1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/DOTGraphTraits.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/GraphWriter.h"
85 #include "llvm/Support/InstructionCost.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 static cl::opt<bool>
168     ViewSLPTree("view-slp-tree", cl::Hidden,
169                 cl::desc("Display the SLP trees with Graphviz"));
170 
171 // Limit the number of alias checks. The limit is chosen so that
172 // it has no negative effect on the llvm benchmarks.
173 static const unsigned AliasedCheckLimit = 10;
174 
175 // Another limit for the alias checks: The maximum distance between load/store
176 // instructions where alias checks are done.
177 // This limit is useful for very large basic blocks.
178 static const unsigned MaxMemDepDistance = 160;
179 
180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
181 /// regions to be handled.
182 static const int MinScheduleRegionSize = 16;
183 
184 /// Predicate for the element types that the SLP vectorizer supports.
185 ///
186 /// The most important thing to filter here are types which are invalid in LLVM
187 /// vectors. We also filter target specific types which have absolutely no
188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
189 /// avoids spending time checking the cost model and realizing that they will
190 /// be inevitably scalarized.
191 static bool isValidElementType(Type *Ty) {
192   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
193          !Ty->isPPC_FP128Ty();
194 }
195 
196 /// \returns True if the value is a constant (but not globals/constant
197 /// expressions).
198 static bool isConstant(Value *V) {
199   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
200 }
201 
202 /// Checks if \p V is one of vector-like instructions, i.e. undef,
203 /// insertelement/extractelement with constant indices for fixed vector type or
204 /// extractvalue instruction.
205 static bool isVectorLikeInstWithConstOps(Value *V) {
206   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
207       !isa<ExtractValueInst, UndefValue>(V))
208     return false;
209   auto *I = dyn_cast<Instruction>(V);
210   if (!I || isa<ExtractValueInst>(I))
211     return true;
212   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
213     return false;
214   if (isa<ExtractElementInst>(I))
215     return isConstant(I->getOperand(1));
216   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
217   return isConstant(I->getOperand(2));
218 }
219 
220 /// \returns true if all of the instructions in \p VL are in the same block or
221 /// false otherwise.
222 static bool allSameBlock(ArrayRef<Value *> VL) {
223   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
224   if (!I0)
225     return false;
226   if (all_of(VL, isVectorLikeInstWithConstOps))
227     return true;
228 
229   BasicBlock *BB = I0->getParent();
230   for (int I = 1, E = VL.size(); I < E; I++) {
231     auto *II = dyn_cast<Instruction>(VL[I]);
232     if (!II)
233       return false;
234 
235     if (BB != II->getParent())
236       return false;
237   }
238   return true;
239 }
240 
241 /// \returns True if all of the values in \p VL are constants (but not
242 /// globals/constant expressions).
243 static bool allConstant(ArrayRef<Value *> VL) {
244   // Constant expressions and globals can't be vectorized like normal integer/FP
245   // constants.
246   return all_of(VL, isConstant);
247 }
248 
249 /// \returns True if all of the values in \p VL are identical or some of them
250 /// are UndefValue.
251 static bool isSplat(ArrayRef<Value *> VL) {
252   Value *FirstNonUndef = nullptr;
253   for (Value *V : VL) {
254     if (isa<UndefValue>(V))
255       continue;
256     if (!FirstNonUndef) {
257       FirstNonUndef = V;
258       continue;
259     }
260     if (V != FirstNonUndef)
261       return false;
262   }
263   return FirstNonUndef != nullptr;
264 }
265 
266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
267 static bool isCommutative(Instruction *I) {
268   if (auto *Cmp = dyn_cast<CmpInst>(I))
269     return Cmp->isCommutative();
270   if (auto *BO = dyn_cast<BinaryOperator>(I))
271     return BO->isCommutative();
272   // TODO: This should check for generic Instruction::isCommutative(), but
273   //       we need to confirm that the caller code correctly handles Intrinsics
274   //       for example (does not have 2 operands).
275   return false;
276 }
277 
278 /// Checks if the given value is actually an undefined constant vector.
279 static bool isUndefVector(const Value *V) {
280   if (isa<UndefValue>(V))
281     return true;
282   auto *C = dyn_cast<Constant>(V);
283   if (!C)
284     return false;
285   if (!C->containsUndefOrPoisonElement())
286     return false;
287   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
288   if (!VecTy)
289     return false;
290   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
291     if (Constant *Elem = C->getAggregateElement(I))
292       if (!isa<UndefValue>(Elem))
293         return false;
294   }
295   return true;
296 }
297 
298 /// Checks if the vector of instructions can be represented as a shuffle, like:
299 /// %x0 = extractelement <4 x i8> %x, i32 0
300 /// %x3 = extractelement <4 x i8> %x, i32 3
301 /// %y1 = extractelement <4 x i8> %y, i32 1
302 /// %y2 = extractelement <4 x i8> %y, i32 2
303 /// %x0x0 = mul i8 %x0, %x0
304 /// %x3x3 = mul i8 %x3, %x3
305 /// %y1y1 = mul i8 %y1, %y1
306 /// %y2y2 = mul i8 %y2, %y2
307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
311 /// ret <4 x i8> %ins4
312 /// can be transformed into:
313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
314 ///                                                         i32 6>
315 /// %2 = mul <4 x i8> %1, %1
316 /// ret <4 x i8> %2
317 /// We convert this initially to something like:
318 /// %x0 = extractelement <4 x i8> %x, i32 0
319 /// %x3 = extractelement <4 x i8> %x, i32 3
320 /// %y1 = extractelement <4 x i8> %y, i32 1
321 /// %y2 = extractelement <4 x i8> %y, i32 2
322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
326 /// %5 = mul <4 x i8> %4, %4
327 /// %6 = extractelement <4 x i8> %5, i32 0
328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
329 /// %7 = extractelement <4 x i8> %5, i32 1
330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
331 /// %8 = extractelement <4 x i8> %5, i32 2
332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
333 /// %9 = extractelement <4 x i8> %5, i32 3
334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
335 /// ret <4 x i8> %ins4
336 /// InstCombiner transforms this into a shuffle and vector mul
337 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
338 /// TODO: Can we split off and reuse the shuffle mask detection from
339 /// TargetTransformInfo::getInstructionThroughput?
340 static Optional<TargetTransformInfo::ShuffleKind>
341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
342   const auto *It =
343       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
344   if (It == VL.end())
345     return None;
346   auto *EI0 = cast<ExtractElementInst>(*It);
347   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
348     return None;
349   unsigned Size =
350       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
351   Value *Vec1 = nullptr;
352   Value *Vec2 = nullptr;
353   enum ShuffleMode { Unknown, Select, Permute };
354   ShuffleMode CommonShuffleMode = Unknown;
355   Mask.assign(VL.size(), UndefMaskElem);
356   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
357     // Undef can be represented as an undef element in a vector.
358     if (isa<UndefValue>(VL[I]))
359       continue;
360     auto *EI = cast<ExtractElementInst>(VL[I]);
361     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
362       return None;
363     auto *Vec = EI->getVectorOperand();
364     // We can extractelement from undef or poison vector.
365     if (isUndefVector(Vec))
366       continue;
367     // All vector operands must have the same number of vector elements.
368     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
369       return None;
370     if (isa<UndefValue>(EI->getIndexOperand()))
371       continue;
372     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
373     if (!Idx)
374       return None;
375     // Undefined behavior if Idx is negative or >= Size.
376     if (Idx->getValue().uge(Size))
377       continue;
378     unsigned IntIdx = Idx->getValue().getZExtValue();
379     Mask[I] = IntIdx;
380     // For correct shuffling we have to have at most 2 different vector operands
381     // in all extractelement instructions.
382     if (!Vec1 || Vec1 == Vec) {
383       Vec1 = Vec;
384     } else if (!Vec2 || Vec2 == Vec) {
385       Vec2 = Vec;
386       Mask[I] += Size;
387     } else {
388       return None;
389     }
390     if (CommonShuffleMode == Permute)
391       continue;
392     // If the extract index is not the same as the operation number, it is a
393     // permutation.
394     if (IntIdx != I) {
395       CommonShuffleMode = Permute;
396       continue;
397     }
398     CommonShuffleMode = Select;
399   }
400   // If we're not crossing lanes in different vectors, consider it as blending.
401   if (CommonShuffleMode == Select && Vec2)
402     return TargetTransformInfo::SK_Select;
403   // If Vec2 was never used, we have a permutation of a single vector, otherwise
404   // we have permutation of 2 vectors.
405   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
406               : TargetTransformInfo::SK_PermuteSingleSrc;
407 }
408 
409 namespace {
410 
411 /// Main data required for vectorization of instructions.
412 struct InstructionsState {
413   /// The very first instruction in the list with the main opcode.
414   Value *OpValue = nullptr;
415 
416   /// The main/alternate instruction.
417   Instruction *MainOp = nullptr;
418   Instruction *AltOp = nullptr;
419 
420   /// The main/alternate opcodes for the list of instructions.
421   unsigned getOpcode() const {
422     return MainOp ? MainOp->getOpcode() : 0;
423   }
424 
425   unsigned getAltOpcode() const {
426     return AltOp ? AltOp->getOpcode() : 0;
427   }
428 
429   /// Some of the instructions in the list have alternate opcodes.
430   bool isAltShuffle() const { return AltOp != MainOp; }
431 
432   bool isOpcodeOrAlt(Instruction *I) const {
433     unsigned CheckedOpcode = I->getOpcode();
434     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
435   }
436 
437   InstructionsState() = delete;
438   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
439       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
440 };
441 
442 } // end anonymous namespace
443 
444 /// Chooses the correct key for scheduling data. If \p Op has the same (or
445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
446 /// OpValue.
447 static Value *isOneOf(const InstructionsState &S, Value *Op) {
448   auto *I = dyn_cast<Instruction>(Op);
449   if (I && S.isOpcodeOrAlt(I))
450     return Op;
451   return S.OpValue;
452 }
453 
454 /// \returns true if \p Opcode is allowed as part of of the main/alternate
455 /// instruction for SLP vectorization.
456 ///
457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
458 /// "shuffled out" lane would result in division by zero.
459 static bool isValidForAlternation(unsigned Opcode) {
460   if (Instruction::isIntDivRem(Opcode))
461     return false;
462 
463   return true;
464 }
465 
466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
467                                        unsigned BaseIndex = 0);
468 
469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
470 /// compatible instructions or constants, or just some other regular values.
471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
472                                 Value *Op1) {
473   return (isConstant(BaseOp0) && isConstant(Op0)) ||
474          (isConstant(BaseOp1) && isConstant(Op1)) ||
475          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
476           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
477          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
478          getSameOpcode({BaseOp1, Op1}).getOpcode();
479 }
480 
481 /// \returns analysis of the Instructions in \p VL described in
482 /// InstructionsState, the Opcode that we suppose the whole list
483 /// could be vectorized even if its structure is diverse.
484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
485                                        unsigned BaseIndex) {
486   // Make sure these are all Instructions.
487   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
488     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
489 
490   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
491   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
492   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
493   CmpInst::Predicate BasePred =
494       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
495               : CmpInst::BAD_ICMP_PREDICATE;
496   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
497   unsigned AltOpcode = Opcode;
498   unsigned AltIndex = BaseIndex;
499 
500   // Check for one alternate opcode from another BinaryOperator.
501   // TODO - generalize to support all operators (types, calls etc.).
502   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
503     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
504     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
505       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
506         continue;
507       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
508           isValidForAlternation(Opcode)) {
509         AltOpcode = InstOpcode;
510         AltIndex = Cnt;
511         continue;
512       }
513     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
514       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
515       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
516       if (Ty0 == Ty1) {
517         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
518           continue;
519         if (Opcode == AltOpcode) {
520           assert(isValidForAlternation(Opcode) &&
521                  isValidForAlternation(InstOpcode) &&
522                  "Cast isn't safe for alternation, logic needs to be updated!");
523           AltOpcode = InstOpcode;
524           AltIndex = Cnt;
525           continue;
526         }
527       }
528     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
529       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
530       auto *Inst = cast<Instruction>(VL[Cnt]);
531       Type *Ty0 = BaseInst->getOperand(0)->getType();
532       Type *Ty1 = Inst->getOperand(0)->getType();
533       if (Ty0 == Ty1) {
534         Value *BaseOp0 = BaseInst->getOperand(0);
535         Value *BaseOp1 = BaseInst->getOperand(1);
536         Value *Op0 = Inst->getOperand(0);
537         Value *Op1 = Inst->getOperand(1);
538         CmpInst::Predicate CurrentPred =
539             cast<CmpInst>(VL[Cnt])->getPredicate();
540         CmpInst::Predicate SwappedCurrentPred =
541             CmpInst::getSwappedPredicate(CurrentPred);
542         // Check for compatible operands. If the corresponding operands are not
543         // compatible - need to perform alternate vectorization.
544         if (InstOpcode == Opcode) {
545           if (BasePred == CurrentPred &&
546               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
547             continue;
548           if (BasePred == SwappedCurrentPred &&
549               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
550             continue;
551           if (E == 2 &&
552               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
553             continue;
554           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
555           CmpInst::Predicate AltPred = AltInst->getPredicate();
556           Value *AltOp0 = AltInst->getOperand(0);
557           Value *AltOp1 = AltInst->getOperand(1);
558           // Check if operands are compatible with alternate operands.
559           if (AltPred == CurrentPred &&
560               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
561             continue;
562           if (AltPred == SwappedCurrentPred &&
563               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
564             continue;
565         }
566         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
567           assert(isValidForAlternation(Opcode) &&
568                  isValidForAlternation(InstOpcode) &&
569                  "Cast isn't safe for alternation, logic needs to be updated!");
570           AltIndex = Cnt;
571           continue;
572         }
573         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
574         CmpInst::Predicate AltPred = AltInst->getPredicate();
575         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
576             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
577           continue;
578       }
579     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
580       continue;
581     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
582   }
583 
584   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
585                            cast<Instruction>(VL[AltIndex]));
586 }
587 
588 /// \returns true if all of the values in \p VL have the same type or false
589 /// otherwise.
590 static bool allSameType(ArrayRef<Value *> VL) {
591   Type *Ty = VL[0]->getType();
592   for (int i = 1, e = VL.size(); i < e; i++)
593     if (VL[i]->getType() != Ty)
594       return false;
595 
596   return true;
597 }
598 
599 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
600 static Optional<unsigned> getExtractIndex(Instruction *E) {
601   unsigned Opcode = E->getOpcode();
602   assert((Opcode == Instruction::ExtractElement ||
603           Opcode == Instruction::ExtractValue) &&
604          "Expected extractelement or extractvalue instruction.");
605   if (Opcode == Instruction::ExtractElement) {
606     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
607     if (!CI)
608       return None;
609     return CI->getZExtValue();
610   }
611   ExtractValueInst *EI = cast<ExtractValueInst>(E);
612   if (EI->getNumIndices() != 1)
613     return None;
614   return *EI->idx_begin();
615 }
616 
617 /// \returns True if in-tree use also needs extract. This refers to
618 /// possible scalar operand in vectorized instruction.
619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
620                                     TargetLibraryInfo *TLI) {
621   unsigned Opcode = UserInst->getOpcode();
622   switch (Opcode) {
623   case Instruction::Load: {
624     LoadInst *LI = cast<LoadInst>(UserInst);
625     return (LI->getPointerOperand() == Scalar);
626   }
627   case Instruction::Store: {
628     StoreInst *SI = cast<StoreInst>(UserInst);
629     return (SI->getPointerOperand() == Scalar);
630   }
631   case Instruction::Call: {
632     CallInst *CI = cast<CallInst>(UserInst);
633     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
634     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
635       if (hasVectorInstrinsicScalarOpd(ID, i))
636         return (CI->getArgOperand(i) == Scalar);
637     }
638     LLVM_FALLTHROUGH;
639   }
640   default:
641     return false;
642   }
643 }
644 
645 /// \returns the AA location that is being access by the instruction.
646 static MemoryLocation getLocation(Instruction *I) {
647   if (StoreInst *SI = dyn_cast<StoreInst>(I))
648     return MemoryLocation::get(SI);
649   if (LoadInst *LI = dyn_cast<LoadInst>(I))
650     return MemoryLocation::get(LI);
651   return MemoryLocation();
652 }
653 
654 /// \returns True if the instruction is not a volatile or atomic load/store.
655 static bool isSimple(Instruction *I) {
656   if (LoadInst *LI = dyn_cast<LoadInst>(I))
657     return LI->isSimple();
658   if (StoreInst *SI = dyn_cast<StoreInst>(I))
659     return SI->isSimple();
660   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
661     return !MI->isVolatile();
662   return true;
663 }
664 
665 /// Shuffles \p Mask in accordance with the given \p SubMask.
666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
667   if (SubMask.empty())
668     return;
669   if (Mask.empty()) {
670     Mask.append(SubMask.begin(), SubMask.end());
671     return;
672   }
673   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
674   int TermValue = std::min(Mask.size(), SubMask.size());
675   for (int I = 0, E = SubMask.size(); I < E; ++I) {
676     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
677         Mask[SubMask[I]] >= TermValue)
678       continue;
679     NewMask[I] = Mask[SubMask[I]];
680   }
681   Mask.swap(NewMask);
682 }
683 
684 /// Order may have elements assigned special value (size) which is out of
685 /// bounds. Such indices only appear on places which correspond to undef values
686 /// (see canReuseExtract for details) and used in order to avoid undef values
687 /// have effect on operands ordering.
688 /// The first loop below simply finds all unused indices and then the next loop
689 /// nest assigns these indices for undef values positions.
690 /// As an example below Order has two undef positions and they have assigned
691 /// values 3 and 7 respectively:
692 /// before:  6 9 5 4 9 2 1 0
693 /// after:   6 3 5 4 7 2 1 0
694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
695   const unsigned Sz = Order.size();
696   SmallBitVector UnusedIndices(Sz, /*t=*/true);
697   SmallBitVector MaskedIndices(Sz);
698   for (unsigned I = 0; I < Sz; ++I) {
699     if (Order[I] < Sz)
700       UnusedIndices.reset(Order[I]);
701     else
702       MaskedIndices.set(I);
703   }
704   if (MaskedIndices.none())
705     return;
706   assert(UnusedIndices.count() == MaskedIndices.count() &&
707          "Non-synced masked/available indices.");
708   int Idx = UnusedIndices.find_first();
709   int MIdx = MaskedIndices.find_first();
710   while (MIdx >= 0) {
711     assert(Idx >= 0 && "Indices must be synced.");
712     Order[MIdx] = Idx;
713     Idx = UnusedIndices.find_next(Idx);
714     MIdx = MaskedIndices.find_next(MIdx);
715   }
716 }
717 
718 namespace llvm {
719 
720 static void inversePermutation(ArrayRef<unsigned> Indices,
721                                SmallVectorImpl<int> &Mask) {
722   Mask.clear();
723   const unsigned E = Indices.size();
724   Mask.resize(E, UndefMaskElem);
725   for (unsigned I = 0; I < E; ++I)
726     Mask[Indices[I]] = I;
727 }
728 
729 /// \returns inserting index of InsertElement or InsertValue instruction,
730 /// using Offset as base offset for index.
731 static Optional<unsigned> getInsertIndex(Value *InsertInst,
732                                          unsigned Offset = 0) {
733   int Index = Offset;
734   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
735     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
736       auto *VT = cast<FixedVectorType>(IE->getType());
737       if (CI->getValue().uge(VT->getNumElements()))
738         return None;
739       Index *= VT->getNumElements();
740       Index += CI->getZExtValue();
741       return Index;
742     }
743     return None;
744   }
745 
746   auto *IV = cast<InsertValueInst>(InsertInst);
747   Type *CurrentType = IV->getType();
748   for (unsigned I : IV->indices()) {
749     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
750       Index *= ST->getNumElements();
751       CurrentType = ST->getElementType(I);
752     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
753       Index *= AT->getNumElements();
754       CurrentType = AT->getElementType();
755     } else {
756       return None;
757     }
758     Index += I;
759   }
760   return Index;
761 }
762 
763 /// Reorders the list of scalars in accordance with the given \p Mask.
764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
765                            ArrayRef<int> Mask) {
766   assert(!Mask.empty() && "Expected non-empty mask.");
767   SmallVector<Value *> Prev(Scalars.size(),
768                             UndefValue::get(Scalars.front()->getType()));
769   Prev.swap(Scalars);
770   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
771     if (Mask[I] != UndefMaskElem)
772       Scalars[Mask[I]] = Prev[I];
773 }
774 
775 namespace slpvectorizer {
776 
777 /// Bottom Up SLP Vectorizer.
778 class BoUpSLP {
779   struct TreeEntry;
780   struct ScheduleData;
781 
782 public:
783   using ValueList = SmallVector<Value *, 8>;
784   using InstrList = SmallVector<Instruction *, 16>;
785   using ValueSet = SmallPtrSet<Value *, 16>;
786   using StoreList = SmallVector<StoreInst *, 8>;
787   using ExtraValueToDebugLocsMap =
788       MapVector<Value *, SmallVector<Instruction *, 2>>;
789   using OrdersType = SmallVector<unsigned, 4>;
790 
791   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
792           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
793           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
794           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
795       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
796         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
797     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
798     // Use the vector register size specified by the target unless overridden
799     // by a command-line option.
800     // TODO: It would be better to limit the vectorization factor based on
801     //       data type rather than just register size. For example, x86 AVX has
802     //       256-bit registers, but it does not support integer operations
803     //       at that width (that requires AVX2).
804     if (MaxVectorRegSizeOption.getNumOccurrences())
805       MaxVecRegSize = MaxVectorRegSizeOption;
806     else
807       MaxVecRegSize =
808           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
809               .getFixedSize();
810 
811     if (MinVectorRegSizeOption.getNumOccurrences())
812       MinVecRegSize = MinVectorRegSizeOption;
813     else
814       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
815   }
816 
817   /// Vectorize the tree that starts with the elements in \p VL.
818   /// Returns the vectorized root.
819   Value *vectorizeTree();
820 
821   /// Vectorize the tree but with the list of externally used values \p
822   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
823   /// generated extractvalue instructions.
824   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
825 
826   /// \returns the cost incurred by unwanted spills and fills, caused by
827   /// holding live values over call sites.
828   InstructionCost getSpillCost() const;
829 
830   /// \returns the vectorization cost of the subtree that starts at \p VL.
831   /// A negative number means that this is profitable.
832   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
833 
834   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
835   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
836   void buildTree(ArrayRef<Value *> Roots,
837                  ArrayRef<Value *> UserIgnoreLst = None);
838 
839   /// Builds external uses of the vectorized scalars, i.e. the list of
840   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
841   /// ExternallyUsedValues contains additional list of external uses to handle
842   /// vectorization of reductions.
843   void
844   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
845 
846   /// Clear the internal data structures that are created by 'buildTree'.
847   void deleteTree() {
848     VectorizableTree.clear();
849     ScalarToTreeEntry.clear();
850     MustGather.clear();
851     ExternalUses.clear();
852     for (auto &Iter : BlocksSchedules) {
853       BlockScheduling *BS = Iter.second.get();
854       BS->clear();
855     }
856     MinBWs.clear();
857     InstrElementSize.clear();
858   }
859 
860   unsigned getTreeSize() const { return VectorizableTree.size(); }
861 
862   /// Perform LICM and CSE on the newly generated gather sequences.
863   void optimizeGatherSequence();
864 
865   /// Checks if the specified gather tree entry \p TE can be represented as a
866   /// shuffled vector entry + (possibly) permutation with other gathers. It
867   /// implements the checks only for possibly ordered scalars (Loads,
868   /// ExtractElement, ExtractValue), which can be part of the graph.
869   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
870 
871   /// Gets reordering data for the given tree entry. If the entry is vectorized
872   /// - just return ReorderIndices, otherwise check if the scalars can be
873   /// reordered and return the most optimal order.
874   /// \param TopToBottom If true, include the order of vectorized stores and
875   /// insertelement nodes, otherwise skip them.
876   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
877 
878   /// Reorders the current graph to the most profitable order starting from the
879   /// root node to the leaf nodes. The best order is chosen only from the nodes
880   /// of the same size (vectorization factor). Smaller nodes are considered
881   /// parts of subgraph with smaller VF and they are reordered independently. We
882   /// can make it because we still need to extend smaller nodes to the wider VF
883   /// and we can merge reordering shuffles with the widening shuffles.
884   void reorderTopToBottom();
885 
886   /// Reorders the current graph to the most profitable order starting from
887   /// leaves to the root. It allows to rotate small subgraphs and reduce the
888   /// number of reshuffles if the leaf nodes use the same order. In this case we
889   /// can merge the orders and just shuffle user node instead of shuffling its
890   /// operands. Plus, even the leaf nodes have different orders, it allows to
891   /// sink reordering in the graph closer to the root node and merge it later
892   /// during analysis.
893   void reorderBottomToTop(bool IgnoreReorder = false);
894 
895   /// \return The vector element size in bits to use when vectorizing the
896   /// expression tree ending at \p V. If V is a store, the size is the width of
897   /// the stored value. Otherwise, the size is the width of the largest loaded
898   /// value reaching V. This method is used by the vectorizer to calculate
899   /// vectorization factors.
900   unsigned getVectorElementSize(Value *V);
901 
902   /// Compute the minimum type sizes required to represent the entries in a
903   /// vectorizable tree.
904   void computeMinimumValueSizes();
905 
906   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
907   unsigned getMaxVecRegSize() const {
908     return MaxVecRegSize;
909   }
910 
911   // \returns minimum vector register size as set by cl::opt.
912   unsigned getMinVecRegSize() const {
913     return MinVecRegSize;
914   }
915 
916   unsigned getMinVF(unsigned Sz) const {
917     return std::max(2U, getMinVecRegSize() / Sz);
918   }
919 
920   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
921     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
922       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
923     return MaxVF ? MaxVF : UINT_MAX;
924   }
925 
926   /// Check if homogeneous aggregate is isomorphic to some VectorType.
927   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
928   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
929   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
930   ///
931   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
932   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
933 
934   /// \returns True if the VectorizableTree is both tiny and not fully
935   /// vectorizable. We do not vectorize such trees.
936   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
937 
938   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
939   /// can be load combined in the backend. Load combining may not be allowed in
940   /// the IR optimizer, so we do not want to alter the pattern. For example,
941   /// partially transforming a scalar bswap() pattern into vector code is
942   /// effectively impossible for the backend to undo.
943   /// TODO: If load combining is allowed in the IR optimizer, this analysis
944   ///       may not be necessary.
945   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
946 
947   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
948   /// can be load combined in the backend. Load combining may not be allowed in
949   /// the IR optimizer, so we do not want to alter the pattern. For example,
950   /// partially transforming a scalar bswap() pattern into vector code is
951   /// effectively impossible for the backend to undo.
952   /// TODO: If load combining is allowed in the IR optimizer, this analysis
953   ///       may not be necessary.
954   bool isLoadCombineCandidate() const;
955 
956   OptimizationRemarkEmitter *getORE() { return ORE; }
957 
958   /// This structure holds any data we need about the edges being traversed
959   /// during buildTree_rec(). We keep track of:
960   /// (i) the user TreeEntry index, and
961   /// (ii) the index of the edge.
962   struct EdgeInfo {
963     EdgeInfo() = default;
964     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
965         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
966     /// The user TreeEntry.
967     TreeEntry *UserTE = nullptr;
968     /// The operand index of the use.
969     unsigned EdgeIdx = UINT_MAX;
970 #ifndef NDEBUG
971     friend inline raw_ostream &operator<<(raw_ostream &OS,
972                                           const BoUpSLP::EdgeInfo &EI) {
973       EI.dump(OS);
974       return OS;
975     }
976     /// Debug print.
977     void dump(raw_ostream &OS) const {
978       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
979          << " EdgeIdx:" << EdgeIdx << "}";
980     }
981     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
982 #endif
983   };
984 
985   /// A helper data structure to hold the operands of a vector of instructions.
986   /// This supports a fixed vector length for all operand vectors.
987   class VLOperands {
988     /// For each operand we need (i) the value, and (ii) the opcode that it
989     /// would be attached to if the expression was in a left-linearized form.
990     /// This is required to avoid illegal operand reordering.
991     /// For example:
992     /// \verbatim
993     ///                         0 Op1
994     ///                         |/
995     /// Op1 Op2   Linearized    + Op2
996     ///   \ /     ---------->   |/
997     ///    -                    -
998     ///
999     /// Op1 - Op2            (0 + Op1) - Op2
1000     /// \endverbatim
1001     ///
1002     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1003     ///
1004     /// Another way to think of this is to track all the operations across the
1005     /// path from the operand all the way to the root of the tree and to
1006     /// calculate the operation that corresponds to this path. For example, the
1007     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1008     /// corresponding operation is a '-' (which matches the one in the
1009     /// linearized tree, as shown above).
1010     ///
1011     /// For lack of a better term, we refer to this operation as Accumulated
1012     /// Path Operation (APO).
1013     struct OperandData {
1014       OperandData() = default;
1015       OperandData(Value *V, bool APO, bool IsUsed)
1016           : V(V), APO(APO), IsUsed(IsUsed) {}
1017       /// The operand value.
1018       Value *V = nullptr;
1019       /// TreeEntries only allow a single opcode, or an alternate sequence of
1020       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1021       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1022       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1023       /// (e.g., Add/Mul)
1024       bool APO = false;
1025       /// Helper data for the reordering function.
1026       bool IsUsed = false;
1027     };
1028 
1029     /// During operand reordering, we are trying to select the operand at lane
1030     /// that matches best with the operand at the neighboring lane. Our
1031     /// selection is based on the type of value we are looking for. For example,
1032     /// if the neighboring lane has a load, we need to look for a load that is
1033     /// accessing a consecutive address. These strategies are summarized in the
1034     /// 'ReorderingMode' enumerator.
1035     enum class ReorderingMode {
1036       Load,     ///< Matching loads to consecutive memory addresses
1037       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1038       Constant, ///< Matching constants
1039       Splat,    ///< Matching the same instruction multiple times (broadcast)
1040       Failed,   ///< We failed to create a vectorizable group
1041     };
1042 
1043     using OperandDataVec = SmallVector<OperandData, 2>;
1044 
1045     /// A vector of operand vectors.
1046     SmallVector<OperandDataVec, 4> OpsVec;
1047 
1048     const DataLayout &DL;
1049     ScalarEvolution &SE;
1050     const BoUpSLP &R;
1051 
1052     /// \returns the operand data at \p OpIdx and \p Lane.
1053     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1054       return OpsVec[OpIdx][Lane];
1055     }
1056 
1057     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1058     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1059       return OpsVec[OpIdx][Lane];
1060     }
1061 
1062     /// Clears the used flag for all entries.
1063     void clearUsed() {
1064       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1065            OpIdx != NumOperands; ++OpIdx)
1066         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1067              ++Lane)
1068           OpsVec[OpIdx][Lane].IsUsed = false;
1069     }
1070 
1071     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1072     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1073       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1074     }
1075 
1076     // The hard-coded scores listed here are not very important, though it shall
1077     // be higher for better matches to improve the resulting cost. When
1078     // computing the scores of matching one sub-tree with another, we are
1079     // basically counting the number of values that are matching. So even if all
1080     // scores are set to 1, we would still get a decent matching result.
1081     // However, sometimes we have to break ties. For example we may have to
1082     // choose between matching loads vs matching opcodes. This is what these
1083     // scores are helping us with: they provide the order of preference. Also,
1084     // this is important if the scalar is externally used or used in another
1085     // tree entry node in the different lane.
1086 
1087     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1088     static const int ScoreConsecutiveLoads = 4;
1089     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1090     static const int ScoreReversedLoads = 3;
1091     /// ExtractElementInst from same vector and consecutive indexes.
1092     static const int ScoreConsecutiveExtracts = 4;
1093     /// ExtractElementInst from same vector and reversed indices.
1094     static const int ScoreReversedExtracts = 3;
1095     /// Constants.
1096     static const int ScoreConstants = 2;
1097     /// Instructions with the same opcode.
1098     static const int ScoreSameOpcode = 2;
1099     /// Instructions with alt opcodes (e.g, add + sub).
1100     static const int ScoreAltOpcodes = 1;
1101     /// Identical instructions (a.k.a. splat or broadcast).
1102     static const int ScoreSplat = 1;
1103     /// Matching with an undef is preferable to failing.
1104     static const int ScoreUndef = 1;
1105     /// Score for failing to find a decent match.
1106     static const int ScoreFail = 0;
1107     /// Score if all users are vectorized.
1108     static const int ScoreAllUserVectorized = 1;
1109 
1110     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1111     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1112     /// MainAltOps.
1113     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
1114                                ScalarEvolution &SE, int NumLanes,
1115                                ArrayRef<Value *> MainAltOps) {
1116       if (V1 == V2)
1117         return VLOperands::ScoreSplat;
1118 
1119       auto *LI1 = dyn_cast<LoadInst>(V1);
1120       auto *LI2 = dyn_cast<LoadInst>(V2);
1121       if (LI1 && LI2) {
1122         if (LI1->getParent() != LI2->getParent())
1123           return VLOperands::ScoreFail;
1124 
1125         Optional<int> Dist = getPointersDiff(
1126             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1127             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1128         if (!Dist || *Dist == 0)
1129           return VLOperands::ScoreFail;
1130         // The distance is too large - still may be profitable to use masked
1131         // loads/gathers.
1132         if (std::abs(*Dist) > NumLanes / 2)
1133           return VLOperands::ScoreAltOpcodes;
1134         // This still will detect consecutive loads, but we might have "holes"
1135         // in some cases. It is ok for non-power-2 vectorization and may produce
1136         // better results. It should not affect current vectorization.
1137         return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads
1138                            : VLOperands::ScoreReversedLoads;
1139       }
1140 
1141       auto *C1 = dyn_cast<Constant>(V1);
1142       auto *C2 = dyn_cast<Constant>(V2);
1143       if (C1 && C2)
1144         return VLOperands::ScoreConstants;
1145 
1146       // Extracts from consecutive indexes of the same vector better score as
1147       // the extracts could be optimized away.
1148       Value *EV1;
1149       ConstantInt *Ex1Idx;
1150       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1151         // Undefs are always profitable for extractelements.
1152         if (isa<UndefValue>(V2))
1153           return VLOperands::ScoreConsecutiveExtracts;
1154         Value *EV2 = nullptr;
1155         ConstantInt *Ex2Idx = nullptr;
1156         if (match(V2,
1157                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1158                                                          m_Undef())))) {
1159           // Undefs are always profitable for extractelements.
1160           if (!Ex2Idx)
1161             return VLOperands::ScoreConsecutiveExtracts;
1162           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1163             return VLOperands::ScoreConsecutiveExtracts;
1164           if (EV2 == EV1) {
1165             int Idx1 = Ex1Idx->getZExtValue();
1166             int Idx2 = Ex2Idx->getZExtValue();
1167             int Dist = Idx2 - Idx1;
1168             // The distance is too large - still may be profitable to use
1169             // shuffles.
1170             if (std::abs(Dist) == 0)
1171               return VLOperands::ScoreSplat;
1172             if (std::abs(Dist) > NumLanes / 2)
1173               return VLOperands::ScoreSameOpcode;
1174             return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts
1175                               : VLOperands::ScoreReversedExtracts;
1176           }
1177           return VLOperands::ScoreAltOpcodes;
1178         }
1179         return VLOperands::ScoreFail;
1180       }
1181 
1182       auto *I1 = dyn_cast<Instruction>(V1);
1183       auto *I2 = dyn_cast<Instruction>(V2);
1184       if (I1 && I2) {
1185         if (I1->getParent() != I2->getParent())
1186           return VLOperands::ScoreFail;
1187         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1188         Ops.push_back(I1);
1189         Ops.push_back(I2);
1190         InstructionsState S = getSameOpcode(Ops);
1191         // Note: Only consider instructions with <= 2 operands to avoid
1192         // complexity explosion.
1193         if (S.getOpcode() &&
1194             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1195              !S.isAltShuffle()) &&
1196             all_of(Ops, [&S](Value *V) {
1197               return cast<Instruction>(V)->getNumOperands() ==
1198                      S.MainOp->getNumOperands();
1199             }))
1200           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1201                                   : VLOperands::ScoreSameOpcode;
1202       }
1203 
1204       if (isa<UndefValue>(V2))
1205         return VLOperands::ScoreUndef;
1206 
1207       return VLOperands::ScoreFail;
1208     }
1209 
1210     /// \param Lane lane of the operands under analysis.
1211     /// \param OpIdx operand index in \p Lane lane we're looking the best
1212     /// candidate for.
1213     /// \param Idx operand index of the current candidate value.
1214     /// \returns The additional score due to possible broadcasting of the
1215     /// elements in the lane. It is more profitable to have power-of-2 unique
1216     /// elements in the lane, it will be vectorized with higher probability
1217     /// after removing duplicates. Currently the SLP vectorizer supports only
1218     /// vectorization of the power-of-2 number of unique scalars.
1219     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1220       Value *IdxLaneV = getData(Idx, Lane).V;
1221       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1222         return 0;
1223       SmallPtrSet<Value *, 4> Uniques;
1224       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1225         if (Ln == Lane)
1226           continue;
1227         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1228         if (!isa<Instruction>(OpIdxLnV))
1229           return 0;
1230         Uniques.insert(OpIdxLnV);
1231       }
1232       int UniquesCount = Uniques.size();
1233       int UniquesCntWithIdxLaneV =
1234           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1235       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1236       int UniquesCntWithOpIdxLaneV =
1237           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1238       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1239         return 0;
1240       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1241               UniquesCntWithOpIdxLaneV) -
1242              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1243     }
1244 
1245     /// \param Lane lane of the operands under analysis.
1246     /// \param OpIdx operand index in \p Lane lane we're looking the best
1247     /// candidate for.
1248     /// \param Idx operand index of the current candidate value.
1249     /// \returns The additional score for the scalar which users are all
1250     /// vectorized.
1251     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1252       Value *IdxLaneV = getData(Idx, Lane).V;
1253       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1254       // Do not care about number of uses for vector-like instructions
1255       // (extractelement/extractvalue with constant indices), they are extracts
1256       // themselves and already externally used. Vectorization of such
1257       // instructions does not add extra extractelement instruction, just may
1258       // remove it.
1259       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1260           isVectorLikeInstWithConstOps(OpIdxLaneV))
1261         return VLOperands::ScoreAllUserVectorized;
1262       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1263       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1264         return 0;
1265       return R.areAllUsersVectorized(IdxLaneI, None)
1266                  ? VLOperands::ScoreAllUserVectorized
1267                  : 0;
1268     }
1269 
1270     /// Go through the operands of \p LHS and \p RHS recursively until \p
1271     /// MaxLevel, and return the cummulative score. For example:
1272     /// \verbatim
1273     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1274     ///     \ /         \ /         \ /        \ /
1275     ///      +           +           +          +
1276     ///     G1          G2          G3         G4
1277     /// \endverbatim
1278     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1279     /// each level recursively, accumulating the score. It starts from matching
1280     /// the additions at level 0, then moves on to the loads (level 1). The
1281     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1282     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1283     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1284     /// Please note that the order of the operands does not matter, as we
1285     /// evaluate the score of all profitable combinations of operands. In
1286     /// other words the score of G1 and G4 is the same as G1 and G2. This
1287     /// heuristic is based on ideas described in:
1288     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1289     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1290     ///   Luís F. W. Góes
1291     int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel,
1292                            ArrayRef<Value *> MainAltOps) {
1293 
1294       // Get the shallow score of V1 and V2.
1295       int ShallowScoreAtThisLevel =
1296           getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps);
1297 
1298       // If reached MaxLevel,
1299       //  or if V1 and V2 are not instructions,
1300       //  or if they are SPLAT,
1301       //  or if they are not consecutive,
1302       //  or if profitable to vectorize loads or extractelements, early return
1303       //  the current cost.
1304       auto *I1 = dyn_cast<Instruction>(LHS);
1305       auto *I2 = dyn_cast<Instruction>(RHS);
1306       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1307           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1308           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1309             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1310             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1311            ShallowScoreAtThisLevel))
1312         return ShallowScoreAtThisLevel;
1313       assert(I1 && I2 && "Should have early exited.");
1314 
1315       // Contains the I2 operand indexes that got matched with I1 operands.
1316       SmallSet<unsigned, 4> Op2Used;
1317 
1318       // Recursion towards the operands of I1 and I2. We are trying all possible
1319       // operand pairs, and keeping track of the best score.
1320       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1321            OpIdx1 != NumOperands1; ++OpIdx1) {
1322         // Try to pair op1I with the best operand of I2.
1323         int MaxTmpScore = 0;
1324         unsigned MaxOpIdx2 = 0;
1325         bool FoundBest = false;
1326         // If I2 is commutative try all combinations.
1327         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1328         unsigned ToIdx = isCommutative(I2)
1329                              ? I2->getNumOperands()
1330                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1331         assert(FromIdx <= ToIdx && "Bad index");
1332         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1333           // Skip operands already paired with OpIdx1.
1334           if (Op2Used.count(OpIdx2))
1335             continue;
1336           // Recursively calculate the cost at each level
1337           int TmpScore =
1338               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1339                                  CurrLevel + 1, MaxLevel, None);
1340           // Look for the best score.
1341           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1342             MaxTmpScore = TmpScore;
1343             MaxOpIdx2 = OpIdx2;
1344             FoundBest = true;
1345           }
1346         }
1347         if (FoundBest) {
1348           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1349           Op2Used.insert(MaxOpIdx2);
1350           ShallowScoreAtThisLevel += MaxTmpScore;
1351         }
1352       }
1353       return ShallowScoreAtThisLevel;
1354     }
1355 
1356     /// Score scaling factor for fully compatible instructions but with
1357     /// different number of external uses. Allows better selection of the
1358     /// instructions with less external uses.
1359     static const int ScoreScaleFactor = 10;
1360 
1361     /// \Returns the look-ahead score, which tells us how much the sub-trees
1362     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1363     /// score. This helps break ties in an informed way when we cannot decide on
1364     /// the order of the operands by just considering the immediate
1365     /// predecessors.
1366     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1367                           int Lane, unsigned OpIdx, unsigned Idx,
1368                           bool &IsUsed) {
1369       int Score =
1370           getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps);
1371       if (Score) {
1372         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1373         if (Score <= -SplatScore) {
1374           // Set the minimum score for splat-like sequence to avoid setting
1375           // failed state.
1376           Score = 1;
1377         } else {
1378           Score += SplatScore;
1379           // Scale score to see the difference between different operands
1380           // and similar operands but all vectorized/not all vectorized
1381           // uses. It does not affect actual selection of the best
1382           // compatible operand in general, just allows to select the
1383           // operand with all vectorized uses.
1384           Score *= ScoreScaleFactor;
1385           Score += getExternalUseScore(Lane, OpIdx, Idx);
1386           IsUsed = true;
1387         }
1388       }
1389       return Score;
1390     }
1391 
1392     /// Best defined scores per lanes between the passes. Used to choose the
1393     /// best operand (with the highest score) between the passes.
1394     /// The key - {Operand Index, Lane}.
1395     /// The value - the best score between the passes for the lane and the
1396     /// operand.
1397     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1398         BestScoresPerLanes;
1399 
1400     // Search all operands in Ops[*][Lane] for the one that matches best
1401     // Ops[OpIdx][LastLane] and return its opreand index.
1402     // If no good match can be found, return None.
1403     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1404                                       ArrayRef<ReorderingMode> ReorderingModes,
1405                                       ArrayRef<Value *> MainAltOps) {
1406       unsigned NumOperands = getNumOperands();
1407 
1408       // The operand of the previous lane at OpIdx.
1409       Value *OpLastLane = getData(OpIdx, LastLane).V;
1410 
1411       // Our strategy mode for OpIdx.
1412       ReorderingMode RMode = ReorderingModes[OpIdx];
1413       if (RMode == ReorderingMode::Failed)
1414         return None;
1415 
1416       // The linearized opcode of the operand at OpIdx, Lane.
1417       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1418 
1419       // The best operand index and its score.
1420       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1421       // are using the score to differentiate between the two.
1422       struct BestOpData {
1423         Optional<unsigned> Idx = None;
1424         unsigned Score = 0;
1425       } BestOp;
1426       BestOp.Score =
1427           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1428               .first->second;
1429 
1430       // Track if the operand must be marked as used. If the operand is set to
1431       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1432       // want to reestimate the operands again on the following iterations).
1433       bool IsUsed =
1434           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1435       // Iterate through all unused operands and look for the best.
1436       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1437         // Get the operand at Idx and Lane.
1438         OperandData &OpData = getData(Idx, Lane);
1439         Value *Op = OpData.V;
1440         bool OpAPO = OpData.APO;
1441 
1442         // Skip already selected operands.
1443         if (OpData.IsUsed)
1444           continue;
1445 
1446         // Skip if we are trying to move the operand to a position with a
1447         // different opcode in the linearized tree form. This would break the
1448         // semantics.
1449         if (OpAPO != OpIdxAPO)
1450           continue;
1451 
1452         // Look for an operand that matches the current mode.
1453         switch (RMode) {
1454         case ReorderingMode::Load:
1455         case ReorderingMode::Constant:
1456         case ReorderingMode::Opcode: {
1457           bool LeftToRight = Lane > LastLane;
1458           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1459           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1460           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1461                                         OpIdx, Idx, IsUsed);
1462           if (Score > static_cast<int>(BestOp.Score)) {
1463             BestOp.Idx = Idx;
1464             BestOp.Score = Score;
1465             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1466           }
1467           break;
1468         }
1469         case ReorderingMode::Splat:
1470           if (Op == OpLastLane)
1471             BestOp.Idx = Idx;
1472           break;
1473         case ReorderingMode::Failed:
1474           llvm_unreachable("Not expected Failed reordering mode.");
1475         }
1476       }
1477 
1478       if (BestOp.Idx) {
1479         getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed;
1480         return BestOp.Idx;
1481       }
1482       // If we could not find a good match return None.
1483       return None;
1484     }
1485 
1486     /// Helper for reorderOperandVecs.
1487     /// \returns the lane that we should start reordering from. This is the one
1488     /// which has the least number of operands that can freely move about or
1489     /// less profitable because it already has the most optimal set of operands.
1490     unsigned getBestLaneToStartReordering() const {
1491       unsigned Min = UINT_MAX;
1492       unsigned SameOpNumber = 0;
1493       // std::pair<unsigned, unsigned> is used to implement a simple voting
1494       // algorithm and choose the lane with the least number of operands that
1495       // can freely move about or less profitable because it already has the
1496       // most optimal set of operands. The first unsigned is a counter for
1497       // voting, the second unsigned is the counter of lanes with instructions
1498       // with same/alternate opcodes and same parent basic block.
1499       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1500       // Try to be closer to the original results, if we have multiple lanes
1501       // with same cost. If 2 lanes have the same cost, use the one with the
1502       // lowest index.
1503       for (int I = getNumLanes(); I > 0; --I) {
1504         unsigned Lane = I - 1;
1505         OperandsOrderData NumFreeOpsHash =
1506             getMaxNumOperandsThatCanBeReordered(Lane);
1507         // Compare the number of operands that can move and choose the one with
1508         // the least number.
1509         if (NumFreeOpsHash.NumOfAPOs < Min) {
1510           Min = NumFreeOpsHash.NumOfAPOs;
1511           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1512           HashMap.clear();
1513           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1514         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1515                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1516           // Select the most optimal lane in terms of number of operands that
1517           // should be moved around.
1518           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1519           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1520         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1521                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1522           auto It = HashMap.find(NumFreeOpsHash.Hash);
1523           if (It == HashMap.end())
1524             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1525           else
1526             ++It->second.first;
1527         }
1528       }
1529       // Select the lane with the minimum counter.
1530       unsigned BestLane = 0;
1531       unsigned CntMin = UINT_MAX;
1532       for (const auto &Data : reverse(HashMap)) {
1533         if (Data.second.first < CntMin) {
1534           CntMin = Data.second.first;
1535           BestLane = Data.second.second;
1536         }
1537       }
1538       return BestLane;
1539     }
1540 
1541     /// Data structure that helps to reorder operands.
1542     struct OperandsOrderData {
1543       /// The best number of operands with the same APOs, which can be
1544       /// reordered.
1545       unsigned NumOfAPOs = UINT_MAX;
1546       /// Number of operands with the same/alternate instruction opcode and
1547       /// parent.
1548       unsigned NumOpsWithSameOpcodeParent = 0;
1549       /// Hash for the actual operands ordering.
1550       /// Used to count operands, actually their position id and opcode
1551       /// value. It is used in the voting mechanism to find the lane with the
1552       /// least number of operands that can freely move about or less profitable
1553       /// because it already has the most optimal set of operands. Can be
1554       /// replaced with SmallVector<unsigned> instead but hash code is faster
1555       /// and requires less memory.
1556       unsigned Hash = 0;
1557     };
1558     /// \returns the maximum number of operands that are allowed to be reordered
1559     /// for \p Lane and the number of compatible instructions(with the same
1560     /// parent/opcode). This is used as a heuristic for selecting the first lane
1561     /// to start operand reordering.
1562     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1563       unsigned CntTrue = 0;
1564       unsigned NumOperands = getNumOperands();
1565       // Operands with the same APO can be reordered. We therefore need to count
1566       // how many of them we have for each APO, like this: Cnt[APO] = x.
1567       // Since we only have two APOs, namely true and false, we can avoid using
1568       // a map. Instead we can simply count the number of operands that
1569       // correspond to one of them (in this case the 'true' APO), and calculate
1570       // the other by subtracting it from the total number of operands.
1571       // Operands with the same instruction opcode and parent are more
1572       // profitable since we don't need to move them in many cases, with a high
1573       // probability such lane already can be vectorized effectively.
1574       bool AllUndefs = true;
1575       unsigned NumOpsWithSameOpcodeParent = 0;
1576       Instruction *OpcodeI = nullptr;
1577       BasicBlock *Parent = nullptr;
1578       unsigned Hash = 0;
1579       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1580         const OperandData &OpData = getData(OpIdx, Lane);
1581         if (OpData.APO)
1582           ++CntTrue;
1583         // Use Boyer-Moore majority voting for finding the majority opcode and
1584         // the number of times it occurs.
1585         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1586           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1587               I->getParent() != Parent) {
1588             if (NumOpsWithSameOpcodeParent == 0) {
1589               NumOpsWithSameOpcodeParent = 1;
1590               OpcodeI = I;
1591               Parent = I->getParent();
1592             } else {
1593               --NumOpsWithSameOpcodeParent;
1594             }
1595           } else {
1596             ++NumOpsWithSameOpcodeParent;
1597           }
1598         }
1599         Hash = hash_combine(
1600             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1601         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1602       }
1603       if (AllUndefs)
1604         return {};
1605       OperandsOrderData Data;
1606       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1607       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1608       Data.Hash = Hash;
1609       return Data;
1610     }
1611 
1612     /// Go through the instructions in VL and append their operands.
1613     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1614       assert(!VL.empty() && "Bad VL");
1615       assert((empty() || VL.size() == getNumLanes()) &&
1616              "Expected same number of lanes");
1617       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1618       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1619       OpsVec.resize(NumOperands);
1620       unsigned NumLanes = VL.size();
1621       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1622         OpsVec[OpIdx].resize(NumLanes);
1623         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1624           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1625           // Our tree has just 3 nodes: the root and two operands.
1626           // It is therefore trivial to get the APO. We only need to check the
1627           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1628           // RHS operand. The LHS operand of both add and sub is never attached
1629           // to an inversese operation in the linearized form, therefore its APO
1630           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1631 
1632           // Since operand reordering is performed on groups of commutative
1633           // operations or alternating sequences (e.g., +, -), we can safely
1634           // tell the inverse operations by checking commutativity.
1635           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1636           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1637           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1638                                  APO, false};
1639         }
1640       }
1641     }
1642 
1643     /// \returns the number of operands.
1644     unsigned getNumOperands() const { return OpsVec.size(); }
1645 
1646     /// \returns the number of lanes.
1647     unsigned getNumLanes() const { return OpsVec[0].size(); }
1648 
1649     /// \returns the operand value at \p OpIdx and \p Lane.
1650     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1651       return getData(OpIdx, Lane).V;
1652     }
1653 
1654     /// \returns true if the data structure is empty.
1655     bool empty() const { return OpsVec.empty(); }
1656 
1657     /// Clears the data.
1658     void clear() { OpsVec.clear(); }
1659 
1660     /// \Returns true if there are enough operands identical to \p Op to fill
1661     /// the whole vector.
1662     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1663     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1664       bool OpAPO = getData(OpIdx, Lane).APO;
1665       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1666         if (Ln == Lane)
1667           continue;
1668         // This is set to true if we found a candidate for broadcast at Lane.
1669         bool FoundCandidate = false;
1670         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1671           OperandData &Data = getData(OpI, Ln);
1672           if (Data.APO != OpAPO || Data.IsUsed)
1673             continue;
1674           if (Data.V == Op) {
1675             FoundCandidate = true;
1676             Data.IsUsed = true;
1677             break;
1678           }
1679         }
1680         if (!FoundCandidate)
1681           return false;
1682       }
1683       return true;
1684     }
1685 
1686   public:
1687     /// Initialize with all the operands of the instruction vector \p RootVL.
1688     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1689                ScalarEvolution &SE, const BoUpSLP &R)
1690         : DL(DL), SE(SE), R(R) {
1691       // Append all the operands of RootVL.
1692       appendOperandsOfVL(RootVL);
1693     }
1694 
1695     /// \Returns a value vector with the operands across all lanes for the
1696     /// opearnd at \p OpIdx.
1697     ValueList getVL(unsigned OpIdx) const {
1698       ValueList OpVL(OpsVec[OpIdx].size());
1699       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1700              "Expected same num of lanes across all operands");
1701       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1702         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1703       return OpVL;
1704     }
1705 
1706     // Performs operand reordering for 2 or more operands.
1707     // The original operands are in OrigOps[OpIdx][Lane].
1708     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1709     void reorder() {
1710       unsigned NumOperands = getNumOperands();
1711       unsigned NumLanes = getNumLanes();
1712       // Each operand has its own mode. We are using this mode to help us select
1713       // the instructions for each lane, so that they match best with the ones
1714       // we have selected so far.
1715       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1716 
1717       // This is a greedy single-pass algorithm. We are going over each lane
1718       // once and deciding on the best order right away with no back-tracking.
1719       // However, in order to increase its effectiveness, we start with the lane
1720       // that has operands that can move the least. For example, given the
1721       // following lanes:
1722       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1723       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1724       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1725       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1726       // we will start at Lane 1, since the operands of the subtraction cannot
1727       // be reordered. Then we will visit the rest of the lanes in a circular
1728       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1729 
1730       // Find the first lane that we will start our search from.
1731       unsigned FirstLane = getBestLaneToStartReordering();
1732 
1733       // Initialize the modes.
1734       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1735         Value *OpLane0 = getValue(OpIdx, FirstLane);
1736         // Keep track if we have instructions with all the same opcode on one
1737         // side.
1738         if (isa<LoadInst>(OpLane0))
1739           ReorderingModes[OpIdx] = ReorderingMode::Load;
1740         else if (isa<Instruction>(OpLane0)) {
1741           // Check if OpLane0 should be broadcast.
1742           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1743             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1744           else
1745             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1746         }
1747         else if (isa<Constant>(OpLane0))
1748           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1749         else if (isa<Argument>(OpLane0))
1750           // Our best hope is a Splat. It may save some cost in some cases.
1751           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1752         else
1753           // NOTE: This should be unreachable.
1754           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1755       }
1756 
1757       // Check that we don't have same operands. No need to reorder if operands
1758       // are just perfect diamond or shuffled diamond match. Do not do it only
1759       // for possible broadcasts or non-power of 2 number of scalars (just for
1760       // now).
1761       auto &&SkipReordering = [this]() {
1762         SmallPtrSet<Value *, 4> UniqueValues;
1763         ArrayRef<OperandData> Op0 = OpsVec.front();
1764         for (const OperandData &Data : Op0)
1765           UniqueValues.insert(Data.V);
1766         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1767           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1768                 return !UniqueValues.contains(Data.V);
1769               }))
1770             return false;
1771         }
1772         // TODO: Check if we can remove a check for non-power-2 number of
1773         // scalars after full support of non-power-2 vectorization.
1774         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1775       };
1776 
1777       // If the initial strategy fails for any of the operand indexes, then we
1778       // perform reordering again in a second pass. This helps avoid assigning
1779       // high priority to the failed strategy, and should improve reordering for
1780       // the non-failed operand indexes.
1781       for (int Pass = 0; Pass != 2; ++Pass) {
1782         // Check if no need to reorder operands since they're are perfect or
1783         // shuffled diamond match.
1784         // Need to to do it to avoid extra external use cost counting for
1785         // shuffled matches, which may cause regressions.
1786         if (SkipReordering())
1787           break;
1788         // Skip the second pass if the first pass did not fail.
1789         bool StrategyFailed = false;
1790         // Mark all operand data as free to use.
1791         clearUsed();
1792         // We keep the original operand order for the FirstLane, so reorder the
1793         // rest of the lanes. We are visiting the nodes in a circular fashion,
1794         // using FirstLane as the center point and increasing the radius
1795         // distance.
1796         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1797         for (unsigned I = 0; I < NumOperands; ++I)
1798           MainAltOps[I].push_back(getData(I, FirstLane).V);
1799 
1800         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1801           // Visit the lane on the right and then the lane on the left.
1802           for (int Direction : {+1, -1}) {
1803             int Lane = FirstLane + Direction * Distance;
1804             if (Lane < 0 || Lane >= (int)NumLanes)
1805               continue;
1806             int LastLane = Lane - Direction;
1807             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1808                    "Out of bounds");
1809             // Look for a good match for each operand.
1810             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1811               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1812               Optional<unsigned> BestIdx = getBestOperand(
1813                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1814               // By not selecting a value, we allow the operands that follow to
1815               // select a better matching value. We will get a non-null value in
1816               // the next run of getBestOperand().
1817               if (BestIdx) {
1818                 // Swap the current operand with the one returned by
1819                 // getBestOperand().
1820                 swap(OpIdx, BestIdx.getValue(), Lane);
1821               } else {
1822                 // We failed to find a best operand, set mode to 'Failed'.
1823                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1824                 // Enable the second pass.
1825                 StrategyFailed = true;
1826               }
1827               // Try to get the alternate opcode and follow it during analysis.
1828               if (MainAltOps[OpIdx].size() != 2) {
1829                 OperandData &AltOp = getData(OpIdx, Lane);
1830                 InstructionsState OpS =
1831                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1832                 if (OpS.getOpcode() && OpS.isAltShuffle())
1833                   MainAltOps[OpIdx].push_back(AltOp.V);
1834               }
1835             }
1836           }
1837         }
1838         // Skip second pass if the strategy did not fail.
1839         if (!StrategyFailed)
1840           break;
1841       }
1842     }
1843 
1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1845     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1846       switch (RMode) {
1847       case ReorderingMode::Load:
1848         return "Load";
1849       case ReorderingMode::Opcode:
1850         return "Opcode";
1851       case ReorderingMode::Constant:
1852         return "Constant";
1853       case ReorderingMode::Splat:
1854         return "Splat";
1855       case ReorderingMode::Failed:
1856         return "Failed";
1857       }
1858       llvm_unreachable("Unimplemented Reordering Type");
1859     }
1860 
1861     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1862                                                    raw_ostream &OS) {
1863       return OS << getModeStr(RMode);
1864     }
1865 
1866     /// Debug print.
1867     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1868       printMode(RMode, dbgs());
1869     }
1870 
1871     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1872       return printMode(RMode, OS);
1873     }
1874 
1875     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1876       const unsigned Indent = 2;
1877       unsigned Cnt = 0;
1878       for (const OperandDataVec &OpDataVec : OpsVec) {
1879         OS << "Operand " << Cnt++ << "\n";
1880         for (const OperandData &OpData : OpDataVec) {
1881           OS.indent(Indent) << "{";
1882           if (Value *V = OpData.V)
1883             OS << *V;
1884           else
1885             OS << "null";
1886           OS << ", APO:" << OpData.APO << "}\n";
1887         }
1888         OS << "\n";
1889       }
1890       return OS;
1891     }
1892 
1893     /// Debug print.
1894     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1895 #endif
1896   };
1897 
1898   /// Checks if the instruction is marked for deletion.
1899   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1900 
1901   /// Marks values operands for later deletion by replacing them with Undefs.
1902   void eraseInstructions(ArrayRef<Value *> AV);
1903 
1904   ~BoUpSLP();
1905 
1906 private:
1907   /// Checks if all users of \p I are the part of the vectorization tree.
1908   bool areAllUsersVectorized(Instruction *I,
1909                              ArrayRef<Value *> VectorizedVals) const;
1910 
1911   /// \returns the cost of the vectorizable entry.
1912   InstructionCost getEntryCost(const TreeEntry *E,
1913                                ArrayRef<Value *> VectorizedVals);
1914 
1915   /// This is the recursive part of buildTree.
1916   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1917                      const EdgeInfo &EI);
1918 
1919   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1920   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1921   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1922   /// returns false, setting \p CurrentOrder to either an empty vector or a
1923   /// non-identity permutation that allows to reuse extract instructions.
1924   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1925                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1926 
1927   /// Vectorize a single entry in the tree.
1928   Value *vectorizeTree(TreeEntry *E);
1929 
1930   /// Vectorize a single entry in the tree, starting in \p VL.
1931   Value *vectorizeTree(ArrayRef<Value *> VL);
1932 
1933   /// \returns the scalarization cost for this type. Scalarization in this
1934   /// context means the creation of vectors from a group of scalars. If \p
1935   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
1936   /// vector elements.
1937   InstructionCost getGatherCost(FixedVectorType *Ty,
1938                                 const APInt &ShuffledIndices,
1939                                 bool NeedToShuffle) const;
1940 
1941   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1942   /// tree entries.
1943   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1944   /// previous tree entries. \p Mask is filled with the shuffle mask.
1945   Optional<TargetTransformInfo::ShuffleKind>
1946   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1947                         SmallVectorImpl<const TreeEntry *> &Entries);
1948 
1949   /// \returns the scalarization cost for this list of values. Assuming that
1950   /// this subtree gets vectorized, we may need to extract the values from the
1951   /// roots. This method calculates the cost of extracting the values.
1952   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1953 
1954   /// Set the Builder insert point to one after the last instruction in
1955   /// the bundle
1956   void setInsertPointAfterBundle(const TreeEntry *E);
1957 
1958   /// \returns a vector from a collection of scalars in \p VL.
1959   Value *gather(ArrayRef<Value *> VL);
1960 
1961   /// \returns whether the VectorizableTree is fully vectorizable and will
1962   /// be beneficial even the tree height is tiny.
1963   bool isFullyVectorizableTinyTree(bool ForReduction) const;
1964 
1965   /// Reorder commutative or alt operands to get better probability of
1966   /// generating vectorized code.
1967   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1968                                              SmallVectorImpl<Value *> &Left,
1969                                              SmallVectorImpl<Value *> &Right,
1970                                              const DataLayout &DL,
1971                                              ScalarEvolution &SE,
1972                                              const BoUpSLP &R);
1973   struct TreeEntry {
1974     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1975     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1976 
1977     /// \returns true if the scalars in VL are equal to this entry.
1978     bool isSame(ArrayRef<Value *> VL) const {
1979       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
1980         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
1981           return std::equal(VL.begin(), VL.end(), Scalars.begin());
1982         return VL.size() == Mask.size() &&
1983                std::equal(VL.begin(), VL.end(), Mask.begin(),
1984                           [Scalars](Value *V, int Idx) {
1985                             return (isa<UndefValue>(V) &&
1986                                     Idx == UndefMaskElem) ||
1987                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
1988                           });
1989       };
1990       if (!ReorderIndices.empty()) {
1991         // TODO: implement matching if the nodes are just reordered, still can
1992         // treat the vector as the same if the list of scalars matches VL
1993         // directly, without reordering.
1994         SmallVector<int> Mask;
1995         inversePermutation(ReorderIndices, Mask);
1996         if (VL.size() == Scalars.size())
1997           return IsSame(Scalars, Mask);
1998         if (VL.size() == ReuseShuffleIndices.size()) {
1999           ::addMask(Mask, ReuseShuffleIndices);
2000           return IsSame(Scalars, Mask);
2001         }
2002         return false;
2003       }
2004       return IsSame(Scalars, ReuseShuffleIndices);
2005     }
2006 
2007     /// \returns true if current entry has same operands as \p TE.
2008     bool hasEqualOperands(const TreeEntry &TE) const {
2009       if (TE.getNumOperands() != getNumOperands())
2010         return false;
2011       SmallBitVector Used(getNumOperands());
2012       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2013         unsigned PrevCount = Used.count();
2014         for (unsigned K = 0; K < E; ++K) {
2015           if (Used.test(K))
2016             continue;
2017           if (getOperand(K) == TE.getOperand(I)) {
2018             Used.set(K);
2019             break;
2020           }
2021         }
2022         // Check if we actually found the matching operand.
2023         if (PrevCount == Used.count())
2024           return false;
2025       }
2026       return true;
2027     }
2028 
2029     /// \return Final vectorization factor for the node. Defined by the total
2030     /// number of vectorized scalars, including those, used several times in the
2031     /// entry and counted in the \a ReuseShuffleIndices, if any.
2032     unsigned getVectorFactor() const {
2033       if (!ReuseShuffleIndices.empty())
2034         return ReuseShuffleIndices.size();
2035       return Scalars.size();
2036     };
2037 
2038     /// A vector of scalars.
2039     ValueList Scalars;
2040 
2041     /// The Scalars are vectorized into this value. It is initialized to Null.
2042     Value *VectorizedValue = nullptr;
2043 
2044     /// Do we need to gather this sequence or vectorize it
2045     /// (either with vector instruction or with scatter/gather
2046     /// intrinsics for store/load)?
2047     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2048     EntryState State;
2049 
2050     /// Does this sequence require some shuffling?
2051     SmallVector<int, 4> ReuseShuffleIndices;
2052 
2053     /// Does this entry require reordering?
2054     SmallVector<unsigned, 4> ReorderIndices;
2055 
2056     /// Points back to the VectorizableTree.
2057     ///
2058     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2059     /// to be a pointer and needs to be able to initialize the child iterator.
2060     /// Thus we need a reference back to the container to translate the indices
2061     /// to entries.
2062     VecTreeTy &Container;
2063 
2064     /// The TreeEntry index containing the user of this entry.  We can actually
2065     /// have multiple users so the data structure is not truly a tree.
2066     SmallVector<EdgeInfo, 1> UserTreeIndices;
2067 
2068     /// The index of this treeEntry in VectorizableTree.
2069     int Idx = -1;
2070 
2071   private:
2072     /// The operands of each instruction in each lane Operands[op_index][lane].
2073     /// Note: This helps avoid the replication of the code that performs the
2074     /// reordering of operands during buildTree_rec() and vectorizeTree().
2075     SmallVector<ValueList, 2> Operands;
2076 
2077     /// The main/alternate instruction.
2078     Instruction *MainOp = nullptr;
2079     Instruction *AltOp = nullptr;
2080 
2081   public:
2082     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2083     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2084       if (Operands.size() < OpIdx + 1)
2085         Operands.resize(OpIdx + 1);
2086       assert(Operands[OpIdx].empty() && "Already resized?");
2087       assert(OpVL.size() <= Scalars.size() &&
2088              "Number of operands is greater than the number of scalars.");
2089       Operands[OpIdx].resize(OpVL.size());
2090       copy(OpVL, Operands[OpIdx].begin());
2091     }
2092 
2093     /// Set the operands of this bundle in their original order.
2094     void setOperandsInOrder() {
2095       assert(Operands.empty() && "Already initialized?");
2096       auto *I0 = cast<Instruction>(Scalars[0]);
2097       Operands.resize(I0->getNumOperands());
2098       unsigned NumLanes = Scalars.size();
2099       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2100            OpIdx != NumOperands; ++OpIdx) {
2101         Operands[OpIdx].resize(NumLanes);
2102         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2103           auto *I = cast<Instruction>(Scalars[Lane]);
2104           assert(I->getNumOperands() == NumOperands &&
2105                  "Expected same number of operands");
2106           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2107         }
2108       }
2109     }
2110 
2111     /// Reorders operands of the node to the given mask \p Mask.
2112     void reorderOperands(ArrayRef<int> Mask) {
2113       for (ValueList &Operand : Operands)
2114         reorderScalars(Operand, Mask);
2115     }
2116 
2117     /// \returns the \p OpIdx operand of this TreeEntry.
2118     ValueList &getOperand(unsigned OpIdx) {
2119       assert(OpIdx < Operands.size() && "Off bounds");
2120       return Operands[OpIdx];
2121     }
2122 
2123     /// \returns the \p OpIdx operand of this TreeEntry.
2124     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2125       assert(OpIdx < Operands.size() && "Off bounds");
2126       return Operands[OpIdx];
2127     }
2128 
2129     /// \returns the number of operands.
2130     unsigned getNumOperands() const { return Operands.size(); }
2131 
2132     /// \return the single \p OpIdx operand.
2133     Value *getSingleOperand(unsigned OpIdx) const {
2134       assert(OpIdx < Operands.size() && "Off bounds");
2135       assert(!Operands[OpIdx].empty() && "No operand available");
2136       return Operands[OpIdx][0];
2137     }
2138 
2139     /// Some of the instructions in the list have alternate opcodes.
2140     bool isAltShuffle() const { return MainOp != AltOp; }
2141 
2142     bool isOpcodeOrAlt(Instruction *I) const {
2143       unsigned CheckedOpcode = I->getOpcode();
2144       return (getOpcode() == CheckedOpcode ||
2145               getAltOpcode() == CheckedOpcode);
2146     }
2147 
2148     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2149     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2150     /// \p OpValue.
2151     Value *isOneOf(Value *Op) const {
2152       auto *I = dyn_cast<Instruction>(Op);
2153       if (I && isOpcodeOrAlt(I))
2154         return Op;
2155       return MainOp;
2156     }
2157 
2158     void setOperations(const InstructionsState &S) {
2159       MainOp = S.MainOp;
2160       AltOp = S.AltOp;
2161     }
2162 
2163     Instruction *getMainOp() const {
2164       return MainOp;
2165     }
2166 
2167     Instruction *getAltOp() const {
2168       return AltOp;
2169     }
2170 
2171     /// The main/alternate opcodes for the list of instructions.
2172     unsigned getOpcode() const {
2173       return MainOp ? MainOp->getOpcode() : 0;
2174     }
2175 
2176     unsigned getAltOpcode() const {
2177       return AltOp ? AltOp->getOpcode() : 0;
2178     }
2179 
2180     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2181     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2182     int findLaneForValue(Value *V) const {
2183       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2184       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2185       if (!ReorderIndices.empty())
2186         FoundLane = ReorderIndices[FoundLane];
2187       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2188       if (!ReuseShuffleIndices.empty()) {
2189         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2190                                   find(ReuseShuffleIndices, FoundLane));
2191       }
2192       return FoundLane;
2193     }
2194 
2195 #ifndef NDEBUG
2196     /// Debug printer.
2197     LLVM_DUMP_METHOD void dump() const {
2198       dbgs() << Idx << ".\n";
2199       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2200         dbgs() << "Operand " << OpI << ":\n";
2201         for (const Value *V : Operands[OpI])
2202           dbgs().indent(2) << *V << "\n";
2203       }
2204       dbgs() << "Scalars: \n";
2205       for (Value *V : Scalars)
2206         dbgs().indent(2) << *V << "\n";
2207       dbgs() << "State: ";
2208       switch (State) {
2209       case Vectorize:
2210         dbgs() << "Vectorize\n";
2211         break;
2212       case ScatterVectorize:
2213         dbgs() << "ScatterVectorize\n";
2214         break;
2215       case NeedToGather:
2216         dbgs() << "NeedToGather\n";
2217         break;
2218       }
2219       dbgs() << "MainOp: ";
2220       if (MainOp)
2221         dbgs() << *MainOp << "\n";
2222       else
2223         dbgs() << "NULL\n";
2224       dbgs() << "AltOp: ";
2225       if (AltOp)
2226         dbgs() << *AltOp << "\n";
2227       else
2228         dbgs() << "NULL\n";
2229       dbgs() << "VectorizedValue: ";
2230       if (VectorizedValue)
2231         dbgs() << *VectorizedValue << "\n";
2232       else
2233         dbgs() << "NULL\n";
2234       dbgs() << "ReuseShuffleIndices: ";
2235       if (ReuseShuffleIndices.empty())
2236         dbgs() << "Empty";
2237       else
2238         for (int ReuseIdx : ReuseShuffleIndices)
2239           dbgs() << ReuseIdx << ", ";
2240       dbgs() << "\n";
2241       dbgs() << "ReorderIndices: ";
2242       for (unsigned ReorderIdx : ReorderIndices)
2243         dbgs() << ReorderIdx << ", ";
2244       dbgs() << "\n";
2245       dbgs() << "UserTreeIndices: ";
2246       for (const auto &EInfo : UserTreeIndices)
2247         dbgs() << EInfo << ", ";
2248       dbgs() << "\n";
2249     }
2250 #endif
2251   };
2252 
2253 #ifndef NDEBUG
2254   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2255                      InstructionCost VecCost,
2256                      InstructionCost ScalarCost) const {
2257     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2258     dbgs() << "SLP: Costs:\n";
2259     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2260     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2261     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2262     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2263                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2264   }
2265 #endif
2266 
2267   /// Create a new VectorizableTree entry.
2268   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2269                           const InstructionsState &S,
2270                           const EdgeInfo &UserTreeIdx,
2271                           ArrayRef<int> ReuseShuffleIndices = None,
2272                           ArrayRef<unsigned> ReorderIndices = None) {
2273     TreeEntry::EntryState EntryState =
2274         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2275     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2276                         ReuseShuffleIndices, ReorderIndices);
2277   }
2278 
2279   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2280                           TreeEntry::EntryState EntryState,
2281                           Optional<ScheduleData *> Bundle,
2282                           const InstructionsState &S,
2283                           const EdgeInfo &UserTreeIdx,
2284                           ArrayRef<int> ReuseShuffleIndices = None,
2285                           ArrayRef<unsigned> ReorderIndices = None) {
2286     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2287             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2288            "Need to vectorize gather entry?");
2289     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2290     TreeEntry *Last = VectorizableTree.back().get();
2291     Last->Idx = VectorizableTree.size() - 1;
2292     Last->State = EntryState;
2293     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2294                                      ReuseShuffleIndices.end());
2295     if (ReorderIndices.empty()) {
2296       Last->Scalars.assign(VL.begin(), VL.end());
2297       Last->setOperations(S);
2298     } else {
2299       // Reorder scalars and build final mask.
2300       Last->Scalars.assign(VL.size(), nullptr);
2301       transform(ReorderIndices, Last->Scalars.begin(),
2302                 [VL](unsigned Idx) -> Value * {
2303                   if (Idx >= VL.size())
2304                     return UndefValue::get(VL.front()->getType());
2305                   return VL[Idx];
2306                 });
2307       InstructionsState S = getSameOpcode(Last->Scalars);
2308       Last->setOperations(S);
2309       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2310     }
2311     if (Last->State != TreeEntry::NeedToGather) {
2312       for (Value *V : VL) {
2313         assert(!getTreeEntry(V) && "Scalar already in tree!");
2314         ScalarToTreeEntry[V] = Last;
2315       }
2316       // Update the scheduler bundle to point to this TreeEntry.
2317       unsigned Lane = 0;
2318       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
2319            BundleMember = BundleMember->NextInBundle) {
2320         BundleMember->TE = Last;
2321         BundleMember->Lane = Lane;
2322         ++Lane;
2323       }
2324       assert((!Bundle.getValue() || Lane == VL.size()) &&
2325              "Bundle and VL out of sync");
2326     } else {
2327       MustGather.insert(VL.begin(), VL.end());
2328     }
2329 
2330     if (UserTreeIdx.UserTE)
2331       Last->UserTreeIndices.push_back(UserTreeIdx);
2332 
2333     return Last;
2334   }
2335 
2336   /// -- Vectorization State --
2337   /// Holds all of the tree entries.
2338   TreeEntry::VecTreeTy VectorizableTree;
2339 
2340 #ifndef NDEBUG
2341   /// Debug printer.
2342   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2343     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2344       VectorizableTree[Id]->dump();
2345       dbgs() << "\n";
2346     }
2347   }
2348 #endif
2349 
2350   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2351 
2352   const TreeEntry *getTreeEntry(Value *V) const {
2353     return ScalarToTreeEntry.lookup(V);
2354   }
2355 
2356   /// Maps a specific scalar to its tree entry.
2357   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2358 
2359   /// Maps a value to the proposed vectorizable size.
2360   SmallDenseMap<Value *, unsigned> InstrElementSize;
2361 
2362   /// A list of scalars that we found that we need to keep as scalars.
2363   ValueSet MustGather;
2364 
2365   /// This POD struct describes one external user in the vectorized tree.
2366   struct ExternalUser {
2367     ExternalUser(Value *S, llvm::User *U, int L)
2368         : Scalar(S), User(U), Lane(L) {}
2369 
2370     // Which scalar in our function.
2371     Value *Scalar;
2372 
2373     // Which user that uses the scalar.
2374     llvm::User *User;
2375 
2376     // Which lane does the scalar belong to.
2377     int Lane;
2378   };
2379   using UserList = SmallVector<ExternalUser, 16>;
2380 
2381   /// Checks if two instructions may access the same memory.
2382   ///
2383   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2384   /// is invariant in the calling loop.
2385   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2386                  Instruction *Inst2) {
2387     // First check if the result is already in the cache.
2388     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2389     Optional<bool> &result = AliasCache[key];
2390     if (result.hasValue()) {
2391       return result.getValue();
2392     }
2393     bool aliased = true;
2394     if (Loc1.Ptr && isSimple(Inst1))
2395       aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1));
2396     // Store the result in the cache.
2397     result = aliased;
2398     return aliased;
2399   }
2400 
2401   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2402 
2403   /// Cache for alias results.
2404   /// TODO: consider moving this to the AliasAnalysis itself.
2405   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2406 
2407   /// Removes an instruction from its block and eventually deletes it.
2408   /// It's like Instruction::eraseFromParent() except that the actual deletion
2409   /// is delayed until BoUpSLP is destructed.
2410   /// This is required to ensure that there are no incorrect collisions in the
2411   /// AliasCache, which can happen if a new instruction is allocated at the
2412   /// same address as a previously deleted instruction.
2413   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
2414     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
2415     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
2416   }
2417 
2418   /// Temporary store for deleted instructions. Instructions will be deleted
2419   /// eventually when the BoUpSLP is destructed.
2420   DenseMap<Instruction *, bool> DeletedInstructions;
2421 
2422   /// A list of values that need to extracted out of the tree.
2423   /// This list holds pairs of (Internal Scalar : External User). External User
2424   /// can be nullptr, it means that this Internal Scalar will be used later,
2425   /// after vectorization.
2426   UserList ExternalUses;
2427 
2428   /// Values used only by @llvm.assume calls.
2429   SmallPtrSet<const Value *, 32> EphValues;
2430 
2431   /// Holds all of the instructions that we gathered.
2432   SetVector<Instruction *> GatherShuffleSeq;
2433 
2434   /// A list of blocks that we are going to CSE.
2435   SetVector<BasicBlock *> CSEBlocks;
2436 
2437   /// Contains all scheduling relevant data for an instruction.
2438   /// A ScheduleData either represents a single instruction or a member of an
2439   /// instruction bundle (= a group of instructions which is combined into a
2440   /// vector instruction).
2441   struct ScheduleData {
2442     // The initial value for the dependency counters. It means that the
2443     // dependencies are not calculated yet.
2444     enum { InvalidDeps = -1 };
2445 
2446     ScheduleData() = default;
2447 
2448     void init(int BlockSchedulingRegionID, Value *OpVal) {
2449       FirstInBundle = this;
2450       NextInBundle = nullptr;
2451       NextLoadStore = nullptr;
2452       IsScheduled = false;
2453       SchedulingRegionID = BlockSchedulingRegionID;
2454       clearDependencies();
2455       OpValue = OpVal;
2456       TE = nullptr;
2457       Lane = -1;
2458     }
2459 
2460     /// Verify basic self consistency properties
2461     void verify() {
2462       if (hasValidDependencies()) {
2463         assert(UnscheduledDeps <= Dependencies && "invariant");
2464       } else {
2465         assert(UnscheduledDeps == Dependencies && "invariant");
2466       }
2467 
2468       if (IsScheduled) {
2469         assert(isSchedulingEntity() &&
2470                 "unexpected scheduled state");
2471         for (const ScheduleData *BundleMember = this; BundleMember;
2472              BundleMember = BundleMember->NextInBundle) {
2473           assert(BundleMember->hasValidDependencies() &&
2474                  BundleMember->UnscheduledDeps == 0 &&
2475                  "unexpected scheduled state");
2476           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2477                  "only bundle is marked scheduled");
2478         }
2479       }
2480     }
2481 
2482     /// Returns true if the dependency information has been calculated.
2483     /// Note that depenendency validity can vary between instructions within
2484     /// a single bundle.
2485     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2486 
2487     /// Returns true for single instructions and for bundle representatives
2488     /// (= the head of a bundle).
2489     bool isSchedulingEntity() const { return FirstInBundle == this; }
2490 
2491     /// Returns true if it represents an instruction bundle and not only a
2492     /// single instruction.
2493     bool isPartOfBundle() const {
2494       return NextInBundle != nullptr || FirstInBundle != this;
2495     }
2496 
2497     /// Returns true if it is ready for scheduling, i.e. it has no more
2498     /// unscheduled depending instructions/bundles.
2499     bool isReady() const {
2500       assert(isSchedulingEntity() &&
2501              "can't consider non-scheduling entity for ready list");
2502       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2503     }
2504 
2505     /// Modifies the number of unscheduled dependencies for this instruction,
2506     /// and returns the number of remaining dependencies for the containing
2507     /// bundle.
2508     int incrementUnscheduledDeps(int Incr) {
2509       assert(hasValidDependencies() &&
2510              "increment of unscheduled deps would be meaningless");
2511       UnscheduledDeps += Incr;
2512       return FirstInBundle->unscheduledDepsInBundle();
2513     }
2514 
2515     /// Sets the number of unscheduled dependencies to the number of
2516     /// dependencies.
2517     void resetUnscheduledDeps() {
2518       UnscheduledDeps = Dependencies;
2519     }
2520 
2521     /// Clears all dependency information.
2522     void clearDependencies() {
2523       Dependencies = InvalidDeps;
2524       resetUnscheduledDeps();
2525       MemoryDependencies.clear();
2526     }
2527 
2528     int unscheduledDepsInBundle() const {
2529       assert(isSchedulingEntity() && "only meaningful on the bundle");
2530       int Sum = 0;
2531       for (const ScheduleData *BundleMember = this; BundleMember;
2532            BundleMember = BundleMember->NextInBundle) {
2533         if (BundleMember->UnscheduledDeps == InvalidDeps)
2534           return InvalidDeps;
2535         Sum += BundleMember->UnscheduledDeps;
2536       }
2537       return Sum;
2538     }
2539 
2540     void dump(raw_ostream &os) const {
2541       if (!isSchedulingEntity()) {
2542         os << "/ " << *Inst;
2543       } else if (NextInBundle) {
2544         os << '[' << *Inst;
2545         ScheduleData *SD = NextInBundle;
2546         while (SD) {
2547           os << ';' << *SD->Inst;
2548           SD = SD->NextInBundle;
2549         }
2550         os << ']';
2551       } else {
2552         os << *Inst;
2553       }
2554     }
2555 
2556     Instruction *Inst = nullptr;
2557 
2558     /// Points to the head in an instruction bundle (and always to this for
2559     /// single instructions).
2560     ScheduleData *FirstInBundle = nullptr;
2561 
2562     /// Single linked list of all instructions in a bundle. Null if it is a
2563     /// single instruction.
2564     ScheduleData *NextInBundle = nullptr;
2565 
2566     /// Single linked list of all memory instructions (e.g. load, store, call)
2567     /// in the block - until the end of the scheduling region.
2568     ScheduleData *NextLoadStore = nullptr;
2569 
2570     /// The dependent memory instructions.
2571     /// This list is derived on demand in calculateDependencies().
2572     SmallVector<ScheduleData *, 4> MemoryDependencies;
2573 
2574     /// This ScheduleData is in the current scheduling region if this matches
2575     /// the current SchedulingRegionID of BlockScheduling.
2576     int SchedulingRegionID = 0;
2577 
2578     /// Used for getting a "good" final ordering of instructions.
2579     int SchedulingPriority = 0;
2580 
2581     /// The number of dependencies. Constitutes of the number of users of the
2582     /// instruction plus the number of dependent memory instructions (if any).
2583     /// This value is calculated on demand.
2584     /// If InvalidDeps, the number of dependencies is not calculated yet.
2585     int Dependencies = InvalidDeps;
2586 
2587     /// The number of dependencies minus the number of dependencies of scheduled
2588     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2589     /// for scheduling.
2590     /// Note that this is negative as long as Dependencies is not calculated.
2591     int UnscheduledDeps = InvalidDeps;
2592 
2593     /// True if this instruction is scheduled (or considered as scheduled in the
2594     /// dry-run).
2595     bool IsScheduled = false;
2596 
2597     /// Opcode of the current instruction in the schedule data.
2598     Value *OpValue = nullptr;
2599 
2600     /// The TreeEntry that this instruction corresponds to.
2601     TreeEntry *TE = nullptr;
2602 
2603     /// The lane of this node in the TreeEntry.
2604     int Lane = -1;
2605   };
2606 
2607 #ifndef NDEBUG
2608   friend inline raw_ostream &operator<<(raw_ostream &os,
2609                                         const BoUpSLP::ScheduleData &SD) {
2610     SD.dump(os);
2611     return os;
2612   }
2613 #endif
2614 
2615   friend struct GraphTraits<BoUpSLP *>;
2616   friend struct DOTGraphTraits<BoUpSLP *>;
2617 
2618   /// Contains all scheduling data for a basic block.
2619   struct BlockScheduling {
2620     BlockScheduling(BasicBlock *BB)
2621         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2622 
2623     void clear() {
2624       ReadyInsts.clear();
2625       ScheduleStart = nullptr;
2626       ScheduleEnd = nullptr;
2627       FirstLoadStoreInRegion = nullptr;
2628       LastLoadStoreInRegion = nullptr;
2629 
2630       // Reduce the maximum schedule region size by the size of the
2631       // previous scheduling run.
2632       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2633       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2634         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2635       ScheduleRegionSize = 0;
2636 
2637       // Make a new scheduling region, i.e. all existing ScheduleData is not
2638       // in the new region yet.
2639       ++SchedulingRegionID;
2640     }
2641 
2642     ScheduleData *getScheduleData(Value *V) {
2643       ScheduleData *SD = ScheduleDataMap[V];
2644       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2645         return SD;
2646       return nullptr;
2647     }
2648 
2649     ScheduleData *getScheduleData(Value *V, Value *Key) {
2650       if (V == Key)
2651         return getScheduleData(V);
2652       auto I = ExtraScheduleDataMap.find(V);
2653       if (I != ExtraScheduleDataMap.end()) {
2654         ScheduleData *SD = I->second[Key];
2655         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2656           return SD;
2657       }
2658       return nullptr;
2659     }
2660 
2661     bool isInSchedulingRegion(ScheduleData *SD) const {
2662       return SD->SchedulingRegionID == SchedulingRegionID;
2663     }
2664 
2665     /// Marks an instruction as scheduled and puts all dependent ready
2666     /// instructions into the ready-list.
2667     template <typename ReadyListType>
2668     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2669       SD->IsScheduled = true;
2670       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2671 
2672       for (ScheduleData *BundleMember = SD; BundleMember;
2673            BundleMember = BundleMember->NextInBundle) {
2674         if (BundleMember->Inst != BundleMember->OpValue)
2675           continue;
2676 
2677         // Handle the def-use chain dependencies.
2678 
2679         // Decrement the unscheduled counter and insert to ready list if ready.
2680         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2681           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2682             if (OpDef && OpDef->hasValidDependencies() &&
2683                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2684               // There are no more unscheduled dependencies after
2685               // decrementing, so we can put the dependent instruction
2686               // into the ready list.
2687               ScheduleData *DepBundle = OpDef->FirstInBundle;
2688               assert(!DepBundle->IsScheduled &&
2689                      "already scheduled bundle gets ready");
2690               ReadyList.insert(DepBundle);
2691               LLVM_DEBUG(dbgs()
2692                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2693             }
2694           });
2695         };
2696 
2697         // If BundleMember is a vector bundle, its operands may have been
2698         // reordered during buildTree(). We therefore need to get its operands
2699         // through the TreeEntry.
2700         if (TreeEntry *TE = BundleMember->TE) {
2701           int Lane = BundleMember->Lane;
2702           assert(Lane >= 0 && "Lane not set");
2703 
2704           // Since vectorization tree is being built recursively this assertion
2705           // ensures that the tree entry has all operands set before reaching
2706           // this code. Couple of exceptions known at the moment are extracts
2707           // where their second (immediate) operand is not added. Since
2708           // immediates do not affect scheduler behavior this is considered
2709           // okay.
2710           auto *In = TE->getMainOp();
2711           assert(In &&
2712                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2713                   In->getNumOperands() == TE->getNumOperands()) &&
2714                  "Missed TreeEntry operands?");
2715           (void)In; // fake use to avoid build failure when assertions disabled
2716 
2717           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2718                OpIdx != NumOperands; ++OpIdx)
2719             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2720               DecrUnsched(I);
2721         } else {
2722           // If BundleMember is a stand-alone instruction, no operand reordering
2723           // has taken place, so we directly access its operands.
2724           for (Use &U : BundleMember->Inst->operands())
2725             if (auto *I = dyn_cast<Instruction>(U.get()))
2726               DecrUnsched(I);
2727         }
2728         // Handle the memory dependencies.
2729         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2730           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2731             // There are no more unscheduled dependencies after decrementing,
2732             // so we can put the dependent instruction into the ready list.
2733             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2734             assert(!DepBundle->IsScheduled &&
2735                    "already scheduled bundle gets ready");
2736             ReadyList.insert(DepBundle);
2737             LLVM_DEBUG(dbgs()
2738                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2739           }
2740         }
2741       }
2742     }
2743 
2744     /// Verify basic self consistency properties of the data structure.
2745     void verify() {
2746       if (!ScheduleStart)
2747         return;
2748 
2749       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
2750              ScheduleStart->comesBefore(ScheduleEnd) &&
2751              "Not a valid scheduling region?");
2752 
2753       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2754         auto *SD = getScheduleData(I);
2755         assert(SD && "primary scheduledata must exist in window");
2756         assert(isInSchedulingRegion(SD) &&
2757                "primary schedule data not in window?");
2758         (void)SD;
2759         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
2760       }
2761 
2762       for (auto *SD : ReadyInsts) {
2763         assert(SD->isSchedulingEntity() && SD->isReady() &&
2764                "item in ready list not ready?");
2765         (void)SD;
2766       }
2767     }
2768 
2769     void doForAllOpcodes(Value *V,
2770                          function_ref<void(ScheduleData *SD)> Action) {
2771       if (ScheduleData *SD = getScheduleData(V))
2772         Action(SD);
2773       auto I = ExtraScheduleDataMap.find(V);
2774       if (I != ExtraScheduleDataMap.end())
2775         for (auto &P : I->second)
2776           if (P.second->SchedulingRegionID == SchedulingRegionID)
2777             Action(P.second);
2778     }
2779 
2780     /// Put all instructions into the ReadyList which are ready for scheduling.
2781     template <typename ReadyListType>
2782     void initialFillReadyList(ReadyListType &ReadyList) {
2783       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2784         doForAllOpcodes(I, [&](ScheduleData *SD) {
2785           if (SD->isSchedulingEntity() && SD->isReady()) {
2786             ReadyList.insert(SD);
2787             LLVM_DEBUG(dbgs()
2788                        << "SLP:    initially in ready list: " << *SD << "\n");
2789           }
2790         });
2791       }
2792     }
2793 
2794     /// Build a bundle from the ScheduleData nodes corresponding to the
2795     /// scalar instruction for each lane.
2796     ScheduleData *buildBundle(ArrayRef<Value *> VL);
2797 
2798     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2799     /// cyclic dependencies. This is only a dry-run, no instructions are
2800     /// actually moved at this stage.
2801     /// \returns the scheduling bundle. The returned Optional value is non-None
2802     /// if \p VL is allowed to be scheduled.
2803     Optional<ScheduleData *>
2804     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2805                       const InstructionsState &S);
2806 
2807     /// Un-bundles a group of instructions.
2808     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2809 
2810     /// Allocates schedule data chunk.
2811     ScheduleData *allocateScheduleDataChunks();
2812 
2813     /// Extends the scheduling region so that V is inside the region.
2814     /// \returns true if the region size is within the limit.
2815     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2816 
2817     /// Initialize the ScheduleData structures for new instructions in the
2818     /// scheduling region.
2819     void initScheduleData(Instruction *FromI, Instruction *ToI,
2820                           ScheduleData *PrevLoadStore,
2821                           ScheduleData *NextLoadStore);
2822 
2823     /// Updates the dependency information of a bundle and of all instructions/
2824     /// bundles which depend on the original bundle.
2825     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2826                                BoUpSLP *SLP);
2827 
2828     /// Sets all instruction in the scheduling region to un-scheduled.
2829     void resetSchedule();
2830 
2831     BasicBlock *BB;
2832 
2833     /// Simple memory allocation for ScheduleData.
2834     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2835 
2836     /// The size of a ScheduleData array in ScheduleDataChunks.
2837     int ChunkSize;
2838 
2839     /// The allocator position in the current chunk, which is the last entry
2840     /// of ScheduleDataChunks.
2841     int ChunkPos;
2842 
2843     /// Attaches ScheduleData to Instruction.
2844     /// Note that the mapping survives during all vectorization iterations, i.e.
2845     /// ScheduleData structures are recycled.
2846     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2847 
2848     /// Attaches ScheduleData to Instruction with the leading key.
2849     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2850         ExtraScheduleDataMap;
2851 
2852     /// The ready-list for scheduling (only used for the dry-run).
2853     SetVector<ScheduleData *> ReadyInsts;
2854 
2855     /// The first instruction of the scheduling region.
2856     Instruction *ScheduleStart = nullptr;
2857 
2858     /// The first instruction _after_ the scheduling region.
2859     Instruction *ScheduleEnd = nullptr;
2860 
2861     /// The first memory accessing instruction in the scheduling region
2862     /// (can be null).
2863     ScheduleData *FirstLoadStoreInRegion = nullptr;
2864 
2865     /// The last memory accessing instruction in the scheduling region
2866     /// (can be null).
2867     ScheduleData *LastLoadStoreInRegion = nullptr;
2868 
2869     /// The current size of the scheduling region.
2870     int ScheduleRegionSize = 0;
2871 
2872     /// The maximum size allowed for the scheduling region.
2873     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2874 
2875     /// The ID of the scheduling region. For a new vectorization iteration this
2876     /// is incremented which "removes" all ScheduleData from the region.
2877     // Make sure that the initial SchedulingRegionID is greater than the
2878     // initial SchedulingRegionID in ScheduleData (which is 0).
2879     int SchedulingRegionID = 1;
2880   };
2881 
2882   /// Attaches the BlockScheduling structures to basic blocks.
2883   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2884 
2885   /// Performs the "real" scheduling. Done before vectorization is actually
2886   /// performed in a basic block.
2887   void scheduleBlock(BlockScheduling *BS);
2888 
2889   /// List of users to ignore during scheduling and that don't need extracting.
2890   ArrayRef<Value *> UserIgnoreList;
2891 
2892   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2893   /// sorted SmallVectors of unsigned.
2894   struct OrdersTypeDenseMapInfo {
2895     static OrdersType getEmptyKey() {
2896       OrdersType V;
2897       V.push_back(~1U);
2898       return V;
2899     }
2900 
2901     static OrdersType getTombstoneKey() {
2902       OrdersType V;
2903       V.push_back(~2U);
2904       return V;
2905     }
2906 
2907     static unsigned getHashValue(const OrdersType &V) {
2908       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2909     }
2910 
2911     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2912       return LHS == RHS;
2913     }
2914   };
2915 
2916   // Analysis and block reference.
2917   Function *F;
2918   ScalarEvolution *SE;
2919   TargetTransformInfo *TTI;
2920   TargetLibraryInfo *TLI;
2921   AAResults *AA;
2922   LoopInfo *LI;
2923   DominatorTree *DT;
2924   AssumptionCache *AC;
2925   DemandedBits *DB;
2926   const DataLayout *DL;
2927   OptimizationRemarkEmitter *ORE;
2928 
2929   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2930   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2931 
2932   /// Instruction builder to construct the vectorized tree.
2933   IRBuilder<> Builder;
2934 
2935   /// A map of scalar integer values to the smallest bit width with which they
2936   /// can legally be represented. The values map to (width, signed) pairs,
2937   /// where "width" indicates the minimum bit width and "signed" is True if the
2938   /// value must be signed-extended, rather than zero-extended, back to its
2939   /// original width.
2940   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2941 };
2942 
2943 } // end namespace slpvectorizer
2944 
2945 template <> struct GraphTraits<BoUpSLP *> {
2946   using TreeEntry = BoUpSLP::TreeEntry;
2947 
2948   /// NodeRef has to be a pointer per the GraphWriter.
2949   using NodeRef = TreeEntry *;
2950 
2951   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2952 
2953   /// Add the VectorizableTree to the index iterator to be able to return
2954   /// TreeEntry pointers.
2955   struct ChildIteratorType
2956       : public iterator_adaptor_base<
2957             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2958     ContainerTy &VectorizableTree;
2959 
2960     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2961                       ContainerTy &VT)
2962         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2963 
2964     NodeRef operator*() { return I->UserTE; }
2965   };
2966 
2967   static NodeRef getEntryNode(BoUpSLP &R) {
2968     return R.VectorizableTree[0].get();
2969   }
2970 
2971   static ChildIteratorType child_begin(NodeRef N) {
2972     return {N->UserTreeIndices.begin(), N->Container};
2973   }
2974 
2975   static ChildIteratorType child_end(NodeRef N) {
2976     return {N->UserTreeIndices.end(), N->Container};
2977   }
2978 
2979   /// For the node iterator we just need to turn the TreeEntry iterator into a
2980   /// TreeEntry* iterator so that it dereferences to NodeRef.
2981   class nodes_iterator {
2982     using ItTy = ContainerTy::iterator;
2983     ItTy It;
2984 
2985   public:
2986     nodes_iterator(const ItTy &It2) : It(It2) {}
2987     NodeRef operator*() { return It->get(); }
2988     nodes_iterator operator++() {
2989       ++It;
2990       return *this;
2991     }
2992     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2993   };
2994 
2995   static nodes_iterator nodes_begin(BoUpSLP *R) {
2996     return nodes_iterator(R->VectorizableTree.begin());
2997   }
2998 
2999   static nodes_iterator nodes_end(BoUpSLP *R) {
3000     return nodes_iterator(R->VectorizableTree.end());
3001   }
3002 
3003   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3004 };
3005 
3006 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3007   using TreeEntry = BoUpSLP::TreeEntry;
3008 
3009   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3010 
3011   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3012     std::string Str;
3013     raw_string_ostream OS(Str);
3014     if (isSplat(Entry->Scalars))
3015       OS << "<splat> ";
3016     for (auto V : Entry->Scalars) {
3017       OS << *V;
3018       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3019             return EU.Scalar == V;
3020           }))
3021         OS << " <extract>";
3022       OS << "\n";
3023     }
3024     return Str;
3025   }
3026 
3027   static std::string getNodeAttributes(const TreeEntry *Entry,
3028                                        const BoUpSLP *) {
3029     if (Entry->State == TreeEntry::NeedToGather)
3030       return "color=red";
3031     return "";
3032   }
3033 };
3034 
3035 } // end namespace llvm
3036 
3037 BoUpSLP::~BoUpSLP() {
3038   for (const auto &Pair : DeletedInstructions) {
3039     // Replace operands of ignored instructions with Undefs in case if they were
3040     // marked for deletion.
3041     if (Pair.getSecond()) {
3042       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
3043       Pair.getFirst()->replaceAllUsesWith(Undef);
3044     }
3045     Pair.getFirst()->dropAllReferences();
3046   }
3047   for (const auto &Pair : DeletedInstructions) {
3048     assert(Pair.getFirst()->use_empty() &&
3049            "trying to erase instruction with users.");
3050     Pair.getFirst()->eraseFromParent();
3051   }
3052 #ifdef EXPENSIVE_CHECKS
3053   // If we could guarantee that this call is not extremely slow, we could
3054   // remove the ifdef limitation (see PR47712).
3055   assert(!verifyFunction(*F, &dbgs()));
3056 #endif
3057 }
3058 
3059 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
3060   for (auto *V : AV) {
3061     if (auto *I = dyn_cast<Instruction>(V))
3062       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
3063   };
3064 }
3065 
3066 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3067 /// contains original mask for the scalars reused in the node. Procedure
3068 /// transform this mask in accordance with the given \p Mask.
3069 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3070   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3071          "Expected non-empty mask.");
3072   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3073   Prev.swap(Reuses);
3074   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3075     if (Mask[I] != UndefMaskElem)
3076       Reuses[Mask[I]] = Prev[I];
3077 }
3078 
3079 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3080 /// the original order of the scalars. Procedure transforms the provided order
3081 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3082 /// identity order, \p Order is cleared.
3083 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3084   assert(!Mask.empty() && "Expected non-empty mask.");
3085   SmallVector<int> MaskOrder;
3086   if (Order.empty()) {
3087     MaskOrder.resize(Mask.size());
3088     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3089   } else {
3090     inversePermutation(Order, MaskOrder);
3091   }
3092   reorderReuses(MaskOrder, Mask);
3093   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3094     Order.clear();
3095     return;
3096   }
3097   Order.assign(Mask.size(), Mask.size());
3098   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3099     if (MaskOrder[I] != UndefMaskElem)
3100       Order[MaskOrder[I]] = I;
3101   fixupOrderingIndices(Order);
3102 }
3103 
3104 Optional<BoUpSLP::OrdersType>
3105 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3106   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3107   unsigned NumScalars = TE.Scalars.size();
3108   OrdersType CurrentOrder(NumScalars, NumScalars);
3109   SmallVector<int> Positions;
3110   SmallBitVector UsedPositions(NumScalars);
3111   const TreeEntry *STE = nullptr;
3112   // Try to find all gathered scalars that are gets vectorized in other
3113   // vectorize node. Here we can have only one single tree vector node to
3114   // correctly identify order of the gathered scalars.
3115   for (unsigned I = 0; I < NumScalars; ++I) {
3116     Value *V = TE.Scalars[I];
3117     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3118       continue;
3119     if (const auto *LocalSTE = getTreeEntry(V)) {
3120       if (!STE)
3121         STE = LocalSTE;
3122       else if (STE != LocalSTE)
3123         // Take the order only from the single vector node.
3124         return None;
3125       unsigned Lane =
3126           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3127       if (Lane >= NumScalars)
3128         return None;
3129       if (CurrentOrder[Lane] != NumScalars) {
3130         if (Lane != I)
3131           continue;
3132         UsedPositions.reset(CurrentOrder[Lane]);
3133       }
3134       // The partial identity (where only some elements of the gather node are
3135       // in the identity order) is good.
3136       CurrentOrder[Lane] = I;
3137       UsedPositions.set(I);
3138     }
3139   }
3140   // Need to keep the order if we have a vector entry and at least 2 scalars or
3141   // the vectorized entry has just 2 scalars.
3142   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3143     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3144       for (unsigned I = 0; I < NumScalars; ++I)
3145         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3146           return false;
3147       return true;
3148     };
3149     if (IsIdentityOrder(CurrentOrder)) {
3150       CurrentOrder.clear();
3151       return CurrentOrder;
3152     }
3153     auto *It = CurrentOrder.begin();
3154     for (unsigned I = 0; I < NumScalars;) {
3155       if (UsedPositions.test(I)) {
3156         ++I;
3157         continue;
3158       }
3159       if (*It == NumScalars) {
3160         *It = I;
3161         ++I;
3162       }
3163       ++It;
3164     }
3165     return CurrentOrder;
3166   }
3167   return None;
3168 }
3169 
3170 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3171                                                          bool TopToBottom) {
3172   // No need to reorder if need to shuffle reuses, still need to shuffle the
3173   // node.
3174   if (!TE.ReuseShuffleIndices.empty())
3175     return None;
3176   if (TE.State == TreeEntry::Vectorize &&
3177       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3178        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3179       !TE.isAltShuffle())
3180     return TE.ReorderIndices;
3181   if (TE.State == TreeEntry::NeedToGather) {
3182     // TODO: add analysis of other gather nodes with extractelement
3183     // instructions and other values/instructions, not only undefs.
3184     if (((TE.getOpcode() == Instruction::ExtractElement &&
3185           !TE.isAltShuffle()) ||
3186          (all_of(TE.Scalars,
3187                  [](Value *V) {
3188                    return isa<UndefValue, ExtractElementInst>(V);
3189                  }) &&
3190           any_of(TE.Scalars,
3191                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3192         all_of(TE.Scalars,
3193                [](Value *V) {
3194                  auto *EE = dyn_cast<ExtractElementInst>(V);
3195                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3196                }) &&
3197         allSameType(TE.Scalars)) {
3198       // Check that gather of extractelements can be represented as
3199       // just a shuffle of a single vector.
3200       OrdersType CurrentOrder;
3201       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3202       if (Reuse || !CurrentOrder.empty()) {
3203         if (!CurrentOrder.empty())
3204           fixupOrderingIndices(CurrentOrder);
3205         return CurrentOrder;
3206       }
3207     }
3208     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3209       return CurrentOrder;
3210   }
3211   return None;
3212 }
3213 
3214 void BoUpSLP::reorderTopToBottom() {
3215   // Maps VF to the graph nodes.
3216   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3217   // ExtractElement gather nodes which can be vectorized and need to handle
3218   // their ordering.
3219   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3220   // Find all reorderable nodes with the given VF.
3221   // Currently the are vectorized stores,loads,extracts + some gathering of
3222   // extracts.
3223   for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders](
3224                                  const std::unique_ptr<TreeEntry> &TE) {
3225     if (Optional<OrdersType> CurrentOrder =
3226             getReorderingData(*TE.get(), /*TopToBottom=*/true)) {
3227       // Do not include ordering for nodes used in the alt opcode vectorization,
3228       // better to reorder them during bottom-to-top stage. If follow the order
3229       // here, it causes reordering of the whole graph though actually it is
3230       // profitable just to reorder the subgraph that starts from the alternate
3231       // opcode vectorization node. Such nodes already end-up with the shuffle
3232       // instruction and it is just enough to change this shuffle rather than
3233       // rotate the scalars for the whole graph.
3234       unsigned Cnt = 0;
3235       const TreeEntry *UserTE = TE.get();
3236       while (UserTE && Cnt < RecursionMaxDepth) {
3237         if (UserTE->UserTreeIndices.size() != 1)
3238           break;
3239         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3240               return EI.UserTE->State == TreeEntry::Vectorize &&
3241                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3242             }))
3243           return;
3244         if (UserTE->UserTreeIndices.empty())
3245           UserTE = nullptr;
3246         else
3247           UserTE = UserTE->UserTreeIndices.back().UserTE;
3248         ++Cnt;
3249       }
3250       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3251       if (TE->State != TreeEntry::Vectorize)
3252         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3253     }
3254   });
3255 
3256   // Reorder the graph nodes according to their vectorization factor.
3257   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3258        VF /= 2) {
3259     auto It = VFToOrderedEntries.find(VF);
3260     if (It == VFToOrderedEntries.end())
3261       continue;
3262     // Try to find the most profitable order. We just are looking for the most
3263     // used order and reorder scalar elements in the nodes according to this
3264     // mostly used order.
3265     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3266     // All operands are reordered and used only in this node - propagate the
3267     // most used order to the user node.
3268     MapVector<OrdersType, unsigned,
3269               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3270         OrdersUses;
3271     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3272     for (const TreeEntry *OpTE : OrderedEntries) {
3273       // No need to reorder this nodes, still need to extend and to use shuffle,
3274       // just need to merge reordering shuffle and the reuse shuffle.
3275       if (!OpTE->ReuseShuffleIndices.empty())
3276         continue;
3277       // Count number of orders uses.
3278       const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3279         if (OpTE->State == TreeEntry::NeedToGather)
3280           return GathersToOrders.find(OpTE)->second;
3281         return OpTE->ReorderIndices;
3282       }();
3283       // Stores actually store the mask, not the order, need to invert.
3284       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3285           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3286         SmallVector<int> Mask;
3287         inversePermutation(Order, Mask);
3288         unsigned E = Order.size();
3289         OrdersType CurrentOrder(E, E);
3290         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3291           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3292         });
3293         fixupOrderingIndices(CurrentOrder);
3294         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3295       } else {
3296         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3297       }
3298     }
3299     // Set order of the user node.
3300     if (OrdersUses.empty())
3301       continue;
3302     // Choose the most used order.
3303     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3304     unsigned Cnt = OrdersUses.front().second;
3305     for (const auto &Pair : drop_begin(OrdersUses)) {
3306       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3307         BestOrder = Pair.first;
3308         Cnt = Pair.second;
3309       }
3310     }
3311     // Set order of the user node.
3312     if (BestOrder.empty())
3313       continue;
3314     SmallVector<int> Mask;
3315     inversePermutation(BestOrder, Mask);
3316     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3317     unsigned E = BestOrder.size();
3318     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3319       return I < E ? static_cast<int>(I) : UndefMaskElem;
3320     });
3321     // Do an actual reordering, if profitable.
3322     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3323       // Just do the reordering for the nodes with the given VF.
3324       if (TE->Scalars.size() != VF) {
3325         if (TE->ReuseShuffleIndices.size() == VF) {
3326           // Need to reorder the reuses masks of the operands with smaller VF to
3327           // be able to find the match between the graph nodes and scalar
3328           // operands of the given node during vectorization/cost estimation.
3329           assert(all_of(TE->UserTreeIndices,
3330                         [VF, &TE](const EdgeInfo &EI) {
3331                           return EI.UserTE->Scalars.size() == VF ||
3332                                  EI.UserTE->Scalars.size() ==
3333                                      TE->Scalars.size();
3334                         }) &&
3335                  "All users must be of VF size.");
3336           // Update ordering of the operands with the smaller VF than the given
3337           // one.
3338           reorderReuses(TE->ReuseShuffleIndices, Mask);
3339         }
3340         continue;
3341       }
3342       if (TE->State == TreeEntry::Vectorize &&
3343           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3344               InsertElementInst>(TE->getMainOp()) &&
3345           !TE->isAltShuffle()) {
3346         // Build correct orders for extract{element,value}, loads and
3347         // stores.
3348         reorderOrder(TE->ReorderIndices, Mask);
3349         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3350           TE->reorderOperands(Mask);
3351       } else {
3352         // Reorder the node and its operands.
3353         TE->reorderOperands(Mask);
3354         assert(TE->ReorderIndices.empty() &&
3355                "Expected empty reorder sequence.");
3356         reorderScalars(TE->Scalars, Mask);
3357       }
3358       if (!TE->ReuseShuffleIndices.empty()) {
3359         // Apply reversed order to keep the original ordering of the reused
3360         // elements to avoid extra reorder indices shuffling.
3361         OrdersType CurrentOrder;
3362         reorderOrder(CurrentOrder, MaskOrder);
3363         SmallVector<int> NewReuses;
3364         inversePermutation(CurrentOrder, NewReuses);
3365         addMask(NewReuses, TE->ReuseShuffleIndices);
3366         TE->ReuseShuffleIndices.swap(NewReuses);
3367       }
3368     }
3369   }
3370 }
3371 
3372 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3373   SetVector<TreeEntry *> OrderedEntries;
3374   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3375   // Find all reorderable leaf nodes with the given VF.
3376   // Currently the are vectorized loads,extracts without alternate operands +
3377   // some gathering of extracts.
3378   SmallVector<TreeEntry *> NonVectorized;
3379   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3380                               &NonVectorized](
3381                                  const std::unique_ptr<TreeEntry> &TE) {
3382     if (TE->State != TreeEntry::Vectorize)
3383       NonVectorized.push_back(TE.get());
3384     if (Optional<OrdersType> CurrentOrder =
3385             getReorderingData(*TE.get(), /*TopToBottom=*/false)) {
3386       OrderedEntries.insert(TE.get());
3387       if (TE->State != TreeEntry::Vectorize)
3388         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3389     }
3390   });
3391 
3392   // Checks if the operands of the users are reordarable and have only single
3393   // use.
3394   auto &&CheckOperands =
3395       [this, &NonVectorized](const auto &Data,
3396                              SmallVectorImpl<TreeEntry *> &GatherOps) {
3397         for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) {
3398           if (any_of(Data.second,
3399                      [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3400                        return OpData.first == I &&
3401                               OpData.second->State == TreeEntry::Vectorize;
3402                      }))
3403             continue;
3404           ArrayRef<Value *> VL = Data.first->getOperand(I);
3405           const TreeEntry *TE = nullptr;
3406           const auto *It = find_if(VL, [this, &TE](Value *V) {
3407             TE = getTreeEntry(V);
3408             return TE;
3409           });
3410           if (It != VL.end() && TE->isSame(VL))
3411             return false;
3412           TreeEntry *Gather = nullptr;
3413           if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) {
3414                 assert(TE->State != TreeEntry::Vectorize &&
3415                        "Only non-vectorized nodes are expected.");
3416                 if (TE->isSame(VL)) {
3417                   Gather = TE;
3418                   return true;
3419                 }
3420                 return false;
3421               }) > 1)
3422             return false;
3423           if (Gather)
3424             GatherOps.push_back(Gather);
3425         }
3426         return true;
3427       };
3428   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3429   // I.e., if the node has operands, that are reordered, try to make at least
3430   // one operand order in the natural order and reorder others + reorder the
3431   // user node itself.
3432   SmallPtrSet<const TreeEntry *, 4> Visited;
3433   while (!OrderedEntries.empty()) {
3434     // 1. Filter out only reordered nodes.
3435     // 2. If the entry has multiple uses - skip it and jump to the next node.
3436     MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
3437     SmallVector<TreeEntry *> Filtered;
3438     for (TreeEntry *TE : OrderedEntries) {
3439       if (!(TE->State == TreeEntry::Vectorize ||
3440             (TE->State == TreeEntry::NeedToGather &&
3441              GathersToOrders.count(TE))) ||
3442           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3443           !all_of(drop_begin(TE->UserTreeIndices),
3444                   [TE](const EdgeInfo &EI) {
3445                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
3446                   }) ||
3447           !Visited.insert(TE).second) {
3448         Filtered.push_back(TE);
3449         continue;
3450       }
3451       // Build a map between user nodes and their operands order to speedup
3452       // search. The graph currently does not provide this dependency directly.
3453       for (EdgeInfo &EI : TE->UserTreeIndices) {
3454         TreeEntry *UserTE = EI.UserTE;
3455         auto It = Users.find(UserTE);
3456         if (It == Users.end())
3457           It = Users.insert({UserTE, {}}).first;
3458         It->second.emplace_back(EI.EdgeIdx, TE);
3459       }
3460     }
3461     // Erase filtered entries.
3462     for_each(Filtered,
3463              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
3464     for (const auto &Data : Users) {
3465       // Check that operands are used only in the User node.
3466       SmallVector<TreeEntry *> GatherOps;
3467       if (!CheckOperands(Data, GatherOps)) {
3468         for_each(Data.second,
3469                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3470                    OrderedEntries.remove(Op.second);
3471                  });
3472         continue;
3473       }
3474       // All operands are reordered and used only in this node - propagate the
3475       // most used order to the user node.
3476       MapVector<OrdersType, unsigned,
3477                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3478           OrdersUses;
3479       // Do the analysis for each tree entry only once, otherwise the order of
3480       // the same node my be considered several times, though might be not
3481       // profitable.
3482       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3483       for (const auto &Op : Data.second) {
3484         TreeEntry *OpTE = Op.second;
3485         if (!VisitedOps.insert(OpTE).second)
3486           continue;
3487         if (!OpTE->ReuseShuffleIndices.empty() ||
3488             (IgnoreReorder && OpTE == VectorizableTree.front().get()))
3489           continue;
3490         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3491           if (OpTE->State == TreeEntry::NeedToGather)
3492             return GathersToOrders.find(OpTE)->second;
3493           return OpTE->ReorderIndices;
3494         }();
3495         // Stores actually store the mask, not the order, need to invert.
3496         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3497             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3498           SmallVector<int> Mask;
3499           inversePermutation(Order, Mask);
3500           unsigned E = Order.size();
3501           OrdersType CurrentOrder(E, E);
3502           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3503             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3504           });
3505           fixupOrderingIndices(CurrentOrder);
3506           ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3507         } else {
3508           ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3509         }
3510         OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
3511             OpTE->UserTreeIndices.size();
3512         assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0.");
3513         --OrdersUses[{}];
3514       }
3515       // If no orders - skip current nodes and jump to the next one, if any.
3516       if (OrdersUses.empty()) {
3517         for_each(Data.second,
3518                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3519                    OrderedEntries.remove(Op.second);
3520                  });
3521         continue;
3522       }
3523       // Choose the best order.
3524       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3525       unsigned Cnt = OrdersUses.front().second;
3526       for (const auto &Pair : drop_begin(OrdersUses)) {
3527         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3528           BestOrder = Pair.first;
3529           Cnt = Pair.second;
3530         }
3531       }
3532       // Set order of the user node (reordering of operands and user nodes).
3533       if (BestOrder.empty()) {
3534         for_each(Data.second,
3535                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3536                    OrderedEntries.remove(Op.second);
3537                  });
3538         continue;
3539       }
3540       // Erase operands from OrderedEntries list and adjust their orders.
3541       VisitedOps.clear();
3542       SmallVector<int> Mask;
3543       inversePermutation(BestOrder, Mask);
3544       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3545       unsigned E = BestOrder.size();
3546       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3547         return I < E ? static_cast<int>(I) : UndefMaskElem;
3548       });
3549       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
3550         TreeEntry *TE = Op.second;
3551         OrderedEntries.remove(TE);
3552         if (!VisitedOps.insert(TE).second)
3553           continue;
3554         if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) {
3555           // Just reorder reuses indices.
3556           reorderReuses(TE->ReuseShuffleIndices, Mask);
3557           continue;
3558         }
3559         // Gathers are processed separately.
3560         if (TE->State != TreeEntry::Vectorize)
3561           continue;
3562         assert((BestOrder.size() == TE->ReorderIndices.size() ||
3563                 TE->ReorderIndices.empty()) &&
3564                "Non-matching sizes of user/operand entries.");
3565         reorderOrder(TE->ReorderIndices, Mask);
3566       }
3567       // For gathers just need to reorder its scalars.
3568       for (TreeEntry *Gather : GatherOps) {
3569         assert(Gather->ReorderIndices.empty() &&
3570                "Unexpected reordering of gathers.");
3571         if (!Gather->ReuseShuffleIndices.empty()) {
3572           // Just reorder reuses indices.
3573           reorderReuses(Gather->ReuseShuffleIndices, Mask);
3574           continue;
3575         }
3576         reorderScalars(Gather->Scalars, Mask);
3577         OrderedEntries.remove(Gather);
3578       }
3579       // Reorder operands of the user node and set the ordering for the user
3580       // node itself.
3581       if (Data.first->State != TreeEntry::Vectorize ||
3582           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
3583               Data.first->getMainOp()) ||
3584           Data.first->isAltShuffle())
3585         Data.first->reorderOperands(Mask);
3586       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
3587           Data.first->isAltShuffle()) {
3588         reorderScalars(Data.first->Scalars, Mask);
3589         reorderOrder(Data.first->ReorderIndices, MaskOrder);
3590         if (Data.first->ReuseShuffleIndices.empty() &&
3591             !Data.first->ReorderIndices.empty() &&
3592             !Data.first->isAltShuffle()) {
3593           // Insert user node to the list to try to sink reordering deeper in
3594           // the graph.
3595           OrderedEntries.insert(Data.first);
3596         }
3597       } else {
3598         reorderOrder(Data.first->ReorderIndices, Mask);
3599       }
3600     }
3601   }
3602   // If the reordering is unnecessary, just remove the reorder.
3603   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
3604       VectorizableTree.front()->ReuseShuffleIndices.empty())
3605     VectorizableTree.front()->ReorderIndices.clear();
3606 }
3607 
3608 void BoUpSLP::buildExternalUses(
3609     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3610   // Collect the values that we need to extract from the tree.
3611   for (auto &TEPtr : VectorizableTree) {
3612     TreeEntry *Entry = TEPtr.get();
3613 
3614     // No need to handle users of gathered values.
3615     if (Entry->State == TreeEntry::NeedToGather)
3616       continue;
3617 
3618     // For each lane:
3619     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3620       Value *Scalar = Entry->Scalars[Lane];
3621       int FoundLane = Entry->findLaneForValue(Scalar);
3622 
3623       // Check if the scalar is externally used as an extra arg.
3624       auto ExtI = ExternallyUsedValues.find(Scalar);
3625       if (ExtI != ExternallyUsedValues.end()) {
3626         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
3627                           << Lane << " from " << *Scalar << ".\n");
3628         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
3629       }
3630       for (User *U : Scalar->users()) {
3631         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
3632 
3633         Instruction *UserInst = dyn_cast<Instruction>(U);
3634         if (!UserInst)
3635           continue;
3636 
3637         if (isDeleted(UserInst))
3638           continue;
3639 
3640         // Skip in-tree scalars that become vectors
3641         if (TreeEntry *UseEntry = getTreeEntry(U)) {
3642           Value *UseScalar = UseEntry->Scalars[0];
3643           // Some in-tree scalars will remain as scalar in vectorized
3644           // instructions. If that is the case, the one in Lane 0 will
3645           // be used.
3646           if (UseScalar != U ||
3647               UseEntry->State == TreeEntry::ScatterVectorize ||
3648               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
3649             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
3650                               << ".\n");
3651             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
3652             continue;
3653           }
3654         }
3655 
3656         // Ignore users in the user ignore list.
3657         if (is_contained(UserIgnoreList, UserInst))
3658           continue;
3659 
3660         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
3661                           << Lane << " from " << *Scalar << ".\n");
3662         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
3663       }
3664     }
3665   }
3666 }
3667 
3668 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
3669                         ArrayRef<Value *> UserIgnoreLst) {
3670   deleteTree();
3671   UserIgnoreList = UserIgnoreLst;
3672   if (!allSameType(Roots))
3673     return;
3674   buildTree_rec(Roots, 0, EdgeInfo());
3675 }
3676 
3677 namespace {
3678 /// Tracks the state we can represent the loads in the given sequence.
3679 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3680 } // anonymous namespace
3681 
3682 /// Checks if the given array of loads can be represented as a vectorized,
3683 /// scatter or just simple gather.
3684 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3685                                     const TargetTransformInfo &TTI,
3686                                     const DataLayout &DL, ScalarEvolution &SE,
3687                                     SmallVectorImpl<unsigned> &Order,
3688                                     SmallVectorImpl<Value *> &PointerOps) {
3689   // Check that a vectorized load would load the same memory as a scalar
3690   // load. For example, we don't want to vectorize loads that are smaller
3691   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3692   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3693   // from such a struct, we read/write packed bits disagreeing with the
3694   // unvectorized version.
3695   Type *ScalarTy = VL0->getType();
3696 
3697   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3698     return LoadsState::Gather;
3699 
3700   // Make sure all loads in the bundle are simple - we can't vectorize
3701   // atomic or volatile loads.
3702   PointerOps.clear();
3703   PointerOps.resize(VL.size());
3704   auto *POIter = PointerOps.begin();
3705   for (Value *V : VL) {
3706     auto *L = cast<LoadInst>(V);
3707     if (!L->isSimple())
3708       return LoadsState::Gather;
3709     *POIter = L->getPointerOperand();
3710     ++POIter;
3711   }
3712 
3713   Order.clear();
3714   // Check the order of pointer operands.
3715   if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) {
3716     Value *Ptr0;
3717     Value *PtrN;
3718     if (Order.empty()) {
3719       Ptr0 = PointerOps.front();
3720       PtrN = PointerOps.back();
3721     } else {
3722       Ptr0 = PointerOps[Order.front()];
3723       PtrN = PointerOps[Order.back()];
3724     }
3725     Optional<int> Diff =
3726         getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3727     // Check that the sorted loads are consecutive.
3728     if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3729       return LoadsState::Vectorize;
3730     Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3731     for (Value *V : VL)
3732       CommonAlignment =
3733           commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3734     if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
3735                                 CommonAlignment))
3736       return LoadsState::ScatterVectorize;
3737   }
3738 
3739   return LoadsState::Gather;
3740 }
3741 
3742 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
3743                             const EdgeInfo &UserTreeIdx) {
3744   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
3745 
3746   SmallVector<int> ReuseShuffleIndicies;
3747   SmallVector<Value *> UniqueValues;
3748   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
3749                                 &UserTreeIdx,
3750                                 this](const InstructionsState &S) {
3751     // Check that every instruction appears once in this bundle.
3752     DenseMap<Value *, unsigned> UniquePositions;
3753     for (Value *V : VL) {
3754       if (isConstant(V)) {
3755         ReuseShuffleIndicies.emplace_back(
3756             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
3757         UniqueValues.emplace_back(V);
3758         continue;
3759       }
3760       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3761       ReuseShuffleIndicies.emplace_back(Res.first->second);
3762       if (Res.second)
3763         UniqueValues.emplace_back(V);
3764     }
3765     size_t NumUniqueScalarValues = UniqueValues.size();
3766     if (NumUniqueScalarValues == VL.size()) {
3767       ReuseShuffleIndicies.clear();
3768     } else {
3769       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
3770       if (NumUniqueScalarValues <= 1 ||
3771           (UniquePositions.size() == 1 && all_of(UniqueValues,
3772                                                  [](Value *V) {
3773                                                    return isa<UndefValue>(V) ||
3774                                                           !isConstant(V);
3775                                                  })) ||
3776           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
3777         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
3778         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3779         return false;
3780       }
3781       VL = UniqueValues;
3782     }
3783     return true;
3784   };
3785 
3786   InstructionsState S = getSameOpcode(VL);
3787   if (Depth == RecursionMaxDepth) {
3788     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
3789     if (TryToFindDuplicates(S))
3790       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3791                    ReuseShuffleIndicies);
3792     return;
3793   }
3794 
3795   // Don't handle scalable vectors
3796   if (S.getOpcode() == Instruction::ExtractElement &&
3797       isa<ScalableVectorType>(
3798           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
3799     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
3800     if (TryToFindDuplicates(S))
3801       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3802                    ReuseShuffleIndicies);
3803     return;
3804   }
3805 
3806   // Don't handle vectors.
3807   if (S.OpValue->getType()->isVectorTy() &&
3808       !isa<InsertElementInst>(S.OpValue)) {
3809     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
3810     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3811     return;
3812   }
3813 
3814   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3815     if (SI->getValueOperand()->getType()->isVectorTy()) {
3816       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
3817       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3818       return;
3819     }
3820 
3821   // If all of the operands are identical or constant we have a simple solution.
3822   // If we deal with insert/extract instructions, they all must have constant
3823   // indices, otherwise we should gather them, not try to vectorize.
3824   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() ||
3825       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) &&
3826        !all_of(VL, isVectorLikeInstWithConstOps))) {
3827     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
3828     if (TryToFindDuplicates(S))
3829       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3830                    ReuseShuffleIndicies);
3831     return;
3832   }
3833 
3834   // We now know that this is a vector of instructions of the same type from
3835   // the same block.
3836 
3837   // Don't vectorize ephemeral values.
3838   for (Value *V : VL) {
3839     if (EphValues.count(V)) {
3840       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3841                         << ") is ephemeral.\n");
3842       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3843       return;
3844     }
3845   }
3846 
3847   // Check if this is a duplicate of another entry.
3848   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3849     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
3850     if (!E->isSame(VL)) {
3851       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
3852       if (TryToFindDuplicates(S))
3853         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3854                      ReuseShuffleIndicies);
3855       return;
3856     }
3857     // Record the reuse of the tree node.  FIXME, currently this is only used to
3858     // properly draw the graph rather than for the actual vectorization.
3859     E->UserTreeIndices.push_back(UserTreeIdx);
3860     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
3861                       << ".\n");
3862     return;
3863   }
3864 
3865   // Check that none of the instructions in the bundle are already in the tree.
3866   for (Value *V : VL) {
3867     auto *I = dyn_cast<Instruction>(V);
3868     if (!I)
3869       continue;
3870     if (getTreeEntry(I)) {
3871       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3872                         << ") is already in tree.\n");
3873       if (TryToFindDuplicates(S))
3874         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3875                      ReuseShuffleIndicies);
3876       return;
3877     }
3878   }
3879 
3880   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
3881   for (Value *V : VL) {
3882     if (is_contained(UserIgnoreList, V)) {
3883       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
3884       if (TryToFindDuplicates(S))
3885         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3886                      ReuseShuffleIndicies);
3887       return;
3888     }
3889   }
3890 
3891   // Check that all of the users of the scalars that we want to vectorize are
3892   // schedulable.
3893   auto *VL0 = cast<Instruction>(S.OpValue);
3894   BasicBlock *BB = VL0->getParent();
3895 
3896   if (!DT->isReachableFromEntry(BB)) {
3897     // Don't go into unreachable blocks. They may contain instructions with
3898     // dependency cycles which confuse the final scheduling.
3899     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
3900     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3901     return;
3902   }
3903 
3904   // Check that every instruction appears once in this bundle.
3905   if (!TryToFindDuplicates(S))
3906     return;
3907 
3908   auto &BSRef = BlocksSchedules[BB];
3909   if (!BSRef)
3910     BSRef = std::make_unique<BlockScheduling>(BB);
3911 
3912   BlockScheduling &BS = *BSRef.get();
3913 
3914   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
3915 #ifdef EXPENSIVE_CHECKS
3916   // Make sure we didn't break any internal invariants
3917   BS.verify();
3918 #endif
3919   if (!Bundle) {
3920     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
3921     assert((!BS.getScheduleData(VL0) ||
3922             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
3923            "tryScheduleBundle should cancelScheduling on failure");
3924     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3925                  ReuseShuffleIndicies);
3926     return;
3927   }
3928   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
3929 
3930   unsigned ShuffleOrOp = S.isAltShuffle() ?
3931                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
3932   switch (ShuffleOrOp) {
3933     case Instruction::PHI: {
3934       auto *PH = cast<PHINode>(VL0);
3935 
3936       // Check for terminator values (e.g. invoke).
3937       for (Value *V : VL)
3938         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3939           Instruction *Term = dyn_cast<Instruction>(
3940               cast<PHINode>(V)->getIncomingValueForBlock(
3941                   PH->getIncomingBlock(I)));
3942           if (Term && Term->isTerminator()) {
3943             LLVM_DEBUG(dbgs()
3944                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
3945             BS.cancelScheduling(VL, VL0);
3946             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3947                          ReuseShuffleIndicies);
3948             return;
3949           }
3950         }
3951 
3952       TreeEntry *TE =
3953           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
3954       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
3955 
3956       // Keeps the reordered operands to avoid code duplication.
3957       SmallVector<ValueList, 2> OperandsVec;
3958       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3959         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
3960           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
3961           TE->setOperand(I, Operands);
3962           OperandsVec.push_back(Operands);
3963           continue;
3964         }
3965         ValueList Operands;
3966         // Prepare the operand vector.
3967         for (Value *V : VL)
3968           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
3969               PH->getIncomingBlock(I)));
3970         TE->setOperand(I, Operands);
3971         OperandsVec.push_back(Operands);
3972       }
3973       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
3974         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
3975       return;
3976     }
3977     case Instruction::ExtractValue:
3978     case Instruction::ExtractElement: {
3979       OrdersType CurrentOrder;
3980       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
3981       if (Reuse) {
3982         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
3983         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3984                      ReuseShuffleIndicies);
3985         // This is a special case, as it does not gather, but at the same time
3986         // we are not extending buildTree_rec() towards the operands.
3987         ValueList Op0;
3988         Op0.assign(VL.size(), VL0->getOperand(0));
3989         VectorizableTree.back()->setOperand(0, Op0);
3990         return;
3991       }
3992       if (!CurrentOrder.empty()) {
3993         LLVM_DEBUG({
3994           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
3995                     "with order";
3996           for (unsigned Idx : CurrentOrder)
3997             dbgs() << " " << Idx;
3998           dbgs() << "\n";
3999         });
4000         fixupOrderingIndices(CurrentOrder);
4001         // Insert new order with initial value 0, if it does not exist,
4002         // otherwise return the iterator to the existing one.
4003         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4004                      ReuseShuffleIndicies, CurrentOrder);
4005         // This is a special case, as it does not gather, but at the same time
4006         // we are not extending buildTree_rec() towards the operands.
4007         ValueList Op0;
4008         Op0.assign(VL.size(), VL0->getOperand(0));
4009         VectorizableTree.back()->setOperand(0, Op0);
4010         return;
4011       }
4012       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4013       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4014                    ReuseShuffleIndicies);
4015       BS.cancelScheduling(VL, VL0);
4016       return;
4017     }
4018     case Instruction::InsertElement: {
4019       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4020 
4021       // Check that we have a buildvector and not a shuffle of 2 or more
4022       // different vectors.
4023       ValueSet SourceVectors;
4024       for (Value *V : VL) {
4025         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4026         if (getInsertIndex(V) == None) {
4027           LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4028                                "non-constant or undef index.\n");
4029           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4030           BS.cancelScheduling(VL, VL0);
4031           return;
4032         }
4033       }
4034 
4035       if (count_if(VL, [&SourceVectors](Value *V) {
4036             return !SourceVectors.contains(V);
4037           }) >= 2) {
4038         // Found 2nd source vector - cancel.
4039         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4040                              "different source vectors.\n");
4041         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4042         BS.cancelScheduling(VL, VL0);
4043         return;
4044       }
4045 
4046       auto OrdCompare = [](const std::pair<int, int> &P1,
4047                            const std::pair<int, int> &P2) {
4048         return P1.first > P2.first;
4049       };
4050       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4051                     decltype(OrdCompare)>
4052           Indices(OrdCompare);
4053       for (int I = 0, E = VL.size(); I < E; ++I) {
4054         unsigned Idx = *getInsertIndex(VL[I]);
4055         Indices.emplace(Idx, I);
4056       }
4057       OrdersType CurrentOrder(VL.size(), VL.size());
4058       bool IsIdentity = true;
4059       for (int I = 0, E = VL.size(); I < E; ++I) {
4060         CurrentOrder[Indices.top().second] = I;
4061         IsIdentity &= Indices.top().second == I;
4062         Indices.pop();
4063       }
4064       if (IsIdentity)
4065         CurrentOrder.clear();
4066       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4067                                    None, CurrentOrder);
4068       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4069 
4070       constexpr int NumOps = 2;
4071       ValueList VectorOperands[NumOps];
4072       for (int I = 0; I < NumOps; ++I) {
4073         for (Value *V : VL)
4074           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4075 
4076         TE->setOperand(I, VectorOperands[I]);
4077       }
4078       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4079       return;
4080     }
4081     case Instruction::Load: {
4082       // Check that a vectorized load would load the same memory as a scalar
4083       // load. For example, we don't want to vectorize loads that are smaller
4084       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4085       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4086       // from such a struct, we read/write packed bits disagreeing with the
4087       // unvectorized version.
4088       SmallVector<Value *> PointerOps;
4089       OrdersType CurrentOrder;
4090       TreeEntry *TE = nullptr;
4091       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder,
4092                                 PointerOps)) {
4093       case LoadsState::Vectorize:
4094         if (CurrentOrder.empty()) {
4095           // Original loads are consecutive and does not require reordering.
4096           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4097                             ReuseShuffleIndicies);
4098           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
4099         } else {
4100           fixupOrderingIndices(CurrentOrder);
4101           // Need to reorder.
4102           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4103                             ReuseShuffleIndicies, CurrentOrder);
4104           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
4105         }
4106         TE->setOperandsInOrder();
4107         break;
4108       case LoadsState::ScatterVectorize:
4109         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
4110         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
4111                           UserTreeIdx, ReuseShuffleIndicies);
4112         TE->setOperandsInOrder();
4113         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
4114         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
4115         break;
4116       case LoadsState::Gather:
4117         BS.cancelScheduling(VL, VL0);
4118         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4119                      ReuseShuffleIndicies);
4120 #ifndef NDEBUG
4121         Type *ScalarTy = VL0->getType();
4122         if (DL->getTypeSizeInBits(ScalarTy) !=
4123             DL->getTypeAllocSizeInBits(ScalarTy))
4124           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
4125         else if (any_of(VL, [](Value *V) {
4126                    return !cast<LoadInst>(V)->isSimple();
4127                  }))
4128           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
4129         else
4130           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
4131 #endif // NDEBUG
4132         break;
4133       }
4134       return;
4135     }
4136     case Instruction::ZExt:
4137     case Instruction::SExt:
4138     case Instruction::FPToUI:
4139     case Instruction::FPToSI:
4140     case Instruction::FPExt:
4141     case Instruction::PtrToInt:
4142     case Instruction::IntToPtr:
4143     case Instruction::SIToFP:
4144     case Instruction::UIToFP:
4145     case Instruction::Trunc:
4146     case Instruction::FPTrunc:
4147     case Instruction::BitCast: {
4148       Type *SrcTy = VL0->getOperand(0)->getType();
4149       for (Value *V : VL) {
4150         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
4151         if (Ty != SrcTy || !isValidElementType(Ty)) {
4152           BS.cancelScheduling(VL, VL0);
4153           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4154                        ReuseShuffleIndicies);
4155           LLVM_DEBUG(dbgs()
4156                      << "SLP: Gathering casts with different src types.\n");
4157           return;
4158         }
4159       }
4160       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4161                                    ReuseShuffleIndicies);
4162       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
4163 
4164       TE->setOperandsInOrder();
4165       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4166         ValueList Operands;
4167         // Prepare the operand vector.
4168         for (Value *V : VL)
4169           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4170 
4171         buildTree_rec(Operands, Depth + 1, {TE, i});
4172       }
4173       return;
4174     }
4175     case Instruction::ICmp:
4176     case Instruction::FCmp: {
4177       // Check that all of the compares have the same predicate.
4178       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4179       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
4180       Type *ComparedTy = VL0->getOperand(0)->getType();
4181       for (Value *V : VL) {
4182         CmpInst *Cmp = cast<CmpInst>(V);
4183         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
4184             Cmp->getOperand(0)->getType() != ComparedTy) {
4185           BS.cancelScheduling(VL, VL0);
4186           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4187                        ReuseShuffleIndicies);
4188           LLVM_DEBUG(dbgs()
4189                      << "SLP: Gathering cmp with different predicate.\n");
4190           return;
4191         }
4192       }
4193 
4194       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4195                                    ReuseShuffleIndicies);
4196       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
4197 
4198       ValueList Left, Right;
4199       if (cast<CmpInst>(VL0)->isCommutative()) {
4200         // Commutative predicate - collect + sort operands of the instructions
4201         // so that each side is more likely to have the same opcode.
4202         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
4203         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4204       } else {
4205         // Collect operands - commute if it uses the swapped predicate.
4206         for (Value *V : VL) {
4207           auto *Cmp = cast<CmpInst>(V);
4208           Value *LHS = Cmp->getOperand(0);
4209           Value *RHS = Cmp->getOperand(1);
4210           if (Cmp->getPredicate() != P0)
4211             std::swap(LHS, RHS);
4212           Left.push_back(LHS);
4213           Right.push_back(RHS);
4214         }
4215       }
4216       TE->setOperand(0, Left);
4217       TE->setOperand(1, Right);
4218       buildTree_rec(Left, Depth + 1, {TE, 0});
4219       buildTree_rec(Right, Depth + 1, {TE, 1});
4220       return;
4221     }
4222     case Instruction::Select:
4223     case Instruction::FNeg:
4224     case Instruction::Add:
4225     case Instruction::FAdd:
4226     case Instruction::Sub:
4227     case Instruction::FSub:
4228     case Instruction::Mul:
4229     case Instruction::FMul:
4230     case Instruction::UDiv:
4231     case Instruction::SDiv:
4232     case Instruction::FDiv:
4233     case Instruction::URem:
4234     case Instruction::SRem:
4235     case Instruction::FRem:
4236     case Instruction::Shl:
4237     case Instruction::LShr:
4238     case Instruction::AShr:
4239     case Instruction::And:
4240     case Instruction::Or:
4241     case Instruction::Xor: {
4242       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4243                                    ReuseShuffleIndicies);
4244       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
4245 
4246       // Sort operands of the instructions so that each side is more likely to
4247       // have the same opcode.
4248       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
4249         ValueList Left, Right;
4250         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4251         TE->setOperand(0, Left);
4252         TE->setOperand(1, Right);
4253         buildTree_rec(Left, Depth + 1, {TE, 0});
4254         buildTree_rec(Right, Depth + 1, {TE, 1});
4255         return;
4256       }
4257 
4258       TE->setOperandsInOrder();
4259       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4260         ValueList Operands;
4261         // Prepare the operand vector.
4262         for (Value *V : VL)
4263           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4264 
4265         buildTree_rec(Operands, Depth + 1, {TE, i});
4266       }
4267       return;
4268     }
4269     case Instruction::GetElementPtr: {
4270       // We don't combine GEPs with complicated (nested) indexing.
4271       for (Value *V : VL) {
4272         if (cast<Instruction>(V)->getNumOperands() != 2) {
4273           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
4274           BS.cancelScheduling(VL, VL0);
4275           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4276                        ReuseShuffleIndicies);
4277           return;
4278         }
4279       }
4280 
4281       // We can't combine several GEPs into one vector if they operate on
4282       // different types.
4283       Type *Ty0 = VL0->getOperand(0)->getType();
4284       for (Value *V : VL) {
4285         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
4286         if (Ty0 != CurTy) {
4287           LLVM_DEBUG(dbgs()
4288                      << "SLP: not-vectorizable GEP (different types).\n");
4289           BS.cancelScheduling(VL, VL0);
4290           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4291                        ReuseShuffleIndicies);
4292           return;
4293         }
4294       }
4295 
4296       // We don't combine GEPs with non-constant indexes.
4297       Type *Ty1 = VL0->getOperand(1)->getType();
4298       for (Value *V : VL) {
4299         auto Op = cast<Instruction>(V)->getOperand(1);
4300         if (!isa<ConstantInt>(Op) ||
4301             (Op->getType() != Ty1 &&
4302              Op->getType()->getScalarSizeInBits() >
4303                  DL->getIndexSizeInBits(
4304                      V->getType()->getPointerAddressSpace()))) {
4305           LLVM_DEBUG(dbgs()
4306                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
4307           BS.cancelScheduling(VL, VL0);
4308           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4309                        ReuseShuffleIndicies);
4310           return;
4311         }
4312       }
4313 
4314       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4315                                    ReuseShuffleIndicies);
4316       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
4317       SmallVector<ValueList, 2> Operands(2);
4318       // Prepare the operand vector for pointer operands.
4319       for (Value *V : VL)
4320         Operands.front().push_back(
4321             cast<GetElementPtrInst>(V)->getPointerOperand());
4322       TE->setOperand(0, Operands.front());
4323       // Need to cast all indices to the same type before vectorization to
4324       // avoid crash.
4325       // Required to be able to find correct matches between different gather
4326       // nodes and reuse the vectorized values rather than trying to gather them
4327       // again.
4328       int IndexIdx = 1;
4329       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
4330       Type *Ty = all_of(VL,
4331                         [VL0Ty, IndexIdx](Value *V) {
4332                           return VL0Ty == cast<GetElementPtrInst>(V)
4333                                               ->getOperand(IndexIdx)
4334                                               ->getType();
4335                         })
4336                      ? VL0Ty
4337                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4338                                             ->getPointerOperandType()
4339                                             ->getScalarType());
4340       // Prepare the operand vector.
4341       for (Value *V : VL) {
4342         auto *Op = cast<Instruction>(V)->getOperand(IndexIdx);
4343         auto *CI = cast<ConstantInt>(Op);
4344         Operands.back().push_back(ConstantExpr::getIntegerCast(
4345             CI, Ty, CI->getValue().isSignBitSet()));
4346       }
4347       TE->setOperand(IndexIdx, Operands.back());
4348 
4349       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
4350         buildTree_rec(Operands[I], Depth + 1, {TE, I});
4351       return;
4352     }
4353     case Instruction::Store: {
4354       // Check if the stores are consecutive or if we need to swizzle them.
4355       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
4356       // Avoid types that are padded when being allocated as scalars, while
4357       // being packed together in a vector (such as i1).
4358       if (DL->getTypeSizeInBits(ScalarTy) !=
4359           DL->getTypeAllocSizeInBits(ScalarTy)) {
4360         BS.cancelScheduling(VL, VL0);
4361         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4362                      ReuseShuffleIndicies);
4363         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
4364         return;
4365       }
4366       // Make sure all stores in the bundle are simple - we can't vectorize
4367       // atomic or volatile stores.
4368       SmallVector<Value *, 4> PointerOps(VL.size());
4369       ValueList Operands(VL.size());
4370       auto POIter = PointerOps.begin();
4371       auto OIter = Operands.begin();
4372       for (Value *V : VL) {
4373         auto *SI = cast<StoreInst>(V);
4374         if (!SI->isSimple()) {
4375           BS.cancelScheduling(VL, VL0);
4376           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4377                        ReuseShuffleIndicies);
4378           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
4379           return;
4380         }
4381         *POIter = SI->getPointerOperand();
4382         *OIter = SI->getValueOperand();
4383         ++POIter;
4384         ++OIter;
4385       }
4386 
4387       OrdersType CurrentOrder;
4388       // Check the order of pointer operands.
4389       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
4390         Value *Ptr0;
4391         Value *PtrN;
4392         if (CurrentOrder.empty()) {
4393           Ptr0 = PointerOps.front();
4394           PtrN = PointerOps.back();
4395         } else {
4396           Ptr0 = PointerOps[CurrentOrder.front()];
4397           PtrN = PointerOps[CurrentOrder.back()];
4398         }
4399         Optional<int> Dist =
4400             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
4401         // Check that the sorted pointer operands are consecutive.
4402         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
4403           if (CurrentOrder.empty()) {
4404             // Original stores are consecutive and does not require reordering.
4405             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
4406                                          UserTreeIdx, ReuseShuffleIndicies);
4407             TE->setOperandsInOrder();
4408             buildTree_rec(Operands, Depth + 1, {TE, 0});
4409             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
4410           } else {
4411             fixupOrderingIndices(CurrentOrder);
4412             TreeEntry *TE =
4413                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4414                              ReuseShuffleIndicies, CurrentOrder);
4415             TE->setOperandsInOrder();
4416             buildTree_rec(Operands, Depth + 1, {TE, 0});
4417             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
4418           }
4419           return;
4420         }
4421       }
4422 
4423       BS.cancelScheduling(VL, VL0);
4424       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4425                    ReuseShuffleIndicies);
4426       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
4427       return;
4428     }
4429     case Instruction::Call: {
4430       // Check if the calls are all to the same vectorizable intrinsic or
4431       // library function.
4432       CallInst *CI = cast<CallInst>(VL0);
4433       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4434 
4435       VFShape Shape = VFShape::get(
4436           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
4437           false /*HasGlobalPred*/);
4438       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4439 
4440       if (!VecFunc && !isTriviallyVectorizable(ID)) {
4441         BS.cancelScheduling(VL, VL0);
4442         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4443                      ReuseShuffleIndicies);
4444         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
4445         return;
4446       }
4447       Function *F = CI->getCalledFunction();
4448       unsigned NumArgs = CI->arg_size();
4449       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
4450       for (unsigned j = 0; j != NumArgs; ++j)
4451         if (hasVectorInstrinsicScalarOpd(ID, j))
4452           ScalarArgs[j] = CI->getArgOperand(j);
4453       for (Value *V : VL) {
4454         CallInst *CI2 = dyn_cast<CallInst>(V);
4455         if (!CI2 || CI2->getCalledFunction() != F ||
4456             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
4457             (VecFunc &&
4458              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
4459             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
4460           BS.cancelScheduling(VL, VL0);
4461           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4462                        ReuseShuffleIndicies);
4463           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
4464                             << "\n");
4465           return;
4466         }
4467         // Some intrinsics have scalar arguments and should be same in order for
4468         // them to be vectorized.
4469         for (unsigned j = 0; j != NumArgs; ++j) {
4470           if (hasVectorInstrinsicScalarOpd(ID, j)) {
4471             Value *A1J = CI2->getArgOperand(j);
4472             if (ScalarArgs[j] != A1J) {
4473               BS.cancelScheduling(VL, VL0);
4474               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4475                            ReuseShuffleIndicies);
4476               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
4477                                 << " argument " << ScalarArgs[j] << "!=" << A1J
4478                                 << "\n");
4479               return;
4480             }
4481           }
4482         }
4483         // Verify that the bundle operands are identical between the two calls.
4484         if (CI->hasOperandBundles() &&
4485             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
4486                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
4487                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
4488           BS.cancelScheduling(VL, VL0);
4489           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4490                        ReuseShuffleIndicies);
4491           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
4492                             << *CI << "!=" << *V << '\n');
4493           return;
4494         }
4495       }
4496 
4497       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4498                                    ReuseShuffleIndicies);
4499       TE->setOperandsInOrder();
4500       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
4501         // For scalar operands no need to to create an entry since no need to
4502         // vectorize it.
4503         if (hasVectorInstrinsicScalarOpd(ID, i))
4504           continue;
4505         ValueList Operands;
4506         // Prepare the operand vector.
4507         for (Value *V : VL) {
4508           auto *CI2 = cast<CallInst>(V);
4509           Operands.push_back(CI2->getArgOperand(i));
4510         }
4511         buildTree_rec(Operands, Depth + 1, {TE, i});
4512       }
4513       return;
4514     }
4515     case Instruction::ShuffleVector: {
4516       // If this is not an alternate sequence of opcode like add-sub
4517       // then do not vectorize this instruction.
4518       if (!S.isAltShuffle()) {
4519         BS.cancelScheduling(VL, VL0);
4520         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4521                      ReuseShuffleIndicies);
4522         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
4523         return;
4524       }
4525       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4526                                    ReuseShuffleIndicies);
4527       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
4528 
4529       // Reorder operands if reordering would enable vectorization.
4530       auto *CI = dyn_cast<CmpInst>(VL0);
4531       if (isa<BinaryOperator>(VL0) || CI) {
4532         ValueList Left, Right;
4533         if (!CI || all_of(VL, [](Value *V) {
4534               return cast<CmpInst>(V)->isCommutative();
4535             })) {
4536           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4537         } else {
4538           CmpInst::Predicate P0 = CI->getPredicate();
4539           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
4540           assert(P0 != AltP0 &&
4541                  "Expected different main/alternate predicates.");
4542           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4543           Value *BaseOp0 = VL0->getOperand(0);
4544           Value *BaseOp1 = VL0->getOperand(1);
4545           // Collect operands - commute if it uses the swapped predicate or
4546           // alternate operation.
4547           for (Value *V : VL) {
4548             auto *Cmp = cast<CmpInst>(V);
4549             Value *LHS = Cmp->getOperand(0);
4550             Value *RHS = Cmp->getOperand(1);
4551             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
4552             if (P0 == AltP0Swapped) {
4553               if ((P0 == CurrentPred &&
4554                    !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
4555                   (AltP0 == CurrentPred &&
4556                    areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))
4557                 std::swap(LHS, RHS);
4558             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
4559               std::swap(LHS, RHS);
4560             }
4561             Left.push_back(LHS);
4562             Right.push_back(RHS);
4563           }
4564         }
4565         TE->setOperand(0, Left);
4566         TE->setOperand(1, Right);
4567         buildTree_rec(Left, Depth + 1, {TE, 0});
4568         buildTree_rec(Right, Depth + 1, {TE, 1});
4569         return;
4570       }
4571 
4572       TE->setOperandsInOrder();
4573       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4574         ValueList Operands;
4575         // Prepare the operand vector.
4576         for (Value *V : VL)
4577           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4578 
4579         buildTree_rec(Operands, Depth + 1, {TE, i});
4580       }
4581       return;
4582     }
4583     default:
4584       BS.cancelScheduling(VL, VL0);
4585       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4586                    ReuseShuffleIndicies);
4587       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
4588       return;
4589   }
4590 }
4591 
4592 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
4593   unsigned N = 1;
4594   Type *EltTy = T;
4595 
4596   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
4597          isa<VectorType>(EltTy)) {
4598     if (auto *ST = dyn_cast<StructType>(EltTy)) {
4599       // Check that struct is homogeneous.
4600       for (const auto *Ty : ST->elements())
4601         if (Ty != *ST->element_begin())
4602           return 0;
4603       N *= ST->getNumElements();
4604       EltTy = *ST->element_begin();
4605     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
4606       N *= AT->getNumElements();
4607       EltTy = AT->getElementType();
4608     } else {
4609       auto *VT = cast<FixedVectorType>(EltTy);
4610       N *= VT->getNumElements();
4611       EltTy = VT->getElementType();
4612     }
4613   }
4614 
4615   if (!isValidElementType(EltTy))
4616     return 0;
4617   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
4618   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
4619     return 0;
4620   return N;
4621 }
4622 
4623 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
4624                               SmallVectorImpl<unsigned> &CurrentOrder) const {
4625   const auto *It = find_if(VL, [](Value *V) {
4626     return isa<ExtractElementInst, ExtractValueInst>(V);
4627   });
4628   assert(It != VL.end() && "Expected at least one extract instruction.");
4629   auto *E0 = cast<Instruction>(*It);
4630   assert(all_of(VL,
4631                 [](Value *V) {
4632                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
4633                       V);
4634                 }) &&
4635          "Invalid opcode");
4636   // Check if all of the extracts come from the same vector and from the
4637   // correct offset.
4638   Value *Vec = E0->getOperand(0);
4639 
4640   CurrentOrder.clear();
4641 
4642   // We have to extract from a vector/aggregate with the same number of elements.
4643   unsigned NElts;
4644   if (E0->getOpcode() == Instruction::ExtractValue) {
4645     const DataLayout &DL = E0->getModule()->getDataLayout();
4646     NElts = canMapToVector(Vec->getType(), DL);
4647     if (!NElts)
4648       return false;
4649     // Check if load can be rewritten as load of vector.
4650     LoadInst *LI = dyn_cast<LoadInst>(Vec);
4651     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
4652       return false;
4653   } else {
4654     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
4655   }
4656 
4657   if (NElts != VL.size())
4658     return false;
4659 
4660   // Check that all of the indices extract from the correct offset.
4661   bool ShouldKeepOrder = true;
4662   unsigned E = VL.size();
4663   // Assign to all items the initial value E + 1 so we can check if the extract
4664   // instruction index was used already.
4665   // Also, later we can check that all the indices are used and we have a
4666   // consecutive access in the extract instructions, by checking that no
4667   // element of CurrentOrder still has value E + 1.
4668   CurrentOrder.assign(E, E);
4669   unsigned I = 0;
4670   for (; I < E; ++I) {
4671     auto *Inst = dyn_cast<Instruction>(VL[I]);
4672     if (!Inst)
4673       continue;
4674     if (Inst->getOperand(0) != Vec)
4675       break;
4676     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
4677       if (isa<UndefValue>(EE->getIndexOperand()))
4678         continue;
4679     Optional<unsigned> Idx = getExtractIndex(Inst);
4680     if (!Idx)
4681       break;
4682     const unsigned ExtIdx = *Idx;
4683     if (ExtIdx != I) {
4684       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
4685         break;
4686       ShouldKeepOrder = false;
4687       CurrentOrder[ExtIdx] = I;
4688     } else {
4689       if (CurrentOrder[I] != E)
4690         break;
4691       CurrentOrder[I] = I;
4692     }
4693   }
4694   if (I < E) {
4695     CurrentOrder.clear();
4696     return false;
4697   }
4698   if (ShouldKeepOrder)
4699     CurrentOrder.clear();
4700 
4701   return ShouldKeepOrder;
4702 }
4703 
4704 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
4705                                     ArrayRef<Value *> VectorizedVals) const {
4706   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
4707          all_of(I->users(), [this](User *U) {
4708            return ScalarToTreeEntry.count(U) > 0 ||
4709                   isVectorLikeInstWithConstOps(U) ||
4710                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
4711          });
4712 }
4713 
4714 static std::pair<InstructionCost, InstructionCost>
4715 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
4716                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
4717   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4718 
4719   // Calculate the cost of the scalar and vector calls.
4720   SmallVector<Type *, 4> VecTys;
4721   for (Use &Arg : CI->args())
4722     VecTys.push_back(
4723         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
4724   FastMathFlags FMF;
4725   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
4726     FMF = FPCI->getFastMathFlags();
4727   SmallVector<const Value *> Arguments(CI->args());
4728   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
4729                                     dyn_cast<IntrinsicInst>(CI));
4730   auto IntrinsicCost =
4731     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
4732 
4733   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4734                                      VecTy->getNumElements())),
4735                             false /*HasGlobalPred*/);
4736   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4737   auto LibCost = IntrinsicCost;
4738   if (!CI->isNoBuiltin() && VecFunc) {
4739     // Calculate the cost of the vector library call.
4740     // If the corresponding vector call is cheaper, return its cost.
4741     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
4742                                     TTI::TCK_RecipThroughput);
4743   }
4744   return {IntrinsicCost, LibCost};
4745 }
4746 
4747 /// Compute the cost of creating a vector of type \p VecTy containing the
4748 /// extracted values from \p VL.
4749 static InstructionCost
4750 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
4751                    TargetTransformInfo::ShuffleKind ShuffleKind,
4752                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
4753   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
4754 
4755   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
4756       VecTy->getNumElements() < NumOfParts)
4757     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
4758 
4759   bool AllConsecutive = true;
4760   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
4761   unsigned Idx = -1;
4762   InstructionCost Cost = 0;
4763 
4764   // Process extracts in blocks of EltsPerVector to check if the source vector
4765   // operand can be re-used directly. If not, add the cost of creating a shuffle
4766   // to extract the values into a vector register.
4767   for (auto *V : VL) {
4768     ++Idx;
4769 
4770     // Need to exclude undefs from analysis.
4771     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
4772       continue;
4773 
4774     // Reached the start of a new vector registers.
4775     if (Idx % EltsPerVector == 0) {
4776       AllConsecutive = true;
4777       continue;
4778     }
4779 
4780     // Check all extracts for a vector register on the target directly
4781     // extract values in order.
4782     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
4783     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
4784       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
4785       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
4786                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
4787     }
4788 
4789     if (AllConsecutive)
4790       continue;
4791 
4792     // Skip all indices, except for the last index per vector block.
4793     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
4794       continue;
4795 
4796     // If we have a series of extracts which are not consecutive and hence
4797     // cannot re-use the source vector register directly, compute the shuffle
4798     // cost to extract the a vector with EltsPerVector elements.
4799     Cost += TTI.getShuffleCost(
4800         TargetTransformInfo::SK_PermuteSingleSrc,
4801         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
4802   }
4803   return Cost;
4804 }
4805 
4806 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
4807 /// operations operands.
4808 static void
4809 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
4810                      ArrayRef<int> ReusesIndices,
4811                      const function_ref<bool(Instruction *)> IsAltOp,
4812                      SmallVectorImpl<int> &Mask,
4813                      SmallVectorImpl<Value *> *OpScalars = nullptr,
4814                      SmallVectorImpl<Value *> *AltScalars = nullptr) {
4815   unsigned Sz = VL.size();
4816   Mask.assign(Sz, UndefMaskElem);
4817   SmallVector<int> OrderMask;
4818   if (!ReorderIndices.empty())
4819     inversePermutation(ReorderIndices, OrderMask);
4820   for (unsigned I = 0; I < Sz; ++I) {
4821     unsigned Idx = I;
4822     if (!ReorderIndices.empty())
4823       Idx = OrderMask[I];
4824     auto *OpInst = cast<Instruction>(VL[Idx]);
4825     if (IsAltOp(OpInst)) {
4826       Mask[I] = Sz + Idx;
4827       if (AltScalars)
4828         AltScalars->push_back(OpInst);
4829     } else {
4830       Mask[I] = Idx;
4831       if (OpScalars)
4832         OpScalars->push_back(OpInst);
4833     }
4834   }
4835   if (!ReusesIndices.empty()) {
4836     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
4837     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
4838       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
4839     });
4840     Mask.swap(NewMask);
4841   }
4842 }
4843 
4844 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
4845                                       ArrayRef<Value *> VectorizedVals) {
4846   ArrayRef<Value*> VL = E->Scalars;
4847 
4848   Type *ScalarTy = VL[0]->getType();
4849   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4850     ScalarTy = SI->getValueOperand()->getType();
4851   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
4852     ScalarTy = CI->getOperand(0)->getType();
4853   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
4854     ScalarTy = IE->getOperand(1)->getType();
4855   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4856   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4857 
4858   // If we have computed a smaller type for the expression, update VecTy so
4859   // that the costs will be accurate.
4860   if (MinBWs.count(VL[0]))
4861     VecTy = FixedVectorType::get(
4862         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
4863   unsigned EntryVF = E->getVectorFactor();
4864   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
4865 
4866   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4867   // FIXME: it tries to fix a problem with MSVC buildbots.
4868   TargetTransformInfo &TTIRef = *TTI;
4869   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
4870                                VectorizedVals, E](InstructionCost &Cost) {
4871     DenseMap<Value *, int> ExtractVectorsTys;
4872     SmallPtrSet<Value *, 4> CheckedExtracts;
4873     for (auto *V : VL) {
4874       if (isa<UndefValue>(V))
4875         continue;
4876       // If all users of instruction are going to be vectorized and this
4877       // instruction itself is not going to be vectorized, consider this
4878       // instruction as dead and remove its cost from the final cost of the
4879       // vectorized tree.
4880       // Also, avoid adjusting the cost for extractelements with multiple uses
4881       // in different graph entries.
4882       const TreeEntry *VE = getTreeEntry(V);
4883       if (!CheckedExtracts.insert(V).second ||
4884           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
4885           (VE && VE != E))
4886         continue;
4887       auto *EE = cast<ExtractElementInst>(V);
4888       Optional<unsigned> EEIdx = getExtractIndex(EE);
4889       if (!EEIdx)
4890         continue;
4891       unsigned Idx = *EEIdx;
4892       if (TTIRef.getNumberOfParts(VecTy) !=
4893           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
4894         auto It =
4895             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
4896         It->getSecond() = std::min<int>(It->second, Idx);
4897       }
4898       // Take credit for instruction that will become dead.
4899       if (EE->hasOneUse()) {
4900         Instruction *Ext = EE->user_back();
4901         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4902             all_of(Ext->users(),
4903                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
4904           // Use getExtractWithExtendCost() to calculate the cost of
4905           // extractelement/ext pair.
4906           Cost -=
4907               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
4908                                               EE->getVectorOperandType(), Idx);
4909           // Add back the cost of s|zext which is subtracted separately.
4910           Cost += TTIRef.getCastInstrCost(
4911               Ext->getOpcode(), Ext->getType(), EE->getType(),
4912               TTI::getCastContextHint(Ext), CostKind, Ext);
4913           continue;
4914         }
4915       }
4916       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
4917                                         EE->getVectorOperandType(), Idx);
4918     }
4919     // Add a cost for subvector extracts/inserts if required.
4920     for (const auto &Data : ExtractVectorsTys) {
4921       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
4922       unsigned NumElts = VecTy->getNumElements();
4923       if (Data.second % NumElts == 0)
4924         continue;
4925       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
4926         unsigned Idx = (Data.second / NumElts) * NumElts;
4927         unsigned EENumElts = EEVTy->getNumElements();
4928         if (Idx + NumElts <= EENumElts) {
4929           Cost +=
4930               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4931                                     EEVTy, None, Idx, VecTy);
4932         } else {
4933           // Need to round up the subvector type vectorization factor to avoid a
4934           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
4935           // <= EENumElts.
4936           auto *SubVT =
4937               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
4938           Cost +=
4939               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4940                                     EEVTy, None, Idx, SubVT);
4941         }
4942       } else {
4943         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
4944                                       VecTy, None, 0, EEVTy);
4945       }
4946     }
4947   };
4948   if (E->State == TreeEntry::NeedToGather) {
4949     if (allConstant(VL))
4950       return 0;
4951     if (isa<InsertElementInst>(VL[0]))
4952       return InstructionCost::getInvalid();
4953     SmallVector<int> Mask;
4954     SmallVector<const TreeEntry *> Entries;
4955     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
4956         isGatherShuffledEntry(E, Mask, Entries);
4957     if (Shuffle.hasValue()) {
4958       InstructionCost GatherCost = 0;
4959       if (ShuffleVectorInst::isIdentityMask(Mask)) {
4960         // Perfect match in the graph, will reuse the previously vectorized
4961         // node. Cost is 0.
4962         LLVM_DEBUG(
4963             dbgs()
4964             << "SLP: perfect diamond match for gather bundle that starts with "
4965             << *VL.front() << ".\n");
4966         if (NeedToShuffleReuses)
4967           GatherCost =
4968               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
4969                                   FinalVecTy, E->ReuseShuffleIndices);
4970       } else {
4971         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
4972                           << " entries for bundle that starts with "
4973                           << *VL.front() << ".\n");
4974         // Detected that instead of gather we can emit a shuffle of single/two
4975         // previously vectorized nodes. Add the cost of the permutation rather
4976         // than gather.
4977         ::addMask(Mask, E->ReuseShuffleIndices);
4978         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
4979       }
4980       return GatherCost;
4981     }
4982     if ((E->getOpcode() == Instruction::ExtractElement ||
4983          all_of(E->Scalars,
4984                 [](Value *V) {
4985                   return isa<ExtractElementInst, UndefValue>(V);
4986                 })) &&
4987         allSameType(VL)) {
4988       // Check that gather of extractelements can be represented as just a
4989       // shuffle of a single/two vectors the scalars are extracted from.
4990       SmallVector<int> Mask;
4991       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
4992           isFixedVectorShuffle(VL, Mask);
4993       if (ShuffleKind.hasValue()) {
4994         // Found the bunch of extractelement instructions that must be gathered
4995         // into a vector and can be represented as a permutation elements in a
4996         // single input vector or of 2 input vectors.
4997         InstructionCost Cost =
4998             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
4999         AdjustExtractsCost(Cost);
5000         if (NeedToShuffleReuses)
5001           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5002                                       FinalVecTy, E->ReuseShuffleIndices);
5003         return Cost;
5004       }
5005     }
5006     if (isSplat(VL)) {
5007       // Found the broadcasting of the single scalar, calculate the cost as the
5008       // broadcast.
5009       assert(VecTy == FinalVecTy &&
5010              "No reused scalars expected for broadcast.");
5011       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
5012     }
5013     InstructionCost ReuseShuffleCost = 0;
5014     if (NeedToShuffleReuses)
5015       ReuseShuffleCost = TTI->getShuffleCost(
5016           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5017     // Improve gather cost for gather of loads, if we can group some of the
5018     // loads into vector loads.
5019     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5020         !E->isAltShuffle()) {
5021       BoUpSLP::ValueSet VectorizedLoads;
5022       unsigned StartIdx = 0;
5023       unsigned VF = VL.size() / 2;
5024       unsigned VectorizedCnt = 0;
5025       unsigned ScatterVectorizeCnt = 0;
5026       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5027       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5028         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5029              Cnt += VF) {
5030           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5031           if (!VectorizedLoads.count(Slice.front()) &&
5032               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5033             SmallVector<Value *> PointerOps;
5034             OrdersType CurrentOrder;
5035             LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL,
5036                                               *SE, CurrentOrder, PointerOps);
5037             switch (LS) {
5038             case LoadsState::Vectorize:
5039             case LoadsState::ScatterVectorize:
5040               // Mark the vectorized loads so that we don't vectorize them
5041               // again.
5042               if (LS == LoadsState::Vectorize)
5043                 ++VectorizedCnt;
5044               else
5045                 ++ScatterVectorizeCnt;
5046               VectorizedLoads.insert(Slice.begin(), Slice.end());
5047               // If we vectorized initial block, no need to try to vectorize it
5048               // again.
5049               if (Cnt == StartIdx)
5050                 StartIdx += VF;
5051               break;
5052             case LoadsState::Gather:
5053               break;
5054             }
5055           }
5056         }
5057         // Check if the whole array was vectorized already - exit.
5058         if (StartIdx >= VL.size())
5059           break;
5060         // Found vectorizable parts - exit.
5061         if (!VectorizedLoads.empty())
5062           break;
5063       }
5064       if (!VectorizedLoads.empty()) {
5065         InstructionCost GatherCost = 0;
5066         unsigned NumParts = TTI->getNumberOfParts(VecTy);
5067         bool NeedInsertSubvectorAnalysis =
5068             !NumParts || (VL.size() / VF) > NumParts;
5069         // Get the cost for gathered loads.
5070         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
5071           if (VectorizedLoads.contains(VL[I]))
5072             continue;
5073           GatherCost += getGatherCost(VL.slice(I, VF));
5074         }
5075         // The cost for vectorized loads.
5076         InstructionCost ScalarsCost = 0;
5077         for (Value *V : VectorizedLoads) {
5078           auto *LI = cast<LoadInst>(V);
5079           ScalarsCost += TTI->getMemoryOpCost(
5080               Instruction::Load, LI->getType(), LI->getAlign(),
5081               LI->getPointerAddressSpace(), CostKind, LI);
5082         }
5083         auto *LI = cast<LoadInst>(E->getMainOp());
5084         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
5085         Align Alignment = LI->getAlign();
5086         GatherCost +=
5087             VectorizedCnt *
5088             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
5089                                  LI->getPointerAddressSpace(), CostKind, LI);
5090         GatherCost += ScatterVectorizeCnt *
5091                       TTI->getGatherScatterOpCost(
5092                           Instruction::Load, LoadTy, LI->getPointerOperand(),
5093                           /*VariableMask=*/false, Alignment, CostKind, LI);
5094         if (NeedInsertSubvectorAnalysis) {
5095           // Add the cost for the subvectors insert.
5096           for (int I = VF, E = VL.size(); I < E; I += VF)
5097             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
5098                                               None, I, LoadTy);
5099         }
5100         return ReuseShuffleCost + GatherCost - ScalarsCost;
5101       }
5102     }
5103     return ReuseShuffleCost + getGatherCost(VL);
5104   }
5105   InstructionCost CommonCost = 0;
5106   SmallVector<int> Mask;
5107   if (!E->ReorderIndices.empty()) {
5108     SmallVector<int> NewMask;
5109     if (E->getOpcode() == Instruction::Store) {
5110       // For stores the order is actually a mask.
5111       NewMask.resize(E->ReorderIndices.size());
5112       copy(E->ReorderIndices, NewMask.begin());
5113     } else {
5114       inversePermutation(E->ReorderIndices, NewMask);
5115     }
5116     ::addMask(Mask, NewMask);
5117   }
5118   if (NeedToShuffleReuses)
5119     ::addMask(Mask, E->ReuseShuffleIndices);
5120   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
5121     CommonCost =
5122         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
5123   assert((E->State == TreeEntry::Vectorize ||
5124           E->State == TreeEntry::ScatterVectorize) &&
5125          "Unhandled state");
5126   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
5127   Instruction *VL0 = E->getMainOp();
5128   unsigned ShuffleOrOp =
5129       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5130   switch (ShuffleOrOp) {
5131     case Instruction::PHI:
5132       return 0;
5133 
5134     case Instruction::ExtractValue:
5135     case Instruction::ExtractElement: {
5136       // The common cost of removal ExtractElement/ExtractValue instructions +
5137       // the cost of shuffles, if required to resuffle the original vector.
5138       if (NeedToShuffleReuses) {
5139         unsigned Idx = 0;
5140         for (unsigned I : E->ReuseShuffleIndices) {
5141           if (ShuffleOrOp == Instruction::ExtractElement) {
5142             auto *EE = cast<ExtractElementInst>(VL[I]);
5143             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5144                                                   EE->getVectorOperandType(),
5145                                                   *getExtractIndex(EE));
5146           } else {
5147             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5148                                                   VecTy, Idx);
5149             ++Idx;
5150           }
5151         }
5152         Idx = EntryVF;
5153         for (Value *V : VL) {
5154           if (ShuffleOrOp == Instruction::ExtractElement) {
5155             auto *EE = cast<ExtractElementInst>(V);
5156             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5157                                                   EE->getVectorOperandType(),
5158                                                   *getExtractIndex(EE));
5159           } else {
5160             --Idx;
5161             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5162                                                   VecTy, Idx);
5163           }
5164         }
5165       }
5166       if (ShuffleOrOp == Instruction::ExtractValue) {
5167         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
5168           auto *EI = cast<Instruction>(VL[I]);
5169           // Take credit for instruction that will become dead.
5170           if (EI->hasOneUse()) {
5171             Instruction *Ext = EI->user_back();
5172             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5173                 all_of(Ext->users(),
5174                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
5175               // Use getExtractWithExtendCost() to calculate the cost of
5176               // extractelement/ext pair.
5177               CommonCost -= TTI->getExtractWithExtendCost(
5178                   Ext->getOpcode(), Ext->getType(), VecTy, I);
5179               // Add back the cost of s|zext which is subtracted separately.
5180               CommonCost += TTI->getCastInstrCost(
5181                   Ext->getOpcode(), Ext->getType(), EI->getType(),
5182                   TTI::getCastContextHint(Ext), CostKind, Ext);
5183               continue;
5184             }
5185           }
5186           CommonCost -=
5187               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
5188         }
5189       } else {
5190         AdjustExtractsCost(CommonCost);
5191       }
5192       return CommonCost;
5193     }
5194     case Instruction::InsertElement: {
5195       assert(E->ReuseShuffleIndices.empty() &&
5196              "Unique insertelements only are expected.");
5197       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
5198 
5199       unsigned const NumElts = SrcVecTy->getNumElements();
5200       unsigned const NumScalars = VL.size();
5201       APInt DemandedElts = APInt::getZero(NumElts);
5202       // TODO: Add support for Instruction::InsertValue.
5203       SmallVector<int> Mask;
5204       if (!E->ReorderIndices.empty()) {
5205         inversePermutation(E->ReorderIndices, Mask);
5206         Mask.append(NumElts - NumScalars, UndefMaskElem);
5207       } else {
5208         Mask.assign(NumElts, UndefMaskElem);
5209         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5210       }
5211       unsigned Offset = *getInsertIndex(VL0);
5212       bool IsIdentity = true;
5213       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
5214       Mask.swap(PrevMask);
5215       for (unsigned I = 0; I < NumScalars; ++I) {
5216         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
5217         DemandedElts.setBit(InsertIdx);
5218         IsIdentity &= InsertIdx - Offset == I;
5219         Mask[InsertIdx - Offset] = I;
5220       }
5221       assert(Offset < NumElts && "Failed to find vector index offset");
5222 
5223       InstructionCost Cost = 0;
5224       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
5225                                             /*Insert*/ true, /*Extract*/ false);
5226 
5227       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
5228         // FIXME: Replace with SK_InsertSubvector once it is properly supported.
5229         unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
5230         Cost += TTI->getShuffleCost(
5231             TargetTransformInfo::SK_PermuteSingleSrc,
5232             FixedVectorType::get(SrcVecTy->getElementType(), Sz));
5233       } else if (!IsIdentity) {
5234         auto *FirstInsert =
5235             cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
5236               return !is_contained(E->Scalars,
5237                                    cast<Instruction>(V)->getOperand(0));
5238             }));
5239         if (isUndefVector(FirstInsert->getOperand(0))) {
5240           Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask);
5241         } else {
5242           SmallVector<int> InsertMask(NumElts);
5243           std::iota(InsertMask.begin(), InsertMask.end(), 0);
5244           for (unsigned I = 0; I < NumElts; I++) {
5245             if (Mask[I] != UndefMaskElem)
5246               InsertMask[Offset + I] = NumElts + I;
5247           }
5248           Cost +=
5249               TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask);
5250         }
5251       }
5252 
5253       return Cost;
5254     }
5255     case Instruction::ZExt:
5256     case Instruction::SExt:
5257     case Instruction::FPToUI:
5258     case Instruction::FPToSI:
5259     case Instruction::FPExt:
5260     case Instruction::PtrToInt:
5261     case Instruction::IntToPtr:
5262     case Instruction::SIToFP:
5263     case Instruction::UIToFP:
5264     case Instruction::Trunc:
5265     case Instruction::FPTrunc:
5266     case Instruction::BitCast: {
5267       Type *SrcTy = VL0->getOperand(0)->getType();
5268       InstructionCost ScalarEltCost =
5269           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
5270                                 TTI::getCastContextHint(VL0), CostKind, VL0);
5271       if (NeedToShuffleReuses) {
5272         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5273       }
5274 
5275       // Calculate the cost of this instruction.
5276       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
5277 
5278       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
5279       InstructionCost VecCost = 0;
5280       // Check if the values are candidates to demote.
5281       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
5282         VecCost = CommonCost + TTI->getCastInstrCost(
5283                                    E->getOpcode(), VecTy, SrcVecTy,
5284                                    TTI::getCastContextHint(VL0), CostKind, VL0);
5285       }
5286       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5287       return VecCost - ScalarCost;
5288     }
5289     case Instruction::FCmp:
5290     case Instruction::ICmp:
5291     case Instruction::Select: {
5292       // Calculate the cost of this instruction.
5293       InstructionCost ScalarEltCost =
5294           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5295                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
5296       if (NeedToShuffleReuses) {
5297         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5298       }
5299       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
5300       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5301 
5302       // Check if all entries in VL are either compares or selects with compares
5303       // as condition that have the same predicates.
5304       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
5305       bool First = true;
5306       for (auto *V : VL) {
5307         CmpInst::Predicate CurrentPred;
5308         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
5309         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
5310              !match(V, MatchCmp)) ||
5311             (!First && VecPred != CurrentPred)) {
5312           VecPred = CmpInst::BAD_ICMP_PREDICATE;
5313           break;
5314         }
5315         First = false;
5316         VecPred = CurrentPred;
5317       }
5318 
5319       InstructionCost VecCost = TTI->getCmpSelInstrCost(
5320           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
5321       // Check if it is possible and profitable to use min/max for selects in
5322       // VL.
5323       //
5324       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
5325       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
5326         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
5327                                           {VecTy, VecTy});
5328         InstructionCost IntrinsicCost =
5329             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5330         // If the selects are the only uses of the compares, they will be dead
5331         // and we can adjust the cost by removing their cost.
5332         if (IntrinsicAndUse.second)
5333           IntrinsicCost -=
5334               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
5335                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
5336         VecCost = std::min(VecCost, IntrinsicCost);
5337       }
5338       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5339       return CommonCost + VecCost - ScalarCost;
5340     }
5341     case Instruction::FNeg:
5342     case Instruction::Add:
5343     case Instruction::FAdd:
5344     case Instruction::Sub:
5345     case Instruction::FSub:
5346     case Instruction::Mul:
5347     case Instruction::FMul:
5348     case Instruction::UDiv:
5349     case Instruction::SDiv:
5350     case Instruction::FDiv:
5351     case Instruction::URem:
5352     case Instruction::SRem:
5353     case Instruction::FRem:
5354     case Instruction::Shl:
5355     case Instruction::LShr:
5356     case Instruction::AShr:
5357     case Instruction::And:
5358     case Instruction::Or:
5359     case Instruction::Xor: {
5360       // Certain instructions can be cheaper to vectorize if they have a
5361       // constant second vector operand.
5362       TargetTransformInfo::OperandValueKind Op1VK =
5363           TargetTransformInfo::OK_AnyValue;
5364       TargetTransformInfo::OperandValueKind Op2VK =
5365           TargetTransformInfo::OK_UniformConstantValue;
5366       TargetTransformInfo::OperandValueProperties Op1VP =
5367           TargetTransformInfo::OP_None;
5368       TargetTransformInfo::OperandValueProperties Op2VP =
5369           TargetTransformInfo::OP_PowerOf2;
5370 
5371       // If all operands are exactly the same ConstantInt then set the
5372       // operand kind to OK_UniformConstantValue.
5373       // If instead not all operands are constants, then set the operand kind
5374       // to OK_AnyValue. If all operands are constants but not the same,
5375       // then set the operand kind to OK_NonUniformConstantValue.
5376       ConstantInt *CInt0 = nullptr;
5377       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
5378         const Instruction *I = cast<Instruction>(VL[i]);
5379         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
5380         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
5381         if (!CInt) {
5382           Op2VK = TargetTransformInfo::OK_AnyValue;
5383           Op2VP = TargetTransformInfo::OP_None;
5384           break;
5385         }
5386         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
5387             !CInt->getValue().isPowerOf2())
5388           Op2VP = TargetTransformInfo::OP_None;
5389         if (i == 0) {
5390           CInt0 = CInt;
5391           continue;
5392         }
5393         if (CInt0 != CInt)
5394           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5395       }
5396 
5397       SmallVector<const Value *, 4> Operands(VL0->operand_values());
5398       InstructionCost ScalarEltCost =
5399           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
5400                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5401       if (NeedToShuffleReuses) {
5402         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5403       }
5404       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5405       InstructionCost VecCost =
5406           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
5407                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5408       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5409       return CommonCost + VecCost - ScalarCost;
5410     }
5411     case Instruction::GetElementPtr: {
5412       TargetTransformInfo::OperandValueKind Op1VK =
5413           TargetTransformInfo::OK_AnyValue;
5414       TargetTransformInfo::OperandValueKind Op2VK =
5415           TargetTransformInfo::OK_UniformConstantValue;
5416 
5417       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
5418           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
5419       if (NeedToShuffleReuses) {
5420         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5421       }
5422       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5423       InstructionCost VecCost = TTI->getArithmeticInstrCost(
5424           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
5425       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5426       return CommonCost + VecCost - ScalarCost;
5427     }
5428     case Instruction::Load: {
5429       // Cost of wide load - cost of scalar loads.
5430       Align Alignment = cast<LoadInst>(VL0)->getAlign();
5431       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5432           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
5433       if (NeedToShuffleReuses) {
5434         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5435       }
5436       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
5437       InstructionCost VecLdCost;
5438       if (E->State == TreeEntry::Vectorize) {
5439         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
5440                                          CostKind, VL0);
5441       } else {
5442         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
5443         Align CommonAlignment = Alignment;
5444         for (Value *V : VL)
5445           CommonAlignment =
5446               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5447         VecLdCost = TTI->getGatherScatterOpCost(
5448             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
5449             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
5450       }
5451       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
5452       return CommonCost + VecLdCost - ScalarLdCost;
5453     }
5454     case Instruction::Store: {
5455       // We know that we can merge the stores. Calculate the cost.
5456       bool IsReorder = !E->ReorderIndices.empty();
5457       auto *SI =
5458           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
5459       Align Alignment = SI->getAlign();
5460       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5461           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
5462       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
5463       InstructionCost VecStCost = TTI->getMemoryOpCost(
5464           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
5465       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
5466       return CommonCost + VecStCost - ScalarStCost;
5467     }
5468     case Instruction::Call: {
5469       CallInst *CI = cast<CallInst>(VL0);
5470       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5471 
5472       // Calculate the cost of the scalar and vector calls.
5473       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
5474       InstructionCost ScalarEltCost =
5475           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5476       if (NeedToShuffleReuses) {
5477         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5478       }
5479       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
5480 
5481       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5482       InstructionCost VecCallCost =
5483           std::min(VecCallCosts.first, VecCallCosts.second);
5484 
5485       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
5486                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
5487                         << " for " << *CI << "\n");
5488 
5489       return CommonCost + VecCallCost - ScalarCallCost;
5490     }
5491     case Instruction::ShuffleVector: {
5492       assert(E->isAltShuffle() &&
5493              ((Instruction::isBinaryOp(E->getOpcode()) &&
5494                Instruction::isBinaryOp(E->getAltOpcode())) ||
5495               (Instruction::isCast(E->getOpcode()) &&
5496                Instruction::isCast(E->getAltOpcode())) ||
5497               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
5498              "Invalid Shuffle Vector Operand");
5499       InstructionCost ScalarCost = 0;
5500       if (NeedToShuffleReuses) {
5501         for (unsigned Idx : E->ReuseShuffleIndices) {
5502           Instruction *I = cast<Instruction>(VL[Idx]);
5503           CommonCost -= TTI->getInstructionCost(I, CostKind);
5504         }
5505         for (Value *V : VL) {
5506           Instruction *I = cast<Instruction>(V);
5507           CommonCost += TTI->getInstructionCost(I, CostKind);
5508         }
5509       }
5510       for (Value *V : VL) {
5511         Instruction *I = cast<Instruction>(V);
5512         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5513         ScalarCost += TTI->getInstructionCost(I, CostKind);
5514       }
5515       // VecCost is equal to sum of the cost of creating 2 vectors
5516       // and the cost of creating shuffle.
5517       InstructionCost VecCost = 0;
5518       // Try to find the previous shuffle node with the same operands and same
5519       // main/alternate ops.
5520       auto &&TryFindNodeWithEqualOperands = [this, E]() {
5521         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
5522           if (TE.get() == E)
5523             break;
5524           if (TE->isAltShuffle() &&
5525               ((TE->getOpcode() == E->getOpcode() &&
5526                 TE->getAltOpcode() == E->getAltOpcode()) ||
5527                (TE->getOpcode() == E->getAltOpcode() &&
5528                 TE->getAltOpcode() == E->getOpcode())) &&
5529               TE->hasEqualOperands(*E))
5530             return true;
5531         }
5532         return false;
5533       };
5534       if (TryFindNodeWithEqualOperands()) {
5535         LLVM_DEBUG({
5536           dbgs() << "SLP: diamond match for alternate node found.\n";
5537           E->dump();
5538         });
5539         // No need to add new vector costs here since we're going to reuse
5540         // same main/alternate vector ops, just do different shuffling.
5541       } else if (Instruction::isBinaryOp(E->getOpcode())) {
5542         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
5543         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
5544                                                CostKind);
5545       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
5546         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
5547                                           Builder.getInt1Ty(),
5548                                           CI0->getPredicate(), CostKind, VL0);
5549         VecCost += TTI->getCmpSelInstrCost(
5550             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5551             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
5552             E->getAltOp());
5553       } else {
5554         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
5555         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
5556         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
5557         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
5558         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
5559                                         TTI::CastContextHint::None, CostKind);
5560         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
5561                                          TTI::CastContextHint::None, CostKind);
5562       }
5563 
5564       SmallVector<int> Mask;
5565       buildSuffleEntryMask(
5566           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
5567           [E](Instruction *I) {
5568             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5569             if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) {
5570               auto *AltCI0 = cast<CmpInst>(E->getAltOp());
5571               auto *CI = cast<CmpInst>(I);
5572               CmpInst::Predicate P0 = CI0->getPredicate();
5573               CmpInst::Predicate AltP0 = AltCI0->getPredicate();
5574               assert(P0 != AltP0 &&
5575                      "Expected different main/alternate predicates.");
5576               CmpInst::Predicate AltP0Swapped =
5577                   CmpInst::getSwappedPredicate(AltP0);
5578               CmpInst::Predicate CurrentPred = CI->getPredicate();
5579               if (P0 == AltP0Swapped)
5580                 return (P0 == CurrentPred &&
5581                         !areCompatibleCmpOps(
5582                             CI0->getOperand(0), CI0->getOperand(1),
5583                             CI->getOperand(0), CI->getOperand(1))) ||
5584                        (AltP0 == CurrentPred &&
5585                         !areCompatibleCmpOps(
5586                             CI0->getOperand(0), CI0->getOperand(1),
5587                             CI->getOperand(1), CI->getOperand(0)));
5588               return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
5589             }
5590             return I->getOpcode() == E->getAltOpcode();
5591           },
5592           Mask);
5593       CommonCost =
5594           TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask);
5595       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5596       return CommonCost + VecCost - ScalarCost;
5597     }
5598     default:
5599       llvm_unreachable("Unknown instruction");
5600   }
5601 }
5602 
5603 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
5604   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
5605                     << VectorizableTree.size() << " is fully vectorizable .\n");
5606 
5607   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
5608     SmallVector<int> Mask;
5609     return TE->State == TreeEntry::NeedToGather &&
5610            !any_of(TE->Scalars,
5611                    [this](Value *V) { return EphValues.contains(V); }) &&
5612            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
5613             TE->Scalars.size() < Limit ||
5614             ((TE->getOpcode() == Instruction::ExtractElement ||
5615               all_of(TE->Scalars,
5616                      [](Value *V) {
5617                        return isa<ExtractElementInst, UndefValue>(V);
5618                      })) &&
5619              isFixedVectorShuffle(TE->Scalars, Mask)) ||
5620             (TE->State == TreeEntry::NeedToGather &&
5621              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
5622   };
5623 
5624   // We only handle trees of heights 1 and 2.
5625   if (VectorizableTree.size() == 1 &&
5626       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
5627        (ForReduction &&
5628         AreVectorizableGathers(VectorizableTree[0].get(),
5629                                VectorizableTree[0]->Scalars.size()) &&
5630         VectorizableTree[0]->getVectorFactor() > 2)))
5631     return true;
5632 
5633   if (VectorizableTree.size() != 2)
5634     return false;
5635 
5636   // Handle splat and all-constants stores. Also try to vectorize tiny trees
5637   // with the second gather nodes if they have less scalar operands rather than
5638   // the initial tree element (may be profitable to shuffle the second gather)
5639   // or they are extractelements, which form shuffle.
5640   SmallVector<int> Mask;
5641   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
5642       AreVectorizableGathers(VectorizableTree[1].get(),
5643                              VectorizableTree[0]->Scalars.size()))
5644     return true;
5645 
5646   // Gathering cost would be too much for tiny trees.
5647   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
5648       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
5649        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
5650     return false;
5651 
5652   return true;
5653 }
5654 
5655 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
5656                                        TargetTransformInfo *TTI,
5657                                        bool MustMatchOrInst) {
5658   // Look past the root to find a source value. Arbitrarily follow the
5659   // path through operand 0 of any 'or'. Also, peek through optional
5660   // shift-left-by-multiple-of-8-bits.
5661   Value *ZextLoad = Root;
5662   const APInt *ShAmtC;
5663   bool FoundOr = false;
5664   while (!isa<ConstantExpr>(ZextLoad) &&
5665          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
5666           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
5667            ShAmtC->urem(8) == 0))) {
5668     auto *BinOp = cast<BinaryOperator>(ZextLoad);
5669     ZextLoad = BinOp->getOperand(0);
5670     if (BinOp->getOpcode() == Instruction::Or)
5671       FoundOr = true;
5672   }
5673   // Check if the input is an extended load of the required or/shift expression.
5674   Value *Load;
5675   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
5676       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
5677     return false;
5678 
5679   // Require that the total load bit width is a legal integer type.
5680   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
5681   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
5682   Type *SrcTy = Load->getType();
5683   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
5684   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
5685     return false;
5686 
5687   // Everything matched - assume that we can fold the whole sequence using
5688   // load combining.
5689   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
5690              << *(cast<Instruction>(Root)) << "\n");
5691 
5692   return true;
5693 }
5694 
5695 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
5696   if (RdxKind != RecurKind::Or)
5697     return false;
5698 
5699   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5700   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
5701   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
5702                                     /* MatchOr */ false);
5703 }
5704 
5705 bool BoUpSLP::isLoadCombineCandidate() const {
5706   // Peek through a final sequence of stores and check if all operations are
5707   // likely to be load-combined.
5708   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5709   for (Value *Scalar : VectorizableTree[0]->Scalars) {
5710     Value *X;
5711     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
5712         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
5713       return false;
5714   }
5715   return true;
5716 }
5717 
5718 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
5719   // No need to vectorize inserts of gathered values.
5720   if (VectorizableTree.size() == 2 &&
5721       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
5722       VectorizableTree[1]->State == TreeEntry::NeedToGather)
5723     return true;
5724 
5725   // We can vectorize the tree if its size is greater than or equal to the
5726   // minimum size specified by the MinTreeSize command line option.
5727   if (VectorizableTree.size() >= MinTreeSize)
5728     return false;
5729 
5730   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
5731   // can vectorize it if we can prove it fully vectorizable.
5732   if (isFullyVectorizableTinyTree(ForReduction))
5733     return false;
5734 
5735   assert(VectorizableTree.empty()
5736              ? ExternalUses.empty()
5737              : true && "We shouldn't have any external users");
5738 
5739   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
5740   // vectorizable.
5741   return true;
5742 }
5743 
5744 InstructionCost BoUpSLP::getSpillCost() const {
5745   // Walk from the bottom of the tree to the top, tracking which values are
5746   // live. When we see a call instruction that is not part of our tree,
5747   // query TTI to see if there is a cost to keeping values live over it
5748   // (for example, if spills and fills are required).
5749   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
5750   InstructionCost Cost = 0;
5751 
5752   SmallPtrSet<Instruction*, 4> LiveValues;
5753   Instruction *PrevInst = nullptr;
5754 
5755   // The entries in VectorizableTree are not necessarily ordered by their
5756   // position in basic blocks. Collect them and order them by dominance so later
5757   // instructions are guaranteed to be visited first. For instructions in
5758   // different basic blocks, we only scan to the beginning of the block, so
5759   // their order does not matter, as long as all instructions in a basic block
5760   // are grouped together. Using dominance ensures a deterministic order.
5761   SmallVector<Instruction *, 16> OrderedScalars;
5762   for (const auto &TEPtr : VectorizableTree) {
5763     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
5764     if (!Inst)
5765       continue;
5766     OrderedScalars.push_back(Inst);
5767   }
5768   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
5769     auto *NodeA = DT->getNode(A->getParent());
5770     auto *NodeB = DT->getNode(B->getParent());
5771     assert(NodeA && "Should only process reachable instructions");
5772     assert(NodeB && "Should only process reachable instructions");
5773     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
5774            "Different nodes should have different DFS numbers");
5775     if (NodeA != NodeB)
5776       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
5777     return B->comesBefore(A);
5778   });
5779 
5780   for (Instruction *Inst : OrderedScalars) {
5781     if (!PrevInst) {
5782       PrevInst = Inst;
5783       continue;
5784     }
5785 
5786     // Update LiveValues.
5787     LiveValues.erase(PrevInst);
5788     for (auto &J : PrevInst->operands()) {
5789       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
5790         LiveValues.insert(cast<Instruction>(&*J));
5791     }
5792 
5793     LLVM_DEBUG({
5794       dbgs() << "SLP: #LV: " << LiveValues.size();
5795       for (auto *X : LiveValues)
5796         dbgs() << " " << X->getName();
5797       dbgs() << ", Looking at ";
5798       Inst->dump();
5799     });
5800 
5801     // Now find the sequence of instructions between PrevInst and Inst.
5802     unsigned NumCalls = 0;
5803     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
5804                                  PrevInstIt =
5805                                      PrevInst->getIterator().getReverse();
5806     while (InstIt != PrevInstIt) {
5807       if (PrevInstIt == PrevInst->getParent()->rend()) {
5808         PrevInstIt = Inst->getParent()->rbegin();
5809         continue;
5810       }
5811 
5812       // Debug information does not impact spill cost.
5813       if ((isa<CallInst>(&*PrevInstIt) &&
5814            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
5815           &*PrevInstIt != PrevInst)
5816         NumCalls++;
5817 
5818       ++PrevInstIt;
5819     }
5820 
5821     if (NumCalls) {
5822       SmallVector<Type*, 4> V;
5823       for (auto *II : LiveValues) {
5824         auto *ScalarTy = II->getType();
5825         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
5826           ScalarTy = VectorTy->getElementType();
5827         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
5828       }
5829       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
5830     }
5831 
5832     PrevInst = Inst;
5833   }
5834 
5835   return Cost;
5836 }
5837 
5838 /// Check if two insertelement instructions are from the same buildvector.
5839 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
5840                                             InsertElementInst *V) {
5841   // Instructions must be from the same basic blocks.
5842   if (VU->getParent() != V->getParent())
5843     return false;
5844   // Checks if 2 insertelements are from the same buildvector.
5845   if (VU->getType() != V->getType())
5846     return false;
5847   // Multiple used inserts are separate nodes.
5848   if (!VU->hasOneUse() && !V->hasOneUse())
5849     return false;
5850   auto *IE1 = VU;
5851   auto *IE2 = V;
5852   // Go through the vector operand of insertelement instructions trying to find
5853   // either VU as the original vector for IE2 or V as the original vector for
5854   // IE1.
5855   do {
5856     if (IE2 == VU || IE1 == V)
5857       return true;
5858     if (IE1) {
5859       if (IE1 != VU && !IE1->hasOneUse())
5860         IE1 = nullptr;
5861       else
5862         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
5863     }
5864     if (IE2) {
5865       if (IE2 != V && !IE2->hasOneUse())
5866         IE2 = nullptr;
5867       else
5868         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
5869     }
5870   } while (IE1 || IE2);
5871   return false;
5872 }
5873 
5874 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
5875   InstructionCost Cost = 0;
5876   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
5877                     << VectorizableTree.size() << ".\n");
5878 
5879   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
5880 
5881   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
5882     TreeEntry &TE = *VectorizableTree[I].get();
5883 
5884     InstructionCost C = getEntryCost(&TE, VectorizedVals);
5885     Cost += C;
5886     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5887                       << " for bundle that starts with " << *TE.Scalars[0]
5888                       << ".\n"
5889                       << "SLP: Current total cost = " << Cost << "\n");
5890   }
5891 
5892   SmallPtrSet<Value *, 16> ExtractCostCalculated;
5893   InstructionCost ExtractCost = 0;
5894   SmallVector<unsigned> VF;
5895   SmallVector<SmallVector<int>> ShuffleMask;
5896   SmallVector<Value *> FirstUsers;
5897   SmallVector<APInt> DemandedElts;
5898   for (ExternalUser &EU : ExternalUses) {
5899     // We only add extract cost once for the same scalar.
5900     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
5901         !ExtractCostCalculated.insert(EU.Scalar).second)
5902       continue;
5903 
5904     // Uses by ephemeral values are free (because the ephemeral value will be
5905     // removed prior to code generation, and so the extraction will be
5906     // removed as well).
5907     if (EphValues.count(EU.User))
5908       continue;
5909 
5910     // No extract cost for vector "scalar"
5911     if (isa<FixedVectorType>(EU.Scalar->getType()))
5912       continue;
5913 
5914     // Already counted the cost for external uses when tried to adjust the cost
5915     // for extractelements, no need to add it again.
5916     if (isa<ExtractElementInst>(EU.Scalar))
5917       continue;
5918 
5919     // If found user is an insertelement, do not calculate extract cost but try
5920     // to detect it as a final shuffled/identity match.
5921     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
5922       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
5923         unsigned InsertIdx = *getInsertIndex(VU);
5924         auto *It = find_if(FirstUsers, [VU](Value *V) {
5925           return areTwoInsertFromSameBuildVector(VU,
5926                                                  cast<InsertElementInst>(V));
5927         });
5928         int VecId = -1;
5929         if (It == FirstUsers.end()) {
5930           VF.push_back(FTy->getNumElements());
5931           ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
5932           // Find the insertvector, vectorized in tree, if any.
5933           Value *Base = VU;
5934           while (isa<InsertElementInst>(Base)) {
5935             // Build the mask for the vectorized insertelement instructions.
5936             if (const TreeEntry *E = getTreeEntry(Base)) {
5937               VU = cast<InsertElementInst>(Base);
5938               do {
5939                 int Idx = E->findLaneForValue(Base);
5940                 ShuffleMask.back()[Idx] = Idx;
5941                 Base = cast<InsertElementInst>(Base)->getOperand(0);
5942               } while (E == getTreeEntry(Base));
5943               break;
5944             }
5945             Base = cast<InsertElementInst>(Base)->getOperand(0);
5946           }
5947           FirstUsers.push_back(VU);
5948           DemandedElts.push_back(APInt::getZero(VF.back()));
5949           VecId = FirstUsers.size() - 1;
5950         } else {
5951           VecId = std::distance(FirstUsers.begin(), It);
5952         }
5953         ShuffleMask[VecId][InsertIdx] = EU.Lane;
5954         DemandedElts[VecId].setBit(InsertIdx);
5955         continue;
5956       }
5957     }
5958 
5959     // If we plan to rewrite the tree in a smaller type, we will need to sign
5960     // extend the extracted value back to the original type. Here, we account
5961     // for the extract and the added cost of the sign extend if needed.
5962     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
5963     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5964     if (MinBWs.count(ScalarRoot)) {
5965       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5966       auto Extend =
5967           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
5968       VecTy = FixedVectorType::get(MinTy, BundleWidth);
5969       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
5970                                                    VecTy, EU.Lane);
5971     } else {
5972       ExtractCost +=
5973           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
5974     }
5975   }
5976 
5977   InstructionCost SpillCost = getSpillCost();
5978   Cost += SpillCost + ExtractCost;
5979   if (FirstUsers.size() == 1) {
5980     int Limit = ShuffleMask.front().size() * 2;
5981     if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) &&
5982         !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) {
5983       InstructionCost C = TTI->getShuffleCost(
5984           TTI::SK_PermuteSingleSrc,
5985           cast<FixedVectorType>(FirstUsers.front()->getType()),
5986           ShuffleMask.front());
5987       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5988                         << " for final shuffle of insertelement external users "
5989                         << *VectorizableTree.front()->Scalars.front() << ".\n"
5990                         << "SLP: Current total cost = " << Cost << "\n");
5991       Cost += C;
5992     }
5993     InstructionCost InsertCost = TTI->getScalarizationOverhead(
5994         cast<FixedVectorType>(FirstUsers.front()->getType()),
5995         DemandedElts.front(), /*Insert*/ true, /*Extract*/ false);
5996     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
5997                       << " for insertelements gather.\n"
5998                       << "SLP: Current total cost = " << Cost << "\n");
5999     Cost -= InsertCost;
6000   } else if (FirstUsers.size() >= 2) {
6001     unsigned MaxVF = *std::max_element(VF.begin(), VF.end());
6002     // Combined masks of the first 2 vectors.
6003     SmallVector<int> CombinedMask(MaxVF, UndefMaskElem);
6004     copy(ShuffleMask.front(), CombinedMask.begin());
6005     APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF);
6006     auto *VecTy = FixedVectorType::get(
6007         cast<VectorType>(FirstUsers.front()->getType())->getElementType(),
6008         MaxVF);
6009     for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) {
6010       if (ShuffleMask[1][I] != UndefMaskElem) {
6011         CombinedMask[I] = ShuffleMask[1][I] + MaxVF;
6012         CombinedDemandedElts.setBit(I);
6013       }
6014     }
6015     InstructionCost C =
6016         TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6017     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6018                       << " for final shuffle of vector node and external "
6019                          "insertelement users "
6020                       << *VectorizableTree.front()->Scalars.front() << ".\n"
6021                       << "SLP: Current total cost = " << Cost << "\n");
6022     Cost += C;
6023     InstructionCost InsertCost = TTI->getScalarizationOverhead(
6024         VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false);
6025     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6026                       << " for insertelements gather.\n"
6027                       << "SLP: Current total cost = " << Cost << "\n");
6028     Cost -= InsertCost;
6029     for (int I = 2, E = FirstUsers.size(); I < E; ++I) {
6030       // Other elements - permutation of 2 vectors (the initial one and the
6031       // next Ith incoming vector).
6032       unsigned VF = ShuffleMask[I].size();
6033       for (unsigned Idx = 0; Idx < VF; ++Idx) {
6034         int Mask = ShuffleMask[I][Idx];
6035         if (Mask != UndefMaskElem)
6036           CombinedMask[Idx] = MaxVF + Mask;
6037         else if (CombinedMask[Idx] != UndefMaskElem)
6038           CombinedMask[Idx] = Idx;
6039       }
6040       for (unsigned Idx = VF; Idx < MaxVF; ++Idx)
6041         if (CombinedMask[Idx] != UndefMaskElem)
6042           CombinedMask[Idx] = Idx;
6043       InstructionCost C =
6044           TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6045       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6046                         << " for final shuffle of vector node and external "
6047                            "insertelement users "
6048                         << *VectorizableTree.front()->Scalars.front() << ".\n"
6049                         << "SLP: Current total cost = " << Cost << "\n");
6050       Cost += C;
6051       InstructionCost InsertCost = TTI->getScalarizationOverhead(
6052           cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
6053           /*Insert*/ true, /*Extract*/ false);
6054       LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6055                         << " for insertelements gather.\n"
6056                         << "SLP: Current total cost = " << Cost << "\n");
6057       Cost -= InsertCost;
6058     }
6059   }
6060 
6061 #ifndef NDEBUG
6062   SmallString<256> Str;
6063   {
6064     raw_svector_ostream OS(Str);
6065     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
6066        << "SLP: Extract Cost = " << ExtractCost << ".\n"
6067        << "SLP: Total Cost = " << Cost << ".\n";
6068   }
6069   LLVM_DEBUG(dbgs() << Str);
6070   if (ViewSLPTree)
6071     ViewGraph(this, "SLP" + F->getName(), false, Str);
6072 #endif
6073 
6074   return Cost;
6075 }
6076 
6077 Optional<TargetTransformInfo::ShuffleKind>
6078 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
6079                                SmallVectorImpl<const TreeEntry *> &Entries) {
6080   // TODO: currently checking only for Scalars in the tree entry, need to count
6081   // reused elements too for better cost estimation.
6082   Mask.assign(TE->Scalars.size(), UndefMaskElem);
6083   Entries.clear();
6084   // Build a lists of values to tree entries.
6085   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
6086   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
6087     if (EntryPtr.get() == TE)
6088       break;
6089     if (EntryPtr->State != TreeEntry::NeedToGather)
6090       continue;
6091     for (Value *V : EntryPtr->Scalars)
6092       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
6093   }
6094   // Find all tree entries used by the gathered values. If no common entries
6095   // found - not a shuffle.
6096   // Here we build a set of tree nodes for each gathered value and trying to
6097   // find the intersection between these sets. If we have at least one common
6098   // tree node for each gathered value - we have just a permutation of the
6099   // single vector. If we have 2 different sets, we're in situation where we
6100   // have a permutation of 2 input vectors.
6101   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
6102   DenseMap<Value *, int> UsedValuesEntry;
6103   for (Value *V : TE->Scalars) {
6104     if (isa<UndefValue>(V))
6105       continue;
6106     // Build a list of tree entries where V is used.
6107     SmallPtrSet<const TreeEntry *, 4> VToTEs;
6108     auto It = ValueToTEs.find(V);
6109     if (It != ValueToTEs.end())
6110       VToTEs = It->second;
6111     if (const TreeEntry *VTE = getTreeEntry(V))
6112       VToTEs.insert(VTE);
6113     if (VToTEs.empty())
6114       return None;
6115     if (UsedTEs.empty()) {
6116       // The first iteration, just insert the list of nodes to vector.
6117       UsedTEs.push_back(VToTEs);
6118     } else {
6119       // Need to check if there are any previously used tree nodes which use V.
6120       // If there are no such nodes, consider that we have another one input
6121       // vector.
6122       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
6123       unsigned Idx = 0;
6124       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
6125         // Do we have a non-empty intersection of previously listed tree entries
6126         // and tree entries using current V?
6127         set_intersect(VToTEs, Set);
6128         if (!VToTEs.empty()) {
6129           // Yes, write the new subset and continue analysis for the next
6130           // scalar.
6131           Set.swap(VToTEs);
6132           break;
6133         }
6134         VToTEs = SavedVToTEs;
6135         ++Idx;
6136       }
6137       // No non-empty intersection found - need to add a second set of possible
6138       // source vectors.
6139       if (Idx == UsedTEs.size()) {
6140         // If the number of input vectors is greater than 2 - not a permutation,
6141         // fallback to the regular gather.
6142         if (UsedTEs.size() == 2)
6143           return None;
6144         UsedTEs.push_back(SavedVToTEs);
6145         Idx = UsedTEs.size() - 1;
6146       }
6147       UsedValuesEntry.try_emplace(V, Idx);
6148     }
6149   }
6150 
6151   unsigned VF = 0;
6152   if (UsedTEs.size() == 1) {
6153     // Try to find the perfect match in another gather node at first.
6154     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
6155       return EntryPtr->isSame(TE->Scalars);
6156     });
6157     if (It != UsedTEs.front().end()) {
6158       Entries.push_back(*It);
6159       std::iota(Mask.begin(), Mask.end(), 0);
6160       return TargetTransformInfo::SK_PermuteSingleSrc;
6161     }
6162     // No perfect match, just shuffle, so choose the first tree node.
6163     Entries.push_back(*UsedTEs.front().begin());
6164   } else {
6165     // Try to find nodes with the same vector factor.
6166     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
6167     DenseMap<int, const TreeEntry *> VFToTE;
6168     for (const TreeEntry *TE : UsedTEs.front())
6169       VFToTE.try_emplace(TE->getVectorFactor(), TE);
6170     for (const TreeEntry *TE : UsedTEs.back()) {
6171       auto It = VFToTE.find(TE->getVectorFactor());
6172       if (It != VFToTE.end()) {
6173         VF = It->first;
6174         Entries.push_back(It->second);
6175         Entries.push_back(TE);
6176         break;
6177       }
6178     }
6179     // No 2 source vectors with the same vector factor - give up and do regular
6180     // gather.
6181     if (Entries.empty())
6182       return None;
6183   }
6184 
6185   // Build a shuffle mask for better cost estimation and vector emission.
6186   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
6187     Value *V = TE->Scalars[I];
6188     if (isa<UndefValue>(V))
6189       continue;
6190     unsigned Idx = UsedValuesEntry.lookup(V);
6191     const TreeEntry *VTE = Entries[Idx];
6192     int FoundLane = VTE->findLaneForValue(V);
6193     Mask[I] = Idx * VF + FoundLane;
6194     // Extra check required by isSingleSourceMaskImpl function (called by
6195     // ShuffleVectorInst::isSingleSourceMask).
6196     if (Mask[I] >= 2 * E)
6197       return None;
6198   }
6199   switch (Entries.size()) {
6200   case 1:
6201     return TargetTransformInfo::SK_PermuteSingleSrc;
6202   case 2:
6203     return TargetTransformInfo::SK_PermuteTwoSrc;
6204   default:
6205     break;
6206   }
6207   return None;
6208 }
6209 
6210 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
6211                                        const APInt &ShuffledIndices,
6212                                        bool NeedToShuffle) const {
6213   InstructionCost Cost =
6214       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
6215                                     /*Extract*/ false);
6216   if (NeedToShuffle)
6217     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
6218   return Cost;
6219 }
6220 
6221 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
6222   // Find the type of the operands in VL.
6223   Type *ScalarTy = VL[0]->getType();
6224   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
6225     ScalarTy = SI->getValueOperand()->getType();
6226   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
6227   bool DuplicateNonConst = false;
6228   // Find the cost of inserting/extracting values from the vector.
6229   // Check if the same elements are inserted several times and count them as
6230   // shuffle candidates.
6231   APInt ShuffledElements = APInt::getZero(VL.size());
6232   DenseSet<Value *> UniqueElements;
6233   // Iterate in reverse order to consider insert elements with the high cost.
6234   for (unsigned I = VL.size(); I > 0; --I) {
6235     unsigned Idx = I - 1;
6236     // No need to shuffle duplicates for constants.
6237     if (isConstant(VL[Idx])) {
6238       ShuffledElements.setBit(Idx);
6239       continue;
6240     }
6241     if (!UniqueElements.insert(VL[Idx]).second) {
6242       DuplicateNonConst = true;
6243       ShuffledElements.setBit(Idx);
6244     }
6245   }
6246   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
6247 }
6248 
6249 // Perform operand reordering on the instructions in VL and return the reordered
6250 // operands in Left and Right.
6251 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
6252                                              SmallVectorImpl<Value *> &Left,
6253                                              SmallVectorImpl<Value *> &Right,
6254                                              const DataLayout &DL,
6255                                              ScalarEvolution &SE,
6256                                              const BoUpSLP &R) {
6257   if (VL.empty())
6258     return;
6259   VLOperands Ops(VL, DL, SE, R);
6260   // Reorder the operands in place.
6261   Ops.reorder();
6262   Left = Ops.getVL(0);
6263   Right = Ops.getVL(1);
6264 }
6265 
6266 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
6267   // Get the basic block this bundle is in. All instructions in the bundle
6268   // should be in this block.
6269   auto *Front = E->getMainOp();
6270   auto *BB = Front->getParent();
6271   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
6272     auto *I = cast<Instruction>(V);
6273     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
6274   }));
6275 
6276   // The last instruction in the bundle in program order.
6277   Instruction *LastInst = nullptr;
6278 
6279   // Find the last instruction. The common case should be that BB has been
6280   // scheduled, and the last instruction is VL.back(). So we start with
6281   // VL.back() and iterate over schedule data until we reach the end of the
6282   // bundle. The end of the bundle is marked by null ScheduleData.
6283   if (BlocksSchedules.count(BB)) {
6284     auto *Bundle =
6285         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
6286     if (Bundle && Bundle->isPartOfBundle())
6287       for (; Bundle; Bundle = Bundle->NextInBundle)
6288         if (Bundle->OpValue == Bundle->Inst)
6289           LastInst = Bundle->Inst;
6290   }
6291 
6292   // LastInst can still be null at this point if there's either not an entry
6293   // for BB in BlocksSchedules or there's no ScheduleData available for
6294   // VL.back(). This can be the case if buildTree_rec aborts for various
6295   // reasons (e.g., the maximum recursion depth is reached, the maximum region
6296   // size is reached, etc.). ScheduleData is initialized in the scheduling
6297   // "dry-run".
6298   //
6299   // If this happens, we can still find the last instruction by brute force. We
6300   // iterate forwards from Front (inclusive) until we either see all
6301   // instructions in the bundle or reach the end of the block. If Front is the
6302   // last instruction in program order, LastInst will be set to Front, and we
6303   // will visit all the remaining instructions in the block.
6304   //
6305   // One of the reasons we exit early from buildTree_rec is to place an upper
6306   // bound on compile-time. Thus, taking an additional compile-time hit here is
6307   // not ideal. However, this should be exceedingly rare since it requires that
6308   // we both exit early from buildTree_rec and that the bundle be out-of-order
6309   // (causing us to iterate all the way to the end of the block).
6310   if (!LastInst) {
6311     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
6312     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
6313       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
6314         LastInst = &I;
6315       if (Bundle.empty())
6316         break;
6317     }
6318   }
6319   assert(LastInst && "Failed to find last instruction in bundle");
6320 
6321   // Set the insertion point after the last instruction in the bundle. Set the
6322   // debug location to Front.
6323   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
6324   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
6325 }
6326 
6327 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
6328   // List of instructions/lanes from current block and/or the blocks which are
6329   // part of the current loop. These instructions will be inserted at the end to
6330   // make it possible to optimize loops and hoist invariant instructions out of
6331   // the loops body with better chances for success.
6332   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
6333   SmallSet<int, 4> PostponedIndices;
6334   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
6335   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
6336     SmallPtrSet<BasicBlock *, 4> Visited;
6337     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
6338       InsertBB = InsertBB->getSinglePredecessor();
6339     return InsertBB && InsertBB == InstBB;
6340   };
6341   for (int I = 0, E = VL.size(); I < E; ++I) {
6342     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
6343       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
6344            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
6345           PostponedIndices.insert(I).second)
6346         PostponedInsts.emplace_back(Inst, I);
6347   }
6348 
6349   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
6350     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
6351     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
6352     if (!InsElt)
6353       return Vec;
6354     GatherShuffleSeq.insert(InsElt);
6355     CSEBlocks.insert(InsElt->getParent());
6356     // Add to our 'need-to-extract' list.
6357     if (TreeEntry *Entry = getTreeEntry(V)) {
6358       // Find which lane we need to extract.
6359       unsigned FoundLane = Entry->findLaneForValue(V);
6360       ExternalUses.emplace_back(V, InsElt, FoundLane);
6361     }
6362     return Vec;
6363   };
6364   Value *Val0 =
6365       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
6366   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
6367   Value *Vec = PoisonValue::get(VecTy);
6368   SmallVector<int> NonConsts;
6369   // Insert constant values at first.
6370   for (int I = 0, E = VL.size(); I < E; ++I) {
6371     if (PostponedIndices.contains(I))
6372       continue;
6373     if (!isConstant(VL[I])) {
6374       NonConsts.push_back(I);
6375       continue;
6376     }
6377     Vec = CreateInsertElement(Vec, VL[I], I);
6378   }
6379   // Insert non-constant values.
6380   for (int I : NonConsts)
6381     Vec = CreateInsertElement(Vec, VL[I], I);
6382   // Append instructions, which are/may be part of the loop, in the end to make
6383   // it possible to hoist non-loop-based instructions.
6384   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
6385     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
6386 
6387   return Vec;
6388 }
6389 
6390 namespace {
6391 /// Merges shuffle masks and emits final shuffle instruction, if required.
6392 class ShuffleInstructionBuilder {
6393   IRBuilderBase &Builder;
6394   const unsigned VF = 0;
6395   bool IsFinalized = false;
6396   SmallVector<int, 4> Mask;
6397   /// Holds all of the instructions that we gathered.
6398   SetVector<Instruction *> &GatherShuffleSeq;
6399   /// A list of blocks that we are going to CSE.
6400   SetVector<BasicBlock *> &CSEBlocks;
6401 
6402 public:
6403   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
6404                             SetVector<Instruction *> &GatherShuffleSeq,
6405                             SetVector<BasicBlock *> &CSEBlocks)
6406       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
6407         CSEBlocks(CSEBlocks) {}
6408 
6409   /// Adds a mask, inverting it before applying.
6410   void addInversedMask(ArrayRef<unsigned> SubMask) {
6411     if (SubMask.empty())
6412       return;
6413     SmallVector<int, 4> NewMask;
6414     inversePermutation(SubMask, NewMask);
6415     addMask(NewMask);
6416   }
6417 
6418   /// Functions adds masks, merging them into  single one.
6419   void addMask(ArrayRef<unsigned> SubMask) {
6420     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
6421     addMask(NewMask);
6422   }
6423 
6424   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
6425 
6426   Value *finalize(Value *V) {
6427     IsFinalized = true;
6428     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
6429     if (VF == ValueVF && Mask.empty())
6430       return V;
6431     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
6432     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
6433     addMask(NormalizedMask);
6434 
6435     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
6436       return V;
6437     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
6438     if (auto *I = dyn_cast<Instruction>(Vec)) {
6439       GatherShuffleSeq.insert(I);
6440       CSEBlocks.insert(I->getParent());
6441     }
6442     return Vec;
6443   }
6444 
6445   ~ShuffleInstructionBuilder() {
6446     assert((IsFinalized || Mask.empty()) &&
6447            "Shuffle construction must be finalized.");
6448   }
6449 };
6450 } // namespace
6451 
6452 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
6453   unsigned VF = VL.size();
6454   InstructionsState S = getSameOpcode(VL);
6455   if (S.getOpcode()) {
6456     if (TreeEntry *E = getTreeEntry(S.OpValue))
6457       if (E->isSame(VL)) {
6458         Value *V = vectorizeTree(E);
6459         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
6460           if (!E->ReuseShuffleIndices.empty()) {
6461             // Reshuffle to get only unique values.
6462             // If some of the scalars are duplicated in the vectorization tree
6463             // entry, we do not vectorize them but instead generate a mask for
6464             // the reuses. But if there are several users of the same entry,
6465             // they may have different vectorization factors. This is especially
6466             // important for PHI nodes. In this case, we need to adapt the
6467             // resulting instruction for the user vectorization factor and have
6468             // to reshuffle it again to take only unique elements of the vector.
6469             // Without this code the function incorrectly returns reduced vector
6470             // instruction with the same elements, not with the unique ones.
6471 
6472             // block:
6473             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
6474             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
6475             // ... (use %2)
6476             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
6477             // br %block
6478             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
6479             SmallSet<int, 4> UsedIdxs;
6480             int Pos = 0;
6481             int Sz = VL.size();
6482             for (int Idx : E->ReuseShuffleIndices) {
6483               if (Idx != Sz && Idx != UndefMaskElem &&
6484                   UsedIdxs.insert(Idx).second)
6485                 UniqueIdxs[Idx] = Pos;
6486               ++Pos;
6487             }
6488             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
6489                                             "less than original vector size.");
6490             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
6491             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
6492           } else {
6493             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
6494                    "Expected vectorization factor less "
6495                    "than original vector size.");
6496             SmallVector<int> UniformMask(VF, 0);
6497             std::iota(UniformMask.begin(), UniformMask.end(), 0);
6498             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
6499           }
6500           if (auto *I = dyn_cast<Instruction>(V)) {
6501             GatherShuffleSeq.insert(I);
6502             CSEBlocks.insert(I->getParent());
6503           }
6504         }
6505         return V;
6506       }
6507   }
6508 
6509   // Check that every instruction appears once in this bundle.
6510   SmallVector<int> ReuseShuffleIndicies;
6511   SmallVector<Value *> UniqueValues;
6512   if (VL.size() > 2) {
6513     DenseMap<Value *, unsigned> UniquePositions;
6514     unsigned NumValues =
6515         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
6516                                     return !isa<UndefValue>(V);
6517                                   }).base());
6518     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
6519     int UniqueVals = 0;
6520     for (Value *V : VL.drop_back(VL.size() - VF)) {
6521       if (isa<UndefValue>(V)) {
6522         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
6523         continue;
6524       }
6525       if (isConstant(V)) {
6526         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
6527         UniqueValues.emplace_back(V);
6528         continue;
6529       }
6530       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
6531       ReuseShuffleIndicies.emplace_back(Res.first->second);
6532       if (Res.second) {
6533         UniqueValues.emplace_back(V);
6534         ++UniqueVals;
6535       }
6536     }
6537     if (UniqueVals == 1 && UniqueValues.size() == 1) {
6538       // Emit pure splat vector.
6539       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
6540                                   UndefMaskElem);
6541     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
6542       ReuseShuffleIndicies.clear();
6543       UniqueValues.clear();
6544       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
6545     }
6546     UniqueValues.append(VF - UniqueValues.size(),
6547                         PoisonValue::get(VL[0]->getType()));
6548     VL = UniqueValues;
6549   }
6550 
6551   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6552                                            CSEBlocks);
6553   Value *Vec = gather(VL);
6554   if (!ReuseShuffleIndicies.empty()) {
6555     ShuffleBuilder.addMask(ReuseShuffleIndicies);
6556     Vec = ShuffleBuilder.finalize(Vec);
6557   }
6558   return Vec;
6559 }
6560 
6561 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
6562   IRBuilder<>::InsertPointGuard Guard(Builder);
6563 
6564   if (E->VectorizedValue) {
6565     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
6566     return E->VectorizedValue;
6567   }
6568 
6569   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
6570   unsigned VF = E->getVectorFactor();
6571   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6572                                            CSEBlocks);
6573   if (E->State == TreeEntry::NeedToGather) {
6574     if (E->getMainOp())
6575       setInsertPointAfterBundle(E);
6576     Value *Vec;
6577     SmallVector<int> Mask;
6578     SmallVector<const TreeEntry *> Entries;
6579     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
6580         isGatherShuffledEntry(E, Mask, Entries);
6581     if (Shuffle.hasValue()) {
6582       assert((Entries.size() == 1 || Entries.size() == 2) &&
6583              "Expected shuffle of 1 or 2 entries.");
6584       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
6585                                         Entries.back()->VectorizedValue, Mask);
6586       if (auto *I = dyn_cast<Instruction>(Vec)) {
6587         GatherShuffleSeq.insert(I);
6588         CSEBlocks.insert(I->getParent());
6589       }
6590     } else {
6591       Vec = gather(E->Scalars);
6592     }
6593     if (NeedToShuffleReuses) {
6594       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6595       Vec = ShuffleBuilder.finalize(Vec);
6596     }
6597     E->VectorizedValue = Vec;
6598     return Vec;
6599   }
6600 
6601   assert((E->State == TreeEntry::Vectorize ||
6602           E->State == TreeEntry::ScatterVectorize) &&
6603          "Unhandled state");
6604   unsigned ShuffleOrOp =
6605       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6606   Instruction *VL0 = E->getMainOp();
6607   Type *ScalarTy = VL0->getType();
6608   if (auto *Store = dyn_cast<StoreInst>(VL0))
6609     ScalarTy = Store->getValueOperand()->getType();
6610   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
6611     ScalarTy = IE->getOperand(1)->getType();
6612   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
6613   switch (ShuffleOrOp) {
6614     case Instruction::PHI: {
6615       assert(
6616           (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&
6617           "PHI reordering is free.");
6618       auto *PH = cast<PHINode>(VL0);
6619       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
6620       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6621       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
6622       Value *V = NewPhi;
6623       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6624       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6625       V = ShuffleBuilder.finalize(V);
6626 
6627       E->VectorizedValue = V;
6628 
6629       // PHINodes may have multiple entries from the same block. We want to
6630       // visit every block once.
6631       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
6632 
6633       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
6634         ValueList Operands;
6635         BasicBlock *IBB = PH->getIncomingBlock(i);
6636 
6637         if (!VisitedBBs.insert(IBB).second) {
6638           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
6639           continue;
6640         }
6641 
6642         Builder.SetInsertPoint(IBB->getTerminator());
6643         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6644         Value *Vec = vectorizeTree(E->getOperand(i));
6645         NewPhi->addIncoming(Vec, IBB);
6646       }
6647 
6648       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
6649              "Invalid number of incoming values");
6650       return V;
6651     }
6652 
6653     case Instruction::ExtractElement: {
6654       Value *V = E->getSingleOperand(0);
6655       Builder.SetInsertPoint(VL0);
6656       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6657       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6658       V = ShuffleBuilder.finalize(V);
6659       E->VectorizedValue = V;
6660       return V;
6661     }
6662     case Instruction::ExtractValue: {
6663       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
6664       Builder.SetInsertPoint(LI);
6665       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
6666       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
6667       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
6668       Value *NewV = propagateMetadata(V, E->Scalars);
6669       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6670       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6671       NewV = ShuffleBuilder.finalize(NewV);
6672       E->VectorizedValue = NewV;
6673       return NewV;
6674     }
6675     case Instruction::InsertElement: {
6676       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
6677       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
6678       Value *V = vectorizeTree(E->getOperand(1));
6679 
6680       // Create InsertVector shuffle if necessary
6681       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6682         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6683       }));
6684       const unsigned NumElts =
6685           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
6686       const unsigned NumScalars = E->Scalars.size();
6687 
6688       unsigned Offset = *getInsertIndex(VL0);
6689       assert(Offset < NumElts && "Failed to find vector index offset");
6690 
6691       // Create shuffle to resize vector
6692       SmallVector<int> Mask;
6693       if (!E->ReorderIndices.empty()) {
6694         inversePermutation(E->ReorderIndices, Mask);
6695         Mask.append(NumElts - NumScalars, UndefMaskElem);
6696       } else {
6697         Mask.assign(NumElts, UndefMaskElem);
6698         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
6699       }
6700       // Create InsertVector shuffle if necessary
6701       bool IsIdentity = true;
6702       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
6703       Mask.swap(PrevMask);
6704       for (unsigned I = 0; I < NumScalars; ++I) {
6705         Value *Scalar = E->Scalars[PrevMask[I]];
6706         unsigned InsertIdx = *getInsertIndex(Scalar);
6707         IsIdentity &= InsertIdx - Offset == I;
6708         Mask[InsertIdx - Offset] = I;
6709       }
6710       if (!IsIdentity || NumElts != NumScalars) {
6711         V = Builder.CreateShuffleVector(V, Mask);
6712         if (auto *I = dyn_cast<Instruction>(V)) {
6713           GatherShuffleSeq.insert(I);
6714           CSEBlocks.insert(I->getParent());
6715         }
6716       }
6717 
6718       if ((!IsIdentity || Offset != 0 ||
6719            !isUndefVector(FirstInsert->getOperand(0))) &&
6720           NumElts != NumScalars) {
6721         SmallVector<int> InsertMask(NumElts);
6722         std::iota(InsertMask.begin(), InsertMask.end(), 0);
6723         for (unsigned I = 0; I < NumElts; I++) {
6724           if (Mask[I] != UndefMaskElem)
6725             InsertMask[Offset + I] = NumElts + I;
6726         }
6727 
6728         V = Builder.CreateShuffleVector(
6729             FirstInsert->getOperand(0), V, InsertMask,
6730             cast<Instruction>(E->Scalars.back())->getName());
6731         if (auto *I = dyn_cast<Instruction>(V)) {
6732           GatherShuffleSeq.insert(I);
6733           CSEBlocks.insert(I->getParent());
6734         }
6735       }
6736 
6737       ++NumVectorInstructions;
6738       E->VectorizedValue = V;
6739       return V;
6740     }
6741     case Instruction::ZExt:
6742     case Instruction::SExt:
6743     case Instruction::FPToUI:
6744     case Instruction::FPToSI:
6745     case Instruction::FPExt:
6746     case Instruction::PtrToInt:
6747     case Instruction::IntToPtr:
6748     case Instruction::SIToFP:
6749     case Instruction::UIToFP:
6750     case Instruction::Trunc:
6751     case Instruction::FPTrunc:
6752     case Instruction::BitCast: {
6753       setInsertPointAfterBundle(E);
6754 
6755       Value *InVec = vectorizeTree(E->getOperand(0));
6756 
6757       if (E->VectorizedValue) {
6758         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6759         return E->VectorizedValue;
6760       }
6761 
6762       auto *CI = cast<CastInst>(VL0);
6763       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
6764       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6765       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6766       V = ShuffleBuilder.finalize(V);
6767 
6768       E->VectorizedValue = V;
6769       ++NumVectorInstructions;
6770       return V;
6771     }
6772     case Instruction::FCmp:
6773     case Instruction::ICmp: {
6774       setInsertPointAfterBundle(E);
6775 
6776       Value *L = vectorizeTree(E->getOperand(0));
6777       Value *R = vectorizeTree(E->getOperand(1));
6778 
6779       if (E->VectorizedValue) {
6780         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6781         return E->VectorizedValue;
6782       }
6783 
6784       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
6785       Value *V = Builder.CreateCmp(P0, L, R);
6786       propagateIRFlags(V, E->Scalars, VL0);
6787       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6788       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6789       V = ShuffleBuilder.finalize(V);
6790 
6791       E->VectorizedValue = V;
6792       ++NumVectorInstructions;
6793       return V;
6794     }
6795     case Instruction::Select: {
6796       setInsertPointAfterBundle(E);
6797 
6798       Value *Cond = vectorizeTree(E->getOperand(0));
6799       Value *True = vectorizeTree(E->getOperand(1));
6800       Value *False = vectorizeTree(E->getOperand(2));
6801 
6802       if (E->VectorizedValue) {
6803         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6804         return E->VectorizedValue;
6805       }
6806 
6807       Value *V = Builder.CreateSelect(Cond, True, False);
6808       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6809       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6810       V = ShuffleBuilder.finalize(V);
6811 
6812       E->VectorizedValue = V;
6813       ++NumVectorInstructions;
6814       return V;
6815     }
6816     case Instruction::FNeg: {
6817       setInsertPointAfterBundle(E);
6818 
6819       Value *Op = vectorizeTree(E->getOperand(0));
6820 
6821       if (E->VectorizedValue) {
6822         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6823         return E->VectorizedValue;
6824       }
6825 
6826       Value *V = Builder.CreateUnOp(
6827           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
6828       propagateIRFlags(V, E->Scalars, VL0);
6829       if (auto *I = dyn_cast<Instruction>(V))
6830         V = propagateMetadata(I, E->Scalars);
6831 
6832       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6833       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6834       V = ShuffleBuilder.finalize(V);
6835 
6836       E->VectorizedValue = V;
6837       ++NumVectorInstructions;
6838 
6839       return V;
6840     }
6841     case Instruction::Add:
6842     case Instruction::FAdd:
6843     case Instruction::Sub:
6844     case Instruction::FSub:
6845     case Instruction::Mul:
6846     case Instruction::FMul:
6847     case Instruction::UDiv:
6848     case Instruction::SDiv:
6849     case Instruction::FDiv:
6850     case Instruction::URem:
6851     case Instruction::SRem:
6852     case Instruction::FRem:
6853     case Instruction::Shl:
6854     case Instruction::LShr:
6855     case Instruction::AShr:
6856     case Instruction::And:
6857     case Instruction::Or:
6858     case Instruction::Xor: {
6859       setInsertPointAfterBundle(E);
6860 
6861       Value *LHS = vectorizeTree(E->getOperand(0));
6862       Value *RHS = vectorizeTree(E->getOperand(1));
6863 
6864       if (E->VectorizedValue) {
6865         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6866         return E->VectorizedValue;
6867       }
6868 
6869       Value *V = Builder.CreateBinOp(
6870           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
6871           RHS);
6872       propagateIRFlags(V, E->Scalars, VL0);
6873       if (auto *I = dyn_cast<Instruction>(V))
6874         V = propagateMetadata(I, E->Scalars);
6875 
6876       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6877       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6878       V = ShuffleBuilder.finalize(V);
6879 
6880       E->VectorizedValue = V;
6881       ++NumVectorInstructions;
6882 
6883       return V;
6884     }
6885     case Instruction::Load: {
6886       // Loads are inserted at the head of the tree because we don't want to
6887       // sink them all the way down past store instructions.
6888       setInsertPointAfterBundle(E);
6889 
6890       LoadInst *LI = cast<LoadInst>(VL0);
6891       Instruction *NewLI;
6892       unsigned AS = LI->getPointerAddressSpace();
6893       Value *PO = LI->getPointerOperand();
6894       if (E->State == TreeEntry::Vectorize) {
6895 
6896         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
6897 
6898         // The pointer operand uses an in-tree scalar so we add the new BitCast
6899         // to ExternalUses list to make sure that an extract will be generated
6900         // in the future.
6901         if (TreeEntry *Entry = getTreeEntry(PO)) {
6902           // Find which lane we need to extract.
6903           unsigned FoundLane = Entry->findLaneForValue(PO);
6904           ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane);
6905         }
6906 
6907         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
6908       } else {
6909         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
6910         Value *VecPtr = vectorizeTree(E->getOperand(0));
6911         // Use the minimum alignment of the gathered loads.
6912         Align CommonAlignment = LI->getAlign();
6913         for (Value *V : E->Scalars)
6914           CommonAlignment =
6915               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
6916         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
6917       }
6918       Value *V = propagateMetadata(NewLI, E->Scalars);
6919 
6920       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6921       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6922       V = ShuffleBuilder.finalize(V);
6923       E->VectorizedValue = V;
6924       ++NumVectorInstructions;
6925       return V;
6926     }
6927     case Instruction::Store: {
6928       auto *SI = cast<StoreInst>(VL0);
6929       unsigned AS = SI->getPointerAddressSpace();
6930 
6931       setInsertPointAfterBundle(E);
6932 
6933       Value *VecValue = vectorizeTree(E->getOperand(0));
6934       ShuffleBuilder.addMask(E->ReorderIndices);
6935       VecValue = ShuffleBuilder.finalize(VecValue);
6936 
6937       Value *ScalarPtr = SI->getPointerOperand();
6938       Value *VecPtr = Builder.CreateBitCast(
6939           ScalarPtr, VecValue->getType()->getPointerTo(AS));
6940       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
6941                                                  SI->getAlign());
6942 
6943       // The pointer operand uses an in-tree scalar, so add the new BitCast to
6944       // ExternalUses to make sure that an extract will be generated in the
6945       // future.
6946       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
6947         // Find which lane we need to extract.
6948         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
6949         ExternalUses.push_back(
6950             ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane));
6951       }
6952 
6953       Value *V = propagateMetadata(ST, E->Scalars);
6954 
6955       E->VectorizedValue = V;
6956       ++NumVectorInstructions;
6957       return V;
6958     }
6959     case Instruction::GetElementPtr: {
6960       auto *GEP0 = cast<GetElementPtrInst>(VL0);
6961       setInsertPointAfterBundle(E);
6962 
6963       Value *Op0 = vectorizeTree(E->getOperand(0));
6964 
6965       SmallVector<Value *> OpVecs;
6966       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
6967         Value *OpVec = vectorizeTree(E->getOperand(J));
6968         OpVecs.push_back(OpVec);
6969       }
6970 
6971       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
6972       if (Instruction *I = dyn_cast<Instruction>(V))
6973         V = propagateMetadata(I, E->Scalars);
6974 
6975       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6976       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6977       V = ShuffleBuilder.finalize(V);
6978 
6979       E->VectorizedValue = V;
6980       ++NumVectorInstructions;
6981 
6982       return V;
6983     }
6984     case Instruction::Call: {
6985       CallInst *CI = cast<CallInst>(VL0);
6986       setInsertPointAfterBundle(E);
6987 
6988       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
6989       if (Function *FI = CI->getCalledFunction())
6990         IID = FI->getIntrinsicID();
6991 
6992       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6993 
6994       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6995       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
6996                           VecCallCosts.first <= VecCallCosts.second;
6997 
6998       Value *ScalarArg = nullptr;
6999       std::vector<Value *> OpVecs;
7000       SmallVector<Type *, 2> TysForDecl =
7001           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
7002       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
7003         ValueList OpVL;
7004         // Some intrinsics have scalar arguments. This argument should not be
7005         // vectorized.
7006         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
7007           CallInst *CEI = cast<CallInst>(VL0);
7008           ScalarArg = CEI->getArgOperand(j);
7009           OpVecs.push_back(CEI->getArgOperand(j));
7010           if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
7011             TysForDecl.push_back(ScalarArg->getType());
7012           continue;
7013         }
7014 
7015         Value *OpVec = vectorizeTree(E->getOperand(j));
7016         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
7017         OpVecs.push_back(OpVec);
7018       }
7019 
7020       Function *CF;
7021       if (!UseIntrinsic) {
7022         VFShape Shape =
7023             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
7024                                   VecTy->getNumElements())),
7025                          false /*HasGlobalPred*/);
7026         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
7027       } else {
7028         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
7029       }
7030 
7031       SmallVector<OperandBundleDef, 1> OpBundles;
7032       CI->getOperandBundlesAsDefs(OpBundles);
7033       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
7034 
7035       // The scalar argument uses an in-tree scalar so we add the new vectorized
7036       // call to ExternalUses list to make sure that an extract will be
7037       // generated in the future.
7038       if (ScalarArg) {
7039         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
7040           // Find which lane we need to extract.
7041           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
7042           ExternalUses.push_back(
7043               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
7044         }
7045       }
7046 
7047       propagateIRFlags(V, E->Scalars, VL0);
7048       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7049       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7050       V = ShuffleBuilder.finalize(V);
7051 
7052       E->VectorizedValue = V;
7053       ++NumVectorInstructions;
7054       return V;
7055     }
7056     case Instruction::ShuffleVector: {
7057       assert(E->isAltShuffle() &&
7058              ((Instruction::isBinaryOp(E->getOpcode()) &&
7059                Instruction::isBinaryOp(E->getAltOpcode())) ||
7060               (Instruction::isCast(E->getOpcode()) &&
7061                Instruction::isCast(E->getAltOpcode())) ||
7062               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
7063              "Invalid Shuffle Vector Operand");
7064 
7065       Value *LHS = nullptr, *RHS = nullptr;
7066       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
7067         setInsertPointAfterBundle(E);
7068         LHS = vectorizeTree(E->getOperand(0));
7069         RHS = vectorizeTree(E->getOperand(1));
7070       } else {
7071         setInsertPointAfterBundle(E);
7072         LHS = vectorizeTree(E->getOperand(0));
7073       }
7074 
7075       if (E->VectorizedValue) {
7076         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7077         return E->VectorizedValue;
7078       }
7079 
7080       Value *V0, *V1;
7081       if (Instruction::isBinaryOp(E->getOpcode())) {
7082         V0 = Builder.CreateBinOp(
7083             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
7084         V1 = Builder.CreateBinOp(
7085             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
7086       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
7087         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
7088         auto *AltCI = cast<CmpInst>(E->getAltOp());
7089         CmpInst::Predicate AltPred = AltCI->getPredicate();
7090         unsigned AltIdx =
7091             std::distance(E->Scalars.begin(), find(E->Scalars, AltCI));
7092         if (AltCI->getOperand(0) != E->getOperand(0)[AltIdx])
7093           AltPred = CmpInst::getSwappedPredicate(AltPred);
7094         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
7095       } else {
7096         V0 = Builder.CreateCast(
7097             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
7098         V1 = Builder.CreateCast(
7099             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
7100       }
7101       // Add V0 and V1 to later analysis to try to find and remove matching
7102       // instruction, if any.
7103       for (Value *V : {V0, V1}) {
7104         if (auto *I = dyn_cast<Instruction>(V)) {
7105           GatherShuffleSeq.insert(I);
7106           CSEBlocks.insert(I->getParent());
7107         }
7108       }
7109 
7110       // Create shuffle to take alternate operations from the vector.
7111       // Also, gather up main and alt scalar ops to propagate IR flags to
7112       // each vector operation.
7113       ValueList OpScalars, AltScalars;
7114       SmallVector<int> Mask;
7115       buildSuffleEntryMask(
7116           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
7117           [E](Instruction *I) {
7118             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
7119             if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) {
7120               auto *AltCI0 = cast<CmpInst>(E->getAltOp());
7121               auto *CI = cast<CmpInst>(I);
7122               CmpInst::Predicate P0 = CI0->getPredicate();
7123               CmpInst::Predicate AltP0 = AltCI0->getPredicate();
7124               assert(P0 != AltP0 &&
7125                      "Expected different main/alternate predicates.");
7126               CmpInst::Predicate AltP0Swapped =
7127                   CmpInst::getSwappedPredicate(AltP0);
7128               CmpInst::Predicate CurrentPred = CI->getPredicate();
7129               if (P0 == AltP0Swapped)
7130                 return (P0 == CurrentPred &&
7131                         !areCompatibleCmpOps(
7132                             CI0->getOperand(0), CI0->getOperand(1),
7133                             CI->getOperand(0), CI->getOperand(1))) ||
7134                        (AltP0 == CurrentPred &&
7135                         !areCompatibleCmpOps(
7136                             CI0->getOperand(0), CI0->getOperand(1),
7137                             CI->getOperand(1), CI->getOperand(0)));
7138               return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
7139             }
7140             return I->getOpcode() == E->getAltOpcode();
7141           },
7142           Mask, &OpScalars, &AltScalars);
7143 
7144       propagateIRFlags(V0, OpScalars);
7145       propagateIRFlags(V1, AltScalars);
7146 
7147       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
7148       if (auto *I = dyn_cast<Instruction>(V)) {
7149         V = propagateMetadata(I, E->Scalars);
7150         GatherShuffleSeq.insert(I);
7151         CSEBlocks.insert(I->getParent());
7152       }
7153       V = ShuffleBuilder.finalize(V);
7154 
7155       E->VectorizedValue = V;
7156       ++NumVectorInstructions;
7157 
7158       return V;
7159     }
7160     default:
7161     llvm_unreachable("unknown inst");
7162   }
7163   return nullptr;
7164 }
7165 
7166 Value *BoUpSLP::vectorizeTree() {
7167   ExtraValueToDebugLocsMap ExternallyUsedValues;
7168   return vectorizeTree(ExternallyUsedValues);
7169 }
7170 
7171 Value *
7172 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
7173   // All blocks must be scheduled before any instructions are inserted.
7174   for (auto &BSIter : BlocksSchedules) {
7175     scheduleBlock(BSIter.second.get());
7176   }
7177 
7178   Builder.SetInsertPoint(&F->getEntryBlock().front());
7179   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
7180 
7181   // If the vectorized tree can be rewritten in a smaller type, we truncate the
7182   // vectorized root. InstCombine will then rewrite the entire expression. We
7183   // sign extend the extracted values below.
7184   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7185   if (MinBWs.count(ScalarRoot)) {
7186     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
7187       // If current instr is a phi and not the last phi, insert it after the
7188       // last phi node.
7189       if (isa<PHINode>(I))
7190         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
7191       else
7192         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
7193     }
7194     auto BundleWidth = VectorizableTree[0]->Scalars.size();
7195     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7196     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
7197     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
7198     VectorizableTree[0]->VectorizedValue = Trunc;
7199   }
7200 
7201   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
7202                     << " values .\n");
7203 
7204   // Extract all of the elements with the external uses.
7205   for (const auto &ExternalUse : ExternalUses) {
7206     Value *Scalar = ExternalUse.Scalar;
7207     llvm::User *User = ExternalUse.User;
7208 
7209     // Skip users that we already RAUW. This happens when one instruction
7210     // has multiple uses of the same value.
7211     if (User && !is_contained(Scalar->users(), User))
7212       continue;
7213     TreeEntry *E = getTreeEntry(Scalar);
7214     assert(E && "Invalid scalar");
7215     assert(E->State != TreeEntry::NeedToGather &&
7216            "Extracting from a gather list");
7217 
7218     Value *Vec = E->VectorizedValue;
7219     assert(Vec && "Can't find vectorizable value");
7220 
7221     Value *Lane = Builder.getInt32(ExternalUse.Lane);
7222     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
7223       if (Scalar->getType() != Vec->getType()) {
7224         Value *Ex;
7225         // "Reuse" the existing extract to improve final codegen.
7226         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
7227           Ex = Builder.CreateExtractElement(ES->getOperand(0),
7228                                             ES->getOperand(1));
7229         } else {
7230           Ex = Builder.CreateExtractElement(Vec, Lane);
7231         }
7232         // If necessary, sign-extend or zero-extend ScalarRoot
7233         // to the larger type.
7234         if (!MinBWs.count(ScalarRoot))
7235           return Ex;
7236         if (MinBWs[ScalarRoot].second)
7237           return Builder.CreateSExt(Ex, Scalar->getType());
7238         return Builder.CreateZExt(Ex, Scalar->getType());
7239       }
7240       assert(isa<FixedVectorType>(Scalar->getType()) &&
7241              isa<InsertElementInst>(Scalar) &&
7242              "In-tree scalar of vector type is not insertelement?");
7243       return Vec;
7244     };
7245     // If User == nullptr, the Scalar is used as extra arg. Generate
7246     // ExtractElement instruction and update the record for this scalar in
7247     // ExternallyUsedValues.
7248     if (!User) {
7249       assert(ExternallyUsedValues.count(Scalar) &&
7250              "Scalar with nullptr as an external user must be registered in "
7251              "ExternallyUsedValues map");
7252       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7253         Builder.SetInsertPoint(VecI->getParent(),
7254                                std::next(VecI->getIterator()));
7255       } else {
7256         Builder.SetInsertPoint(&F->getEntryBlock().front());
7257       }
7258       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7259       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
7260       auto &NewInstLocs = ExternallyUsedValues[NewInst];
7261       auto It = ExternallyUsedValues.find(Scalar);
7262       assert(It != ExternallyUsedValues.end() &&
7263              "Externally used scalar is not found in ExternallyUsedValues");
7264       NewInstLocs.append(It->second);
7265       ExternallyUsedValues.erase(Scalar);
7266       // Required to update internally referenced instructions.
7267       Scalar->replaceAllUsesWith(NewInst);
7268       continue;
7269     }
7270 
7271     // Generate extracts for out-of-tree users.
7272     // Find the insertion point for the extractelement lane.
7273     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7274       if (PHINode *PH = dyn_cast<PHINode>(User)) {
7275         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
7276           if (PH->getIncomingValue(i) == Scalar) {
7277             Instruction *IncomingTerminator =
7278                 PH->getIncomingBlock(i)->getTerminator();
7279             if (isa<CatchSwitchInst>(IncomingTerminator)) {
7280               Builder.SetInsertPoint(VecI->getParent(),
7281                                      std::next(VecI->getIterator()));
7282             } else {
7283               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
7284             }
7285             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7286             CSEBlocks.insert(PH->getIncomingBlock(i));
7287             PH->setOperand(i, NewInst);
7288           }
7289         }
7290       } else {
7291         Builder.SetInsertPoint(cast<Instruction>(User));
7292         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7293         CSEBlocks.insert(cast<Instruction>(User)->getParent());
7294         User->replaceUsesOfWith(Scalar, NewInst);
7295       }
7296     } else {
7297       Builder.SetInsertPoint(&F->getEntryBlock().front());
7298       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7299       CSEBlocks.insert(&F->getEntryBlock());
7300       User->replaceUsesOfWith(Scalar, NewInst);
7301     }
7302 
7303     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
7304   }
7305 
7306   // For each vectorized value:
7307   for (auto &TEPtr : VectorizableTree) {
7308     TreeEntry *Entry = TEPtr.get();
7309 
7310     // No need to handle users of gathered values.
7311     if (Entry->State == TreeEntry::NeedToGather)
7312       continue;
7313 
7314     assert(Entry->VectorizedValue && "Can't find vectorizable value");
7315 
7316     // For each lane:
7317     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
7318       Value *Scalar = Entry->Scalars[Lane];
7319 
7320 #ifndef NDEBUG
7321       Type *Ty = Scalar->getType();
7322       if (!Ty->isVoidTy()) {
7323         for (User *U : Scalar->users()) {
7324           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
7325 
7326           // It is legal to delete users in the ignorelist.
7327           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) ||
7328                   (isa_and_nonnull<Instruction>(U) &&
7329                    isDeleted(cast<Instruction>(U)))) &&
7330                  "Deleting out-of-tree value");
7331         }
7332       }
7333 #endif
7334       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
7335       eraseInstruction(cast<Instruction>(Scalar));
7336     }
7337   }
7338 
7339   Builder.ClearInsertionPoint();
7340   InstrElementSize.clear();
7341 
7342   return VectorizableTree[0]->VectorizedValue;
7343 }
7344 
7345 void BoUpSLP::optimizeGatherSequence() {
7346   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
7347                     << " gather sequences instructions.\n");
7348   // LICM InsertElementInst sequences.
7349   for (Instruction *I : GatherShuffleSeq) {
7350     if (isDeleted(I))
7351       continue;
7352 
7353     // Check if this block is inside a loop.
7354     Loop *L = LI->getLoopFor(I->getParent());
7355     if (!L)
7356       continue;
7357 
7358     // Check if it has a preheader.
7359     BasicBlock *PreHeader = L->getLoopPreheader();
7360     if (!PreHeader)
7361       continue;
7362 
7363     // If the vector or the element that we insert into it are
7364     // instructions that are defined in this basic block then we can't
7365     // hoist this instruction.
7366     if (any_of(I->operands(), [L](Value *V) {
7367           auto *OpI = dyn_cast<Instruction>(V);
7368           return OpI && L->contains(OpI);
7369         }))
7370       continue;
7371 
7372     // We can hoist this instruction. Move it to the pre-header.
7373     I->moveBefore(PreHeader->getTerminator());
7374   }
7375 
7376   // Make a list of all reachable blocks in our CSE queue.
7377   SmallVector<const DomTreeNode *, 8> CSEWorkList;
7378   CSEWorkList.reserve(CSEBlocks.size());
7379   for (BasicBlock *BB : CSEBlocks)
7380     if (DomTreeNode *N = DT->getNode(BB)) {
7381       assert(DT->isReachableFromEntry(N));
7382       CSEWorkList.push_back(N);
7383     }
7384 
7385   // Sort blocks by domination. This ensures we visit a block after all blocks
7386   // dominating it are visited.
7387   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
7388     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
7389            "Different nodes should have different DFS numbers");
7390     return A->getDFSNumIn() < B->getDFSNumIn();
7391   });
7392 
7393   // Less defined shuffles can be replaced by the more defined copies.
7394   // Between two shuffles one is less defined if it has the same vector operands
7395   // and its mask indeces are the same as in the first one or undefs. E.g.
7396   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
7397   // poison, <0, 0, 0, 0>.
7398   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
7399                                            SmallVectorImpl<int> &NewMask) {
7400     if (I1->getType() != I2->getType())
7401       return false;
7402     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
7403     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
7404     if (!SI1 || !SI2)
7405       return I1->isIdenticalTo(I2);
7406     if (SI1->isIdenticalTo(SI2))
7407       return true;
7408     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
7409       if (SI1->getOperand(I) != SI2->getOperand(I))
7410         return false;
7411     // Check if the second instruction is more defined than the first one.
7412     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
7413     ArrayRef<int> SM1 = SI1->getShuffleMask();
7414     // Count trailing undefs in the mask to check the final number of used
7415     // registers.
7416     unsigned LastUndefsCnt = 0;
7417     for (int I = 0, E = NewMask.size(); I < E; ++I) {
7418       if (SM1[I] == UndefMaskElem)
7419         ++LastUndefsCnt;
7420       else
7421         LastUndefsCnt = 0;
7422       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
7423           NewMask[I] != SM1[I])
7424         return false;
7425       if (NewMask[I] == UndefMaskElem)
7426         NewMask[I] = SM1[I];
7427     }
7428     // Check if the last undefs actually change the final number of used vector
7429     // registers.
7430     return SM1.size() - LastUndefsCnt > 1 &&
7431            TTI->getNumberOfParts(SI1->getType()) ==
7432                TTI->getNumberOfParts(
7433                    FixedVectorType::get(SI1->getType()->getElementType(),
7434                                         SM1.size() - LastUndefsCnt));
7435   };
7436   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
7437   // instructions. TODO: We can further optimize this scan if we split the
7438   // instructions into different buckets based on the insert lane.
7439   SmallVector<Instruction *, 16> Visited;
7440   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
7441     assert(*I &&
7442            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
7443            "Worklist not sorted properly!");
7444     BasicBlock *BB = (*I)->getBlock();
7445     // For all instructions in blocks containing gather sequences:
7446     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
7447       if (isDeleted(&In))
7448         continue;
7449       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
7450           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
7451         continue;
7452 
7453       // Check if we can replace this instruction with any of the
7454       // visited instructions.
7455       bool Replaced = false;
7456       for (Instruction *&V : Visited) {
7457         SmallVector<int> NewMask;
7458         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
7459             DT->dominates(V->getParent(), In.getParent())) {
7460           In.replaceAllUsesWith(V);
7461           eraseInstruction(&In);
7462           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
7463             if (!NewMask.empty())
7464               SI->setShuffleMask(NewMask);
7465           Replaced = true;
7466           break;
7467         }
7468         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
7469             GatherShuffleSeq.contains(V) &&
7470             IsIdenticalOrLessDefined(V, &In, NewMask) &&
7471             DT->dominates(In.getParent(), V->getParent())) {
7472           In.moveAfter(V);
7473           V->replaceAllUsesWith(&In);
7474           eraseInstruction(V);
7475           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
7476             if (!NewMask.empty())
7477               SI->setShuffleMask(NewMask);
7478           V = &In;
7479           Replaced = true;
7480           break;
7481         }
7482       }
7483       if (!Replaced) {
7484         assert(!is_contained(Visited, &In));
7485         Visited.push_back(&In);
7486       }
7487     }
7488   }
7489   CSEBlocks.clear();
7490   GatherShuffleSeq.clear();
7491 }
7492 
7493 BoUpSLP::ScheduleData *
7494 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
7495   ScheduleData *Bundle = nullptr;
7496   ScheduleData *PrevInBundle = nullptr;
7497   for (Value *V : VL) {
7498     ScheduleData *BundleMember = getScheduleData(V);
7499     assert(BundleMember &&
7500            "no ScheduleData for bundle member "
7501            "(maybe not in same basic block)");
7502     assert(BundleMember->isSchedulingEntity() &&
7503            "bundle member already part of other bundle");
7504     if (PrevInBundle) {
7505       PrevInBundle->NextInBundle = BundleMember;
7506     } else {
7507       Bundle = BundleMember;
7508     }
7509 
7510     // Group the instructions to a bundle.
7511     BundleMember->FirstInBundle = Bundle;
7512     PrevInBundle = BundleMember;
7513   }
7514   assert(Bundle && "Failed to find schedule bundle");
7515   return Bundle;
7516 }
7517 
7518 // Groups the instructions to a bundle (which is then a single scheduling entity)
7519 // and schedules instructions until the bundle gets ready.
7520 Optional<BoUpSLP::ScheduleData *>
7521 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
7522                                             const InstructionsState &S) {
7523   // No need to schedule PHIs, insertelement, extractelement and extractvalue
7524   // instructions.
7525   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue))
7526     return nullptr;
7527 
7528   // Initialize the instruction bundle.
7529   Instruction *OldScheduleEnd = ScheduleEnd;
7530   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
7531 
7532   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
7533                                                          ScheduleData *Bundle) {
7534     // The scheduling region got new instructions at the lower end (or it is a
7535     // new region for the first bundle). This makes it necessary to
7536     // recalculate all dependencies.
7537     // It is seldom that this needs to be done a second time after adding the
7538     // initial bundle to the region.
7539     if (ScheduleEnd != OldScheduleEnd) {
7540       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
7541         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
7542       ReSchedule = true;
7543     }
7544     if (Bundle) {
7545       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
7546                         << " in block " << BB->getName() << "\n");
7547       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
7548     }
7549 
7550     if (ReSchedule) {
7551       resetSchedule();
7552       initialFillReadyList(ReadyInsts);
7553     }
7554 
7555     // Now try to schedule the new bundle or (if no bundle) just calculate
7556     // dependencies. As soon as the bundle is "ready" it means that there are no
7557     // cyclic dependencies and we can schedule it. Note that's important that we
7558     // don't "schedule" the bundle yet (see cancelScheduling).
7559     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
7560            !ReadyInsts.empty()) {
7561       ScheduleData *Picked = ReadyInsts.pop_back_val();
7562       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
7563              "must be ready to schedule");
7564       schedule(Picked, ReadyInsts);
7565     }
7566   };
7567 
7568   // Make sure that the scheduling region contains all
7569   // instructions of the bundle.
7570   for (Value *V : VL) {
7571     if (!extendSchedulingRegion(V, S)) {
7572       // If the scheduling region got new instructions at the lower end (or it
7573       // is a new region for the first bundle). This makes it necessary to
7574       // recalculate all dependencies.
7575       // Otherwise the compiler may crash trying to incorrectly calculate
7576       // dependencies and emit instruction in the wrong order at the actual
7577       // scheduling.
7578       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
7579       return None;
7580     }
7581   }
7582 
7583   bool ReSchedule = false;
7584   for (Value *V : VL) {
7585     ScheduleData *BundleMember = getScheduleData(V);
7586     assert(BundleMember &&
7587            "no ScheduleData for bundle member (maybe not in same basic block)");
7588 
7589     // Make sure we don't leave the pieces of the bundle in the ready list when
7590     // whole bundle might not be ready.
7591     ReadyInsts.remove(BundleMember);
7592 
7593     if (!BundleMember->IsScheduled)
7594       continue;
7595     // A bundle member was scheduled as single instruction before and now
7596     // needs to be scheduled as part of the bundle. We just get rid of the
7597     // existing schedule.
7598     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
7599                       << " was already scheduled\n");
7600     ReSchedule = true;
7601   }
7602 
7603   auto *Bundle = buildBundle(VL);
7604   TryScheduleBundleImpl(ReSchedule, Bundle);
7605   if (!Bundle->isReady()) {
7606     cancelScheduling(VL, S.OpValue);
7607     return None;
7608   }
7609   return Bundle;
7610 }
7611 
7612 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
7613                                                 Value *OpValue) {
7614   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue))
7615     return;
7616 
7617   ScheduleData *Bundle = getScheduleData(OpValue);
7618   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
7619   assert(!Bundle->IsScheduled &&
7620          "Can't cancel bundle which is already scheduled");
7621   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
7622          "tried to unbundle something which is not a bundle");
7623 
7624   // Remove the bundle from the ready list.
7625   if (Bundle->isReady())
7626     ReadyInsts.remove(Bundle);
7627 
7628   // Un-bundle: make single instructions out of the bundle.
7629   ScheduleData *BundleMember = Bundle;
7630   while (BundleMember) {
7631     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
7632     BundleMember->FirstInBundle = BundleMember;
7633     ScheduleData *Next = BundleMember->NextInBundle;
7634     BundleMember->NextInBundle = nullptr;
7635     if (BundleMember->unscheduledDepsInBundle() == 0) {
7636       ReadyInsts.insert(BundleMember);
7637     }
7638     BundleMember = Next;
7639   }
7640 }
7641 
7642 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
7643   // Allocate a new ScheduleData for the instruction.
7644   if (ChunkPos >= ChunkSize) {
7645     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
7646     ChunkPos = 0;
7647   }
7648   return &(ScheduleDataChunks.back()[ChunkPos++]);
7649 }
7650 
7651 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
7652                                                       const InstructionsState &S) {
7653   if (getScheduleData(V, isOneOf(S, V)))
7654     return true;
7655   Instruction *I = dyn_cast<Instruction>(V);
7656   assert(I && "bundle member must be an instruction");
7657   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
7658          "phi nodes/insertelements/extractelements/extractvalues don't need to "
7659          "be scheduled");
7660   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
7661     ScheduleData *ISD = getScheduleData(I);
7662     if (!ISD)
7663       return false;
7664     assert(isInSchedulingRegion(ISD) &&
7665            "ScheduleData not in scheduling region");
7666     ScheduleData *SD = allocateScheduleDataChunks();
7667     SD->Inst = I;
7668     SD->init(SchedulingRegionID, S.OpValue);
7669     ExtraScheduleDataMap[I][S.OpValue] = SD;
7670     return true;
7671   };
7672   if (CheckSheduleForI(I))
7673     return true;
7674   if (!ScheduleStart) {
7675     // It's the first instruction in the new region.
7676     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
7677     ScheduleStart = I;
7678     ScheduleEnd = I->getNextNode();
7679     if (isOneOf(S, I) != I)
7680       CheckSheduleForI(I);
7681     assert(ScheduleEnd && "tried to vectorize a terminator?");
7682     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
7683     return true;
7684   }
7685   // Search up and down at the same time, because we don't know if the new
7686   // instruction is above or below the existing scheduling region.
7687   BasicBlock::reverse_iterator UpIter =
7688       ++ScheduleStart->getIterator().getReverse();
7689   BasicBlock::reverse_iterator UpperEnd = BB->rend();
7690   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
7691   BasicBlock::iterator LowerEnd = BB->end();
7692   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
7693          &*DownIter != I) {
7694     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
7695       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
7696       return false;
7697     }
7698 
7699     ++UpIter;
7700     ++DownIter;
7701   }
7702   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
7703     assert(I->getParent() == ScheduleStart->getParent() &&
7704            "Instruction is in wrong basic block.");
7705     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
7706     ScheduleStart = I;
7707     if (isOneOf(S, I) != I)
7708       CheckSheduleForI(I);
7709     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
7710                       << "\n");
7711     return true;
7712   }
7713   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
7714          "Expected to reach top of the basic block or instruction down the "
7715          "lower end.");
7716   assert(I->getParent() == ScheduleEnd->getParent() &&
7717          "Instruction is in wrong basic block.");
7718   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
7719                    nullptr);
7720   ScheduleEnd = I->getNextNode();
7721   if (isOneOf(S, I) != I)
7722     CheckSheduleForI(I);
7723   assert(ScheduleEnd && "tried to vectorize a terminator?");
7724   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
7725   return true;
7726 }
7727 
7728 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
7729                                                 Instruction *ToI,
7730                                                 ScheduleData *PrevLoadStore,
7731                                                 ScheduleData *NextLoadStore) {
7732   ScheduleData *CurrentLoadStore = PrevLoadStore;
7733   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
7734     ScheduleData *SD = ScheduleDataMap[I];
7735     if (!SD) {
7736       SD = allocateScheduleDataChunks();
7737       ScheduleDataMap[I] = SD;
7738       SD->Inst = I;
7739     }
7740     assert(!isInSchedulingRegion(SD) &&
7741            "new ScheduleData already in scheduling region");
7742     SD->init(SchedulingRegionID, I);
7743 
7744     if (I->mayReadOrWriteMemory() &&
7745         (!isa<IntrinsicInst>(I) ||
7746          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
7747           cast<IntrinsicInst>(I)->getIntrinsicID() !=
7748               Intrinsic::pseudoprobe))) {
7749       // Update the linked list of memory accessing instructions.
7750       if (CurrentLoadStore) {
7751         CurrentLoadStore->NextLoadStore = SD;
7752       } else {
7753         FirstLoadStoreInRegion = SD;
7754       }
7755       CurrentLoadStore = SD;
7756     }
7757   }
7758   if (NextLoadStore) {
7759     if (CurrentLoadStore)
7760       CurrentLoadStore->NextLoadStore = NextLoadStore;
7761   } else {
7762     LastLoadStoreInRegion = CurrentLoadStore;
7763   }
7764 }
7765 
7766 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
7767                                                      bool InsertInReadyList,
7768                                                      BoUpSLP *SLP) {
7769   assert(SD->isSchedulingEntity());
7770 
7771   SmallVector<ScheduleData *, 10> WorkList;
7772   WorkList.push_back(SD);
7773 
7774   while (!WorkList.empty()) {
7775     ScheduleData *SD = WorkList.pop_back_val();
7776     for (ScheduleData *BundleMember = SD; BundleMember;
7777          BundleMember = BundleMember->NextInBundle) {
7778       assert(isInSchedulingRegion(BundleMember));
7779       if (BundleMember->hasValidDependencies())
7780         continue;
7781 
7782       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
7783                  << "\n");
7784       BundleMember->Dependencies = 0;
7785       BundleMember->resetUnscheduledDeps();
7786 
7787       // Handle def-use chain dependencies.
7788       if (BundleMember->OpValue != BundleMember->Inst) {
7789         ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
7790         if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
7791           BundleMember->Dependencies++;
7792           ScheduleData *DestBundle = UseSD->FirstInBundle;
7793           if (!DestBundle->IsScheduled)
7794             BundleMember->incrementUnscheduledDeps(1);
7795           if (!DestBundle->hasValidDependencies())
7796             WorkList.push_back(DestBundle);
7797         }
7798       } else {
7799         for (User *U : BundleMember->Inst->users()) {
7800           assert(isa<Instruction>(U) &&
7801                  "user of instruction must be instruction");
7802           ScheduleData *UseSD = getScheduleData(U);
7803           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
7804             BundleMember->Dependencies++;
7805             ScheduleData *DestBundle = UseSD->FirstInBundle;
7806             if (!DestBundle->IsScheduled)
7807               BundleMember->incrementUnscheduledDeps(1);
7808             if (!DestBundle->hasValidDependencies())
7809               WorkList.push_back(DestBundle);
7810           }
7811         }
7812       }
7813 
7814       // Handle the memory dependencies (if any).
7815       ScheduleData *DepDest = BundleMember->NextLoadStore;
7816       if (!DepDest)
7817         continue;
7818       Instruction *SrcInst = BundleMember->Inst;
7819       assert(SrcInst->mayReadOrWriteMemory() &&
7820              "NextLoadStore list for non memory effecting bundle?");
7821       MemoryLocation SrcLoc = getLocation(SrcInst);
7822       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
7823       unsigned numAliased = 0;
7824       unsigned DistToSrc = 1;
7825 
7826       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
7827         assert(isInSchedulingRegion(DepDest));
7828 
7829         // We have two limits to reduce the complexity:
7830         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
7831         //    SLP->isAliased (which is the expensive part in this loop).
7832         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
7833         //    the whole loop (even if the loop is fast, it's quadratic).
7834         //    It's important for the loop break condition (see below) to
7835         //    check this limit even between two read-only instructions.
7836         if (DistToSrc >= MaxMemDepDistance ||
7837             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
7838              (numAliased >= AliasedCheckLimit ||
7839               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
7840 
7841           // We increment the counter only if the locations are aliased
7842           // (instead of counting all alias checks). This gives a better
7843           // balance between reduced runtime and accurate dependencies.
7844           numAliased++;
7845 
7846           DepDest->MemoryDependencies.push_back(BundleMember);
7847           BundleMember->Dependencies++;
7848           ScheduleData *DestBundle = DepDest->FirstInBundle;
7849           if (!DestBundle->IsScheduled) {
7850             BundleMember->incrementUnscheduledDeps(1);
7851           }
7852           if (!DestBundle->hasValidDependencies()) {
7853             WorkList.push_back(DestBundle);
7854           }
7855         }
7856 
7857         // Example, explaining the loop break condition: Let's assume our
7858         // starting instruction is i0 and MaxMemDepDistance = 3.
7859         //
7860         //                      +--------v--v--v
7861         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
7862         //             +--------^--^--^
7863         //
7864         // MaxMemDepDistance let us stop alias-checking at i3 and we add
7865         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
7866         // Previously we already added dependencies from i3 to i6,i7,i8
7867         // (because of MaxMemDepDistance). As we added a dependency from
7868         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
7869         // and we can abort this loop at i6.
7870         if (DistToSrc >= 2 * MaxMemDepDistance)
7871           break;
7872         DistToSrc++;
7873       }
7874     }
7875     if (InsertInReadyList && SD->isReady()) {
7876       ReadyInsts.insert(SD);
7877       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
7878                         << "\n");
7879     }
7880   }
7881 }
7882 
7883 void BoUpSLP::BlockScheduling::resetSchedule() {
7884   assert(ScheduleStart &&
7885          "tried to reset schedule on block which has not been scheduled");
7886   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
7887     doForAllOpcodes(I, [&](ScheduleData *SD) {
7888       assert(isInSchedulingRegion(SD) &&
7889              "ScheduleData not in scheduling region");
7890       SD->IsScheduled = false;
7891       SD->resetUnscheduledDeps();
7892     });
7893   }
7894   ReadyInsts.clear();
7895 }
7896 
7897 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
7898   if (!BS->ScheduleStart)
7899     return;
7900 
7901   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
7902 
7903   BS->resetSchedule();
7904 
7905   // For the real scheduling we use a more sophisticated ready-list: it is
7906   // sorted by the original instruction location. This lets the final schedule
7907   // be as  close as possible to the original instruction order.
7908   struct ScheduleDataCompare {
7909     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
7910       return SD2->SchedulingPriority < SD1->SchedulingPriority;
7911     }
7912   };
7913   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
7914 
7915   // Ensure that all dependency data is updated and fill the ready-list with
7916   // initial instructions.
7917   int Idx = 0;
7918   int NumToSchedule = 0;
7919   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
7920        I = I->getNextNode()) {
7921     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
7922       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
7923               SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
7924              "scheduler and vectorizer bundle mismatch");
7925       SD->FirstInBundle->SchedulingPriority = Idx++;
7926       if (SD->isSchedulingEntity()) {
7927         BS->calculateDependencies(SD, false, this);
7928         NumToSchedule++;
7929       }
7930     });
7931   }
7932   BS->initialFillReadyList(ReadyInsts);
7933 
7934   Instruction *LastScheduledInst = BS->ScheduleEnd;
7935 
7936   // Do the "real" scheduling.
7937   while (!ReadyInsts.empty()) {
7938     ScheduleData *picked = *ReadyInsts.begin();
7939     ReadyInsts.erase(ReadyInsts.begin());
7940 
7941     // Move the scheduled instruction(s) to their dedicated places, if not
7942     // there yet.
7943     for (ScheduleData *BundleMember = picked; BundleMember;
7944          BundleMember = BundleMember->NextInBundle) {
7945       Instruction *pickedInst = BundleMember->Inst;
7946       if (pickedInst->getNextNode() != LastScheduledInst)
7947         pickedInst->moveBefore(LastScheduledInst);
7948       LastScheduledInst = pickedInst;
7949     }
7950 
7951     BS->schedule(picked, ReadyInsts);
7952     NumToSchedule--;
7953   }
7954   assert(NumToSchedule == 0 && "could not schedule all instructions");
7955 
7956   // Check that we didn't break any of our invariants.
7957 #ifdef EXPENSIVE_CHECKS
7958   BS->verify();
7959 #endif
7960 
7961   // Avoid duplicate scheduling of the block.
7962   BS->ScheduleStart = nullptr;
7963 }
7964 
7965 unsigned BoUpSLP::getVectorElementSize(Value *V) {
7966   // If V is a store, just return the width of the stored value (or value
7967   // truncated just before storing) without traversing the expression tree.
7968   // This is the common case.
7969   if (auto *Store = dyn_cast<StoreInst>(V)) {
7970     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
7971       return DL->getTypeSizeInBits(Trunc->getSrcTy());
7972     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
7973   }
7974 
7975   if (auto *IEI = dyn_cast<InsertElementInst>(V))
7976     return getVectorElementSize(IEI->getOperand(1));
7977 
7978   auto E = InstrElementSize.find(V);
7979   if (E != InstrElementSize.end())
7980     return E->second;
7981 
7982   // If V is not a store, we can traverse the expression tree to find loads
7983   // that feed it. The type of the loaded value may indicate a more suitable
7984   // width than V's type. We want to base the vector element size on the width
7985   // of memory operations where possible.
7986   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
7987   SmallPtrSet<Instruction *, 16> Visited;
7988   if (auto *I = dyn_cast<Instruction>(V)) {
7989     Worklist.emplace_back(I, I->getParent());
7990     Visited.insert(I);
7991   }
7992 
7993   // Traverse the expression tree in bottom-up order looking for loads. If we
7994   // encounter an instruction we don't yet handle, we give up.
7995   auto Width = 0u;
7996   while (!Worklist.empty()) {
7997     Instruction *I;
7998     BasicBlock *Parent;
7999     std::tie(I, Parent) = Worklist.pop_back_val();
8000 
8001     // We should only be looking at scalar instructions here. If the current
8002     // instruction has a vector type, skip.
8003     auto *Ty = I->getType();
8004     if (isa<VectorType>(Ty))
8005       continue;
8006 
8007     // If the current instruction is a load, update MaxWidth to reflect the
8008     // width of the loaded value.
8009     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
8010         isa<ExtractValueInst>(I))
8011       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
8012 
8013     // Otherwise, we need to visit the operands of the instruction. We only
8014     // handle the interesting cases from buildTree here. If an operand is an
8015     // instruction we haven't yet visited and from the same basic block as the
8016     // user or the use is a PHI node, we add it to the worklist.
8017     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8018              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
8019              isa<UnaryOperator>(I)) {
8020       for (Use &U : I->operands())
8021         if (auto *J = dyn_cast<Instruction>(U.get()))
8022           if (Visited.insert(J).second &&
8023               (isa<PHINode>(I) || J->getParent() == Parent))
8024             Worklist.emplace_back(J, J->getParent());
8025     } else {
8026       break;
8027     }
8028   }
8029 
8030   // If we didn't encounter a memory access in the expression tree, or if we
8031   // gave up for some reason, just return the width of V. Otherwise, return the
8032   // maximum width we found.
8033   if (!Width) {
8034     if (auto *CI = dyn_cast<CmpInst>(V))
8035       V = CI->getOperand(0);
8036     Width = DL->getTypeSizeInBits(V->getType());
8037   }
8038 
8039   for (Instruction *I : Visited)
8040     InstrElementSize[I] = Width;
8041 
8042   return Width;
8043 }
8044 
8045 // Determine if a value V in a vectorizable expression Expr can be demoted to a
8046 // smaller type with a truncation. We collect the values that will be demoted
8047 // in ToDemote and additional roots that require investigating in Roots.
8048 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
8049                                   SmallVectorImpl<Value *> &ToDemote,
8050                                   SmallVectorImpl<Value *> &Roots) {
8051   // We can always demote constants.
8052   if (isa<Constant>(V)) {
8053     ToDemote.push_back(V);
8054     return true;
8055   }
8056 
8057   // If the value is not an instruction in the expression with only one use, it
8058   // cannot be demoted.
8059   auto *I = dyn_cast<Instruction>(V);
8060   if (!I || !I->hasOneUse() || !Expr.count(I))
8061     return false;
8062 
8063   switch (I->getOpcode()) {
8064 
8065   // We can always demote truncations and extensions. Since truncations can
8066   // seed additional demotion, we save the truncated value.
8067   case Instruction::Trunc:
8068     Roots.push_back(I->getOperand(0));
8069     break;
8070   case Instruction::ZExt:
8071   case Instruction::SExt:
8072     if (isa<ExtractElementInst>(I->getOperand(0)) ||
8073         isa<InsertElementInst>(I->getOperand(0)))
8074       return false;
8075     break;
8076 
8077   // We can demote certain binary operations if we can demote both of their
8078   // operands.
8079   case Instruction::Add:
8080   case Instruction::Sub:
8081   case Instruction::Mul:
8082   case Instruction::And:
8083   case Instruction::Or:
8084   case Instruction::Xor:
8085     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
8086         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
8087       return false;
8088     break;
8089 
8090   // We can demote selects if we can demote their true and false values.
8091   case Instruction::Select: {
8092     SelectInst *SI = cast<SelectInst>(I);
8093     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
8094         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
8095       return false;
8096     break;
8097   }
8098 
8099   // We can demote phis if we can demote all their incoming operands. Note that
8100   // we don't need to worry about cycles since we ensure single use above.
8101   case Instruction::PHI: {
8102     PHINode *PN = cast<PHINode>(I);
8103     for (Value *IncValue : PN->incoming_values())
8104       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
8105         return false;
8106     break;
8107   }
8108 
8109   // Otherwise, conservatively give up.
8110   default:
8111     return false;
8112   }
8113 
8114   // Record the value that we can demote.
8115   ToDemote.push_back(V);
8116   return true;
8117 }
8118 
8119 void BoUpSLP::computeMinimumValueSizes() {
8120   // If there are no external uses, the expression tree must be rooted by a
8121   // store. We can't demote in-memory values, so there is nothing to do here.
8122   if (ExternalUses.empty())
8123     return;
8124 
8125   // We only attempt to truncate integer expressions.
8126   auto &TreeRoot = VectorizableTree[0]->Scalars;
8127   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
8128   if (!TreeRootIT)
8129     return;
8130 
8131   // If the expression is not rooted by a store, these roots should have
8132   // external uses. We will rely on InstCombine to rewrite the expression in
8133   // the narrower type. However, InstCombine only rewrites single-use values.
8134   // This means that if a tree entry other than a root is used externally, it
8135   // must have multiple uses and InstCombine will not rewrite it. The code
8136   // below ensures that only the roots are used externally.
8137   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
8138   for (auto &EU : ExternalUses)
8139     if (!Expr.erase(EU.Scalar))
8140       return;
8141   if (!Expr.empty())
8142     return;
8143 
8144   // Collect the scalar values of the vectorizable expression. We will use this
8145   // context to determine which values can be demoted. If we see a truncation,
8146   // we mark it as seeding another demotion.
8147   for (auto &EntryPtr : VectorizableTree)
8148     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
8149 
8150   // Ensure the roots of the vectorizable tree don't form a cycle. They must
8151   // have a single external user that is not in the vectorizable tree.
8152   for (auto *Root : TreeRoot)
8153     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
8154       return;
8155 
8156   // Conservatively determine if we can actually truncate the roots of the
8157   // expression. Collect the values that can be demoted in ToDemote and
8158   // additional roots that require investigating in Roots.
8159   SmallVector<Value *, 32> ToDemote;
8160   SmallVector<Value *, 4> Roots;
8161   for (auto *Root : TreeRoot)
8162     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
8163       return;
8164 
8165   // The maximum bit width required to represent all the values that can be
8166   // demoted without loss of precision. It would be safe to truncate the roots
8167   // of the expression to this width.
8168   auto MaxBitWidth = 8u;
8169 
8170   // We first check if all the bits of the roots are demanded. If they're not,
8171   // we can truncate the roots to this narrower type.
8172   for (auto *Root : TreeRoot) {
8173     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
8174     MaxBitWidth = std::max<unsigned>(
8175         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
8176   }
8177 
8178   // True if the roots can be zero-extended back to their original type, rather
8179   // than sign-extended. We know that if the leading bits are not demanded, we
8180   // can safely zero-extend. So we initialize IsKnownPositive to True.
8181   bool IsKnownPositive = true;
8182 
8183   // If all the bits of the roots are demanded, we can try a little harder to
8184   // compute a narrower type. This can happen, for example, if the roots are
8185   // getelementptr indices. InstCombine promotes these indices to the pointer
8186   // width. Thus, all their bits are technically demanded even though the
8187   // address computation might be vectorized in a smaller type.
8188   //
8189   // We start by looking at each entry that can be demoted. We compute the
8190   // maximum bit width required to store the scalar by using ValueTracking to
8191   // compute the number of high-order bits we can truncate.
8192   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
8193       llvm::all_of(TreeRoot, [](Value *R) {
8194         assert(R->hasOneUse() && "Root should have only one use!");
8195         return isa<GetElementPtrInst>(R->user_back());
8196       })) {
8197     MaxBitWidth = 8u;
8198 
8199     // Determine if the sign bit of all the roots is known to be zero. If not,
8200     // IsKnownPositive is set to False.
8201     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
8202       KnownBits Known = computeKnownBits(R, *DL);
8203       return Known.isNonNegative();
8204     });
8205 
8206     // Determine the maximum number of bits required to store the scalar
8207     // values.
8208     for (auto *Scalar : ToDemote) {
8209       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
8210       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
8211       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
8212     }
8213 
8214     // If we can't prove that the sign bit is zero, we must add one to the
8215     // maximum bit width to account for the unknown sign bit. This preserves
8216     // the existing sign bit so we can safely sign-extend the root back to the
8217     // original type. Otherwise, if we know the sign bit is zero, we will
8218     // zero-extend the root instead.
8219     //
8220     // FIXME: This is somewhat suboptimal, as there will be cases where adding
8221     //        one to the maximum bit width will yield a larger-than-necessary
8222     //        type. In general, we need to add an extra bit only if we can't
8223     //        prove that the upper bit of the original type is equal to the
8224     //        upper bit of the proposed smaller type. If these two bits are the
8225     //        same (either zero or one) we know that sign-extending from the
8226     //        smaller type will result in the same value. Here, since we can't
8227     //        yet prove this, we are just making the proposed smaller type
8228     //        larger to ensure correctness.
8229     if (!IsKnownPositive)
8230       ++MaxBitWidth;
8231   }
8232 
8233   // Round MaxBitWidth up to the next power-of-two.
8234   if (!isPowerOf2_64(MaxBitWidth))
8235     MaxBitWidth = NextPowerOf2(MaxBitWidth);
8236 
8237   // If the maximum bit width we compute is less than the with of the roots'
8238   // type, we can proceed with the narrowing. Otherwise, do nothing.
8239   if (MaxBitWidth >= TreeRootIT->getBitWidth())
8240     return;
8241 
8242   // If we can truncate the root, we must collect additional values that might
8243   // be demoted as a result. That is, those seeded by truncations we will
8244   // modify.
8245   while (!Roots.empty())
8246     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
8247 
8248   // Finally, map the values we can demote to the maximum bit with we computed.
8249   for (auto *Scalar : ToDemote)
8250     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
8251 }
8252 
8253 namespace {
8254 
8255 /// The SLPVectorizer Pass.
8256 struct SLPVectorizer : public FunctionPass {
8257   SLPVectorizerPass Impl;
8258 
8259   /// Pass identification, replacement for typeid
8260   static char ID;
8261 
8262   explicit SLPVectorizer() : FunctionPass(ID) {
8263     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
8264   }
8265 
8266   bool doInitialization(Module &M) override { return false; }
8267 
8268   bool runOnFunction(Function &F) override {
8269     if (skipFunction(F))
8270       return false;
8271 
8272     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
8273     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
8274     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
8275     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
8276     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
8277     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
8278     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
8279     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
8280     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
8281     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
8282 
8283     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8284   }
8285 
8286   void getAnalysisUsage(AnalysisUsage &AU) const override {
8287     FunctionPass::getAnalysisUsage(AU);
8288     AU.addRequired<AssumptionCacheTracker>();
8289     AU.addRequired<ScalarEvolutionWrapperPass>();
8290     AU.addRequired<AAResultsWrapperPass>();
8291     AU.addRequired<TargetTransformInfoWrapperPass>();
8292     AU.addRequired<LoopInfoWrapperPass>();
8293     AU.addRequired<DominatorTreeWrapperPass>();
8294     AU.addRequired<DemandedBitsWrapperPass>();
8295     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
8296     AU.addRequired<InjectTLIMappingsLegacy>();
8297     AU.addPreserved<LoopInfoWrapperPass>();
8298     AU.addPreserved<DominatorTreeWrapperPass>();
8299     AU.addPreserved<AAResultsWrapperPass>();
8300     AU.addPreserved<GlobalsAAWrapperPass>();
8301     AU.setPreservesCFG();
8302   }
8303 };
8304 
8305 } // end anonymous namespace
8306 
8307 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
8308   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
8309   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
8310   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
8311   auto *AA = &AM.getResult<AAManager>(F);
8312   auto *LI = &AM.getResult<LoopAnalysis>(F);
8313   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
8314   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
8315   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
8316   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8317 
8318   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8319   if (!Changed)
8320     return PreservedAnalyses::all();
8321 
8322   PreservedAnalyses PA;
8323   PA.preserveSet<CFGAnalyses>();
8324   return PA;
8325 }
8326 
8327 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
8328                                 TargetTransformInfo *TTI_,
8329                                 TargetLibraryInfo *TLI_, AAResults *AA_,
8330                                 LoopInfo *LI_, DominatorTree *DT_,
8331                                 AssumptionCache *AC_, DemandedBits *DB_,
8332                                 OptimizationRemarkEmitter *ORE_) {
8333   if (!RunSLPVectorization)
8334     return false;
8335   SE = SE_;
8336   TTI = TTI_;
8337   TLI = TLI_;
8338   AA = AA_;
8339   LI = LI_;
8340   DT = DT_;
8341   AC = AC_;
8342   DB = DB_;
8343   DL = &F.getParent()->getDataLayout();
8344 
8345   Stores.clear();
8346   GEPs.clear();
8347   bool Changed = false;
8348 
8349   // If the target claims to have no vector registers don't attempt
8350   // vectorization.
8351   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
8352     LLVM_DEBUG(
8353         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
8354     return false;
8355   }
8356 
8357   // Don't vectorize when the attribute NoImplicitFloat is used.
8358   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
8359     return false;
8360 
8361   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
8362 
8363   // Use the bottom up slp vectorizer to construct chains that start with
8364   // store instructions.
8365   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
8366 
8367   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
8368   // delete instructions.
8369 
8370   // Update DFS numbers now so that we can use them for ordering.
8371   DT->updateDFSNumbers();
8372 
8373   // Scan the blocks in the function in post order.
8374   for (auto BB : post_order(&F.getEntryBlock())) {
8375     collectSeedInstructions(BB);
8376 
8377     // Vectorize trees that end at stores.
8378     if (!Stores.empty()) {
8379       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
8380                         << " underlying objects.\n");
8381       Changed |= vectorizeStoreChains(R);
8382     }
8383 
8384     // Vectorize trees that end at reductions.
8385     Changed |= vectorizeChainsInBlock(BB, R);
8386 
8387     // Vectorize the index computations of getelementptr instructions. This
8388     // is primarily intended to catch gather-like idioms ending at
8389     // non-consecutive loads.
8390     if (!GEPs.empty()) {
8391       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
8392                         << " underlying objects.\n");
8393       Changed |= vectorizeGEPIndices(BB, R);
8394     }
8395   }
8396 
8397   if (Changed) {
8398     R.optimizeGatherSequence();
8399     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
8400   }
8401   return Changed;
8402 }
8403 
8404 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
8405                                             unsigned Idx) {
8406   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
8407                     << "\n");
8408   const unsigned Sz = R.getVectorElementSize(Chain[0]);
8409   const unsigned MinVF = R.getMinVecRegSize() / Sz;
8410   unsigned VF = Chain.size();
8411 
8412   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
8413     return false;
8414 
8415   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
8416                     << "\n");
8417 
8418   R.buildTree(Chain);
8419   if (R.isTreeTinyAndNotFullyVectorizable())
8420     return false;
8421   if (R.isLoadCombineCandidate())
8422     return false;
8423   R.reorderTopToBottom();
8424   R.reorderBottomToTop();
8425   R.buildExternalUses();
8426 
8427   R.computeMinimumValueSizes();
8428 
8429   InstructionCost Cost = R.getTreeCost();
8430 
8431   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
8432   if (Cost < -SLPCostThreshold) {
8433     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
8434 
8435     using namespace ore;
8436 
8437     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
8438                                         cast<StoreInst>(Chain[0]))
8439                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
8440                      << " and with tree size "
8441                      << NV("TreeSize", R.getTreeSize()));
8442 
8443     R.vectorizeTree();
8444     return true;
8445   }
8446 
8447   return false;
8448 }
8449 
8450 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
8451                                         BoUpSLP &R) {
8452   // We may run into multiple chains that merge into a single chain. We mark the
8453   // stores that we vectorized so that we don't visit the same store twice.
8454   BoUpSLP::ValueSet VectorizedStores;
8455   bool Changed = false;
8456 
8457   int E = Stores.size();
8458   SmallBitVector Tails(E, false);
8459   int MaxIter = MaxStoreLookup.getValue();
8460   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
8461       E, std::make_pair(E, INT_MAX));
8462   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
8463   int IterCnt;
8464   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
8465                                   &CheckedPairs,
8466                                   &ConsecutiveChain](int K, int Idx) {
8467     if (IterCnt >= MaxIter)
8468       return true;
8469     if (CheckedPairs[Idx].test(K))
8470       return ConsecutiveChain[K].second == 1 &&
8471              ConsecutiveChain[K].first == Idx;
8472     ++IterCnt;
8473     CheckedPairs[Idx].set(K);
8474     CheckedPairs[K].set(Idx);
8475     Optional<int> Diff = getPointersDiff(
8476         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
8477         Stores[Idx]->getValueOperand()->getType(),
8478         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
8479     if (!Diff || *Diff == 0)
8480       return false;
8481     int Val = *Diff;
8482     if (Val < 0) {
8483       if (ConsecutiveChain[Idx].second > -Val) {
8484         Tails.set(K);
8485         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
8486       }
8487       return false;
8488     }
8489     if (ConsecutiveChain[K].second <= Val)
8490       return false;
8491 
8492     Tails.set(Idx);
8493     ConsecutiveChain[K] = std::make_pair(Idx, Val);
8494     return Val == 1;
8495   };
8496   // Do a quadratic search on all of the given stores in reverse order and find
8497   // all of the pairs of stores that follow each other.
8498   for (int Idx = E - 1; Idx >= 0; --Idx) {
8499     // If a store has multiple consecutive store candidates, search according
8500     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
8501     // This is because usually pairing with immediate succeeding or preceding
8502     // candidate create the best chance to find slp vectorization opportunity.
8503     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
8504     IterCnt = 0;
8505     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
8506       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
8507           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
8508         break;
8509   }
8510 
8511   // Tracks if we tried to vectorize stores starting from the given tail
8512   // already.
8513   SmallBitVector TriedTails(E, false);
8514   // For stores that start but don't end a link in the chain:
8515   for (int Cnt = E; Cnt > 0; --Cnt) {
8516     int I = Cnt - 1;
8517     if (ConsecutiveChain[I].first == E || Tails.test(I))
8518       continue;
8519     // We found a store instr that starts a chain. Now follow the chain and try
8520     // to vectorize it.
8521     BoUpSLP::ValueList Operands;
8522     // Collect the chain into a list.
8523     while (I != E && !VectorizedStores.count(Stores[I])) {
8524       Operands.push_back(Stores[I]);
8525       Tails.set(I);
8526       if (ConsecutiveChain[I].second != 1) {
8527         // Mark the new end in the chain and go back, if required. It might be
8528         // required if the original stores come in reversed order, for example.
8529         if (ConsecutiveChain[I].first != E &&
8530             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
8531             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
8532           TriedTails.set(I);
8533           Tails.reset(ConsecutiveChain[I].first);
8534           if (Cnt < ConsecutiveChain[I].first + 2)
8535             Cnt = ConsecutiveChain[I].first + 2;
8536         }
8537         break;
8538       }
8539       // Move to the next value in the chain.
8540       I = ConsecutiveChain[I].first;
8541     }
8542     assert(!Operands.empty() && "Expected non-empty list of stores.");
8543 
8544     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8545     unsigned EltSize = R.getVectorElementSize(Operands[0]);
8546     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
8547 
8548     unsigned MinVF = R.getMinVF(EltSize);
8549     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
8550                               MaxElts);
8551 
8552     // FIXME: Is division-by-2 the correct step? Should we assert that the
8553     // register size is a power-of-2?
8554     unsigned StartIdx = 0;
8555     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
8556       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
8557         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
8558         if (!VectorizedStores.count(Slice.front()) &&
8559             !VectorizedStores.count(Slice.back()) &&
8560             vectorizeStoreChain(Slice, R, Cnt)) {
8561           // Mark the vectorized stores so that we don't vectorize them again.
8562           VectorizedStores.insert(Slice.begin(), Slice.end());
8563           Changed = true;
8564           // If we vectorized initial block, no need to try to vectorize it
8565           // again.
8566           if (Cnt == StartIdx)
8567             StartIdx += Size;
8568           Cnt += Size;
8569           continue;
8570         }
8571         ++Cnt;
8572       }
8573       // Check if the whole array was vectorized already - exit.
8574       if (StartIdx >= Operands.size())
8575         break;
8576     }
8577   }
8578 
8579   return Changed;
8580 }
8581 
8582 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
8583   // Initialize the collections. We will make a single pass over the block.
8584   Stores.clear();
8585   GEPs.clear();
8586 
8587   // Visit the store and getelementptr instructions in BB and organize them in
8588   // Stores and GEPs according to the underlying objects of their pointer
8589   // operands.
8590   for (Instruction &I : *BB) {
8591     // Ignore store instructions that are volatile or have a pointer operand
8592     // that doesn't point to a scalar type.
8593     if (auto *SI = dyn_cast<StoreInst>(&I)) {
8594       if (!SI->isSimple())
8595         continue;
8596       if (!isValidElementType(SI->getValueOperand()->getType()))
8597         continue;
8598       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
8599     }
8600 
8601     // Ignore getelementptr instructions that have more than one index, a
8602     // constant index, or a pointer operand that doesn't point to a scalar
8603     // type.
8604     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
8605       auto Idx = GEP->idx_begin()->get();
8606       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
8607         continue;
8608       if (!isValidElementType(Idx->getType()))
8609         continue;
8610       if (GEP->getType()->isVectorTy())
8611         continue;
8612       GEPs[GEP->getPointerOperand()].push_back(GEP);
8613     }
8614   }
8615 }
8616 
8617 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
8618   if (!A || !B)
8619     return false;
8620   Value *VL[] = {A, B};
8621   return tryToVectorizeList(VL, R);
8622 }
8623 
8624 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
8625                                            bool LimitForRegisterSize) {
8626   if (VL.size() < 2)
8627     return false;
8628 
8629   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
8630                     << VL.size() << ".\n");
8631 
8632   // Check that all of the parts are instructions of the same type,
8633   // we permit an alternate opcode via InstructionsState.
8634   InstructionsState S = getSameOpcode(VL);
8635   if (!S.getOpcode())
8636     return false;
8637 
8638   Instruction *I0 = cast<Instruction>(S.OpValue);
8639   // Make sure invalid types (including vector type) are rejected before
8640   // determining vectorization factor for scalar instructions.
8641   for (Value *V : VL) {
8642     Type *Ty = V->getType();
8643     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
8644       // NOTE: the following will give user internal llvm type name, which may
8645       // not be useful.
8646       R.getORE()->emit([&]() {
8647         std::string type_str;
8648         llvm::raw_string_ostream rso(type_str);
8649         Ty->print(rso);
8650         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
8651                << "Cannot SLP vectorize list: type "
8652                << rso.str() + " is unsupported by vectorizer";
8653       });
8654       return false;
8655     }
8656   }
8657 
8658   unsigned Sz = R.getVectorElementSize(I0);
8659   unsigned MinVF = R.getMinVF(Sz);
8660   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
8661   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
8662   if (MaxVF < 2) {
8663     R.getORE()->emit([&]() {
8664       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
8665              << "Cannot SLP vectorize list: vectorization factor "
8666              << "less than 2 is not supported";
8667     });
8668     return false;
8669   }
8670 
8671   bool Changed = false;
8672   bool CandidateFound = false;
8673   InstructionCost MinCost = SLPCostThreshold.getValue();
8674   Type *ScalarTy = VL[0]->getType();
8675   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
8676     ScalarTy = IE->getOperand(1)->getType();
8677 
8678   unsigned NextInst = 0, MaxInst = VL.size();
8679   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
8680     // No actual vectorization should happen, if number of parts is the same as
8681     // provided vectorization factor (i.e. the scalar type is used for vector
8682     // code during codegen).
8683     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
8684     if (TTI->getNumberOfParts(VecTy) == VF)
8685       continue;
8686     for (unsigned I = NextInst; I < MaxInst; ++I) {
8687       unsigned OpsWidth = 0;
8688 
8689       if (I + VF > MaxInst)
8690         OpsWidth = MaxInst - I;
8691       else
8692         OpsWidth = VF;
8693 
8694       if (!isPowerOf2_32(OpsWidth))
8695         continue;
8696 
8697       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
8698           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
8699         break;
8700 
8701       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
8702       // Check that a previous iteration of this loop did not delete the Value.
8703       if (llvm::any_of(Ops, [&R](Value *V) {
8704             auto *I = dyn_cast<Instruction>(V);
8705             return I && R.isDeleted(I);
8706           }))
8707         continue;
8708 
8709       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
8710                         << "\n");
8711 
8712       R.buildTree(Ops);
8713       if (R.isTreeTinyAndNotFullyVectorizable())
8714         continue;
8715       R.reorderTopToBottom();
8716       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
8717       R.buildExternalUses();
8718 
8719       R.computeMinimumValueSizes();
8720       InstructionCost Cost = R.getTreeCost();
8721       CandidateFound = true;
8722       MinCost = std::min(MinCost, Cost);
8723 
8724       if (Cost < -SLPCostThreshold) {
8725         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
8726         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
8727                                                     cast<Instruction>(Ops[0]))
8728                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
8729                                  << " and with tree size "
8730                                  << ore::NV("TreeSize", R.getTreeSize()));
8731 
8732         R.vectorizeTree();
8733         // Move to the next bundle.
8734         I += VF - 1;
8735         NextInst = I + 1;
8736         Changed = true;
8737       }
8738     }
8739   }
8740 
8741   if (!Changed && CandidateFound) {
8742     R.getORE()->emit([&]() {
8743       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
8744              << "List vectorization was possible but not beneficial with cost "
8745              << ore::NV("Cost", MinCost) << " >= "
8746              << ore::NV("Treshold", -SLPCostThreshold);
8747     });
8748   } else if (!Changed) {
8749     R.getORE()->emit([&]() {
8750       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
8751              << "Cannot SLP vectorize list: vectorization was impossible"
8752              << " with available vectorization factors";
8753     });
8754   }
8755   return Changed;
8756 }
8757 
8758 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
8759   if (!I)
8760     return false;
8761 
8762   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
8763     return false;
8764 
8765   Value *P = I->getParent();
8766 
8767   // Vectorize in current basic block only.
8768   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
8769   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
8770   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
8771     return false;
8772 
8773   // Try to vectorize V.
8774   if (tryToVectorizePair(Op0, Op1, R))
8775     return true;
8776 
8777   auto *A = dyn_cast<BinaryOperator>(Op0);
8778   auto *B = dyn_cast<BinaryOperator>(Op1);
8779   // Try to skip B.
8780   if (B && B->hasOneUse()) {
8781     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
8782     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
8783     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
8784       return true;
8785     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
8786       return true;
8787   }
8788 
8789   // Try to skip A.
8790   if (A && A->hasOneUse()) {
8791     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
8792     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
8793     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
8794       return true;
8795     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
8796       return true;
8797   }
8798   return false;
8799 }
8800 
8801 namespace {
8802 
8803 /// Model horizontal reductions.
8804 ///
8805 /// A horizontal reduction is a tree of reduction instructions that has values
8806 /// that can be put into a vector as its leaves. For example:
8807 ///
8808 /// mul mul mul mul
8809 ///  \  /    \  /
8810 ///   +       +
8811 ///    \     /
8812 ///       +
8813 /// This tree has "mul" as its leaf values and "+" as its reduction
8814 /// instructions. A reduction can feed into a store or a binary operation
8815 /// feeding a phi.
8816 ///    ...
8817 ///    \  /
8818 ///     +
8819 ///     |
8820 ///  phi +=
8821 ///
8822 ///  Or:
8823 ///    ...
8824 ///    \  /
8825 ///     +
8826 ///     |
8827 ///   *p =
8828 ///
8829 class HorizontalReduction {
8830   using ReductionOpsType = SmallVector<Value *, 16>;
8831   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
8832   ReductionOpsListType ReductionOps;
8833   SmallVector<Value *, 32> ReducedVals;
8834   // Use map vector to make stable output.
8835   MapVector<Instruction *, Value *> ExtraArgs;
8836   WeakTrackingVH ReductionRoot;
8837   /// The type of reduction operation.
8838   RecurKind RdxKind;
8839 
8840   const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
8841 
8842   static bool isCmpSelMinMax(Instruction *I) {
8843     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
8844            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
8845   }
8846 
8847   // And/or are potentially poison-safe logical patterns like:
8848   // select x, y, false
8849   // select x, true, y
8850   static bool isBoolLogicOp(Instruction *I) {
8851     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
8852            match(I, m_LogicalOr(m_Value(), m_Value()));
8853   }
8854 
8855   /// Checks if instruction is associative and can be vectorized.
8856   static bool isVectorizable(RecurKind Kind, Instruction *I) {
8857     if (Kind == RecurKind::None)
8858       return false;
8859 
8860     // Integer ops that map to select instructions or intrinsics are fine.
8861     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
8862         isBoolLogicOp(I))
8863       return true;
8864 
8865     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
8866       // FP min/max are associative except for NaN and -0.0. We do not
8867       // have to rule out -0.0 here because the intrinsic semantics do not
8868       // specify a fixed result for it.
8869       return I->getFastMathFlags().noNaNs();
8870     }
8871 
8872     return I->isAssociative();
8873   }
8874 
8875   static Value *getRdxOperand(Instruction *I, unsigned Index) {
8876     // Poison-safe 'or' takes the form: select X, true, Y
8877     // To make that work with the normal operand processing, we skip the
8878     // true value operand.
8879     // TODO: Change the code and data structures to handle this without a hack.
8880     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
8881       return I->getOperand(2);
8882     return I->getOperand(Index);
8883   }
8884 
8885   /// Checks if the ParentStackElem.first should be marked as a reduction
8886   /// operation with an extra argument or as extra argument itself.
8887   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
8888                     Value *ExtraArg) {
8889     if (ExtraArgs.count(ParentStackElem.first)) {
8890       ExtraArgs[ParentStackElem.first] = nullptr;
8891       // We ran into something like:
8892       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
8893       // The whole ParentStackElem.first should be considered as an extra value
8894       // in this case.
8895       // Do not perform analysis of remaining operands of ParentStackElem.first
8896       // instruction, this whole instruction is an extra argument.
8897       ParentStackElem.second = INVALID_OPERAND_INDEX;
8898     } else {
8899       // We ran into something like:
8900       // ParentStackElem.first += ... + ExtraArg + ...
8901       ExtraArgs[ParentStackElem.first] = ExtraArg;
8902     }
8903   }
8904 
8905   /// Creates reduction operation with the current opcode.
8906   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
8907                          Value *RHS, const Twine &Name, bool UseSelect) {
8908     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
8909     switch (Kind) {
8910     case RecurKind::Or:
8911       if (UseSelect &&
8912           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8913         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
8914       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8915                                  Name);
8916     case RecurKind::And:
8917       if (UseSelect &&
8918           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8919         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
8920       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8921                                  Name);
8922     case RecurKind::Add:
8923     case RecurKind::Mul:
8924     case RecurKind::Xor:
8925     case RecurKind::FAdd:
8926     case RecurKind::FMul:
8927       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8928                                  Name);
8929     case RecurKind::FMax:
8930       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
8931     case RecurKind::FMin:
8932       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
8933     case RecurKind::SMax:
8934       if (UseSelect) {
8935         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
8936         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8937       }
8938       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
8939     case RecurKind::SMin:
8940       if (UseSelect) {
8941         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
8942         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8943       }
8944       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
8945     case RecurKind::UMax:
8946       if (UseSelect) {
8947         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
8948         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8949       }
8950       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
8951     case RecurKind::UMin:
8952       if (UseSelect) {
8953         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
8954         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8955       }
8956       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
8957     default:
8958       llvm_unreachable("Unknown reduction operation.");
8959     }
8960   }
8961 
8962   /// Creates reduction operation with the current opcode with the IR flags
8963   /// from \p ReductionOps.
8964   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8965                          Value *RHS, const Twine &Name,
8966                          const ReductionOpsListType &ReductionOps) {
8967     bool UseSelect = ReductionOps.size() == 2 ||
8968                      // Logical or/and.
8969                      (ReductionOps.size() == 1 &&
8970                       isa<SelectInst>(ReductionOps.front().front()));
8971     assert((!UseSelect || ReductionOps.size() != 2 ||
8972             isa<SelectInst>(ReductionOps[1][0])) &&
8973            "Expected cmp + select pairs for reduction");
8974     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
8975     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8976       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
8977         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
8978         propagateIRFlags(Op, ReductionOps[1]);
8979         return Op;
8980       }
8981     }
8982     propagateIRFlags(Op, ReductionOps[0]);
8983     return Op;
8984   }
8985 
8986   /// Creates reduction operation with the current opcode with the IR flags
8987   /// from \p I.
8988   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8989                          Value *RHS, const Twine &Name, Instruction *I) {
8990     auto *SelI = dyn_cast<SelectInst>(I);
8991     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
8992     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8993       if (auto *Sel = dyn_cast<SelectInst>(Op))
8994         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
8995     }
8996     propagateIRFlags(Op, I);
8997     return Op;
8998   }
8999 
9000   static RecurKind getRdxKind(Instruction *I) {
9001     assert(I && "Expected instruction for reduction matching");
9002     if (match(I, m_Add(m_Value(), m_Value())))
9003       return RecurKind::Add;
9004     if (match(I, m_Mul(m_Value(), m_Value())))
9005       return RecurKind::Mul;
9006     if (match(I, m_And(m_Value(), m_Value())) ||
9007         match(I, m_LogicalAnd(m_Value(), m_Value())))
9008       return RecurKind::And;
9009     if (match(I, m_Or(m_Value(), m_Value())) ||
9010         match(I, m_LogicalOr(m_Value(), m_Value())))
9011       return RecurKind::Or;
9012     if (match(I, m_Xor(m_Value(), m_Value())))
9013       return RecurKind::Xor;
9014     if (match(I, m_FAdd(m_Value(), m_Value())))
9015       return RecurKind::FAdd;
9016     if (match(I, m_FMul(m_Value(), m_Value())))
9017       return RecurKind::FMul;
9018 
9019     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
9020       return RecurKind::FMax;
9021     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
9022       return RecurKind::FMin;
9023 
9024     // This matches either cmp+select or intrinsics. SLP is expected to handle
9025     // either form.
9026     // TODO: If we are canonicalizing to intrinsics, we can remove several
9027     //       special-case paths that deal with selects.
9028     if (match(I, m_SMax(m_Value(), m_Value())))
9029       return RecurKind::SMax;
9030     if (match(I, m_SMin(m_Value(), m_Value())))
9031       return RecurKind::SMin;
9032     if (match(I, m_UMax(m_Value(), m_Value())))
9033       return RecurKind::UMax;
9034     if (match(I, m_UMin(m_Value(), m_Value())))
9035       return RecurKind::UMin;
9036 
9037     if (auto *Select = dyn_cast<SelectInst>(I)) {
9038       // Try harder: look for min/max pattern based on instructions producing
9039       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
9040       // During the intermediate stages of SLP, it's very common to have
9041       // pattern like this (since optimizeGatherSequence is run only once
9042       // at the end):
9043       // %1 = extractelement <2 x i32> %a, i32 0
9044       // %2 = extractelement <2 x i32> %a, i32 1
9045       // %cond = icmp sgt i32 %1, %2
9046       // %3 = extractelement <2 x i32> %a, i32 0
9047       // %4 = extractelement <2 x i32> %a, i32 1
9048       // %select = select i1 %cond, i32 %3, i32 %4
9049       CmpInst::Predicate Pred;
9050       Instruction *L1;
9051       Instruction *L2;
9052 
9053       Value *LHS = Select->getTrueValue();
9054       Value *RHS = Select->getFalseValue();
9055       Value *Cond = Select->getCondition();
9056 
9057       // TODO: Support inverse predicates.
9058       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
9059         if (!isa<ExtractElementInst>(RHS) ||
9060             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9061           return RecurKind::None;
9062       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
9063         if (!isa<ExtractElementInst>(LHS) ||
9064             !L1->isIdenticalTo(cast<Instruction>(LHS)))
9065           return RecurKind::None;
9066       } else {
9067         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
9068           return RecurKind::None;
9069         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
9070             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
9071             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9072           return RecurKind::None;
9073       }
9074 
9075       switch (Pred) {
9076       default:
9077         return RecurKind::None;
9078       case CmpInst::ICMP_SGT:
9079       case CmpInst::ICMP_SGE:
9080         return RecurKind::SMax;
9081       case CmpInst::ICMP_SLT:
9082       case CmpInst::ICMP_SLE:
9083         return RecurKind::SMin;
9084       case CmpInst::ICMP_UGT:
9085       case CmpInst::ICMP_UGE:
9086         return RecurKind::UMax;
9087       case CmpInst::ICMP_ULT:
9088       case CmpInst::ICMP_ULE:
9089         return RecurKind::UMin;
9090       }
9091     }
9092     return RecurKind::None;
9093   }
9094 
9095   /// Get the index of the first operand.
9096   static unsigned getFirstOperandIndex(Instruction *I) {
9097     return isCmpSelMinMax(I) ? 1 : 0;
9098   }
9099 
9100   /// Total number of operands in the reduction operation.
9101   static unsigned getNumberOfOperands(Instruction *I) {
9102     return isCmpSelMinMax(I) ? 3 : 2;
9103   }
9104 
9105   /// Checks if the instruction is in basic block \p BB.
9106   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
9107   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
9108     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
9109       auto *Sel = cast<SelectInst>(I);
9110       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
9111       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
9112     }
9113     return I->getParent() == BB;
9114   }
9115 
9116   /// Expected number of uses for reduction operations/reduced values.
9117   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
9118     if (IsCmpSelMinMax) {
9119       // SelectInst must be used twice while the condition op must have single
9120       // use only.
9121       if (auto *Sel = dyn_cast<SelectInst>(I))
9122         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
9123       return I->hasNUses(2);
9124     }
9125 
9126     // Arithmetic reduction operation must be used once only.
9127     return I->hasOneUse();
9128   }
9129 
9130   /// Initializes the list of reduction operations.
9131   void initReductionOps(Instruction *I) {
9132     if (isCmpSelMinMax(I))
9133       ReductionOps.assign(2, ReductionOpsType());
9134     else
9135       ReductionOps.assign(1, ReductionOpsType());
9136   }
9137 
9138   /// Add all reduction operations for the reduction instruction \p I.
9139   void addReductionOps(Instruction *I) {
9140     if (isCmpSelMinMax(I)) {
9141       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
9142       ReductionOps[1].emplace_back(I);
9143     } else {
9144       ReductionOps[0].emplace_back(I);
9145     }
9146   }
9147 
9148   static Value *getLHS(RecurKind Kind, Instruction *I) {
9149     if (Kind == RecurKind::None)
9150       return nullptr;
9151     return I->getOperand(getFirstOperandIndex(I));
9152   }
9153   static Value *getRHS(RecurKind Kind, Instruction *I) {
9154     if (Kind == RecurKind::None)
9155       return nullptr;
9156     return I->getOperand(getFirstOperandIndex(I) + 1);
9157   }
9158 
9159 public:
9160   HorizontalReduction() = default;
9161 
9162   /// Try to find a reduction tree.
9163   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
9164     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
9165            "Phi needs to use the binary operator");
9166     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
9167             isa<IntrinsicInst>(Inst)) &&
9168            "Expected binop, select, or intrinsic for reduction matching");
9169     RdxKind = getRdxKind(Inst);
9170 
9171     // We could have a initial reductions that is not an add.
9172     //  r *= v1 + v2 + v3 + v4
9173     // In such a case start looking for a tree rooted in the first '+'.
9174     if (Phi) {
9175       if (getLHS(RdxKind, Inst) == Phi) {
9176         Phi = nullptr;
9177         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
9178         if (!Inst)
9179           return false;
9180         RdxKind = getRdxKind(Inst);
9181       } else if (getRHS(RdxKind, Inst) == Phi) {
9182         Phi = nullptr;
9183         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
9184         if (!Inst)
9185           return false;
9186         RdxKind = getRdxKind(Inst);
9187       }
9188     }
9189 
9190     if (!isVectorizable(RdxKind, Inst))
9191       return false;
9192 
9193     // Analyze "regular" integer/FP types for reductions - no target-specific
9194     // types or pointers.
9195     Type *Ty = Inst->getType();
9196     if (!isValidElementType(Ty) || Ty->isPointerTy())
9197       return false;
9198 
9199     // Though the ultimate reduction may have multiple uses, its condition must
9200     // have only single use.
9201     if (auto *Sel = dyn_cast<SelectInst>(Inst))
9202       if (!Sel->getCondition()->hasOneUse())
9203         return false;
9204 
9205     ReductionRoot = Inst;
9206 
9207     // The opcode for leaf values that we perform a reduction on.
9208     // For example: load(x) + load(y) + load(z) + fptoui(w)
9209     // The leaf opcode for 'w' does not match, so we don't include it as a
9210     // potential candidate for the reduction.
9211     unsigned LeafOpcode = 0;
9212 
9213     // Post-order traverse the reduction tree starting at Inst. We only handle
9214     // true trees containing binary operators or selects.
9215     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
9216     Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
9217     initReductionOps(Inst);
9218     while (!Stack.empty()) {
9219       Instruction *TreeN = Stack.back().first;
9220       unsigned EdgeToVisit = Stack.back().second++;
9221       const RecurKind TreeRdxKind = getRdxKind(TreeN);
9222       bool IsReducedValue = TreeRdxKind != RdxKind;
9223 
9224       // Postorder visit.
9225       if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
9226         if (IsReducedValue)
9227           ReducedVals.push_back(TreeN);
9228         else {
9229           auto ExtraArgsIter = ExtraArgs.find(TreeN);
9230           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
9231             // Check if TreeN is an extra argument of its parent operation.
9232             if (Stack.size() <= 1) {
9233               // TreeN can't be an extra argument as it is a root reduction
9234               // operation.
9235               return false;
9236             }
9237             // Yes, TreeN is an extra argument, do not add it to a list of
9238             // reduction operations.
9239             // Stack[Stack.size() - 2] always points to the parent operation.
9240             markExtraArg(Stack[Stack.size() - 2], TreeN);
9241             ExtraArgs.erase(TreeN);
9242           } else
9243             addReductionOps(TreeN);
9244         }
9245         // Retract.
9246         Stack.pop_back();
9247         continue;
9248       }
9249 
9250       // Visit operands.
9251       Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
9252       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
9253       if (!EdgeInst) {
9254         // Edge value is not a reduction instruction or a leaf instruction.
9255         // (It may be a constant, function argument, or something else.)
9256         markExtraArg(Stack.back(), EdgeVal);
9257         continue;
9258       }
9259       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
9260       // Continue analysis if the next operand is a reduction operation or
9261       // (possibly) a leaf value. If the leaf value opcode is not set,
9262       // the first met operation != reduction operation is considered as the
9263       // leaf opcode.
9264       // Only handle trees in the current basic block.
9265       // Each tree node needs to have minimal number of users except for the
9266       // ultimate reduction.
9267       const bool IsRdxInst = EdgeRdxKind == RdxKind;
9268       if (EdgeInst != Phi && EdgeInst != Inst &&
9269           hasSameParent(EdgeInst, Inst->getParent()) &&
9270           hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
9271           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
9272         if (IsRdxInst) {
9273           // We need to be able to reassociate the reduction operations.
9274           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
9275             // I is an extra argument for TreeN (its parent operation).
9276             markExtraArg(Stack.back(), EdgeInst);
9277             continue;
9278           }
9279         } else if (!LeafOpcode) {
9280           LeafOpcode = EdgeInst->getOpcode();
9281         }
9282         Stack.push_back(
9283             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
9284         continue;
9285       }
9286       // I is an extra argument for TreeN (its parent operation).
9287       markExtraArg(Stack.back(), EdgeInst);
9288     }
9289     return true;
9290   }
9291 
9292   /// Attempt to vectorize the tree found by matchAssociativeReduction.
9293   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
9294     // If there are a sufficient number of reduction values, reduce
9295     // to a nearby power-of-2. We can safely generate oversized
9296     // vectors and rely on the backend to split them to legal sizes.
9297     unsigned NumReducedVals = ReducedVals.size();
9298     if (NumReducedVals < 4)
9299       return nullptr;
9300 
9301     // Intersect the fast-math-flags from all reduction operations.
9302     FastMathFlags RdxFMF;
9303     RdxFMF.set();
9304     for (ReductionOpsType &RdxOp : ReductionOps) {
9305       for (Value *RdxVal : RdxOp) {
9306         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
9307           RdxFMF &= FPMO->getFastMathFlags();
9308       }
9309     }
9310 
9311     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
9312     Builder.setFastMathFlags(RdxFMF);
9313 
9314     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
9315     // The same extra argument may be used several times, so log each attempt
9316     // to use it.
9317     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
9318       assert(Pair.first && "DebugLoc must be set.");
9319       ExternallyUsedValues[Pair.second].push_back(Pair.first);
9320     }
9321 
9322     // The compare instruction of a min/max is the insertion point for new
9323     // instructions and may be replaced with a new compare instruction.
9324     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
9325       assert(isa<SelectInst>(RdxRootInst) &&
9326              "Expected min/max reduction to have select root instruction");
9327       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
9328       assert(isa<Instruction>(ScalarCond) &&
9329              "Expected min/max reduction to have compare condition");
9330       return cast<Instruction>(ScalarCond);
9331     };
9332 
9333     // The reduction root is used as the insertion point for new instructions,
9334     // so set it as externally used to prevent it from being deleted.
9335     ExternallyUsedValues[ReductionRoot];
9336     SmallVector<Value *, 16> IgnoreList;
9337     for (ReductionOpsType &RdxOp : ReductionOps)
9338       IgnoreList.append(RdxOp.begin(), RdxOp.end());
9339 
9340     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
9341     if (NumReducedVals > ReduxWidth) {
9342       // In the loop below, we are building a tree based on a window of
9343       // 'ReduxWidth' values.
9344       // If the operands of those values have common traits (compare predicate,
9345       // constant operand, etc), then we want to group those together to
9346       // minimize the cost of the reduction.
9347 
9348       // TODO: This should be extended to count common operands for
9349       //       compares and binops.
9350 
9351       // Step 1: Count the number of times each compare predicate occurs.
9352       SmallDenseMap<unsigned, unsigned> PredCountMap;
9353       for (Value *RdxVal : ReducedVals) {
9354         CmpInst::Predicate Pred;
9355         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
9356           ++PredCountMap[Pred];
9357       }
9358       // Step 2: Sort the values so the most common predicates come first.
9359       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
9360         CmpInst::Predicate PredA, PredB;
9361         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
9362             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
9363           return PredCountMap[PredA] > PredCountMap[PredB];
9364         }
9365         return false;
9366       });
9367     }
9368 
9369     Value *VectorizedTree = nullptr;
9370     unsigned i = 0;
9371     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
9372       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
9373       V.buildTree(VL, IgnoreList);
9374       if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true))
9375         break;
9376       if (V.isLoadCombineReductionCandidate(RdxKind))
9377         break;
9378       V.reorderTopToBottom();
9379       V.reorderBottomToTop(/*IgnoreReorder=*/true);
9380       V.buildExternalUses(ExternallyUsedValues);
9381 
9382       // For a poison-safe boolean logic reduction, do not replace select
9383       // instructions with logic ops. All reduced values will be frozen (see
9384       // below) to prevent leaking poison.
9385       if (isa<SelectInst>(ReductionRoot) &&
9386           isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
9387           NumReducedVals != ReduxWidth)
9388         break;
9389 
9390       V.computeMinimumValueSizes();
9391 
9392       // Estimate cost.
9393       InstructionCost TreeCost =
9394           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
9395       InstructionCost ReductionCost =
9396           getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
9397       InstructionCost Cost = TreeCost + ReductionCost;
9398       if (!Cost.isValid()) {
9399         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
9400         return nullptr;
9401       }
9402       if (Cost >= -SLPCostThreshold) {
9403         V.getORE()->emit([&]() {
9404           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
9405                                           cast<Instruction>(VL[0]))
9406                  << "Vectorizing horizontal reduction is possible"
9407                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
9408                  << " and threshold "
9409                  << ore::NV("Threshold", -SLPCostThreshold);
9410         });
9411         break;
9412       }
9413 
9414       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
9415                         << Cost << ". (HorRdx)\n");
9416       V.getORE()->emit([&]() {
9417         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
9418                                   cast<Instruction>(VL[0]))
9419                << "Vectorized horizontal reduction with cost "
9420                << ore::NV("Cost", Cost) << " and with tree size "
9421                << ore::NV("TreeSize", V.getTreeSize());
9422       });
9423 
9424       // Vectorize a tree.
9425       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
9426       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
9427 
9428       // Emit a reduction. If the root is a select (min/max idiom), the insert
9429       // point is the compare condition of that select.
9430       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
9431       if (isCmpSelMinMax(RdxRootInst))
9432         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
9433       else
9434         Builder.SetInsertPoint(RdxRootInst);
9435 
9436       // To prevent poison from leaking across what used to be sequential, safe,
9437       // scalar boolean logic operations, the reduction operand must be frozen.
9438       if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
9439         VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
9440 
9441       Value *ReducedSubTree =
9442           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
9443 
9444       if (!VectorizedTree) {
9445         // Initialize the final value in the reduction.
9446         VectorizedTree = ReducedSubTree;
9447       } else {
9448         // Update the final value in the reduction.
9449         Builder.SetCurrentDebugLocation(Loc);
9450         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9451                                   ReducedSubTree, "op.rdx", ReductionOps);
9452       }
9453       i += ReduxWidth;
9454       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
9455     }
9456 
9457     if (VectorizedTree) {
9458       // Finish the reduction.
9459       for (; i < NumReducedVals; ++i) {
9460         auto *I = cast<Instruction>(ReducedVals[i]);
9461         Builder.SetCurrentDebugLocation(I->getDebugLoc());
9462         VectorizedTree =
9463             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
9464       }
9465       for (auto &Pair : ExternallyUsedValues) {
9466         // Add each externally used value to the final reduction.
9467         for (auto *I : Pair.second) {
9468           Builder.SetCurrentDebugLocation(I->getDebugLoc());
9469           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9470                                     Pair.first, "op.extra", I);
9471         }
9472       }
9473 
9474       ReductionRoot->replaceAllUsesWith(VectorizedTree);
9475 
9476       // Mark all scalar reduction ops for deletion, they are replaced by the
9477       // vector reductions.
9478       V.eraseInstructions(IgnoreList);
9479     }
9480     return VectorizedTree;
9481   }
9482 
9483   unsigned numReductionValues() const { return ReducedVals.size(); }
9484 
9485 private:
9486   /// Calculate the cost of a reduction.
9487   InstructionCost getReductionCost(TargetTransformInfo *TTI,
9488                                    Value *FirstReducedVal, unsigned ReduxWidth,
9489                                    FastMathFlags FMF) {
9490     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9491     Type *ScalarTy = FirstReducedVal->getType();
9492     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
9493     InstructionCost VectorCost, ScalarCost;
9494     switch (RdxKind) {
9495     case RecurKind::Add:
9496     case RecurKind::Mul:
9497     case RecurKind::Or:
9498     case RecurKind::And:
9499     case RecurKind::Xor:
9500     case RecurKind::FAdd:
9501     case RecurKind::FMul: {
9502       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
9503       VectorCost =
9504           TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
9505       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
9506       break;
9507     }
9508     case RecurKind::FMax:
9509     case RecurKind::FMin: {
9510       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9511       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9512       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
9513                                                /*IsUnsigned=*/false, CostKind);
9514       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9515       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
9516                                            SclCondTy, RdxPred, CostKind) +
9517                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9518                                            SclCondTy, RdxPred, CostKind);
9519       break;
9520     }
9521     case RecurKind::SMax:
9522     case RecurKind::SMin:
9523     case RecurKind::UMax:
9524     case RecurKind::UMin: {
9525       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9526       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9527       bool IsUnsigned =
9528           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
9529       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned,
9530                                                CostKind);
9531       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9532       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
9533                                            SclCondTy, RdxPred, CostKind) +
9534                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9535                                            SclCondTy, RdxPred, CostKind);
9536       break;
9537     }
9538     default:
9539       llvm_unreachable("Expected arithmetic or min/max reduction operation");
9540     }
9541 
9542     // Scalar cost is repeated for N-1 elements.
9543     ScalarCost *= (ReduxWidth - 1);
9544     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
9545                       << " for reduction that starts with " << *FirstReducedVal
9546                       << " (It is a splitting reduction)\n");
9547     return VectorCost - ScalarCost;
9548   }
9549 
9550   /// Emit a horizontal reduction of the vectorized value.
9551   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
9552                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
9553     assert(VectorizedValue && "Need to have a vectorized tree node");
9554     assert(isPowerOf2_32(ReduxWidth) &&
9555            "We only handle power-of-two reductions for now");
9556     assert(RdxKind != RecurKind::FMulAdd &&
9557            "A call to the llvm.fmuladd intrinsic is not handled yet");
9558 
9559     ++NumVectorInstructions;
9560     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
9561   }
9562 };
9563 
9564 } // end anonymous namespace
9565 
9566 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
9567   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
9568     return cast<FixedVectorType>(IE->getType())->getNumElements();
9569 
9570   unsigned AggregateSize = 1;
9571   auto *IV = cast<InsertValueInst>(InsertInst);
9572   Type *CurrentType = IV->getType();
9573   do {
9574     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
9575       for (auto *Elt : ST->elements())
9576         if (Elt != ST->getElementType(0)) // check homogeneity
9577           return None;
9578       AggregateSize *= ST->getNumElements();
9579       CurrentType = ST->getElementType(0);
9580     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
9581       AggregateSize *= AT->getNumElements();
9582       CurrentType = AT->getElementType();
9583     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
9584       AggregateSize *= VT->getNumElements();
9585       return AggregateSize;
9586     } else if (CurrentType->isSingleValueType()) {
9587       return AggregateSize;
9588     } else {
9589       return None;
9590     }
9591   } while (true);
9592 }
9593 
9594 static void findBuildAggregate_rec(Instruction *LastInsertInst,
9595                                    TargetTransformInfo *TTI,
9596                                    SmallVectorImpl<Value *> &BuildVectorOpds,
9597                                    SmallVectorImpl<Value *> &InsertElts,
9598                                    unsigned OperandOffset) {
9599   do {
9600     Value *InsertedOperand = LastInsertInst->getOperand(1);
9601     Optional<unsigned> OperandIndex =
9602         getInsertIndex(LastInsertInst, OperandOffset);
9603     if (!OperandIndex)
9604       return;
9605     if (isa<InsertElementInst>(InsertedOperand) ||
9606         isa<InsertValueInst>(InsertedOperand)) {
9607       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
9608                              BuildVectorOpds, InsertElts, *OperandIndex);
9609 
9610     } else {
9611       BuildVectorOpds[*OperandIndex] = InsertedOperand;
9612       InsertElts[*OperandIndex] = LastInsertInst;
9613     }
9614     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
9615   } while (LastInsertInst != nullptr &&
9616            (isa<InsertValueInst>(LastInsertInst) ||
9617             isa<InsertElementInst>(LastInsertInst)) &&
9618            LastInsertInst->hasOneUse());
9619 }
9620 
9621 /// Recognize construction of vectors like
9622 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
9623 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
9624 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
9625 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
9626 ///  starting from the last insertelement or insertvalue instruction.
9627 ///
9628 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
9629 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
9630 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
9631 ///
9632 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
9633 ///
9634 /// \return true if it matches.
9635 static bool findBuildAggregate(Instruction *LastInsertInst,
9636                                TargetTransformInfo *TTI,
9637                                SmallVectorImpl<Value *> &BuildVectorOpds,
9638                                SmallVectorImpl<Value *> &InsertElts) {
9639 
9640   assert((isa<InsertElementInst>(LastInsertInst) ||
9641           isa<InsertValueInst>(LastInsertInst)) &&
9642          "Expected insertelement or insertvalue instruction!");
9643 
9644   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
9645          "Expected empty result vectors!");
9646 
9647   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
9648   if (!AggregateSize)
9649     return false;
9650   BuildVectorOpds.resize(*AggregateSize);
9651   InsertElts.resize(*AggregateSize);
9652 
9653   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
9654   llvm::erase_value(BuildVectorOpds, nullptr);
9655   llvm::erase_value(InsertElts, nullptr);
9656   if (BuildVectorOpds.size() >= 2)
9657     return true;
9658 
9659   return false;
9660 }
9661 
9662 /// Try and get a reduction value from a phi node.
9663 ///
9664 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
9665 /// if they come from either \p ParentBB or a containing loop latch.
9666 ///
9667 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
9668 /// if not possible.
9669 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
9670                                 BasicBlock *ParentBB, LoopInfo *LI) {
9671   // There are situations where the reduction value is not dominated by the
9672   // reduction phi. Vectorizing such cases has been reported to cause
9673   // miscompiles. See PR25787.
9674   auto DominatedReduxValue = [&](Value *R) {
9675     return isa<Instruction>(R) &&
9676            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
9677   };
9678 
9679   Value *Rdx = nullptr;
9680 
9681   // Return the incoming value if it comes from the same BB as the phi node.
9682   if (P->getIncomingBlock(0) == ParentBB) {
9683     Rdx = P->getIncomingValue(0);
9684   } else if (P->getIncomingBlock(1) == ParentBB) {
9685     Rdx = P->getIncomingValue(1);
9686   }
9687 
9688   if (Rdx && DominatedReduxValue(Rdx))
9689     return Rdx;
9690 
9691   // Otherwise, check whether we have a loop latch to look at.
9692   Loop *BBL = LI->getLoopFor(ParentBB);
9693   if (!BBL)
9694     return nullptr;
9695   BasicBlock *BBLatch = BBL->getLoopLatch();
9696   if (!BBLatch)
9697     return nullptr;
9698 
9699   // There is a loop latch, return the incoming value if it comes from
9700   // that. This reduction pattern occasionally turns up.
9701   if (P->getIncomingBlock(0) == BBLatch) {
9702     Rdx = P->getIncomingValue(0);
9703   } else if (P->getIncomingBlock(1) == BBLatch) {
9704     Rdx = P->getIncomingValue(1);
9705   }
9706 
9707   if (Rdx && DominatedReduxValue(Rdx))
9708     return Rdx;
9709 
9710   return nullptr;
9711 }
9712 
9713 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
9714   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
9715     return true;
9716   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
9717     return true;
9718   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
9719     return true;
9720   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
9721     return true;
9722   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
9723     return true;
9724   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
9725     return true;
9726   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
9727     return true;
9728   return false;
9729 }
9730 
9731 /// Attempt to reduce a horizontal reduction.
9732 /// If it is legal to match a horizontal reduction feeding the phi node \a P
9733 /// with reduction operators \a Root (or one of its operands) in a basic block
9734 /// \a BB, then check if it can be done. If horizontal reduction is not found
9735 /// and root instruction is a binary operation, vectorization of the operands is
9736 /// attempted.
9737 /// \returns true if a horizontal reduction was matched and reduced or operands
9738 /// of one of the binary instruction were vectorized.
9739 /// \returns false if a horizontal reduction was not matched (or not possible)
9740 /// or no vectorization of any binary operation feeding \a Root instruction was
9741 /// performed.
9742 static bool tryToVectorizeHorReductionOrInstOperands(
9743     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
9744     TargetTransformInfo *TTI,
9745     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
9746   if (!ShouldVectorizeHor)
9747     return false;
9748 
9749   if (!Root)
9750     return false;
9751 
9752   if (Root->getParent() != BB || isa<PHINode>(Root))
9753     return false;
9754   // Start analysis starting from Root instruction. If horizontal reduction is
9755   // found, try to vectorize it. If it is not a horizontal reduction or
9756   // vectorization is not possible or not effective, and currently analyzed
9757   // instruction is a binary operation, try to vectorize the operands, using
9758   // pre-order DFS traversal order. If the operands were not vectorized, repeat
9759   // the same procedure considering each operand as a possible root of the
9760   // horizontal reduction.
9761   // Interrupt the process if the Root instruction itself was vectorized or all
9762   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
9763   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
9764   // CmpInsts so we can skip extra attempts in
9765   // tryToVectorizeHorReductionOrInstOperands and save compile time.
9766   std::queue<std::pair<Instruction *, unsigned>> Stack;
9767   Stack.emplace(Root, 0);
9768   SmallPtrSet<Value *, 8> VisitedInstrs;
9769   SmallVector<WeakTrackingVH> PostponedInsts;
9770   bool Res = false;
9771   auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0,
9772                                      Value *&B1) -> Value * {
9773     bool IsBinop = matchRdxBop(Inst, B0, B1);
9774     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
9775     if (IsBinop || IsSelect) {
9776       HorizontalReduction HorRdx;
9777       if (HorRdx.matchAssociativeReduction(P, Inst))
9778         return HorRdx.tryToReduce(R, TTI);
9779     }
9780     return nullptr;
9781   };
9782   while (!Stack.empty()) {
9783     Instruction *Inst;
9784     unsigned Level;
9785     std::tie(Inst, Level) = Stack.front();
9786     Stack.pop();
9787     // Do not try to analyze instruction that has already been vectorized.
9788     // This may happen when we vectorize instruction operands on a previous
9789     // iteration while stack was populated before that happened.
9790     if (R.isDeleted(Inst))
9791       continue;
9792     Value *B0 = nullptr, *B1 = nullptr;
9793     if (Value *V = TryToReduce(Inst, B0, B1)) {
9794       Res = true;
9795       // Set P to nullptr to avoid re-analysis of phi node in
9796       // matchAssociativeReduction function unless this is the root node.
9797       P = nullptr;
9798       if (auto *I = dyn_cast<Instruction>(V)) {
9799         // Try to find another reduction.
9800         Stack.emplace(I, Level);
9801         continue;
9802       }
9803     } else {
9804       bool IsBinop = B0 && B1;
9805       if (P && IsBinop) {
9806         Inst = dyn_cast<Instruction>(B0);
9807         if (Inst == P)
9808           Inst = dyn_cast<Instruction>(B1);
9809         if (!Inst) {
9810           // Set P to nullptr to avoid re-analysis of phi node in
9811           // matchAssociativeReduction function unless this is the root node.
9812           P = nullptr;
9813           continue;
9814         }
9815       }
9816       // Set P to nullptr to avoid re-analysis of phi node in
9817       // matchAssociativeReduction function unless this is the root node.
9818       P = nullptr;
9819       // Do not try to vectorize CmpInst operands, this is done separately.
9820       // Final attempt for binop args vectorization should happen after the loop
9821       // to try to find reductions.
9822       if (!isa<CmpInst>(Inst))
9823         PostponedInsts.push_back(Inst);
9824     }
9825 
9826     // Try to vectorize operands.
9827     // Continue analysis for the instruction from the same basic block only to
9828     // save compile time.
9829     if (++Level < RecursionMaxDepth)
9830       for (auto *Op : Inst->operand_values())
9831         if (VisitedInstrs.insert(Op).second)
9832           if (auto *I = dyn_cast<Instruction>(Op))
9833             // Do not try to vectorize CmpInst operands,  this is done
9834             // separately.
9835             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
9836                 I->getParent() == BB)
9837               Stack.emplace(I, Level);
9838   }
9839   // Try to vectorized binops where reductions were not found.
9840   for (Value *V : PostponedInsts)
9841     if (auto *Inst = dyn_cast<Instruction>(V))
9842       if (!R.isDeleted(Inst))
9843         Res |= Vectorize(Inst, R);
9844   return Res;
9845 }
9846 
9847 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
9848                                                  BasicBlock *BB, BoUpSLP &R,
9849                                                  TargetTransformInfo *TTI) {
9850   auto *I = dyn_cast_or_null<Instruction>(V);
9851   if (!I)
9852     return false;
9853 
9854   if (!isa<BinaryOperator>(I))
9855     P = nullptr;
9856   // Try to match and vectorize a horizontal reduction.
9857   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
9858     return tryToVectorize(I, R);
9859   };
9860   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
9861                                                   ExtraVectorization);
9862 }
9863 
9864 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
9865                                                  BasicBlock *BB, BoUpSLP &R) {
9866   const DataLayout &DL = BB->getModule()->getDataLayout();
9867   if (!R.canMapToVector(IVI->getType(), DL))
9868     return false;
9869 
9870   SmallVector<Value *, 16> BuildVectorOpds;
9871   SmallVector<Value *, 16> BuildVectorInsts;
9872   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
9873     return false;
9874 
9875   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
9876   // Aggregate value is unlikely to be processed in vector register.
9877   return tryToVectorizeList(BuildVectorOpds, R);
9878 }
9879 
9880 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
9881                                                    BasicBlock *BB, BoUpSLP &R) {
9882   SmallVector<Value *, 16> BuildVectorInsts;
9883   SmallVector<Value *, 16> BuildVectorOpds;
9884   SmallVector<int> Mask;
9885   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
9886       (llvm::all_of(
9887            BuildVectorOpds,
9888            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
9889        isFixedVectorShuffle(BuildVectorOpds, Mask)))
9890     return false;
9891 
9892   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
9893   return tryToVectorizeList(BuildVectorInsts, R);
9894 }
9895 
9896 template <typename T>
9897 static bool
9898 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
9899                        function_ref<unsigned(T *)> Limit,
9900                        function_ref<bool(T *, T *)> Comparator,
9901                        function_ref<bool(T *, T *)> AreCompatible,
9902                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
9903                        bool LimitForRegisterSize) {
9904   bool Changed = false;
9905   // Sort by type, parent, operands.
9906   stable_sort(Incoming, Comparator);
9907 
9908   // Try to vectorize elements base on their type.
9909   SmallVector<T *> Candidates;
9910   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
9911     // Look for the next elements with the same type, parent and operand
9912     // kinds.
9913     auto *SameTypeIt = IncIt;
9914     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
9915       ++SameTypeIt;
9916 
9917     // Try to vectorize them.
9918     unsigned NumElts = (SameTypeIt - IncIt);
9919     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
9920                       << NumElts << ")\n");
9921     // The vectorization is a 3-state attempt:
9922     // 1. Try to vectorize instructions with the same/alternate opcodes with the
9923     // size of maximal register at first.
9924     // 2. Try to vectorize remaining instructions with the same type, if
9925     // possible. This may result in the better vectorization results rather than
9926     // if we try just to vectorize instructions with the same/alternate opcodes.
9927     // 3. Final attempt to try to vectorize all instructions with the
9928     // same/alternate ops only, this may result in some extra final
9929     // vectorization.
9930     if (NumElts > 1 &&
9931         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
9932       // Success start over because instructions might have been changed.
9933       Changed = true;
9934     } else if (NumElts < Limit(*IncIt) &&
9935                (Candidates.empty() ||
9936                 Candidates.front()->getType() == (*IncIt)->getType())) {
9937       Candidates.append(IncIt, std::next(IncIt, NumElts));
9938     }
9939     // Final attempt to vectorize instructions with the same types.
9940     if (Candidates.size() > 1 &&
9941         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
9942       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
9943         // Success start over because instructions might have been changed.
9944         Changed = true;
9945       } else if (LimitForRegisterSize) {
9946         // Try to vectorize using small vectors.
9947         for (auto *It = Candidates.begin(), *End = Candidates.end();
9948              It != End;) {
9949           auto *SameTypeIt = It;
9950           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
9951             ++SameTypeIt;
9952           unsigned NumElts = (SameTypeIt - It);
9953           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
9954                                             /*LimitForRegisterSize=*/false))
9955             Changed = true;
9956           It = SameTypeIt;
9957         }
9958       }
9959       Candidates.clear();
9960     }
9961 
9962     // Start over at the next instruction of a different type (or the end).
9963     IncIt = SameTypeIt;
9964   }
9965   return Changed;
9966 }
9967 
9968 /// Compare two cmp instructions. If IsCompatibility is true, function returns
9969 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
9970 /// operands. If IsCompatibility is false, function implements strict weak
9971 /// ordering relation between two cmp instructions, returning true if the first
9972 /// instruction is "less" than the second, i.e. its predicate is less than the
9973 /// predicate of the second or the operands IDs are less than the operands IDs
9974 /// of the second cmp instruction.
9975 template <bool IsCompatibility>
9976 static bool compareCmp(Value *V, Value *V2,
9977                        function_ref<bool(Instruction *)> IsDeleted) {
9978   auto *CI1 = cast<CmpInst>(V);
9979   auto *CI2 = cast<CmpInst>(V2);
9980   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
9981     return false;
9982   if (CI1->getOperand(0)->getType()->getTypeID() <
9983       CI2->getOperand(0)->getType()->getTypeID())
9984     return !IsCompatibility;
9985   if (CI1->getOperand(0)->getType()->getTypeID() >
9986       CI2->getOperand(0)->getType()->getTypeID())
9987     return false;
9988   CmpInst::Predicate Pred1 = CI1->getPredicate();
9989   CmpInst::Predicate Pred2 = CI2->getPredicate();
9990   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
9991   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
9992   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
9993   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
9994   if (BasePred1 < BasePred2)
9995     return !IsCompatibility;
9996   if (BasePred1 > BasePred2)
9997     return false;
9998   // Compare operands.
9999   bool LEPreds = Pred1 <= Pred2;
10000   bool GEPreds = Pred1 >= Pred2;
10001   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
10002     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
10003     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
10004     if (Op1->getValueID() < Op2->getValueID())
10005       return !IsCompatibility;
10006     if (Op1->getValueID() > Op2->getValueID())
10007       return false;
10008     if (auto *I1 = dyn_cast<Instruction>(Op1))
10009       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
10010         if (I1->getParent() != I2->getParent())
10011           return false;
10012         InstructionsState S = getSameOpcode({I1, I2});
10013         if (S.getOpcode())
10014           continue;
10015         return false;
10016       }
10017   }
10018   return IsCompatibility;
10019 }
10020 
10021 bool SLPVectorizerPass::vectorizeSimpleInstructions(
10022     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
10023     bool AtTerminator) {
10024   bool OpsChanged = false;
10025   SmallVector<Instruction *, 4> PostponedCmps;
10026   for (auto *I : reverse(Instructions)) {
10027     if (R.isDeleted(I))
10028       continue;
10029     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
10030       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
10031     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
10032       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
10033     else if (isa<CmpInst>(I))
10034       PostponedCmps.push_back(I);
10035   }
10036   if (AtTerminator) {
10037     // Try to find reductions first.
10038     for (Instruction *I : PostponedCmps) {
10039       if (R.isDeleted(I))
10040         continue;
10041       for (Value *Op : I->operands())
10042         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
10043     }
10044     // Try to vectorize operands as vector bundles.
10045     for (Instruction *I : PostponedCmps) {
10046       if (R.isDeleted(I))
10047         continue;
10048       OpsChanged |= tryToVectorize(I, R);
10049     }
10050     // Try to vectorize list of compares.
10051     // Sort by type, compare predicate, etc.
10052     auto &&CompareSorter = [&R](Value *V, Value *V2) {
10053       return compareCmp<false>(V, V2,
10054                                [&R](Instruction *I) { return R.isDeleted(I); });
10055     };
10056 
10057     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
10058       if (V1 == V2)
10059         return true;
10060       return compareCmp<true>(V1, V2,
10061                               [&R](Instruction *I) { return R.isDeleted(I); });
10062     };
10063     auto Limit = [&R](Value *V) {
10064       unsigned EltSize = R.getVectorElementSize(V);
10065       return std::max(2U, R.getMaxVecRegSize() / EltSize);
10066     };
10067 
10068     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
10069     OpsChanged |= tryToVectorizeSequence<Value>(
10070         Vals, Limit, CompareSorter, AreCompatibleCompares,
10071         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10072           // Exclude possible reductions from other blocks.
10073           bool ArePossiblyReducedInOtherBlock =
10074               any_of(Candidates, [](Value *V) {
10075                 return any_of(V->users(), [V](User *U) {
10076                   return isa<SelectInst>(U) &&
10077                          cast<SelectInst>(U)->getParent() !=
10078                              cast<Instruction>(V)->getParent();
10079                 });
10080               });
10081           if (ArePossiblyReducedInOtherBlock)
10082             return false;
10083           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10084         },
10085         /*LimitForRegisterSize=*/true);
10086     Instructions.clear();
10087   } else {
10088     // Insert in reverse order since the PostponedCmps vector was filled in
10089     // reverse order.
10090     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
10091   }
10092   return OpsChanged;
10093 }
10094 
10095 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
10096   bool Changed = false;
10097   SmallVector<Value *, 4> Incoming;
10098   SmallPtrSet<Value *, 16> VisitedInstrs;
10099   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
10100   // node. Allows better to identify the chains that can be vectorized in the
10101   // better way.
10102   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
10103   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
10104     assert(isValidElementType(V1->getType()) &&
10105            isValidElementType(V2->getType()) &&
10106            "Expected vectorizable types only.");
10107     // It is fine to compare type IDs here, since we expect only vectorizable
10108     // types, like ints, floats and pointers, we don't care about other type.
10109     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
10110       return true;
10111     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
10112       return false;
10113     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10114     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10115     if (Opcodes1.size() < Opcodes2.size())
10116       return true;
10117     if (Opcodes1.size() > Opcodes2.size())
10118       return false;
10119     Optional<bool> ConstOrder;
10120     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10121       // Undefs are compatible with any other value.
10122       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
10123         if (!ConstOrder)
10124           ConstOrder =
10125               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
10126         continue;
10127       }
10128       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10129         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10130           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
10131           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
10132           if (!NodeI1)
10133             return NodeI2 != nullptr;
10134           if (!NodeI2)
10135             return false;
10136           assert((NodeI1 == NodeI2) ==
10137                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10138                  "Different nodes should have different DFS numbers");
10139           if (NodeI1 != NodeI2)
10140             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10141           InstructionsState S = getSameOpcode({I1, I2});
10142           if (S.getOpcode())
10143             continue;
10144           return I1->getOpcode() < I2->getOpcode();
10145         }
10146       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
10147         if (!ConstOrder)
10148           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
10149         continue;
10150       }
10151       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
10152         return true;
10153       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
10154         return false;
10155     }
10156     return ConstOrder && *ConstOrder;
10157   };
10158   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
10159     if (V1 == V2)
10160       return true;
10161     if (V1->getType() != V2->getType())
10162       return false;
10163     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10164     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10165     if (Opcodes1.size() != Opcodes2.size())
10166       return false;
10167     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10168       // Undefs are compatible with any other value.
10169       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
10170         continue;
10171       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10172         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10173           if (I1->getParent() != I2->getParent())
10174             return false;
10175           InstructionsState S = getSameOpcode({I1, I2});
10176           if (S.getOpcode())
10177             continue;
10178           return false;
10179         }
10180       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
10181         continue;
10182       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
10183         return false;
10184     }
10185     return true;
10186   };
10187   auto Limit = [&R](Value *V) {
10188     unsigned EltSize = R.getVectorElementSize(V);
10189     return std::max(2U, R.getMaxVecRegSize() / EltSize);
10190   };
10191 
10192   bool HaveVectorizedPhiNodes = false;
10193   do {
10194     // Collect the incoming values from the PHIs.
10195     Incoming.clear();
10196     for (Instruction &I : *BB) {
10197       PHINode *P = dyn_cast<PHINode>(&I);
10198       if (!P)
10199         break;
10200 
10201       // No need to analyze deleted, vectorized and non-vectorizable
10202       // instructions.
10203       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
10204           isValidElementType(P->getType()))
10205         Incoming.push_back(P);
10206     }
10207 
10208     // Find the corresponding non-phi nodes for better matching when trying to
10209     // build the tree.
10210     for (Value *V : Incoming) {
10211       SmallVectorImpl<Value *> &Opcodes =
10212           PHIToOpcodes.try_emplace(V).first->getSecond();
10213       if (!Opcodes.empty())
10214         continue;
10215       SmallVector<Value *, 4> Nodes(1, V);
10216       SmallPtrSet<Value *, 4> Visited;
10217       while (!Nodes.empty()) {
10218         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
10219         if (!Visited.insert(PHI).second)
10220           continue;
10221         for (Value *V : PHI->incoming_values()) {
10222           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
10223             Nodes.push_back(PHI1);
10224             continue;
10225           }
10226           Opcodes.emplace_back(V);
10227         }
10228       }
10229     }
10230 
10231     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
10232         Incoming, Limit, PHICompare, AreCompatiblePHIs,
10233         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10234           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10235         },
10236         /*LimitForRegisterSize=*/true);
10237     Changed |= HaveVectorizedPhiNodes;
10238     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
10239   } while (HaveVectorizedPhiNodes);
10240 
10241   VisitedInstrs.clear();
10242 
10243   SmallVector<Instruction *, 8> PostProcessInstructions;
10244   SmallDenseSet<Instruction *, 4> KeyNodes;
10245   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
10246     // Skip instructions with scalable type. The num of elements is unknown at
10247     // compile-time for scalable type.
10248     if (isa<ScalableVectorType>(it->getType()))
10249       continue;
10250 
10251     // Skip instructions marked for the deletion.
10252     if (R.isDeleted(&*it))
10253       continue;
10254     // We may go through BB multiple times so skip the one we have checked.
10255     if (!VisitedInstrs.insert(&*it).second) {
10256       if (it->use_empty() && KeyNodes.contains(&*it) &&
10257           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10258                                       it->isTerminator())) {
10259         // We would like to start over since some instructions are deleted
10260         // and the iterator may become invalid value.
10261         Changed = true;
10262         it = BB->begin();
10263         e = BB->end();
10264       }
10265       continue;
10266     }
10267 
10268     if (isa<DbgInfoIntrinsic>(it))
10269       continue;
10270 
10271     // Try to vectorize reductions that use PHINodes.
10272     if (PHINode *P = dyn_cast<PHINode>(it)) {
10273       // Check that the PHI is a reduction PHI.
10274       if (P->getNumIncomingValues() == 2) {
10275         // Try to match and vectorize a horizontal reduction.
10276         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
10277                                      TTI)) {
10278           Changed = true;
10279           it = BB->begin();
10280           e = BB->end();
10281           continue;
10282         }
10283       }
10284       // Try to vectorize the incoming values of the PHI, to catch reductions
10285       // that feed into PHIs.
10286       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
10287         // Skip if the incoming block is the current BB for now. Also, bypass
10288         // unreachable IR for efficiency and to avoid crashing.
10289         // TODO: Collect the skipped incoming values and try to vectorize them
10290         // after processing BB.
10291         if (BB == P->getIncomingBlock(I) ||
10292             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
10293           continue;
10294 
10295         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
10296                                             P->getIncomingBlock(I), R, TTI);
10297       }
10298       continue;
10299     }
10300 
10301     // Ran into an instruction without users, like terminator, or function call
10302     // with ignored return value, store. Ignore unused instructions (basing on
10303     // instruction type, except for CallInst and InvokeInst).
10304     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
10305                             isa<InvokeInst>(it))) {
10306       KeyNodes.insert(&*it);
10307       bool OpsChanged = false;
10308       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
10309         for (auto *V : it->operand_values()) {
10310           // Try to match and vectorize a horizontal reduction.
10311           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
10312         }
10313       }
10314       // Start vectorization of post-process list of instructions from the
10315       // top-tree instructions to try to vectorize as many instructions as
10316       // possible.
10317       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10318                                                 it->isTerminator());
10319       if (OpsChanged) {
10320         // We would like to start over since some instructions are deleted
10321         // and the iterator may become invalid value.
10322         Changed = true;
10323         it = BB->begin();
10324         e = BB->end();
10325         continue;
10326       }
10327     }
10328 
10329     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
10330         isa<InsertValueInst>(it))
10331       PostProcessInstructions.push_back(&*it);
10332   }
10333 
10334   return Changed;
10335 }
10336 
10337 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
10338   auto Changed = false;
10339   for (auto &Entry : GEPs) {
10340     // If the getelementptr list has fewer than two elements, there's nothing
10341     // to do.
10342     if (Entry.second.size() < 2)
10343       continue;
10344 
10345     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
10346                       << Entry.second.size() << ".\n");
10347 
10348     // Process the GEP list in chunks suitable for the target's supported
10349     // vector size. If a vector register can't hold 1 element, we are done. We
10350     // are trying to vectorize the index computations, so the maximum number of
10351     // elements is based on the size of the index expression, rather than the
10352     // size of the GEP itself (the target's pointer size).
10353     unsigned MaxVecRegSize = R.getMaxVecRegSize();
10354     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
10355     if (MaxVecRegSize < EltSize)
10356       continue;
10357 
10358     unsigned MaxElts = MaxVecRegSize / EltSize;
10359     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
10360       auto Len = std::min<unsigned>(BE - BI, MaxElts);
10361       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
10362 
10363       // Initialize a set a candidate getelementptrs. Note that we use a
10364       // SetVector here to preserve program order. If the index computations
10365       // are vectorizable and begin with loads, we want to minimize the chance
10366       // of having to reorder them later.
10367       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
10368 
10369       // Some of the candidates may have already been vectorized after we
10370       // initially collected them. If so, they are marked as deleted, so remove
10371       // them from the set of candidates.
10372       Candidates.remove_if(
10373           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
10374 
10375       // Remove from the set of candidates all pairs of getelementptrs with
10376       // constant differences. Such getelementptrs are likely not good
10377       // candidates for vectorization in a bottom-up phase since one can be
10378       // computed from the other. We also ensure all candidate getelementptr
10379       // indices are unique.
10380       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
10381         auto *GEPI = GEPList[I];
10382         if (!Candidates.count(GEPI))
10383           continue;
10384         auto *SCEVI = SE->getSCEV(GEPList[I]);
10385         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
10386           auto *GEPJ = GEPList[J];
10387           auto *SCEVJ = SE->getSCEV(GEPList[J]);
10388           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
10389             Candidates.remove(GEPI);
10390             Candidates.remove(GEPJ);
10391           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
10392             Candidates.remove(GEPJ);
10393           }
10394         }
10395       }
10396 
10397       // We break out of the above computation as soon as we know there are
10398       // fewer than two candidates remaining.
10399       if (Candidates.size() < 2)
10400         continue;
10401 
10402       // Add the single, non-constant index of each candidate to the bundle. We
10403       // ensured the indices met these constraints when we originally collected
10404       // the getelementptrs.
10405       SmallVector<Value *, 16> Bundle(Candidates.size());
10406       auto BundleIndex = 0u;
10407       for (auto *V : Candidates) {
10408         auto *GEP = cast<GetElementPtrInst>(V);
10409         auto *GEPIdx = GEP->idx_begin()->get();
10410         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
10411         Bundle[BundleIndex++] = GEPIdx;
10412       }
10413 
10414       // Try and vectorize the indices. We are currently only interested in
10415       // gather-like cases of the form:
10416       //
10417       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
10418       //
10419       // where the loads of "a", the loads of "b", and the subtractions can be
10420       // performed in parallel. It's likely that detecting this pattern in a
10421       // bottom-up phase will be simpler and less costly than building a
10422       // full-blown top-down phase beginning at the consecutive loads.
10423       Changed |= tryToVectorizeList(Bundle, R);
10424     }
10425   }
10426   return Changed;
10427 }
10428 
10429 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
10430   bool Changed = false;
10431   // Sort by type, base pointers and values operand. Value operands must be
10432   // compatible (have the same opcode, same parent), otherwise it is
10433   // definitely not profitable to try to vectorize them.
10434   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
10435     if (V->getPointerOperandType()->getTypeID() <
10436         V2->getPointerOperandType()->getTypeID())
10437       return true;
10438     if (V->getPointerOperandType()->getTypeID() >
10439         V2->getPointerOperandType()->getTypeID())
10440       return false;
10441     // UndefValues are compatible with all other values.
10442     if (isa<UndefValue>(V->getValueOperand()) ||
10443         isa<UndefValue>(V2->getValueOperand()))
10444       return false;
10445     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
10446       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10447         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
10448             DT->getNode(I1->getParent());
10449         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
10450             DT->getNode(I2->getParent());
10451         assert(NodeI1 && "Should only process reachable instructions");
10452         assert(NodeI1 && "Should only process reachable instructions");
10453         assert((NodeI1 == NodeI2) ==
10454                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10455                "Different nodes should have different DFS numbers");
10456         if (NodeI1 != NodeI2)
10457           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10458         InstructionsState S = getSameOpcode({I1, I2});
10459         if (S.getOpcode())
10460           return false;
10461         return I1->getOpcode() < I2->getOpcode();
10462       }
10463     if (isa<Constant>(V->getValueOperand()) &&
10464         isa<Constant>(V2->getValueOperand()))
10465       return false;
10466     return V->getValueOperand()->getValueID() <
10467            V2->getValueOperand()->getValueID();
10468   };
10469 
10470   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
10471     if (V1 == V2)
10472       return true;
10473     if (V1->getPointerOperandType() != V2->getPointerOperandType())
10474       return false;
10475     // Undefs are compatible with any other value.
10476     if (isa<UndefValue>(V1->getValueOperand()) ||
10477         isa<UndefValue>(V2->getValueOperand()))
10478       return true;
10479     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
10480       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10481         if (I1->getParent() != I2->getParent())
10482           return false;
10483         InstructionsState S = getSameOpcode({I1, I2});
10484         return S.getOpcode() > 0;
10485       }
10486     if (isa<Constant>(V1->getValueOperand()) &&
10487         isa<Constant>(V2->getValueOperand()))
10488       return true;
10489     return V1->getValueOperand()->getValueID() ==
10490            V2->getValueOperand()->getValueID();
10491   };
10492   auto Limit = [&R, this](StoreInst *SI) {
10493     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
10494     return R.getMinVF(EltSize);
10495   };
10496 
10497   // Attempt to sort and vectorize each of the store-groups.
10498   for (auto &Pair : Stores) {
10499     if (Pair.second.size() < 2)
10500       continue;
10501 
10502     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
10503                       << Pair.second.size() << ".\n");
10504 
10505     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
10506       continue;
10507 
10508     Changed |= tryToVectorizeSequence<StoreInst>(
10509         Pair.second, Limit, StoreSorter, AreCompatibleStores,
10510         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
10511           return vectorizeStores(Candidates, R);
10512         },
10513         /*LimitForRegisterSize=*/false);
10514   }
10515   return Changed;
10516 }
10517 
10518 char SLPVectorizer::ID = 0;
10519 
10520 static const char lv_name[] = "SLP Vectorizer";
10521 
10522 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
10523 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
10524 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
10525 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10526 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
10527 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
10528 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
10529 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
10530 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
10531 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
10532 
10533 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
10534