1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #define SV_NAME "slp-vectorizer" 19 #define DEBUG_TYPE "SLP" 20 21 #include "llvm/Transforms/Vectorize.h" 22 #include "llvm/ADT/MapVector.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/Verifier.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <map> 45 46 using namespace llvm; 47 48 static cl::opt<int> 49 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 50 cl::desc("Only vectorize if you gain more than this " 51 "number ")); 52 53 static cl::opt<bool> 54 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 55 cl::desc("Attempt to vectorize horizontal reductions")); 56 57 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 58 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 59 cl::desc( 60 "Attempt to vectorize horizontal reductions feeding into a store")); 61 62 namespace { 63 64 static const unsigned MinVecRegSize = 128; 65 66 static const unsigned RecursionMaxDepth = 12; 67 68 /// A helper class for numbering instructions in multiple blocks. 69 /// Numbers start at zero for each basic block. 70 struct BlockNumbering { 71 72 BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {} 73 74 BlockNumbering() : BB(0), Valid(false) {} 75 76 void numberInstructions() { 77 unsigned Loc = 0; 78 InstrIdx.clear(); 79 InstrVec.clear(); 80 // Number the instructions in the block. 81 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 82 InstrIdx[it] = Loc++; 83 InstrVec.push_back(it); 84 assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation"); 85 } 86 Valid = true; 87 } 88 89 int getIndex(Instruction *I) { 90 assert(I->getParent() == BB && "Invalid instruction"); 91 if (!Valid) 92 numberInstructions(); 93 assert(InstrIdx.count(I) && "Unknown instruction"); 94 return InstrIdx[I]; 95 } 96 97 Instruction *getInstruction(unsigned loc) { 98 if (!Valid) 99 numberInstructions(); 100 assert(InstrVec.size() > loc && "Invalid Index"); 101 return InstrVec[loc]; 102 } 103 104 void forget() { Valid = false; } 105 106 private: 107 /// The block we are numbering. 108 BasicBlock *BB; 109 /// Is the block numbered. 110 bool Valid; 111 /// Maps instructions to numbers and back. 112 SmallDenseMap<Instruction *, int> InstrIdx; 113 /// Maps integers to Instructions. 114 SmallVector<Instruction *, 32> InstrVec; 115 }; 116 117 /// \returns the parent basic block if all of the instructions in \p VL 118 /// are in the same block or null otherwise. 119 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 120 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 121 if (!I0) 122 return 0; 123 BasicBlock *BB = I0->getParent(); 124 for (int i = 1, e = VL.size(); i < e; i++) { 125 Instruction *I = dyn_cast<Instruction>(VL[i]); 126 if (!I) 127 return 0; 128 129 if (BB != I->getParent()) 130 return 0; 131 } 132 return BB; 133 } 134 135 /// \returns True if all of the values in \p VL are constants. 136 static bool allConstant(ArrayRef<Value *> VL) { 137 for (unsigned i = 0, e = VL.size(); i < e; ++i) 138 if (!isa<Constant>(VL[i])) 139 return false; 140 return true; 141 } 142 143 /// \returns True if all of the values in \p VL are identical. 144 static bool isSplat(ArrayRef<Value *> VL) { 145 for (unsigned i = 1, e = VL.size(); i < e; ++i) 146 if (VL[i] != VL[0]) 147 return false; 148 return true; 149 } 150 151 /// \returns The opcode if all of the Instructions in \p VL have the same 152 /// opcode, or zero. 153 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 154 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 155 if (!I0) 156 return 0; 157 unsigned Opcode = I0->getOpcode(); 158 for (int i = 1, e = VL.size(); i < e; i++) { 159 Instruction *I = dyn_cast<Instruction>(VL[i]); 160 if (!I || Opcode != I->getOpcode()) 161 return 0; 162 } 163 return Opcode; 164 } 165 166 /// \returns The type that all of the values in \p VL have or null if there 167 /// are different types. 168 static Type* getSameType(ArrayRef<Value *> VL) { 169 Type *Ty = VL[0]->getType(); 170 for (int i = 1, e = VL.size(); i < e; i++) 171 if (VL[i]->getType() != Ty) 172 return 0; 173 174 return Ty; 175 } 176 177 /// \returns True if the ExtractElement instructions in VL can be vectorized 178 /// to use the original vector. 179 static bool CanReuseExtract(ArrayRef<Value *> VL) { 180 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 181 // Check if all of the extracts come from the same vector and from the 182 // correct offset. 183 Value *VL0 = VL[0]; 184 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 185 Value *Vec = E0->getOperand(0); 186 187 // We have to extract from the same vector type. 188 unsigned NElts = Vec->getType()->getVectorNumElements(); 189 190 if (NElts != VL.size()) 191 return false; 192 193 // Check that all of the indices extract from the correct offset. 194 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 195 if (!CI || CI->getZExtValue()) 196 return false; 197 198 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 199 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 200 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 201 202 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 203 return false; 204 } 205 206 return true; 207 } 208 209 static bool all_equal(SmallVectorImpl<Value *> &V) { 210 Value *First = V[0]; 211 for (int i = 1, e = V.size(); i != e; ++i) 212 if (V[i] != First) 213 return false; 214 return true; 215 } 216 217 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 218 SmallVectorImpl<Value *> &Left, 219 SmallVectorImpl<Value *> &Right) { 220 221 SmallVector<Value *, 16> OrigLeft, OrigRight; 222 223 bool AllSameOpcodeLeft = true; 224 bool AllSameOpcodeRight = true; 225 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 226 Instruction *I = cast<Instruction>(VL[i]); 227 Value *V0 = I->getOperand(0); 228 Value *V1 = I->getOperand(1); 229 230 OrigLeft.push_back(V0); 231 OrigRight.push_back(V1); 232 233 Instruction *I0 = dyn_cast<Instruction>(V0); 234 Instruction *I1 = dyn_cast<Instruction>(V1); 235 236 // Check whether all operands on one side have the same opcode. In this case 237 // we want to preserve the original order and not make things worse by 238 // reordering. 239 AllSameOpcodeLeft = I0; 240 AllSameOpcodeRight = I1; 241 242 if (i && AllSameOpcodeLeft) { 243 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) { 244 if(P0->getOpcode() != I0->getOpcode()) 245 AllSameOpcodeLeft = false; 246 } else 247 AllSameOpcodeLeft = false; 248 } 249 if (i && AllSameOpcodeRight) { 250 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) { 251 if(P1->getOpcode() != I1->getOpcode()) 252 AllSameOpcodeRight = false; 253 } else 254 AllSameOpcodeRight = false; 255 } 256 257 // Sort two opcodes. In the code below we try to preserve the ability to use 258 // broadcast of values instead of individual inserts. 259 // vl1 = load 260 // vl2 = phi 261 // vr1 = load 262 // vr2 = vr2 263 // = vl1 x vr1 264 // = vl2 x vr2 265 // If we just sorted according to opcode we would leave the first line in 266 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 267 // = vl1 x vr1 268 // = vr2 x vl2 269 // Because vr2 and vr1 are from the same load we loose the opportunity of a 270 // broadcast for the packed right side in the backend: we have [vr1, vl2] 271 // instead of [vr1, vr2=vr1]. 272 if (I0 && I1) { 273 if(!i && I0->getOpcode() > I1->getOpcode()) { 274 Left.push_back(I1); 275 Right.push_back(I0); 276 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { 277 // Try not to destroy a broad cast for no apparent benefit. 278 Left.push_back(I1); 279 Right.push_back(I0); 280 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { 281 // Try preserve broadcasts. 282 Left.push_back(I1); 283 Right.push_back(I0); 284 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { 285 // Try preserve broadcasts. 286 Left.push_back(I1); 287 Right.push_back(I0); 288 } else { 289 Left.push_back(I0); 290 Right.push_back(I1); 291 } 292 continue; 293 } 294 // One opcode, put the instruction on the right. 295 if (I0) { 296 Left.push_back(V1); 297 Right.push_back(I0); 298 continue; 299 } 300 Left.push_back(V0); 301 Right.push_back(V1); 302 } 303 304 bool LeftBroadcast = all_equal(Left); 305 bool RightBroadcast = all_equal(Right); 306 307 // Don't reorder if the operands where good to begin with. 308 if (!(LeftBroadcast || RightBroadcast) && 309 (AllSameOpcodeRight || AllSameOpcodeLeft)) { 310 Left = OrigLeft; 311 Right = OrigRight; 312 } 313 } 314 315 /// Bottom Up SLP Vectorizer. 316 class BoUpSLP { 317 public: 318 typedef SmallVector<Value *, 8> ValueList; 319 typedef SmallVector<Instruction *, 16> InstrList; 320 typedef SmallPtrSet<Value *, 16> ValueSet; 321 typedef SmallVector<StoreInst *, 8> StoreList; 322 323 BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl, 324 TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li, 325 DominatorTree *Dt) : 326 F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt), 327 Builder(Se->getContext()) { 328 // Setup the block numbering utility for all of the blocks in the 329 // function. 330 for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { 331 BasicBlock *BB = it; 332 BlocksNumbers[BB] = BlockNumbering(BB); 333 } 334 } 335 336 /// \brief Vectorize the tree that starts with the elements in \p VL. 337 /// Returns the vectorized root. 338 Value *vectorizeTree(); 339 340 /// \returns the vectorization cost of the subtree that starts at \p VL. 341 /// A negative number means that this is profitable. 342 int getTreeCost(); 343 344 /// Construct a vectorizable tree that starts at \p Roots and is possibly 345 /// used by a reduction of \p RdxOps. 346 void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0); 347 348 /// Clear the internal data structures that are created by 'buildTree'. 349 void deleteTree() { 350 RdxOps = 0; 351 VectorizableTree.clear(); 352 ScalarToTreeEntry.clear(); 353 MustGather.clear(); 354 ExternalUses.clear(); 355 MemBarrierIgnoreList.clear(); 356 } 357 358 /// \returns true if the memory operations A and B are consecutive. 359 bool isConsecutiveAccess(Value *A, Value *B); 360 361 /// \brief Perform LICM and CSE on the newly generated gather sequences. 362 void optimizeGatherSequence(); 363 private: 364 struct TreeEntry; 365 366 /// \returns the cost of the vectorizable entry. 367 int getEntryCost(TreeEntry *E); 368 369 /// This is the recursive part of buildTree. 370 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 371 372 /// Vectorize a single entry in the tree. 373 Value *vectorizeTree(TreeEntry *E); 374 375 /// Vectorize a single entry in the tree, starting in \p VL. 376 Value *vectorizeTree(ArrayRef<Value *> VL); 377 378 /// \returns the pointer to the vectorized value if \p VL is already 379 /// vectorized, or NULL. They may happen in cycles. 380 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 381 382 /// \brief Take the pointer operand from the Load/Store instruction. 383 /// \returns NULL if this is not a valid Load/Store instruction. 384 static Value *getPointerOperand(Value *I); 385 386 /// \brief Take the address space operand from the Load/Store instruction. 387 /// \returns -1 if this is not a valid Load/Store instruction. 388 static unsigned getAddressSpaceOperand(Value *I); 389 390 /// \returns the scalarization cost for this type. Scalarization in this 391 /// context means the creation of vectors from a group of scalars. 392 int getGatherCost(Type *Ty); 393 394 /// \returns the scalarization cost for this list of values. Assuming that 395 /// this subtree gets vectorized, we may need to extract the values from the 396 /// roots. This method calculates the cost of extracting the values. 397 int getGatherCost(ArrayRef<Value *> VL); 398 399 /// \returns the AA location that is being access by the instruction. 400 AliasAnalysis::Location getLocation(Instruction *I); 401 402 /// \brief Checks if it is possible to sink an instruction from 403 /// \p Src to \p Dst. 404 /// \returns the pointer to the barrier instruction if we can't sink. 405 Value *getSinkBarrier(Instruction *Src, Instruction *Dst); 406 407 /// \returns the index of the last instruction in the BB from \p VL. 408 int getLastIndex(ArrayRef<Value *> VL); 409 410 /// \returns the Instruction in the bundle \p VL. 411 Instruction *getLastInstruction(ArrayRef<Value *> VL); 412 413 /// \brief Set the Builder insert point to one after the last instruction in 414 /// the bundle 415 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 416 417 /// \returns a vector from a collection of scalars in \p VL. 418 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 419 420 /// \returns whether the VectorizableTree is fully vectoriable and will 421 /// be beneficial even the tree height is tiny. 422 bool isFullyVectorizableTinyTree(); 423 424 struct TreeEntry { 425 TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0), 426 NeedToGather(0) {} 427 428 /// \returns true if the scalars in VL are equal to this entry. 429 bool isSame(ArrayRef<Value *> VL) const { 430 assert(VL.size() == Scalars.size() && "Invalid size"); 431 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 432 } 433 434 /// A vector of scalars. 435 ValueList Scalars; 436 437 /// The Scalars are vectorized into this value. It is initialized to Null. 438 Value *VectorizedValue; 439 440 /// The index in the basic block of the last scalar. 441 int LastScalarIndex; 442 443 /// Do we need to gather this sequence ? 444 bool NeedToGather; 445 }; 446 447 /// Create a new VectorizableTree entry. 448 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 449 VectorizableTree.push_back(TreeEntry()); 450 int idx = VectorizableTree.size() - 1; 451 TreeEntry *Last = &VectorizableTree[idx]; 452 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 453 Last->NeedToGather = !Vectorized; 454 if (Vectorized) { 455 Last->LastScalarIndex = getLastIndex(VL); 456 for (int i = 0, e = VL.size(); i != e; ++i) { 457 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 458 ScalarToTreeEntry[VL[i]] = idx; 459 } 460 } else { 461 Last->LastScalarIndex = 0; 462 MustGather.insert(VL.begin(), VL.end()); 463 } 464 return Last; 465 } 466 467 /// -- Vectorization State -- 468 /// Holds all of the tree entries. 469 std::vector<TreeEntry> VectorizableTree; 470 471 /// Maps a specific scalar to its tree entry. 472 SmallDenseMap<Value*, int> ScalarToTreeEntry; 473 474 /// A list of scalars that we found that we need to keep as scalars. 475 ValueSet MustGather; 476 477 /// This POD struct describes one external user in the vectorized tree. 478 struct ExternalUser { 479 ExternalUser (Value *S, llvm::User *U, int L) : 480 Scalar(S), User(U), Lane(L){}; 481 // Which scalar in our function. 482 Value *Scalar; 483 // Which user that uses the scalar. 484 llvm::User *User; 485 // Which lane does the scalar belong to. 486 int Lane; 487 }; 488 typedef SmallVector<ExternalUser, 16> UserList; 489 490 /// A list of values that need to extracted out of the tree. 491 /// This list holds pairs of (Internal Scalar : External User). 492 UserList ExternalUses; 493 494 /// A list of instructions to ignore while sinking 495 /// memory instructions. This map must be reset between runs of getCost. 496 ValueSet MemBarrierIgnoreList; 497 498 /// Holds all of the instructions that we gathered. 499 SetVector<Instruction *> GatherSeq; 500 501 /// Numbers instructions in different blocks. 502 DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers; 503 504 /// Reduction operators. 505 ValueSet *RdxOps; 506 507 // Analysis and block reference. 508 Function *F; 509 ScalarEvolution *SE; 510 DataLayout *DL; 511 TargetTransformInfo *TTI; 512 AliasAnalysis *AA; 513 LoopInfo *LI; 514 DominatorTree *DT; 515 /// Instruction builder to construct the vectorized tree. 516 IRBuilder<> Builder; 517 }; 518 519 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) { 520 deleteTree(); 521 RdxOps = Rdx; 522 if (!getSameType(Roots)) 523 return; 524 buildTree_rec(Roots, 0); 525 526 // Collect the values that we need to extract from the tree. 527 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 528 TreeEntry *Entry = &VectorizableTree[EIdx]; 529 530 // For each lane: 531 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 532 Value *Scalar = Entry->Scalars[Lane]; 533 534 // No need to handle users of gathered values. 535 if (Entry->NeedToGather) 536 continue; 537 538 for (Value::use_iterator User = Scalar->use_begin(), 539 UE = Scalar->use_end(); User != UE; ++User) { 540 DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n"); 541 542 bool Gathered = MustGather.count(*User); 543 544 // Skip in-tree scalars that become vectors. 545 if (ScalarToTreeEntry.count(*User) && !Gathered) { 546 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << 547 **User << ".\n"); 548 int Idx = ScalarToTreeEntry[*User]; (void) Idx; 549 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 550 continue; 551 } 552 Instruction *UserInst = dyn_cast<Instruction>(*User); 553 if (!UserInst) 554 continue; 555 556 // Ignore uses that are part of the reduction. 557 if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end()) 558 continue; 559 560 DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " << 561 Lane << " from " << *Scalar << ".\n"); 562 ExternalUses.push_back(ExternalUser(Scalar, *User, Lane)); 563 } 564 } 565 } 566 } 567 568 569 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 570 bool SameTy = getSameType(VL); (void)SameTy; 571 assert(SameTy && "Invalid types!"); 572 573 if (Depth == RecursionMaxDepth) { 574 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 575 newTreeEntry(VL, false); 576 return; 577 } 578 579 // Don't handle vectors. 580 if (VL[0]->getType()->isVectorTy()) { 581 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 582 newTreeEntry(VL, false); 583 return; 584 } 585 586 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 587 if (SI->getValueOperand()->getType()->isVectorTy()) { 588 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 589 newTreeEntry(VL, false); 590 return; 591 } 592 593 // If all of the operands are identical or constant we have a simple solution. 594 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || 595 !getSameOpcode(VL)) { 596 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 597 newTreeEntry(VL, false); 598 return; 599 } 600 601 // We now know that this is a vector of instructions of the same type from 602 // the same block. 603 604 // Check if this is a duplicate of another entry. 605 if (ScalarToTreeEntry.count(VL[0])) { 606 int Idx = ScalarToTreeEntry[VL[0]]; 607 TreeEntry *E = &VectorizableTree[Idx]; 608 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 609 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 610 if (E->Scalars[i] != VL[i]) { 611 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 612 newTreeEntry(VL, false); 613 return; 614 } 615 } 616 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 617 return; 618 } 619 620 // Check that none of the instructions in the bundle are already in the tree. 621 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 622 if (ScalarToTreeEntry.count(VL[i])) { 623 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 624 ") is already in tree.\n"); 625 newTreeEntry(VL, false); 626 return; 627 } 628 } 629 630 // If any of the scalars appears in the table OR it is marked as a value that 631 // needs to stat scalar then we need to gather the scalars. 632 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 633 if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { 634 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); 635 newTreeEntry(VL, false); 636 return; 637 } 638 } 639 640 // Check that all of the users of the scalars that we want to vectorize are 641 // schedulable. 642 Instruction *VL0 = cast<Instruction>(VL[0]); 643 int MyLastIndex = getLastIndex(VL); 644 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 645 646 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 647 Instruction *Scalar = cast<Instruction>(VL[i]); 648 DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n"); 649 for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end(); 650 U != UE; ++U) { 651 DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n"); 652 Instruction *User = dyn_cast<Instruction>(*U); 653 if (!User) { 654 DEBUG(dbgs() << "SLP: Gathering due unknown user. \n"); 655 newTreeEntry(VL, false); 656 return; 657 } 658 659 // We don't care if the user is in a different basic block. 660 BasicBlock *UserBlock = User->getParent(); 661 if (UserBlock != BB) { 662 DEBUG(dbgs() << "SLP: User from a different basic block " 663 << *User << ". \n"); 664 continue; 665 } 666 667 // If this is a PHINode within this basic block then we can place the 668 // extract wherever we want. 669 if (isa<PHINode>(*User)) { 670 DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n"); 671 continue; 672 } 673 674 // Check if this is a safe in-tree user. 675 if (ScalarToTreeEntry.count(User)) { 676 int Idx = ScalarToTreeEntry[User]; 677 int VecLocation = VectorizableTree[Idx].LastScalarIndex; 678 if (VecLocation <= MyLastIndex) { 679 DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n"); 680 newTreeEntry(VL, false); 681 return; 682 } 683 DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" << 684 VecLocation << " vector value (" << *Scalar << ") at #" 685 << MyLastIndex << ".\n"); 686 continue; 687 } 688 689 // This user is part of the reduction. 690 if (RdxOps && RdxOps->count(User)) 691 continue; 692 693 // Make sure that we can schedule this unknown user. 694 BlockNumbering &BN = BlocksNumbers[BB]; 695 int UserIndex = BN.getIndex(User); 696 if (UserIndex < MyLastIndex) { 697 698 DEBUG(dbgs() << "SLP: Can't schedule extractelement for " 699 << *User << ". \n"); 700 newTreeEntry(VL, false); 701 return; 702 } 703 } 704 } 705 706 // Check that every instructions appears once in this bundle. 707 for (unsigned i = 0, e = VL.size(); i < e; ++i) 708 for (unsigned j = i+1; j < e; ++j) 709 if (VL[i] == VL[j]) { 710 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 711 newTreeEntry(VL, false); 712 return; 713 } 714 715 // Check that instructions in this bundle don't reference other instructions. 716 // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4. 717 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 718 for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end(); 719 U != UE; ++U) { 720 for (unsigned j = 0; j < e; ++j) { 721 if (i != j && *U == VL[j]) { 722 DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n"); 723 newTreeEntry(VL, false); 724 return; 725 } 726 } 727 } 728 } 729 730 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 731 732 unsigned Opcode = getSameOpcode(VL); 733 734 // Check if it is safe to sink the loads or the stores. 735 if (Opcode == Instruction::Load || Opcode == Instruction::Store) { 736 Instruction *Last = getLastInstruction(VL); 737 738 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 739 if (VL[i] == Last) 740 continue; 741 Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last); 742 if (Barrier) { 743 DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last 744 << "\n because of " << *Barrier << ". Gathering.\n"); 745 newTreeEntry(VL, false); 746 return; 747 } 748 } 749 } 750 751 switch (Opcode) { 752 case Instruction::PHI: { 753 PHINode *PH = dyn_cast<PHINode>(VL0); 754 755 // Check for terminator values (e.g. invoke). 756 for (unsigned j = 0; j < VL.size(); ++j) 757 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 758 TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i)); 759 if (Term) { 760 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 761 newTreeEntry(VL, false); 762 return; 763 } 764 } 765 766 newTreeEntry(VL, true); 767 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 768 769 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 770 ValueList Operands; 771 // Prepare the operand vector. 772 for (unsigned j = 0; j < VL.size(); ++j) 773 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i)); 774 775 buildTree_rec(Operands, Depth + 1); 776 } 777 return; 778 } 779 case Instruction::ExtractElement: { 780 bool Reuse = CanReuseExtract(VL); 781 if (Reuse) { 782 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 783 } 784 newTreeEntry(VL, Reuse); 785 return; 786 } 787 case Instruction::Load: { 788 // Check if the loads are consecutive or of we need to swizzle them. 789 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 790 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 791 newTreeEntry(VL, false); 792 DEBUG(dbgs() << "SLP: Need to swizzle loads.\n"); 793 return; 794 } 795 796 newTreeEntry(VL, true); 797 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 798 return; 799 } 800 case Instruction::ZExt: 801 case Instruction::SExt: 802 case Instruction::FPToUI: 803 case Instruction::FPToSI: 804 case Instruction::FPExt: 805 case Instruction::PtrToInt: 806 case Instruction::IntToPtr: 807 case Instruction::SIToFP: 808 case Instruction::UIToFP: 809 case Instruction::Trunc: 810 case Instruction::FPTrunc: 811 case Instruction::BitCast: { 812 Type *SrcTy = VL0->getOperand(0)->getType(); 813 for (unsigned i = 0; i < VL.size(); ++i) { 814 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 815 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { 816 newTreeEntry(VL, false); 817 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 818 return; 819 } 820 } 821 newTreeEntry(VL, true); 822 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 823 824 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 825 ValueList Operands; 826 // Prepare the operand vector. 827 for (unsigned j = 0; j < VL.size(); ++j) 828 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 829 830 buildTree_rec(Operands, Depth+1); 831 } 832 return; 833 } 834 case Instruction::ICmp: 835 case Instruction::FCmp: { 836 // Check that all of the compares have the same predicate. 837 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 838 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 839 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 840 CmpInst *Cmp = cast<CmpInst>(VL[i]); 841 if (Cmp->getPredicate() != P0 || 842 Cmp->getOperand(0)->getType() != ComparedTy) { 843 newTreeEntry(VL, false); 844 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 845 return; 846 } 847 } 848 849 newTreeEntry(VL, true); 850 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 851 852 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 853 ValueList Operands; 854 // Prepare the operand vector. 855 for (unsigned j = 0; j < VL.size(); ++j) 856 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 857 858 buildTree_rec(Operands, Depth+1); 859 } 860 return; 861 } 862 case Instruction::Select: 863 case Instruction::Add: 864 case Instruction::FAdd: 865 case Instruction::Sub: 866 case Instruction::FSub: 867 case Instruction::Mul: 868 case Instruction::FMul: 869 case Instruction::UDiv: 870 case Instruction::SDiv: 871 case Instruction::FDiv: 872 case Instruction::URem: 873 case Instruction::SRem: 874 case Instruction::FRem: 875 case Instruction::Shl: 876 case Instruction::LShr: 877 case Instruction::AShr: 878 case Instruction::And: 879 case Instruction::Or: 880 case Instruction::Xor: { 881 newTreeEntry(VL, true); 882 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 883 884 // Sort operands of the instructions so that each side is more likely to 885 // have the same opcode. 886 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 887 ValueList Left, Right; 888 reorderInputsAccordingToOpcode(VL, Left, Right); 889 buildTree_rec(Left, Depth + 1); 890 buildTree_rec(Right, Depth + 1); 891 return; 892 } 893 894 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 895 ValueList Operands; 896 // Prepare the operand vector. 897 for (unsigned j = 0; j < VL.size(); ++j) 898 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 899 900 buildTree_rec(Operands, Depth+1); 901 } 902 return; 903 } 904 case Instruction::Store: { 905 // Check if the stores are consecutive or of we need to swizzle them. 906 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 907 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 908 newTreeEntry(VL, false); 909 DEBUG(dbgs() << "SLP: Non consecutive store.\n"); 910 return; 911 } 912 913 newTreeEntry(VL, true); 914 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 915 916 ValueList Operands; 917 for (unsigned j = 0; j < VL.size(); ++j) 918 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 919 920 // We can ignore these values because we are sinking them down. 921 MemBarrierIgnoreList.insert(VL.begin(), VL.end()); 922 buildTree_rec(Operands, Depth + 1); 923 return; 924 } 925 default: 926 newTreeEntry(VL, false); 927 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 928 return; 929 } 930 } 931 932 int BoUpSLP::getEntryCost(TreeEntry *E) { 933 ArrayRef<Value*> VL = E->Scalars; 934 935 Type *ScalarTy = VL[0]->getType(); 936 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 937 ScalarTy = SI->getValueOperand()->getType(); 938 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 939 940 if (E->NeedToGather) { 941 if (allConstant(VL)) 942 return 0; 943 if (isSplat(VL)) { 944 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 945 } 946 return getGatherCost(E->Scalars); 947 } 948 949 assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) && 950 "Invalid VL"); 951 Instruction *VL0 = cast<Instruction>(VL[0]); 952 unsigned Opcode = VL0->getOpcode(); 953 switch (Opcode) { 954 case Instruction::PHI: { 955 return 0; 956 } 957 case Instruction::ExtractElement: { 958 if (CanReuseExtract(VL)) 959 return 0; 960 return getGatherCost(VecTy); 961 } 962 case Instruction::ZExt: 963 case Instruction::SExt: 964 case Instruction::FPToUI: 965 case Instruction::FPToSI: 966 case Instruction::FPExt: 967 case Instruction::PtrToInt: 968 case Instruction::IntToPtr: 969 case Instruction::SIToFP: 970 case Instruction::UIToFP: 971 case Instruction::Trunc: 972 case Instruction::FPTrunc: 973 case Instruction::BitCast: { 974 Type *SrcTy = VL0->getOperand(0)->getType(); 975 976 // Calculate the cost of this instruction. 977 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 978 VL0->getType(), SrcTy); 979 980 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 981 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 982 return VecCost - ScalarCost; 983 } 984 case Instruction::FCmp: 985 case Instruction::ICmp: 986 case Instruction::Select: 987 case Instruction::Add: 988 case Instruction::FAdd: 989 case Instruction::Sub: 990 case Instruction::FSub: 991 case Instruction::Mul: 992 case Instruction::FMul: 993 case Instruction::UDiv: 994 case Instruction::SDiv: 995 case Instruction::FDiv: 996 case Instruction::URem: 997 case Instruction::SRem: 998 case Instruction::FRem: 999 case Instruction::Shl: 1000 case Instruction::LShr: 1001 case Instruction::AShr: 1002 case Instruction::And: 1003 case Instruction::Or: 1004 case Instruction::Xor: { 1005 // Calculate the cost of this instruction. 1006 int ScalarCost = 0; 1007 int VecCost = 0; 1008 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1009 Opcode == Instruction::Select) { 1010 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1011 ScalarCost = VecTy->getNumElements() * 1012 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1013 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1014 } else { 1015 ScalarCost = VecTy->getNumElements() * 1016 TTI->getArithmeticInstrCost(Opcode, ScalarTy); 1017 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy); 1018 } 1019 return VecCost - ScalarCost; 1020 } 1021 case Instruction::Load: { 1022 // Cost of wide load - cost of scalar loads. 1023 int ScalarLdCost = VecTy->getNumElements() * 1024 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1025 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1026 return VecLdCost - ScalarLdCost; 1027 } 1028 case Instruction::Store: { 1029 // We know that we can merge the stores. Calculate the cost. 1030 int ScalarStCost = VecTy->getNumElements() * 1031 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1032 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1033 return VecStCost - ScalarStCost; 1034 } 1035 default: 1036 llvm_unreachable("Unknown instruction"); 1037 } 1038 } 1039 1040 bool BoUpSLP::isFullyVectorizableTinyTree() { 1041 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1042 VectorizableTree.size() << " is fully vectorizable .\n"); 1043 1044 // We only handle trees of height 2. 1045 if (VectorizableTree.size() != 2) 1046 return false; 1047 1048 // Gathering cost would be too much for tiny trees. 1049 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1050 return false; 1051 1052 return true; 1053 } 1054 1055 int BoUpSLP::getTreeCost() { 1056 int Cost = 0; 1057 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1058 VectorizableTree.size() << ".\n"); 1059 1060 // We only vectorize tiny trees if it is fully vectorizable. 1061 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1062 if (!VectorizableTree.size()) { 1063 assert(!ExternalUses.size() && "We should not have any external users"); 1064 } 1065 return INT_MAX; 1066 } 1067 1068 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1069 1070 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1071 int C = getEntryCost(&VectorizableTree[i]); 1072 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1073 << *VectorizableTree[i].Scalars[0] << " .\n"); 1074 Cost += C; 1075 } 1076 1077 int ExtractCost = 0; 1078 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1079 I != E; ++I) { 1080 1081 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1082 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1083 I->Lane); 1084 } 1085 1086 1087 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1088 return Cost + ExtractCost; 1089 } 1090 1091 int BoUpSLP::getGatherCost(Type *Ty) { 1092 int Cost = 0; 1093 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1094 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1095 return Cost; 1096 } 1097 1098 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1099 // Find the type of the operands in VL. 1100 Type *ScalarTy = VL[0]->getType(); 1101 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1102 ScalarTy = SI->getValueOperand()->getType(); 1103 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1104 // Find the cost of inserting/extracting values from the vector. 1105 return getGatherCost(VecTy); 1106 } 1107 1108 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) { 1109 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1110 return AA->getLocation(SI); 1111 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1112 return AA->getLocation(LI); 1113 return AliasAnalysis::Location(); 1114 } 1115 1116 Value *BoUpSLP::getPointerOperand(Value *I) { 1117 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1118 return LI->getPointerOperand(); 1119 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1120 return SI->getPointerOperand(); 1121 return 0; 1122 } 1123 1124 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1125 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1126 return L->getPointerAddressSpace(); 1127 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1128 return S->getPointerAddressSpace(); 1129 return -1; 1130 } 1131 1132 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 1133 Value *PtrA = getPointerOperand(A); 1134 Value *PtrB = getPointerOperand(B); 1135 unsigned ASA = getAddressSpaceOperand(A); 1136 unsigned ASB = getAddressSpaceOperand(B); 1137 1138 // Check that the address spaces match and that the pointers are valid. 1139 if (!PtrA || !PtrB || (ASA != ASB)) 1140 return false; 1141 1142 // Make sure that A and B are different pointers of the same type. 1143 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1144 return false; 1145 1146 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); 1147 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1148 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); 1149 1150 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1151 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); 1152 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); 1153 1154 APInt OffsetDelta = OffsetB - OffsetA; 1155 1156 // Check if they are based on the same pointer. That makes the offsets 1157 // sufficient. 1158 if (PtrA == PtrB) 1159 return OffsetDelta == Size; 1160 1161 // Compute the necessary base pointer delta to have the necessary final delta 1162 // equal to the size. 1163 APInt BaseDelta = Size - OffsetDelta; 1164 1165 // Otherwise compute the distance with SCEV between the base pointers. 1166 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1167 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1168 const SCEV *C = SE->getConstant(BaseDelta); 1169 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1170 return X == PtrSCEVB; 1171 } 1172 1173 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) { 1174 assert(Src->getParent() == Dst->getParent() && "Not the same BB"); 1175 BasicBlock::iterator I = Src, E = Dst; 1176 /// Scan all of the instruction from SRC to DST and check if 1177 /// the source may alias. 1178 for (++I; I != E; ++I) { 1179 // Ignore store instructions that are marked as 'ignore'. 1180 if (MemBarrierIgnoreList.count(I)) 1181 continue; 1182 if (Src->mayWriteToMemory()) /* Write */ { 1183 if (!I->mayReadOrWriteMemory()) 1184 continue; 1185 } else /* Read */ { 1186 if (!I->mayWriteToMemory()) 1187 continue; 1188 } 1189 AliasAnalysis::Location A = getLocation(&*I); 1190 AliasAnalysis::Location B = getLocation(Src); 1191 1192 if (!A.Ptr || !B.Ptr || AA->alias(A, B)) 1193 return I; 1194 } 1195 return 0; 1196 } 1197 1198 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) { 1199 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1200 assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); 1201 BlockNumbering &BN = BlocksNumbers[BB]; 1202 1203 int MaxIdx = BN.getIndex(BB->getFirstNonPHI()); 1204 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1205 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1206 return MaxIdx; 1207 } 1208 1209 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) { 1210 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1211 assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); 1212 BlockNumbering &BN = BlocksNumbers[BB]; 1213 1214 int MaxIdx = BN.getIndex(cast<Instruction>(VL[0])); 1215 for (unsigned i = 1, e = VL.size(); i < e; ++i) 1216 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1217 Instruction *I = BN.getInstruction(MaxIdx); 1218 assert(I && "bad location"); 1219 return I; 1220 } 1221 1222 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 1223 Instruction *VL0 = cast<Instruction>(VL[0]); 1224 Instruction *LastInst = getLastInstruction(VL); 1225 BasicBlock::iterator NextInst = LastInst; 1226 ++NextInst; 1227 Builder.SetInsertPoint(VL0->getParent(), NextInst); 1228 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 1229 } 1230 1231 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1232 Value *Vec = UndefValue::get(Ty); 1233 // Generate the 'InsertElement' instruction. 1234 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1235 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1236 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1237 GatherSeq.insert(Insrt); 1238 1239 // Add to our 'need-to-extract' list. 1240 if (ScalarToTreeEntry.count(VL[i])) { 1241 int Idx = ScalarToTreeEntry[VL[i]]; 1242 TreeEntry *E = &VectorizableTree[Idx]; 1243 // Find which lane we need to extract. 1244 int FoundLane = -1; 1245 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1246 // Is this the lane of the scalar that we are looking for ? 1247 if (E->Scalars[Lane] == VL[i]) { 1248 FoundLane = Lane; 1249 break; 1250 } 1251 } 1252 assert(FoundLane >= 0 && "Could not find the correct lane"); 1253 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1254 } 1255 } 1256 } 1257 1258 return Vec; 1259 } 1260 1261 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 1262 SmallDenseMap<Value*, int>::const_iterator Entry 1263 = ScalarToTreeEntry.find(VL[0]); 1264 if (Entry != ScalarToTreeEntry.end()) { 1265 int Idx = Entry->second; 1266 const TreeEntry *En = &VectorizableTree[Idx]; 1267 if (En->isSame(VL) && En->VectorizedValue) 1268 return En->VectorizedValue; 1269 } 1270 return 0; 1271 } 1272 1273 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1274 if (ScalarToTreeEntry.count(VL[0])) { 1275 int Idx = ScalarToTreeEntry[VL[0]]; 1276 TreeEntry *E = &VectorizableTree[Idx]; 1277 if (E->isSame(VL)) 1278 return vectorizeTree(E); 1279 } 1280 1281 Type *ScalarTy = VL[0]->getType(); 1282 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1283 ScalarTy = SI->getValueOperand()->getType(); 1284 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1285 1286 return Gather(VL, VecTy); 1287 } 1288 1289 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1290 IRBuilder<>::InsertPointGuard Guard(Builder); 1291 1292 if (E->VectorizedValue) { 1293 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1294 return E->VectorizedValue; 1295 } 1296 1297 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1298 Type *ScalarTy = VL0->getType(); 1299 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 1300 ScalarTy = SI->getValueOperand()->getType(); 1301 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1302 1303 if (E->NeedToGather) { 1304 setInsertPointAfterBundle(E->Scalars); 1305 return Gather(E->Scalars, VecTy); 1306 } 1307 1308 unsigned Opcode = VL0->getOpcode(); 1309 assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode"); 1310 1311 switch (Opcode) { 1312 case Instruction::PHI: { 1313 PHINode *PH = dyn_cast<PHINode>(VL0); 1314 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 1315 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1316 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1317 E->VectorizedValue = NewPhi; 1318 1319 // PHINodes may have multiple entries from the same block. We want to 1320 // visit every block once. 1321 SmallSet<BasicBlock*, 4> VisitedBBs; 1322 1323 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1324 ValueList Operands; 1325 BasicBlock *IBB = PH->getIncomingBlock(i); 1326 1327 if (!VisitedBBs.insert(IBB)) { 1328 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 1329 continue; 1330 } 1331 1332 // Prepare the operand vector. 1333 for (unsigned j = 0; j < E->Scalars.size(); ++j) 1334 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 1335 getIncomingValueForBlock(IBB)); 1336 1337 Builder.SetInsertPoint(IBB->getTerminator()); 1338 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1339 Value *Vec = vectorizeTree(Operands); 1340 NewPhi->addIncoming(Vec, IBB); 1341 } 1342 1343 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 1344 "Invalid number of incoming values"); 1345 return NewPhi; 1346 } 1347 1348 case Instruction::ExtractElement: { 1349 if (CanReuseExtract(E->Scalars)) { 1350 Value *V = VL0->getOperand(0); 1351 E->VectorizedValue = V; 1352 return V; 1353 } 1354 return Gather(E->Scalars, VecTy); 1355 } 1356 case Instruction::ZExt: 1357 case Instruction::SExt: 1358 case Instruction::FPToUI: 1359 case Instruction::FPToSI: 1360 case Instruction::FPExt: 1361 case Instruction::PtrToInt: 1362 case Instruction::IntToPtr: 1363 case Instruction::SIToFP: 1364 case Instruction::UIToFP: 1365 case Instruction::Trunc: 1366 case Instruction::FPTrunc: 1367 case Instruction::BitCast: { 1368 ValueList INVL; 1369 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1370 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1371 1372 setInsertPointAfterBundle(E->Scalars); 1373 1374 Value *InVec = vectorizeTree(INVL); 1375 1376 if (Value *V = alreadyVectorized(E->Scalars)) 1377 return V; 1378 1379 CastInst *CI = dyn_cast<CastInst>(VL0); 1380 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 1381 E->VectorizedValue = V; 1382 return V; 1383 } 1384 case Instruction::FCmp: 1385 case Instruction::ICmp: { 1386 ValueList LHSV, RHSV; 1387 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1388 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1389 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1390 } 1391 1392 setInsertPointAfterBundle(E->Scalars); 1393 1394 Value *L = vectorizeTree(LHSV); 1395 Value *R = vectorizeTree(RHSV); 1396 1397 if (Value *V = alreadyVectorized(E->Scalars)) 1398 return V; 1399 1400 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1401 Value *V; 1402 if (Opcode == Instruction::FCmp) 1403 V = Builder.CreateFCmp(P0, L, R); 1404 else 1405 V = Builder.CreateICmp(P0, L, R); 1406 1407 E->VectorizedValue = V; 1408 return V; 1409 } 1410 case Instruction::Select: { 1411 ValueList TrueVec, FalseVec, CondVec; 1412 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1413 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1414 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1415 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 1416 } 1417 1418 setInsertPointAfterBundle(E->Scalars); 1419 1420 Value *Cond = vectorizeTree(CondVec); 1421 Value *True = vectorizeTree(TrueVec); 1422 Value *False = vectorizeTree(FalseVec); 1423 1424 if (Value *V = alreadyVectorized(E->Scalars)) 1425 return V; 1426 1427 Value *V = Builder.CreateSelect(Cond, True, False); 1428 E->VectorizedValue = V; 1429 return V; 1430 } 1431 case Instruction::Add: 1432 case Instruction::FAdd: 1433 case Instruction::Sub: 1434 case Instruction::FSub: 1435 case Instruction::Mul: 1436 case Instruction::FMul: 1437 case Instruction::UDiv: 1438 case Instruction::SDiv: 1439 case Instruction::FDiv: 1440 case Instruction::URem: 1441 case Instruction::SRem: 1442 case Instruction::FRem: 1443 case Instruction::Shl: 1444 case Instruction::LShr: 1445 case Instruction::AShr: 1446 case Instruction::And: 1447 case Instruction::Or: 1448 case Instruction::Xor: { 1449 ValueList LHSVL, RHSVL; 1450 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 1451 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 1452 else 1453 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1454 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1455 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1456 } 1457 1458 setInsertPointAfterBundle(E->Scalars); 1459 1460 Value *LHS = vectorizeTree(LHSVL); 1461 Value *RHS = vectorizeTree(RHSVL); 1462 1463 if (LHS == RHS && isa<Instruction>(LHS)) { 1464 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 1465 } 1466 1467 if (Value *V = alreadyVectorized(E->Scalars)) 1468 return V; 1469 1470 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 1471 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 1472 E->VectorizedValue = V; 1473 return V; 1474 } 1475 case Instruction::Load: { 1476 // Loads are inserted at the head of the tree because we don't want to 1477 // sink them all the way down past store instructions. 1478 setInsertPointAfterBundle(E->Scalars); 1479 1480 LoadInst *LI = cast<LoadInst>(VL0); 1481 unsigned AS = LI->getPointerAddressSpace(); 1482 1483 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 1484 VecTy->getPointerTo(AS)); 1485 unsigned Alignment = LI->getAlignment(); 1486 LI = Builder.CreateLoad(VecPtr); 1487 LI->setAlignment(Alignment); 1488 E->VectorizedValue = LI; 1489 return LI; 1490 } 1491 case Instruction::Store: { 1492 StoreInst *SI = cast<StoreInst>(VL0); 1493 unsigned Alignment = SI->getAlignment(); 1494 unsigned AS = SI->getPointerAddressSpace(); 1495 1496 ValueList ValueOp; 1497 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1498 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 1499 1500 setInsertPointAfterBundle(E->Scalars); 1501 1502 Value *VecValue = vectorizeTree(ValueOp); 1503 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 1504 VecTy->getPointerTo(AS)); 1505 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 1506 S->setAlignment(Alignment); 1507 E->VectorizedValue = S; 1508 return S; 1509 } 1510 default: 1511 llvm_unreachable("unknown inst"); 1512 } 1513 return 0; 1514 } 1515 1516 Value *BoUpSLP::vectorizeTree() { 1517 Builder.SetInsertPoint(F->getEntryBlock().begin()); 1518 vectorizeTree(&VectorizableTree[0]); 1519 1520 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 1521 1522 // Extract all of the elements with the external uses. 1523 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 1524 it != e; ++it) { 1525 Value *Scalar = it->Scalar; 1526 llvm::User *User = it->User; 1527 1528 // Skip users that we already RAUW. This happens when one instruction 1529 // has multiple uses of the same value. 1530 if (std::find(Scalar->use_begin(), Scalar->use_end(), User) == 1531 Scalar->use_end()) 1532 continue; 1533 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 1534 1535 int Idx = ScalarToTreeEntry[Scalar]; 1536 TreeEntry *E = &VectorizableTree[Idx]; 1537 assert(!E->NeedToGather && "Extracting from a gather list"); 1538 1539 Value *Vec = E->VectorizedValue; 1540 assert(Vec && "Can't find vectorizable value"); 1541 1542 Value *Lane = Builder.getInt32(it->Lane); 1543 // Generate extracts for out-of-tree users. 1544 // Find the insertion point for the extractelement lane. 1545 if (PHINode *PN = dyn_cast<PHINode>(Vec)) { 1546 Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt()); 1547 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1548 User->replaceUsesOfWith(Scalar, Ex); 1549 } else if (isa<Instruction>(Vec)){ 1550 if (PHINode *PH = dyn_cast<PHINode>(User)) { 1551 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 1552 if (PH->getIncomingValue(i) == Scalar) { 1553 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 1554 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1555 PH->setOperand(i, Ex); 1556 } 1557 } 1558 } else { 1559 Builder.SetInsertPoint(cast<Instruction>(User)); 1560 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1561 User->replaceUsesOfWith(Scalar, Ex); 1562 } 1563 } else { 1564 Builder.SetInsertPoint(F->getEntryBlock().begin()); 1565 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1566 User->replaceUsesOfWith(Scalar, Ex); 1567 } 1568 1569 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 1570 } 1571 1572 // For each vectorized value: 1573 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 1574 TreeEntry *Entry = &VectorizableTree[EIdx]; 1575 1576 // For each lane: 1577 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1578 Value *Scalar = Entry->Scalars[Lane]; 1579 1580 // No need to handle users of gathered values. 1581 if (Entry->NeedToGather) 1582 continue; 1583 1584 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 1585 1586 Type *Ty = Scalar->getType(); 1587 if (!Ty->isVoidTy()) { 1588 for (Value::use_iterator User = Scalar->use_begin(), 1589 UE = Scalar->use_end(); User != UE; ++User) { 1590 DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n"); 1591 assert(!MustGather.count(*User) && 1592 "Replacing gathered value with undef"); 1593 1594 assert((ScalarToTreeEntry.count(*User) || 1595 // It is legal to replace the reduction users by undef. 1596 (RdxOps && RdxOps->count(*User))) && 1597 "Replacing out-of-tree value with undef"); 1598 } 1599 Value *Undef = UndefValue::get(Ty); 1600 Scalar->replaceAllUsesWith(Undef); 1601 } 1602 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 1603 cast<Instruction>(Scalar)->eraseFromParent(); 1604 } 1605 } 1606 1607 for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { 1608 BlocksNumbers[it].forget(); 1609 } 1610 Builder.ClearInsertionPoint(); 1611 1612 return VectorizableTree[0].VectorizedValue; 1613 } 1614 1615 void BoUpSLP::optimizeGatherSequence() { 1616 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 1617 << " gather sequences instructions.\n"); 1618 // LICM InsertElementInst sequences. 1619 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 1620 e = GatherSeq.end(); it != e; ++it) { 1621 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 1622 1623 if (!Insert) 1624 continue; 1625 1626 // Check if this block is inside a loop. 1627 Loop *L = LI->getLoopFor(Insert->getParent()); 1628 if (!L) 1629 continue; 1630 1631 // Check if it has a preheader. 1632 BasicBlock *PreHeader = L->getLoopPreheader(); 1633 if (!PreHeader) 1634 continue; 1635 1636 // If the vector or the element that we insert into it are 1637 // instructions that are defined in this basic block then we can't 1638 // hoist this instruction. 1639 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 1640 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 1641 if (CurrVec && L->contains(CurrVec)) 1642 continue; 1643 if (NewElem && L->contains(NewElem)) 1644 continue; 1645 1646 // We can hoist this instruction. Move it to the pre-header. 1647 Insert->moveBefore(PreHeader->getTerminator()); 1648 } 1649 1650 // Perform O(N^2) search over the gather sequences and merge identical 1651 // instructions. TODO: We can further optimize this scan if we split the 1652 // instructions into different buckets based on the insert lane. 1653 SmallPtrSet<Instruction*, 16> Visited; 1654 SmallVector<Instruction*, 16> ToRemove; 1655 ReversePostOrderTraversal<Function*> RPOT(F); 1656 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 1657 E = RPOT.end(); I != E; ++I) { 1658 BasicBlock *BB = *I; 1659 // For all instructions in the function: 1660 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 1661 Instruction *In = it; 1662 if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) || 1663 !GatherSeq.count(In)) 1664 continue; 1665 1666 // Check if we can replace this instruction with any of the 1667 // visited instructions. 1668 for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(), 1669 ve = Visited.end(); v != ve; ++v) { 1670 if (In->isIdenticalTo(*v) && 1671 DT->dominates((*v)->getParent(), In->getParent())) { 1672 In->replaceAllUsesWith(*v); 1673 ToRemove.push_back(In); 1674 In = 0; 1675 break; 1676 } 1677 } 1678 if (In) 1679 Visited.insert(In); 1680 } 1681 } 1682 1683 // Erase all of the instructions that we RAUWed. 1684 for (SmallVectorImpl<Instruction *>::iterator v = ToRemove.begin(), 1685 ve = ToRemove.end(); v != ve; ++v) { 1686 assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses"); 1687 (*v)->eraseFromParent(); 1688 } 1689 } 1690 1691 /// The SLPVectorizer Pass. 1692 struct SLPVectorizer : public FunctionPass { 1693 typedef SmallVector<StoreInst *, 8> StoreList; 1694 typedef MapVector<Value *, StoreList> StoreListMap; 1695 1696 /// Pass identification, replacement for typeid 1697 static char ID; 1698 1699 explicit SLPVectorizer() : FunctionPass(ID) { 1700 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 1701 } 1702 1703 ScalarEvolution *SE; 1704 DataLayout *DL; 1705 TargetTransformInfo *TTI; 1706 AliasAnalysis *AA; 1707 LoopInfo *LI; 1708 DominatorTree *DT; 1709 1710 virtual bool runOnFunction(Function &F) { 1711 SE = &getAnalysis<ScalarEvolution>(); 1712 DL = getAnalysisIfAvailable<DataLayout>(); 1713 TTI = &getAnalysis<TargetTransformInfo>(); 1714 AA = &getAnalysis<AliasAnalysis>(); 1715 LI = &getAnalysis<LoopInfo>(); 1716 DT = &getAnalysis<DominatorTree>(); 1717 1718 StoreRefs.clear(); 1719 bool Changed = false; 1720 1721 // If the target claims to have no vector registers don't attempt 1722 // vectorization. 1723 if (!TTI->getNumberOfRegisters(true)) 1724 return false; 1725 1726 // Must have DataLayout. We can't require it because some tests run w/o 1727 // triple. 1728 if (!DL) 1729 return false; 1730 1731 // Don't vectorize when the attribute NoImplicitFloat is used. 1732 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 1733 return false; 1734 1735 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 1736 1737 // Use the bollom up slp vectorizer to construct chains that start with 1738 // he store instructions. 1739 BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT); 1740 1741 // Scan the blocks in the function in post order. 1742 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 1743 e = po_end(&F.getEntryBlock()); it != e; ++it) { 1744 BasicBlock *BB = *it; 1745 1746 // Vectorize trees that end at stores. 1747 if (unsigned count = collectStores(BB, R)) { 1748 (void)count; 1749 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 1750 Changed |= vectorizeStoreChains(R); 1751 } 1752 1753 // Vectorize trees that end at reductions. 1754 Changed |= vectorizeChainsInBlock(BB, R); 1755 } 1756 1757 if (Changed) { 1758 R.optimizeGatherSequence(); 1759 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 1760 DEBUG(verifyFunction(F)); 1761 } 1762 return Changed; 1763 } 1764 1765 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1766 FunctionPass::getAnalysisUsage(AU); 1767 AU.addRequired<ScalarEvolution>(); 1768 AU.addRequired<AliasAnalysis>(); 1769 AU.addRequired<TargetTransformInfo>(); 1770 AU.addRequired<LoopInfo>(); 1771 AU.addRequired<DominatorTree>(); 1772 AU.addPreserved<LoopInfo>(); 1773 AU.addPreserved<DominatorTree>(); 1774 AU.setPreservesCFG(); 1775 } 1776 1777 private: 1778 1779 /// \brief Collect memory references and sort them according to their base 1780 /// object. We sort the stores to their base objects to reduce the cost of the 1781 /// quadratic search on the stores. TODO: We can further reduce this cost 1782 /// if we flush the chain creation every time we run into a memory barrier. 1783 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 1784 1785 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 1786 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 1787 1788 /// \brief Try to vectorize a list of operands. 1789 /// \returns true if a value was vectorized. 1790 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R); 1791 1792 /// \brief Try to vectorize a chain that may start at the operands of \V; 1793 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 1794 1795 /// \brief Vectorize the stores that were collected in StoreRefs. 1796 bool vectorizeStoreChains(BoUpSLP &R); 1797 1798 /// \brief Scan the basic block and look for patterns that are likely to start 1799 /// a vectorization chain. 1800 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 1801 1802 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 1803 BoUpSLP &R); 1804 1805 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 1806 BoUpSLP &R); 1807 private: 1808 StoreListMap StoreRefs; 1809 }; 1810 1811 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 1812 int CostThreshold, BoUpSLP &R) { 1813 unsigned ChainLen = Chain.size(); 1814 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 1815 << "\n"); 1816 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 1817 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 1818 unsigned VF = MinVecRegSize / Sz; 1819 1820 if (!isPowerOf2_32(Sz) || VF < 2) 1821 return false; 1822 1823 bool Changed = false; 1824 // Look for profitable vectorizable trees at all offsets, starting at zero. 1825 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 1826 if (i + VF > e) 1827 break; 1828 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 1829 << "\n"); 1830 ArrayRef<Value *> Operands = Chain.slice(i, VF); 1831 1832 R.buildTree(Operands); 1833 1834 int Cost = R.getTreeCost(); 1835 1836 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 1837 if (Cost < CostThreshold) { 1838 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 1839 R.vectorizeTree(); 1840 1841 // Move to the next bundle. 1842 i += VF - 1; 1843 Changed = true; 1844 } 1845 } 1846 1847 return Changed; 1848 } 1849 1850 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 1851 int costThreshold, BoUpSLP &R) { 1852 SetVector<Value *> Heads, Tails; 1853 SmallDenseMap<Value *, Value *> ConsecutiveChain; 1854 1855 // We may run into multiple chains that merge into a single chain. We mark the 1856 // stores that we vectorized so that we don't visit the same store twice. 1857 BoUpSLP::ValueSet VectorizedStores; 1858 bool Changed = false; 1859 1860 // Do a quadratic search on all of the given stores and find 1861 // all of the pairs of stores that follow each other. 1862 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 1863 for (unsigned j = 0; j < e; ++j) { 1864 if (i == j) 1865 continue; 1866 1867 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 1868 Tails.insert(Stores[j]); 1869 Heads.insert(Stores[i]); 1870 ConsecutiveChain[Stores[i]] = Stores[j]; 1871 } 1872 } 1873 } 1874 1875 // For stores that start but don't end a link in the chain: 1876 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 1877 it != e; ++it) { 1878 if (Tails.count(*it)) 1879 continue; 1880 1881 // We found a store instr that starts a chain. Now follow the chain and try 1882 // to vectorize it. 1883 BoUpSLP::ValueList Operands; 1884 Value *I = *it; 1885 // Collect the chain into a list. 1886 while (Tails.count(I) || Heads.count(I)) { 1887 if (VectorizedStores.count(I)) 1888 break; 1889 Operands.push_back(I); 1890 // Move to the next value in the chain. 1891 I = ConsecutiveChain[I]; 1892 } 1893 1894 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 1895 1896 // Mark the vectorized stores so that we don't vectorize them again. 1897 if (Vectorized) 1898 VectorizedStores.insert(Operands.begin(), Operands.end()); 1899 Changed |= Vectorized; 1900 } 1901 1902 return Changed; 1903 } 1904 1905 1906 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 1907 unsigned count = 0; 1908 StoreRefs.clear(); 1909 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 1910 StoreInst *SI = dyn_cast<StoreInst>(it); 1911 if (!SI) 1912 continue; 1913 1914 // Check that the pointer points to scalars. 1915 Type *Ty = SI->getValueOperand()->getType(); 1916 if (Ty->isAggregateType() || Ty->isVectorTy()) 1917 return 0; 1918 1919 // Find the base pointer. 1920 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 1921 1922 // Save the store locations. 1923 StoreRefs[Ptr].push_back(SI); 1924 count++; 1925 } 1926 return count; 1927 } 1928 1929 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 1930 if (!A || !B) 1931 return false; 1932 Value *VL[] = { A, B }; 1933 return tryToVectorizeList(VL, R); 1934 } 1935 1936 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) { 1937 if (VL.size() < 2) 1938 return false; 1939 1940 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 1941 1942 // Check that all of the parts are scalar instructions of the same type. 1943 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1944 if (!I0) 1945 return false; 1946 1947 unsigned Opcode0 = I0->getOpcode(); 1948 1949 Type *Ty0 = I0->getType(); 1950 unsigned Sz = DL->getTypeSizeInBits(Ty0); 1951 unsigned VF = MinVecRegSize / Sz; 1952 1953 for (int i = 0, e = VL.size(); i < e; ++i) { 1954 Type *Ty = VL[i]->getType(); 1955 if (Ty->isAggregateType() || Ty->isVectorTy()) 1956 return false; 1957 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 1958 if (!Inst || Inst->getOpcode() != Opcode0) 1959 return false; 1960 } 1961 1962 bool Changed = false; 1963 1964 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1965 unsigned OpsWidth = 0; 1966 1967 if (i + VF > e) 1968 OpsWidth = e - i; 1969 else 1970 OpsWidth = VF; 1971 1972 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 1973 break; 1974 1975 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " << "\n"); 1976 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 1977 1978 R.buildTree(Ops); 1979 int Cost = R.getTreeCost(); 1980 1981 if (Cost < -SLPCostThreshold) { 1982 DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n"); 1983 R.vectorizeTree(); 1984 1985 // Move to the next bundle. 1986 i += VF - 1; 1987 Changed = true; 1988 } 1989 } 1990 1991 return Changed; 1992 } 1993 1994 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 1995 if (!V) 1996 return false; 1997 1998 // Try to vectorize V. 1999 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 2000 return true; 2001 2002 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 2003 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 2004 // Try to skip B. 2005 if (B && B->hasOneUse()) { 2006 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 2007 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 2008 if (tryToVectorizePair(A, B0, R)) { 2009 B->moveBefore(V); 2010 return true; 2011 } 2012 if (tryToVectorizePair(A, B1, R)) { 2013 B->moveBefore(V); 2014 return true; 2015 } 2016 } 2017 2018 // Try to skip A. 2019 if (A && A->hasOneUse()) { 2020 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 2021 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 2022 if (tryToVectorizePair(A0, B, R)) { 2023 A->moveBefore(V); 2024 return true; 2025 } 2026 if (tryToVectorizePair(A1, B, R)) { 2027 A->moveBefore(V); 2028 return true; 2029 } 2030 } 2031 return 0; 2032 } 2033 2034 /// \brief Generate a shuffle mask to be used in a reduction tree. 2035 /// 2036 /// \param VecLen The length of the vector to be reduced. 2037 /// \param NumEltsToRdx The number of elements that should be reduced in the 2038 /// vector. 2039 /// \param IsPairwise Whether the reduction is a pairwise or splitting 2040 /// reduction. A pairwise reduction will generate a mask of 2041 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 2042 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 2043 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 2044 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 2045 bool IsPairwise, bool IsLeft, 2046 IRBuilder<> &Builder) { 2047 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 2048 2049 SmallVector<Constant *, 32> ShuffleMask( 2050 VecLen, UndefValue::get(Builder.getInt32Ty())); 2051 2052 if (IsPairwise) 2053 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 2054 for (unsigned i = 0; i != NumEltsToRdx; ++i) 2055 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 2056 else 2057 // Move the upper half of the vector to the lower half. 2058 for (unsigned i = 0; i != NumEltsToRdx; ++i) 2059 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 2060 2061 return ConstantVector::get(ShuffleMask); 2062 } 2063 2064 2065 /// Model horizontal reductions. 2066 /// 2067 /// A horizontal reduction is a tree of reduction operations (currently add and 2068 /// fadd) that has operations that can be put into a vector as its leaf. 2069 /// For example, this tree: 2070 /// 2071 /// mul mul mul mul 2072 /// \ / \ / 2073 /// + + 2074 /// \ / 2075 /// + 2076 /// This tree has "mul" as its reduced values and "+" as its reduction 2077 /// operations. A reduction might be feeding into a store or a binary operation 2078 /// feeding a phi. 2079 /// ... 2080 /// \ / 2081 /// + 2082 /// | 2083 /// phi += 2084 /// 2085 /// Or: 2086 /// ... 2087 /// \ / 2088 /// + 2089 /// | 2090 /// *p = 2091 /// 2092 class HorizontalReduction { 2093 SmallPtrSet<Value *, 16> ReductionOps; 2094 SmallVector<Value *, 32> ReducedVals; 2095 2096 BinaryOperator *ReductionRoot; 2097 PHINode *ReductionPHI; 2098 2099 /// The opcode of the reduction. 2100 unsigned ReductionOpcode; 2101 /// The opcode of the values we perform a reduction on. 2102 unsigned ReducedValueOpcode; 2103 /// The width of one full horizontal reduction operation. 2104 unsigned ReduxWidth; 2105 /// Should we model this reduction as a pairwise reduction tree or a tree that 2106 /// splits the vector in halves and adds those halves. 2107 bool IsPairwiseReduction; 2108 2109 public: 2110 HorizontalReduction() 2111 : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0), 2112 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 2113 2114 /// \brief Try to find a reduction tree. 2115 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, 2116 DataLayout *DL) { 2117 assert((!Phi || 2118 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 2119 "Thi phi needs to use the binary operator"); 2120 2121 // We could have a initial reductions that is not an add. 2122 // r *= v1 + v2 + v3 + v4 2123 // In such a case start looking for a tree rooted in the first '+'. 2124 if (Phi) { 2125 if (B->getOperand(0) == Phi) { 2126 Phi = 0; 2127 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 2128 } else if (B->getOperand(1) == Phi) { 2129 Phi = 0; 2130 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 2131 } 2132 } 2133 2134 if (!B) 2135 return false; 2136 2137 Type *Ty = B->getType(); 2138 if (Ty->isVectorTy()) 2139 return false; 2140 2141 ReductionOpcode = B->getOpcode(); 2142 ReducedValueOpcode = 0; 2143 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); 2144 ReductionRoot = B; 2145 ReductionPHI = Phi; 2146 2147 if (ReduxWidth < 4) 2148 return false; 2149 2150 // We currently only support adds. 2151 if (ReductionOpcode != Instruction::Add && 2152 ReductionOpcode != Instruction::FAdd) 2153 return false; 2154 2155 // Post order traverse the reduction tree starting at B. We only handle true 2156 // trees containing only binary operators. 2157 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 2158 Stack.push_back(std::make_pair(B, 0)); 2159 while (!Stack.empty()) { 2160 BinaryOperator *TreeN = Stack.back().first; 2161 unsigned EdgeToVist = Stack.back().second++; 2162 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 2163 2164 // Only handle trees in the current basic block. 2165 if (TreeN->getParent() != B->getParent()) 2166 return false; 2167 2168 // Each tree node needs to have one user except for the ultimate 2169 // reduction. 2170 if (!TreeN->hasOneUse() && TreeN != B) 2171 return false; 2172 2173 // Postorder vist. 2174 if (EdgeToVist == 2 || IsReducedValue) { 2175 if (IsReducedValue) { 2176 // Make sure that the opcodes of the operations that we are going to 2177 // reduce match. 2178 if (!ReducedValueOpcode) 2179 ReducedValueOpcode = TreeN->getOpcode(); 2180 else if (ReducedValueOpcode != TreeN->getOpcode()) 2181 return false; 2182 ReducedVals.push_back(TreeN); 2183 } else { 2184 // We need to be able to reassociate the adds. 2185 if (!TreeN->isAssociative()) 2186 return false; 2187 ReductionOps.insert(TreeN); 2188 } 2189 // Retract. 2190 Stack.pop_back(); 2191 continue; 2192 } 2193 2194 // Visit left or right. 2195 Value *NextV = TreeN->getOperand(EdgeToVist); 2196 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 2197 if (Next) 2198 Stack.push_back(std::make_pair(Next, 0)); 2199 else if (NextV != Phi) 2200 return false; 2201 } 2202 return true; 2203 } 2204 2205 /// \brief Attempt to vectorize the tree found by 2206 /// matchAssociativeReduction. 2207 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 2208 if (ReducedVals.empty()) 2209 return false; 2210 2211 unsigned NumReducedVals = ReducedVals.size(); 2212 if (NumReducedVals < ReduxWidth) 2213 return false; 2214 2215 Value *VectorizedTree = 0; 2216 IRBuilder<> Builder(ReductionRoot); 2217 FastMathFlags Unsafe; 2218 Unsafe.setUnsafeAlgebra(); 2219 Builder.SetFastMathFlags(Unsafe); 2220 unsigned i = 0; 2221 2222 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 2223 ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth); 2224 V.buildTree(ValsToReduce, &ReductionOps); 2225 2226 // Estimate cost. 2227 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 2228 if (Cost >= -SLPCostThreshold) 2229 break; 2230 2231 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 2232 << ". (HorRdx)\n"); 2233 2234 // Vectorize a tree. 2235 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 2236 Value *VectorizedRoot = V.vectorizeTree(); 2237 2238 // Emit a reduction. 2239 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 2240 if (VectorizedTree) { 2241 Builder.SetCurrentDebugLocation(Loc); 2242 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 2243 ReducedSubTree, "bin.rdx"); 2244 } else 2245 VectorizedTree = ReducedSubTree; 2246 } 2247 2248 if (VectorizedTree) { 2249 // Finish the reduction. 2250 for (; i < NumReducedVals; ++i) { 2251 Builder.SetCurrentDebugLocation( 2252 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 2253 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 2254 ReducedVals[i]); 2255 } 2256 // Update users. 2257 if (ReductionPHI) { 2258 assert(ReductionRoot != NULL && "Need a reduction operation"); 2259 ReductionRoot->setOperand(0, VectorizedTree); 2260 ReductionRoot->setOperand(1, ReductionPHI); 2261 } else 2262 ReductionRoot->replaceAllUsesWith(VectorizedTree); 2263 } 2264 return VectorizedTree != 0; 2265 } 2266 2267 private: 2268 2269 /// \brief Calcuate the cost of a reduction. 2270 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 2271 Type *ScalarTy = FirstReducedVal->getType(); 2272 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 2273 2274 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 2275 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 2276 2277 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 2278 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 2279 2280 int ScalarReduxCost = 2281 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 2282 2283 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 2284 << " for reduction that starts with " << *FirstReducedVal 2285 << " (It is a " 2286 << (IsPairwiseReduction ? "pairwise" : "splitting") 2287 << " reduction)\n"); 2288 2289 return VecReduxCost - ScalarReduxCost; 2290 } 2291 2292 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 2293 Value *R, const Twine &Name = "") { 2294 if (Opcode == Instruction::FAdd) 2295 return Builder.CreateFAdd(L, R, Name); 2296 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 2297 } 2298 2299 /// \brief Emit a horizontal reduction of the vectorized value. 2300 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 2301 assert(VectorizedValue && "Need to have a vectorized tree node"); 2302 Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue); 2303 assert(isPowerOf2_32(ReduxWidth) && 2304 "We only handle power-of-two reductions for now"); 2305 2306 Value *TmpVec = ValToReduce; 2307 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 2308 if (IsPairwiseReduction) { 2309 Value *LeftMask = 2310 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 2311 Value *RightMask = 2312 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 2313 2314 Value *LeftShuf = Builder.CreateShuffleVector( 2315 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 2316 Value *RightShuf = Builder.CreateShuffleVector( 2317 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 2318 "rdx.shuf.r"); 2319 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 2320 "bin.rdx"); 2321 } else { 2322 Value *UpperHalf = 2323 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 2324 Value *Shuf = Builder.CreateShuffleVector( 2325 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 2326 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 2327 } 2328 } 2329 2330 // The result is in the first element of the vector. 2331 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 2332 } 2333 }; 2334 2335 /// \brief Recognize construction of vectors like 2336 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 2337 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 2338 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 2339 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 2340 /// 2341 /// Returns true if it matches 2342 /// 2343 static bool findBuildVector(InsertElementInst *IE, 2344 SmallVectorImpl<Value *> &Ops) { 2345 if (!isa<UndefValue>(IE->getOperand(0))) 2346 return false; 2347 2348 while (true) { 2349 Ops.push_back(IE->getOperand(1)); 2350 2351 if (IE->use_empty()) 2352 return false; 2353 2354 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back()); 2355 if (!NextUse) 2356 return true; 2357 2358 // If this isn't the final use, make sure the next insertelement is the only 2359 // use. It's OK if the final constructed vector is used multiple times 2360 if (!IE->hasOneUse()) 2361 return false; 2362 2363 IE = NextUse; 2364 } 2365 2366 return false; 2367 } 2368 2369 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 2370 bool Changed = false; 2371 SmallVector<Value *, 4> Incoming; 2372 SmallSet<Instruction *, 16> VisitedInstrs; 2373 2374 // Collect the incoming values from the PHIs. 2375 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 2376 ++instr) { 2377 PHINode *P = dyn_cast<PHINode>(instr); 2378 2379 if (!P) 2380 break; 2381 2382 // We may go through BB multiple times so skip the one we have checked. 2383 if (!VisitedInstrs.insert(instr)) 2384 continue; 2385 2386 // Stop constructing the list when you reach a different type. 2387 if (Incoming.size() && P->getType() != Incoming[0]->getType()) { 2388 if (tryToVectorizeList(Incoming, R)) { 2389 // We would like to start over since some instructions are deleted 2390 // and the iterator may become invalid value. 2391 Changed = true; 2392 instr = BB->begin(); 2393 ie = BB->end(); 2394 } 2395 2396 Incoming.clear(); 2397 } 2398 2399 Incoming.push_back(P); 2400 } 2401 2402 if (Incoming.size() > 1) 2403 Changed |= tryToVectorizeList(Incoming, R); 2404 2405 VisitedInstrs.clear(); 2406 2407 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 2408 // We may go through BB multiple times so skip the one we have checked. 2409 if (!VisitedInstrs.insert(it)) 2410 continue; 2411 2412 if (isa<DbgInfoIntrinsic>(it)) 2413 continue; 2414 2415 // Try to vectorize reductions that use PHINodes. 2416 if (PHINode *P = dyn_cast<PHINode>(it)) { 2417 // Check that the PHI is a reduction PHI. 2418 if (P->getNumIncomingValues() != 2) 2419 return Changed; 2420 Value *Rdx = 2421 (P->getIncomingBlock(0) == BB 2422 ? (P->getIncomingValue(0)) 2423 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0)); 2424 // Check if this is a Binary Operator. 2425 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 2426 if (!BI) 2427 continue; 2428 2429 // Try to match and vectorize a horizontal reduction. 2430 HorizontalReduction HorRdx; 2431 if (ShouldVectorizeHor && 2432 HorRdx.matchAssociativeReduction(P, BI, DL) && 2433 HorRdx.tryToReduce(R, TTI)) { 2434 Changed = true; 2435 it = BB->begin(); 2436 e = BB->end(); 2437 continue; 2438 } 2439 2440 Value *Inst = BI->getOperand(0); 2441 if (Inst == P) 2442 Inst = BI->getOperand(1); 2443 2444 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 2445 // We would like to start over since some instructions are deleted 2446 // and the iterator may become invalid value. 2447 Changed = true; 2448 it = BB->begin(); 2449 e = BB->end(); 2450 continue; 2451 } 2452 2453 continue; 2454 } 2455 2456 // Try to vectorize horizontal reductions feeding into a store. 2457 if (ShouldStartVectorizeHorAtStore) 2458 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 2459 if (BinaryOperator *BinOp = 2460 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 2461 HorizontalReduction HorRdx; 2462 if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) && 2463 HorRdx.tryToReduce(R, TTI)) || 2464 tryToVectorize(BinOp, R))) { 2465 Changed = true; 2466 it = BB->begin(); 2467 e = BB->end(); 2468 continue; 2469 } 2470 } 2471 2472 // Try to vectorize trees that start at compare instructions. 2473 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 2474 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 2475 Changed = true; 2476 // We would like to start over since some instructions are deleted 2477 // and the iterator may become invalid value. 2478 it = BB->begin(); 2479 e = BB->end(); 2480 continue; 2481 } 2482 2483 for (int i = 0; i < 2; ++i) { 2484 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 2485 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 2486 Changed = true; 2487 // We would like to start over since some instructions are deleted 2488 // and the iterator may become invalid value. 2489 it = BB->begin(); 2490 e = BB->end(); 2491 } 2492 } 2493 } 2494 continue; 2495 } 2496 2497 // Try to vectorize trees that start at insertelement instructions. 2498 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) { 2499 SmallVector<Value *, 8> Ops; 2500 if (!findBuildVector(IE, Ops)) 2501 continue; 2502 2503 if (tryToVectorizeList(Ops, R)) { 2504 Changed = true; 2505 it = BB->begin(); 2506 e = BB->end(); 2507 } 2508 2509 continue; 2510 } 2511 } 2512 2513 return Changed; 2514 } 2515 2516 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 2517 bool Changed = false; 2518 // Attempt to sort and vectorize each of the store-groups. 2519 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 2520 it != e; ++it) { 2521 if (it->second.size() < 2) 2522 continue; 2523 2524 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 2525 << it->second.size() << ".\n"); 2526 2527 // Process the stores in chunks of 16. 2528 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 2529 unsigned Len = std::min<unsigned>(CE - CI, 16); 2530 ArrayRef<StoreInst *> Chunk(&it->second[CI], Len); 2531 Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); 2532 } 2533 } 2534 return Changed; 2535 } 2536 2537 } // end anonymous namespace 2538 2539 char SLPVectorizer::ID = 0; 2540 static const char lv_name[] = "SLP Vectorizer"; 2541 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 2542 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 2543 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 2544 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 2545 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 2546 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 2547 2548 namespace llvm { 2549 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 2550 } 2551