1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static Optional<unsigned> getExtractIndex(Instruction *E) { 456 unsigned Opcode = E->getOpcode(); 457 assert((Opcode == Instruction::ExtractElement || 458 Opcode == Instruction::ExtractValue) && 459 "Expected extractelement or extractvalue instruction."); 460 if (Opcode == Instruction::ExtractElement) { 461 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 462 if (!CI) 463 return None; 464 return CI->getZExtValue(); 465 } 466 ExtractValueInst *EI = cast<ExtractValueInst>(E); 467 if (EI->getNumIndices() != 1) 468 return None; 469 return *EI->idx_begin(); 470 } 471 472 /// \returns True if in-tree use also needs extract. This refers to 473 /// possible scalar operand in vectorized instruction. 474 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 475 TargetLibraryInfo *TLI) { 476 unsigned Opcode = UserInst->getOpcode(); 477 switch (Opcode) { 478 case Instruction::Load: { 479 LoadInst *LI = cast<LoadInst>(UserInst); 480 return (LI->getPointerOperand() == Scalar); 481 } 482 case Instruction::Store: { 483 StoreInst *SI = cast<StoreInst>(UserInst); 484 return (SI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Call: { 487 CallInst *CI = cast<CallInst>(UserInst); 488 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 489 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 490 return (CI->getArgOperand(1) == Scalar); 491 } 492 LLVM_FALLTHROUGH; 493 } 494 default: 495 return false; 496 } 497 } 498 499 /// \returns the AA location that is being access by the instruction. 500 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 501 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 502 return MemoryLocation::get(SI); 503 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 504 return MemoryLocation::get(LI); 505 return MemoryLocation(); 506 } 507 508 /// \returns True if the instruction is not a volatile or atomic load/store. 509 static bool isSimple(Instruction *I) { 510 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 511 return LI->isSimple(); 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return SI->isSimple(); 514 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 515 return !MI->isVolatile(); 516 return true; 517 } 518 519 namespace llvm { 520 521 namespace slpvectorizer { 522 523 /// Bottom Up SLP Vectorizer. 524 class BoUpSLP { 525 public: 526 using ValueList = SmallVector<Value *, 8>; 527 using InstrList = SmallVector<Instruction *, 16>; 528 using ValueSet = SmallPtrSet<Value *, 16>; 529 using StoreList = SmallVector<StoreInst *, 8>; 530 using ExtraValueToDebugLocsMap = 531 MapVector<Value *, SmallVector<Instruction *, 2>>; 532 533 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 534 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 535 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 536 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 537 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 538 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 539 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 540 // Use the vector register size specified by the target unless overridden 541 // by a command-line option. 542 // TODO: It would be better to limit the vectorization factor based on 543 // data type rather than just register size. For example, x86 AVX has 544 // 256-bit registers, but it does not support integer operations 545 // at that width (that requires AVX2). 546 if (MaxVectorRegSizeOption.getNumOccurrences()) 547 MaxVecRegSize = MaxVectorRegSizeOption; 548 else 549 MaxVecRegSize = TTI->getRegisterBitWidth(true); 550 551 if (MinVectorRegSizeOption.getNumOccurrences()) 552 MinVecRegSize = MinVectorRegSizeOption; 553 else 554 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 555 } 556 557 /// Vectorize the tree that starts with the elements in \p VL. 558 /// Returns the vectorized root. 559 Value *vectorizeTree(); 560 561 /// Vectorize the tree but with the list of externally used values \p 562 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 563 /// generated extractvalue instructions. 564 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 565 566 /// \returns the cost incurred by unwanted spills and fills, caused by 567 /// holding live values over call sites. 568 int getSpillCost(); 569 570 /// \returns the vectorization cost of the subtree that starts at \p VL. 571 /// A negative number means that this is profitable. 572 int getTreeCost(); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 576 void buildTree(ArrayRef<Value *> Roots, 577 ArrayRef<Value *> UserIgnoreLst = None); 578 579 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 580 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 581 /// into account (anf updating it, if required) list of externally used 582 /// values stored in \p ExternallyUsedValues. 583 void buildTree(ArrayRef<Value *> Roots, 584 ExtraValueToDebugLocsMap &ExternallyUsedValues, 585 ArrayRef<Value *> UserIgnoreLst = None); 586 587 /// Clear the internal data structures that are created by 'buildTree'. 588 void deleteTree() { 589 VectorizableTree.clear(); 590 ScalarToTreeEntry.clear(); 591 MustGather.clear(); 592 ExternalUses.clear(); 593 NumOpsWantToKeepOrder.clear(); 594 NumOpsWantToKeepOriginalOrder = 0; 595 for (auto &Iter : BlocksSchedules) { 596 BlockScheduling *BS = Iter.second.get(); 597 BS->clear(); 598 } 599 MinBWs.clear(); 600 } 601 602 unsigned getTreeSize() const { return VectorizableTree.size(); } 603 604 /// Perform LICM and CSE on the newly generated gather sequences. 605 void optimizeGatherSequence(); 606 607 /// \returns The best order of instructions for vectorization. 608 Optional<ArrayRef<unsigned>> bestOrder() const { 609 auto I = std::max_element( 610 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 611 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 612 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 613 return D1.second < D2.second; 614 }); 615 if (I == NumOpsWantToKeepOrder.end() || 616 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 617 return None; 618 619 return makeArrayRef(I->getFirst()); 620 } 621 622 /// \return The vector element size in bits to use when vectorizing the 623 /// expression tree ending at \p V. If V is a store, the size is the width of 624 /// the stored value. Otherwise, the size is the width of the largest loaded 625 /// value reaching V. This method is used by the vectorizer to calculate 626 /// vectorization factors. 627 unsigned getVectorElementSize(Value *V); 628 629 /// Compute the minimum type sizes required to represent the entries in a 630 /// vectorizable tree. 631 void computeMinimumValueSizes(); 632 633 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 634 unsigned getMaxVecRegSize() const { 635 return MaxVecRegSize; 636 } 637 638 // \returns minimum vector register size as set by cl::opt. 639 unsigned getMinVecRegSize() const { 640 return MinVecRegSize; 641 } 642 643 /// Check if ArrayType or StructType is isomorphic to some VectorType. 644 /// 645 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 646 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 647 648 /// \returns True if the VectorizableTree is both tiny and not fully 649 /// vectorizable. We do not vectorize such trees. 650 bool isTreeTinyAndNotFullyVectorizable(); 651 652 OptimizationRemarkEmitter *getORE() { return ORE; } 653 654 private: 655 struct TreeEntry; 656 657 /// Checks if all users of \p I are the part of the vectorization tree. 658 bool areAllUsersVectorized(Instruction *I) const; 659 660 /// \returns the cost of the vectorizable entry. 661 int getEntryCost(TreeEntry *E); 662 663 /// This is the recursive part of buildTree. 664 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 665 666 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 667 /// be vectorized to use the original vector (or aggregate "bitcast" to a 668 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 669 /// returns false, setting \p CurrentOrder to either an empty vector or a 670 /// non-identity permutation that allows to reuse extract instructions. 671 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 672 SmallVectorImpl<unsigned> &CurrentOrder) const; 673 674 /// Vectorize a single entry in the tree. 675 Value *vectorizeTree(TreeEntry *E); 676 677 /// Vectorize a single entry in the tree, starting in \p VL. 678 Value *vectorizeTree(ArrayRef<Value *> VL); 679 680 /// \returns the scalarization cost for this type. Scalarization in this 681 /// context means the creation of vectors from a group of scalars. 682 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 683 684 /// \returns the scalarization cost for this list of values. Assuming that 685 /// this subtree gets vectorized, we may need to extract the values from the 686 /// roots. This method calculates the cost of extracting the values. 687 int getGatherCost(ArrayRef<Value *> VL); 688 689 /// Set the Builder insert point to one after the last instruction in 690 /// the bundle 691 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 692 693 /// \returns a vector from a collection of scalars in \p VL. 694 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 695 696 /// \returns whether the VectorizableTree is fully vectorizable and will 697 /// be beneficial even the tree height is tiny. 698 bool isFullyVectorizableTinyTree(); 699 700 /// \reorder commutative operands in alt shuffle if they result in 701 /// vectorized code. 702 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 703 SmallVectorImpl<Value *> &Left, 704 SmallVectorImpl<Value *> &Right); 705 706 /// \reorder commutative operands to get better probability of 707 /// generating vectorized code. 708 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 709 SmallVectorImpl<Value *> &Left, 710 SmallVectorImpl<Value *> &Right); 711 struct TreeEntry { 712 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 713 714 /// \returns true if the scalars in VL are equal to this entry. 715 bool isSame(ArrayRef<Value *> VL) const { 716 if (VL.size() == Scalars.size()) 717 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 718 return VL.size() == ReuseShuffleIndices.size() && 719 std::equal( 720 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 721 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 722 } 723 724 /// A vector of scalars. 725 ValueList Scalars; 726 727 /// The Scalars are vectorized into this value. It is initialized to Null. 728 Value *VectorizedValue = nullptr; 729 730 /// Do we need to gather this sequence ? 731 bool NeedToGather = false; 732 733 /// Does this sequence require some shuffling? 734 SmallVector<unsigned, 4> ReuseShuffleIndices; 735 736 /// Does this entry require reordering? 737 ArrayRef<unsigned> ReorderIndices; 738 739 /// Points back to the VectorizableTree. 740 /// 741 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 742 /// to be a pointer and needs to be able to initialize the child iterator. 743 /// Thus we need a reference back to the container to translate the indices 744 /// to entries. 745 std::vector<TreeEntry> &Container; 746 747 /// The TreeEntry index containing the user of this entry. We can actually 748 /// have multiple users so the data structure is not truly a tree. 749 SmallVector<int, 1> UserTreeIndices; 750 }; 751 752 /// Create a new VectorizableTree entry. 753 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 754 ArrayRef<unsigned> ReuseShuffleIndices = None, 755 ArrayRef<unsigned> ReorderIndices = None) { 756 VectorizableTree.emplace_back(VectorizableTree); 757 int idx = VectorizableTree.size() - 1; 758 TreeEntry *Last = &VectorizableTree[idx]; 759 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 760 Last->NeedToGather = !Vectorized; 761 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 762 ReuseShuffleIndices.end()); 763 Last->ReorderIndices = ReorderIndices; 764 if (Vectorized) { 765 for (int i = 0, e = VL.size(); i != e; ++i) { 766 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 767 ScalarToTreeEntry[VL[i]] = idx; 768 } 769 } else { 770 MustGather.insert(VL.begin(), VL.end()); 771 } 772 773 if (UserTreeIdx >= 0) 774 Last->UserTreeIndices.push_back(UserTreeIdx); 775 UserTreeIdx = idx; 776 } 777 778 /// -- Vectorization State -- 779 /// Holds all of the tree entries. 780 std::vector<TreeEntry> VectorizableTree; 781 782 TreeEntry *getTreeEntry(Value *V) { 783 auto I = ScalarToTreeEntry.find(V); 784 if (I != ScalarToTreeEntry.end()) 785 return &VectorizableTree[I->second]; 786 return nullptr; 787 } 788 789 /// Maps a specific scalar to its tree entry. 790 SmallDenseMap<Value*, int> ScalarToTreeEntry; 791 792 /// A list of scalars that we found that we need to keep as scalars. 793 ValueSet MustGather; 794 795 /// This POD struct describes one external user in the vectorized tree. 796 struct ExternalUser { 797 ExternalUser(Value *S, llvm::User *U, int L) 798 : Scalar(S), User(U), Lane(L) {} 799 800 // Which scalar in our function. 801 Value *Scalar; 802 803 // Which user that uses the scalar. 804 llvm::User *User; 805 806 // Which lane does the scalar belong to. 807 int Lane; 808 }; 809 using UserList = SmallVector<ExternalUser, 16>; 810 811 /// Checks if two instructions may access the same memory. 812 /// 813 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 814 /// is invariant in the calling loop. 815 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 816 Instruction *Inst2) { 817 // First check if the result is already in the cache. 818 AliasCacheKey key = std::make_pair(Inst1, Inst2); 819 Optional<bool> &result = AliasCache[key]; 820 if (result.hasValue()) { 821 return result.getValue(); 822 } 823 MemoryLocation Loc2 = getLocation(Inst2, AA); 824 bool aliased = true; 825 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 826 // Do the alias check. 827 aliased = AA->alias(Loc1, Loc2); 828 } 829 // Store the result in the cache. 830 result = aliased; 831 return aliased; 832 } 833 834 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 835 836 /// Cache for alias results. 837 /// TODO: consider moving this to the AliasAnalysis itself. 838 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 839 840 /// Removes an instruction from its block and eventually deletes it. 841 /// It's like Instruction::eraseFromParent() except that the actual deletion 842 /// is delayed until BoUpSLP is destructed. 843 /// This is required to ensure that there are no incorrect collisions in the 844 /// AliasCache, which can happen if a new instruction is allocated at the 845 /// same address as a previously deleted instruction. 846 void eraseInstruction(Instruction *I) { 847 I->removeFromParent(); 848 I->dropAllReferences(); 849 DeletedInstructions.emplace_back(I); 850 } 851 852 /// Temporary store for deleted instructions. Instructions will be deleted 853 /// eventually when the BoUpSLP is destructed. 854 SmallVector<unique_value, 8> DeletedInstructions; 855 856 /// A list of values that need to extracted out of the tree. 857 /// This list holds pairs of (Internal Scalar : External User). External User 858 /// can be nullptr, it means that this Internal Scalar will be used later, 859 /// after vectorization. 860 UserList ExternalUses; 861 862 /// Values used only by @llvm.assume calls. 863 SmallPtrSet<const Value *, 32> EphValues; 864 865 /// Holds all of the instructions that we gathered. 866 SetVector<Instruction *> GatherSeq; 867 868 /// A list of blocks that we are going to CSE. 869 SetVector<BasicBlock *> CSEBlocks; 870 871 /// Contains all scheduling relevant data for an instruction. 872 /// A ScheduleData either represents a single instruction or a member of an 873 /// instruction bundle (= a group of instructions which is combined into a 874 /// vector instruction). 875 struct ScheduleData { 876 // The initial value for the dependency counters. It means that the 877 // dependencies are not calculated yet. 878 enum { InvalidDeps = -1 }; 879 880 ScheduleData() = default; 881 882 void init(int BlockSchedulingRegionID, Value *OpVal) { 883 FirstInBundle = this; 884 NextInBundle = nullptr; 885 NextLoadStore = nullptr; 886 IsScheduled = false; 887 SchedulingRegionID = BlockSchedulingRegionID; 888 UnscheduledDepsInBundle = UnscheduledDeps; 889 clearDependencies(); 890 OpValue = OpVal; 891 } 892 893 /// Returns true if the dependency information has been calculated. 894 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 895 896 /// Returns true for single instructions and for bundle representatives 897 /// (= the head of a bundle). 898 bool isSchedulingEntity() const { return FirstInBundle == this; } 899 900 /// Returns true if it represents an instruction bundle and not only a 901 /// single instruction. 902 bool isPartOfBundle() const { 903 return NextInBundle != nullptr || FirstInBundle != this; 904 } 905 906 /// Returns true if it is ready for scheduling, i.e. it has no more 907 /// unscheduled depending instructions/bundles. 908 bool isReady() const { 909 assert(isSchedulingEntity() && 910 "can't consider non-scheduling entity for ready list"); 911 return UnscheduledDepsInBundle == 0 && !IsScheduled; 912 } 913 914 /// Modifies the number of unscheduled dependencies, also updating it for 915 /// the whole bundle. 916 int incrementUnscheduledDeps(int Incr) { 917 UnscheduledDeps += Incr; 918 return FirstInBundle->UnscheduledDepsInBundle += Incr; 919 } 920 921 /// Sets the number of unscheduled dependencies to the number of 922 /// dependencies. 923 void resetUnscheduledDeps() { 924 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 925 } 926 927 /// Clears all dependency information. 928 void clearDependencies() { 929 Dependencies = InvalidDeps; 930 resetUnscheduledDeps(); 931 MemoryDependencies.clear(); 932 } 933 934 void dump(raw_ostream &os) const { 935 if (!isSchedulingEntity()) { 936 os << "/ " << *Inst; 937 } else if (NextInBundle) { 938 os << '[' << *Inst; 939 ScheduleData *SD = NextInBundle; 940 while (SD) { 941 os << ';' << *SD->Inst; 942 SD = SD->NextInBundle; 943 } 944 os << ']'; 945 } else { 946 os << *Inst; 947 } 948 } 949 950 Instruction *Inst = nullptr; 951 952 /// Points to the head in an instruction bundle (and always to this for 953 /// single instructions). 954 ScheduleData *FirstInBundle = nullptr; 955 956 /// Single linked list of all instructions in a bundle. Null if it is a 957 /// single instruction. 958 ScheduleData *NextInBundle = nullptr; 959 960 /// Single linked list of all memory instructions (e.g. load, store, call) 961 /// in the block - until the end of the scheduling region. 962 ScheduleData *NextLoadStore = nullptr; 963 964 /// The dependent memory instructions. 965 /// This list is derived on demand in calculateDependencies(). 966 SmallVector<ScheduleData *, 4> MemoryDependencies; 967 968 /// This ScheduleData is in the current scheduling region if this matches 969 /// the current SchedulingRegionID of BlockScheduling. 970 int SchedulingRegionID = 0; 971 972 /// Used for getting a "good" final ordering of instructions. 973 int SchedulingPriority = 0; 974 975 /// The number of dependencies. Constitutes of the number of users of the 976 /// instruction plus the number of dependent memory instructions (if any). 977 /// This value is calculated on demand. 978 /// If InvalidDeps, the number of dependencies is not calculated yet. 979 int Dependencies = InvalidDeps; 980 981 /// The number of dependencies minus the number of dependencies of scheduled 982 /// instructions. As soon as this is zero, the instruction/bundle gets ready 983 /// for scheduling. 984 /// Note that this is negative as long as Dependencies is not calculated. 985 int UnscheduledDeps = InvalidDeps; 986 987 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 988 /// single instructions. 989 int UnscheduledDepsInBundle = InvalidDeps; 990 991 /// True if this instruction is scheduled (or considered as scheduled in the 992 /// dry-run). 993 bool IsScheduled = false; 994 995 /// Opcode of the current instruction in the schedule data. 996 Value *OpValue = nullptr; 997 }; 998 999 #ifndef NDEBUG 1000 friend inline raw_ostream &operator<<(raw_ostream &os, 1001 const BoUpSLP::ScheduleData &SD) { 1002 SD.dump(os); 1003 return os; 1004 } 1005 #endif 1006 1007 friend struct GraphTraits<BoUpSLP *>; 1008 friend struct DOTGraphTraits<BoUpSLP *>; 1009 1010 /// Contains all scheduling data for a basic block. 1011 struct BlockScheduling { 1012 BlockScheduling(BasicBlock *BB) 1013 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1014 1015 void clear() { 1016 ReadyInsts.clear(); 1017 ScheduleStart = nullptr; 1018 ScheduleEnd = nullptr; 1019 FirstLoadStoreInRegion = nullptr; 1020 LastLoadStoreInRegion = nullptr; 1021 1022 // Reduce the maximum schedule region size by the size of the 1023 // previous scheduling run. 1024 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1025 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1026 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1027 ScheduleRegionSize = 0; 1028 1029 // Make a new scheduling region, i.e. all existing ScheduleData is not 1030 // in the new region yet. 1031 ++SchedulingRegionID; 1032 } 1033 1034 ScheduleData *getScheduleData(Value *V) { 1035 ScheduleData *SD = ScheduleDataMap[V]; 1036 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1037 return SD; 1038 return nullptr; 1039 } 1040 1041 ScheduleData *getScheduleData(Value *V, Value *Key) { 1042 if (V == Key) 1043 return getScheduleData(V); 1044 auto I = ExtraScheduleDataMap.find(V); 1045 if (I != ExtraScheduleDataMap.end()) { 1046 ScheduleData *SD = I->second[Key]; 1047 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1048 return SD; 1049 } 1050 return nullptr; 1051 } 1052 1053 bool isInSchedulingRegion(ScheduleData *SD) { 1054 return SD->SchedulingRegionID == SchedulingRegionID; 1055 } 1056 1057 /// Marks an instruction as scheduled and puts all dependent ready 1058 /// instructions into the ready-list. 1059 template <typename ReadyListType> 1060 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1061 SD->IsScheduled = true; 1062 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1063 1064 ScheduleData *BundleMember = SD; 1065 while (BundleMember) { 1066 if (BundleMember->Inst != BundleMember->OpValue) { 1067 BundleMember = BundleMember->NextInBundle; 1068 continue; 1069 } 1070 // Handle the def-use chain dependencies. 1071 for (Use &U : BundleMember->Inst->operands()) { 1072 auto *I = dyn_cast<Instruction>(U.get()); 1073 if (!I) 1074 continue; 1075 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1076 if (OpDef && OpDef->hasValidDependencies() && 1077 OpDef->incrementUnscheduledDeps(-1) == 0) { 1078 // There are no more unscheduled dependencies after 1079 // decrementing, so we can put the dependent instruction 1080 // into the ready list. 1081 ScheduleData *DepBundle = OpDef->FirstInBundle; 1082 assert(!DepBundle->IsScheduled && 1083 "already scheduled bundle gets ready"); 1084 ReadyList.insert(DepBundle); 1085 LLVM_DEBUG(dbgs() 1086 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1087 } 1088 }); 1089 } 1090 // Handle the memory dependencies. 1091 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1092 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1093 // There are no more unscheduled dependencies after decrementing, 1094 // so we can put the dependent instruction into the ready list. 1095 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1096 assert(!DepBundle->IsScheduled && 1097 "already scheduled bundle gets ready"); 1098 ReadyList.insert(DepBundle); 1099 LLVM_DEBUG(dbgs() 1100 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1101 } 1102 } 1103 BundleMember = BundleMember->NextInBundle; 1104 } 1105 } 1106 1107 void doForAllOpcodes(Value *V, 1108 function_ref<void(ScheduleData *SD)> Action) { 1109 if (ScheduleData *SD = getScheduleData(V)) 1110 Action(SD); 1111 auto I = ExtraScheduleDataMap.find(V); 1112 if (I != ExtraScheduleDataMap.end()) 1113 for (auto &P : I->second) 1114 if (P.second->SchedulingRegionID == SchedulingRegionID) 1115 Action(P.second); 1116 } 1117 1118 /// Put all instructions into the ReadyList which are ready for scheduling. 1119 template <typename ReadyListType> 1120 void initialFillReadyList(ReadyListType &ReadyList) { 1121 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1122 doForAllOpcodes(I, [&](ScheduleData *SD) { 1123 if (SD->isSchedulingEntity() && SD->isReady()) { 1124 ReadyList.insert(SD); 1125 LLVM_DEBUG(dbgs() 1126 << "SLP: initially in ready list: " << *I << "\n"); 1127 } 1128 }); 1129 } 1130 } 1131 1132 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1133 /// cyclic dependencies. This is only a dry-run, no instructions are 1134 /// actually moved at this stage. 1135 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1136 1137 /// Un-bundles a group of instructions. 1138 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1139 1140 /// Allocates schedule data chunk. 1141 ScheduleData *allocateScheduleDataChunks(); 1142 1143 /// Extends the scheduling region so that V is inside the region. 1144 /// \returns true if the region size is within the limit. 1145 bool extendSchedulingRegion(Value *V, Value *OpValue); 1146 1147 /// Initialize the ScheduleData structures for new instructions in the 1148 /// scheduling region. 1149 void initScheduleData(Instruction *FromI, Instruction *ToI, 1150 ScheduleData *PrevLoadStore, 1151 ScheduleData *NextLoadStore); 1152 1153 /// Updates the dependency information of a bundle and of all instructions/ 1154 /// bundles which depend on the original bundle. 1155 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1156 BoUpSLP *SLP); 1157 1158 /// Sets all instruction in the scheduling region to un-scheduled. 1159 void resetSchedule(); 1160 1161 BasicBlock *BB; 1162 1163 /// Simple memory allocation for ScheduleData. 1164 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1165 1166 /// The size of a ScheduleData array in ScheduleDataChunks. 1167 int ChunkSize; 1168 1169 /// The allocator position in the current chunk, which is the last entry 1170 /// of ScheduleDataChunks. 1171 int ChunkPos; 1172 1173 /// Attaches ScheduleData to Instruction. 1174 /// Note that the mapping survives during all vectorization iterations, i.e. 1175 /// ScheduleData structures are recycled. 1176 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1177 1178 /// Attaches ScheduleData to Instruction with the leading key. 1179 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1180 ExtraScheduleDataMap; 1181 1182 struct ReadyList : SmallVector<ScheduleData *, 8> { 1183 void insert(ScheduleData *SD) { push_back(SD); } 1184 }; 1185 1186 /// The ready-list for scheduling (only used for the dry-run). 1187 ReadyList ReadyInsts; 1188 1189 /// The first instruction of the scheduling region. 1190 Instruction *ScheduleStart = nullptr; 1191 1192 /// The first instruction _after_ the scheduling region. 1193 Instruction *ScheduleEnd = nullptr; 1194 1195 /// The first memory accessing instruction in the scheduling region 1196 /// (can be null). 1197 ScheduleData *FirstLoadStoreInRegion = nullptr; 1198 1199 /// The last memory accessing instruction in the scheduling region 1200 /// (can be null). 1201 ScheduleData *LastLoadStoreInRegion = nullptr; 1202 1203 /// The current size of the scheduling region. 1204 int ScheduleRegionSize = 0; 1205 1206 /// The maximum size allowed for the scheduling region. 1207 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1208 1209 /// The ID of the scheduling region. For a new vectorization iteration this 1210 /// is incremented which "removes" all ScheduleData from the region. 1211 // Make sure that the initial SchedulingRegionID is greater than the 1212 // initial SchedulingRegionID in ScheduleData (which is 0). 1213 int SchedulingRegionID = 1; 1214 }; 1215 1216 /// Attaches the BlockScheduling structures to basic blocks. 1217 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1218 1219 /// Performs the "real" scheduling. Done before vectorization is actually 1220 /// performed in a basic block. 1221 void scheduleBlock(BlockScheduling *BS); 1222 1223 /// List of users to ignore during scheduling and that don't need extracting. 1224 ArrayRef<Value *> UserIgnoreList; 1225 1226 using OrdersType = SmallVector<unsigned, 4>; 1227 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1228 /// sorted SmallVectors of unsigned. 1229 struct OrdersTypeDenseMapInfo { 1230 static OrdersType getEmptyKey() { 1231 OrdersType V; 1232 V.push_back(~1U); 1233 return V; 1234 } 1235 1236 static OrdersType getTombstoneKey() { 1237 OrdersType V; 1238 V.push_back(~2U); 1239 return V; 1240 } 1241 1242 static unsigned getHashValue(const OrdersType &V) { 1243 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1244 } 1245 1246 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1247 return LHS == RHS; 1248 } 1249 }; 1250 1251 /// Contains orders of operations along with the number of bundles that have 1252 /// operations in this order. It stores only those orders that require 1253 /// reordering, if reordering is not required it is counted using \a 1254 /// NumOpsWantToKeepOriginalOrder. 1255 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1256 /// Number of bundles that do not require reordering. 1257 unsigned NumOpsWantToKeepOriginalOrder = 0; 1258 1259 // Analysis and block reference. 1260 Function *F; 1261 ScalarEvolution *SE; 1262 TargetTransformInfo *TTI; 1263 TargetLibraryInfo *TLI; 1264 AliasAnalysis *AA; 1265 LoopInfo *LI; 1266 DominatorTree *DT; 1267 AssumptionCache *AC; 1268 DemandedBits *DB; 1269 const DataLayout *DL; 1270 OptimizationRemarkEmitter *ORE; 1271 1272 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1273 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1274 1275 /// Instruction builder to construct the vectorized tree. 1276 IRBuilder<> Builder; 1277 1278 /// A map of scalar integer values to the smallest bit width with which they 1279 /// can legally be represented. The values map to (width, signed) pairs, 1280 /// where "width" indicates the minimum bit width and "signed" is True if the 1281 /// value must be signed-extended, rather than zero-extended, back to its 1282 /// original width. 1283 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1284 }; 1285 1286 } // end namespace slpvectorizer 1287 1288 template <> struct GraphTraits<BoUpSLP *> { 1289 using TreeEntry = BoUpSLP::TreeEntry; 1290 1291 /// NodeRef has to be a pointer per the GraphWriter. 1292 using NodeRef = TreeEntry *; 1293 1294 /// Add the VectorizableTree to the index iterator to be able to return 1295 /// TreeEntry pointers. 1296 struct ChildIteratorType 1297 : public iterator_adaptor_base<ChildIteratorType, 1298 SmallVector<int, 1>::iterator> { 1299 std::vector<TreeEntry> &VectorizableTree; 1300 1301 ChildIteratorType(SmallVector<int, 1>::iterator W, 1302 std::vector<TreeEntry> &VT) 1303 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1304 1305 NodeRef operator*() { return &VectorizableTree[*I]; } 1306 }; 1307 1308 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1309 1310 static ChildIteratorType child_begin(NodeRef N) { 1311 return {N->UserTreeIndices.begin(), N->Container}; 1312 } 1313 1314 static ChildIteratorType child_end(NodeRef N) { 1315 return {N->UserTreeIndices.end(), N->Container}; 1316 } 1317 1318 /// For the node iterator we just need to turn the TreeEntry iterator into a 1319 /// TreeEntry* iterator so that it dereferences to NodeRef. 1320 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1321 1322 static nodes_iterator nodes_begin(BoUpSLP *R) { 1323 return nodes_iterator(R->VectorizableTree.begin()); 1324 } 1325 1326 static nodes_iterator nodes_end(BoUpSLP *R) { 1327 return nodes_iterator(R->VectorizableTree.end()); 1328 } 1329 1330 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1331 }; 1332 1333 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1334 using TreeEntry = BoUpSLP::TreeEntry; 1335 1336 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1337 1338 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1339 std::string Str; 1340 raw_string_ostream OS(Str); 1341 if (isSplat(Entry->Scalars)) { 1342 OS << "<splat> " << *Entry->Scalars[0]; 1343 return Str; 1344 } 1345 for (auto V : Entry->Scalars) { 1346 OS << *V; 1347 if (std::any_of( 1348 R->ExternalUses.begin(), R->ExternalUses.end(), 1349 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1350 OS << " <extract>"; 1351 OS << "\n"; 1352 } 1353 return Str; 1354 } 1355 1356 static std::string getNodeAttributes(const TreeEntry *Entry, 1357 const BoUpSLP *) { 1358 if (Entry->NeedToGather) 1359 return "color=red"; 1360 return ""; 1361 } 1362 }; 1363 1364 } // end namespace llvm 1365 1366 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1367 ArrayRef<Value *> UserIgnoreLst) { 1368 ExtraValueToDebugLocsMap ExternallyUsedValues; 1369 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1370 } 1371 1372 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1373 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1374 ArrayRef<Value *> UserIgnoreLst) { 1375 deleteTree(); 1376 UserIgnoreList = UserIgnoreLst; 1377 if (!allSameType(Roots)) 1378 return; 1379 buildTree_rec(Roots, 0, -1); 1380 1381 // Collect the values that we need to extract from the tree. 1382 for (TreeEntry &EIdx : VectorizableTree) { 1383 TreeEntry *Entry = &EIdx; 1384 1385 // No need to handle users of gathered values. 1386 if (Entry->NeedToGather) 1387 continue; 1388 1389 // For each lane: 1390 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1391 Value *Scalar = Entry->Scalars[Lane]; 1392 int FoundLane = Lane; 1393 if (!Entry->ReuseShuffleIndices.empty()) { 1394 FoundLane = 1395 std::distance(Entry->ReuseShuffleIndices.begin(), 1396 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1397 } 1398 1399 // Check if the scalar is externally used as an extra arg. 1400 auto ExtI = ExternallyUsedValues.find(Scalar); 1401 if (ExtI != ExternallyUsedValues.end()) { 1402 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1403 << Lane << " from " << *Scalar << ".\n"); 1404 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1405 } 1406 for (User *U : Scalar->users()) { 1407 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1408 1409 Instruction *UserInst = dyn_cast<Instruction>(U); 1410 if (!UserInst) 1411 continue; 1412 1413 // Skip in-tree scalars that become vectors 1414 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1415 Value *UseScalar = UseEntry->Scalars[0]; 1416 // Some in-tree scalars will remain as scalar in vectorized 1417 // instructions. If that is the case, the one in Lane 0 will 1418 // be used. 1419 if (UseScalar != U || 1420 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1421 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1422 << ".\n"); 1423 assert(!UseEntry->NeedToGather && "Bad state"); 1424 continue; 1425 } 1426 } 1427 1428 // Ignore users in the user ignore list. 1429 if (is_contained(UserIgnoreList, UserInst)) 1430 continue; 1431 1432 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1433 << Lane << " from " << *Scalar << ".\n"); 1434 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1435 } 1436 } 1437 } 1438 } 1439 1440 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1441 int UserTreeIdx) { 1442 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1443 1444 InstructionsState S = getSameOpcode(VL); 1445 if (Depth == RecursionMaxDepth) { 1446 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1447 newTreeEntry(VL, false, UserTreeIdx); 1448 return; 1449 } 1450 1451 // Don't handle vectors. 1452 if (S.OpValue->getType()->isVectorTy()) { 1453 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1454 newTreeEntry(VL, false, UserTreeIdx); 1455 return; 1456 } 1457 1458 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1459 if (SI->getValueOperand()->getType()->isVectorTy()) { 1460 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1461 newTreeEntry(VL, false, UserTreeIdx); 1462 return; 1463 } 1464 1465 // If all of the operands are identical or constant we have a simple solution. 1466 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1467 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1468 newTreeEntry(VL, false, UserTreeIdx); 1469 return; 1470 } 1471 1472 // We now know that this is a vector of instructions of the same type from 1473 // the same block. 1474 1475 // Don't vectorize ephemeral values. 1476 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1477 if (EphValues.count(VL[i])) { 1478 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1479 << ") is ephemeral.\n"); 1480 newTreeEntry(VL, false, UserTreeIdx); 1481 return; 1482 } 1483 } 1484 1485 // Check if this is a duplicate of another entry. 1486 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1487 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1488 if (!E->isSame(VL)) { 1489 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1490 newTreeEntry(VL, false, UserTreeIdx); 1491 return; 1492 } 1493 // Record the reuse of the tree node. FIXME, currently this is only used to 1494 // properly draw the graph rather than for the actual vectorization. 1495 E->UserTreeIndices.push_back(UserTreeIdx); 1496 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1497 << ".\n"); 1498 return; 1499 } 1500 1501 // Check that none of the instructions in the bundle are already in the tree. 1502 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1503 auto *I = dyn_cast<Instruction>(VL[i]); 1504 if (!I) 1505 continue; 1506 if (getTreeEntry(I)) { 1507 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1508 << ") is already in tree.\n"); 1509 newTreeEntry(VL, false, UserTreeIdx); 1510 return; 1511 } 1512 } 1513 1514 // If any of the scalars is marked as a value that needs to stay scalar, then 1515 // we need to gather the scalars. 1516 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1517 if (MustGather.count(VL[i])) { 1518 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1519 newTreeEntry(VL, false, UserTreeIdx); 1520 return; 1521 } 1522 } 1523 1524 // Check that all of the users of the scalars that we want to vectorize are 1525 // schedulable. 1526 auto *VL0 = cast<Instruction>(S.OpValue); 1527 BasicBlock *BB = VL0->getParent(); 1528 1529 if (!DT->isReachableFromEntry(BB)) { 1530 // Don't go into unreachable blocks. They may contain instructions with 1531 // dependency cycles which confuse the final scheduling. 1532 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1533 newTreeEntry(VL, false, UserTreeIdx); 1534 return; 1535 } 1536 1537 // Check that every instruction appears once in this bundle. 1538 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1539 SmallVector<Value *, 4> UniqueValues; 1540 DenseMap<Value *, unsigned> UniquePositions; 1541 for (Value *V : VL) { 1542 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1543 ReuseShuffleIndicies.emplace_back(Res.first->second); 1544 if (Res.second) 1545 UniqueValues.emplace_back(V); 1546 } 1547 if (UniqueValues.size() == VL.size()) { 1548 ReuseShuffleIndicies.clear(); 1549 } else { 1550 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1551 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1552 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1553 newTreeEntry(VL, false, UserTreeIdx); 1554 return; 1555 } 1556 VL = UniqueValues; 1557 } 1558 1559 auto &BSRef = BlocksSchedules[BB]; 1560 if (!BSRef) 1561 BSRef = llvm::make_unique<BlockScheduling>(BB); 1562 1563 BlockScheduling &BS = *BSRef.get(); 1564 1565 if (!BS.tryScheduleBundle(VL, this, VL0)) { 1566 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1567 assert((!BS.getScheduleData(VL0) || 1568 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1569 "tryScheduleBundle should cancelScheduling on failure"); 1570 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1571 return; 1572 } 1573 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1574 1575 unsigned ShuffleOrOp = S.IsAltShuffle ? 1576 (unsigned) Instruction::ShuffleVector : S.Opcode; 1577 switch (ShuffleOrOp) { 1578 case Instruction::PHI: { 1579 PHINode *PH = dyn_cast<PHINode>(VL0); 1580 1581 // Check for terminator values (e.g. invoke). 1582 for (unsigned j = 0; j < VL.size(); ++j) 1583 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1584 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1585 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1586 if (Term) { 1587 LLVM_DEBUG( 1588 dbgs() 1589 << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1590 BS.cancelScheduling(VL, VL0); 1591 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1592 return; 1593 } 1594 } 1595 1596 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1597 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1598 1599 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1600 ValueList Operands; 1601 // Prepare the operand vector. 1602 for (Value *j : VL) 1603 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1604 PH->getIncomingBlock(i))); 1605 1606 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1607 } 1608 return; 1609 } 1610 case Instruction::ExtractValue: 1611 case Instruction::ExtractElement: { 1612 OrdersType CurrentOrder; 1613 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1614 if (Reuse) { 1615 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1616 ++NumOpsWantToKeepOriginalOrder; 1617 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1618 ReuseShuffleIndicies); 1619 return; 1620 } 1621 if (!CurrentOrder.empty()) { 1622 LLVM_DEBUG({ 1623 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1624 "with order"; 1625 for (unsigned Idx : CurrentOrder) 1626 dbgs() << " " << Idx; 1627 dbgs() << "\n"; 1628 }); 1629 // Insert new order with initial value 0, if it does not exist, 1630 // otherwise return the iterator to the existing one. 1631 auto StoredCurrentOrderAndNum = 1632 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1633 ++StoredCurrentOrderAndNum->getSecond(); 1634 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1635 StoredCurrentOrderAndNum->getFirst()); 1636 return; 1637 } 1638 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1639 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1640 BS.cancelScheduling(VL, VL0); 1641 return; 1642 } 1643 case Instruction::Load: { 1644 // Check that a vectorized load would load the same memory as a scalar 1645 // load. For example, we don't want to vectorize loads that are smaller 1646 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1647 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1648 // from such a struct, we read/write packed bits disagreeing with the 1649 // unvectorized version. 1650 Type *ScalarTy = VL0->getType(); 1651 1652 if (DL->getTypeSizeInBits(ScalarTy) != 1653 DL->getTypeAllocSizeInBits(ScalarTy)) { 1654 BS.cancelScheduling(VL, VL0); 1655 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1656 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1657 return; 1658 } 1659 1660 // Make sure all loads in the bundle are simple - we can't vectorize 1661 // atomic or volatile loads. 1662 SmallVector<Value *, 4> PointerOps(VL.size()); 1663 auto POIter = PointerOps.begin(); 1664 for (Value *V : VL) { 1665 auto *L = cast<LoadInst>(V); 1666 if (!L->isSimple()) { 1667 BS.cancelScheduling(VL, VL0); 1668 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1669 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1670 return; 1671 } 1672 *POIter = L->getPointerOperand(); 1673 ++POIter; 1674 } 1675 1676 OrdersType CurrentOrder; 1677 // Check the order of pointer operands. 1678 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1679 Value *Ptr0; 1680 Value *PtrN; 1681 if (CurrentOrder.empty()) { 1682 Ptr0 = PointerOps.front(); 1683 PtrN = PointerOps.back(); 1684 } else { 1685 Ptr0 = PointerOps[CurrentOrder.front()]; 1686 PtrN = PointerOps[CurrentOrder.back()]; 1687 } 1688 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1689 const SCEV *ScevN = SE->getSCEV(PtrN); 1690 const auto *Diff = 1691 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1692 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1693 // Check that the sorted loads are consecutive. 1694 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1695 if (CurrentOrder.empty()) { 1696 // Original loads are consecutive and does not require reordering. 1697 ++NumOpsWantToKeepOriginalOrder; 1698 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1699 ReuseShuffleIndicies); 1700 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1701 } else { 1702 // Need to reorder. 1703 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1704 ++I->getSecond(); 1705 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1706 ReuseShuffleIndicies, I->getFirst()); 1707 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1708 } 1709 return; 1710 } 1711 } 1712 1713 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1714 BS.cancelScheduling(VL, VL0); 1715 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1716 return; 1717 } 1718 case Instruction::ZExt: 1719 case Instruction::SExt: 1720 case Instruction::FPToUI: 1721 case Instruction::FPToSI: 1722 case Instruction::FPExt: 1723 case Instruction::PtrToInt: 1724 case Instruction::IntToPtr: 1725 case Instruction::SIToFP: 1726 case Instruction::UIToFP: 1727 case Instruction::Trunc: 1728 case Instruction::FPTrunc: 1729 case Instruction::BitCast: { 1730 Type *SrcTy = VL0->getOperand(0)->getType(); 1731 for (unsigned i = 0; i < VL.size(); ++i) { 1732 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1733 if (Ty != SrcTy || !isValidElementType(Ty)) { 1734 BS.cancelScheduling(VL, VL0); 1735 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1736 LLVM_DEBUG(dbgs() 1737 << "SLP: Gathering casts with different src types.\n"); 1738 return; 1739 } 1740 } 1741 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1742 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1743 1744 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1745 ValueList Operands; 1746 // Prepare the operand vector. 1747 for (Value *j : VL) 1748 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1749 1750 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1751 } 1752 return; 1753 } 1754 case Instruction::ICmp: 1755 case Instruction::FCmp: { 1756 // Check that all of the compares have the same predicate. 1757 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1758 Type *ComparedTy = VL0->getOperand(0)->getType(); 1759 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1760 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1761 if (Cmp->getPredicate() != P0 || 1762 Cmp->getOperand(0)->getType() != ComparedTy) { 1763 BS.cancelScheduling(VL, VL0); 1764 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1765 LLVM_DEBUG(dbgs() 1766 << "SLP: Gathering cmp with different predicate.\n"); 1767 return; 1768 } 1769 } 1770 1771 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1772 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1773 1774 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1775 ValueList Operands; 1776 // Prepare the operand vector. 1777 for (Value *j : VL) 1778 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1779 1780 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1781 } 1782 return; 1783 } 1784 case Instruction::Select: 1785 case Instruction::Add: 1786 case Instruction::FAdd: 1787 case Instruction::Sub: 1788 case Instruction::FSub: 1789 case Instruction::Mul: 1790 case Instruction::FMul: 1791 case Instruction::UDiv: 1792 case Instruction::SDiv: 1793 case Instruction::FDiv: 1794 case Instruction::URem: 1795 case Instruction::SRem: 1796 case Instruction::FRem: 1797 case Instruction::Shl: 1798 case Instruction::LShr: 1799 case Instruction::AShr: 1800 case Instruction::And: 1801 case Instruction::Or: 1802 case Instruction::Xor: 1803 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1804 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1805 1806 // Sort operands of the instructions so that each side is more likely to 1807 // have the same opcode. 1808 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1809 ValueList Left, Right; 1810 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1811 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1812 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1813 return; 1814 } 1815 1816 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1817 ValueList Operands; 1818 // Prepare the operand vector. 1819 for (Value *j : VL) 1820 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1821 1822 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1823 } 1824 return; 1825 1826 case Instruction::GetElementPtr: { 1827 // We don't combine GEPs with complicated (nested) indexing. 1828 for (unsigned j = 0; j < VL.size(); ++j) { 1829 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1830 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1831 BS.cancelScheduling(VL, VL0); 1832 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1833 return; 1834 } 1835 } 1836 1837 // We can't combine several GEPs into one vector if they operate on 1838 // different types. 1839 Type *Ty0 = VL0->getOperand(0)->getType(); 1840 for (unsigned j = 0; j < VL.size(); ++j) { 1841 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1842 if (Ty0 != CurTy) { 1843 LLVM_DEBUG(dbgs() 1844 << "SLP: not-vectorizable GEP (different types).\n"); 1845 BS.cancelScheduling(VL, VL0); 1846 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1847 return; 1848 } 1849 } 1850 1851 // We don't combine GEPs with non-constant indexes. 1852 for (unsigned j = 0; j < VL.size(); ++j) { 1853 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1854 if (!isa<ConstantInt>(Op)) { 1855 LLVM_DEBUG(dbgs() 1856 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1857 BS.cancelScheduling(VL, VL0); 1858 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1859 return; 1860 } 1861 } 1862 1863 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1864 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1865 for (unsigned i = 0, e = 2; i < e; ++i) { 1866 ValueList Operands; 1867 // Prepare the operand vector. 1868 for (Value *j : VL) 1869 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1870 1871 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1872 } 1873 return; 1874 } 1875 case Instruction::Store: { 1876 // Check if the stores are consecutive or of we need to swizzle them. 1877 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1878 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1879 BS.cancelScheduling(VL, VL0); 1880 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1881 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1882 return; 1883 } 1884 1885 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1886 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1887 1888 ValueList Operands; 1889 for (Value *j : VL) 1890 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1891 1892 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1893 return; 1894 } 1895 case Instruction::Call: { 1896 // Check if the calls are all to the same vectorizable intrinsic. 1897 CallInst *CI = cast<CallInst>(VL0); 1898 // Check if this is an Intrinsic call or something that can be 1899 // represented by an intrinsic call 1900 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1901 if (!isTriviallyVectorizable(ID)) { 1902 BS.cancelScheduling(VL, VL0); 1903 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1904 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1905 return; 1906 } 1907 Function *Int = CI->getCalledFunction(); 1908 Value *A1I = nullptr; 1909 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1910 A1I = CI->getArgOperand(1); 1911 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1912 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1913 if (!CI2 || CI2->getCalledFunction() != Int || 1914 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1915 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1916 BS.cancelScheduling(VL, VL0); 1917 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1918 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1919 << "\n"); 1920 return; 1921 } 1922 // ctlz,cttz and powi are special intrinsics whose second argument 1923 // should be same in order for them to be vectorized. 1924 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1925 Value *A1J = CI2->getArgOperand(1); 1926 if (A1I != A1J) { 1927 BS.cancelScheduling(VL, VL0); 1928 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1929 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1930 << " argument " << A1I << "!=" << A1J << "\n"); 1931 return; 1932 } 1933 } 1934 // Verify that the bundle operands are identical between the two calls. 1935 if (CI->hasOperandBundles() && 1936 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1937 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1938 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1939 BS.cancelScheduling(VL, VL0); 1940 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1941 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 1942 << *CI << "!=" << *VL[i] << '\n'); 1943 return; 1944 } 1945 } 1946 1947 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1948 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1949 ValueList Operands; 1950 // Prepare the operand vector. 1951 for (Value *j : VL) { 1952 CallInst *CI2 = dyn_cast<CallInst>(j); 1953 Operands.push_back(CI2->getArgOperand(i)); 1954 } 1955 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1956 } 1957 return; 1958 } 1959 case Instruction::ShuffleVector: 1960 // If this is not an alternate sequence of opcode like add-sub 1961 // then do not vectorize this instruction. 1962 if (!S.IsAltShuffle) { 1963 BS.cancelScheduling(VL, VL0); 1964 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1965 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1966 return; 1967 } 1968 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1969 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1970 1971 // Reorder operands if reordering would enable vectorization. 1972 if (isa<BinaryOperator>(VL0)) { 1973 ValueList Left, Right; 1974 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1975 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1976 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1977 return; 1978 } 1979 1980 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1981 ValueList Operands; 1982 // Prepare the operand vector. 1983 for (Value *j : VL) 1984 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1985 1986 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1987 } 1988 return; 1989 1990 default: 1991 BS.cancelScheduling(VL, VL0); 1992 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1993 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1994 return; 1995 } 1996 } 1997 1998 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1999 unsigned N; 2000 Type *EltTy; 2001 auto *ST = dyn_cast<StructType>(T); 2002 if (ST) { 2003 N = ST->getNumElements(); 2004 EltTy = *ST->element_begin(); 2005 } else { 2006 N = cast<ArrayType>(T)->getNumElements(); 2007 EltTy = cast<ArrayType>(T)->getElementType(); 2008 } 2009 if (!isValidElementType(EltTy)) 2010 return 0; 2011 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2012 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2013 return 0; 2014 if (ST) { 2015 // Check that struct is homogeneous. 2016 for (const auto *Ty : ST->elements()) 2017 if (Ty != EltTy) 2018 return 0; 2019 } 2020 return N; 2021 } 2022 2023 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2024 SmallVectorImpl<unsigned> &CurrentOrder) const { 2025 Instruction *E0 = cast<Instruction>(OpValue); 2026 assert(E0->getOpcode() == Instruction::ExtractElement || 2027 E0->getOpcode() == Instruction::ExtractValue); 2028 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 2029 // Check if all of the extracts come from the same vector and from the 2030 // correct offset. 2031 Value *Vec = E0->getOperand(0); 2032 2033 CurrentOrder.clear(); 2034 2035 // We have to extract from a vector/aggregate with the same number of elements. 2036 unsigned NElts; 2037 if (E0->getOpcode() == Instruction::ExtractValue) { 2038 const DataLayout &DL = E0->getModule()->getDataLayout(); 2039 NElts = canMapToVector(Vec->getType(), DL); 2040 if (!NElts) 2041 return false; 2042 // Check if load can be rewritten as load of vector. 2043 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2044 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2045 return false; 2046 } else { 2047 NElts = Vec->getType()->getVectorNumElements(); 2048 } 2049 2050 if (NElts != VL.size()) 2051 return false; 2052 2053 // Check that all of the indices extract from the correct offset. 2054 bool ShouldKeepOrder = true; 2055 unsigned E = VL.size(); 2056 // Assign to all items the initial value E + 1 so we can check if the extract 2057 // instruction index was used already. 2058 // Also, later we can check that all the indices are used and we have a 2059 // consecutive access in the extract instructions, by checking that no 2060 // element of CurrentOrder still has value E + 1. 2061 CurrentOrder.assign(E, E + 1); 2062 unsigned I = 0; 2063 for (; I < E; ++I) { 2064 auto *Inst = cast<Instruction>(VL[I]); 2065 if (Inst->getOperand(0) != Vec) 2066 break; 2067 Optional<unsigned> Idx = getExtractIndex(Inst); 2068 if (!Idx) 2069 break; 2070 const unsigned ExtIdx = *Idx; 2071 if (ExtIdx != I) { 2072 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2073 break; 2074 ShouldKeepOrder = false; 2075 CurrentOrder[ExtIdx] = I; 2076 } else { 2077 if (CurrentOrder[I] != E + 1) 2078 break; 2079 CurrentOrder[I] = I; 2080 } 2081 } 2082 if (I < E) { 2083 CurrentOrder.clear(); 2084 return false; 2085 } 2086 2087 return ShouldKeepOrder; 2088 } 2089 2090 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2091 return I->hasOneUse() || 2092 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2093 return ScalarToTreeEntry.count(U) > 0; 2094 }); 2095 } 2096 2097 int BoUpSLP::getEntryCost(TreeEntry *E) { 2098 ArrayRef<Value*> VL = E->Scalars; 2099 2100 Type *ScalarTy = VL[0]->getType(); 2101 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2102 ScalarTy = SI->getValueOperand()->getType(); 2103 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2104 ScalarTy = CI->getOperand(0)->getType(); 2105 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2106 2107 // If we have computed a smaller type for the expression, update VecTy so 2108 // that the costs will be accurate. 2109 if (MinBWs.count(VL[0])) 2110 VecTy = VectorType::get( 2111 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2112 2113 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2114 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2115 int ReuseShuffleCost = 0; 2116 if (NeedToShuffleReuses) { 2117 ReuseShuffleCost = 2118 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2119 } 2120 if (E->NeedToGather) { 2121 if (allConstant(VL)) 2122 return 0; 2123 if (isSplat(VL)) { 2124 return ReuseShuffleCost + 2125 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2126 } 2127 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement && 2128 allSameType(VL) && allSameBlock(VL)) { 2129 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2130 if (ShuffleKind.hasValue()) { 2131 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2132 for (auto *V : VL) { 2133 // If all users of instruction are going to be vectorized and this 2134 // instruction itself is not going to be vectorized, consider this 2135 // instruction as dead and remove its cost from the final cost of the 2136 // vectorized tree. 2137 if (areAllUsersVectorized(cast<Instruction>(V)) && 2138 !ScalarToTreeEntry.count(V)) { 2139 auto *IO = cast<ConstantInt>( 2140 cast<ExtractElementInst>(V)->getIndexOperand()); 2141 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2142 IO->getZExtValue()); 2143 } 2144 } 2145 return ReuseShuffleCost + Cost; 2146 } 2147 } 2148 return ReuseShuffleCost + getGatherCost(VL); 2149 } 2150 InstructionsState S = getSameOpcode(VL); 2151 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2152 Instruction *VL0 = cast<Instruction>(S.OpValue); 2153 unsigned ShuffleOrOp = S.IsAltShuffle ? 2154 (unsigned) Instruction::ShuffleVector : S.Opcode; 2155 switch (ShuffleOrOp) { 2156 case Instruction::PHI: 2157 return 0; 2158 2159 case Instruction::ExtractValue: 2160 case Instruction::ExtractElement: 2161 if (NeedToShuffleReuses) { 2162 unsigned Idx = 0; 2163 for (unsigned I : E->ReuseShuffleIndices) { 2164 if (ShuffleOrOp == Instruction::ExtractElement) { 2165 auto *IO = cast<ConstantInt>( 2166 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2167 Idx = IO->getZExtValue(); 2168 ReuseShuffleCost -= TTI->getVectorInstrCost( 2169 Instruction::ExtractElement, VecTy, Idx); 2170 } else { 2171 ReuseShuffleCost -= TTI->getVectorInstrCost( 2172 Instruction::ExtractElement, VecTy, Idx); 2173 ++Idx; 2174 } 2175 } 2176 Idx = ReuseShuffleNumbers; 2177 for (Value *V : VL) { 2178 if (ShuffleOrOp == Instruction::ExtractElement) { 2179 auto *IO = cast<ConstantInt>( 2180 cast<ExtractElementInst>(V)->getIndexOperand()); 2181 Idx = IO->getZExtValue(); 2182 } else { 2183 --Idx; 2184 } 2185 ReuseShuffleCost += 2186 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2187 } 2188 } 2189 if (!E->NeedToGather) { 2190 int DeadCost = ReuseShuffleCost; 2191 if (!E->ReorderIndices.empty()) { 2192 // TODO: Merge this shuffle with the ReuseShuffleCost. 2193 DeadCost += TTI->getShuffleCost( 2194 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2195 } 2196 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2197 Instruction *E = cast<Instruction>(VL[i]); 2198 // If all users are going to be vectorized, instruction can be 2199 // considered as dead. 2200 // The same, if have only one user, it will be vectorized for sure. 2201 if (areAllUsersVectorized(E)) { 2202 // Take credit for instruction that will become dead. 2203 if (E->hasOneUse()) { 2204 Instruction *Ext = E->user_back(); 2205 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2206 all_of(Ext->users(), 2207 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2208 // Use getExtractWithExtendCost() to calculate the cost of 2209 // extractelement/ext pair. 2210 DeadCost -= TTI->getExtractWithExtendCost( 2211 Ext->getOpcode(), Ext->getType(), VecTy, i); 2212 // Add back the cost of s|zext which is subtracted seperately. 2213 DeadCost += TTI->getCastInstrCost( 2214 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2215 continue; 2216 } 2217 } 2218 DeadCost -= 2219 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2220 } 2221 } 2222 return DeadCost; 2223 } 2224 return ReuseShuffleCost + getGatherCost(VL); 2225 2226 case Instruction::ZExt: 2227 case Instruction::SExt: 2228 case Instruction::FPToUI: 2229 case Instruction::FPToSI: 2230 case Instruction::FPExt: 2231 case Instruction::PtrToInt: 2232 case Instruction::IntToPtr: 2233 case Instruction::SIToFP: 2234 case Instruction::UIToFP: 2235 case Instruction::Trunc: 2236 case Instruction::FPTrunc: 2237 case Instruction::BitCast: { 2238 Type *SrcTy = VL0->getOperand(0)->getType(); 2239 if (NeedToShuffleReuses) { 2240 ReuseShuffleCost -= 2241 (ReuseShuffleNumbers - VL.size()) * 2242 TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0); 2243 } 2244 2245 // Calculate the cost of this instruction. 2246 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2247 VL0->getType(), SrcTy, VL0); 2248 2249 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2250 int VecCost = 0; 2251 // Check if the values are candidates to demote. 2252 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2253 VecCost = ReuseShuffleCost + 2254 TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2255 } 2256 return VecCost - ScalarCost; 2257 } 2258 case Instruction::FCmp: 2259 case Instruction::ICmp: 2260 case Instruction::Select: { 2261 // Calculate the cost of this instruction. 2262 if (NeedToShuffleReuses) { 2263 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2264 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, 2265 Builder.getInt1Ty(), VL0); 2266 } 2267 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2268 int ScalarCost = VecTy->getNumElements() * 2269 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2270 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2271 return ReuseShuffleCost + VecCost - ScalarCost; 2272 } 2273 case Instruction::Add: 2274 case Instruction::FAdd: 2275 case Instruction::Sub: 2276 case Instruction::FSub: 2277 case Instruction::Mul: 2278 case Instruction::FMul: 2279 case Instruction::UDiv: 2280 case Instruction::SDiv: 2281 case Instruction::FDiv: 2282 case Instruction::URem: 2283 case Instruction::SRem: 2284 case Instruction::FRem: 2285 case Instruction::Shl: 2286 case Instruction::LShr: 2287 case Instruction::AShr: 2288 case Instruction::And: 2289 case Instruction::Or: 2290 case Instruction::Xor: { 2291 // Certain instructions can be cheaper to vectorize if they have a 2292 // constant second vector operand. 2293 TargetTransformInfo::OperandValueKind Op1VK = 2294 TargetTransformInfo::OK_AnyValue; 2295 TargetTransformInfo::OperandValueKind Op2VK = 2296 TargetTransformInfo::OK_UniformConstantValue; 2297 TargetTransformInfo::OperandValueProperties Op1VP = 2298 TargetTransformInfo::OP_None; 2299 TargetTransformInfo::OperandValueProperties Op2VP = 2300 TargetTransformInfo::OP_None; 2301 2302 // If all operands are exactly the same ConstantInt then set the 2303 // operand kind to OK_UniformConstantValue. 2304 // If instead not all operands are constants, then set the operand kind 2305 // to OK_AnyValue. If all operands are constants but not the same, 2306 // then set the operand kind to OK_NonUniformConstantValue. 2307 ConstantInt *CInt = nullptr; 2308 for (unsigned i = 0; i < VL.size(); ++i) { 2309 const Instruction *I = cast<Instruction>(VL[i]); 2310 if (!isa<ConstantInt>(I->getOperand(1))) { 2311 Op2VK = TargetTransformInfo::OK_AnyValue; 2312 break; 2313 } 2314 if (i == 0) { 2315 CInt = cast<ConstantInt>(I->getOperand(1)); 2316 continue; 2317 } 2318 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2319 CInt != cast<ConstantInt>(I->getOperand(1))) 2320 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2321 } 2322 // FIXME: Currently cost of model modification for division by power of 2323 // 2 is handled for X86 and AArch64. Add support for other targets. 2324 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2325 CInt->getValue().isPowerOf2()) 2326 Op2VP = TargetTransformInfo::OP_PowerOf2; 2327 2328 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2329 if (NeedToShuffleReuses) { 2330 ReuseShuffleCost -= 2331 (ReuseShuffleNumbers - VL.size()) * 2332 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2333 Op2VP, Operands); 2334 } 2335 int ScalarCost = 2336 VecTy->getNumElements() * 2337 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2338 Op2VP, Operands); 2339 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2340 Op1VP, Op2VP, Operands); 2341 return ReuseShuffleCost + VecCost - ScalarCost; 2342 } 2343 case Instruction::GetElementPtr: { 2344 TargetTransformInfo::OperandValueKind Op1VK = 2345 TargetTransformInfo::OK_AnyValue; 2346 TargetTransformInfo::OperandValueKind Op2VK = 2347 TargetTransformInfo::OK_UniformConstantValue; 2348 2349 if (NeedToShuffleReuses) { 2350 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2351 TTI->getArithmeticInstrCost(Instruction::Add, 2352 ScalarTy, Op1VK, Op2VK); 2353 } 2354 int ScalarCost = 2355 VecTy->getNumElements() * 2356 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2357 int VecCost = 2358 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2359 2360 return ReuseShuffleCost + VecCost - ScalarCost; 2361 } 2362 case Instruction::Load: { 2363 // Cost of wide load - cost of scalar loads. 2364 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2365 if (NeedToShuffleReuses) { 2366 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2367 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 2368 alignment, 0, VL0); 2369 } 2370 int ScalarLdCost = VecTy->getNumElements() * 2371 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2372 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2373 VecTy, alignment, 0, VL0); 2374 if (!E->ReorderIndices.empty()) { 2375 // TODO: Merge this shuffle with the ReuseShuffleCost. 2376 VecLdCost += TTI->getShuffleCost( 2377 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2378 } 2379 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2380 } 2381 case Instruction::Store: { 2382 // We know that we can merge the stores. Calculate the cost. 2383 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2384 if (NeedToShuffleReuses) { 2385 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2386 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 2387 alignment, 0, VL0); 2388 } 2389 int ScalarStCost = VecTy->getNumElements() * 2390 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2391 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2392 VecTy, alignment, 0, VL0); 2393 return ReuseShuffleCost + VecStCost - ScalarStCost; 2394 } 2395 case Instruction::Call: { 2396 CallInst *CI = cast<CallInst>(VL0); 2397 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2398 2399 // Calculate the cost of the scalar and vector calls. 2400 SmallVector<Type*, 4> ScalarTys; 2401 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2402 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2403 2404 FastMathFlags FMF; 2405 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2406 FMF = FPMO->getFastMathFlags(); 2407 2408 if (NeedToShuffleReuses) { 2409 ReuseShuffleCost -= 2410 (ReuseShuffleNumbers - VL.size()) * 2411 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2412 } 2413 int ScalarCallCost = VecTy->getNumElements() * 2414 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2415 2416 SmallVector<Value *, 4> Args(CI->arg_operands()); 2417 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2418 VecTy->getNumElements()); 2419 2420 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2421 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2422 << " for " << *CI << "\n"); 2423 2424 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2425 } 2426 case Instruction::ShuffleVector: { 2427 TargetTransformInfo::OperandValueKind Op1VK = 2428 TargetTransformInfo::OK_AnyValue; 2429 TargetTransformInfo::OperandValueKind Op2VK = 2430 TargetTransformInfo::OK_AnyValue; 2431 int ScalarCost = 0; 2432 if (NeedToShuffleReuses) { 2433 for (unsigned Idx : E->ReuseShuffleIndices) { 2434 Instruction *I = cast<Instruction>(VL[Idx]); 2435 if (!I) 2436 continue; 2437 ReuseShuffleCost -= TTI->getArithmeticInstrCost( 2438 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2439 } 2440 for (Value *V : VL) { 2441 Instruction *I = cast<Instruction>(V); 2442 if (!I) 2443 continue; 2444 ReuseShuffleCost += TTI->getArithmeticInstrCost( 2445 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2446 } 2447 } 2448 int VecCost = 0; 2449 for (Value *i : VL) { 2450 Instruction *I = cast<Instruction>(i); 2451 if (!I) 2452 break; 2453 ScalarCost += 2454 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2455 } 2456 // VecCost is equal to sum of the cost of creating 2 vectors 2457 // and the cost of creating shuffle. 2458 Instruction *I0 = cast<Instruction>(VL[0]); 2459 VecCost = 2460 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2461 Instruction *I1 = cast<Instruction>(VL[1]); 2462 VecCost += 2463 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2464 VecCost += 2465 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2466 return ReuseShuffleCost + VecCost - ScalarCost; 2467 } 2468 default: 2469 llvm_unreachable("Unknown instruction"); 2470 } 2471 } 2472 2473 bool BoUpSLP::isFullyVectorizableTinyTree() { 2474 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2475 << VectorizableTree.size() << " is fully vectorizable .\n"); 2476 2477 // We only handle trees of heights 1 and 2. 2478 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2479 return true; 2480 2481 if (VectorizableTree.size() != 2) 2482 return false; 2483 2484 // Handle splat and all-constants stores. 2485 if (!VectorizableTree[0].NeedToGather && 2486 (allConstant(VectorizableTree[1].Scalars) || 2487 isSplat(VectorizableTree[1].Scalars))) 2488 return true; 2489 2490 // Gathering cost would be too much for tiny trees. 2491 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2492 return false; 2493 2494 return true; 2495 } 2496 2497 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2498 // We can vectorize the tree if its size is greater than or equal to the 2499 // minimum size specified by the MinTreeSize command line option. 2500 if (VectorizableTree.size() >= MinTreeSize) 2501 return false; 2502 2503 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2504 // can vectorize it if we can prove it fully vectorizable. 2505 if (isFullyVectorizableTinyTree()) 2506 return false; 2507 2508 assert(VectorizableTree.empty() 2509 ? ExternalUses.empty() 2510 : true && "We shouldn't have any external users"); 2511 2512 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2513 // vectorizable. 2514 return true; 2515 } 2516 2517 int BoUpSLP::getSpillCost() { 2518 // Walk from the bottom of the tree to the top, tracking which values are 2519 // live. When we see a call instruction that is not part of our tree, 2520 // query TTI to see if there is a cost to keeping values live over it 2521 // (for example, if spills and fills are required). 2522 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2523 int Cost = 0; 2524 2525 SmallPtrSet<Instruction*, 4> LiveValues; 2526 Instruction *PrevInst = nullptr; 2527 2528 for (const auto &N : VectorizableTree) { 2529 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2530 if (!Inst) 2531 continue; 2532 2533 if (!PrevInst) { 2534 PrevInst = Inst; 2535 continue; 2536 } 2537 2538 // Update LiveValues. 2539 LiveValues.erase(PrevInst); 2540 for (auto &J : PrevInst->operands()) { 2541 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2542 LiveValues.insert(cast<Instruction>(&*J)); 2543 } 2544 2545 LLVM_DEBUG({ 2546 dbgs() << "SLP: #LV: " << LiveValues.size(); 2547 for (auto *X : LiveValues) 2548 dbgs() << " " << X->getName(); 2549 dbgs() << ", Looking at "; 2550 Inst->dump(); 2551 }); 2552 2553 // Now find the sequence of instructions between PrevInst and Inst. 2554 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2555 PrevInstIt = 2556 PrevInst->getIterator().getReverse(); 2557 while (InstIt != PrevInstIt) { 2558 if (PrevInstIt == PrevInst->getParent()->rend()) { 2559 PrevInstIt = Inst->getParent()->rbegin(); 2560 continue; 2561 } 2562 2563 // Debug informations don't impact spill cost. 2564 if ((isa<CallInst>(&*PrevInstIt) && 2565 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2566 &*PrevInstIt != PrevInst) { 2567 SmallVector<Type*, 4> V; 2568 for (auto *II : LiveValues) 2569 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2570 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2571 } 2572 2573 ++PrevInstIt; 2574 } 2575 2576 PrevInst = Inst; 2577 } 2578 2579 return Cost; 2580 } 2581 2582 int BoUpSLP::getTreeCost() { 2583 int Cost = 0; 2584 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2585 << VectorizableTree.size() << ".\n"); 2586 2587 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2588 2589 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2590 TreeEntry &TE = VectorizableTree[I]; 2591 2592 // We create duplicate tree entries for gather sequences that have multiple 2593 // uses. However, we should not compute the cost of duplicate sequences. 2594 // For example, if we have a build vector (i.e., insertelement sequence) 2595 // that is used by more than one vector instruction, we only need to 2596 // compute the cost of the insertelement instructions once. The redundent 2597 // instructions will be eliminated by CSE. 2598 // 2599 // We should consider not creating duplicate tree entries for gather 2600 // sequences, and instead add additional edges to the tree representing 2601 // their uses. Since such an approach results in fewer total entries, 2602 // existing heuristics based on tree size may yeild different results. 2603 // 2604 if (TE.NeedToGather && 2605 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2606 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2607 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2608 })) 2609 continue; 2610 2611 int C = getEntryCost(&TE); 2612 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2613 << " for bundle that starts with " << *TE.Scalars[0] 2614 << ".\n"); 2615 Cost += C; 2616 } 2617 2618 SmallSet<Value *, 16> ExtractCostCalculated; 2619 int ExtractCost = 0; 2620 for (ExternalUser &EU : ExternalUses) { 2621 // We only add extract cost once for the same scalar. 2622 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2623 continue; 2624 2625 // Uses by ephemeral values are free (because the ephemeral value will be 2626 // removed prior to code generation, and so the extraction will be 2627 // removed as well). 2628 if (EphValues.count(EU.User)) 2629 continue; 2630 2631 // If we plan to rewrite the tree in a smaller type, we will need to sign 2632 // extend the extracted value back to the original type. Here, we account 2633 // for the extract and the added cost of the sign extend if needed. 2634 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2635 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2636 if (MinBWs.count(ScalarRoot)) { 2637 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2638 auto Extend = 2639 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2640 VecTy = VectorType::get(MinTy, BundleWidth); 2641 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2642 VecTy, EU.Lane); 2643 } else { 2644 ExtractCost += 2645 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2646 } 2647 } 2648 2649 int SpillCost = getSpillCost(); 2650 Cost += SpillCost + ExtractCost; 2651 2652 std::string Str; 2653 { 2654 raw_string_ostream OS(Str); 2655 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2656 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2657 << "SLP: Total Cost = " << Cost << ".\n"; 2658 } 2659 LLVM_DEBUG(dbgs() << Str); 2660 2661 if (ViewSLPTree) 2662 ViewGraph(this, "SLP" + F->getName(), false, Str); 2663 2664 return Cost; 2665 } 2666 2667 int BoUpSLP::getGatherCost(Type *Ty, 2668 const DenseSet<unsigned> &ShuffledIndices) { 2669 int Cost = 0; 2670 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2671 if (!ShuffledIndices.count(i)) 2672 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2673 if (!ShuffledIndices.empty()) 2674 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2675 return Cost; 2676 } 2677 2678 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2679 // Find the type of the operands in VL. 2680 Type *ScalarTy = VL[0]->getType(); 2681 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2682 ScalarTy = SI->getValueOperand()->getType(); 2683 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2684 // Find the cost of inserting/extracting values from the vector. 2685 // Check if the same elements are inserted several times and count them as 2686 // shuffle candidates. 2687 DenseSet<unsigned> ShuffledElements; 2688 DenseSet<Value *> UniqueElements; 2689 // Iterate in reverse order to consider insert elements with the high cost. 2690 for (unsigned I = VL.size(); I > 0; --I) { 2691 unsigned Idx = I - 1; 2692 if (!UniqueElements.insert(VL[Idx]).second) 2693 ShuffledElements.insert(Idx); 2694 } 2695 return getGatherCost(VecTy, ShuffledElements); 2696 } 2697 2698 // Reorder commutative operations in alternate shuffle if the resulting vectors 2699 // are consecutive loads. This would allow us to vectorize the tree. 2700 // If we have something like- 2701 // load a[0] - load b[0] 2702 // load b[1] + load a[1] 2703 // load a[2] - load b[2] 2704 // load a[3] + load b[3] 2705 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2706 // code. 2707 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2708 SmallVectorImpl<Value *> &Left, 2709 SmallVectorImpl<Value *> &Right) { 2710 // Push left and right operands of binary operation into Left and Right 2711 unsigned AltOpcode = getAltOpcode(Opcode); 2712 (void)AltOpcode; 2713 for (Value *V : VL) { 2714 auto *I = cast<Instruction>(V); 2715 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2716 "Incorrect instruction in vector"); 2717 Left.push_back(I->getOperand(0)); 2718 Right.push_back(I->getOperand(1)); 2719 } 2720 2721 // Reorder if we have a commutative operation and consecutive access 2722 // are on either side of the alternate instructions. 2723 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2724 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2725 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2726 Instruction *VL1 = cast<Instruction>(VL[j]); 2727 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2728 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2729 std::swap(Left[j], Right[j]); 2730 continue; 2731 } else if (VL2->isCommutative() && 2732 isConsecutiveAccess(L, L1, *DL, *SE)) { 2733 std::swap(Left[j + 1], Right[j + 1]); 2734 continue; 2735 } 2736 // else unchanged 2737 } 2738 } 2739 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2740 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2741 Instruction *VL1 = cast<Instruction>(VL[j]); 2742 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2743 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2744 std::swap(Left[j], Right[j]); 2745 continue; 2746 } else if (VL2->isCommutative() && 2747 isConsecutiveAccess(L, L1, *DL, *SE)) { 2748 std::swap(Left[j + 1], Right[j + 1]); 2749 continue; 2750 } 2751 // else unchanged 2752 } 2753 } 2754 } 2755 } 2756 2757 // Return true if I should be commuted before adding it's left and right 2758 // operands to the arrays Left and Right. 2759 // 2760 // The vectorizer is trying to either have all elements one side being 2761 // instruction with the same opcode to enable further vectorization, or having 2762 // a splat to lower the vectorizing cost. 2763 static bool shouldReorderOperands( 2764 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2765 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2766 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2767 VLeft = I.getOperand(0); 2768 VRight = I.getOperand(1); 2769 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2770 if (SplatRight) { 2771 if (VRight == Right[i - 1]) 2772 // Preserve SplatRight 2773 return false; 2774 if (VLeft == Right[i - 1]) { 2775 // Commuting would preserve SplatRight, but we don't want to break 2776 // SplatLeft either, i.e. preserve the original order if possible. 2777 // (FIXME: why do we care?) 2778 if (SplatLeft && VLeft == Left[i - 1]) 2779 return false; 2780 return true; 2781 } 2782 } 2783 // Symmetrically handle Right side. 2784 if (SplatLeft) { 2785 if (VLeft == Left[i - 1]) 2786 // Preserve SplatLeft 2787 return false; 2788 if (VRight == Left[i - 1]) 2789 return true; 2790 } 2791 2792 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2793 Instruction *IRight = dyn_cast<Instruction>(VRight); 2794 2795 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2796 // it and not the right, in this case we want to commute. 2797 if (AllSameOpcodeRight) { 2798 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2799 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2800 // Do not commute, a match on the right preserves AllSameOpcodeRight 2801 return false; 2802 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2803 // We have a match and may want to commute, but first check if there is 2804 // not also a match on the existing operands on the Left to preserve 2805 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2806 // (FIXME: why do we care?) 2807 if (AllSameOpcodeLeft && ILeft && 2808 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2809 return false; 2810 return true; 2811 } 2812 } 2813 // Symmetrically handle Left side. 2814 if (AllSameOpcodeLeft) { 2815 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2816 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2817 return false; 2818 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2819 return true; 2820 } 2821 return false; 2822 } 2823 2824 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2825 ArrayRef<Value *> VL, 2826 SmallVectorImpl<Value *> &Left, 2827 SmallVectorImpl<Value *> &Right) { 2828 if (!VL.empty()) { 2829 // Peel the first iteration out of the loop since there's nothing 2830 // interesting to do anyway and it simplifies the checks in the loop. 2831 auto *I = cast<Instruction>(VL[0]); 2832 Value *VLeft = I->getOperand(0); 2833 Value *VRight = I->getOperand(1); 2834 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2835 // Favor having instruction to the right. FIXME: why? 2836 std::swap(VLeft, VRight); 2837 Left.push_back(VLeft); 2838 Right.push_back(VRight); 2839 } 2840 2841 // Keep track if we have instructions with all the same opcode on one side. 2842 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2843 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2844 // Keep track if we have one side with all the same value (broadcast). 2845 bool SplatLeft = true; 2846 bool SplatRight = true; 2847 2848 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2849 Instruction *I = cast<Instruction>(VL[i]); 2850 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2851 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2852 "Can only process commutative instruction"); 2853 // Commute to favor either a splat or maximizing having the same opcodes on 2854 // one side. 2855 Value *VLeft; 2856 Value *VRight; 2857 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2858 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2859 VRight)) { 2860 Left.push_back(VRight); 2861 Right.push_back(VLeft); 2862 } else { 2863 Left.push_back(VLeft); 2864 Right.push_back(VRight); 2865 } 2866 // Update Splat* and AllSameOpcode* after the insertion. 2867 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2868 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2869 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2870 (cast<Instruction>(Left[i - 1])->getOpcode() == 2871 cast<Instruction>(Left[i])->getOpcode()); 2872 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2873 (cast<Instruction>(Right[i - 1])->getOpcode() == 2874 cast<Instruction>(Right[i])->getOpcode()); 2875 } 2876 2877 // If one operand end up being broadcast, return this operand order. 2878 if (SplatRight || SplatLeft) 2879 return; 2880 2881 // Finally check if we can get longer vectorizable chain by reordering 2882 // without breaking the good operand order detected above. 2883 // E.g. If we have something like- 2884 // load a[0] load b[0] 2885 // load b[1] load a[1] 2886 // load a[2] load b[2] 2887 // load a[3] load b[3] 2888 // Reordering the second load b[1] load a[1] would allow us to vectorize 2889 // this code and we still retain AllSameOpcode property. 2890 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2891 // such as- 2892 // add a[0],c[0] load b[0] 2893 // add a[1],c[2] load b[1] 2894 // b[2] load b[2] 2895 // add a[3],c[3] load b[3] 2896 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2897 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2898 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2899 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2900 std::swap(Left[j + 1], Right[j + 1]); 2901 continue; 2902 } 2903 } 2904 } 2905 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2906 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2907 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2908 std::swap(Left[j + 1], Right[j + 1]); 2909 continue; 2910 } 2911 } 2912 } 2913 // else unchanged 2914 } 2915 } 2916 2917 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2918 // Get the basic block this bundle is in. All instructions in the bundle 2919 // should be in this block. 2920 auto *Front = cast<Instruction>(OpValue); 2921 auto *BB = Front->getParent(); 2922 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2923 const unsigned AltOpcode = getAltOpcode(Opcode); 2924 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2925 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2926 cast<Instruction>(V)->getOpcode()) || 2927 cast<Instruction>(V)->getParent() == BB; 2928 })); 2929 2930 // The last instruction in the bundle in program order. 2931 Instruction *LastInst = nullptr; 2932 2933 // Find the last instruction. The common case should be that BB has been 2934 // scheduled, and the last instruction is VL.back(). So we start with 2935 // VL.back() and iterate over schedule data until we reach the end of the 2936 // bundle. The end of the bundle is marked by null ScheduleData. 2937 if (BlocksSchedules.count(BB)) { 2938 auto *Bundle = 2939 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2940 if (Bundle && Bundle->isPartOfBundle()) 2941 for (; Bundle; Bundle = Bundle->NextInBundle) 2942 if (Bundle->OpValue == Bundle->Inst) 2943 LastInst = Bundle->Inst; 2944 } 2945 2946 // LastInst can still be null at this point if there's either not an entry 2947 // for BB in BlocksSchedules or there's no ScheduleData available for 2948 // VL.back(). This can be the case if buildTree_rec aborts for various 2949 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2950 // size is reached, etc.). ScheduleData is initialized in the scheduling 2951 // "dry-run". 2952 // 2953 // If this happens, we can still find the last instruction by brute force. We 2954 // iterate forwards from Front (inclusive) until we either see all 2955 // instructions in the bundle or reach the end of the block. If Front is the 2956 // last instruction in program order, LastInst will be set to Front, and we 2957 // will visit all the remaining instructions in the block. 2958 // 2959 // One of the reasons we exit early from buildTree_rec is to place an upper 2960 // bound on compile-time. Thus, taking an additional compile-time hit here is 2961 // not ideal. However, this should be exceedingly rare since it requires that 2962 // we both exit early from buildTree_rec and that the bundle be out-of-order 2963 // (causing us to iterate all the way to the end of the block). 2964 if (!LastInst) { 2965 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2966 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2967 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2968 LastInst = &I; 2969 if (Bundle.empty()) 2970 break; 2971 } 2972 } 2973 2974 // Set the insertion point after the last instruction in the bundle. Set the 2975 // debug location to Front. 2976 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2977 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2978 } 2979 2980 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2981 Value *Vec = UndefValue::get(Ty); 2982 // Generate the 'InsertElement' instruction. 2983 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2984 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2985 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2986 GatherSeq.insert(Insrt); 2987 CSEBlocks.insert(Insrt->getParent()); 2988 2989 // Add to our 'need-to-extract' list. 2990 if (TreeEntry *E = getTreeEntry(VL[i])) { 2991 // Find which lane we need to extract. 2992 int FoundLane = -1; 2993 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2994 // Is this the lane of the scalar that we are looking for ? 2995 if (E->Scalars[Lane] == VL[i]) { 2996 FoundLane = Lane; 2997 break; 2998 } 2999 } 3000 assert(FoundLane >= 0 && "Could not find the correct lane"); 3001 if (!E->ReuseShuffleIndices.empty()) { 3002 FoundLane = 3003 std::distance(E->ReuseShuffleIndices.begin(), 3004 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3005 } 3006 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3007 } 3008 } 3009 } 3010 3011 return Vec; 3012 } 3013 3014 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3015 InstructionsState S = getSameOpcode(VL); 3016 if (S.Opcode) { 3017 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3018 if (E->isSame(VL)) { 3019 Value *V = vectorizeTree(E); 3020 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3021 // We need to get the vectorized value but without shuffle. 3022 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3023 V = SV->getOperand(0); 3024 } else { 3025 // Reshuffle to get only unique values. 3026 SmallVector<unsigned, 4> UniqueIdxs; 3027 SmallSet<unsigned, 4> UsedIdxs; 3028 for(unsigned Idx : E->ReuseShuffleIndices) 3029 if (UsedIdxs.insert(Idx).second) 3030 UniqueIdxs.emplace_back(Idx); 3031 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3032 UniqueIdxs); 3033 } 3034 } 3035 return V; 3036 } 3037 } 3038 } 3039 3040 Type *ScalarTy = S.OpValue->getType(); 3041 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3042 ScalarTy = SI->getValueOperand()->getType(); 3043 3044 // Check that every instruction appears once in this bundle. 3045 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3046 SmallVector<Value *, 4> UniqueValues; 3047 if (VL.size() > 2) { 3048 DenseMap<Value *, unsigned> UniquePositions; 3049 for (Value *V : VL) { 3050 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3051 ReuseShuffleIndicies.emplace_back(Res.first->second); 3052 if (Res.second || isa<Constant>(V)) 3053 UniqueValues.emplace_back(V); 3054 } 3055 // Do not shuffle single element or if number of unique values is not power 3056 // of 2. 3057 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3058 !llvm::isPowerOf2_32(UniqueValues.size())) 3059 ReuseShuffleIndicies.clear(); 3060 else 3061 VL = UniqueValues; 3062 } 3063 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3064 3065 Value *V = Gather(VL, VecTy); 3066 if (!ReuseShuffleIndicies.empty()) { 3067 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3068 ReuseShuffleIndicies, "shuffle"); 3069 if (auto *I = dyn_cast<Instruction>(V)) { 3070 GatherSeq.insert(I); 3071 CSEBlocks.insert(I->getParent()); 3072 } 3073 } 3074 return V; 3075 } 3076 3077 static void inversePermutation(ArrayRef<unsigned> Indices, 3078 SmallVectorImpl<unsigned> &Mask) { 3079 Mask.clear(); 3080 const unsigned E = Indices.size(); 3081 Mask.resize(E); 3082 for (unsigned I = 0; I < E; ++I) 3083 Mask[Indices[I]] = I; 3084 } 3085 3086 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3087 IRBuilder<>::InsertPointGuard Guard(Builder); 3088 3089 if (E->VectorizedValue) { 3090 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3091 return E->VectorizedValue; 3092 } 3093 3094 InstructionsState S = getSameOpcode(E->Scalars); 3095 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 3096 Type *ScalarTy = VL0->getType(); 3097 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3098 ScalarTy = SI->getValueOperand()->getType(); 3099 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3100 3101 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3102 3103 if (E->NeedToGather) { 3104 setInsertPointAfterBundle(E->Scalars, VL0); 3105 auto *V = Gather(E->Scalars, VecTy); 3106 if (NeedToShuffleReuses) { 3107 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3108 E->ReuseShuffleIndices, "shuffle"); 3109 if (auto *I = dyn_cast<Instruction>(V)) { 3110 GatherSeq.insert(I); 3111 CSEBlocks.insert(I->getParent()); 3112 } 3113 } 3114 E->VectorizedValue = V; 3115 return V; 3116 } 3117 3118 unsigned ShuffleOrOp = S.IsAltShuffle ? 3119 (unsigned) Instruction::ShuffleVector : S.Opcode; 3120 switch (ShuffleOrOp) { 3121 case Instruction::PHI: { 3122 PHINode *PH = dyn_cast<PHINode>(VL0); 3123 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3124 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3125 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3126 Value *V = NewPhi; 3127 if (NeedToShuffleReuses) { 3128 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3129 E->ReuseShuffleIndices, "shuffle"); 3130 } 3131 E->VectorizedValue = V; 3132 3133 // PHINodes may have multiple entries from the same block. We want to 3134 // visit every block once. 3135 SmallSet<BasicBlock*, 4> VisitedBBs; 3136 3137 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3138 ValueList Operands; 3139 BasicBlock *IBB = PH->getIncomingBlock(i); 3140 3141 if (!VisitedBBs.insert(IBB).second) { 3142 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3143 continue; 3144 } 3145 3146 // Prepare the operand vector. 3147 for (Value *V : E->Scalars) 3148 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3149 3150 Builder.SetInsertPoint(IBB->getTerminator()); 3151 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3152 Value *Vec = vectorizeTree(Operands); 3153 NewPhi->addIncoming(Vec, IBB); 3154 } 3155 3156 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3157 "Invalid number of incoming values"); 3158 return V; 3159 } 3160 3161 case Instruction::ExtractElement: { 3162 if (!E->NeedToGather) { 3163 Value *V = VL0->getOperand(0); 3164 if (!E->ReorderIndices.empty()) { 3165 OrdersType Mask; 3166 inversePermutation(E->ReorderIndices, Mask); 3167 Builder.SetInsertPoint(VL0); 3168 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3169 "reorder_shuffle"); 3170 } 3171 if (NeedToShuffleReuses) { 3172 // TODO: Merge this shuffle with the ReorderShuffleMask. 3173 if (!E->ReorderIndices.empty()) 3174 Builder.SetInsertPoint(VL0); 3175 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3176 E->ReuseShuffleIndices, "shuffle"); 3177 } 3178 E->VectorizedValue = V; 3179 return V; 3180 } 3181 setInsertPointAfterBundle(E->Scalars, VL0); 3182 auto *V = Gather(E->Scalars, VecTy); 3183 if (NeedToShuffleReuses) { 3184 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3185 E->ReuseShuffleIndices, "shuffle"); 3186 if (auto *I = dyn_cast<Instruction>(V)) { 3187 GatherSeq.insert(I); 3188 CSEBlocks.insert(I->getParent()); 3189 } 3190 } 3191 E->VectorizedValue = V; 3192 return V; 3193 } 3194 case Instruction::ExtractValue: { 3195 if (!E->NeedToGather) { 3196 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3197 Builder.SetInsertPoint(LI); 3198 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3199 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3200 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3201 Value *NewV = propagateMetadata(V, E->Scalars); 3202 if (!E->ReorderIndices.empty()) { 3203 OrdersType Mask; 3204 inversePermutation(E->ReorderIndices, Mask); 3205 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3206 "reorder_shuffle"); 3207 } 3208 if (NeedToShuffleReuses) { 3209 // TODO: Merge this shuffle with the ReorderShuffleMask. 3210 NewV = Builder.CreateShuffleVector( 3211 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3212 } 3213 E->VectorizedValue = NewV; 3214 return NewV; 3215 } 3216 setInsertPointAfterBundle(E->Scalars, VL0); 3217 auto *V = Gather(E->Scalars, VecTy); 3218 if (NeedToShuffleReuses) { 3219 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3220 E->ReuseShuffleIndices, "shuffle"); 3221 if (auto *I = dyn_cast<Instruction>(V)) { 3222 GatherSeq.insert(I); 3223 CSEBlocks.insert(I->getParent()); 3224 } 3225 } 3226 E->VectorizedValue = V; 3227 return V; 3228 } 3229 case Instruction::ZExt: 3230 case Instruction::SExt: 3231 case Instruction::FPToUI: 3232 case Instruction::FPToSI: 3233 case Instruction::FPExt: 3234 case Instruction::PtrToInt: 3235 case Instruction::IntToPtr: 3236 case Instruction::SIToFP: 3237 case Instruction::UIToFP: 3238 case Instruction::Trunc: 3239 case Instruction::FPTrunc: 3240 case Instruction::BitCast: { 3241 ValueList INVL; 3242 for (Value *V : E->Scalars) 3243 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3244 3245 setInsertPointAfterBundle(E->Scalars, VL0); 3246 3247 Value *InVec = vectorizeTree(INVL); 3248 3249 if (E->VectorizedValue) { 3250 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3251 return E->VectorizedValue; 3252 } 3253 3254 CastInst *CI = dyn_cast<CastInst>(VL0); 3255 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3256 if (NeedToShuffleReuses) { 3257 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3258 E->ReuseShuffleIndices, "shuffle"); 3259 } 3260 E->VectorizedValue = V; 3261 ++NumVectorInstructions; 3262 return V; 3263 } 3264 case Instruction::FCmp: 3265 case Instruction::ICmp: { 3266 ValueList LHSV, RHSV; 3267 for (Value *V : E->Scalars) { 3268 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3269 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3270 } 3271 3272 setInsertPointAfterBundle(E->Scalars, VL0); 3273 3274 Value *L = vectorizeTree(LHSV); 3275 Value *R = vectorizeTree(RHSV); 3276 3277 if (E->VectorizedValue) { 3278 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3279 return E->VectorizedValue; 3280 } 3281 3282 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3283 Value *V; 3284 if (S.Opcode == Instruction::FCmp) 3285 V = Builder.CreateFCmp(P0, L, R); 3286 else 3287 V = Builder.CreateICmp(P0, L, R); 3288 3289 propagateIRFlags(V, E->Scalars, VL0); 3290 if (NeedToShuffleReuses) { 3291 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3292 E->ReuseShuffleIndices, "shuffle"); 3293 } 3294 E->VectorizedValue = V; 3295 ++NumVectorInstructions; 3296 return V; 3297 } 3298 case Instruction::Select: { 3299 ValueList TrueVec, FalseVec, CondVec; 3300 for (Value *V : E->Scalars) { 3301 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3302 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3303 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3304 } 3305 3306 setInsertPointAfterBundle(E->Scalars, VL0); 3307 3308 Value *Cond = vectorizeTree(CondVec); 3309 Value *True = vectorizeTree(TrueVec); 3310 Value *False = vectorizeTree(FalseVec); 3311 3312 if (E->VectorizedValue) { 3313 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3314 return E->VectorizedValue; 3315 } 3316 3317 Value *V = Builder.CreateSelect(Cond, True, False); 3318 if (NeedToShuffleReuses) { 3319 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3320 E->ReuseShuffleIndices, "shuffle"); 3321 } 3322 E->VectorizedValue = V; 3323 ++NumVectorInstructions; 3324 return V; 3325 } 3326 case Instruction::Add: 3327 case Instruction::FAdd: 3328 case Instruction::Sub: 3329 case Instruction::FSub: 3330 case Instruction::Mul: 3331 case Instruction::FMul: 3332 case Instruction::UDiv: 3333 case Instruction::SDiv: 3334 case Instruction::FDiv: 3335 case Instruction::URem: 3336 case Instruction::SRem: 3337 case Instruction::FRem: 3338 case Instruction::Shl: 3339 case Instruction::LShr: 3340 case Instruction::AShr: 3341 case Instruction::And: 3342 case Instruction::Or: 3343 case Instruction::Xor: { 3344 ValueList LHSVL, RHSVL; 3345 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3346 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3347 RHSVL); 3348 else 3349 for (Value *V : E->Scalars) { 3350 auto *I = cast<Instruction>(V); 3351 LHSVL.push_back(I->getOperand(0)); 3352 RHSVL.push_back(I->getOperand(1)); 3353 } 3354 3355 setInsertPointAfterBundle(E->Scalars, VL0); 3356 3357 Value *LHS = vectorizeTree(LHSVL); 3358 Value *RHS = vectorizeTree(RHSVL); 3359 3360 if (E->VectorizedValue) { 3361 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3362 return E->VectorizedValue; 3363 } 3364 3365 Value *V = Builder.CreateBinOp( 3366 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3367 propagateIRFlags(V, E->Scalars, VL0); 3368 if (auto *I = dyn_cast<Instruction>(V)) 3369 V = propagateMetadata(I, E->Scalars); 3370 3371 if (NeedToShuffleReuses) { 3372 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3373 E->ReuseShuffleIndices, "shuffle"); 3374 } 3375 E->VectorizedValue = V; 3376 ++NumVectorInstructions; 3377 3378 return V; 3379 } 3380 case Instruction::Load: { 3381 // Loads are inserted at the head of the tree because we don't want to 3382 // sink them all the way down past store instructions. 3383 bool IsReorder = !E->ReorderIndices.empty(); 3384 if (IsReorder) 3385 VL0 = cast<Instruction>(E->Scalars[E->ReorderIndices.front()]); 3386 setInsertPointAfterBundle(E->Scalars, VL0); 3387 3388 LoadInst *LI = cast<LoadInst>(VL0); 3389 Type *ScalarLoadTy = LI->getType(); 3390 unsigned AS = LI->getPointerAddressSpace(); 3391 3392 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3393 VecTy->getPointerTo(AS)); 3394 3395 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3396 // ExternalUses list to make sure that an extract will be generated in the 3397 // future. 3398 Value *PO = LI->getPointerOperand(); 3399 if (getTreeEntry(PO)) 3400 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3401 3402 unsigned Alignment = LI->getAlignment(); 3403 LI = Builder.CreateLoad(VecPtr); 3404 if (!Alignment) { 3405 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3406 } 3407 LI->setAlignment(Alignment); 3408 Value *V = propagateMetadata(LI, E->Scalars); 3409 if (IsReorder) { 3410 OrdersType Mask; 3411 inversePermutation(E->ReorderIndices, Mask); 3412 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3413 Mask, "reorder_shuffle"); 3414 } 3415 if (NeedToShuffleReuses) { 3416 // TODO: Merge this shuffle with the ReorderShuffleMask. 3417 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3418 E->ReuseShuffleIndices, "shuffle"); 3419 } 3420 E->VectorizedValue = V; 3421 ++NumVectorInstructions; 3422 return V; 3423 } 3424 case Instruction::Store: { 3425 StoreInst *SI = cast<StoreInst>(VL0); 3426 unsigned Alignment = SI->getAlignment(); 3427 unsigned AS = SI->getPointerAddressSpace(); 3428 3429 ValueList ScalarStoreValues; 3430 for (Value *V : E->Scalars) 3431 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3432 3433 setInsertPointAfterBundle(E->Scalars, VL0); 3434 3435 Value *VecValue = vectorizeTree(ScalarStoreValues); 3436 Value *ScalarPtr = SI->getPointerOperand(); 3437 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3438 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3439 3440 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3441 // ExternalUses to make sure that an extract will be generated in the 3442 // future. 3443 if (getTreeEntry(ScalarPtr)) 3444 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3445 3446 if (!Alignment) 3447 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3448 3449 S->setAlignment(Alignment); 3450 Value *V = propagateMetadata(S, E->Scalars); 3451 if (NeedToShuffleReuses) { 3452 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3453 E->ReuseShuffleIndices, "shuffle"); 3454 } 3455 E->VectorizedValue = V; 3456 ++NumVectorInstructions; 3457 return V; 3458 } 3459 case Instruction::GetElementPtr: { 3460 setInsertPointAfterBundle(E->Scalars, VL0); 3461 3462 ValueList Op0VL; 3463 for (Value *V : E->Scalars) 3464 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3465 3466 Value *Op0 = vectorizeTree(Op0VL); 3467 3468 std::vector<Value *> OpVecs; 3469 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3470 ++j) { 3471 ValueList OpVL; 3472 for (Value *V : E->Scalars) 3473 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3474 3475 Value *OpVec = vectorizeTree(OpVL); 3476 OpVecs.push_back(OpVec); 3477 } 3478 3479 Value *V = Builder.CreateGEP( 3480 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3481 if (Instruction *I = dyn_cast<Instruction>(V)) 3482 V = propagateMetadata(I, E->Scalars); 3483 3484 if (NeedToShuffleReuses) { 3485 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3486 E->ReuseShuffleIndices, "shuffle"); 3487 } 3488 E->VectorizedValue = V; 3489 ++NumVectorInstructions; 3490 3491 return V; 3492 } 3493 case Instruction::Call: { 3494 CallInst *CI = cast<CallInst>(VL0); 3495 setInsertPointAfterBundle(E->Scalars, VL0); 3496 Function *FI; 3497 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3498 Value *ScalarArg = nullptr; 3499 if (CI && (FI = CI->getCalledFunction())) { 3500 IID = FI->getIntrinsicID(); 3501 } 3502 std::vector<Value *> OpVecs; 3503 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3504 ValueList OpVL; 3505 // ctlz,cttz and powi are special intrinsics whose second argument is 3506 // a scalar. This argument should not be vectorized. 3507 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3508 CallInst *CEI = cast<CallInst>(VL0); 3509 ScalarArg = CEI->getArgOperand(j); 3510 OpVecs.push_back(CEI->getArgOperand(j)); 3511 continue; 3512 } 3513 for (Value *V : E->Scalars) { 3514 CallInst *CEI = cast<CallInst>(V); 3515 OpVL.push_back(CEI->getArgOperand(j)); 3516 } 3517 3518 Value *OpVec = vectorizeTree(OpVL); 3519 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3520 OpVecs.push_back(OpVec); 3521 } 3522 3523 Module *M = F->getParent(); 3524 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3525 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3526 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3527 SmallVector<OperandBundleDef, 1> OpBundles; 3528 CI->getOperandBundlesAsDefs(OpBundles); 3529 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3530 3531 // The scalar argument uses an in-tree scalar so we add the new vectorized 3532 // call to ExternalUses list to make sure that an extract will be 3533 // generated in the future. 3534 if (ScalarArg && getTreeEntry(ScalarArg)) 3535 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3536 3537 propagateIRFlags(V, E->Scalars, VL0); 3538 if (NeedToShuffleReuses) { 3539 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3540 E->ReuseShuffleIndices, "shuffle"); 3541 } 3542 E->VectorizedValue = V; 3543 ++NumVectorInstructions; 3544 return V; 3545 } 3546 case Instruction::ShuffleVector: { 3547 ValueList LHSVL, RHSVL; 3548 assert(Instruction::isBinaryOp(S.Opcode) && 3549 "Invalid Shuffle Vector Operand"); 3550 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3551 setInsertPointAfterBundle(E->Scalars, VL0); 3552 3553 Value *LHS = vectorizeTree(LHSVL); 3554 Value *RHS = vectorizeTree(RHSVL); 3555 3556 if (E->VectorizedValue) { 3557 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3558 return E->VectorizedValue; 3559 } 3560 3561 // Create a vector of LHS op1 RHS 3562 Value *V0 = Builder.CreateBinOp( 3563 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3564 3565 unsigned AltOpcode = getAltOpcode(S.Opcode); 3566 // Create a vector of LHS op2 RHS 3567 Value *V1 = Builder.CreateBinOp( 3568 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3569 3570 // Create shuffle to take alternate operations from the vector. 3571 // Also, gather up odd and even scalar ops to propagate IR flags to 3572 // each vector operation. 3573 ValueList OddScalars, EvenScalars; 3574 unsigned e = E->Scalars.size(); 3575 SmallVector<Constant *, 8> Mask(e); 3576 for (unsigned i = 0; i < e; ++i) { 3577 if (isOdd(i)) { 3578 Mask[i] = Builder.getInt32(e + i); 3579 OddScalars.push_back(E->Scalars[i]); 3580 } else { 3581 Mask[i] = Builder.getInt32(i); 3582 EvenScalars.push_back(E->Scalars[i]); 3583 } 3584 } 3585 3586 Value *ShuffleMask = ConstantVector::get(Mask); 3587 propagateIRFlags(V0, EvenScalars); 3588 propagateIRFlags(V1, OddScalars); 3589 3590 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3591 if (Instruction *I = dyn_cast<Instruction>(V)) 3592 V = propagateMetadata(I, E->Scalars); 3593 if (NeedToShuffleReuses) { 3594 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3595 E->ReuseShuffleIndices, "shuffle"); 3596 } 3597 E->VectorizedValue = V; 3598 ++NumVectorInstructions; 3599 3600 return V; 3601 } 3602 default: 3603 llvm_unreachable("unknown inst"); 3604 } 3605 return nullptr; 3606 } 3607 3608 Value *BoUpSLP::vectorizeTree() { 3609 ExtraValueToDebugLocsMap ExternallyUsedValues; 3610 return vectorizeTree(ExternallyUsedValues); 3611 } 3612 3613 Value * 3614 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3615 // All blocks must be scheduled before any instructions are inserted. 3616 for (auto &BSIter : BlocksSchedules) { 3617 scheduleBlock(BSIter.second.get()); 3618 } 3619 3620 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3621 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3622 3623 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3624 // vectorized root. InstCombine will then rewrite the entire expression. We 3625 // sign extend the extracted values below. 3626 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3627 if (MinBWs.count(ScalarRoot)) { 3628 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3629 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3630 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3631 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3632 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3633 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3634 VectorizableTree[0].VectorizedValue = Trunc; 3635 } 3636 3637 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3638 << " values .\n"); 3639 3640 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3641 // specified by ScalarType. 3642 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3643 if (!MinBWs.count(ScalarRoot)) 3644 return Ex; 3645 if (MinBWs[ScalarRoot].second) 3646 return Builder.CreateSExt(Ex, ScalarType); 3647 return Builder.CreateZExt(Ex, ScalarType); 3648 }; 3649 3650 // Extract all of the elements with the external uses. 3651 for (const auto &ExternalUse : ExternalUses) { 3652 Value *Scalar = ExternalUse.Scalar; 3653 llvm::User *User = ExternalUse.User; 3654 3655 // Skip users that we already RAUW. This happens when one instruction 3656 // has multiple uses of the same value. 3657 if (User && !is_contained(Scalar->users(), User)) 3658 continue; 3659 TreeEntry *E = getTreeEntry(Scalar); 3660 assert(E && "Invalid scalar"); 3661 assert(!E->NeedToGather && "Extracting from a gather list"); 3662 3663 Value *Vec = E->VectorizedValue; 3664 assert(Vec && "Can't find vectorizable value"); 3665 3666 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3667 // If User == nullptr, the Scalar is used as extra arg. Generate 3668 // ExtractElement instruction and update the record for this scalar in 3669 // ExternallyUsedValues. 3670 if (!User) { 3671 assert(ExternallyUsedValues.count(Scalar) && 3672 "Scalar with nullptr as an external user must be registered in " 3673 "ExternallyUsedValues map"); 3674 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3675 Builder.SetInsertPoint(VecI->getParent(), 3676 std::next(VecI->getIterator())); 3677 } else { 3678 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3679 } 3680 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3681 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3682 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3683 auto &Locs = ExternallyUsedValues[Scalar]; 3684 ExternallyUsedValues.insert({Ex, Locs}); 3685 ExternallyUsedValues.erase(Scalar); 3686 continue; 3687 } 3688 3689 // Generate extracts for out-of-tree users. 3690 // Find the insertion point for the extractelement lane. 3691 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3692 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3693 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3694 if (PH->getIncomingValue(i) == Scalar) { 3695 TerminatorInst *IncomingTerminator = 3696 PH->getIncomingBlock(i)->getTerminator(); 3697 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3698 Builder.SetInsertPoint(VecI->getParent(), 3699 std::next(VecI->getIterator())); 3700 } else { 3701 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3702 } 3703 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3704 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3705 CSEBlocks.insert(PH->getIncomingBlock(i)); 3706 PH->setOperand(i, Ex); 3707 } 3708 } 3709 } else { 3710 Builder.SetInsertPoint(cast<Instruction>(User)); 3711 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3712 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3713 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3714 User->replaceUsesOfWith(Scalar, Ex); 3715 } 3716 } else { 3717 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3718 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3719 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3720 CSEBlocks.insert(&F->getEntryBlock()); 3721 User->replaceUsesOfWith(Scalar, Ex); 3722 } 3723 3724 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3725 } 3726 3727 // For each vectorized value: 3728 for (TreeEntry &EIdx : VectorizableTree) { 3729 TreeEntry *Entry = &EIdx; 3730 3731 // No need to handle users of gathered values. 3732 if (Entry->NeedToGather) 3733 continue; 3734 3735 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3736 3737 // For each lane: 3738 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3739 Value *Scalar = Entry->Scalars[Lane]; 3740 3741 Type *Ty = Scalar->getType(); 3742 if (!Ty->isVoidTy()) { 3743 #ifndef NDEBUG 3744 for (User *U : Scalar->users()) { 3745 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3746 3747 // It is legal to replace users in the ignorelist by undef. 3748 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3749 "Replacing out-of-tree value with undef"); 3750 } 3751 #endif 3752 Value *Undef = UndefValue::get(Ty); 3753 Scalar->replaceAllUsesWith(Undef); 3754 } 3755 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3756 eraseInstruction(cast<Instruction>(Scalar)); 3757 } 3758 } 3759 3760 Builder.ClearInsertionPoint(); 3761 3762 return VectorizableTree[0].VectorizedValue; 3763 } 3764 3765 void BoUpSLP::optimizeGatherSequence() { 3766 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3767 << " gather sequences instructions.\n"); 3768 // LICM InsertElementInst sequences. 3769 for (Instruction *I : GatherSeq) { 3770 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3771 continue; 3772 3773 // Check if this block is inside a loop. 3774 Loop *L = LI->getLoopFor(I->getParent()); 3775 if (!L) 3776 continue; 3777 3778 // Check if it has a preheader. 3779 BasicBlock *PreHeader = L->getLoopPreheader(); 3780 if (!PreHeader) 3781 continue; 3782 3783 // If the vector or the element that we insert into it are 3784 // instructions that are defined in this basic block then we can't 3785 // hoist this instruction. 3786 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3787 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3788 if (Op0 && L->contains(Op0)) 3789 continue; 3790 if (Op1 && L->contains(Op1)) 3791 continue; 3792 3793 // We can hoist this instruction. Move it to the pre-header. 3794 I->moveBefore(PreHeader->getTerminator()); 3795 } 3796 3797 // Make a list of all reachable blocks in our CSE queue. 3798 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3799 CSEWorkList.reserve(CSEBlocks.size()); 3800 for (BasicBlock *BB : CSEBlocks) 3801 if (DomTreeNode *N = DT->getNode(BB)) { 3802 assert(DT->isReachableFromEntry(N)); 3803 CSEWorkList.push_back(N); 3804 } 3805 3806 // Sort blocks by domination. This ensures we visit a block after all blocks 3807 // dominating it are visited. 3808 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3809 [this](const DomTreeNode *A, const DomTreeNode *B) { 3810 return DT->properlyDominates(A, B); 3811 }); 3812 3813 // Perform O(N^2) search over the gather sequences and merge identical 3814 // instructions. TODO: We can further optimize this scan if we split the 3815 // instructions into different buckets based on the insert lane. 3816 SmallVector<Instruction *, 16> Visited; 3817 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3818 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3819 "Worklist not sorted properly!"); 3820 BasicBlock *BB = (*I)->getBlock(); 3821 // For all instructions in blocks containing gather sequences: 3822 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3823 Instruction *In = &*it++; 3824 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3825 continue; 3826 3827 // Check if we can replace this instruction with any of the 3828 // visited instructions. 3829 for (Instruction *v : Visited) { 3830 if (In->isIdenticalTo(v) && 3831 DT->dominates(v->getParent(), In->getParent())) { 3832 In->replaceAllUsesWith(v); 3833 eraseInstruction(In); 3834 In = nullptr; 3835 break; 3836 } 3837 } 3838 if (In) { 3839 assert(!is_contained(Visited, In)); 3840 Visited.push_back(In); 3841 } 3842 } 3843 } 3844 CSEBlocks.clear(); 3845 GatherSeq.clear(); 3846 } 3847 3848 // Groups the instructions to a bundle (which is then a single scheduling entity) 3849 // and schedules instructions until the bundle gets ready. 3850 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3851 BoUpSLP *SLP, Value *OpValue) { 3852 if (isa<PHINode>(OpValue)) 3853 return true; 3854 3855 // Initialize the instruction bundle. 3856 Instruction *OldScheduleEnd = ScheduleEnd; 3857 ScheduleData *PrevInBundle = nullptr; 3858 ScheduleData *Bundle = nullptr; 3859 bool ReSchedule = false; 3860 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3861 3862 // Make sure that the scheduling region contains all 3863 // instructions of the bundle. 3864 for (Value *V : VL) { 3865 if (!extendSchedulingRegion(V, OpValue)) 3866 return false; 3867 } 3868 3869 for (Value *V : VL) { 3870 ScheduleData *BundleMember = getScheduleData(V); 3871 assert(BundleMember && 3872 "no ScheduleData for bundle member (maybe not in same basic block)"); 3873 if (BundleMember->IsScheduled) { 3874 // A bundle member was scheduled as single instruction before and now 3875 // needs to be scheduled as part of the bundle. We just get rid of the 3876 // existing schedule. 3877 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3878 << " was already scheduled\n"); 3879 ReSchedule = true; 3880 } 3881 assert(BundleMember->isSchedulingEntity() && 3882 "bundle member already part of other bundle"); 3883 if (PrevInBundle) { 3884 PrevInBundle->NextInBundle = BundleMember; 3885 } else { 3886 Bundle = BundleMember; 3887 } 3888 BundleMember->UnscheduledDepsInBundle = 0; 3889 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3890 3891 // Group the instructions to a bundle. 3892 BundleMember->FirstInBundle = Bundle; 3893 PrevInBundle = BundleMember; 3894 } 3895 if (ScheduleEnd != OldScheduleEnd) { 3896 // The scheduling region got new instructions at the lower end (or it is a 3897 // new region for the first bundle). This makes it necessary to 3898 // recalculate all dependencies. 3899 // It is seldom that this needs to be done a second time after adding the 3900 // initial bundle to the region. 3901 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3902 doForAllOpcodes(I, [](ScheduleData *SD) { 3903 SD->clearDependencies(); 3904 }); 3905 } 3906 ReSchedule = true; 3907 } 3908 if (ReSchedule) { 3909 resetSchedule(); 3910 initialFillReadyList(ReadyInsts); 3911 } 3912 3913 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3914 << BB->getName() << "\n"); 3915 3916 calculateDependencies(Bundle, true, SLP); 3917 3918 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3919 // means that there are no cyclic dependencies and we can schedule it. 3920 // Note that's important that we don't "schedule" the bundle yet (see 3921 // cancelScheduling). 3922 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3923 3924 ScheduleData *pickedSD = ReadyInsts.back(); 3925 ReadyInsts.pop_back(); 3926 3927 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3928 schedule(pickedSD, ReadyInsts); 3929 } 3930 } 3931 if (!Bundle->isReady()) { 3932 cancelScheduling(VL, OpValue); 3933 return false; 3934 } 3935 return true; 3936 } 3937 3938 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3939 Value *OpValue) { 3940 if (isa<PHINode>(OpValue)) 3941 return; 3942 3943 ScheduleData *Bundle = getScheduleData(OpValue); 3944 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3945 assert(!Bundle->IsScheduled && 3946 "Can't cancel bundle which is already scheduled"); 3947 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3948 "tried to unbundle something which is not a bundle"); 3949 3950 // Un-bundle: make single instructions out of the bundle. 3951 ScheduleData *BundleMember = Bundle; 3952 while (BundleMember) { 3953 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3954 BundleMember->FirstInBundle = BundleMember; 3955 ScheduleData *Next = BundleMember->NextInBundle; 3956 BundleMember->NextInBundle = nullptr; 3957 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3958 if (BundleMember->UnscheduledDepsInBundle == 0) { 3959 ReadyInsts.insert(BundleMember); 3960 } 3961 BundleMember = Next; 3962 } 3963 } 3964 3965 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3966 // Allocate a new ScheduleData for the instruction. 3967 if (ChunkPos >= ChunkSize) { 3968 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3969 ChunkPos = 0; 3970 } 3971 return &(ScheduleDataChunks.back()[ChunkPos++]); 3972 } 3973 3974 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3975 Value *OpValue) { 3976 if (getScheduleData(V, isOneOf(OpValue, V))) 3977 return true; 3978 Instruction *I = dyn_cast<Instruction>(V); 3979 assert(I && "bundle member must be an instruction"); 3980 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3981 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3982 ScheduleData *ISD = getScheduleData(I); 3983 if (!ISD) 3984 return false; 3985 assert(isInSchedulingRegion(ISD) && 3986 "ScheduleData not in scheduling region"); 3987 ScheduleData *SD = allocateScheduleDataChunks(); 3988 SD->Inst = I; 3989 SD->init(SchedulingRegionID, OpValue); 3990 ExtraScheduleDataMap[I][OpValue] = SD; 3991 return true; 3992 }; 3993 if (CheckSheduleForI(I)) 3994 return true; 3995 if (!ScheduleStart) { 3996 // It's the first instruction in the new region. 3997 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3998 ScheduleStart = I; 3999 ScheduleEnd = I->getNextNode(); 4000 if (isOneOf(OpValue, I) != I) 4001 CheckSheduleForI(I); 4002 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 4003 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4004 return true; 4005 } 4006 // Search up and down at the same time, because we don't know if the new 4007 // instruction is above or below the existing scheduling region. 4008 BasicBlock::reverse_iterator UpIter = 4009 ++ScheduleStart->getIterator().getReverse(); 4010 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4011 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4012 BasicBlock::iterator LowerEnd = BB->end(); 4013 while (true) { 4014 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4015 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4016 return false; 4017 } 4018 4019 if (UpIter != UpperEnd) { 4020 if (&*UpIter == I) { 4021 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4022 ScheduleStart = I; 4023 if (isOneOf(OpValue, I) != I) 4024 CheckSheduleForI(I); 4025 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4026 << "\n"); 4027 return true; 4028 } 4029 UpIter++; 4030 } 4031 if (DownIter != LowerEnd) { 4032 if (&*DownIter == I) { 4033 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4034 nullptr); 4035 ScheduleEnd = I->getNextNode(); 4036 if (isOneOf(OpValue, I) != I) 4037 CheckSheduleForI(I); 4038 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 4039 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4040 << "\n"); 4041 return true; 4042 } 4043 DownIter++; 4044 } 4045 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4046 "instruction not found in block"); 4047 } 4048 return true; 4049 } 4050 4051 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4052 Instruction *ToI, 4053 ScheduleData *PrevLoadStore, 4054 ScheduleData *NextLoadStore) { 4055 ScheduleData *CurrentLoadStore = PrevLoadStore; 4056 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4057 ScheduleData *SD = ScheduleDataMap[I]; 4058 if (!SD) { 4059 SD = allocateScheduleDataChunks(); 4060 ScheduleDataMap[I] = SD; 4061 SD->Inst = I; 4062 } 4063 assert(!isInSchedulingRegion(SD) && 4064 "new ScheduleData already in scheduling region"); 4065 SD->init(SchedulingRegionID, I); 4066 4067 if (I->mayReadOrWriteMemory() && 4068 (!isa<IntrinsicInst>(I) || 4069 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4070 // Update the linked list of memory accessing instructions. 4071 if (CurrentLoadStore) { 4072 CurrentLoadStore->NextLoadStore = SD; 4073 } else { 4074 FirstLoadStoreInRegion = SD; 4075 } 4076 CurrentLoadStore = SD; 4077 } 4078 } 4079 if (NextLoadStore) { 4080 if (CurrentLoadStore) 4081 CurrentLoadStore->NextLoadStore = NextLoadStore; 4082 } else { 4083 LastLoadStoreInRegion = CurrentLoadStore; 4084 } 4085 } 4086 4087 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4088 bool InsertInReadyList, 4089 BoUpSLP *SLP) { 4090 assert(SD->isSchedulingEntity()); 4091 4092 SmallVector<ScheduleData *, 10> WorkList; 4093 WorkList.push_back(SD); 4094 4095 while (!WorkList.empty()) { 4096 ScheduleData *SD = WorkList.back(); 4097 WorkList.pop_back(); 4098 4099 ScheduleData *BundleMember = SD; 4100 while (BundleMember) { 4101 assert(isInSchedulingRegion(BundleMember)); 4102 if (!BundleMember->hasValidDependencies()) { 4103 4104 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4105 << "\n"); 4106 BundleMember->Dependencies = 0; 4107 BundleMember->resetUnscheduledDeps(); 4108 4109 // Handle def-use chain dependencies. 4110 if (BundleMember->OpValue != BundleMember->Inst) { 4111 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4112 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4113 BundleMember->Dependencies++; 4114 ScheduleData *DestBundle = UseSD->FirstInBundle; 4115 if (!DestBundle->IsScheduled) 4116 BundleMember->incrementUnscheduledDeps(1); 4117 if (!DestBundle->hasValidDependencies()) 4118 WorkList.push_back(DestBundle); 4119 } 4120 } else { 4121 for (User *U : BundleMember->Inst->users()) { 4122 if (isa<Instruction>(U)) { 4123 ScheduleData *UseSD = getScheduleData(U); 4124 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4125 BundleMember->Dependencies++; 4126 ScheduleData *DestBundle = UseSD->FirstInBundle; 4127 if (!DestBundle->IsScheduled) 4128 BundleMember->incrementUnscheduledDeps(1); 4129 if (!DestBundle->hasValidDependencies()) 4130 WorkList.push_back(DestBundle); 4131 } 4132 } else { 4133 // I'm not sure if this can ever happen. But we need to be safe. 4134 // This lets the instruction/bundle never be scheduled and 4135 // eventually disable vectorization. 4136 BundleMember->Dependencies++; 4137 BundleMember->incrementUnscheduledDeps(1); 4138 } 4139 } 4140 } 4141 4142 // Handle the memory dependencies. 4143 ScheduleData *DepDest = BundleMember->NextLoadStore; 4144 if (DepDest) { 4145 Instruction *SrcInst = BundleMember->Inst; 4146 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4147 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4148 unsigned numAliased = 0; 4149 unsigned DistToSrc = 1; 4150 4151 while (DepDest) { 4152 assert(isInSchedulingRegion(DepDest)); 4153 4154 // We have two limits to reduce the complexity: 4155 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4156 // SLP->isAliased (which is the expensive part in this loop). 4157 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4158 // the whole loop (even if the loop is fast, it's quadratic). 4159 // It's important for the loop break condition (see below) to 4160 // check this limit even between two read-only instructions. 4161 if (DistToSrc >= MaxMemDepDistance || 4162 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4163 (numAliased >= AliasedCheckLimit || 4164 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4165 4166 // We increment the counter only if the locations are aliased 4167 // (instead of counting all alias checks). This gives a better 4168 // balance between reduced runtime and accurate dependencies. 4169 numAliased++; 4170 4171 DepDest->MemoryDependencies.push_back(BundleMember); 4172 BundleMember->Dependencies++; 4173 ScheduleData *DestBundle = DepDest->FirstInBundle; 4174 if (!DestBundle->IsScheduled) { 4175 BundleMember->incrementUnscheduledDeps(1); 4176 } 4177 if (!DestBundle->hasValidDependencies()) { 4178 WorkList.push_back(DestBundle); 4179 } 4180 } 4181 DepDest = DepDest->NextLoadStore; 4182 4183 // Example, explaining the loop break condition: Let's assume our 4184 // starting instruction is i0 and MaxMemDepDistance = 3. 4185 // 4186 // +--------v--v--v 4187 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4188 // +--------^--^--^ 4189 // 4190 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4191 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4192 // Previously we already added dependencies from i3 to i6,i7,i8 4193 // (because of MaxMemDepDistance). As we added a dependency from 4194 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4195 // and we can abort this loop at i6. 4196 if (DistToSrc >= 2 * MaxMemDepDistance) 4197 break; 4198 DistToSrc++; 4199 } 4200 } 4201 } 4202 BundleMember = BundleMember->NextInBundle; 4203 } 4204 if (InsertInReadyList && SD->isReady()) { 4205 ReadyInsts.push_back(SD); 4206 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4207 << "\n"); 4208 } 4209 } 4210 } 4211 4212 void BoUpSLP::BlockScheduling::resetSchedule() { 4213 assert(ScheduleStart && 4214 "tried to reset schedule on block which has not been scheduled"); 4215 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4216 doForAllOpcodes(I, [&](ScheduleData *SD) { 4217 assert(isInSchedulingRegion(SD) && 4218 "ScheduleData not in scheduling region"); 4219 SD->IsScheduled = false; 4220 SD->resetUnscheduledDeps(); 4221 }); 4222 } 4223 ReadyInsts.clear(); 4224 } 4225 4226 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4227 if (!BS->ScheduleStart) 4228 return; 4229 4230 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4231 4232 BS->resetSchedule(); 4233 4234 // For the real scheduling we use a more sophisticated ready-list: it is 4235 // sorted by the original instruction location. This lets the final schedule 4236 // be as close as possible to the original instruction order. 4237 struct ScheduleDataCompare { 4238 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4239 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4240 } 4241 }; 4242 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4243 4244 // Ensure that all dependency data is updated and fill the ready-list with 4245 // initial instructions. 4246 int Idx = 0; 4247 int NumToSchedule = 0; 4248 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4249 I = I->getNextNode()) { 4250 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4251 assert(SD->isPartOfBundle() == 4252 (getTreeEntry(SD->Inst) != nullptr) && 4253 "scheduler and vectorizer bundle mismatch"); 4254 SD->FirstInBundle->SchedulingPriority = Idx++; 4255 if (SD->isSchedulingEntity()) { 4256 BS->calculateDependencies(SD, false, this); 4257 NumToSchedule++; 4258 } 4259 }); 4260 } 4261 BS->initialFillReadyList(ReadyInsts); 4262 4263 Instruction *LastScheduledInst = BS->ScheduleEnd; 4264 4265 // Do the "real" scheduling. 4266 while (!ReadyInsts.empty()) { 4267 ScheduleData *picked = *ReadyInsts.begin(); 4268 ReadyInsts.erase(ReadyInsts.begin()); 4269 4270 // Move the scheduled instruction(s) to their dedicated places, if not 4271 // there yet. 4272 ScheduleData *BundleMember = picked; 4273 while (BundleMember) { 4274 Instruction *pickedInst = BundleMember->Inst; 4275 if (LastScheduledInst->getNextNode() != pickedInst) { 4276 BS->BB->getInstList().remove(pickedInst); 4277 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4278 pickedInst); 4279 } 4280 LastScheduledInst = pickedInst; 4281 BundleMember = BundleMember->NextInBundle; 4282 } 4283 4284 BS->schedule(picked, ReadyInsts); 4285 NumToSchedule--; 4286 } 4287 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4288 4289 // Avoid duplicate scheduling of the block. 4290 BS->ScheduleStart = nullptr; 4291 } 4292 4293 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4294 // If V is a store, just return the width of the stored value without 4295 // traversing the expression tree. This is the common case. 4296 if (auto *Store = dyn_cast<StoreInst>(V)) 4297 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4298 4299 // If V is not a store, we can traverse the expression tree to find loads 4300 // that feed it. The type of the loaded value may indicate a more suitable 4301 // width than V's type. We want to base the vector element size on the width 4302 // of memory operations where possible. 4303 SmallVector<Instruction *, 16> Worklist; 4304 SmallPtrSet<Instruction *, 16> Visited; 4305 if (auto *I = dyn_cast<Instruction>(V)) 4306 Worklist.push_back(I); 4307 4308 // Traverse the expression tree in bottom-up order looking for loads. If we 4309 // encounter an instruciton we don't yet handle, we give up. 4310 auto MaxWidth = 0u; 4311 auto FoundUnknownInst = false; 4312 while (!Worklist.empty() && !FoundUnknownInst) { 4313 auto *I = Worklist.pop_back_val(); 4314 Visited.insert(I); 4315 4316 // We should only be looking at scalar instructions here. If the current 4317 // instruction has a vector type, give up. 4318 auto *Ty = I->getType(); 4319 if (isa<VectorType>(Ty)) 4320 FoundUnknownInst = true; 4321 4322 // If the current instruction is a load, update MaxWidth to reflect the 4323 // width of the loaded value. 4324 else if (isa<LoadInst>(I)) 4325 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4326 4327 // Otherwise, we need to visit the operands of the instruction. We only 4328 // handle the interesting cases from buildTree here. If an operand is an 4329 // instruction we haven't yet visited, we add it to the worklist. 4330 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4331 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4332 for (Use &U : I->operands()) 4333 if (auto *J = dyn_cast<Instruction>(U.get())) 4334 if (!Visited.count(J)) 4335 Worklist.push_back(J); 4336 } 4337 4338 // If we don't yet handle the instruction, give up. 4339 else 4340 FoundUnknownInst = true; 4341 } 4342 4343 // If we didn't encounter a memory access in the expression tree, or if we 4344 // gave up for some reason, just return the width of V. 4345 if (!MaxWidth || FoundUnknownInst) 4346 return DL->getTypeSizeInBits(V->getType()); 4347 4348 // Otherwise, return the maximum width we found. 4349 return MaxWidth; 4350 } 4351 4352 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4353 // smaller type with a truncation. We collect the values that will be demoted 4354 // in ToDemote and additional roots that require investigating in Roots. 4355 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4356 SmallVectorImpl<Value *> &ToDemote, 4357 SmallVectorImpl<Value *> &Roots) { 4358 // We can always demote constants. 4359 if (isa<Constant>(V)) { 4360 ToDemote.push_back(V); 4361 return true; 4362 } 4363 4364 // If the value is not an instruction in the expression with only one use, it 4365 // cannot be demoted. 4366 auto *I = dyn_cast<Instruction>(V); 4367 if (!I || !I->hasOneUse() || !Expr.count(I)) 4368 return false; 4369 4370 switch (I->getOpcode()) { 4371 4372 // We can always demote truncations and extensions. Since truncations can 4373 // seed additional demotion, we save the truncated value. 4374 case Instruction::Trunc: 4375 Roots.push_back(I->getOperand(0)); 4376 break; 4377 case Instruction::ZExt: 4378 case Instruction::SExt: 4379 break; 4380 4381 // We can demote certain binary operations if we can demote both of their 4382 // operands. 4383 case Instruction::Add: 4384 case Instruction::Sub: 4385 case Instruction::Mul: 4386 case Instruction::And: 4387 case Instruction::Or: 4388 case Instruction::Xor: 4389 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4390 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4391 return false; 4392 break; 4393 4394 // We can demote selects if we can demote their true and false values. 4395 case Instruction::Select: { 4396 SelectInst *SI = cast<SelectInst>(I); 4397 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4398 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4399 return false; 4400 break; 4401 } 4402 4403 // We can demote phis if we can demote all their incoming operands. Note that 4404 // we don't need to worry about cycles since we ensure single use above. 4405 case Instruction::PHI: { 4406 PHINode *PN = cast<PHINode>(I); 4407 for (Value *IncValue : PN->incoming_values()) 4408 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4409 return false; 4410 break; 4411 } 4412 4413 // Otherwise, conservatively give up. 4414 default: 4415 return false; 4416 } 4417 4418 // Record the value that we can demote. 4419 ToDemote.push_back(V); 4420 return true; 4421 } 4422 4423 void BoUpSLP::computeMinimumValueSizes() { 4424 // If there are no external uses, the expression tree must be rooted by a 4425 // store. We can't demote in-memory values, so there is nothing to do here. 4426 if (ExternalUses.empty()) 4427 return; 4428 4429 // We only attempt to truncate integer expressions. 4430 auto &TreeRoot = VectorizableTree[0].Scalars; 4431 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4432 if (!TreeRootIT) 4433 return; 4434 4435 // If the expression is not rooted by a store, these roots should have 4436 // external uses. We will rely on InstCombine to rewrite the expression in 4437 // the narrower type. However, InstCombine only rewrites single-use values. 4438 // This means that if a tree entry other than a root is used externally, it 4439 // must have multiple uses and InstCombine will not rewrite it. The code 4440 // below ensures that only the roots are used externally. 4441 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4442 for (auto &EU : ExternalUses) 4443 if (!Expr.erase(EU.Scalar)) 4444 return; 4445 if (!Expr.empty()) 4446 return; 4447 4448 // Collect the scalar values of the vectorizable expression. We will use this 4449 // context to determine which values can be demoted. If we see a truncation, 4450 // we mark it as seeding another demotion. 4451 for (auto &Entry : VectorizableTree) 4452 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4453 4454 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4455 // have a single external user that is not in the vectorizable tree. 4456 for (auto *Root : TreeRoot) 4457 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4458 return; 4459 4460 // Conservatively determine if we can actually truncate the roots of the 4461 // expression. Collect the values that can be demoted in ToDemote and 4462 // additional roots that require investigating in Roots. 4463 SmallVector<Value *, 32> ToDemote; 4464 SmallVector<Value *, 4> Roots; 4465 for (auto *Root : TreeRoot) 4466 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4467 return; 4468 4469 // The maximum bit width required to represent all the values that can be 4470 // demoted without loss of precision. It would be safe to truncate the roots 4471 // of the expression to this width. 4472 auto MaxBitWidth = 8u; 4473 4474 // We first check if all the bits of the roots are demanded. If they're not, 4475 // we can truncate the roots to this narrower type. 4476 for (auto *Root : TreeRoot) { 4477 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4478 MaxBitWidth = std::max<unsigned>( 4479 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4480 } 4481 4482 // True if the roots can be zero-extended back to their original type, rather 4483 // than sign-extended. We know that if the leading bits are not demanded, we 4484 // can safely zero-extend. So we initialize IsKnownPositive to True. 4485 bool IsKnownPositive = true; 4486 4487 // If all the bits of the roots are demanded, we can try a little harder to 4488 // compute a narrower type. This can happen, for example, if the roots are 4489 // getelementptr indices. InstCombine promotes these indices to the pointer 4490 // width. Thus, all their bits are technically demanded even though the 4491 // address computation might be vectorized in a smaller type. 4492 // 4493 // We start by looking at each entry that can be demoted. We compute the 4494 // maximum bit width required to store the scalar by using ValueTracking to 4495 // compute the number of high-order bits we can truncate. 4496 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4497 llvm::all_of(TreeRoot, [](Value *R) { 4498 assert(R->hasOneUse() && "Root should have only one use!"); 4499 return isa<GetElementPtrInst>(R->user_back()); 4500 })) { 4501 MaxBitWidth = 8u; 4502 4503 // Determine if the sign bit of all the roots is known to be zero. If not, 4504 // IsKnownPositive is set to False. 4505 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4506 KnownBits Known = computeKnownBits(R, *DL); 4507 return Known.isNonNegative(); 4508 }); 4509 4510 // Determine the maximum number of bits required to store the scalar 4511 // values. 4512 for (auto *Scalar : ToDemote) { 4513 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4514 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4515 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4516 } 4517 4518 // If we can't prove that the sign bit is zero, we must add one to the 4519 // maximum bit width to account for the unknown sign bit. This preserves 4520 // the existing sign bit so we can safely sign-extend the root back to the 4521 // original type. Otherwise, if we know the sign bit is zero, we will 4522 // zero-extend the root instead. 4523 // 4524 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4525 // one to the maximum bit width will yield a larger-than-necessary 4526 // type. In general, we need to add an extra bit only if we can't 4527 // prove that the upper bit of the original type is equal to the 4528 // upper bit of the proposed smaller type. If these two bits are the 4529 // same (either zero or one) we know that sign-extending from the 4530 // smaller type will result in the same value. Here, since we can't 4531 // yet prove this, we are just making the proposed smaller type 4532 // larger to ensure correctness. 4533 if (!IsKnownPositive) 4534 ++MaxBitWidth; 4535 } 4536 4537 // Round MaxBitWidth up to the next power-of-two. 4538 if (!isPowerOf2_64(MaxBitWidth)) 4539 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4540 4541 // If the maximum bit width we compute is less than the with of the roots' 4542 // type, we can proceed with the narrowing. Otherwise, do nothing. 4543 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4544 return; 4545 4546 // If we can truncate the root, we must collect additional values that might 4547 // be demoted as a result. That is, those seeded by truncations we will 4548 // modify. 4549 while (!Roots.empty()) 4550 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4551 4552 // Finally, map the values we can demote to the maximum bit with we computed. 4553 for (auto *Scalar : ToDemote) 4554 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4555 } 4556 4557 namespace { 4558 4559 /// The SLPVectorizer Pass. 4560 struct SLPVectorizer : public FunctionPass { 4561 SLPVectorizerPass Impl; 4562 4563 /// Pass identification, replacement for typeid 4564 static char ID; 4565 4566 explicit SLPVectorizer() : FunctionPass(ID) { 4567 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4568 } 4569 4570 bool doInitialization(Module &M) override { 4571 return false; 4572 } 4573 4574 bool runOnFunction(Function &F) override { 4575 if (skipFunction(F)) 4576 return false; 4577 4578 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4579 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4580 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4581 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4582 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4583 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4584 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4585 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4586 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4587 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4588 4589 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4590 } 4591 4592 void getAnalysisUsage(AnalysisUsage &AU) const override { 4593 FunctionPass::getAnalysisUsage(AU); 4594 AU.addRequired<AssumptionCacheTracker>(); 4595 AU.addRequired<ScalarEvolutionWrapperPass>(); 4596 AU.addRequired<AAResultsWrapperPass>(); 4597 AU.addRequired<TargetTransformInfoWrapperPass>(); 4598 AU.addRequired<LoopInfoWrapperPass>(); 4599 AU.addRequired<DominatorTreeWrapperPass>(); 4600 AU.addRequired<DemandedBitsWrapperPass>(); 4601 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4602 AU.addPreserved<LoopInfoWrapperPass>(); 4603 AU.addPreserved<DominatorTreeWrapperPass>(); 4604 AU.addPreserved<AAResultsWrapperPass>(); 4605 AU.addPreserved<GlobalsAAWrapperPass>(); 4606 AU.setPreservesCFG(); 4607 } 4608 }; 4609 4610 } // end anonymous namespace 4611 4612 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4613 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4614 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4615 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4616 auto *AA = &AM.getResult<AAManager>(F); 4617 auto *LI = &AM.getResult<LoopAnalysis>(F); 4618 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4619 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4620 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4621 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4622 4623 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4624 if (!Changed) 4625 return PreservedAnalyses::all(); 4626 4627 PreservedAnalyses PA; 4628 PA.preserveSet<CFGAnalyses>(); 4629 PA.preserve<AAManager>(); 4630 PA.preserve<GlobalsAA>(); 4631 return PA; 4632 } 4633 4634 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4635 TargetTransformInfo *TTI_, 4636 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4637 LoopInfo *LI_, DominatorTree *DT_, 4638 AssumptionCache *AC_, DemandedBits *DB_, 4639 OptimizationRemarkEmitter *ORE_) { 4640 SE = SE_; 4641 TTI = TTI_; 4642 TLI = TLI_; 4643 AA = AA_; 4644 LI = LI_; 4645 DT = DT_; 4646 AC = AC_; 4647 DB = DB_; 4648 DL = &F.getParent()->getDataLayout(); 4649 4650 Stores.clear(); 4651 GEPs.clear(); 4652 bool Changed = false; 4653 4654 // If the target claims to have no vector registers don't attempt 4655 // vectorization. 4656 if (!TTI->getNumberOfRegisters(true)) 4657 return false; 4658 4659 // Don't vectorize when the attribute NoImplicitFloat is used. 4660 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4661 return false; 4662 4663 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4664 4665 // Use the bottom up slp vectorizer to construct chains that start with 4666 // store instructions. 4667 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4668 4669 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4670 // delete instructions. 4671 4672 // Scan the blocks in the function in post order. 4673 for (auto BB : post_order(&F.getEntryBlock())) { 4674 collectSeedInstructions(BB); 4675 4676 // Vectorize trees that end at stores. 4677 if (!Stores.empty()) { 4678 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4679 << " underlying objects.\n"); 4680 Changed |= vectorizeStoreChains(R); 4681 } 4682 4683 // Vectorize trees that end at reductions. 4684 Changed |= vectorizeChainsInBlock(BB, R); 4685 4686 // Vectorize the index computations of getelementptr instructions. This 4687 // is primarily intended to catch gather-like idioms ending at 4688 // non-consecutive loads. 4689 if (!GEPs.empty()) { 4690 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4691 << " underlying objects.\n"); 4692 Changed |= vectorizeGEPIndices(BB, R); 4693 } 4694 } 4695 4696 if (Changed) { 4697 R.optimizeGatherSequence(); 4698 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4699 LLVM_DEBUG(verifyFunction(F)); 4700 } 4701 return Changed; 4702 } 4703 4704 /// Check that the Values in the slice in VL array are still existent in 4705 /// the WeakTrackingVH array. 4706 /// Vectorization of part of the VL array may cause later values in the VL array 4707 /// to become invalid. We track when this has happened in the WeakTrackingVH 4708 /// array. 4709 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4710 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4711 unsigned SliceSize) { 4712 VL = VL.slice(SliceBegin, SliceSize); 4713 VH = VH.slice(SliceBegin, SliceSize); 4714 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4715 } 4716 4717 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4718 unsigned VecRegSize) { 4719 const unsigned ChainLen = Chain.size(); 4720 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4721 << "\n"); 4722 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4723 const unsigned VF = VecRegSize / Sz; 4724 4725 if (!isPowerOf2_32(Sz) || VF < 2) 4726 return false; 4727 4728 // Keep track of values that were deleted by vectorizing in the loop below. 4729 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4730 4731 bool Changed = false; 4732 // Look for profitable vectorizable trees at all offsets, starting at zero. 4733 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4734 4735 // Check that a previous iteration of this loop did not delete the Value. 4736 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4737 continue; 4738 4739 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4740 << "\n"); 4741 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4742 4743 R.buildTree(Operands); 4744 if (R.isTreeTinyAndNotFullyVectorizable()) 4745 continue; 4746 4747 R.computeMinimumValueSizes(); 4748 4749 int Cost = R.getTreeCost(); 4750 4751 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4752 << "\n"); 4753 if (Cost < -SLPCostThreshold) { 4754 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4755 4756 using namespace ore; 4757 4758 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4759 cast<StoreInst>(Chain[i])) 4760 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4761 << " and with tree size " 4762 << NV("TreeSize", R.getTreeSize())); 4763 4764 R.vectorizeTree(); 4765 4766 // Move to the next bundle. 4767 i += VF - 1; 4768 Changed = true; 4769 } 4770 } 4771 4772 return Changed; 4773 } 4774 4775 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4776 BoUpSLP &R) { 4777 SetVector<StoreInst *> Heads; 4778 SmallDenseSet<StoreInst *> Tails; 4779 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4780 4781 // We may run into multiple chains that merge into a single chain. We mark the 4782 // stores that we vectorized so that we don't visit the same store twice. 4783 BoUpSLP::ValueSet VectorizedStores; 4784 bool Changed = false; 4785 4786 // Do a quadratic search on all of the given stores in reverse order and find 4787 // all of the pairs of stores that follow each other. 4788 SmallVector<unsigned, 16> IndexQueue; 4789 unsigned E = Stores.size(); 4790 IndexQueue.resize(E - 1); 4791 for (unsigned I = E; I > 0; --I) { 4792 unsigned Idx = I - 1; 4793 // If a store has multiple consecutive store candidates, search Stores 4794 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4795 // This is because usually pairing with immediate succeeding or preceding 4796 // candidate create the best chance to find slp vectorization opportunity. 4797 unsigned Offset = 1; 4798 unsigned Cnt = 0; 4799 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4800 if (Idx >= Offset) { 4801 IndexQueue[Cnt] = Idx - Offset; 4802 ++Cnt; 4803 } 4804 if (Idx + Offset < E) { 4805 IndexQueue[Cnt] = Idx + Offset; 4806 ++Cnt; 4807 } 4808 } 4809 4810 for (auto K : IndexQueue) { 4811 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4812 Tails.insert(Stores[Idx]); 4813 Heads.insert(Stores[K]); 4814 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4815 break; 4816 } 4817 } 4818 } 4819 4820 // For stores that start but don't end a link in the chain: 4821 for (auto *SI : llvm::reverse(Heads)) { 4822 if (Tails.count(SI)) 4823 continue; 4824 4825 // We found a store instr that starts a chain. Now follow the chain and try 4826 // to vectorize it. 4827 BoUpSLP::ValueList Operands; 4828 StoreInst *I = SI; 4829 // Collect the chain into a list. 4830 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4831 Operands.push_back(I); 4832 // Move to the next value in the chain. 4833 I = ConsecutiveChain[I]; 4834 } 4835 4836 // FIXME: Is division-by-2 the correct step? Should we assert that the 4837 // register size is a power-of-2? 4838 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4839 Size /= 2) { 4840 if (vectorizeStoreChain(Operands, R, Size)) { 4841 // Mark the vectorized stores so that we don't vectorize them again. 4842 VectorizedStores.insert(Operands.begin(), Operands.end()); 4843 Changed = true; 4844 break; 4845 } 4846 } 4847 } 4848 4849 return Changed; 4850 } 4851 4852 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4853 // Initialize the collections. We will make a single pass over the block. 4854 Stores.clear(); 4855 GEPs.clear(); 4856 4857 // Visit the store and getelementptr instructions in BB and organize them in 4858 // Stores and GEPs according to the underlying objects of their pointer 4859 // operands. 4860 for (Instruction &I : *BB) { 4861 // Ignore store instructions that are volatile or have a pointer operand 4862 // that doesn't point to a scalar type. 4863 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4864 if (!SI->isSimple()) 4865 continue; 4866 if (!isValidElementType(SI->getValueOperand()->getType())) 4867 continue; 4868 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4869 } 4870 4871 // Ignore getelementptr instructions that have more than one index, a 4872 // constant index, or a pointer operand that doesn't point to a scalar 4873 // type. 4874 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4875 auto Idx = GEP->idx_begin()->get(); 4876 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4877 continue; 4878 if (!isValidElementType(Idx->getType())) 4879 continue; 4880 if (GEP->getType()->isVectorTy()) 4881 continue; 4882 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4883 } 4884 } 4885 } 4886 4887 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4888 if (!A || !B) 4889 return false; 4890 Value *VL[] = { A, B }; 4891 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4892 } 4893 4894 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4895 int UserCost, bool AllowReorder) { 4896 if (VL.size() < 2) 4897 return false; 4898 4899 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4900 << VL.size() << ".\n"); 4901 4902 // Check that all of the parts are scalar instructions of the same type. 4903 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4904 if (!I0) 4905 return false; 4906 4907 unsigned Opcode0 = I0->getOpcode(); 4908 4909 unsigned Sz = R.getVectorElementSize(I0); 4910 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4911 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4912 if (MaxVF < 2) { 4913 R.getORE()->emit([&]() { 4914 return OptimizationRemarkMissed( 4915 SV_NAME, "SmallVF", I0) 4916 << "Cannot SLP vectorize list: vectorization factor " 4917 << "less than 2 is not supported"; 4918 }); 4919 return false; 4920 } 4921 4922 for (Value *V : VL) { 4923 Type *Ty = V->getType(); 4924 if (!isValidElementType(Ty)) { 4925 // NOTE: the following will give user internal llvm type name, which may not be useful 4926 R.getORE()->emit([&]() { 4927 std::string type_str; 4928 llvm::raw_string_ostream rso(type_str); 4929 Ty->print(rso); 4930 return OptimizationRemarkMissed( 4931 SV_NAME, "UnsupportedType", I0) 4932 << "Cannot SLP vectorize list: type " 4933 << rso.str() + " is unsupported by vectorizer"; 4934 }); 4935 return false; 4936 } 4937 Instruction *Inst = dyn_cast<Instruction>(V); 4938 4939 if (!Inst) 4940 return false; 4941 if (Inst->getOpcode() != Opcode0) { 4942 R.getORE()->emit([&]() { 4943 return OptimizationRemarkMissed( 4944 SV_NAME, "InequableTypes", I0) 4945 << "Cannot SLP vectorize list: not all of the " 4946 << "parts of scalar instructions are of the same type: " 4947 << ore::NV("Instruction1Opcode", I0) << " and " 4948 << ore::NV("Instruction2Opcode", Inst); 4949 }); 4950 return false; 4951 } 4952 } 4953 4954 bool Changed = false; 4955 bool CandidateFound = false; 4956 int MinCost = SLPCostThreshold; 4957 4958 // Keep track of values that were deleted by vectorizing in the loop below. 4959 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4960 4961 unsigned NextInst = 0, MaxInst = VL.size(); 4962 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4963 VF /= 2) { 4964 // No actual vectorization should happen, if number of parts is the same as 4965 // provided vectorization factor (i.e. the scalar type is used for vector 4966 // code during codegen). 4967 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4968 if (TTI->getNumberOfParts(VecTy) == VF) 4969 continue; 4970 for (unsigned I = NextInst; I < MaxInst; ++I) { 4971 unsigned OpsWidth = 0; 4972 4973 if (I + VF > MaxInst) 4974 OpsWidth = MaxInst - I; 4975 else 4976 OpsWidth = VF; 4977 4978 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4979 break; 4980 4981 // Check that a previous iteration of this loop did not delete the Value. 4982 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4983 continue; 4984 4985 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4986 << "\n"); 4987 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4988 4989 R.buildTree(Ops); 4990 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4991 // TODO: check if we can allow reordering for more cases. 4992 if (AllowReorder && Order) { 4993 // TODO: reorder tree nodes without tree rebuilding. 4994 // Conceptually, there is nothing actually preventing us from trying to 4995 // reorder a larger list. In fact, we do exactly this when vectorizing 4996 // reductions. However, at this point, we only expect to get here when 4997 // there are exactly two operations. 4998 assert(Ops.size() == 2); 4999 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5000 R.buildTree(ReorderedOps, None); 5001 } 5002 if (R.isTreeTinyAndNotFullyVectorizable()) 5003 continue; 5004 5005 R.computeMinimumValueSizes(); 5006 int Cost = R.getTreeCost() - UserCost; 5007 CandidateFound = true; 5008 MinCost = std::min(MinCost, Cost); 5009 5010 if (Cost < -SLPCostThreshold) { 5011 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5012 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5013 cast<Instruction>(Ops[0])) 5014 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5015 << " and with tree size " 5016 << ore::NV("TreeSize", R.getTreeSize())); 5017 5018 R.vectorizeTree(); 5019 // Move to the next bundle. 5020 I += VF - 1; 5021 NextInst = I + 1; 5022 Changed = true; 5023 } 5024 } 5025 } 5026 5027 if (!Changed && CandidateFound) { 5028 R.getORE()->emit([&]() { 5029 return OptimizationRemarkMissed( 5030 SV_NAME, "NotBeneficial", I0) 5031 << "List vectorization was possible but not beneficial with cost " 5032 << ore::NV("Cost", MinCost) << " >= " 5033 << ore::NV("Treshold", -SLPCostThreshold); 5034 }); 5035 } else if (!Changed) { 5036 R.getORE()->emit([&]() { 5037 return OptimizationRemarkMissed( 5038 SV_NAME, "NotPossible", I0) 5039 << "Cannot SLP vectorize list: vectorization was impossible" 5040 << " with available vectorization factors"; 5041 }); 5042 } 5043 return Changed; 5044 } 5045 5046 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5047 if (!I) 5048 return false; 5049 5050 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5051 return false; 5052 5053 Value *P = I->getParent(); 5054 5055 // Vectorize in current basic block only. 5056 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5057 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5058 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5059 return false; 5060 5061 // Try to vectorize V. 5062 if (tryToVectorizePair(Op0, Op1, R)) 5063 return true; 5064 5065 auto *A = dyn_cast<BinaryOperator>(Op0); 5066 auto *B = dyn_cast<BinaryOperator>(Op1); 5067 // Try to skip B. 5068 if (B && B->hasOneUse()) { 5069 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5070 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5071 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5072 return true; 5073 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5074 return true; 5075 } 5076 5077 // Try to skip A. 5078 if (A && A->hasOneUse()) { 5079 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5080 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5081 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5082 return true; 5083 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5084 return true; 5085 } 5086 return false; 5087 } 5088 5089 /// Generate a shuffle mask to be used in a reduction tree. 5090 /// 5091 /// \param VecLen The length of the vector to be reduced. 5092 /// \param NumEltsToRdx The number of elements that should be reduced in the 5093 /// vector. 5094 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5095 /// reduction. A pairwise reduction will generate a mask of 5096 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5097 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5098 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5099 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5100 bool IsPairwise, bool IsLeft, 5101 IRBuilder<> &Builder) { 5102 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5103 5104 SmallVector<Constant *, 32> ShuffleMask( 5105 VecLen, UndefValue::get(Builder.getInt32Ty())); 5106 5107 if (IsPairwise) 5108 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5109 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5110 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5111 else 5112 // Move the upper half of the vector to the lower half. 5113 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5114 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5115 5116 return ConstantVector::get(ShuffleMask); 5117 } 5118 5119 namespace { 5120 5121 /// Model horizontal reductions. 5122 /// 5123 /// A horizontal reduction is a tree of reduction operations (currently add and 5124 /// fadd) that has operations that can be put into a vector as its leaf. 5125 /// For example, this tree: 5126 /// 5127 /// mul mul mul mul 5128 /// \ / \ / 5129 /// + + 5130 /// \ / 5131 /// + 5132 /// This tree has "mul" as its reduced values and "+" as its reduction 5133 /// operations. A reduction might be feeding into a store or a binary operation 5134 /// feeding a phi. 5135 /// ... 5136 /// \ / 5137 /// + 5138 /// | 5139 /// phi += 5140 /// 5141 /// Or: 5142 /// ... 5143 /// \ / 5144 /// + 5145 /// | 5146 /// *p = 5147 /// 5148 class HorizontalReduction { 5149 using ReductionOpsType = SmallVector<Value *, 16>; 5150 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5151 ReductionOpsListType ReductionOps; 5152 SmallVector<Value *, 32> ReducedVals; 5153 // Use map vector to make stable output. 5154 MapVector<Instruction *, Value *> ExtraArgs; 5155 5156 /// Kind of the reduction data. 5157 enum ReductionKind { 5158 RK_None, /// Not a reduction. 5159 RK_Arithmetic, /// Binary reduction data. 5160 RK_Min, /// Minimum reduction data. 5161 RK_UMin, /// Unsigned minimum reduction data. 5162 RK_Max, /// Maximum reduction data. 5163 RK_UMax, /// Unsigned maximum reduction data. 5164 }; 5165 5166 /// Contains info about operation, like its opcode, left and right operands. 5167 class OperationData { 5168 /// Opcode of the instruction. 5169 unsigned Opcode = 0; 5170 5171 /// Left operand of the reduction operation. 5172 Value *LHS = nullptr; 5173 5174 /// Right operand of the reduction operation. 5175 Value *RHS = nullptr; 5176 5177 /// Kind of the reduction operation. 5178 ReductionKind Kind = RK_None; 5179 5180 /// True if float point min/max reduction has no NaNs. 5181 bool NoNaN = false; 5182 5183 /// Checks if the reduction operation can be vectorized. 5184 bool isVectorizable() const { 5185 return LHS && RHS && 5186 // We currently only support adds && min/max reductions. 5187 ((Kind == RK_Arithmetic && 5188 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5189 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5190 (Kind == RK_Min || Kind == RK_Max)) || 5191 (Opcode == Instruction::ICmp && 5192 (Kind == RK_UMin || Kind == RK_UMax))); 5193 } 5194 5195 /// Creates reduction operation with the current opcode. 5196 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5197 assert(isVectorizable() && 5198 "Expected add|fadd or min/max reduction operation."); 5199 Value *Cmp; 5200 switch (Kind) { 5201 case RK_Arithmetic: 5202 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5203 Name); 5204 case RK_Min: 5205 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5206 : Builder.CreateFCmpOLT(LHS, RHS); 5207 break; 5208 case RK_Max: 5209 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5210 : Builder.CreateFCmpOGT(LHS, RHS); 5211 break; 5212 case RK_UMin: 5213 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5214 Cmp = Builder.CreateICmpULT(LHS, RHS); 5215 break; 5216 case RK_UMax: 5217 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5218 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5219 break; 5220 case RK_None: 5221 llvm_unreachable("Unknown reduction operation."); 5222 } 5223 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5224 } 5225 5226 public: 5227 explicit OperationData() = default; 5228 5229 /// Construction for reduced values. They are identified by opcode only and 5230 /// don't have associated LHS/RHS values. 5231 explicit OperationData(Value *V) { 5232 if (auto *I = dyn_cast<Instruction>(V)) 5233 Opcode = I->getOpcode(); 5234 } 5235 5236 /// Constructor for reduction operations with opcode and its left and 5237 /// right operands. 5238 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5239 bool NoNaN = false) 5240 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5241 assert(Kind != RK_None && "One of the reduction operations is expected."); 5242 } 5243 5244 explicit operator bool() const { return Opcode; } 5245 5246 /// Get the index of the first operand. 5247 unsigned getFirstOperandIndex() const { 5248 assert(!!*this && "The opcode is not set."); 5249 switch (Kind) { 5250 case RK_Min: 5251 case RK_UMin: 5252 case RK_Max: 5253 case RK_UMax: 5254 return 1; 5255 case RK_Arithmetic: 5256 case RK_None: 5257 break; 5258 } 5259 return 0; 5260 } 5261 5262 /// Total number of operands in the reduction operation. 5263 unsigned getNumberOfOperands() const { 5264 assert(Kind != RK_None && !!*this && LHS && RHS && 5265 "Expected reduction operation."); 5266 switch (Kind) { 5267 case RK_Arithmetic: 5268 return 2; 5269 case RK_Min: 5270 case RK_UMin: 5271 case RK_Max: 5272 case RK_UMax: 5273 return 3; 5274 case RK_None: 5275 break; 5276 } 5277 llvm_unreachable("Reduction kind is not set"); 5278 } 5279 5280 /// Checks if the operation has the same parent as \p P. 5281 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5282 assert(Kind != RK_None && !!*this && LHS && RHS && 5283 "Expected reduction operation."); 5284 if (!IsRedOp) 5285 return I->getParent() == P; 5286 switch (Kind) { 5287 case RK_Arithmetic: 5288 // Arithmetic reduction operation must be used once only. 5289 return I->getParent() == P; 5290 case RK_Min: 5291 case RK_UMin: 5292 case RK_Max: 5293 case RK_UMax: { 5294 // SelectInst must be used twice while the condition op must have single 5295 // use only. 5296 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5297 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5298 } 5299 case RK_None: 5300 break; 5301 } 5302 llvm_unreachable("Reduction kind is not set"); 5303 } 5304 /// Expected number of uses for reduction operations/reduced values. 5305 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5306 assert(Kind != RK_None && !!*this && LHS && RHS && 5307 "Expected reduction operation."); 5308 switch (Kind) { 5309 case RK_Arithmetic: 5310 return I->hasOneUse(); 5311 case RK_Min: 5312 case RK_UMin: 5313 case RK_Max: 5314 case RK_UMax: 5315 return I->hasNUses(2) && 5316 (!IsReductionOp || 5317 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5318 case RK_None: 5319 break; 5320 } 5321 llvm_unreachable("Reduction kind is not set"); 5322 } 5323 5324 /// Initializes the list of reduction operations. 5325 void initReductionOps(ReductionOpsListType &ReductionOps) { 5326 assert(Kind != RK_None && !!*this && LHS && RHS && 5327 "Expected reduction operation."); 5328 switch (Kind) { 5329 case RK_Arithmetic: 5330 ReductionOps.assign(1, ReductionOpsType()); 5331 break; 5332 case RK_Min: 5333 case RK_UMin: 5334 case RK_Max: 5335 case RK_UMax: 5336 ReductionOps.assign(2, ReductionOpsType()); 5337 break; 5338 case RK_None: 5339 llvm_unreachable("Reduction kind is not set"); 5340 } 5341 } 5342 /// Add all reduction operations for the reduction instruction \p I. 5343 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5344 assert(Kind != RK_None && !!*this && LHS && RHS && 5345 "Expected reduction operation."); 5346 switch (Kind) { 5347 case RK_Arithmetic: 5348 ReductionOps[0].emplace_back(I); 5349 break; 5350 case RK_Min: 5351 case RK_UMin: 5352 case RK_Max: 5353 case RK_UMax: 5354 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5355 ReductionOps[1].emplace_back(I); 5356 break; 5357 case RK_None: 5358 llvm_unreachable("Reduction kind is not set"); 5359 } 5360 } 5361 5362 /// Checks if instruction is associative and can be vectorized. 5363 bool isAssociative(Instruction *I) const { 5364 assert(Kind != RK_None && *this && LHS && RHS && 5365 "Expected reduction operation."); 5366 switch (Kind) { 5367 case RK_Arithmetic: 5368 return I->isAssociative(); 5369 case RK_Min: 5370 case RK_Max: 5371 return Opcode == Instruction::ICmp || 5372 cast<Instruction>(I->getOperand(0))->isFast(); 5373 case RK_UMin: 5374 case RK_UMax: 5375 assert(Opcode == Instruction::ICmp && 5376 "Only integer compare operation is expected."); 5377 return true; 5378 case RK_None: 5379 break; 5380 } 5381 llvm_unreachable("Reduction kind is not set"); 5382 } 5383 5384 /// Checks if the reduction operation can be vectorized. 5385 bool isVectorizable(Instruction *I) const { 5386 return isVectorizable() && isAssociative(I); 5387 } 5388 5389 /// Checks if two operation data are both a reduction op or both a reduced 5390 /// value. 5391 bool operator==(const OperationData &OD) { 5392 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5393 "One of the comparing operations is incorrect."); 5394 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5395 } 5396 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5397 void clear() { 5398 Opcode = 0; 5399 LHS = nullptr; 5400 RHS = nullptr; 5401 Kind = RK_None; 5402 NoNaN = false; 5403 } 5404 5405 /// Get the opcode of the reduction operation. 5406 unsigned getOpcode() const { 5407 assert(isVectorizable() && "Expected vectorizable operation."); 5408 return Opcode; 5409 } 5410 5411 /// Get kind of reduction data. 5412 ReductionKind getKind() const { return Kind; } 5413 Value *getLHS() const { return LHS; } 5414 Value *getRHS() const { return RHS; } 5415 Type *getConditionType() const { 5416 switch (Kind) { 5417 case RK_Arithmetic: 5418 return nullptr; 5419 case RK_Min: 5420 case RK_Max: 5421 case RK_UMin: 5422 case RK_UMax: 5423 return CmpInst::makeCmpResultType(LHS->getType()); 5424 case RK_None: 5425 break; 5426 } 5427 llvm_unreachable("Reduction kind is not set"); 5428 } 5429 5430 /// Creates reduction operation with the current opcode with the IR flags 5431 /// from \p ReductionOps. 5432 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5433 const ReductionOpsListType &ReductionOps) const { 5434 assert(isVectorizable() && 5435 "Expected add|fadd or min/max reduction operation."); 5436 auto *Op = createOp(Builder, Name); 5437 switch (Kind) { 5438 case RK_Arithmetic: 5439 propagateIRFlags(Op, ReductionOps[0]); 5440 return Op; 5441 case RK_Min: 5442 case RK_Max: 5443 case RK_UMin: 5444 case RK_UMax: 5445 if (auto *SI = dyn_cast<SelectInst>(Op)) 5446 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5447 propagateIRFlags(Op, ReductionOps[1]); 5448 return Op; 5449 case RK_None: 5450 break; 5451 } 5452 llvm_unreachable("Unknown reduction operation."); 5453 } 5454 /// Creates reduction operation with the current opcode with the IR flags 5455 /// from \p I. 5456 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5457 Instruction *I) const { 5458 assert(isVectorizable() && 5459 "Expected add|fadd or min/max reduction operation."); 5460 auto *Op = createOp(Builder, Name); 5461 switch (Kind) { 5462 case RK_Arithmetic: 5463 propagateIRFlags(Op, I); 5464 return Op; 5465 case RK_Min: 5466 case RK_Max: 5467 case RK_UMin: 5468 case RK_UMax: 5469 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5470 propagateIRFlags(SI->getCondition(), 5471 cast<SelectInst>(I)->getCondition()); 5472 } 5473 propagateIRFlags(Op, I); 5474 return Op; 5475 case RK_None: 5476 break; 5477 } 5478 llvm_unreachable("Unknown reduction operation."); 5479 } 5480 5481 TargetTransformInfo::ReductionFlags getFlags() const { 5482 TargetTransformInfo::ReductionFlags Flags; 5483 Flags.NoNaN = NoNaN; 5484 switch (Kind) { 5485 case RK_Arithmetic: 5486 break; 5487 case RK_Min: 5488 Flags.IsSigned = Opcode == Instruction::ICmp; 5489 Flags.IsMaxOp = false; 5490 break; 5491 case RK_Max: 5492 Flags.IsSigned = Opcode == Instruction::ICmp; 5493 Flags.IsMaxOp = true; 5494 break; 5495 case RK_UMin: 5496 Flags.IsSigned = false; 5497 Flags.IsMaxOp = false; 5498 break; 5499 case RK_UMax: 5500 Flags.IsSigned = false; 5501 Flags.IsMaxOp = true; 5502 break; 5503 case RK_None: 5504 llvm_unreachable("Reduction kind is not set"); 5505 } 5506 return Flags; 5507 } 5508 }; 5509 5510 Instruction *ReductionRoot = nullptr; 5511 5512 /// The operation data of the reduction operation. 5513 OperationData ReductionData; 5514 5515 /// The operation data of the values we perform a reduction on. 5516 OperationData ReducedValueData; 5517 5518 /// Should we model this reduction as a pairwise reduction tree or a tree that 5519 /// splits the vector in halves and adds those halves. 5520 bool IsPairwiseReduction = false; 5521 5522 /// Checks if the ParentStackElem.first should be marked as a reduction 5523 /// operation with an extra argument or as extra argument itself. 5524 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5525 Value *ExtraArg) { 5526 if (ExtraArgs.count(ParentStackElem.first)) { 5527 ExtraArgs[ParentStackElem.first] = nullptr; 5528 // We ran into something like: 5529 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5530 // The whole ParentStackElem.first should be considered as an extra value 5531 // in this case. 5532 // Do not perform analysis of remaining operands of ParentStackElem.first 5533 // instruction, this whole instruction is an extra argument. 5534 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5535 } else { 5536 // We ran into something like: 5537 // ParentStackElem.first += ... + ExtraArg + ... 5538 ExtraArgs[ParentStackElem.first] = ExtraArg; 5539 } 5540 } 5541 5542 static OperationData getOperationData(Value *V) { 5543 if (!V) 5544 return OperationData(); 5545 5546 Value *LHS; 5547 Value *RHS; 5548 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5549 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5550 RK_Arithmetic); 5551 } 5552 if (auto *Select = dyn_cast<SelectInst>(V)) { 5553 // Look for a min/max pattern. 5554 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5555 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5556 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5557 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5558 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5559 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5560 return OperationData( 5561 Instruction::FCmp, LHS, RHS, RK_Min, 5562 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5563 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5564 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5565 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5566 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5567 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5568 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5569 return OperationData( 5570 Instruction::FCmp, LHS, RHS, RK_Max, 5571 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5572 } 5573 } 5574 return OperationData(V); 5575 } 5576 5577 public: 5578 HorizontalReduction() = default; 5579 5580 /// Try to find a reduction tree. 5581 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5582 assert((!Phi || is_contained(Phi->operands(), B)) && 5583 "Thi phi needs to use the binary operator"); 5584 5585 ReductionData = getOperationData(B); 5586 5587 // We could have a initial reductions that is not an add. 5588 // r *= v1 + v2 + v3 + v4 5589 // In such a case start looking for a tree rooted in the first '+'. 5590 if (Phi) { 5591 if (ReductionData.getLHS() == Phi) { 5592 Phi = nullptr; 5593 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5594 ReductionData = getOperationData(B); 5595 } else if (ReductionData.getRHS() == Phi) { 5596 Phi = nullptr; 5597 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5598 ReductionData = getOperationData(B); 5599 } 5600 } 5601 5602 if (!ReductionData.isVectorizable(B)) 5603 return false; 5604 5605 Type *Ty = B->getType(); 5606 if (!isValidElementType(Ty)) 5607 return false; 5608 5609 ReducedValueData.clear(); 5610 ReductionRoot = B; 5611 5612 // Post order traverse the reduction tree starting at B. We only handle true 5613 // trees containing only binary operators. 5614 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5615 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5616 ReductionData.initReductionOps(ReductionOps); 5617 while (!Stack.empty()) { 5618 Instruction *TreeN = Stack.back().first; 5619 unsigned EdgeToVist = Stack.back().second++; 5620 OperationData OpData = getOperationData(TreeN); 5621 bool IsReducedValue = OpData != ReductionData; 5622 5623 // Postorder vist. 5624 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5625 if (IsReducedValue) 5626 ReducedVals.push_back(TreeN); 5627 else { 5628 auto I = ExtraArgs.find(TreeN); 5629 if (I != ExtraArgs.end() && !I->second) { 5630 // Check if TreeN is an extra argument of its parent operation. 5631 if (Stack.size() <= 1) { 5632 // TreeN can't be an extra argument as it is a root reduction 5633 // operation. 5634 return false; 5635 } 5636 // Yes, TreeN is an extra argument, do not add it to a list of 5637 // reduction operations. 5638 // Stack[Stack.size() - 2] always points to the parent operation. 5639 markExtraArg(Stack[Stack.size() - 2], TreeN); 5640 ExtraArgs.erase(TreeN); 5641 } else 5642 ReductionData.addReductionOps(TreeN, ReductionOps); 5643 } 5644 // Retract. 5645 Stack.pop_back(); 5646 continue; 5647 } 5648 5649 // Visit left or right. 5650 Value *NextV = TreeN->getOperand(EdgeToVist); 5651 if (NextV != Phi) { 5652 auto *I = dyn_cast<Instruction>(NextV); 5653 OpData = getOperationData(I); 5654 // Continue analysis if the next operand is a reduction operation or 5655 // (possibly) a reduced value. If the reduced value opcode is not set, 5656 // the first met operation != reduction operation is considered as the 5657 // reduced value class. 5658 if (I && (!ReducedValueData || OpData == ReducedValueData || 5659 OpData == ReductionData)) { 5660 const bool IsReductionOperation = OpData == ReductionData; 5661 // Only handle trees in the current basic block. 5662 if (!ReductionData.hasSameParent(I, B->getParent(), 5663 IsReductionOperation)) { 5664 // I is an extra argument for TreeN (its parent operation). 5665 markExtraArg(Stack.back(), I); 5666 continue; 5667 } 5668 5669 // Each tree node needs to have minimal number of users except for the 5670 // ultimate reduction. 5671 if (!ReductionData.hasRequiredNumberOfUses(I, 5672 OpData == ReductionData) && 5673 I != B) { 5674 // I is an extra argument for TreeN (its parent operation). 5675 markExtraArg(Stack.back(), I); 5676 continue; 5677 } 5678 5679 if (IsReductionOperation) { 5680 // We need to be able to reassociate the reduction operations. 5681 if (!OpData.isAssociative(I)) { 5682 // I is an extra argument for TreeN (its parent operation). 5683 markExtraArg(Stack.back(), I); 5684 continue; 5685 } 5686 } else if (ReducedValueData && 5687 ReducedValueData != OpData) { 5688 // Make sure that the opcodes of the operations that we are going to 5689 // reduce match. 5690 // I is an extra argument for TreeN (its parent operation). 5691 markExtraArg(Stack.back(), I); 5692 continue; 5693 } else if (!ReducedValueData) 5694 ReducedValueData = OpData; 5695 5696 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5697 continue; 5698 } 5699 } 5700 // NextV is an extra argument for TreeN (its parent operation). 5701 markExtraArg(Stack.back(), NextV); 5702 } 5703 return true; 5704 } 5705 5706 /// Attempt to vectorize the tree found by 5707 /// matchAssociativeReduction. 5708 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5709 if (ReducedVals.empty()) 5710 return false; 5711 5712 // If there is a sufficient number of reduction values, reduce 5713 // to a nearby power-of-2. Can safely generate oversized 5714 // vectors and rely on the backend to split them to legal sizes. 5715 unsigned NumReducedVals = ReducedVals.size(); 5716 if (NumReducedVals < 4) 5717 return false; 5718 5719 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5720 5721 Value *VectorizedTree = nullptr; 5722 IRBuilder<> Builder(ReductionRoot); 5723 FastMathFlags Unsafe; 5724 Unsafe.setFast(); 5725 Builder.setFastMathFlags(Unsafe); 5726 unsigned i = 0; 5727 5728 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5729 // The same extra argument may be used several time, so log each attempt 5730 // to use it. 5731 for (auto &Pair : ExtraArgs) 5732 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5733 SmallVector<Value *, 16> IgnoreList; 5734 for (auto &V : ReductionOps) 5735 IgnoreList.append(V.begin(), V.end()); 5736 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5737 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5738 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5739 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5740 // TODO: Handle orders of size less than number of elements in the vector. 5741 if (Order && Order->size() == VL.size()) { 5742 // TODO: reorder tree nodes without tree rebuilding. 5743 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5744 llvm::transform(*Order, ReorderedOps.begin(), 5745 [VL](const unsigned Idx) { return VL[Idx]; }); 5746 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5747 } 5748 if (V.isTreeTinyAndNotFullyVectorizable()) 5749 break; 5750 5751 V.computeMinimumValueSizes(); 5752 5753 // Estimate cost. 5754 int Cost = 5755 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5756 if (Cost >= -SLPCostThreshold) { 5757 V.getORE()->emit([&]() { 5758 return OptimizationRemarkMissed( 5759 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5760 << "Vectorizing horizontal reduction is possible" 5761 << "but not beneficial with cost " 5762 << ore::NV("Cost", Cost) << " and threshold " 5763 << ore::NV("Threshold", -SLPCostThreshold); 5764 }); 5765 break; 5766 } 5767 5768 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5769 << Cost << ". (HorRdx)\n"); 5770 V.getORE()->emit([&]() { 5771 return OptimizationRemark( 5772 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5773 << "Vectorized horizontal reduction with cost " 5774 << ore::NV("Cost", Cost) << " and with tree size " 5775 << ore::NV("TreeSize", V.getTreeSize()); 5776 }); 5777 5778 // Vectorize a tree. 5779 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5780 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5781 5782 // Emit a reduction. 5783 Value *ReducedSubTree = 5784 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5785 if (VectorizedTree) { 5786 Builder.SetCurrentDebugLocation(Loc); 5787 OperationData VectReductionData(ReductionData.getOpcode(), 5788 VectorizedTree, ReducedSubTree, 5789 ReductionData.getKind()); 5790 VectorizedTree = 5791 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5792 } else 5793 VectorizedTree = ReducedSubTree; 5794 i += ReduxWidth; 5795 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5796 } 5797 5798 if (VectorizedTree) { 5799 // Finish the reduction. 5800 for (; i < NumReducedVals; ++i) { 5801 auto *I = cast<Instruction>(ReducedVals[i]); 5802 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5803 OperationData VectReductionData(ReductionData.getOpcode(), 5804 VectorizedTree, I, 5805 ReductionData.getKind()); 5806 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5807 } 5808 for (auto &Pair : ExternallyUsedValues) { 5809 assert(!Pair.second.empty() && 5810 "At least one DebugLoc must be inserted"); 5811 // Add each externally used value to the final reduction. 5812 for (auto *I : Pair.second) { 5813 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5814 OperationData VectReductionData(ReductionData.getOpcode(), 5815 VectorizedTree, Pair.first, 5816 ReductionData.getKind()); 5817 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5818 } 5819 } 5820 // Update users. 5821 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5822 } 5823 return VectorizedTree != nullptr; 5824 } 5825 5826 unsigned numReductionValues() const { 5827 return ReducedVals.size(); 5828 } 5829 5830 private: 5831 /// Calculate the cost of a reduction. 5832 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5833 unsigned ReduxWidth) { 5834 Type *ScalarTy = FirstReducedVal->getType(); 5835 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5836 5837 int PairwiseRdxCost; 5838 int SplittingRdxCost; 5839 switch (ReductionData.getKind()) { 5840 case RK_Arithmetic: 5841 PairwiseRdxCost = 5842 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5843 /*IsPairwiseForm=*/true); 5844 SplittingRdxCost = 5845 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5846 /*IsPairwiseForm=*/false); 5847 break; 5848 case RK_Min: 5849 case RK_Max: 5850 case RK_UMin: 5851 case RK_UMax: { 5852 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5853 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5854 ReductionData.getKind() == RK_UMax; 5855 PairwiseRdxCost = 5856 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5857 /*IsPairwiseForm=*/true, IsUnsigned); 5858 SplittingRdxCost = 5859 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5860 /*IsPairwiseForm=*/false, IsUnsigned); 5861 break; 5862 } 5863 case RK_None: 5864 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5865 } 5866 5867 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5868 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5869 5870 int ScalarReduxCost; 5871 switch (ReductionData.getKind()) { 5872 case RK_Arithmetic: 5873 ScalarReduxCost = 5874 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5875 break; 5876 case RK_Min: 5877 case RK_Max: 5878 case RK_UMin: 5879 case RK_UMax: 5880 ScalarReduxCost = 5881 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5882 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5883 CmpInst::makeCmpResultType(ScalarTy)); 5884 break; 5885 case RK_None: 5886 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5887 } 5888 ScalarReduxCost *= (ReduxWidth - 1); 5889 5890 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5891 << " for reduction that starts with " << *FirstReducedVal 5892 << " (It is a " 5893 << (IsPairwiseReduction ? "pairwise" : "splitting") 5894 << " reduction)\n"); 5895 5896 return VecReduxCost - ScalarReduxCost; 5897 } 5898 5899 /// Emit a horizontal reduction of the vectorized value. 5900 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5901 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5902 assert(VectorizedValue && "Need to have a vectorized tree node"); 5903 assert(isPowerOf2_32(ReduxWidth) && 5904 "We only handle power-of-two reductions for now"); 5905 5906 if (!IsPairwiseReduction) 5907 return createSimpleTargetReduction( 5908 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5909 ReductionData.getFlags(), ReductionOps.back()); 5910 5911 Value *TmpVec = VectorizedValue; 5912 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5913 Value *LeftMask = 5914 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5915 Value *RightMask = 5916 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5917 5918 Value *LeftShuf = Builder.CreateShuffleVector( 5919 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5920 Value *RightShuf = Builder.CreateShuffleVector( 5921 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5922 "rdx.shuf.r"); 5923 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5924 RightShuf, ReductionData.getKind()); 5925 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5926 } 5927 5928 // The result is in the first element of the vector. 5929 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5930 } 5931 }; 5932 5933 } // end anonymous namespace 5934 5935 /// Recognize construction of vectors like 5936 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5937 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5938 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5939 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5940 /// starting from the last insertelement instruction. 5941 /// 5942 /// Returns true if it matches 5943 static bool findBuildVector(InsertElementInst *LastInsertElem, 5944 TargetTransformInfo *TTI, 5945 SmallVectorImpl<Value *> &BuildVectorOpds, 5946 int &UserCost) { 5947 UserCost = 0; 5948 Value *V = nullptr; 5949 do { 5950 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5951 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5952 LastInsertElem->getType(), 5953 CI->getZExtValue()); 5954 } 5955 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5956 V = LastInsertElem->getOperand(0); 5957 if (isa<UndefValue>(V)) 5958 break; 5959 LastInsertElem = dyn_cast<InsertElementInst>(V); 5960 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5961 return false; 5962 } while (true); 5963 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5964 return true; 5965 } 5966 5967 /// Like findBuildVector, but looks for construction of aggregate. 5968 /// 5969 /// \return true if it matches. 5970 static bool findBuildAggregate(InsertValueInst *IV, 5971 SmallVectorImpl<Value *> &BuildVectorOpds) { 5972 Value *V; 5973 do { 5974 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5975 V = IV->getAggregateOperand(); 5976 if (isa<UndefValue>(V)) 5977 break; 5978 IV = dyn_cast<InsertValueInst>(V); 5979 if (!IV || !IV->hasOneUse()) 5980 return false; 5981 } while (true); 5982 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5983 return true; 5984 } 5985 5986 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5987 return V->getType() < V2->getType(); 5988 } 5989 5990 /// Try and get a reduction value from a phi node. 5991 /// 5992 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5993 /// if they come from either \p ParentBB or a containing loop latch. 5994 /// 5995 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5996 /// if not possible. 5997 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5998 BasicBlock *ParentBB, LoopInfo *LI) { 5999 // There are situations where the reduction value is not dominated by the 6000 // reduction phi. Vectorizing such cases has been reported to cause 6001 // miscompiles. See PR25787. 6002 auto DominatedReduxValue = [&](Value *R) { 6003 return isa<Instruction>(R) && 6004 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6005 }; 6006 6007 Value *Rdx = nullptr; 6008 6009 // Return the incoming value if it comes from the same BB as the phi node. 6010 if (P->getIncomingBlock(0) == ParentBB) { 6011 Rdx = P->getIncomingValue(0); 6012 } else if (P->getIncomingBlock(1) == ParentBB) { 6013 Rdx = P->getIncomingValue(1); 6014 } 6015 6016 if (Rdx && DominatedReduxValue(Rdx)) 6017 return Rdx; 6018 6019 // Otherwise, check whether we have a loop latch to look at. 6020 Loop *BBL = LI->getLoopFor(ParentBB); 6021 if (!BBL) 6022 return nullptr; 6023 BasicBlock *BBLatch = BBL->getLoopLatch(); 6024 if (!BBLatch) 6025 return nullptr; 6026 6027 // There is a loop latch, return the incoming value if it comes from 6028 // that. This reduction pattern occasionally turns up. 6029 if (P->getIncomingBlock(0) == BBLatch) { 6030 Rdx = P->getIncomingValue(0); 6031 } else if (P->getIncomingBlock(1) == BBLatch) { 6032 Rdx = P->getIncomingValue(1); 6033 } 6034 6035 if (Rdx && DominatedReduxValue(Rdx)) 6036 return Rdx; 6037 6038 return nullptr; 6039 } 6040 6041 /// Attempt to reduce a horizontal reduction. 6042 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6043 /// with reduction operators \a Root (or one of its operands) in a basic block 6044 /// \a BB, then check if it can be done. If horizontal reduction is not found 6045 /// and root instruction is a binary operation, vectorization of the operands is 6046 /// attempted. 6047 /// \returns true if a horizontal reduction was matched and reduced or operands 6048 /// of one of the binary instruction were vectorized. 6049 /// \returns false if a horizontal reduction was not matched (or not possible) 6050 /// or no vectorization of any binary operation feeding \a Root instruction was 6051 /// performed. 6052 static bool tryToVectorizeHorReductionOrInstOperands( 6053 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6054 TargetTransformInfo *TTI, 6055 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6056 if (!ShouldVectorizeHor) 6057 return false; 6058 6059 if (!Root) 6060 return false; 6061 6062 if (Root->getParent() != BB || isa<PHINode>(Root)) 6063 return false; 6064 // Start analysis starting from Root instruction. If horizontal reduction is 6065 // found, try to vectorize it. If it is not a horizontal reduction or 6066 // vectorization is not possible or not effective, and currently analyzed 6067 // instruction is a binary operation, try to vectorize the operands, using 6068 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6069 // the same procedure considering each operand as a possible root of the 6070 // horizontal reduction. 6071 // Interrupt the process if the Root instruction itself was vectorized or all 6072 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6073 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6074 SmallSet<Value *, 8> VisitedInstrs; 6075 bool Res = false; 6076 while (!Stack.empty()) { 6077 Value *V; 6078 unsigned Level; 6079 std::tie(V, Level) = Stack.pop_back_val(); 6080 if (!V) 6081 continue; 6082 auto *Inst = dyn_cast<Instruction>(V); 6083 if (!Inst) 6084 continue; 6085 auto *BI = dyn_cast<BinaryOperator>(Inst); 6086 auto *SI = dyn_cast<SelectInst>(Inst); 6087 if (BI || SI) { 6088 HorizontalReduction HorRdx; 6089 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6090 if (HorRdx.tryToReduce(R, TTI)) { 6091 Res = true; 6092 // Set P to nullptr to avoid re-analysis of phi node in 6093 // matchAssociativeReduction function unless this is the root node. 6094 P = nullptr; 6095 continue; 6096 } 6097 } 6098 if (P && BI) { 6099 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6100 if (Inst == P) 6101 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6102 if (!Inst) { 6103 // Set P to nullptr to avoid re-analysis of phi node in 6104 // matchAssociativeReduction function unless this is the root node. 6105 P = nullptr; 6106 continue; 6107 } 6108 } 6109 } 6110 // Set P to nullptr to avoid re-analysis of phi node in 6111 // matchAssociativeReduction function unless this is the root node. 6112 P = nullptr; 6113 if (Vectorize(Inst, R)) { 6114 Res = true; 6115 continue; 6116 } 6117 6118 // Try to vectorize operands. 6119 // Continue analysis for the instruction from the same basic block only to 6120 // save compile time. 6121 if (++Level < RecursionMaxDepth) 6122 for (auto *Op : Inst->operand_values()) 6123 if (VisitedInstrs.insert(Op).second) 6124 if (auto *I = dyn_cast<Instruction>(Op)) 6125 if (!isa<PHINode>(I) && I->getParent() == BB) 6126 Stack.emplace_back(Op, Level); 6127 } 6128 return Res; 6129 } 6130 6131 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6132 BasicBlock *BB, BoUpSLP &R, 6133 TargetTransformInfo *TTI) { 6134 if (!V) 6135 return false; 6136 auto *I = dyn_cast<Instruction>(V); 6137 if (!I) 6138 return false; 6139 6140 if (!isa<BinaryOperator>(I)) 6141 P = nullptr; 6142 // Try to match and vectorize a horizontal reduction. 6143 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6144 return tryToVectorize(I, R); 6145 }; 6146 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6147 ExtraVectorization); 6148 } 6149 6150 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6151 BasicBlock *BB, BoUpSLP &R) { 6152 const DataLayout &DL = BB->getModule()->getDataLayout(); 6153 if (!R.canMapToVector(IVI->getType(), DL)) 6154 return false; 6155 6156 SmallVector<Value *, 16> BuildVectorOpds; 6157 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6158 return false; 6159 6160 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6161 // Aggregate value is unlikely to be processed in vector register, we need to 6162 // extract scalars into scalar registers, so NeedExtraction is set true. 6163 return tryToVectorizeList(BuildVectorOpds, R); 6164 } 6165 6166 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6167 BasicBlock *BB, BoUpSLP &R) { 6168 int UserCost; 6169 SmallVector<Value *, 16> BuildVectorOpds; 6170 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6171 (llvm::all_of(BuildVectorOpds, 6172 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6173 isShuffle(BuildVectorOpds))) 6174 return false; 6175 6176 // Vectorize starting with the build vector operands ignoring the BuildVector 6177 // instructions for the purpose of scheduling and user extraction. 6178 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6179 } 6180 6181 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6182 BoUpSLP &R) { 6183 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6184 return true; 6185 6186 bool OpsChanged = false; 6187 for (int Idx = 0; Idx < 2; ++Idx) { 6188 OpsChanged |= 6189 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6190 } 6191 return OpsChanged; 6192 } 6193 6194 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6195 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6196 bool OpsChanged = false; 6197 for (auto &VH : reverse(Instructions)) { 6198 auto *I = dyn_cast_or_null<Instruction>(VH); 6199 if (!I) 6200 continue; 6201 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6202 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6203 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6204 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6205 else if (auto *CI = dyn_cast<CmpInst>(I)) 6206 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6207 } 6208 Instructions.clear(); 6209 return OpsChanged; 6210 } 6211 6212 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6213 bool Changed = false; 6214 SmallVector<Value *, 4> Incoming; 6215 SmallSet<Value *, 16> VisitedInstrs; 6216 6217 bool HaveVectorizedPhiNodes = true; 6218 while (HaveVectorizedPhiNodes) { 6219 HaveVectorizedPhiNodes = false; 6220 6221 // Collect the incoming values from the PHIs. 6222 Incoming.clear(); 6223 for (Instruction &I : *BB) { 6224 PHINode *P = dyn_cast<PHINode>(&I); 6225 if (!P) 6226 break; 6227 6228 if (!VisitedInstrs.count(P)) 6229 Incoming.push_back(P); 6230 } 6231 6232 // Sort by type. 6233 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6234 6235 // Try to vectorize elements base on their type. 6236 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6237 E = Incoming.end(); 6238 IncIt != E;) { 6239 6240 // Look for the next elements with the same type. 6241 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6242 while (SameTypeIt != E && 6243 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6244 VisitedInstrs.insert(*SameTypeIt); 6245 ++SameTypeIt; 6246 } 6247 6248 // Try to vectorize them. 6249 unsigned NumElts = (SameTypeIt - IncIt); 6250 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6251 << NumElts << ")\n"); 6252 // The order in which the phi nodes appear in the program does not matter. 6253 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6254 // is done when there are exactly two elements since tryToVectorizeList 6255 // asserts that there are only two values when AllowReorder is true. 6256 bool AllowReorder = NumElts == 2; 6257 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6258 /*UserCost=*/0, AllowReorder)) { 6259 // Success start over because instructions might have been changed. 6260 HaveVectorizedPhiNodes = true; 6261 Changed = true; 6262 break; 6263 } 6264 6265 // Start over at the next instruction of a different type (or the end). 6266 IncIt = SameTypeIt; 6267 } 6268 } 6269 6270 VisitedInstrs.clear(); 6271 6272 SmallVector<WeakVH, 8> PostProcessInstructions; 6273 SmallDenseSet<Instruction *, 4> KeyNodes; 6274 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6275 // We may go through BB multiple times so skip the one we have checked. 6276 if (!VisitedInstrs.insert(&*it).second) { 6277 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6278 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6279 // We would like to start over since some instructions are deleted 6280 // and the iterator may become invalid value. 6281 Changed = true; 6282 it = BB->begin(); 6283 e = BB->end(); 6284 } 6285 continue; 6286 } 6287 6288 if (isa<DbgInfoIntrinsic>(it)) 6289 continue; 6290 6291 // Try to vectorize reductions that use PHINodes. 6292 if (PHINode *P = dyn_cast<PHINode>(it)) { 6293 // Check that the PHI is a reduction PHI. 6294 if (P->getNumIncomingValues() != 2) 6295 return Changed; 6296 6297 // Try to match and vectorize a horizontal reduction. 6298 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6299 TTI)) { 6300 Changed = true; 6301 it = BB->begin(); 6302 e = BB->end(); 6303 continue; 6304 } 6305 continue; 6306 } 6307 6308 // Ran into an instruction without users, like terminator, or function call 6309 // with ignored return value, store. Ignore unused instructions (basing on 6310 // instruction type, except for CallInst and InvokeInst). 6311 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6312 isa<InvokeInst>(it))) { 6313 KeyNodes.insert(&*it); 6314 bool OpsChanged = false; 6315 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6316 for (auto *V : it->operand_values()) { 6317 // Try to match and vectorize a horizontal reduction. 6318 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6319 } 6320 } 6321 // Start vectorization of post-process list of instructions from the 6322 // top-tree instructions to try to vectorize as many instructions as 6323 // possible. 6324 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6325 if (OpsChanged) { 6326 // We would like to start over since some instructions are deleted 6327 // and the iterator may become invalid value. 6328 Changed = true; 6329 it = BB->begin(); 6330 e = BB->end(); 6331 continue; 6332 } 6333 } 6334 6335 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6336 isa<InsertValueInst>(it)) 6337 PostProcessInstructions.push_back(&*it); 6338 6339 } 6340 6341 return Changed; 6342 } 6343 6344 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6345 auto Changed = false; 6346 for (auto &Entry : GEPs) { 6347 // If the getelementptr list has fewer than two elements, there's nothing 6348 // to do. 6349 if (Entry.second.size() < 2) 6350 continue; 6351 6352 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6353 << Entry.second.size() << ".\n"); 6354 6355 // We process the getelementptr list in chunks of 16 (like we do for 6356 // stores) to minimize compile-time. 6357 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6358 auto Len = std::min<unsigned>(BE - BI, 16); 6359 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6360 6361 // Initialize a set a candidate getelementptrs. Note that we use a 6362 // SetVector here to preserve program order. If the index computations 6363 // are vectorizable and begin with loads, we want to minimize the chance 6364 // of having to reorder them later. 6365 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6366 6367 // Some of the candidates may have already been vectorized after we 6368 // initially collected them. If so, the WeakTrackingVHs will have 6369 // nullified the 6370 // values, so remove them from the set of candidates. 6371 Candidates.remove(nullptr); 6372 6373 // Remove from the set of candidates all pairs of getelementptrs with 6374 // constant differences. Such getelementptrs are likely not good 6375 // candidates for vectorization in a bottom-up phase since one can be 6376 // computed from the other. We also ensure all candidate getelementptr 6377 // indices are unique. 6378 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6379 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6380 if (!Candidates.count(GEPI)) 6381 continue; 6382 auto *SCEVI = SE->getSCEV(GEPList[I]); 6383 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6384 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6385 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6386 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6387 Candidates.remove(GEPList[I]); 6388 Candidates.remove(GEPList[J]); 6389 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6390 Candidates.remove(GEPList[J]); 6391 } 6392 } 6393 } 6394 6395 // We break out of the above computation as soon as we know there are 6396 // fewer than two candidates remaining. 6397 if (Candidates.size() < 2) 6398 continue; 6399 6400 // Add the single, non-constant index of each candidate to the bundle. We 6401 // ensured the indices met these constraints when we originally collected 6402 // the getelementptrs. 6403 SmallVector<Value *, 16> Bundle(Candidates.size()); 6404 auto BundleIndex = 0u; 6405 for (auto *V : Candidates) { 6406 auto *GEP = cast<GetElementPtrInst>(V); 6407 auto *GEPIdx = GEP->idx_begin()->get(); 6408 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6409 Bundle[BundleIndex++] = GEPIdx; 6410 } 6411 6412 // Try and vectorize the indices. We are currently only interested in 6413 // gather-like cases of the form: 6414 // 6415 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6416 // 6417 // where the loads of "a", the loads of "b", and the subtractions can be 6418 // performed in parallel. It's likely that detecting this pattern in a 6419 // bottom-up phase will be simpler and less costly than building a 6420 // full-blown top-down phase beginning at the consecutive loads. 6421 Changed |= tryToVectorizeList(Bundle, R); 6422 } 6423 } 6424 return Changed; 6425 } 6426 6427 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6428 bool Changed = false; 6429 // Attempt to sort and vectorize each of the store-groups. 6430 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6431 ++it) { 6432 if (it->second.size() < 2) 6433 continue; 6434 6435 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6436 << it->second.size() << ".\n"); 6437 6438 // Process the stores in chunks of 16. 6439 // TODO: The limit of 16 inhibits greater vectorization factors. 6440 // For example, AVX2 supports v32i8. Increasing this limit, however, 6441 // may cause a significant compile-time increase. 6442 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6443 unsigned Len = std::min<unsigned>(CE - CI, 16); 6444 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6445 } 6446 } 6447 return Changed; 6448 } 6449 6450 char SLPVectorizer::ID = 0; 6451 6452 static const char lv_name[] = "SLP Vectorizer"; 6453 6454 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6455 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6456 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6457 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6458 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6459 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6460 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6461 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6462 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6463 6464 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6465