1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 /// TODO: Can we split off and reuse the shuffle mask detection from 250 /// TargetTransformInfo::getInstructionThroughput? 251 static Optional<TargetTransformInfo::ShuffleKind> 252 isShuffle(ArrayRef<Value *> VL) { 253 auto *EI0 = cast<ExtractElementInst>(VL[0]); 254 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 255 Value *Vec1 = nullptr; 256 Value *Vec2 = nullptr; 257 enum ShuffleMode { Unknown, Select, Permute }; 258 ShuffleMode CommonShuffleMode = Unknown; 259 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 260 auto *EI = cast<ExtractElementInst>(VL[I]); 261 auto *Vec = EI->getVectorOperand(); 262 // All vector operands must have the same number of vector elements. 263 if (Vec->getType()->getVectorNumElements() != Size) 264 return None; 265 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 266 if (!Idx) 267 return None; 268 // Undefined behavior if Idx is negative or >= Size. 269 if (Idx->getValue().uge(Size)) 270 continue; 271 unsigned IntIdx = Idx->getValue().getZExtValue(); 272 // We can extractelement from undef vector. 273 if (isa<UndefValue>(Vec)) 274 continue; 275 // For correct shuffling we have to have at most 2 different vector operands 276 // in all extractelement instructions. 277 if (!Vec1 || Vec1 == Vec) 278 Vec1 = Vec; 279 else if (!Vec2 || Vec2 == Vec) 280 Vec2 = Vec; 281 else 282 return None; 283 if (CommonShuffleMode == Permute) 284 continue; 285 // If the extract index is not the same as the operation number, it is a 286 // permutation. 287 if (IntIdx != I) { 288 CommonShuffleMode = Permute; 289 continue; 290 } 291 CommonShuffleMode = Select; 292 } 293 // If we're not crossing lanes in different vectors, consider it as blending. 294 if (CommonShuffleMode == Select && Vec2) 295 return TargetTransformInfo::SK_Select; 296 // If Vec2 was never used, we have a permutation of a single vector, otherwise 297 // we have permutation of 2 vectors. 298 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 299 : TargetTransformInfo::SK_PermuteSingleSrc; 300 } 301 302 namespace { 303 304 /// Main data required for vectorization of instructions. 305 struct InstructionsState { 306 /// The very first instruction in the list with the main opcode. 307 Value *OpValue = nullptr; 308 309 /// The main/alternate opcodes for the list of instructions. 310 unsigned Opcode = 0; 311 unsigned AltOpcode = 0; 312 313 /// Some of the instructions in the list have alternate opcodes. 314 bool isAltShuffle() const { return Opcode != AltOpcode; } 315 316 bool isOpcodeOrAlt(Instruction *I) const { 317 unsigned CheckedOpcode = I->getOpcode(); 318 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 319 } 320 321 InstructionsState() = default; 322 InstructionsState(Value *OpValue, unsigned Opcode, unsigned AltOpcode) 323 : OpValue(OpValue), Opcode(Opcode), AltOpcode(AltOpcode) {} 324 }; 325 326 } // end anonymous namespace 327 328 /// Chooses the correct key for scheduling data. If \p Op has the same (or 329 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 330 /// OpValue. 331 static Value *isOneOf(const InstructionsState &S, Value *Op) { 332 auto *I = dyn_cast<Instruction>(Op); 333 if (I && S.isOpcodeOrAlt(I)) 334 return Op; 335 return S.OpValue; 336 } 337 338 /// \returns analysis of the Instructions in \p VL described in 339 /// InstructionsState, the Opcode that we suppose the whole list 340 /// could be vectorized even if its structure is diverse. 341 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 342 unsigned BaseIndex = 0) { 343 // Make sure these are all Instructions. 344 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 345 return InstructionsState(VL[BaseIndex], 0, 0); 346 347 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 348 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 349 unsigned AltOpcode = Opcode; 350 351 // Check for one alternate opcode from another BinaryOperator. 352 // TODO - can we support other operators (casts etc.)? 353 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 354 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 355 if (InstOpcode != Opcode && InstOpcode != AltOpcode) { 356 if (Opcode == AltOpcode && IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 357 AltOpcode = InstOpcode; 358 continue; 359 } 360 return InstructionsState(VL[BaseIndex], 0, 0); 361 } 362 } 363 364 return InstructionsState(VL[BaseIndex], Opcode, AltOpcode); 365 } 366 367 /// \returns true if all of the values in \p VL have the same type or false 368 /// otherwise. 369 static bool allSameType(ArrayRef<Value *> VL) { 370 Type *Ty = VL[0]->getType(); 371 for (int i = 1, e = VL.size(); i < e; i++) 372 if (VL[i]->getType() != Ty) 373 return false; 374 375 return true; 376 } 377 378 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 379 static Optional<unsigned> getExtractIndex(Instruction *E) { 380 unsigned Opcode = E->getOpcode(); 381 assert((Opcode == Instruction::ExtractElement || 382 Opcode == Instruction::ExtractValue) && 383 "Expected extractelement or extractvalue instruction."); 384 if (Opcode == Instruction::ExtractElement) { 385 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 386 if (!CI) 387 return None; 388 return CI->getZExtValue(); 389 } 390 ExtractValueInst *EI = cast<ExtractValueInst>(E); 391 if (EI->getNumIndices() != 1) 392 return None; 393 return *EI->idx_begin(); 394 } 395 396 /// \returns True if in-tree use also needs extract. This refers to 397 /// possible scalar operand in vectorized instruction. 398 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 399 TargetLibraryInfo *TLI) { 400 unsigned Opcode = UserInst->getOpcode(); 401 switch (Opcode) { 402 case Instruction::Load: { 403 LoadInst *LI = cast<LoadInst>(UserInst); 404 return (LI->getPointerOperand() == Scalar); 405 } 406 case Instruction::Store: { 407 StoreInst *SI = cast<StoreInst>(UserInst); 408 return (SI->getPointerOperand() == Scalar); 409 } 410 case Instruction::Call: { 411 CallInst *CI = cast<CallInst>(UserInst); 412 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 413 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 414 return (CI->getArgOperand(1) == Scalar); 415 } 416 LLVM_FALLTHROUGH; 417 } 418 default: 419 return false; 420 } 421 } 422 423 /// \returns the AA location that is being access by the instruction. 424 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 425 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 426 return MemoryLocation::get(SI); 427 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 428 return MemoryLocation::get(LI); 429 return MemoryLocation(); 430 } 431 432 /// \returns True if the instruction is not a volatile or atomic load/store. 433 static bool isSimple(Instruction *I) { 434 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 435 return LI->isSimple(); 436 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 437 return SI->isSimple(); 438 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 439 return !MI->isVolatile(); 440 return true; 441 } 442 443 namespace llvm { 444 445 namespace slpvectorizer { 446 447 /// Bottom Up SLP Vectorizer. 448 class BoUpSLP { 449 public: 450 using ValueList = SmallVector<Value *, 8>; 451 using InstrList = SmallVector<Instruction *, 16>; 452 using ValueSet = SmallPtrSet<Value *, 16>; 453 using StoreList = SmallVector<StoreInst *, 8>; 454 using ExtraValueToDebugLocsMap = 455 MapVector<Value *, SmallVector<Instruction *, 2>>; 456 457 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 458 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 459 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 460 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 461 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 462 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 463 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 464 // Use the vector register size specified by the target unless overridden 465 // by a command-line option. 466 // TODO: It would be better to limit the vectorization factor based on 467 // data type rather than just register size. For example, x86 AVX has 468 // 256-bit registers, but it does not support integer operations 469 // at that width (that requires AVX2). 470 if (MaxVectorRegSizeOption.getNumOccurrences()) 471 MaxVecRegSize = MaxVectorRegSizeOption; 472 else 473 MaxVecRegSize = TTI->getRegisterBitWidth(true); 474 475 if (MinVectorRegSizeOption.getNumOccurrences()) 476 MinVecRegSize = MinVectorRegSizeOption; 477 else 478 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 479 } 480 481 /// Vectorize the tree that starts with the elements in \p VL. 482 /// Returns the vectorized root. 483 Value *vectorizeTree(); 484 485 /// Vectorize the tree but with the list of externally used values \p 486 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 487 /// generated extractvalue instructions. 488 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 489 490 /// \returns the cost incurred by unwanted spills and fills, caused by 491 /// holding live values over call sites. 492 int getSpillCost(); 493 494 /// \returns the vectorization cost of the subtree that starts at \p VL. 495 /// A negative number means that this is profitable. 496 int getTreeCost(); 497 498 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 499 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 500 void buildTree(ArrayRef<Value *> Roots, 501 ArrayRef<Value *> UserIgnoreLst = None); 502 503 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 504 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 505 /// into account (anf updating it, if required) list of externally used 506 /// values stored in \p ExternallyUsedValues. 507 void buildTree(ArrayRef<Value *> Roots, 508 ExtraValueToDebugLocsMap &ExternallyUsedValues, 509 ArrayRef<Value *> UserIgnoreLst = None); 510 511 /// Clear the internal data structures that are created by 'buildTree'. 512 void deleteTree() { 513 VectorizableTree.clear(); 514 ScalarToTreeEntry.clear(); 515 MustGather.clear(); 516 ExternalUses.clear(); 517 NumOpsWantToKeepOrder.clear(); 518 NumOpsWantToKeepOriginalOrder = 0; 519 for (auto &Iter : BlocksSchedules) { 520 BlockScheduling *BS = Iter.second.get(); 521 BS->clear(); 522 } 523 MinBWs.clear(); 524 } 525 526 unsigned getTreeSize() const { return VectorizableTree.size(); } 527 528 /// Perform LICM and CSE on the newly generated gather sequences. 529 void optimizeGatherSequence(); 530 531 /// \returns The best order of instructions for vectorization. 532 Optional<ArrayRef<unsigned>> bestOrder() const { 533 auto I = std::max_element( 534 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 535 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 536 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 537 return D1.second < D2.second; 538 }); 539 if (I == NumOpsWantToKeepOrder.end() || 540 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 541 return None; 542 543 return makeArrayRef(I->getFirst()); 544 } 545 546 /// \return The vector element size in bits to use when vectorizing the 547 /// expression tree ending at \p V. If V is a store, the size is the width of 548 /// the stored value. Otherwise, the size is the width of the largest loaded 549 /// value reaching V. This method is used by the vectorizer to calculate 550 /// vectorization factors. 551 unsigned getVectorElementSize(Value *V); 552 553 /// Compute the minimum type sizes required to represent the entries in a 554 /// vectorizable tree. 555 void computeMinimumValueSizes(); 556 557 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 558 unsigned getMaxVecRegSize() const { 559 return MaxVecRegSize; 560 } 561 562 // \returns minimum vector register size as set by cl::opt. 563 unsigned getMinVecRegSize() const { 564 return MinVecRegSize; 565 } 566 567 /// Check if ArrayType or StructType is isomorphic to some VectorType. 568 /// 569 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 570 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 571 572 /// \returns True if the VectorizableTree is both tiny and not fully 573 /// vectorizable. We do not vectorize such trees. 574 bool isTreeTinyAndNotFullyVectorizable(); 575 576 OptimizationRemarkEmitter *getORE() { return ORE; } 577 578 private: 579 struct TreeEntry; 580 581 /// Checks if all users of \p I are the part of the vectorization tree. 582 bool areAllUsersVectorized(Instruction *I) const; 583 584 /// \returns the cost of the vectorizable entry. 585 int getEntryCost(TreeEntry *E); 586 587 /// This is the recursive part of buildTree. 588 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 589 590 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 591 /// be vectorized to use the original vector (or aggregate "bitcast" to a 592 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 593 /// returns false, setting \p CurrentOrder to either an empty vector or a 594 /// non-identity permutation that allows to reuse extract instructions. 595 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 596 SmallVectorImpl<unsigned> &CurrentOrder) const; 597 598 /// Vectorize a single entry in the tree. 599 Value *vectorizeTree(TreeEntry *E); 600 601 /// Vectorize a single entry in the tree, starting in \p VL. 602 Value *vectorizeTree(ArrayRef<Value *> VL); 603 604 /// \returns the scalarization cost for this type. Scalarization in this 605 /// context means the creation of vectors from a group of scalars. 606 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 607 608 /// \returns the scalarization cost for this list of values. Assuming that 609 /// this subtree gets vectorized, we may need to extract the values from the 610 /// roots. This method calculates the cost of extracting the values. 611 int getGatherCost(ArrayRef<Value *> VL); 612 613 /// Set the Builder insert point to one after the last instruction in 614 /// the bundle 615 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 616 const InstructionsState &S); 617 618 /// \returns a vector from a collection of scalars in \p VL. 619 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 620 621 /// \returns whether the VectorizableTree is fully vectorizable and will 622 /// be beneficial even the tree height is tiny. 623 bool isFullyVectorizableTinyTree(); 624 625 /// \reorder commutative operands in alt shuffle if they result in 626 /// vectorized code. 627 void reorderAltShuffleOperands(const InstructionsState &S, 628 ArrayRef<Value *> VL, 629 SmallVectorImpl<Value *> &Left, 630 SmallVectorImpl<Value *> &Right); 631 632 /// \reorder commutative operands to get better probability of 633 /// generating vectorized code. 634 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 635 SmallVectorImpl<Value *> &Left, 636 SmallVectorImpl<Value *> &Right); 637 struct TreeEntry { 638 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 639 640 /// \returns true if the scalars in VL are equal to this entry. 641 bool isSame(ArrayRef<Value *> VL) const { 642 if (VL.size() == Scalars.size()) 643 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 644 return VL.size() == ReuseShuffleIndices.size() && 645 std::equal( 646 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 647 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 648 } 649 650 /// A vector of scalars. 651 ValueList Scalars; 652 653 /// The Scalars are vectorized into this value. It is initialized to Null. 654 Value *VectorizedValue = nullptr; 655 656 /// Do we need to gather this sequence ? 657 bool NeedToGather = false; 658 659 /// Does this sequence require some shuffling? 660 SmallVector<unsigned, 4> ReuseShuffleIndices; 661 662 /// Does this entry require reordering? 663 ArrayRef<unsigned> ReorderIndices; 664 665 /// Points back to the VectorizableTree. 666 /// 667 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 668 /// to be a pointer and needs to be able to initialize the child iterator. 669 /// Thus we need a reference back to the container to translate the indices 670 /// to entries. 671 std::vector<TreeEntry> &Container; 672 673 /// The TreeEntry index containing the user of this entry. We can actually 674 /// have multiple users so the data structure is not truly a tree. 675 SmallVector<int, 1> UserTreeIndices; 676 }; 677 678 /// Create a new VectorizableTree entry. 679 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 680 ArrayRef<unsigned> ReuseShuffleIndices = None, 681 ArrayRef<unsigned> ReorderIndices = None) { 682 VectorizableTree.emplace_back(VectorizableTree); 683 int idx = VectorizableTree.size() - 1; 684 TreeEntry *Last = &VectorizableTree[idx]; 685 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 686 Last->NeedToGather = !Vectorized; 687 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 688 ReuseShuffleIndices.end()); 689 Last->ReorderIndices = ReorderIndices; 690 if (Vectorized) { 691 for (int i = 0, e = VL.size(); i != e; ++i) { 692 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 693 ScalarToTreeEntry[VL[i]] = idx; 694 } 695 } else { 696 MustGather.insert(VL.begin(), VL.end()); 697 } 698 699 if (UserTreeIdx >= 0) 700 Last->UserTreeIndices.push_back(UserTreeIdx); 701 UserTreeIdx = idx; 702 } 703 704 /// -- Vectorization State -- 705 /// Holds all of the tree entries. 706 std::vector<TreeEntry> VectorizableTree; 707 708 TreeEntry *getTreeEntry(Value *V) { 709 auto I = ScalarToTreeEntry.find(V); 710 if (I != ScalarToTreeEntry.end()) 711 return &VectorizableTree[I->second]; 712 return nullptr; 713 } 714 715 /// Maps a specific scalar to its tree entry. 716 SmallDenseMap<Value*, int> ScalarToTreeEntry; 717 718 /// A list of scalars that we found that we need to keep as scalars. 719 ValueSet MustGather; 720 721 /// This POD struct describes one external user in the vectorized tree. 722 struct ExternalUser { 723 ExternalUser(Value *S, llvm::User *U, int L) 724 : Scalar(S), User(U), Lane(L) {} 725 726 // Which scalar in our function. 727 Value *Scalar; 728 729 // Which user that uses the scalar. 730 llvm::User *User; 731 732 // Which lane does the scalar belong to. 733 int Lane; 734 }; 735 using UserList = SmallVector<ExternalUser, 16>; 736 737 /// Checks if two instructions may access the same memory. 738 /// 739 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 740 /// is invariant in the calling loop. 741 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 742 Instruction *Inst2) { 743 // First check if the result is already in the cache. 744 AliasCacheKey key = std::make_pair(Inst1, Inst2); 745 Optional<bool> &result = AliasCache[key]; 746 if (result.hasValue()) { 747 return result.getValue(); 748 } 749 MemoryLocation Loc2 = getLocation(Inst2, AA); 750 bool aliased = true; 751 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 752 // Do the alias check. 753 aliased = AA->alias(Loc1, Loc2); 754 } 755 // Store the result in the cache. 756 result = aliased; 757 return aliased; 758 } 759 760 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 761 762 /// Cache for alias results. 763 /// TODO: consider moving this to the AliasAnalysis itself. 764 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 765 766 /// Removes an instruction from its block and eventually deletes it. 767 /// It's like Instruction::eraseFromParent() except that the actual deletion 768 /// is delayed until BoUpSLP is destructed. 769 /// This is required to ensure that there are no incorrect collisions in the 770 /// AliasCache, which can happen if a new instruction is allocated at the 771 /// same address as a previously deleted instruction. 772 void eraseInstruction(Instruction *I) { 773 I->removeFromParent(); 774 I->dropAllReferences(); 775 DeletedInstructions.emplace_back(I); 776 } 777 778 /// Temporary store for deleted instructions. Instructions will be deleted 779 /// eventually when the BoUpSLP is destructed. 780 SmallVector<unique_value, 8> DeletedInstructions; 781 782 /// A list of values that need to extracted out of the tree. 783 /// This list holds pairs of (Internal Scalar : External User). External User 784 /// can be nullptr, it means that this Internal Scalar will be used later, 785 /// after vectorization. 786 UserList ExternalUses; 787 788 /// Values used only by @llvm.assume calls. 789 SmallPtrSet<const Value *, 32> EphValues; 790 791 /// Holds all of the instructions that we gathered. 792 SetVector<Instruction *> GatherSeq; 793 794 /// A list of blocks that we are going to CSE. 795 SetVector<BasicBlock *> CSEBlocks; 796 797 /// Contains all scheduling relevant data for an instruction. 798 /// A ScheduleData either represents a single instruction or a member of an 799 /// instruction bundle (= a group of instructions which is combined into a 800 /// vector instruction). 801 struct ScheduleData { 802 // The initial value for the dependency counters. It means that the 803 // dependencies are not calculated yet. 804 enum { InvalidDeps = -1 }; 805 806 ScheduleData() = default; 807 808 void init(int BlockSchedulingRegionID, Value *OpVal) { 809 FirstInBundle = this; 810 NextInBundle = nullptr; 811 NextLoadStore = nullptr; 812 IsScheduled = false; 813 SchedulingRegionID = BlockSchedulingRegionID; 814 UnscheduledDepsInBundle = UnscheduledDeps; 815 clearDependencies(); 816 OpValue = OpVal; 817 } 818 819 /// Returns true if the dependency information has been calculated. 820 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 821 822 /// Returns true for single instructions and for bundle representatives 823 /// (= the head of a bundle). 824 bool isSchedulingEntity() const { return FirstInBundle == this; } 825 826 /// Returns true if it represents an instruction bundle and not only a 827 /// single instruction. 828 bool isPartOfBundle() const { 829 return NextInBundle != nullptr || FirstInBundle != this; 830 } 831 832 /// Returns true if it is ready for scheduling, i.e. it has no more 833 /// unscheduled depending instructions/bundles. 834 bool isReady() const { 835 assert(isSchedulingEntity() && 836 "can't consider non-scheduling entity for ready list"); 837 return UnscheduledDepsInBundle == 0 && !IsScheduled; 838 } 839 840 /// Modifies the number of unscheduled dependencies, also updating it for 841 /// the whole bundle. 842 int incrementUnscheduledDeps(int Incr) { 843 UnscheduledDeps += Incr; 844 return FirstInBundle->UnscheduledDepsInBundle += Incr; 845 } 846 847 /// Sets the number of unscheduled dependencies to the number of 848 /// dependencies. 849 void resetUnscheduledDeps() { 850 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 851 } 852 853 /// Clears all dependency information. 854 void clearDependencies() { 855 Dependencies = InvalidDeps; 856 resetUnscheduledDeps(); 857 MemoryDependencies.clear(); 858 } 859 860 void dump(raw_ostream &os) const { 861 if (!isSchedulingEntity()) { 862 os << "/ " << *Inst; 863 } else if (NextInBundle) { 864 os << '[' << *Inst; 865 ScheduleData *SD = NextInBundle; 866 while (SD) { 867 os << ';' << *SD->Inst; 868 SD = SD->NextInBundle; 869 } 870 os << ']'; 871 } else { 872 os << *Inst; 873 } 874 } 875 876 Instruction *Inst = nullptr; 877 878 /// Points to the head in an instruction bundle (and always to this for 879 /// single instructions). 880 ScheduleData *FirstInBundle = nullptr; 881 882 /// Single linked list of all instructions in a bundle. Null if it is a 883 /// single instruction. 884 ScheduleData *NextInBundle = nullptr; 885 886 /// Single linked list of all memory instructions (e.g. load, store, call) 887 /// in the block - until the end of the scheduling region. 888 ScheduleData *NextLoadStore = nullptr; 889 890 /// The dependent memory instructions. 891 /// This list is derived on demand in calculateDependencies(). 892 SmallVector<ScheduleData *, 4> MemoryDependencies; 893 894 /// This ScheduleData is in the current scheduling region if this matches 895 /// the current SchedulingRegionID of BlockScheduling. 896 int SchedulingRegionID = 0; 897 898 /// Used for getting a "good" final ordering of instructions. 899 int SchedulingPriority = 0; 900 901 /// The number of dependencies. Constitutes of the number of users of the 902 /// instruction plus the number of dependent memory instructions (if any). 903 /// This value is calculated on demand. 904 /// If InvalidDeps, the number of dependencies is not calculated yet. 905 int Dependencies = InvalidDeps; 906 907 /// The number of dependencies minus the number of dependencies of scheduled 908 /// instructions. As soon as this is zero, the instruction/bundle gets ready 909 /// for scheduling. 910 /// Note that this is negative as long as Dependencies is not calculated. 911 int UnscheduledDeps = InvalidDeps; 912 913 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 914 /// single instructions. 915 int UnscheduledDepsInBundle = InvalidDeps; 916 917 /// True if this instruction is scheduled (or considered as scheduled in the 918 /// dry-run). 919 bool IsScheduled = false; 920 921 /// Opcode of the current instruction in the schedule data. 922 Value *OpValue = nullptr; 923 }; 924 925 #ifndef NDEBUG 926 friend inline raw_ostream &operator<<(raw_ostream &os, 927 const BoUpSLP::ScheduleData &SD) { 928 SD.dump(os); 929 return os; 930 } 931 #endif 932 933 friend struct GraphTraits<BoUpSLP *>; 934 friend struct DOTGraphTraits<BoUpSLP *>; 935 936 /// Contains all scheduling data for a basic block. 937 struct BlockScheduling { 938 BlockScheduling(BasicBlock *BB) 939 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 940 941 void clear() { 942 ReadyInsts.clear(); 943 ScheduleStart = nullptr; 944 ScheduleEnd = nullptr; 945 FirstLoadStoreInRegion = nullptr; 946 LastLoadStoreInRegion = nullptr; 947 948 // Reduce the maximum schedule region size by the size of the 949 // previous scheduling run. 950 ScheduleRegionSizeLimit -= ScheduleRegionSize; 951 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 952 ScheduleRegionSizeLimit = MinScheduleRegionSize; 953 ScheduleRegionSize = 0; 954 955 // Make a new scheduling region, i.e. all existing ScheduleData is not 956 // in the new region yet. 957 ++SchedulingRegionID; 958 } 959 960 ScheduleData *getScheduleData(Value *V) { 961 ScheduleData *SD = ScheduleDataMap[V]; 962 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 963 return SD; 964 return nullptr; 965 } 966 967 ScheduleData *getScheduleData(Value *V, Value *Key) { 968 if (V == Key) 969 return getScheduleData(V); 970 auto I = ExtraScheduleDataMap.find(V); 971 if (I != ExtraScheduleDataMap.end()) { 972 ScheduleData *SD = I->second[Key]; 973 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 974 return SD; 975 } 976 return nullptr; 977 } 978 979 bool isInSchedulingRegion(ScheduleData *SD) { 980 return SD->SchedulingRegionID == SchedulingRegionID; 981 } 982 983 /// Marks an instruction as scheduled and puts all dependent ready 984 /// instructions into the ready-list. 985 template <typename ReadyListType> 986 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 987 SD->IsScheduled = true; 988 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 989 990 ScheduleData *BundleMember = SD; 991 while (BundleMember) { 992 if (BundleMember->Inst != BundleMember->OpValue) { 993 BundleMember = BundleMember->NextInBundle; 994 continue; 995 } 996 // Handle the def-use chain dependencies. 997 for (Use &U : BundleMember->Inst->operands()) { 998 auto *I = dyn_cast<Instruction>(U.get()); 999 if (!I) 1000 continue; 1001 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1002 if (OpDef && OpDef->hasValidDependencies() && 1003 OpDef->incrementUnscheduledDeps(-1) == 0) { 1004 // There are no more unscheduled dependencies after 1005 // decrementing, so we can put the dependent instruction 1006 // into the ready list. 1007 ScheduleData *DepBundle = OpDef->FirstInBundle; 1008 assert(!DepBundle->IsScheduled && 1009 "already scheduled bundle gets ready"); 1010 ReadyList.insert(DepBundle); 1011 LLVM_DEBUG(dbgs() 1012 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1013 } 1014 }); 1015 } 1016 // Handle the memory dependencies. 1017 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1018 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1019 // There are no more unscheduled dependencies after decrementing, 1020 // so we can put the dependent instruction into the ready list. 1021 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1022 assert(!DepBundle->IsScheduled && 1023 "already scheduled bundle gets ready"); 1024 ReadyList.insert(DepBundle); 1025 LLVM_DEBUG(dbgs() 1026 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1027 } 1028 } 1029 BundleMember = BundleMember->NextInBundle; 1030 } 1031 } 1032 1033 void doForAllOpcodes(Value *V, 1034 function_ref<void(ScheduleData *SD)> Action) { 1035 if (ScheduleData *SD = getScheduleData(V)) 1036 Action(SD); 1037 auto I = ExtraScheduleDataMap.find(V); 1038 if (I != ExtraScheduleDataMap.end()) 1039 for (auto &P : I->second) 1040 if (P.second->SchedulingRegionID == SchedulingRegionID) 1041 Action(P.second); 1042 } 1043 1044 /// Put all instructions into the ReadyList which are ready for scheduling. 1045 template <typename ReadyListType> 1046 void initialFillReadyList(ReadyListType &ReadyList) { 1047 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1048 doForAllOpcodes(I, [&](ScheduleData *SD) { 1049 if (SD->isSchedulingEntity() && SD->isReady()) { 1050 ReadyList.insert(SD); 1051 LLVM_DEBUG(dbgs() 1052 << "SLP: initially in ready list: " << *I << "\n"); 1053 } 1054 }); 1055 } 1056 } 1057 1058 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1059 /// cyclic dependencies. This is only a dry-run, no instructions are 1060 /// actually moved at this stage. 1061 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1062 const InstructionsState &S); 1063 1064 /// Un-bundles a group of instructions. 1065 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1066 1067 /// Allocates schedule data chunk. 1068 ScheduleData *allocateScheduleDataChunks(); 1069 1070 /// Extends the scheduling region so that V is inside the region. 1071 /// \returns true if the region size is within the limit. 1072 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1073 1074 /// Initialize the ScheduleData structures for new instructions in the 1075 /// scheduling region. 1076 void initScheduleData(Instruction *FromI, Instruction *ToI, 1077 ScheduleData *PrevLoadStore, 1078 ScheduleData *NextLoadStore); 1079 1080 /// Updates the dependency information of a bundle and of all instructions/ 1081 /// bundles which depend on the original bundle. 1082 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1083 BoUpSLP *SLP); 1084 1085 /// Sets all instruction in the scheduling region to un-scheduled. 1086 void resetSchedule(); 1087 1088 BasicBlock *BB; 1089 1090 /// Simple memory allocation for ScheduleData. 1091 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1092 1093 /// The size of a ScheduleData array in ScheduleDataChunks. 1094 int ChunkSize; 1095 1096 /// The allocator position in the current chunk, which is the last entry 1097 /// of ScheduleDataChunks. 1098 int ChunkPos; 1099 1100 /// Attaches ScheduleData to Instruction. 1101 /// Note that the mapping survives during all vectorization iterations, i.e. 1102 /// ScheduleData structures are recycled. 1103 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1104 1105 /// Attaches ScheduleData to Instruction with the leading key. 1106 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1107 ExtraScheduleDataMap; 1108 1109 struct ReadyList : SmallVector<ScheduleData *, 8> { 1110 void insert(ScheduleData *SD) { push_back(SD); } 1111 }; 1112 1113 /// The ready-list for scheduling (only used for the dry-run). 1114 ReadyList ReadyInsts; 1115 1116 /// The first instruction of the scheduling region. 1117 Instruction *ScheduleStart = nullptr; 1118 1119 /// The first instruction _after_ the scheduling region. 1120 Instruction *ScheduleEnd = nullptr; 1121 1122 /// The first memory accessing instruction in the scheduling region 1123 /// (can be null). 1124 ScheduleData *FirstLoadStoreInRegion = nullptr; 1125 1126 /// The last memory accessing instruction in the scheduling region 1127 /// (can be null). 1128 ScheduleData *LastLoadStoreInRegion = nullptr; 1129 1130 /// The current size of the scheduling region. 1131 int ScheduleRegionSize = 0; 1132 1133 /// The maximum size allowed for the scheduling region. 1134 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1135 1136 /// The ID of the scheduling region. For a new vectorization iteration this 1137 /// is incremented which "removes" all ScheduleData from the region. 1138 // Make sure that the initial SchedulingRegionID is greater than the 1139 // initial SchedulingRegionID in ScheduleData (which is 0). 1140 int SchedulingRegionID = 1; 1141 }; 1142 1143 /// Attaches the BlockScheduling structures to basic blocks. 1144 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1145 1146 /// Performs the "real" scheduling. Done before vectorization is actually 1147 /// performed in a basic block. 1148 void scheduleBlock(BlockScheduling *BS); 1149 1150 /// List of users to ignore during scheduling and that don't need extracting. 1151 ArrayRef<Value *> UserIgnoreList; 1152 1153 using OrdersType = SmallVector<unsigned, 4>; 1154 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1155 /// sorted SmallVectors of unsigned. 1156 struct OrdersTypeDenseMapInfo { 1157 static OrdersType getEmptyKey() { 1158 OrdersType V; 1159 V.push_back(~1U); 1160 return V; 1161 } 1162 1163 static OrdersType getTombstoneKey() { 1164 OrdersType V; 1165 V.push_back(~2U); 1166 return V; 1167 } 1168 1169 static unsigned getHashValue(const OrdersType &V) { 1170 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1171 } 1172 1173 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1174 return LHS == RHS; 1175 } 1176 }; 1177 1178 /// Contains orders of operations along with the number of bundles that have 1179 /// operations in this order. It stores only those orders that require 1180 /// reordering, if reordering is not required it is counted using \a 1181 /// NumOpsWantToKeepOriginalOrder. 1182 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1183 /// Number of bundles that do not require reordering. 1184 unsigned NumOpsWantToKeepOriginalOrder = 0; 1185 1186 // Analysis and block reference. 1187 Function *F; 1188 ScalarEvolution *SE; 1189 TargetTransformInfo *TTI; 1190 TargetLibraryInfo *TLI; 1191 AliasAnalysis *AA; 1192 LoopInfo *LI; 1193 DominatorTree *DT; 1194 AssumptionCache *AC; 1195 DemandedBits *DB; 1196 const DataLayout *DL; 1197 OptimizationRemarkEmitter *ORE; 1198 1199 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1200 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1201 1202 /// Instruction builder to construct the vectorized tree. 1203 IRBuilder<> Builder; 1204 1205 /// A map of scalar integer values to the smallest bit width with which they 1206 /// can legally be represented. The values map to (width, signed) pairs, 1207 /// where "width" indicates the minimum bit width and "signed" is True if the 1208 /// value must be signed-extended, rather than zero-extended, back to its 1209 /// original width. 1210 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1211 }; 1212 1213 } // end namespace slpvectorizer 1214 1215 template <> struct GraphTraits<BoUpSLP *> { 1216 using TreeEntry = BoUpSLP::TreeEntry; 1217 1218 /// NodeRef has to be a pointer per the GraphWriter. 1219 using NodeRef = TreeEntry *; 1220 1221 /// Add the VectorizableTree to the index iterator to be able to return 1222 /// TreeEntry pointers. 1223 struct ChildIteratorType 1224 : public iterator_adaptor_base<ChildIteratorType, 1225 SmallVector<int, 1>::iterator> { 1226 std::vector<TreeEntry> &VectorizableTree; 1227 1228 ChildIteratorType(SmallVector<int, 1>::iterator W, 1229 std::vector<TreeEntry> &VT) 1230 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1231 1232 NodeRef operator*() { return &VectorizableTree[*I]; } 1233 }; 1234 1235 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1236 1237 static ChildIteratorType child_begin(NodeRef N) { 1238 return {N->UserTreeIndices.begin(), N->Container}; 1239 } 1240 1241 static ChildIteratorType child_end(NodeRef N) { 1242 return {N->UserTreeIndices.end(), N->Container}; 1243 } 1244 1245 /// For the node iterator we just need to turn the TreeEntry iterator into a 1246 /// TreeEntry* iterator so that it dereferences to NodeRef. 1247 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1248 1249 static nodes_iterator nodes_begin(BoUpSLP *R) { 1250 return nodes_iterator(R->VectorizableTree.begin()); 1251 } 1252 1253 static nodes_iterator nodes_end(BoUpSLP *R) { 1254 return nodes_iterator(R->VectorizableTree.end()); 1255 } 1256 1257 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1258 }; 1259 1260 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1261 using TreeEntry = BoUpSLP::TreeEntry; 1262 1263 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1264 1265 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1266 std::string Str; 1267 raw_string_ostream OS(Str); 1268 if (isSplat(Entry->Scalars)) { 1269 OS << "<splat> " << *Entry->Scalars[0]; 1270 return Str; 1271 } 1272 for (auto V : Entry->Scalars) { 1273 OS << *V; 1274 if (std::any_of( 1275 R->ExternalUses.begin(), R->ExternalUses.end(), 1276 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1277 OS << " <extract>"; 1278 OS << "\n"; 1279 } 1280 return Str; 1281 } 1282 1283 static std::string getNodeAttributes(const TreeEntry *Entry, 1284 const BoUpSLP *) { 1285 if (Entry->NeedToGather) 1286 return "color=red"; 1287 return ""; 1288 } 1289 }; 1290 1291 } // end namespace llvm 1292 1293 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1294 ArrayRef<Value *> UserIgnoreLst) { 1295 ExtraValueToDebugLocsMap ExternallyUsedValues; 1296 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1297 } 1298 1299 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1300 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1301 ArrayRef<Value *> UserIgnoreLst) { 1302 deleteTree(); 1303 UserIgnoreList = UserIgnoreLst; 1304 if (!allSameType(Roots)) 1305 return; 1306 buildTree_rec(Roots, 0, -1); 1307 1308 // Collect the values that we need to extract from the tree. 1309 for (TreeEntry &EIdx : VectorizableTree) { 1310 TreeEntry *Entry = &EIdx; 1311 1312 // No need to handle users of gathered values. 1313 if (Entry->NeedToGather) 1314 continue; 1315 1316 // For each lane: 1317 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1318 Value *Scalar = Entry->Scalars[Lane]; 1319 int FoundLane = Lane; 1320 if (!Entry->ReuseShuffleIndices.empty()) { 1321 FoundLane = 1322 std::distance(Entry->ReuseShuffleIndices.begin(), 1323 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1324 } 1325 1326 // Check if the scalar is externally used as an extra arg. 1327 auto ExtI = ExternallyUsedValues.find(Scalar); 1328 if (ExtI != ExternallyUsedValues.end()) { 1329 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1330 << Lane << " from " << *Scalar << ".\n"); 1331 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1332 } 1333 for (User *U : Scalar->users()) { 1334 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1335 1336 Instruction *UserInst = dyn_cast<Instruction>(U); 1337 if (!UserInst) 1338 continue; 1339 1340 // Skip in-tree scalars that become vectors 1341 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1342 Value *UseScalar = UseEntry->Scalars[0]; 1343 // Some in-tree scalars will remain as scalar in vectorized 1344 // instructions. If that is the case, the one in Lane 0 will 1345 // be used. 1346 if (UseScalar != U || 1347 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1348 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1349 << ".\n"); 1350 assert(!UseEntry->NeedToGather && "Bad state"); 1351 continue; 1352 } 1353 } 1354 1355 // Ignore users in the user ignore list. 1356 if (is_contained(UserIgnoreList, UserInst)) 1357 continue; 1358 1359 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1360 << Lane << " from " << *Scalar << ".\n"); 1361 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1362 } 1363 } 1364 } 1365 } 1366 1367 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1368 int UserTreeIdx) { 1369 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1370 1371 InstructionsState S = getSameOpcode(VL); 1372 if (Depth == RecursionMaxDepth) { 1373 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1374 newTreeEntry(VL, false, UserTreeIdx); 1375 return; 1376 } 1377 1378 // Don't handle vectors. 1379 if (S.OpValue->getType()->isVectorTy()) { 1380 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1381 newTreeEntry(VL, false, UserTreeIdx); 1382 return; 1383 } 1384 1385 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1386 if (SI->getValueOperand()->getType()->isVectorTy()) { 1387 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1388 newTreeEntry(VL, false, UserTreeIdx); 1389 return; 1390 } 1391 1392 // If all of the operands are identical or constant we have a simple solution. 1393 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1394 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1395 newTreeEntry(VL, false, UserTreeIdx); 1396 return; 1397 } 1398 1399 // We now know that this is a vector of instructions of the same type from 1400 // the same block. 1401 1402 // Don't vectorize ephemeral values. 1403 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1404 if (EphValues.count(VL[i])) { 1405 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1406 << ") is ephemeral.\n"); 1407 newTreeEntry(VL, false, UserTreeIdx); 1408 return; 1409 } 1410 } 1411 1412 // Check if this is a duplicate of another entry. 1413 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1414 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1415 if (!E->isSame(VL)) { 1416 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1417 newTreeEntry(VL, false, UserTreeIdx); 1418 return; 1419 } 1420 // Record the reuse of the tree node. FIXME, currently this is only used to 1421 // properly draw the graph rather than for the actual vectorization. 1422 E->UserTreeIndices.push_back(UserTreeIdx); 1423 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1424 << ".\n"); 1425 return; 1426 } 1427 1428 // Check that none of the instructions in the bundle are already in the tree. 1429 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1430 auto *I = dyn_cast<Instruction>(VL[i]); 1431 if (!I) 1432 continue; 1433 if (getTreeEntry(I)) { 1434 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1435 << ") is already in tree.\n"); 1436 newTreeEntry(VL, false, UserTreeIdx); 1437 return; 1438 } 1439 } 1440 1441 // If any of the scalars is marked as a value that needs to stay scalar, then 1442 // we need to gather the scalars. 1443 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1444 if (MustGather.count(VL[i])) { 1445 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1446 newTreeEntry(VL, false, UserTreeIdx); 1447 return; 1448 } 1449 } 1450 1451 // Check that all of the users of the scalars that we want to vectorize are 1452 // schedulable. 1453 auto *VL0 = cast<Instruction>(S.OpValue); 1454 BasicBlock *BB = VL0->getParent(); 1455 1456 if (!DT->isReachableFromEntry(BB)) { 1457 // Don't go into unreachable blocks. They may contain instructions with 1458 // dependency cycles which confuse the final scheduling. 1459 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1460 newTreeEntry(VL, false, UserTreeIdx); 1461 return; 1462 } 1463 1464 // Check that every instruction appears once in this bundle. 1465 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1466 SmallVector<Value *, 4> UniqueValues; 1467 DenseMap<Value *, unsigned> UniquePositions; 1468 for (Value *V : VL) { 1469 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1470 ReuseShuffleIndicies.emplace_back(Res.first->second); 1471 if (Res.second) 1472 UniqueValues.emplace_back(V); 1473 } 1474 if (UniqueValues.size() == VL.size()) { 1475 ReuseShuffleIndicies.clear(); 1476 } else { 1477 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1478 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1479 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1480 newTreeEntry(VL, false, UserTreeIdx); 1481 return; 1482 } 1483 VL = UniqueValues; 1484 } 1485 1486 auto &BSRef = BlocksSchedules[BB]; 1487 if (!BSRef) 1488 BSRef = llvm::make_unique<BlockScheduling>(BB); 1489 1490 BlockScheduling &BS = *BSRef.get(); 1491 1492 if (!BS.tryScheduleBundle(VL, this, S)) { 1493 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1494 assert((!BS.getScheduleData(VL0) || 1495 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1496 "tryScheduleBundle should cancelScheduling on failure"); 1497 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1498 return; 1499 } 1500 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1501 1502 unsigned ShuffleOrOp = S.isAltShuffle() ? 1503 (unsigned) Instruction::ShuffleVector : S.Opcode; 1504 switch (ShuffleOrOp) { 1505 case Instruction::PHI: { 1506 PHINode *PH = dyn_cast<PHINode>(VL0); 1507 1508 // Check for terminator values (e.g. invoke). 1509 for (unsigned j = 0; j < VL.size(); ++j) 1510 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1511 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1512 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1513 if (Term) { 1514 LLVM_DEBUG( 1515 dbgs() 1516 << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1517 BS.cancelScheduling(VL, VL0); 1518 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1519 return; 1520 } 1521 } 1522 1523 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1524 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1525 1526 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1527 ValueList Operands; 1528 // Prepare the operand vector. 1529 for (Value *j : VL) 1530 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1531 PH->getIncomingBlock(i))); 1532 1533 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1534 } 1535 return; 1536 } 1537 case Instruction::ExtractValue: 1538 case Instruction::ExtractElement: { 1539 OrdersType CurrentOrder; 1540 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1541 if (Reuse) { 1542 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1543 ++NumOpsWantToKeepOriginalOrder; 1544 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1545 ReuseShuffleIndicies); 1546 return; 1547 } 1548 if (!CurrentOrder.empty()) { 1549 LLVM_DEBUG({ 1550 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1551 "with order"; 1552 for (unsigned Idx : CurrentOrder) 1553 dbgs() << " " << Idx; 1554 dbgs() << "\n"; 1555 }); 1556 // Insert new order with initial value 0, if it does not exist, 1557 // otherwise return the iterator to the existing one. 1558 auto StoredCurrentOrderAndNum = 1559 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1560 ++StoredCurrentOrderAndNum->getSecond(); 1561 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1562 StoredCurrentOrderAndNum->getFirst()); 1563 return; 1564 } 1565 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1566 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1567 BS.cancelScheduling(VL, VL0); 1568 return; 1569 } 1570 case Instruction::Load: { 1571 // Check that a vectorized load would load the same memory as a scalar 1572 // load. For example, we don't want to vectorize loads that are smaller 1573 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1574 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1575 // from such a struct, we read/write packed bits disagreeing with the 1576 // unvectorized version. 1577 Type *ScalarTy = VL0->getType(); 1578 1579 if (DL->getTypeSizeInBits(ScalarTy) != 1580 DL->getTypeAllocSizeInBits(ScalarTy)) { 1581 BS.cancelScheduling(VL, VL0); 1582 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1583 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1584 return; 1585 } 1586 1587 // Make sure all loads in the bundle are simple - we can't vectorize 1588 // atomic or volatile loads. 1589 SmallVector<Value *, 4> PointerOps(VL.size()); 1590 auto POIter = PointerOps.begin(); 1591 for (Value *V : VL) { 1592 auto *L = cast<LoadInst>(V); 1593 if (!L->isSimple()) { 1594 BS.cancelScheduling(VL, VL0); 1595 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1596 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1597 return; 1598 } 1599 *POIter = L->getPointerOperand(); 1600 ++POIter; 1601 } 1602 1603 OrdersType CurrentOrder; 1604 // Check the order of pointer operands. 1605 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1606 Value *Ptr0; 1607 Value *PtrN; 1608 if (CurrentOrder.empty()) { 1609 Ptr0 = PointerOps.front(); 1610 PtrN = PointerOps.back(); 1611 } else { 1612 Ptr0 = PointerOps[CurrentOrder.front()]; 1613 PtrN = PointerOps[CurrentOrder.back()]; 1614 } 1615 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1616 const SCEV *ScevN = SE->getSCEV(PtrN); 1617 const auto *Diff = 1618 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1619 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1620 // Check that the sorted loads are consecutive. 1621 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1622 if (CurrentOrder.empty()) { 1623 // Original loads are consecutive and does not require reordering. 1624 ++NumOpsWantToKeepOriginalOrder; 1625 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1626 ReuseShuffleIndicies); 1627 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1628 } else { 1629 // Need to reorder. 1630 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1631 ++I->getSecond(); 1632 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1633 ReuseShuffleIndicies, I->getFirst()); 1634 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1635 } 1636 return; 1637 } 1638 } 1639 1640 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1641 BS.cancelScheduling(VL, VL0); 1642 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1643 return; 1644 } 1645 case Instruction::ZExt: 1646 case Instruction::SExt: 1647 case Instruction::FPToUI: 1648 case Instruction::FPToSI: 1649 case Instruction::FPExt: 1650 case Instruction::PtrToInt: 1651 case Instruction::IntToPtr: 1652 case Instruction::SIToFP: 1653 case Instruction::UIToFP: 1654 case Instruction::Trunc: 1655 case Instruction::FPTrunc: 1656 case Instruction::BitCast: { 1657 Type *SrcTy = VL0->getOperand(0)->getType(); 1658 for (unsigned i = 0; i < VL.size(); ++i) { 1659 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1660 if (Ty != SrcTy || !isValidElementType(Ty)) { 1661 BS.cancelScheduling(VL, VL0); 1662 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1663 LLVM_DEBUG(dbgs() 1664 << "SLP: Gathering casts with different src types.\n"); 1665 return; 1666 } 1667 } 1668 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1669 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1670 1671 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1672 ValueList Operands; 1673 // Prepare the operand vector. 1674 for (Value *j : VL) 1675 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1676 1677 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1678 } 1679 return; 1680 } 1681 case Instruction::ICmp: 1682 case Instruction::FCmp: { 1683 // Check that all of the compares have the same predicate. 1684 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1685 Type *ComparedTy = VL0->getOperand(0)->getType(); 1686 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1687 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1688 if (Cmp->getPredicate() != P0 || 1689 Cmp->getOperand(0)->getType() != ComparedTy) { 1690 BS.cancelScheduling(VL, VL0); 1691 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1692 LLVM_DEBUG(dbgs() 1693 << "SLP: Gathering cmp with different predicate.\n"); 1694 return; 1695 } 1696 } 1697 1698 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1699 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1700 1701 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1702 ValueList Operands; 1703 // Prepare the operand vector. 1704 for (Value *j : VL) 1705 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1706 1707 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1708 } 1709 return; 1710 } 1711 case Instruction::Select: 1712 case Instruction::Add: 1713 case Instruction::FAdd: 1714 case Instruction::Sub: 1715 case Instruction::FSub: 1716 case Instruction::Mul: 1717 case Instruction::FMul: 1718 case Instruction::UDiv: 1719 case Instruction::SDiv: 1720 case Instruction::FDiv: 1721 case Instruction::URem: 1722 case Instruction::SRem: 1723 case Instruction::FRem: 1724 case Instruction::Shl: 1725 case Instruction::LShr: 1726 case Instruction::AShr: 1727 case Instruction::And: 1728 case Instruction::Or: 1729 case Instruction::Xor: 1730 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1731 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1732 1733 // Sort operands of the instructions so that each side is more likely to 1734 // have the same opcode. 1735 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1736 ValueList Left, Right; 1737 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1738 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1739 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1740 return; 1741 } 1742 1743 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1744 ValueList Operands; 1745 // Prepare the operand vector. 1746 for (Value *j : VL) 1747 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1748 1749 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1750 } 1751 return; 1752 1753 case Instruction::GetElementPtr: { 1754 // We don't combine GEPs with complicated (nested) indexing. 1755 for (unsigned j = 0; j < VL.size(); ++j) { 1756 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1757 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1758 BS.cancelScheduling(VL, VL0); 1759 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1760 return; 1761 } 1762 } 1763 1764 // We can't combine several GEPs into one vector if they operate on 1765 // different types. 1766 Type *Ty0 = VL0->getOperand(0)->getType(); 1767 for (unsigned j = 0; j < VL.size(); ++j) { 1768 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1769 if (Ty0 != CurTy) { 1770 LLVM_DEBUG(dbgs() 1771 << "SLP: not-vectorizable GEP (different types).\n"); 1772 BS.cancelScheduling(VL, VL0); 1773 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1774 return; 1775 } 1776 } 1777 1778 // We don't combine GEPs with non-constant indexes. 1779 for (unsigned j = 0; j < VL.size(); ++j) { 1780 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1781 if (!isa<ConstantInt>(Op)) { 1782 LLVM_DEBUG(dbgs() 1783 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1784 BS.cancelScheduling(VL, VL0); 1785 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1786 return; 1787 } 1788 } 1789 1790 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1791 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1792 for (unsigned i = 0, e = 2; i < e; ++i) { 1793 ValueList Operands; 1794 // Prepare the operand vector. 1795 for (Value *j : VL) 1796 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1797 1798 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1799 } 1800 return; 1801 } 1802 case Instruction::Store: { 1803 // Check if the stores are consecutive or of we need to swizzle them. 1804 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1805 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1806 BS.cancelScheduling(VL, VL0); 1807 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1808 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1809 return; 1810 } 1811 1812 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1813 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1814 1815 ValueList Operands; 1816 for (Value *j : VL) 1817 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1818 1819 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1820 return; 1821 } 1822 case Instruction::Call: { 1823 // Check if the calls are all to the same vectorizable intrinsic. 1824 CallInst *CI = cast<CallInst>(VL0); 1825 // Check if this is an Intrinsic call or something that can be 1826 // represented by an intrinsic call 1827 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1828 if (!isTriviallyVectorizable(ID)) { 1829 BS.cancelScheduling(VL, VL0); 1830 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1831 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1832 return; 1833 } 1834 Function *Int = CI->getCalledFunction(); 1835 Value *A1I = nullptr; 1836 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1837 A1I = CI->getArgOperand(1); 1838 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1839 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1840 if (!CI2 || CI2->getCalledFunction() != Int || 1841 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1842 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1843 BS.cancelScheduling(VL, VL0); 1844 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1845 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1846 << "\n"); 1847 return; 1848 } 1849 // ctlz,cttz and powi are special intrinsics whose second argument 1850 // should be same in order for them to be vectorized. 1851 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1852 Value *A1J = CI2->getArgOperand(1); 1853 if (A1I != A1J) { 1854 BS.cancelScheduling(VL, VL0); 1855 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1856 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1857 << " argument " << A1I << "!=" << A1J << "\n"); 1858 return; 1859 } 1860 } 1861 // Verify that the bundle operands are identical between the two calls. 1862 if (CI->hasOperandBundles() && 1863 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1864 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1865 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1866 BS.cancelScheduling(VL, VL0); 1867 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1868 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 1869 << *CI << "!=" << *VL[i] << '\n'); 1870 return; 1871 } 1872 } 1873 1874 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1875 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1876 ValueList Operands; 1877 // Prepare the operand vector. 1878 for (Value *j : VL) { 1879 CallInst *CI2 = dyn_cast<CallInst>(j); 1880 Operands.push_back(CI2->getArgOperand(i)); 1881 } 1882 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1883 } 1884 return; 1885 } 1886 case Instruction::ShuffleVector: 1887 // If this is not an alternate sequence of opcode like add-sub 1888 // then do not vectorize this instruction. 1889 if (!S.isAltShuffle()) { 1890 BS.cancelScheduling(VL, VL0); 1891 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1892 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1893 return; 1894 } 1895 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1896 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1897 1898 // Reorder operands if reordering would enable vectorization. 1899 if (isa<BinaryOperator>(VL0)) { 1900 ValueList Left, Right; 1901 reorderAltShuffleOperands(S, VL, Left, Right); 1902 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1903 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1904 return; 1905 } 1906 1907 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1908 ValueList Operands; 1909 // Prepare the operand vector. 1910 for (Value *j : VL) 1911 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1912 1913 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1914 } 1915 return; 1916 1917 default: 1918 BS.cancelScheduling(VL, VL0); 1919 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1920 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1921 return; 1922 } 1923 } 1924 1925 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1926 unsigned N; 1927 Type *EltTy; 1928 auto *ST = dyn_cast<StructType>(T); 1929 if (ST) { 1930 N = ST->getNumElements(); 1931 EltTy = *ST->element_begin(); 1932 } else { 1933 N = cast<ArrayType>(T)->getNumElements(); 1934 EltTy = cast<ArrayType>(T)->getElementType(); 1935 } 1936 if (!isValidElementType(EltTy)) 1937 return 0; 1938 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1939 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1940 return 0; 1941 if (ST) { 1942 // Check that struct is homogeneous. 1943 for (const auto *Ty : ST->elements()) 1944 if (Ty != EltTy) 1945 return 0; 1946 } 1947 return N; 1948 } 1949 1950 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1951 SmallVectorImpl<unsigned> &CurrentOrder) const { 1952 Instruction *E0 = cast<Instruction>(OpValue); 1953 assert(E0->getOpcode() == Instruction::ExtractElement || 1954 E0->getOpcode() == Instruction::ExtractValue); 1955 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1956 // Check if all of the extracts come from the same vector and from the 1957 // correct offset. 1958 Value *Vec = E0->getOperand(0); 1959 1960 CurrentOrder.clear(); 1961 1962 // We have to extract from a vector/aggregate with the same number of elements. 1963 unsigned NElts; 1964 if (E0->getOpcode() == Instruction::ExtractValue) { 1965 const DataLayout &DL = E0->getModule()->getDataLayout(); 1966 NElts = canMapToVector(Vec->getType(), DL); 1967 if (!NElts) 1968 return false; 1969 // Check if load can be rewritten as load of vector. 1970 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1971 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1972 return false; 1973 } else { 1974 NElts = Vec->getType()->getVectorNumElements(); 1975 } 1976 1977 if (NElts != VL.size()) 1978 return false; 1979 1980 // Check that all of the indices extract from the correct offset. 1981 bool ShouldKeepOrder = true; 1982 unsigned E = VL.size(); 1983 // Assign to all items the initial value E + 1 so we can check if the extract 1984 // instruction index was used already. 1985 // Also, later we can check that all the indices are used and we have a 1986 // consecutive access in the extract instructions, by checking that no 1987 // element of CurrentOrder still has value E + 1. 1988 CurrentOrder.assign(E, E + 1); 1989 unsigned I = 0; 1990 for (; I < E; ++I) { 1991 auto *Inst = cast<Instruction>(VL[I]); 1992 if (Inst->getOperand(0) != Vec) 1993 break; 1994 Optional<unsigned> Idx = getExtractIndex(Inst); 1995 if (!Idx) 1996 break; 1997 const unsigned ExtIdx = *Idx; 1998 if (ExtIdx != I) { 1999 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2000 break; 2001 ShouldKeepOrder = false; 2002 CurrentOrder[ExtIdx] = I; 2003 } else { 2004 if (CurrentOrder[I] != E + 1) 2005 break; 2006 CurrentOrder[I] = I; 2007 } 2008 } 2009 if (I < E) { 2010 CurrentOrder.clear(); 2011 return false; 2012 } 2013 2014 return ShouldKeepOrder; 2015 } 2016 2017 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2018 return I->hasOneUse() || 2019 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2020 return ScalarToTreeEntry.count(U) > 0; 2021 }); 2022 } 2023 2024 int BoUpSLP::getEntryCost(TreeEntry *E) { 2025 ArrayRef<Value*> VL = E->Scalars; 2026 2027 Type *ScalarTy = VL[0]->getType(); 2028 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2029 ScalarTy = SI->getValueOperand()->getType(); 2030 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2031 ScalarTy = CI->getOperand(0)->getType(); 2032 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2033 2034 // If we have computed a smaller type for the expression, update VecTy so 2035 // that the costs will be accurate. 2036 if (MinBWs.count(VL[0])) 2037 VecTy = VectorType::get( 2038 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2039 2040 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2041 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2042 int ReuseShuffleCost = 0; 2043 if (NeedToShuffleReuses) { 2044 ReuseShuffleCost = 2045 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2046 } 2047 if (E->NeedToGather) { 2048 if (allConstant(VL)) 2049 return 0; 2050 if (isSplat(VL)) { 2051 return ReuseShuffleCost + 2052 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2053 } 2054 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement && 2055 allSameType(VL) && allSameBlock(VL)) { 2056 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2057 if (ShuffleKind.hasValue()) { 2058 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2059 for (auto *V : VL) { 2060 // If all users of instruction are going to be vectorized and this 2061 // instruction itself is not going to be vectorized, consider this 2062 // instruction as dead and remove its cost from the final cost of the 2063 // vectorized tree. 2064 if (areAllUsersVectorized(cast<Instruction>(V)) && 2065 !ScalarToTreeEntry.count(V)) { 2066 auto *IO = cast<ConstantInt>( 2067 cast<ExtractElementInst>(V)->getIndexOperand()); 2068 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2069 IO->getZExtValue()); 2070 } 2071 } 2072 return ReuseShuffleCost + Cost; 2073 } 2074 } 2075 return ReuseShuffleCost + getGatherCost(VL); 2076 } 2077 InstructionsState S = getSameOpcode(VL); 2078 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2079 Instruction *VL0 = cast<Instruction>(S.OpValue); 2080 unsigned ShuffleOrOp = S.isAltShuffle() ? 2081 (unsigned) Instruction::ShuffleVector : S.Opcode; 2082 switch (ShuffleOrOp) { 2083 case Instruction::PHI: 2084 return 0; 2085 2086 case Instruction::ExtractValue: 2087 case Instruction::ExtractElement: 2088 if (NeedToShuffleReuses) { 2089 unsigned Idx = 0; 2090 for (unsigned I : E->ReuseShuffleIndices) { 2091 if (ShuffleOrOp == Instruction::ExtractElement) { 2092 auto *IO = cast<ConstantInt>( 2093 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2094 Idx = IO->getZExtValue(); 2095 ReuseShuffleCost -= TTI->getVectorInstrCost( 2096 Instruction::ExtractElement, VecTy, Idx); 2097 } else { 2098 ReuseShuffleCost -= TTI->getVectorInstrCost( 2099 Instruction::ExtractElement, VecTy, Idx); 2100 ++Idx; 2101 } 2102 } 2103 Idx = ReuseShuffleNumbers; 2104 for (Value *V : VL) { 2105 if (ShuffleOrOp == Instruction::ExtractElement) { 2106 auto *IO = cast<ConstantInt>( 2107 cast<ExtractElementInst>(V)->getIndexOperand()); 2108 Idx = IO->getZExtValue(); 2109 } else { 2110 --Idx; 2111 } 2112 ReuseShuffleCost += 2113 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2114 } 2115 } 2116 if (!E->NeedToGather) { 2117 int DeadCost = ReuseShuffleCost; 2118 if (!E->ReorderIndices.empty()) { 2119 // TODO: Merge this shuffle with the ReuseShuffleCost. 2120 DeadCost += TTI->getShuffleCost( 2121 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2122 } 2123 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2124 Instruction *E = cast<Instruction>(VL[i]); 2125 // If all users are going to be vectorized, instruction can be 2126 // considered as dead. 2127 // The same, if have only one user, it will be vectorized for sure. 2128 if (areAllUsersVectorized(E)) { 2129 // Take credit for instruction that will become dead. 2130 if (E->hasOneUse()) { 2131 Instruction *Ext = E->user_back(); 2132 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2133 all_of(Ext->users(), 2134 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2135 // Use getExtractWithExtendCost() to calculate the cost of 2136 // extractelement/ext pair. 2137 DeadCost -= TTI->getExtractWithExtendCost( 2138 Ext->getOpcode(), Ext->getType(), VecTy, i); 2139 // Add back the cost of s|zext which is subtracted seperately. 2140 DeadCost += TTI->getCastInstrCost( 2141 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2142 continue; 2143 } 2144 } 2145 DeadCost -= 2146 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2147 } 2148 } 2149 return DeadCost; 2150 } 2151 return ReuseShuffleCost + getGatherCost(VL); 2152 2153 case Instruction::ZExt: 2154 case Instruction::SExt: 2155 case Instruction::FPToUI: 2156 case Instruction::FPToSI: 2157 case Instruction::FPExt: 2158 case Instruction::PtrToInt: 2159 case Instruction::IntToPtr: 2160 case Instruction::SIToFP: 2161 case Instruction::UIToFP: 2162 case Instruction::Trunc: 2163 case Instruction::FPTrunc: 2164 case Instruction::BitCast: { 2165 Type *SrcTy = VL0->getOperand(0)->getType(); 2166 if (NeedToShuffleReuses) { 2167 ReuseShuffleCost -= 2168 (ReuseShuffleNumbers - VL.size()) * 2169 TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0); 2170 } 2171 2172 // Calculate the cost of this instruction. 2173 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2174 VL0->getType(), SrcTy, VL0); 2175 2176 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2177 int VecCost = 0; 2178 // Check if the values are candidates to demote. 2179 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2180 VecCost = ReuseShuffleCost + 2181 TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2182 } 2183 return VecCost - ScalarCost; 2184 } 2185 case Instruction::FCmp: 2186 case Instruction::ICmp: 2187 case Instruction::Select: { 2188 // Calculate the cost of this instruction. 2189 if (NeedToShuffleReuses) { 2190 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2191 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, 2192 Builder.getInt1Ty(), VL0); 2193 } 2194 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2195 int ScalarCost = VecTy->getNumElements() * 2196 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2197 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2198 return ReuseShuffleCost + VecCost - ScalarCost; 2199 } 2200 case Instruction::Add: 2201 case Instruction::FAdd: 2202 case Instruction::Sub: 2203 case Instruction::FSub: 2204 case Instruction::Mul: 2205 case Instruction::FMul: 2206 case Instruction::UDiv: 2207 case Instruction::SDiv: 2208 case Instruction::FDiv: 2209 case Instruction::URem: 2210 case Instruction::SRem: 2211 case Instruction::FRem: 2212 case Instruction::Shl: 2213 case Instruction::LShr: 2214 case Instruction::AShr: 2215 case Instruction::And: 2216 case Instruction::Or: 2217 case Instruction::Xor: { 2218 // Certain instructions can be cheaper to vectorize if they have a 2219 // constant second vector operand. 2220 TargetTransformInfo::OperandValueKind Op1VK = 2221 TargetTransformInfo::OK_AnyValue; 2222 TargetTransformInfo::OperandValueKind Op2VK = 2223 TargetTransformInfo::OK_UniformConstantValue; 2224 TargetTransformInfo::OperandValueProperties Op1VP = 2225 TargetTransformInfo::OP_None; 2226 TargetTransformInfo::OperandValueProperties Op2VP = 2227 TargetTransformInfo::OP_PowerOf2; 2228 2229 // If all operands are exactly the same ConstantInt then set the 2230 // operand kind to OK_UniformConstantValue. 2231 // If instead not all operands are constants, then set the operand kind 2232 // to OK_AnyValue. If all operands are constants but not the same, 2233 // then set the operand kind to OK_NonUniformConstantValue. 2234 ConstantInt *CInt0 = nullptr; 2235 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2236 const Instruction *I = cast<Instruction>(VL[i]); 2237 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2238 if (!CInt) { 2239 Op2VK = TargetTransformInfo::OK_AnyValue; 2240 Op2VP = TargetTransformInfo::OP_None; 2241 break; 2242 } 2243 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2244 !CInt->getValue().isPowerOf2()) 2245 Op2VP = TargetTransformInfo::OP_None; 2246 if (i == 0) { 2247 CInt0 = CInt; 2248 continue; 2249 } 2250 if (CInt0 != CInt) 2251 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2252 } 2253 2254 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2255 if (NeedToShuffleReuses) { 2256 ReuseShuffleCost -= 2257 (ReuseShuffleNumbers - VL.size()) * 2258 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2259 Op2VP, Operands); 2260 } 2261 int ScalarCost = 2262 VecTy->getNumElements() * 2263 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2264 Op2VP, Operands); 2265 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2266 Op1VP, Op2VP, Operands); 2267 return ReuseShuffleCost + VecCost - ScalarCost; 2268 } 2269 case Instruction::GetElementPtr: { 2270 TargetTransformInfo::OperandValueKind Op1VK = 2271 TargetTransformInfo::OK_AnyValue; 2272 TargetTransformInfo::OperandValueKind Op2VK = 2273 TargetTransformInfo::OK_UniformConstantValue; 2274 2275 if (NeedToShuffleReuses) { 2276 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2277 TTI->getArithmeticInstrCost(Instruction::Add, 2278 ScalarTy, Op1VK, Op2VK); 2279 } 2280 int ScalarCost = 2281 VecTy->getNumElements() * 2282 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2283 int VecCost = 2284 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2285 2286 return ReuseShuffleCost + VecCost - ScalarCost; 2287 } 2288 case Instruction::Load: { 2289 // Cost of wide load - cost of scalar loads. 2290 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2291 if (NeedToShuffleReuses) { 2292 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2293 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 2294 alignment, 0, VL0); 2295 } 2296 int ScalarLdCost = VecTy->getNumElements() * 2297 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2298 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2299 VecTy, alignment, 0, VL0); 2300 if (!E->ReorderIndices.empty()) { 2301 // TODO: Merge this shuffle with the ReuseShuffleCost. 2302 VecLdCost += TTI->getShuffleCost( 2303 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2304 } 2305 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2306 } 2307 case Instruction::Store: { 2308 // We know that we can merge the stores. Calculate the cost. 2309 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2310 if (NeedToShuffleReuses) { 2311 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2312 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 2313 alignment, 0, VL0); 2314 } 2315 int ScalarStCost = VecTy->getNumElements() * 2316 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2317 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2318 VecTy, alignment, 0, VL0); 2319 return ReuseShuffleCost + VecStCost - ScalarStCost; 2320 } 2321 case Instruction::Call: { 2322 CallInst *CI = cast<CallInst>(VL0); 2323 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2324 2325 // Calculate the cost of the scalar and vector calls. 2326 SmallVector<Type*, 4> ScalarTys; 2327 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2328 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2329 2330 FastMathFlags FMF; 2331 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2332 FMF = FPMO->getFastMathFlags(); 2333 2334 if (NeedToShuffleReuses) { 2335 ReuseShuffleCost -= 2336 (ReuseShuffleNumbers - VL.size()) * 2337 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2338 } 2339 int ScalarCallCost = VecTy->getNumElements() * 2340 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2341 2342 SmallVector<Value *, 4> Args(CI->arg_operands()); 2343 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2344 VecTy->getNumElements()); 2345 2346 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2347 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2348 << " for " << *CI << "\n"); 2349 2350 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2351 } 2352 case Instruction::ShuffleVector: { 2353 assert(S.isAltShuffle() && Instruction::isBinaryOp(S.Opcode) && 2354 Instruction::isBinaryOp(S.AltOpcode) && 2355 "Invalid Shuffle Vector Operand"); 2356 int ScalarCost = 0; 2357 if (NeedToShuffleReuses) { 2358 for (unsigned Idx : E->ReuseShuffleIndices) { 2359 Instruction *I = cast<Instruction>(VL[Idx]); 2360 ReuseShuffleCost -= 2361 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy); 2362 } 2363 for (Value *V : VL) { 2364 Instruction *I = cast<Instruction>(V); 2365 ReuseShuffleCost += 2366 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy); 2367 } 2368 } 2369 int VecCost = 0; 2370 for (Value *i : VL) { 2371 Instruction *I = cast<Instruction>(i); 2372 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2373 ScalarCost += TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy); 2374 } 2375 // VecCost is equal to sum of the cost of creating 2 vectors 2376 // and the cost of creating shuffle. 2377 VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy); 2378 VecCost += TTI->getArithmeticInstrCost(S.AltOpcode, VecTy); 2379 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2380 return ReuseShuffleCost + VecCost - ScalarCost; 2381 } 2382 default: 2383 llvm_unreachable("Unknown instruction"); 2384 } 2385 } 2386 2387 bool BoUpSLP::isFullyVectorizableTinyTree() { 2388 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2389 << VectorizableTree.size() << " is fully vectorizable .\n"); 2390 2391 // We only handle trees of heights 1 and 2. 2392 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2393 return true; 2394 2395 if (VectorizableTree.size() != 2) 2396 return false; 2397 2398 // Handle splat and all-constants stores. 2399 if (!VectorizableTree[0].NeedToGather && 2400 (allConstant(VectorizableTree[1].Scalars) || 2401 isSplat(VectorizableTree[1].Scalars))) 2402 return true; 2403 2404 // Gathering cost would be too much for tiny trees. 2405 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2406 return false; 2407 2408 return true; 2409 } 2410 2411 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2412 // We can vectorize the tree if its size is greater than or equal to the 2413 // minimum size specified by the MinTreeSize command line option. 2414 if (VectorizableTree.size() >= MinTreeSize) 2415 return false; 2416 2417 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2418 // can vectorize it if we can prove it fully vectorizable. 2419 if (isFullyVectorizableTinyTree()) 2420 return false; 2421 2422 assert(VectorizableTree.empty() 2423 ? ExternalUses.empty() 2424 : true && "We shouldn't have any external users"); 2425 2426 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2427 // vectorizable. 2428 return true; 2429 } 2430 2431 int BoUpSLP::getSpillCost() { 2432 // Walk from the bottom of the tree to the top, tracking which values are 2433 // live. When we see a call instruction that is not part of our tree, 2434 // query TTI to see if there is a cost to keeping values live over it 2435 // (for example, if spills and fills are required). 2436 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2437 int Cost = 0; 2438 2439 SmallPtrSet<Instruction*, 4> LiveValues; 2440 Instruction *PrevInst = nullptr; 2441 2442 for (const auto &N : VectorizableTree) { 2443 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2444 if (!Inst) 2445 continue; 2446 2447 if (!PrevInst) { 2448 PrevInst = Inst; 2449 continue; 2450 } 2451 2452 // Update LiveValues. 2453 LiveValues.erase(PrevInst); 2454 for (auto &J : PrevInst->operands()) { 2455 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2456 LiveValues.insert(cast<Instruction>(&*J)); 2457 } 2458 2459 LLVM_DEBUG({ 2460 dbgs() << "SLP: #LV: " << LiveValues.size(); 2461 for (auto *X : LiveValues) 2462 dbgs() << " " << X->getName(); 2463 dbgs() << ", Looking at "; 2464 Inst->dump(); 2465 }); 2466 2467 // Now find the sequence of instructions between PrevInst and Inst. 2468 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2469 PrevInstIt = 2470 PrevInst->getIterator().getReverse(); 2471 while (InstIt != PrevInstIt) { 2472 if (PrevInstIt == PrevInst->getParent()->rend()) { 2473 PrevInstIt = Inst->getParent()->rbegin(); 2474 continue; 2475 } 2476 2477 // Debug informations don't impact spill cost. 2478 if ((isa<CallInst>(&*PrevInstIt) && 2479 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2480 &*PrevInstIt != PrevInst) { 2481 SmallVector<Type*, 4> V; 2482 for (auto *II : LiveValues) 2483 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2484 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2485 } 2486 2487 ++PrevInstIt; 2488 } 2489 2490 PrevInst = Inst; 2491 } 2492 2493 return Cost; 2494 } 2495 2496 int BoUpSLP::getTreeCost() { 2497 int Cost = 0; 2498 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2499 << VectorizableTree.size() << ".\n"); 2500 2501 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2502 2503 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2504 TreeEntry &TE = VectorizableTree[I]; 2505 2506 // We create duplicate tree entries for gather sequences that have multiple 2507 // uses. However, we should not compute the cost of duplicate sequences. 2508 // For example, if we have a build vector (i.e., insertelement sequence) 2509 // that is used by more than one vector instruction, we only need to 2510 // compute the cost of the insertelement instructions once. The redundent 2511 // instructions will be eliminated by CSE. 2512 // 2513 // We should consider not creating duplicate tree entries for gather 2514 // sequences, and instead add additional edges to the tree representing 2515 // their uses. Since such an approach results in fewer total entries, 2516 // existing heuristics based on tree size may yeild different results. 2517 // 2518 if (TE.NeedToGather && 2519 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2520 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2521 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2522 })) 2523 continue; 2524 2525 int C = getEntryCost(&TE); 2526 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2527 << " for bundle that starts with " << *TE.Scalars[0] 2528 << ".\n"); 2529 Cost += C; 2530 } 2531 2532 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2533 int ExtractCost = 0; 2534 for (ExternalUser &EU : ExternalUses) { 2535 // We only add extract cost once for the same scalar. 2536 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2537 continue; 2538 2539 // Uses by ephemeral values are free (because the ephemeral value will be 2540 // removed prior to code generation, and so the extraction will be 2541 // removed as well). 2542 if (EphValues.count(EU.User)) 2543 continue; 2544 2545 // If we plan to rewrite the tree in a smaller type, we will need to sign 2546 // extend the extracted value back to the original type. Here, we account 2547 // for the extract and the added cost of the sign extend if needed. 2548 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2549 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2550 if (MinBWs.count(ScalarRoot)) { 2551 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2552 auto Extend = 2553 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2554 VecTy = VectorType::get(MinTy, BundleWidth); 2555 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2556 VecTy, EU.Lane); 2557 } else { 2558 ExtractCost += 2559 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2560 } 2561 } 2562 2563 int SpillCost = getSpillCost(); 2564 Cost += SpillCost + ExtractCost; 2565 2566 std::string Str; 2567 { 2568 raw_string_ostream OS(Str); 2569 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2570 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2571 << "SLP: Total Cost = " << Cost << ".\n"; 2572 } 2573 LLVM_DEBUG(dbgs() << Str); 2574 2575 if (ViewSLPTree) 2576 ViewGraph(this, "SLP" + F->getName(), false, Str); 2577 2578 return Cost; 2579 } 2580 2581 int BoUpSLP::getGatherCost(Type *Ty, 2582 const DenseSet<unsigned> &ShuffledIndices) { 2583 int Cost = 0; 2584 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2585 if (!ShuffledIndices.count(i)) 2586 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2587 if (!ShuffledIndices.empty()) 2588 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2589 return Cost; 2590 } 2591 2592 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2593 // Find the type of the operands in VL. 2594 Type *ScalarTy = VL[0]->getType(); 2595 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2596 ScalarTy = SI->getValueOperand()->getType(); 2597 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2598 // Find the cost of inserting/extracting values from the vector. 2599 // Check if the same elements are inserted several times and count them as 2600 // shuffle candidates. 2601 DenseSet<unsigned> ShuffledElements; 2602 DenseSet<Value *> UniqueElements; 2603 // Iterate in reverse order to consider insert elements with the high cost. 2604 for (unsigned I = VL.size(); I > 0; --I) { 2605 unsigned Idx = I - 1; 2606 if (!UniqueElements.insert(VL[Idx]).second) 2607 ShuffledElements.insert(Idx); 2608 } 2609 return getGatherCost(VecTy, ShuffledElements); 2610 } 2611 2612 // Reorder commutative operations in alternate shuffle if the resulting vectors 2613 // are consecutive loads. This would allow us to vectorize the tree. 2614 // If we have something like- 2615 // load a[0] - load b[0] 2616 // load b[1] + load a[1] 2617 // load a[2] - load b[2] 2618 // load a[3] + load b[3] 2619 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2620 // code. 2621 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S, 2622 ArrayRef<Value *> VL, 2623 SmallVectorImpl<Value *> &Left, 2624 SmallVectorImpl<Value *> &Right) { 2625 // Push left and right operands of binary operation into Left and Right 2626 for (Value *V : VL) { 2627 auto *I = cast<Instruction>(V); 2628 assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); 2629 Left.push_back(I->getOperand(0)); 2630 Right.push_back(I->getOperand(1)); 2631 } 2632 2633 // Reorder if we have a commutative operation and consecutive access 2634 // are on either side of the alternate instructions. 2635 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2636 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2637 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2638 Instruction *VL1 = cast<Instruction>(VL[j]); 2639 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2640 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2641 std::swap(Left[j], Right[j]); 2642 continue; 2643 } else if (VL2->isCommutative() && 2644 isConsecutiveAccess(L, L1, *DL, *SE)) { 2645 std::swap(Left[j + 1], Right[j + 1]); 2646 continue; 2647 } 2648 // else unchanged 2649 } 2650 } 2651 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2652 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2653 Instruction *VL1 = cast<Instruction>(VL[j]); 2654 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2655 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2656 std::swap(Left[j], Right[j]); 2657 continue; 2658 } else if (VL2->isCommutative() && 2659 isConsecutiveAccess(L, L1, *DL, *SE)) { 2660 std::swap(Left[j + 1], Right[j + 1]); 2661 continue; 2662 } 2663 // else unchanged 2664 } 2665 } 2666 } 2667 } 2668 2669 // Return true if I should be commuted before adding it's left and right 2670 // operands to the arrays Left and Right. 2671 // 2672 // The vectorizer is trying to either have all elements one side being 2673 // instruction with the same opcode to enable further vectorization, or having 2674 // a splat to lower the vectorizing cost. 2675 static bool shouldReorderOperands( 2676 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2677 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2678 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2679 VLeft = I.getOperand(0); 2680 VRight = I.getOperand(1); 2681 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2682 if (SplatRight) { 2683 if (VRight == Right[i - 1]) 2684 // Preserve SplatRight 2685 return false; 2686 if (VLeft == Right[i - 1]) { 2687 // Commuting would preserve SplatRight, but we don't want to break 2688 // SplatLeft either, i.e. preserve the original order if possible. 2689 // (FIXME: why do we care?) 2690 if (SplatLeft && VLeft == Left[i - 1]) 2691 return false; 2692 return true; 2693 } 2694 } 2695 // Symmetrically handle Right side. 2696 if (SplatLeft) { 2697 if (VLeft == Left[i - 1]) 2698 // Preserve SplatLeft 2699 return false; 2700 if (VRight == Left[i - 1]) 2701 return true; 2702 } 2703 2704 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2705 Instruction *IRight = dyn_cast<Instruction>(VRight); 2706 2707 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2708 // it and not the right, in this case we want to commute. 2709 if (AllSameOpcodeRight) { 2710 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2711 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2712 // Do not commute, a match on the right preserves AllSameOpcodeRight 2713 return false; 2714 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2715 // We have a match and may want to commute, but first check if there is 2716 // not also a match on the existing operands on the Left to preserve 2717 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2718 // (FIXME: why do we care?) 2719 if (AllSameOpcodeLeft && ILeft && 2720 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2721 return false; 2722 return true; 2723 } 2724 } 2725 // Symmetrically handle Left side. 2726 if (AllSameOpcodeLeft) { 2727 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2728 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2729 return false; 2730 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2731 return true; 2732 } 2733 return false; 2734 } 2735 2736 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2737 ArrayRef<Value *> VL, 2738 SmallVectorImpl<Value *> &Left, 2739 SmallVectorImpl<Value *> &Right) { 2740 if (!VL.empty()) { 2741 // Peel the first iteration out of the loop since there's nothing 2742 // interesting to do anyway and it simplifies the checks in the loop. 2743 auto *I = cast<Instruction>(VL[0]); 2744 Value *VLeft = I->getOperand(0); 2745 Value *VRight = I->getOperand(1); 2746 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2747 // Favor having instruction to the right. FIXME: why? 2748 std::swap(VLeft, VRight); 2749 Left.push_back(VLeft); 2750 Right.push_back(VRight); 2751 } 2752 2753 // Keep track if we have instructions with all the same opcode on one side. 2754 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2755 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2756 // Keep track if we have one side with all the same value (broadcast). 2757 bool SplatLeft = true; 2758 bool SplatRight = true; 2759 2760 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2761 Instruction *I = cast<Instruction>(VL[i]); 2762 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2763 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2764 "Can only process commutative instruction"); 2765 // Commute to favor either a splat or maximizing having the same opcodes on 2766 // one side. 2767 Value *VLeft; 2768 Value *VRight; 2769 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2770 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2771 VRight)) { 2772 Left.push_back(VRight); 2773 Right.push_back(VLeft); 2774 } else { 2775 Left.push_back(VLeft); 2776 Right.push_back(VRight); 2777 } 2778 // Update Splat* and AllSameOpcode* after the insertion. 2779 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2780 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2781 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2782 (cast<Instruction>(Left[i - 1])->getOpcode() == 2783 cast<Instruction>(Left[i])->getOpcode()); 2784 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2785 (cast<Instruction>(Right[i - 1])->getOpcode() == 2786 cast<Instruction>(Right[i])->getOpcode()); 2787 } 2788 2789 // If one operand end up being broadcast, return this operand order. 2790 if (SplatRight || SplatLeft) 2791 return; 2792 2793 // Finally check if we can get longer vectorizable chain by reordering 2794 // without breaking the good operand order detected above. 2795 // E.g. If we have something like- 2796 // load a[0] load b[0] 2797 // load b[1] load a[1] 2798 // load a[2] load b[2] 2799 // load a[3] load b[3] 2800 // Reordering the second load b[1] load a[1] would allow us to vectorize 2801 // this code and we still retain AllSameOpcode property. 2802 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2803 // such as- 2804 // add a[0],c[0] load b[0] 2805 // add a[1],c[2] load b[1] 2806 // b[2] load b[2] 2807 // add a[3],c[3] load b[3] 2808 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2809 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2810 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2811 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2812 std::swap(Left[j + 1], Right[j + 1]); 2813 continue; 2814 } 2815 } 2816 } 2817 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2818 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2819 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2820 std::swap(Left[j + 1], Right[j + 1]); 2821 continue; 2822 } 2823 } 2824 } 2825 // else unchanged 2826 } 2827 } 2828 2829 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2830 const InstructionsState &S) { 2831 // Get the basic block this bundle is in. All instructions in the bundle 2832 // should be in this block. 2833 auto *Front = cast<Instruction>(S.OpValue); 2834 auto *BB = Front->getParent(); 2835 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2836 auto *I = cast<Instruction>(V); 2837 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 2838 })); 2839 2840 // The last instruction in the bundle in program order. 2841 Instruction *LastInst = nullptr; 2842 2843 // Find the last instruction. The common case should be that BB has been 2844 // scheduled, and the last instruction is VL.back(). So we start with 2845 // VL.back() and iterate over schedule data until we reach the end of the 2846 // bundle. The end of the bundle is marked by null ScheduleData. 2847 if (BlocksSchedules.count(BB)) { 2848 auto *Bundle = 2849 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2850 if (Bundle && Bundle->isPartOfBundle()) 2851 for (; Bundle; Bundle = Bundle->NextInBundle) 2852 if (Bundle->OpValue == Bundle->Inst) 2853 LastInst = Bundle->Inst; 2854 } 2855 2856 // LastInst can still be null at this point if there's either not an entry 2857 // for BB in BlocksSchedules or there's no ScheduleData available for 2858 // VL.back(). This can be the case if buildTree_rec aborts for various 2859 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2860 // size is reached, etc.). ScheduleData is initialized in the scheduling 2861 // "dry-run". 2862 // 2863 // If this happens, we can still find the last instruction by brute force. We 2864 // iterate forwards from Front (inclusive) until we either see all 2865 // instructions in the bundle or reach the end of the block. If Front is the 2866 // last instruction in program order, LastInst will be set to Front, and we 2867 // will visit all the remaining instructions in the block. 2868 // 2869 // One of the reasons we exit early from buildTree_rec is to place an upper 2870 // bound on compile-time. Thus, taking an additional compile-time hit here is 2871 // not ideal. However, this should be exceedingly rare since it requires that 2872 // we both exit early from buildTree_rec and that the bundle be out-of-order 2873 // (causing us to iterate all the way to the end of the block). 2874 if (!LastInst) { 2875 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2876 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2877 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 2878 LastInst = &I; 2879 if (Bundle.empty()) 2880 break; 2881 } 2882 } 2883 2884 // Set the insertion point after the last instruction in the bundle. Set the 2885 // debug location to Front. 2886 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2887 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2888 } 2889 2890 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2891 Value *Vec = UndefValue::get(Ty); 2892 // Generate the 'InsertElement' instruction. 2893 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2894 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2895 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2896 GatherSeq.insert(Insrt); 2897 CSEBlocks.insert(Insrt->getParent()); 2898 2899 // Add to our 'need-to-extract' list. 2900 if (TreeEntry *E = getTreeEntry(VL[i])) { 2901 // Find which lane we need to extract. 2902 int FoundLane = -1; 2903 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2904 // Is this the lane of the scalar that we are looking for ? 2905 if (E->Scalars[Lane] == VL[i]) { 2906 FoundLane = Lane; 2907 break; 2908 } 2909 } 2910 assert(FoundLane >= 0 && "Could not find the correct lane"); 2911 if (!E->ReuseShuffleIndices.empty()) { 2912 FoundLane = 2913 std::distance(E->ReuseShuffleIndices.begin(), 2914 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2915 } 2916 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2917 } 2918 } 2919 } 2920 2921 return Vec; 2922 } 2923 2924 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2925 InstructionsState S = getSameOpcode(VL); 2926 if (S.Opcode) { 2927 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2928 if (E->isSame(VL)) { 2929 Value *V = vectorizeTree(E); 2930 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2931 // We need to get the vectorized value but without shuffle. 2932 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2933 V = SV->getOperand(0); 2934 } else { 2935 // Reshuffle to get only unique values. 2936 SmallVector<unsigned, 4> UniqueIdxs; 2937 SmallSet<unsigned, 4> UsedIdxs; 2938 for(unsigned Idx : E->ReuseShuffleIndices) 2939 if (UsedIdxs.insert(Idx).second) 2940 UniqueIdxs.emplace_back(Idx); 2941 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2942 UniqueIdxs); 2943 } 2944 } 2945 return V; 2946 } 2947 } 2948 } 2949 2950 Type *ScalarTy = S.OpValue->getType(); 2951 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2952 ScalarTy = SI->getValueOperand()->getType(); 2953 2954 // Check that every instruction appears once in this bundle. 2955 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2956 SmallVector<Value *, 4> UniqueValues; 2957 if (VL.size() > 2) { 2958 DenseMap<Value *, unsigned> UniquePositions; 2959 for (Value *V : VL) { 2960 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2961 ReuseShuffleIndicies.emplace_back(Res.first->second); 2962 if (Res.second || isa<Constant>(V)) 2963 UniqueValues.emplace_back(V); 2964 } 2965 // Do not shuffle single element or if number of unique values is not power 2966 // of 2. 2967 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 2968 !llvm::isPowerOf2_32(UniqueValues.size())) 2969 ReuseShuffleIndicies.clear(); 2970 else 2971 VL = UniqueValues; 2972 } 2973 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2974 2975 Value *V = Gather(VL, VecTy); 2976 if (!ReuseShuffleIndicies.empty()) { 2977 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2978 ReuseShuffleIndicies, "shuffle"); 2979 if (auto *I = dyn_cast<Instruction>(V)) { 2980 GatherSeq.insert(I); 2981 CSEBlocks.insert(I->getParent()); 2982 } 2983 } 2984 return V; 2985 } 2986 2987 static void inversePermutation(ArrayRef<unsigned> Indices, 2988 SmallVectorImpl<unsigned> &Mask) { 2989 Mask.clear(); 2990 const unsigned E = Indices.size(); 2991 Mask.resize(E); 2992 for (unsigned I = 0; I < E; ++I) 2993 Mask[Indices[I]] = I; 2994 } 2995 2996 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2997 IRBuilder<>::InsertPointGuard Guard(Builder); 2998 2999 if (E->VectorizedValue) { 3000 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3001 return E->VectorizedValue; 3002 } 3003 3004 InstructionsState S = getSameOpcode(E->Scalars); 3005 Instruction *VL0 = cast<Instruction>(S.OpValue); 3006 Type *ScalarTy = VL0->getType(); 3007 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3008 ScalarTy = SI->getValueOperand()->getType(); 3009 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3010 3011 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3012 3013 if (E->NeedToGather) { 3014 setInsertPointAfterBundle(E->Scalars, S); 3015 auto *V = Gather(E->Scalars, VecTy); 3016 if (NeedToShuffleReuses) { 3017 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3018 E->ReuseShuffleIndices, "shuffle"); 3019 if (auto *I = dyn_cast<Instruction>(V)) { 3020 GatherSeq.insert(I); 3021 CSEBlocks.insert(I->getParent()); 3022 } 3023 } 3024 E->VectorizedValue = V; 3025 return V; 3026 } 3027 3028 unsigned ShuffleOrOp = S.isAltShuffle() ? 3029 (unsigned) Instruction::ShuffleVector : S.Opcode; 3030 switch (ShuffleOrOp) { 3031 case Instruction::PHI: { 3032 PHINode *PH = dyn_cast<PHINode>(VL0); 3033 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3034 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3035 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3036 Value *V = NewPhi; 3037 if (NeedToShuffleReuses) { 3038 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3039 E->ReuseShuffleIndices, "shuffle"); 3040 } 3041 E->VectorizedValue = V; 3042 3043 // PHINodes may have multiple entries from the same block. We want to 3044 // visit every block once. 3045 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3046 3047 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3048 ValueList Operands; 3049 BasicBlock *IBB = PH->getIncomingBlock(i); 3050 3051 if (!VisitedBBs.insert(IBB).second) { 3052 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3053 continue; 3054 } 3055 3056 // Prepare the operand vector. 3057 for (Value *V : E->Scalars) 3058 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3059 3060 Builder.SetInsertPoint(IBB->getTerminator()); 3061 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3062 Value *Vec = vectorizeTree(Operands); 3063 NewPhi->addIncoming(Vec, IBB); 3064 } 3065 3066 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3067 "Invalid number of incoming values"); 3068 return V; 3069 } 3070 3071 case Instruction::ExtractElement: { 3072 if (!E->NeedToGather) { 3073 Value *V = VL0->getOperand(0); 3074 if (!E->ReorderIndices.empty()) { 3075 OrdersType Mask; 3076 inversePermutation(E->ReorderIndices, Mask); 3077 Builder.SetInsertPoint(VL0); 3078 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3079 "reorder_shuffle"); 3080 } 3081 if (NeedToShuffleReuses) { 3082 // TODO: Merge this shuffle with the ReorderShuffleMask. 3083 if (!E->ReorderIndices.empty()) 3084 Builder.SetInsertPoint(VL0); 3085 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3086 E->ReuseShuffleIndices, "shuffle"); 3087 } 3088 E->VectorizedValue = V; 3089 return V; 3090 } 3091 setInsertPointAfterBundle(E->Scalars, S); 3092 auto *V = Gather(E->Scalars, VecTy); 3093 if (NeedToShuffleReuses) { 3094 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3095 E->ReuseShuffleIndices, "shuffle"); 3096 if (auto *I = dyn_cast<Instruction>(V)) { 3097 GatherSeq.insert(I); 3098 CSEBlocks.insert(I->getParent()); 3099 } 3100 } 3101 E->VectorizedValue = V; 3102 return V; 3103 } 3104 case Instruction::ExtractValue: { 3105 if (!E->NeedToGather) { 3106 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3107 Builder.SetInsertPoint(LI); 3108 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3109 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3110 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3111 Value *NewV = propagateMetadata(V, E->Scalars); 3112 if (!E->ReorderIndices.empty()) { 3113 OrdersType Mask; 3114 inversePermutation(E->ReorderIndices, Mask); 3115 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3116 "reorder_shuffle"); 3117 } 3118 if (NeedToShuffleReuses) { 3119 // TODO: Merge this shuffle with the ReorderShuffleMask. 3120 NewV = Builder.CreateShuffleVector( 3121 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3122 } 3123 E->VectorizedValue = NewV; 3124 return NewV; 3125 } 3126 setInsertPointAfterBundle(E->Scalars, S); 3127 auto *V = Gather(E->Scalars, VecTy); 3128 if (NeedToShuffleReuses) { 3129 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3130 E->ReuseShuffleIndices, "shuffle"); 3131 if (auto *I = dyn_cast<Instruction>(V)) { 3132 GatherSeq.insert(I); 3133 CSEBlocks.insert(I->getParent()); 3134 } 3135 } 3136 E->VectorizedValue = V; 3137 return V; 3138 } 3139 case Instruction::ZExt: 3140 case Instruction::SExt: 3141 case Instruction::FPToUI: 3142 case Instruction::FPToSI: 3143 case Instruction::FPExt: 3144 case Instruction::PtrToInt: 3145 case Instruction::IntToPtr: 3146 case Instruction::SIToFP: 3147 case Instruction::UIToFP: 3148 case Instruction::Trunc: 3149 case Instruction::FPTrunc: 3150 case Instruction::BitCast: { 3151 ValueList INVL; 3152 for (Value *V : E->Scalars) 3153 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3154 3155 setInsertPointAfterBundle(E->Scalars, S); 3156 3157 Value *InVec = vectorizeTree(INVL); 3158 3159 if (E->VectorizedValue) { 3160 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3161 return E->VectorizedValue; 3162 } 3163 3164 CastInst *CI = dyn_cast<CastInst>(VL0); 3165 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3166 if (NeedToShuffleReuses) { 3167 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3168 E->ReuseShuffleIndices, "shuffle"); 3169 } 3170 E->VectorizedValue = V; 3171 ++NumVectorInstructions; 3172 return V; 3173 } 3174 case Instruction::FCmp: 3175 case Instruction::ICmp: { 3176 ValueList LHSV, RHSV; 3177 for (Value *V : E->Scalars) { 3178 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3179 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3180 } 3181 3182 setInsertPointAfterBundle(E->Scalars, S); 3183 3184 Value *L = vectorizeTree(LHSV); 3185 Value *R = vectorizeTree(RHSV); 3186 3187 if (E->VectorizedValue) { 3188 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3189 return E->VectorizedValue; 3190 } 3191 3192 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3193 Value *V; 3194 if (S.Opcode == Instruction::FCmp) 3195 V = Builder.CreateFCmp(P0, L, R); 3196 else 3197 V = Builder.CreateICmp(P0, L, R); 3198 3199 propagateIRFlags(V, E->Scalars, VL0); 3200 if (NeedToShuffleReuses) { 3201 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3202 E->ReuseShuffleIndices, "shuffle"); 3203 } 3204 E->VectorizedValue = V; 3205 ++NumVectorInstructions; 3206 return V; 3207 } 3208 case Instruction::Select: { 3209 ValueList TrueVec, FalseVec, CondVec; 3210 for (Value *V : E->Scalars) { 3211 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3212 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3213 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3214 } 3215 3216 setInsertPointAfterBundle(E->Scalars, S); 3217 3218 Value *Cond = vectorizeTree(CondVec); 3219 Value *True = vectorizeTree(TrueVec); 3220 Value *False = vectorizeTree(FalseVec); 3221 3222 if (E->VectorizedValue) { 3223 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3224 return E->VectorizedValue; 3225 } 3226 3227 Value *V = Builder.CreateSelect(Cond, True, False); 3228 if (NeedToShuffleReuses) { 3229 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3230 E->ReuseShuffleIndices, "shuffle"); 3231 } 3232 E->VectorizedValue = V; 3233 ++NumVectorInstructions; 3234 return V; 3235 } 3236 case Instruction::Add: 3237 case Instruction::FAdd: 3238 case Instruction::Sub: 3239 case Instruction::FSub: 3240 case Instruction::Mul: 3241 case Instruction::FMul: 3242 case Instruction::UDiv: 3243 case Instruction::SDiv: 3244 case Instruction::FDiv: 3245 case Instruction::URem: 3246 case Instruction::SRem: 3247 case Instruction::FRem: 3248 case Instruction::Shl: 3249 case Instruction::LShr: 3250 case Instruction::AShr: 3251 case Instruction::And: 3252 case Instruction::Or: 3253 case Instruction::Xor: { 3254 ValueList LHSVL, RHSVL; 3255 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3256 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3257 RHSVL); 3258 else 3259 for (Value *V : E->Scalars) { 3260 auto *I = cast<Instruction>(V); 3261 LHSVL.push_back(I->getOperand(0)); 3262 RHSVL.push_back(I->getOperand(1)); 3263 } 3264 3265 setInsertPointAfterBundle(E->Scalars, S); 3266 3267 Value *LHS = vectorizeTree(LHSVL); 3268 Value *RHS = vectorizeTree(RHSVL); 3269 3270 if (E->VectorizedValue) { 3271 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3272 return E->VectorizedValue; 3273 } 3274 3275 Value *V = Builder.CreateBinOp( 3276 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3277 propagateIRFlags(V, E->Scalars, VL0); 3278 if (auto *I = dyn_cast<Instruction>(V)) 3279 V = propagateMetadata(I, E->Scalars); 3280 3281 if (NeedToShuffleReuses) { 3282 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3283 E->ReuseShuffleIndices, "shuffle"); 3284 } 3285 E->VectorizedValue = V; 3286 ++NumVectorInstructions; 3287 3288 return V; 3289 } 3290 case Instruction::Load: { 3291 // Loads are inserted at the head of the tree because we don't want to 3292 // sink them all the way down past store instructions. 3293 bool IsReorder = !E->ReorderIndices.empty(); 3294 if (IsReorder) { 3295 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3296 VL0 = cast<Instruction>(S.OpValue); 3297 } 3298 setInsertPointAfterBundle(E->Scalars, S); 3299 3300 LoadInst *LI = cast<LoadInst>(VL0); 3301 Type *ScalarLoadTy = LI->getType(); 3302 unsigned AS = LI->getPointerAddressSpace(); 3303 3304 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3305 VecTy->getPointerTo(AS)); 3306 3307 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3308 // ExternalUses list to make sure that an extract will be generated in the 3309 // future. 3310 Value *PO = LI->getPointerOperand(); 3311 if (getTreeEntry(PO)) 3312 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3313 3314 unsigned Alignment = LI->getAlignment(); 3315 LI = Builder.CreateLoad(VecPtr); 3316 if (!Alignment) { 3317 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3318 } 3319 LI->setAlignment(Alignment); 3320 Value *V = propagateMetadata(LI, E->Scalars); 3321 if (IsReorder) { 3322 OrdersType Mask; 3323 inversePermutation(E->ReorderIndices, Mask); 3324 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3325 Mask, "reorder_shuffle"); 3326 } 3327 if (NeedToShuffleReuses) { 3328 // TODO: Merge this shuffle with the ReorderShuffleMask. 3329 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3330 E->ReuseShuffleIndices, "shuffle"); 3331 } 3332 E->VectorizedValue = V; 3333 ++NumVectorInstructions; 3334 return V; 3335 } 3336 case Instruction::Store: { 3337 StoreInst *SI = cast<StoreInst>(VL0); 3338 unsigned Alignment = SI->getAlignment(); 3339 unsigned AS = SI->getPointerAddressSpace(); 3340 3341 ValueList ScalarStoreValues; 3342 for (Value *V : E->Scalars) 3343 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3344 3345 setInsertPointAfterBundle(E->Scalars, S); 3346 3347 Value *VecValue = vectorizeTree(ScalarStoreValues); 3348 Value *ScalarPtr = SI->getPointerOperand(); 3349 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3350 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3351 3352 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3353 // ExternalUses to make sure that an extract will be generated in the 3354 // future. 3355 if (getTreeEntry(ScalarPtr)) 3356 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3357 3358 if (!Alignment) 3359 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3360 3361 ST->setAlignment(Alignment); 3362 Value *V = propagateMetadata(ST, E->Scalars); 3363 if (NeedToShuffleReuses) { 3364 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3365 E->ReuseShuffleIndices, "shuffle"); 3366 } 3367 E->VectorizedValue = V; 3368 ++NumVectorInstructions; 3369 return V; 3370 } 3371 case Instruction::GetElementPtr: { 3372 setInsertPointAfterBundle(E->Scalars, S); 3373 3374 ValueList Op0VL; 3375 for (Value *V : E->Scalars) 3376 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3377 3378 Value *Op0 = vectorizeTree(Op0VL); 3379 3380 std::vector<Value *> OpVecs; 3381 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3382 ++j) { 3383 ValueList OpVL; 3384 for (Value *V : E->Scalars) 3385 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3386 3387 Value *OpVec = vectorizeTree(OpVL); 3388 OpVecs.push_back(OpVec); 3389 } 3390 3391 Value *V = Builder.CreateGEP( 3392 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3393 if (Instruction *I = dyn_cast<Instruction>(V)) 3394 V = propagateMetadata(I, E->Scalars); 3395 3396 if (NeedToShuffleReuses) { 3397 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3398 E->ReuseShuffleIndices, "shuffle"); 3399 } 3400 E->VectorizedValue = V; 3401 ++NumVectorInstructions; 3402 3403 return V; 3404 } 3405 case Instruction::Call: { 3406 CallInst *CI = cast<CallInst>(VL0); 3407 setInsertPointAfterBundle(E->Scalars, S); 3408 Function *FI; 3409 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3410 Value *ScalarArg = nullptr; 3411 if (CI && (FI = CI->getCalledFunction())) { 3412 IID = FI->getIntrinsicID(); 3413 } 3414 std::vector<Value *> OpVecs; 3415 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3416 ValueList OpVL; 3417 // ctlz,cttz and powi are special intrinsics whose second argument is 3418 // a scalar. This argument should not be vectorized. 3419 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3420 CallInst *CEI = cast<CallInst>(VL0); 3421 ScalarArg = CEI->getArgOperand(j); 3422 OpVecs.push_back(CEI->getArgOperand(j)); 3423 continue; 3424 } 3425 for (Value *V : E->Scalars) { 3426 CallInst *CEI = cast<CallInst>(V); 3427 OpVL.push_back(CEI->getArgOperand(j)); 3428 } 3429 3430 Value *OpVec = vectorizeTree(OpVL); 3431 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3432 OpVecs.push_back(OpVec); 3433 } 3434 3435 Module *M = F->getParent(); 3436 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3437 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3438 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3439 SmallVector<OperandBundleDef, 1> OpBundles; 3440 CI->getOperandBundlesAsDefs(OpBundles); 3441 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3442 3443 // The scalar argument uses an in-tree scalar so we add the new vectorized 3444 // call to ExternalUses list to make sure that an extract will be 3445 // generated in the future. 3446 if (ScalarArg && getTreeEntry(ScalarArg)) 3447 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3448 3449 propagateIRFlags(V, E->Scalars, VL0); 3450 if (NeedToShuffleReuses) { 3451 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3452 E->ReuseShuffleIndices, "shuffle"); 3453 } 3454 E->VectorizedValue = V; 3455 ++NumVectorInstructions; 3456 return V; 3457 } 3458 case Instruction::ShuffleVector: { 3459 ValueList LHSVL, RHSVL; 3460 assert(S.isAltShuffle() && Instruction::isBinaryOp(S.Opcode) && 3461 Instruction::isBinaryOp(S.AltOpcode) && 3462 "Invalid Shuffle Vector Operand"); 3463 reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL); 3464 setInsertPointAfterBundle(E->Scalars, S); 3465 3466 Value *LHS = vectorizeTree(LHSVL); 3467 Value *RHS = vectorizeTree(RHSVL); 3468 3469 if (E->VectorizedValue) { 3470 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3471 return E->VectorizedValue; 3472 } 3473 3474 // Create a vector of LHS op1 RHS 3475 Value *V0 = Builder.CreateBinOp( 3476 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3477 3478 // Create a vector of LHS op2 RHS 3479 Value *V1 = Builder.CreateBinOp( 3480 static_cast<Instruction::BinaryOps>(S.AltOpcode), LHS, RHS); 3481 3482 // Create shuffle to take alternate operations from the vector. 3483 // Also, gather up odd and even scalar ops to propagate IR flags to 3484 // each vector operation. 3485 ValueList OpScalars, AltScalars; 3486 unsigned e = E->Scalars.size(); 3487 SmallVector<Constant *, 8> Mask(e); 3488 for (unsigned i = 0; i < e; ++i) { 3489 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3490 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3491 if (OpInst->getOpcode() == S.AltOpcode) { 3492 Mask[i] = Builder.getInt32(e + i); 3493 AltScalars.push_back(E->Scalars[i]); 3494 } else { 3495 Mask[i] = Builder.getInt32(i); 3496 OpScalars.push_back(E->Scalars[i]); 3497 } 3498 } 3499 3500 Value *ShuffleMask = ConstantVector::get(Mask); 3501 propagateIRFlags(V0, OpScalars); 3502 propagateIRFlags(V1, AltScalars); 3503 3504 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3505 if (Instruction *I = dyn_cast<Instruction>(V)) 3506 V = propagateMetadata(I, E->Scalars); 3507 if (NeedToShuffleReuses) { 3508 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3509 E->ReuseShuffleIndices, "shuffle"); 3510 } 3511 E->VectorizedValue = V; 3512 ++NumVectorInstructions; 3513 3514 return V; 3515 } 3516 default: 3517 llvm_unreachable("unknown inst"); 3518 } 3519 return nullptr; 3520 } 3521 3522 Value *BoUpSLP::vectorizeTree() { 3523 ExtraValueToDebugLocsMap ExternallyUsedValues; 3524 return vectorizeTree(ExternallyUsedValues); 3525 } 3526 3527 Value * 3528 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3529 // All blocks must be scheduled before any instructions are inserted. 3530 for (auto &BSIter : BlocksSchedules) { 3531 scheduleBlock(BSIter.second.get()); 3532 } 3533 3534 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3535 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3536 3537 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3538 // vectorized root. InstCombine will then rewrite the entire expression. We 3539 // sign extend the extracted values below. 3540 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3541 if (MinBWs.count(ScalarRoot)) { 3542 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3543 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3544 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3545 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3546 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3547 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3548 VectorizableTree[0].VectorizedValue = Trunc; 3549 } 3550 3551 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3552 << " values .\n"); 3553 3554 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3555 // specified by ScalarType. 3556 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3557 if (!MinBWs.count(ScalarRoot)) 3558 return Ex; 3559 if (MinBWs[ScalarRoot].second) 3560 return Builder.CreateSExt(Ex, ScalarType); 3561 return Builder.CreateZExt(Ex, ScalarType); 3562 }; 3563 3564 // Extract all of the elements with the external uses. 3565 for (const auto &ExternalUse : ExternalUses) { 3566 Value *Scalar = ExternalUse.Scalar; 3567 llvm::User *User = ExternalUse.User; 3568 3569 // Skip users that we already RAUW. This happens when one instruction 3570 // has multiple uses of the same value. 3571 if (User && !is_contained(Scalar->users(), User)) 3572 continue; 3573 TreeEntry *E = getTreeEntry(Scalar); 3574 assert(E && "Invalid scalar"); 3575 assert(!E->NeedToGather && "Extracting from a gather list"); 3576 3577 Value *Vec = E->VectorizedValue; 3578 assert(Vec && "Can't find vectorizable value"); 3579 3580 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3581 // If User == nullptr, the Scalar is used as extra arg. Generate 3582 // ExtractElement instruction and update the record for this scalar in 3583 // ExternallyUsedValues. 3584 if (!User) { 3585 assert(ExternallyUsedValues.count(Scalar) && 3586 "Scalar with nullptr as an external user must be registered in " 3587 "ExternallyUsedValues map"); 3588 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3589 Builder.SetInsertPoint(VecI->getParent(), 3590 std::next(VecI->getIterator())); 3591 } else { 3592 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3593 } 3594 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3595 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3596 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3597 auto &Locs = ExternallyUsedValues[Scalar]; 3598 ExternallyUsedValues.insert({Ex, Locs}); 3599 ExternallyUsedValues.erase(Scalar); 3600 continue; 3601 } 3602 3603 // Generate extracts for out-of-tree users. 3604 // Find the insertion point for the extractelement lane. 3605 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3606 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3607 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3608 if (PH->getIncomingValue(i) == Scalar) { 3609 TerminatorInst *IncomingTerminator = 3610 PH->getIncomingBlock(i)->getTerminator(); 3611 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3612 Builder.SetInsertPoint(VecI->getParent(), 3613 std::next(VecI->getIterator())); 3614 } else { 3615 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3616 } 3617 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3618 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3619 CSEBlocks.insert(PH->getIncomingBlock(i)); 3620 PH->setOperand(i, Ex); 3621 } 3622 } 3623 } else { 3624 Builder.SetInsertPoint(cast<Instruction>(User)); 3625 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3626 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3627 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3628 User->replaceUsesOfWith(Scalar, Ex); 3629 } 3630 } else { 3631 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3632 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3633 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3634 CSEBlocks.insert(&F->getEntryBlock()); 3635 User->replaceUsesOfWith(Scalar, Ex); 3636 } 3637 3638 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3639 } 3640 3641 // For each vectorized value: 3642 for (TreeEntry &EIdx : VectorizableTree) { 3643 TreeEntry *Entry = &EIdx; 3644 3645 // No need to handle users of gathered values. 3646 if (Entry->NeedToGather) 3647 continue; 3648 3649 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3650 3651 // For each lane: 3652 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3653 Value *Scalar = Entry->Scalars[Lane]; 3654 3655 Type *Ty = Scalar->getType(); 3656 if (!Ty->isVoidTy()) { 3657 #ifndef NDEBUG 3658 for (User *U : Scalar->users()) { 3659 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3660 3661 // It is legal to replace users in the ignorelist by undef. 3662 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3663 "Replacing out-of-tree value with undef"); 3664 } 3665 #endif 3666 Value *Undef = UndefValue::get(Ty); 3667 Scalar->replaceAllUsesWith(Undef); 3668 } 3669 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3670 eraseInstruction(cast<Instruction>(Scalar)); 3671 } 3672 } 3673 3674 Builder.ClearInsertionPoint(); 3675 3676 return VectorizableTree[0].VectorizedValue; 3677 } 3678 3679 void BoUpSLP::optimizeGatherSequence() { 3680 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3681 << " gather sequences instructions.\n"); 3682 // LICM InsertElementInst sequences. 3683 for (Instruction *I : GatherSeq) { 3684 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3685 continue; 3686 3687 // Check if this block is inside a loop. 3688 Loop *L = LI->getLoopFor(I->getParent()); 3689 if (!L) 3690 continue; 3691 3692 // Check if it has a preheader. 3693 BasicBlock *PreHeader = L->getLoopPreheader(); 3694 if (!PreHeader) 3695 continue; 3696 3697 // If the vector or the element that we insert into it are 3698 // instructions that are defined in this basic block then we can't 3699 // hoist this instruction. 3700 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3701 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3702 if (Op0 && L->contains(Op0)) 3703 continue; 3704 if (Op1 && L->contains(Op1)) 3705 continue; 3706 3707 // We can hoist this instruction. Move it to the pre-header. 3708 I->moveBefore(PreHeader->getTerminator()); 3709 } 3710 3711 // Make a list of all reachable blocks in our CSE queue. 3712 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3713 CSEWorkList.reserve(CSEBlocks.size()); 3714 for (BasicBlock *BB : CSEBlocks) 3715 if (DomTreeNode *N = DT->getNode(BB)) { 3716 assert(DT->isReachableFromEntry(N)); 3717 CSEWorkList.push_back(N); 3718 } 3719 3720 // Sort blocks by domination. This ensures we visit a block after all blocks 3721 // dominating it are visited. 3722 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3723 [this](const DomTreeNode *A, const DomTreeNode *B) { 3724 return DT->properlyDominates(A, B); 3725 }); 3726 3727 // Perform O(N^2) search over the gather sequences and merge identical 3728 // instructions. TODO: We can further optimize this scan if we split the 3729 // instructions into different buckets based on the insert lane. 3730 SmallVector<Instruction *, 16> Visited; 3731 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3732 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3733 "Worklist not sorted properly!"); 3734 BasicBlock *BB = (*I)->getBlock(); 3735 // For all instructions in blocks containing gather sequences: 3736 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3737 Instruction *In = &*it++; 3738 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3739 continue; 3740 3741 // Check if we can replace this instruction with any of the 3742 // visited instructions. 3743 for (Instruction *v : Visited) { 3744 if (In->isIdenticalTo(v) && 3745 DT->dominates(v->getParent(), In->getParent())) { 3746 In->replaceAllUsesWith(v); 3747 eraseInstruction(In); 3748 In = nullptr; 3749 break; 3750 } 3751 } 3752 if (In) { 3753 assert(!is_contained(Visited, In)); 3754 Visited.push_back(In); 3755 } 3756 } 3757 } 3758 CSEBlocks.clear(); 3759 GatherSeq.clear(); 3760 } 3761 3762 // Groups the instructions to a bundle (which is then a single scheduling entity) 3763 // and schedules instructions until the bundle gets ready. 3764 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3765 BoUpSLP *SLP, 3766 const InstructionsState &S) { 3767 if (isa<PHINode>(S.OpValue)) 3768 return true; 3769 3770 // Initialize the instruction bundle. 3771 Instruction *OldScheduleEnd = ScheduleEnd; 3772 ScheduleData *PrevInBundle = nullptr; 3773 ScheduleData *Bundle = nullptr; 3774 bool ReSchedule = false; 3775 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3776 3777 // Make sure that the scheduling region contains all 3778 // instructions of the bundle. 3779 for (Value *V : VL) { 3780 if (!extendSchedulingRegion(V, S)) 3781 return false; 3782 } 3783 3784 for (Value *V : VL) { 3785 ScheduleData *BundleMember = getScheduleData(V); 3786 assert(BundleMember && 3787 "no ScheduleData for bundle member (maybe not in same basic block)"); 3788 if (BundleMember->IsScheduled) { 3789 // A bundle member was scheduled as single instruction before and now 3790 // needs to be scheduled as part of the bundle. We just get rid of the 3791 // existing schedule. 3792 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3793 << " was already scheduled\n"); 3794 ReSchedule = true; 3795 } 3796 assert(BundleMember->isSchedulingEntity() && 3797 "bundle member already part of other bundle"); 3798 if (PrevInBundle) { 3799 PrevInBundle->NextInBundle = BundleMember; 3800 } else { 3801 Bundle = BundleMember; 3802 } 3803 BundleMember->UnscheduledDepsInBundle = 0; 3804 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3805 3806 // Group the instructions to a bundle. 3807 BundleMember->FirstInBundle = Bundle; 3808 PrevInBundle = BundleMember; 3809 } 3810 if (ScheduleEnd != OldScheduleEnd) { 3811 // The scheduling region got new instructions at the lower end (or it is a 3812 // new region for the first bundle). This makes it necessary to 3813 // recalculate all dependencies. 3814 // It is seldom that this needs to be done a second time after adding the 3815 // initial bundle to the region. 3816 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3817 doForAllOpcodes(I, [](ScheduleData *SD) { 3818 SD->clearDependencies(); 3819 }); 3820 } 3821 ReSchedule = true; 3822 } 3823 if (ReSchedule) { 3824 resetSchedule(); 3825 initialFillReadyList(ReadyInsts); 3826 } 3827 3828 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3829 << BB->getName() << "\n"); 3830 3831 calculateDependencies(Bundle, true, SLP); 3832 3833 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3834 // means that there are no cyclic dependencies and we can schedule it. 3835 // Note that's important that we don't "schedule" the bundle yet (see 3836 // cancelScheduling). 3837 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3838 3839 ScheduleData *pickedSD = ReadyInsts.back(); 3840 ReadyInsts.pop_back(); 3841 3842 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3843 schedule(pickedSD, ReadyInsts); 3844 } 3845 } 3846 if (!Bundle->isReady()) { 3847 cancelScheduling(VL, S.OpValue); 3848 return false; 3849 } 3850 return true; 3851 } 3852 3853 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3854 Value *OpValue) { 3855 if (isa<PHINode>(OpValue)) 3856 return; 3857 3858 ScheduleData *Bundle = getScheduleData(OpValue); 3859 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3860 assert(!Bundle->IsScheduled && 3861 "Can't cancel bundle which is already scheduled"); 3862 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3863 "tried to unbundle something which is not a bundle"); 3864 3865 // Un-bundle: make single instructions out of the bundle. 3866 ScheduleData *BundleMember = Bundle; 3867 while (BundleMember) { 3868 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3869 BundleMember->FirstInBundle = BundleMember; 3870 ScheduleData *Next = BundleMember->NextInBundle; 3871 BundleMember->NextInBundle = nullptr; 3872 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3873 if (BundleMember->UnscheduledDepsInBundle == 0) { 3874 ReadyInsts.insert(BundleMember); 3875 } 3876 BundleMember = Next; 3877 } 3878 } 3879 3880 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3881 // Allocate a new ScheduleData for the instruction. 3882 if (ChunkPos >= ChunkSize) { 3883 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3884 ChunkPos = 0; 3885 } 3886 return &(ScheduleDataChunks.back()[ChunkPos++]); 3887 } 3888 3889 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3890 const InstructionsState &S) { 3891 if (getScheduleData(V, isOneOf(S, V))) 3892 return true; 3893 Instruction *I = dyn_cast<Instruction>(V); 3894 assert(I && "bundle member must be an instruction"); 3895 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3896 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 3897 ScheduleData *ISD = getScheduleData(I); 3898 if (!ISD) 3899 return false; 3900 assert(isInSchedulingRegion(ISD) && 3901 "ScheduleData not in scheduling region"); 3902 ScheduleData *SD = allocateScheduleDataChunks(); 3903 SD->Inst = I; 3904 SD->init(SchedulingRegionID, S.OpValue); 3905 ExtraScheduleDataMap[I][S.OpValue] = SD; 3906 return true; 3907 }; 3908 if (CheckSheduleForI(I)) 3909 return true; 3910 if (!ScheduleStart) { 3911 // It's the first instruction in the new region. 3912 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3913 ScheduleStart = I; 3914 ScheduleEnd = I->getNextNode(); 3915 if (isOneOf(S, I) != I) 3916 CheckSheduleForI(I); 3917 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3918 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3919 return true; 3920 } 3921 // Search up and down at the same time, because we don't know if the new 3922 // instruction is above or below the existing scheduling region. 3923 BasicBlock::reverse_iterator UpIter = 3924 ++ScheduleStart->getIterator().getReverse(); 3925 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3926 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3927 BasicBlock::iterator LowerEnd = BB->end(); 3928 while (true) { 3929 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3930 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3931 return false; 3932 } 3933 3934 if (UpIter != UpperEnd) { 3935 if (&*UpIter == I) { 3936 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3937 ScheduleStart = I; 3938 if (isOneOf(S, I) != I) 3939 CheckSheduleForI(I); 3940 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 3941 << "\n"); 3942 return true; 3943 } 3944 UpIter++; 3945 } 3946 if (DownIter != LowerEnd) { 3947 if (&*DownIter == I) { 3948 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3949 nullptr); 3950 ScheduleEnd = I->getNextNode(); 3951 if (isOneOf(S, I) != I) 3952 CheckSheduleForI(I); 3953 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3954 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 3955 << "\n"); 3956 return true; 3957 } 3958 DownIter++; 3959 } 3960 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3961 "instruction not found in block"); 3962 } 3963 return true; 3964 } 3965 3966 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3967 Instruction *ToI, 3968 ScheduleData *PrevLoadStore, 3969 ScheduleData *NextLoadStore) { 3970 ScheduleData *CurrentLoadStore = PrevLoadStore; 3971 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3972 ScheduleData *SD = ScheduleDataMap[I]; 3973 if (!SD) { 3974 SD = allocateScheduleDataChunks(); 3975 ScheduleDataMap[I] = SD; 3976 SD->Inst = I; 3977 } 3978 assert(!isInSchedulingRegion(SD) && 3979 "new ScheduleData already in scheduling region"); 3980 SD->init(SchedulingRegionID, I); 3981 3982 if (I->mayReadOrWriteMemory() && 3983 (!isa<IntrinsicInst>(I) || 3984 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 3985 // Update the linked list of memory accessing instructions. 3986 if (CurrentLoadStore) { 3987 CurrentLoadStore->NextLoadStore = SD; 3988 } else { 3989 FirstLoadStoreInRegion = SD; 3990 } 3991 CurrentLoadStore = SD; 3992 } 3993 } 3994 if (NextLoadStore) { 3995 if (CurrentLoadStore) 3996 CurrentLoadStore->NextLoadStore = NextLoadStore; 3997 } else { 3998 LastLoadStoreInRegion = CurrentLoadStore; 3999 } 4000 } 4001 4002 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4003 bool InsertInReadyList, 4004 BoUpSLP *SLP) { 4005 assert(SD->isSchedulingEntity()); 4006 4007 SmallVector<ScheduleData *, 10> WorkList; 4008 WorkList.push_back(SD); 4009 4010 while (!WorkList.empty()) { 4011 ScheduleData *SD = WorkList.back(); 4012 WorkList.pop_back(); 4013 4014 ScheduleData *BundleMember = SD; 4015 while (BundleMember) { 4016 assert(isInSchedulingRegion(BundleMember)); 4017 if (!BundleMember->hasValidDependencies()) { 4018 4019 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4020 << "\n"); 4021 BundleMember->Dependencies = 0; 4022 BundleMember->resetUnscheduledDeps(); 4023 4024 // Handle def-use chain dependencies. 4025 if (BundleMember->OpValue != BundleMember->Inst) { 4026 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4027 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4028 BundleMember->Dependencies++; 4029 ScheduleData *DestBundle = UseSD->FirstInBundle; 4030 if (!DestBundle->IsScheduled) 4031 BundleMember->incrementUnscheduledDeps(1); 4032 if (!DestBundle->hasValidDependencies()) 4033 WorkList.push_back(DestBundle); 4034 } 4035 } else { 4036 for (User *U : BundleMember->Inst->users()) { 4037 if (isa<Instruction>(U)) { 4038 ScheduleData *UseSD = getScheduleData(U); 4039 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4040 BundleMember->Dependencies++; 4041 ScheduleData *DestBundle = UseSD->FirstInBundle; 4042 if (!DestBundle->IsScheduled) 4043 BundleMember->incrementUnscheduledDeps(1); 4044 if (!DestBundle->hasValidDependencies()) 4045 WorkList.push_back(DestBundle); 4046 } 4047 } else { 4048 // I'm not sure if this can ever happen. But we need to be safe. 4049 // This lets the instruction/bundle never be scheduled and 4050 // eventually disable vectorization. 4051 BundleMember->Dependencies++; 4052 BundleMember->incrementUnscheduledDeps(1); 4053 } 4054 } 4055 } 4056 4057 // Handle the memory dependencies. 4058 ScheduleData *DepDest = BundleMember->NextLoadStore; 4059 if (DepDest) { 4060 Instruction *SrcInst = BundleMember->Inst; 4061 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4062 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4063 unsigned numAliased = 0; 4064 unsigned DistToSrc = 1; 4065 4066 while (DepDest) { 4067 assert(isInSchedulingRegion(DepDest)); 4068 4069 // We have two limits to reduce the complexity: 4070 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4071 // SLP->isAliased (which is the expensive part in this loop). 4072 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4073 // the whole loop (even if the loop is fast, it's quadratic). 4074 // It's important for the loop break condition (see below) to 4075 // check this limit even between two read-only instructions. 4076 if (DistToSrc >= MaxMemDepDistance || 4077 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4078 (numAliased >= AliasedCheckLimit || 4079 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4080 4081 // We increment the counter only if the locations are aliased 4082 // (instead of counting all alias checks). This gives a better 4083 // balance between reduced runtime and accurate dependencies. 4084 numAliased++; 4085 4086 DepDest->MemoryDependencies.push_back(BundleMember); 4087 BundleMember->Dependencies++; 4088 ScheduleData *DestBundle = DepDest->FirstInBundle; 4089 if (!DestBundle->IsScheduled) { 4090 BundleMember->incrementUnscheduledDeps(1); 4091 } 4092 if (!DestBundle->hasValidDependencies()) { 4093 WorkList.push_back(DestBundle); 4094 } 4095 } 4096 DepDest = DepDest->NextLoadStore; 4097 4098 // Example, explaining the loop break condition: Let's assume our 4099 // starting instruction is i0 and MaxMemDepDistance = 3. 4100 // 4101 // +--------v--v--v 4102 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4103 // +--------^--^--^ 4104 // 4105 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4106 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4107 // Previously we already added dependencies from i3 to i6,i7,i8 4108 // (because of MaxMemDepDistance). As we added a dependency from 4109 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4110 // and we can abort this loop at i6. 4111 if (DistToSrc >= 2 * MaxMemDepDistance) 4112 break; 4113 DistToSrc++; 4114 } 4115 } 4116 } 4117 BundleMember = BundleMember->NextInBundle; 4118 } 4119 if (InsertInReadyList && SD->isReady()) { 4120 ReadyInsts.push_back(SD); 4121 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4122 << "\n"); 4123 } 4124 } 4125 } 4126 4127 void BoUpSLP::BlockScheduling::resetSchedule() { 4128 assert(ScheduleStart && 4129 "tried to reset schedule on block which has not been scheduled"); 4130 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4131 doForAllOpcodes(I, [&](ScheduleData *SD) { 4132 assert(isInSchedulingRegion(SD) && 4133 "ScheduleData not in scheduling region"); 4134 SD->IsScheduled = false; 4135 SD->resetUnscheduledDeps(); 4136 }); 4137 } 4138 ReadyInsts.clear(); 4139 } 4140 4141 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4142 if (!BS->ScheduleStart) 4143 return; 4144 4145 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4146 4147 BS->resetSchedule(); 4148 4149 // For the real scheduling we use a more sophisticated ready-list: it is 4150 // sorted by the original instruction location. This lets the final schedule 4151 // be as close as possible to the original instruction order. 4152 struct ScheduleDataCompare { 4153 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4154 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4155 } 4156 }; 4157 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4158 4159 // Ensure that all dependency data is updated and fill the ready-list with 4160 // initial instructions. 4161 int Idx = 0; 4162 int NumToSchedule = 0; 4163 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4164 I = I->getNextNode()) { 4165 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4166 assert(SD->isPartOfBundle() == 4167 (getTreeEntry(SD->Inst) != nullptr) && 4168 "scheduler and vectorizer bundle mismatch"); 4169 SD->FirstInBundle->SchedulingPriority = Idx++; 4170 if (SD->isSchedulingEntity()) { 4171 BS->calculateDependencies(SD, false, this); 4172 NumToSchedule++; 4173 } 4174 }); 4175 } 4176 BS->initialFillReadyList(ReadyInsts); 4177 4178 Instruction *LastScheduledInst = BS->ScheduleEnd; 4179 4180 // Do the "real" scheduling. 4181 while (!ReadyInsts.empty()) { 4182 ScheduleData *picked = *ReadyInsts.begin(); 4183 ReadyInsts.erase(ReadyInsts.begin()); 4184 4185 // Move the scheduled instruction(s) to their dedicated places, if not 4186 // there yet. 4187 ScheduleData *BundleMember = picked; 4188 while (BundleMember) { 4189 Instruction *pickedInst = BundleMember->Inst; 4190 if (LastScheduledInst->getNextNode() != pickedInst) { 4191 BS->BB->getInstList().remove(pickedInst); 4192 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4193 pickedInst); 4194 } 4195 LastScheduledInst = pickedInst; 4196 BundleMember = BundleMember->NextInBundle; 4197 } 4198 4199 BS->schedule(picked, ReadyInsts); 4200 NumToSchedule--; 4201 } 4202 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4203 4204 // Avoid duplicate scheduling of the block. 4205 BS->ScheduleStart = nullptr; 4206 } 4207 4208 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4209 // If V is a store, just return the width of the stored value without 4210 // traversing the expression tree. This is the common case. 4211 if (auto *Store = dyn_cast<StoreInst>(V)) 4212 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4213 4214 // If V is not a store, we can traverse the expression tree to find loads 4215 // that feed it. The type of the loaded value may indicate a more suitable 4216 // width than V's type. We want to base the vector element size on the width 4217 // of memory operations where possible. 4218 SmallVector<Instruction *, 16> Worklist; 4219 SmallPtrSet<Instruction *, 16> Visited; 4220 if (auto *I = dyn_cast<Instruction>(V)) 4221 Worklist.push_back(I); 4222 4223 // Traverse the expression tree in bottom-up order looking for loads. If we 4224 // encounter an instruciton we don't yet handle, we give up. 4225 auto MaxWidth = 0u; 4226 auto FoundUnknownInst = false; 4227 while (!Worklist.empty() && !FoundUnknownInst) { 4228 auto *I = Worklist.pop_back_val(); 4229 Visited.insert(I); 4230 4231 // We should only be looking at scalar instructions here. If the current 4232 // instruction has a vector type, give up. 4233 auto *Ty = I->getType(); 4234 if (isa<VectorType>(Ty)) 4235 FoundUnknownInst = true; 4236 4237 // If the current instruction is a load, update MaxWidth to reflect the 4238 // width of the loaded value. 4239 else if (isa<LoadInst>(I)) 4240 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4241 4242 // Otherwise, we need to visit the operands of the instruction. We only 4243 // handle the interesting cases from buildTree here. If an operand is an 4244 // instruction we haven't yet visited, we add it to the worklist. 4245 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4246 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4247 for (Use &U : I->operands()) 4248 if (auto *J = dyn_cast<Instruction>(U.get())) 4249 if (!Visited.count(J)) 4250 Worklist.push_back(J); 4251 } 4252 4253 // If we don't yet handle the instruction, give up. 4254 else 4255 FoundUnknownInst = true; 4256 } 4257 4258 // If we didn't encounter a memory access in the expression tree, or if we 4259 // gave up for some reason, just return the width of V. 4260 if (!MaxWidth || FoundUnknownInst) 4261 return DL->getTypeSizeInBits(V->getType()); 4262 4263 // Otherwise, return the maximum width we found. 4264 return MaxWidth; 4265 } 4266 4267 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4268 // smaller type with a truncation. We collect the values that will be demoted 4269 // in ToDemote and additional roots that require investigating in Roots. 4270 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4271 SmallVectorImpl<Value *> &ToDemote, 4272 SmallVectorImpl<Value *> &Roots) { 4273 // We can always demote constants. 4274 if (isa<Constant>(V)) { 4275 ToDemote.push_back(V); 4276 return true; 4277 } 4278 4279 // If the value is not an instruction in the expression with only one use, it 4280 // cannot be demoted. 4281 auto *I = dyn_cast<Instruction>(V); 4282 if (!I || !I->hasOneUse() || !Expr.count(I)) 4283 return false; 4284 4285 switch (I->getOpcode()) { 4286 4287 // We can always demote truncations and extensions. Since truncations can 4288 // seed additional demotion, we save the truncated value. 4289 case Instruction::Trunc: 4290 Roots.push_back(I->getOperand(0)); 4291 break; 4292 case Instruction::ZExt: 4293 case Instruction::SExt: 4294 break; 4295 4296 // We can demote certain binary operations if we can demote both of their 4297 // operands. 4298 case Instruction::Add: 4299 case Instruction::Sub: 4300 case Instruction::Mul: 4301 case Instruction::And: 4302 case Instruction::Or: 4303 case Instruction::Xor: 4304 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4305 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4306 return false; 4307 break; 4308 4309 // We can demote selects if we can demote their true and false values. 4310 case Instruction::Select: { 4311 SelectInst *SI = cast<SelectInst>(I); 4312 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4313 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4314 return false; 4315 break; 4316 } 4317 4318 // We can demote phis if we can demote all their incoming operands. Note that 4319 // we don't need to worry about cycles since we ensure single use above. 4320 case Instruction::PHI: { 4321 PHINode *PN = cast<PHINode>(I); 4322 for (Value *IncValue : PN->incoming_values()) 4323 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4324 return false; 4325 break; 4326 } 4327 4328 // Otherwise, conservatively give up. 4329 default: 4330 return false; 4331 } 4332 4333 // Record the value that we can demote. 4334 ToDemote.push_back(V); 4335 return true; 4336 } 4337 4338 void BoUpSLP::computeMinimumValueSizes() { 4339 // If there are no external uses, the expression tree must be rooted by a 4340 // store. We can't demote in-memory values, so there is nothing to do here. 4341 if (ExternalUses.empty()) 4342 return; 4343 4344 // We only attempt to truncate integer expressions. 4345 auto &TreeRoot = VectorizableTree[0].Scalars; 4346 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4347 if (!TreeRootIT) 4348 return; 4349 4350 // If the expression is not rooted by a store, these roots should have 4351 // external uses. We will rely on InstCombine to rewrite the expression in 4352 // the narrower type. However, InstCombine only rewrites single-use values. 4353 // This means that if a tree entry other than a root is used externally, it 4354 // must have multiple uses and InstCombine will not rewrite it. The code 4355 // below ensures that only the roots are used externally. 4356 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4357 for (auto &EU : ExternalUses) 4358 if (!Expr.erase(EU.Scalar)) 4359 return; 4360 if (!Expr.empty()) 4361 return; 4362 4363 // Collect the scalar values of the vectorizable expression. We will use this 4364 // context to determine which values can be demoted. If we see a truncation, 4365 // we mark it as seeding another demotion. 4366 for (auto &Entry : VectorizableTree) 4367 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4368 4369 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4370 // have a single external user that is not in the vectorizable tree. 4371 for (auto *Root : TreeRoot) 4372 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4373 return; 4374 4375 // Conservatively determine if we can actually truncate the roots of the 4376 // expression. Collect the values that can be demoted in ToDemote and 4377 // additional roots that require investigating in Roots. 4378 SmallVector<Value *, 32> ToDemote; 4379 SmallVector<Value *, 4> Roots; 4380 for (auto *Root : TreeRoot) 4381 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4382 return; 4383 4384 // The maximum bit width required to represent all the values that can be 4385 // demoted without loss of precision. It would be safe to truncate the roots 4386 // of the expression to this width. 4387 auto MaxBitWidth = 8u; 4388 4389 // We first check if all the bits of the roots are demanded. If they're not, 4390 // we can truncate the roots to this narrower type. 4391 for (auto *Root : TreeRoot) { 4392 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4393 MaxBitWidth = std::max<unsigned>( 4394 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4395 } 4396 4397 // True if the roots can be zero-extended back to their original type, rather 4398 // than sign-extended. We know that if the leading bits are not demanded, we 4399 // can safely zero-extend. So we initialize IsKnownPositive to True. 4400 bool IsKnownPositive = true; 4401 4402 // If all the bits of the roots are demanded, we can try a little harder to 4403 // compute a narrower type. This can happen, for example, if the roots are 4404 // getelementptr indices. InstCombine promotes these indices to the pointer 4405 // width. Thus, all their bits are technically demanded even though the 4406 // address computation might be vectorized in a smaller type. 4407 // 4408 // We start by looking at each entry that can be demoted. We compute the 4409 // maximum bit width required to store the scalar by using ValueTracking to 4410 // compute the number of high-order bits we can truncate. 4411 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4412 llvm::all_of(TreeRoot, [](Value *R) { 4413 assert(R->hasOneUse() && "Root should have only one use!"); 4414 return isa<GetElementPtrInst>(R->user_back()); 4415 })) { 4416 MaxBitWidth = 8u; 4417 4418 // Determine if the sign bit of all the roots is known to be zero. If not, 4419 // IsKnownPositive is set to False. 4420 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4421 KnownBits Known = computeKnownBits(R, *DL); 4422 return Known.isNonNegative(); 4423 }); 4424 4425 // Determine the maximum number of bits required to store the scalar 4426 // values. 4427 for (auto *Scalar : ToDemote) { 4428 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4429 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4430 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4431 } 4432 4433 // If we can't prove that the sign bit is zero, we must add one to the 4434 // maximum bit width to account for the unknown sign bit. This preserves 4435 // the existing sign bit so we can safely sign-extend the root back to the 4436 // original type. Otherwise, if we know the sign bit is zero, we will 4437 // zero-extend the root instead. 4438 // 4439 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4440 // one to the maximum bit width will yield a larger-than-necessary 4441 // type. In general, we need to add an extra bit only if we can't 4442 // prove that the upper bit of the original type is equal to the 4443 // upper bit of the proposed smaller type. If these two bits are the 4444 // same (either zero or one) we know that sign-extending from the 4445 // smaller type will result in the same value. Here, since we can't 4446 // yet prove this, we are just making the proposed smaller type 4447 // larger to ensure correctness. 4448 if (!IsKnownPositive) 4449 ++MaxBitWidth; 4450 } 4451 4452 // Round MaxBitWidth up to the next power-of-two. 4453 if (!isPowerOf2_64(MaxBitWidth)) 4454 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4455 4456 // If the maximum bit width we compute is less than the with of the roots' 4457 // type, we can proceed with the narrowing. Otherwise, do nothing. 4458 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4459 return; 4460 4461 // If we can truncate the root, we must collect additional values that might 4462 // be demoted as a result. That is, those seeded by truncations we will 4463 // modify. 4464 while (!Roots.empty()) 4465 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4466 4467 // Finally, map the values we can demote to the maximum bit with we computed. 4468 for (auto *Scalar : ToDemote) 4469 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4470 } 4471 4472 namespace { 4473 4474 /// The SLPVectorizer Pass. 4475 struct SLPVectorizer : public FunctionPass { 4476 SLPVectorizerPass Impl; 4477 4478 /// Pass identification, replacement for typeid 4479 static char ID; 4480 4481 explicit SLPVectorizer() : FunctionPass(ID) { 4482 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4483 } 4484 4485 bool doInitialization(Module &M) override { 4486 return false; 4487 } 4488 4489 bool runOnFunction(Function &F) override { 4490 if (skipFunction(F)) 4491 return false; 4492 4493 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4494 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4495 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4496 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4497 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4498 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4499 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4500 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4501 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4502 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4503 4504 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4505 } 4506 4507 void getAnalysisUsage(AnalysisUsage &AU) const override { 4508 FunctionPass::getAnalysisUsage(AU); 4509 AU.addRequired<AssumptionCacheTracker>(); 4510 AU.addRequired<ScalarEvolutionWrapperPass>(); 4511 AU.addRequired<AAResultsWrapperPass>(); 4512 AU.addRequired<TargetTransformInfoWrapperPass>(); 4513 AU.addRequired<LoopInfoWrapperPass>(); 4514 AU.addRequired<DominatorTreeWrapperPass>(); 4515 AU.addRequired<DemandedBitsWrapperPass>(); 4516 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4517 AU.addPreserved<LoopInfoWrapperPass>(); 4518 AU.addPreserved<DominatorTreeWrapperPass>(); 4519 AU.addPreserved<AAResultsWrapperPass>(); 4520 AU.addPreserved<GlobalsAAWrapperPass>(); 4521 AU.setPreservesCFG(); 4522 } 4523 }; 4524 4525 } // end anonymous namespace 4526 4527 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4528 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4529 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4530 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4531 auto *AA = &AM.getResult<AAManager>(F); 4532 auto *LI = &AM.getResult<LoopAnalysis>(F); 4533 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4534 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4535 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4536 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4537 4538 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4539 if (!Changed) 4540 return PreservedAnalyses::all(); 4541 4542 PreservedAnalyses PA; 4543 PA.preserveSet<CFGAnalyses>(); 4544 PA.preserve<AAManager>(); 4545 PA.preserve<GlobalsAA>(); 4546 return PA; 4547 } 4548 4549 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4550 TargetTransformInfo *TTI_, 4551 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4552 LoopInfo *LI_, DominatorTree *DT_, 4553 AssumptionCache *AC_, DemandedBits *DB_, 4554 OptimizationRemarkEmitter *ORE_) { 4555 SE = SE_; 4556 TTI = TTI_; 4557 TLI = TLI_; 4558 AA = AA_; 4559 LI = LI_; 4560 DT = DT_; 4561 AC = AC_; 4562 DB = DB_; 4563 DL = &F.getParent()->getDataLayout(); 4564 4565 Stores.clear(); 4566 GEPs.clear(); 4567 bool Changed = false; 4568 4569 // If the target claims to have no vector registers don't attempt 4570 // vectorization. 4571 if (!TTI->getNumberOfRegisters(true)) 4572 return false; 4573 4574 // Don't vectorize when the attribute NoImplicitFloat is used. 4575 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4576 return false; 4577 4578 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4579 4580 // Use the bottom up slp vectorizer to construct chains that start with 4581 // store instructions. 4582 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4583 4584 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4585 // delete instructions. 4586 4587 // Scan the blocks in the function in post order. 4588 for (auto BB : post_order(&F.getEntryBlock())) { 4589 collectSeedInstructions(BB); 4590 4591 // Vectorize trees that end at stores. 4592 if (!Stores.empty()) { 4593 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4594 << " underlying objects.\n"); 4595 Changed |= vectorizeStoreChains(R); 4596 } 4597 4598 // Vectorize trees that end at reductions. 4599 Changed |= vectorizeChainsInBlock(BB, R); 4600 4601 // Vectorize the index computations of getelementptr instructions. This 4602 // is primarily intended to catch gather-like idioms ending at 4603 // non-consecutive loads. 4604 if (!GEPs.empty()) { 4605 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4606 << " underlying objects.\n"); 4607 Changed |= vectorizeGEPIndices(BB, R); 4608 } 4609 } 4610 4611 if (Changed) { 4612 R.optimizeGatherSequence(); 4613 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4614 LLVM_DEBUG(verifyFunction(F)); 4615 } 4616 return Changed; 4617 } 4618 4619 /// Check that the Values in the slice in VL array are still existent in 4620 /// the WeakTrackingVH array. 4621 /// Vectorization of part of the VL array may cause later values in the VL array 4622 /// to become invalid. We track when this has happened in the WeakTrackingVH 4623 /// array. 4624 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4625 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4626 unsigned SliceSize) { 4627 VL = VL.slice(SliceBegin, SliceSize); 4628 VH = VH.slice(SliceBegin, SliceSize); 4629 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4630 } 4631 4632 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4633 unsigned VecRegSize) { 4634 const unsigned ChainLen = Chain.size(); 4635 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4636 << "\n"); 4637 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4638 const unsigned VF = VecRegSize / Sz; 4639 4640 if (!isPowerOf2_32(Sz) || VF < 2) 4641 return false; 4642 4643 // Keep track of values that were deleted by vectorizing in the loop below. 4644 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4645 4646 bool Changed = false; 4647 // Look for profitable vectorizable trees at all offsets, starting at zero. 4648 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4649 4650 // Check that a previous iteration of this loop did not delete the Value. 4651 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4652 continue; 4653 4654 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4655 << "\n"); 4656 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4657 4658 R.buildTree(Operands); 4659 if (R.isTreeTinyAndNotFullyVectorizable()) 4660 continue; 4661 4662 R.computeMinimumValueSizes(); 4663 4664 int Cost = R.getTreeCost(); 4665 4666 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4667 << "\n"); 4668 if (Cost < -SLPCostThreshold) { 4669 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4670 4671 using namespace ore; 4672 4673 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4674 cast<StoreInst>(Chain[i])) 4675 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4676 << " and with tree size " 4677 << NV("TreeSize", R.getTreeSize())); 4678 4679 R.vectorizeTree(); 4680 4681 // Move to the next bundle. 4682 i += VF - 1; 4683 Changed = true; 4684 } 4685 } 4686 4687 return Changed; 4688 } 4689 4690 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4691 BoUpSLP &R) { 4692 SetVector<StoreInst *> Heads; 4693 SmallDenseSet<StoreInst *> Tails; 4694 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4695 4696 // We may run into multiple chains that merge into a single chain. We mark the 4697 // stores that we vectorized so that we don't visit the same store twice. 4698 BoUpSLP::ValueSet VectorizedStores; 4699 bool Changed = false; 4700 4701 // Do a quadratic search on all of the given stores in reverse order and find 4702 // all of the pairs of stores that follow each other. 4703 SmallVector<unsigned, 16> IndexQueue; 4704 unsigned E = Stores.size(); 4705 IndexQueue.resize(E - 1); 4706 for (unsigned I = E; I > 0; --I) { 4707 unsigned Idx = I - 1; 4708 // If a store has multiple consecutive store candidates, search Stores 4709 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4710 // This is because usually pairing with immediate succeeding or preceding 4711 // candidate create the best chance to find slp vectorization opportunity. 4712 unsigned Offset = 1; 4713 unsigned Cnt = 0; 4714 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4715 if (Idx >= Offset) { 4716 IndexQueue[Cnt] = Idx - Offset; 4717 ++Cnt; 4718 } 4719 if (Idx + Offset < E) { 4720 IndexQueue[Cnt] = Idx + Offset; 4721 ++Cnt; 4722 } 4723 } 4724 4725 for (auto K : IndexQueue) { 4726 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4727 Tails.insert(Stores[Idx]); 4728 Heads.insert(Stores[K]); 4729 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4730 break; 4731 } 4732 } 4733 } 4734 4735 // For stores that start but don't end a link in the chain: 4736 for (auto *SI : llvm::reverse(Heads)) { 4737 if (Tails.count(SI)) 4738 continue; 4739 4740 // We found a store instr that starts a chain. Now follow the chain and try 4741 // to vectorize it. 4742 BoUpSLP::ValueList Operands; 4743 StoreInst *I = SI; 4744 // Collect the chain into a list. 4745 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4746 Operands.push_back(I); 4747 // Move to the next value in the chain. 4748 I = ConsecutiveChain[I]; 4749 } 4750 4751 // FIXME: Is division-by-2 the correct step? Should we assert that the 4752 // register size is a power-of-2? 4753 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4754 Size /= 2) { 4755 if (vectorizeStoreChain(Operands, R, Size)) { 4756 // Mark the vectorized stores so that we don't vectorize them again. 4757 VectorizedStores.insert(Operands.begin(), Operands.end()); 4758 Changed = true; 4759 break; 4760 } 4761 } 4762 } 4763 4764 return Changed; 4765 } 4766 4767 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4768 // Initialize the collections. We will make a single pass over the block. 4769 Stores.clear(); 4770 GEPs.clear(); 4771 4772 // Visit the store and getelementptr instructions in BB and organize them in 4773 // Stores and GEPs according to the underlying objects of their pointer 4774 // operands. 4775 for (Instruction &I : *BB) { 4776 // Ignore store instructions that are volatile or have a pointer operand 4777 // that doesn't point to a scalar type. 4778 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4779 if (!SI->isSimple()) 4780 continue; 4781 if (!isValidElementType(SI->getValueOperand()->getType())) 4782 continue; 4783 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4784 } 4785 4786 // Ignore getelementptr instructions that have more than one index, a 4787 // constant index, or a pointer operand that doesn't point to a scalar 4788 // type. 4789 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4790 auto Idx = GEP->idx_begin()->get(); 4791 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4792 continue; 4793 if (!isValidElementType(Idx->getType())) 4794 continue; 4795 if (GEP->getType()->isVectorTy()) 4796 continue; 4797 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4798 } 4799 } 4800 } 4801 4802 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4803 if (!A || !B) 4804 return false; 4805 Value *VL[] = { A, B }; 4806 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4807 } 4808 4809 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4810 int UserCost, bool AllowReorder) { 4811 if (VL.size() < 2) 4812 return false; 4813 4814 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4815 << VL.size() << ".\n"); 4816 4817 // Check that all of the parts are scalar instructions of the same type, 4818 // we permit an alternate opcode via InstructionsState. 4819 InstructionsState S = getSameOpcode(VL); 4820 if (!S.Opcode) 4821 return false; 4822 4823 Instruction *I0 = cast<Instruction>(S.OpValue); 4824 unsigned Sz = R.getVectorElementSize(I0); 4825 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4826 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4827 if (MaxVF < 2) { 4828 R.getORE()->emit([&]() { 4829 return OptimizationRemarkMissed( 4830 SV_NAME, "SmallVF", I0) 4831 << "Cannot SLP vectorize list: vectorization factor " 4832 << "less than 2 is not supported"; 4833 }); 4834 return false; 4835 } 4836 4837 for (Value *V : VL) { 4838 Type *Ty = V->getType(); 4839 if (!isValidElementType(Ty)) { 4840 // NOTE: the following will give user internal llvm type name, which may 4841 // not be useful. 4842 R.getORE()->emit([&]() { 4843 std::string type_str; 4844 llvm::raw_string_ostream rso(type_str); 4845 Ty->print(rso); 4846 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4847 << "Cannot SLP vectorize list: type " 4848 << rso.str() + " is unsupported by vectorizer"; 4849 }); 4850 return false; 4851 } 4852 } 4853 4854 bool Changed = false; 4855 bool CandidateFound = false; 4856 int MinCost = SLPCostThreshold; 4857 4858 // Keep track of values that were deleted by vectorizing in the loop below. 4859 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4860 4861 unsigned NextInst = 0, MaxInst = VL.size(); 4862 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4863 VF /= 2) { 4864 // No actual vectorization should happen, if number of parts is the same as 4865 // provided vectorization factor (i.e. the scalar type is used for vector 4866 // code during codegen). 4867 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4868 if (TTI->getNumberOfParts(VecTy) == VF) 4869 continue; 4870 for (unsigned I = NextInst; I < MaxInst; ++I) { 4871 unsigned OpsWidth = 0; 4872 4873 if (I + VF > MaxInst) 4874 OpsWidth = MaxInst - I; 4875 else 4876 OpsWidth = VF; 4877 4878 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4879 break; 4880 4881 // Check that a previous iteration of this loop did not delete the Value. 4882 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4883 continue; 4884 4885 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4886 << "\n"); 4887 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4888 4889 R.buildTree(Ops); 4890 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4891 // TODO: check if we can allow reordering for more cases. 4892 if (AllowReorder && Order) { 4893 // TODO: reorder tree nodes without tree rebuilding. 4894 // Conceptually, there is nothing actually preventing us from trying to 4895 // reorder a larger list. In fact, we do exactly this when vectorizing 4896 // reductions. However, at this point, we only expect to get here when 4897 // there are exactly two operations. 4898 assert(Ops.size() == 2); 4899 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4900 R.buildTree(ReorderedOps, None); 4901 } 4902 if (R.isTreeTinyAndNotFullyVectorizable()) 4903 continue; 4904 4905 R.computeMinimumValueSizes(); 4906 int Cost = R.getTreeCost() - UserCost; 4907 CandidateFound = true; 4908 MinCost = std::min(MinCost, Cost); 4909 4910 if (Cost < -SLPCostThreshold) { 4911 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4912 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4913 cast<Instruction>(Ops[0])) 4914 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4915 << " and with tree size " 4916 << ore::NV("TreeSize", R.getTreeSize())); 4917 4918 R.vectorizeTree(); 4919 // Move to the next bundle. 4920 I += VF - 1; 4921 NextInst = I + 1; 4922 Changed = true; 4923 } 4924 } 4925 } 4926 4927 if (!Changed && CandidateFound) { 4928 R.getORE()->emit([&]() { 4929 return OptimizationRemarkMissed( 4930 SV_NAME, "NotBeneficial", I0) 4931 << "List vectorization was possible but not beneficial with cost " 4932 << ore::NV("Cost", MinCost) << " >= " 4933 << ore::NV("Treshold", -SLPCostThreshold); 4934 }); 4935 } else if (!Changed) { 4936 R.getORE()->emit([&]() { 4937 return OptimizationRemarkMissed( 4938 SV_NAME, "NotPossible", I0) 4939 << "Cannot SLP vectorize list: vectorization was impossible" 4940 << " with available vectorization factors"; 4941 }); 4942 } 4943 return Changed; 4944 } 4945 4946 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4947 if (!I) 4948 return false; 4949 4950 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4951 return false; 4952 4953 Value *P = I->getParent(); 4954 4955 // Vectorize in current basic block only. 4956 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4957 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4958 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4959 return false; 4960 4961 // Try to vectorize V. 4962 if (tryToVectorizePair(Op0, Op1, R)) 4963 return true; 4964 4965 auto *A = dyn_cast<BinaryOperator>(Op0); 4966 auto *B = dyn_cast<BinaryOperator>(Op1); 4967 // Try to skip B. 4968 if (B && B->hasOneUse()) { 4969 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4970 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4971 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4972 return true; 4973 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4974 return true; 4975 } 4976 4977 // Try to skip A. 4978 if (A && A->hasOneUse()) { 4979 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4980 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4981 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4982 return true; 4983 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4984 return true; 4985 } 4986 return false; 4987 } 4988 4989 /// Generate a shuffle mask to be used in a reduction tree. 4990 /// 4991 /// \param VecLen The length of the vector to be reduced. 4992 /// \param NumEltsToRdx The number of elements that should be reduced in the 4993 /// vector. 4994 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4995 /// reduction. A pairwise reduction will generate a mask of 4996 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4997 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4998 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4999 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5000 bool IsPairwise, bool IsLeft, 5001 IRBuilder<> &Builder) { 5002 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5003 5004 SmallVector<Constant *, 32> ShuffleMask( 5005 VecLen, UndefValue::get(Builder.getInt32Ty())); 5006 5007 if (IsPairwise) 5008 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5009 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5010 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5011 else 5012 // Move the upper half of the vector to the lower half. 5013 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5014 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5015 5016 return ConstantVector::get(ShuffleMask); 5017 } 5018 5019 namespace { 5020 5021 /// Model horizontal reductions. 5022 /// 5023 /// A horizontal reduction is a tree of reduction operations (currently add and 5024 /// fadd) that has operations that can be put into a vector as its leaf. 5025 /// For example, this tree: 5026 /// 5027 /// mul mul mul mul 5028 /// \ / \ / 5029 /// + + 5030 /// \ / 5031 /// + 5032 /// This tree has "mul" as its reduced values and "+" as its reduction 5033 /// operations. A reduction might be feeding into a store or a binary operation 5034 /// feeding a phi. 5035 /// ... 5036 /// \ / 5037 /// + 5038 /// | 5039 /// phi += 5040 /// 5041 /// Or: 5042 /// ... 5043 /// \ / 5044 /// + 5045 /// | 5046 /// *p = 5047 /// 5048 class HorizontalReduction { 5049 using ReductionOpsType = SmallVector<Value *, 16>; 5050 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5051 ReductionOpsListType ReductionOps; 5052 SmallVector<Value *, 32> ReducedVals; 5053 // Use map vector to make stable output. 5054 MapVector<Instruction *, Value *> ExtraArgs; 5055 5056 /// Kind of the reduction data. 5057 enum ReductionKind { 5058 RK_None, /// Not a reduction. 5059 RK_Arithmetic, /// Binary reduction data. 5060 RK_Min, /// Minimum reduction data. 5061 RK_UMin, /// Unsigned minimum reduction data. 5062 RK_Max, /// Maximum reduction data. 5063 RK_UMax, /// Unsigned maximum reduction data. 5064 }; 5065 5066 /// Contains info about operation, like its opcode, left and right operands. 5067 class OperationData { 5068 /// Opcode of the instruction. 5069 unsigned Opcode = 0; 5070 5071 /// Left operand of the reduction operation. 5072 Value *LHS = nullptr; 5073 5074 /// Right operand of the reduction operation. 5075 Value *RHS = nullptr; 5076 5077 /// Kind of the reduction operation. 5078 ReductionKind Kind = RK_None; 5079 5080 /// True if float point min/max reduction has no NaNs. 5081 bool NoNaN = false; 5082 5083 /// Checks if the reduction operation can be vectorized. 5084 bool isVectorizable() const { 5085 return LHS && RHS && 5086 // We currently only support adds && min/max reductions. 5087 ((Kind == RK_Arithmetic && 5088 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5089 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5090 (Kind == RK_Min || Kind == RK_Max)) || 5091 (Opcode == Instruction::ICmp && 5092 (Kind == RK_UMin || Kind == RK_UMax))); 5093 } 5094 5095 /// Creates reduction operation with the current opcode. 5096 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5097 assert(isVectorizable() && 5098 "Expected add|fadd or min/max reduction operation."); 5099 Value *Cmp; 5100 switch (Kind) { 5101 case RK_Arithmetic: 5102 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5103 Name); 5104 case RK_Min: 5105 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5106 : Builder.CreateFCmpOLT(LHS, RHS); 5107 break; 5108 case RK_Max: 5109 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5110 : Builder.CreateFCmpOGT(LHS, RHS); 5111 break; 5112 case RK_UMin: 5113 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5114 Cmp = Builder.CreateICmpULT(LHS, RHS); 5115 break; 5116 case RK_UMax: 5117 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5118 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5119 break; 5120 case RK_None: 5121 llvm_unreachable("Unknown reduction operation."); 5122 } 5123 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5124 } 5125 5126 public: 5127 explicit OperationData() = default; 5128 5129 /// Construction for reduced values. They are identified by opcode only and 5130 /// don't have associated LHS/RHS values. 5131 explicit OperationData(Value *V) { 5132 if (auto *I = dyn_cast<Instruction>(V)) 5133 Opcode = I->getOpcode(); 5134 } 5135 5136 /// Constructor for reduction operations with opcode and its left and 5137 /// right operands. 5138 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5139 bool NoNaN = false) 5140 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5141 assert(Kind != RK_None && "One of the reduction operations is expected."); 5142 } 5143 5144 explicit operator bool() const { return Opcode; } 5145 5146 /// Get the index of the first operand. 5147 unsigned getFirstOperandIndex() const { 5148 assert(!!*this && "The opcode is not set."); 5149 switch (Kind) { 5150 case RK_Min: 5151 case RK_UMin: 5152 case RK_Max: 5153 case RK_UMax: 5154 return 1; 5155 case RK_Arithmetic: 5156 case RK_None: 5157 break; 5158 } 5159 return 0; 5160 } 5161 5162 /// Total number of operands in the reduction operation. 5163 unsigned getNumberOfOperands() const { 5164 assert(Kind != RK_None && !!*this && LHS && RHS && 5165 "Expected reduction operation."); 5166 switch (Kind) { 5167 case RK_Arithmetic: 5168 return 2; 5169 case RK_Min: 5170 case RK_UMin: 5171 case RK_Max: 5172 case RK_UMax: 5173 return 3; 5174 case RK_None: 5175 break; 5176 } 5177 llvm_unreachable("Reduction kind is not set"); 5178 } 5179 5180 /// Checks if the operation has the same parent as \p P. 5181 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5182 assert(Kind != RK_None && !!*this && LHS && RHS && 5183 "Expected reduction operation."); 5184 if (!IsRedOp) 5185 return I->getParent() == P; 5186 switch (Kind) { 5187 case RK_Arithmetic: 5188 // Arithmetic reduction operation must be used once only. 5189 return I->getParent() == P; 5190 case RK_Min: 5191 case RK_UMin: 5192 case RK_Max: 5193 case RK_UMax: { 5194 // SelectInst must be used twice while the condition op must have single 5195 // use only. 5196 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5197 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5198 } 5199 case RK_None: 5200 break; 5201 } 5202 llvm_unreachable("Reduction kind is not set"); 5203 } 5204 /// Expected number of uses for reduction operations/reduced values. 5205 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5206 assert(Kind != RK_None && !!*this && LHS && RHS && 5207 "Expected reduction operation."); 5208 switch (Kind) { 5209 case RK_Arithmetic: 5210 return I->hasOneUse(); 5211 case RK_Min: 5212 case RK_UMin: 5213 case RK_Max: 5214 case RK_UMax: 5215 return I->hasNUses(2) && 5216 (!IsReductionOp || 5217 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5218 case RK_None: 5219 break; 5220 } 5221 llvm_unreachable("Reduction kind is not set"); 5222 } 5223 5224 /// Initializes the list of reduction operations. 5225 void initReductionOps(ReductionOpsListType &ReductionOps) { 5226 assert(Kind != RK_None && !!*this && LHS && RHS && 5227 "Expected reduction operation."); 5228 switch (Kind) { 5229 case RK_Arithmetic: 5230 ReductionOps.assign(1, ReductionOpsType()); 5231 break; 5232 case RK_Min: 5233 case RK_UMin: 5234 case RK_Max: 5235 case RK_UMax: 5236 ReductionOps.assign(2, ReductionOpsType()); 5237 break; 5238 case RK_None: 5239 llvm_unreachable("Reduction kind is not set"); 5240 } 5241 } 5242 /// Add all reduction operations for the reduction instruction \p I. 5243 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5244 assert(Kind != RK_None && !!*this && LHS && RHS && 5245 "Expected reduction operation."); 5246 switch (Kind) { 5247 case RK_Arithmetic: 5248 ReductionOps[0].emplace_back(I); 5249 break; 5250 case RK_Min: 5251 case RK_UMin: 5252 case RK_Max: 5253 case RK_UMax: 5254 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5255 ReductionOps[1].emplace_back(I); 5256 break; 5257 case RK_None: 5258 llvm_unreachable("Reduction kind is not set"); 5259 } 5260 } 5261 5262 /// Checks if instruction is associative and can be vectorized. 5263 bool isAssociative(Instruction *I) const { 5264 assert(Kind != RK_None && *this && LHS && RHS && 5265 "Expected reduction operation."); 5266 switch (Kind) { 5267 case RK_Arithmetic: 5268 return I->isAssociative(); 5269 case RK_Min: 5270 case RK_Max: 5271 return Opcode == Instruction::ICmp || 5272 cast<Instruction>(I->getOperand(0))->isFast(); 5273 case RK_UMin: 5274 case RK_UMax: 5275 assert(Opcode == Instruction::ICmp && 5276 "Only integer compare operation is expected."); 5277 return true; 5278 case RK_None: 5279 break; 5280 } 5281 llvm_unreachable("Reduction kind is not set"); 5282 } 5283 5284 /// Checks if the reduction operation can be vectorized. 5285 bool isVectorizable(Instruction *I) const { 5286 return isVectorizable() && isAssociative(I); 5287 } 5288 5289 /// Checks if two operation data are both a reduction op or both a reduced 5290 /// value. 5291 bool operator==(const OperationData &OD) { 5292 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5293 "One of the comparing operations is incorrect."); 5294 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5295 } 5296 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5297 void clear() { 5298 Opcode = 0; 5299 LHS = nullptr; 5300 RHS = nullptr; 5301 Kind = RK_None; 5302 NoNaN = false; 5303 } 5304 5305 /// Get the opcode of the reduction operation. 5306 unsigned getOpcode() const { 5307 assert(isVectorizable() && "Expected vectorizable operation."); 5308 return Opcode; 5309 } 5310 5311 /// Get kind of reduction data. 5312 ReductionKind getKind() const { return Kind; } 5313 Value *getLHS() const { return LHS; } 5314 Value *getRHS() const { return RHS; } 5315 Type *getConditionType() const { 5316 switch (Kind) { 5317 case RK_Arithmetic: 5318 return nullptr; 5319 case RK_Min: 5320 case RK_Max: 5321 case RK_UMin: 5322 case RK_UMax: 5323 return CmpInst::makeCmpResultType(LHS->getType()); 5324 case RK_None: 5325 break; 5326 } 5327 llvm_unreachable("Reduction kind is not set"); 5328 } 5329 5330 /// Creates reduction operation with the current opcode with the IR flags 5331 /// from \p ReductionOps. 5332 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5333 const ReductionOpsListType &ReductionOps) const { 5334 assert(isVectorizable() && 5335 "Expected add|fadd or min/max reduction operation."); 5336 auto *Op = createOp(Builder, Name); 5337 switch (Kind) { 5338 case RK_Arithmetic: 5339 propagateIRFlags(Op, ReductionOps[0]); 5340 return Op; 5341 case RK_Min: 5342 case RK_Max: 5343 case RK_UMin: 5344 case RK_UMax: 5345 if (auto *SI = dyn_cast<SelectInst>(Op)) 5346 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5347 propagateIRFlags(Op, ReductionOps[1]); 5348 return Op; 5349 case RK_None: 5350 break; 5351 } 5352 llvm_unreachable("Unknown reduction operation."); 5353 } 5354 /// Creates reduction operation with the current opcode with the IR flags 5355 /// from \p I. 5356 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5357 Instruction *I) const { 5358 assert(isVectorizable() && 5359 "Expected add|fadd or min/max reduction operation."); 5360 auto *Op = createOp(Builder, Name); 5361 switch (Kind) { 5362 case RK_Arithmetic: 5363 propagateIRFlags(Op, I); 5364 return Op; 5365 case RK_Min: 5366 case RK_Max: 5367 case RK_UMin: 5368 case RK_UMax: 5369 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5370 propagateIRFlags(SI->getCondition(), 5371 cast<SelectInst>(I)->getCondition()); 5372 } 5373 propagateIRFlags(Op, I); 5374 return Op; 5375 case RK_None: 5376 break; 5377 } 5378 llvm_unreachable("Unknown reduction operation."); 5379 } 5380 5381 TargetTransformInfo::ReductionFlags getFlags() const { 5382 TargetTransformInfo::ReductionFlags Flags; 5383 Flags.NoNaN = NoNaN; 5384 switch (Kind) { 5385 case RK_Arithmetic: 5386 break; 5387 case RK_Min: 5388 Flags.IsSigned = Opcode == Instruction::ICmp; 5389 Flags.IsMaxOp = false; 5390 break; 5391 case RK_Max: 5392 Flags.IsSigned = Opcode == Instruction::ICmp; 5393 Flags.IsMaxOp = true; 5394 break; 5395 case RK_UMin: 5396 Flags.IsSigned = false; 5397 Flags.IsMaxOp = false; 5398 break; 5399 case RK_UMax: 5400 Flags.IsSigned = false; 5401 Flags.IsMaxOp = true; 5402 break; 5403 case RK_None: 5404 llvm_unreachable("Reduction kind is not set"); 5405 } 5406 return Flags; 5407 } 5408 }; 5409 5410 Instruction *ReductionRoot = nullptr; 5411 5412 /// The operation data of the reduction operation. 5413 OperationData ReductionData; 5414 5415 /// The operation data of the values we perform a reduction on. 5416 OperationData ReducedValueData; 5417 5418 /// Should we model this reduction as a pairwise reduction tree or a tree that 5419 /// splits the vector in halves and adds those halves. 5420 bool IsPairwiseReduction = false; 5421 5422 /// Checks if the ParentStackElem.first should be marked as a reduction 5423 /// operation with an extra argument or as extra argument itself. 5424 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5425 Value *ExtraArg) { 5426 if (ExtraArgs.count(ParentStackElem.first)) { 5427 ExtraArgs[ParentStackElem.first] = nullptr; 5428 // We ran into something like: 5429 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5430 // The whole ParentStackElem.first should be considered as an extra value 5431 // in this case. 5432 // Do not perform analysis of remaining operands of ParentStackElem.first 5433 // instruction, this whole instruction is an extra argument. 5434 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5435 } else { 5436 // We ran into something like: 5437 // ParentStackElem.first += ... + ExtraArg + ... 5438 ExtraArgs[ParentStackElem.first] = ExtraArg; 5439 } 5440 } 5441 5442 static OperationData getOperationData(Value *V) { 5443 if (!V) 5444 return OperationData(); 5445 5446 Value *LHS; 5447 Value *RHS; 5448 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5449 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5450 RK_Arithmetic); 5451 } 5452 if (auto *Select = dyn_cast<SelectInst>(V)) { 5453 // Look for a min/max pattern. 5454 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5455 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5456 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5457 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5458 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5459 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5460 return OperationData( 5461 Instruction::FCmp, LHS, RHS, RK_Min, 5462 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5463 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5464 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5465 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5466 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5467 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5468 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5469 return OperationData( 5470 Instruction::FCmp, LHS, RHS, RK_Max, 5471 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5472 } else { 5473 // Try harder: look for min/max pattern based on instructions producing 5474 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5475 // During the intermediate stages of SLP, it's very common to have 5476 // pattern like this (since optimizeGatherSequence is run only once 5477 // at the end): 5478 // %1 = extractelement <2 x i32> %a, i32 0 5479 // %2 = extractelement <2 x i32> %a, i32 1 5480 // %cond = icmp sgt i32 %1, %2 5481 // %3 = extractelement <2 x i32> %a, i32 0 5482 // %4 = extractelement <2 x i32> %a, i32 1 5483 // %select = select i1 %cond, i32 %3, i32 %4 5484 CmpInst::Predicate Pred; 5485 Instruction *L1; 5486 Instruction *L2; 5487 5488 LHS = Select->getTrueValue(); 5489 RHS = Select->getFalseValue(); 5490 Value *Cond = Select->getCondition(); 5491 5492 // TODO: Support inverse predicates. 5493 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5494 if (!isa<ExtractElementInst>(RHS) || 5495 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5496 return OperationData(V); 5497 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5498 if (!isa<ExtractElementInst>(LHS) || 5499 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5500 return OperationData(V); 5501 } else { 5502 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5503 return OperationData(V); 5504 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5505 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5506 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5507 return OperationData(V); 5508 } 5509 switch (Pred) { 5510 default: 5511 return OperationData(V); 5512 5513 case CmpInst::ICMP_ULT: 5514 case CmpInst::ICMP_ULE: 5515 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5516 5517 case CmpInst::ICMP_SLT: 5518 case CmpInst::ICMP_SLE: 5519 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5520 5521 case CmpInst::FCMP_OLT: 5522 case CmpInst::FCMP_OLE: 5523 case CmpInst::FCMP_ULT: 5524 case CmpInst::FCMP_ULE: 5525 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5526 cast<Instruction>(Cond)->hasNoNaNs()); 5527 5528 case CmpInst::ICMP_UGT: 5529 case CmpInst::ICMP_UGE: 5530 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5531 5532 case CmpInst::ICMP_SGT: 5533 case CmpInst::ICMP_SGE: 5534 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5535 5536 case CmpInst::FCMP_OGT: 5537 case CmpInst::FCMP_OGE: 5538 case CmpInst::FCMP_UGT: 5539 case CmpInst::FCMP_UGE: 5540 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5541 cast<Instruction>(Cond)->hasNoNaNs()); 5542 } 5543 } 5544 } 5545 return OperationData(V); 5546 } 5547 5548 public: 5549 HorizontalReduction() = default; 5550 5551 /// Try to find a reduction tree. 5552 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5553 assert((!Phi || is_contained(Phi->operands(), B)) && 5554 "Thi phi needs to use the binary operator"); 5555 5556 ReductionData = getOperationData(B); 5557 5558 // We could have a initial reductions that is not an add. 5559 // r *= v1 + v2 + v3 + v4 5560 // In such a case start looking for a tree rooted in the first '+'. 5561 if (Phi) { 5562 if (ReductionData.getLHS() == Phi) { 5563 Phi = nullptr; 5564 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5565 ReductionData = getOperationData(B); 5566 } else if (ReductionData.getRHS() == Phi) { 5567 Phi = nullptr; 5568 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5569 ReductionData = getOperationData(B); 5570 } 5571 } 5572 5573 if (!ReductionData.isVectorizable(B)) 5574 return false; 5575 5576 Type *Ty = B->getType(); 5577 if (!isValidElementType(Ty)) 5578 return false; 5579 5580 ReducedValueData.clear(); 5581 ReductionRoot = B; 5582 5583 // Post order traverse the reduction tree starting at B. We only handle true 5584 // trees containing only binary operators. 5585 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5586 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5587 ReductionData.initReductionOps(ReductionOps); 5588 while (!Stack.empty()) { 5589 Instruction *TreeN = Stack.back().first; 5590 unsigned EdgeToVist = Stack.back().second++; 5591 OperationData OpData = getOperationData(TreeN); 5592 bool IsReducedValue = OpData != ReductionData; 5593 5594 // Postorder vist. 5595 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5596 if (IsReducedValue) 5597 ReducedVals.push_back(TreeN); 5598 else { 5599 auto I = ExtraArgs.find(TreeN); 5600 if (I != ExtraArgs.end() && !I->second) { 5601 // Check if TreeN is an extra argument of its parent operation. 5602 if (Stack.size() <= 1) { 5603 // TreeN can't be an extra argument as it is a root reduction 5604 // operation. 5605 return false; 5606 } 5607 // Yes, TreeN is an extra argument, do not add it to a list of 5608 // reduction operations. 5609 // Stack[Stack.size() - 2] always points to the parent operation. 5610 markExtraArg(Stack[Stack.size() - 2], TreeN); 5611 ExtraArgs.erase(TreeN); 5612 } else 5613 ReductionData.addReductionOps(TreeN, ReductionOps); 5614 } 5615 // Retract. 5616 Stack.pop_back(); 5617 continue; 5618 } 5619 5620 // Visit left or right. 5621 Value *NextV = TreeN->getOperand(EdgeToVist); 5622 if (NextV != Phi) { 5623 auto *I = dyn_cast<Instruction>(NextV); 5624 OpData = getOperationData(I); 5625 // Continue analysis if the next operand is a reduction operation or 5626 // (possibly) a reduced value. If the reduced value opcode is not set, 5627 // the first met operation != reduction operation is considered as the 5628 // reduced value class. 5629 if (I && (!ReducedValueData || OpData == ReducedValueData || 5630 OpData == ReductionData)) { 5631 const bool IsReductionOperation = OpData == ReductionData; 5632 // Only handle trees in the current basic block. 5633 if (!ReductionData.hasSameParent(I, B->getParent(), 5634 IsReductionOperation)) { 5635 // I is an extra argument for TreeN (its parent operation). 5636 markExtraArg(Stack.back(), I); 5637 continue; 5638 } 5639 5640 // Each tree node needs to have minimal number of users except for the 5641 // ultimate reduction. 5642 if (!ReductionData.hasRequiredNumberOfUses(I, 5643 OpData == ReductionData) && 5644 I != B) { 5645 // I is an extra argument for TreeN (its parent operation). 5646 markExtraArg(Stack.back(), I); 5647 continue; 5648 } 5649 5650 if (IsReductionOperation) { 5651 // We need to be able to reassociate the reduction operations. 5652 if (!OpData.isAssociative(I)) { 5653 // I is an extra argument for TreeN (its parent operation). 5654 markExtraArg(Stack.back(), I); 5655 continue; 5656 } 5657 } else if (ReducedValueData && 5658 ReducedValueData != OpData) { 5659 // Make sure that the opcodes of the operations that we are going to 5660 // reduce match. 5661 // I is an extra argument for TreeN (its parent operation). 5662 markExtraArg(Stack.back(), I); 5663 continue; 5664 } else if (!ReducedValueData) 5665 ReducedValueData = OpData; 5666 5667 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5668 continue; 5669 } 5670 } 5671 // NextV is an extra argument for TreeN (its parent operation). 5672 markExtraArg(Stack.back(), NextV); 5673 } 5674 return true; 5675 } 5676 5677 /// Attempt to vectorize the tree found by 5678 /// matchAssociativeReduction. 5679 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5680 if (ReducedVals.empty()) 5681 return false; 5682 5683 // If there is a sufficient number of reduction values, reduce 5684 // to a nearby power-of-2. Can safely generate oversized 5685 // vectors and rely on the backend to split them to legal sizes. 5686 unsigned NumReducedVals = ReducedVals.size(); 5687 if (NumReducedVals < 4) 5688 return false; 5689 5690 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5691 5692 Value *VectorizedTree = nullptr; 5693 IRBuilder<> Builder(ReductionRoot); 5694 FastMathFlags Unsafe; 5695 Unsafe.setFast(); 5696 Builder.setFastMathFlags(Unsafe); 5697 unsigned i = 0; 5698 5699 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5700 // The same extra argument may be used several time, so log each attempt 5701 // to use it. 5702 for (auto &Pair : ExtraArgs) 5703 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5704 SmallVector<Value *, 16> IgnoreList; 5705 for (auto &V : ReductionOps) 5706 IgnoreList.append(V.begin(), V.end()); 5707 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5708 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5709 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5710 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5711 // TODO: Handle orders of size less than number of elements in the vector. 5712 if (Order && Order->size() == VL.size()) { 5713 // TODO: reorder tree nodes without tree rebuilding. 5714 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5715 llvm::transform(*Order, ReorderedOps.begin(), 5716 [VL](const unsigned Idx) { return VL[Idx]; }); 5717 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5718 } 5719 if (V.isTreeTinyAndNotFullyVectorizable()) 5720 break; 5721 5722 V.computeMinimumValueSizes(); 5723 5724 // Estimate cost. 5725 int TreeCost = V.getTreeCost(); 5726 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5727 int Cost = TreeCost + ReductionCost; 5728 if (Cost >= -SLPCostThreshold) { 5729 V.getORE()->emit([&]() { 5730 return OptimizationRemarkMissed( 5731 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5732 << "Vectorizing horizontal reduction is possible" 5733 << "but not beneficial with cost " 5734 << ore::NV("Cost", Cost) << " and threshold " 5735 << ore::NV("Threshold", -SLPCostThreshold); 5736 }); 5737 break; 5738 } 5739 5740 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5741 << Cost << ". (HorRdx)\n"); 5742 V.getORE()->emit([&]() { 5743 return OptimizationRemark( 5744 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5745 << "Vectorized horizontal reduction with cost " 5746 << ore::NV("Cost", Cost) << " and with tree size " 5747 << ore::NV("TreeSize", V.getTreeSize()); 5748 }); 5749 5750 // Vectorize a tree. 5751 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5752 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5753 5754 // Emit a reduction. 5755 Value *ReducedSubTree = 5756 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5757 if (VectorizedTree) { 5758 Builder.SetCurrentDebugLocation(Loc); 5759 OperationData VectReductionData(ReductionData.getOpcode(), 5760 VectorizedTree, ReducedSubTree, 5761 ReductionData.getKind()); 5762 VectorizedTree = 5763 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5764 } else 5765 VectorizedTree = ReducedSubTree; 5766 i += ReduxWidth; 5767 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5768 } 5769 5770 if (VectorizedTree) { 5771 // Finish the reduction. 5772 for (; i < NumReducedVals; ++i) { 5773 auto *I = cast<Instruction>(ReducedVals[i]); 5774 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5775 OperationData VectReductionData(ReductionData.getOpcode(), 5776 VectorizedTree, I, 5777 ReductionData.getKind()); 5778 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5779 } 5780 for (auto &Pair : ExternallyUsedValues) { 5781 assert(!Pair.second.empty() && 5782 "At least one DebugLoc must be inserted"); 5783 // Add each externally used value to the final reduction. 5784 for (auto *I : Pair.second) { 5785 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5786 OperationData VectReductionData(ReductionData.getOpcode(), 5787 VectorizedTree, Pair.first, 5788 ReductionData.getKind()); 5789 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5790 } 5791 } 5792 // Update users. 5793 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5794 } 5795 return VectorizedTree != nullptr; 5796 } 5797 5798 unsigned numReductionValues() const { 5799 return ReducedVals.size(); 5800 } 5801 5802 private: 5803 /// Calculate the cost of a reduction. 5804 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5805 unsigned ReduxWidth) { 5806 Type *ScalarTy = FirstReducedVal->getType(); 5807 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5808 5809 int PairwiseRdxCost; 5810 int SplittingRdxCost; 5811 switch (ReductionData.getKind()) { 5812 case RK_Arithmetic: 5813 PairwiseRdxCost = 5814 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5815 /*IsPairwiseForm=*/true); 5816 SplittingRdxCost = 5817 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5818 /*IsPairwiseForm=*/false); 5819 break; 5820 case RK_Min: 5821 case RK_Max: 5822 case RK_UMin: 5823 case RK_UMax: { 5824 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5825 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5826 ReductionData.getKind() == RK_UMax; 5827 PairwiseRdxCost = 5828 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5829 /*IsPairwiseForm=*/true, IsUnsigned); 5830 SplittingRdxCost = 5831 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5832 /*IsPairwiseForm=*/false, IsUnsigned); 5833 break; 5834 } 5835 case RK_None: 5836 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5837 } 5838 5839 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5840 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5841 5842 int ScalarReduxCost; 5843 switch (ReductionData.getKind()) { 5844 case RK_Arithmetic: 5845 ScalarReduxCost = 5846 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5847 break; 5848 case RK_Min: 5849 case RK_Max: 5850 case RK_UMin: 5851 case RK_UMax: 5852 ScalarReduxCost = 5853 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5854 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5855 CmpInst::makeCmpResultType(ScalarTy)); 5856 break; 5857 case RK_None: 5858 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5859 } 5860 ScalarReduxCost *= (ReduxWidth - 1); 5861 5862 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5863 << " for reduction that starts with " << *FirstReducedVal 5864 << " (It is a " 5865 << (IsPairwiseReduction ? "pairwise" : "splitting") 5866 << " reduction)\n"); 5867 5868 return VecReduxCost - ScalarReduxCost; 5869 } 5870 5871 /// Emit a horizontal reduction of the vectorized value. 5872 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5873 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5874 assert(VectorizedValue && "Need to have a vectorized tree node"); 5875 assert(isPowerOf2_32(ReduxWidth) && 5876 "We only handle power-of-two reductions for now"); 5877 5878 if (!IsPairwiseReduction) 5879 return createSimpleTargetReduction( 5880 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5881 ReductionData.getFlags(), ReductionOps.back()); 5882 5883 Value *TmpVec = VectorizedValue; 5884 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5885 Value *LeftMask = 5886 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5887 Value *RightMask = 5888 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5889 5890 Value *LeftShuf = Builder.CreateShuffleVector( 5891 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5892 Value *RightShuf = Builder.CreateShuffleVector( 5893 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5894 "rdx.shuf.r"); 5895 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5896 RightShuf, ReductionData.getKind()); 5897 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5898 } 5899 5900 // The result is in the first element of the vector. 5901 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5902 } 5903 }; 5904 5905 } // end anonymous namespace 5906 5907 /// Recognize construction of vectors like 5908 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5909 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5910 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5911 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5912 /// starting from the last insertelement instruction. 5913 /// 5914 /// Returns true if it matches 5915 static bool findBuildVector(InsertElementInst *LastInsertElem, 5916 TargetTransformInfo *TTI, 5917 SmallVectorImpl<Value *> &BuildVectorOpds, 5918 int &UserCost) { 5919 UserCost = 0; 5920 Value *V = nullptr; 5921 do { 5922 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5923 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5924 LastInsertElem->getType(), 5925 CI->getZExtValue()); 5926 } 5927 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5928 V = LastInsertElem->getOperand(0); 5929 if (isa<UndefValue>(V)) 5930 break; 5931 LastInsertElem = dyn_cast<InsertElementInst>(V); 5932 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5933 return false; 5934 } while (true); 5935 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5936 return true; 5937 } 5938 5939 /// Like findBuildVector, but looks for construction of aggregate. 5940 /// 5941 /// \return true if it matches. 5942 static bool findBuildAggregate(InsertValueInst *IV, 5943 SmallVectorImpl<Value *> &BuildVectorOpds) { 5944 Value *V; 5945 do { 5946 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5947 V = IV->getAggregateOperand(); 5948 if (isa<UndefValue>(V)) 5949 break; 5950 IV = dyn_cast<InsertValueInst>(V); 5951 if (!IV || !IV->hasOneUse()) 5952 return false; 5953 } while (true); 5954 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5955 return true; 5956 } 5957 5958 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5959 return V->getType() < V2->getType(); 5960 } 5961 5962 /// Try and get a reduction value from a phi node. 5963 /// 5964 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5965 /// if they come from either \p ParentBB or a containing loop latch. 5966 /// 5967 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5968 /// if not possible. 5969 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5970 BasicBlock *ParentBB, LoopInfo *LI) { 5971 // There are situations where the reduction value is not dominated by the 5972 // reduction phi. Vectorizing such cases has been reported to cause 5973 // miscompiles. See PR25787. 5974 auto DominatedReduxValue = [&](Value *R) { 5975 return isa<Instruction>(R) && 5976 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 5977 }; 5978 5979 Value *Rdx = nullptr; 5980 5981 // Return the incoming value if it comes from the same BB as the phi node. 5982 if (P->getIncomingBlock(0) == ParentBB) { 5983 Rdx = P->getIncomingValue(0); 5984 } else if (P->getIncomingBlock(1) == ParentBB) { 5985 Rdx = P->getIncomingValue(1); 5986 } 5987 5988 if (Rdx && DominatedReduxValue(Rdx)) 5989 return Rdx; 5990 5991 // Otherwise, check whether we have a loop latch to look at. 5992 Loop *BBL = LI->getLoopFor(ParentBB); 5993 if (!BBL) 5994 return nullptr; 5995 BasicBlock *BBLatch = BBL->getLoopLatch(); 5996 if (!BBLatch) 5997 return nullptr; 5998 5999 // There is a loop latch, return the incoming value if it comes from 6000 // that. This reduction pattern occasionally turns up. 6001 if (P->getIncomingBlock(0) == BBLatch) { 6002 Rdx = P->getIncomingValue(0); 6003 } else if (P->getIncomingBlock(1) == BBLatch) { 6004 Rdx = P->getIncomingValue(1); 6005 } 6006 6007 if (Rdx && DominatedReduxValue(Rdx)) 6008 return Rdx; 6009 6010 return nullptr; 6011 } 6012 6013 /// Attempt to reduce a horizontal reduction. 6014 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6015 /// with reduction operators \a Root (or one of its operands) in a basic block 6016 /// \a BB, then check if it can be done. If horizontal reduction is not found 6017 /// and root instruction is a binary operation, vectorization of the operands is 6018 /// attempted. 6019 /// \returns true if a horizontal reduction was matched and reduced or operands 6020 /// of one of the binary instruction were vectorized. 6021 /// \returns false if a horizontal reduction was not matched (or not possible) 6022 /// or no vectorization of any binary operation feeding \a Root instruction was 6023 /// performed. 6024 static bool tryToVectorizeHorReductionOrInstOperands( 6025 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6026 TargetTransformInfo *TTI, 6027 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6028 if (!ShouldVectorizeHor) 6029 return false; 6030 6031 if (!Root) 6032 return false; 6033 6034 if (Root->getParent() != BB || isa<PHINode>(Root)) 6035 return false; 6036 // Start analysis starting from Root instruction. If horizontal reduction is 6037 // found, try to vectorize it. If it is not a horizontal reduction or 6038 // vectorization is not possible or not effective, and currently analyzed 6039 // instruction is a binary operation, try to vectorize the operands, using 6040 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6041 // the same procedure considering each operand as a possible root of the 6042 // horizontal reduction. 6043 // Interrupt the process if the Root instruction itself was vectorized or all 6044 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6045 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6046 SmallPtrSet<Value *, 8> VisitedInstrs; 6047 bool Res = false; 6048 while (!Stack.empty()) { 6049 Value *V; 6050 unsigned Level; 6051 std::tie(V, Level) = Stack.pop_back_val(); 6052 if (!V) 6053 continue; 6054 auto *Inst = dyn_cast<Instruction>(V); 6055 if (!Inst) 6056 continue; 6057 auto *BI = dyn_cast<BinaryOperator>(Inst); 6058 auto *SI = dyn_cast<SelectInst>(Inst); 6059 if (BI || SI) { 6060 HorizontalReduction HorRdx; 6061 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6062 if (HorRdx.tryToReduce(R, TTI)) { 6063 Res = true; 6064 // Set P to nullptr to avoid re-analysis of phi node in 6065 // matchAssociativeReduction function unless this is the root node. 6066 P = nullptr; 6067 continue; 6068 } 6069 } 6070 if (P && BI) { 6071 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6072 if (Inst == P) 6073 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6074 if (!Inst) { 6075 // Set P to nullptr to avoid re-analysis of phi node in 6076 // matchAssociativeReduction function unless this is the root node. 6077 P = nullptr; 6078 continue; 6079 } 6080 } 6081 } 6082 // Set P to nullptr to avoid re-analysis of phi node in 6083 // matchAssociativeReduction function unless this is the root node. 6084 P = nullptr; 6085 if (Vectorize(Inst, R)) { 6086 Res = true; 6087 continue; 6088 } 6089 6090 // Try to vectorize operands. 6091 // Continue analysis for the instruction from the same basic block only to 6092 // save compile time. 6093 if (++Level < RecursionMaxDepth) 6094 for (auto *Op : Inst->operand_values()) 6095 if (VisitedInstrs.insert(Op).second) 6096 if (auto *I = dyn_cast<Instruction>(Op)) 6097 if (!isa<PHINode>(I) && I->getParent() == BB) 6098 Stack.emplace_back(Op, Level); 6099 } 6100 return Res; 6101 } 6102 6103 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6104 BasicBlock *BB, BoUpSLP &R, 6105 TargetTransformInfo *TTI) { 6106 if (!V) 6107 return false; 6108 auto *I = dyn_cast<Instruction>(V); 6109 if (!I) 6110 return false; 6111 6112 if (!isa<BinaryOperator>(I)) 6113 P = nullptr; 6114 // Try to match and vectorize a horizontal reduction. 6115 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6116 return tryToVectorize(I, R); 6117 }; 6118 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6119 ExtraVectorization); 6120 } 6121 6122 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6123 BasicBlock *BB, BoUpSLP &R) { 6124 const DataLayout &DL = BB->getModule()->getDataLayout(); 6125 if (!R.canMapToVector(IVI->getType(), DL)) 6126 return false; 6127 6128 SmallVector<Value *, 16> BuildVectorOpds; 6129 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6130 return false; 6131 6132 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6133 // Aggregate value is unlikely to be processed in vector register, we need to 6134 // extract scalars into scalar registers, so NeedExtraction is set true. 6135 return tryToVectorizeList(BuildVectorOpds, R); 6136 } 6137 6138 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6139 BasicBlock *BB, BoUpSLP &R) { 6140 int UserCost; 6141 SmallVector<Value *, 16> BuildVectorOpds; 6142 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6143 (llvm::all_of(BuildVectorOpds, 6144 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6145 isShuffle(BuildVectorOpds))) 6146 return false; 6147 6148 // Vectorize starting with the build vector operands ignoring the BuildVector 6149 // instructions for the purpose of scheduling and user extraction. 6150 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6151 } 6152 6153 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6154 BoUpSLP &R) { 6155 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6156 return true; 6157 6158 bool OpsChanged = false; 6159 for (int Idx = 0; Idx < 2; ++Idx) { 6160 OpsChanged |= 6161 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6162 } 6163 return OpsChanged; 6164 } 6165 6166 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6167 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6168 bool OpsChanged = false; 6169 for (auto &VH : reverse(Instructions)) { 6170 auto *I = dyn_cast_or_null<Instruction>(VH); 6171 if (!I) 6172 continue; 6173 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6174 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6175 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6176 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6177 else if (auto *CI = dyn_cast<CmpInst>(I)) 6178 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6179 } 6180 Instructions.clear(); 6181 return OpsChanged; 6182 } 6183 6184 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6185 bool Changed = false; 6186 SmallVector<Value *, 4> Incoming; 6187 SmallPtrSet<Value *, 16> VisitedInstrs; 6188 6189 bool HaveVectorizedPhiNodes = true; 6190 while (HaveVectorizedPhiNodes) { 6191 HaveVectorizedPhiNodes = false; 6192 6193 // Collect the incoming values from the PHIs. 6194 Incoming.clear(); 6195 for (Instruction &I : *BB) { 6196 PHINode *P = dyn_cast<PHINode>(&I); 6197 if (!P) 6198 break; 6199 6200 if (!VisitedInstrs.count(P)) 6201 Incoming.push_back(P); 6202 } 6203 6204 // Sort by type. 6205 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6206 6207 // Try to vectorize elements base on their type. 6208 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6209 E = Incoming.end(); 6210 IncIt != E;) { 6211 6212 // Look for the next elements with the same type. 6213 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6214 while (SameTypeIt != E && 6215 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6216 VisitedInstrs.insert(*SameTypeIt); 6217 ++SameTypeIt; 6218 } 6219 6220 // Try to vectorize them. 6221 unsigned NumElts = (SameTypeIt - IncIt); 6222 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6223 << NumElts << ")\n"); 6224 // The order in which the phi nodes appear in the program does not matter. 6225 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6226 // is done when there are exactly two elements since tryToVectorizeList 6227 // asserts that there are only two values when AllowReorder is true. 6228 bool AllowReorder = NumElts == 2; 6229 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6230 /*UserCost=*/0, AllowReorder)) { 6231 // Success start over because instructions might have been changed. 6232 HaveVectorizedPhiNodes = true; 6233 Changed = true; 6234 break; 6235 } 6236 6237 // Start over at the next instruction of a different type (or the end). 6238 IncIt = SameTypeIt; 6239 } 6240 } 6241 6242 VisitedInstrs.clear(); 6243 6244 SmallVector<WeakVH, 8> PostProcessInstructions; 6245 SmallDenseSet<Instruction *, 4> KeyNodes; 6246 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6247 // We may go through BB multiple times so skip the one we have checked. 6248 if (!VisitedInstrs.insert(&*it).second) { 6249 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6250 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6251 // We would like to start over since some instructions are deleted 6252 // and the iterator may become invalid value. 6253 Changed = true; 6254 it = BB->begin(); 6255 e = BB->end(); 6256 } 6257 continue; 6258 } 6259 6260 if (isa<DbgInfoIntrinsic>(it)) 6261 continue; 6262 6263 // Try to vectorize reductions that use PHINodes. 6264 if (PHINode *P = dyn_cast<PHINode>(it)) { 6265 // Check that the PHI is a reduction PHI. 6266 if (P->getNumIncomingValues() != 2) 6267 return Changed; 6268 6269 // Try to match and vectorize a horizontal reduction. 6270 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6271 TTI)) { 6272 Changed = true; 6273 it = BB->begin(); 6274 e = BB->end(); 6275 continue; 6276 } 6277 continue; 6278 } 6279 6280 // Ran into an instruction without users, like terminator, or function call 6281 // with ignored return value, store. Ignore unused instructions (basing on 6282 // instruction type, except for CallInst and InvokeInst). 6283 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6284 isa<InvokeInst>(it))) { 6285 KeyNodes.insert(&*it); 6286 bool OpsChanged = false; 6287 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6288 for (auto *V : it->operand_values()) { 6289 // Try to match and vectorize a horizontal reduction. 6290 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6291 } 6292 } 6293 // Start vectorization of post-process list of instructions from the 6294 // top-tree instructions to try to vectorize as many instructions as 6295 // possible. 6296 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6297 if (OpsChanged) { 6298 // We would like to start over since some instructions are deleted 6299 // and the iterator may become invalid value. 6300 Changed = true; 6301 it = BB->begin(); 6302 e = BB->end(); 6303 continue; 6304 } 6305 } 6306 6307 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6308 isa<InsertValueInst>(it)) 6309 PostProcessInstructions.push_back(&*it); 6310 6311 } 6312 6313 return Changed; 6314 } 6315 6316 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6317 auto Changed = false; 6318 for (auto &Entry : GEPs) { 6319 // If the getelementptr list has fewer than two elements, there's nothing 6320 // to do. 6321 if (Entry.second.size() < 2) 6322 continue; 6323 6324 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6325 << Entry.second.size() << ".\n"); 6326 6327 // We process the getelementptr list in chunks of 16 (like we do for 6328 // stores) to minimize compile-time. 6329 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6330 auto Len = std::min<unsigned>(BE - BI, 16); 6331 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6332 6333 // Initialize a set a candidate getelementptrs. Note that we use a 6334 // SetVector here to preserve program order. If the index computations 6335 // are vectorizable and begin with loads, we want to minimize the chance 6336 // of having to reorder them later. 6337 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6338 6339 // Some of the candidates may have already been vectorized after we 6340 // initially collected them. If so, the WeakTrackingVHs will have 6341 // nullified the 6342 // values, so remove them from the set of candidates. 6343 Candidates.remove(nullptr); 6344 6345 // Remove from the set of candidates all pairs of getelementptrs with 6346 // constant differences. Such getelementptrs are likely not good 6347 // candidates for vectorization in a bottom-up phase since one can be 6348 // computed from the other. We also ensure all candidate getelementptr 6349 // indices are unique. 6350 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6351 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6352 if (!Candidates.count(GEPI)) 6353 continue; 6354 auto *SCEVI = SE->getSCEV(GEPList[I]); 6355 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6356 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6357 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6358 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6359 Candidates.remove(GEPList[I]); 6360 Candidates.remove(GEPList[J]); 6361 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6362 Candidates.remove(GEPList[J]); 6363 } 6364 } 6365 } 6366 6367 // We break out of the above computation as soon as we know there are 6368 // fewer than two candidates remaining. 6369 if (Candidates.size() < 2) 6370 continue; 6371 6372 // Add the single, non-constant index of each candidate to the bundle. We 6373 // ensured the indices met these constraints when we originally collected 6374 // the getelementptrs. 6375 SmallVector<Value *, 16> Bundle(Candidates.size()); 6376 auto BundleIndex = 0u; 6377 for (auto *V : Candidates) { 6378 auto *GEP = cast<GetElementPtrInst>(V); 6379 auto *GEPIdx = GEP->idx_begin()->get(); 6380 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6381 Bundle[BundleIndex++] = GEPIdx; 6382 } 6383 6384 // Try and vectorize the indices. We are currently only interested in 6385 // gather-like cases of the form: 6386 // 6387 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6388 // 6389 // where the loads of "a", the loads of "b", and the subtractions can be 6390 // performed in parallel. It's likely that detecting this pattern in a 6391 // bottom-up phase will be simpler and less costly than building a 6392 // full-blown top-down phase beginning at the consecutive loads. 6393 Changed |= tryToVectorizeList(Bundle, R); 6394 } 6395 } 6396 return Changed; 6397 } 6398 6399 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6400 bool Changed = false; 6401 // Attempt to sort and vectorize each of the store-groups. 6402 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6403 ++it) { 6404 if (it->second.size() < 2) 6405 continue; 6406 6407 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6408 << it->second.size() << ".\n"); 6409 6410 // Process the stores in chunks of 16. 6411 // TODO: The limit of 16 inhibits greater vectorization factors. 6412 // For example, AVX2 supports v32i8. Increasing this limit, however, 6413 // may cause a significant compile-time increase. 6414 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6415 unsigned Len = std::min<unsigned>(CE - CI, 16); 6416 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6417 } 6418 } 6419 return Changed; 6420 } 6421 6422 char SLPVectorizer::ID = 0; 6423 6424 static const char lv_name[] = "SLP Vectorizer"; 6425 6426 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6427 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6428 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6429 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6430 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6431 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6432 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6433 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6434 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6435 6436 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6437