1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 732 int Index = Offset; 733 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 734 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 735 auto *VT = cast<FixedVectorType>(IE->getType()); 736 if (CI->getValue().uge(VT->getNumElements())) 737 return UndefMaskElem; 738 Index *= VT->getNumElements(); 739 Index += CI->getZExtValue(); 740 return Index; 741 } 742 if (isa<UndefValue>(IE->getOperand(2))) 743 return UndefMaskElem; 744 return None; 745 } 746 747 auto *IV = cast<InsertValueInst>(InsertInst); 748 Type *CurrentType = IV->getType(); 749 for (unsigned I : IV->indices()) { 750 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 751 Index *= ST->getNumElements(); 752 CurrentType = ST->getElementType(I); 753 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 754 Index *= AT->getNumElements(); 755 CurrentType = AT->getElementType(); 756 } else { 757 return None; 758 } 759 Index += I; 760 } 761 return Index; 762 } 763 764 /// Reorders the list of scalars in accordance with the given \p Order and then 765 /// the \p Mask. \p Order - is the original order of the scalars, need to 766 /// reorder scalars into an unordered state at first according to the given 767 /// order. Then the ordered scalars are shuffled once again in accordance with 768 /// the provided mask. 769 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 770 ArrayRef<int> Mask) { 771 assert(!Mask.empty() && "Expected non-empty mask."); 772 SmallVector<Value *> Prev(Scalars.size(), 773 UndefValue::get(Scalars.front()->getType())); 774 Prev.swap(Scalars); 775 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 776 if (Mask[I] != UndefMaskElem) 777 Scalars[Mask[I]] = Prev[I]; 778 } 779 780 namespace slpvectorizer { 781 782 /// Bottom Up SLP Vectorizer. 783 class BoUpSLP { 784 struct TreeEntry; 785 struct ScheduleData; 786 787 public: 788 using ValueList = SmallVector<Value *, 8>; 789 using InstrList = SmallVector<Instruction *, 16>; 790 using ValueSet = SmallPtrSet<Value *, 16>; 791 using StoreList = SmallVector<StoreInst *, 8>; 792 using ExtraValueToDebugLocsMap = 793 MapVector<Value *, SmallVector<Instruction *, 2>>; 794 using OrdersType = SmallVector<unsigned, 4>; 795 796 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 797 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 798 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 799 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 800 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 801 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 802 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 803 // Use the vector register size specified by the target unless overridden 804 // by a command-line option. 805 // TODO: It would be better to limit the vectorization factor based on 806 // data type rather than just register size. For example, x86 AVX has 807 // 256-bit registers, but it does not support integer operations 808 // at that width (that requires AVX2). 809 if (MaxVectorRegSizeOption.getNumOccurrences()) 810 MaxVecRegSize = MaxVectorRegSizeOption; 811 else 812 MaxVecRegSize = 813 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 814 .getFixedSize(); 815 816 if (MinVectorRegSizeOption.getNumOccurrences()) 817 MinVecRegSize = MinVectorRegSizeOption; 818 else 819 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 820 } 821 822 /// Vectorize the tree that starts with the elements in \p VL. 823 /// Returns the vectorized root. 824 Value *vectorizeTree(); 825 826 /// Vectorize the tree but with the list of externally used values \p 827 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 828 /// generated extractvalue instructions. 829 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 830 831 /// \returns the cost incurred by unwanted spills and fills, caused by 832 /// holding live values over call sites. 833 InstructionCost getSpillCost() const; 834 835 /// \returns the vectorization cost of the subtree that starts at \p VL. 836 /// A negative number means that this is profitable. 837 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 838 839 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 840 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 841 void buildTree(ArrayRef<Value *> Roots, 842 ArrayRef<Value *> UserIgnoreLst = None); 843 844 /// Builds external uses of the vectorized scalars, i.e. the list of 845 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 846 /// ExternallyUsedValues contains additional list of external uses to handle 847 /// vectorization of reductions. 848 void 849 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 850 851 /// Clear the internal data structures that are created by 'buildTree'. 852 void deleteTree() { 853 VectorizableTree.clear(); 854 ScalarToTreeEntry.clear(); 855 MustGather.clear(); 856 ExternalUses.clear(); 857 for (auto &Iter : BlocksSchedules) { 858 BlockScheduling *BS = Iter.second.get(); 859 BS->clear(); 860 } 861 MinBWs.clear(); 862 InstrElementSize.clear(); 863 } 864 865 unsigned getTreeSize() const { return VectorizableTree.size(); } 866 867 /// Perform LICM and CSE on the newly generated gather sequences. 868 void optimizeGatherSequence(); 869 870 /// Checks if the specified gather tree entry \p TE can be represented as a 871 /// shuffled vector entry + (possibly) permutation with other gathers. It 872 /// implements the checks only for possibly ordered scalars (Loads, 873 /// ExtractElement, ExtractValue), which can be part of the graph. 874 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 875 876 /// Gets reordering data for the given tree entry. If the entry is vectorized 877 /// - just return ReorderIndices, otherwise check if the scalars can be 878 /// reordered and return the most optimal order. 879 /// \param TopToBottom If true, include the order of vectorized stores and 880 /// insertelement nodes, otherwise skip them. 881 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 882 883 /// Reorders the current graph to the most profitable order starting from the 884 /// root node to the leaf nodes. The best order is chosen only from the nodes 885 /// of the same size (vectorization factor). Smaller nodes are considered 886 /// parts of subgraph with smaller VF and they are reordered independently. We 887 /// can make it because we still need to extend smaller nodes to the wider VF 888 /// and we can merge reordering shuffles with the widening shuffles. 889 void reorderTopToBottom(); 890 891 /// Reorders the current graph to the most profitable order starting from 892 /// leaves to the root. It allows to rotate small subgraphs and reduce the 893 /// number of reshuffles if the leaf nodes use the same order. In this case we 894 /// can merge the orders and just shuffle user node instead of shuffling its 895 /// operands. Plus, even the leaf nodes have different orders, it allows to 896 /// sink reordering in the graph closer to the root node and merge it later 897 /// during analysis. 898 void reorderBottomToTop(bool IgnoreReorder = false); 899 900 /// \return The vector element size in bits to use when vectorizing the 901 /// expression tree ending at \p V. If V is a store, the size is the width of 902 /// the stored value. Otherwise, the size is the width of the largest loaded 903 /// value reaching V. This method is used by the vectorizer to calculate 904 /// vectorization factors. 905 unsigned getVectorElementSize(Value *V); 906 907 /// Compute the minimum type sizes required to represent the entries in a 908 /// vectorizable tree. 909 void computeMinimumValueSizes(); 910 911 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 912 unsigned getMaxVecRegSize() const { 913 return MaxVecRegSize; 914 } 915 916 // \returns minimum vector register size as set by cl::opt. 917 unsigned getMinVecRegSize() const { 918 return MinVecRegSize; 919 } 920 921 unsigned getMinVF(unsigned Sz) const { 922 return std::max(2U, getMinVecRegSize() / Sz); 923 } 924 925 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 926 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 927 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 928 return MaxVF ? MaxVF : UINT_MAX; 929 } 930 931 /// Check if homogeneous aggregate is isomorphic to some VectorType. 932 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 933 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 934 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 935 /// 936 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 937 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 938 939 /// \returns True if the VectorizableTree is both tiny and not fully 940 /// vectorizable. We do not vectorize such trees. 941 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 942 943 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 944 /// can be load combined in the backend. Load combining may not be allowed in 945 /// the IR optimizer, so we do not want to alter the pattern. For example, 946 /// partially transforming a scalar bswap() pattern into vector code is 947 /// effectively impossible for the backend to undo. 948 /// TODO: If load combining is allowed in the IR optimizer, this analysis 949 /// may not be necessary. 950 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 951 952 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 953 /// can be load combined in the backend. Load combining may not be allowed in 954 /// the IR optimizer, so we do not want to alter the pattern. For example, 955 /// partially transforming a scalar bswap() pattern into vector code is 956 /// effectively impossible for the backend to undo. 957 /// TODO: If load combining is allowed in the IR optimizer, this analysis 958 /// may not be necessary. 959 bool isLoadCombineCandidate() const; 960 961 OptimizationRemarkEmitter *getORE() { return ORE; } 962 963 /// This structure holds any data we need about the edges being traversed 964 /// during buildTree_rec(). We keep track of: 965 /// (i) the user TreeEntry index, and 966 /// (ii) the index of the edge. 967 struct EdgeInfo { 968 EdgeInfo() = default; 969 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 970 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 971 /// The user TreeEntry. 972 TreeEntry *UserTE = nullptr; 973 /// The operand index of the use. 974 unsigned EdgeIdx = UINT_MAX; 975 #ifndef NDEBUG 976 friend inline raw_ostream &operator<<(raw_ostream &OS, 977 const BoUpSLP::EdgeInfo &EI) { 978 EI.dump(OS); 979 return OS; 980 } 981 /// Debug print. 982 void dump(raw_ostream &OS) const { 983 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 984 << " EdgeIdx:" << EdgeIdx << "}"; 985 } 986 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 987 #endif 988 }; 989 990 /// A helper data structure to hold the operands of a vector of instructions. 991 /// This supports a fixed vector length for all operand vectors. 992 class VLOperands { 993 /// For each operand we need (i) the value, and (ii) the opcode that it 994 /// would be attached to if the expression was in a left-linearized form. 995 /// This is required to avoid illegal operand reordering. 996 /// For example: 997 /// \verbatim 998 /// 0 Op1 999 /// |/ 1000 /// Op1 Op2 Linearized + Op2 1001 /// \ / ----------> |/ 1002 /// - - 1003 /// 1004 /// Op1 - Op2 (0 + Op1) - Op2 1005 /// \endverbatim 1006 /// 1007 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1008 /// 1009 /// Another way to think of this is to track all the operations across the 1010 /// path from the operand all the way to the root of the tree and to 1011 /// calculate the operation that corresponds to this path. For example, the 1012 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1013 /// corresponding operation is a '-' (which matches the one in the 1014 /// linearized tree, as shown above). 1015 /// 1016 /// For lack of a better term, we refer to this operation as Accumulated 1017 /// Path Operation (APO). 1018 struct OperandData { 1019 OperandData() = default; 1020 OperandData(Value *V, bool APO, bool IsUsed) 1021 : V(V), APO(APO), IsUsed(IsUsed) {} 1022 /// The operand value. 1023 Value *V = nullptr; 1024 /// TreeEntries only allow a single opcode, or an alternate sequence of 1025 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1026 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1027 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1028 /// (e.g., Add/Mul) 1029 bool APO = false; 1030 /// Helper data for the reordering function. 1031 bool IsUsed = false; 1032 }; 1033 1034 /// During operand reordering, we are trying to select the operand at lane 1035 /// that matches best with the operand at the neighboring lane. Our 1036 /// selection is based on the type of value we are looking for. For example, 1037 /// if the neighboring lane has a load, we need to look for a load that is 1038 /// accessing a consecutive address. These strategies are summarized in the 1039 /// 'ReorderingMode' enumerator. 1040 enum class ReorderingMode { 1041 Load, ///< Matching loads to consecutive memory addresses 1042 Opcode, ///< Matching instructions based on opcode (same or alternate) 1043 Constant, ///< Matching constants 1044 Splat, ///< Matching the same instruction multiple times (broadcast) 1045 Failed, ///< We failed to create a vectorizable group 1046 }; 1047 1048 using OperandDataVec = SmallVector<OperandData, 2>; 1049 1050 /// A vector of operand vectors. 1051 SmallVector<OperandDataVec, 4> OpsVec; 1052 1053 const DataLayout &DL; 1054 ScalarEvolution &SE; 1055 const BoUpSLP &R; 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. 1058 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1063 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1064 return OpsVec[OpIdx][Lane]; 1065 } 1066 1067 /// Clears the used flag for all entries. 1068 void clearUsed() { 1069 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1070 OpIdx != NumOperands; ++OpIdx) 1071 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1072 ++Lane) 1073 OpsVec[OpIdx][Lane].IsUsed = false; 1074 } 1075 1076 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1077 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1078 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1079 } 1080 1081 // The hard-coded scores listed here are not very important, though it shall 1082 // be higher for better matches to improve the resulting cost. When 1083 // computing the scores of matching one sub-tree with another, we are 1084 // basically counting the number of values that are matching. So even if all 1085 // scores are set to 1, we would still get a decent matching result. 1086 // However, sometimes we have to break ties. For example we may have to 1087 // choose between matching loads vs matching opcodes. This is what these 1088 // scores are helping us with: they provide the order of preference. Also, 1089 // this is important if the scalar is externally used or used in another 1090 // tree entry node in the different lane. 1091 1092 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1093 static const int ScoreConsecutiveLoads = 4; 1094 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1095 static const int ScoreReversedLoads = 3; 1096 /// ExtractElementInst from same vector and consecutive indexes. 1097 static const int ScoreConsecutiveExtracts = 4; 1098 /// ExtractElementInst from same vector and reversed indices. 1099 static const int ScoreReversedExtracts = 3; 1100 /// Constants. 1101 static const int ScoreConstants = 2; 1102 /// Instructions with the same opcode. 1103 static const int ScoreSameOpcode = 2; 1104 /// Instructions with alt opcodes (e.g, add + sub). 1105 static const int ScoreAltOpcodes = 1; 1106 /// Identical instructions (a.k.a. splat or broadcast). 1107 static const int ScoreSplat = 1; 1108 /// Matching with an undef is preferable to failing. 1109 static const int ScoreUndef = 1; 1110 /// Score for failing to find a decent match. 1111 static const int ScoreFail = 0; 1112 /// Score if all users are vectorized. 1113 static const int ScoreAllUserVectorized = 1; 1114 1115 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1116 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1117 /// MainAltOps. 1118 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1119 ScalarEvolution &SE, int NumLanes, 1120 ArrayRef<Value *> MainAltOps) { 1121 if (V1 == V2) 1122 return VLOperands::ScoreSplat; 1123 1124 auto *LI1 = dyn_cast<LoadInst>(V1); 1125 auto *LI2 = dyn_cast<LoadInst>(V2); 1126 if (LI1 && LI2) { 1127 if (LI1->getParent() != LI2->getParent()) 1128 return VLOperands::ScoreFail; 1129 1130 Optional<int> Dist = getPointersDiff( 1131 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1132 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1133 if (!Dist || *Dist == 0) 1134 return VLOperands::ScoreFail; 1135 // The distance is too large - still may be profitable to use masked 1136 // loads/gathers. 1137 if (std::abs(*Dist) > NumLanes / 2) 1138 return VLOperands::ScoreAltOpcodes; 1139 // This still will detect consecutive loads, but we might have "holes" 1140 // in some cases. It is ok for non-power-2 vectorization and may produce 1141 // better results. It should not affect current vectorization. 1142 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1143 : VLOperands::ScoreReversedLoads; 1144 } 1145 1146 auto *C1 = dyn_cast<Constant>(V1); 1147 auto *C2 = dyn_cast<Constant>(V2); 1148 if (C1 && C2) 1149 return VLOperands::ScoreConstants; 1150 1151 // Extracts from consecutive indexes of the same vector better score as 1152 // the extracts could be optimized away. 1153 Value *EV1; 1154 ConstantInt *Ex1Idx; 1155 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1156 // Undefs are always profitable for extractelements. 1157 if (isa<UndefValue>(V2)) 1158 return VLOperands::ScoreConsecutiveExtracts; 1159 Value *EV2 = nullptr; 1160 ConstantInt *Ex2Idx = nullptr; 1161 if (match(V2, 1162 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1163 m_Undef())))) { 1164 // Undefs are always profitable for extractelements. 1165 if (!Ex2Idx) 1166 return VLOperands::ScoreConsecutiveExtracts; 1167 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1168 return VLOperands::ScoreConsecutiveExtracts; 1169 if (EV2 == EV1) { 1170 int Idx1 = Ex1Idx->getZExtValue(); 1171 int Idx2 = Ex2Idx->getZExtValue(); 1172 int Dist = Idx2 - Idx1; 1173 // The distance is too large - still may be profitable to use 1174 // shuffles. 1175 if (std::abs(Dist) == 0) 1176 return VLOperands::ScoreSplat; 1177 if (std::abs(Dist) > NumLanes / 2) 1178 return VLOperands::ScoreSameOpcode; 1179 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1180 : VLOperands::ScoreReversedExtracts; 1181 } 1182 return VLOperands::ScoreAltOpcodes; 1183 } 1184 return VLOperands::ScoreFail; 1185 } 1186 1187 auto *I1 = dyn_cast<Instruction>(V1); 1188 auto *I2 = dyn_cast<Instruction>(V2); 1189 if (I1 && I2) { 1190 if (I1->getParent() != I2->getParent()) 1191 return VLOperands::ScoreFail; 1192 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1193 Ops.push_back(I1); 1194 Ops.push_back(I2); 1195 InstructionsState S = getSameOpcode(Ops); 1196 // Note: Only consider instructions with <= 2 operands to avoid 1197 // complexity explosion. 1198 if (S.getOpcode() && 1199 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1200 !S.isAltShuffle()) && 1201 all_of(Ops, [&S](Value *V) { 1202 return cast<Instruction>(V)->getNumOperands() == 1203 S.MainOp->getNumOperands(); 1204 })) 1205 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1206 : VLOperands::ScoreSameOpcode; 1207 } 1208 1209 if (isa<UndefValue>(V2)) 1210 return VLOperands::ScoreUndef; 1211 1212 return VLOperands::ScoreFail; 1213 } 1214 1215 /// \param Lane lane of the operands under analysis. 1216 /// \param OpIdx operand index in \p Lane lane we're looking the best 1217 /// candidate for. 1218 /// \param Idx operand index of the current candidate value. 1219 /// \returns The additional score due to possible broadcasting of the 1220 /// elements in the lane. It is more profitable to have power-of-2 unique 1221 /// elements in the lane, it will be vectorized with higher probability 1222 /// after removing duplicates. Currently the SLP vectorizer supports only 1223 /// vectorization of the power-of-2 number of unique scalars. 1224 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1225 Value *IdxLaneV = getData(Idx, Lane).V; 1226 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1227 return 0; 1228 SmallPtrSet<Value *, 4> Uniques; 1229 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1230 if (Ln == Lane) 1231 continue; 1232 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1233 if (!isa<Instruction>(OpIdxLnV)) 1234 return 0; 1235 Uniques.insert(OpIdxLnV); 1236 } 1237 int UniquesCount = Uniques.size(); 1238 int UniquesCntWithIdxLaneV = 1239 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1240 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1241 int UniquesCntWithOpIdxLaneV = 1242 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1243 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1244 return 0; 1245 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1246 UniquesCntWithOpIdxLaneV) - 1247 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1248 } 1249 1250 /// \param Lane lane of the operands under analysis. 1251 /// \param OpIdx operand index in \p Lane lane we're looking the best 1252 /// candidate for. 1253 /// \param Idx operand index of the current candidate value. 1254 /// \returns The additional score for the scalar which users are all 1255 /// vectorized. 1256 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1257 Value *IdxLaneV = getData(Idx, Lane).V; 1258 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1259 // Do not care about number of uses for vector-like instructions 1260 // (extractelement/extractvalue with constant indices), they are extracts 1261 // themselves and already externally used. Vectorization of such 1262 // instructions does not add extra extractelement instruction, just may 1263 // remove it. 1264 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1265 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1266 return VLOperands::ScoreAllUserVectorized; 1267 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1268 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1269 return 0; 1270 return R.areAllUsersVectorized(IdxLaneI, None) 1271 ? VLOperands::ScoreAllUserVectorized 1272 : 0; 1273 } 1274 1275 /// Go through the operands of \p LHS and \p RHS recursively until \p 1276 /// MaxLevel, and return the cummulative score. For example: 1277 /// \verbatim 1278 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1279 /// \ / \ / \ / \ / 1280 /// + + + + 1281 /// G1 G2 G3 G4 1282 /// \endverbatim 1283 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1284 /// each level recursively, accumulating the score. It starts from matching 1285 /// the additions at level 0, then moves on to the loads (level 1). The 1286 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1287 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1288 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1289 /// Please note that the order of the operands does not matter, as we 1290 /// evaluate the score of all profitable combinations of operands. In 1291 /// other words the score of G1 and G4 is the same as G1 and G2. This 1292 /// heuristic is based on ideas described in: 1293 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1294 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1295 /// Luís F. W. Góes 1296 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1297 ArrayRef<Value *> MainAltOps) { 1298 1299 // Get the shallow score of V1 and V2. 1300 int ShallowScoreAtThisLevel = 1301 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1302 1303 // If reached MaxLevel, 1304 // or if V1 and V2 are not instructions, 1305 // or if they are SPLAT, 1306 // or if they are not consecutive, 1307 // or if profitable to vectorize loads or extractelements, early return 1308 // the current cost. 1309 auto *I1 = dyn_cast<Instruction>(LHS); 1310 auto *I2 = dyn_cast<Instruction>(RHS); 1311 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1312 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1313 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1314 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1315 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1316 ShallowScoreAtThisLevel)) 1317 return ShallowScoreAtThisLevel; 1318 assert(I1 && I2 && "Should have early exited."); 1319 1320 // Contains the I2 operand indexes that got matched with I1 operands. 1321 SmallSet<unsigned, 4> Op2Used; 1322 1323 // Recursion towards the operands of I1 and I2. We are trying all possible 1324 // operand pairs, and keeping track of the best score. 1325 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1326 OpIdx1 != NumOperands1; ++OpIdx1) { 1327 // Try to pair op1I with the best operand of I2. 1328 int MaxTmpScore = 0; 1329 unsigned MaxOpIdx2 = 0; 1330 bool FoundBest = false; 1331 // If I2 is commutative try all combinations. 1332 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1333 unsigned ToIdx = isCommutative(I2) 1334 ? I2->getNumOperands() 1335 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1336 assert(FromIdx <= ToIdx && "Bad index"); 1337 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1338 // Skip operands already paired with OpIdx1. 1339 if (Op2Used.count(OpIdx2)) 1340 continue; 1341 // Recursively calculate the cost at each level 1342 int TmpScore = 1343 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1344 CurrLevel + 1, MaxLevel, None); 1345 // Look for the best score. 1346 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1347 MaxTmpScore = TmpScore; 1348 MaxOpIdx2 = OpIdx2; 1349 FoundBest = true; 1350 } 1351 } 1352 if (FoundBest) { 1353 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1354 Op2Used.insert(MaxOpIdx2); 1355 ShallowScoreAtThisLevel += MaxTmpScore; 1356 } 1357 } 1358 return ShallowScoreAtThisLevel; 1359 } 1360 1361 /// Score scaling factor for fully compatible instructions but with 1362 /// different number of external uses. Allows better selection of the 1363 /// instructions with less external uses. 1364 static const int ScoreScaleFactor = 10; 1365 1366 /// \Returns the look-ahead score, which tells us how much the sub-trees 1367 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1368 /// score. This helps break ties in an informed way when we cannot decide on 1369 /// the order of the operands by just considering the immediate 1370 /// predecessors. 1371 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1372 int Lane, unsigned OpIdx, unsigned Idx, 1373 bool &IsUsed) { 1374 int Score = 1375 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1376 if (Score) { 1377 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1378 if (Score <= -SplatScore) { 1379 // Set the minimum score for splat-like sequence to avoid setting 1380 // failed state. 1381 Score = 1; 1382 } else { 1383 Score += SplatScore; 1384 // Scale score to see the difference between different operands 1385 // and similar operands but all vectorized/not all vectorized 1386 // uses. It does not affect actual selection of the best 1387 // compatible operand in general, just allows to select the 1388 // operand with all vectorized uses. 1389 Score *= ScoreScaleFactor; 1390 Score += getExternalUseScore(Lane, OpIdx, Idx); 1391 IsUsed = true; 1392 } 1393 } 1394 return Score; 1395 } 1396 1397 /// Best defined scores per lanes between the passes. Used to choose the 1398 /// best operand (with the highest score) between the passes. 1399 /// The key - {Operand Index, Lane}. 1400 /// The value - the best score between the passes for the lane and the 1401 /// operand. 1402 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1403 BestScoresPerLanes; 1404 1405 // Search all operands in Ops[*][Lane] for the one that matches best 1406 // Ops[OpIdx][LastLane] and return its opreand index. 1407 // If no good match can be found, return None. 1408 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1409 ArrayRef<ReorderingMode> ReorderingModes, 1410 ArrayRef<Value *> MainAltOps) { 1411 unsigned NumOperands = getNumOperands(); 1412 1413 // The operand of the previous lane at OpIdx. 1414 Value *OpLastLane = getData(OpIdx, LastLane).V; 1415 1416 // Our strategy mode for OpIdx. 1417 ReorderingMode RMode = ReorderingModes[OpIdx]; 1418 if (RMode == ReorderingMode::Failed) 1419 return None; 1420 1421 // The linearized opcode of the operand at OpIdx, Lane. 1422 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1423 1424 // The best operand index and its score. 1425 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1426 // are using the score to differentiate between the two. 1427 struct BestOpData { 1428 Optional<unsigned> Idx = None; 1429 unsigned Score = 0; 1430 } BestOp; 1431 BestOp.Score = 1432 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1433 .first->second; 1434 1435 // Track if the operand must be marked as used. If the operand is set to 1436 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1437 // want to reestimate the operands again on the following iterations). 1438 bool IsUsed = 1439 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1440 // Iterate through all unused operands and look for the best. 1441 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1442 // Get the operand at Idx and Lane. 1443 OperandData &OpData = getData(Idx, Lane); 1444 Value *Op = OpData.V; 1445 bool OpAPO = OpData.APO; 1446 1447 // Skip already selected operands. 1448 if (OpData.IsUsed) 1449 continue; 1450 1451 // Skip if we are trying to move the operand to a position with a 1452 // different opcode in the linearized tree form. This would break the 1453 // semantics. 1454 if (OpAPO != OpIdxAPO) 1455 continue; 1456 1457 // Look for an operand that matches the current mode. 1458 switch (RMode) { 1459 case ReorderingMode::Load: 1460 case ReorderingMode::Constant: 1461 case ReorderingMode::Opcode: { 1462 bool LeftToRight = Lane > LastLane; 1463 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1464 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1465 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1466 OpIdx, Idx, IsUsed); 1467 if (Score > static_cast<int>(BestOp.Score)) { 1468 BestOp.Idx = Idx; 1469 BestOp.Score = Score; 1470 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1471 } 1472 break; 1473 } 1474 case ReorderingMode::Splat: 1475 if (Op == OpLastLane) 1476 BestOp.Idx = Idx; 1477 break; 1478 case ReorderingMode::Failed: 1479 llvm_unreachable("Not expected Failed reordering mode."); 1480 } 1481 } 1482 1483 if (BestOp.Idx) { 1484 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1485 return BestOp.Idx; 1486 } 1487 // If we could not find a good match return None. 1488 return None; 1489 } 1490 1491 /// Helper for reorderOperandVecs. 1492 /// \returns the lane that we should start reordering from. This is the one 1493 /// which has the least number of operands that can freely move about or 1494 /// less profitable because it already has the most optimal set of operands. 1495 unsigned getBestLaneToStartReordering() const { 1496 unsigned Min = UINT_MAX; 1497 unsigned SameOpNumber = 0; 1498 // std::pair<unsigned, unsigned> is used to implement a simple voting 1499 // algorithm and choose the lane with the least number of operands that 1500 // can freely move about or less profitable because it already has the 1501 // most optimal set of operands. The first unsigned is a counter for 1502 // voting, the second unsigned is the counter of lanes with instructions 1503 // with same/alternate opcodes and same parent basic block. 1504 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1505 // Try to be closer to the original results, if we have multiple lanes 1506 // with same cost. If 2 lanes have the same cost, use the one with the 1507 // lowest index. 1508 for (int I = getNumLanes(); I > 0; --I) { 1509 unsigned Lane = I - 1; 1510 OperandsOrderData NumFreeOpsHash = 1511 getMaxNumOperandsThatCanBeReordered(Lane); 1512 // Compare the number of operands that can move and choose the one with 1513 // the least number. 1514 if (NumFreeOpsHash.NumOfAPOs < Min) { 1515 Min = NumFreeOpsHash.NumOfAPOs; 1516 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1517 HashMap.clear(); 1518 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1519 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1520 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1521 // Select the most optimal lane in terms of number of operands that 1522 // should be moved around. 1523 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1526 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1527 auto It = HashMap.find(NumFreeOpsHash.Hash); 1528 if (It == HashMap.end()) 1529 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1530 else 1531 ++It->second.first; 1532 } 1533 } 1534 // Select the lane with the minimum counter. 1535 unsigned BestLane = 0; 1536 unsigned CntMin = UINT_MAX; 1537 for (const auto &Data : reverse(HashMap)) { 1538 if (Data.second.first < CntMin) { 1539 CntMin = Data.second.first; 1540 BestLane = Data.second.second; 1541 } 1542 } 1543 return BestLane; 1544 } 1545 1546 /// Data structure that helps to reorder operands. 1547 struct OperandsOrderData { 1548 /// The best number of operands with the same APOs, which can be 1549 /// reordered. 1550 unsigned NumOfAPOs = UINT_MAX; 1551 /// Number of operands with the same/alternate instruction opcode and 1552 /// parent. 1553 unsigned NumOpsWithSameOpcodeParent = 0; 1554 /// Hash for the actual operands ordering. 1555 /// Used to count operands, actually their position id and opcode 1556 /// value. It is used in the voting mechanism to find the lane with the 1557 /// least number of operands that can freely move about or less profitable 1558 /// because it already has the most optimal set of operands. Can be 1559 /// replaced with SmallVector<unsigned> instead but hash code is faster 1560 /// and requires less memory. 1561 unsigned Hash = 0; 1562 }; 1563 /// \returns the maximum number of operands that are allowed to be reordered 1564 /// for \p Lane and the number of compatible instructions(with the same 1565 /// parent/opcode). This is used as a heuristic for selecting the first lane 1566 /// to start operand reordering. 1567 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1568 unsigned CntTrue = 0; 1569 unsigned NumOperands = getNumOperands(); 1570 // Operands with the same APO can be reordered. We therefore need to count 1571 // how many of them we have for each APO, like this: Cnt[APO] = x. 1572 // Since we only have two APOs, namely true and false, we can avoid using 1573 // a map. Instead we can simply count the number of operands that 1574 // correspond to one of them (in this case the 'true' APO), and calculate 1575 // the other by subtracting it from the total number of operands. 1576 // Operands with the same instruction opcode and parent are more 1577 // profitable since we don't need to move them in many cases, with a high 1578 // probability such lane already can be vectorized effectively. 1579 bool AllUndefs = true; 1580 unsigned NumOpsWithSameOpcodeParent = 0; 1581 Instruction *OpcodeI = nullptr; 1582 BasicBlock *Parent = nullptr; 1583 unsigned Hash = 0; 1584 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1585 const OperandData &OpData = getData(OpIdx, Lane); 1586 if (OpData.APO) 1587 ++CntTrue; 1588 // Use Boyer-Moore majority voting for finding the majority opcode and 1589 // the number of times it occurs. 1590 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1591 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1592 I->getParent() != Parent) { 1593 if (NumOpsWithSameOpcodeParent == 0) { 1594 NumOpsWithSameOpcodeParent = 1; 1595 OpcodeI = I; 1596 Parent = I->getParent(); 1597 } else { 1598 --NumOpsWithSameOpcodeParent; 1599 } 1600 } else { 1601 ++NumOpsWithSameOpcodeParent; 1602 } 1603 } 1604 Hash = hash_combine( 1605 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1606 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1607 } 1608 if (AllUndefs) 1609 return {}; 1610 OperandsOrderData Data; 1611 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1612 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1613 Data.Hash = Hash; 1614 return Data; 1615 } 1616 1617 /// Go through the instructions in VL and append their operands. 1618 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1619 assert(!VL.empty() && "Bad VL"); 1620 assert((empty() || VL.size() == getNumLanes()) && 1621 "Expected same number of lanes"); 1622 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1623 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1624 OpsVec.resize(NumOperands); 1625 unsigned NumLanes = VL.size(); 1626 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1627 OpsVec[OpIdx].resize(NumLanes); 1628 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1629 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1630 // Our tree has just 3 nodes: the root and two operands. 1631 // It is therefore trivial to get the APO. We only need to check the 1632 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1633 // RHS operand. The LHS operand of both add and sub is never attached 1634 // to an inversese operation in the linearized form, therefore its APO 1635 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1636 1637 // Since operand reordering is performed on groups of commutative 1638 // operations or alternating sequences (e.g., +, -), we can safely 1639 // tell the inverse operations by checking commutativity. 1640 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1641 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1642 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1643 APO, false}; 1644 } 1645 } 1646 } 1647 1648 /// \returns the number of operands. 1649 unsigned getNumOperands() const { return OpsVec.size(); } 1650 1651 /// \returns the number of lanes. 1652 unsigned getNumLanes() const { return OpsVec[0].size(); } 1653 1654 /// \returns the operand value at \p OpIdx and \p Lane. 1655 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1656 return getData(OpIdx, Lane).V; 1657 } 1658 1659 /// \returns true if the data structure is empty. 1660 bool empty() const { return OpsVec.empty(); } 1661 1662 /// Clears the data. 1663 void clear() { OpsVec.clear(); } 1664 1665 /// \Returns true if there are enough operands identical to \p Op to fill 1666 /// the whole vector. 1667 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1668 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1669 bool OpAPO = getData(OpIdx, Lane).APO; 1670 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1671 if (Ln == Lane) 1672 continue; 1673 // This is set to true if we found a candidate for broadcast at Lane. 1674 bool FoundCandidate = false; 1675 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1676 OperandData &Data = getData(OpI, Ln); 1677 if (Data.APO != OpAPO || Data.IsUsed) 1678 continue; 1679 if (Data.V == Op) { 1680 FoundCandidate = true; 1681 Data.IsUsed = true; 1682 break; 1683 } 1684 } 1685 if (!FoundCandidate) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 public: 1692 /// Initialize with all the operands of the instruction vector \p RootVL. 1693 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1694 ScalarEvolution &SE, const BoUpSLP &R) 1695 : DL(DL), SE(SE), R(R) { 1696 // Append all the operands of RootVL. 1697 appendOperandsOfVL(RootVL); 1698 } 1699 1700 /// \Returns a value vector with the operands across all lanes for the 1701 /// opearnd at \p OpIdx. 1702 ValueList getVL(unsigned OpIdx) const { 1703 ValueList OpVL(OpsVec[OpIdx].size()); 1704 assert(OpsVec[OpIdx].size() == getNumLanes() && 1705 "Expected same num of lanes across all operands"); 1706 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1707 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1708 return OpVL; 1709 } 1710 1711 // Performs operand reordering for 2 or more operands. 1712 // The original operands are in OrigOps[OpIdx][Lane]. 1713 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1714 void reorder() { 1715 unsigned NumOperands = getNumOperands(); 1716 unsigned NumLanes = getNumLanes(); 1717 // Each operand has its own mode. We are using this mode to help us select 1718 // the instructions for each lane, so that they match best with the ones 1719 // we have selected so far. 1720 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1721 1722 // This is a greedy single-pass algorithm. We are going over each lane 1723 // once and deciding on the best order right away with no back-tracking. 1724 // However, in order to increase its effectiveness, we start with the lane 1725 // that has operands that can move the least. For example, given the 1726 // following lanes: 1727 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1728 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1729 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1730 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1731 // we will start at Lane 1, since the operands of the subtraction cannot 1732 // be reordered. Then we will visit the rest of the lanes in a circular 1733 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1734 1735 // Find the first lane that we will start our search from. 1736 unsigned FirstLane = getBestLaneToStartReordering(); 1737 1738 // Initialize the modes. 1739 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1740 Value *OpLane0 = getValue(OpIdx, FirstLane); 1741 // Keep track if we have instructions with all the same opcode on one 1742 // side. 1743 if (isa<LoadInst>(OpLane0)) 1744 ReorderingModes[OpIdx] = ReorderingMode::Load; 1745 else if (isa<Instruction>(OpLane0)) { 1746 // Check if OpLane0 should be broadcast. 1747 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1749 else 1750 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1751 } 1752 else if (isa<Constant>(OpLane0)) 1753 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1754 else if (isa<Argument>(OpLane0)) 1755 // Our best hope is a Splat. It may save some cost in some cases. 1756 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1757 else 1758 // NOTE: This should be unreachable. 1759 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1760 } 1761 1762 // Check that we don't have same operands. No need to reorder if operands 1763 // are just perfect diamond or shuffled diamond match. Do not do it only 1764 // for possible broadcasts or non-power of 2 number of scalars (just for 1765 // now). 1766 auto &&SkipReordering = [this]() { 1767 SmallPtrSet<Value *, 4> UniqueValues; 1768 ArrayRef<OperandData> Op0 = OpsVec.front(); 1769 for (const OperandData &Data : Op0) 1770 UniqueValues.insert(Data.V); 1771 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1772 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1773 return !UniqueValues.contains(Data.V); 1774 })) 1775 return false; 1776 } 1777 // TODO: Check if we can remove a check for non-power-2 number of 1778 // scalars after full support of non-power-2 vectorization. 1779 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1780 }; 1781 1782 // If the initial strategy fails for any of the operand indexes, then we 1783 // perform reordering again in a second pass. This helps avoid assigning 1784 // high priority to the failed strategy, and should improve reordering for 1785 // the non-failed operand indexes. 1786 for (int Pass = 0; Pass != 2; ++Pass) { 1787 // Check if no need to reorder operands since they're are perfect or 1788 // shuffled diamond match. 1789 // Need to to do it to avoid extra external use cost counting for 1790 // shuffled matches, which may cause regressions. 1791 if (SkipReordering()) 1792 break; 1793 // Skip the second pass if the first pass did not fail. 1794 bool StrategyFailed = false; 1795 // Mark all operand data as free to use. 1796 clearUsed(); 1797 // We keep the original operand order for the FirstLane, so reorder the 1798 // rest of the lanes. We are visiting the nodes in a circular fashion, 1799 // using FirstLane as the center point and increasing the radius 1800 // distance. 1801 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1802 for (unsigned I = 0; I < NumOperands; ++I) 1803 MainAltOps[I].push_back(getData(I, FirstLane).V); 1804 1805 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1806 // Visit the lane on the right and then the lane on the left. 1807 for (int Direction : {+1, -1}) { 1808 int Lane = FirstLane + Direction * Distance; 1809 if (Lane < 0 || Lane >= (int)NumLanes) 1810 continue; 1811 int LastLane = Lane - Direction; 1812 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1813 "Out of bounds"); 1814 // Look for a good match for each operand. 1815 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1816 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1817 Optional<unsigned> BestIdx = getBestOperand( 1818 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1819 // By not selecting a value, we allow the operands that follow to 1820 // select a better matching value. We will get a non-null value in 1821 // the next run of getBestOperand(). 1822 if (BestIdx) { 1823 // Swap the current operand with the one returned by 1824 // getBestOperand(). 1825 swap(OpIdx, BestIdx.getValue(), Lane); 1826 } else { 1827 // We failed to find a best operand, set mode to 'Failed'. 1828 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1829 // Enable the second pass. 1830 StrategyFailed = true; 1831 } 1832 // Try to get the alternate opcode and follow it during analysis. 1833 if (MainAltOps[OpIdx].size() != 2) { 1834 OperandData &AltOp = getData(OpIdx, Lane); 1835 InstructionsState OpS = 1836 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1837 if (OpS.getOpcode() && OpS.isAltShuffle()) 1838 MainAltOps[OpIdx].push_back(AltOp.V); 1839 } 1840 } 1841 } 1842 } 1843 // Skip second pass if the strategy did not fail. 1844 if (!StrategyFailed) 1845 break; 1846 } 1847 } 1848 1849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1850 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1851 switch (RMode) { 1852 case ReorderingMode::Load: 1853 return "Load"; 1854 case ReorderingMode::Opcode: 1855 return "Opcode"; 1856 case ReorderingMode::Constant: 1857 return "Constant"; 1858 case ReorderingMode::Splat: 1859 return "Splat"; 1860 case ReorderingMode::Failed: 1861 return "Failed"; 1862 } 1863 llvm_unreachable("Unimplemented Reordering Type"); 1864 } 1865 1866 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1867 raw_ostream &OS) { 1868 return OS << getModeStr(RMode); 1869 } 1870 1871 /// Debug print. 1872 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1873 printMode(RMode, dbgs()); 1874 } 1875 1876 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1877 return printMode(RMode, OS); 1878 } 1879 1880 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1881 const unsigned Indent = 2; 1882 unsigned Cnt = 0; 1883 for (const OperandDataVec &OpDataVec : OpsVec) { 1884 OS << "Operand " << Cnt++ << "\n"; 1885 for (const OperandData &OpData : OpDataVec) { 1886 OS.indent(Indent) << "{"; 1887 if (Value *V = OpData.V) 1888 OS << *V; 1889 else 1890 OS << "null"; 1891 OS << ", APO:" << OpData.APO << "}\n"; 1892 } 1893 OS << "\n"; 1894 } 1895 return OS; 1896 } 1897 1898 /// Debug print. 1899 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1900 #endif 1901 }; 1902 1903 /// Checks if the instruction is marked for deletion. 1904 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1905 1906 /// Marks values operands for later deletion by replacing them with Undefs. 1907 void eraseInstructions(ArrayRef<Value *> AV); 1908 1909 ~BoUpSLP(); 1910 1911 private: 1912 /// Checks if all users of \p I are the part of the vectorization tree. 1913 bool areAllUsersVectorized(Instruction *I, 1914 ArrayRef<Value *> VectorizedVals) const; 1915 1916 /// \returns the cost of the vectorizable entry. 1917 InstructionCost getEntryCost(const TreeEntry *E, 1918 ArrayRef<Value *> VectorizedVals); 1919 1920 /// This is the recursive part of buildTree. 1921 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1922 const EdgeInfo &EI); 1923 1924 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1925 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1926 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1927 /// returns false, setting \p CurrentOrder to either an empty vector or a 1928 /// non-identity permutation that allows to reuse extract instructions. 1929 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1930 SmallVectorImpl<unsigned> &CurrentOrder) const; 1931 1932 /// Vectorize a single entry in the tree. 1933 Value *vectorizeTree(TreeEntry *E); 1934 1935 /// Vectorize a single entry in the tree, starting in \p VL. 1936 Value *vectorizeTree(ArrayRef<Value *> VL); 1937 1938 /// \returns the scalarization cost for this type. Scalarization in this 1939 /// context means the creation of vectors from a group of scalars. If \p 1940 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1941 /// vector elements. 1942 InstructionCost getGatherCost(FixedVectorType *Ty, 1943 const APInt &ShuffledIndices, 1944 bool NeedToShuffle) const; 1945 1946 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1947 /// tree entries. 1948 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1949 /// previous tree entries. \p Mask is filled with the shuffle mask. 1950 Optional<TargetTransformInfo::ShuffleKind> 1951 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1952 SmallVectorImpl<const TreeEntry *> &Entries); 1953 1954 /// \returns the scalarization cost for this list of values. Assuming that 1955 /// this subtree gets vectorized, we may need to extract the values from the 1956 /// roots. This method calculates the cost of extracting the values. 1957 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1958 1959 /// Set the Builder insert point to one after the last instruction in 1960 /// the bundle 1961 void setInsertPointAfterBundle(const TreeEntry *E); 1962 1963 /// \returns a vector from a collection of scalars in \p VL. 1964 Value *gather(ArrayRef<Value *> VL); 1965 1966 /// \returns whether the VectorizableTree is fully vectorizable and will 1967 /// be beneficial even the tree height is tiny. 1968 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1969 1970 /// Reorder commutative or alt operands to get better probability of 1971 /// generating vectorized code. 1972 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1973 SmallVectorImpl<Value *> &Left, 1974 SmallVectorImpl<Value *> &Right, 1975 const DataLayout &DL, 1976 ScalarEvolution &SE, 1977 const BoUpSLP &R); 1978 struct TreeEntry { 1979 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1980 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1981 1982 /// \returns true if the scalars in VL are equal to this entry. 1983 bool isSame(ArrayRef<Value *> VL) const { 1984 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1985 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1986 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1987 return VL.size() == Mask.size() && 1988 std::equal(VL.begin(), VL.end(), Mask.begin(), 1989 [Scalars](Value *V, int Idx) { 1990 return (isa<UndefValue>(V) && 1991 Idx == UndefMaskElem) || 1992 (Idx != UndefMaskElem && V == Scalars[Idx]); 1993 }); 1994 }; 1995 if (!ReorderIndices.empty()) { 1996 // TODO: implement matching if the nodes are just reordered, still can 1997 // treat the vector as the same if the list of scalars matches VL 1998 // directly, without reordering. 1999 SmallVector<int> Mask; 2000 inversePermutation(ReorderIndices, Mask); 2001 if (VL.size() == Scalars.size()) 2002 return IsSame(Scalars, Mask); 2003 if (VL.size() == ReuseShuffleIndices.size()) { 2004 ::addMask(Mask, ReuseShuffleIndices); 2005 return IsSame(Scalars, Mask); 2006 } 2007 return false; 2008 } 2009 return IsSame(Scalars, ReuseShuffleIndices); 2010 } 2011 2012 /// \returns true if current entry has same operands as \p TE. 2013 bool hasEqualOperands(const TreeEntry &TE) const { 2014 if (TE.getNumOperands() != getNumOperands()) 2015 return false; 2016 SmallBitVector Used(getNumOperands()); 2017 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2018 unsigned PrevCount = Used.count(); 2019 for (unsigned K = 0; K < E; ++K) { 2020 if (Used.test(K)) 2021 continue; 2022 if (getOperand(K) == TE.getOperand(I)) { 2023 Used.set(K); 2024 break; 2025 } 2026 } 2027 // Check if we actually found the matching operand. 2028 if (PrevCount == Used.count()) 2029 return false; 2030 } 2031 return true; 2032 } 2033 2034 /// \return Final vectorization factor for the node. Defined by the total 2035 /// number of vectorized scalars, including those, used several times in the 2036 /// entry and counted in the \a ReuseShuffleIndices, if any. 2037 unsigned getVectorFactor() const { 2038 if (!ReuseShuffleIndices.empty()) 2039 return ReuseShuffleIndices.size(); 2040 return Scalars.size(); 2041 }; 2042 2043 /// A vector of scalars. 2044 ValueList Scalars; 2045 2046 /// The Scalars are vectorized into this value. It is initialized to Null. 2047 Value *VectorizedValue = nullptr; 2048 2049 /// Do we need to gather this sequence or vectorize it 2050 /// (either with vector instruction or with scatter/gather 2051 /// intrinsics for store/load)? 2052 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2053 EntryState State; 2054 2055 /// Does this sequence require some shuffling? 2056 SmallVector<int, 4> ReuseShuffleIndices; 2057 2058 /// Does this entry require reordering? 2059 SmallVector<unsigned, 4> ReorderIndices; 2060 2061 /// Points back to the VectorizableTree. 2062 /// 2063 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2064 /// to be a pointer and needs to be able to initialize the child iterator. 2065 /// Thus we need a reference back to the container to translate the indices 2066 /// to entries. 2067 VecTreeTy &Container; 2068 2069 /// The TreeEntry index containing the user of this entry. We can actually 2070 /// have multiple users so the data structure is not truly a tree. 2071 SmallVector<EdgeInfo, 1> UserTreeIndices; 2072 2073 /// The index of this treeEntry in VectorizableTree. 2074 int Idx = -1; 2075 2076 private: 2077 /// The operands of each instruction in each lane Operands[op_index][lane]. 2078 /// Note: This helps avoid the replication of the code that performs the 2079 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2080 SmallVector<ValueList, 2> Operands; 2081 2082 /// The main/alternate instruction. 2083 Instruction *MainOp = nullptr; 2084 Instruction *AltOp = nullptr; 2085 2086 public: 2087 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2088 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2089 if (Operands.size() < OpIdx + 1) 2090 Operands.resize(OpIdx + 1); 2091 assert(Operands[OpIdx].empty() && "Already resized?"); 2092 assert(OpVL.size() <= Scalars.size() && 2093 "Number of operands is greater than the number of scalars."); 2094 Operands[OpIdx].resize(OpVL.size()); 2095 copy(OpVL, Operands[OpIdx].begin()); 2096 } 2097 2098 /// Set the operands of this bundle in their original order. 2099 void setOperandsInOrder() { 2100 assert(Operands.empty() && "Already initialized?"); 2101 auto *I0 = cast<Instruction>(Scalars[0]); 2102 Operands.resize(I0->getNumOperands()); 2103 unsigned NumLanes = Scalars.size(); 2104 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2105 OpIdx != NumOperands; ++OpIdx) { 2106 Operands[OpIdx].resize(NumLanes); 2107 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2108 auto *I = cast<Instruction>(Scalars[Lane]); 2109 assert(I->getNumOperands() == NumOperands && 2110 "Expected same number of operands"); 2111 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2112 } 2113 } 2114 } 2115 2116 /// Reorders operands of the node to the given mask \p Mask. 2117 void reorderOperands(ArrayRef<int> Mask) { 2118 for (ValueList &Operand : Operands) 2119 reorderScalars(Operand, Mask); 2120 } 2121 2122 /// \returns the \p OpIdx operand of this TreeEntry. 2123 ValueList &getOperand(unsigned OpIdx) { 2124 assert(OpIdx < Operands.size() && "Off bounds"); 2125 return Operands[OpIdx]; 2126 } 2127 2128 /// \returns the \p OpIdx operand of this TreeEntry. 2129 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2130 assert(OpIdx < Operands.size() && "Off bounds"); 2131 return Operands[OpIdx]; 2132 } 2133 2134 /// \returns the number of operands. 2135 unsigned getNumOperands() const { return Operands.size(); } 2136 2137 /// \return the single \p OpIdx operand. 2138 Value *getSingleOperand(unsigned OpIdx) const { 2139 assert(OpIdx < Operands.size() && "Off bounds"); 2140 assert(!Operands[OpIdx].empty() && "No operand available"); 2141 return Operands[OpIdx][0]; 2142 } 2143 2144 /// Some of the instructions in the list have alternate opcodes. 2145 bool isAltShuffle() const { return MainOp != AltOp; } 2146 2147 bool isOpcodeOrAlt(Instruction *I) const { 2148 unsigned CheckedOpcode = I->getOpcode(); 2149 return (getOpcode() == CheckedOpcode || 2150 getAltOpcode() == CheckedOpcode); 2151 } 2152 2153 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2154 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2155 /// \p OpValue. 2156 Value *isOneOf(Value *Op) const { 2157 auto *I = dyn_cast<Instruction>(Op); 2158 if (I && isOpcodeOrAlt(I)) 2159 return Op; 2160 return MainOp; 2161 } 2162 2163 void setOperations(const InstructionsState &S) { 2164 MainOp = S.MainOp; 2165 AltOp = S.AltOp; 2166 } 2167 2168 Instruction *getMainOp() const { 2169 return MainOp; 2170 } 2171 2172 Instruction *getAltOp() const { 2173 return AltOp; 2174 } 2175 2176 /// The main/alternate opcodes for the list of instructions. 2177 unsigned getOpcode() const { 2178 return MainOp ? MainOp->getOpcode() : 0; 2179 } 2180 2181 unsigned getAltOpcode() const { 2182 return AltOp ? AltOp->getOpcode() : 0; 2183 } 2184 2185 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2186 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2187 int findLaneForValue(Value *V) const { 2188 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2189 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2190 if (!ReorderIndices.empty()) 2191 FoundLane = ReorderIndices[FoundLane]; 2192 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2193 if (!ReuseShuffleIndices.empty()) { 2194 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2195 find(ReuseShuffleIndices, FoundLane)); 2196 } 2197 return FoundLane; 2198 } 2199 2200 #ifndef NDEBUG 2201 /// Debug printer. 2202 LLVM_DUMP_METHOD void dump() const { 2203 dbgs() << Idx << ".\n"; 2204 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2205 dbgs() << "Operand " << OpI << ":\n"; 2206 for (const Value *V : Operands[OpI]) 2207 dbgs().indent(2) << *V << "\n"; 2208 } 2209 dbgs() << "Scalars: \n"; 2210 for (Value *V : Scalars) 2211 dbgs().indent(2) << *V << "\n"; 2212 dbgs() << "State: "; 2213 switch (State) { 2214 case Vectorize: 2215 dbgs() << "Vectorize\n"; 2216 break; 2217 case ScatterVectorize: 2218 dbgs() << "ScatterVectorize\n"; 2219 break; 2220 case NeedToGather: 2221 dbgs() << "NeedToGather\n"; 2222 break; 2223 } 2224 dbgs() << "MainOp: "; 2225 if (MainOp) 2226 dbgs() << *MainOp << "\n"; 2227 else 2228 dbgs() << "NULL\n"; 2229 dbgs() << "AltOp: "; 2230 if (AltOp) 2231 dbgs() << *AltOp << "\n"; 2232 else 2233 dbgs() << "NULL\n"; 2234 dbgs() << "VectorizedValue: "; 2235 if (VectorizedValue) 2236 dbgs() << *VectorizedValue << "\n"; 2237 else 2238 dbgs() << "NULL\n"; 2239 dbgs() << "ReuseShuffleIndices: "; 2240 if (ReuseShuffleIndices.empty()) 2241 dbgs() << "Empty"; 2242 else 2243 for (int ReuseIdx : ReuseShuffleIndices) 2244 dbgs() << ReuseIdx << ", "; 2245 dbgs() << "\n"; 2246 dbgs() << "ReorderIndices: "; 2247 for (unsigned ReorderIdx : ReorderIndices) 2248 dbgs() << ReorderIdx << ", "; 2249 dbgs() << "\n"; 2250 dbgs() << "UserTreeIndices: "; 2251 for (const auto &EInfo : UserTreeIndices) 2252 dbgs() << EInfo << ", "; 2253 dbgs() << "\n"; 2254 } 2255 #endif 2256 }; 2257 2258 #ifndef NDEBUG 2259 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2260 InstructionCost VecCost, 2261 InstructionCost ScalarCost) const { 2262 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2263 dbgs() << "SLP: Costs:\n"; 2264 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2265 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2266 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2267 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2268 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2269 } 2270 #endif 2271 2272 /// Create a new VectorizableTree entry. 2273 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2274 const InstructionsState &S, 2275 const EdgeInfo &UserTreeIdx, 2276 ArrayRef<int> ReuseShuffleIndices = None, 2277 ArrayRef<unsigned> ReorderIndices = None) { 2278 TreeEntry::EntryState EntryState = 2279 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2280 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2281 ReuseShuffleIndices, ReorderIndices); 2282 } 2283 2284 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2285 TreeEntry::EntryState EntryState, 2286 Optional<ScheduleData *> Bundle, 2287 const InstructionsState &S, 2288 const EdgeInfo &UserTreeIdx, 2289 ArrayRef<int> ReuseShuffleIndices = None, 2290 ArrayRef<unsigned> ReorderIndices = None) { 2291 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2292 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2293 "Need to vectorize gather entry?"); 2294 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2295 TreeEntry *Last = VectorizableTree.back().get(); 2296 Last->Idx = VectorizableTree.size() - 1; 2297 Last->State = EntryState; 2298 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2299 ReuseShuffleIndices.end()); 2300 if (ReorderIndices.empty()) { 2301 Last->Scalars.assign(VL.begin(), VL.end()); 2302 Last->setOperations(S); 2303 } else { 2304 // Reorder scalars and build final mask. 2305 Last->Scalars.assign(VL.size(), nullptr); 2306 transform(ReorderIndices, Last->Scalars.begin(), 2307 [VL](unsigned Idx) -> Value * { 2308 if (Idx >= VL.size()) 2309 return UndefValue::get(VL.front()->getType()); 2310 return VL[Idx]; 2311 }); 2312 InstructionsState S = getSameOpcode(Last->Scalars); 2313 Last->setOperations(S); 2314 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2315 } 2316 if (Last->State != TreeEntry::NeedToGather) { 2317 for (Value *V : VL) { 2318 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2319 ScalarToTreeEntry[V] = Last; 2320 } 2321 // Update the scheduler bundle to point to this TreeEntry. 2322 unsigned Lane = 0; 2323 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2324 BundleMember = BundleMember->NextInBundle) { 2325 BundleMember->TE = Last; 2326 BundleMember->Lane = Lane; 2327 ++Lane; 2328 } 2329 assert((!Bundle.getValue() || Lane == VL.size()) && 2330 "Bundle and VL out of sync"); 2331 } else { 2332 MustGather.insert(VL.begin(), VL.end()); 2333 } 2334 2335 if (UserTreeIdx.UserTE) 2336 Last->UserTreeIndices.push_back(UserTreeIdx); 2337 2338 return Last; 2339 } 2340 2341 /// -- Vectorization State -- 2342 /// Holds all of the tree entries. 2343 TreeEntry::VecTreeTy VectorizableTree; 2344 2345 #ifndef NDEBUG 2346 /// Debug printer. 2347 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2348 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2349 VectorizableTree[Id]->dump(); 2350 dbgs() << "\n"; 2351 } 2352 } 2353 #endif 2354 2355 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2356 2357 const TreeEntry *getTreeEntry(Value *V) const { 2358 return ScalarToTreeEntry.lookup(V); 2359 } 2360 2361 /// Maps a specific scalar to its tree entry. 2362 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2363 2364 /// Maps a value to the proposed vectorizable size. 2365 SmallDenseMap<Value *, unsigned> InstrElementSize; 2366 2367 /// A list of scalars that we found that we need to keep as scalars. 2368 ValueSet MustGather; 2369 2370 /// This POD struct describes one external user in the vectorized tree. 2371 struct ExternalUser { 2372 ExternalUser(Value *S, llvm::User *U, int L) 2373 : Scalar(S), User(U), Lane(L) {} 2374 2375 // Which scalar in our function. 2376 Value *Scalar; 2377 2378 // Which user that uses the scalar. 2379 llvm::User *User; 2380 2381 // Which lane does the scalar belong to. 2382 int Lane; 2383 }; 2384 using UserList = SmallVector<ExternalUser, 16>; 2385 2386 /// Checks if two instructions may access the same memory. 2387 /// 2388 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2389 /// is invariant in the calling loop. 2390 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2391 Instruction *Inst2) { 2392 // First check if the result is already in the cache. 2393 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2394 Optional<bool> &result = AliasCache[key]; 2395 if (result.hasValue()) { 2396 return result.getValue(); 2397 } 2398 bool aliased = true; 2399 if (Loc1.Ptr && isSimple(Inst1)) 2400 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2401 // Store the result in the cache. 2402 result = aliased; 2403 return aliased; 2404 } 2405 2406 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2407 2408 /// Cache for alias results. 2409 /// TODO: consider moving this to the AliasAnalysis itself. 2410 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2411 2412 /// Removes an instruction from its block and eventually deletes it. 2413 /// It's like Instruction::eraseFromParent() except that the actual deletion 2414 /// is delayed until BoUpSLP is destructed. 2415 /// This is required to ensure that there are no incorrect collisions in the 2416 /// AliasCache, which can happen if a new instruction is allocated at the 2417 /// same address as a previously deleted instruction. 2418 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2419 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2420 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2421 } 2422 2423 /// Temporary store for deleted instructions. Instructions will be deleted 2424 /// eventually when the BoUpSLP is destructed. 2425 DenseMap<Instruction *, bool> DeletedInstructions; 2426 2427 /// A list of values that need to extracted out of the tree. 2428 /// This list holds pairs of (Internal Scalar : External User). External User 2429 /// can be nullptr, it means that this Internal Scalar will be used later, 2430 /// after vectorization. 2431 UserList ExternalUses; 2432 2433 /// Values used only by @llvm.assume calls. 2434 SmallPtrSet<const Value *, 32> EphValues; 2435 2436 /// Holds all of the instructions that we gathered. 2437 SetVector<Instruction *> GatherShuffleSeq; 2438 2439 /// A list of blocks that we are going to CSE. 2440 SetVector<BasicBlock *> CSEBlocks; 2441 2442 /// Contains all scheduling relevant data for an instruction. 2443 /// A ScheduleData either represents a single instruction or a member of an 2444 /// instruction bundle (= a group of instructions which is combined into a 2445 /// vector instruction). 2446 struct ScheduleData { 2447 // The initial value for the dependency counters. It means that the 2448 // dependencies are not calculated yet. 2449 enum { InvalidDeps = -1 }; 2450 2451 ScheduleData() = default; 2452 2453 void init(int BlockSchedulingRegionID, Value *OpVal) { 2454 FirstInBundle = this; 2455 NextInBundle = nullptr; 2456 NextLoadStore = nullptr; 2457 IsScheduled = false; 2458 SchedulingRegionID = BlockSchedulingRegionID; 2459 clearDependencies(); 2460 OpValue = OpVal; 2461 TE = nullptr; 2462 Lane = -1; 2463 } 2464 2465 /// Verify basic self consistency properties 2466 void verify() { 2467 if (hasValidDependencies()) { 2468 assert(UnscheduledDeps <= Dependencies && "invariant"); 2469 } else { 2470 assert(UnscheduledDeps == Dependencies && "invariant"); 2471 } 2472 2473 if (IsScheduled) { 2474 assert(isSchedulingEntity() && 2475 "unexpected scheduled state"); 2476 for (const ScheduleData *BundleMember = this; BundleMember; 2477 BundleMember = BundleMember->NextInBundle) { 2478 assert(BundleMember->hasValidDependencies() && 2479 BundleMember->UnscheduledDeps == 0 && 2480 "unexpected scheduled state"); 2481 assert((BundleMember == this || !BundleMember->IsScheduled) && 2482 "only bundle is marked scheduled"); 2483 } 2484 } 2485 } 2486 2487 /// Returns true if the dependency information has been calculated. 2488 /// Note that depenendency validity can vary between instructions within 2489 /// a single bundle. 2490 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2491 2492 /// Returns true for single instructions and for bundle representatives 2493 /// (= the head of a bundle). 2494 bool isSchedulingEntity() const { return FirstInBundle == this; } 2495 2496 /// Returns true if it represents an instruction bundle and not only a 2497 /// single instruction. 2498 bool isPartOfBundle() const { 2499 return NextInBundle != nullptr || FirstInBundle != this; 2500 } 2501 2502 /// Returns true if it is ready for scheduling, i.e. it has no more 2503 /// unscheduled depending instructions/bundles. 2504 bool isReady() const { 2505 assert(isSchedulingEntity() && 2506 "can't consider non-scheduling entity for ready list"); 2507 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2508 } 2509 2510 /// Modifies the number of unscheduled dependencies for this instruction, 2511 /// and returns the number of remaining dependencies for the containing 2512 /// bundle. 2513 int incrementUnscheduledDeps(int Incr) { 2514 assert(hasValidDependencies() && 2515 "increment of unscheduled deps would be meaningless"); 2516 UnscheduledDeps += Incr; 2517 return FirstInBundle->unscheduledDepsInBundle(); 2518 } 2519 2520 /// Sets the number of unscheduled dependencies to the number of 2521 /// dependencies. 2522 void resetUnscheduledDeps() { 2523 UnscheduledDeps = Dependencies; 2524 } 2525 2526 /// Clears all dependency information. 2527 void clearDependencies() { 2528 Dependencies = InvalidDeps; 2529 resetUnscheduledDeps(); 2530 MemoryDependencies.clear(); 2531 } 2532 2533 int unscheduledDepsInBundle() const { 2534 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2535 int Sum = 0; 2536 for (const ScheduleData *BundleMember = this; BundleMember; 2537 BundleMember = BundleMember->NextInBundle) { 2538 if (BundleMember->UnscheduledDeps == InvalidDeps) 2539 return InvalidDeps; 2540 Sum += BundleMember->UnscheduledDeps; 2541 } 2542 return Sum; 2543 } 2544 2545 void dump(raw_ostream &os) const { 2546 if (!isSchedulingEntity()) { 2547 os << "/ " << *Inst; 2548 } else if (NextInBundle) { 2549 os << '[' << *Inst; 2550 ScheduleData *SD = NextInBundle; 2551 while (SD) { 2552 os << ';' << *SD->Inst; 2553 SD = SD->NextInBundle; 2554 } 2555 os << ']'; 2556 } else { 2557 os << *Inst; 2558 } 2559 } 2560 2561 Instruction *Inst = nullptr; 2562 2563 /// Points to the head in an instruction bundle (and always to this for 2564 /// single instructions). 2565 ScheduleData *FirstInBundle = nullptr; 2566 2567 /// Single linked list of all instructions in a bundle. Null if it is a 2568 /// single instruction. 2569 ScheduleData *NextInBundle = nullptr; 2570 2571 /// Single linked list of all memory instructions (e.g. load, store, call) 2572 /// in the block - until the end of the scheduling region. 2573 ScheduleData *NextLoadStore = nullptr; 2574 2575 /// The dependent memory instructions. 2576 /// This list is derived on demand in calculateDependencies(). 2577 SmallVector<ScheduleData *, 4> MemoryDependencies; 2578 2579 /// This ScheduleData is in the current scheduling region if this matches 2580 /// the current SchedulingRegionID of BlockScheduling. 2581 int SchedulingRegionID = 0; 2582 2583 /// Used for getting a "good" final ordering of instructions. 2584 int SchedulingPriority = 0; 2585 2586 /// The number of dependencies. Constitutes of the number of users of the 2587 /// instruction plus the number of dependent memory instructions (if any). 2588 /// This value is calculated on demand. 2589 /// If InvalidDeps, the number of dependencies is not calculated yet. 2590 int Dependencies = InvalidDeps; 2591 2592 /// The number of dependencies minus the number of dependencies of scheduled 2593 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2594 /// for scheduling. 2595 /// Note that this is negative as long as Dependencies is not calculated. 2596 int UnscheduledDeps = InvalidDeps; 2597 2598 /// True if this instruction is scheduled (or considered as scheduled in the 2599 /// dry-run). 2600 bool IsScheduled = false; 2601 2602 /// Opcode of the current instruction in the schedule data. 2603 Value *OpValue = nullptr; 2604 2605 /// The TreeEntry that this instruction corresponds to. 2606 TreeEntry *TE = nullptr; 2607 2608 /// The lane of this node in the TreeEntry. 2609 int Lane = -1; 2610 }; 2611 2612 #ifndef NDEBUG 2613 friend inline raw_ostream &operator<<(raw_ostream &os, 2614 const BoUpSLP::ScheduleData &SD) { 2615 SD.dump(os); 2616 return os; 2617 } 2618 #endif 2619 2620 friend struct GraphTraits<BoUpSLP *>; 2621 friend struct DOTGraphTraits<BoUpSLP *>; 2622 2623 /// Contains all scheduling data for a basic block. 2624 struct BlockScheduling { 2625 BlockScheduling(BasicBlock *BB) 2626 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2627 2628 void clear() { 2629 ReadyInsts.clear(); 2630 ScheduleStart = nullptr; 2631 ScheduleEnd = nullptr; 2632 FirstLoadStoreInRegion = nullptr; 2633 LastLoadStoreInRegion = nullptr; 2634 2635 // Reduce the maximum schedule region size by the size of the 2636 // previous scheduling run. 2637 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2638 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2639 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2640 ScheduleRegionSize = 0; 2641 2642 // Make a new scheduling region, i.e. all existing ScheduleData is not 2643 // in the new region yet. 2644 ++SchedulingRegionID; 2645 } 2646 2647 ScheduleData *getScheduleData(Value *V) { 2648 ScheduleData *SD = ScheduleDataMap[V]; 2649 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2650 return SD; 2651 return nullptr; 2652 } 2653 2654 ScheduleData *getScheduleData(Value *V, Value *Key) { 2655 if (V == Key) 2656 return getScheduleData(V); 2657 auto I = ExtraScheduleDataMap.find(V); 2658 if (I != ExtraScheduleDataMap.end()) { 2659 ScheduleData *SD = I->second[Key]; 2660 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2661 return SD; 2662 } 2663 return nullptr; 2664 } 2665 2666 bool isInSchedulingRegion(ScheduleData *SD) const { 2667 return SD->SchedulingRegionID == SchedulingRegionID; 2668 } 2669 2670 /// Marks an instruction as scheduled and puts all dependent ready 2671 /// instructions into the ready-list. 2672 template <typename ReadyListType> 2673 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2674 SD->IsScheduled = true; 2675 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2676 2677 for (ScheduleData *BundleMember = SD; BundleMember; 2678 BundleMember = BundleMember->NextInBundle) { 2679 if (BundleMember->Inst != BundleMember->OpValue) 2680 continue; 2681 2682 // Handle the def-use chain dependencies. 2683 2684 // Decrement the unscheduled counter and insert to ready list if ready. 2685 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2686 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2687 if (OpDef && OpDef->hasValidDependencies() && 2688 OpDef->incrementUnscheduledDeps(-1) == 0) { 2689 // There are no more unscheduled dependencies after 2690 // decrementing, so we can put the dependent instruction 2691 // into the ready list. 2692 ScheduleData *DepBundle = OpDef->FirstInBundle; 2693 assert(!DepBundle->IsScheduled && 2694 "already scheduled bundle gets ready"); 2695 ReadyList.insert(DepBundle); 2696 LLVM_DEBUG(dbgs() 2697 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2698 } 2699 }); 2700 }; 2701 2702 // If BundleMember is a vector bundle, its operands may have been 2703 // reordered during buildTree(). We therefore need to get its operands 2704 // through the TreeEntry. 2705 if (TreeEntry *TE = BundleMember->TE) { 2706 int Lane = BundleMember->Lane; 2707 assert(Lane >= 0 && "Lane not set"); 2708 2709 // Since vectorization tree is being built recursively this assertion 2710 // ensures that the tree entry has all operands set before reaching 2711 // this code. Couple of exceptions known at the moment are extracts 2712 // where their second (immediate) operand is not added. Since 2713 // immediates do not affect scheduler behavior this is considered 2714 // okay. 2715 auto *In = TE->getMainOp(); 2716 assert(In && 2717 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2718 In->getNumOperands() == TE->getNumOperands()) && 2719 "Missed TreeEntry operands?"); 2720 (void)In; // fake use to avoid build failure when assertions disabled 2721 2722 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2723 OpIdx != NumOperands; ++OpIdx) 2724 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2725 DecrUnsched(I); 2726 } else { 2727 // If BundleMember is a stand-alone instruction, no operand reordering 2728 // has taken place, so we directly access its operands. 2729 for (Use &U : BundleMember->Inst->operands()) 2730 if (auto *I = dyn_cast<Instruction>(U.get())) 2731 DecrUnsched(I); 2732 } 2733 // Handle the memory dependencies. 2734 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2735 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2736 // There are no more unscheduled dependencies after decrementing, 2737 // so we can put the dependent instruction into the ready list. 2738 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2739 assert(!DepBundle->IsScheduled && 2740 "already scheduled bundle gets ready"); 2741 ReadyList.insert(DepBundle); 2742 LLVM_DEBUG(dbgs() 2743 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2744 } 2745 } 2746 } 2747 } 2748 2749 /// Verify basic self consistency properties of the data structure. 2750 void verify() { 2751 if (!ScheduleStart) 2752 return; 2753 2754 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2755 ScheduleStart->comesBefore(ScheduleEnd) && 2756 "Not a valid scheduling region?"); 2757 2758 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2759 auto *SD = getScheduleData(I); 2760 assert(SD && "primary scheduledata must exist in window"); 2761 assert(isInSchedulingRegion(SD) && 2762 "primary schedule data not in window?"); 2763 (void)SD; 2764 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2765 } 2766 2767 for (auto *SD : ReadyInsts) { 2768 assert(SD->isSchedulingEntity() && SD->isReady() && 2769 "item in ready list not ready?"); 2770 (void)SD; 2771 } 2772 } 2773 2774 void doForAllOpcodes(Value *V, 2775 function_ref<void(ScheduleData *SD)> Action) { 2776 if (ScheduleData *SD = getScheduleData(V)) 2777 Action(SD); 2778 auto I = ExtraScheduleDataMap.find(V); 2779 if (I != ExtraScheduleDataMap.end()) 2780 for (auto &P : I->second) 2781 if (P.second->SchedulingRegionID == SchedulingRegionID) 2782 Action(P.second); 2783 } 2784 2785 /// Put all instructions into the ReadyList which are ready for scheduling. 2786 template <typename ReadyListType> 2787 void initialFillReadyList(ReadyListType &ReadyList) { 2788 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2789 doForAllOpcodes(I, [&](ScheduleData *SD) { 2790 if (SD->isSchedulingEntity() && SD->isReady()) { 2791 ReadyList.insert(SD); 2792 LLVM_DEBUG(dbgs() 2793 << "SLP: initially in ready list: " << *SD << "\n"); 2794 } 2795 }); 2796 } 2797 } 2798 2799 /// Build a bundle from the ScheduleData nodes corresponding to the 2800 /// scalar instruction for each lane. 2801 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2802 2803 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2804 /// cyclic dependencies. This is only a dry-run, no instructions are 2805 /// actually moved at this stage. 2806 /// \returns the scheduling bundle. The returned Optional value is non-None 2807 /// if \p VL is allowed to be scheduled. 2808 Optional<ScheduleData *> 2809 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2810 const InstructionsState &S); 2811 2812 /// Un-bundles a group of instructions. 2813 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2814 2815 /// Allocates schedule data chunk. 2816 ScheduleData *allocateScheduleDataChunks(); 2817 2818 /// Extends the scheduling region so that V is inside the region. 2819 /// \returns true if the region size is within the limit. 2820 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2821 2822 /// Initialize the ScheduleData structures for new instructions in the 2823 /// scheduling region. 2824 void initScheduleData(Instruction *FromI, Instruction *ToI, 2825 ScheduleData *PrevLoadStore, 2826 ScheduleData *NextLoadStore); 2827 2828 /// Updates the dependency information of a bundle and of all instructions/ 2829 /// bundles which depend on the original bundle. 2830 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2831 BoUpSLP *SLP); 2832 2833 /// Sets all instruction in the scheduling region to un-scheduled. 2834 void resetSchedule(); 2835 2836 BasicBlock *BB; 2837 2838 /// Simple memory allocation for ScheduleData. 2839 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2840 2841 /// The size of a ScheduleData array in ScheduleDataChunks. 2842 int ChunkSize; 2843 2844 /// The allocator position in the current chunk, which is the last entry 2845 /// of ScheduleDataChunks. 2846 int ChunkPos; 2847 2848 /// Attaches ScheduleData to Instruction. 2849 /// Note that the mapping survives during all vectorization iterations, i.e. 2850 /// ScheduleData structures are recycled. 2851 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2852 2853 /// Attaches ScheduleData to Instruction with the leading key. 2854 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2855 ExtraScheduleDataMap; 2856 2857 /// The ready-list for scheduling (only used for the dry-run). 2858 SetVector<ScheduleData *> ReadyInsts; 2859 2860 /// The first instruction of the scheduling region. 2861 Instruction *ScheduleStart = nullptr; 2862 2863 /// The first instruction _after_ the scheduling region. 2864 Instruction *ScheduleEnd = nullptr; 2865 2866 /// The first memory accessing instruction in the scheduling region 2867 /// (can be null). 2868 ScheduleData *FirstLoadStoreInRegion = nullptr; 2869 2870 /// The last memory accessing instruction in the scheduling region 2871 /// (can be null). 2872 ScheduleData *LastLoadStoreInRegion = nullptr; 2873 2874 /// The current size of the scheduling region. 2875 int ScheduleRegionSize = 0; 2876 2877 /// The maximum size allowed for the scheduling region. 2878 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2879 2880 /// The ID of the scheduling region. For a new vectorization iteration this 2881 /// is incremented which "removes" all ScheduleData from the region. 2882 // Make sure that the initial SchedulingRegionID is greater than the 2883 // initial SchedulingRegionID in ScheduleData (which is 0). 2884 int SchedulingRegionID = 1; 2885 }; 2886 2887 /// Attaches the BlockScheduling structures to basic blocks. 2888 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2889 2890 /// Performs the "real" scheduling. Done before vectorization is actually 2891 /// performed in a basic block. 2892 void scheduleBlock(BlockScheduling *BS); 2893 2894 /// List of users to ignore during scheduling and that don't need extracting. 2895 ArrayRef<Value *> UserIgnoreList; 2896 2897 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2898 /// sorted SmallVectors of unsigned. 2899 struct OrdersTypeDenseMapInfo { 2900 static OrdersType getEmptyKey() { 2901 OrdersType V; 2902 V.push_back(~1U); 2903 return V; 2904 } 2905 2906 static OrdersType getTombstoneKey() { 2907 OrdersType V; 2908 V.push_back(~2U); 2909 return V; 2910 } 2911 2912 static unsigned getHashValue(const OrdersType &V) { 2913 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2914 } 2915 2916 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2917 return LHS == RHS; 2918 } 2919 }; 2920 2921 // Analysis and block reference. 2922 Function *F; 2923 ScalarEvolution *SE; 2924 TargetTransformInfo *TTI; 2925 TargetLibraryInfo *TLI; 2926 AAResults *AA; 2927 LoopInfo *LI; 2928 DominatorTree *DT; 2929 AssumptionCache *AC; 2930 DemandedBits *DB; 2931 const DataLayout *DL; 2932 OptimizationRemarkEmitter *ORE; 2933 2934 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2935 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2936 2937 /// Instruction builder to construct the vectorized tree. 2938 IRBuilder<> Builder; 2939 2940 /// A map of scalar integer values to the smallest bit width with which they 2941 /// can legally be represented. The values map to (width, signed) pairs, 2942 /// where "width" indicates the minimum bit width and "signed" is True if the 2943 /// value must be signed-extended, rather than zero-extended, back to its 2944 /// original width. 2945 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2946 }; 2947 2948 } // end namespace slpvectorizer 2949 2950 template <> struct GraphTraits<BoUpSLP *> { 2951 using TreeEntry = BoUpSLP::TreeEntry; 2952 2953 /// NodeRef has to be a pointer per the GraphWriter. 2954 using NodeRef = TreeEntry *; 2955 2956 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2957 2958 /// Add the VectorizableTree to the index iterator to be able to return 2959 /// TreeEntry pointers. 2960 struct ChildIteratorType 2961 : public iterator_adaptor_base< 2962 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2963 ContainerTy &VectorizableTree; 2964 2965 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2966 ContainerTy &VT) 2967 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2968 2969 NodeRef operator*() { return I->UserTE; } 2970 }; 2971 2972 static NodeRef getEntryNode(BoUpSLP &R) { 2973 return R.VectorizableTree[0].get(); 2974 } 2975 2976 static ChildIteratorType child_begin(NodeRef N) { 2977 return {N->UserTreeIndices.begin(), N->Container}; 2978 } 2979 2980 static ChildIteratorType child_end(NodeRef N) { 2981 return {N->UserTreeIndices.end(), N->Container}; 2982 } 2983 2984 /// For the node iterator we just need to turn the TreeEntry iterator into a 2985 /// TreeEntry* iterator so that it dereferences to NodeRef. 2986 class nodes_iterator { 2987 using ItTy = ContainerTy::iterator; 2988 ItTy It; 2989 2990 public: 2991 nodes_iterator(const ItTy &It2) : It(It2) {} 2992 NodeRef operator*() { return It->get(); } 2993 nodes_iterator operator++() { 2994 ++It; 2995 return *this; 2996 } 2997 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2998 }; 2999 3000 static nodes_iterator nodes_begin(BoUpSLP *R) { 3001 return nodes_iterator(R->VectorizableTree.begin()); 3002 } 3003 3004 static nodes_iterator nodes_end(BoUpSLP *R) { 3005 return nodes_iterator(R->VectorizableTree.end()); 3006 } 3007 3008 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3009 }; 3010 3011 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3012 using TreeEntry = BoUpSLP::TreeEntry; 3013 3014 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3015 3016 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3017 std::string Str; 3018 raw_string_ostream OS(Str); 3019 if (isSplat(Entry->Scalars)) 3020 OS << "<splat> "; 3021 for (auto V : Entry->Scalars) { 3022 OS << *V; 3023 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3024 return EU.Scalar == V; 3025 })) 3026 OS << " <extract>"; 3027 OS << "\n"; 3028 } 3029 return Str; 3030 } 3031 3032 static std::string getNodeAttributes(const TreeEntry *Entry, 3033 const BoUpSLP *) { 3034 if (Entry->State == TreeEntry::NeedToGather) 3035 return "color=red"; 3036 return ""; 3037 } 3038 }; 3039 3040 } // end namespace llvm 3041 3042 BoUpSLP::~BoUpSLP() { 3043 for (const auto &Pair : DeletedInstructions) { 3044 // Replace operands of ignored instructions with Undefs in case if they were 3045 // marked for deletion. 3046 if (Pair.getSecond()) { 3047 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3048 Pair.getFirst()->replaceAllUsesWith(Undef); 3049 } 3050 Pair.getFirst()->dropAllReferences(); 3051 } 3052 for (const auto &Pair : DeletedInstructions) { 3053 assert(Pair.getFirst()->use_empty() && 3054 "trying to erase instruction with users."); 3055 Pair.getFirst()->eraseFromParent(); 3056 } 3057 #ifdef EXPENSIVE_CHECKS 3058 // If we could guarantee that this call is not extremely slow, we could 3059 // remove the ifdef limitation (see PR47712). 3060 assert(!verifyFunction(*F, &dbgs())); 3061 #endif 3062 } 3063 3064 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3065 for (auto *V : AV) { 3066 if (auto *I = dyn_cast<Instruction>(V)) 3067 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3068 }; 3069 } 3070 3071 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3072 /// contains original mask for the scalars reused in the node. Procedure 3073 /// transform this mask in accordance with the given \p Mask. 3074 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3075 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3076 "Expected non-empty mask."); 3077 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3078 Prev.swap(Reuses); 3079 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3080 if (Mask[I] != UndefMaskElem) 3081 Reuses[Mask[I]] = Prev[I]; 3082 } 3083 3084 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3085 /// the original order of the scalars. Procedure transforms the provided order 3086 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3087 /// identity order, \p Order is cleared. 3088 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3089 assert(!Mask.empty() && "Expected non-empty mask."); 3090 SmallVector<int> MaskOrder; 3091 if (Order.empty()) { 3092 MaskOrder.resize(Mask.size()); 3093 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3094 } else { 3095 inversePermutation(Order, MaskOrder); 3096 } 3097 reorderReuses(MaskOrder, Mask); 3098 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3099 Order.clear(); 3100 return; 3101 } 3102 Order.assign(Mask.size(), Mask.size()); 3103 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3104 if (MaskOrder[I] != UndefMaskElem) 3105 Order[MaskOrder[I]] = I; 3106 fixupOrderingIndices(Order); 3107 } 3108 3109 Optional<BoUpSLP::OrdersType> 3110 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3111 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3112 unsigned NumScalars = TE.Scalars.size(); 3113 OrdersType CurrentOrder(NumScalars, NumScalars); 3114 SmallVector<int> Positions; 3115 SmallBitVector UsedPositions(NumScalars); 3116 const TreeEntry *STE = nullptr; 3117 // Try to find all gathered scalars that are gets vectorized in other 3118 // vectorize node. Here we can have only one single tree vector node to 3119 // correctly identify order of the gathered scalars. 3120 for (unsigned I = 0; I < NumScalars; ++I) { 3121 Value *V = TE.Scalars[I]; 3122 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3123 continue; 3124 if (const auto *LocalSTE = getTreeEntry(V)) { 3125 if (!STE) 3126 STE = LocalSTE; 3127 else if (STE != LocalSTE) 3128 // Take the order only from the single vector node. 3129 return None; 3130 unsigned Lane = 3131 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3132 if (Lane >= NumScalars) 3133 return None; 3134 if (CurrentOrder[Lane] != NumScalars) { 3135 if (Lane != I) 3136 continue; 3137 UsedPositions.reset(CurrentOrder[Lane]); 3138 } 3139 // The partial identity (where only some elements of the gather node are 3140 // in the identity order) is good. 3141 CurrentOrder[Lane] = I; 3142 UsedPositions.set(I); 3143 } 3144 } 3145 // Need to keep the order if we have a vector entry and at least 2 scalars or 3146 // the vectorized entry has just 2 scalars. 3147 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3148 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3149 for (unsigned I = 0; I < NumScalars; ++I) 3150 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3151 return false; 3152 return true; 3153 }; 3154 if (IsIdentityOrder(CurrentOrder)) { 3155 CurrentOrder.clear(); 3156 return CurrentOrder; 3157 } 3158 auto *It = CurrentOrder.begin(); 3159 for (unsigned I = 0; I < NumScalars;) { 3160 if (UsedPositions.test(I)) { 3161 ++I; 3162 continue; 3163 } 3164 if (*It == NumScalars) { 3165 *It = I; 3166 ++I; 3167 } 3168 ++It; 3169 } 3170 return CurrentOrder; 3171 } 3172 return None; 3173 } 3174 3175 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3176 bool TopToBottom) { 3177 // No need to reorder if need to shuffle reuses, still need to shuffle the 3178 // node. 3179 if (!TE.ReuseShuffleIndices.empty()) 3180 return None; 3181 if (TE.State == TreeEntry::Vectorize && 3182 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3183 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3184 !TE.isAltShuffle()) 3185 return TE.ReorderIndices; 3186 if (TE.State == TreeEntry::NeedToGather) { 3187 // TODO: add analysis of other gather nodes with extractelement 3188 // instructions and other values/instructions, not only undefs. 3189 if (((TE.getOpcode() == Instruction::ExtractElement && 3190 !TE.isAltShuffle()) || 3191 (all_of(TE.Scalars, 3192 [](Value *V) { 3193 return isa<UndefValue, ExtractElementInst>(V); 3194 }) && 3195 any_of(TE.Scalars, 3196 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3197 all_of(TE.Scalars, 3198 [](Value *V) { 3199 auto *EE = dyn_cast<ExtractElementInst>(V); 3200 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3201 }) && 3202 allSameType(TE.Scalars)) { 3203 // Check that gather of extractelements can be represented as 3204 // just a shuffle of a single vector. 3205 OrdersType CurrentOrder; 3206 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3207 if (Reuse || !CurrentOrder.empty()) { 3208 if (!CurrentOrder.empty()) 3209 fixupOrderingIndices(CurrentOrder); 3210 return CurrentOrder; 3211 } 3212 } 3213 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3214 return CurrentOrder; 3215 } 3216 return None; 3217 } 3218 3219 void BoUpSLP::reorderTopToBottom() { 3220 // Maps VF to the graph nodes. 3221 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3222 // ExtractElement gather nodes which can be vectorized and need to handle 3223 // their ordering. 3224 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3225 // Find all reorderable nodes with the given VF. 3226 // Currently the are vectorized stores,loads,extracts + some gathering of 3227 // extracts. 3228 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3229 const std::unique_ptr<TreeEntry> &TE) { 3230 if (Optional<OrdersType> CurrentOrder = 3231 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3232 // Do not include ordering for nodes used in the alt opcode vectorization, 3233 // better to reorder them during bottom-to-top stage. If follow the order 3234 // here, it causes reordering of the whole graph though actually it is 3235 // profitable just to reorder the subgraph that starts from the alternate 3236 // opcode vectorization node. Such nodes already end-up with the shuffle 3237 // instruction and it is just enough to change this shuffle rather than 3238 // rotate the scalars for the whole graph. 3239 unsigned Cnt = 0; 3240 const TreeEntry *UserTE = TE.get(); 3241 while (UserTE && Cnt < RecursionMaxDepth) { 3242 if (UserTE->UserTreeIndices.size() != 1) 3243 break; 3244 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3245 return EI.UserTE->State == TreeEntry::Vectorize && 3246 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3247 })) 3248 return; 3249 if (UserTE->UserTreeIndices.empty()) 3250 UserTE = nullptr; 3251 else 3252 UserTE = UserTE->UserTreeIndices.back().UserTE; 3253 ++Cnt; 3254 } 3255 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3256 if (TE->State != TreeEntry::Vectorize) 3257 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3258 } 3259 }); 3260 3261 // Reorder the graph nodes according to their vectorization factor. 3262 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3263 VF /= 2) { 3264 auto It = VFToOrderedEntries.find(VF); 3265 if (It == VFToOrderedEntries.end()) 3266 continue; 3267 // Try to find the most profitable order. We just are looking for the most 3268 // used order and reorder scalar elements in the nodes according to this 3269 // mostly used order. 3270 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3271 // All operands are reordered and used only in this node - propagate the 3272 // most used order to the user node. 3273 MapVector<OrdersType, unsigned, 3274 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3275 OrdersUses; 3276 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3277 for (const TreeEntry *OpTE : OrderedEntries) { 3278 // No need to reorder this nodes, still need to extend and to use shuffle, 3279 // just need to merge reordering shuffle and the reuse shuffle. 3280 if (!OpTE->ReuseShuffleIndices.empty()) 3281 continue; 3282 // Count number of orders uses. 3283 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3284 if (OpTE->State == TreeEntry::NeedToGather) 3285 return GathersToOrders.find(OpTE)->second; 3286 return OpTE->ReorderIndices; 3287 }(); 3288 // Stores actually store the mask, not the order, need to invert. 3289 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3290 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3291 SmallVector<int> Mask; 3292 inversePermutation(Order, Mask); 3293 unsigned E = Order.size(); 3294 OrdersType CurrentOrder(E, E); 3295 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3296 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3297 }); 3298 fixupOrderingIndices(CurrentOrder); 3299 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3300 } else { 3301 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3302 } 3303 } 3304 // Set order of the user node. 3305 if (OrdersUses.empty()) 3306 continue; 3307 // Choose the most used order. 3308 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3309 unsigned Cnt = OrdersUses.front().second; 3310 for (const auto &Pair : drop_begin(OrdersUses)) { 3311 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3312 BestOrder = Pair.first; 3313 Cnt = Pair.second; 3314 } 3315 } 3316 // Set order of the user node. 3317 if (BestOrder.empty()) 3318 continue; 3319 SmallVector<int> Mask; 3320 inversePermutation(BestOrder, Mask); 3321 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3322 unsigned E = BestOrder.size(); 3323 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3324 return I < E ? static_cast<int>(I) : UndefMaskElem; 3325 }); 3326 // Do an actual reordering, if profitable. 3327 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3328 // Just do the reordering for the nodes with the given VF. 3329 if (TE->Scalars.size() != VF) { 3330 if (TE->ReuseShuffleIndices.size() == VF) { 3331 // Need to reorder the reuses masks of the operands with smaller VF to 3332 // be able to find the match between the graph nodes and scalar 3333 // operands of the given node during vectorization/cost estimation. 3334 assert(all_of(TE->UserTreeIndices, 3335 [VF, &TE](const EdgeInfo &EI) { 3336 return EI.UserTE->Scalars.size() == VF || 3337 EI.UserTE->Scalars.size() == 3338 TE->Scalars.size(); 3339 }) && 3340 "All users must be of VF size."); 3341 // Update ordering of the operands with the smaller VF than the given 3342 // one. 3343 reorderReuses(TE->ReuseShuffleIndices, Mask); 3344 } 3345 continue; 3346 } 3347 if (TE->State == TreeEntry::Vectorize && 3348 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3349 InsertElementInst>(TE->getMainOp()) && 3350 !TE->isAltShuffle()) { 3351 // Build correct orders for extract{element,value}, loads and 3352 // stores. 3353 reorderOrder(TE->ReorderIndices, Mask); 3354 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3355 TE->reorderOperands(Mask); 3356 } else { 3357 // Reorder the node and its operands. 3358 TE->reorderOperands(Mask); 3359 assert(TE->ReorderIndices.empty() && 3360 "Expected empty reorder sequence."); 3361 reorderScalars(TE->Scalars, Mask); 3362 } 3363 if (!TE->ReuseShuffleIndices.empty()) { 3364 // Apply reversed order to keep the original ordering of the reused 3365 // elements to avoid extra reorder indices shuffling. 3366 OrdersType CurrentOrder; 3367 reorderOrder(CurrentOrder, MaskOrder); 3368 SmallVector<int> NewReuses; 3369 inversePermutation(CurrentOrder, NewReuses); 3370 addMask(NewReuses, TE->ReuseShuffleIndices); 3371 TE->ReuseShuffleIndices.swap(NewReuses); 3372 } 3373 } 3374 } 3375 } 3376 3377 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3378 SetVector<TreeEntry *> OrderedEntries; 3379 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3380 // Find all reorderable leaf nodes with the given VF. 3381 // Currently the are vectorized loads,extracts without alternate operands + 3382 // some gathering of extracts. 3383 SmallVector<TreeEntry *> NonVectorized; 3384 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3385 &NonVectorized]( 3386 const std::unique_ptr<TreeEntry> &TE) { 3387 if (TE->State != TreeEntry::Vectorize) 3388 NonVectorized.push_back(TE.get()); 3389 if (Optional<OrdersType> CurrentOrder = 3390 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3391 OrderedEntries.insert(TE.get()); 3392 if (TE->State != TreeEntry::Vectorize) 3393 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3394 } 3395 }); 3396 3397 // Checks if the operands of the users are reordarable and have only single 3398 // use. 3399 auto &&CheckOperands = 3400 [this, &NonVectorized](const auto &Data, 3401 SmallVectorImpl<TreeEntry *> &GatherOps) { 3402 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3403 if (any_of(Data.second, 3404 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3405 return OpData.first == I && 3406 OpData.second->State == TreeEntry::Vectorize; 3407 })) 3408 continue; 3409 ArrayRef<Value *> VL = Data.first->getOperand(I); 3410 const TreeEntry *TE = nullptr; 3411 const auto *It = find_if(VL, [this, &TE](Value *V) { 3412 TE = getTreeEntry(V); 3413 return TE; 3414 }); 3415 if (It != VL.end() && TE->isSame(VL)) 3416 return false; 3417 TreeEntry *Gather = nullptr; 3418 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3419 assert(TE->State != TreeEntry::Vectorize && 3420 "Only non-vectorized nodes are expected."); 3421 if (TE->isSame(VL)) { 3422 Gather = TE; 3423 return true; 3424 } 3425 return false; 3426 }) > 1) 3427 return false; 3428 if (Gather) 3429 GatherOps.push_back(Gather); 3430 } 3431 return true; 3432 }; 3433 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3434 // I.e., if the node has operands, that are reordered, try to make at least 3435 // one operand order in the natural order and reorder others + reorder the 3436 // user node itself. 3437 SmallPtrSet<const TreeEntry *, 4> Visited; 3438 while (!OrderedEntries.empty()) { 3439 // 1. Filter out only reordered nodes. 3440 // 2. If the entry has multiple uses - skip it and jump to the next node. 3441 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3442 SmallVector<TreeEntry *> Filtered; 3443 for (TreeEntry *TE : OrderedEntries) { 3444 if (!(TE->State == TreeEntry::Vectorize || 3445 (TE->State == TreeEntry::NeedToGather && 3446 GathersToOrders.count(TE))) || 3447 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3448 !all_of(drop_begin(TE->UserTreeIndices), 3449 [TE](const EdgeInfo &EI) { 3450 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3451 }) || 3452 !Visited.insert(TE).second) { 3453 Filtered.push_back(TE); 3454 continue; 3455 } 3456 // Build a map between user nodes and their operands order to speedup 3457 // search. The graph currently does not provide this dependency directly. 3458 for (EdgeInfo &EI : TE->UserTreeIndices) { 3459 TreeEntry *UserTE = EI.UserTE; 3460 auto It = Users.find(UserTE); 3461 if (It == Users.end()) 3462 It = Users.insert({UserTE, {}}).first; 3463 It->second.emplace_back(EI.EdgeIdx, TE); 3464 } 3465 } 3466 // Erase filtered entries. 3467 for_each(Filtered, 3468 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3469 for (const auto &Data : Users) { 3470 // Check that operands are used only in the User node. 3471 SmallVector<TreeEntry *> GatherOps; 3472 if (!CheckOperands(Data, GatherOps)) { 3473 for_each(Data.second, 3474 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3475 OrderedEntries.remove(Op.second); 3476 }); 3477 continue; 3478 } 3479 // All operands are reordered and used only in this node - propagate the 3480 // most used order to the user node. 3481 MapVector<OrdersType, unsigned, 3482 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3483 OrdersUses; 3484 // Do the analysis for each tree entry only once, otherwise the order of 3485 // the same node my be considered several times, though might be not 3486 // profitable. 3487 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3488 for (const auto &Op : Data.second) { 3489 TreeEntry *OpTE = Op.second; 3490 if (!VisitedOps.insert(OpTE).second) 3491 continue; 3492 if (!OpTE->ReuseShuffleIndices.empty() || 3493 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3494 continue; 3495 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3496 if (OpTE->State == TreeEntry::NeedToGather) 3497 return GathersToOrders.find(OpTE)->second; 3498 return OpTE->ReorderIndices; 3499 }(); 3500 // Stores actually store the mask, not the order, need to invert. 3501 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3502 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3503 SmallVector<int> Mask; 3504 inversePermutation(Order, Mask); 3505 unsigned E = Order.size(); 3506 OrdersType CurrentOrder(E, E); 3507 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3508 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3509 }); 3510 fixupOrderingIndices(CurrentOrder); 3511 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3512 } else { 3513 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3514 } 3515 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3516 OpTE->UserTreeIndices.size(); 3517 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3518 --OrdersUses[{}]; 3519 } 3520 // If no orders - skip current nodes and jump to the next one, if any. 3521 if (OrdersUses.empty()) { 3522 for_each(Data.second, 3523 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3524 OrderedEntries.remove(Op.second); 3525 }); 3526 continue; 3527 } 3528 // Choose the best order. 3529 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3530 unsigned Cnt = OrdersUses.front().second; 3531 for (const auto &Pair : drop_begin(OrdersUses)) { 3532 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3533 BestOrder = Pair.first; 3534 Cnt = Pair.second; 3535 } 3536 } 3537 // Set order of the user node (reordering of operands and user nodes). 3538 if (BestOrder.empty()) { 3539 for_each(Data.second, 3540 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3541 OrderedEntries.remove(Op.second); 3542 }); 3543 continue; 3544 } 3545 // Erase operands from OrderedEntries list and adjust their orders. 3546 VisitedOps.clear(); 3547 SmallVector<int> Mask; 3548 inversePermutation(BestOrder, Mask); 3549 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3550 unsigned E = BestOrder.size(); 3551 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3552 return I < E ? static_cast<int>(I) : UndefMaskElem; 3553 }); 3554 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3555 TreeEntry *TE = Op.second; 3556 OrderedEntries.remove(TE); 3557 if (!VisitedOps.insert(TE).second) 3558 continue; 3559 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3560 // Just reorder reuses indices. 3561 reorderReuses(TE->ReuseShuffleIndices, Mask); 3562 continue; 3563 } 3564 // Gathers are processed separately. 3565 if (TE->State != TreeEntry::Vectorize) 3566 continue; 3567 assert((BestOrder.size() == TE->ReorderIndices.size() || 3568 TE->ReorderIndices.empty()) && 3569 "Non-matching sizes of user/operand entries."); 3570 reorderOrder(TE->ReorderIndices, Mask); 3571 } 3572 // For gathers just need to reorder its scalars. 3573 for (TreeEntry *Gather : GatherOps) { 3574 assert(Gather->ReorderIndices.empty() && 3575 "Unexpected reordering of gathers."); 3576 if (!Gather->ReuseShuffleIndices.empty()) { 3577 // Just reorder reuses indices. 3578 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3579 continue; 3580 } 3581 reorderScalars(Gather->Scalars, Mask); 3582 OrderedEntries.remove(Gather); 3583 } 3584 // Reorder operands of the user node and set the ordering for the user 3585 // node itself. 3586 if (Data.first->State != TreeEntry::Vectorize || 3587 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3588 Data.first->getMainOp()) || 3589 Data.first->isAltShuffle()) 3590 Data.first->reorderOperands(Mask); 3591 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3592 Data.first->isAltShuffle()) { 3593 reorderScalars(Data.first->Scalars, Mask); 3594 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3595 if (Data.first->ReuseShuffleIndices.empty() && 3596 !Data.first->ReorderIndices.empty() && 3597 !Data.first->isAltShuffle()) { 3598 // Insert user node to the list to try to sink reordering deeper in 3599 // the graph. 3600 OrderedEntries.insert(Data.first); 3601 } 3602 } else { 3603 reorderOrder(Data.first->ReorderIndices, Mask); 3604 } 3605 } 3606 } 3607 // If the reordering is unnecessary, just remove the reorder. 3608 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3609 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3610 VectorizableTree.front()->ReorderIndices.clear(); 3611 } 3612 3613 void BoUpSLP::buildExternalUses( 3614 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3615 // Collect the values that we need to extract from the tree. 3616 for (auto &TEPtr : VectorizableTree) { 3617 TreeEntry *Entry = TEPtr.get(); 3618 3619 // No need to handle users of gathered values. 3620 if (Entry->State == TreeEntry::NeedToGather) 3621 continue; 3622 3623 // For each lane: 3624 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3625 Value *Scalar = Entry->Scalars[Lane]; 3626 int FoundLane = Entry->findLaneForValue(Scalar); 3627 3628 // Check if the scalar is externally used as an extra arg. 3629 auto ExtI = ExternallyUsedValues.find(Scalar); 3630 if (ExtI != ExternallyUsedValues.end()) { 3631 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3632 << Lane << " from " << *Scalar << ".\n"); 3633 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3634 } 3635 for (User *U : Scalar->users()) { 3636 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3637 3638 Instruction *UserInst = dyn_cast<Instruction>(U); 3639 if (!UserInst) 3640 continue; 3641 3642 if (isDeleted(UserInst)) 3643 continue; 3644 3645 // Skip in-tree scalars that become vectors 3646 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3647 Value *UseScalar = UseEntry->Scalars[0]; 3648 // Some in-tree scalars will remain as scalar in vectorized 3649 // instructions. If that is the case, the one in Lane 0 will 3650 // be used. 3651 if (UseScalar != U || 3652 UseEntry->State == TreeEntry::ScatterVectorize || 3653 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3654 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3655 << ".\n"); 3656 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3657 continue; 3658 } 3659 } 3660 3661 // Ignore users in the user ignore list. 3662 if (is_contained(UserIgnoreList, UserInst)) 3663 continue; 3664 3665 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3666 << Lane << " from " << *Scalar << ".\n"); 3667 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3668 } 3669 } 3670 } 3671 } 3672 3673 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3674 ArrayRef<Value *> UserIgnoreLst) { 3675 deleteTree(); 3676 UserIgnoreList = UserIgnoreLst; 3677 if (!allSameType(Roots)) 3678 return; 3679 buildTree_rec(Roots, 0, EdgeInfo()); 3680 } 3681 3682 namespace { 3683 /// Tracks the state we can represent the loads in the given sequence. 3684 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3685 } // anonymous namespace 3686 3687 /// Checks if the given array of loads can be represented as a vectorized, 3688 /// scatter or just simple gather. 3689 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3690 const TargetTransformInfo &TTI, 3691 const DataLayout &DL, ScalarEvolution &SE, 3692 SmallVectorImpl<unsigned> &Order, 3693 SmallVectorImpl<Value *> &PointerOps) { 3694 // Check that a vectorized load would load the same memory as a scalar 3695 // load. For example, we don't want to vectorize loads that are smaller 3696 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3697 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3698 // from such a struct, we read/write packed bits disagreeing with the 3699 // unvectorized version. 3700 Type *ScalarTy = VL0->getType(); 3701 3702 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3703 return LoadsState::Gather; 3704 3705 // Make sure all loads in the bundle are simple - we can't vectorize 3706 // atomic or volatile loads. 3707 PointerOps.clear(); 3708 PointerOps.resize(VL.size()); 3709 auto *POIter = PointerOps.begin(); 3710 for (Value *V : VL) { 3711 auto *L = cast<LoadInst>(V); 3712 if (!L->isSimple()) 3713 return LoadsState::Gather; 3714 *POIter = L->getPointerOperand(); 3715 ++POIter; 3716 } 3717 3718 Order.clear(); 3719 // Check the order of pointer operands. 3720 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3721 Value *Ptr0; 3722 Value *PtrN; 3723 if (Order.empty()) { 3724 Ptr0 = PointerOps.front(); 3725 PtrN = PointerOps.back(); 3726 } else { 3727 Ptr0 = PointerOps[Order.front()]; 3728 PtrN = PointerOps[Order.back()]; 3729 } 3730 Optional<int> Diff = 3731 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3732 // Check that the sorted loads are consecutive. 3733 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3734 return LoadsState::Vectorize; 3735 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3736 for (Value *V : VL) 3737 CommonAlignment = 3738 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3739 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3740 CommonAlignment)) 3741 return LoadsState::ScatterVectorize; 3742 } 3743 3744 return LoadsState::Gather; 3745 } 3746 3747 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3748 const EdgeInfo &UserTreeIdx) { 3749 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3750 3751 SmallVector<int> ReuseShuffleIndicies; 3752 SmallVector<Value *> UniqueValues; 3753 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3754 &UserTreeIdx, 3755 this](const InstructionsState &S) { 3756 // Check that every instruction appears once in this bundle. 3757 DenseMap<Value *, unsigned> UniquePositions; 3758 for (Value *V : VL) { 3759 if (isConstant(V)) { 3760 ReuseShuffleIndicies.emplace_back( 3761 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3762 UniqueValues.emplace_back(V); 3763 continue; 3764 } 3765 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3766 ReuseShuffleIndicies.emplace_back(Res.first->second); 3767 if (Res.second) 3768 UniqueValues.emplace_back(V); 3769 } 3770 size_t NumUniqueScalarValues = UniqueValues.size(); 3771 if (NumUniqueScalarValues == VL.size()) { 3772 ReuseShuffleIndicies.clear(); 3773 } else { 3774 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3775 if (NumUniqueScalarValues <= 1 || 3776 (UniquePositions.size() == 1 && all_of(UniqueValues, 3777 [](Value *V) { 3778 return isa<UndefValue>(V) || 3779 !isConstant(V); 3780 })) || 3781 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3782 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3784 return false; 3785 } 3786 VL = UniqueValues; 3787 } 3788 return true; 3789 }; 3790 3791 InstructionsState S = getSameOpcode(VL); 3792 if (Depth == RecursionMaxDepth) { 3793 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3794 if (TryToFindDuplicates(S)) 3795 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3796 ReuseShuffleIndicies); 3797 return; 3798 } 3799 3800 // Don't handle scalable vectors 3801 if (S.getOpcode() == Instruction::ExtractElement && 3802 isa<ScalableVectorType>( 3803 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3804 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3805 if (TryToFindDuplicates(S)) 3806 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3807 ReuseShuffleIndicies); 3808 return; 3809 } 3810 3811 // Don't handle vectors. 3812 if (S.OpValue->getType()->isVectorTy() && 3813 !isa<InsertElementInst>(S.OpValue)) { 3814 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3815 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3816 return; 3817 } 3818 3819 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3820 if (SI->getValueOperand()->getType()->isVectorTy()) { 3821 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3822 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3823 return; 3824 } 3825 3826 // If all of the operands are identical or constant we have a simple solution. 3827 // If we deal with insert/extract instructions, they all must have constant 3828 // indices, otherwise we should gather them, not try to vectorize. 3829 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3830 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3831 !all_of(VL, isVectorLikeInstWithConstOps))) { 3832 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3833 if (TryToFindDuplicates(S)) 3834 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3835 ReuseShuffleIndicies); 3836 return; 3837 } 3838 3839 // We now know that this is a vector of instructions of the same type from 3840 // the same block. 3841 3842 // Don't vectorize ephemeral values. 3843 for (Value *V : VL) { 3844 if (EphValues.count(V)) { 3845 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3846 << ") is ephemeral.\n"); 3847 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3848 return; 3849 } 3850 } 3851 3852 // Check if this is a duplicate of another entry. 3853 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3854 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3855 if (!E->isSame(VL)) { 3856 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3857 if (TryToFindDuplicates(S)) 3858 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3859 ReuseShuffleIndicies); 3860 return; 3861 } 3862 // Record the reuse of the tree node. FIXME, currently this is only used to 3863 // properly draw the graph rather than for the actual vectorization. 3864 E->UserTreeIndices.push_back(UserTreeIdx); 3865 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3866 << ".\n"); 3867 return; 3868 } 3869 3870 // Check that none of the instructions in the bundle are already in the tree. 3871 for (Value *V : VL) { 3872 auto *I = dyn_cast<Instruction>(V); 3873 if (!I) 3874 continue; 3875 if (getTreeEntry(I)) { 3876 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3877 << ") is already in tree.\n"); 3878 if (TryToFindDuplicates(S)) 3879 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3880 ReuseShuffleIndicies); 3881 return; 3882 } 3883 } 3884 3885 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3886 for (Value *V : VL) { 3887 if (is_contained(UserIgnoreList, V)) { 3888 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3889 if (TryToFindDuplicates(S)) 3890 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3891 ReuseShuffleIndicies); 3892 return; 3893 } 3894 } 3895 3896 // Check that all of the users of the scalars that we want to vectorize are 3897 // schedulable. 3898 auto *VL0 = cast<Instruction>(S.OpValue); 3899 BasicBlock *BB = VL0->getParent(); 3900 3901 if (!DT->isReachableFromEntry(BB)) { 3902 // Don't go into unreachable blocks. They may contain instructions with 3903 // dependency cycles which confuse the final scheduling. 3904 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3905 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3906 return; 3907 } 3908 3909 // Check that every instruction appears once in this bundle. 3910 if (!TryToFindDuplicates(S)) 3911 return; 3912 3913 auto &BSRef = BlocksSchedules[BB]; 3914 if (!BSRef) 3915 BSRef = std::make_unique<BlockScheduling>(BB); 3916 3917 BlockScheduling &BS = *BSRef.get(); 3918 3919 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3920 #ifdef EXPENSIVE_CHECKS 3921 // Make sure we didn't break any internal invariants 3922 BS.verify(); 3923 #endif 3924 if (!Bundle) { 3925 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3926 assert((!BS.getScheduleData(VL0) || 3927 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3928 "tryScheduleBundle should cancelScheduling on failure"); 3929 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3930 ReuseShuffleIndicies); 3931 return; 3932 } 3933 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3934 3935 unsigned ShuffleOrOp = S.isAltShuffle() ? 3936 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3937 switch (ShuffleOrOp) { 3938 case Instruction::PHI: { 3939 auto *PH = cast<PHINode>(VL0); 3940 3941 // Check for terminator values (e.g. invoke). 3942 for (Value *V : VL) 3943 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3944 Instruction *Term = dyn_cast<Instruction>( 3945 cast<PHINode>(V)->getIncomingValueForBlock( 3946 PH->getIncomingBlock(I))); 3947 if (Term && Term->isTerminator()) { 3948 LLVM_DEBUG(dbgs() 3949 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3950 BS.cancelScheduling(VL, VL0); 3951 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3952 ReuseShuffleIndicies); 3953 return; 3954 } 3955 } 3956 3957 TreeEntry *TE = 3958 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3959 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3960 3961 // Keeps the reordered operands to avoid code duplication. 3962 SmallVector<ValueList, 2> OperandsVec; 3963 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3964 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3965 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3966 TE->setOperand(I, Operands); 3967 OperandsVec.push_back(Operands); 3968 continue; 3969 } 3970 ValueList Operands; 3971 // Prepare the operand vector. 3972 for (Value *V : VL) 3973 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3974 PH->getIncomingBlock(I))); 3975 TE->setOperand(I, Operands); 3976 OperandsVec.push_back(Operands); 3977 } 3978 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3979 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3980 return; 3981 } 3982 case Instruction::ExtractValue: 3983 case Instruction::ExtractElement: { 3984 OrdersType CurrentOrder; 3985 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3986 if (Reuse) { 3987 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3988 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3989 ReuseShuffleIndicies); 3990 // This is a special case, as it does not gather, but at the same time 3991 // we are not extending buildTree_rec() towards the operands. 3992 ValueList Op0; 3993 Op0.assign(VL.size(), VL0->getOperand(0)); 3994 VectorizableTree.back()->setOperand(0, Op0); 3995 return; 3996 } 3997 if (!CurrentOrder.empty()) { 3998 LLVM_DEBUG({ 3999 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4000 "with order"; 4001 for (unsigned Idx : CurrentOrder) 4002 dbgs() << " " << Idx; 4003 dbgs() << "\n"; 4004 }); 4005 fixupOrderingIndices(CurrentOrder); 4006 // Insert new order with initial value 0, if it does not exist, 4007 // otherwise return the iterator to the existing one. 4008 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4009 ReuseShuffleIndicies, CurrentOrder); 4010 // This is a special case, as it does not gather, but at the same time 4011 // we are not extending buildTree_rec() towards the operands. 4012 ValueList Op0; 4013 Op0.assign(VL.size(), VL0->getOperand(0)); 4014 VectorizableTree.back()->setOperand(0, Op0); 4015 return; 4016 } 4017 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4018 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4019 ReuseShuffleIndicies); 4020 BS.cancelScheduling(VL, VL0); 4021 return; 4022 } 4023 case Instruction::InsertElement: { 4024 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4025 4026 // Check that we have a buildvector and not a shuffle of 2 or more 4027 // different vectors. 4028 ValueSet SourceVectors; 4029 int MinIdx = std::numeric_limits<int>::max(); 4030 for (Value *V : VL) { 4031 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4032 Optional<int> Idx = *getInsertIndex(V, 0); 4033 if (!Idx || *Idx == UndefMaskElem) 4034 continue; 4035 MinIdx = std::min(MinIdx, *Idx); 4036 } 4037 4038 if (count_if(VL, [&SourceVectors](Value *V) { 4039 return !SourceVectors.contains(V); 4040 }) >= 2) { 4041 // Found 2nd source vector - cancel. 4042 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4043 "different source vectors.\n"); 4044 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4045 BS.cancelScheduling(VL, VL0); 4046 return; 4047 } 4048 4049 auto OrdCompare = [](const std::pair<int, int> &P1, 4050 const std::pair<int, int> &P2) { 4051 return P1.first > P2.first; 4052 }; 4053 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4054 decltype(OrdCompare)> 4055 Indices(OrdCompare); 4056 for (int I = 0, E = VL.size(); I < E; ++I) { 4057 Optional<int> Idx = *getInsertIndex(VL[I], 0); 4058 if (!Idx || *Idx == UndefMaskElem) 4059 continue; 4060 Indices.emplace(*Idx, I); 4061 } 4062 OrdersType CurrentOrder(VL.size(), VL.size()); 4063 bool IsIdentity = true; 4064 for (int I = 0, E = VL.size(); I < E; ++I) { 4065 CurrentOrder[Indices.top().second] = I; 4066 IsIdentity &= Indices.top().second == I; 4067 Indices.pop(); 4068 } 4069 if (IsIdentity) 4070 CurrentOrder.clear(); 4071 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4072 None, CurrentOrder); 4073 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4074 4075 constexpr int NumOps = 2; 4076 ValueList VectorOperands[NumOps]; 4077 for (int I = 0; I < NumOps; ++I) { 4078 for (Value *V : VL) 4079 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4080 4081 TE->setOperand(I, VectorOperands[I]); 4082 } 4083 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4084 return; 4085 } 4086 case Instruction::Load: { 4087 // Check that a vectorized load would load the same memory as a scalar 4088 // load. For example, we don't want to vectorize loads that are smaller 4089 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4090 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4091 // from such a struct, we read/write packed bits disagreeing with the 4092 // unvectorized version. 4093 SmallVector<Value *> PointerOps; 4094 OrdersType CurrentOrder; 4095 TreeEntry *TE = nullptr; 4096 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4097 PointerOps)) { 4098 case LoadsState::Vectorize: 4099 if (CurrentOrder.empty()) { 4100 // Original loads are consecutive and does not require reordering. 4101 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4102 ReuseShuffleIndicies); 4103 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4104 } else { 4105 fixupOrderingIndices(CurrentOrder); 4106 // Need to reorder. 4107 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4108 ReuseShuffleIndicies, CurrentOrder); 4109 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4110 } 4111 TE->setOperandsInOrder(); 4112 break; 4113 case LoadsState::ScatterVectorize: 4114 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4115 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4116 UserTreeIdx, ReuseShuffleIndicies); 4117 TE->setOperandsInOrder(); 4118 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4119 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4120 break; 4121 case LoadsState::Gather: 4122 BS.cancelScheduling(VL, VL0); 4123 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4124 ReuseShuffleIndicies); 4125 #ifndef NDEBUG 4126 Type *ScalarTy = VL0->getType(); 4127 if (DL->getTypeSizeInBits(ScalarTy) != 4128 DL->getTypeAllocSizeInBits(ScalarTy)) 4129 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4130 else if (any_of(VL, [](Value *V) { 4131 return !cast<LoadInst>(V)->isSimple(); 4132 })) 4133 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4134 else 4135 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4136 #endif // NDEBUG 4137 break; 4138 } 4139 return; 4140 } 4141 case Instruction::ZExt: 4142 case Instruction::SExt: 4143 case Instruction::FPToUI: 4144 case Instruction::FPToSI: 4145 case Instruction::FPExt: 4146 case Instruction::PtrToInt: 4147 case Instruction::IntToPtr: 4148 case Instruction::SIToFP: 4149 case Instruction::UIToFP: 4150 case Instruction::Trunc: 4151 case Instruction::FPTrunc: 4152 case Instruction::BitCast: { 4153 Type *SrcTy = VL0->getOperand(0)->getType(); 4154 for (Value *V : VL) { 4155 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4156 if (Ty != SrcTy || !isValidElementType(Ty)) { 4157 BS.cancelScheduling(VL, VL0); 4158 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4159 ReuseShuffleIndicies); 4160 LLVM_DEBUG(dbgs() 4161 << "SLP: Gathering casts with different src types.\n"); 4162 return; 4163 } 4164 } 4165 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4166 ReuseShuffleIndicies); 4167 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4168 4169 TE->setOperandsInOrder(); 4170 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4171 ValueList Operands; 4172 // Prepare the operand vector. 4173 for (Value *V : VL) 4174 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4175 4176 buildTree_rec(Operands, Depth + 1, {TE, i}); 4177 } 4178 return; 4179 } 4180 case Instruction::ICmp: 4181 case Instruction::FCmp: { 4182 // Check that all of the compares have the same predicate. 4183 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4184 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4185 Type *ComparedTy = VL0->getOperand(0)->getType(); 4186 for (Value *V : VL) { 4187 CmpInst *Cmp = cast<CmpInst>(V); 4188 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4189 Cmp->getOperand(0)->getType() != ComparedTy) { 4190 BS.cancelScheduling(VL, VL0); 4191 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4192 ReuseShuffleIndicies); 4193 LLVM_DEBUG(dbgs() 4194 << "SLP: Gathering cmp with different predicate.\n"); 4195 return; 4196 } 4197 } 4198 4199 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4200 ReuseShuffleIndicies); 4201 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4202 4203 ValueList Left, Right; 4204 if (cast<CmpInst>(VL0)->isCommutative()) { 4205 // Commutative predicate - collect + sort operands of the instructions 4206 // so that each side is more likely to have the same opcode. 4207 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4208 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4209 } else { 4210 // Collect operands - commute if it uses the swapped predicate. 4211 for (Value *V : VL) { 4212 auto *Cmp = cast<CmpInst>(V); 4213 Value *LHS = Cmp->getOperand(0); 4214 Value *RHS = Cmp->getOperand(1); 4215 if (Cmp->getPredicate() != P0) 4216 std::swap(LHS, RHS); 4217 Left.push_back(LHS); 4218 Right.push_back(RHS); 4219 } 4220 } 4221 TE->setOperand(0, Left); 4222 TE->setOperand(1, Right); 4223 buildTree_rec(Left, Depth + 1, {TE, 0}); 4224 buildTree_rec(Right, Depth + 1, {TE, 1}); 4225 return; 4226 } 4227 case Instruction::Select: 4228 case Instruction::FNeg: 4229 case Instruction::Add: 4230 case Instruction::FAdd: 4231 case Instruction::Sub: 4232 case Instruction::FSub: 4233 case Instruction::Mul: 4234 case Instruction::FMul: 4235 case Instruction::UDiv: 4236 case Instruction::SDiv: 4237 case Instruction::FDiv: 4238 case Instruction::URem: 4239 case Instruction::SRem: 4240 case Instruction::FRem: 4241 case Instruction::Shl: 4242 case Instruction::LShr: 4243 case Instruction::AShr: 4244 case Instruction::And: 4245 case Instruction::Or: 4246 case Instruction::Xor: { 4247 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4248 ReuseShuffleIndicies); 4249 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4250 4251 // Sort operands of the instructions so that each side is more likely to 4252 // have the same opcode. 4253 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4254 ValueList Left, Right; 4255 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4256 TE->setOperand(0, Left); 4257 TE->setOperand(1, Right); 4258 buildTree_rec(Left, Depth + 1, {TE, 0}); 4259 buildTree_rec(Right, Depth + 1, {TE, 1}); 4260 return; 4261 } 4262 4263 TE->setOperandsInOrder(); 4264 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4265 ValueList Operands; 4266 // Prepare the operand vector. 4267 for (Value *V : VL) 4268 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4269 4270 buildTree_rec(Operands, Depth + 1, {TE, i}); 4271 } 4272 return; 4273 } 4274 case Instruction::GetElementPtr: { 4275 // We don't combine GEPs with complicated (nested) indexing. 4276 for (Value *V : VL) { 4277 if (cast<Instruction>(V)->getNumOperands() != 2) { 4278 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4279 BS.cancelScheduling(VL, VL0); 4280 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4281 ReuseShuffleIndicies); 4282 return; 4283 } 4284 } 4285 4286 // We can't combine several GEPs into one vector if they operate on 4287 // different types. 4288 Type *Ty0 = VL0->getOperand(0)->getType(); 4289 for (Value *V : VL) { 4290 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4291 if (Ty0 != CurTy) { 4292 LLVM_DEBUG(dbgs() 4293 << "SLP: not-vectorizable GEP (different types).\n"); 4294 BS.cancelScheduling(VL, VL0); 4295 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4296 ReuseShuffleIndicies); 4297 return; 4298 } 4299 } 4300 4301 // We don't combine GEPs with non-constant indexes. 4302 Type *Ty1 = VL0->getOperand(1)->getType(); 4303 for (Value *V : VL) { 4304 auto Op = cast<Instruction>(V)->getOperand(1); 4305 if (!isa<ConstantInt>(Op) || 4306 (Op->getType() != Ty1 && 4307 Op->getType()->getScalarSizeInBits() > 4308 DL->getIndexSizeInBits( 4309 V->getType()->getPointerAddressSpace()))) { 4310 LLVM_DEBUG(dbgs() 4311 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4312 BS.cancelScheduling(VL, VL0); 4313 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4314 ReuseShuffleIndicies); 4315 return; 4316 } 4317 } 4318 4319 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4320 ReuseShuffleIndicies); 4321 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4322 SmallVector<ValueList, 2> Operands(2); 4323 // Prepare the operand vector for pointer operands. 4324 for (Value *V : VL) 4325 Operands.front().push_back( 4326 cast<GetElementPtrInst>(V)->getPointerOperand()); 4327 TE->setOperand(0, Operands.front()); 4328 // Need to cast all indices to the same type before vectorization to 4329 // avoid crash. 4330 // Required to be able to find correct matches between different gather 4331 // nodes and reuse the vectorized values rather than trying to gather them 4332 // again. 4333 int IndexIdx = 1; 4334 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4335 Type *Ty = all_of(VL, 4336 [VL0Ty, IndexIdx](Value *V) { 4337 return VL0Ty == cast<GetElementPtrInst>(V) 4338 ->getOperand(IndexIdx) 4339 ->getType(); 4340 }) 4341 ? VL0Ty 4342 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4343 ->getPointerOperandType() 4344 ->getScalarType()); 4345 // Prepare the operand vector. 4346 for (Value *V : VL) { 4347 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4348 auto *CI = cast<ConstantInt>(Op); 4349 Operands.back().push_back(ConstantExpr::getIntegerCast( 4350 CI, Ty, CI->getValue().isSignBitSet())); 4351 } 4352 TE->setOperand(IndexIdx, Operands.back()); 4353 4354 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4355 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4356 return; 4357 } 4358 case Instruction::Store: { 4359 // Check if the stores are consecutive or if we need to swizzle them. 4360 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4361 // Avoid types that are padded when being allocated as scalars, while 4362 // being packed together in a vector (such as i1). 4363 if (DL->getTypeSizeInBits(ScalarTy) != 4364 DL->getTypeAllocSizeInBits(ScalarTy)) { 4365 BS.cancelScheduling(VL, VL0); 4366 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4367 ReuseShuffleIndicies); 4368 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4369 return; 4370 } 4371 // Make sure all stores in the bundle are simple - we can't vectorize 4372 // atomic or volatile stores. 4373 SmallVector<Value *, 4> PointerOps(VL.size()); 4374 ValueList Operands(VL.size()); 4375 auto POIter = PointerOps.begin(); 4376 auto OIter = Operands.begin(); 4377 for (Value *V : VL) { 4378 auto *SI = cast<StoreInst>(V); 4379 if (!SI->isSimple()) { 4380 BS.cancelScheduling(VL, VL0); 4381 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4382 ReuseShuffleIndicies); 4383 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4384 return; 4385 } 4386 *POIter = SI->getPointerOperand(); 4387 *OIter = SI->getValueOperand(); 4388 ++POIter; 4389 ++OIter; 4390 } 4391 4392 OrdersType CurrentOrder; 4393 // Check the order of pointer operands. 4394 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4395 Value *Ptr0; 4396 Value *PtrN; 4397 if (CurrentOrder.empty()) { 4398 Ptr0 = PointerOps.front(); 4399 PtrN = PointerOps.back(); 4400 } else { 4401 Ptr0 = PointerOps[CurrentOrder.front()]; 4402 PtrN = PointerOps[CurrentOrder.back()]; 4403 } 4404 Optional<int> Dist = 4405 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4406 // Check that the sorted pointer operands are consecutive. 4407 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4408 if (CurrentOrder.empty()) { 4409 // Original stores are consecutive and does not require reordering. 4410 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4411 UserTreeIdx, ReuseShuffleIndicies); 4412 TE->setOperandsInOrder(); 4413 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4414 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4415 } else { 4416 fixupOrderingIndices(CurrentOrder); 4417 TreeEntry *TE = 4418 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4419 ReuseShuffleIndicies, CurrentOrder); 4420 TE->setOperandsInOrder(); 4421 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4422 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4423 } 4424 return; 4425 } 4426 } 4427 4428 BS.cancelScheduling(VL, VL0); 4429 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4430 ReuseShuffleIndicies); 4431 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4432 return; 4433 } 4434 case Instruction::Call: { 4435 // Check if the calls are all to the same vectorizable intrinsic or 4436 // library function. 4437 CallInst *CI = cast<CallInst>(VL0); 4438 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4439 4440 VFShape Shape = VFShape::get( 4441 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4442 false /*HasGlobalPred*/); 4443 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4444 4445 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4446 BS.cancelScheduling(VL, VL0); 4447 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4448 ReuseShuffleIndicies); 4449 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4450 return; 4451 } 4452 Function *F = CI->getCalledFunction(); 4453 unsigned NumArgs = CI->arg_size(); 4454 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4455 for (unsigned j = 0; j != NumArgs; ++j) 4456 if (hasVectorInstrinsicScalarOpd(ID, j)) 4457 ScalarArgs[j] = CI->getArgOperand(j); 4458 for (Value *V : VL) { 4459 CallInst *CI2 = dyn_cast<CallInst>(V); 4460 if (!CI2 || CI2->getCalledFunction() != F || 4461 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4462 (VecFunc && 4463 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4464 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4465 BS.cancelScheduling(VL, VL0); 4466 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4467 ReuseShuffleIndicies); 4468 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4469 << "\n"); 4470 return; 4471 } 4472 // Some intrinsics have scalar arguments and should be same in order for 4473 // them to be vectorized. 4474 for (unsigned j = 0; j != NumArgs; ++j) { 4475 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4476 Value *A1J = CI2->getArgOperand(j); 4477 if (ScalarArgs[j] != A1J) { 4478 BS.cancelScheduling(VL, VL0); 4479 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4480 ReuseShuffleIndicies); 4481 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4482 << " argument " << ScalarArgs[j] << "!=" << A1J 4483 << "\n"); 4484 return; 4485 } 4486 } 4487 } 4488 // Verify that the bundle operands are identical between the two calls. 4489 if (CI->hasOperandBundles() && 4490 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4491 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4492 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4493 BS.cancelScheduling(VL, VL0); 4494 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4495 ReuseShuffleIndicies); 4496 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4497 << *CI << "!=" << *V << '\n'); 4498 return; 4499 } 4500 } 4501 4502 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4503 ReuseShuffleIndicies); 4504 TE->setOperandsInOrder(); 4505 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4506 // For scalar operands no need to to create an entry since no need to 4507 // vectorize it. 4508 if (hasVectorInstrinsicScalarOpd(ID, i)) 4509 continue; 4510 ValueList Operands; 4511 // Prepare the operand vector. 4512 for (Value *V : VL) { 4513 auto *CI2 = cast<CallInst>(V); 4514 Operands.push_back(CI2->getArgOperand(i)); 4515 } 4516 buildTree_rec(Operands, Depth + 1, {TE, i}); 4517 } 4518 return; 4519 } 4520 case Instruction::ShuffleVector: { 4521 // If this is not an alternate sequence of opcode like add-sub 4522 // then do not vectorize this instruction. 4523 if (!S.isAltShuffle()) { 4524 BS.cancelScheduling(VL, VL0); 4525 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4526 ReuseShuffleIndicies); 4527 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4528 return; 4529 } 4530 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4531 ReuseShuffleIndicies); 4532 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4533 4534 // Reorder operands if reordering would enable vectorization. 4535 auto *CI = dyn_cast<CmpInst>(VL0); 4536 if (isa<BinaryOperator>(VL0) || CI) { 4537 ValueList Left, Right; 4538 if (!CI || all_of(VL, [](Value *V) { 4539 return cast<CmpInst>(V)->isCommutative(); 4540 })) { 4541 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4542 } else { 4543 CmpInst::Predicate P0 = CI->getPredicate(); 4544 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4545 assert(P0 != AltP0 && 4546 "Expected different main/alternate predicates."); 4547 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4548 Value *BaseOp0 = VL0->getOperand(0); 4549 Value *BaseOp1 = VL0->getOperand(1); 4550 // Collect operands - commute if it uses the swapped predicate or 4551 // alternate operation. 4552 for (Value *V : VL) { 4553 auto *Cmp = cast<CmpInst>(V); 4554 Value *LHS = Cmp->getOperand(0); 4555 Value *RHS = Cmp->getOperand(1); 4556 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4557 if (P0 == AltP0Swapped) { 4558 if ((P0 == CurrentPred && 4559 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4560 (AltP0 == CurrentPred && 4561 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))) 4562 std::swap(LHS, RHS); 4563 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4564 std::swap(LHS, RHS); 4565 } 4566 Left.push_back(LHS); 4567 Right.push_back(RHS); 4568 } 4569 } 4570 TE->setOperand(0, Left); 4571 TE->setOperand(1, Right); 4572 buildTree_rec(Left, Depth + 1, {TE, 0}); 4573 buildTree_rec(Right, Depth + 1, {TE, 1}); 4574 return; 4575 } 4576 4577 TE->setOperandsInOrder(); 4578 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4579 ValueList Operands; 4580 // Prepare the operand vector. 4581 for (Value *V : VL) 4582 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4583 4584 buildTree_rec(Operands, Depth + 1, {TE, i}); 4585 } 4586 return; 4587 } 4588 default: 4589 BS.cancelScheduling(VL, VL0); 4590 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4591 ReuseShuffleIndicies); 4592 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4593 return; 4594 } 4595 } 4596 4597 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4598 unsigned N = 1; 4599 Type *EltTy = T; 4600 4601 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4602 isa<VectorType>(EltTy)) { 4603 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4604 // Check that struct is homogeneous. 4605 for (const auto *Ty : ST->elements()) 4606 if (Ty != *ST->element_begin()) 4607 return 0; 4608 N *= ST->getNumElements(); 4609 EltTy = *ST->element_begin(); 4610 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4611 N *= AT->getNumElements(); 4612 EltTy = AT->getElementType(); 4613 } else { 4614 auto *VT = cast<FixedVectorType>(EltTy); 4615 N *= VT->getNumElements(); 4616 EltTy = VT->getElementType(); 4617 } 4618 } 4619 4620 if (!isValidElementType(EltTy)) 4621 return 0; 4622 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4623 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4624 return 0; 4625 return N; 4626 } 4627 4628 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4629 SmallVectorImpl<unsigned> &CurrentOrder) const { 4630 const auto *It = find_if(VL, [](Value *V) { 4631 return isa<ExtractElementInst, ExtractValueInst>(V); 4632 }); 4633 assert(It != VL.end() && "Expected at least one extract instruction."); 4634 auto *E0 = cast<Instruction>(*It); 4635 assert(all_of(VL, 4636 [](Value *V) { 4637 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4638 V); 4639 }) && 4640 "Invalid opcode"); 4641 // Check if all of the extracts come from the same vector and from the 4642 // correct offset. 4643 Value *Vec = E0->getOperand(0); 4644 4645 CurrentOrder.clear(); 4646 4647 // We have to extract from a vector/aggregate with the same number of elements. 4648 unsigned NElts; 4649 if (E0->getOpcode() == Instruction::ExtractValue) { 4650 const DataLayout &DL = E0->getModule()->getDataLayout(); 4651 NElts = canMapToVector(Vec->getType(), DL); 4652 if (!NElts) 4653 return false; 4654 // Check if load can be rewritten as load of vector. 4655 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4656 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4657 return false; 4658 } else { 4659 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4660 } 4661 4662 if (NElts != VL.size()) 4663 return false; 4664 4665 // Check that all of the indices extract from the correct offset. 4666 bool ShouldKeepOrder = true; 4667 unsigned E = VL.size(); 4668 // Assign to all items the initial value E + 1 so we can check if the extract 4669 // instruction index was used already. 4670 // Also, later we can check that all the indices are used and we have a 4671 // consecutive access in the extract instructions, by checking that no 4672 // element of CurrentOrder still has value E + 1. 4673 CurrentOrder.assign(E, E); 4674 unsigned I = 0; 4675 for (; I < E; ++I) { 4676 auto *Inst = dyn_cast<Instruction>(VL[I]); 4677 if (!Inst) 4678 continue; 4679 if (Inst->getOperand(0) != Vec) 4680 break; 4681 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4682 if (isa<UndefValue>(EE->getIndexOperand())) 4683 continue; 4684 Optional<unsigned> Idx = getExtractIndex(Inst); 4685 if (!Idx) 4686 break; 4687 const unsigned ExtIdx = *Idx; 4688 if (ExtIdx != I) { 4689 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4690 break; 4691 ShouldKeepOrder = false; 4692 CurrentOrder[ExtIdx] = I; 4693 } else { 4694 if (CurrentOrder[I] != E) 4695 break; 4696 CurrentOrder[I] = I; 4697 } 4698 } 4699 if (I < E) { 4700 CurrentOrder.clear(); 4701 return false; 4702 } 4703 if (ShouldKeepOrder) 4704 CurrentOrder.clear(); 4705 4706 return ShouldKeepOrder; 4707 } 4708 4709 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4710 ArrayRef<Value *> VectorizedVals) const { 4711 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4712 all_of(I->users(), [this](User *U) { 4713 return ScalarToTreeEntry.count(U) > 0 || 4714 isVectorLikeInstWithConstOps(U) || 4715 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4716 }); 4717 } 4718 4719 static std::pair<InstructionCost, InstructionCost> 4720 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4721 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4722 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4723 4724 // Calculate the cost of the scalar and vector calls. 4725 SmallVector<Type *, 4> VecTys; 4726 for (Use &Arg : CI->args()) 4727 VecTys.push_back( 4728 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4729 FastMathFlags FMF; 4730 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4731 FMF = FPCI->getFastMathFlags(); 4732 SmallVector<const Value *> Arguments(CI->args()); 4733 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4734 dyn_cast<IntrinsicInst>(CI)); 4735 auto IntrinsicCost = 4736 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4737 4738 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4739 VecTy->getNumElements())), 4740 false /*HasGlobalPred*/); 4741 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4742 auto LibCost = IntrinsicCost; 4743 if (!CI->isNoBuiltin() && VecFunc) { 4744 // Calculate the cost of the vector library call. 4745 // If the corresponding vector call is cheaper, return its cost. 4746 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4747 TTI::TCK_RecipThroughput); 4748 } 4749 return {IntrinsicCost, LibCost}; 4750 } 4751 4752 /// Compute the cost of creating a vector of type \p VecTy containing the 4753 /// extracted values from \p VL. 4754 static InstructionCost 4755 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4756 TargetTransformInfo::ShuffleKind ShuffleKind, 4757 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4758 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4759 4760 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4761 VecTy->getNumElements() < NumOfParts) 4762 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4763 4764 bool AllConsecutive = true; 4765 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4766 unsigned Idx = -1; 4767 InstructionCost Cost = 0; 4768 4769 // Process extracts in blocks of EltsPerVector to check if the source vector 4770 // operand can be re-used directly. If not, add the cost of creating a shuffle 4771 // to extract the values into a vector register. 4772 for (auto *V : VL) { 4773 ++Idx; 4774 4775 // Need to exclude undefs from analysis. 4776 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4777 continue; 4778 4779 // Reached the start of a new vector registers. 4780 if (Idx % EltsPerVector == 0) { 4781 AllConsecutive = true; 4782 continue; 4783 } 4784 4785 // Check all extracts for a vector register on the target directly 4786 // extract values in order. 4787 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4788 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4789 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4790 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4791 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4792 } 4793 4794 if (AllConsecutive) 4795 continue; 4796 4797 // Skip all indices, except for the last index per vector block. 4798 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4799 continue; 4800 4801 // If we have a series of extracts which are not consecutive and hence 4802 // cannot re-use the source vector register directly, compute the shuffle 4803 // cost to extract the a vector with EltsPerVector elements. 4804 Cost += TTI.getShuffleCost( 4805 TargetTransformInfo::SK_PermuteSingleSrc, 4806 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4807 } 4808 return Cost; 4809 } 4810 4811 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4812 /// operations operands. 4813 static void 4814 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4815 ArrayRef<int> ReusesIndices, 4816 const function_ref<bool(Instruction *)> IsAltOp, 4817 SmallVectorImpl<int> &Mask, 4818 SmallVectorImpl<Value *> *OpScalars = nullptr, 4819 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4820 unsigned Sz = VL.size(); 4821 Mask.assign(Sz, UndefMaskElem); 4822 SmallVector<int> OrderMask; 4823 if (!ReorderIndices.empty()) 4824 inversePermutation(ReorderIndices, OrderMask); 4825 for (unsigned I = 0; I < Sz; ++I) { 4826 unsigned Idx = I; 4827 if (!ReorderIndices.empty()) 4828 Idx = OrderMask[I]; 4829 auto *OpInst = cast<Instruction>(VL[Idx]); 4830 if (IsAltOp(OpInst)) { 4831 Mask[I] = Sz + Idx; 4832 if (AltScalars) 4833 AltScalars->push_back(OpInst); 4834 } else { 4835 Mask[I] = Idx; 4836 if (OpScalars) 4837 OpScalars->push_back(OpInst); 4838 } 4839 } 4840 if (!ReusesIndices.empty()) { 4841 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4842 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4843 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4844 }); 4845 Mask.swap(NewMask); 4846 } 4847 } 4848 4849 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4850 ArrayRef<Value *> VectorizedVals) { 4851 ArrayRef<Value*> VL = E->Scalars; 4852 4853 Type *ScalarTy = VL[0]->getType(); 4854 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4855 ScalarTy = SI->getValueOperand()->getType(); 4856 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4857 ScalarTy = CI->getOperand(0)->getType(); 4858 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4859 ScalarTy = IE->getOperand(1)->getType(); 4860 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4861 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4862 4863 // If we have computed a smaller type for the expression, update VecTy so 4864 // that the costs will be accurate. 4865 if (MinBWs.count(VL[0])) 4866 VecTy = FixedVectorType::get( 4867 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4868 unsigned EntryVF = E->getVectorFactor(); 4869 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4870 4871 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4872 // FIXME: it tries to fix a problem with MSVC buildbots. 4873 TargetTransformInfo &TTIRef = *TTI; 4874 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4875 VectorizedVals, E](InstructionCost &Cost) { 4876 DenseMap<Value *, int> ExtractVectorsTys; 4877 SmallPtrSet<Value *, 4> CheckedExtracts; 4878 for (auto *V : VL) { 4879 if (isa<UndefValue>(V)) 4880 continue; 4881 // If all users of instruction are going to be vectorized and this 4882 // instruction itself is not going to be vectorized, consider this 4883 // instruction as dead and remove its cost from the final cost of the 4884 // vectorized tree. 4885 // Also, avoid adjusting the cost for extractelements with multiple uses 4886 // in different graph entries. 4887 const TreeEntry *VE = getTreeEntry(V); 4888 if (!CheckedExtracts.insert(V).second || 4889 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4890 (VE && VE != E)) 4891 continue; 4892 auto *EE = cast<ExtractElementInst>(V); 4893 Optional<unsigned> EEIdx = getExtractIndex(EE); 4894 if (!EEIdx) 4895 continue; 4896 unsigned Idx = *EEIdx; 4897 if (TTIRef.getNumberOfParts(VecTy) != 4898 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4899 auto It = 4900 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4901 It->getSecond() = std::min<int>(It->second, Idx); 4902 } 4903 // Take credit for instruction that will become dead. 4904 if (EE->hasOneUse()) { 4905 Instruction *Ext = EE->user_back(); 4906 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4907 all_of(Ext->users(), 4908 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4909 // Use getExtractWithExtendCost() to calculate the cost of 4910 // extractelement/ext pair. 4911 Cost -= 4912 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4913 EE->getVectorOperandType(), Idx); 4914 // Add back the cost of s|zext which is subtracted separately. 4915 Cost += TTIRef.getCastInstrCost( 4916 Ext->getOpcode(), Ext->getType(), EE->getType(), 4917 TTI::getCastContextHint(Ext), CostKind, Ext); 4918 continue; 4919 } 4920 } 4921 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4922 EE->getVectorOperandType(), Idx); 4923 } 4924 // Add a cost for subvector extracts/inserts if required. 4925 for (const auto &Data : ExtractVectorsTys) { 4926 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4927 unsigned NumElts = VecTy->getNumElements(); 4928 if (Data.second % NumElts == 0) 4929 continue; 4930 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4931 unsigned Idx = (Data.second / NumElts) * NumElts; 4932 unsigned EENumElts = EEVTy->getNumElements(); 4933 if (Idx + NumElts <= EENumElts) { 4934 Cost += 4935 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4936 EEVTy, None, Idx, VecTy); 4937 } else { 4938 // Need to round up the subvector type vectorization factor to avoid a 4939 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4940 // <= EENumElts. 4941 auto *SubVT = 4942 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4943 Cost += 4944 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4945 EEVTy, None, Idx, SubVT); 4946 } 4947 } else { 4948 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4949 VecTy, None, 0, EEVTy); 4950 } 4951 } 4952 }; 4953 if (E->State == TreeEntry::NeedToGather) { 4954 if (allConstant(VL)) 4955 return 0; 4956 if (isa<InsertElementInst>(VL[0])) 4957 return InstructionCost::getInvalid(); 4958 SmallVector<int> Mask; 4959 SmallVector<const TreeEntry *> Entries; 4960 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4961 isGatherShuffledEntry(E, Mask, Entries); 4962 if (Shuffle.hasValue()) { 4963 InstructionCost GatherCost = 0; 4964 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4965 // Perfect match in the graph, will reuse the previously vectorized 4966 // node. Cost is 0. 4967 LLVM_DEBUG( 4968 dbgs() 4969 << "SLP: perfect diamond match for gather bundle that starts with " 4970 << *VL.front() << ".\n"); 4971 if (NeedToShuffleReuses) 4972 GatherCost = 4973 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4974 FinalVecTy, E->ReuseShuffleIndices); 4975 } else { 4976 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4977 << " entries for bundle that starts with " 4978 << *VL.front() << ".\n"); 4979 // Detected that instead of gather we can emit a shuffle of single/two 4980 // previously vectorized nodes. Add the cost of the permutation rather 4981 // than gather. 4982 ::addMask(Mask, E->ReuseShuffleIndices); 4983 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4984 } 4985 return GatherCost; 4986 } 4987 if ((E->getOpcode() == Instruction::ExtractElement || 4988 all_of(E->Scalars, 4989 [](Value *V) { 4990 return isa<ExtractElementInst, UndefValue>(V); 4991 })) && 4992 allSameType(VL)) { 4993 // Check that gather of extractelements can be represented as just a 4994 // shuffle of a single/two vectors the scalars are extracted from. 4995 SmallVector<int> Mask; 4996 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4997 isFixedVectorShuffle(VL, Mask); 4998 if (ShuffleKind.hasValue()) { 4999 // Found the bunch of extractelement instructions that must be gathered 5000 // into a vector and can be represented as a permutation elements in a 5001 // single input vector or of 2 input vectors. 5002 InstructionCost Cost = 5003 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5004 AdjustExtractsCost(Cost); 5005 if (NeedToShuffleReuses) 5006 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5007 FinalVecTy, E->ReuseShuffleIndices); 5008 return Cost; 5009 } 5010 } 5011 if (isSplat(VL)) { 5012 // Found the broadcasting of the single scalar, calculate the cost as the 5013 // broadcast. 5014 assert(VecTy == FinalVecTy && 5015 "No reused scalars expected for broadcast."); 5016 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5017 } 5018 InstructionCost ReuseShuffleCost = 0; 5019 if (NeedToShuffleReuses) 5020 ReuseShuffleCost = TTI->getShuffleCost( 5021 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5022 // Improve gather cost for gather of loads, if we can group some of the 5023 // loads into vector loads. 5024 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5025 !E->isAltShuffle()) { 5026 BoUpSLP::ValueSet VectorizedLoads; 5027 unsigned StartIdx = 0; 5028 unsigned VF = VL.size() / 2; 5029 unsigned VectorizedCnt = 0; 5030 unsigned ScatterVectorizeCnt = 0; 5031 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5032 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5033 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5034 Cnt += VF) { 5035 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5036 if (!VectorizedLoads.count(Slice.front()) && 5037 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5038 SmallVector<Value *> PointerOps; 5039 OrdersType CurrentOrder; 5040 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5041 *SE, CurrentOrder, PointerOps); 5042 switch (LS) { 5043 case LoadsState::Vectorize: 5044 case LoadsState::ScatterVectorize: 5045 // Mark the vectorized loads so that we don't vectorize them 5046 // again. 5047 if (LS == LoadsState::Vectorize) 5048 ++VectorizedCnt; 5049 else 5050 ++ScatterVectorizeCnt; 5051 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5052 // If we vectorized initial block, no need to try to vectorize it 5053 // again. 5054 if (Cnt == StartIdx) 5055 StartIdx += VF; 5056 break; 5057 case LoadsState::Gather: 5058 break; 5059 } 5060 } 5061 } 5062 // Check if the whole array was vectorized already - exit. 5063 if (StartIdx >= VL.size()) 5064 break; 5065 // Found vectorizable parts - exit. 5066 if (!VectorizedLoads.empty()) 5067 break; 5068 } 5069 if (!VectorizedLoads.empty()) { 5070 InstructionCost GatherCost = 0; 5071 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5072 bool NeedInsertSubvectorAnalysis = 5073 !NumParts || (VL.size() / VF) > NumParts; 5074 // Get the cost for gathered loads. 5075 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5076 if (VectorizedLoads.contains(VL[I])) 5077 continue; 5078 GatherCost += getGatherCost(VL.slice(I, VF)); 5079 } 5080 // The cost for vectorized loads. 5081 InstructionCost ScalarsCost = 0; 5082 for (Value *V : VectorizedLoads) { 5083 auto *LI = cast<LoadInst>(V); 5084 ScalarsCost += TTI->getMemoryOpCost( 5085 Instruction::Load, LI->getType(), LI->getAlign(), 5086 LI->getPointerAddressSpace(), CostKind, LI); 5087 } 5088 auto *LI = cast<LoadInst>(E->getMainOp()); 5089 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5090 Align Alignment = LI->getAlign(); 5091 GatherCost += 5092 VectorizedCnt * 5093 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5094 LI->getPointerAddressSpace(), CostKind, LI); 5095 GatherCost += ScatterVectorizeCnt * 5096 TTI->getGatherScatterOpCost( 5097 Instruction::Load, LoadTy, LI->getPointerOperand(), 5098 /*VariableMask=*/false, Alignment, CostKind, LI); 5099 if (NeedInsertSubvectorAnalysis) { 5100 // Add the cost for the subvectors insert. 5101 for (int I = VF, E = VL.size(); I < E; I += VF) 5102 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5103 None, I, LoadTy); 5104 } 5105 return ReuseShuffleCost + GatherCost - ScalarsCost; 5106 } 5107 } 5108 return ReuseShuffleCost + getGatherCost(VL); 5109 } 5110 InstructionCost CommonCost = 0; 5111 SmallVector<int> Mask; 5112 if (!E->ReorderIndices.empty()) { 5113 SmallVector<int> NewMask; 5114 if (E->getOpcode() == Instruction::Store) { 5115 // For stores the order is actually a mask. 5116 NewMask.resize(E->ReorderIndices.size()); 5117 copy(E->ReorderIndices, NewMask.begin()); 5118 } else { 5119 inversePermutation(E->ReorderIndices, NewMask); 5120 } 5121 ::addMask(Mask, NewMask); 5122 } 5123 if (NeedToShuffleReuses) 5124 ::addMask(Mask, E->ReuseShuffleIndices); 5125 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5126 CommonCost = 5127 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5128 assert((E->State == TreeEntry::Vectorize || 5129 E->State == TreeEntry::ScatterVectorize) && 5130 "Unhandled state"); 5131 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5132 Instruction *VL0 = E->getMainOp(); 5133 unsigned ShuffleOrOp = 5134 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5135 switch (ShuffleOrOp) { 5136 case Instruction::PHI: 5137 return 0; 5138 5139 case Instruction::ExtractValue: 5140 case Instruction::ExtractElement: { 5141 // The common cost of removal ExtractElement/ExtractValue instructions + 5142 // the cost of shuffles, if required to resuffle the original vector. 5143 if (NeedToShuffleReuses) { 5144 unsigned Idx = 0; 5145 for (unsigned I : E->ReuseShuffleIndices) { 5146 if (ShuffleOrOp == Instruction::ExtractElement) { 5147 auto *EE = cast<ExtractElementInst>(VL[I]); 5148 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5149 EE->getVectorOperandType(), 5150 *getExtractIndex(EE)); 5151 } else { 5152 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5153 VecTy, Idx); 5154 ++Idx; 5155 } 5156 } 5157 Idx = EntryVF; 5158 for (Value *V : VL) { 5159 if (ShuffleOrOp == Instruction::ExtractElement) { 5160 auto *EE = cast<ExtractElementInst>(V); 5161 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5162 EE->getVectorOperandType(), 5163 *getExtractIndex(EE)); 5164 } else { 5165 --Idx; 5166 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5167 VecTy, Idx); 5168 } 5169 } 5170 } 5171 if (ShuffleOrOp == Instruction::ExtractValue) { 5172 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5173 auto *EI = cast<Instruction>(VL[I]); 5174 // Take credit for instruction that will become dead. 5175 if (EI->hasOneUse()) { 5176 Instruction *Ext = EI->user_back(); 5177 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5178 all_of(Ext->users(), 5179 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5180 // Use getExtractWithExtendCost() to calculate the cost of 5181 // extractelement/ext pair. 5182 CommonCost -= TTI->getExtractWithExtendCost( 5183 Ext->getOpcode(), Ext->getType(), VecTy, I); 5184 // Add back the cost of s|zext which is subtracted separately. 5185 CommonCost += TTI->getCastInstrCost( 5186 Ext->getOpcode(), Ext->getType(), EI->getType(), 5187 TTI::getCastContextHint(Ext), CostKind, Ext); 5188 continue; 5189 } 5190 } 5191 CommonCost -= 5192 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5193 } 5194 } else { 5195 AdjustExtractsCost(CommonCost); 5196 } 5197 return CommonCost; 5198 } 5199 case Instruction::InsertElement: { 5200 assert(E->ReuseShuffleIndices.empty() && 5201 "Unique insertelements only are expected."); 5202 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5203 5204 unsigned const NumElts = SrcVecTy->getNumElements(); 5205 unsigned const NumScalars = VL.size(); 5206 APInt DemandedElts = APInt::getZero(NumElts); 5207 // TODO: Add support for Instruction::InsertValue. 5208 SmallVector<int> Mask; 5209 if (!E->ReorderIndices.empty()) { 5210 inversePermutation(E->ReorderIndices, Mask); 5211 Mask.append(NumElts - NumScalars, UndefMaskElem); 5212 } else { 5213 Mask.assign(NumElts, UndefMaskElem); 5214 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5215 } 5216 unsigned Offset = *getInsertIndex(VL0, 0); 5217 bool IsIdentity = true; 5218 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5219 Mask.swap(PrevMask); 5220 for (unsigned I = 0; I < NumScalars; ++I) { 5221 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5222 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5223 continue; 5224 DemandedElts.setBit(*InsertIdx); 5225 IsIdentity &= *InsertIdx - Offset == I; 5226 Mask[*InsertIdx - Offset] = I; 5227 } 5228 assert(Offset < NumElts && "Failed to find vector index offset"); 5229 5230 InstructionCost Cost = 0; 5231 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5232 /*Insert*/ true, /*Extract*/ false); 5233 5234 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5235 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5236 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5237 Cost += TTI->getShuffleCost( 5238 TargetTransformInfo::SK_PermuteSingleSrc, 5239 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5240 } else if (!IsIdentity) { 5241 auto *FirstInsert = 5242 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5243 return !is_contained(E->Scalars, 5244 cast<Instruction>(V)->getOperand(0)); 5245 })); 5246 if (isUndefVector(FirstInsert->getOperand(0))) { 5247 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5248 } else { 5249 SmallVector<int> InsertMask(NumElts); 5250 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5251 for (unsigned I = 0; I < NumElts; I++) { 5252 if (Mask[I] != UndefMaskElem) 5253 InsertMask[Offset + I] = NumElts + I; 5254 } 5255 Cost += 5256 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5257 } 5258 } 5259 5260 return Cost; 5261 } 5262 case Instruction::ZExt: 5263 case Instruction::SExt: 5264 case Instruction::FPToUI: 5265 case Instruction::FPToSI: 5266 case Instruction::FPExt: 5267 case Instruction::PtrToInt: 5268 case Instruction::IntToPtr: 5269 case Instruction::SIToFP: 5270 case Instruction::UIToFP: 5271 case Instruction::Trunc: 5272 case Instruction::FPTrunc: 5273 case Instruction::BitCast: { 5274 Type *SrcTy = VL0->getOperand(0)->getType(); 5275 InstructionCost ScalarEltCost = 5276 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5277 TTI::getCastContextHint(VL0), CostKind, VL0); 5278 if (NeedToShuffleReuses) { 5279 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5280 } 5281 5282 // Calculate the cost of this instruction. 5283 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5284 5285 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5286 InstructionCost VecCost = 0; 5287 // Check if the values are candidates to demote. 5288 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5289 VecCost = CommonCost + TTI->getCastInstrCost( 5290 E->getOpcode(), VecTy, SrcVecTy, 5291 TTI::getCastContextHint(VL0), CostKind, VL0); 5292 } 5293 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5294 return VecCost - ScalarCost; 5295 } 5296 case Instruction::FCmp: 5297 case Instruction::ICmp: 5298 case Instruction::Select: { 5299 // Calculate the cost of this instruction. 5300 InstructionCost ScalarEltCost = 5301 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5302 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5303 if (NeedToShuffleReuses) { 5304 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5305 } 5306 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5307 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5308 5309 // Check if all entries in VL are either compares or selects with compares 5310 // as condition that have the same predicates. 5311 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5312 bool First = true; 5313 for (auto *V : VL) { 5314 CmpInst::Predicate CurrentPred; 5315 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5316 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5317 !match(V, MatchCmp)) || 5318 (!First && VecPred != CurrentPred)) { 5319 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5320 break; 5321 } 5322 First = false; 5323 VecPred = CurrentPred; 5324 } 5325 5326 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5327 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5328 // Check if it is possible and profitable to use min/max for selects in 5329 // VL. 5330 // 5331 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5332 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5333 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5334 {VecTy, VecTy}); 5335 InstructionCost IntrinsicCost = 5336 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5337 // If the selects are the only uses of the compares, they will be dead 5338 // and we can adjust the cost by removing their cost. 5339 if (IntrinsicAndUse.second) 5340 IntrinsicCost -= 5341 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5342 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5343 VecCost = std::min(VecCost, IntrinsicCost); 5344 } 5345 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5346 return CommonCost + VecCost - ScalarCost; 5347 } 5348 case Instruction::FNeg: 5349 case Instruction::Add: 5350 case Instruction::FAdd: 5351 case Instruction::Sub: 5352 case Instruction::FSub: 5353 case Instruction::Mul: 5354 case Instruction::FMul: 5355 case Instruction::UDiv: 5356 case Instruction::SDiv: 5357 case Instruction::FDiv: 5358 case Instruction::URem: 5359 case Instruction::SRem: 5360 case Instruction::FRem: 5361 case Instruction::Shl: 5362 case Instruction::LShr: 5363 case Instruction::AShr: 5364 case Instruction::And: 5365 case Instruction::Or: 5366 case Instruction::Xor: { 5367 // Certain instructions can be cheaper to vectorize if they have a 5368 // constant second vector operand. 5369 TargetTransformInfo::OperandValueKind Op1VK = 5370 TargetTransformInfo::OK_AnyValue; 5371 TargetTransformInfo::OperandValueKind Op2VK = 5372 TargetTransformInfo::OK_UniformConstantValue; 5373 TargetTransformInfo::OperandValueProperties Op1VP = 5374 TargetTransformInfo::OP_None; 5375 TargetTransformInfo::OperandValueProperties Op2VP = 5376 TargetTransformInfo::OP_PowerOf2; 5377 5378 // If all operands are exactly the same ConstantInt then set the 5379 // operand kind to OK_UniformConstantValue. 5380 // If instead not all operands are constants, then set the operand kind 5381 // to OK_AnyValue. If all operands are constants but not the same, 5382 // then set the operand kind to OK_NonUniformConstantValue. 5383 ConstantInt *CInt0 = nullptr; 5384 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5385 const Instruction *I = cast<Instruction>(VL[i]); 5386 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5387 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5388 if (!CInt) { 5389 Op2VK = TargetTransformInfo::OK_AnyValue; 5390 Op2VP = TargetTransformInfo::OP_None; 5391 break; 5392 } 5393 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5394 !CInt->getValue().isPowerOf2()) 5395 Op2VP = TargetTransformInfo::OP_None; 5396 if (i == 0) { 5397 CInt0 = CInt; 5398 continue; 5399 } 5400 if (CInt0 != CInt) 5401 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5402 } 5403 5404 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5405 InstructionCost ScalarEltCost = 5406 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5407 Op2VK, Op1VP, Op2VP, Operands, VL0); 5408 if (NeedToShuffleReuses) { 5409 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5410 } 5411 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5412 InstructionCost VecCost = 5413 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5414 Op2VK, Op1VP, Op2VP, Operands, VL0); 5415 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5416 return CommonCost + VecCost - ScalarCost; 5417 } 5418 case Instruction::GetElementPtr: { 5419 TargetTransformInfo::OperandValueKind Op1VK = 5420 TargetTransformInfo::OK_AnyValue; 5421 TargetTransformInfo::OperandValueKind Op2VK = 5422 TargetTransformInfo::OK_UniformConstantValue; 5423 5424 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5425 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5426 if (NeedToShuffleReuses) { 5427 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5428 } 5429 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5430 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5431 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5432 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5433 return CommonCost + VecCost - ScalarCost; 5434 } 5435 case Instruction::Load: { 5436 // Cost of wide load - cost of scalar loads. 5437 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5438 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5439 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5440 if (NeedToShuffleReuses) { 5441 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5442 } 5443 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5444 InstructionCost VecLdCost; 5445 if (E->State == TreeEntry::Vectorize) { 5446 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5447 CostKind, VL0); 5448 } else { 5449 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5450 Align CommonAlignment = Alignment; 5451 for (Value *V : VL) 5452 CommonAlignment = 5453 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5454 VecLdCost = TTI->getGatherScatterOpCost( 5455 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5456 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5457 } 5458 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5459 return CommonCost + VecLdCost - ScalarLdCost; 5460 } 5461 case Instruction::Store: { 5462 // We know that we can merge the stores. Calculate the cost. 5463 bool IsReorder = !E->ReorderIndices.empty(); 5464 auto *SI = 5465 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5466 Align Alignment = SI->getAlign(); 5467 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5468 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5469 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5470 InstructionCost VecStCost = TTI->getMemoryOpCost( 5471 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5472 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5473 return CommonCost + VecStCost - ScalarStCost; 5474 } 5475 case Instruction::Call: { 5476 CallInst *CI = cast<CallInst>(VL0); 5477 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5478 5479 // Calculate the cost of the scalar and vector calls. 5480 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5481 InstructionCost ScalarEltCost = 5482 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5483 if (NeedToShuffleReuses) { 5484 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5485 } 5486 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5487 5488 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5489 InstructionCost VecCallCost = 5490 std::min(VecCallCosts.first, VecCallCosts.second); 5491 5492 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5493 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5494 << " for " << *CI << "\n"); 5495 5496 return CommonCost + VecCallCost - ScalarCallCost; 5497 } 5498 case Instruction::ShuffleVector: { 5499 assert(E->isAltShuffle() && 5500 ((Instruction::isBinaryOp(E->getOpcode()) && 5501 Instruction::isBinaryOp(E->getAltOpcode())) || 5502 (Instruction::isCast(E->getOpcode()) && 5503 Instruction::isCast(E->getAltOpcode())) || 5504 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5505 "Invalid Shuffle Vector Operand"); 5506 InstructionCost ScalarCost = 0; 5507 if (NeedToShuffleReuses) { 5508 for (unsigned Idx : E->ReuseShuffleIndices) { 5509 Instruction *I = cast<Instruction>(VL[Idx]); 5510 CommonCost -= TTI->getInstructionCost(I, CostKind); 5511 } 5512 for (Value *V : VL) { 5513 Instruction *I = cast<Instruction>(V); 5514 CommonCost += TTI->getInstructionCost(I, CostKind); 5515 } 5516 } 5517 for (Value *V : VL) { 5518 Instruction *I = cast<Instruction>(V); 5519 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5520 ScalarCost += TTI->getInstructionCost(I, CostKind); 5521 } 5522 // VecCost is equal to sum of the cost of creating 2 vectors 5523 // and the cost of creating shuffle. 5524 InstructionCost VecCost = 0; 5525 // Try to find the previous shuffle node with the same operands and same 5526 // main/alternate ops. 5527 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5528 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5529 if (TE.get() == E) 5530 break; 5531 if (TE->isAltShuffle() && 5532 ((TE->getOpcode() == E->getOpcode() && 5533 TE->getAltOpcode() == E->getAltOpcode()) || 5534 (TE->getOpcode() == E->getAltOpcode() && 5535 TE->getAltOpcode() == E->getOpcode())) && 5536 TE->hasEqualOperands(*E)) 5537 return true; 5538 } 5539 return false; 5540 }; 5541 if (TryFindNodeWithEqualOperands()) { 5542 LLVM_DEBUG({ 5543 dbgs() << "SLP: diamond match for alternate node found.\n"; 5544 E->dump(); 5545 }); 5546 // No need to add new vector costs here since we're going to reuse 5547 // same main/alternate vector ops, just do different shuffling. 5548 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5549 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5550 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5551 CostKind); 5552 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5553 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5554 Builder.getInt1Ty(), 5555 CI0->getPredicate(), CostKind, VL0); 5556 VecCost += TTI->getCmpSelInstrCost( 5557 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5558 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5559 E->getAltOp()); 5560 } else { 5561 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5562 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5563 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5564 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5565 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5566 TTI::CastContextHint::None, CostKind); 5567 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5568 TTI::CastContextHint::None, CostKind); 5569 } 5570 5571 SmallVector<int> Mask; 5572 buildSuffleEntryMask( 5573 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5574 [E](Instruction *I) { 5575 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5576 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 5577 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 5578 auto *CI = cast<CmpInst>(I); 5579 CmpInst::Predicate P0 = CI0->getPredicate(); 5580 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5581 assert(P0 != AltP0 && 5582 "Expected different main/alternate predicates."); 5583 CmpInst::Predicate AltP0Swapped = 5584 CmpInst::getSwappedPredicate(AltP0); 5585 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5586 if (P0 == AltP0Swapped) 5587 return (P0 == CurrentPred && 5588 !areCompatibleCmpOps( 5589 CI0->getOperand(0), CI0->getOperand(1), 5590 CI->getOperand(0), CI->getOperand(1))) || 5591 (AltP0 == CurrentPred && 5592 !areCompatibleCmpOps( 5593 CI0->getOperand(0), CI0->getOperand(1), 5594 CI->getOperand(1), CI->getOperand(0))); 5595 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5596 } 5597 return I->getOpcode() == E->getAltOpcode(); 5598 }, 5599 Mask); 5600 CommonCost = 5601 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5602 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5603 return CommonCost + VecCost - ScalarCost; 5604 } 5605 default: 5606 llvm_unreachable("Unknown instruction"); 5607 } 5608 } 5609 5610 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5611 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5612 << VectorizableTree.size() << " is fully vectorizable .\n"); 5613 5614 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5615 SmallVector<int> Mask; 5616 return TE->State == TreeEntry::NeedToGather && 5617 !any_of(TE->Scalars, 5618 [this](Value *V) { return EphValues.contains(V); }) && 5619 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5620 TE->Scalars.size() < Limit || 5621 ((TE->getOpcode() == Instruction::ExtractElement || 5622 all_of(TE->Scalars, 5623 [](Value *V) { 5624 return isa<ExtractElementInst, UndefValue>(V); 5625 })) && 5626 isFixedVectorShuffle(TE->Scalars, Mask)) || 5627 (TE->State == TreeEntry::NeedToGather && 5628 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5629 }; 5630 5631 // We only handle trees of heights 1 and 2. 5632 if (VectorizableTree.size() == 1 && 5633 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5634 (ForReduction && 5635 AreVectorizableGathers(VectorizableTree[0].get(), 5636 VectorizableTree[0]->Scalars.size()) && 5637 VectorizableTree[0]->getVectorFactor() > 2))) 5638 return true; 5639 5640 if (VectorizableTree.size() != 2) 5641 return false; 5642 5643 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5644 // with the second gather nodes if they have less scalar operands rather than 5645 // the initial tree element (may be profitable to shuffle the second gather) 5646 // or they are extractelements, which form shuffle. 5647 SmallVector<int> Mask; 5648 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5649 AreVectorizableGathers(VectorizableTree[1].get(), 5650 VectorizableTree[0]->Scalars.size())) 5651 return true; 5652 5653 // Gathering cost would be too much for tiny trees. 5654 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5655 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5656 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5657 return false; 5658 5659 return true; 5660 } 5661 5662 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5663 TargetTransformInfo *TTI, 5664 bool MustMatchOrInst) { 5665 // Look past the root to find a source value. Arbitrarily follow the 5666 // path through operand 0 of any 'or'. Also, peek through optional 5667 // shift-left-by-multiple-of-8-bits. 5668 Value *ZextLoad = Root; 5669 const APInt *ShAmtC; 5670 bool FoundOr = false; 5671 while (!isa<ConstantExpr>(ZextLoad) && 5672 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5673 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5674 ShAmtC->urem(8) == 0))) { 5675 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5676 ZextLoad = BinOp->getOperand(0); 5677 if (BinOp->getOpcode() == Instruction::Or) 5678 FoundOr = true; 5679 } 5680 // Check if the input is an extended load of the required or/shift expression. 5681 Value *Load; 5682 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5683 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5684 return false; 5685 5686 // Require that the total load bit width is a legal integer type. 5687 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5688 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5689 Type *SrcTy = Load->getType(); 5690 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5691 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5692 return false; 5693 5694 // Everything matched - assume that we can fold the whole sequence using 5695 // load combining. 5696 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5697 << *(cast<Instruction>(Root)) << "\n"); 5698 5699 return true; 5700 } 5701 5702 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5703 if (RdxKind != RecurKind::Or) 5704 return false; 5705 5706 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5707 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5708 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5709 /* MatchOr */ false); 5710 } 5711 5712 bool BoUpSLP::isLoadCombineCandidate() const { 5713 // Peek through a final sequence of stores and check if all operations are 5714 // likely to be load-combined. 5715 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5716 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5717 Value *X; 5718 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5719 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5720 return false; 5721 } 5722 return true; 5723 } 5724 5725 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5726 // No need to vectorize inserts of gathered values. 5727 if (VectorizableTree.size() == 2 && 5728 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5729 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5730 return true; 5731 5732 // We can vectorize the tree if its size is greater than or equal to the 5733 // minimum size specified by the MinTreeSize command line option. 5734 if (VectorizableTree.size() >= MinTreeSize) 5735 return false; 5736 5737 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5738 // can vectorize it if we can prove it fully vectorizable. 5739 if (isFullyVectorizableTinyTree(ForReduction)) 5740 return false; 5741 5742 assert(VectorizableTree.empty() 5743 ? ExternalUses.empty() 5744 : true && "We shouldn't have any external users"); 5745 5746 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5747 // vectorizable. 5748 return true; 5749 } 5750 5751 InstructionCost BoUpSLP::getSpillCost() const { 5752 // Walk from the bottom of the tree to the top, tracking which values are 5753 // live. When we see a call instruction that is not part of our tree, 5754 // query TTI to see if there is a cost to keeping values live over it 5755 // (for example, if spills and fills are required). 5756 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5757 InstructionCost Cost = 0; 5758 5759 SmallPtrSet<Instruction*, 4> LiveValues; 5760 Instruction *PrevInst = nullptr; 5761 5762 // The entries in VectorizableTree are not necessarily ordered by their 5763 // position in basic blocks. Collect them and order them by dominance so later 5764 // instructions are guaranteed to be visited first. For instructions in 5765 // different basic blocks, we only scan to the beginning of the block, so 5766 // their order does not matter, as long as all instructions in a basic block 5767 // are grouped together. Using dominance ensures a deterministic order. 5768 SmallVector<Instruction *, 16> OrderedScalars; 5769 for (const auto &TEPtr : VectorizableTree) { 5770 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5771 if (!Inst) 5772 continue; 5773 OrderedScalars.push_back(Inst); 5774 } 5775 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5776 auto *NodeA = DT->getNode(A->getParent()); 5777 auto *NodeB = DT->getNode(B->getParent()); 5778 assert(NodeA && "Should only process reachable instructions"); 5779 assert(NodeB && "Should only process reachable instructions"); 5780 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5781 "Different nodes should have different DFS numbers"); 5782 if (NodeA != NodeB) 5783 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5784 return B->comesBefore(A); 5785 }); 5786 5787 for (Instruction *Inst : OrderedScalars) { 5788 if (!PrevInst) { 5789 PrevInst = Inst; 5790 continue; 5791 } 5792 5793 // Update LiveValues. 5794 LiveValues.erase(PrevInst); 5795 for (auto &J : PrevInst->operands()) { 5796 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5797 LiveValues.insert(cast<Instruction>(&*J)); 5798 } 5799 5800 LLVM_DEBUG({ 5801 dbgs() << "SLP: #LV: " << LiveValues.size(); 5802 for (auto *X : LiveValues) 5803 dbgs() << " " << X->getName(); 5804 dbgs() << ", Looking at "; 5805 Inst->dump(); 5806 }); 5807 5808 // Now find the sequence of instructions between PrevInst and Inst. 5809 unsigned NumCalls = 0; 5810 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5811 PrevInstIt = 5812 PrevInst->getIterator().getReverse(); 5813 while (InstIt != PrevInstIt) { 5814 if (PrevInstIt == PrevInst->getParent()->rend()) { 5815 PrevInstIt = Inst->getParent()->rbegin(); 5816 continue; 5817 } 5818 5819 // Debug information does not impact spill cost. 5820 if ((isa<CallInst>(&*PrevInstIt) && 5821 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5822 &*PrevInstIt != PrevInst) 5823 NumCalls++; 5824 5825 ++PrevInstIt; 5826 } 5827 5828 if (NumCalls) { 5829 SmallVector<Type*, 4> V; 5830 for (auto *II : LiveValues) { 5831 auto *ScalarTy = II->getType(); 5832 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5833 ScalarTy = VectorTy->getElementType(); 5834 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5835 } 5836 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5837 } 5838 5839 PrevInst = Inst; 5840 } 5841 5842 return Cost; 5843 } 5844 5845 /// Check if two insertelement instructions are from the same buildvector. 5846 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5847 InsertElementInst *V) { 5848 // Instructions must be from the same basic blocks. 5849 if (VU->getParent() != V->getParent()) 5850 return false; 5851 // Checks if 2 insertelements are from the same buildvector. 5852 if (VU->getType() != V->getType()) 5853 return false; 5854 // Multiple used inserts are separate nodes. 5855 if (!VU->hasOneUse() && !V->hasOneUse()) 5856 return false; 5857 auto *IE1 = VU; 5858 auto *IE2 = V; 5859 // Go through the vector operand of insertelement instructions trying to find 5860 // either VU as the original vector for IE2 or V as the original vector for 5861 // IE1. 5862 do { 5863 if (IE2 == VU || IE1 == V) 5864 return true; 5865 if (IE1) { 5866 if (IE1 != VU && !IE1->hasOneUse()) 5867 IE1 = nullptr; 5868 else 5869 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5870 } 5871 if (IE2) { 5872 if (IE2 != V && !IE2->hasOneUse()) 5873 IE2 = nullptr; 5874 else 5875 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5876 } 5877 } while (IE1 || IE2); 5878 return false; 5879 } 5880 5881 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5882 InstructionCost Cost = 0; 5883 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5884 << VectorizableTree.size() << ".\n"); 5885 5886 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5887 5888 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5889 TreeEntry &TE = *VectorizableTree[I].get(); 5890 5891 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5892 Cost += C; 5893 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5894 << " for bundle that starts with " << *TE.Scalars[0] 5895 << ".\n" 5896 << "SLP: Current total cost = " << Cost << "\n"); 5897 } 5898 5899 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5900 InstructionCost ExtractCost = 0; 5901 SmallVector<unsigned> VF; 5902 SmallVector<SmallVector<int>> ShuffleMask; 5903 SmallVector<Value *> FirstUsers; 5904 SmallVector<APInt> DemandedElts; 5905 for (ExternalUser &EU : ExternalUses) { 5906 // We only add extract cost once for the same scalar. 5907 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5908 !ExtractCostCalculated.insert(EU.Scalar).second) 5909 continue; 5910 5911 // Uses by ephemeral values are free (because the ephemeral value will be 5912 // removed prior to code generation, and so the extraction will be 5913 // removed as well). 5914 if (EphValues.count(EU.User)) 5915 continue; 5916 5917 // No extract cost for vector "scalar" 5918 if (isa<FixedVectorType>(EU.Scalar->getType())) 5919 continue; 5920 5921 // Already counted the cost for external uses when tried to adjust the cost 5922 // for extractelements, no need to add it again. 5923 if (isa<ExtractElementInst>(EU.Scalar)) 5924 continue; 5925 5926 // If found user is an insertelement, do not calculate extract cost but try 5927 // to detect it as a final shuffled/identity match. 5928 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5929 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5930 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5931 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5932 continue; 5933 auto *It = find_if(FirstUsers, [VU](Value *V) { 5934 return areTwoInsertFromSameBuildVector(VU, 5935 cast<InsertElementInst>(V)); 5936 }); 5937 int VecId = -1; 5938 if (It == FirstUsers.end()) { 5939 VF.push_back(FTy->getNumElements()); 5940 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5941 // Find the insertvector, vectorized in tree, if any. 5942 Value *Base = VU; 5943 while (isa<InsertElementInst>(Base)) { 5944 // Build the mask for the vectorized insertelement instructions. 5945 if (const TreeEntry *E = getTreeEntry(Base)) { 5946 VU = cast<InsertElementInst>(Base); 5947 do { 5948 int Idx = E->findLaneForValue(Base); 5949 ShuffleMask.back()[Idx] = Idx; 5950 Base = cast<InsertElementInst>(Base)->getOperand(0); 5951 } while (E == getTreeEntry(Base)); 5952 break; 5953 } 5954 Base = cast<InsertElementInst>(Base)->getOperand(0); 5955 } 5956 FirstUsers.push_back(VU); 5957 DemandedElts.push_back(APInt::getZero(VF.back())); 5958 VecId = FirstUsers.size() - 1; 5959 } else { 5960 VecId = std::distance(FirstUsers.begin(), It); 5961 } 5962 int Idx = *InsertIdx; 5963 ShuffleMask[VecId][Idx] = EU.Lane; 5964 DemandedElts[VecId].setBit(Idx); 5965 continue; 5966 } 5967 } 5968 5969 // If we plan to rewrite the tree in a smaller type, we will need to sign 5970 // extend the extracted value back to the original type. Here, we account 5971 // for the extract and the added cost of the sign extend if needed. 5972 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5973 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5974 if (MinBWs.count(ScalarRoot)) { 5975 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5976 auto Extend = 5977 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5978 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5979 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5980 VecTy, EU.Lane); 5981 } else { 5982 ExtractCost += 5983 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5984 } 5985 } 5986 5987 InstructionCost SpillCost = getSpillCost(); 5988 Cost += SpillCost + ExtractCost; 5989 if (FirstUsers.size() == 1) { 5990 int Limit = ShuffleMask.front().size() * 2; 5991 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5992 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5993 InstructionCost C = TTI->getShuffleCost( 5994 TTI::SK_PermuteSingleSrc, 5995 cast<FixedVectorType>(FirstUsers.front()->getType()), 5996 ShuffleMask.front()); 5997 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5998 << " for final shuffle of insertelement external users " 5999 << *VectorizableTree.front()->Scalars.front() << ".\n" 6000 << "SLP: Current total cost = " << Cost << "\n"); 6001 Cost += C; 6002 } 6003 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6004 cast<FixedVectorType>(FirstUsers.front()->getType()), 6005 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6006 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6007 << " for insertelements gather.\n" 6008 << "SLP: Current total cost = " << Cost << "\n"); 6009 Cost -= InsertCost; 6010 } else if (FirstUsers.size() >= 2) { 6011 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6012 // Combined masks of the first 2 vectors. 6013 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6014 copy(ShuffleMask.front(), CombinedMask.begin()); 6015 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6016 auto *VecTy = FixedVectorType::get( 6017 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6018 MaxVF); 6019 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6020 if (ShuffleMask[1][I] != UndefMaskElem) { 6021 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6022 CombinedDemandedElts.setBit(I); 6023 } 6024 } 6025 InstructionCost C = 6026 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6027 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6028 << " for final shuffle of vector node and external " 6029 "insertelement users " 6030 << *VectorizableTree.front()->Scalars.front() << ".\n" 6031 << "SLP: Current total cost = " << Cost << "\n"); 6032 Cost += C; 6033 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6034 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6035 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6036 << " for insertelements gather.\n" 6037 << "SLP: Current total cost = " << Cost << "\n"); 6038 Cost -= InsertCost; 6039 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6040 // Other elements - permutation of 2 vectors (the initial one and the 6041 // next Ith incoming vector). 6042 unsigned VF = ShuffleMask[I].size(); 6043 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6044 int Mask = ShuffleMask[I][Idx]; 6045 if (Mask != UndefMaskElem) 6046 CombinedMask[Idx] = MaxVF + Mask; 6047 else if (CombinedMask[Idx] != UndefMaskElem) 6048 CombinedMask[Idx] = Idx; 6049 } 6050 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6051 if (CombinedMask[Idx] != UndefMaskElem) 6052 CombinedMask[Idx] = Idx; 6053 InstructionCost C = 6054 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6055 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6056 << " for final shuffle of vector node and external " 6057 "insertelement users " 6058 << *VectorizableTree.front()->Scalars.front() << ".\n" 6059 << "SLP: Current total cost = " << Cost << "\n"); 6060 Cost += C; 6061 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6062 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6063 /*Insert*/ true, /*Extract*/ false); 6064 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6065 << " for insertelements gather.\n" 6066 << "SLP: Current total cost = " << Cost << "\n"); 6067 Cost -= InsertCost; 6068 } 6069 } 6070 6071 #ifndef NDEBUG 6072 SmallString<256> Str; 6073 { 6074 raw_svector_ostream OS(Str); 6075 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6076 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6077 << "SLP: Total Cost = " << Cost << ".\n"; 6078 } 6079 LLVM_DEBUG(dbgs() << Str); 6080 if (ViewSLPTree) 6081 ViewGraph(this, "SLP" + F->getName(), false, Str); 6082 #endif 6083 6084 return Cost; 6085 } 6086 6087 Optional<TargetTransformInfo::ShuffleKind> 6088 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6089 SmallVectorImpl<const TreeEntry *> &Entries) { 6090 // TODO: currently checking only for Scalars in the tree entry, need to count 6091 // reused elements too for better cost estimation. 6092 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6093 Entries.clear(); 6094 // Build a lists of values to tree entries. 6095 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6096 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6097 if (EntryPtr.get() == TE) 6098 break; 6099 if (EntryPtr->State != TreeEntry::NeedToGather) 6100 continue; 6101 for (Value *V : EntryPtr->Scalars) 6102 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6103 } 6104 // Find all tree entries used by the gathered values. If no common entries 6105 // found - not a shuffle. 6106 // Here we build a set of tree nodes for each gathered value and trying to 6107 // find the intersection between these sets. If we have at least one common 6108 // tree node for each gathered value - we have just a permutation of the 6109 // single vector. If we have 2 different sets, we're in situation where we 6110 // have a permutation of 2 input vectors. 6111 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6112 DenseMap<Value *, int> UsedValuesEntry; 6113 for (Value *V : TE->Scalars) { 6114 if (isa<UndefValue>(V)) 6115 continue; 6116 // Build a list of tree entries where V is used. 6117 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6118 auto It = ValueToTEs.find(V); 6119 if (It != ValueToTEs.end()) 6120 VToTEs = It->second; 6121 if (const TreeEntry *VTE = getTreeEntry(V)) 6122 VToTEs.insert(VTE); 6123 if (VToTEs.empty()) 6124 return None; 6125 if (UsedTEs.empty()) { 6126 // The first iteration, just insert the list of nodes to vector. 6127 UsedTEs.push_back(VToTEs); 6128 } else { 6129 // Need to check if there are any previously used tree nodes which use V. 6130 // If there are no such nodes, consider that we have another one input 6131 // vector. 6132 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6133 unsigned Idx = 0; 6134 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6135 // Do we have a non-empty intersection of previously listed tree entries 6136 // and tree entries using current V? 6137 set_intersect(VToTEs, Set); 6138 if (!VToTEs.empty()) { 6139 // Yes, write the new subset and continue analysis for the next 6140 // scalar. 6141 Set.swap(VToTEs); 6142 break; 6143 } 6144 VToTEs = SavedVToTEs; 6145 ++Idx; 6146 } 6147 // No non-empty intersection found - need to add a second set of possible 6148 // source vectors. 6149 if (Idx == UsedTEs.size()) { 6150 // If the number of input vectors is greater than 2 - not a permutation, 6151 // fallback to the regular gather. 6152 if (UsedTEs.size() == 2) 6153 return None; 6154 UsedTEs.push_back(SavedVToTEs); 6155 Idx = UsedTEs.size() - 1; 6156 } 6157 UsedValuesEntry.try_emplace(V, Idx); 6158 } 6159 } 6160 6161 unsigned VF = 0; 6162 if (UsedTEs.size() == 1) { 6163 // Try to find the perfect match in another gather node at first. 6164 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6165 return EntryPtr->isSame(TE->Scalars); 6166 }); 6167 if (It != UsedTEs.front().end()) { 6168 Entries.push_back(*It); 6169 std::iota(Mask.begin(), Mask.end(), 0); 6170 return TargetTransformInfo::SK_PermuteSingleSrc; 6171 } 6172 // No perfect match, just shuffle, so choose the first tree node. 6173 Entries.push_back(*UsedTEs.front().begin()); 6174 } else { 6175 // Try to find nodes with the same vector factor. 6176 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6177 DenseMap<int, const TreeEntry *> VFToTE; 6178 for (const TreeEntry *TE : UsedTEs.front()) 6179 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6180 for (const TreeEntry *TE : UsedTEs.back()) { 6181 auto It = VFToTE.find(TE->getVectorFactor()); 6182 if (It != VFToTE.end()) { 6183 VF = It->first; 6184 Entries.push_back(It->second); 6185 Entries.push_back(TE); 6186 break; 6187 } 6188 } 6189 // No 2 source vectors with the same vector factor - give up and do regular 6190 // gather. 6191 if (Entries.empty()) 6192 return None; 6193 } 6194 6195 // Build a shuffle mask for better cost estimation and vector emission. 6196 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6197 Value *V = TE->Scalars[I]; 6198 if (isa<UndefValue>(V)) 6199 continue; 6200 unsigned Idx = UsedValuesEntry.lookup(V); 6201 const TreeEntry *VTE = Entries[Idx]; 6202 int FoundLane = VTE->findLaneForValue(V); 6203 Mask[I] = Idx * VF + FoundLane; 6204 // Extra check required by isSingleSourceMaskImpl function (called by 6205 // ShuffleVectorInst::isSingleSourceMask). 6206 if (Mask[I] >= 2 * E) 6207 return None; 6208 } 6209 switch (Entries.size()) { 6210 case 1: 6211 return TargetTransformInfo::SK_PermuteSingleSrc; 6212 case 2: 6213 return TargetTransformInfo::SK_PermuteTwoSrc; 6214 default: 6215 break; 6216 } 6217 return None; 6218 } 6219 6220 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6221 const APInt &ShuffledIndices, 6222 bool NeedToShuffle) const { 6223 InstructionCost Cost = 6224 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6225 /*Extract*/ false); 6226 if (NeedToShuffle) 6227 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6228 return Cost; 6229 } 6230 6231 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6232 // Find the type of the operands in VL. 6233 Type *ScalarTy = VL[0]->getType(); 6234 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6235 ScalarTy = SI->getValueOperand()->getType(); 6236 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6237 bool DuplicateNonConst = false; 6238 // Find the cost of inserting/extracting values from the vector. 6239 // Check if the same elements are inserted several times and count them as 6240 // shuffle candidates. 6241 APInt ShuffledElements = APInt::getZero(VL.size()); 6242 DenseSet<Value *> UniqueElements; 6243 // Iterate in reverse order to consider insert elements with the high cost. 6244 for (unsigned I = VL.size(); I > 0; --I) { 6245 unsigned Idx = I - 1; 6246 // No need to shuffle duplicates for constants. 6247 if (isConstant(VL[Idx])) { 6248 ShuffledElements.setBit(Idx); 6249 continue; 6250 } 6251 if (!UniqueElements.insert(VL[Idx]).second) { 6252 DuplicateNonConst = true; 6253 ShuffledElements.setBit(Idx); 6254 } 6255 } 6256 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6257 } 6258 6259 // Perform operand reordering on the instructions in VL and return the reordered 6260 // operands in Left and Right. 6261 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6262 SmallVectorImpl<Value *> &Left, 6263 SmallVectorImpl<Value *> &Right, 6264 const DataLayout &DL, 6265 ScalarEvolution &SE, 6266 const BoUpSLP &R) { 6267 if (VL.empty()) 6268 return; 6269 VLOperands Ops(VL, DL, SE, R); 6270 // Reorder the operands in place. 6271 Ops.reorder(); 6272 Left = Ops.getVL(0); 6273 Right = Ops.getVL(1); 6274 } 6275 6276 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6277 // Get the basic block this bundle is in. All instructions in the bundle 6278 // should be in this block. 6279 auto *Front = E->getMainOp(); 6280 auto *BB = Front->getParent(); 6281 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6282 auto *I = cast<Instruction>(V); 6283 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6284 })); 6285 6286 // The last instruction in the bundle in program order. 6287 Instruction *LastInst = nullptr; 6288 6289 // Find the last instruction. The common case should be that BB has been 6290 // scheduled, and the last instruction is VL.back(). So we start with 6291 // VL.back() and iterate over schedule data until we reach the end of the 6292 // bundle. The end of the bundle is marked by null ScheduleData. 6293 if (BlocksSchedules.count(BB)) { 6294 auto *Bundle = 6295 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6296 if (Bundle && Bundle->isPartOfBundle()) 6297 for (; Bundle; Bundle = Bundle->NextInBundle) 6298 if (Bundle->OpValue == Bundle->Inst) 6299 LastInst = Bundle->Inst; 6300 } 6301 6302 // LastInst can still be null at this point if there's either not an entry 6303 // for BB in BlocksSchedules or there's no ScheduleData available for 6304 // VL.back(). This can be the case if buildTree_rec aborts for various 6305 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6306 // size is reached, etc.). ScheduleData is initialized in the scheduling 6307 // "dry-run". 6308 // 6309 // If this happens, we can still find the last instruction by brute force. We 6310 // iterate forwards from Front (inclusive) until we either see all 6311 // instructions in the bundle or reach the end of the block. If Front is the 6312 // last instruction in program order, LastInst will be set to Front, and we 6313 // will visit all the remaining instructions in the block. 6314 // 6315 // One of the reasons we exit early from buildTree_rec is to place an upper 6316 // bound on compile-time. Thus, taking an additional compile-time hit here is 6317 // not ideal. However, this should be exceedingly rare since it requires that 6318 // we both exit early from buildTree_rec and that the bundle be out-of-order 6319 // (causing us to iterate all the way to the end of the block). 6320 if (!LastInst) { 6321 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6322 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6323 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6324 LastInst = &I; 6325 if (Bundle.empty()) 6326 break; 6327 } 6328 } 6329 assert(LastInst && "Failed to find last instruction in bundle"); 6330 6331 // Set the insertion point after the last instruction in the bundle. Set the 6332 // debug location to Front. 6333 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6334 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6335 } 6336 6337 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6338 // List of instructions/lanes from current block and/or the blocks which are 6339 // part of the current loop. These instructions will be inserted at the end to 6340 // make it possible to optimize loops and hoist invariant instructions out of 6341 // the loops body with better chances for success. 6342 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6343 SmallSet<int, 4> PostponedIndices; 6344 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6345 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6346 SmallPtrSet<BasicBlock *, 4> Visited; 6347 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6348 InsertBB = InsertBB->getSinglePredecessor(); 6349 return InsertBB && InsertBB == InstBB; 6350 }; 6351 for (int I = 0, E = VL.size(); I < E; ++I) { 6352 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6353 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6354 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6355 PostponedIndices.insert(I).second) 6356 PostponedInsts.emplace_back(Inst, I); 6357 } 6358 6359 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6360 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6361 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6362 if (!InsElt) 6363 return Vec; 6364 GatherShuffleSeq.insert(InsElt); 6365 CSEBlocks.insert(InsElt->getParent()); 6366 // Add to our 'need-to-extract' list. 6367 if (TreeEntry *Entry = getTreeEntry(V)) { 6368 // Find which lane we need to extract. 6369 unsigned FoundLane = Entry->findLaneForValue(V); 6370 ExternalUses.emplace_back(V, InsElt, FoundLane); 6371 } 6372 return Vec; 6373 }; 6374 Value *Val0 = 6375 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6376 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6377 Value *Vec = PoisonValue::get(VecTy); 6378 SmallVector<int> NonConsts; 6379 // Insert constant values at first. 6380 for (int I = 0, E = VL.size(); I < E; ++I) { 6381 if (PostponedIndices.contains(I)) 6382 continue; 6383 if (!isConstant(VL[I])) { 6384 NonConsts.push_back(I); 6385 continue; 6386 } 6387 Vec = CreateInsertElement(Vec, VL[I], I); 6388 } 6389 // Insert non-constant values. 6390 for (int I : NonConsts) 6391 Vec = CreateInsertElement(Vec, VL[I], I); 6392 // Append instructions, which are/may be part of the loop, in the end to make 6393 // it possible to hoist non-loop-based instructions. 6394 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6395 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6396 6397 return Vec; 6398 } 6399 6400 namespace { 6401 /// Merges shuffle masks and emits final shuffle instruction, if required. 6402 class ShuffleInstructionBuilder { 6403 IRBuilderBase &Builder; 6404 const unsigned VF = 0; 6405 bool IsFinalized = false; 6406 SmallVector<int, 4> Mask; 6407 /// Holds all of the instructions that we gathered. 6408 SetVector<Instruction *> &GatherShuffleSeq; 6409 /// A list of blocks that we are going to CSE. 6410 SetVector<BasicBlock *> &CSEBlocks; 6411 6412 public: 6413 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6414 SetVector<Instruction *> &GatherShuffleSeq, 6415 SetVector<BasicBlock *> &CSEBlocks) 6416 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6417 CSEBlocks(CSEBlocks) {} 6418 6419 /// Adds a mask, inverting it before applying. 6420 void addInversedMask(ArrayRef<unsigned> SubMask) { 6421 if (SubMask.empty()) 6422 return; 6423 SmallVector<int, 4> NewMask; 6424 inversePermutation(SubMask, NewMask); 6425 addMask(NewMask); 6426 } 6427 6428 /// Functions adds masks, merging them into single one. 6429 void addMask(ArrayRef<unsigned> SubMask) { 6430 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6431 addMask(NewMask); 6432 } 6433 6434 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6435 6436 Value *finalize(Value *V) { 6437 IsFinalized = true; 6438 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6439 if (VF == ValueVF && Mask.empty()) 6440 return V; 6441 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6442 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6443 addMask(NormalizedMask); 6444 6445 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6446 return V; 6447 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6448 if (auto *I = dyn_cast<Instruction>(Vec)) { 6449 GatherShuffleSeq.insert(I); 6450 CSEBlocks.insert(I->getParent()); 6451 } 6452 return Vec; 6453 } 6454 6455 ~ShuffleInstructionBuilder() { 6456 assert((IsFinalized || Mask.empty()) && 6457 "Shuffle construction must be finalized."); 6458 } 6459 }; 6460 } // namespace 6461 6462 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6463 unsigned VF = VL.size(); 6464 InstructionsState S = getSameOpcode(VL); 6465 if (S.getOpcode()) { 6466 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6467 if (E->isSame(VL)) { 6468 Value *V = vectorizeTree(E); 6469 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6470 if (!E->ReuseShuffleIndices.empty()) { 6471 // Reshuffle to get only unique values. 6472 // If some of the scalars are duplicated in the vectorization tree 6473 // entry, we do not vectorize them but instead generate a mask for 6474 // the reuses. But if there are several users of the same entry, 6475 // they may have different vectorization factors. This is especially 6476 // important for PHI nodes. In this case, we need to adapt the 6477 // resulting instruction for the user vectorization factor and have 6478 // to reshuffle it again to take only unique elements of the vector. 6479 // Without this code the function incorrectly returns reduced vector 6480 // instruction with the same elements, not with the unique ones. 6481 6482 // block: 6483 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6484 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6485 // ... (use %2) 6486 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6487 // br %block 6488 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6489 SmallSet<int, 4> UsedIdxs; 6490 int Pos = 0; 6491 int Sz = VL.size(); 6492 for (int Idx : E->ReuseShuffleIndices) { 6493 if (Idx != Sz && Idx != UndefMaskElem && 6494 UsedIdxs.insert(Idx).second) 6495 UniqueIdxs[Idx] = Pos; 6496 ++Pos; 6497 } 6498 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6499 "less than original vector size."); 6500 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6501 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6502 } else { 6503 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6504 "Expected vectorization factor less " 6505 "than original vector size."); 6506 SmallVector<int> UniformMask(VF, 0); 6507 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6508 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6509 } 6510 if (auto *I = dyn_cast<Instruction>(V)) { 6511 GatherShuffleSeq.insert(I); 6512 CSEBlocks.insert(I->getParent()); 6513 } 6514 } 6515 return V; 6516 } 6517 } 6518 6519 // Check that every instruction appears once in this bundle. 6520 SmallVector<int> ReuseShuffleIndicies; 6521 SmallVector<Value *> UniqueValues; 6522 if (VL.size() > 2) { 6523 DenseMap<Value *, unsigned> UniquePositions; 6524 unsigned NumValues = 6525 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6526 return !isa<UndefValue>(V); 6527 }).base()); 6528 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6529 int UniqueVals = 0; 6530 for (Value *V : VL.drop_back(VL.size() - VF)) { 6531 if (isa<UndefValue>(V)) { 6532 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6533 continue; 6534 } 6535 if (isConstant(V)) { 6536 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6537 UniqueValues.emplace_back(V); 6538 continue; 6539 } 6540 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6541 ReuseShuffleIndicies.emplace_back(Res.first->second); 6542 if (Res.second) { 6543 UniqueValues.emplace_back(V); 6544 ++UniqueVals; 6545 } 6546 } 6547 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6548 // Emit pure splat vector. 6549 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6550 UndefMaskElem); 6551 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6552 ReuseShuffleIndicies.clear(); 6553 UniqueValues.clear(); 6554 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6555 } 6556 UniqueValues.append(VF - UniqueValues.size(), 6557 PoisonValue::get(VL[0]->getType())); 6558 VL = UniqueValues; 6559 } 6560 6561 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6562 CSEBlocks); 6563 Value *Vec = gather(VL); 6564 if (!ReuseShuffleIndicies.empty()) { 6565 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6566 Vec = ShuffleBuilder.finalize(Vec); 6567 } 6568 return Vec; 6569 } 6570 6571 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6572 IRBuilder<>::InsertPointGuard Guard(Builder); 6573 6574 if (E->VectorizedValue) { 6575 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6576 return E->VectorizedValue; 6577 } 6578 6579 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6580 unsigned VF = E->getVectorFactor(); 6581 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6582 CSEBlocks); 6583 if (E->State == TreeEntry::NeedToGather) { 6584 if (E->getMainOp()) 6585 setInsertPointAfterBundle(E); 6586 Value *Vec; 6587 SmallVector<int> Mask; 6588 SmallVector<const TreeEntry *> Entries; 6589 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6590 isGatherShuffledEntry(E, Mask, Entries); 6591 if (Shuffle.hasValue()) { 6592 assert((Entries.size() == 1 || Entries.size() == 2) && 6593 "Expected shuffle of 1 or 2 entries."); 6594 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6595 Entries.back()->VectorizedValue, Mask); 6596 if (auto *I = dyn_cast<Instruction>(Vec)) { 6597 GatherShuffleSeq.insert(I); 6598 CSEBlocks.insert(I->getParent()); 6599 } 6600 } else { 6601 Vec = gather(E->Scalars); 6602 } 6603 if (NeedToShuffleReuses) { 6604 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6605 Vec = ShuffleBuilder.finalize(Vec); 6606 } 6607 E->VectorizedValue = Vec; 6608 return Vec; 6609 } 6610 6611 assert((E->State == TreeEntry::Vectorize || 6612 E->State == TreeEntry::ScatterVectorize) && 6613 "Unhandled state"); 6614 unsigned ShuffleOrOp = 6615 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6616 Instruction *VL0 = E->getMainOp(); 6617 Type *ScalarTy = VL0->getType(); 6618 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6619 ScalarTy = Store->getValueOperand()->getType(); 6620 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6621 ScalarTy = IE->getOperand(1)->getType(); 6622 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6623 switch (ShuffleOrOp) { 6624 case Instruction::PHI: { 6625 assert( 6626 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6627 "PHI reordering is free."); 6628 auto *PH = cast<PHINode>(VL0); 6629 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6630 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6631 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6632 Value *V = NewPhi; 6633 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6634 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6635 V = ShuffleBuilder.finalize(V); 6636 6637 E->VectorizedValue = V; 6638 6639 // PHINodes may have multiple entries from the same block. We want to 6640 // visit every block once. 6641 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6642 6643 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6644 ValueList Operands; 6645 BasicBlock *IBB = PH->getIncomingBlock(i); 6646 6647 if (!VisitedBBs.insert(IBB).second) { 6648 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6649 continue; 6650 } 6651 6652 Builder.SetInsertPoint(IBB->getTerminator()); 6653 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6654 Value *Vec = vectorizeTree(E->getOperand(i)); 6655 NewPhi->addIncoming(Vec, IBB); 6656 } 6657 6658 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6659 "Invalid number of incoming values"); 6660 return V; 6661 } 6662 6663 case Instruction::ExtractElement: { 6664 Value *V = E->getSingleOperand(0); 6665 Builder.SetInsertPoint(VL0); 6666 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6667 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6668 V = ShuffleBuilder.finalize(V); 6669 E->VectorizedValue = V; 6670 return V; 6671 } 6672 case Instruction::ExtractValue: { 6673 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6674 Builder.SetInsertPoint(LI); 6675 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6676 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6677 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6678 Value *NewV = propagateMetadata(V, E->Scalars); 6679 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6680 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6681 NewV = ShuffleBuilder.finalize(NewV); 6682 E->VectorizedValue = NewV; 6683 return NewV; 6684 } 6685 case Instruction::InsertElement: { 6686 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6687 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6688 Value *V = vectorizeTree(E->getOperand(1)); 6689 6690 // Create InsertVector shuffle if necessary 6691 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6692 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6693 })); 6694 const unsigned NumElts = 6695 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6696 const unsigned NumScalars = E->Scalars.size(); 6697 6698 unsigned Offset = *getInsertIndex(VL0, 0); 6699 assert(Offset < NumElts && "Failed to find vector index offset"); 6700 6701 // Create shuffle to resize vector 6702 SmallVector<int> Mask; 6703 if (!E->ReorderIndices.empty()) { 6704 inversePermutation(E->ReorderIndices, Mask); 6705 Mask.append(NumElts - NumScalars, UndefMaskElem); 6706 } else { 6707 Mask.assign(NumElts, UndefMaskElem); 6708 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6709 } 6710 // Create InsertVector shuffle if necessary 6711 bool IsIdentity = true; 6712 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6713 Mask.swap(PrevMask); 6714 for (unsigned I = 0; I < NumScalars; ++I) { 6715 Value *Scalar = E->Scalars[PrevMask[I]]; 6716 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6717 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6718 continue; 6719 IsIdentity &= *InsertIdx - Offset == I; 6720 Mask[*InsertIdx - Offset] = I; 6721 } 6722 if (!IsIdentity || NumElts != NumScalars) { 6723 V = Builder.CreateShuffleVector(V, Mask); 6724 if (auto *I = dyn_cast<Instruction>(V)) { 6725 GatherShuffleSeq.insert(I); 6726 CSEBlocks.insert(I->getParent()); 6727 } 6728 } 6729 6730 if ((!IsIdentity || Offset != 0 || 6731 !isUndefVector(FirstInsert->getOperand(0))) && 6732 NumElts != NumScalars) { 6733 SmallVector<int> InsertMask(NumElts); 6734 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6735 for (unsigned I = 0; I < NumElts; I++) { 6736 if (Mask[I] != UndefMaskElem) 6737 InsertMask[Offset + I] = NumElts + I; 6738 } 6739 6740 V = Builder.CreateShuffleVector( 6741 FirstInsert->getOperand(0), V, InsertMask, 6742 cast<Instruction>(E->Scalars.back())->getName()); 6743 if (auto *I = dyn_cast<Instruction>(V)) { 6744 GatherShuffleSeq.insert(I); 6745 CSEBlocks.insert(I->getParent()); 6746 } 6747 } 6748 6749 ++NumVectorInstructions; 6750 E->VectorizedValue = V; 6751 return V; 6752 } 6753 case Instruction::ZExt: 6754 case Instruction::SExt: 6755 case Instruction::FPToUI: 6756 case Instruction::FPToSI: 6757 case Instruction::FPExt: 6758 case Instruction::PtrToInt: 6759 case Instruction::IntToPtr: 6760 case Instruction::SIToFP: 6761 case Instruction::UIToFP: 6762 case Instruction::Trunc: 6763 case Instruction::FPTrunc: 6764 case Instruction::BitCast: { 6765 setInsertPointAfterBundle(E); 6766 6767 Value *InVec = vectorizeTree(E->getOperand(0)); 6768 6769 if (E->VectorizedValue) { 6770 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6771 return E->VectorizedValue; 6772 } 6773 6774 auto *CI = cast<CastInst>(VL0); 6775 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6776 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6777 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6778 V = ShuffleBuilder.finalize(V); 6779 6780 E->VectorizedValue = V; 6781 ++NumVectorInstructions; 6782 return V; 6783 } 6784 case Instruction::FCmp: 6785 case Instruction::ICmp: { 6786 setInsertPointAfterBundle(E); 6787 6788 Value *L = vectorizeTree(E->getOperand(0)); 6789 Value *R = vectorizeTree(E->getOperand(1)); 6790 6791 if (E->VectorizedValue) { 6792 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6793 return E->VectorizedValue; 6794 } 6795 6796 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6797 Value *V = Builder.CreateCmp(P0, L, R); 6798 propagateIRFlags(V, E->Scalars, VL0); 6799 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6800 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6801 V = ShuffleBuilder.finalize(V); 6802 6803 E->VectorizedValue = V; 6804 ++NumVectorInstructions; 6805 return V; 6806 } 6807 case Instruction::Select: { 6808 setInsertPointAfterBundle(E); 6809 6810 Value *Cond = vectorizeTree(E->getOperand(0)); 6811 Value *True = vectorizeTree(E->getOperand(1)); 6812 Value *False = vectorizeTree(E->getOperand(2)); 6813 6814 if (E->VectorizedValue) { 6815 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6816 return E->VectorizedValue; 6817 } 6818 6819 Value *V = Builder.CreateSelect(Cond, True, False); 6820 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6821 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6822 V = ShuffleBuilder.finalize(V); 6823 6824 E->VectorizedValue = V; 6825 ++NumVectorInstructions; 6826 return V; 6827 } 6828 case Instruction::FNeg: { 6829 setInsertPointAfterBundle(E); 6830 6831 Value *Op = vectorizeTree(E->getOperand(0)); 6832 6833 if (E->VectorizedValue) { 6834 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6835 return E->VectorizedValue; 6836 } 6837 6838 Value *V = Builder.CreateUnOp( 6839 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6840 propagateIRFlags(V, E->Scalars, VL0); 6841 if (auto *I = dyn_cast<Instruction>(V)) 6842 V = propagateMetadata(I, E->Scalars); 6843 6844 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6845 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6846 V = ShuffleBuilder.finalize(V); 6847 6848 E->VectorizedValue = V; 6849 ++NumVectorInstructions; 6850 6851 return V; 6852 } 6853 case Instruction::Add: 6854 case Instruction::FAdd: 6855 case Instruction::Sub: 6856 case Instruction::FSub: 6857 case Instruction::Mul: 6858 case Instruction::FMul: 6859 case Instruction::UDiv: 6860 case Instruction::SDiv: 6861 case Instruction::FDiv: 6862 case Instruction::URem: 6863 case Instruction::SRem: 6864 case Instruction::FRem: 6865 case Instruction::Shl: 6866 case Instruction::LShr: 6867 case Instruction::AShr: 6868 case Instruction::And: 6869 case Instruction::Or: 6870 case Instruction::Xor: { 6871 setInsertPointAfterBundle(E); 6872 6873 Value *LHS = vectorizeTree(E->getOperand(0)); 6874 Value *RHS = vectorizeTree(E->getOperand(1)); 6875 6876 if (E->VectorizedValue) { 6877 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6878 return E->VectorizedValue; 6879 } 6880 6881 Value *V = Builder.CreateBinOp( 6882 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6883 RHS); 6884 propagateIRFlags(V, E->Scalars, VL0); 6885 if (auto *I = dyn_cast<Instruction>(V)) 6886 V = propagateMetadata(I, E->Scalars); 6887 6888 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6889 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6890 V = ShuffleBuilder.finalize(V); 6891 6892 E->VectorizedValue = V; 6893 ++NumVectorInstructions; 6894 6895 return V; 6896 } 6897 case Instruction::Load: { 6898 // Loads are inserted at the head of the tree because we don't want to 6899 // sink them all the way down past store instructions. 6900 setInsertPointAfterBundle(E); 6901 6902 LoadInst *LI = cast<LoadInst>(VL0); 6903 Instruction *NewLI; 6904 unsigned AS = LI->getPointerAddressSpace(); 6905 Value *PO = LI->getPointerOperand(); 6906 if (E->State == TreeEntry::Vectorize) { 6907 6908 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6909 6910 // The pointer operand uses an in-tree scalar so we add the new BitCast 6911 // to ExternalUses list to make sure that an extract will be generated 6912 // in the future. 6913 if (TreeEntry *Entry = getTreeEntry(PO)) { 6914 // Find which lane we need to extract. 6915 unsigned FoundLane = Entry->findLaneForValue(PO); 6916 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6917 } 6918 6919 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6920 } else { 6921 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6922 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6923 // Use the minimum alignment of the gathered loads. 6924 Align CommonAlignment = LI->getAlign(); 6925 for (Value *V : E->Scalars) 6926 CommonAlignment = 6927 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6928 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6929 } 6930 Value *V = propagateMetadata(NewLI, E->Scalars); 6931 6932 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6933 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6934 V = ShuffleBuilder.finalize(V); 6935 E->VectorizedValue = V; 6936 ++NumVectorInstructions; 6937 return V; 6938 } 6939 case Instruction::Store: { 6940 auto *SI = cast<StoreInst>(VL0); 6941 unsigned AS = SI->getPointerAddressSpace(); 6942 6943 setInsertPointAfterBundle(E); 6944 6945 Value *VecValue = vectorizeTree(E->getOperand(0)); 6946 ShuffleBuilder.addMask(E->ReorderIndices); 6947 VecValue = ShuffleBuilder.finalize(VecValue); 6948 6949 Value *ScalarPtr = SI->getPointerOperand(); 6950 Value *VecPtr = Builder.CreateBitCast( 6951 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6952 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6953 SI->getAlign()); 6954 6955 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6956 // ExternalUses to make sure that an extract will be generated in the 6957 // future. 6958 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6959 // Find which lane we need to extract. 6960 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6961 ExternalUses.push_back( 6962 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6963 } 6964 6965 Value *V = propagateMetadata(ST, E->Scalars); 6966 6967 E->VectorizedValue = V; 6968 ++NumVectorInstructions; 6969 return V; 6970 } 6971 case Instruction::GetElementPtr: { 6972 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6973 setInsertPointAfterBundle(E); 6974 6975 Value *Op0 = vectorizeTree(E->getOperand(0)); 6976 6977 SmallVector<Value *> OpVecs; 6978 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6979 Value *OpVec = vectorizeTree(E->getOperand(J)); 6980 OpVecs.push_back(OpVec); 6981 } 6982 6983 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6984 if (Instruction *I = dyn_cast<Instruction>(V)) 6985 V = propagateMetadata(I, E->Scalars); 6986 6987 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6988 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6989 V = ShuffleBuilder.finalize(V); 6990 6991 E->VectorizedValue = V; 6992 ++NumVectorInstructions; 6993 6994 return V; 6995 } 6996 case Instruction::Call: { 6997 CallInst *CI = cast<CallInst>(VL0); 6998 setInsertPointAfterBundle(E); 6999 7000 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7001 if (Function *FI = CI->getCalledFunction()) 7002 IID = FI->getIntrinsicID(); 7003 7004 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7005 7006 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7007 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7008 VecCallCosts.first <= VecCallCosts.second; 7009 7010 Value *ScalarArg = nullptr; 7011 std::vector<Value *> OpVecs; 7012 SmallVector<Type *, 2> TysForDecl = 7013 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7014 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7015 ValueList OpVL; 7016 // Some intrinsics have scalar arguments. This argument should not be 7017 // vectorized. 7018 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7019 CallInst *CEI = cast<CallInst>(VL0); 7020 ScalarArg = CEI->getArgOperand(j); 7021 OpVecs.push_back(CEI->getArgOperand(j)); 7022 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7023 TysForDecl.push_back(ScalarArg->getType()); 7024 continue; 7025 } 7026 7027 Value *OpVec = vectorizeTree(E->getOperand(j)); 7028 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7029 OpVecs.push_back(OpVec); 7030 } 7031 7032 Function *CF; 7033 if (!UseIntrinsic) { 7034 VFShape Shape = 7035 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7036 VecTy->getNumElements())), 7037 false /*HasGlobalPred*/); 7038 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7039 } else { 7040 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7041 } 7042 7043 SmallVector<OperandBundleDef, 1> OpBundles; 7044 CI->getOperandBundlesAsDefs(OpBundles); 7045 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7046 7047 // The scalar argument uses an in-tree scalar so we add the new vectorized 7048 // call to ExternalUses list to make sure that an extract will be 7049 // generated in the future. 7050 if (ScalarArg) { 7051 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7052 // Find which lane we need to extract. 7053 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7054 ExternalUses.push_back( 7055 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7056 } 7057 } 7058 7059 propagateIRFlags(V, E->Scalars, VL0); 7060 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7061 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7062 V = ShuffleBuilder.finalize(V); 7063 7064 E->VectorizedValue = V; 7065 ++NumVectorInstructions; 7066 return V; 7067 } 7068 case Instruction::ShuffleVector: { 7069 assert(E->isAltShuffle() && 7070 ((Instruction::isBinaryOp(E->getOpcode()) && 7071 Instruction::isBinaryOp(E->getAltOpcode())) || 7072 (Instruction::isCast(E->getOpcode()) && 7073 Instruction::isCast(E->getAltOpcode())) || 7074 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7075 "Invalid Shuffle Vector Operand"); 7076 7077 Value *LHS = nullptr, *RHS = nullptr; 7078 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7079 setInsertPointAfterBundle(E); 7080 LHS = vectorizeTree(E->getOperand(0)); 7081 RHS = vectorizeTree(E->getOperand(1)); 7082 } else { 7083 setInsertPointAfterBundle(E); 7084 LHS = vectorizeTree(E->getOperand(0)); 7085 } 7086 7087 if (E->VectorizedValue) { 7088 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7089 return E->VectorizedValue; 7090 } 7091 7092 Value *V0, *V1; 7093 if (Instruction::isBinaryOp(E->getOpcode())) { 7094 V0 = Builder.CreateBinOp( 7095 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7096 V1 = Builder.CreateBinOp( 7097 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7098 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7099 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7100 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7101 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7102 unsigned AltIdx = 7103 std::distance(E->Scalars.begin(), find(E->Scalars, AltCI)); 7104 if (AltCI->getOperand(0) != E->getOperand(0)[AltIdx]) 7105 AltPred = CmpInst::getSwappedPredicate(AltPred); 7106 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7107 } else { 7108 V0 = Builder.CreateCast( 7109 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7110 V1 = Builder.CreateCast( 7111 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7112 } 7113 // Add V0 and V1 to later analysis to try to find and remove matching 7114 // instruction, if any. 7115 for (Value *V : {V0, V1}) { 7116 if (auto *I = dyn_cast<Instruction>(V)) { 7117 GatherShuffleSeq.insert(I); 7118 CSEBlocks.insert(I->getParent()); 7119 } 7120 } 7121 7122 // Create shuffle to take alternate operations from the vector. 7123 // Also, gather up main and alt scalar ops to propagate IR flags to 7124 // each vector operation. 7125 ValueList OpScalars, AltScalars; 7126 SmallVector<int> Mask; 7127 buildSuffleEntryMask( 7128 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7129 [E](Instruction *I) { 7130 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7131 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 7132 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 7133 auto *CI = cast<CmpInst>(I); 7134 CmpInst::Predicate P0 = CI0->getPredicate(); 7135 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 7136 assert(P0 != AltP0 && 7137 "Expected different main/alternate predicates."); 7138 CmpInst::Predicate AltP0Swapped = 7139 CmpInst::getSwappedPredicate(AltP0); 7140 CmpInst::Predicate CurrentPred = CI->getPredicate(); 7141 if (P0 == AltP0Swapped) 7142 return (P0 == CurrentPred && 7143 !areCompatibleCmpOps( 7144 CI0->getOperand(0), CI0->getOperand(1), 7145 CI->getOperand(0), CI->getOperand(1))) || 7146 (AltP0 == CurrentPred && 7147 !areCompatibleCmpOps( 7148 CI0->getOperand(0), CI0->getOperand(1), 7149 CI->getOperand(1), CI->getOperand(0))); 7150 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 7151 } 7152 return I->getOpcode() == E->getAltOpcode(); 7153 }, 7154 Mask, &OpScalars, &AltScalars); 7155 7156 propagateIRFlags(V0, OpScalars); 7157 propagateIRFlags(V1, AltScalars); 7158 7159 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7160 if (auto *I = dyn_cast<Instruction>(V)) { 7161 V = propagateMetadata(I, E->Scalars); 7162 GatherShuffleSeq.insert(I); 7163 CSEBlocks.insert(I->getParent()); 7164 } 7165 V = ShuffleBuilder.finalize(V); 7166 7167 E->VectorizedValue = V; 7168 ++NumVectorInstructions; 7169 7170 return V; 7171 } 7172 default: 7173 llvm_unreachable("unknown inst"); 7174 } 7175 return nullptr; 7176 } 7177 7178 Value *BoUpSLP::vectorizeTree() { 7179 ExtraValueToDebugLocsMap ExternallyUsedValues; 7180 return vectorizeTree(ExternallyUsedValues); 7181 } 7182 7183 Value * 7184 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7185 // All blocks must be scheduled before any instructions are inserted. 7186 for (auto &BSIter : BlocksSchedules) { 7187 scheduleBlock(BSIter.second.get()); 7188 } 7189 7190 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7191 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7192 7193 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7194 // vectorized root. InstCombine will then rewrite the entire expression. We 7195 // sign extend the extracted values below. 7196 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7197 if (MinBWs.count(ScalarRoot)) { 7198 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7199 // If current instr is a phi and not the last phi, insert it after the 7200 // last phi node. 7201 if (isa<PHINode>(I)) 7202 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7203 else 7204 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7205 } 7206 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7207 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7208 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7209 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7210 VectorizableTree[0]->VectorizedValue = Trunc; 7211 } 7212 7213 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7214 << " values .\n"); 7215 7216 // Extract all of the elements with the external uses. 7217 for (const auto &ExternalUse : ExternalUses) { 7218 Value *Scalar = ExternalUse.Scalar; 7219 llvm::User *User = ExternalUse.User; 7220 7221 // Skip users that we already RAUW. This happens when one instruction 7222 // has multiple uses of the same value. 7223 if (User && !is_contained(Scalar->users(), User)) 7224 continue; 7225 TreeEntry *E = getTreeEntry(Scalar); 7226 assert(E && "Invalid scalar"); 7227 assert(E->State != TreeEntry::NeedToGather && 7228 "Extracting from a gather list"); 7229 7230 Value *Vec = E->VectorizedValue; 7231 assert(Vec && "Can't find vectorizable value"); 7232 7233 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7234 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7235 if (Scalar->getType() != Vec->getType()) { 7236 Value *Ex; 7237 // "Reuse" the existing extract to improve final codegen. 7238 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7239 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7240 ES->getOperand(1)); 7241 } else { 7242 Ex = Builder.CreateExtractElement(Vec, Lane); 7243 } 7244 // If necessary, sign-extend or zero-extend ScalarRoot 7245 // to the larger type. 7246 if (!MinBWs.count(ScalarRoot)) 7247 return Ex; 7248 if (MinBWs[ScalarRoot].second) 7249 return Builder.CreateSExt(Ex, Scalar->getType()); 7250 return Builder.CreateZExt(Ex, Scalar->getType()); 7251 } 7252 assert(isa<FixedVectorType>(Scalar->getType()) && 7253 isa<InsertElementInst>(Scalar) && 7254 "In-tree scalar of vector type is not insertelement?"); 7255 return Vec; 7256 }; 7257 // If User == nullptr, the Scalar is used as extra arg. Generate 7258 // ExtractElement instruction and update the record for this scalar in 7259 // ExternallyUsedValues. 7260 if (!User) { 7261 assert(ExternallyUsedValues.count(Scalar) && 7262 "Scalar with nullptr as an external user must be registered in " 7263 "ExternallyUsedValues map"); 7264 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7265 Builder.SetInsertPoint(VecI->getParent(), 7266 std::next(VecI->getIterator())); 7267 } else { 7268 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7269 } 7270 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7271 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7272 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7273 auto It = ExternallyUsedValues.find(Scalar); 7274 assert(It != ExternallyUsedValues.end() && 7275 "Externally used scalar is not found in ExternallyUsedValues"); 7276 NewInstLocs.append(It->second); 7277 ExternallyUsedValues.erase(Scalar); 7278 // Required to update internally referenced instructions. 7279 Scalar->replaceAllUsesWith(NewInst); 7280 continue; 7281 } 7282 7283 // Generate extracts for out-of-tree users. 7284 // Find the insertion point for the extractelement lane. 7285 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7286 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7287 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7288 if (PH->getIncomingValue(i) == Scalar) { 7289 Instruction *IncomingTerminator = 7290 PH->getIncomingBlock(i)->getTerminator(); 7291 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7292 Builder.SetInsertPoint(VecI->getParent(), 7293 std::next(VecI->getIterator())); 7294 } else { 7295 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7296 } 7297 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7298 CSEBlocks.insert(PH->getIncomingBlock(i)); 7299 PH->setOperand(i, NewInst); 7300 } 7301 } 7302 } else { 7303 Builder.SetInsertPoint(cast<Instruction>(User)); 7304 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7305 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7306 User->replaceUsesOfWith(Scalar, NewInst); 7307 } 7308 } else { 7309 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7310 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7311 CSEBlocks.insert(&F->getEntryBlock()); 7312 User->replaceUsesOfWith(Scalar, NewInst); 7313 } 7314 7315 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7316 } 7317 7318 // For each vectorized value: 7319 for (auto &TEPtr : VectorizableTree) { 7320 TreeEntry *Entry = TEPtr.get(); 7321 7322 // No need to handle users of gathered values. 7323 if (Entry->State == TreeEntry::NeedToGather) 7324 continue; 7325 7326 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7327 7328 // For each lane: 7329 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7330 Value *Scalar = Entry->Scalars[Lane]; 7331 7332 #ifndef NDEBUG 7333 Type *Ty = Scalar->getType(); 7334 if (!Ty->isVoidTy()) { 7335 for (User *U : Scalar->users()) { 7336 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7337 7338 // It is legal to delete users in the ignorelist. 7339 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7340 (isa_and_nonnull<Instruction>(U) && 7341 isDeleted(cast<Instruction>(U)))) && 7342 "Deleting out-of-tree value"); 7343 } 7344 } 7345 #endif 7346 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7347 eraseInstruction(cast<Instruction>(Scalar)); 7348 } 7349 } 7350 7351 Builder.ClearInsertionPoint(); 7352 InstrElementSize.clear(); 7353 7354 return VectorizableTree[0]->VectorizedValue; 7355 } 7356 7357 void BoUpSLP::optimizeGatherSequence() { 7358 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7359 << " gather sequences instructions.\n"); 7360 // LICM InsertElementInst sequences. 7361 for (Instruction *I : GatherShuffleSeq) { 7362 if (isDeleted(I)) 7363 continue; 7364 7365 // Check if this block is inside a loop. 7366 Loop *L = LI->getLoopFor(I->getParent()); 7367 if (!L) 7368 continue; 7369 7370 // Check if it has a preheader. 7371 BasicBlock *PreHeader = L->getLoopPreheader(); 7372 if (!PreHeader) 7373 continue; 7374 7375 // If the vector or the element that we insert into it are 7376 // instructions that are defined in this basic block then we can't 7377 // hoist this instruction. 7378 if (any_of(I->operands(), [L](Value *V) { 7379 auto *OpI = dyn_cast<Instruction>(V); 7380 return OpI && L->contains(OpI); 7381 })) 7382 continue; 7383 7384 // We can hoist this instruction. Move it to the pre-header. 7385 I->moveBefore(PreHeader->getTerminator()); 7386 } 7387 7388 // Make a list of all reachable blocks in our CSE queue. 7389 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7390 CSEWorkList.reserve(CSEBlocks.size()); 7391 for (BasicBlock *BB : CSEBlocks) 7392 if (DomTreeNode *N = DT->getNode(BB)) { 7393 assert(DT->isReachableFromEntry(N)); 7394 CSEWorkList.push_back(N); 7395 } 7396 7397 // Sort blocks by domination. This ensures we visit a block after all blocks 7398 // dominating it are visited. 7399 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7400 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7401 "Different nodes should have different DFS numbers"); 7402 return A->getDFSNumIn() < B->getDFSNumIn(); 7403 }); 7404 7405 // Less defined shuffles can be replaced by the more defined copies. 7406 // Between two shuffles one is less defined if it has the same vector operands 7407 // and its mask indeces are the same as in the first one or undefs. E.g. 7408 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7409 // poison, <0, 0, 0, 0>. 7410 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7411 SmallVectorImpl<int> &NewMask) { 7412 if (I1->getType() != I2->getType()) 7413 return false; 7414 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7415 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7416 if (!SI1 || !SI2) 7417 return I1->isIdenticalTo(I2); 7418 if (SI1->isIdenticalTo(SI2)) 7419 return true; 7420 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7421 if (SI1->getOperand(I) != SI2->getOperand(I)) 7422 return false; 7423 // Check if the second instruction is more defined than the first one. 7424 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7425 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7426 // Count trailing undefs in the mask to check the final number of used 7427 // registers. 7428 unsigned LastUndefsCnt = 0; 7429 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7430 if (SM1[I] == UndefMaskElem) 7431 ++LastUndefsCnt; 7432 else 7433 LastUndefsCnt = 0; 7434 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7435 NewMask[I] != SM1[I]) 7436 return false; 7437 if (NewMask[I] == UndefMaskElem) 7438 NewMask[I] = SM1[I]; 7439 } 7440 // Check if the last undefs actually change the final number of used vector 7441 // registers. 7442 return SM1.size() - LastUndefsCnt > 1 && 7443 TTI->getNumberOfParts(SI1->getType()) == 7444 TTI->getNumberOfParts( 7445 FixedVectorType::get(SI1->getType()->getElementType(), 7446 SM1.size() - LastUndefsCnt)); 7447 }; 7448 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7449 // instructions. TODO: We can further optimize this scan if we split the 7450 // instructions into different buckets based on the insert lane. 7451 SmallVector<Instruction *, 16> Visited; 7452 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7453 assert(*I && 7454 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7455 "Worklist not sorted properly!"); 7456 BasicBlock *BB = (*I)->getBlock(); 7457 // For all instructions in blocks containing gather sequences: 7458 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7459 if (isDeleted(&In)) 7460 continue; 7461 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7462 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7463 continue; 7464 7465 // Check if we can replace this instruction with any of the 7466 // visited instructions. 7467 bool Replaced = false; 7468 for (Instruction *&V : Visited) { 7469 SmallVector<int> NewMask; 7470 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7471 DT->dominates(V->getParent(), In.getParent())) { 7472 In.replaceAllUsesWith(V); 7473 eraseInstruction(&In); 7474 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7475 if (!NewMask.empty()) 7476 SI->setShuffleMask(NewMask); 7477 Replaced = true; 7478 break; 7479 } 7480 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7481 GatherShuffleSeq.contains(V) && 7482 IsIdenticalOrLessDefined(V, &In, NewMask) && 7483 DT->dominates(In.getParent(), V->getParent())) { 7484 In.moveAfter(V); 7485 V->replaceAllUsesWith(&In); 7486 eraseInstruction(V); 7487 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7488 if (!NewMask.empty()) 7489 SI->setShuffleMask(NewMask); 7490 V = &In; 7491 Replaced = true; 7492 break; 7493 } 7494 } 7495 if (!Replaced) { 7496 assert(!is_contained(Visited, &In)); 7497 Visited.push_back(&In); 7498 } 7499 } 7500 } 7501 CSEBlocks.clear(); 7502 GatherShuffleSeq.clear(); 7503 } 7504 7505 BoUpSLP::ScheduleData * 7506 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7507 ScheduleData *Bundle = nullptr; 7508 ScheduleData *PrevInBundle = nullptr; 7509 for (Value *V : VL) { 7510 ScheduleData *BundleMember = getScheduleData(V); 7511 assert(BundleMember && 7512 "no ScheduleData for bundle member " 7513 "(maybe not in same basic block)"); 7514 assert(BundleMember->isSchedulingEntity() && 7515 "bundle member already part of other bundle"); 7516 if (PrevInBundle) { 7517 PrevInBundle->NextInBundle = BundleMember; 7518 } else { 7519 Bundle = BundleMember; 7520 } 7521 7522 // Group the instructions to a bundle. 7523 BundleMember->FirstInBundle = Bundle; 7524 PrevInBundle = BundleMember; 7525 } 7526 assert(Bundle && "Failed to find schedule bundle"); 7527 return Bundle; 7528 } 7529 7530 // Groups the instructions to a bundle (which is then a single scheduling entity) 7531 // and schedules instructions until the bundle gets ready. 7532 Optional<BoUpSLP::ScheduleData *> 7533 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7534 const InstructionsState &S) { 7535 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7536 // instructions. 7537 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7538 return nullptr; 7539 7540 // Initialize the instruction bundle. 7541 Instruction *OldScheduleEnd = ScheduleEnd; 7542 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7543 7544 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7545 ScheduleData *Bundle) { 7546 // The scheduling region got new instructions at the lower end (or it is a 7547 // new region for the first bundle). This makes it necessary to 7548 // recalculate all dependencies. 7549 // It is seldom that this needs to be done a second time after adding the 7550 // initial bundle to the region. 7551 if (ScheduleEnd != OldScheduleEnd) { 7552 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7553 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7554 ReSchedule = true; 7555 } 7556 if (Bundle) { 7557 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7558 << " in block " << BB->getName() << "\n"); 7559 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7560 } 7561 7562 if (ReSchedule) { 7563 resetSchedule(); 7564 initialFillReadyList(ReadyInsts); 7565 } 7566 7567 // Now try to schedule the new bundle or (if no bundle) just calculate 7568 // dependencies. As soon as the bundle is "ready" it means that there are no 7569 // cyclic dependencies and we can schedule it. Note that's important that we 7570 // don't "schedule" the bundle yet (see cancelScheduling). 7571 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7572 !ReadyInsts.empty()) { 7573 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7574 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7575 "must be ready to schedule"); 7576 schedule(Picked, ReadyInsts); 7577 } 7578 }; 7579 7580 // Make sure that the scheduling region contains all 7581 // instructions of the bundle. 7582 for (Value *V : VL) { 7583 if (!extendSchedulingRegion(V, S)) { 7584 // If the scheduling region got new instructions at the lower end (or it 7585 // is a new region for the first bundle). This makes it necessary to 7586 // recalculate all dependencies. 7587 // Otherwise the compiler may crash trying to incorrectly calculate 7588 // dependencies and emit instruction in the wrong order at the actual 7589 // scheduling. 7590 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7591 return None; 7592 } 7593 } 7594 7595 bool ReSchedule = false; 7596 for (Value *V : VL) { 7597 ScheduleData *BundleMember = getScheduleData(V); 7598 assert(BundleMember && 7599 "no ScheduleData for bundle member (maybe not in same basic block)"); 7600 7601 // Make sure we don't leave the pieces of the bundle in the ready list when 7602 // whole bundle might not be ready. 7603 ReadyInsts.remove(BundleMember); 7604 7605 if (!BundleMember->IsScheduled) 7606 continue; 7607 // A bundle member was scheduled as single instruction before and now 7608 // needs to be scheduled as part of the bundle. We just get rid of the 7609 // existing schedule. 7610 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7611 << " was already scheduled\n"); 7612 ReSchedule = true; 7613 } 7614 7615 auto *Bundle = buildBundle(VL); 7616 TryScheduleBundleImpl(ReSchedule, Bundle); 7617 if (!Bundle->isReady()) { 7618 cancelScheduling(VL, S.OpValue); 7619 return None; 7620 } 7621 return Bundle; 7622 } 7623 7624 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7625 Value *OpValue) { 7626 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7627 return; 7628 7629 ScheduleData *Bundle = getScheduleData(OpValue); 7630 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7631 assert(!Bundle->IsScheduled && 7632 "Can't cancel bundle which is already scheduled"); 7633 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7634 "tried to unbundle something which is not a bundle"); 7635 7636 // Remove the bundle from the ready list. 7637 if (Bundle->isReady()) 7638 ReadyInsts.remove(Bundle); 7639 7640 // Un-bundle: make single instructions out of the bundle. 7641 ScheduleData *BundleMember = Bundle; 7642 while (BundleMember) { 7643 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7644 BundleMember->FirstInBundle = BundleMember; 7645 ScheduleData *Next = BundleMember->NextInBundle; 7646 BundleMember->NextInBundle = nullptr; 7647 if (BundleMember->unscheduledDepsInBundle() == 0) { 7648 ReadyInsts.insert(BundleMember); 7649 } 7650 BundleMember = Next; 7651 } 7652 } 7653 7654 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7655 // Allocate a new ScheduleData for the instruction. 7656 if (ChunkPos >= ChunkSize) { 7657 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7658 ChunkPos = 0; 7659 } 7660 return &(ScheduleDataChunks.back()[ChunkPos++]); 7661 } 7662 7663 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7664 const InstructionsState &S) { 7665 if (getScheduleData(V, isOneOf(S, V))) 7666 return true; 7667 Instruction *I = dyn_cast<Instruction>(V); 7668 assert(I && "bundle member must be an instruction"); 7669 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7670 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7671 "be scheduled"); 7672 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7673 ScheduleData *ISD = getScheduleData(I); 7674 if (!ISD) 7675 return false; 7676 assert(isInSchedulingRegion(ISD) && 7677 "ScheduleData not in scheduling region"); 7678 ScheduleData *SD = allocateScheduleDataChunks(); 7679 SD->Inst = I; 7680 SD->init(SchedulingRegionID, S.OpValue); 7681 ExtraScheduleDataMap[I][S.OpValue] = SD; 7682 return true; 7683 }; 7684 if (CheckSheduleForI(I)) 7685 return true; 7686 if (!ScheduleStart) { 7687 // It's the first instruction in the new region. 7688 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7689 ScheduleStart = I; 7690 ScheduleEnd = I->getNextNode(); 7691 if (isOneOf(S, I) != I) 7692 CheckSheduleForI(I); 7693 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7694 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7695 return true; 7696 } 7697 // Search up and down at the same time, because we don't know if the new 7698 // instruction is above or below the existing scheduling region. 7699 BasicBlock::reverse_iterator UpIter = 7700 ++ScheduleStart->getIterator().getReverse(); 7701 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7702 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7703 BasicBlock::iterator LowerEnd = BB->end(); 7704 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7705 &*DownIter != I) { 7706 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7707 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7708 return false; 7709 } 7710 7711 ++UpIter; 7712 ++DownIter; 7713 } 7714 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7715 assert(I->getParent() == ScheduleStart->getParent() && 7716 "Instruction is in wrong basic block."); 7717 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7718 ScheduleStart = I; 7719 if (isOneOf(S, I) != I) 7720 CheckSheduleForI(I); 7721 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7722 << "\n"); 7723 return true; 7724 } 7725 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7726 "Expected to reach top of the basic block or instruction down the " 7727 "lower end."); 7728 assert(I->getParent() == ScheduleEnd->getParent() && 7729 "Instruction is in wrong basic block."); 7730 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7731 nullptr); 7732 ScheduleEnd = I->getNextNode(); 7733 if (isOneOf(S, I) != I) 7734 CheckSheduleForI(I); 7735 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7736 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7737 return true; 7738 } 7739 7740 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7741 Instruction *ToI, 7742 ScheduleData *PrevLoadStore, 7743 ScheduleData *NextLoadStore) { 7744 ScheduleData *CurrentLoadStore = PrevLoadStore; 7745 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7746 ScheduleData *SD = ScheduleDataMap[I]; 7747 if (!SD) { 7748 SD = allocateScheduleDataChunks(); 7749 ScheduleDataMap[I] = SD; 7750 SD->Inst = I; 7751 } 7752 assert(!isInSchedulingRegion(SD) && 7753 "new ScheduleData already in scheduling region"); 7754 SD->init(SchedulingRegionID, I); 7755 7756 if (I->mayReadOrWriteMemory() && 7757 (!isa<IntrinsicInst>(I) || 7758 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7759 cast<IntrinsicInst>(I)->getIntrinsicID() != 7760 Intrinsic::pseudoprobe))) { 7761 // Update the linked list of memory accessing instructions. 7762 if (CurrentLoadStore) { 7763 CurrentLoadStore->NextLoadStore = SD; 7764 } else { 7765 FirstLoadStoreInRegion = SD; 7766 } 7767 CurrentLoadStore = SD; 7768 } 7769 } 7770 if (NextLoadStore) { 7771 if (CurrentLoadStore) 7772 CurrentLoadStore->NextLoadStore = NextLoadStore; 7773 } else { 7774 LastLoadStoreInRegion = CurrentLoadStore; 7775 } 7776 } 7777 7778 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7779 bool InsertInReadyList, 7780 BoUpSLP *SLP) { 7781 assert(SD->isSchedulingEntity()); 7782 7783 SmallVector<ScheduleData *, 10> WorkList; 7784 WorkList.push_back(SD); 7785 7786 while (!WorkList.empty()) { 7787 ScheduleData *SD = WorkList.pop_back_val(); 7788 for (ScheduleData *BundleMember = SD; BundleMember; 7789 BundleMember = BundleMember->NextInBundle) { 7790 assert(isInSchedulingRegion(BundleMember)); 7791 if (BundleMember->hasValidDependencies()) 7792 continue; 7793 7794 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7795 << "\n"); 7796 BundleMember->Dependencies = 0; 7797 BundleMember->resetUnscheduledDeps(); 7798 7799 // Handle def-use chain dependencies. 7800 if (BundleMember->OpValue != BundleMember->Inst) { 7801 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7802 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7803 BundleMember->Dependencies++; 7804 ScheduleData *DestBundle = UseSD->FirstInBundle; 7805 if (!DestBundle->IsScheduled) 7806 BundleMember->incrementUnscheduledDeps(1); 7807 if (!DestBundle->hasValidDependencies()) 7808 WorkList.push_back(DestBundle); 7809 } 7810 } else { 7811 for (User *U : BundleMember->Inst->users()) { 7812 assert(isa<Instruction>(U) && 7813 "user of instruction must be instruction"); 7814 ScheduleData *UseSD = getScheduleData(U); 7815 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7816 BundleMember->Dependencies++; 7817 ScheduleData *DestBundle = UseSD->FirstInBundle; 7818 if (!DestBundle->IsScheduled) 7819 BundleMember->incrementUnscheduledDeps(1); 7820 if (!DestBundle->hasValidDependencies()) 7821 WorkList.push_back(DestBundle); 7822 } 7823 } 7824 } 7825 7826 // Handle the memory dependencies (if any). 7827 ScheduleData *DepDest = BundleMember->NextLoadStore; 7828 if (!DepDest) 7829 continue; 7830 Instruction *SrcInst = BundleMember->Inst; 7831 assert(SrcInst->mayReadOrWriteMemory() && 7832 "NextLoadStore list for non memory effecting bundle?"); 7833 MemoryLocation SrcLoc = getLocation(SrcInst); 7834 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7835 unsigned numAliased = 0; 7836 unsigned DistToSrc = 1; 7837 7838 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7839 assert(isInSchedulingRegion(DepDest)); 7840 7841 // We have two limits to reduce the complexity: 7842 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7843 // SLP->isAliased (which is the expensive part in this loop). 7844 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7845 // the whole loop (even if the loop is fast, it's quadratic). 7846 // It's important for the loop break condition (see below) to 7847 // check this limit even between two read-only instructions. 7848 if (DistToSrc >= MaxMemDepDistance || 7849 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7850 (numAliased >= AliasedCheckLimit || 7851 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7852 7853 // We increment the counter only if the locations are aliased 7854 // (instead of counting all alias checks). This gives a better 7855 // balance between reduced runtime and accurate dependencies. 7856 numAliased++; 7857 7858 DepDest->MemoryDependencies.push_back(BundleMember); 7859 BundleMember->Dependencies++; 7860 ScheduleData *DestBundle = DepDest->FirstInBundle; 7861 if (!DestBundle->IsScheduled) { 7862 BundleMember->incrementUnscheduledDeps(1); 7863 } 7864 if (!DestBundle->hasValidDependencies()) { 7865 WorkList.push_back(DestBundle); 7866 } 7867 } 7868 7869 // Example, explaining the loop break condition: Let's assume our 7870 // starting instruction is i0 and MaxMemDepDistance = 3. 7871 // 7872 // +--------v--v--v 7873 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7874 // +--------^--^--^ 7875 // 7876 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7877 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7878 // Previously we already added dependencies from i3 to i6,i7,i8 7879 // (because of MaxMemDepDistance). As we added a dependency from 7880 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7881 // and we can abort this loop at i6. 7882 if (DistToSrc >= 2 * MaxMemDepDistance) 7883 break; 7884 DistToSrc++; 7885 } 7886 } 7887 if (InsertInReadyList && SD->isReady()) { 7888 ReadyInsts.insert(SD); 7889 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7890 << "\n"); 7891 } 7892 } 7893 } 7894 7895 void BoUpSLP::BlockScheduling::resetSchedule() { 7896 assert(ScheduleStart && 7897 "tried to reset schedule on block which has not been scheduled"); 7898 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7899 doForAllOpcodes(I, [&](ScheduleData *SD) { 7900 assert(isInSchedulingRegion(SD) && 7901 "ScheduleData not in scheduling region"); 7902 SD->IsScheduled = false; 7903 SD->resetUnscheduledDeps(); 7904 }); 7905 } 7906 ReadyInsts.clear(); 7907 } 7908 7909 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7910 if (!BS->ScheduleStart) 7911 return; 7912 7913 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7914 7915 BS->resetSchedule(); 7916 7917 // For the real scheduling we use a more sophisticated ready-list: it is 7918 // sorted by the original instruction location. This lets the final schedule 7919 // be as close as possible to the original instruction order. 7920 struct ScheduleDataCompare { 7921 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7922 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7923 } 7924 }; 7925 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7926 7927 // Ensure that all dependency data is updated and fill the ready-list with 7928 // initial instructions. 7929 int Idx = 0; 7930 int NumToSchedule = 0; 7931 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7932 I = I->getNextNode()) { 7933 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7934 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7935 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7936 "scheduler and vectorizer bundle mismatch"); 7937 SD->FirstInBundle->SchedulingPriority = Idx++; 7938 if (SD->isSchedulingEntity()) { 7939 BS->calculateDependencies(SD, false, this); 7940 NumToSchedule++; 7941 } 7942 }); 7943 } 7944 BS->initialFillReadyList(ReadyInsts); 7945 7946 Instruction *LastScheduledInst = BS->ScheduleEnd; 7947 7948 // Do the "real" scheduling. 7949 while (!ReadyInsts.empty()) { 7950 ScheduleData *picked = *ReadyInsts.begin(); 7951 ReadyInsts.erase(ReadyInsts.begin()); 7952 7953 // Move the scheduled instruction(s) to their dedicated places, if not 7954 // there yet. 7955 for (ScheduleData *BundleMember = picked; BundleMember; 7956 BundleMember = BundleMember->NextInBundle) { 7957 Instruction *pickedInst = BundleMember->Inst; 7958 if (pickedInst->getNextNode() != LastScheduledInst) 7959 pickedInst->moveBefore(LastScheduledInst); 7960 LastScheduledInst = pickedInst; 7961 } 7962 7963 BS->schedule(picked, ReadyInsts); 7964 NumToSchedule--; 7965 } 7966 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7967 7968 // Check that we didn't break any of our invariants. 7969 #ifdef EXPENSIVE_CHECKS 7970 BS->verify(); 7971 #endif 7972 7973 // Avoid duplicate scheduling of the block. 7974 BS->ScheduleStart = nullptr; 7975 } 7976 7977 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7978 // If V is a store, just return the width of the stored value (or value 7979 // truncated just before storing) without traversing the expression tree. 7980 // This is the common case. 7981 if (auto *Store = dyn_cast<StoreInst>(V)) { 7982 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7983 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7984 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7985 } 7986 7987 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7988 return getVectorElementSize(IEI->getOperand(1)); 7989 7990 auto E = InstrElementSize.find(V); 7991 if (E != InstrElementSize.end()) 7992 return E->second; 7993 7994 // If V is not a store, we can traverse the expression tree to find loads 7995 // that feed it. The type of the loaded value may indicate a more suitable 7996 // width than V's type. We want to base the vector element size on the width 7997 // of memory operations where possible. 7998 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7999 SmallPtrSet<Instruction *, 16> Visited; 8000 if (auto *I = dyn_cast<Instruction>(V)) { 8001 Worklist.emplace_back(I, I->getParent()); 8002 Visited.insert(I); 8003 } 8004 8005 // Traverse the expression tree in bottom-up order looking for loads. If we 8006 // encounter an instruction we don't yet handle, we give up. 8007 auto Width = 0u; 8008 while (!Worklist.empty()) { 8009 Instruction *I; 8010 BasicBlock *Parent; 8011 std::tie(I, Parent) = Worklist.pop_back_val(); 8012 8013 // We should only be looking at scalar instructions here. If the current 8014 // instruction has a vector type, skip. 8015 auto *Ty = I->getType(); 8016 if (isa<VectorType>(Ty)) 8017 continue; 8018 8019 // If the current instruction is a load, update MaxWidth to reflect the 8020 // width of the loaded value. 8021 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8022 isa<ExtractValueInst>(I)) 8023 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8024 8025 // Otherwise, we need to visit the operands of the instruction. We only 8026 // handle the interesting cases from buildTree here. If an operand is an 8027 // instruction we haven't yet visited and from the same basic block as the 8028 // user or the use is a PHI node, we add it to the worklist. 8029 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8030 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8031 isa<UnaryOperator>(I)) { 8032 for (Use &U : I->operands()) 8033 if (auto *J = dyn_cast<Instruction>(U.get())) 8034 if (Visited.insert(J).second && 8035 (isa<PHINode>(I) || J->getParent() == Parent)) 8036 Worklist.emplace_back(J, J->getParent()); 8037 } else { 8038 break; 8039 } 8040 } 8041 8042 // If we didn't encounter a memory access in the expression tree, or if we 8043 // gave up for some reason, just return the width of V. Otherwise, return the 8044 // maximum width we found. 8045 if (!Width) { 8046 if (auto *CI = dyn_cast<CmpInst>(V)) 8047 V = CI->getOperand(0); 8048 Width = DL->getTypeSizeInBits(V->getType()); 8049 } 8050 8051 for (Instruction *I : Visited) 8052 InstrElementSize[I] = Width; 8053 8054 return Width; 8055 } 8056 8057 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8058 // smaller type with a truncation. We collect the values that will be demoted 8059 // in ToDemote and additional roots that require investigating in Roots. 8060 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8061 SmallVectorImpl<Value *> &ToDemote, 8062 SmallVectorImpl<Value *> &Roots) { 8063 // We can always demote constants. 8064 if (isa<Constant>(V)) { 8065 ToDemote.push_back(V); 8066 return true; 8067 } 8068 8069 // If the value is not an instruction in the expression with only one use, it 8070 // cannot be demoted. 8071 auto *I = dyn_cast<Instruction>(V); 8072 if (!I || !I->hasOneUse() || !Expr.count(I)) 8073 return false; 8074 8075 switch (I->getOpcode()) { 8076 8077 // We can always demote truncations and extensions. Since truncations can 8078 // seed additional demotion, we save the truncated value. 8079 case Instruction::Trunc: 8080 Roots.push_back(I->getOperand(0)); 8081 break; 8082 case Instruction::ZExt: 8083 case Instruction::SExt: 8084 if (isa<ExtractElementInst>(I->getOperand(0)) || 8085 isa<InsertElementInst>(I->getOperand(0))) 8086 return false; 8087 break; 8088 8089 // We can demote certain binary operations if we can demote both of their 8090 // operands. 8091 case Instruction::Add: 8092 case Instruction::Sub: 8093 case Instruction::Mul: 8094 case Instruction::And: 8095 case Instruction::Or: 8096 case Instruction::Xor: 8097 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8098 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8099 return false; 8100 break; 8101 8102 // We can demote selects if we can demote their true and false values. 8103 case Instruction::Select: { 8104 SelectInst *SI = cast<SelectInst>(I); 8105 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8106 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8107 return false; 8108 break; 8109 } 8110 8111 // We can demote phis if we can demote all their incoming operands. Note that 8112 // we don't need to worry about cycles since we ensure single use above. 8113 case Instruction::PHI: { 8114 PHINode *PN = cast<PHINode>(I); 8115 for (Value *IncValue : PN->incoming_values()) 8116 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8117 return false; 8118 break; 8119 } 8120 8121 // Otherwise, conservatively give up. 8122 default: 8123 return false; 8124 } 8125 8126 // Record the value that we can demote. 8127 ToDemote.push_back(V); 8128 return true; 8129 } 8130 8131 void BoUpSLP::computeMinimumValueSizes() { 8132 // If there are no external uses, the expression tree must be rooted by a 8133 // store. We can't demote in-memory values, so there is nothing to do here. 8134 if (ExternalUses.empty()) 8135 return; 8136 8137 // We only attempt to truncate integer expressions. 8138 auto &TreeRoot = VectorizableTree[0]->Scalars; 8139 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8140 if (!TreeRootIT) 8141 return; 8142 8143 // If the expression is not rooted by a store, these roots should have 8144 // external uses. We will rely on InstCombine to rewrite the expression in 8145 // the narrower type. However, InstCombine only rewrites single-use values. 8146 // This means that if a tree entry other than a root is used externally, it 8147 // must have multiple uses and InstCombine will not rewrite it. The code 8148 // below ensures that only the roots are used externally. 8149 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8150 for (auto &EU : ExternalUses) 8151 if (!Expr.erase(EU.Scalar)) 8152 return; 8153 if (!Expr.empty()) 8154 return; 8155 8156 // Collect the scalar values of the vectorizable expression. We will use this 8157 // context to determine which values can be demoted. If we see a truncation, 8158 // we mark it as seeding another demotion. 8159 for (auto &EntryPtr : VectorizableTree) 8160 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8161 8162 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8163 // have a single external user that is not in the vectorizable tree. 8164 for (auto *Root : TreeRoot) 8165 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8166 return; 8167 8168 // Conservatively determine if we can actually truncate the roots of the 8169 // expression. Collect the values that can be demoted in ToDemote and 8170 // additional roots that require investigating in Roots. 8171 SmallVector<Value *, 32> ToDemote; 8172 SmallVector<Value *, 4> Roots; 8173 for (auto *Root : TreeRoot) 8174 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8175 return; 8176 8177 // The maximum bit width required to represent all the values that can be 8178 // demoted without loss of precision. It would be safe to truncate the roots 8179 // of the expression to this width. 8180 auto MaxBitWidth = 8u; 8181 8182 // We first check if all the bits of the roots are demanded. If they're not, 8183 // we can truncate the roots to this narrower type. 8184 for (auto *Root : TreeRoot) { 8185 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8186 MaxBitWidth = std::max<unsigned>( 8187 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8188 } 8189 8190 // True if the roots can be zero-extended back to their original type, rather 8191 // than sign-extended. We know that if the leading bits are not demanded, we 8192 // can safely zero-extend. So we initialize IsKnownPositive to True. 8193 bool IsKnownPositive = true; 8194 8195 // If all the bits of the roots are demanded, we can try a little harder to 8196 // compute a narrower type. This can happen, for example, if the roots are 8197 // getelementptr indices. InstCombine promotes these indices to the pointer 8198 // width. Thus, all their bits are technically demanded even though the 8199 // address computation might be vectorized in a smaller type. 8200 // 8201 // We start by looking at each entry that can be demoted. We compute the 8202 // maximum bit width required to store the scalar by using ValueTracking to 8203 // compute the number of high-order bits we can truncate. 8204 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8205 llvm::all_of(TreeRoot, [](Value *R) { 8206 assert(R->hasOneUse() && "Root should have only one use!"); 8207 return isa<GetElementPtrInst>(R->user_back()); 8208 })) { 8209 MaxBitWidth = 8u; 8210 8211 // Determine if the sign bit of all the roots is known to be zero. If not, 8212 // IsKnownPositive is set to False. 8213 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8214 KnownBits Known = computeKnownBits(R, *DL); 8215 return Known.isNonNegative(); 8216 }); 8217 8218 // Determine the maximum number of bits required to store the scalar 8219 // values. 8220 for (auto *Scalar : ToDemote) { 8221 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8222 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8223 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8224 } 8225 8226 // If we can't prove that the sign bit is zero, we must add one to the 8227 // maximum bit width to account for the unknown sign bit. This preserves 8228 // the existing sign bit so we can safely sign-extend the root back to the 8229 // original type. Otherwise, if we know the sign bit is zero, we will 8230 // zero-extend the root instead. 8231 // 8232 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8233 // one to the maximum bit width will yield a larger-than-necessary 8234 // type. In general, we need to add an extra bit only if we can't 8235 // prove that the upper bit of the original type is equal to the 8236 // upper bit of the proposed smaller type. If these two bits are the 8237 // same (either zero or one) we know that sign-extending from the 8238 // smaller type will result in the same value. Here, since we can't 8239 // yet prove this, we are just making the proposed smaller type 8240 // larger to ensure correctness. 8241 if (!IsKnownPositive) 8242 ++MaxBitWidth; 8243 } 8244 8245 // Round MaxBitWidth up to the next power-of-two. 8246 if (!isPowerOf2_64(MaxBitWidth)) 8247 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8248 8249 // If the maximum bit width we compute is less than the with of the roots' 8250 // type, we can proceed with the narrowing. Otherwise, do nothing. 8251 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8252 return; 8253 8254 // If we can truncate the root, we must collect additional values that might 8255 // be demoted as a result. That is, those seeded by truncations we will 8256 // modify. 8257 while (!Roots.empty()) 8258 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8259 8260 // Finally, map the values we can demote to the maximum bit with we computed. 8261 for (auto *Scalar : ToDemote) 8262 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8263 } 8264 8265 namespace { 8266 8267 /// The SLPVectorizer Pass. 8268 struct SLPVectorizer : public FunctionPass { 8269 SLPVectorizerPass Impl; 8270 8271 /// Pass identification, replacement for typeid 8272 static char ID; 8273 8274 explicit SLPVectorizer() : FunctionPass(ID) { 8275 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8276 } 8277 8278 bool doInitialization(Module &M) override { return false; } 8279 8280 bool runOnFunction(Function &F) override { 8281 if (skipFunction(F)) 8282 return false; 8283 8284 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8285 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8286 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8287 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8288 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8289 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8290 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8291 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8292 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8293 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8294 8295 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8296 } 8297 8298 void getAnalysisUsage(AnalysisUsage &AU) const override { 8299 FunctionPass::getAnalysisUsage(AU); 8300 AU.addRequired<AssumptionCacheTracker>(); 8301 AU.addRequired<ScalarEvolutionWrapperPass>(); 8302 AU.addRequired<AAResultsWrapperPass>(); 8303 AU.addRequired<TargetTransformInfoWrapperPass>(); 8304 AU.addRequired<LoopInfoWrapperPass>(); 8305 AU.addRequired<DominatorTreeWrapperPass>(); 8306 AU.addRequired<DemandedBitsWrapperPass>(); 8307 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8308 AU.addRequired<InjectTLIMappingsLegacy>(); 8309 AU.addPreserved<LoopInfoWrapperPass>(); 8310 AU.addPreserved<DominatorTreeWrapperPass>(); 8311 AU.addPreserved<AAResultsWrapperPass>(); 8312 AU.addPreserved<GlobalsAAWrapperPass>(); 8313 AU.setPreservesCFG(); 8314 } 8315 }; 8316 8317 } // end anonymous namespace 8318 8319 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8320 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8321 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8322 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8323 auto *AA = &AM.getResult<AAManager>(F); 8324 auto *LI = &AM.getResult<LoopAnalysis>(F); 8325 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8326 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8327 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8328 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8329 8330 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8331 if (!Changed) 8332 return PreservedAnalyses::all(); 8333 8334 PreservedAnalyses PA; 8335 PA.preserveSet<CFGAnalyses>(); 8336 return PA; 8337 } 8338 8339 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8340 TargetTransformInfo *TTI_, 8341 TargetLibraryInfo *TLI_, AAResults *AA_, 8342 LoopInfo *LI_, DominatorTree *DT_, 8343 AssumptionCache *AC_, DemandedBits *DB_, 8344 OptimizationRemarkEmitter *ORE_) { 8345 if (!RunSLPVectorization) 8346 return false; 8347 SE = SE_; 8348 TTI = TTI_; 8349 TLI = TLI_; 8350 AA = AA_; 8351 LI = LI_; 8352 DT = DT_; 8353 AC = AC_; 8354 DB = DB_; 8355 DL = &F.getParent()->getDataLayout(); 8356 8357 Stores.clear(); 8358 GEPs.clear(); 8359 bool Changed = false; 8360 8361 // If the target claims to have no vector registers don't attempt 8362 // vectorization. 8363 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8364 LLVM_DEBUG( 8365 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8366 return false; 8367 } 8368 8369 // Don't vectorize when the attribute NoImplicitFloat is used. 8370 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8371 return false; 8372 8373 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8374 8375 // Use the bottom up slp vectorizer to construct chains that start with 8376 // store instructions. 8377 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8378 8379 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8380 // delete instructions. 8381 8382 // Update DFS numbers now so that we can use them for ordering. 8383 DT->updateDFSNumbers(); 8384 8385 // Scan the blocks in the function in post order. 8386 for (auto BB : post_order(&F.getEntryBlock())) { 8387 collectSeedInstructions(BB); 8388 8389 // Vectorize trees that end at stores. 8390 if (!Stores.empty()) { 8391 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8392 << " underlying objects.\n"); 8393 Changed |= vectorizeStoreChains(R); 8394 } 8395 8396 // Vectorize trees that end at reductions. 8397 Changed |= vectorizeChainsInBlock(BB, R); 8398 8399 // Vectorize the index computations of getelementptr instructions. This 8400 // is primarily intended to catch gather-like idioms ending at 8401 // non-consecutive loads. 8402 if (!GEPs.empty()) { 8403 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8404 << " underlying objects.\n"); 8405 Changed |= vectorizeGEPIndices(BB, R); 8406 } 8407 } 8408 8409 if (Changed) { 8410 R.optimizeGatherSequence(); 8411 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8412 } 8413 return Changed; 8414 } 8415 8416 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8417 unsigned Idx) { 8418 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8419 << "\n"); 8420 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8421 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8422 unsigned VF = Chain.size(); 8423 8424 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8425 return false; 8426 8427 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8428 << "\n"); 8429 8430 R.buildTree(Chain); 8431 if (R.isTreeTinyAndNotFullyVectorizable()) 8432 return false; 8433 if (R.isLoadCombineCandidate()) 8434 return false; 8435 R.reorderTopToBottom(); 8436 R.reorderBottomToTop(); 8437 R.buildExternalUses(); 8438 8439 R.computeMinimumValueSizes(); 8440 8441 InstructionCost Cost = R.getTreeCost(); 8442 8443 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8444 if (Cost < -SLPCostThreshold) { 8445 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8446 8447 using namespace ore; 8448 8449 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8450 cast<StoreInst>(Chain[0])) 8451 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8452 << " and with tree size " 8453 << NV("TreeSize", R.getTreeSize())); 8454 8455 R.vectorizeTree(); 8456 return true; 8457 } 8458 8459 return false; 8460 } 8461 8462 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8463 BoUpSLP &R) { 8464 // We may run into multiple chains that merge into a single chain. We mark the 8465 // stores that we vectorized so that we don't visit the same store twice. 8466 BoUpSLP::ValueSet VectorizedStores; 8467 bool Changed = false; 8468 8469 int E = Stores.size(); 8470 SmallBitVector Tails(E, false); 8471 int MaxIter = MaxStoreLookup.getValue(); 8472 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8473 E, std::make_pair(E, INT_MAX)); 8474 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8475 int IterCnt; 8476 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8477 &CheckedPairs, 8478 &ConsecutiveChain](int K, int Idx) { 8479 if (IterCnt >= MaxIter) 8480 return true; 8481 if (CheckedPairs[Idx].test(K)) 8482 return ConsecutiveChain[K].second == 1 && 8483 ConsecutiveChain[K].first == Idx; 8484 ++IterCnt; 8485 CheckedPairs[Idx].set(K); 8486 CheckedPairs[K].set(Idx); 8487 Optional<int> Diff = getPointersDiff( 8488 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8489 Stores[Idx]->getValueOperand()->getType(), 8490 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8491 if (!Diff || *Diff == 0) 8492 return false; 8493 int Val = *Diff; 8494 if (Val < 0) { 8495 if (ConsecutiveChain[Idx].second > -Val) { 8496 Tails.set(K); 8497 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8498 } 8499 return false; 8500 } 8501 if (ConsecutiveChain[K].second <= Val) 8502 return false; 8503 8504 Tails.set(Idx); 8505 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8506 return Val == 1; 8507 }; 8508 // Do a quadratic search on all of the given stores in reverse order and find 8509 // all of the pairs of stores that follow each other. 8510 for (int Idx = E - 1; Idx >= 0; --Idx) { 8511 // If a store has multiple consecutive store candidates, search according 8512 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8513 // This is because usually pairing with immediate succeeding or preceding 8514 // candidate create the best chance to find slp vectorization opportunity. 8515 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8516 IterCnt = 0; 8517 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8518 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8519 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8520 break; 8521 } 8522 8523 // Tracks if we tried to vectorize stores starting from the given tail 8524 // already. 8525 SmallBitVector TriedTails(E, false); 8526 // For stores that start but don't end a link in the chain: 8527 for (int Cnt = E; Cnt > 0; --Cnt) { 8528 int I = Cnt - 1; 8529 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8530 continue; 8531 // We found a store instr that starts a chain. Now follow the chain and try 8532 // to vectorize it. 8533 BoUpSLP::ValueList Operands; 8534 // Collect the chain into a list. 8535 while (I != E && !VectorizedStores.count(Stores[I])) { 8536 Operands.push_back(Stores[I]); 8537 Tails.set(I); 8538 if (ConsecutiveChain[I].second != 1) { 8539 // Mark the new end in the chain and go back, if required. It might be 8540 // required if the original stores come in reversed order, for example. 8541 if (ConsecutiveChain[I].first != E && 8542 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8543 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8544 TriedTails.set(I); 8545 Tails.reset(ConsecutiveChain[I].first); 8546 if (Cnt < ConsecutiveChain[I].first + 2) 8547 Cnt = ConsecutiveChain[I].first + 2; 8548 } 8549 break; 8550 } 8551 // Move to the next value in the chain. 8552 I = ConsecutiveChain[I].first; 8553 } 8554 assert(!Operands.empty() && "Expected non-empty list of stores."); 8555 8556 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8557 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8558 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8559 8560 unsigned MinVF = R.getMinVF(EltSize); 8561 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8562 MaxElts); 8563 8564 // FIXME: Is division-by-2 the correct step? Should we assert that the 8565 // register size is a power-of-2? 8566 unsigned StartIdx = 0; 8567 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8568 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8569 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8570 if (!VectorizedStores.count(Slice.front()) && 8571 !VectorizedStores.count(Slice.back()) && 8572 vectorizeStoreChain(Slice, R, Cnt)) { 8573 // Mark the vectorized stores so that we don't vectorize them again. 8574 VectorizedStores.insert(Slice.begin(), Slice.end()); 8575 Changed = true; 8576 // If we vectorized initial block, no need to try to vectorize it 8577 // again. 8578 if (Cnt == StartIdx) 8579 StartIdx += Size; 8580 Cnt += Size; 8581 continue; 8582 } 8583 ++Cnt; 8584 } 8585 // Check if the whole array was vectorized already - exit. 8586 if (StartIdx >= Operands.size()) 8587 break; 8588 } 8589 } 8590 8591 return Changed; 8592 } 8593 8594 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8595 // Initialize the collections. We will make a single pass over the block. 8596 Stores.clear(); 8597 GEPs.clear(); 8598 8599 // Visit the store and getelementptr instructions in BB and organize them in 8600 // Stores and GEPs according to the underlying objects of their pointer 8601 // operands. 8602 for (Instruction &I : *BB) { 8603 // Ignore store instructions that are volatile or have a pointer operand 8604 // that doesn't point to a scalar type. 8605 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8606 if (!SI->isSimple()) 8607 continue; 8608 if (!isValidElementType(SI->getValueOperand()->getType())) 8609 continue; 8610 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8611 } 8612 8613 // Ignore getelementptr instructions that have more than one index, a 8614 // constant index, or a pointer operand that doesn't point to a scalar 8615 // type. 8616 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8617 auto Idx = GEP->idx_begin()->get(); 8618 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8619 continue; 8620 if (!isValidElementType(Idx->getType())) 8621 continue; 8622 if (GEP->getType()->isVectorTy()) 8623 continue; 8624 GEPs[GEP->getPointerOperand()].push_back(GEP); 8625 } 8626 } 8627 } 8628 8629 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8630 if (!A || !B) 8631 return false; 8632 Value *VL[] = {A, B}; 8633 return tryToVectorizeList(VL, R); 8634 } 8635 8636 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8637 bool LimitForRegisterSize) { 8638 if (VL.size() < 2) 8639 return false; 8640 8641 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8642 << VL.size() << ".\n"); 8643 8644 // Check that all of the parts are instructions of the same type, 8645 // we permit an alternate opcode via InstructionsState. 8646 InstructionsState S = getSameOpcode(VL); 8647 if (!S.getOpcode()) 8648 return false; 8649 8650 Instruction *I0 = cast<Instruction>(S.OpValue); 8651 // Make sure invalid types (including vector type) are rejected before 8652 // determining vectorization factor for scalar instructions. 8653 for (Value *V : VL) { 8654 Type *Ty = V->getType(); 8655 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8656 // NOTE: the following will give user internal llvm type name, which may 8657 // not be useful. 8658 R.getORE()->emit([&]() { 8659 std::string type_str; 8660 llvm::raw_string_ostream rso(type_str); 8661 Ty->print(rso); 8662 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8663 << "Cannot SLP vectorize list: type " 8664 << rso.str() + " is unsupported by vectorizer"; 8665 }); 8666 return false; 8667 } 8668 } 8669 8670 unsigned Sz = R.getVectorElementSize(I0); 8671 unsigned MinVF = R.getMinVF(Sz); 8672 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8673 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8674 if (MaxVF < 2) { 8675 R.getORE()->emit([&]() { 8676 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8677 << "Cannot SLP vectorize list: vectorization factor " 8678 << "less than 2 is not supported"; 8679 }); 8680 return false; 8681 } 8682 8683 bool Changed = false; 8684 bool CandidateFound = false; 8685 InstructionCost MinCost = SLPCostThreshold.getValue(); 8686 Type *ScalarTy = VL[0]->getType(); 8687 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8688 ScalarTy = IE->getOperand(1)->getType(); 8689 8690 unsigned NextInst = 0, MaxInst = VL.size(); 8691 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8692 // No actual vectorization should happen, if number of parts is the same as 8693 // provided vectorization factor (i.e. the scalar type is used for vector 8694 // code during codegen). 8695 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8696 if (TTI->getNumberOfParts(VecTy) == VF) 8697 continue; 8698 for (unsigned I = NextInst; I < MaxInst; ++I) { 8699 unsigned OpsWidth = 0; 8700 8701 if (I + VF > MaxInst) 8702 OpsWidth = MaxInst - I; 8703 else 8704 OpsWidth = VF; 8705 8706 if (!isPowerOf2_32(OpsWidth)) 8707 continue; 8708 8709 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8710 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8711 break; 8712 8713 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8714 // Check that a previous iteration of this loop did not delete the Value. 8715 if (llvm::any_of(Ops, [&R](Value *V) { 8716 auto *I = dyn_cast<Instruction>(V); 8717 return I && R.isDeleted(I); 8718 })) 8719 continue; 8720 8721 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8722 << "\n"); 8723 8724 R.buildTree(Ops); 8725 if (R.isTreeTinyAndNotFullyVectorizable()) 8726 continue; 8727 R.reorderTopToBottom(); 8728 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8729 R.buildExternalUses(); 8730 8731 R.computeMinimumValueSizes(); 8732 InstructionCost Cost = R.getTreeCost(); 8733 CandidateFound = true; 8734 MinCost = std::min(MinCost, Cost); 8735 8736 if (Cost < -SLPCostThreshold) { 8737 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8738 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8739 cast<Instruction>(Ops[0])) 8740 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8741 << " and with tree size " 8742 << ore::NV("TreeSize", R.getTreeSize())); 8743 8744 R.vectorizeTree(); 8745 // Move to the next bundle. 8746 I += VF - 1; 8747 NextInst = I + 1; 8748 Changed = true; 8749 } 8750 } 8751 } 8752 8753 if (!Changed && CandidateFound) { 8754 R.getORE()->emit([&]() { 8755 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8756 << "List vectorization was possible but not beneficial with cost " 8757 << ore::NV("Cost", MinCost) << " >= " 8758 << ore::NV("Treshold", -SLPCostThreshold); 8759 }); 8760 } else if (!Changed) { 8761 R.getORE()->emit([&]() { 8762 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8763 << "Cannot SLP vectorize list: vectorization was impossible" 8764 << " with available vectorization factors"; 8765 }); 8766 } 8767 return Changed; 8768 } 8769 8770 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8771 if (!I) 8772 return false; 8773 8774 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8775 return false; 8776 8777 Value *P = I->getParent(); 8778 8779 // Vectorize in current basic block only. 8780 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8781 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8782 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8783 return false; 8784 8785 // Try to vectorize V. 8786 if (tryToVectorizePair(Op0, Op1, R)) 8787 return true; 8788 8789 auto *A = dyn_cast<BinaryOperator>(Op0); 8790 auto *B = dyn_cast<BinaryOperator>(Op1); 8791 // Try to skip B. 8792 if (B && B->hasOneUse()) { 8793 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8794 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8795 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8796 return true; 8797 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8798 return true; 8799 } 8800 8801 // Try to skip A. 8802 if (A && A->hasOneUse()) { 8803 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8804 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8805 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8806 return true; 8807 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8808 return true; 8809 } 8810 return false; 8811 } 8812 8813 namespace { 8814 8815 /// Model horizontal reductions. 8816 /// 8817 /// A horizontal reduction is a tree of reduction instructions that has values 8818 /// that can be put into a vector as its leaves. For example: 8819 /// 8820 /// mul mul mul mul 8821 /// \ / \ / 8822 /// + + 8823 /// \ / 8824 /// + 8825 /// This tree has "mul" as its leaf values and "+" as its reduction 8826 /// instructions. A reduction can feed into a store or a binary operation 8827 /// feeding a phi. 8828 /// ... 8829 /// \ / 8830 /// + 8831 /// | 8832 /// phi += 8833 /// 8834 /// Or: 8835 /// ... 8836 /// \ / 8837 /// + 8838 /// | 8839 /// *p = 8840 /// 8841 class HorizontalReduction { 8842 using ReductionOpsType = SmallVector<Value *, 16>; 8843 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8844 ReductionOpsListType ReductionOps; 8845 SmallVector<Value *, 32> ReducedVals; 8846 // Use map vector to make stable output. 8847 MapVector<Instruction *, Value *> ExtraArgs; 8848 WeakTrackingVH ReductionRoot; 8849 /// The type of reduction operation. 8850 RecurKind RdxKind; 8851 8852 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8853 8854 static bool isCmpSelMinMax(Instruction *I) { 8855 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8856 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8857 } 8858 8859 // And/or are potentially poison-safe logical patterns like: 8860 // select x, y, false 8861 // select x, true, y 8862 static bool isBoolLogicOp(Instruction *I) { 8863 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8864 match(I, m_LogicalOr(m_Value(), m_Value())); 8865 } 8866 8867 /// Checks if instruction is associative and can be vectorized. 8868 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8869 if (Kind == RecurKind::None) 8870 return false; 8871 8872 // Integer ops that map to select instructions or intrinsics are fine. 8873 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8874 isBoolLogicOp(I)) 8875 return true; 8876 8877 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8878 // FP min/max are associative except for NaN and -0.0. We do not 8879 // have to rule out -0.0 here because the intrinsic semantics do not 8880 // specify a fixed result for it. 8881 return I->getFastMathFlags().noNaNs(); 8882 } 8883 8884 return I->isAssociative(); 8885 } 8886 8887 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8888 // Poison-safe 'or' takes the form: select X, true, Y 8889 // To make that work with the normal operand processing, we skip the 8890 // true value operand. 8891 // TODO: Change the code and data structures to handle this without a hack. 8892 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8893 return I->getOperand(2); 8894 return I->getOperand(Index); 8895 } 8896 8897 /// Checks if the ParentStackElem.first should be marked as a reduction 8898 /// operation with an extra argument or as extra argument itself. 8899 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8900 Value *ExtraArg) { 8901 if (ExtraArgs.count(ParentStackElem.first)) { 8902 ExtraArgs[ParentStackElem.first] = nullptr; 8903 // We ran into something like: 8904 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8905 // The whole ParentStackElem.first should be considered as an extra value 8906 // in this case. 8907 // Do not perform analysis of remaining operands of ParentStackElem.first 8908 // instruction, this whole instruction is an extra argument. 8909 ParentStackElem.second = INVALID_OPERAND_INDEX; 8910 } else { 8911 // We ran into something like: 8912 // ParentStackElem.first += ... + ExtraArg + ... 8913 ExtraArgs[ParentStackElem.first] = ExtraArg; 8914 } 8915 } 8916 8917 /// Creates reduction operation with the current opcode. 8918 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8919 Value *RHS, const Twine &Name, bool UseSelect) { 8920 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8921 switch (Kind) { 8922 case RecurKind::Or: 8923 if (UseSelect && 8924 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8925 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8926 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8927 Name); 8928 case RecurKind::And: 8929 if (UseSelect && 8930 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8931 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8932 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8933 Name); 8934 case RecurKind::Add: 8935 case RecurKind::Mul: 8936 case RecurKind::Xor: 8937 case RecurKind::FAdd: 8938 case RecurKind::FMul: 8939 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8940 Name); 8941 case RecurKind::FMax: 8942 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8943 case RecurKind::FMin: 8944 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8945 case RecurKind::SMax: 8946 if (UseSelect) { 8947 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8948 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8949 } 8950 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8951 case RecurKind::SMin: 8952 if (UseSelect) { 8953 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8954 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8955 } 8956 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8957 case RecurKind::UMax: 8958 if (UseSelect) { 8959 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8960 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8961 } 8962 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8963 case RecurKind::UMin: 8964 if (UseSelect) { 8965 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8966 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8967 } 8968 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8969 default: 8970 llvm_unreachable("Unknown reduction operation."); 8971 } 8972 } 8973 8974 /// Creates reduction operation with the current opcode with the IR flags 8975 /// from \p ReductionOps. 8976 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8977 Value *RHS, const Twine &Name, 8978 const ReductionOpsListType &ReductionOps) { 8979 bool UseSelect = ReductionOps.size() == 2 || 8980 // Logical or/and. 8981 (ReductionOps.size() == 1 && 8982 isa<SelectInst>(ReductionOps.front().front())); 8983 assert((!UseSelect || ReductionOps.size() != 2 || 8984 isa<SelectInst>(ReductionOps[1][0])) && 8985 "Expected cmp + select pairs for reduction"); 8986 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8987 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8988 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8989 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8990 propagateIRFlags(Op, ReductionOps[1]); 8991 return Op; 8992 } 8993 } 8994 propagateIRFlags(Op, ReductionOps[0]); 8995 return Op; 8996 } 8997 8998 /// Creates reduction operation with the current opcode with the IR flags 8999 /// from \p I. 9000 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9001 Value *RHS, const Twine &Name, Instruction *I) { 9002 auto *SelI = dyn_cast<SelectInst>(I); 9003 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9004 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9005 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9006 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9007 } 9008 propagateIRFlags(Op, I); 9009 return Op; 9010 } 9011 9012 static RecurKind getRdxKind(Instruction *I) { 9013 assert(I && "Expected instruction for reduction matching"); 9014 if (match(I, m_Add(m_Value(), m_Value()))) 9015 return RecurKind::Add; 9016 if (match(I, m_Mul(m_Value(), m_Value()))) 9017 return RecurKind::Mul; 9018 if (match(I, m_And(m_Value(), m_Value())) || 9019 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9020 return RecurKind::And; 9021 if (match(I, m_Or(m_Value(), m_Value())) || 9022 match(I, m_LogicalOr(m_Value(), m_Value()))) 9023 return RecurKind::Or; 9024 if (match(I, m_Xor(m_Value(), m_Value()))) 9025 return RecurKind::Xor; 9026 if (match(I, m_FAdd(m_Value(), m_Value()))) 9027 return RecurKind::FAdd; 9028 if (match(I, m_FMul(m_Value(), m_Value()))) 9029 return RecurKind::FMul; 9030 9031 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9032 return RecurKind::FMax; 9033 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9034 return RecurKind::FMin; 9035 9036 // This matches either cmp+select or intrinsics. SLP is expected to handle 9037 // either form. 9038 // TODO: If we are canonicalizing to intrinsics, we can remove several 9039 // special-case paths that deal with selects. 9040 if (match(I, m_SMax(m_Value(), m_Value()))) 9041 return RecurKind::SMax; 9042 if (match(I, m_SMin(m_Value(), m_Value()))) 9043 return RecurKind::SMin; 9044 if (match(I, m_UMax(m_Value(), m_Value()))) 9045 return RecurKind::UMax; 9046 if (match(I, m_UMin(m_Value(), m_Value()))) 9047 return RecurKind::UMin; 9048 9049 if (auto *Select = dyn_cast<SelectInst>(I)) { 9050 // Try harder: look for min/max pattern based on instructions producing 9051 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9052 // During the intermediate stages of SLP, it's very common to have 9053 // pattern like this (since optimizeGatherSequence is run only once 9054 // at the end): 9055 // %1 = extractelement <2 x i32> %a, i32 0 9056 // %2 = extractelement <2 x i32> %a, i32 1 9057 // %cond = icmp sgt i32 %1, %2 9058 // %3 = extractelement <2 x i32> %a, i32 0 9059 // %4 = extractelement <2 x i32> %a, i32 1 9060 // %select = select i1 %cond, i32 %3, i32 %4 9061 CmpInst::Predicate Pred; 9062 Instruction *L1; 9063 Instruction *L2; 9064 9065 Value *LHS = Select->getTrueValue(); 9066 Value *RHS = Select->getFalseValue(); 9067 Value *Cond = Select->getCondition(); 9068 9069 // TODO: Support inverse predicates. 9070 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9071 if (!isa<ExtractElementInst>(RHS) || 9072 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9073 return RecurKind::None; 9074 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9075 if (!isa<ExtractElementInst>(LHS) || 9076 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9077 return RecurKind::None; 9078 } else { 9079 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9080 return RecurKind::None; 9081 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9082 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9083 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9084 return RecurKind::None; 9085 } 9086 9087 switch (Pred) { 9088 default: 9089 return RecurKind::None; 9090 case CmpInst::ICMP_SGT: 9091 case CmpInst::ICMP_SGE: 9092 return RecurKind::SMax; 9093 case CmpInst::ICMP_SLT: 9094 case CmpInst::ICMP_SLE: 9095 return RecurKind::SMin; 9096 case CmpInst::ICMP_UGT: 9097 case CmpInst::ICMP_UGE: 9098 return RecurKind::UMax; 9099 case CmpInst::ICMP_ULT: 9100 case CmpInst::ICMP_ULE: 9101 return RecurKind::UMin; 9102 } 9103 } 9104 return RecurKind::None; 9105 } 9106 9107 /// Get the index of the first operand. 9108 static unsigned getFirstOperandIndex(Instruction *I) { 9109 return isCmpSelMinMax(I) ? 1 : 0; 9110 } 9111 9112 /// Total number of operands in the reduction operation. 9113 static unsigned getNumberOfOperands(Instruction *I) { 9114 return isCmpSelMinMax(I) ? 3 : 2; 9115 } 9116 9117 /// Checks if the instruction is in basic block \p BB. 9118 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9119 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9120 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9121 auto *Sel = cast<SelectInst>(I); 9122 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9123 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9124 } 9125 return I->getParent() == BB; 9126 } 9127 9128 /// Expected number of uses for reduction operations/reduced values. 9129 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9130 if (IsCmpSelMinMax) { 9131 // SelectInst must be used twice while the condition op must have single 9132 // use only. 9133 if (auto *Sel = dyn_cast<SelectInst>(I)) 9134 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9135 return I->hasNUses(2); 9136 } 9137 9138 // Arithmetic reduction operation must be used once only. 9139 return I->hasOneUse(); 9140 } 9141 9142 /// Initializes the list of reduction operations. 9143 void initReductionOps(Instruction *I) { 9144 if (isCmpSelMinMax(I)) 9145 ReductionOps.assign(2, ReductionOpsType()); 9146 else 9147 ReductionOps.assign(1, ReductionOpsType()); 9148 } 9149 9150 /// Add all reduction operations for the reduction instruction \p I. 9151 void addReductionOps(Instruction *I) { 9152 if (isCmpSelMinMax(I)) { 9153 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9154 ReductionOps[1].emplace_back(I); 9155 } else { 9156 ReductionOps[0].emplace_back(I); 9157 } 9158 } 9159 9160 static Value *getLHS(RecurKind Kind, Instruction *I) { 9161 if (Kind == RecurKind::None) 9162 return nullptr; 9163 return I->getOperand(getFirstOperandIndex(I)); 9164 } 9165 static Value *getRHS(RecurKind Kind, Instruction *I) { 9166 if (Kind == RecurKind::None) 9167 return nullptr; 9168 return I->getOperand(getFirstOperandIndex(I) + 1); 9169 } 9170 9171 public: 9172 HorizontalReduction() = default; 9173 9174 /// Try to find a reduction tree. 9175 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9176 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9177 "Phi needs to use the binary operator"); 9178 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9179 isa<IntrinsicInst>(Inst)) && 9180 "Expected binop, select, or intrinsic for reduction matching"); 9181 RdxKind = getRdxKind(Inst); 9182 9183 // We could have a initial reductions that is not an add. 9184 // r *= v1 + v2 + v3 + v4 9185 // In such a case start looking for a tree rooted in the first '+'. 9186 if (Phi) { 9187 if (getLHS(RdxKind, Inst) == Phi) { 9188 Phi = nullptr; 9189 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9190 if (!Inst) 9191 return false; 9192 RdxKind = getRdxKind(Inst); 9193 } else if (getRHS(RdxKind, Inst) == Phi) { 9194 Phi = nullptr; 9195 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9196 if (!Inst) 9197 return false; 9198 RdxKind = getRdxKind(Inst); 9199 } 9200 } 9201 9202 if (!isVectorizable(RdxKind, Inst)) 9203 return false; 9204 9205 // Analyze "regular" integer/FP types for reductions - no target-specific 9206 // types or pointers. 9207 Type *Ty = Inst->getType(); 9208 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9209 return false; 9210 9211 // Though the ultimate reduction may have multiple uses, its condition must 9212 // have only single use. 9213 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9214 if (!Sel->getCondition()->hasOneUse()) 9215 return false; 9216 9217 ReductionRoot = Inst; 9218 9219 // The opcode for leaf values that we perform a reduction on. 9220 // For example: load(x) + load(y) + load(z) + fptoui(w) 9221 // The leaf opcode for 'w' does not match, so we don't include it as a 9222 // potential candidate for the reduction. 9223 unsigned LeafOpcode = 0; 9224 9225 // Post-order traverse the reduction tree starting at Inst. We only handle 9226 // true trees containing binary operators or selects. 9227 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9228 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9229 initReductionOps(Inst); 9230 while (!Stack.empty()) { 9231 Instruction *TreeN = Stack.back().first; 9232 unsigned EdgeToVisit = Stack.back().second++; 9233 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9234 bool IsReducedValue = TreeRdxKind != RdxKind; 9235 9236 // Postorder visit. 9237 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9238 if (IsReducedValue) 9239 ReducedVals.push_back(TreeN); 9240 else { 9241 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9242 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9243 // Check if TreeN is an extra argument of its parent operation. 9244 if (Stack.size() <= 1) { 9245 // TreeN can't be an extra argument as it is a root reduction 9246 // operation. 9247 return false; 9248 } 9249 // Yes, TreeN is an extra argument, do not add it to a list of 9250 // reduction operations. 9251 // Stack[Stack.size() - 2] always points to the parent operation. 9252 markExtraArg(Stack[Stack.size() - 2], TreeN); 9253 ExtraArgs.erase(TreeN); 9254 } else 9255 addReductionOps(TreeN); 9256 } 9257 // Retract. 9258 Stack.pop_back(); 9259 continue; 9260 } 9261 9262 // Visit operands. 9263 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9264 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9265 if (!EdgeInst) { 9266 // Edge value is not a reduction instruction or a leaf instruction. 9267 // (It may be a constant, function argument, or something else.) 9268 markExtraArg(Stack.back(), EdgeVal); 9269 continue; 9270 } 9271 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9272 // Continue analysis if the next operand is a reduction operation or 9273 // (possibly) a leaf value. If the leaf value opcode is not set, 9274 // the first met operation != reduction operation is considered as the 9275 // leaf opcode. 9276 // Only handle trees in the current basic block. 9277 // Each tree node needs to have minimal number of users except for the 9278 // ultimate reduction. 9279 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9280 if (EdgeInst != Phi && EdgeInst != Inst && 9281 hasSameParent(EdgeInst, Inst->getParent()) && 9282 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9283 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9284 if (IsRdxInst) { 9285 // We need to be able to reassociate the reduction operations. 9286 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9287 // I is an extra argument for TreeN (its parent operation). 9288 markExtraArg(Stack.back(), EdgeInst); 9289 continue; 9290 } 9291 } else if (!LeafOpcode) { 9292 LeafOpcode = EdgeInst->getOpcode(); 9293 } 9294 Stack.push_back( 9295 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9296 continue; 9297 } 9298 // I is an extra argument for TreeN (its parent operation). 9299 markExtraArg(Stack.back(), EdgeInst); 9300 } 9301 return true; 9302 } 9303 9304 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9305 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9306 // If there are a sufficient number of reduction values, reduce 9307 // to a nearby power-of-2. We can safely generate oversized 9308 // vectors and rely on the backend to split them to legal sizes. 9309 unsigned NumReducedVals = ReducedVals.size(); 9310 if (NumReducedVals < 4) 9311 return nullptr; 9312 9313 // Intersect the fast-math-flags from all reduction operations. 9314 FastMathFlags RdxFMF; 9315 RdxFMF.set(); 9316 for (ReductionOpsType &RdxOp : ReductionOps) { 9317 for (Value *RdxVal : RdxOp) { 9318 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9319 RdxFMF &= FPMO->getFastMathFlags(); 9320 } 9321 } 9322 9323 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9324 Builder.setFastMathFlags(RdxFMF); 9325 9326 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9327 // The same extra argument may be used several times, so log each attempt 9328 // to use it. 9329 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9330 assert(Pair.first && "DebugLoc must be set."); 9331 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9332 } 9333 9334 // The compare instruction of a min/max is the insertion point for new 9335 // instructions and may be replaced with a new compare instruction. 9336 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9337 assert(isa<SelectInst>(RdxRootInst) && 9338 "Expected min/max reduction to have select root instruction"); 9339 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9340 assert(isa<Instruction>(ScalarCond) && 9341 "Expected min/max reduction to have compare condition"); 9342 return cast<Instruction>(ScalarCond); 9343 }; 9344 9345 // The reduction root is used as the insertion point for new instructions, 9346 // so set it as externally used to prevent it from being deleted. 9347 ExternallyUsedValues[ReductionRoot]; 9348 SmallVector<Value *, 16> IgnoreList; 9349 for (ReductionOpsType &RdxOp : ReductionOps) 9350 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9351 9352 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9353 if (NumReducedVals > ReduxWidth) { 9354 // In the loop below, we are building a tree based on a window of 9355 // 'ReduxWidth' values. 9356 // If the operands of those values have common traits (compare predicate, 9357 // constant operand, etc), then we want to group those together to 9358 // minimize the cost of the reduction. 9359 9360 // TODO: This should be extended to count common operands for 9361 // compares and binops. 9362 9363 // Step 1: Count the number of times each compare predicate occurs. 9364 SmallDenseMap<unsigned, unsigned> PredCountMap; 9365 for (Value *RdxVal : ReducedVals) { 9366 CmpInst::Predicate Pred; 9367 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9368 ++PredCountMap[Pred]; 9369 } 9370 // Step 2: Sort the values so the most common predicates come first. 9371 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9372 CmpInst::Predicate PredA, PredB; 9373 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9374 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9375 return PredCountMap[PredA] > PredCountMap[PredB]; 9376 } 9377 return false; 9378 }); 9379 } 9380 9381 Value *VectorizedTree = nullptr; 9382 unsigned i = 0; 9383 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9384 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9385 V.buildTree(VL, IgnoreList); 9386 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9387 break; 9388 if (V.isLoadCombineReductionCandidate(RdxKind)) 9389 break; 9390 V.reorderTopToBottom(); 9391 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9392 V.buildExternalUses(ExternallyUsedValues); 9393 9394 // For a poison-safe boolean logic reduction, do not replace select 9395 // instructions with logic ops. All reduced values will be frozen (see 9396 // below) to prevent leaking poison. 9397 if (isa<SelectInst>(ReductionRoot) && 9398 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9399 NumReducedVals != ReduxWidth) 9400 break; 9401 9402 V.computeMinimumValueSizes(); 9403 9404 // Estimate cost. 9405 InstructionCost TreeCost = 9406 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9407 InstructionCost ReductionCost = 9408 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9409 InstructionCost Cost = TreeCost + ReductionCost; 9410 if (!Cost.isValid()) { 9411 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9412 return nullptr; 9413 } 9414 if (Cost >= -SLPCostThreshold) { 9415 V.getORE()->emit([&]() { 9416 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9417 cast<Instruction>(VL[0])) 9418 << "Vectorizing horizontal reduction is possible" 9419 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9420 << " and threshold " 9421 << ore::NV("Threshold", -SLPCostThreshold); 9422 }); 9423 break; 9424 } 9425 9426 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9427 << Cost << ". (HorRdx)\n"); 9428 V.getORE()->emit([&]() { 9429 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9430 cast<Instruction>(VL[0])) 9431 << "Vectorized horizontal reduction with cost " 9432 << ore::NV("Cost", Cost) << " and with tree size " 9433 << ore::NV("TreeSize", V.getTreeSize()); 9434 }); 9435 9436 // Vectorize a tree. 9437 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9438 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9439 9440 // Emit a reduction. If the root is a select (min/max idiom), the insert 9441 // point is the compare condition of that select. 9442 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9443 if (isCmpSelMinMax(RdxRootInst)) 9444 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9445 else 9446 Builder.SetInsertPoint(RdxRootInst); 9447 9448 // To prevent poison from leaking across what used to be sequential, safe, 9449 // scalar boolean logic operations, the reduction operand must be frozen. 9450 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9451 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9452 9453 Value *ReducedSubTree = 9454 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9455 9456 if (!VectorizedTree) { 9457 // Initialize the final value in the reduction. 9458 VectorizedTree = ReducedSubTree; 9459 } else { 9460 // Update the final value in the reduction. 9461 Builder.SetCurrentDebugLocation(Loc); 9462 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9463 ReducedSubTree, "op.rdx", ReductionOps); 9464 } 9465 i += ReduxWidth; 9466 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9467 } 9468 9469 if (VectorizedTree) { 9470 // Finish the reduction. 9471 for (; i < NumReducedVals; ++i) { 9472 auto *I = cast<Instruction>(ReducedVals[i]); 9473 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9474 VectorizedTree = 9475 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9476 } 9477 for (auto &Pair : ExternallyUsedValues) { 9478 // Add each externally used value to the final reduction. 9479 for (auto *I : Pair.second) { 9480 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9481 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9482 Pair.first, "op.extra", I); 9483 } 9484 } 9485 9486 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9487 9488 // Mark all scalar reduction ops for deletion, they are replaced by the 9489 // vector reductions. 9490 V.eraseInstructions(IgnoreList); 9491 } 9492 return VectorizedTree; 9493 } 9494 9495 unsigned numReductionValues() const { return ReducedVals.size(); } 9496 9497 private: 9498 /// Calculate the cost of a reduction. 9499 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9500 Value *FirstReducedVal, unsigned ReduxWidth, 9501 FastMathFlags FMF) { 9502 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9503 Type *ScalarTy = FirstReducedVal->getType(); 9504 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9505 InstructionCost VectorCost, ScalarCost; 9506 switch (RdxKind) { 9507 case RecurKind::Add: 9508 case RecurKind::Mul: 9509 case RecurKind::Or: 9510 case RecurKind::And: 9511 case RecurKind::Xor: 9512 case RecurKind::FAdd: 9513 case RecurKind::FMul: { 9514 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9515 VectorCost = 9516 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9517 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9518 break; 9519 } 9520 case RecurKind::FMax: 9521 case RecurKind::FMin: { 9522 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9523 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9524 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9525 /*IsUnsigned=*/false, CostKind); 9526 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9527 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9528 SclCondTy, RdxPred, CostKind) + 9529 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9530 SclCondTy, RdxPred, CostKind); 9531 break; 9532 } 9533 case RecurKind::SMax: 9534 case RecurKind::SMin: 9535 case RecurKind::UMax: 9536 case RecurKind::UMin: { 9537 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9538 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9539 bool IsUnsigned = 9540 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9541 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9542 CostKind); 9543 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9544 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9545 SclCondTy, RdxPred, CostKind) + 9546 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9547 SclCondTy, RdxPred, CostKind); 9548 break; 9549 } 9550 default: 9551 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9552 } 9553 9554 // Scalar cost is repeated for N-1 elements. 9555 ScalarCost *= (ReduxWidth - 1); 9556 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9557 << " for reduction that starts with " << *FirstReducedVal 9558 << " (It is a splitting reduction)\n"); 9559 return VectorCost - ScalarCost; 9560 } 9561 9562 /// Emit a horizontal reduction of the vectorized value. 9563 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9564 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9565 assert(VectorizedValue && "Need to have a vectorized tree node"); 9566 assert(isPowerOf2_32(ReduxWidth) && 9567 "We only handle power-of-two reductions for now"); 9568 assert(RdxKind != RecurKind::FMulAdd && 9569 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9570 9571 ++NumVectorInstructions; 9572 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9573 } 9574 }; 9575 9576 } // end anonymous namespace 9577 9578 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9579 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9580 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9581 9582 unsigned AggregateSize = 1; 9583 auto *IV = cast<InsertValueInst>(InsertInst); 9584 Type *CurrentType = IV->getType(); 9585 do { 9586 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9587 for (auto *Elt : ST->elements()) 9588 if (Elt != ST->getElementType(0)) // check homogeneity 9589 return None; 9590 AggregateSize *= ST->getNumElements(); 9591 CurrentType = ST->getElementType(0); 9592 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9593 AggregateSize *= AT->getNumElements(); 9594 CurrentType = AT->getElementType(); 9595 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9596 AggregateSize *= VT->getNumElements(); 9597 return AggregateSize; 9598 } else if (CurrentType->isSingleValueType()) { 9599 return AggregateSize; 9600 } else { 9601 return None; 9602 } 9603 } while (true); 9604 } 9605 9606 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9607 TargetTransformInfo *TTI, 9608 SmallVectorImpl<Value *> &BuildVectorOpds, 9609 SmallVectorImpl<Value *> &InsertElts, 9610 unsigned OperandOffset) { 9611 do { 9612 Value *InsertedOperand = LastInsertInst->getOperand(1); 9613 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9614 if (!OperandIndex) 9615 return false; 9616 if (isa<InsertElementInst>(InsertedOperand) || 9617 isa<InsertValueInst>(InsertedOperand)) { 9618 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9619 BuildVectorOpds, InsertElts, *OperandIndex)) 9620 return false; 9621 } else { 9622 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9623 InsertElts[*OperandIndex] = LastInsertInst; 9624 } 9625 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9626 } while (LastInsertInst != nullptr && 9627 (isa<InsertValueInst>(LastInsertInst) || 9628 isa<InsertElementInst>(LastInsertInst)) && 9629 LastInsertInst->hasOneUse()); 9630 return true; 9631 } 9632 9633 /// Recognize construction of vectors like 9634 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9635 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9636 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9637 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9638 /// starting from the last insertelement or insertvalue instruction. 9639 /// 9640 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9641 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9642 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9643 /// 9644 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9645 /// 9646 /// \return true if it matches. 9647 static bool findBuildAggregate(Instruction *LastInsertInst, 9648 TargetTransformInfo *TTI, 9649 SmallVectorImpl<Value *> &BuildVectorOpds, 9650 SmallVectorImpl<Value *> &InsertElts) { 9651 9652 assert((isa<InsertElementInst>(LastInsertInst) || 9653 isa<InsertValueInst>(LastInsertInst)) && 9654 "Expected insertelement or insertvalue instruction!"); 9655 9656 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9657 "Expected empty result vectors!"); 9658 9659 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9660 if (!AggregateSize) 9661 return false; 9662 BuildVectorOpds.resize(*AggregateSize); 9663 InsertElts.resize(*AggregateSize); 9664 9665 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9666 0)) { 9667 llvm::erase_value(BuildVectorOpds, nullptr); 9668 llvm::erase_value(InsertElts, nullptr); 9669 if (BuildVectorOpds.size() >= 2) 9670 return true; 9671 } 9672 9673 return false; 9674 } 9675 9676 /// Try and get a reduction value from a phi node. 9677 /// 9678 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9679 /// if they come from either \p ParentBB or a containing loop latch. 9680 /// 9681 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9682 /// if not possible. 9683 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9684 BasicBlock *ParentBB, LoopInfo *LI) { 9685 // There are situations where the reduction value is not dominated by the 9686 // reduction phi. Vectorizing such cases has been reported to cause 9687 // miscompiles. See PR25787. 9688 auto DominatedReduxValue = [&](Value *R) { 9689 return isa<Instruction>(R) && 9690 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9691 }; 9692 9693 Value *Rdx = nullptr; 9694 9695 // Return the incoming value if it comes from the same BB as the phi node. 9696 if (P->getIncomingBlock(0) == ParentBB) { 9697 Rdx = P->getIncomingValue(0); 9698 } else if (P->getIncomingBlock(1) == ParentBB) { 9699 Rdx = P->getIncomingValue(1); 9700 } 9701 9702 if (Rdx && DominatedReduxValue(Rdx)) 9703 return Rdx; 9704 9705 // Otherwise, check whether we have a loop latch to look at. 9706 Loop *BBL = LI->getLoopFor(ParentBB); 9707 if (!BBL) 9708 return nullptr; 9709 BasicBlock *BBLatch = BBL->getLoopLatch(); 9710 if (!BBLatch) 9711 return nullptr; 9712 9713 // There is a loop latch, return the incoming value if it comes from 9714 // that. This reduction pattern occasionally turns up. 9715 if (P->getIncomingBlock(0) == BBLatch) { 9716 Rdx = P->getIncomingValue(0); 9717 } else if (P->getIncomingBlock(1) == BBLatch) { 9718 Rdx = P->getIncomingValue(1); 9719 } 9720 9721 if (Rdx && DominatedReduxValue(Rdx)) 9722 return Rdx; 9723 9724 return nullptr; 9725 } 9726 9727 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9728 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9729 return true; 9730 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9731 return true; 9732 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9733 return true; 9734 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9735 return true; 9736 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9737 return true; 9738 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9739 return true; 9740 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9741 return true; 9742 return false; 9743 } 9744 9745 /// Attempt to reduce a horizontal reduction. 9746 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9747 /// with reduction operators \a Root (or one of its operands) in a basic block 9748 /// \a BB, then check if it can be done. If horizontal reduction is not found 9749 /// and root instruction is a binary operation, vectorization of the operands is 9750 /// attempted. 9751 /// \returns true if a horizontal reduction was matched and reduced or operands 9752 /// of one of the binary instruction were vectorized. 9753 /// \returns false if a horizontal reduction was not matched (or not possible) 9754 /// or no vectorization of any binary operation feeding \a Root instruction was 9755 /// performed. 9756 static bool tryToVectorizeHorReductionOrInstOperands( 9757 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9758 TargetTransformInfo *TTI, 9759 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9760 if (!ShouldVectorizeHor) 9761 return false; 9762 9763 if (!Root) 9764 return false; 9765 9766 if (Root->getParent() != BB || isa<PHINode>(Root)) 9767 return false; 9768 // Start analysis starting from Root instruction. If horizontal reduction is 9769 // found, try to vectorize it. If it is not a horizontal reduction or 9770 // vectorization is not possible or not effective, and currently analyzed 9771 // instruction is a binary operation, try to vectorize the operands, using 9772 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9773 // the same procedure considering each operand as a possible root of the 9774 // horizontal reduction. 9775 // Interrupt the process if the Root instruction itself was vectorized or all 9776 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9777 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9778 // CmpInsts so we can skip extra attempts in 9779 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9780 std::queue<std::pair<Instruction *, unsigned>> Stack; 9781 Stack.emplace(Root, 0); 9782 SmallPtrSet<Value *, 8> VisitedInstrs; 9783 SmallVector<WeakTrackingVH> PostponedInsts; 9784 bool Res = false; 9785 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9786 Value *&B1) -> Value * { 9787 bool IsBinop = matchRdxBop(Inst, B0, B1); 9788 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9789 if (IsBinop || IsSelect) { 9790 HorizontalReduction HorRdx; 9791 if (HorRdx.matchAssociativeReduction(P, Inst)) 9792 return HorRdx.tryToReduce(R, TTI); 9793 } 9794 return nullptr; 9795 }; 9796 while (!Stack.empty()) { 9797 Instruction *Inst; 9798 unsigned Level; 9799 std::tie(Inst, Level) = Stack.front(); 9800 Stack.pop(); 9801 // Do not try to analyze instruction that has already been vectorized. 9802 // This may happen when we vectorize instruction operands on a previous 9803 // iteration while stack was populated before that happened. 9804 if (R.isDeleted(Inst)) 9805 continue; 9806 Value *B0 = nullptr, *B1 = nullptr; 9807 if (Value *V = TryToReduce(Inst, B0, B1)) { 9808 Res = true; 9809 // Set P to nullptr to avoid re-analysis of phi node in 9810 // matchAssociativeReduction function unless this is the root node. 9811 P = nullptr; 9812 if (auto *I = dyn_cast<Instruction>(V)) { 9813 // Try to find another reduction. 9814 Stack.emplace(I, Level); 9815 continue; 9816 } 9817 } else { 9818 bool IsBinop = B0 && B1; 9819 if (P && IsBinop) { 9820 Inst = dyn_cast<Instruction>(B0); 9821 if (Inst == P) 9822 Inst = dyn_cast<Instruction>(B1); 9823 if (!Inst) { 9824 // Set P to nullptr to avoid re-analysis of phi node in 9825 // matchAssociativeReduction function unless this is the root node. 9826 P = nullptr; 9827 continue; 9828 } 9829 } 9830 // Set P to nullptr to avoid re-analysis of phi node in 9831 // matchAssociativeReduction function unless this is the root node. 9832 P = nullptr; 9833 // Do not try to vectorize CmpInst operands, this is done separately. 9834 // Final attempt for binop args vectorization should happen after the loop 9835 // to try to find reductions. 9836 if (!isa<CmpInst>(Inst)) 9837 PostponedInsts.push_back(Inst); 9838 } 9839 9840 // Try to vectorize operands. 9841 // Continue analysis for the instruction from the same basic block only to 9842 // save compile time. 9843 if (++Level < RecursionMaxDepth) 9844 for (auto *Op : Inst->operand_values()) 9845 if (VisitedInstrs.insert(Op).second) 9846 if (auto *I = dyn_cast<Instruction>(Op)) 9847 // Do not try to vectorize CmpInst operands, this is done 9848 // separately. 9849 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9850 I->getParent() == BB) 9851 Stack.emplace(I, Level); 9852 } 9853 // Try to vectorized binops where reductions were not found. 9854 for (Value *V : PostponedInsts) 9855 if (auto *Inst = dyn_cast<Instruction>(V)) 9856 if (!R.isDeleted(Inst)) 9857 Res |= Vectorize(Inst, R); 9858 return Res; 9859 } 9860 9861 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9862 BasicBlock *BB, BoUpSLP &R, 9863 TargetTransformInfo *TTI) { 9864 auto *I = dyn_cast_or_null<Instruction>(V); 9865 if (!I) 9866 return false; 9867 9868 if (!isa<BinaryOperator>(I)) 9869 P = nullptr; 9870 // Try to match and vectorize a horizontal reduction. 9871 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9872 return tryToVectorize(I, R); 9873 }; 9874 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9875 ExtraVectorization); 9876 } 9877 9878 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9879 BasicBlock *BB, BoUpSLP &R) { 9880 const DataLayout &DL = BB->getModule()->getDataLayout(); 9881 if (!R.canMapToVector(IVI->getType(), DL)) 9882 return false; 9883 9884 SmallVector<Value *, 16> BuildVectorOpds; 9885 SmallVector<Value *, 16> BuildVectorInsts; 9886 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9887 return false; 9888 9889 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9890 // Aggregate value is unlikely to be processed in vector register. 9891 return tryToVectorizeList(BuildVectorOpds, R); 9892 } 9893 9894 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9895 BasicBlock *BB, BoUpSLP &R) { 9896 SmallVector<Value *, 16> BuildVectorInsts; 9897 SmallVector<Value *, 16> BuildVectorOpds; 9898 SmallVector<int> Mask; 9899 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9900 (llvm::all_of( 9901 BuildVectorOpds, 9902 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9903 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9904 return false; 9905 9906 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9907 return tryToVectorizeList(BuildVectorInsts, R); 9908 } 9909 9910 template <typename T> 9911 static bool 9912 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9913 function_ref<unsigned(T *)> Limit, 9914 function_ref<bool(T *, T *)> Comparator, 9915 function_ref<bool(T *, T *)> AreCompatible, 9916 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9917 bool LimitForRegisterSize) { 9918 bool Changed = false; 9919 // Sort by type, parent, operands. 9920 stable_sort(Incoming, Comparator); 9921 9922 // Try to vectorize elements base on their type. 9923 SmallVector<T *> Candidates; 9924 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9925 // Look for the next elements with the same type, parent and operand 9926 // kinds. 9927 auto *SameTypeIt = IncIt; 9928 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9929 ++SameTypeIt; 9930 9931 // Try to vectorize them. 9932 unsigned NumElts = (SameTypeIt - IncIt); 9933 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9934 << NumElts << ")\n"); 9935 // The vectorization is a 3-state attempt: 9936 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9937 // size of maximal register at first. 9938 // 2. Try to vectorize remaining instructions with the same type, if 9939 // possible. This may result in the better vectorization results rather than 9940 // if we try just to vectorize instructions with the same/alternate opcodes. 9941 // 3. Final attempt to try to vectorize all instructions with the 9942 // same/alternate ops only, this may result in some extra final 9943 // vectorization. 9944 if (NumElts > 1 && 9945 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9946 // Success start over because instructions might have been changed. 9947 Changed = true; 9948 } else if (NumElts < Limit(*IncIt) && 9949 (Candidates.empty() || 9950 Candidates.front()->getType() == (*IncIt)->getType())) { 9951 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9952 } 9953 // Final attempt to vectorize instructions with the same types. 9954 if (Candidates.size() > 1 && 9955 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9956 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9957 // Success start over because instructions might have been changed. 9958 Changed = true; 9959 } else if (LimitForRegisterSize) { 9960 // Try to vectorize using small vectors. 9961 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9962 It != End;) { 9963 auto *SameTypeIt = It; 9964 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9965 ++SameTypeIt; 9966 unsigned NumElts = (SameTypeIt - It); 9967 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9968 /*LimitForRegisterSize=*/false)) 9969 Changed = true; 9970 It = SameTypeIt; 9971 } 9972 } 9973 Candidates.clear(); 9974 } 9975 9976 // Start over at the next instruction of a different type (or the end). 9977 IncIt = SameTypeIt; 9978 } 9979 return Changed; 9980 } 9981 9982 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9983 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9984 /// operands. If IsCompatibility is false, function implements strict weak 9985 /// ordering relation between two cmp instructions, returning true if the first 9986 /// instruction is "less" than the second, i.e. its predicate is less than the 9987 /// predicate of the second or the operands IDs are less than the operands IDs 9988 /// of the second cmp instruction. 9989 template <bool IsCompatibility> 9990 static bool compareCmp(Value *V, Value *V2, 9991 function_ref<bool(Instruction *)> IsDeleted) { 9992 auto *CI1 = cast<CmpInst>(V); 9993 auto *CI2 = cast<CmpInst>(V2); 9994 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9995 return false; 9996 if (CI1->getOperand(0)->getType()->getTypeID() < 9997 CI2->getOperand(0)->getType()->getTypeID()) 9998 return !IsCompatibility; 9999 if (CI1->getOperand(0)->getType()->getTypeID() > 10000 CI2->getOperand(0)->getType()->getTypeID()) 10001 return false; 10002 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10003 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10004 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10005 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10006 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10007 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10008 if (BasePred1 < BasePred2) 10009 return !IsCompatibility; 10010 if (BasePred1 > BasePred2) 10011 return false; 10012 // Compare operands. 10013 bool LEPreds = Pred1 <= Pred2; 10014 bool GEPreds = Pred1 >= Pred2; 10015 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10016 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10017 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10018 if (Op1->getValueID() < Op2->getValueID()) 10019 return !IsCompatibility; 10020 if (Op1->getValueID() > Op2->getValueID()) 10021 return false; 10022 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10023 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10024 if (I1->getParent() != I2->getParent()) 10025 return false; 10026 InstructionsState S = getSameOpcode({I1, I2}); 10027 if (S.getOpcode()) 10028 continue; 10029 return false; 10030 } 10031 } 10032 return IsCompatibility; 10033 } 10034 10035 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10036 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10037 bool AtTerminator) { 10038 bool OpsChanged = false; 10039 SmallVector<Instruction *, 4> PostponedCmps; 10040 for (auto *I : reverse(Instructions)) { 10041 if (R.isDeleted(I)) 10042 continue; 10043 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10044 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10045 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10046 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10047 else if (isa<CmpInst>(I)) 10048 PostponedCmps.push_back(I); 10049 } 10050 if (AtTerminator) { 10051 // Try to find reductions first. 10052 for (Instruction *I : PostponedCmps) { 10053 if (R.isDeleted(I)) 10054 continue; 10055 for (Value *Op : I->operands()) 10056 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10057 } 10058 // Try to vectorize operands as vector bundles. 10059 for (Instruction *I : PostponedCmps) { 10060 if (R.isDeleted(I)) 10061 continue; 10062 OpsChanged |= tryToVectorize(I, R); 10063 } 10064 // Try to vectorize list of compares. 10065 // Sort by type, compare predicate, etc. 10066 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10067 return compareCmp<false>(V, V2, 10068 [&R](Instruction *I) { return R.isDeleted(I); }); 10069 }; 10070 10071 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10072 if (V1 == V2) 10073 return true; 10074 return compareCmp<true>(V1, V2, 10075 [&R](Instruction *I) { return R.isDeleted(I); }); 10076 }; 10077 auto Limit = [&R](Value *V) { 10078 unsigned EltSize = R.getVectorElementSize(V); 10079 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10080 }; 10081 10082 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10083 OpsChanged |= tryToVectorizeSequence<Value>( 10084 Vals, Limit, CompareSorter, AreCompatibleCompares, 10085 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10086 // Exclude possible reductions from other blocks. 10087 bool ArePossiblyReducedInOtherBlock = 10088 any_of(Candidates, [](Value *V) { 10089 return any_of(V->users(), [V](User *U) { 10090 return isa<SelectInst>(U) && 10091 cast<SelectInst>(U)->getParent() != 10092 cast<Instruction>(V)->getParent(); 10093 }); 10094 }); 10095 if (ArePossiblyReducedInOtherBlock) 10096 return false; 10097 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10098 }, 10099 /*LimitForRegisterSize=*/true); 10100 Instructions.clear(); 10101 } else { 10102 // Insert in reverse order since the PostponedCmps vector was filled in 10103 // reverse order. 10104 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10105 } 10106 return OpsChanged; 10107 } 10108 10109 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10110 bool Changed = false; 10111 SmallVector<Value *, 4> Incoming; 10112 SmallPtrSet<Value *, 16> VisitedInstrs; 10113 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10114 // node. Allows better to identify the chains that can be vectorized in the 10115 // better way. 10116 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10117 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10118 assert(isValidElementType(V1->getType()) && 10119 isValidElementType(V2->getType()) && 10120 "Expected vectorizable types only."); 10121 // It is fine to compare type IDs here, since we expect only vectorizable 10122 // types, like ints, floats and pointers, we don't care about other type. 10123 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10124 return true; 10125 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10126 return false; 10127 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10128 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10129 if (Opcodes1.size() < Opcodes2.size()) 10130 return true; 10131 if (Opcodes1.size() > Opcodes2.size()) 10132 return false; 10133 Optional<bool> ConstOrder; 10134 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10135 // Undefs are compatible with any other value. 10136 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10137 if (!ConstOrder) 10138 ConstOrder = 10139 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10140 continue; 10141 } 10142 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10143 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10144 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10145 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10146 if (!NodeI1) 10147 return NodeI2 != nullptr; 10148 if (!NodeI2) 10149 return false; 10150 assert((NodeI1 == NodeI2) == 10151 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10152 "Different nodes should have different DFS numbers"); 10153 if (NodeI1 != NodeI2) 10154 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10155 InstructionsState S = getSameOpcode({I1, I2}); 10156 if (S.getOpcode()) 10157 continue; 10158 return I1->getOpcode() < I2->getOpcode(); 10159 } 10160 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10161 if (!ConstOrder) 10162 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10163 continue; 10164 } 10165 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10166 return true; 10167 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10168 return false; 10169 } 10170 return ConstOrder && *ConstOrder; 10171 }; 10172 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10173 if (V1 == V2) 10174 return true; 10175 if (V1->getType() != V2->getType()) 10176 return false; 10177 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10178 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10179 if (Opcodes1.size() != Opcodes2.size()) 10180 return false; 10181 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10182 // Undefs are compatible with any other value. 10183 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10184 continue; 10185 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10186 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10187 if (I1->getParent() != I2->getParent()) 10188 return false; 10189 InstructionsState S = getSameOpcode({I1, I2}); 10190 if (S.getOpcode()) 10191 continue; 10192 return false; 10193 } 10194 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10195 continue; 10196 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10197 return false; 10198 } 10199 return true; 10200 }; 10201 auto Limit = [&R](Value *V) { 10202 unsigned EltSize = R.getVectorElementSize(V); 10203 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10204 }; 10205 10206 bool HaveVectorizedPhiNodes = false; 10207 do { 10208 // Collect the incoming values from the PHIs. 10209 Incoming.clear(); 10210 for (Instruction &I : *BB) { 10211 PHINode *P = dyn_cast<PHINode>(&I); 10212 if (!P) 10213 break; 10214 10215 // No need to analyze deleted, vectorized and non-vectorizable 10216 // instructions. 10217 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10218 isValidElementType(P->getType())) 10219 Incoming.push_back(P); 10220 } 10221 10222 // Find the corresponding non-phi nodes for better matching when trying to 10223 // build the tree. 10224 for (Value *V : Incoming) { 10225 SmallVectorImpl<Value *> &Opcodes = 10226 PHIToOpcodes.try_emplace(V).first->getSecond(); 10227 if (!Opcodes.empty()) 10228 continue; 10229 SmallVector<Value *, 4> Nodes(1, V); 10230 SmallPtrSet<Value *, 4> Visited; 10231 while (!Nodes.empty()) { 10232 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10233 if (!Visited.insert(PHI).second) 10234 continue; 10235 for (Value *V : PHI->incoming_values()) { 10236 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10237 Nodes.push_back(PHI1); 10238 continue; 10239 } 10240 Opcodes.emplace_back(V); 10241 } 10242 } 10243 } 10244 10245 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10246 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10247 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10248 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10249 }, 10250 /*LimitForRegisterSize=*/true); 10251 Changed |= HaveVectorizedPhiNodes; 10252 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10253 } while (HaveVectorizedPhiNodes); 10254 10255 VisitedInstrs.clear(); 10256 10257 SmallVector<Instruction *, 8> PostProcessInstructions; 10258 SmallDenseSet<Instruction *, 4> KeyNodes; 10259 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10260 // Skip instructions with scalable type. The num of elements is unknown at 10261 // compile-time for scalable type. 10262 if (isa<ScalableVectorType>(it->getType())) 10263 continue; 10264 10265 // Skip instructions marked for the deletion. 10266 if (R.isDeleted(&*it)) 10267 continue; 10268 // We may go through BB multiple times so skip the one we have checked. 10269 if (!VisitedInstrs.insert(&*it).second) { 10270 if (it->use_empty() && KeyNodes.contains(&*it) && 10271 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10272 it->isTerminator())) { 10273 // We would like to start over since some instructions are deleted 10274 // and the iterator may become invalid value. 10275 Changed = true; 10276 it = BB->begin(); 10277 e = BB->end(); 10278 } 10279 continue; 10280 } 10281 10282 if (isa<DbgInfoIntrinsic>(it)) 10283 continue; 10284 10285 // Try to vectorize reductions that use PHINodes. 10286 if (PHINode *P = dyn_cast<PHINode>(it)) { 10287 // Check that the PHI is a reduction PHI. 10288 if (P->getNumIncomingValues() == 2) { 10289 // Try to match and vectorize a horizontal reduction. 10290 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10291 TTI)) { 10292 Changed = true; 10293 it = BB->begin(); 10294 e = BB->end(); 10295 continue; 10296 } 10297 } 10298 // Try to vectorize the incoming values of the PHI, to catch reductions 10299 // that feed into PHIs. 10300 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10301 // Skip if the incoming block is the current BB for now. Also, bypass 10302 // unreachable IR for efficiency and to avoid crashing. 10303 // TODO: Collect the skipped incoming values and try to vectorize them 10304 // after processing BB. 10305 if (BB == P->getIncomingBlock(I) || 10306 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10307 continue; 10308 10309 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10310 P->getIncomingBlock(I), R, TTI); 10311 } 10312 continue; 10313 } 10314 10315 // Ran into an instruction without users, like terminator, or function call 10316 // with ignored return value, store. Ignore unused instructions (basing on 10317 // instruction type, except for CallInst and InvokeInst). 10318 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10319 isa<InvokeInst>(it))) { 10320 KeyNodes.insert(&*it); 10321 bool OpsChanged = false; 10322 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10323 for (auto *V : it->operand_values()) { 10324 // Try to match and vectorize a horizontal reduction. 10325 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10326 } 10327 } 10328 // Start vectorization of post-process list of instructions from the 10329 // top-tree instructions to try to vectorize as many instructions as 10330 // possible. 10331 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10332 it->isTerminator()); 10333 if (OpsChanged) { 10334 // We would like to start over since some instructions are deleted 10335 // and the iterator may become invalid value. 10336 Changed = true; 10337 it = BB->begin(); 10338 e = BB->end(); 10339 continue; 10340 } 10341 } 10342 10343 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10344 isa<InsertValueInst>(it)) 10345 PostProcessInstructions.push_back(&*it); 10346 } 10347 10348 return Changed; 10349 } 10350 10351 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10352 auto Changed = false; 10353 for (auto &Entry : GEPs) { 10354 // If the getelementptr list has fewer than two elements, there's nothing 10355 // to do. 10356 if (Entry.second.size() < 2) 10357 continue; 10358 10359 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10360 << Entry.second.size() << ".\n"); 10361 10362 // Process the GEP list in chunks suitable for the target's supported 10363 // vector size. If a vector register can't hold 1 element, we are done. We 10364 // are trying to vectorize the index computations, so the maximum number of 10365 // elements is based on the size of the index expression, rather than the 10366 // size of the GEP itself (the target's pointer size). 10367 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10368 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10369 if (MaxVecRegSize < EltSize) 10370 continue; 10371 10372 unsigned MaxElts = MaxVecRegSize / EltSize; 10373 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10374 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10375 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10376 10377 // Initialize a set a candidate getelementptrs. Note that we use a 10378 // SetVector here to preserve program order. If the index computations 10379 // are vectorizable and begin with loads, we want to minimize the chance 10380 // of having to reorder them later. 10381 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10382 10383 // Some of the candidates may have already been vectorized after we 10384 // initially collected them. If so, they are marked as deleted, so remove 10385 // them from the set of candidates. 10386 Candidates.remove_if( 10387 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10388 10389 // Remove from the set of candidates all pairs of getelementptrs with 10390 // constant differences. Such getelementptrs are likely not good 10391 // candidates for vectorization in a bottom-up phase since one can be 10392 // computed from the other. We also ensure all candidate getelementptr 10393 // indices are unique. 10394 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10395 auto *GEPI = GEPList[I]; 10396 if (!Candidates.count(GEPI)) 10397 continue; 10398 auto *SCEVI = SE->getSCEV(GEPList[I]); 10399 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10400 auto *GEPJ = GEPList[J]; 10401 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10402 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10403 Candidates.remove(GEPI); 10404 Candidates.remove(GEPJ); 10405 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10406 Candidates.remove(GEPJ); 10407 } 10408 } 10409 } 10410 10411 // We break out of the above computation as soon as we know there are 10412 // fewer than two candidates remaining. 10413 if (Candidates.size() < 2) 10414 continue; 10415 10416 // Add the single, non-constant index of each candidate to the bundle. We 10417 // ensured the indices met these constraints when we originally collected 10418 // the getelementptrs. 10419 SmallVector<Value *, 16> Bundle(Candidates.size()); 10420 auto BundleIndex = 0u; 10421 for (auto *V : Candidates) { 10422 auto *GEP = cast<GetElementPtrInst>(V); 10423 auto *GEPIdx = GEP->idx_begin()->get(); 10424 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10425 Bundle[BundleIndex++] = GEPIdx; 10426 } 10427 10428 // Try and vectorize the indices. We are currently only interested in 10429 // gather-like cases of the form: 10430 // 10431 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10432 // 10433 // where the loads of "a", the loads of "b", and the subtractions can be 10434 // performed in parallel. It's likely that detecting this pattern in a 10435 // bottom-up phase will be simpler and less costly than building a 10436 // full-blown top-down phase beginning at the consecutive loads. 10437 Changed |= tryToVectorizeList(Bundle, R); 10438 } 10439 } 10440 return Changed; 10441 } 10442 10443 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10444 bool Changed = false; 10445 // Sort by type, base pointers and values operand. Value operands must be 10446 // compatible (have the same opcode, same parent), otherwise it is 10447 // definitely not profitable to try to vectorize them. 10448 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10449 if (V->getPointerOperandType()->getTypeID() < 10450 V2->getPointerOperandType()->getTypeID()) 10451 return true; 10452 if (V->getPointerOperandType()->getTypeID() > 10453 V2->getPointerOperandType()->getTypeID()) 10454 return false; 10455 // UndefValues are compatible with all other values. 10456 if (isa<UndefValue>(V->getValueOperand()) || 10457 isa<UndefValue>(V2->getValueOperand())) 10458 return false; 10459 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10460 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10461 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10462 DT->getNode(I1->getParent()); 10463 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10464 DT->getNode(I2->getParent()); 10465 assert(NodeI1 && "Should only process reachable instructions"); 10466 assert(NodeI1 && "Should only process reachable instructions"); 10467 assert((NodeI1 == NodeI2) == 10468 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10469 "Different nodes should have different DFS numbers"); 10470 if (NodeI1 != NodeI2) 10471 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10472 InstructionsState S = getSameOpcode({I1, I2}); 10473 if (S.getOpcode()) 10474 return false; 10475 return I1->getOpcode() < I2->getOpcode(); 10476 } 10477 if (isa<Constant>(V->getValueOperand()) && 10478 isa<Constant>(V2->getValueOperand())) 10479 return false; 10480 return V->getValueOperand()->getValueID() < 10481 V2->getValueOperand()->getValueID(); 10482 }; 10483 10484 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10485 if (V1 == V2) 10486 return true; 10487 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10488 return false; 10489 // Undefs are compatible with any other value. 10490 if (isa<UndefValue>(V1->getValueOperand()) || 10491 isa<UndefValue>(V2->getValueOperand())) 10492 return true; 10493 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10494 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10495 if (I1->getParent() != I2->getParent()) 10496 return false; 10497 InstructionsState S = getSameOpcode({I1, I2}); 10498 return S.getOpcode() > 0; 10499 } 10500 if (isa<Constant>(V1->getValueOperand()) && 10501 isa<Constant>(V2->getValueOperand())) 10502 return true; 10503 return V1->getValueOperand()->getValueID() == 10504 V2->getValueOperand()->getValueID(); 10505 }; 10506 auto Limit = [&R, this](StoreInst *SI) { 10507 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10508 return R.getMinVF(EltSize); 10509 }; 10510 10511 // Attempt to sort and vectorize each of the store-groups. 10512 for (auto &Pair : Stores) { 10513 if (Pair.second.size() < 2) 10514 continue; 10515 10516 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10517 << Pair.second.size() << ".\n"); 10518 10519 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10520 continue; 10521 10522 Changed |= tryToVectorizeSequence<StoreInst>( 10523 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10524 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10525 return vectorizeStores(Candidates, R); 10526 }, 10527 /*LimitForRegisterSize=*/false); 10528 } 10529 return Changed; 10530 } 10531 10532 char SLPVectorizer::ID = 0; 10533 10534 static const char lv_name[] = "SLP Vectorizer"; 10535 10536 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10537 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10538 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10539 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10540 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10541 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10542 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10543 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10544 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10545 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10546 10547 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10548