1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 /// TODO: Can we split off and reuse the shuffle mask detection from 250 /// TargetTransformInfo::getInstructionThroughput? 251 static Optional<TargetTransformInfo::ShuffleKind> 252 isShuffle(ArrayRef<Value *> VL) { 253 auto *EI0 = cast<ExtractElementInst>(VL[0]); 254 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 255 Value *Vec1 = nullptr; 256 Value *Vec2 = nullptr; 257 enum ShuffleMode { Unknown, Select, Permute }; 258 ShuffleMode CommonShuffleMode = Unknown; 259 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 260 auto *EI = cast<ExtractElementInst>(VL[I]); 261 auto *Vec = EI->getVectorOperand(); 262 // All vector operands must have the same number of vector elements. 263 if (Vec->getType()->getVectorNumElements() != Size) 264 return None; 265 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 266 if (!Idx) 267 return None; 268 // Undefined behavior if Idx is negative or >= Size. 269 if (Idx->getValue().uge(Size)) 270 continue; 271 unsigned IntIdx = Idx->getValue().getZExtValue(); 272 // We can extractelement from undef vector. 273 if (isa<UndefValue>(Vec)) 274 continue; 275 // For correct shuffling we have to have at most 2 different vector operands 276 // in all extractelement instructions. 277 if (!Vec1 || Vec1 == Vec) 278 Vec1 = Vec; 279 else if (!Vec2 || Vec2 == Vec) 280 Vec2 = Vec; 281 else 282 return None; 283 if (CommonShuffleMode == Permute) 284 continue; 285 // If the extract index is not the same as the operation number, it is a 286 // permutation. 287 if (IntIdx != I) { 288 CommonShuffleMode = Permute; 289 continue; 290 } 291 CommonShuffleMode = Select; 292 } 293 // If we're not crossing lanes in different vectors, consider it as blending. 294 if (CommonShuffleMode == Select && Vec2) 295 return TargetTransformInfo::SK_Select; 296 // If Vec2 was never used, we have a permutation of a single vector, otherwise 297 // we have permutation of 2 vectors. 298 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 299 : TargetTransformInfo::SK_PermuteSingleSrc; 300 } 301 302 namespace { 303 304 /// Main data required for vectorization of instructions. 305 struct InstructionsState { 306 /// The very first instruction in the list with the main opcode. 307 Value *OpValue = nullptr; 308 309 /// The main/alternate instruction. 310 Instruction *MainOp = nullptr; 311 Instruction *AltOp = nullptr; 312 313 /// The main/alternate opcodes for the list of instructions. 314 unsigned getOpcode() const { 315 return MainOp ? MainOp->getOpcode() : 0; 316 } 317 318 unsigned getAltOpcode() const { 319 return AltOp ? AltOp->getOpcode() : 0; 320 } 321 322 /// Some of the instructions in the list have alternate opcodes. 323 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 324 325 bool isOpcodeOrAlt(Instruction *I) const { 326 unsigned CheckedOpcode = I->getOpcode(); 327 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 328 } 329 330 InstructionsState() = delete; 331 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 332 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 333 }; 334 335 } // end anonymous namespace 336 337 /// Chooses the correct key for scheduling data. If \p Op has the same (or 338 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 339 /// OpValue. 340 static Value *isOneOf(const InstructionsState &S, Value *Op) { 341 auto *I = dyn_cast<Instruction>(Op); 342 if (I && S.isOpcodeOrAlt(I)) 343 return Op; 344 return S.OpValue; 345 } 346 347 /// \returns analysis of the Instructions in \p VL described in 348 /// InstructionsState, the Opcode that we suppose the whole list 349 /// could be vectorized even if its structure is diverse. 350 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 351 unsigned BaseIndex = 0) { 352 // Make sure these are all Instructions. 353 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 354 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 355 356 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 357 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 358 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 359 unsigned AltOpcode = Opcode; 360 unsigned AltIndex = BaseIndex; 361 362 // Check for one alternate opcode from another BinaryOperator. 363 // TODO - generalize to support all operators (types, calls etc.). 364 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 365 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 366 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 367 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 368 continue; 369 if (Opcode == AltOpcode) { 370 AltOpcode = InstOpcode; 371 AltIndex = Cnt; 372 continue; 373 } 374 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 375 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 376 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 377 if (Ty0 == Ty1) { 378 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 379 continue; 380 if (Opcode == AltOpcode) { 381 AltOpcode = InstOpcode; 382 AltIndex = Cnt; 383 continue; 384 } 385 } 386 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 387 continue; 388 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 389 } 390 391 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 392 cast<Instruction>(VL[AltIndex])); 393 } 394 395 /// \returns true if all of the values in \p VL have the same type or false 396 /// otherwise. 397 static bool allSameType(ArrayRef<Value *> VL) { 398 Type *Ty = VL[0]->getType(); 399 for (int i = 1, e = VL.size(); i < e; i++) 400 if (VL[i]->getType() != Ty) 401 return false; 402 403 return true; 404 } 405 406 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 407 static Optional<unsigned> getExtractIndex(Instruction *E) { 408 unsigned Opcode = E->getOpcode(); 409 assert((Opcode == Instruction::ExtractElement || 410 Opcode == Instruction::ExtractValue) && 411 "Expected extractelement or extractvalue instruction."); 412 if (Opcode == Instruction::ExtractElement) { 413 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 414 if (!CI) 415 return None; 416 return CI->getZExtValue(); 417 } 418 ExtractValueInst *EI = cast<ExtractValueInst>(E); 419 if (EI->getNumIndices() != 1) 420 return None; 421 return *EI->idx_begin(); 422 } 423 424 /// \returns True if in-tree use also needs extract. This refers to 425 /// possible scalar operand in vectorized instruction. 426 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 427 TargetLibraryInfo *TLI) { 428 unsigned Opcode = UserInst->getOpcode(); 429 switch (Opcode) { 430 case Instruction::Load: { 431 LoadInst *LI = cast<LoadInst>(UserInst); 432 return (LI->getPointerOperand() == Scalar); 433 } 434 case Instruction::Store: { 435 StoreInst *SI = cast<StoreInst>(UserInst); 436 return (SI->getPointerOperand() == Scalar); 437 } 438 case Instruction::Call: { 439 CallInst *CI = cast<CallInst>(UserInst); 440 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 441 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 442 return (CI->getArgOperand(1) == Scalar); 443 } 444 LLVM_FALLTHROUGH; 445 } 446 default: 447 return false; 448 } 449 } 450 451 /// \returns the AA location that is being access by the instruction. 452 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 453 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 454 return MemoryLocation::get(SI); 455 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 456 return MemoryLocation::get(LI); 457 return MemoryLocation(); 458 } 459 460 /// \returns True if the instruction is not a volatile or atomic load/store. 461 static bool isSimple(Instruction *I) { 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return LI->isSimple(); 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return SI->isSimple(); 466 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 467 return !MI->isVolatile(); 468 return true; 469 } 470 471 namespace llvm { 472 473 namespace slpvectorizer { 474 475 /// Bottom Up SLP Vectorizer. 476 class BoUpSLP { 477 public: 478 using ValueList = SmallVector<Value *, 8>; 479 using InstrList = SmallVector<Instruction *, 16>; 480 using ValueSet = SmallPtrSet<Value *, 16>; 481 using StoreList = SmallVector<StoreInst *, 8>; 482 using ExtraValueToDebugLocsMap = 483 MapVector<Value *, SmallVector<Instruction *, 2>>; 484 485 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 486 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 487 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 488 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 489 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 490 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 491 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 492 // Use the vector register size specified by the target unless overridden 493 // by a command-line option. 494 // TODO: It would be better to limit the vectorization factor based on 495 // data type rather than just register size. For example, x86 AVX has 496 // 256-bit registers, but it does not support integer operations 497 // at that width (that requires AVX2). 498 if (MaxVectorRegSizeOption.getNumOccurrences()) 499 MaxVecRegSize = MaxVectorRegSizeOption; 500 else 501 MaxVecRegSize = TTI->getRegisterBitWidth(true); 502 503 if (MinVectorRegSizeOption.getNumOccurrences()) 504 MinVecRegSize = MinVectorRegSizeOption; 505 else 506 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 507 } 508 509 /// Vectorize the tree that starts with the elements in \p VL. 510 /// Returns the vectorized root. 511 Value *vectorizeTree(); 512 513 /// Vectorize the tree but with the list of externally used values \p 514 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 515 /// generated extractvalue instructions. 516 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 517 518 /// \returns the cost incurred by unwanted spills and fills, caused by 519 /// holding live values over call sites. 520 int getSpillCost(); 521 522 /// \returns the vectorization cost of the subtree that starts at \p VL. 523 /// A negative number means that this is profitable. 524 int getTreeCost(); 525 526 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 527 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 528 void buildTree(ArrayRef<Value *> Roots, 529 ArrayRef<Value *> UserIgnoreLst = None); 530 531 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 532 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 533 /// into account (anf updating it, if required) list of externally used 534 /// values stored in \p ExternallyUsedValues. 535 void buildTree(ArrayRef<Value *> Roots, 536 ExtraValueToDebugLocsMap &ExternallyUsedValues, 537 ArrayRef<Value *> UserIgnoreLst = None); 538 539 /// Clear the internal data structures that are created by 'buildTree'. 540 void deleteTree() { 541 VectorizableTree.clear(); 542 ScalarToTreeEntry.clear(); 543 MustGather.clear(); 544 ExternalUses.clear(); 545 NumOpsWantToKeepOrder.clear(); 546 NumOpsWantToKeepOriginalOrder = 0; 547 for (auto &Iter : BlocksSchedules) { 548 BlockScheduling *BS = Iter.second.get(); 549 BS->clear(); 550 } 551 MinBWs.clear(); 552 } 553 554 unsigned getTreeSize() const { return VectorizableTree.size(); } 555 556 /// Perform LICM and CSE on the newly generated gather sequences. 557 void optimizeGatherSequence(); 558 559 /// \returns The best order of instructions for vectorization. 560 Optional<ArrayRef<unsigned>> bestOrder() const { 561 auto I = std::max_element( 562 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 563 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 564 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 565 return D1.second < D2.second; 566 }); 567 if (I == NumOpsWantToKeepOrder.end() || 568 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 569 return None; 570 571 return makeArrayRef(I->getFirst()); 572 } 573 574 /// \return The vector element size in bits to use when vectorizing the 575 /// expression tree ending at \p V. If V is a store, the size is the width of 576 /// the stored value. Otherwise, the size is the width of the largest loaded 577 /// value reaching V. This method is used by the vectorizer to calculate 578 /// vectorization factors. 579 unsigned getVectorElementSize(Value *V); 580 581 /// Compute the minimum type sizes required to represent the entries in a 582 /// vectorizable tree. 583 void computeMinimumValueSizes(); 584 585 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 586 unsigned getMaxVecRegSize() const { 587 return MaxVecRegSize; 588 } 589 590 // \returns minimum vector register size as set by cl::opt. 591 unsigned getMinVecRegSize() const { 592 return MinVecRegSize; 593 } 594 595 /// Check if ArrayType or StructType is isomorphic to some VectorType. 596 /// 597 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 598 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 599 600 /// \returns True if the VectorizableTree is both tiny and not fully 601 /// vectorizable. We do not vectorize such trees. 602 bool isTreeTinyAndNotFullyVectorizable(); 603 604 OptimizationRemarkEmitter *getORE() { return ORE; } 605 606 private: 607 struct TreeEntry; 608 609 /// Checks if all users of \p I are the part of the vectorization tree. 610 bool areAllUsersVectorized(Instruction *I) const; 611 612 /// \returns the cost of the vectorizable entry. 613 int getEntryCost(TreeEntry *E); 614 615 /// This is the recursive part of buildTree. 616 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 617 618 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 619 /// be vectorized to use the original vector (or aggregate "bitcast" to a 620 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 621 /// returns false, setting \p CurrentOrder to either an empty vector or a 622 /// non-identity permutation that allows to reuse extract instructions. 623 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 624 SmallVectorImpl<unsigned> &CurrentOrder) const; 625 626 /// Vectorize a single entry in the tree. 627 Value *vectorizeTree(TreeEntry *E); 628 629 /// Vectorize a single entry in the tree, starting in \p VL. 630 Value *vectorizeTree(ArrayRef<Value *> VL); 631 632 /// \returns the scalarization cost for this type. Scalarization in this 633 /// context means the creation of vectors from a group of scalars. 634 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 635 636 /// \returns the scalarization cost for this list of values. Assuming that 637 /// this subtree gets vectorized, we may need to extract the values from the 638 /// roots. This method calculates the cost of extracting the values. 639 int getGatherCost(ArrayRef<Value *> VL); 640 641 /// Set the Builder insert point to one after the last instruction in 642 /// the bundle 643 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 644 const InstructionsState &S); 645 646 /// \returns a vector from a collection of scalars in \p VL. 647 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 648 649 /// \returns whether the VectorizableTree is fully vectorizable and will 650 /// be beneficial even the tree height is tiny. 651 bool isFullyVectorizableTinyTree(); 652 653 /// \reorder commutative operands in alt shuffle if they result in 654 /// vectorized code. 655 void reorderAltShuffleOperands(const InstructionsState &S, 656 ArrayRef<Value *> VL, 657 SmallVectorImpl<Value *> &Left, 658 SmallVectorImpl<Value *> &Right); 659 660 /// \reorder commutative operands to get better probability of 661 /// generating vectorized code. 662 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 663 SmallVectorImpl<Value *> &Left, 664 SmallVectorImpl<Value *> &Right); 665 struct TreeEntry { 666 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 667 668 /// \returns true if the scalars in VL are equal to this entry. 669 bool isSame(ArrayRef<Value *> VL) const { 670 if (VL.size() == Scalars.size()) 671 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 672 return VL.size() == ReuseShuffleIndices.size() && 673 std::equal( 674 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 675 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 676 } 677 678 /// A vector of scalars. 679 ValueList Scalars; 680 681 /// The Scalars are vectorized into this value. It is initialized to Null. 682 Value *VectorizedValue = nullptr; 683 684 /// Do we need to gather this sequence ? 685 bool NeedToGather = false; 686 687 /// Does this sequence require some shuffling? 688 SmallVector<unsigned, 4> ReuseShuffleIndices; 689 690 /// Does this entry require reordering? 691 ArrayRef<unsigned> ReorderIndices; 692 693 /// Points back to the VectorizableTree. 694 /// 695 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 696 /// to be a pointer and needs to be able to initialize the child iterator. 697 /// Thus we need a reference back to the container to translate the indices 698 /// to entries. 699 std::vector<TreeEntry> &Container; 700 701 /// The TreeEntry index containing the user of this entry. We can actually 702 /// have multiple users so the data structure is not truly a tree. 703 SmallVector<int, 1> UserTreeIndices; 704 }; 705 706 /// Create a new VectorizableTree entry. 707 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 708 ArrayRef<unsigned> ReuseShuffleIndices = None, 709 ArrayRef<unsigned> ReorderIndices = None) { 710 VectorizableTree.emplace_back(VectorizableTree); 711 int idx = VectorizableTree.size() - 1; 712 TreeEntry *Last = &VectorizableTree[idx]; 713 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 714 Last->NeedToGather = !Vectorized; 715 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 716 ReuseShuffleIndices.end()); 717 Last->ReorderIndices = ReorderIndices; 718 if (Vectorized) { 719 for (int i = 0, e = VL.size(); i != e; ++i) { 720 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 721 ScalarToTreeEntry[VL[i]] = idx; 722 } 723 } else { 724 MustGather.insert(VL.begin(), VL.end()); 725 } 726 727 if (UserTreeIdx >= 0) 728 Last->UserTreeIndices.push_back(UserTreeIdx); 729 UserTreeIdx = idx; 730 } 731 732 /// -- Vectorization State -- 733 /// Holds all of the tree entries. 734 std::vector<TreeEntry> VectorizableTree; 735 736 TreeEntry *getTreeEntry(Value *V) { 737 auto I = ScalarToTreeEntry.find(V); 738 if (I != ScalarToTreeEntry.end()) 739 return &VectorizableTree[I->second]; 740 return nullptr; 741 } 742 743 /// Maps a specific scalar to its tree entry. 744 SmallDenseMap<Value*, int> ScalarToTreeEntry; 745 746 /// A list of scalars that we found that we need to keep as scalars. 747 ValueSet MustGather; 748 749 /// This POD struct describes one external user in the vectorized tree. 750 struct ExternalUser { 751 ExternalUser(Value *S, llvm::User *U, int L) 752 : Scalar(S), User(U), Lane(L) {} 753 754 // Which scalar in our function. 755 Value *Scalar; 756 757 // Which user that uses the scalar. 758 llvm::User *User; 759 760 // Which lane does the scalar belong to. 761 int Lane; 762 }; 763 using UserList = SmallVector<ExternalUser, 16>; 764 765 /// Checks if two instructions may access the same memory. 766 /// 767 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 768 /// is invariant in the calling loop. 769 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 770 Instruction *Inst2) { 771 // First check if the result is already in the cache. 772 AliasCacheKey key = std::make_pair(Inst1, Inst2); 773 Optional<bool> &result = AliasCache[key]; 774 if (result.hasValue()) { 775 return result.getValue(); 776 } 777 MemoryLocation Loc2 = getLocation(Inst2, AA); 778 bool aliased = true; 779 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 780 // Do the alias check. 781 aliased = AA->alias(Loc1, Loc2); 782 } 783 // Store the result in the cache. 784 result = aliased; 785 return aliased; 786 } 787 788 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 789 790 /// Cache for alias results. 791 /// TODO: consider moving this to the AliasAnalysis itself. 792 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 793 794 /// Removes an instruction from its block and eventually deletes it. 795 /// It's like Instruction::eraseFromParent() except that the actual deletion 796 /// is delayed until BoUpSLP is destructed. 797 /// This is required to ensure that there are no incorrect collisions in the 798 /// AliasCache, which can happen if a new instruction is allocated at the 799 /// same address as a previously deleted instruction. 800 void eraseInstruction(Instruction *I) { 801 I->removeFromParent(); 802 I->dropAllReferences(); 803 DeletedInstructions.emplace_back(I); 804 } 805 806 /// Temporary store for deleted instructions. Instructions will be deleted 807 /// eventually when the BoUpSLP is destructed. 808 SmallVector<unique_value, 8> DeletedInstructions; 809 810 /// A list of values that need to extracted out of the tree. 811 /// This list holds pairs of (Internal Scalar : External User). External User 812 /// can be nullptr, it means that this Internal Scalar will be used later, 813 /// after vectorization. 814 UserList ExternalUses; 815 816 /// Values used only by @llvm.assume calls. 817 SmallPtrSet<const Value *, 32> EphValues; 818 819 /// Holds all of the instructions that we gathered. 820 SetVector<Instruction *> GatherSeq; 821 822 /// A list of blocks that we are going to CSE. 823 SetVector<BasicBlock *> CSEBlocks; 824 825 /// Contains all scheduling relevant data for an instruction. 826 /// A ScheduleData either represents a single instruction or a member of an 827 /// instruction bundle (= a group of instructions which is combined into a 828 /// vector instruction). 829 struct ScheduleData { 830 // The initial value for the dependency counters. It means that the 831 // dependencies are not calculated yet. 832 enum { InvalidDeps = -1 }; 833 834 ScheduleData() = default; 835 836 void init(int BlockSchedulingRegionID, Value *OpVal) { 837 FirstInBundle = this; 838 NextInBundle = nullptr; 839 NextLoadStore = nullptr; 840 IsScheduled = false; 841 SchedulingRegionID = BlockSchedulingRegionID; 842 UnscheduledDepsInBundle = UnscheduledDeps; 843 clearDependencies(); 844 OpValue = OpVal; 845 } 846 847 /// Returns true if the dependency information has been calculated. 848 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 849 850 /// Returns true for single instructions and for bundle representatives 851 /// (= the head of a bundle). 852 bool isSchedulingEntity() const { return FirstInBundle == this; } 853 854 /// Returns true if it represents an instruction bundle and not only a 855 /// single instruction. 856 bool isPartOfBundle() const { 857 return NextInBundle != nullptr || FirstInBundle != this; 858 } 859 860 /// Returns true if it is ready for scheduling, i.e. it has no more 861 /// unscheduled depending instructions/bundles. 862 bool isReady() const { 863 assert(isSchedulingEntity() && 864 "can't consider non-scheduling entity for ready list"); 865 return UnscheduledDepsInBundle == 0 && !IsScheduled; 866 } 867 868 /// Modifies the number of unscheduled dependencies, also updating it for 869 /// the whole bundle. 870 int incrementUnscheduledDeps(int Incr) { 871 UnscheduledDeps += Incr; 872 return FirstInBundle->UnscheduledDepsInBundle += Incr; 873 } 874 875 /// Sets the number of unscheduled dependencies to the number of 876 /// dependencies. 877 void resetUnscheduledDeps() { 878 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 879 } 880 881 /// Clears all dependency information. 882 void clearDependencies() { 883 Dependencies = InvalidDeps; 884 resetUnscheduledDeps(); 885 MemoryDependencies.clear(); 886 } 887 888 void dump(raw_ostream &os) const { 889 if (!isSchedulingEntity()) { 890 os << "/ " << *Inst; 891 } else if (NextInBundle) { 892 os << '[' << *Inst; 893 ScheduleData *SD = NextInBundle; 894 while (SD) { 895 os << ';' << *SD->Inst; 896 SD = SD->NextInBundle; 897 } 898 os << ']'; 899 } else { 900 os << *Inst; 901 } 902 } 903 904 Instruction *Inst = nullptr; 905 906 /// Points to the head in an instruction bundle (and always to this for 907 /// single instructions). 908 ScheduleData *FirstInBundle = nullptr; 909 910 /// Single linked list of all instructions in a bundle. Null if it is a 911 /// single instruction. 912 ScheduleData *NextInBundle = nullptr; 913 914 /// Single linked list of all memory instructions (e.g. load, store, call) 915 /// in the block - until the end of the scheduling region. 916 ScheduleData *NextLoadStore = nullptr; 917 918 /// The dependent memory instructions. 919 /// This list is derived on demand in calculateDependencies(). 920 SmallVector<ScheduleData *, 4> MemoryDependencies; 921 922 /// This ScheduleData is in the current scheduling region if this matches 923 /// the current SchedulingRegionID of BlockScheduling. 924 int SchedulingRegionID = 0; 925 926 /// Used for getting a "good" final ordering of instructions. 927 int SchedulingPriority = 0; 928 929 /// The number of dependencies. Constitutes of the number of users of the 930 /// instruction plus the number of dependent memory instructions (if any). 931 /// This value is calculated on demand. 932 /// If InvalidDeps, the number of dependencies is not calculated yet. 933 int Dependencies = InvalidDeps; 934 935 /// The number of dependencies minus the number of dependencies of scheduled 936 /// instructions. As soon as this is zero, the instruction/bundle gets ready 937 /// for scheduling. 938 /// Note that this is negative as long as Dependencies is not calculated. 939 int UnscheduledDeps = InvalidDeps; 940 941 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 942 /// single instructions. 943 int UnscheduledDepsInBundle = InvalidDeps; 944 945 /// True if this instruction is scheduled (or considered as scheduled in the 946 /// dry-run). 947 bool IsScheduled = false; 948 949 /// Opcode of the current instruction in the schedule data. 950 Value *OpValue = nullptr; 951 }; 952 953 #ifndef NDEBUG 954 friend inline raw_ostream &operator<<(raw_ostream &os, 955 const BoUpSLP::ScheduleData &SD) { 956 SD.dump(os); 957 return os; 958 } 959 #endif 960 961 friend struct GraphTraits<BoUpSLP *>; 962 friend struct DOTGraphTraits<BoUpSLP *>; 963 964 /// Contains all scheduling data for a basic block. 965 struct BlockScheduling { 966 BlockScheduling(BasicBlock *BB) 967 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 968 969 void clear() { 970 ReadyInsts.clear(); 971 ScheduleStart = nullptr; 972 ScheduleEnd = nullptr; 973 FirstLoadStoreInRegion = nullptr; 974 LastLoadStoreInRegion = nullptr; 975 976 // Reduce the maximum schedule region size by the size of the 977 // previous scheduling run. 978 ScheduleRegionSizeLimit -= ScheduleRegionSize; 979 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 980 ScheduleRegionSizeLimit = MinScheduleRegionSize; 981 ScheduleRegionSize = 0; 982 983 // Make a new scheduling region, i.e. all existing ScheduleData is not 984 // in the new region yet. 985 ++SchedulingRegionID; 986 } 987 988 ScheduleData *getScheduleData(Value *V) { 989 ScheduleData *SD = ScheduleDataMap[V]; 990 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 991 return SD; 992 return nullptr; 993 } 994 995 ScheduleData *getScheduleData(Value *V, Value *Key) { 996 if (V == Key) 997 return getScheduleData(V); 998 auto I = ExtraScheduleDataMap.find(V); 999 if (I != ExtraScheduleDataMap.end()) { 1000 ScheduleData *SD = I->second[Key]; 1001 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1002 return SD; 1003 } 1004 return nullptr; 1005 } 1006 1007 bool isInSchedulingRegion(ScheduleData *SD) { 1008 return SD->SchedulingRegionID == SchedulingRegionID; 1009 } 1010 1011 /// Marks an instruction as scheduled and puts all dependent ready 1012 /// instructions into the ready-list. 1013 template <typename ReadyListType> 1014 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1015 SD->IsScheduled = true; 1016 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1017 1018 ScheduleData *BundleMember = SD; 1019 while (BundleMember) { 1020 if (BundleMember->Inst != BundleMember->OpValue) { 1021 BundleMember = BundleMember->NextInBundle; 1022 continue; 1023 } 1024 // Handle the def-use chain dependencies. 1025 for (Use &U : BundleMember->Inst->operands()) { 1026 auto *I = dyn_cast<Instruction>(U.get()); 1027 if (!I) 1028 continue; 1029 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1030 if (OpDef && OpDef->hasValidDependencies() && 1031 OpDef->incrementUnscheduledDeps(-1) == 0) { 1032 // There are no more unscheduled dependencies after 1033 // decrementing, so we can put the dependent instruction 1034 // into the ready list. 1035 ScheduleData *DepBundle = OpDef->FirstInBundle; 1036 assert(!DepBundle->IsScheduled && 1037 "already scheduled bundle gets ready"); 1038 ReadyList.insert(DepBundle); 1039 LLVM_DEBUG(dbgs() 1040 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1041 } 1042 }); 1043 } 1044 // Handle the memory dependencies. 1045 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1046 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1047 // There are no more unscheduled dependencies after decrementing, 1048 // so we can put the dependent instruction into the ready list. 1049 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1050 assert(!DepBundle->IsScheduled && 1051 "already scheduled bundle gets ready"); 1052 ReadyList.insert(DepBundle); 1053 LLVM_DEBUG(dbgs() 1054 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1055 } 1056 } 1057 BundleMember = BundleMember->NextInBundle; 1058 } 1059 } 1060 1061 void doForAllOpcodes(Value *V, 1062 function_ref<void(ScheduleData *SD)> Action) { 1063 if (ScheduleData *SD = getScheduleData(V)) 1064 Action(SD); 1065 auto I = ExtraScheduleDataMap.find(V); 1066 if (I != ExtraScheduleDataMap.end()) 1067 for (auto &P : I->second) 1068 if (P.second->SchedulingRegionID == SchedulingRegionID) 1069 Action(P.second); 1070 } 1071 1072 /// Put all instructions into the ReadyList which are ready for scheduling. 1073 template <typename ReadyListType> 1074 void initialFillReadyList(ReadyListType &ReadyList) { 1075 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1076 doForAllOpcodes(I, [&](ScheduleData *SD) { 1077 if (SD->isSchedulingEntity() && SD->isReady()) { 1078 ReadyList.insert(SD); 1079 LLVM_DEBUG(dbgs() 1080 << "SLP: initially in ready list: " << *I << "\n"); 1081 } 1082 }); 1083 } 1084 } 1085 1086 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1087 /// cyclic dependencies. This is only a dry-run, no instructions are 1088 /// actually moved at this stage. 1089 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1090 const InstructionsState &S); 1091 1092 /// Un-bundles a group of instructions. 1093 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1094 1095 /// Allocates schedule data chunk. 1096 ScheduleData *allocateScheduleDataChunks(); 1097 1098 /// Extends the scheduling region so that V is inside the region. 1099 /// \returns true if the region size is within the limit. 1100 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1101 1102 /// Initialize the ScheduleData structures for new instructions in the 1103 /// scheduling region. 1104 void initScheduleData(Instruction *FromI, Instruction *ToI, 1105 ScheduleData *PrevLoadStore, 1106 ScheduleData *NextLoadStore); 1107 1108 /// Updates the dependency information of a bundle and of all instructions/ 1109 /// bundles which depend on the original bundle. 1110 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1111 BoUpSLP *SLP); 1112 1113 /// Sets all instruction in the scheduling region to un-scheduled. 1114 void resetSchedule(); 1115 1116 BasicBlock *BB; 1117 1118 /// Simple memory allocation for ScheduleData. 1119 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1120 1121 /// The size of a ScheduleData array in ScheduleDataChunks. 1122 int ChunkSize; 1123 1124 /// The allocator position in the current chunk, which is the last entry 1125 /// of ScheduleDataChunks. 1126 int ChunkPos; 1127 1128 /// Attaches ScheduleData to Instruction. 1129 /// Note that the mapping survives during all vectorization iterations, i.e. 1130 /// ScheduleData structures are recycled. 1131 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1132 1133 /// Attaches ScheduleData to Instruction with the leading key. 1134 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1135 ExtraScheduleDataMap; 1136 1137 struct ReadyList : SmallVector<ScheduleData *, 8> { 1138 void insert(ScheduleData *SD) { push_back(SD); } 1139 }; 1140 1141 /// The ready-list for scheduling (only used for the dry-run). 1142 ReadyList ReadyInsts; 1143 1144 /// The first instruction of the scheduling region. 1145 Instruction *ScheduleStart = nullptr; 1146 1147 /// The first instruction _after_ the scheduling region. 1148 Instruction *ScheduleEnd = nullptr; 1149 1150 /// The first memory accessing instruction in the scheduling region 1151 /// (can be null). 1152 ScheduleData *FirstLoadStoreInRegion = nullptr; 1153 1154 /// The last memory accessing instruction in the scheduling region 1155 /// (can be null). 1156 ScheduleData *LastLoadStoreInRegion = nullptr; 1157 1158 /// The current size of the scheduling region. 1159 int ScheduleRegionSize = 0; 1160 1161 /// The maximum size allowed for the scheduling region. 1162 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1163 1164 /// The ID of the scheduling region. For a new vectorization iteration this 1165 /// is incremented which "removes" all ScheduleData from the region. 1166 // Make sure that the initial SchedulingRegionID is greater than the 1167 // initial SchedulingRegionID in ScheduleData (which is 0). 1168 int SchedulingRegionID = 1; 1169 }; 1170 1171 /// Attaches the BlockScheduling structures to basic blocks. 1172 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1173 1174 /// Performs the "real" scheduling. Done before vectorization is actually 1175 /// performed in a basic block. 1176 void scheduleBlock(BlockScheduling *BS); 1177 1178 /// List of users to ignore during scheduling and that don't need extracting. 1179 ArrayRef<Value *> UserIgnoreList; 1180 1181 using OrdersType = SmallVector<unsigned, 4>; 1182 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1183 /// sorted SmallVectors of unsigned. 1184 struct OrdersTypeDenseMapInfo { 1185 static OrdersType getEmptyKey() { 1186 OrdersType V; 1187 V.push_back(~1U); 1188 return V; 1189 } 1190 1191 static OrdersType getTombstoneKey() { 1192 OrdersType V; 1193 V.push_back(~2U); 1194 return V; 1195 } 1196 1197 static unsigned getHashValue(const OrdersType &V) { 1198 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1199 } 1200 1201 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1202 return LHS == RHS; 1203 } 1204 }; 1205 1206 /// Contains orders of operations along with the number of bundles that have 1207 /// operations in this order. It stores only those orders that require 1208 /// reordering, if reordering is not required it is counted using \a 1209 /// NumOpsWantToKeepOriginalOrder. 1210 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1211 /// Number of bundles that do not require reordering. 1212 unsigned NumOpsWantToKeepOriginalOrder = 0; 1213 1214 // Analysis and block reference. 1215 Function *F; 1216 ScalarEvolution *SE; 1217 TargetTransformInfo *TTI; 1218 TargetLibraryInfo *TLI; 1219 AliasAnalysis *AA; 1220 LoopInfo *LI; 1221 DominatorTree *DT; 1222 AssumptionCache *AC; 1223 DemandedBits *DB; 1224 const DataLayout *DL; 1225 OptimizationRemarkEmitter *ORE; 1226 1227 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1228 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1229 1230 /// Instruction builder to construct the vectorized tree. 1231 IRBuilder<> Builder; 1232 1233 /// A map of scalar integer values to the smallest bit width with which they 1234 /// can legally be represented. The values map to (width, signed) pairs, 1235 /// where "width" indicates the minimum bit width and "signed" is True if the 1236 /// value must be signed-extended, rather than zero-extended, back to its 1237 /// original width. 1238 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1239 }; 1240 1241 } // end namespace slpvectorizer 1242 1243 template <> struct GraphTraits<BoUpSLP *> { 1244 using TreeEntry = BoUpSLP::TreeEntry; 1245 1246 /// NodeRef has to be a pointer per the GraphWriter. 1247 using NodeRef = TreeEntry *; 1248 1249 /// Add the VectorizableTree to the index iterator to be able to return 1250 /// TreeEntry pointers. 1251 struct ChildIteratorType 1252 : public iterator_adaptor_base<ChildIteratorType, 1253 SmallVector<int, 1>::iterator> { 1254 std::vector<TreeEntry> &VectorizableTree; 1255 1256 ChildIteratorType(SmallVector<int, 1>::iterator W, 1257 std::vector<TreeEntry> &VT) 1258 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1259 1260 NodeRef operator*() { return &VectorizableTree[*I]; } 1261 }; 1262 1263 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1264 1265 static ChildIteratorType child_begin(NodeRef N) { 1266 return {N->UserTreeIndices.begin(), N->Container}; 1267 } 1268 1269 static ChildIteratorType child_end(NodeRef N) { 1270 return {N->UserTreeIndices.end(), N->Container}; 1271 } 1272 1273 /// For the node iterator we just need to turn the TreeEntry iterator into a 1274 /// TreeEntry* iterator so that it dereferences to NodeRef. 1275 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1276 1277 static nodes_iterator nodes_begin(BoUpSLP *R) { 1278 return nodes_iterator(R->VectorizableTree.begin()); 1279 } 1280 1281 static nodes_iterator nodes_end(BoUpSLP *R) { 1282 return nodes_iterator(R->VectorizableTree.end()); 1283 } 1284 1285 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1286 }; 1287 1288 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1289 using TreeEntry = BoUpSLP::TreeEntry; 1290 1291 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1292 1293 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1294 std::string Str; 1295 raw_string_ostream OS(Str); 1296 if (isSplat(Entry->Scalars)) { 1297 OS << "<splat> " << *Entry->Scalars[0]; 1298 return Str; 1299 } 1300 for (auto V : Entry->Scalars) { 1301 OS << *V; 1302 if (std::any_of( 1303 R->ExternalUses.begin(), R->ExternalUses.end(), 1304 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1305 OS << " <extract>"; 1306 OS << "\n"; 1307 } 1308 return Str; 1309 } 1310 1311 static std::string getNodeAttributes(const TreeEntry *Entry, 1312 const BoUpSLP *) { 1313 if (Entry->NeedToGather) 1314 return "color=red"; 1315 return ""; 1316 } 1317 }; 1318 1319 } // end namespace llvm 1320 1321 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1322 ArrayRef<Value *> UserIgnoreLst) { 1323 ExtraValueToDebugLocsMap ExternallyUsedValues; 1324 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1325 } 1326 1327 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1328 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1329 ArrayRef<Value *> UserIgnoreLst) { 1330 deleteTree(); 1331 UserIgnoreList = UserIgnoreLst; 1332 if (!allSameType(Roots)) 1333 return; 1334 buildTree_rec(Roots, 0, -1); 1335 1336 // Collect the values that we need to extract from the tree. 1337 for (TreeEntry &EIdx : VectorizableTree) { 1338 TreeEntry *Entry = &EIdx; 1339 1340 // No need to handle users of gathered values. 1341 if (Entry->NeedToGather) 1342 continue; 1343 1344 // For each lane: 1345 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1346 Value *Scalar = Entry->Scalars[Lane]; 1347 int FoundLane = Lane; 1348 if (!Entry->ReuseShuffleIndices.empty()) { 1349 FoundLane = 1350 std::distance(Entry->ReuseShuffleIndices.begin(), 1351 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1352 } 1353 1354 // Check if the scalar is externally used as an extra arg. 1355 auto ExtI = ExternallyUsedValues.find(Scalar); 1356 if (ExtI != ExternallyUsedValues.end()) { 1357 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1358 << Lane << " from " << *Scalar << ".\n"); 1359 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1360 } 1361 for (User *U : Scalar->users()) { 1362 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1363 1364 Instruction *UserInst = dyn_cast<Instruction>(U); 1365 if (!UserInst) 1366 continue; 1367 1368 // Skip in-tree scalars that become vectors 1369 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1370 Value *UseScalar = UseEntry->Scalars[0]; 1371 // Some in-tree scalars will remain as scalar in vectorized 1372 // instructions. If that is the case, the one in Lane 0 will 1373 // be used. 1374 if (UseScalar != U || 1375 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1376 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1377 << ".\n"); 1378 assert(!UseEntry->NeedToGather && "Bad state"); 1379 continue; 1380 } 1381 } 1382 1383 // Ignore users in the user ignore list. 1384 if (is_contained(UserIgnoreList, UserInst)) 1385 continue; 1386 1387 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1388 << Lane << " from " << *Scalar << ".\n"); 1389 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1390 } 1391 } 1392 } 1393 } 1394 1395 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1396 int UserTreeIdx) { 1397 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1398 1399 InstructionsState S = getSameOpcode(VL); 1400 if (Depth == RecursionMaxDepth) { 1401 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1402 newTreeEntry(VL, false, UserTreeIdx); 1403 return; 1404 } 1405 1406 // Don't handle vectors. 1407 if (S.OpValue->getType()->isVectorTy()) { 1408 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1409 newTreeEntry(VL, false, UserTreeIdx); 1410 return; 1411 } 1412 1413 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1414 if (SI->getValueOperand()->getType()->isVectorTy()) { 1415 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1416 newTreeEntry(VL, false, UserTreeIdx); 1417 return; 1418 } 1419 1420 // If all of the operands are identical or constant we have a simple solution. 1421 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1422 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1423 newTreeEntry(VL, false, UserTreeIdx); 1424 return; 1425 } 1426 1427 // We now know that this is a vector of instructions of the same type from 1428 // the same block. 1429 1430 // Don't vectorize ephemeral values. 1431 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1432 if (EphValues.count(VL[i])) { 1433 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1434 << ") is ephemeral.\n"); 1435 newTreeEntry(VL, false, UserTreeIdx); 1436 return; 1437 } 1438 } 1439 1440 // Check if this is a duplicate of another entry. 1441 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1442 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1443 if (!E->isSame(VL)) { 1444 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1445 newTreeEntry(VL, false, UserTreeIdx); 1446 return; 1447 } 1448 // Record the reuse of the tree node. FIXME, currently this is only used to 1449 // properly draw the graph rather than for the actual vectorization. 1450 E->UserTreeIndices.push_back(UserTreeIdx); 1451 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1452 << ".\n"); 1453 return; 1454 } 1455 1456 // Check that none of the instructions in the bundle are already in the tree. 1457 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1458 auto *I = dyn_cast<Instruction>(VL[i]); 1459 if (!I) 1460 continue; 1461 if (getTreeEntry(I)) { 1462 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1463 << ") is already in tree.\n"); 1464 newTreeEntry(VL, false, UserTreeIdx); 1465 return; 1466 } 1467 } 1468 1469 // If any of the scalars is marked as a value that needs to stay scalar, then 1470 // we need to gather the scalars. 1471 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1472 if (MustGather.count(VL[i])) { 1473 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1474 newTreeEntry(VL, false, UserTreeIdx); 1475 return; 1476 } 1477 } 1478 1479 // Check that all of the users of the scalars that we want to vectorize are 1480 // schedulable. 1481 auto *VL0 = cast<Instruction>(S.OpValue); 1482 BasicBlock *BB = VL0->getParent(); 1483 1484 if (!DT->isReachableFromEntry(BB)) { 1485 // Don't go into unreachable blocks. They may contain instructions with 1486 // dependency cycles which confuse the final scheduling. 1487 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1488 newTreeEntry(VL, false, UserTreeIdx); 1489 return; 1490 } 1491 1492 // Check that every instruction appears once in this bundle. 1493 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1494 SmallVector<Value *, 4> UniqueValues; 1495 DenseMap<Value *, unsigned> UniquePositions; 1496 for (Value *V : VL) { 1497 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1498 ReuseShuffleIndicies.emplace_back(Res.first->second); 1499 if (Res.second) 1500 UniqueValues.emplace_back(V); 1501 } 1502 if (UniqueValues.size() == VL.size()) { 1503 ReuseShuffleIndicies.clear(); 1504 } else { 1505 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1506 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1507 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1508 newTreeEntry(VL, false, UserTreeIdx); 1509 return; 1510 } 1511 VL = UniqueValues; 1512 } 1513 1514 auto &BSRef = BlocksSchedules[BB]; 1515 if (!BSRef) 1516 BSRef = llvm::make_unique<BlockScheduling>(BB); 1517 1518 BlockScheduling &BS = *BSRef.get(); 1519 1520 if (!BS.tryScheduleBundle(VL, this, S)) { 1521 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1522 assert((!BS.getScheduleData(VL0) || 1523 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1524 "tryScheduleBundle should cancelScheduling on failure"); 1525 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1526 return; 1527 } 1528 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1529 1530 unsigned ShuffleOrOp = S.isAltShuffle() ? 1531 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 1532 switch (ShuffleOrOp) { 1533 case Instruction::PHI: { 1534 PHINode *PH = dyn_cast<PHINode>(VL0); 1535 1536 // Check for terminator values (e.g. invoke). 1537 for (unsigned j = 0; j < VL.size(); ++j) 1538 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1539 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1540 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1541 if (Term) { 1542 LLVM_DEBUG( 1543 dbgs() 1544 << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1545 BS.cancelScheduling(VL, VL0); 1546 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1547 return; 1548 } 1549 } 1550 1551 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1552 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1553 1554 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1555 ValueList Operands; 1556 // Prepare the operand vector. 1557 for (Value *j : VL) 1558 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1559 PH->getIncomingBlock(i))); 1560 1561 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1562 } 1563 return; 1564 } 1565 case Instruction::ExtractValue: 1566 case Instruction::ExtractElement: { 1567 OrdersType CurrentOrder; 1568 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1569 if (Reuse) { 1570 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1571 ++NumOpsWantToKeepOriginalOrder; 1572 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1573 ReuseShuffleIndicies); 1574 return; 1575 } 1576 if (!CurrentOrder.empty()) { 1577 LLVM_DEBUG({ 1578 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1579 "with order"; 1580 for (unsigned Idx : CurrentOrder) 1581 dbgs() << " " << Idx; 1582 dbgs() << "\n"; 1583 }); 1584 // Insert new order with initial value 0, if it does not exist, 1585 // otherwise return the iterator to the existing one. 1586 auto StoredCurrentOrderAndNum = 1587 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1588 ++StoredCurrentOrderAndNum->getSecond(); 1589 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1590 StoredCurrentOrderAndNum->getFirst()); 1591 return; 1592 } 1593 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1594 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1595 BS.cancelScheduling(VL, VL0); 1596 return; 1597 } 1598 case Instruction::Load: { 1599 // Check that a vectorized load would load the same memory as a scalar 1600 // load. For example, we don't want to vectorize loads that are smaller 1601 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1602 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1603 // from such a struct, we read/write packed bits disagreeing with the 1604 // unvectorized version. 1605 Type *ScalarTy = VL0->getType(); 1606 1607 if (DL->getTypeSizeInBits(ScalarTy) != 1608 DL->getTypeAllocSizeInBits(ScalarTy)) { 1609 BS.cancelScheduling(VL, VL0); 1610 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1611 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1612 return; 1613 } 1614 1615 // Make sure all loads in the bundle are simple - we can't vectorize 1616 // atomic or volatile loads. 1617 SmallVector<Value *, 4> PointerOps(VL.size()); 1618 auto POIter = PointerOps.begin(); 1619 for (Value *V : VL) { 1620 auto *L = cast<LoadInst>(V); 1621 if (!L->isSimple()) { 1622 BS.cancelScheduling(VL, VL0); 1623 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1624 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1625 return; 1626 } 1627 *POIter = L->getPointerOperand(); 1628 ++POIter; 1629 } 1630 1631 OrdersType CurrentOrder; 1632 // Check the order of pointer operands. 1633 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1634 Value *Ptr0; 1635 Value *PtrN; 1636 if (CurrentOrder.empty()) { 1637 Ptr0 = PointerOps.front(); 1638 PtrN = PointerOps.back(); 1639 } else { 1640 Ptr0 = PointerOps[CurrentOrder.front()]; 1641 PtrN = PointerOps[CurrentOrder.back()]; 1642 } 1643 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1644 const SCEV *ScevN = SE->getSCEV(PtrN); 1645 const auto *Diff = 1646 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1647 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1648 // Check that the sorted loads are consecutive. 1649 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1650 if (CurrentOrder.empty()) { 1651 // Original loads are consecutive and does not require reordering. 1652 ++NumOpsWantToKeepOriginalOrder; 1653 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1654 ReuseShuffleIndicies); 1655 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1656 } else { 1657 // Need to reorder. 1658 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1659 ++I->getSecond(); 1660 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1661 ReuseShuffleIndicies, I->getFirst()); 1662 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1663 } 1664 return; 1665 } 1666 } 1667 1668 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1669 BS.cancelScheduling(VL, VL0); 1670 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1671 return; 1672 } 1673 case Instruction::ZExt: 1674 case Instruction::SExt: 1675 case Instruction::FPToUI: 1676 case Instruction::FPToSI: 1677 case Instruction::FPExt: 1678 case Instruction::PtrToInt: 1679 case Instruction::IntToPtr: 1680 case Instruction::SIToFP: 1681 case Instruction::UIToFP: 1682 case Instruction::Trunc: 1683 case Instruction::FPTrunc: 1684 case Instruction::BitCast: { 1685 Type *SrcTy = VL0->getOperand(0)->getType(); 1686 for (unsigned i = 0; i < VL.size(); ++i) { 1687 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1688 if (Ty != SrcTy || !isValidElementType(Ty)) { 1689 BS.cancelScheduling(VL, VL0); 1690 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1691 LLVM_DEBUG(dbgs() 1692 << "SLP: Gathering casts with different src types.\n"); 1693 return; 1694 } 1695 } 1696 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1697 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1698 1699 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1700 ValueList Operands; 1701 // Prepare the operand vector. 1702 for (Value *j : VL) 1703 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1704 1705 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1706 } 1707 return; 1708 } 1709 case Instruction::ICmp: 1710 case Instruction::FCmp: { 1711 // Check that all of the compares have the same predicate. 1712 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1713 Type *ComparedTy = VL0->getOperand(0)->getType(); 1714 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1715 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1716 if (Cmp->getPredicate() != P0 || 1717 Cmp->getOperand(0)->getType() != ComparedTy) { 1718 BS.cancelScheduling(VL, VL0); 1719 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1720 LLVM_DEBUG(dbgs() 1721 << "SLP: Gathering cmp with different predicate.\n"); 1722 return; 1723 } 1724 } 1725 1726 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1727 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1728 1729 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1730 ValueList Operands; 1731 // Prepare the operand vector. 1732 for (Value *j : VL) 1733 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1734 1735 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1736 } 1737 return; 1738 } 1739 case Instruction::Select: 1740 case Instruction::Add: 1741 case Instruction::FAdd: 1742 case Instruction::Sub: 1743 case Instruction::FSub: 1744 case Instruction::Mul: 1745 case Instruction::FMul: 1746 case Instruction::UDiv: 1747 case Instruction::SDiv: 1748 case Instruction::FDiv: 1749 case Instruction::URem: 1750 case Instruction::SRem: 1751 case Instruction::FRem: 1752 case Instruction::Shl: 1753 case Instruction::LShr: 1754 case Instruction::AShr: 1755 case Instruction::And: 1756 case Instruction::Or: 1757 case Instruction::Xor: 1758 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1759 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1760 1761 // Sort operands of the instructions so that each side is more likely to 1762 // have the same opcode. 1763 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1764 ValueList Left, Right; 1765 reorderInputsAccordingToOpcode(S.getOpcode(), VL, Left, Right); 1766 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1767 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1768 return; 1769 } 1770 1771 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1772 ValueList Operands; 1773 // Prepare the operand vector. 1774 for (Value *j : VL) 1775 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1776 1777 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1778 } 1779 return; 1780 1781 case Instruction::GetElementPtr: { 1782 // We don't combine GEPs with complicated (nested) indexing. 1783 for (unsigned j = 0; j < VL.size(); ++j) { 1784 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1785 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1786 BS.cancelScheduling(VL, VL0); 1787 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1788 return; 1789 } 1790 } 1791 1792 // We can't combine several GEPs into one vector if they operate on 1793 // different types. 1794 Type *Ty0 = VL0->getOperand(0)->getType(); 1795 for (unsigned j = 0; j < VL.size(); ++j) { 1796 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1797 if (Ty0 != CurTy) { 1798 LLVM_DEBUG(dbgs() 1799 << "SLP: not-vectorizable GEP (different types).\n"); 1800 BS.cancelScheduling(VL, VL0); 1801 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1802 return; 1803 } 1804 } 1805 1806 // We don't combine GEPs with non-constant indexes. 1807 for (unsigned j = 0; j < VL.size(); ++j) { 1808 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1809 if (!isa<ConstantInt>(Op)) { 1810 LLVM_DEBUG(dbgs() 1811 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1812 BS.cancelScheduling(VL, VL0); 1813 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1814 return; 1815 } 1816 } 1817 1818 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1819 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1820 for (unsigned i = 0, e = 2; i < e; ++i) { 1821 ValueList Operands; 1822 // Prepare the operand vector. 1823 for (Value *j : VL) 1824 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1825 1826 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1827 } 1828 return; 1829 } 1830 case Instruction::Store: { 1831 // Check if the stores are consecutive or of we need to swizzle them. 1832 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1833 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1834 BS.cancelScheduling(VL, VL0); 1835 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1836 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1837 return; 1838 } 1839 1840 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1841 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1842 1843 ValueList Operands; 1844 for (Value *j : VL) 1845 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1846 1847 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1848 return; 1849 } 1850 case Instruction::Call: { 1851 // Check if the calls are all to the same vectorizable intrinsic. 1852 CallInst *CI = cast<CallInst>(VL0); 1853 // Check if this is an Intrinsic call or something that can be 1854 // represented by an intrinsic call 1855 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1856 if (!isTriviallyVectorizable(ID)) { 1857 BS.cancelScheduling(VL, VL0); 1858 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1859 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1860 return; 1861 } 1862 Function *Int = CI->getCalledFunction(); 1863 Value *A1I = nullptr; 1864 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1865 A1I = CI->getArgOperand(1); 1866 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1867 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1868 if (!CI2 || CI2->getCalledFunction() != Int || 1869 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1870 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1871 BS.cancelScheduling(VL, VL0); 1872 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1873 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1874 << "\n"); 1875 return; 1876 } 1877 // ctlz,cttz and powi are special intrinsics whose second argument 1878 // should be same in order for them to be vectorized. 1879 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1880 Value *A1J = CI2->getArgOperand(1); 1881 if (A1I != A1J) { 1882 BS.cancelScheduling(VL, VL0); 1883 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1884 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1885 << " argument " << A1I << "!=" << A1J << "\n"); 1886 return; 1887 } 1888 } 1889 // Verify that the bundle operands are identical between the two calls. 1890 if (CI->hasOperandBundles() && 1891 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1892 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1893 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1894 BS.cancelScheduling(VL, VL0); 1895 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1896 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 1897 << *CI << "!=" << *VL[i] << '\n'); 1898 return; 1899 } 1900 } 1901 1902 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1903 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1904 ValueList Operands; 1905 // Prepare the operand vector. 1906 for (Value *j : VL) { 1907 CallInst *CI2 = dyn_cast<CallInst>(j); 1908 Operands.push_back(CI2->getArgOperand(i)); 1909 } 1910 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1911 } 1912 return; 1913 } 1914 case Instruction::ShuffleVector: 1915 // If this is not an alternate sequence of opcode like add-sub 1916 // then do not vectorize this instruction. 1917 if (!S.isAltShuffle()) { 1918 BS.cancelScheduling(VL, VL0); 1919 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1920 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1921 return; 1922 } 1923 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1924 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1925 1926 // Reorder operands if reordering would enable vectorization. 1927 if (isa<BinaryOperator>(VL0)) { 1928 ValueList Left, Right; 1929 reorderAltShuffleOperands(S, VL, Left, Right); 1930 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1931 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1932 return; 1933 } 1934 1935 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1936 ValueList Operands; 1937 // Prepare the operand vector. 1938 for (Value *j : VL) 1939 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1940 1941 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1942 } 1943 return; 1944 1945 default: 1946 BS.cancelScheduling(VL, VL0); 1947 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1948 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1949 return; 1950 } 1951 } 1952 1953 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1954 unsigned N; 1955 Type *EltTy; 1956 auto *ST = dyn_cast<StructType>(T); 1957 if (ST) { 1958 N = ST->getNumElements(); 1959 EltTy = *ST->element_begin(); 1960 } else { 1961 N = cast<ArrayType>(T)->getNumElements(); 1962 EltTy = cast<ArrayType>(T)->getElementType(); 1963 } 1964 if (!isValidElementType(EltTy)) 1965 return 0; 1966 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1967 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1968 return 0; 1969 if (ST) { 1970 // Check that struct is homogeneous. 1971 for (const auto *Ty : ST->elements()) 1972 if (Ty != EltTy) 1973 return 0; 1974 } 1975 return N; 1976 } 1977 1978 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1979 SmallVectorImpl<unsigned> &CurrentOrder) const { 1980 Instruction *E0 = cast<Instruction>(OpValue); 1981 assert(E0->getOpcode() == Instruction::ExtractElement || 1982 E0->getOpcode() == Instruction::ExtractValue); 1983 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 1984 // Check if all of the extracts come from the same vector and from the 1985 // correct offset. 1986 Value *Vec = E0->getOperand(0); 1987 1988 CurrentOrder.clear(); 1989 1990 // We have to extract from a vector/aggregate with the same number of elements. 1991 unsigned NElts; 1992 if (E0->getOpcode() == Instruction::ExtractValue) { 1993 const DataLayout &DL = E0->getModule()->getDataLayout(); 1994 NElts = canMapToVector(Vec->getType(), DL); 1995 if (!NElts) 1996 return false; 1997 // Check if load can be rewritten as load of vector. 1998 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1999 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2000 return false; 2001 } else { 2002 NElts = Vec->getType()->getVectorNumElements(); 2003 } 2004 2005 if (NElts != VL.size()) 2006 return false; 2007 2008 // Check that all of the indices extract from the correct offset. 2009 bool ShouldKeepOrder = true; 2010 unsigned E = VL.size(); 2011 // Assign to all items the initial value E + 1 so we can check if the extract 2012 // instruction index was used already. 2013 // Also, later we can check that all the indices are used and we have a 2014 // consecutive access in the extract instructions, by checking that no 2015 // element of CurrentOrder still has value E + 1. 2016 CurrentOrder.assign(E, E + 1); 2017 unsigned I = 0; 2018 for (; I < E; ++I) { 2019 auto *Inst = cast<Instruction>(VL[I]); 2020 if (Inst->getOperand(0) != Vec) 2021 break; 2022 Optional<unsigned> Idx = getExtractIndex(Inst); 2023 if (!Idx) 2024 break; 2025 const unsigned ExtIdx = *Idx; 2026 if (ExtIdx != I) { 2027 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2028 break; 2029 ShouldKeepOrder = false; 2030 CurrentOrder[ExtIdx] = I; 2031 } else { 2032 if (CurrentOrder[I] != E + 1) 2033 break; 2034 CurrentOrder[I] = I; 2035 } 2036 } 2037 if (I < E) { 2038 CurrentOrder.clear(); 2039 return false; 2040 } 2041 2042 return ShouldKeepOrder; 2043 } 2044 2045 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2046 return I->hasOneUse() || 2047 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2048 return ScalarToTreeEntry.count(U) > 0; 2049 }); 2050 } 2051 2052 int BoUpSLP::getEntryCost(TreeEntry *E) { 2053 ArrayRef<Value*> VL = E->Scalars; 2054 2055 Type *ScalarTy = VL[0]->getType(); 2056 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2057 ScalarTy = SI->getValueOperand()->getType(); 2058 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2059 ScalarTy = CI->getOperand(0)->getType(); 2060 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2061 2062 // If we have computed a smaller type for the expression, update VecTy so 2063 // that the costs will be accurate. 2064 if (MinBWs.count(VL[0])) 2065 VecTy = VectorType::get( 2066 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2067 2068 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2069 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2070 int ReuseShuffleCost = 0; 2071 if (NeedToShuffleReuses) { 2072 ReuseShuffleCost = 2073 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2074 } 2075 if (E->NeedToGather) { 2076 if (allConstant(VL)) 2077 return 0; 2078 if (isSplat(VL)) { 2079 return ReuseShuffleCost + 2080 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2081 } 2082 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2083 allSameType(VL) && allSameBlock(VL)) { 2084 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2085 if (ShuffleKind.hasValue()) { 2086 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2087 for (auto *V : VL) { 2088 // If all users of instruction are going to be vectorized and this 2089 // instruction itself is not going to be vectorized, consider this 2090 // instruction as dead and remove its cost from the final cost of the 2091 // vectorized tree. 2092 if (areAllUsersVectorized(cast<Instruction>(V)) && 2093 !ScalarToTreeEntry.count(V)) { 2094 auto *IO = cast<ConstantInt>( 2095 cast<ExtractElementInst>(V)->getIndexOperand()); 2096 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2097 IO->getZExtValue()); 2098 } 2099 } 2100 return ReuseShuffleCost + Cost; 2101 } 2102 } 2103 return ReuseShuffleCost + getGatherCost(VL); 2104 } 2105 InstructionsState S = getSameOpcode(VL); 2106 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2107 Instruction *VL0 = cast<Instruction>(S.OpValue); 2108 unsigned ShuffleOrOp = S.isAltShuffle() ? 2109 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2110 switch (ShuffleOrOp) { 2111 case Instruction::PHI: 2112 return 0; 2113 2114 case Instruction::ExtractValue: 2115 case Instruction::ExtractElement: 2116 if (NeedToShuffleReuses) { 2117 unsigned Idx = 0; 2118 for (unsigned I : E->ReuseShuffleIndices) { 2119 if (ShuffleOrOp == Instruction::ExtractElement) { 2120 auto *IO = cast<ConstantInt>( 2121 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2122 Idx = IO->getZExtValue(); 2123 ReuseShuffleCost -= TTI->getVectorInstrCost( 2124 Instruction::ExtractElement, VecTy, Idx); 2125 } else { 2126 ReuseShuffleCost -= TTI->getVectorInstrCost( 2127 Instruction::ExtractElement, VecTy, Idx); 2128 ++Idx; 2129 } 2130 } 2131 Idx = ReuseShuffleNumbers; 2132 for (Value *V : VL) { 2133 if (ShuffleOrOp == Instruction::ExtractElement) { 2134 auto *IO = cast<ConstantInt>( 2135 cast<ExtractElementInst>(V)->getIndexOperand()); 2136 Idx = IO->getZExtValue(); 2137 } else { 2138 --Idx; 2139 } 2140 ReuseShuffleCost += 2141 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2142 } 2143 } 2144 if (!E->NeedToGather) { 2145 int DeadCost = ReuseShuffleCost; 2146 if (!E->ReorderIndices.empty()) { 2147 // TODO: Merge this shuffle with the ReuseShuffleCost. 2148 DeadCost += TTI->getShuffleCost( 2149 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2150 } 2151 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2152 Instruction *E = cast<Instruction>(VL[i]); 2153 // If all users are going to be vectorized, instruction can be 2154 // considered as dead. 2155 // The same, if have only one user, it will be vectorized for sure. 2156 if (areAllUsersVectorized(E)) { 2157 // Take credit for instruction that will become dead. 2158 if (E->hasOneUse()) { 2159 Instruction *Ext = E->user_back(); 2160 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2161 all_of(Ext->users(), 2162 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2163 // Use getExtractWithExtendCost() to calculate the cost of 2164 // extractelement/ext pair. 2165 DeadCost -= TTI->getExtractWithExtendCost( 2166 Ext->getOpcode(), Ext->getType(), VecTy, i); 2167 // Add back the cost of s|zext which is subtracted seperately. 2168 DeadCost += TTI->getCastInstrCost( 2169 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2170 continue; 2171 } 2172 } 2173 DeadCost -= 2174 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2175 } 2176 } 2177 return DeadCost; 2178 } 2179 return ReuseShuffleCost + getGatherCost(VL); 2180 2181 case Instruction::ZExt: 2182 case Instruction::SExt: 2183 case Instruction::FPToUI: 2184 case Instruction::FPToSI: 2185 case Instruction::FPExt: 2186 case Instruction::PtrToInt: 2187 case Instruction::IntToPtr: 2188 case Instruction::SIToFP: 2189 case Instruction::UIToFP: 2190 case Instruction::Trunc: 2191 case Instruction::FPTrunc: 2192 case Instruction::BitCast: { 2193 Type *SrcTy = VL0->getOperand(0)->getType(); 2194 int ScalarEltCost = 2195 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2196 if (NeedToShuffleReuses) { 2197 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2198 } 2199 2200 // Calculate the cost of this instruction. 2201 int ScalarCost = VL.size() * ScalarEltCost; 2202 2203 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2204 int VecCost = 0; 2205 // Check if the values are candidates to demote. 2206 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2207 VecCost = ReuseShuffleCost + 2208 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2209 } 2210 return VecCost - ScalarCost; 2211 } 2212 case Instruction::FCmp: 2213 case Instruction::ICmp: 2214 case Instruction::Select: { 2215 // Calculate the cost of this instruction. 2216 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2217 Builder.getInt1Ty(), VL0); 2218 if (NeedToShuffleReuses) { 2219 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2220 } 2221 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2222 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2223 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2224 return ReuseShuffleCost + VecCost - ScalarCost; 2225 } 2226 case Instruction::Add: 2227 case Instruction::FAdd: 2228 case Instruction::Sub: 2229 case Instruction::FSub: 2230 case Instruction::Mul: 2231 case Instruction::FMul: 2232 case Instruction::UDiv: 2233 case Instruction::SDiv: 2234 case Instruction::FDiv: 2235 case Instruction::URem: 2236 case Instruction::SRem: 2237 case Instruction::FRem: 2238 case Instruction::Shl: 2239 case Instruction::LShr: 2240 case Instruction::AShr: 2241 case Instruction::And: 2242 case Instruction::Or: 2243 case Instruction::Xor: { 2244 // Certain instructions can be cheaper to vectorize if they have a 2245 // constant second vector operand. 2246 TargetTransformInfo::OperandValueKind Op1VK = 2247 TargetTransformInfo::OK_AnyValue; 2248 TargetTransformInfo::OperandValueKind Op2VK = 2249 TargetTransformInfo::OK_UniformConstantValue; 2250 TargetTransformInfo::OperandValueProperties Op1VP = 2251 TargetTransformInfo::OP_None; 2252 TargetTransformInfo::OperandValueProperties Op2VP = 2253 TargetTransformInfo::OP_PowerOf2; 2254 2255 // If all operands are exactly the same ConstantInt then set the 2256 // operand kind to OK_UniformConstantValue. 2257 // If instead not all operands are constants, then set the operand kind 2258 // to OK_AnyValue. If all operands are constants but not the same, 2259 // then set the operand kind to OK_NonUniformConstantValue. 2260 ConstantInt *CInt0 = nullptr; 2261 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2262 const Instruction *I = cast<Instruction>(VL[i]); 2263 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2264 if (!CInt) { 2265 Op2VK = TargetTransformInfo::OK_AnyValue; 2266 Op2VP = TargetTransformInfo::OP_None; 2267 break; 2268 } 2269 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2270 !CInt->getValue().isPowerOf2()) 2271 Op2VP = TargetTransformInfo::OP_None; 2272 if (i == 0) { 2273 CInt0 = CInt; 2274 continue; 2275 } 2276 if (CInt0 != CInt) 2277 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2278 } 2279 2280 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2281 int ScalarEltCost = TTI->getArithmeticInstrCost( 2282 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2283 if (NeedToShuffleReuses) { 2284 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2285 } 2286 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2287 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2288 Op2VK, Op1VP, Op2VP, Operands); 2289 return ReuseShuffleCost + VecCost - ScalarCost; 2290 } 2291 case Instruction::GetElementPtr: { 2292 TargetTransformInfo::OperandValueKind Op1VK = 2293 TargetTransformInfo::OK_AnyValue; 2294 TargetTransformInfo::OperandValueKind Op2VK = 2295 TargetTransformInfo::OK_UniformConstantValue; 2296 2297 int ScalarEltCost = 2298 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2299 if (NeedToShuffleReuses) { 2300 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2301 } 2302 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2303 int VecCost = 2304 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2305 return ReuseShuffleCost + VecCost - ScalarCost; 2306 } 2307 case Instruction::Load: { 2308 // Cost of wide load - cost of scalar loads. 2309 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2310 int ScalarEltCost = 2311 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2312 if (NeedToShuffleReuses) { 2313 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2314 } 2315 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2316 int VecLdCost = 2317 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2318 if (!E->ReorderIndices.empty()) { 2319 // TODO: Merge this shuffle with the ReuseShuffleCost. 2320 VecLdCost += TTI->getShuffleCost( 2321 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2322 } 2323 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2324 } 2325 case Instruction::Store: { 2326 // We know that we can merge the stores. Calculate the cost. 2327 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2328 int ScalarEltCost = 2329 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2330 if (NeedToShuffleReuses) { 2331 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2332 } 2333 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2334 int VecStCost = 2335 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2336 return ReuseShuffleCost + VecStCost - ScalarStCost; 2337 } 2338 case Instruction::Call: { 2339 CallInst *CI = cast<CallInst>(VL0); 2340 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2341 2342 // Calculate the cost of the scalar and vector calls. 2343 SmallVector<Type *, 4> ScalarTys; 2344 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2345 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2346 2347 FastMathFlags FMF; 2348 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2349 FMF = FPMO->getFastMathFlags(); 2350 2351 int ScalarEltCost = 2352 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2353 if (NeedToShuffleReuses) { 2354 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2355 } 2356 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2357 2358 SmallVector<Value *, 4> Args(CI->arg_operands()); 2359 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2360 VecTy->getNumElements()); 2361 2362 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2363 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2364 << " for " << *CI << "\n"); 2365 2366 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2367 } 2368 case Instruction::ShuffleVector: { 2369 assert(S.isAltShuffle() && 2370 ((Instruction::isBinaryOp(S.getOpcode()) && 2371 Instruction::isBinaryOp(S.getAltOpcode())) || 2372 (Instruction::isCast(S.getOpcode()) && 2373 Instruction::isCast(S.getAltOpcode()))) && 2374 "Invalid Shuffle Vector Operand"); 2375 int ScalarCost = 0; 2376 if (NeedToShuffleReuses) { 2377 for (unsigned Idx : E->ReuseShuffleIndices) { 2378 Instruction *I = cast<Instruction>(VL[Idx]); 2379 ReuseShuffleCost -= TTI->getInstructionCost( 2380 I, TargetTransformInfo::TCK_RecipThroughput); 2381 } 2382 for (Value *V : VL) { 2383 Instruction *I = cast<Instruction>(V); 2384 ReuseShuffleCost += TTI->getInstructionCost( 2385 I, TargetTransformInfo::TCK_RecipThroughput); 2386 } 2387 } 2388 for (Value *i : VL) { 2389 Instruction *I = cast<Instruction>(i); 2390 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2391 ScalarCost += TTI->getInstructionCost( 2392 I, TargetTransformInfo::TCK_RecipThroughput); 2393 } 2394 // VecCost is equal to sum of the cost of creating 2 vectors 2395 // and the cost of creating shuffle. 2396 int VecCost = 0; 2397 if (Instruction::isBinaryOp(S.getOpcode())) { 2398 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 2399 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 2400 } else { 2401 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 2402 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 2403 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 2404 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 2405 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 2406 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 2407 } 2408 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2409 return ReuseShuffleCost + VecCost - ScalarCost; 2410 } 2411 default: 2412 llvm_unreachable("Unknown instruction"); 2413 } 2414 } 2415 2416 bool BoUpSLP::isFullyVectorizableTinyTree() { 2417 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2418 << VectorizableTree.size() << " is fully vectorizable .\n"); 2419 2420 // We only handle trees of heights 1 and 2. 2421 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2422 return true; 2423 2424 if (VectorizableTree.size() != 2) 2425 return false; 2426 2427 // Handle splat and all-constants stores. 2428 if (!VectorizableTree[0].NeedToGather && 2429 (allConstant(VectorizableTree[1].Scalars) || 2430 isSplat(VectorizableTree[1].Scalars))) 2431 return true; 2432 2433 // Gathering cost would be too much for tiny trees. 2434 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2435 return false; 2436 2437 return true; 2438 } 2439 2440 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2441 // We can vectorize the tree if its size is greater than or equal to the 2442 // minimum size specified by the MinTreeSize command line option. 2443 if (VectorizableTree.size() >= MinTreeSize) 2444 return false; 2445 2446 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2447 // can vectorize it if we can prove it fully vectorizable. 2448 if (isFullyVectorizableTinyTree()) 2449 return false; 2450 2451 assert(VectorizableTree.empty() 2452 ? ExternalUses.empty() 2453 : true && "We shouldn't have any external users"); 2454 2455 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2456 // vectorizable. 2457 return true; 2458 } 2459 2460 int BoUpSLP::getSpillCost() { 2461 // Walk from the bottom of the tree to the top, tracking which values are 2462 // live. When we see a call instruction that is not part of our tree, 2463 // query TTI to see if there is a cost to keeping values live over it 2464 // (for example, if spills and fills are required). 2465 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2466 int Cost = 0; 2467 2468 SmallPtrSet<Instruction*, 4> LiveValues; 2469 Instruction *PrevInst = nullptr; 2470 2471 for (const auto &N : VectorizableTree) { 2472 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2473 if (!Inst) 2474 continue; 2475 2476 if (!PrevInst) { 2477 PrevInst = Inst; 2478 continue; 2479 } 2480 2481 // Update LiveValues. 2482 LiveValues.erase(PrevInst); 2483 for (auto &J : PrevInst->operands()) { 2484 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2485 LiveValues.insert(cast<Instruction>(&*J)); 2486 } 2487 2488 LLVM_DEBUG({ 2489 dbgs() << "SLP: #LV: " << LiveValues.size(); 2490 for (auto *X : LiveValues) 2491 dbgs() << " " << X->getName(); 2492 dbgs() << ", Looking at "; 2493 Inst->dump(); 2494 }); 2495 2496 // Now find the sequence of instructions between PrevInst and Inst. 2497 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2498 PrevInstIt = 2499 PrevInst->getIterator().getReverse(); 2500 while (InstIt != PrevInstIt) { 2501 if (PrevInstIt == PrevInst->getParent()->rend()) { 2502 PrevInstIt = Inst->getParent()->rbegin(); 2503 continue; 2504 } 2505 2506 // Debug informations don't impact spill cost. 2507 if ((isa<CallInst>(&*PrevInstIt) && 2508 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2509 &*PrevInstIt != PrevInst) { 2510 SmallVector<Type*, 4> V; 2511 for (auto *II : LiveValues) 2512 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2513 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2514 } 2515 2516 ++PrevInstIt; 2517 } 2518 2519 PrevInst = Inst; 2520 } 2521 2522 return Cost; 2523 } 2524 2525 int BoUpSLP::getTreeCost() { 2526 int Cost = 0; 2527 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2528 << VectorizableTree.size() << ".\n"); 2529 2530 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2531 2532 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2533 TreeEntry &TE = VectorizableTree[I]; 2534 2535 // We create duplicate tree entries for gather sequences that have multiple 2536 // uses. However, we should not compute the cost of duplicate sequences. 2537 // For example, if we have a build vector (i.e., insertelement sequence) 2538 // that is used by more than one vector instruction, we only need to 2539 // compute the cost of the insertelement instructions once. The redundent 2540 // instructions will be eliminated by CSE. 2541 // 2542 // We should consider not creating duplicate tree entries for gather 2543 // sequences, and instead add additional edges to the tree representing 2544 // their uses. Since such an approach results in fewer total entries, 2545 // existing heuristics based on tree size may yeild different results. 2546 // 2547 if (TE.NeedToGather && 2548 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2549 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2550 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2551 })) 2552 continue; 2553 2554 int C = getEntryCost(&TE); 2555 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2556 << " for bundle that starts with " << *TE.Scalars[0] 2557 << ".\n"); 2558 Cost += C; 2559 } 2560 2561 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2562 int ExtractCost = 0; 2563 for (ExternalUser &EU : ExternalUses) { 2564 // We only add extract cost once for the same scalar. 2565 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2566 continue; 2567 2568 // Uses by ephemeral values are free (because the ephemeral value will be 2569 // removed prior to code generation, and so the extraction will be 2570 // removed as well). 2571 if (EphValues.count(EU.User)) 2572 continue; 2573 2574 // If we plan to rewrite the tree in a smaller type, we will need to sign 2575 // extend the extracted value back to the original type. Here, we account 2576 // for the extract and the added cost of the sign extend if needed. 2577 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2578 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2579 if (MinBWs.count(ScalarRoot)) { 2580 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2581 auto Extend = 2582 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2583 VecTy = VectorType::get(MinTy, BundleWidth); 2584 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2585 VecTy, EU.Lane); 2586 } else { 2587 ExtractCost += 2588 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2589 } 2590 } 2591 2592 int SpillCost = getSpillCost(); 2593 Cost += SpillCost + ExtractCost; 2594 2595 std::string Str; 2596 { 2597 raw_string_ostream OS(Str); 2598 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2599 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2600 << "SLP: Total Cost = " << Cost << ".\n"; 2601 } 2602 LLVM_DEBUG(dbgs() << Str); 2603 2604 if (ViewSLPTree) 2605 ViewGraph(this, "SLP" + F->getName(), false, Str); 2606 2607 return Cost; 2608 } 2609 2610 int BoUpSLP::getGatherCost(Type *Ty, 2611 const DenseSet<unsigned> &ShuffledIndices) { 2612 int Cost = 0; 2613 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2614 if (!ShuffledIndices.count(i)) 2615 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2616 if (!ShuffledIndices.empty()) 2617 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2618 return Cost; 2619 } 2620 2621 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2622 // Find the type of the operands in VL. 2623 Type *ScalarTy = VL[0]->getType(); 2624 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2625 ScalarTy = SI->getValueOperand()->getType(); 2626 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2627 // Find the cost of inserting/extracting values from the vector. 2628 // Check if the same elements are inserted several times and count them as 2629 // shuffle candidates. 2630 DenseSet<unsigned> ShuffledElements; 2631 DenseSet<Value *> UniqueElements; 2632 // Iterate in reverse order to consider insert elements with the high cost. 2633 for (unsigned I = VL.size(); I > 0; --I) { 2634 unsigned Idx = I - 1; 2635 if (!UniqueElements.insert(VL[Idx]).second) 2636 ShuffledElements.insert(Idx); 2637 } 2638 return getGatherCost(VecTy, ShuffledElements); 2639 } 2640 2641 // Reorder commutative operations in alternate shuffle if the resulting vectors 2642 // are consecutive loads. This would allow us to vectorize the tree. 2643 // If we have something like- 2644 // load a[0] - load b[0] 2645 // load b[1] + load a[1] 2646 // load a[2] - load b[2] 2647 // load a[3] + load b[3] 2648 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2649 // code. 2650 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S, 2651 ArrayRef<Value *> VL, 2652 SmallVectorImpl<Value *> &Left, 2653 SmallVectorImpl<Value *> &Right) { 2654 // Push left and right operands of binary operation into Left and Right 2655 for (Value *V : VL) { 2656 auto *I = cast<Instruction>(V); 2657 assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); 2658 Left.push_back(I->getOperand(0)); 2659 Right.push_back(I->getOperand(1)); 2660 } 2661 2662 // Reorder if we have a commutative operation and consecutive access 2663 // are on either side of the alternate instructions. 2664 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2665 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2666 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2667 Instruction *VL1 = cast<Instruction>(VL[j]); 2668 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2669 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2670 std::swap(Left[j], Right[j]); 2671 continue; 2672 } else if (VL2->isCommutative() && 2673 isConsecutiveAccess(L, L1, *DL, *SE)) { 2674 std::swap(Left[j + 1], Right[j + 1]); 2675 continue; 2676 } 2677 // else unchanged 2678 } 2679 } 2680 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2681 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2682 Instruction *VL1 = cast<Instruction>(VL[j]); 2683 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2684 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2685 std::swap(Left[j], Right[j]); 2686 continue; 2687 } else if (VL2->isCommutative() && 2688 isConsecutiveAccess(L, L1, *DL, *SE)) { 2689 std::swap(Left[j + 1], Right[j + 1]); 2690 continue; 2691 } 2692 // else unchanged 2693 } 2694 } 2695 } 2696 } 2697 2698 // Return true if I should be commuted before adding it's left and right 2699 // operands to the arrays Left and Right. 2700 // 2701 // The vectorizer is trying to either have all elements one side being 2702 // instruction with the same opcode to enable further vectorization, or having 2703 // a splat to lower the vectorizing cost. 2704 static bool shouldReorderOperands( 2705 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2706 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2707 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2708 VLeft = I.getOperand(0); 2709 VRight = I.getOperand(1); 2710 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2711 if (SplatRight) { 2712 if (VRight == Right[i - 1]) 2713 // Preserve SplatRight 2714 return false; 2715 if (VLeft == Right[i - 1]) { 2716 // Commuting would preserve SplatRight, but we don't want to break 2717 // SplatLeft either, i.e. preserve the original order if possible. 2718 // (FIXME: why do we care?) 2719 if (SplatLeft && VLeft == Left[i - 1]) 2720 return false; 2721 return true; 2722 } 2723 } 2724 // Symmetrically handle Right side. 2725 if (SplatLeft) { 2726 if (VLeft == Left[i - 1]) 2727 // Preserve SplatLeft 2728 return false; 2729 if (VRight == Left[i - 1]) 2730 return true; 2731 } 2732 2733 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2734 Instruction *IRight = dyn_cast<Instruction>(VRight); 2735 2736 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2737 // it and not the right, in this case we want to commute. 2738 if (AllSameOpcodeRight) { 2739 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2740 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2741 // Do not commute, a match on the right preserves AllSameOpcodeRight 2742 return false; 2743 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2744 // We have a match and may want to commute, but first check if there is 2745 // not also a match on the existing operands on the Left to preserve 2746 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2747 // (FIXME: why do we care?) 2748 if (AllSameOpcodeLeft && ILeft && 2749 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2750 return false; 2751 return true; 2752 } 2753 } 2754 // Symmetrically handle Left side. 2755 if (AllSameOpcodeLeft) { 2756 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2757 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2758 return false; 2759 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2760 return true; 2761 } 2762 return false; 2763 } 2764 2765 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2766 ArrayRef<Value *> VL, 2767 SmallVectorImpl<Value *> &Left, 2768 SmallVectorImpl<Value *> &Right) { 2769 if (!VL.empty()) { 2770 // Peel the first iteration out of the loop since there's nothing 2771 // interesting to do anyway and it simplifies the checks in the loop. 2772 auto *I = cast<Instruction>(VL[0]); 2773 Value *VLeft = I->getOperand(0); 2774 Value *VRight = I->getOperand(1); 2775 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2776 // Favor having instruction to the right. FIXME: why? 2777 std::swap(VLeft, VRight); 2778 Left.push_back(VLeft); 2779 Right.push_back(VRight); 2780 } 2781 2782 // Keep track if we have instructions with all the same opcode on one side. 2783 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2784 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2785 // Keep track if we have one side with all the same value (broadcast). 2786 bool SplatLeft = true; 2787 bool SplatRight = true; 2788 2789 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2790 Instruction *I = cast<Instruction>(VL[i]); 2791 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2792 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2793 "Can only process commutative instruction"); 2794 // Commute to favor either a splat or maximizing having the same opcodes on 2795 // one side. 2796 Value *VLeft; 2797 Value *VRight; 2798 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2799 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2800 VRight)) { 2801 Left.push_back(VRight); 2802 Right.push_back(VLeft); 2803 } else { 2804 Left.push_back(VLeft); 2805 Right.push_back(VRight); 2806 } 2807 // Update Splat* and AllSameOpcode* after the insertion. 2808 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2809 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2810 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2811 (cast<Instruction>(Left[i - 1])->getOpcode() == 2812 cast<Instruction>(Left[i])->getOpcode()); 2813 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2814 (cast<Instruction>(Right[i - 1])->getOpcode() == 2815 cast<Instruction>(Right[i])->getOpcode()); 2816 } 2817 2818 // If one operand end up being broadcast, return this operand order. 2819 if (SplatRight || SplatLeft) 2820 return; 2821 2822 // Finally check if we can get longer vectorizable chain by reordering 2823 // without breaking the good operand order detected above. 2824 // E.g. If we have something like- 2825 // load a[0] load b[0] 2826 // load b[1] load a[1] 2827 // load a[2] load b[2] 2828 // load a[3] load b[3] 2829 // Reordering the second load b[1] load a[1] would allow us to vectorize 2830 // this code and we still retain AllSameOpcode property. 2831 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2832 // such as- 2833 // add a[0],c[0] load b[0] 2834 // add a[1],c[2] load b[1] 2835 // b[2] load b[2] 2836 // add a[3],c[3] load b[3] 2837 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2838 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2839 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2840 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2841 std::swap(Left[j + 1], Right[j + 1]); 2842 continue; 2843 } 2844 } 2845 } 2846 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2847 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2848 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2849 std::swap(Left[j + 1], Right[j + 1]); 2850 continue; 2851 } 2852 } 2853 } 2854 // else unchanged 2855 } 2856 } 2857 2858 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2859 const InstructionsState &S) { 2860 // Get the basic block this bundle is in. All instructions in the bundle 2861 // should be in this block. 2862 auto *Front = cast<Instruction>(S.OpValue); 2863 auto *BB = Front->getParent(); 2864 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2865 auto *I = cast<Instruction>(V); 2866 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 2867 })); 2868 2869 // The last instruction in the bundle in program order. 2870 Instruction *LastInst = nullptr; 2871 2872 // Find the last instruction. The common case should be that BB has been 2873 // scheduled, and the last instruction is VL.back(). So we start with 2874 // VL.back() and iterate over schedule data until we reach the end of the 2875 // bundle. The end of the bundle is marked by null ScheduleData. 2876 if (BlocksSchedules.count(BB)) { 2877 auto *Bundle = 2878 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2879 if (Bundle && Bundle->isPartOfBundle()) 2880 for (; Bundle; Bundle = Bundle->NextInBundle) 2881 if (Bundle->OpValue == Bundle->Inst) 2882 LastInst = Bundle->Inst; 2883 } 2884 2885 // LastInst can still be null at this point if there's either not an entry 2886 // for BB in BlocksSchedules or there's no ScheduleData available for 2887 // VL.back(). This can be the case if buildTree_rec aborts for various 2888 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2889 // size is reached, etc.). ScheduleData is initialized in the scheduling 2890 // "dry-run". 2891 // 2892 // If this happens, we can still find the last instruction by brute force. We 2893 // iterate forwards from Front (inclusive) until we either see all 2894 // instructions in the bundle or reach the end of the block. If Front is the 2895 // last instruction in program order, LastInst will be set to Front, and we 2896 // will visit all the remaining instructions in the block. 2897 // 2898 // One of the reasons we exit early from buildTree_rec is to place an upper 2899 // bound on compile-time. Thus, taking an additional compile-time hit here is 2900 // not ideal. However, this should be exceedingly rare since it requires that 2901 // we both exit early from buildTree_rec and that the bundle be out-of-order 2902 // (causing us to iterate all the way to the end of the block). 2903 if (!LastInst) { 2904 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2905 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2906 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 2907 LastInst = &I; 2908 if (Bundle.empty()) 2909 break; 2910 } 2911 } 2912 2913 // Set the insertion point after the last instruction in the bundle. Set the 2914 // debug location to Front. 2915 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2916 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2917 } 2918 2919 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2920 Value *Vec = UndefValue::get(Ty); 2921 // Generate the 'InsertElement' instruction. 2922 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2923 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2924 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2925 GatherSeq.insert(Insrt); 2926 CSEBlocks.insert(Insrt->getParent()); 2927 2928 // Add to our 'need-to-extract' list. 2929 if (TreeEntry *E = getTreeEntry(VL[i])) { 2930 // Find which lane we need to extract. 2931 int FoundLane = -1; 2932 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2933 // Is this the lane of the scalar that we are looking for ? 2934 if (E->Scalars[Lane] == VL[i]) { 2935 FoundLane = Lane; 2936 break; 2937 } 2938 } 2939 assert(FoundLane >= 0 && "Could not find the correct lane"); 2940 if (!E->ReuseShuffleIndices.empty()) { 2941 FoundLane = 2942 std::distance(E->ReuseShuffleIndices.begin(), 2943 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2944 } 2945 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2946 } 2947 } 2948 } 2949 2950 return Vec; 2951 } 2952 2953 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2954 InstructionsState S = getSameOpcode(VL); 2955 if (S.getOpcode()) { 2956 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2957 if (E->isSame(VL)) { 2958 Value *V = vectorizeTree(E); 2959 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2960 // We need to get the vectorized value but without shuffle. 2961 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2962 V = SV->getOperand(0); 2963 } else { 2964 // Reshuffle to get only unique values. 2965 SmallVector<unsigned, 4> UniqueIdxs; 2966 SmallSet<unsigned, 4> UsedIdxs; 2967 for(unsigned Idx : E->ReuseShuffleIndices) 2968 if (UsedIdxs.insert(Idx).second) 2969 UniqueIdxs.emplace_back(Idx); 2970 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2971 UniqueIdxs); 2972 } 2973 } 2974 return V; 2975 } 2976 } 2977 } 2978 2979 Type *ScalarTy = S.OpValue->getType(); 2980 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2981 ScalarTy = SI->getValueOperand()->getType(); 2982 2983 // Check that every instruction appears once in this bundle. 2984 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2985 SmallVector<Value *, 4> UniqueValues; 2986 if (VL.size() > 2) { 2987 DenseMap<Value *, unsigned> UniquePositions; 2988 for (Value *V : VL) { 2989 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2990 ReuseShuffleIndicies.emplace_back(Res.first->second); 2991 if (Res.second || isa<Constant>(V)) 2992 UniqueValues.emplace_back(V); 2993 } 2994 // Do not shuffle single element or if number of unique values is not power 2995 // of 2. 2996 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 2997 !llvm::isPowerOf2_32(UniqueValues.size())) 2998 ReuseShuffleIndicies.clear(); 2999 else 3000 VL = UniqueValues; 3001 } 3002 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3003 3004 Value *V = Gather(VL, VecTy); 3005 if (!ReuseShuffleIndicies.empty()) { 3006 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3007 ReuseShuffleIndicies, "shuffle"); 3008 if (auto *I = dyn_cast<Instruction>(V)) { 3009 GatherSeq.insert(I); 3010 CSEBlocks.insert(I->getParent()); 3011 } 3012 } 3013 return V; 3014 } 3015 3016 static void inversePermutation(ArrayRef<unsigned> Indices, 3017 SmallVectorImpl<unsigned> &Mask) { 3018 Mask.clear(); 3019 const unsigned E = Indices.size(); 3020 Mask.resize(E); 3021 for (unsigned I = 0; I < E; ++I) 3022 Mask[Indices[I]] = I; 3023 } 3024 3025 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3026 IRBuilder<>::InsertPointGuard Guard(Builder); 3027 3028 if (E->VectorizedValue) { 3029 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3030 return E->VectorizedValue; 3031 } 3032 3033 InstructionsState S = getSameOpcode(E->Scalars); 3034 Instruction *VL0 = cast<Instruction>(S.OpValue); 3035 Type *ScalarTy = VL0->getType(); 3036 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3037 ScalarTy = SI->getValueOperand()->getType(); 3038 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3039 3040 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3041 3042 if (E->NeedToGather) { 3043 setInsertPointAfterBundle(E->Scalars, S); 3044 auto *V = Gather(E->Scalars, VecTy); 3045 if (NeedToShuffleReuses) { 3046 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3047 E->ReuseShuffleIndices, "shuffle"); 3048 if (auto *I = dyn_cast<Instruction>(V)) { 3049 GatherSeq.insert(I); 3050 CSEBlocks.insert(I->getParent()); 3051 } 3052 } 3053 E->VectorizedValue = V; 3054 return V; 3055 } 3056 3057 unsigned ShuffleOrOp = S.isAltShuffle() ? 3058 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3059 switch (ShuffleOrOp) { 3060 case Instruction::PHI: { 3061 PHINode *PH = dyn_cast<PHINode>(VL0); 3062 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3063 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3064 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3065 Value *V = NewPhi; 3066 if (NeedToShuffleReuses) { 3067 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3068 E->ReuseShuffleIndices, "shuffle"); 3069 } 3070 E->VectorizedValue = V; 3071 3072 // PHINodes may have multiple entries from the same block. We want to 3073 // visit every block once. 3074 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3075 3076 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3077 ValueList Operands; 3078 BasicBlock *IBB = PH->getIncomingBlock(i); 3079 3080 if (!VisitedBBs.insert(IBB).second) { 3081 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3082 continue; 3083 } 3084 3085 // Prepare the operand vector. 3086 for (Value *V : E->Scalars) 3087 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3088 3089 Builder.SetInsertPoint(IBB->getTerminator()); 3090 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3091 Value *Vec = vectorizeTree(Operands); 3092 NewPhi->addIncoming(Vec, IBB); 3093 } 3094 3095 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3096 "Invalid number of incoming values"); 3097 return V; 3098 } 3099 3100 case Instruction::ExtractElement: { 3101 if (!E->NeedToGather) { 3102 Value *V = VL0->getOperand(0); 3103 if (!E->ReorderIndices.empty()) { 3104 OrdersType Mask; 3105 inversePermutation(E->ReorderIndices, Mask); 3106 Builder.SetInsertPoint(VL0); 3107 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3108 "reorder_shuffle"); 3109 } 3110 if (NeedToShuffleReuses) { 3111 // TODO: Merge this shuffle with the ReorderShuffleMask. 3112 if (!E->ReorderIndices.empty()) 3113 Builder.SetInsertPoint(VL0); 3114 else if (auto *I = dyn_cast<Instruction>(V)) 3115 Builder.SetInsertPoint(I->getParent(), 3116 std::next(I->getIterator())); 3117 else 3118 Builder.SetInsertPoint(&F->getEntryBlock(), 3119 F->getEntryBlock().getFirstInsertionPt()); 3120 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3121 E->ReuseShuffleIndices, "shuffle"); 3122 } 3123 E->VectorizedValue = V; 3124 return V; 3125 } 3126 setInsertPointAfterBundle(E->Scalars, S); 3127 auto *V = Gather(E->Scalars, VecTy); 3128 if (NeedToShuffleReuses) { 3129 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3130 E->ReuseShuffleIndices, "shuffle"); 3131 if (auto *I = dyn_cast<Instruction>(V)) { 3132 GatherSeq.insert(I); 3133 CSEBlocks.insert(I->getParent()); 3134 } 3135 } 3136 E->VectorizedValue = V; 3137 return V; 3138 } 3139 case Instruction::ExtractValue: { 3140 if (!E->NeedToGather) { 3141 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3142 Builder.SetInsertPoint(LI); 3143 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3144 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3145 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3146 Value *NewV = propagateMetadata(V, E->Scalars); 3147 if (!E->ReorderIndices.empty()) { 3148 OrdersType Mask; 3149 inversePermutation(E->ReorderIndices, Mask); 3150 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3151 "reorder_shuffle"); 3152 } 3153 if (NeedToShuffleReuses) { 3154 // TODO: Merge this shuffle with the ReorderShuffleMask. 3155 NewV = Builder.CreateShuffleVector( 3156 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3157 } 3158 E->VectorizedValue = NewV; 3159 return NewV; 3160 } 3161 setInsertPointAfterBundle(E->Scalars, S); 3162 auto *V = Gather(E->Scalars, VecTy); 3163 if (NeedToShuffleReuses) { 3164 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3165 E->ReuseShuffleIndices, "shuffle"); 3166 if (auto *I = dyn_cast<Instruction>(V)) { 3167 GatherSeq.insert(I); 3168 CSEBlocks.insert(I->getParent()); 3169 } 3170 } 3171 E->VectorizedValue = V; 3172 return V; 3173 } 3174 case Instruction::ZExt: 3175 case Instruction::SExt: 3176 case Instruction::FPToUI: 3177 case Instruction::FPToSI: 3178 case Instruction::FPExt: 3179 case Instruction::PtrToInt: 3180 case Instruction::IntToPtr: 3181 case Instruction::SIToFP: 3182 case Instruction::UIToFP: 3183 case Instruction::Trunc: 3184 case Instruction::FPTrunc: 3185 case Instruction::BitCast: { 3186 ValueList INVL; 3187 for (Value *V : E->Scalars) 3188 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3189 3190 setInsertPointAfterBundle(E->Scalars, S); 3191 3192 Value *InVec = vectorizeTree(INVL); 3193 3194 if (E->VectorizedValue) { 3195 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3196 return E->VectorizedValue; 3197 } 3198 3199 CastInst *CI = dyn_cast<CastInst>(VL0); 3200 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3201 if (NeedToShuffleReuses) { 3202 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3203 E->ReuseShuffleIndices, "shuffle"); 3204 } 3205 E->VectorizedValue = V; 3206 ++NumVectorInstructions; 3207 return V; 3208 } 3209 case Instruction::FCmp: 3210 case Instruction::ICmp: { 3211 ValueList LHSV, RHSV; 3212 for (Value *V : E->Scalars) { 3213 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3214 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3215 } 3216 3217 setInsertPointAfterBundle(E->Scalars, S); 3218 3219 Value *L = vectorizeTree(LHSV); 3220 Value *R = vectorizeTree(RHSV); 3221 3222 if (E->VectorizedValue) { 3223 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3224 return E->VectorizedValue; 3225 } 3226 3227 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3228 Value *V; 3229 if (S.getOpcode() == Instruction::FCmp) 3230 V = Builder.CreateFCmp(P0, L, R); 3231 else 3232 V = Builder.CreateICmp(P0, L, R); 3233 3234 propagateIRFlags(V, E->Scalars, VL0); 3235 if (NeedToShuffleReuses) { 3236 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3237 E->ReuseShuffleIndices, "shuffle"); 3238 } 3239 E->VectorizedValue = V; 3240 ++NumVectorInstructions; 3241 return V; 3242 } 3243 case Instruction::Select: { 3244 ValueList TrueVec, FalseVec, CondVec; 3245 for (Value *V : E->Scalars) { 3246 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3247 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3248 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3249 } 3250 3251 setInsertPointAfterBundle(E->Scalars, S); 3252 3253 Value *Cond = vectorizeTree(CondVec); 3254 Value *True = vectorizeTree(TrueVec); 3255 Value *False = vectorizeTree(FalseVec); 3256 3257 if (E->VectorizedValue) { 3258 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3259 return E->VectorizedValue; 3260 } 3261 3262 Value *V = Builder.CreateSelect(Cond, True, False); 3263 if (NeedToShuffleReuses) { 3264 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3265 E->ReuseShuffleIndices, "shuffle"); 3266 } 3267 E->VectorizedValue = V; 3268 ++NumVectorInstructions; 3269 return V; 3270 } 3271 case Instruction::Add: 3272 case Instruction::FAdd: 3273 case Instruction::Sub: 3274 case Instruction::FSub: 3275 case Instruction::Mul: 3276 case Instruction::FMul: 3277 case Instruction::UDiv: 3278 case Instruction::SDiv: 3279 case Instruction::FDiv: 3280 case Instruction::URem: 3281 case Instruction::SRem: 3282 case Instruction::FRem: 3283 case Instruction::Shl: 3284 case Instruction::LShr: 3285 case Instruction::AShr: 3286 case Instruction::And: 3287 case Instruction::Or: 3288 case Instruction::Xor: { 3289 ValueList LHSVL, RHSVL; 3290 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3291 reorderInputsAccordingToOpcode(S.getOpcode(), E->Scalars, LHSVL, 3292 RHSVL); 3293 else 3294 for (Value *V : E->Scalars) { 3295 auto *I = cast<Instruction>(V); 3296 LHSVL.push_back(I->getOperand(0)); 3297 RHSVL.push_back(I->getOperand(1)); 3298 } 3299 3300 setInsertPointAfterBundle(E->Scalars, S); 3301 3302 Value *LHS = vectorizeTree(LHSVL); 3303 Value *RHS = vectorizeTree(RHSVL); 3304 3305 if (E->VectorizedValue) { 3306 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3307 return E->VectorizedValue; 3308 } 3309 3310 Value *V = Builder.CreateBinOp( 3311 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3312 propagateIRFlags(V, E->Scalars, VL0); 3313 if (auto *I = dyn_cast<Instruction>(V)) 3314 V = propagateMetadata(I, E->Scalars); 3315 3316 if (NeedToShuffleReuses) { 3317 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3318 E->ReuseShuffleIndices, "shuffle"); 3319 } 3320 E->VectorizedValue = V; 3321 ++NumVectorInstructions; 3322 3323 return V; 3324 } 3325 case Instruction::Load: { 3326 // Loads are inserted at the head of the tree because we don't want to 3327 // sink them all the way down past store instructions. 3328 bool IsReorder = !E->ReorderIndices.empty(); 3329 if (IsReorder) { 3330 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3331 VL0 = cast<Instruction>(S.OpValue); 3332 } 3333 setInsertPointAfterBundle(E->Scalars, S); 3334 3335 LoadInst *LI = cast<LoadInst>(VL0); 3336 Type *ScalarLoadTy = LI->getType(); 3337 unsigned AS = LI->getPointerAddressSpace(); 3338 3339 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3340 VecTy->getPointerTo(AS)); 3341 3342 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3343 // ExternalUses list to make sure that an extract will be generated in the 3344 // future. 3345 Value *PO = LI->getPointerOperand(); 3346 if (getTreeEntry(PO)) 3347 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3348 3349 unsigned Alignment = LI->getAlignment(); 3350 LI = Builder.CreateLoad(VecPtr); 3351 if (!Alignment) { 3352 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3353 } 3354 LI->setAlignment(Alignment); 3355 Value *V = propagateMetadata(LI, E->Scalars); 3356 if (IsReorder) { 3357 OrdersType Mask; 3358 inversePermutation(E->ReorderIndices, Mask); 3359 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3360 Mask, "reorder_shuffle"); 3361 } 3362 if (NeedToShuffleReuses) { 3363 // TODO: Merge this shuffle with the ReorderShuffleMask. 3364 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3365 E->ReuseShuffleIndices, "shuffle"); 3366 } 3367 E->VectorizedValue = V; 3368 ++NumVectorInstructions; 3369 return V; 3370 } 3371 case Instruction::Store: { 3372 StoreInst *SI = cast<StoreInst>(VL0); 3373 unsigned Alignment = SI->getAlignment(); 3374 unsigned AS = SI->getPointerAddressSpace(); 3375 3376 ValueList ScalarStoreValues; 3377 for (Value *V : E->Scalars) 3378 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3379 3380 setInsertPointAfterBundle(E->Scalars, S); 3381 3382 Value *VecValue = vectorizeTree(ScalarStoreValues); 3383 Value *ScalarPtr = SI->getPointerOperand(); 3384 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3385 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3386 3387 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3388 // ExternalUses to make sure that an extract will be generated in the 3389 // future. 3390 if (getTreeEntry(ScalarPtr)) 3391 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3392 3393 if (!Alignment) 3394 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3395 3396 ST->setAlignment(Alignment); 3397 Value *V = propagateMetadata(ST, E->Scalars); 3398 if (NeedToShuffleReuses) { 3399 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3400 E->ReuseShuffleIndices, "shuffle"); 3401 } 3402 E->VectorizedValue = V; 3403 ++NumVectorInstructions; 3404 return V; 3405 } 3406 case Instruction::GetElementPtr: { 3407 setInsertPointAfterBundle(E->Scalars, S); 3408 3409 ValueList Op0VL; 3410 for (Value *V : E->Scalars) 3411 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3412 3413 Value *Op0 = vectorizeTree(Op0VL); 3414 3415 std::vector<Value *> OpVecs; 3416 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3417 ++j) { 3418 ValueList OpVL; 3419 for (Value *V : E->Scalars) 3420 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3421 3422 Value *OpVec = vectorizeTree(OpVL); 3423 OpVecs.push_back(OpVec); 3424 } 3425 3426 Value *V = Builder.CreateGEP( 3427 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3428 if (Instruction *I = dyn_cast<Instruction>(V)) 3429 V = propagateMetadata(I, E->Scalars); 3430 3431 if (NeedToShuffleReuses) { 3432 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3433 E->ReuseShuffleIndices, "shuffle"); 3434 } 3435 E->VectorizedValue = V; 3436 ++NumVectorInstructions; 3437 3438 return V; 3439 } 3440 case Instruction::Call: { 3441 CallInst *CI = cast<CallInst>(VL0); 3442 setInsertPointAfterBundle(E->Scalars, S); 3443 Function *FI; 3444 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3445 Value *ScalarArg = nullptr; 3446 if (CI && (FI = CI->getCalledFunction())) { 3447 IID = FI->getIntrinsicID(); 3448 } 3449 std::vector<Value *> OpVecs; 3450 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3451 ValueList OpVL; 3452 // ctlz,cttz and powi are special intrinsics whose second argument is 3453 // a scalar. This argument should not be vectorized. 3454 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3455 CallInst *CEI = cast<CallInst>(VL0); 3456 ScalarArg = CEI->getArgOperand(j); 3457 OpVecs.push_back(CEI->getArgOperand(j)); 3458 continue; 3459 } 3460 for (Value *V : E->Scalars) { 3461 CallInst *CEI = cast<CallInst>(V); 3462 OpVL.push_back(CEI->getArgOperand(j)); 3463 } 3464 3465 Value *OpVec = vectorizeTree(OpVL); 3466 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3467 OpVecs.push_back(OpVec); 3468 } 3469 3470 Module *M = F->getParent(); 3471 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3472 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3473 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3474 SmallVector<OperandBundleDef, 1> OpBundles; 3475 CI->getOperandBundlesAsDefs(OpBundles); 3476 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3477 3478 // The scalar argument uses an in-tree scalar so we add the new vectorized 3479 // call to ExternalUses list to make sure that an extract will be 3480 // generated in the future. 3481 if (ScalarArg && getTreeEntry(ScalarArg)) 3482 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3483 3484 propagateIRFlags(V, E->Scalars, VL0); 3485 if (NeedToShuffleReuses) { 3486 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3487 E->ReuseShuffleIndices, "shuffle"); 3488 } 3489 E->VectorizedValue = V; 3490 ++NumVectorInstructions; 3491 return V; 3492 } 3493 case Instruction::ShuffleVector: { 3494 ValueList LHSVL, RHSVL; 3495 assert(S.isAltShuffle() && 3496 ((Instruction::isBinaryOp(S.getOpcode()) && 3497 Instruction::isBinaryOp(S.getAltOpcode())) || 3498 (Instruction::isCast(S.getOpcode()) && 3499 Instruction::isCast(S.getAltOpcode()))) && 3500 "Invalid Shuffle Vector Operand"); 3501 3502 Value *LHS, *RHS; 3503 if (Instruction::isBinaryOp(S.getOpcode())) { 3504 reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL); 3505 setInsertPointAfterBundle(E->Scalars, S); 3506 LHS = vectorizeTree(LHSVL); 3507 RHS = vectorizeTree(RHSVL); 3508 } else { 3509 ValueList INVL; 3510 for (Value *V : E->Scalars) 3511 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3512 setInsertPointAfterBundle(E->Scalars, S); 3513 LHS = vectorizeTree(INVL); 3514 } 3515 3516 if (E->VectorizedValue) { 3517 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3518 return E->VectorizedValue; 3519 } 3520 3521 Value *V0, *V1; 3522 if (Instruction::isBinaryOp(S.getOpcode())) { 3523 V0 = Builder.CreateBinOp( 3524 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3525 V1 = Builder.CreateBinOp( 3526 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3527 } else { 3528 V0 = Builder.CreateCast( 3529 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3530 V1 = Builder.CreateCast( 3531 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3532 } 3533 3534 // Create shuffle to take alternate operations from the vector. 3535 // Also, gather up main and alt scalar ops to propagate IR flags to 3536 // each vector operation. 3537 ValueList OpScalars, AltScalars; 3538 unsigned e = E->Scalars.size(); 3539 SmallVector<Constant *, 8> Mask(e); 3540 for (unsigned i = 0; i < e; ++i) { 3541 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3542 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3543 if (OpInst->getOpcode() == S.getAltOpcode()) { 3544 Mask[i] = Builder.getInt32(e + i); 3545 AltScalars.push_back(E->Scalars[i]); 3546 } else { 3547 Mask[i] = Builder.getInt32(i); 3548 OpScalars.push_back(E->Scalars[i]); 3549 } 3550 } 3551 3552 Value *ShuffleMask = ConstantVector::get(Mask); 3553 propagateIRFlags(V0, OpScalars); 3554 propagateIRFlags(V1, AltScalars); 3555 3556 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3557 if (Instruction *I = dyn_cast<Instruction>(V)) 3558 V = propagateMetadata(I, E->Scalars); 3559 if (NeedToShuffleReuses) { 3560 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3561 E->ReuseShuffleIndices, "shuffle"); 3562 } 3563 E->VectorizedValue = V; 3564 ++NumVectorInstructions; 3565 3566 return V; 3567 } 3568 default: 3569 llvm_unreachable("unknown inst"); 3570 } 3571 return nullptr; 3572 } 3573 3574 Value *BoUpSLP::vectorizeTree() { 3575 ExtraValueToDebugLocsMap ExternallyUsedValues; 3576 return vectorizeTree(ExternallyUsedValues); 3577 } 3578 3579 Value * 3580 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3581 // All blocks must be scheduled before any instructions are inserted. 3582 for (auto &BSIter : BlocksSchedules) { 3583 scheduleBlock(BSIter.second.get()); 3584 } 3585 3586 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3587 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3588 3589 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3590 // vectorized root. InstCombine will then rewrite the entire expression. We 3591 // sign extend the extracted values below. 3592 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3593 if (MinBWs.count(ScalarRoot)) { 3594 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3595 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3596 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3597 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3598 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3599 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3600 VectorizableTree[0].VectorizedValue = Trunc; 3601 } 3602 3603 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3604 << " values .\n"); 3605 3606 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3607 // specified by ScalarType. 3608 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3609 if (!MinBWs.count(ScalarRoot)) 3610 return Ex; 3611 if (MinBWs[ScalarRoot].second) 3612 return Builder.CreateSExt(Ex, ScalarType); 3613 return Builder.CreateZExt(Ex, ScalarType); 3614 }; 3615 3616 // Extract all of the elements with the external uses. 3617 for (const auto &ExternalUse : ExternalUses) { 3618 Value *Scalar = ExternalUse.Scalar; 3619 llvm::User *User = ExternalUse.User; 3620 3621 // Skip users that we already RAUW. This happens when one instruction 3622 // has multiple uses of the same value. 3623 if (User && !is_contained(Scalar->users(), User)) 3624 continue; 3625 TreeEntry *E = getTreeEntry(Scalar); 3626 assert(E && "Invalid scalar"); 3627 assert(!E->NeedToGather && "Extracting from a gather list"); 3628 3629 Value *Vec = E->VectorizedValue; 3630 assert(Vec && "Can't find vectorizable value"); 3631 3632 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3633 // If User == nullptr, the Scalar is used as extra arg. Generate 3634 // ExtractElement instruction and update the record for this scalar in 3635 // ExternallyUsedValues. 3636 if (!User) { 3637 assert(ExternallyUsedValues.count(Scalar) && 3638 "Scalar with nullptr as an external user must be registered in " 3639 "ExternallyUsedValues map"); 3640 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3641 Builder.SetInsertPoint(VecI->getParent(), 3642 std::next(VecI->getIterator())); 3643 } else { 3644 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3645 } 3646 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3647 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3648 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3649 auto &Locs = ExternallyUsedValues[Scalar]; 3650 ExternallyUsedValues.insert({Ex, Locs}); 3651 ExternallyUsedValues.erase(Scalar); 3652 continue; 3653 } 3654 3655 // Generate extracts for out-of-tree users. 3656 // Find the insertion point for the extractelement lane. 3657 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3658 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3659 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3660 if (PH->getIncomingValue(i) == Scalar) { 3661 TerminatorInst *IncomingTerminator = 3662 PH->getIncomingBlock(i)->getTerminator(); 3663 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3664 Builder.SetInsertPoint(VecI->getParent(), 3665 std::next(VecI->getIterator())); 3666 } else { 3667 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3668 } 3669 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3670 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3671 CSEBlocks.insert(PH->getIncomingBlock(i)); 3672 PH->setOperand(i, Ex); 3673 } 3674 } 3675 } else { 3676 Builder.SetInsertPoint(cast<Instruction>(User)); 3677 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3678 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3679 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3680 User->replaceUsesOfWith(Scalar, Ex); 3681 } 3682 } else { 3683 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3684 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3685 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3686 CSEBlocks.insert(&F->getEntryBlock()); 3687 User->replaceUsesOfWith(Scalar, Ex); 3688 } 3689 3690 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3691 } 3692 3693 // For each vectorized value: 3694 for (TreeEntry &EIdx : VectorizableTree) { 3695 TreeEntry *Entry = &EIdx; 3696 3697 // No need to handle users of gathered values. 3698 if (Entry->NeedToGather) 3699 continue; 3700 3701 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3702 3703 // For each lane: 3704 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3705 Value *Scalar = Entry->Scalars[Lane]; 3706 3707 Type *Ty = Scalar->getType(); 3708 if (!Ty->isVoidTy()) { 3709 #ifndef NDEBUG 3710 for (User *U : Scalar->users()) { 3711 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3712 3713 // It is legal to replace users in the ignorelist by undef. 3714 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3715 "Replacing out-of-tree value with undef"); 3716 } 3717 #endif 3718 Value *Undef = UndefValue::get(Ty); 3719 Scalar->replaceAllUsesWith(Undef); 3720 } 3721 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3722 eraseInstruction(cast<Instruction>(Scalar)); 3723 } 3724 } 3725 3726 Builder.ClearInsertionPoint(); 3727 3728 return VectorizableTree[0].VectorizedValue; 3729 } 3730 3731 void BoUpSLP::optimizeGatherSequence() { 3732 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3733 << " gather sequences instructions.\n"); 3734 // LICM InsertElementInst sequences. 3735 for (Instruction *I : GatherSeq) { 3736 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3737 continue; 3738 3739 // Check if this block is inside a loop. 3740 Loop *L = LI->getLoopFor(I->getParent()); 3741 if (!L) 3742 continue; 3743 3744 // Check if it has a preheader. 3745 BasicBlock *PreHeader = L->getLoopPreheader(); 3746 if (!PreHeader) 3747 continue; 3748 3749 // If the vector or the element that we insert into it are 3750 // instructions that are defined in this basic block then we can't 3751 // hoist this instruction. 3752 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3753 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3754 if (Op0 && L->contains(Op0)) 3755 continue; 3756 if (Op1 && L->contains(Op1)) 3757 continue; 3758 3759 // We can hoist this instruction. Move it to the pre-header. 3760 I->moveBefore(PreHeader->getTerminator()); 3761 } 3762 3763 // Make a list of all reachable blocks in our CSE queue. 3764 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3765 CSEWorkList.reserve(CSEBlocks.size()); 3766 for (BasicBlock *BB : CSEBlocks) 3767 if (DomTreeNode *N = DT->getNode(BB)) { 3768 assert(DT->isReachableFromEntry(N)); 3769 CSEWorkList.push_back(N); 3770 } 3771 3772 // Sort blocks by domination. This ensures we visit a block after all blocks 3773 // dominating it are visited. 3774 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3775 [this](const DomTreeNode *A, const DomTreeNode *B) { 3776 return DT->properlyDominates(A, B); 3777 }); 3778 3779 // Perform O(N^2) search over the gather sequences and merge identical 3780 // instructions. TODO: We can further optimize this scan if we split the 3781 // instructions into different buckets based on the insert lane. 3782 SmallVector<Instruction *, 16> Visited; 3783 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3784 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3785 "Worklist not sorted properly!"); 3786 BasicBlock *BB = (*I)->getBlock(); 3787 // For all instructions in blocks containing gather sequences: 3788 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3789 Instruction *In = &*it++; 3790 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3791 continue; 3792 3793 // Check if we can replace this instruction with any of the 3794 // visited instructions. 3795 for (Instruction *v : Visited) { 3796 if (In->isIdenticalTo(v) && 3797 DT->dominates(v->getParent(), In->getParent())) { 3798 In->replaceAllUsesWith(v); 3799 eraseInstruction(In); 3800 In = nullptr; 3801 break; 3802 } 3803 } 3804 if (In) { 3805 assert(!is_contained(Visited, In)); 3806 Visited.push_back(In); 3807 } 3808 } 3809 } 3810 CSEBlocks.clear(); 3811 GatherSeq.clear(); 3812 } 3813 3814 // Groups the instructions to a bundle (which is then a single scheduling entity) 3815 // and schedules instructions until the bundle gets ready. 3816 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3817 BoUpSLP *SLP, 3818 const InstructionsState &S) { 3819 if (isa<PHINode>(S.OpValue)) 3820 return true; 3821 3822 // Initialize the instruction bundle. 3823 Instruction *OldScheduleEnd = ScheduleEnd; 3824 ScheduleData *PrevInBundle = nullptr; 3825 ScheduleData *Bundle = nullptr; 3826 bool ReSchedule = false; 3827 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3828 3829 // Make sure that the scheduling region contains all 3830 // instructions of the bundle. 3831 for (Value *V : VL) { 3832 if (!extendSchedulingRegion(V, S)) 3833 return false; 3834 } 3835 3836 for (Value *V : VL) { 3837 ScheduleData *BundleMember = getScheduleData(V); 3838 assert(BundleMember && 3839 "no ScheduleData for bundle member (maybe not in same basic block)"); 3840 if (BundleMember->IsScheduled) { 3841 // A bundle member was scheduled as single instruction before and now 3842 // needs to be scheduled as part of the bundle. We just get rid of the 3843 // existing schedule. 3844 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3845 << " was already scheduled\n"); 3846 ReSchedule = true; 3847 } 3848 assert(BundleMember->isSchedulingEntity() && 3849 "bundle member already part of other bundle"); 3850 if (PrevInBundle) { 3851 PrevInBundle->NextInBundle = BundleMember; 3852 } else { 3853 Bundle = BundleMember; 3854 } 3855 BundleMember->UnscheduledDepsInBundle = 0; 3856 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3857 3858 // Group the instructions to a bundle. 3859 BundleMember->FirstInBundle = Bundle; 3860 PrevInBundle = BundleMember; 3861 } 3862 if (ScheduleEnd != OldScheduleEnd) { 3863 // The scheduling region got new instructions at the lower end (or it is a 3864 // new region for the first bundle). This makes it necessary to 3865 // recalculate all dependencies. 3866 // It is seldom that this needs to be done a second time after adding the 3867 // initial bundle to the region. 3868 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3869 doForAllOpcodes(I, [](ScheduleData *SD) { 3870 SD->clearDependencies(); 3871 }); 3872 } 3873 ReSchedule = true; 3874 } 3875 if (ReSchedule) { 3876 resetSchedule(); 3877 initialFillReadyList(ReadyInsts); 3878 } 3879 3880 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3881 << BB->getName() << "\n"); 3882 3883 calculateDependencies(Bundle, true, SLP); 3884 3885 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3886 // means that there are no cyclic dependencies and we can schedule it. 3887 // Note that's important that we don't "schedule" the bundle yet (see 3888 // cancelScheduling). 3889 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3890 3891 ScheduleData *pickedSD = ReadyInsts.back(); 3892 ReadyInsts.pop_back(); 3893 3894 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3895 schedule(pickedSD, ReadyInsts); 3896 } 3897 } 3898 if (!Bundle->isReady()) { 3899 cancelScheduling(VL, S.OpValue); 3900 return false; 3901 } 3902 return true; 3903 } 3904 3905 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3906 Value *OpValue) { 3907 if (isa<PHINode>(OpValue)) 3908 return; 3909 3910 ScheduleData *Bundle = getScheduleData(OpValue); 3911 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3912 assert(!Bundle->IsScheduled && 3913 "Can't cancel bundle which is already scheduled"); 3914 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3915 "tried to unbundle something which is not a bundle"); 3916 3917 // Un-bundle: make single instructions out of the bundle. 3918 ScheduleData *BundleMember = Bundle; 3919 while (BundleMember) { 3920 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3921 BundleMember->FirstInBundle = BundleMember; 3922 ScheduleData *Next = BundleMember->NextInBundle; 3923 BundleMember->NextInBundle = nullptr; 3924 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3925 if (BundleMember->UnscheduledDepsInBundle == 0) { 3926 ReadyInsts.insert(BundleMember); 3927 } 3928 BundleMember = Next; 3929 } 3930 } 3931 3932 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3933 // Allocate a new ScheduleData for the instruction. 3934 if (ChunkPos >= ChunkSize) { 3935 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3936 ChunkPos = 0; 3937 } 3938 return &(ScheduleDataChunks.back()[ChunkPos++]); 3939 } 3940 3941 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3942 const InstructionsState &S) { 3943 if (getScheduleData(V, isOneOf(S, V))) 3944 return true; 3945 Instruction *I = dyn_cast<Instruction>(V); 3946 assert(I && "bundle member must be an instruction"); 3947 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3948 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 3949 ScheduleData *ISD = getScheduleData(I); 3950 if (!ISD) 3951 return false; 3952 assert(isInSchedulingRegion(ISD) && 3953 "ScheduleData not in scheduling region"); 3954 ScheduleData *SD = allocateScheduleDataChunks(); 3955 SD->Inst = I; 3956 SD->init(SchedulingRegionID, S.OpValue); 3957 ExtraScheduleDataMap[I][S.OpValue] = SD; 3958 return true; 3959 }; 3960 if (CheckSheduleForI(I)) 3961 return true; 3962 if (!ScheduleStart) { 3963 // It's the first instruction in the new region. 3964 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3965 ScheduleStart = I; 3966 ScheduleEnd = I->getNextNode(); 3967 if (isOneOf(S, I) != I) 3968 CheckSheduleForI(I); 3969 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3970 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3971 return true; 3972 } 3973 // Search up and down at the same time, because we don't know if the new 3974 // instruction is above or below the existing scheduling region. 3975 BasicBlock::reverse_iterator UpIter = 3976 ++ScheduleStart->getIterator().getReverse(); 3977 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3978 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3979 BasicBlock::iterator LowerEnd = BB->end(); 3980 while (true) { 3981 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3982 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3983 return false; 3984 } 3985 3986 if (UpIter != UpperEnd) { 3987 if (&*UpIter == I) { 3988 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3989 ScheduleStart = I; 3990 if (isOneOf(S, I) != I) 3991 CheckSheduleForI(I); 3992 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 3993 << "\n"); 3994 return true; 3995 } 3996 UpIter++; 3997 } 3998 if (DownIter != LowerEnd) { 3999 if (&*DownIter == I) { 4000 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4001 nullptr); 4002 ScheduleEnd = I->getNextNode(); 4003 if (isOneOf(S, I) != I) 4004 CheckSheduleForI(I); 4005 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 4006 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4007 << "\n"); 4008 return true; 4009 } 4010 DownIter++; 4011 } 4012 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4013 "instruction not found in block"); 4014 } 4015 return true; 4016 } 4017 4018 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4019 Instruction *ToI, 4020 ScheduleData *PrevLoadStore, 4021 ScheduleData *NextLoadStore) { 4022 ScheduleData *CurrentLoadStore = PrevLoadStore; 4023 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4024 ScheduleData *SD = ScheduleDataMap[I]; 4025 if (!SD) { 4026 SD = allocateScheduleDataChunks(); 4027 ScheduleDataMap[I] = SD; 4028 SD->Inst = I; 4029 } 4030 assert(!isInSchedulingRegion(SD) && 4031 "new ScheduleData already in scheduling region"); 4032 SD->init(SchedulingRegionID, I); 4033 4034 if (I->mayReadOrWriteMemory() && 4035 (!isa<IntrinsicInst>(I) || 4036 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4037 // Update the linked list of memory accessing instructions. 4038 if (CurrentLoadStore) { 4039 CurrentLoadStore->NextLoadStore = SD; 4040 } else { 4041 FirstLoadStoreInRegion = SD; 4042 } 4043 CurrentLoadStore = SD; 4044 } 4045 } 4046 if (NextLoadStore) { 4047 if (CurrentLoadStore) 4048 CurrentLoadStore->NextLoadStore = NextLoadStore; 4049 } else { 4050 LastLoadStoreInRegion = CurrentLoadStore; 4051 } 4052 } 4053 4054 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4055 bool InsertInReadyList, 4056 BoUpSLP *SLP) { 4057 assert(SD->isSchedulingEntity()); 4058 4059 SmallVector<ScheduleData *, 10> WorkList; 4060 WorkList.push_back(SD); 4061 4062 while (!WorkList.empty()) { 4063 ScheduleData *SD = WorkList.back(); 4064 WorkList.pop_back(); 4065 4066 ScheduleData *BundleMember = SD; 4067 while (BundleMember) { 4068 assert(isInSchedulingRegion(BundleMember)); 4069 if (!BundleMember->hasValidDependencies()) { 4070 4071 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4072 << "\n"); 4073 BundleMember->Dependencies = 0; 4074 BundleMember->resetUnscheduledDeps(); 4075 4076 // Handle def-use chain dependencies. 4077 if (BundleMember->OpValue != BundleMember->Inst) { 4078 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4079 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4080 BundleMember->Dependencies++; 4081 ScheduleData *DestBundle = UseSD->FirstInBundle; 4082 if (!DestBundle->IsScheduled) 4083 BundleMember->incrementUnscheduledDeps(1); 4084 if (!DestBundle->hasValidDependencies()) 4085 WorkList.push_back(DestBundle); 4086 } 4087 } else { 4088 for (User *U : BundleMember->Inst->users()) { 4089 if (isa<Instruction>(U)) { 4090 ScheduleData *UseSD = getScheduleData(U); 4091 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4092 BundleMember->Dependencies++; 4093 ScheduleData *DestBundle = UseSD->FirstInBundle; 4094 if (!DestBundle->IsScheduled) 4095 BundleMember->incrementUnscheduledDeps(1); 4096 if (!DestBundle->hasValidDependencies()) 4097 WorkList.push_back(DestBundle); 4098 } 4099 } else { 4100 // I'm not sure if this can ever happen. But we need to be safe. 4101 // This lets the instruction/bundle never be scheduled and 4102 // eventually disable vectorization. 4103 BundleMember->Dependencies++; 4104 BundleMember->incrementUnscheduledDeps(1); 4105 } 4106 } 4107 } 4108 4109 // Handle the memory dependencies. 4110 ScheduleData *DepDest = BundleMember->NextLoadStore; 4111 if (DepDest) { 4112 Instruction *SrcInst = BundleMember->Inst; 4113 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4114 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4115 unsigned numAliased = 0; 4116 unsigned DistToSrc = 1; 4117 4118 while (DepDest) { 4119 assert(isInSchedulingRegion(DepDest)); 4120 4121 // We have two limits to reduce the complexity: 4122 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4123 // SLP->isAliased (which is the expensive part in this loop). 4124 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4125 // the whole loop (even if the loop is fast, it's quadratic). 4126 // It's important for the loop break condition (see below) to 4127 // check this limit even between two read-only instructions. 4128 if (DistToSrc >= MaxMemDepDistance || 4129 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4130 (numAliased >= AliasedCheckLimit || 4131 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4132 4133 // We increment the counter only if the locations are aliased 4134 // (instead of counting all alias checks). This gives a better 4135 // balance between reduced runtime and accurate dependencies. 4136 numAliased++; 4137 4138 DepDest->MemoryDependencies.push_back(BundleMember); 4139 BundleMember->Dependencies++; 4140 ScheduleData *DestBundle = DepDest->FirstInBundle; 4141 if (!DestBundle->IsScheduled) { 4142 BundleMember->incrementUnscheduledDeps(1); 4143 } 4144 if (!DestBundle->hasValidDependencies()) { 4145 WorkList.push_back(DestBundle); 4146 } 4147 } 4148 DepDest = DepDest->NextLoadStore; 4149 4150 // Example, explaining the loop break condition: Let's assume our 4151 // starting instruction is i0 and MaxMemDepDistance = 3. 4152 // 4153 // +--------v--v--v 4154 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4155 // +--------^--^--^ 4156 // 4157 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4158 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4159 // Previously we already added dependencies from i3 to i6,i7,i8 4160 // (because of MaxMemDepDistance). As we added a dependency from 4161 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4162 // and we can abort this loop at i6. 4163 if (DistToSrc >= 2 * MaxMemDepDistance) 4164 break; 4165 DistToSrc++; 4166 } 4167 } 4168 } 4169 BundleMember = BundleMember->NextInBundle; 4170 } 4171 if (InsertInReadyList && SD->isReady()) { 4172 ReadyInsts.push_back(SD); 4173 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4174 << "\n"); 4175 } 4176 } 4177 } 4178 4179 void BoUpSLP::BlockScheduling::resetSchedule() { 4180 assert(ScheduleStart && 4181 "tried to reset schedule on block which has not been scheduled"); 4182 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4183 doForAllOpcodes(I, [&](ScheduleData *SD) { 4184 assert(isInSchedulingRegion(SD) && 4185 "ScheduleData not in scheduling region"); 4186 SD->IsScheduled = false; 4187 SD->resetUnscheduledDeps(); 4188 }); 4189 } 4190 ReadyInsts.clear(); 4191 } 4192 4193 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4194 if (!BS->ScheduleStart) 4195 return; 4196 4197 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4198 4199 BS->resetSchedule(); 4200 4201 // For the real scheduling we use a more sophisticated ready-list: it is 4202 // sorted by the original instruction location. This lets the final schedule 4203 // be as close as possible to the original instruction order. 4204 struct ScheduleDataCompare { 4205 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4206 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4207 } 4208 }; 4209 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4210 4211 // Ensure that all dependency data is updated and fill the ready-list with 4212 // initial instructions. 4213 int Idx = 0; 4214 int NumToSchedule = 0; 4215 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4216 I = I->getNextNode()) { 4217 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4218 assert(SD->isPartOfBundle() == 4219 (getTreeEntry(SD->Inst) != nullptr) && 4220 "scheduler and vectorizer bundle mismatch"); 4221 SD->FirstInBundle->SchedulingPriority = Idx++; 4222 if (SD->isSchedulingEntity()) { 4223 BS->calculateDependencies(SD, false, this); 4224 NumToSchedule++; 4225 } 4226 }); 4227 } 4228 BS->initialFillReadyList(ReadyInsts); 4229 4230 Instruction *LastScheduledInst = BS->ScheduleEnd; 4231 4232 // Do the "real" scheduling. 4233 while (!ReadyInsts.empty()) { 4234 ScheduleData *picked = *ReadyInsts.begin(); 4235 ReadyInsts.erase(ReadyInsts.begin()); 4236 4237 // Move the scheduled instruction(s) to their dedicated places, if not 4238 // there yet. 4239 ScheduleData *BundleMember = picked; 4240 while (BundleMember) { 4241 Instruction *pickedInst = BundleMember->Inst; 4242 if (LastScheduledInst->getNextNode() != pickedInst) { 4243 BS->BB->getInstList().remove(pickedInst); 4244 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4245 pickedInst); 4246 } 4247 LastScheduledInst = pickedInst; 4248 BundleMember = BundleMember->NextInBundle; 4249 } 4250 4251 BS->schedule(picked, ReadyInsts); 4252 NumToSchedule--; 4253 } 4254 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4255 4256 // Avoid duplicate scheduling of the block. 4257 BS->ScheduleStart = nullptr; 4258 } 4259 4260 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4261 // If V is a store, just return the width of the stored value without 4262 // traversing the expression tree. This is the common case. 4263 if (auto *Store = dyn_cast<StoreInst>(V)) 4264 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4265 4266 // If V is not a store, we can traverse the expression tree to find loads 4267 // that feed it. The type of the loaded value may indicate a more suitable 4268 // width than V's type. We want to base the vector element size on the width 4269 // of memory operations where possible. 4270 SmallVector<Instruction *, 16> Worklist; 4271 SmallPtrSet<Instruction *, 16> Visited; 4272 if (auto *I = dyn_cast<Instruction>(V)) 4273 Worklist.push_back(I); 4274 4275 // Traverse the expression tree in bottom-up order looking for loads. If we 4276 // encounter an instruciton we don't yet handle, we give up. 4277 auto MaxWidth = 0u; 4278 auto FoundUnknownInst = false; 4279 while (!Worklist.empty() && !FoundUnknownInst) { 4280 auto *I = Worklist.pop_back_val(); 4281 Visited.insert(I); 4282 4283 // We should only be looking at scalar instructions here. If the current 4284 // instruction has a vector type, give up. 4285 auto *Ty = I->getType(); 4286 if (isa<VectorType>(Ty)) 4287 FoundUnknownInst = true; 4288 4289 // If the current instruction is a load, update MaxWidth to reflect the 4290 // width of the loaded value. 4291 else if (isa<LoadInst>(I)) 4292 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4293 4294 // Otherwise, we need to visit the operands of the instruction. We only 4295 // handle the interesting cases from buildTree here. If an operand is an 4296 // instruction we haven't yet visited, we add it to the worklist. 4297 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4298 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4299 for (Use &U : I->operands()) 4300 if (auto *J = dyn_cast<Instruction>(U.get())) 4301 if (!Visited.count(J)) 4302 Worklist.push_back(J); 4303 } 4304 4305 // If we don't yet handle the instruction, give up. 4306 else 4307 FoundUnknownInst = true; 4308 } 4309 4310 // If we didn't encounter a memory access in the expression tree, or if we 4311 // gave up for some reason, just return the width of V. 4312 if (!MaxWidth || FoundUnknownInst) 4313 return DL->getTypeSizeInBits(V->getType()); 4314 4315 // Otherwise, return the maximum width we found. 4316 return MaxWidth; 4317 } 4318 4319 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4320 // smaller type with a truncation. We collect the values that will be demoted 4321 // in ToDemote and additional roots that require investigating in Roots. 4322 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4323 SmallVectorImpl<Value *> &ToDemote, 4324 SmallVectorImpl<Value *> &Roots) { 4325 // We can always demote constants. 4326 if (isa<Constant>(V)) { 4327 ToDemote.push_back(V); 4328 return true; 4329 } 4330 4331 // If the value is not an instruction in the expression with only one use, it 4332 // cannot be demoted. 4333 auto *I = dyn_cast<Instruction>(V); 4334 if (!I || !I->hasOneUse() || !Expr.count(I)) 4335 return false; 4336 4337 switch (I->getOpcode()) { 4338 4339 // We can always demote truncations and extensions. Since truncations can 4340 // seed additional demotion, we save the truncated value. 4341 case Instruction::Trunc: 4342 Roots.push_back(I->getOperand(0)); 4343 break; 4344 case Instruction::ZExt: 4345 case Instruction::SExt: 4346 break; 4347 4348 // We can demote certain binary operations if we can demote both of their 4349 // operands. 4350 case Instruction::Add: 4351 case Instruction::Sub: 4352 case Instruction::Mul: 4353 case Instruction::And: 4354 case Instruction::Or: 4355 case Instruction::Xor: 4356 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4357 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4358 return false; 4359 break; 4360 4361 // We can demote selects if we can demote their true and false values. 4362 case Instruction::Select: { 4363 SelectInst *SI = cast<SelectInst>(I); 4364 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4365 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4366 return false; 4367 break; 4368 } 4369 4370 // We can demote phis if we can demote all their incoming operands. Note that 4371 // we don't need to worry about cycles since we ensure single use above. 4372 case Instruction::PHI: { 4373 PHINode *PN = cast<PHINode>(I); 4374 for (Value *IncValue : PN->incoming_values()) 4375 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4376 return false; 4377 break; 4378 } 4379 4380 // Otherwise, conservatively give up. 4381 default: 4382 return false; 4383 } 4384 4385 // Record the value that we can demote. 4386 ToDemote.push_back(V); 4387 return true; 4388 } 4389 4390 void BoUpSLP::computeMinimumValueSizes() { 4391 // If there are no external uses, the expression tree must be rooted by a 4392 // store. We can't demote in-memory values, so there is nothing to do here. 4393 if (ExternalUses.empty()) 4394 return; 4395 4396 // We only attempt to truncate integer expressions. 4397 auto &TreeRoot = VectorizableTree[0].Scalars; 4398 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4399 if (!TreeRootIT) 4400 return; 4401 4402 // If the expression is not rooted by a store, these roots should have 4403 // external uses. We will rely on InstCombine to rewrite the expression in 4404 // the narrower type. However, InstCombine only rewrites single-use values. 4405 // This means that if a tree entry other than a root is used externally, it 4406 // must have multiple uses and InstCombine will not rewrite it. The code 4407 // below ensures that only the roots are used externally. 4408 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4409 for (auto &EU : ExternalUses) 4410 if (!Expr.erase(EU.Scalar)) 4411 return; 4412 if (!Expr.empty()) 4413 return; 4414 4415 // Collect the scalar values of the vectorizable expression. We will use this 4416 // context to determine which values can be demoted. If we see a truncation, 4417 // we mark it as seeding another demotion. 4418 for (auto &Entry : VectorizableTree) 4419 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4420 4421 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4422 // have a single external user that is not in the vectorizable tree. 4423 for (auto *Root : TreeRoot) 4424 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4425 return; 4426 4427 // Conservatively determine if we can actually truncate the roots of the 4428 // expression. Collect the values that can be demoted in ToDemote and 4429 // additional roots that require investigating in Roots. 4430 SmallVector<Value *, 32> ToDemote; 4431 SmallVector<Value *, 4> Roots; 4432 for (auto *Root : TreeRoot) 4433 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4434 return; 4435 4436 // The maximum bit width required to represent all the values that can be 4437 // demoted without loss of precision. It would be safe to truncate the roots 4438 // of the expression to this width. 4439 auto MaxBitWidth = 8u; 4440 4441 // We first check if all the bits of the roots are demanded. If they're not, 4442 // we can truncate the roots to this narrower type. 4443 for (auto *Root : TreeRoot) { 4444 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4445 MaxBitWidth = std::max<unsigned>( 4446 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4447 } 4448 4449 // True if the roots can be zero-extended back to their original type, rather 4450 // than sign-extended. We know that if the leading bits are not demanded, we 4451 // can safely zero-extend. So we initialize IsKnownPositive to True. 4452 bool IsKnownPositive = true; 4453 4454 // If all the bits of the roots are demanded, we can try a little harder to 4455 // compute a narrower type. This can happen, for example, if the roots are 4456 // getelementptr indices. InstCombine promotes these indices to the pointer 4457 // width. Thus, all their bits are technically demanded even though the 4458 // address computation might be vectorized in a smaller type. 4459 // 4460 // We start by looking at each entry that can be demoted. We compute the 4461 // maximum bit width required to store the scalar by using ValueTracking to 4462 // compute the number of high-order bits we can truncate. 4463 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4464 llvm::all_of(TreeRoot, [](Value *R) { 4465 assert(R->hasOneUse() && "Root should have only one use!"); 4466 return isa<GetElementPtrInst>(R->user_back()); 4467 })) { 4468 MaxBitWidth = 8u; 4469 4470 // Determine if the sign bit of all the roots is known to be zero. If not, 4471 // IsKnownPositive is set to False. 4472 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4473 KnownBits Known = computeKnownBits(R, *DL); 4474 return Known.isNonNegative(); 4475 }); 4476 4477 // Determine the maximum number of bits required to store the scalar 4478 // values. 4479 for (auto *Scalar : ToDemote) { 4480 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4481 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4482 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4483 } 4484 4485 // If we can't prove that the sign bit is zero, we must add one to the 4486 // maximum bit width to account for the unknown sign bit. This preserves 4487 // the existing sign bit so we can safely sign-extend the root back to the 4488 // original type. Otherwise, if we know the sign bit is zero, we will 4489 // zero-extend the root instead. 4490 // 4491 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4492 // one to the maximum bit width will yield a larger-than-necessary 4493 // type. In general, we need to add an extra bit only if we can't 4494 // prove that the upper bit of the original type is equal to the 4495 // upper bit of the proposed smaller type. If these two bits are the 4496 // same (either zero or one) we know that sign-extending from the 4497 // smaller type will result in the same value. Here, since we can't 4498 // yet prove this, we are just making the proposed smaller type 4499 // larger to ensure correctness. 4500 if (!IsKnownPositive) 4501 ++MaxBitWidth; 4502 } 4503 4504 // Round MaxBitWidth up to the next power-of-two. 4505 if (!isPowerOf2_64(MaxBitWidth)) 4506 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4507 4508 // If the maximum bit width we compute is less than the with of the roots' 4509 // type, we can proceed with the narrowing. Otherwise, do nothing. 4510 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4511 return; 4512 4513 // If we can truncate the root, we must collect additional values that might 4514 // be demoted as a result. That is, those seeded by truncations we will 4515 // modify. 4516 while (!Roots.empty()) 4517 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4518 4519 // Finally, map the values we can demote to the maximum bit with we computed. 4520 for (auto *Scalar : ToDemote) 4521 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4522 } 4523 4524 namespace { 4525 4526 /// The SLPVectorizer Pass. 4527 struct SLPVectorizer : public FunctionPass { 4528 SLPVectorizerPass Impl; 4529 4530 /// Pass identification, replacement for typeid 4531 static char ID; 4532 4533 explicit SLPVectorizer() : FunctionPass(ID) { 4534 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4535 } 4536 4537 bool doInitialization(Module &M) override { 4538 return false; 4539 } 4540 4541 bool runOnFunction(Function &F) override { 4542 if (skipFunction(F)) 4543 return false; 4544 4545 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4546 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4547 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4548 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4549 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4550 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4551 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4552 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4553 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4554 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4555 4556 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4557 } 4558 4559 void getAnalysisUsage(AnalysisUsage &AU) const override { 4560 FunctionPass::getAnalysisUsage(AU); 4561 AU.addRequired<AssumptionCacheTracker>(); 4562 AU.addRequired<ScalarEvolutionWrapperPass>(); 4563 AU.addRequired<AAResultsWrapperPass>(); 4564 AU.addRequired<TargetTransformInfoWrapperPass>(); 4565 AU.addRequired<LoopInfoWrapperPass>(); 4566 AU.addRequired<DominatorTreeWrapperPass>(); 4567 AU.addRequired<DemandedBitsWrapperPass>(); 4568 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4569 AU.addPreserved<LoopInfoWrapperPass>(); 4570 AU.addPreserved<DominatorTreeWrapperPass>(); 4571 AU.addPreserved<AAResultsWrapperPass>(); 4572 AU.addPreserved<GlobalsAAWrapperPass>(); 4573 AU.setPreservesCFG(); 4574 } 4575 }; 4576 4577 } // end anonymous namespace 4578 4579 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4580 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4581 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4582 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4583 auto *AA = &AM.getResult<AAManager>(F); 4584 auto *LI = &AM.getResult<LoopAnalysis>(F); 4585 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4586 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4587 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4588 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4589 4590 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4591 if (!Changed) 4592 return PreservedAnalyses::all(); 4593 4594 PreservedAnalyses PA; 4595 PA.preserveSet<CFGAnalyses>(); 4596 PA.preserve<AAManager>(); 4597 PA.preserve<GlobalsAA>(); 4598 return PA; 4599 } 4600 4601 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4602 TargetTransformInfo *TTI_, 4603 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4604 LoopInfo *LI_, DominatorTree *DT_, 4605 AssumptionCache *AC_, DemandedBits *DB_, 4606 OptimizationRemarkEmitter *ORE_) { 4607 SE = SE_; 4608 TTI = TTI_; 4609 TLI = TLI_; 4610 AA = AA_; 4611 LI = LI_; 4612 DT = DT_; 4613 AC = AC_; 4614 DB = DB_; 4615 DL = &F.getParent()->getDataLayout(); 4616 4617 Stores.clear(); 4618 GEPs.clear(); 4619 bool Changed = false; 4620 4621 // If the target claims to have no vector registers don't attempt 4622 // vectorization. 4623 if (!TTI->getNumberOfRegisters(true)) 4624 return false; 4625 4626 // Don't vectorize when the attribute NoImplicitFloat is used. 4627 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4628 return false; 4629 4630 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4631 4632 // Use the bottom up slp vectorizer to construct chains that start with 4633 // store instructions. 4634 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4635 4636 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4637 // delete instructions. 4638 4639 // Scan the blocks in the function in post order. 4640 for (auto BB : post_order(&F.getEntryBlock())) { 4641 collectSeedInstructions(BB); 4642 4643 // Vectorize trees that end at stores. 4644 if (!Stores.empty()) { 4645 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4646 << " underlying objects.\n"); 4647 Changed |= vectorizeStoreChains(R); 4648 } 4649 4650 // Vectorize trees that end at reductions. 4651 Changed |= vectorizeChainsInBlock(BB, R); 4652 4653 // Vectorize the index computations of getelementptr instructions. This 4654 // is primarily intended to catch gather-like idioms ending at 4655 // non-consecutive loads. 4656 if (!GEPs.empty()) { 4657 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4658 << " underlying objects.\n"); 4659 Changed |= vectorizeGEPIndices(BB, R); 4660 } 4661 } 4662 4663 if (Changed) { 4664 R.optimizeGatherSequence(); 4665 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4666 LLVM_DEBUG(verifyFunction(F)); 4667 } 4668 return Changed; 4669 } 4670 4671 /// Check that the Values in the slice in VL array are still existent in 4672 /// the WeakTrackingVH array. 4673 /// Vectorization of part of the VL array may cause later values in the VL array 4674 /// to become invalid. We track when this has happened in the WeakTrackingVH 4675 /// array. 4676 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4677 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4678 unsigned SliceSize) { 4679 VL = VL.slice(SliceBegin, SliceSize); 4680 VH = VH.slice(SliceBegin, SliceSize); 4681 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4682 } 4683 4684 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4685 unsigned VecRegSize) { 4686 const unsigned ChainLen = Chain.size(); 4687 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4688 << "\n"); 4689 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4690 const unsigned VF = VecRegSize / Sz; 4691 4692 if (!isPowerOf2_32(Sz) || VF < 2) 4693 return false; 4694 4695 // Keep track of values that were deleted by vectorizing in the loop below. 4696 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4697 4698 bool Changed = false; 4699 // Look for profitable vectorizable trees at all offsets, starting at zero. 4700 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4701 4702 // Check that a previous iteration of this loop did not delete the Value. 4703 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4704 continue; 4705 4706 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4707 << "\n"); 4708 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4709 4710 R.buildTree(Operands); 4711 if (R.isTreeTinyAndNotFullyVectorizable()) 4712 continue; 4713 4714 R.computeMinimumValueSizes(); 4715 4716 int Cost = R.getTreeCost(); 4717 4718 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4719 << "\n"); 4720 if (Cost < -SLPCostThreshold) { 4721 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4722 4723 using namespace ore; 4724 4725 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4726 cast<StoreInst>(Chain[i])) 4727 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4728 << " and with tree size " 4729 << NV("TreeSize", R.getTreeSize())); 4730 4731 R.vectorizeTree(); 4732 4733 // Move to the next bundle. 4734 i += VF - 1; 4735 Changed = true; 4736 } 4737 } 4738 4739 return Changed; 4740 } 4741 4742 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4743 BoUpSLP &R) { 4744 SetVector<StoreInst *> Heads; 4745 SmallDenseSet<StoreInst *> Tails; 4746 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4747 4748 // We may run into multiple chains that merge into a single chain. We mark the 4749 // stores that we vectorized so that we don't visit the same store twice. 4750 BoUpSLP::ValueSet VectorizedStores; 4751 bool Changed = false; 4752 4753 // Do a quadratic search on all of the given stores in reverse order and find 4754 // all of the pairs of stores that follow each other. 4755 SmallVector<unsigned, 16> IndexQueue; 4756 unsigned E = Stores.size(); 4757 IndexQueue.resize(E - 1); 4758 for (unsigned I = E; I > 0; --I) { 4759 unsigned Idx = I - 1; 4760 // If a store has multiple consecutive store candidates, search Stores 4761 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4762 // This is because usually pairing with immediate succeeding or preceding 4763 // candidate create the best chance to find slp vectorization opportunity. 4764 unsigned Offset = 1; 4765 unsigned Cnt = 0; 4766 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4767 if (Idx >= Offset) { 4768 IndexQueue[Cnt] = Idx - Offset; 4769 ++Cnt; 4770 } 4771 if (Idx + Offset < E) { 4772 IndexQueue[Cnt] = Idx + Offset; 4773 ++Cnt; 4774 } 4775 } 4776 4777 for (auto K : IndexQueue) { 4778 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4779 Tails.insert(Stores[Idx]); 4780 Heads.insert(Stores[K]); 4781 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4782 break; 4783 } 4784 } 4785 } 4786 4787 // For stores that start but don't end a link in the chain: 4788 for (auto *SI : llvm::reverse(Heads)) { 4789 if (Tails.count(SI)) 4790 continue; 4791 4792 // We found a store instr that starts a chain. Now follow the chain and try 4793 // to vectorize it. 4794 BoUpSLP::ValueList Operands; 4795 StoreInst *I = SI; 4796 // Collect the chain into a list. 4797 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4798 Operands.push_back(I); 4799 // Move to the next value in the chain. 4800 I = ConsecutiveChain[I]; 4801 } 4802 4803 // FIXME: Is division-by-2 the correct step? Should we assert that the 4804 // register size is a power-of-2? 4805 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4806 Size /= 2) { 4807 if (vectorizeStoreChain(Operands, R, Size)) { 4808 // Mark the vectorized stores so that we don't vectorize them again. 4809 VectorizedStores.insert(Operands.begin(), Operands.end()); 4810 Changed = true; 4811 break; 4812 } 4813 } 4814 } 4815 4816 return Changed; 4817 } 4818 4819 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4820 // Initialize the collections. We will make a single pass over the block. 4821 Stores.clear(); 4822 GEPs.clear(); 4823 4824 // Visit the store and getelementptr instructions in BB and organize them in 4825 // Stores and GEPs according to the underlying objects of their pointer 4826 // operands. 4827 for (Instruction &I : *BB) { 4828 // Ignore store instructions that are volatile or have a pointer operand 4829 // that doesn't point to a scalar type. 4830 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4831 if (!SI->isSimple()) 4832 continue; 4833 if (!isValidElementType(SI->getValueOperand()->getType())) 4834 continue; 4835 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4836 } 4837 4838 // Ignore getelementptr instructions that have more than one index, a 4839 // constant index, or a pointer operand that doesn't point to a scalar 4840 // type. 4841 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4842 auto Idx = GEP->idx_begin()->get(); 4843 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4844 continue; 4845 if (!isValidElementType(Idx->getType())) 4846 continue; 4847 if (GEP->getType()->isVectorTy()) 4848 continue; 4849 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4850 } 4851 } 4852 } 4853 4854 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4855 if (!A || !B) 4856 return false; 4857 Value *VL[] = { A, B }; 4858 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4859 } 4860 4861 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4862 int UserCost, bool AllowReorder) { 4863 if (VL.size() < 2) 4864 return false; 4865 4866 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4867 << VL.size() << ".\n"); 4868 4869 // Check that all of the parts are scalar instructions of the same type, 4870 // we permit an alternate opcode via InstructionsState. 4871 InstructionsState S = getSameOpcode(VL); 4872 if (!S.getOpcode()) 4873 return false; 4874 4875 Instruction *I0 = cast<Instruction>(S.OpValue); 4876 unsigned Sz = R.getVectorElementSize(I0); 4877 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4878 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4879 if (MaxVF < 2) { 4880 R.getORE()->emit([&]() { 4881 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 4882 << "Cannot SLP vectorize list: vectorization factor " 4883 << "less than 2 is not supported"; 4884 }); 4885 return false; 4886 } 4887 4888 for (Value *V : VL) { 4889 Type *Ty = V->getType(); 4890 if (!isValidElementType(Ty)) { 4891 // NOTE: the following will give user internal llvm type name, which may 4892 // not be useful. 4893 R.getORE()->emit([&]() { 4894 std::string type_str; 4895 llvm::raw_string_ostream rso(type_str); 4896 Ty->print(rso); 4897 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4898 << "Cannot SLP vectorize list: type " 4899 << rso.str() + " is unsupported by vectorizer"; 4900 }); 4901 return false; 4902 } 4903 } 4904 4905 bool Changed = false; 4906 bool CandidateFound = false; 4907 int MinCost = SLPCostThreshold; 4908 4909 // Keep track of values that were deleted by vectorizing in the loop below. 4910 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4911 4912 unsigned NextInst = 0, MaxInst = VL.size(); 4913 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4914 VF /= 2) { 4915 // No actual vectorization should happen, if number of parts is the same as 4916 // provided vectorization factor (i.e. the scalar type is used for vector 4917 // code during codegen). 4918 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4919 if (TTI->getNumberOfParts(VecTy) == VF) 4920 continue; 4921 for (unsigned I = NextInst; I < MaxInst; ++I) { 4922 unsigned OpsWidth = 0; 4923 4924 if (I + VF > MaxInst) 4925 OpsWidth = MaxInst - I; 4926 else 4927 OpsWidth = VF; 4928 4929 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4930 break; 4931 4932 // Check that a previous iteration of this loop did not delete the Value. 4933 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4934 continue; 4935 4936 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4937 << "\n"); 4938 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4939 4940 R.buildTree(Ops); 4941 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4942 // TODO: check if we can allow reordering for more cases. 4943 if (AllowReorder && Order) { 4944 // TODO: reorder tree nodes without tree rebuilding. 4945 // Conceptually, there is nothing actually preventing us from trying to 4946 // reorder a larger list. In fact, we do exactly this when vectorizing 4947 // reductions. However, at this point, we only expect to get here when 4948 // there are exactly two operations. 4949 assert(Ops.size() == 2); 4950 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4951 R.buildTree(ReorderedOps, None); 4952 } 4953 if (R.isTreeTinyAndNotFullyVectorizable()) 4954 continue; 4955 4956 R.computeMinimumValueSizes(); 4957 int Cost = R.getTreeCost() - UserCost; 4958 CandidateFound = true; 4959 MinCost = std::min(MinCost, Cost); 4960 4961 if (Cost < -SLPCostThreshold) { 4962 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4963 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4964 cast<Instruction>(Ops[0])) 4965 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4966 << " and with tree size " 4967 << ore::NV("TreeSize", R.getTreeSize())); 4968 4969 R.vectorizeTree(); 4970 // Move to the next bundle. 4971 I += VF - 1; 4972 NextInst = I + 1; 4973 Changed = true; 4974 } 4975 } 4976 } 4977 4978 if (!Changed && CandidateFound) { 4979 R.getORE()->emit([&]() { 4980 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 4981 << "List vectorization was possible but not beneficial with cost " 4982 << ore::NV("Cost", MinCost) << " >= " 4983 << ore::NV("Treshold", -SLPCostThreshold); 4984 }); 4985 } else if (!Changed) { 4986 R.getORE()->emit([&]() { 4987 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 4988 << "Cannot SLP vectorize list: vectorization was impossible" 4989 << " with available vectorization factors"; 4990 }); 4991 } 4992 return Changed; 4993 } 4994 4995 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4996 if (!I) 4997 return false; 4998 4999 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5000 return false; 5001 5002 Value *P = I->getParent(); 5003 5004 // Vectorize in current basic block only. 5005 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5006 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5007 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5008 return false; 5009 5010 // Try to vectorize V. 5011 if (tryToVectorizePair(Op0, Op1, R)) 5012 return true; 5013 5014 auto *A = dyn_cast<BinaryOperator>(Op0); 5015 auto *B = dyn_cast<BinaryOperator>(Op1); 5016 // Try to skip B. 5017 if (B && B->hasOneUse()) { 5018 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5019 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5020 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5021 return true; 5022 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5023 return true; 5024 } 5025 5026 // Try to skip A. 5027 if (A && A->hasOneUse()) { 5028 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5029 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5030 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5031 return true; 5032 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5033 return true; 5034 } 5035 return false; 5036 } 5037 5038 /// Generate a shuffle mask to be used in a reduction tree. 5039 /// 5040 /// \param VecLen The length of the vector to be reduced. 5041 /// \param NumEltsToRdx The number of elements that should be reduced in the 5042 /// vector. 5043 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5044 /// reduction. A pairwise reduction will generate a mask of 5045 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5046 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5047 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5048 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5049 bool IsPairwise, bool IsLeft, 5050 IRBuilder<> &Builder) { 5051 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5052 5053 SmallVector<Constant *, 32> ShuffleMask( 5054 VecLen, UndefValue::get(Builder.getInt32Ty())); 5055 5056 if (IsPairwise) 5057 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5058 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5059 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5060 else 5061 // Move the upper half of the vector to the lower half. 5062 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5063 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5064 5065 return ConstantVector::get(ShuffleMask); 5066 } 5067 5068 namespace { 5069 5070 /// Model horizontal reductions. 5071 /// 5072 /// A horizontal reduction is a tree of reduction operations (currently add and 5073 /// fadd) that has operations that can be put into a vector as its leaf. 5074 /// For example, this tree: 5075 /// 5076 /// mul mul mul mul 5077 /// \ / \ / 5078 /// + + 5079 /// \ / 5080 /// + 5081 /// This tree has "mul" as its reduced values and "+" as its reduction 5082 /// operations. A reduction might be feeding into a store or a binary operation 5083 /// feeding a phi. 5084 /// ... 5085 /// \ / 5086 /// + 5087 /// | 5088 /// phi += 5089 /// 5090 /// Or: 5091 /// ... 5092 /// \ / 5093 /// + 5094 /// | 5095 /// *p = 5096 /// 5097 class HorizontalReduction { 5098 using ReductionOpsType = SmallVector<Value *, 16>; 5099 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5100 ReductionOpsListType ReductionOps; 5101 SmallVector<Value *, 32> ReducedVals; 5102 // Use map vector to make stable output. 5103 MapVector<Instruction *, Value *> ExtraArgs; 5104 5105 /// Kind of the reduction data. 5106 enum ReductionKind { 5107 RK_None, /// Not a reduction. 5108 RK_Arithmetic, /// Binary reduction data. 5109 RK_Min, /// Minimum reduction data. 5110 RK_UMin, /// Unsigned minimum reduction data. 5111 RK_Max, /// Maximum reduction data. 5112 RK_UMax, /// Unsigned maximum reduction data. 5113 }; 5114 5115 /// Contains info about operation, like its opcode, left and right operands. 5116 class OperationData { 5117 /// Opcode of the instruction. 5118 unsigned Opcode = 0; 5119 5120 /// Left operand of the reduction operation. 5121 Value *LHS = nullptr; 5122 5123 /// Right operand of the reduction operation. 5124 Value *RHS = nullptr; 5125 5126 /// Kind of the reduction operation. 5127 ReductionKind Kind = RK_None; 5128 5129 /// True if float point min/max reduction has no NaNs. 5130 bool NoNaN = false; 5131 5132 /// Checks if the reduction operation can be vectorized. 5133 bool isVectorizable() const { 5134 return LHS && RHS && 5135 // We currently only support adds && min/max reductions. 5136 ((Kind == RK_Arithmetic && 5137 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5138 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5139 (Kind == RK_Min || Kind == RK_Max)) || 5140 (Opcode == Instruction::ICmp && 5141 (Kind == RK_UMin || Kind == RK_UMax))); 5142 } 5143 5144 /// Creates reduction operation with the current opcode. 5145 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5146 assert(isVectorizable() && 5147 "Expected add|fadd or min/max reduction operation."); 5148 Value *Cmp; 5149 switch (Kind) { 5150 case RK_Arithmetic: 5151 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5152 Name); 5153 case RK_Min: 5154 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5155 : Builder.CreateFCmpOLT(LHS, RHS); 5156 break; 5157 case RK_Max: 5158 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5159 : Builder.CreateFCmpOGT(LHS, RHS); 5160 break; 5161 case RK_UMin: 5162 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5163 Cmp = Builder.CreateICmpULT(LHS, RHS); 5164 break; 5165 case RK_UMax: 5166 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5167 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5168 break; 5169 case RK_None: 5170 llvm_unreachable("Unknown reduction operation."); 5171 } 5172 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5173 } 5174 5175 public: 5176 explicit OperationData() = default; 5177 5178 /// Construction for reduced values. They are identified by opcode only and 5179 /// don't have associated LHS/RHS values. 5180 explicit OperationData(Value *V) { 5181 if (auto *I = dyn_cast<Instruction>(V)) 5182 Opcode = I->getOpcode(); 5183 } 5184 5185 /// Constructor for reduction operations with opcode and its left and 5186 /// right operands. 5187 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5188 bool NoNaN = false) 5189 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5190 assert(Kind != RK_None && "One of the reduction operations is expected."); 5191 } 5192 5193 explicit operator bool() const { return Opcode; } 5194 5195 /// Get the index of the first operand. 5196 unsigned getFirstOperandIndex() const { 5197 assert(!!*this && "The opcode is not set."); 5198 switch (Kind) { 5199 case RK_Min: 5200 case RK_UMin: 5201 case RK_Max: 5202 case RK_UMax: 5203 return 1; 5204 case RK_Arithmetic: 5205 case RK_None: 5206 break; 5207 } 5208 return 0; 5209 } 5210 5211 /// Total number of operands in the reduction operation. 5212 unsigned getNumberOfOperands() const { 5213 assert(Kind != RK_None && !!*this && LHS && RHS && 5214 "Expected reduction operation."); 5215 switch (Kind) { 5216 case RK_Arithmetic: 5217 return 2; 5218 case RK_Min: 5219 case RK_UMin: 5220 case RK_Max: 5221 case RK_UMax: 5222 return 3; 5223 case RK_None: 5224 break; 5225 } 5226 llvm_unreachable("Reduction kind is not set"); 5227 } 5228 5229 /// Checks if the operation has the same parent as \p P. 5230 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5231 assert(Kind != RK_None && !!*this && LHS && RHS && 5232 "Expected reduction operation."); 5233 if (!IsRedOp) 5234 return I->getParent() == P; 5235 switch (Kind) { 5236 case RK_Arithmetic: 5237 // Arithmetic reduction operation must be used once only. 5238 return I->getParent() == P; 5239 case RK_Min: 5240 case RK_UMin: 5241 case RK_Max: 5242 case RK_UMax: { 5243 // SelectInst must be used twice while the condition op must have single 5244 // use only. 5245 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5246 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5247 } 5248 case RK_None: 5249 break; 5250 } 5251 llvm_unreachable("Reduction kind is not set"); 5252 } 5253 /// Expected number of uses for reduction operations/reduced values. 5254 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5255 assert(Kind != RK_None && !!*this && LHS && RHS && 5256 "Expected reduction operation."); 5257 switch (Kind) { 5258 case RK_Arithmetic: 5259 return I->hasOneUse(); 5260 case RK_Min: 5261 case RK_UMin: 5262 case RK_Max: 5263 case RK_UMax: 5264 return I->hasNUses(2) && 5265 (!IsReductionOp || 5266 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5267 case RK_None: 5268 break; 5269 } 5270 llvm_unreachable("Reduction kind is not set"); 5271 } 5272 5273 /// Initializes the list of reduction operations. 5274 void initReductionOps(ReductionOpsListType &ReductionOps) { 5275 assert(Kind != RK_None && !!*this && LHS && RHS && 5276 "Expected reduction operation."); 5277 switch (Kind) { 5278 case RK_Arithmetic: 5279 ReductionOps.assign(1, ReductionOpsType()); 5280 break; 5281 case RK_Min: 5282 case RK_UMin: 5283 case RK_Max: 5284 case RK_UMax: 5285 ReductionOps.assign(2, ReductionOpsType()); 5286 break; 5287 case RK_None: 5288 llvm_unreachable("Reduction kind is not set"); 5289 } 5290 } 5291 /// Add all reduction operations for the reduction instruction \p I. 5292 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5293 assert(Kind != RK_None && !!*this && LHS && RHS && 5294 "Expected reduction operation."); 5295 switch (Kind) { 5296 case RK_Arithmetic: 5297 ReductionOps[0].emplace_back(I); 5298 break; 5299 case RK_Min: 5300 case RK_UMin: 5301 case RK_Max: 5302 case RK_UMax: 5303 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5304 ReductionOps[1].emplace_back(I); 5305 break; 5306 case RK_None: 5307 llvm_unreachable("Reduction kind is not set"); 5308 } 5309 } 5310 5311 /// Checks if instruction is associative and can be vectorized. 5312 bool isAssociative(Instruction *I) const { 5313 assert(Kind != RK_None && *this && LHS && RHS && 5314 "Expected reduction operation."); 5315 switch (Kind) { 5316 case RK_Arithmetic: 5317 return I->isAssociative(); 5318 case RK_Min: 5319 case RK_Max: 5320 return Opcode == Instruction::ICmp || 5321 cast<Instruction>(I->getOperand(0))->isFast(); 5322 case RK_UMin: 5323 case RK_UMax: 5324 assert(Opcode == Instruction::ICmp && 5325 "Only integer compare operation is expected."); 5326 return true; 5327 case RK_None: 5328 break; 5329 } 5330 llvm_unreachable("Reduction kind is not set"); 5331 } 5332 5333 /// Checks if the reduction operation can be vectorized. 5334 bool isVectorizable(Instruction *I) const { 5335 return isVectorizable() && isAssociative(I); 5336 } 5337 5338 /// Checks if two operation data are both a reduction op or both a reduced 5339 /// value. 5340 bool operator==(const OperationData &OD) { 5341 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5342 "One of the comparing operations is incorrect."); 5343 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5344 } 5345 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5346 void clear() { 5347 Opcode = 0; 5348 LHS = nullptr; 5349 RHS = nullptr; 5350 Kind = RK_None; 5351 NoNaN = false; 5352 } 5353 5354 /// Get the opcode of the reduction operation. 5355 unsigned getOpcode() const { 5356 assert(isVectorizable() && "Expected vectorizable operation."); 5357 return Opcode; 5358 } 5359 5360 /// Get kind of reduction data. 5361 ReductionKind getKind() const { return Kind; } 5362 Value *getLHS() const { return LHS; } 5363 Value *getRHS() const { return RHS; } 5364 Type *getConditionType() const { 5365 switch (Kind) { 5366 case RK_Arithmetic: 5367 return nullptr; 5368 case RK_Min: 5369 case RK_Max: 5370 case RK_UMin: 5371 case RK_UMax: 5372 return CmpInst::makeCmpResultType(LHS->getType()); 5373 case RK_None: 5374 break; 5375 } 5376 llvm_unreachable("Reduction kind is not set"); 5377 } 5378 5379 /// Creates reduction operation with the current opcode with the IR flags 5380 /// from \p ReductionOps. 5381 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5382 const ReductionOpsListType &ReductionOps) const { 5383 assert(isVectorizable() && 5384 "Expected add|fadd or min/max reduction operation."); 5385 auto *Op = createOp(Builder, Name); 5386 switch (Kind) { 5387 case RK_Arithmetic: 5388 propagateIRFlags(Op, ReductionOps[0]); 5389 return Op; 5390 case RK_Min: 5391 case RK_Max: 5392 case RK_UMin: 5393 case RK_UMax: 5394 if (auto *SI = dyn_cast<SelectInst>(Op)) 5395 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5396 propagateIRFlags(Op, ReductionOps[1]); 5397 return Op; 5398 case RK_None: 5399 break; 5400 } 5401 llvm_unreachable("Unknown reduction operation."); 5402 } 5403 /// Creates reduction operation with the current opcode with the IR flags 5404 /// from \p I. 5405 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5406 Instruction *I) const { 5407 assert(isVectorizable() && 5408 "Expected add|fadd or min/max reduction operation."); 5409 auto *Op = createOp(Builder, Name); 5410 switch (Kind) { 5411 case RK_Arithmetic: 5412 propagateIRFlags(Op, I); 5413 return Op; 5414 case RK_Min: 5415 case RK_Max: 5416 case RK_UMin: 5417 case RK_UMax: 5418 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5419 propagateIRFlags(SI->getCondition(), 5420 cast<SelectInst>(I)->getCondition()); 5421 } 5422 propagateIRFlags(Op, I); 5423 return Op; 5424 case RK_None: 5425 break; 5426 } 5427 llvm_unreachable("Unknown reduction operation."); 5428 } 5429 5430 TargetTransformInfo::ReductionFlags getFlags() const { 5431 TargetTransformInfo::ReductionFlags Flags; 5432 Flags.NoNaN = NoNaN; 5433 switch (Kind) { 5434 case RK_Arithmetic: 5435 break; 5436 case RK_Min: 5437 Flags.IsSigned = Opcode == Instruction::ICmp; 5438 Flags.IsMaxOp = false; 5439 break; 5440 case RK_Max: 5441 Flags.IsSigned = Opcode == Instruction::ICmp; 5442 Flags.IsMaxOp = true; 5443 break; 5444 case RK_UMin: 5445 Flags.IsSigned = false; 5446 Flags.IsMaxOp = false; 5447 break; 5448 case RK_UMax: 5449 Flags.IsSigned = false; 5450 Flags.IsMaxOp = true; 5451 break; 5452 case RK_None: 5453 llvm_unreachable("Reduction kind is not set"); 5454 } 5455 return Flags; 5456 } 5457 }; 5458 5459 Instruction *ReductionRoot = nullptr; 5460 5461 /// The operation data of the reduction operation. 5462 OperationData ReductionData; 5463 5464 /// The operation data of the values we perform a reduction on. 5465 OperationData ReducedValueData; 5466 5467 /// Should we model this reduction as a pairwise reduction tree or a tree that 5468 /// splits the vector in halves and adds those halves. 5469 bool IsPairwiseReduction = false; 5470 5471 /// Checks if the ParentStackElem.first should be marked as a reduction 5472 /// operation with an extra argument or as extra argument itself. 5473 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5474 Value *ExtraArg) { 5475 if (ExtraArgs.count(ParentStackElem.first)) { 5476 ExtraArgs[ParentStackElem.first] = nullptr; 5477 // We ran into something like: 5478 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5479 // The whole ParentStackElem.first should be considered as an extra value 5480 // in this case. 5481 // Do not perform analysis of remaining operands of ParentStackElem.first 5482 // instruction, this whole instruction is an extra argument. 5483 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5484 } else { 5485 // We ran into something like: 5486 // ParentStackElem.first += ... + ExtraArg + ... 5487 ExtraArgs[ParentStackElem.first] = ExtraArg; 5488 } 5489 } 5490 5491 static OperationData getOperationData(Value *V) { 5492 if (!V) 5493 return OperationData(); 5494 5495 Value *LHS; 5496 Value *RHS; 5497 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5498 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5499 RK_Arithmetic); 5500 } 5501 if (auto *Select = dyn_cast<SelectInst>(V)) { 5502 // Look for a min/max pattern. 5503 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5504 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5505 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5506 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5507 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5508 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5509 return OperationData( 5510 Instruction::FCmp, LHS, RHS, RK_Min, 5511 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5512 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5513 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5514 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5515 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5516 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5517 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5518 return OperationData( 5519 Instruction::FCmp, LHS, RHS, RK_Max, 5520 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5521 } else { 5522 // Try harder: look for min/max pattern based on instructions producing 5523 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5524 // During the intermediate stages of SLP, it's very common to have 5525 // pattern like this (since optimizeGatherSequence is run only once 5526 // at the end): 5527 // %1 = extractelement <2 x i32> %a, i32 0 5528 // %2 = extractelement <2 x i32> %a, i32 1 5529 // %cond = icmp sgt i32 %1, %2 5530 // %3 = extractelement <2 x i32> %a, i32 0 5531 // %4 = extractelement <2 x i32> %a, i32 1 5532 // %select = select i1 %cond, i32 %3, i32 %4 5533 CmpInst::Predicate Pred; 5534 Instruction *L1; 5535 Instruction *L2; 5536 5537 LHS = Select->getTrueValue(); 5538 RHS = Select->getFalseValue(); 5539 Value *Cond = Select->getCondition(); 5540 5541 // TODO: Support inverse predicates. 5542 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5543 if (!isa<ExtractElementInst>(RHS) || 5544 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5545 return OperationData(V); 5546 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5547 if (!isa<ExtractElementInst>(LHS) || 5548 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5549 return OperationData(V); 5550 } else { 5551 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5552 return OperationData(V); 5553 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5554 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5555 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5556 return OperationData(V); 5557 } 5558 switch (Pred) { 5559 default: 5560 return OperationData(V); 5561 5562 case CmpInst::ICMP_ULT: 5563 case CmpInst::ICMP_ULE: 5564 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5565 5566 case CmpInst::ICMP_SLT: 5567 case CmpInst::ICMP_SLE: 5568 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5569 5570 case CmpInst::FCMP_OLT: 5571 case CmpInst::FCMP_OLE: 5572 case CmpInst::FCMP_ULT: 5573 case CmpInst::FCMP_ULE: 5574 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5575 cast<Instruction>(Cond)->hasNoNaNs()); 5576 5577 case CmpInst::ICMP_UGT: 5578 case CmpInst::ICMP_UGE: 5579 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5580 5581 case CmpInst::ICMP_SGT: 5582 case CmpInst::ICMP_SGE: 5583 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5584 5585 case CmpInst::FCMP_OGT: 5586 case CmpInst::FCMP_OGE: 5587 case CmpInst::FCMP_UGT: 5588 case CmpInst::FCMP_UGE: 5589 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5590 cast<Instruction>(Cond)->hasNoNaNs()); 5591 } 5592 } 5593 } 5594 return OperationData(V); 5595 } 5596 5597 public: 5598 HorizontalReduction() = default; 5599 5600 /// Try to find a reduction tree. 5601 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5602 assert((!Phi || is_contained(Phi->operands(), B)) && 5603 "Thi phi needs to use the binary operator"); 5604 5605 ReductionData = getOperationData(B); 5606 5607 // We could have a initial reductions that is not an add. 5608 // r *= v1 + v2 + v3 + v4 5609 // In such a case start looking for a tree rooted in the first '+'. 5610 if (Phi) { 5611 if (ReductionData.getLHS() == Phi) { 5612 Phi = nullptr; 5613 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5614 ReductionData = getOperationData(B); 5615 } else if (ReductionData.getRHS() == Phi) { 5616 Phi = nullptr; 5617 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5618 ReductionData = getOperationData(B); 5619 } 5620 } 5621 5622 if (!ReductionData.isVectorizable(B)) 5623 return false; 5624 5625 Type *Ty = B->getType(); 5626 if (!isValidElementType(Ty)) 5627 return false; 5628 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5629 return false; 5630 5631 ReducedValueData.clear(); 5632 ReductionRoot = B; 5633 5634 // Post order traverse the reduction tree starting at B. We only handle true 5635 // trees containing only binary operators. 5636 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5637 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5638 ReductionData.initReductionOps(ReductionOps); 5639 while (!Stack.empty()) { 5640 Instruction *TreeN = Stack.back().first; 5641 unsigned EdgeToVist = Stack.back().second++; 5642 OperationData OpData = getOperationData(TreeN); 5643 bool IsReducedValue = OpData != ReductionData; 5644 5645 // Postorder vist. 5646 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5647 if (IsReducedValue) 5648 ReducedVals.push_back(TreeN); 5649 else { 5650 auto I = ExtraArgs.find(TreeN); 5651 if (I != ExtraArgs.end() && !I->second) { 5652 // Check if TreeN is an extra argument of its parent operation. 5653 if (Stack.size() <= 1) { 5654 // TreeN can't be an extra argument as it is a root reduction 5655 // operation. 5656 return false; 5657 } 5658 // Yes, TreeN is an extra argument, do not add it to a list of 5659 // reduction operations. 5660 // Stack[Stack.size() - 2] always points to the parent operation. 5661 markExtraArg(Stack[Stack.size() - 2], TreeN); 5662 ExtraArgs.erase(TreeN); 5663 } else 5664 ReductionData.addReductionOps(TreeN, ReductionOps); 5665 } 5666 // Retract. 5667 Stack.pop_back(); 5668 continue; 5669 } 5670 5671 // Visit left or right. 5672 Value *NextV = TreeN->getOperand(EdgeToVist); 5673 if (NextV != Phi) { 5674 auto *I = dyn_cast<Instruction>(NextV); 5675 OpData = getOperationData(I); 5676 // Continue analysis if the next operand is a reduction operation or 5677 // (possibly) a reduced value. If the reduced value opcode is not set, 5678 // the first met operation != reduction operation is considered as the 5679 // reduced value class. 5680 if (I && (!ReducedValueData || OpData == ReducedValueData || 5681 OpData == ReductionData)) { 5682 const bool IsReductionOperation = OpData == ReductionData; 5683 // Only handle trees in the current basic block. 5684 if (!ReductionData.hasSameParent(I, B->getParent(), 5685 IsReductionOperation)) { 5686 // I is an extra argument for TreeN (its parent operation). 5687 markExtraArg(Stack.back(), I); 5688 continue; 5689 } 5690 5691 // Each tree node needs to have minimal number of users except for the 5692 // ultimate reduction. 5693 if (!ReductionData.hasRequiredNumberOfUses(I, 5694 OpData == ReductionData) && 5695 I != B) { 5696 // I is an extra argument for TreeN (its parent operation). 5697 markExtraArg(Stack.back(), I); 5698 continue; 5699 } 5700 5701 if (IsReductionOperation) { 5702 // We need to be able to reassociate the reduction operations. 5703 if (!OpData.isAssociative(I)) { 5704 // I is an extra argument for TreeN (its parent operation). 5705 markExtraArg(Stack.back(), I); 5706 continue; 5707 } 5708 } else if (ReducedValueData && 5709 ReducedValueData != OpData) { 5710 // Make sure that the opcodes of the operations that we are going to 5711 // reduce match. 5712 // I is an extra argument for TreeN (its parent operation). 5713 markExtraArg(Stack.back(), I); 5714 continue; 5715 } else if (!ReducedValueData) 5716 ReducedValueData = OpData; 5717 5718 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5719 continue; 5720 } 5721 } 5722 // NextV is an extra argument for TreeN (its parent operation). 5723 markExtraArg(Stack.back(), NextV); 5724 } 5725 return true; 5726 } 5727 5728 /// Attempt to vectorize the tree found by 5729 /// matchAssociativeReduction. 5730 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5731 if (ReducedVals.empty()) 5732 return false; 5733 5734 // If there is a sufficient number of reduction values, reduce 5735 // to a nearby power-of-2. Can safely generate oversized 5736 // vectors and rely on the backend to split them to legal sizes. 5737 unsigned NumReducedVals = ReducedVals.size(); 5738 if (NumReducedVals < 4) 5739 return false; 5740 5741 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5742 5743 Value *VectorizedTree = nullptr; 5744 IRBuilder<> Builder(ReductionRoot); 5745 FastMathFlags Unsafe; 5746 Unsafe.setFast(); 5747 Builder.setFastMathFlags(Unsafe); 5748 unsigned i = 0; 5749 5750 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5751 // The same extra argument may be used several time, so log each attempt 5752 // to use it. 5753 for (auto &Pair : ExtraArgs) 5754 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5755 SmallVector<Value *, 16> IgnoreList; 5756 for (auto &V : ReductionOps) 5757 IgnoreList.append(V.begin(), V.end()); 5758 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5759 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5760 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5761 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5762 // TODO: Handle orders of size less than number of elements in the vector. 5763 if (Order && Order->size() == VL.size()) { 5764 // TODO: reorder tree nodes without tree rebuilding. 5765 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5766 llvm::transform(*Order, ReorderedOps.begin(), 5767 [VL](const unsigned Idx) { return VL[Idx]; }); 5768 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5769 } 5770 if (V.isTreeTinyAndNotFullyVectorizable()) 5771 break; 5772 5773 V.computeMinimumValueSizes(); 5774 5775 // Estimate cost. 5776 int TreeCost = V.getTreeCost(); 5777 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5778 int Cost = TreeCost + ReductionCost; 5779 if (Cost >= -SLPCostThreshold) { 5780 V.getORE()->emit([&]() { 5781 return OptimizationRemarkMissed( 5782 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5783 << "Vectorizing horizontal reduction is possible" 5784 << "but not beneficial with cost " 5785 << ore::NV("Cost", Cost) << " and threshold " 5786 << ore::NV("Threshold", -SLPCostThreshold); 5787 }); 5788 break; 5789 } 5790 5791 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5792 << Cost << ". (HorRdx)\n"); 5793 V.getORE()->emit([&]() { 5794 return OptimizationRemark( 5795 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5796 << "Vectorized horizontal reduction with cost " 5797 << ore::NV("Cost", Cost) << " and with tree size " 5798 << ore::NV("TreeSize", V.getTreeSize()); 5799 }); 5800 5801 // Vectorize a tree. 5802 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5803 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5804 5805 // Emit a reduction. 5806 Value *ReducedSubTree = 5807 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5808 if (VectorizedTree) { 5809 Builder.SetCurrentDebugLocation(Loc); 5810 OperationData VectReductionData(ReductionData.getOpcode(), 5811 VectorizedTree, ReducedSubTree, 5812 ReductionData.getKind()); 5813 VectorizedTree = 5814 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5815 } else 5816 VectorizedTree = ReducedSubTree; 5817 i += ReduxWidth; 5818 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5819 } 5820 5821 if (VectorizedTree) { 5822 // Finish the reduction. 5823 for (; i < NumReducedVals; ++i) { 5824 auto *I = cast<Instruction>(ReducedVals[i]); 5825 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5826 OperationData VectReductionData(ReductionData.getOpcode(), 5827 VectorizedTree, I, 5828 ReductionData.getKind()); 5829 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5830 } 5831 for (auto &Pair : ExternallyUsedValues) { 5832 assert(!Pair.second.empty() && 5833 "At least one DebugLoc must be inserted"); 5834 // Add each externally used value to the final reduction. 5835 for (auto *I : Pair.second) { 5836 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5837 OperationData VectReductionData(ReductionData.getOpcode(), 5838 VectorizedTree, Pair.first, 5839 ReductionData.getKind()); 5840 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5841 } 5842 } 5843 // Update users. 5844 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5845 } 5846 return VectorizedTree != nullptr; 5847 } 5848 5849 unsigned numReductionValues() const { 5850 return ReducedVals.size(); 5851 } 5852 5853 private: 5854 /// Calculate the cost of a reduction. 5855 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5856 unsigned ReduxWidth) { 5857 Type *ScalarTy = FirstReducedVal->getType(); 5858 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5859 5860 int PairwiseRdxCost; 5861 int SplittingRdxCost; 5862 switch (ReductionData.getKind()) { 5863 case RK_Arithmetic: 5864 PairwiseRdxCost = 5865 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5866 /*IsPairwiseForm=*/true); 5867 SplittingRdxCost = 5868 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5869 /*IsPairwiseForm=*/false); 5870 break; 5871 case RK_Min: 5872 case RK_Max: 5873 case RK_UMin: 5874 case RK_UMax: { 5875 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5876 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5877 ReductionData.getKind() == RK_UMax; 5878 PairwiseRdxCost = 5879 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5880 /*IsPairwiseForm=*/true, IsUnsigned); 5881 SplittingRdxCost = 5882 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5883 /*IsPairwiseForm=*/false, IsUnsigned); 5884 break; 5885 } 5886 case RK_None: 5887 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5888 } 5889 5890 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5891 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5892 5893 int ScalarReduxCost; 5894 switch (ReductionData.getKind()) { 5895 case RK_Arithmetic: 5896 ScalarReduxCost = 5897 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5898 break; 5899 case RK_Min: 5900 case RK_Max: 5901 case RK_UMin: 5902 case RK_UMax: 5903 ScalarReduxCost = 5904 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5905 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5906 CmpInst::makeCmpResultType(ScalarTy)); 5907 break; 5908 case RK_None: 5909 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5910 } 5911 ScalarReduxCost *= (ReduxWidth - 1); 5912 5913 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5914 << " for reduction that starts with " << *FirstReducedVal 5915 << " (It is a " 5916 << (IsPairwiseReduction ? "pairwise" : "splitting") 5917 << " reduction)\n"); 5918 5919 return VecReduxCost - ScalarReduxCost; 5920 } 5921 5922 /// Emit a horizontal reduction of the vectorized value. 5923 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5924 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5925 assert(VectorizedValue && "Need to have a vectorized tree node"); 5926 assert(isPowerOf2_32(ReduxWidth) && 5927 "We only handle power-of-two reductions for now"); 5928 5929 if (!IsPairwiseReduction) 5930 return createSimpleTargetReduction( 5931 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5932 ReductionData.getFlags(), ReductionOps.back()); 5933 5934 Value *TmpVec = VectorizedValue; 5935 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5936 Value *LeftMask = 5937 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5938 Value *RightMask = 5939 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5940 5941 Value *LeftShuf = Builder.CreateShuffleVector( 5942 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5943 Value *RightShuf = Builder.CreateShuffleVector( 5944 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5945 "rdx.shuf.r"); 5946 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5947 RightShuf, ReductionData.getKind()); 5948 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5949 } 5950 5951 // The result is in the first element of the vector. 5952 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5953 } 5954 }; 5955 5956 } // end anonymous namespace 5957 5958 /// Recognize construction of vectors like 5959 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5960 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5961 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5962 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5963 /// starting from the last insertelement instruction. 5964 /// 5965 /// Returns true if it matches 5966 static bool findBuildVector(InsertElementInst *LastInsertElem, 5967 TargetTransformInfo *TTI, 5968 SmallVectorImpl<Value *> &BuildVectorOpds, 5969 int &UserCost) { 5970 UserCost = 0; 5971 Value *V = nullptr; 5972 do { 5973 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5974 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5975 LastInsertElem->getType(), 5976 CI->getZExtValue()); 5977 } 5978 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5979 V = LastInsertElem->getOperand(0); 5980 if (isa<UndefValue>(V)) 5981 break; 5982 LastInsertElem = dyn_cast<InsertElementInst>(V); 5983 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5984 return false; 5985 } while (true); 5986 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5987 return true; 5988 } 5989 5990 /// Like findBuildVector, but looks for construction of aggregate. 5991 /// 5992 /// \return true if it matches. 5993 static bool findBuildAggregate(InsertValueInst *IV, 5994 SmallVectorImpl<Value *> &BuildVectorOpds) { 5995 Value *V; 5996 do { 5997 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5998 V = IV->getAggregateOperand(); 5999 if (isa<UndefValue>(V)) 6000 break; 6001 IV = dyn_cast<InsertValueInst>(V); 6002 if (!IV || !IV->hasOneUse()) 6003 return false; 6004 } while (true); 6005 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6006 return true; 6007 } 6008 6009 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6010 return V->getType() < V2->getType(); 6011 } 6012 6013 /// Try and get a reduction value from a phi node. 6014 /// 6015 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6016 /// if they come from either \p ParentBB or a containing loop latch. 6017 /// 6018 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6019 /// if not possible. 6020 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6021 BasicBlock *ParentBB, LoopInfo *LI) { 6022 // There are situations where the reduction value is not dominated by the 6023 // reduction phi. Vectorizing such cases has been reported to cause 6024 // miscompiles. See PR25787. 6025 auto DominatedReduxValue = [&](Value *R) { 6026 return isa<Instruction>(R) && 6027 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6028 }; 6029 6030 Value *Rdx = nullptr; 6031 6032 // Return the incoming value if it comes from the same BB as the phi node. 6033 if (P->getIncomingBlock(0) == ParentBB) { 6034 Rdx = P->getIncomingValue(0); 6035 } else if (P->getIncomingBlock(1) == ParentBB) { 6036 Rdx = P->getIncomingValue(1); 6037 } 6038 6039 if (Rdx && DominatedReduxValue(Rdx)) 6040 return Rdx; 6041 6042 // Otherwise, check whether we have a loop latch to look at. 6043 Loop *BBL = LI->getLoopFor(ParentBB); 6044 if (!BBL) 6045 return nullptr; 6046 BasicBlock *BBLatch = BBL->getLoopLatch(); 6047 if (!BBLatch) 6048 return nullptr; 6049 6050 // There is a loop latch, return the incoming value if it comes from 6051 // that. This reduction pattern occasionally turns up. 6052 if (P->getIncomingBlock(0) == BBLatch) { 6053 Rdx = P->getIncomingValue(0); 6054 } else if (P->getIncomingBlock(1) == BBLatch) { 6055 Rdx = P->getIncomingValue(1); 6056 } 6057 6058 if (Rdx && DominatedReduxValue(Rdx)) 6059 return Rdx; 6060 6061 return nullptr; 6062 } 6063 6064 /// Attempt to reduce a horizontal reduction. 6065 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6066 /// with reduction operators \a Root (or one of its operands) in a basic block 6067 /// \a BB, then check if it can be done. If horizontal reduction is not found 6068 /// and root instruction is a binary operation, vectorization of the operands is 6069 /// attempted. 6070 /// \returns true if a horizontal reduction was matched and reduced or operands 6071 /// of one of the binary instruction were vectorized. 6072 /// \returns false if a horizontal reduction was not matched (or not possible) 6073 /// or no vectorization of any binary operation feeding \a Root instruction was 6074 /// performed. 6075 static bool tryToVectorizeHorReductionOrInstOperands( 6076 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6077 TargetTransformInfo *TTI, 6078 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6079 if (!ShouldVectorizeHor) 6080 return false; 6081 6082 if (!Root) 6083 return false; 6084 6085 if (Root->getParent() != BB || isa<PHINode>(Root)) 6086 return false; 6087 // Start analysis starting from Root instruction. If horizontal reduction is 6088 // found, try to vectorize it. If it is not a horizontal reduction or 6089 // vectorization is not possible or not effective, and currently analyzed 6090 // instruction is a binary operation, try to vectorize the operands, using 6091 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6092 // the same procedure considering each operand as a possible root of the 6093 // horizontal reduction. 6094 // Interrupt the process if the Root instruction itself was vectorized or all 6095 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6096 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6097 SmallPtrSet<Value *, 8> VisitedInstrs; 6098 bool Res = false; 6099 while (!Stack.empty()) { 6100 Value *V; 6101 unsigned Level; 6102 std::tie(V, Level) = Stack.pop_back_val(); 6103 if (!V) 6104 continue; 6105 auto *Inst = dyn_cast<Instruction>(V); 6106 if (!Inst) 6107 continue; 6108 auto *BI = dyn_cast<BinaryOperator>(Inst); 6109 auto *SI = dyn_cast<SelectInst>(Inst); 6110 if (BI || SI) { 6111 HorizontalReduction HorRdx; 6112 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6113 if (HorRdx.tryToReduce(R, TTI)) { 6114 Res = true; 6115 // Set P to nullptr to avoid re-analysis of phi node in 6116 // matchAssociativeReduction function unless this is the root node. 6117 P = nullptr; 6118 continue; 6119 } 6120 } 6121 if (P && BI) { 6122 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6123 if (Inst == P) 6124 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6125 if (!Inst) { 6126 // Set P to nullptr to avoid re-analysis of phi node in 6127 // matchAssociativeReduction function unless this is the root node. 6128 P = nullptr; 6129 continue; 6130 } 6131 } 6132 } 6133 // Set P to nullptr to avoid re-analysis of phi node in 6134 // matchAssociativeReduction function unless this is the root node. 6135 P = nullptr; 6136 if (Vectorize(Inst, R)) { 6137 Res = true; 6138 continue; 6139 } 6140 6141 // Try to vectorize operands. 6142 // Continue analysis for the instruction from the same basic block only to 6143 // save compile time. 6144 if (++Level < RecursionMaxDepth) 6145 for (auto *Op : Inst->operand_values()) 6146 if (VisitedInstrs.insert(Op).second) 6147 if (auto *I = dyn_cast<Instruction>(Op)) 6148 if (!isa<PHINode>(I) && I->getParent() == BB) 6149 Stack.emplace_back(Op, Level); 6150 } 6151 return Res; 6152 } 6153 6154 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6155 BasicBlock *BB, BoUpSLP &R, 6156 TargetTransformInfo *TTI) { 6157 if (!V) 6158 return false; 6159 auto *I = dyn_cast<Instruction>(V); 6160 if (!I) 6161 return false; 6162 6163 if (!isa<BinaryOperator>(I)) 6164 P = nullptr; 6165 // Try to match and vectorize a horizontal reduction. 6166 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6167 return tryToVectorize(I, R); 6168 }; 6169 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6170 ExtraVectorization); 6171 } 6172 6173 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6174 BasicBlock *BB, BoUpSLP &R) { 6175 const DataLayout &DL = BB->getModule()->getDataLayout(); 6176 if (!R.canMapToVector(IVI->getType(), DL)) 6177 return false; 6178 6179 SmallVector<Value *, 16> BuildVectorOpds; 6180 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6181 return false; 6182 6183 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6184 // Aggregate value is unlikely to be processed in vector register, we need to 6185 // extract scalars into scalar registers, so NeedExtraction is set true. 6186 return tryToVectorizeList(BuildVectorOpds, R); 6187 } 6188 6189 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6190 BasicBlock *BB, BoUpSLP &R) { 6191 int UserCost; 6192 SmallVector<Value *, 16> BuildVectorOpds; 6193 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6194 (llvm::all_of(BuildVectorOpds, 6195 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6196 isShuffle(BuildVectorOpds))) 6197 return false; 6198 6199 // Vectorize starting with the build vector operands ignoring the BuildVector 6200 // instructions for the purpose of scheduling and user extraction. 6201 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6202 } 6203 6204 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6205 BoUpSLP &R) { 6206 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6207 return true; 6208 6209 bool OpsChanged = false; 6210 for (int Idx = 0; Idx < 2; ++Idx) { 6211 OpsChanged |= 6212 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6213 } 6214 return OpsChanged; 6215 } 6216 6217 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6218 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6219 bool OpsChanged = false; 6220 for (auto &VH : reverse(Instructions)) { 6221 auto *I = dyn_cast_or_null<Instruction>(VH); 6222 if (!I) 6223 continue; 6224 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6225 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6226 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6227 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6228 else if (auto *CI = dyn_cast<CmpInst>(I)) 6229 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6230 } 6231 Instructions.clear(); 6232 return OpsChanged; 6233 } 6234 6235 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6236 bool Changed = false; 6237 SmallVector<Value *, 4> Incoming; 6238 SmallPtrSet<Value *, 16> VisitedInstrs; 6239 6240 bool HaveVectorizedPhiNodes = true; 6241 while (HaveVectorizedPhiNodes) { 6242 HaveVectorizedPhiNodes = false; 6243 6244 // Collect the incoming values from the PHIs. 6245 Incoming.clear(); 6246 for (Instruction &I : *BB) { 6247 PHINode *P = dyn_cast<PHINode>(&I); 6248 if (!P) 6249 break; 6250 6251 if (!VisitedInstrs.count(P)) 6252 Incoming.push_back(P); 6253 } 6254 6255 // Sort by type. 6256 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6257 6258 // Try to vectorize elements base on their type. 6259 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6260 E = Incoming.end(); 6261 IncIt != E;) { 6262 6263 // Look for the next elements with the same type. 6264 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6265 while (SameTypeIt != E && 6266 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6267 VisitedInstrs.insert(*SameTypeIt); 6268 ++SameTypeIt; 6269 } 6270 6271 // Try to vectorize them. 6272 unsigned NumElts = (SameTypeIt - IncIt); 6273 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6274 << NumElts << ")\n"); 6275 // The order in which the phi nodes appear in the program does not matter. 6276 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6277 // is done when there are exactly two elements since tryToVectorizeList 6278 // asserts that there are only two values when AllowReorder is true. 6279 bool AllowReorder = NumElts == 2; 6280 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6281 /*UserCost=*/0, AllowReorder)) { 6282 // Success start over because instructions might have been changed. 6283 HaveVectorizedPhiNodes = true; 6284 Changed = true; 6285 break; 6286 } 6287 6288 // Start over at the next instruction of a different type (or the end). 6289 IncIt = SameTypeIt; 6290 } 6291 } 6292 6293 VisitedInstrs.clear(); 6294 6295 SmallVector<WeakVH, 8> PostProcessInstructions; 6296 SmallDenseSet<Instruction *, 4> KeyNodes; 6297 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6298 // We may go through BB multiple times so skip the one we have checked. 6299 if (!VisitedInstrs.insert(&*it).second) { 6300 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6301 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6302 // We would like to start over since some instructions are deleted 6303 // and the iterator may become invalid value. 6304 Changed = true; 6305 it = BB->begin(); 6306 e = BB->end(); 6307 } 6308 continue; 6309 } 6310 6311 if (isa<DbgInfoIntrinsic>(it)) 6312 continue; 6313 6314 // Try to vectorize reductions that use PHINodes. 6315 if (PHINode *P = dyn_cast<PHINode>(it)) { 6316 // Check that the PHI is a reduction PHI. 6317 if (P->getNumIncomingValues() != 2) 6318 return Changed; 6319 6320 // Try to match and vectorize a horizontal reduction. 6321 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6322 TTI)) { 6323 Changed = true; 6324 it = BB->begin(); 6325 e = BB->end(); 6326 continue; 6327 } 6328 continue; 6329 } 6330 6331 // Ran into an instruction without users, like terminator, or function call 6332 // with ignored return value, store. Ignore unused instructions (basing on 6333 // instruction type, except for CallInst and InvokeInst). 6334 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6335 isa<InvokeInst>(it))) { 6336 KeyNodes.insert(&*it); 6337 bool OpsChanged = false; 6338 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6339 for (auto *V : it->operand_values()) { 6340 // Try to match and vectorize a horizontal reduction. 6341 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6342 } 6343 } 6344 // Start vectorization of post-process list of instructions from the 6345 // top-tree instructions to try to vectorize as many instructions as 6346 // possible. 6347 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6348 if (OpsChanged) { 6349 // We would like to start over since some instructions are deleted 6350 // and the iterator may become invalid value. 6351 Changed = true; 6352 it = BB->begin(); 6353 e = BB->end(); 6354 continue; 6355 } 6356 } 6357 6358 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6359 isa<InsertValueInst>(it)) 6360 PostProcessInstructions.push_back(&*it); 6361 } 6362 6363 return Changed; 6364 } 6365 6366 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6367 auto Changed = false; 6368 for (auto &Entry : GEPs) { 6369 // If the getelementptr list has fewer than two elements, there's nothing 6370 // to do. 6371 if (Entry.second.size() < 2) 6372 continue; 6373 6374 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6375 << Entry.second.size() << ".\n"); 6376 6377 // We process the getelementptr list in chunks of 16 (like we do for 6378 // stores) to minimize compile-time. 6379 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6380 auto Len = std::min<unsigned>(BE - BI, 16); 6381 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6382 6383 // Initialize a set a candidate getelementptrs. Note that we use a 6384 // SetVector here to preserve program order. If the index computations 6385 // are vectorizable and begin with loads, we want to minimize the chance 6386 // of having to reorder them later. 6387 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6388 6389 // Some of the candidates may have already been vectorized after we 6390 // initially collected them. If so, the WeakTrackingVHs will have 6391 // nullified the 6392 // values, so remove them from the set of candidates. 6393 Candidates.remove(nullptr); 6394 6395 // Remove from the set of candidates all pairs of getelementptrs with 6396 // constant differences. Such getelementptrs are likely not good 6397 // candidates for vectorization in a bottom-up phase since one can be 6398 // computed from the other. We also ensure all candidate getelementptr 6399 // indices are unique. 6400 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6401 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6402 if (!Candidates.count(GEPI)) 6403 continue; 6404 auto *SCEVI = SE->getSCEV(GEPList[I]); 6405 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6406 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6407 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6408 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6409 Candidates.remove(GEPList[I]); 6410 Candidates.remove(GEPList[J]); 6411 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6412 Candidates.remove(GEPList[J]); 6413 } 6414 } 6415 } 6416 6417 // We break out of the above computation as soon as we know there are 6418 // fewer than two candidates remaining. 6419 if (Candidates.size() < 2) 6420 continue; 6421 6422 // Add the single, non-constant index of each candidate to the bundle. We 6423 // ensured the indices met these constraints when we originally collected 6424 // the getelementptrs. 6425 SmallVector<Value *, 16> Bundle(Candidates.size()); 6426 auto BundleIndex = 0u; 6427 for (auto *V : Candidates) { 6428 auto *GEP = cast<GetElementPtrInst>(V); 6429 auto *GEPIdx = GEP->idx_begin()->get(); 6430 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6431 Bundle[BundleIndex++] = GEPIdx; 6432 } 6433 6434 // Try and vectorize the indices. We are currently only interested in 6435 // gather-like cases of the form: 6436 // 6437 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6438 // 6439 // where the loads of "a", the loads of "b", and the subtractions can be 6440 // performed in parallel. It's likely that detecting this pattern in a 6441 // bottom-up phase will be simpler and less costly than building a 6442 // full-blown top-down phase beginning at the consecutive loads. 6443 Changed |= tryToVectorizeList(Bundle, R); 6444 } 6445 } 6446 return Changed; 6447 } 6448 6449 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6450 bool Changed = false; 6451 // Attempt to sort and vectorize each of the store-groups. 6452 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6453 ++it) { 6454 if (it->second.size() < 2) 6455 continue; 6456 6457 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6458 << it->second.size() << ".\n"); 6459 6460 // Process the stores in chunks of 16. 6461 // TODO: The limit of 16 inhibits greater vectorization factors. 6462 // For example, AVX2 supports v32i8. Increasing this limit, however, 6463 // may cause a significant compile-time increase. 6464 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6465 unsigned Len = std::min<unsigned>(CE - CI, 16); 6466 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6467 } 6468 } 6469 return Changed; 6470 } 6471 6472 char SLPVectorizer::ID = 0; 6473 6474 static const char lv_name[] = "SLP Vectorizer"; 6475 6476 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6477 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6478 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6479 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6480 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6481 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6482 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6483 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6484 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6485 6486 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6487