007 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6008 6009 // Use the bottom up slp vectorizer to construct chains that start with 6010 // store instructions. 6011 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6012 6013 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6014 // delete instructions. 6015 6016 // Scan the blocks in the function in post order. 6017 for (auto BB : post_order(&F.getEntryBlock())) { 6018 collectSeedInstructions(BB); 6019 6020 // Vectorize trees that end at stores. 6021 if (!Stores.empty()) { 6022 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6023 << " underlying objects.\n"); 6024 Changed |= vectorizeStoreChains(R); 6025 } 6026 6027 // Vectorize trees that end at reductions. 6028 Changed |= vectorizeChainsInBlock(BB, R); 6029 6030 // Vectorize the index computations of getelementptr instructions. This 6031 // is primarily intended to catch gather-like idioms ending at 6032 // non-consecutive loads. 6033 if (!GEPs.empty()) { 6034 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6035 << " underlying objects.\n"); 6036 Changed |= vectorizeGEPIndices(BB, R); 6037 } 6038 } 6039 6040 if (Changed) { 6041 R.optimizeGatherSequence(); 6042 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6043 } 6044 return Changed; 6045 } 6046 6047 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6048 unsigned Idx) { 6049 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6050 << "\n"); 6051 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6052 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6053 unsigned VF = Chain.size(); 6054 6055 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6056 return false; 6057 6058 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6059 << "\n"); 6060 6061 R.buildTree(Chain); 6062 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6063 // TODO: Handle orders of size less than number of elements in the vector. 6064 if (Order && Order->size() == Chain.size()) { 6065 // TODO: reorder tree nodes without tree rebuilding. 6066 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6067 llvm::transform(*Order, ReorderedOps.begin(), 6068 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6069 R.buildTree(ReorderedOps); 6070 } 6071 if (R.isTreeTinyAndNotFullyVectorizable()) 6072 return false; 6073 if (R.isLoadCombineCandidate()) 6074 return false; 6075 6076 R.computeMinimumValueSizes(); 6077 6078 InstructionCost Cost = R.getTreeCost(); 6079 6080 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6081 if (Cost < -SLPCostThreshold) { 6082 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6083 6084 using namespace ore; 6085 6086 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6087 cast<StoreInst>(Chain[0])) 6088 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6089 << " and with tree size " 6090 << NV("TreeSize", R.getTreeSize())); 6091 6092 R.vectorizeTree(); 6093 return true; 6094 } 6095 6096 return false; 6097 } 6098 6099 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6100 BoUpSLP &R) { 6101 // We may run into multiple chains that merge into a single chain. We mark the 6102 // stores that we vectorized so that we don't visit the same store twice. 6103 BoUpSLP::ValueSet VectorizedStores; 6104 bool Changed = false; 6105 6106 int E = Stores.size(); 6107 SmallBitVector Tails(E, false); 6108 int MaxIter = MaxStoreLookup.getValue(); 6109 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6110 E, std::make_pair(E, INT_MAX)); 6111 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6112 int IterCnt; 6113 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6114 &CheckedPairs, 6115 &ConsecutiveChain](int K, int Idx) { 6116 if (IterCnt >= MaxIter) 6117 return true; 6118 if (CheckedPairs[Idx].test(K)) 6119 return ConsecutiveChain[K].second == 1 && 6120 ConsecutiveChain[K].first == Idx; 6121 ++IterCnt; 6122 CheckedPairs[Idx].set(K); 6123 CheckedPairs[K].set(Idx); 6124 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(), 6125 Stores[Idx]->getPointerOperand(), *DL, 6126 *SE, /*StrictCheck=*/true); 6127 if (!Diff || *Diff == 0) 6128 return false; 6129 int Val = *Diff; 6130 if (Val < 0) { 6131 if (ConsecutiveChain[Idx].second > -Val) { 6132 Tails.set(K); 6133 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6134 } 6135 return false; 6136 } 6137 if (ConsecutiveChain[K].second <= Val) 6138 return false; 6139 6140 Tails.set(Idx); 6141 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6142 return Val == 1; 6143 }; 6144 // Do a quadratic search on all of the given stores in reverse order and find 6145 // all of the pairs of stores that follow each other. 6146 for (int Idx = E - 1; Idx >= 0; --Idx) { 6147 // If a store has multiple consecutive store candidates, search according 6148 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6149 // This is because usually pairing with immediate succeeding or preceding 6150 // candidate create the best chance to find slp vectorization opportunity. 6151 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6152 IterCnt = 0; 6153 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6154 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6155 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6156 break; 6157 } 6158 6159 // For stores that start but don't end a link in the chain: 6160 for (int Cnt = E; Cnt > 0; --Cnt) { 6161 int I = Cnt - 1; 6162 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6163 continue; 6164 // We found a store instr that starts a chain. Now follow the chain and try 6165 // to vectorize it. 6166 BoUpSLP::ValueList Operands; 6167 // Collect the chain into a list. 6168 while (I != E && !VectorizedStores.count(Stores[I])) { 6169 Operands.push_back(Stores[I]); 6170 Tails.set(I); 6171 if (ConsecutiveChain[I].second != 1) { 6172 // Mark the new end in the chain and go back, if required. It might be 6173 // required if the original stores come in reversed order, for example. 6174 if (ConsecutiveChain[I].first != E && 6175 Tails.test(ConsecutiveChain[I].first) && 6176 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6177 Tails.reset(ConsecutiveChain[I].first); 6178 if (Cnt < ConsecutiveChain[I].first + 2) 6179 Cnt = ConsecutiveChain[I].first + 2; 6180 } 6181 break; 6182 } 6183 // Move to the next value in the chain. 6184 I = ConsecutiveChain[I].first; 6185 } 6186 assert(!Operands.empty() && "Expected non-empty list of stores."); 6187 6188 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6189 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6190 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6191 6192 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6193 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6194 MaxElts); 6195 6196 // FIXME: Is division-by-2 the correct step? Should we assert that the 6197 // register size is a power-of-2? 6198 unsigned StartIdx = 0; 6199 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6200 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6201 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6202 if (!VectorizedStores.count(Slice.front()) && 6203 !VectorizedStores.count(Slice.back()) && 6204 vectorizeStoreChain(Slice, R, Cnt)) { 6205 // Mark the vectorized stores so that we don't vectorize them again. 6206 VectorizedStores.insert(Slice.begin(), Slice.end()); 6207 Changed = true; 6208 // If we vectorized initial block, no need to try to vectorize it 6209 // again. 6210 if (Cnt == StartIdx) 6211 StartIdx += Size; 6212 Cnt += Size; 6213 continue; 6214 } 6215 ++Cnt; 6216 } 6217 // Check if the whole array was vectorized already - exit. 6218 if (StartIdx >= Operands.size()) 6219 break; 6220 } 6221 } 6222 6223 return Changed; 6224 } 6225 6226 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6227 // Initialize the collections. We will make a single pass over the block. 6228 Stores.clear(); 6229 GEPs.clear(); 6230 6231 // Visit the store and getelementptr instructions in BB and organize them in 6232 // Stores and GEPs according to the underlying objects of their pointer 6233 // operands. 6234 for (Instruction &I : *BB) { 6235 // Ignore store instructions that are volatile or have a pointer operand 6236 // that doesn't point to a scalar type. 6237 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6238 if (!SI->isSimple()) 6239 continue; 6240 if (!isValidElementType(SI->getValueOperand()->getType())) 6241 continue; 6242 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6243 } 6244 6245 // Ignore getelementptr instructions that have more than one index, a 6246 // constant index, or a pointer operand that doesn't point to a scalar 6247 // type. 6248 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6249 auto Idx = GEP->idx_begin()->get(); 6250 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6251 continue; 6252 if (!isValidElementType(Idx->getType())) 6253 continue; 6254 if (GEP->getType()->isVectorTy()) 6255 continue; 6256 GEPs[GEP->getPointerOperand()].push_back(GEP); 6257 } 6258 } 6259 } 6260 6261 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6262 if (!A || !B) 6263 return false; 6264 Value *VL[] = {A, B}; 6265 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6266 } 6267 6268 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6269 bool AllowReorder, 6270 ArrayRef<Value *> InsertUses) { 6271 if (VL.size() < 2) 6272 return false; 6273 6274 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6275 << VL.size() << ".\n"); 6276 6277 // Check that all of the parts are instructions of the same type, 6278 // we permit an alternate opcode via InstructionsState. 6279 InstructionsState S = getSameOpcode(VL); 6280 if (!S.getOpcode()) 6281 return false; 6282 6283 Instruction *I0 = cast<Instruction>(S.OpValue); 6284 // Make sure invalid types (including vector type) are rejected before 6285 // determining vectorization factor for scalar instructions. 6286 for (Value *V : VL) { 6287 Type *Ty = V->getType(); 6288 if (!isValidElementType(Ty)) { 6289 // NOTE: the following will give user internal llvm type name, which may 6290 // not be useful. 6291 R.getORE()->emit([&]() { 6292 std::string type_str; 6293 llvm::raw_string_ostream rso(type_str); 6294 Ty->print(rso); 6295 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6296 << "Cannot SLP vectorize list: type " 6297 << rso.str() + " is unsupported by vectorizer"; 6298 }); 6299 return false; 6300 } 6301 } 6302 6303 unsigned Sz = R.getVectorElementSize(I0); 6304 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6305 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6306 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6307 if (MaxVF < 2) { 6308 R.getORE()->emit([&]() { 6309 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6310 << "Cannot SLP vectorize list: vectorization factor " 6311 << "less than 2 is not supported"; 6312 }); 6313 return false; 6314 } 6315 6316 bool Changed = false; 6317 bool CandidateFound = false; 6318 InstructionCost MinCost = SLPCostThreshold.getValue(); 6319 6320 bool CompensateUseCost = 6321 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6322 return V && isa<InsertElementInst>(V); 6323 }); 6324 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6325 "Each scalar expected to have an associated InsertElement user."); 6326 6327 unsigned NextInst = 0, MaxInst = VL.size(); 6328 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6329 // No actual vectorization should happen, if number of parts is the same as 6330 // provided vectorization factor (i.e. the scalar type is used for vector 6331 // code during codegen). 6332 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6333 if (TTI->getNumberOfParts(VecTy) == VF) 6334 continue; 6335 for (unsigned I = NextInst; I < MaxInst; ++I) { 6336 unsigned OpsWidth = 0; 6337 6338 if (I + VF > MaxInst) 6339 OpsWidth = MaxInst - I; 6340 else 6341 OpsWidth = VF; 6342 6343 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6344 break; 6345 6346 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6347 // Check that a previous iteration of this loop did not delete the Value. 6348 if (llvm::any_of(Ops, [&R](Value *V) { 6349 auto *I = dyn_cast<Instruction>(V); 6350 return I && R.isDeleted(I); 6351 })) 6352 continue; 6353 6354 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6355 << "\n"); 6356 6357 R.buildTree(Ops); 6358 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6359 // TODO: check if we can allow reordering for more cases. 6360 if (AllowReorder && Order) { 6361 // TODO: reorder tree nodes without tree rebuilding. 6362 // Conceptually, there is nothing actually preventing us from trying to 6363 // reorder a larger list. In fact, we do exactly this when vectorizing 6364 // reductions. However, at this point, we only expect to get here when 6365 // there are exactly two operations. 6366 assert(Ops.size() == 2); 6367 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6368 R.buildTree(ReorderedOps, None); 6369 } 6370 if (R.isTreeTinyAndNotFullyVectorizable()) 6371 continue; 6372 6373 R.computeMinimumValueSizes(); 6374 InstructionCost Cost = R.getTreeCost(); 6375 CandidateFound = true; 6376 if (CompensateUseCost) { 6377 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6378 // rather than sum of single inserts as the latter may overestimate 6379 // cost. This work should imply improving cost estimation for extracts 6380 // that added in for external (for vectorization tree) users,i.e. that 6381 // part should also switch to same interface. 6382 // For example, the following case is projected code after SLP: 6383 // %4 = extractelement <4 x i64> %3, i32 0 6384 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6385 // %5 = extractelement <4 x i64> %3, i32 1 6386 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6387 // %6 = extractelement <4 x i64> %3, i32 2 6388 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6389 // %7 = extractelement <4 x i64> %3, i32 3 6390 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6391 // 6392 // Extracts here added by SLP in order to feed users (the inserts) of 6393 // original scalars and contribute to "ExtractCost" at cost evaluation. 6394 // The inserts in turn form sequence to build an aggregate that 6395 // detected by findBuildAggregate routine. 6396 // SLP makes an assumption that such sequence will be optimized away 6397 // later (instcombine) so it tries to compensate ExctractCost with 6398 // cost of insert sequence. 6399 // Current per element cost calculation approach is not quite accurate 6400 // and tends to create bias toward favoring vectorization. 6401 // Switching to the TTI interface might help a bit. 6402 // Alternative solution could be pattern-match to detect a no-op or 6403 // shuffle. 6404 InstructionCost UserCost = 0; 6405 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6406 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6407 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6408 UserCost += TTI->getVectorInstrCost( 6409 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6410 } 6411 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6412 << ".\n"); 6413 Cost -= UserCost; 6414 } 6415 6416 MinCost = std::min(MinCost, Cost); 6417 6418 if (Cost < -SLPCostThreshold) { 6419 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6420 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6421 cast<Instruction>(Ops[0])) 6422 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6423 << " and with tree size " 6424 << ore::NV("TreeSize", R.getTreeSize())); 6425 6426 R.vectorizeTree(); 6427 // Move to the next bundle. 6428 I += VF - 1; 6429 NextInst = I + 1; 6430 Changed = true; 6431 } 6432 } 6433 } 6434 6435 if (!Changed && CandidateFound) { 6436 R.getORE()->emit([&]() { 6437 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6438 << "List vectorization was possible but not beneficial with cost " 6439 << ore::NV("Cost", MinCost) << " >= " 6440 << ore::NV("Treshold", -SLPCostThreshold); 6441 }); 6442 } else if (!Changed) { 6443 R.getORE()->emit([&]() { 6444 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6445 << "Cannot SLP vectorize list: vectorization was impossible" 6446 << " with available vectorization factors"; 6447 }); 6448 } 6449 return Changed; 6450 } 6451 6452 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6453 if (!I) 6454 return false; 6455 6456 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6457 return false; 6458 6459 Value *P = I->getParent(); 6460 6461 // Vectorize in current basic block only. 6462 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6463 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6464 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6465 return false; 6466 6467 // Try to vectorize V. 6468 if (tryToVectorizePair(Op0, Op1, R)) 6469 return true; 6470 6471 auto *A = dyn_cast<BinaryOperator>(Op0); 6472 auto *B = dyn_cast<BinaryOperator>(Op1); 6473 // Try to skip B. 6474 if (B && B->hasOneUse()) { 6475 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6476 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6477 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6478 return true; 6479 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6480 return true; 6481 } 6482 6483 // Try to skip A. 6484 if (A && A->hasOneUse()) { 6485 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6486 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6487 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6488 return true; 6489 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6490 return true; 6491 } 6492 return false; 6493 } 6494 6495 namespace { 6496 6497 /// Model horizontal reductions. 6498 /// 6499 /// A horizontal reduction is a tree of reduction instructions that has values 6500 /// that can be put into a vector as its leaves. For example: 6501 /// 6502 /// mul mul mul mul 6503 /// \ / \ / 6504 /// + + 6505 /// \ / 6506 /// + 6507 /// This tree has "mul" as its leaf values and "+" as its reduction 6508 /// instructions. A reduction can feed into a store or a binary operation 6509 /// feeding a phi. 6510 /// ... 6511 /// \ / 6512 /// + 6513 /// | 6514 /// phi += 6515 /// 6516 /// Or: 6517 /// ... 6518 /// \ / 6519 /// + 6520 /// | 6521 /// *p = 6522 /// 6523 class HorizontalReduction { 6524 using ReductionOpsType = SmallVector<Value *, 16>; 6525 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6526 ReductionOpsListType ReductionOps; 6527 SmallVector<Value *, 32> ReducedVals; 6528 // Use map vector to make stable output. 6529 MapVector<Instruction *, Value *> ExtraArgs; 6530 WeakTrackingVH ReductionRoot; 6531 /// The type of reduction operation. 6532 RecurKind RdxKind; 6533 6534 /// Checks if instruction is associative and can be vectorized. 6535 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6536 if (Kind == RecurKind::None) 6537 return false; 6538 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6539 return true; 6540 6541 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6542 // FP min/max are associative except for NaN and -0.0. We do not 6543 // have to rule out -0.0 here because the intrinsic semantics do not 6544 // specify a fixed result for it. 6545 return I->getFastMathFlags().noNaNs(); 6546 } 6547 6548 return I->isAssociative(); 6549 } 6550 6551 /// Checks if the ParentStackElem.first should be marked as a reduction 6552 /// operation with an extra argument or as extra argument itself. 6553 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6554 Value *ExtraArg) { 6555 if (ExtraArgs.count(ParentStackElem.first)) { 6556 ExtraArgs[ParentStackElem.first] = nullptr; 6557 // We ran into something like: 6558 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6559 // The whole ParentStackElem.first should be considered as an extra value 6560 // in this case. 6561 // Do not perform analysis of remaining operands of ParentStackElem.first 6562 // instruction, this whole instruction is an extra argument. 6563 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 6564 } else { 6565 // We ran into something like: 6566 // ParentStackElem.first += ... + ExtraArg + ... 6567 ExtraArgs[ParentStackElem.first] = ExtraArg; 6568 } 6569 } 6570 6571 /// Creates reduction operation with the current opcode. 6572 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6573 Value *RHS, const Twine &Name, bool UseSelect) { 6574 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6575 switch (Kind) { 6576 case RecurKind::Add: 6577 case RecurKind::Mul: 6578 case RecurKind::Or: 6579 case RecurKind::And: 6580 case RecurKind::Xor: 6581 case RecurKind::FAdd: 6582 case RecurKind::FMul: 6583 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6584 Name); 6585 case RecurKind::FMax: 6586 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6587 case RecurKind::FMin: 6588 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6589 case RecurKind::SMax: 6590 if (UseSelect) { 6591 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6592 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6593 } 6594 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 6595 case RecurKind::SMin: 6596 if (UseSelect) { 6597 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6598 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6599 } 6600 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 6601 case RecurKind::UMax: 6602 if (UseSelect) { 6603 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6604 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6605 } 6606 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 6607 case RecurKind::UMin: 6608 if (UseSelect) { 6609 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6610 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6611 } 6612 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 6613 default: 6614 llvm_unreachable("Unknown reduction operation."); 6615 } 6616 } 6617 6618 /// Creates reduction operation with the current opcode with the IR flags 6619 /// from \p ReductionOps. 6620 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6621 Value *RHS, const Twine &Name, 6622 const ReductionOpsListType &ReductionOps) { 6623 bool UseSelect = ReductionOps.size() == 2; 6624 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 6625 "Expected cmp + select pairs for reduction"); 6626 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 6627 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6628 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6629 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6630 propagateIRFlags(Op, ReductionOps[1]); 6631 return Op; 6632 } 6633 } 6634 propagateIRFlags(Op, ReductionOps[0]); 6635 return Op; 6636 } 6637 /// Creates reduction operation with the current opcode with the IR flags 6638 /// from \p I. 6639 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6640 Value *RHS, const Twine &Name, Instruction *I) { 6641 auto *SelI = dyn_cast<SelectInst>(I); 6642 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 6643 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6644 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6645 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 6646 } 6647 propagateIRFlags(Op, I); 6648 return Op; 6649 } 6650 6651 static RecurKind getRdxKind(Instruction *I) { 6652 assert(I && "Expected instruction for reduction matching"); 6653 TargetTransformInfo::ReductionFlags RdxFlags; 6654 if (match(I, m_Add(m_Value(), m_Value()))) 6655 return RecurKind::Add; 6656 if (match(I, m_Mul(m_Value(), m_Value()))) 6657 return RecurKind::Mul; 6658 if (match(I, m_And(m_Value(), m_Value()))) 6659 return RecurKind::And; 6660 if (match(I, m_Or(m_Value(), m_Value()))) 6661 return RecurKind::Or; 6662 if (match(I, m_Xor(m_Value(), m_Value()))) 6663 return RecurKind::Xor; 6664 if (match(I, m_FAdd(m_Value(), m_Value()))) 6665 return RecurKind::FAdd; 6666 if (match(I, m_FMul(m_Value(), m_Value()))) 6667 return RecurKind::FMul; 6668 6669 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6670 return RecurKind::FMax; 6671 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6672 return RecurKind::FMin; 6673 6674 // This matches either cmp+select or intrinsics. SLP is expected to handle 6675 // either form. 6676 // TODO: If we are canonicalizing to intrinsics, we can remove several 6677 // special-case paths that deal with selects. 6678 if (match(I, m_SMax(m_Value(), m_Value()))) 6679 return RecurKind::SMax; 6680 if (match(I, m_SMin(m_Value(), m_Value()))) 6681 return RecurKind::SMin; 6682 if (match(I, m_UMax(m_Value(), m_Value()))) 6683 return RecurKind::UMax; 6684 if (match(I, m_UMin(m_Value(), m_Value()))) 6685 return RecurKind::UMin; 6686 6687 if (auto *Select = dyn_cast<SelectInst>(I)) { 6688 // Try harder: look for min/max pattern based on instructions producing 6689 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6690 // During the intermediate stages of SLP, it's very common to have 6691 // pattern like this (since optimizeGatherSequence is run only once 6692 // at the end): 6693 // %1 = extractelement <2 x i32> %a, i32 0 6694 // %2 = extractelement <2 x i32> %a, i32 1 6695 // %cond = icmp sgt i32 %1, %2 6696 // %3 = extractelement <2 x i32> %a, i32 0 6697 // %4 = extractelement <2 x i32> %a, i32 1 6698 // %select = select i1 %cond, i32 %3, i32 %4 6699 CmpInst::Predicate Pred; 6700 Instruction *L1; 6701 Instruction *L2; 6702 6703 Value *LHS = Select->getTrueValue(); 6704 Value *RHS = Select->getFalseValue(); 6705 Value *Cond = Select->getCondition(); 6706 6707 // TODO: Support inverse predicates. 6708 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6709 if (!isa<ExtractElementInst>(RHS) || 6710 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6711 return RecurKind::None; 6712 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6713 if (!isa<ExtractElementInst>(LHS) || 6714 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6715 return RecurKind::None; 6716 } else { 6717 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6718 return RecurKind::None; 6719 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6720 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6721 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6722 return RecurKind::None; 6723 } 6724 6725 TargetTransformInfo::ReductionFlags RdxFlags; 6726 switch (Pred) { 6727 default: 6728 return RecurKind::None; 6729 case CmpInst::ICMP_SGT: 6730 case CmpInst::ICMP_SGE: 6731 return RecurKind::SMax; 6732 case CmpInst::ICMP_SLT: 6733 case CmpInst::ICMP_SLE: 6734 return RecurKind::SMin; 6735 case CmpInst::ICMP_UGT: 6736 case CmpInst::ICMP_UGE: 6737 return RecurKind::UMax; 6738 case CmpInst::ICMP_ULT: 6739 case CmpInst::ICMP_ULE: 6740 return RecurKind::UMin; 6741 } 6742 } 6743 return RecurKind::None; 6744 } 6745 6746 /// Get the index of the first operand. 6747 static unsigned getFirstOperandIndex(Instruction *I) { 6748 return isa<SelectInst>(I) ? 1 : 0; 6749 } 6750 6751 /// Total number of operands in the reduction operation. 6752 static unsigned getNumberOfOperands(Instruction *I) { 6753 return isa<SelectInst>(I) ? 3 : 2; 6754 } 6755 6756 /// Checks if the instruction is in basic block \p BB. 6757 /// For a min/max reduction check that both compare and select are in \p BB. 6758 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 6759 auto *Sel = dyn_cast<SelectInst>(I); 6760 if (IsRedOp && Sel) { 6761 auto *Cmp = cast<Instruction>(Sel->getCondition()); 6762 return Sel->getParent() == BB && Cmp->getParent() == BB; 6763 } 6764 return I->getParent() == BB; 6765 } 6766 6767 /// Expected number of uses for reduction operations/reduced values. 6768 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 6769 // SelectInst must be used twice while the condition op must have single 6770 // use only. 6771 if (MatchCmpSel) { 6772 if (auto *Sel = dyn_cast<SelectInst>(I)) 6773 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 6774 return I->hasNUses(2); 6775 } 6776 6777 // Arithmetic reduction operation must be used once only. 6778 return I->hasOneUse(); 6779 } 6780 6781 /// Initializes the list of reduction operations. 6782 void initReductionOps(Instruction *I) { 6783 if (isa<SelectInst>(I)) 6784 ReductionOps.assign(2, ReductionOpsType()); 6785 else 6786 ReductionOps.assign(1, ReductionOpsType()); 6787 } 6788 6789 /// Add all reduction operations for the reduction instruction \p I. 6790 void addReductionOps(Instruction *I) { 6791 if (auto *Sel = dyn_cast<SelectInst>(I)) { 6792 ReductionOps[0].emplace_back(Sel->getCondition()); 6793 ReductionOps[1].emplace_back(Sel); 6794 } else { 6795 ReductionOps[0].emplace_back(I); 6796 } 6797 } 6798 6799 static Value *getLHS(RecurKind Kind, Instruction *I) { 6800 if (Kind == RecurKind::None) 6801 return nullptr; 6802 return I->getOperand(getFirstOperandIndex(I)); 6803 } 6804 static Value *getRHS(RecurKind Kind, Instruction *I) { 6805 if (Kind == RecurKind::None) 6806 return nullptr; 6807 return I->getOperand(getFirstOperandIndex(I) + 1); 6808 } 6809 6810 public: 6811 HorizontalReduction() = default; 6812 6813 /// Try to find a reduction tree. 6814 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6815 assert((!Phi || is_contained(Phi->operands(), B)) && 6816 "Phi needs to use the binary operator"); 6817 6818 RdxKind = getRdxKind(B); 6819 6820 // We could have a initial reductions that is not an add. 6821 // r *= v1 + v2 + v3 + v4 6822 // In such a case start looking for a tree rooted in the first '+'. 6823 if (Phi) { 6824 if (getLHS(RdxKind, B) == Phi) { 6825 Phi = nullptr; 6826 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 6827 if (!B) 6828 return false; 6829 RdxKind = getRdxKind(B); 6830 } else if (getRHS(RdxKind, B) == Phi) { 6831 Phi = nullptr; 6832 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 6833 if (!B) 6834 return false; 6835 RdxKind = getRdxKind(B); 6836 } 6837 } 6838 6839 if (!isVectorizable(RdxKind, B)) 6840 return false; 6841 6842 // Analyze "regular" integer/FP types for reductions - no target-specific 6843 // types or pointers. 6844 Type *Ty = B->getType(); 6845 if (!isValidElementType(Ty) || Ty->isPointerTy()) 6846 return false; 6847 6848 ReductionRoot = B; 6849 6850 // The opcode for leaf values that we perform a reduction on. 6851 // For example: load(x) + load(y) + load(z) + fptoui(w) 6852 // The leaf opcode for 'w' does not match, so we don't include it as a 6853 // potential candidate for the reduction. 6854 unsigned LeafOpcode = 0; 6855 6856 // Post order traverse the reduction tree starting at B. We only handle true 6857 // trees containing only binary operators. 6858 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6859 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 6860 initReductionOps(B); 6861 while (!Stack.empty()) { 6862 Instruction *TreeN = Stack.back().first; 6863 unsigned EdgeToVisit = Stack.back().second++; 6864 const RecurKind TreeRdxKind = getRdxKind(TreeN); 6865 bool IsReducedValue = TreeRdxKind != RdxKind; 6866 6867 // Postorder visit. 6868 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 6869 if (IsReducedValue) 6870 ReducedVals.push_back(TreeN); 6871 else { 6872 auto ExtraArgsIter = ExtraArgs.find(TreeN); 6873 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 6874 // Check if TreeN is an extra argument of its parent operation. 6875 if (Stack.size() <= 1) { 6876 // TreeN can't be an extra argument as it is a root reduction 6877 // operation. 6878 return false; 6879 } 6880 // Yes, TreeN is an extra argument, do not add it to a list of 6881 // reduction operations. 6882 // Stack[Stack.size() - 2] always points to the parent operation. 6883 markExtraArg(Stack[Stack.size() - 2], TreeN); 6884 ExtraArgs.erase(TreeN); 6885 } else 6886 addReductionOps(TreeN); 6887 } 6888 // Retract. 6889 Stack.pop_back(); 6890 continue; 6891 } 6892 6893 // Visit left or right. 6894 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 6895 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 6896 if (!EdgeInst) { 6897 // Edge value is not a reduction instruction or a leaf instruction. 6898 // (It may be a constant, function argument, or something else.) 6899 markExtraArg(Stack.back(), EdgeVal); 6900 continue; 6901 } 6902 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 6903 // Continue analysis if the next operand is a reduction operation or 6904 // (possibly) a leaf value. If the leaf value opcode is not set, 6905 // the first met operation != reduction operation is considered as the 6906 // leaf opcode. 6907 // Only handle trees in the current basic block. 6908 // Each tree node needs to have minimal number of users except for the 6909 // ultimate reduction. 6910 const bool IsRdxInst = EdgeRdxKind == RdxKind; 6911 if (EdgeInst != Phi && EdgeInst != B && 6912 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 6913 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 6914 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 6915 if (IsRdxInst) { 6916 // We need to be able to reassociate the reduction operations. 6917 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 6918 // I is an extra argument for TreeN (its parent operation). 6919 markExtraArg(Stack.back(), EdgeInst); 6920 continue; 6921 } 6922 } else if (!LeafOpcode) { 6923 LeafOpcode = EdgeInst->getOpcode(); 6924 } 6925 Stack.push_back( 6926 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 6927 continue; 6928 } 6929 // I is an extra argument for TreeN (its parent operation). 6930 markExtraArg(Stack.back(), EdgeInst); 6931 } 6932 return true; 6933 } 6934 6935 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6936 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6937 // If there are a sufficient number of reduction values, reduce 6938 // to a nearby power-of-2. We can safely generate oversized 6939 // vectors and rely on the backend to split them to legal sizes. 6940 unsigned NumReducedVals = ReducedVals.size(); 6941 if (NumReducedVals < 4) 6942 return false; 6943 6944 // Intersect the fast-math-flags from all reduction operations. 6945 FastMathFlags RdxFMF; 6946 RdxFMF.set(); 6947 for (ReductionOpsType &RdxOp : ReductionOps) { 6948 for (Value *RdxVal : RdxOp) { 6949 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 6950 RdxFMF &= FPMO->getFastMathFlags(); 6951 } 6952 } 6953 6954 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6955 Builder.setFastMathFlags(RdxFMF); 6956 6957 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6958 // The same extra argument may be used several times, so log each attempt 6959 // to use it. 6960 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6961 assert(Pair.first && "DebugLoc must be set."); 6962 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6963 } 6964 6965 // The compare instruction of a min/max is the insertion point for new 6966 // instructions and may be replaced with a new compare instruction. 6967 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6968 assert(isa<SelectInst>(RdxRootInst) && 6969 "Expected min/max reduction to have select root instruction"); 6970 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6971 assert(isa<Instruction>(ScalarCond) && 6972 "Expected min/max reduction to have compare condition"); 6973 return cast<Instruction>(ScalarCond); 6974 }; 6975 6976 // The reduction root is used as the insertion point for new instructions, 6977 // so set it as externally used to prevent it from being deleted. 6978 ExternallyUsedValues[ReductionRoot]; 6979 SmallVector<Value *, 16> IgnoreList; 6980 for (ReductionOpsType &RdxOp : ReductionOps) 6981 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6982 6983 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6984 if (NumReducedVals > ReduxWidth) { 6985 // In the loop below, we are building a tree based on a window of 6986 // 'ReduxWidth' values. 6987 // If the operands of those values have common traits (compare predicate, 6988 // constant operand, etc), then we want to group those together to 6989 // minimize the cost of the reduction. 6990 6991 // TODO: This should be extended to count common operands for 6992 // compares and binops. 6993 6994 // Step 1: Count the number of times each compare predicate occurs. 6995 SmallDenseMap<unsigned, unsigned> PredCountMap; 6996 for (Value *RdxVal : ReducedVals) { 6997 CmpInst::Predicate Pred; 6998 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6999 ++PredCountMap[Pred]; 7000 } 7001 // Step 2: Sort the values so the most common predicates come first. 7002 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7003 CmpInst::Predicate PredA, PredB; 7004 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7005 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7006 return PredCountMap[PredA] > PredCountMap[PredB]; 7007 } 7008 return false; 7009 }); 7010 } 7011 7012 Value *VectorizedTree = nullptr; 7013 unsigned i = 0; 7014 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7015 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7016 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7017 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7018 if (Order) { 7019 assert(Order->size() == VL.size() && 7020 "Order size must be the same as number of vectorized " 7021 "instructions."); 7022 // TODO: reorder tree nodes without tree rebuilding. 7023 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7024 llvm::transform(*Order, ReorderedOps.begin(), 7025 [VL](const unsigned Idx) { return VL[Idx]; }); 7026 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7027 } 7028 if (V.isTreeTinyAndNotFullyVectorizable()) 7029 break; 7030 if (V.isLoadCombineReductionCandidate(RdxKind)) 7031 break; 7032 7033 V.computeMinimumValueSizes(); 7034 7035 // Estimate cost. 7036 InstructionCost TreeCost = V.getTreeCost(); 7037 InstructionCost ReductionCost = 7038 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7039 InstructionCost Cost = TreeCost + ReductionCost; 7040 if (!Cost.isValid()) { 7041 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7042 return false; 7043 } 7044 if (Cost >= -SLPCostThreshold) { 7045 V.getORE()->emit([&]() { 7046 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7047 cast<Instruction>(VL[0])) 7048 << "Vectorizing horizontal reduction is possible" 7049 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7050 << " and threshold " 7051 << ore::NV("Threshold", -SLPCostThreshold); 7052 }); 7053 break; 7054 } 7055 7056 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7057 << Cost << ". (HorRdx)\n"); 7058 V.getORE()->emit([&]() { 7059 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7060 cast<Instruction>(VL[0])) 7061 << "Vectorized horizontal reduction with cost " 7062 << ore::NV("Cost", Cost) << " and with tree size " 7063 << ore::NV("TreeSize", V.getTreeSize()); 7064 }); 7065 7066 // Vectorize a tree. 7067 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7068 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7069 7070 // Emit a reduction. If the root is a select (min/max idiom), the insert 7071 // point is the compare condition of that select. 7072 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7073 if (isa<SelectInst>(RdxRootInst)) 7074 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7075 else 7076 Builder.SetInsertPoint(RdxRootInst); 7077 7078 Value *ReducedSubTree = 7079 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7080 7081 if (!VectorizedTree) { 7082 // Initialize the final value in the reduction. 7083 VectorizedTree = ReducedSubTree; 7084 } else { 7085 // Update the final value in the reduction. 7086 Builder.SetCurrentDebugLocation(Loc); 7087 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7088 ReducedSubTree, "op.rdx", ReductionOps); 7089 } 7090 i += ReduxWidth; 7091 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7092 } 7093 7094 if (VectorizedTree) { 7095 // Finish the reduction. 7096 for (; i < NumReducedVals; ++i) { 7097 auto *I = cast<Instruction>(ReducedVals[i]); 7098 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7099 VectorizedTree = 7100 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7101 } 7102 for (auto &Pair : ExternallyUsedValues) { 7103 // Add each externally used value to the final reduction. 7104 for (auto *I : Pair.second) { 7105 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7106 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7107 Pair.first, "op.extra", I); 7108 } 7109 } 7110 7111 // Update users. For a min/max reduction that ends with a compare and 7112 // select, we also have to RAUW for the compare instruction feeding the 7113 // reduction root. That's because the original compare may have extra uses 7114 // besides the final select of the reduction. 7115 if (auto *ScalarSelect = dyn_cast<SelectInst>(ReductionRoot)) { 7116 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7117 Instruction *ScalarCmp = getCmpForMinMaxReduction(ScalarSelect); 7118 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7119 } 7120 } 7121 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7122 7123 // Mark all scalar reduction ops for deletion, they are replaced by the 7124 // vector reductions. 7125 V.eraseInstructions(IgnoreList); 7126 } 7127 return VectorizedTree != nullptr; 7128 } 7129 7130 unsigned numReductionValues() const { return ReducedVals.size(); } 7131 7132 private: 7133 /// Calculate the cost of a reduction. 7134 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7135 Value *FirstReducedVal, 7136 unsigned ReduxWidth) { 7137 Type *ScalarTy = FirstReducedVal->getType(); 7138 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7139 InstructionCost VectorCost, ScalarCost; 7140 switch (RdxKind) { 7141 case RecurKind::Add: 7142 case RecurKind::Mul: 7143 case RecurKind::Or: 7144 case RecurKind::And: 7145 case RecurKind::Xor: 7146 case RecurKind::FAdd: 7147 case RecurKind::FMul: { 7148 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7149 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7150 /*IsPairwiseForm=*/false); 7151 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7152 break; 7153 } 7154 case RecurKind::FMax: 7155 case RecurKind::FMin: { 7156 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7157 VectorCost = 7158 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7159 /*pairwise=*/false, /*unsigned=*/false); 7160 ScalarCost = 7161 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7162 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7163 CmpInst::makeCmpResultType(ScalarTy)); 7164 break; 7165 } 7166 case RecurKind::SMax: 7167 case RecurKind::SMin: 7168 case RecurKind::UMax: 7169 case RecurKind::UMin: { 7170 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7171 bool IsUnsigned = 7172 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7173 VectorCost = 7174 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7175 /*IsPairwiseForm=*/false, IsUnsigned); 7176 ScalarCost = 7177 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7178 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7179 CmpInst::makeCmpResultType(ScalarTy)); 7180 break; 7181 } 7182 default: 7183 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7184 } 7185 7186 // Scalar cost is repeated for N-1 elements. 7187 ScalarCost *= (ReduxWidth - 1); 7188 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7189 << " for reduction that starts with " << *FirstReducedVal 7190 << " (It is a splitting reduction)\n"); 7191 return VectorCost - ScalarCost; 7192 } 7193 7194 /// Emit a horizontal reduction of the vectorized value. 7195 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7196 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7197 assert(VectorizedValue && "Need to have a vectorized tree node"); 7198 assert(isPowerOf2_32(ReduxWidth) && 7199 "We only handle power-of-two reductions for now"); 7200 7201 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7202 ReductionOps.back()); 7203 } 7204 }; 7205 7206 } // end anonymous namespace 7207 7208 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7209 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7210 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7211 7212 unsigned AggregateSize = 1; 7213 auto *IV = cast<InsertValueInst>(InsertInst); 7214 Type *CurrentType = IV->getType(); 7215 do { 7216 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7217 for (auto *Elt : ST->elements()) 7218 if (Elt != ST->getElementType(0)) // check homogeneity 7219 return None; 7220 AggregateSize *= ST->getNumElements(); 7221 CurrentType = ST->getElementType(0); 7222 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7223 AggregateSize *= AT->getNumElements(); 7224 CurrentType = AT->getElementType(); 7225 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7226 AggregateSize *= VT->getNumElements(); 7227 return AggregateSize; 7228 } else if (CurrentType->isSingleValueType()) { 7229 return AggregateSize; 7230 } else { 7231 return None; 7232 } 7233 } while (true); 7234 } 7235 7236 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7237 unsigned OperandOffset) { 7238 unsigned OperandIndex = OperandOffset; 7239 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7240 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7241 auto *VT = cast<FixedVectorType>(IE->getType()); 7242 OperandIndex *= VT->getNumElements(); 7243 OperandIndex += CI->getZExtValue(); 7244 return OperandIndex; 7245 } 7246 return None; 7247 } 7248 7249 auto *IV = cast<InsertValueInst>(InsertInst); 7250 Type *CurrentType = IV->getType(); 7251 for (unsigned int Index : IV->indices()) { 7252 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7253 OperandIndex *= ST->getNumElements(); 7254 CurrentType = ST->getElementType(Index); 7255 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7256 OperandIndex *= AT->getNumElements(); 7257 CurrentType = AT->getElementType(); 7258 } else { 7259 return None; 7260 } 7261 OperandIndex += Index; 7262 } 7263 return OperandIndex; 7264 } 7265 7266 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7267 TargetTransformInfo *TTI, 7268 SmallVectorImpl<Value *> &BuildVectorOpds, 7269 SmallVectorImpl<Value *> &InsertElts, 7270 unsigned OperandOffset) { 7271 do { 7272 Value *InsertedOperand = LastInsertInst->getOperand(1); 7273 Optional<unsigned> OperandIndex = 7274 getOperandIndex(LastInsertInst, OperandOffset); 7275 if (!OperandIndex) 7276 return false; 7277 if (isa<InsertElementInst>(InsertedOperand) || 7278 isa<InsertValueInst>(InsertedOperand)) { 7279 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7280 BuildVectorOpds, InsertElts, *OperandIndex)) 7281 return false; 7282 } else { 7283 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7284 InsertElts[*OperandIndex] = LastInsertInst; 7285 } 7286 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7287 return true; 7288 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7289 } while (LastInsertInst != nullptr && 7290 (isa<InsertValueInst>(LastInsertInst) || 7291 isa<InsertElementInst>(LastInsertInst)) && 7292 LastInsertInst->hasOneUse()); 7293 return false; 7294 } 7295 7296 /// Recognize construction of vectors like 7297 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7298 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7299 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7300 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7301 /// starting from the last insertelement or insertvalue instruction. 7302 /// 7303 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7304 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7305 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7306 /// 7307 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7308 /// 7309 /// \return true if it matches. 7310 static bool findBuildAggregate(Instruction *LastInsertInst, 7311 TargetTransformInfo *TTI, 7312 SmallVectorImpl<Value *> &BuildVectorOpds, 7313 SmallVectorImpl<Value *> &InsertElts) { 7314 7315 assert((isa<InsertElementInst>(LastInsertInst) || 7316 isa<InsertValueInst>(LastInsertInst)) && 7317 "Expected insertelement or insertvalue instruction!"); 7318 7319 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7320 "Expected empty result vectors!"); 7321 7322 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7323 if (!AggregateSize) 7324 return false; 7325 BuildVectorOpds.resize(*AggregateSize); 7326 InsertElts.resize(*AggregateSize); 7327 7328 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7329 0)) { 7330 llvm::erase_value(BuildVectorOpds, nullptr); 7331 llvm::erase_value(InsertElts, nullptr); 7332 if (BuildVectorOpds.size() >= 2) 7333 return true; 7334 } 7335 7336 return false; 7337 } 7338 7339 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7340 return V->getType() < V2->getType(); 7341 } 7342 7343 /// Try and get a reduction value from a phi node. 7344 /// 7345 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7346 /// if they come from either \p ParentBB or a containing loop latch. 7347 /// 7348 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7349 /// if not possible. 7350 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7351 BasicBlock *ParentBB, LoopInfo *LI) { 7352 // There are situations where the reduction value is not dominated by the 7353 // reduction phi. Vectorizing such cases has been reported to cause 7354 // miscompiles. See PR25787. 7355 auto DominatedReduxValue = [&](Value *R) { 7356 return isa<Instruction>(R) && 7357 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7358 }; 7359 7360 Value *Rdx = nullptr; 7361 7362 // Return the incoming value if it comes from the same BB as the phi node. 7363 if (P->getIncomingBlock(0) == ParentBB) { 7364 Rdx = P->getIncomingValue(0); 7365 } else if (P->getIncomingBlock(1) == ParentBB) { 7366 Rdx = P->getIncomingValue(1); 7367 } 7368 7369 if (Rdx && DominatedReduxValue(Rdx)) 7370 return Rdx; 7371 7372 // Otherwise, check whether we have a loop latch to look at. 7373 Loop *BBL = LI->getLoopFor(ParentBB); 7374 if (!BBL) 7375 return nullptr; 7376 BasicBlock *BBLatch = BBL->getLoopLatch(); 7377 if (!BBLatch) 7378 return nullptr; 7379 7380 // There is a loop latch, return the incoming value if it comes from 7381 // that. This reduction pattern occasionally turns up. 7382 if (P->getIncomingBlock(0) == BBLatch) { 7383 Rdx = P->getIncomingValue(0); 7384 } else if (P->getIncomingBlock(1) == BBLatch) { 7385 Rdx = P->getIncomingValue(1); 7386 } 7387 7388 if (Rdx && DominatedReduxValue(Rdx)) 7389 return Rdx; 7390 7391 return nullptr; 7392 } 7393 7394 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7395 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7396 return true; 7397 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7398 return true; 7399 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7400 return true; 7401 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 7402 return true; 7403 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 7404 return true; 7405 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 7406 return true; 7407 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 7408 return true; 7409 return false; 7410 } 7411 7412 /// Attempt to reduce a horizontal reduction. 7413 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7414 /// with reduction operators \a Root (or one of its operands) in a basic block 7415 /// \a BB, then check if it can be done. If horizontal reduction is not found 7416 /// and root instruction is a binary operation, vectorization of the operands is 7417 /// attempted. 7418 /// \returns true if a horizontal reduction was matched and reduced or operands 7419 /// of one of the binary instruction were vectorized. 7420 /// \returns false if a horizontal reduction was not matched (or not possible) 7421 /// or no vectorization of any binary operation feeding \a Root instruction was 7422 /// performed. 7423 static bool tryToVectorizeHorReductionOrInstOperands( 7424 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7425 TargetTransformInfo *TTI, 7426 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7427 if (!ShouldVectorizeHor) 7428 return false; 7429 7430 if (!Root) 7431 return false; 7432 7433 if (Root->getParent() != BB || isa<PHINode>(Root)) 7434 return false; 7435 // Start analysis starting from Root instruction. If horizontal reduction is 7436 // found, try to vectorize it. If it is not a horizontal reduction or 7437 // vectorization is not possible or not effective, and currently analyzed 7438 // instruction is a binary operation, try to vectorize the operands, using 7439 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7440 // the same procedure considering each operand as a possible root of the 7441 // horizontal reduction. 7442 // Interrupt the process if the Root instruction itself was vectorized or all 7443 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7444 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7445 SmallPtrSet<Value *, 8> VisitedInstrs; 7446 bool Res = false; 7447 while (!Stack.empty()) { 7448 Instruction *Inst; 7449 unsigned Level; 7450 std::tie(Inst, Level) = Stack.pop_back_val(); 7451 Value *B0, *B1; 7452 bool IsBinop = matchRdxBop(Inst, B0, B1); 7453 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7454 if (IsBinop || IsSelect) { 7455 HorizontalReduction HorRdx; 7456 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7457 if (HorRdx.tryToReduce(R, TTI)) { 7458 Res = true; 7459 // Set P to nullptr to avoid re-analysis of phi node in 7460 // matchAssociativeReduction function unless this is the root node. 7461 P = nullptr; 7462 continue; 7463 } 7464 } 7465 if (P && IsBinop) { 7466 Inst = dyn_cast<Instruction>(B0); 7467 if (Inst == P) 7468 Inst = dyn_cast<Instruction>(B1); 7469 if (!Inst) { 7470 // Set P to nullptr to avoid re-analysis of phi node in 7471 // matchAssociativeReduction function unless this is the root node. 7472 P = nullptr; 7473 continue; 7474 } 7475 } 7476 } 7477 // Set P to nullptr to avoid re-analysis of phi node in 7478 // matchAssociativeReduction function unless this is the root node. 7479 P = nullptr; 7480 if (Vectorize(Inst, R)) { 7481 Res = true; 7482 continue; 7483 } 7484 7485 // Try to vectorize operands. 7486 // Continue analysis for the instruction from the same basic block only to 7487 // save compile time. 7488 if (++Level < RecursionMaxDepth) 7489 for (auto *Op : Inst->operand_values()) 7490 if (VisitedInstrs.insert(Op).second) 7491 if (auto *I = dyn_cast<Instruction>(Op)) 7492 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7493 Stack.emplace_back(I, Level); 7494 } 7495 return Res; 7496 } 7497 7498 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7499 BasicBlock *BB, BoUpSLP &R, 7500 TargetTransformInfo *TTI) { 7501 auto *I = dyn_cast_or_null<Instruction>(V); 7502 if (!I) 7503 return false; 7504 7505 if (!isa<BinaryOperator>(I)) 7506 P = nullptr; 7507 // Try to match and vectorize a horizontal reduction. 7508 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7509 return tryToVectorize(I, R); 7510 }; 7511 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7512 ExtraVectorization); 7513 } 7514 7515 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7516 BasicBlock *BB, BoUpSLP &R) { 7517 const DataLayout &DL = BB->getModule()->getDataLayout(); 7518 if (!R.canMapToVector(IVI->getType(), DL)) 7519 return false; 7520 7521 SmallVector<Value *, 16> BuildVectorOpds; 7522 SmallVector<Value *, 16> BuildVectorInsts; 7523 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7524 return false; 7525 7526 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7527 // Aggregate value is unlikely to be processed in vector register, we need to 7528 // extract scalars into scalar registers, so NeedExtraction is set true. 7529 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7530 BuildVectorInsts); 7531 } 7532 7533 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7534 BasicBlock *BB, BoUpSLP &R) { 7535 SmallVector<Value *, 16> BuildVectorInsts; 7536 SmallVector<Value *, 16> BuildVectorOpds; 7537 SmallVector<int> Mask; 7538 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7539 (llvm::all_of(BuildVectorOpds, 7540 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7541 isShuffle(BuildVectorOpds, Mask))) 7542 return false; 7543 7544 // Vectorize starting with the build vector operands ignoring the BuildVector 7545 // instructions for the purpose of scheduling and user extraction. 7546 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7547 BuildVectorInsts); 7548 } 7549 7550 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7551 BoUpSLP &R) { 7552 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7553 return true; 7554 7555 bool OpsChanged = false; 7556 for (int Idx = 0; Idx < 2; ++Idx) { 7557 OpsChanged |= 7558 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7559 } 7560 return OpsChanged; 7561 } 7562 7563 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7564 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7565 bool OpsChanged = false; 7566 for (auto *I : reverse(Instructions)) { 7567 if (R.isDeleted(I)) 7568 continue; 7569 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7570 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7571 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7572 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7573 else if (auto *CI = dyn_cast<CmpInst>(I)) 7574 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7575 } 7576 Instructions.clear(); 7577 return OpsChanged; 7578 } 7579 7580 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7581 bool Changed = false; 7582 SmallVector<Value *, 4> Incoming; 7583 SmallPtrSet<Value *, 16> VisitedInstrs; 7584 7585 bool HaveVectorizedPhiNodes = true; 7586 while (HaveVectorizedPhiNodes) { 7587 HaveVectorizedPhiNodes = false; 7588 7589 // Collect the incoming values from the PHIs. 7590 Incoming.clear(); 7591 for (Instruction &I : *BB) { 7592 PHINode *P = dyn_cast<PHINode>(&I); 7593 if (!P) 7594 break; 7595 7596 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7597 Incoming.push_back(P); 7598 } 7599 7600 // Sort by type. 7601 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7602 7603 // Try to vectorize elements base on their type. 7604 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7605 E = Incoming.end(); 7606 IncIt != E;) { 7607 7608 // Look for the next elements with the same type. 7609 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7610 while (SameTypeIt != E && 7611 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7612 VisitedInstrs.insert(*SameTypeIt); 7613 ++SameTypeIt; 7614 } 7615 7616 // Try to vectorize them. 7617 unsigned NumElts = (SameTypeIt - IncIt); 7618 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7619 << NumElts << ")\n"); 7620 // The order in which the phi nodes appear in the program does not matter. 7621 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7622 // is done when there are exactly two elements since tryToVectorizeList 7623 // asserts that there are only two values when AllowReorder is true. 7624 bool AllowReorder = NumElts == 2; 7625 if (NumElts > 1 && 7626 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7627 // Success start over because instructions might have been changed. 7628 HaveVectorizedPhiNodes = true; 7629 Changed = true; 7630 break; 7631 } 7632 7633 // Start over at the next instruction of a different type (or the end). 7634 IncIt = SameTypeIt; 7635 } 7636 } 7637 7638 VisitedInstrs.clear(); 7639 7640 SmallVector<Instruction *, 8> PostProcessInstructions; 7641 SmallDenseSet<Instruction *, 4> KeyNodes; 7642 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7643 // Skip instructions with scalable type. The num of elements is unknown at 7644 // compile-time for scalable type. 7645 if (isa<ScalableVectorType>(it->getType())) 7646 continue; 7647 7648 // Skip instructions marked for the deletion. 7649 if (R.isDeleted(&*it)) 7650 continue; 7651 // We may go through BB multiple times so skip the one we have checked. 7652 if (!VisitedInstrs.insert(&*it).second) { 7653 if (it->use_empty() && KeyNodes.contains(&*it) && 7654 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7655 // We would like to start over since some instructions are deleted 7656 // and the iterator may become invalid value. 7657 Changed = true; 7658 it = BB->begin(); 7659 e = BB->end(); 7660 } 7661 continue; 7662 } 7663 7664 if (isa<DbgInfoIntrinsic>(it)) 7665 continue; 7666 7667 // Try to vectorize reductions that use PHINodes. 7668 if (PHINode *P = dyn_cast<PHINode>(it)) { 7669 // Check that the PHI is a reduction PHI. 7670 if (P->getNumIncomingValues() == 2) { 7671 // Try to match and vectorize a horizontal reduction. 7672 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7673 TTI)) { 7674 Changed = true; 7675 it = BB->begin(); 7676 e = BB->end(); 7677 continue; 7678 } 7679 } 7680 // Try to vectorize the incoming values of the PHI, to catch reductions 7681 // that feed into PHIs. 7682 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7683 // Skip if the incoming block is the current BB for now. Also, bypass 7684 // unreachable IR for efficiency and to avoid crashing. 7685 // TODO: Collect the skipped incoming values and try to vectorize them 7686 // after processing BB. 7687 if (BB == P->getIncomingBlock(I) || 7688 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7689 continue; 7690 7691 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7692 P->getIncomingBlock(I), R, TTI); 7693 } 7694 continue; 7695 } 7696 7697 // Ran into an instruction without users, like terminator, or function call 7698 // with ignored return value, store. Ignore unused instructions (basing on 7699 // instruction type, except for CallInst and InvokeInst). 7700 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7701 isa<InvokeInst>(it))) { 7702 KeyNodes.insert(&*it); 7703 bool OpsChanged = false; 7704 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7705 for (auto *V : it->operand_values()) { 7706 // Try to match and vectorize a horizontal reduction. 7707 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7708 } 7709 } 7710 // Start vectorization of post-process list of instructions from the 7711 // top-tree instructions to try to vectorize as many instructions as 7712 // possible. 7713 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7714 if (OpsChanged) { 7715 // We would like to start over since some instructions are deleted 7716 // and the iterator may become invalid value. 7717 Changed = true; 7718 it = BB->begin(); 7719 e = BB->end(); 7720 continue; 7721 } 7722 } 7723 7724 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7725 isa<InsertValueInst>(it)) 7726 PostProcessInstructions.push_back(&*it); 7727 } 7728 7729 return Changed; 7730 } 7731 7732 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7733 auto Changed = false; 7734 for (auto &Entry : GEPs) { 7735 // If the getelementptr list has fewer than two elements, there's nothing 7736 // to do. 7737 if (Entry.second.size() < 2) 7738 continue; 7739 7740 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7741 << Entry.second.size() << ".\n"); 7742 7743 // Process the GEP list in chunks suitable for the target's supported 7744 // vector size. If a vector register can't hold 1 element, we are done. We 7745 // are trying to vectorize the index computations, so the maximum number of 7746 // elements is based on the size of the index expression, rather than the 7747 // size of the GEP itself (the target's pointer size). 7748 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7749 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7750 if (MaxVecRegSize < EltSize) 7751 continue; 7752 7753 unsigned MaxElts = MaxVecRegSize / EltSize; 7754 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7755 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7756 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7757 7758 // Initialize a set a candidate getelementptrs. Note that we use a 7759 // SetVector here to preserve program order. If the index computations 7760 // are vectorizable and begin with loads, we want to minimize the chance 7761 // of having to reorder them later. 7762 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7763 7764 // Some of the candidates may have already been vectorized after we 7765 // initially collected them. If so, they are marked as deleted, so remove 7766 // them from the set of candidates. 7767 Candidates.remove_if( 7768 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7769 7770 // Remove from the set of candidates all pairs of getelementptrs with 7771 // constant differences. Such getelementptrs are likely not good 7772 // candidates for vectorization in a bottom-up phase since one can be 7773 // computed from the other. We also ensure all candidate getelementptr 7774 // indices are unique. 7775 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7776 auto *GEPI = GEPList[I]; 7777 if (!Candidates.count(GEPI)) 7778 continue; 7779 auto *SCEVI = SE->getSCEV(GEPList[I]); 7780 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7781 auto *GEPJ = GEPList[J]; 7782 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7783 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7784 Candidates.remove(GEPI); 7785 Candidates.remove(GEPJ); 7786 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7787 Candidates.remove(GEPJ); 7788 } 7789 } 7790 } 7791 7792 // We break out of the above computation as soon as we know there are 7793 // fewer than two candidates remaining. 7794 if (Candidates.size() < 2) 7795 continue; 7796 7797 // Add the single, non-constant index of each candidate to the bundle. We 7798 // ensured the indices met these constraints when we originally collected 7799 // the getelementptrs. 7800 SmallVector<Value *, 16> Bundle(Candidates.size()); 7801 auto BundleIndex = 0u; 7802 for (auto *V : Candidates) { 7803 auto *GEP = cast<GetElementPtrInst>(V); 7804 auto *GEPIdx = GEP->idx_begin()->get(); 7805 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7806 Bundle[BundleIndex++] = GEPIdx; 7807 } 7808 7809 // Try and vectorize the indices. We are currently only interested in 7810 // gather-like cases of the form: 7811 // 7812 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7813 // 7814 // where the loads of "a", the loads of "b", and the subtractions can be 7815 // performed in parallel. It's likely that detecting this pattern in a 7816 // bottom-up phase will be simpler and less costly than building a 7817 // full-blown top-down phase beginning at the consecutive loads. 7818 Changed |= tryToVectorizeList(Bundle, R); 7819 } 7820 } 7821 return Changed; 7822 } 7823 7824 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7825 bool Changed = false; 7826 // Attempt to sort and vectorize each of the store-groups. 7827 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7828 ++it) { 7829 if (it->second.size() < 2) 7830 continue; 7831 7832 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7833 << it->second.size() << ".\n"); 7834 7835 Changed |= vectorizeStores(it->second, R); 7836 } 7837 return Changed; 7838 } 7839 7840 char SLPVectorizer::ID = 0; 7841 7842 static const char lv_name[] = "SLP Vectorizer"; 7843 7844 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7845 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7846 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7847 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7848 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7849 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7850 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7851 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7852 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7853 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7854 7855 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7856