1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 210 static bool isCommutative(Instruction *I) { 211 if (auto *IC = dyn_cast<CmpInst>(I)) 212 return IC->isCommutative(); 213 return I->isCommutative(); 214 } 215 216 /// Checks if the vector of instructions can be represented as a shuffle, like: 217 /// %x0 = extractelement <4 x i8> %x, i32 0 218 /// %x3 = extractelement <4 x i8> %x, i32 3 219 /// %y1 = extractelement <4 x i8> %y, i32 1 220 /// %y2 = extractelement <4 x i8> %y, i32 2 221 /// %x0x0 = mul i8 %x0, %x0 222 /// %x3x3 = mul i8 %x3, %x3 223 /// %y1y1 = mul i8 %y1, %y1 224 /// %y2y2 = mul i8 %y2, %y2 225 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 226 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 227 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 228 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 229 /// ret <4 x i8> %ins4 230 /// can be transformed into: 231 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 232 /// i32 6> 233 /// %2 = mul <4 x i8> %1, %1 234 /// ret <4 x i8> %2 235 /// We convert this initially to something like: 236 /// %x0 = extractelement <4 x i8> %x, i32 0 237 /// %x3 = extractelement <4 x i8> %x, i32 3 238 /// %y1 = extractelement <4 x i8> %y, i32 1 239 /// %y2 = extractelement <4 x i8> %y, i32 2 240 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 241 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 242 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 243 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 244 /// %5 = mul <4 x i8> %4, %4 245 /// %6 = extractelement <4 x i8> %5, i32 0 246 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 247 /// %7 = extractelement <4 x i8> %5, i32 1 248 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 249 /// %8 = extractelement <4 x i8> %5, i32 2 250 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 251 /// %9 = extractelement <4 x i8> %5, i32 3 252 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 253 /// ret <4 x i8> %ins4 254 /// InstCombiner transforms this into a shuffle and vector mul 255 /// TODO: Can we split off and reuse the shuffle mask detection from 256 /// TargetTransformInfo::getInstructionThroughput? 257 static Optional<TargetTransformInfo::ShuffleKind> 258 isShuffle(ArrayRef<Value *> VL) { 259 auto *EI0 = cast<ExtractElementInst>(VL[0]); 260 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 261 Value *Vec1 = nullptr; 262 Value *Vec2 = nullptr; 263 enum ShuffleMode { Unknown, Select, Permute }; 264 ShuffleMode CommonShuffleMode = Unknown; 265 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 266 auto *EI = cast<ExtractElementInst>(VL[I]); 267 auto *Vec = EI->getVectorOperand(); 268 // All vector operands must have the same number of vector elements. 269 if (Vec->getType()->getVectorNumElements() != Size) 270 return None; 271 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 272 if (!Idx) 273 return None; 274 // Undefined behavior if Idx is negative or >= Size. 275 if (Idx->getValue().uge(Size)) 276 continue; 277 unsigned IntIdx = Idx->getValue().getZExtValue(); 278 // We can extractelement from undef vector. 279 if (isa<UndefValue>(Vec)) 280 continue; 281 // For correct shuffling we have to have at most 2 different vector operands 282 // in all extractelement instructions. 283 if (!Vec1 || Vec1 == Vec) 284 Vec1 = Vec; 285 else if (!Vec2 || Vec2 == Vec) 286 Vec2 = Vec; 287 else 288 return None; 289 if (CommonShuffleMode == Permute) 290 continue; 291 // If the extract index is not the same as the operation number, it is a 292 // permutation. 293 if (IntIdx != I) { 294 CommonShuffleMode = Permute; 295 continue; 296 } 297 CommonShuffleMode = Select; 298 } 299 // If we're not crossing lanes in different vectors, consider it as blending. 300 if (CommonShuffleMode == Select && Vec2) 301 return TargetTransformInfo::SK_Select; 302 // If Vec2 was never used, we have a permutation of a single vector, otherwise 303 // we have permutation of 2 vectors. 304 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 305 : TargetTransformInfo::SK_PermuteSingleSrc; 306 } 307 308 namespace { 309 310 /// Main data required for vectorization of instructions. 311 struct InstructionsState { 312 /// The very first instruction in the list with the main opcode. 313 Value *OpValue = nullptr; 314 315 /// The main/alternate instruction. 316 Instruction *MainOp = nullptr; 317 Instruction *AltOp = nullptr; 318 319 /// The main/alternate opcodes for the list of instructions. 320 unsigned getOpcode() const { 321 return MainOp ? MainOp->getOpcode() : 0; 322 } 323 324 unsigned getAltOpcode() const { 325 return AltOp ? AltOp->getOpcode() : 0; 326 } 327 328 /// Some of the instructions in the list have alternate opcodes. 329 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 330 331 bool isOpcodeOrAlt(Instruction *I) const { 332 unsigned CheckedOpcode = I->getOpcode(); 333 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 334 } 335 336 InstructionsState() = delete; 337 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 338 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 339 }; 340 341 } // end anonymous namespace 342 343 /// Chooses the correct key for scheduling data. If \p Op has the same (or 344 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 345 /// OpValue. 346 static Value *isOneOf(const InstructionsState &S, Value *Op) { 347 auto *I = dyn_cast<Instruction>(Op); 348 if (I && S.isOpcodeOrAlt(I)) 349 return Op; 350 return S.OpValue; 351 } 352 353 /// \returns analysis of the Instructions in \p VL described in 354 /// InstructionsState, the Opcode that we suppose the whole list 355 /// could be vectorized even if its structure is diverse. 356 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 357 unsigned BaseIndex = 0) { 358 // Make sure these are all Instructions. 359 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 360 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 361 362 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 363 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 364 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 365 unsigned AltOpcode = Opcode; 366 unsigned AltIndex = BaseIndex; 367 368 // Check for one alternate opcode from another BinaryOperator. 369 // TODO - generalize to support all operators (types, calls etc.). 370 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 371 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 372 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 373 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 374 continue; 375 if (Opcode == AltOpcode) { 376 AltOpcode = InstOpcode; 377 AltIndex = Cnt; 378 continue; 379 } 380 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 381 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 382 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 383 if (Ty0 == Ty1) { 384 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 385 continue; 386 if (Opcode == AltOpcode) { 387 AltOpcode = InstOpcode; 388 AltIndex = Cnt; 389 continue; 390 } 391 } 392 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 393 continue; 394 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 395 } 396 397 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 398 cast<Instruction>(VL[AltIndex])); 399 } 400 401 /// \returns true if all of the values in \p VL have the same type or false 402 /// otherwise. 403 static bool allSameType(ArrayRef<Value *> VL) { 404 Type *Ty = VL[0]->getType(); 405 for (int i = 1, e = VL.size(); i < e; i++) 406 if (VL[i]->getType() != Ty) 407 return false; 408 409 return true; 410 } 411 412 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 413 static Optional<unsigned> getExtractIndex(Instruction *E) { 414 unsigned Opcode = E->getOpcode(); 415 assert((Opcode == Instruction::ExtractElement || 416 Opcode == Instruction::ExtractValue) && 417 "Expected extractelement or extractvalue instruction."); 418 if (Opcode == Instruction::ExtractElement) { 419 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 420 if (!CI) 421 return None; 422 return CI->getZExtValue(); 423 } 424 ExtractValueInst *EI = cast<ExtractValueInst>(E); 425 if (EI->getNumIndices() != 1) 426 return None; 427 return *EI->idx_begin(); 428 } 429 430 /// \returns True if in-tree use also needs extract. This refers to 431 /// possible scalar operand in vectorized instruction. 432 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 433 TargetLibraryInfo *TLI) { 434 unsigned Opcode = UserInst->getOpcode(); 435 switch (Opcode) { 436 case Instruction::Load: { 437 LoadInst *LI = cast<LoadInst>(UserInst); 438 return (LI->getPointerOperand() == Scalar); 439 } 440 case Instruction::Store: { 441 StoreInst *SI = cast<StoreInst>(UserInst); 442 return (SI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Call: { 445 CallInst *CI = cast<CallInst>(UserInst); 446 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 447 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 448 if (hasVectorInstrinsicScalarOpd(ID, i)) 449 return (CI->getArgOperand(i) == Scalar); 450 } 451 LLVM_FALLTHROUGH; 452 } 453 default: 454 return false; 455 } 456 } 457 458 /// \returns the AA location that is being access by the instruction. 459 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 460 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 461 return MemoryLocation::get(SI); 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return MemoryLocation::get(LI); 464 return MemoryLocation(); 465 } 466 467 /// \returns True if the instruction is not a volatile or atomic load/store. 468 static bool isSimple(Instruction *I) { 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return LI->isSimple(); 471 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 472 return SI->isSimple(); 473 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 474 return !MI->isVolatile(); 475 return true; 476 } 477 478 namespace llvm { 479 480 namespace slpvectorizer { 481 482 /// Bottom Up SLP Vectorizer. 483 class BoUpSLP { 484 public: 485 using ValueList = SmallVector<Value *, 8>; 486 using InstrList = SmallVector<Instruction *, 16>; 487 using ValueSet = SmallPtrSet<Value *, 16>; 488 using StoreList = SmallVector<StoreInst *, 8>; 489 using ExtraValueToDebugLocsMap = 490 MapVector<Value *, SmallVector<Instruction *, 2>>; 491 492 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 493 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 494 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 495 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 496 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 497 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 498 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 499 // Use the vector register size specified by the target unless overridden 500 // by a command-line option. 501 // TODO: It would be better to limit the vectorization factor based on 502 // data type rather than just register size. For example, x86 AVX has 503 // 256-bit registers, but it does not support integer operations 504 // at that width (that requires AVX2). 505 if (MaxVectorRegSizeOption.getNumOccurrences()) 506 MaxVecRegSize = MaxVectorRegSizeOption; 507 else 508 MaxVecRegSize = TTI->getRegisterBitWidth(true); 509 510 if (MinVectorRegSizeOption.getNumOccurrences()) 511 MinVecRegSize = MinVectorRegSizeOption; 512 else 513 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 514 } 515 516 /// Vectorize the tree that starts with the elements in \p VL. 517 /// Returns the vectorized root. 518 Value *vectorizeTree(); 519 520 /// Vectorize the tree but with the list of externally used values \p 521 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 522 /// generated extractvalue instructions. 523 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 524 525 /// \returns the cost incurred by unwanted spills and fills, caused by 526 /// holding live values over call sites. 527 int getSpillCost(); 528 529 /// \returns the vectorization cost of the subtree that starts at \p VL. 530 /// A negative number means that this is profitable. 531 int getTreeCost(); 532 533 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 534 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 535 void buildTree(ArrayRef<Value *> Roots, 536 ArrayRef<Value *> UserIgnoreLst = None); 537 538 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 539 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 540 /// into account (anf updating it, if required) list of externally used 541 /// values stored in \p ExternallyUsedValues. 542 void buildTree(ArrayRef<Value *> Roots, 543 ExtraValueToDebugLocsMap &ExternallyUsedValues, 544 ArrayRef<Value *> UserIgnoreLst = None); 545 546 /// Clear the internal data structures that are created by 'buildTree'. 547 void deleteTree() { 548 VectorizableTree.clear(); 549 ScalarToTreeEntry.clear(); 550 MustGather.clear(); 551 ExternalUses.clear(); 552 NumOpsWantToKeepOrder.clear(); 553 NumOpsWantToKeepOriginalOrder = 0; 554 for (auto &Iter : BlocksSchedules) { 555 BlockScheduling *BS = Iter.second.get(); 556 BS->clear(); 557 } 558 MinBWs.clear(); 559 } 560 561 unsigned getTreeSize() const { return VectorizableTree.size(); } 562 563 /// Perform LICM and CSE on the newly generated gather sequences. 564 void optimizeGatherSequence(); 565 566 /// \returns The best order of instructions for vectorization. 567 Optional<ArrayRef<unsigned>> bestOrder() const { 568 auto I = std::max_element( 569 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 570 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 571 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 572 return D1.second < D2.second; 573 }); 574 if (I == NumOpsWantToKeepOrder.end() || 575 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 576 return None; 577 578 return makeArrayRef(I->getFirst()); 579 } 580 581 /// \return The vector element size in bits to use when vectorizing the 582 /// expression tree ending at \p V. If V is a store, the size is the width of 583 /// the stored value. Otherwise, the size is the width of the largest loaded 584 /// value reaching V. This method is used by the vectorizer to calculate 585 /// vectorization factors. 586 unsigned getVectorElementSize(Value *V) const; 587 588 /// Compute the minimum type sizes required to represent the entries in a 589 /// vectorizable tree. 590 void computeMinimumValueSizes(); 591 592 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 593 unsigned getMaxVecRegSize() const { 594 return MaxVecRegSize; 595 } 596 597 // \returns minimum vector register size as set by cl::opt. 598 unsigned getMinVecRegSize() const { 599 return MinVecRegSize; 600 } 601 602 /// Check if ArrayType or StructType is isomorphic to some VectorType. 603 /// 604 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 605 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 606 607 /// \returns True if the VectorizableTree is both tiny and not fully 608 /// vectorizable. We do not vectorize such trees. 609 bool isTreeTinyAndNotFullyVectorizable() const; 610 611 OptimizationRemarkEmitter *getORE() { return ORE; } 612 613 /// This structure holds any data we need about the edges being traversed 614 /// during buildTree_rec(). We keep track of: 615 /// (i) the user TreeEntry index, and 616 /// (ii) the index of the edge. 617 struct EdgeInfo { 618 EdgeInfo() = default; 619 /// The index of the user TreeEntry in VectorizableTree. 620 int Idx = -1; 621 /// The operand index of the use. 622 unsigned EdgeIdx = UINT_MAX; 623 #ifndef NDEBUG 624 friend inline raw_ostream &operator<<(raw_ostream &OS, 625 const BoUpSLP::EdgeInfo &EI) { 626 EI.dump(OS); 627 return OS; 628 } 629 /// Debug print. 630 void dump(raw_ostream &OS) const { 631 OS << "{User:" << Idx << " EdgeIdx:" << EdgeIdx << "}"; 632 } 633 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 634 #endif 635 }; 636 637 private: 638 struct TreeEntry; 639 640 /// Checks if all users of \p I are the part of the vectorization tree. 641 bool areAllUsersVectorized(Instruction *I) const; 642 643 /// \returns the cost of the vectorizable entry. 644 int getEntryCost(TreeEntry *E); 645 646 /// This is the recursive part of buildTree. 647 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, EdgeInfo EI); 648 649 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 650 /// be vectorized to use the original vector (or aggregate "bitcast" to a 651 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 652 /// returns false, setting \p CurrentOrder to either an empty vector or a 653 /// non-identity permutation that allows to reuse extract instructions. 654 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 655 SmallVectorImpl<unsigned> &CurrentOrder) const; 656 657 /// Vectorize a single entry in the tree. 658 Value *vectorizeTree(TreeEntry *E); 659 660 /// Vectorize a single entry in the tree, starting in \p VL. 661 Value *vectorizeTree(ArrayRef<Value *> VL); 662 663 /// \returns the scalarization cost for this type. Scalarization in this 664 /// context means the creation of vectors from a group of scalars. 665 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 666 667 /// \returns the scalarization cost for this list of values. Assuming that 668 /// this subtree gets vectorized, we may need to extract the values from the 669 /// roots. This method calculates the cost of extracting the values. 670 int getGatherCost(ArrayRef<Value *> VL) const; 671 672 /// Set the Builder insert point to one after the last instruction in 673 /// the bundle 674 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 675 const InstructionsState &S); 676 677 /// \returns a vector from a collection of scalars in \p VL. 678 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 679 680 /// \returns whether the VectorizableTree is fully vectorizable and will 681 /// be beneficial even the tree height is tiny. 682 bool isFullyVectorizableTinyTree() const; 683 684 /// \reorder commutative operands to get better probability of 685 /// generating vectorized code. 686 void reorderInputsAccordingToOpcode(const InstructionsState &S, 687 ArrayRef<Value *> VL, 688 SmallVectorImpl<Value *> &Left, 689 SmallVectorImpl<Value *> &Right) const; 690 struct TreeEntry { 691 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 692 693 /// \returns true if the scalars in VL are equal to this entry. 694 bool isSame(ArrayRef<Value *> VL) const { 695 if (VL.size() == Scalars.size()) 696 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 697 return VL.size() == ReuseShuffleIndices.size() && 698 std::equal( 699 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 700 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 701 } 702 703 /// A vector of scalars. 704 ValueList Scalars; 705 706 /// The Scalars are vectorized into this value. It is initialized to Null. 707 Value *VectorizedValue = nullptr; 708 709 /// Do we need to gather this sequence ? 710 bool NeedToGather = false; 711 712 /// Does this sequence require some shuffling? 713 SmallVector<unsigned, 4> ReuseShuffleIndices; 714 715 /// Does this entry require reordering? 716 ArrayRef<unsigned> ReorderIndices; 717 718 /// Points back to the VectorizableTree. 719 /// 720 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 721 /// to be a pointer and needs to be able to initialize the child iterator. 722 /// Thus we need a reference back to the container to translate the indices 723 /// to entries. 724 std::vector<TreeEntry> &Container; 725 726 /// The TreeEntry index containing the user of this entry. We can actually 727 /// have multiple users so the data structure is not truly a tree. 728 SmallVector<EdgeInfo, 1> UserTreeIndices; 729 730 private: 731 /// The operands of each instruction in each lane Operands[op_index][lane]. 732 /// Note: This helps avoid the replication of the code that performs the 733 /// reordering of operands during buildTree_rec() and vectorizeTree(). 734 SmallVector<ValueList, 2> Operands; 735 736 public: 737 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 738 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 739 ArrayRef<unsigned> ReuseShuffleIndices) { 740 if (Operands.size() < OpIdx + 1) 741 Operands.resize(OpIdx + 1); 742 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 743 Operands[OpIdx].resize(Scalars.size()); 744 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 745 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 746 ? OpVL[ReuseShuffleIndices[Lane]] 747 : OpVL[Lane]; 748 } 749 750 /// If there is a user TreeEntry, then set its operand. 751 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 752 ArrayRef<Value *> OpVL, 753 ArrayRef<unsigned> ReuseShuffleIndices) { 754 if (UserTreeIdx.Idx >= 0) { 755 auto &VectorizableTree = Container; 756 VectorizableTree[UserTreeIdx.Idx].setOperand(UserTreeIdx.EdgeIdx, OpVL, 757 ReuseShuffleIndices); 758 } 759 } 760 761 /// \returns the \p OpIdx operand of this TreeEntry. 762 ValueList &getOperand(unsigned OpIdx) { 763 assert(OpIdx < Operands.size() && "Off bounds"); 764 return Operands[OpIdx]; 765 } 766 767 /// \return the single \p OpIdx operand. 768 Value *getSingleOperand(unsigned OpIdx) const { 769 assert(OpIdx < Operands.size() && "Off bounds"); 770 assert(!Operands[OpIdx].empty() && "No operand availabe"); 771 return Operands[OpIdx][0]; 772 } 773 774 #ifndef NDEBUG 775 /// Debug printer. 776 LLVM_DUMP_METHOD void dump() const { 777 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 778 dbgs() << "Operand " << OpI << ":\n"; 779 for (const Value *V : Operands[OpI]) 780 dbgs().indent(2) << *V << "\n"; 781 } 782 dbgs() << "Scalars: \n"; 783 for (Value *V : Scalars) 784 dbgs().indent(2) << *V << "\n"; 785 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 786 dbgs() << "VectorizedValue: "; 787 if (VectorizedValue) 788 dbgs() << *VectorizedValue; 789 else 790 dbgs() << "NULL"; 791 dbgs() << "\n"; 792 dbgs() << "ReuseShuffleIndices: "; 793 if (ReuseShuffleIndices.empty()) 794 dbgs() << "Emtpy"; 795 else 796 for (unsigned Idx : ReuseShuffleIndices) 797 dbgs() << Idx << ", "; 798 dbgs() << "\n"; 799 dbgs() << "ReorderIndices: "; 800 for (unsigned Idx : ReorderIndices) 801 dbgs() << Idx << ", "; 802 dbgs() << "\n"; 803 dbgs() << "UserTreeIndices: "; 804 for (const auto &EInfo : UserTreeIndices) 805 dbgs() << EInfo << ", "; 806 dbgs() << "\n"; 807 } 808 #endif 809 }; 810 811 /// Create a new VectorizableTree entry. 812 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 813 EdgeInfo &UserTreeIdx, 814 ArrayRef<unsigned> ReuseShuffleIndices = None, 815 ArrayRef<unsigned> ReorderIndices = None) { 816 VectorizableTree.emplace_back(VectorizableTree); 817 int idx = VectorizableTree.size() - 1; 818 TreeEntry *Last = &VectorizableTree[idx]; 819 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 820 Last->NeedToGather = !Vectorized; 821 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 822 ReuseShuffleIndices.end()); 823 Last->ReorderIndices = ReorderIndices; 824 if (Vectorized) { 825 for (int i = 0, e = VL.size(); i != e; ++i) { 826 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 827 ScalarToTreeEntry[VL[i]] = idx; 828 } 829 } else { 830 MustGather.insert(VL.begin(), VL.end()); 831 } 832 833 if (UserTreeIdx.Idx >= 0) 834 Last->UserTreeIndices.push_back(UserTreeIdx); 835 836 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 837 838 UserTreeIdx.Idx = idx; 839 } 840 841 /// -- Vectorization State -- 842 /// Holds all of the tree entries. 843 std::vector<TreeEntry> VectorizableTree; 844 845 #ifndef NDEBUG 846 /// Debug printer. 847 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 848 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 849 dbgs() << Id << ".\n"; 850 VectorizableTree[Id].dump(); 851 dbgs() << "\n"; 852 } 853 } 854 #endif 855 856 TreeEntry *getTreeEntry(Value *V) { 857 auto I = ScalarToTreeEntry.find(V); 858 if (I != ScalarToTreeEntry.end()) 859 return &VectorizableTree[I->second]; 860 return nullptr; 861 } 862 863 /// Maps a specific scalar to its tree entry. 864 SmallDenseMap<Value*, int> ScalarToTreeEntry; 865 866 /// A list of scalars that we found that we need to keep as scalars. 867 ValueSet MustGather; 868 869 /// This POD struct describes one external user in the vectorized tree. 870 struct ExternalUser { 871 ExternalUser(Value *S, llvm::User *U, int L) 872 : Scalar(S), User(U), Lane(L) {} 873 874 // Which scalar in our function. 875 Value *Scalar; 876 877 // Which user that uses the scalar. 878 llvm::User *User; 879 880 // Which lane does the scalar belong to. 881 int Lane; 882 }; 883 using UserList = SmallVector<ExternalUser, 16>; 884 885 /// Checks if two instructions may access the same memory. 886 /// 887 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 888 /// is invariant in the calling loop. 889 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 890 Instruction *Inst2) { 891 // First check if the result is already in the cache. 892 AliasCacheKey key = std::make_pair(Inst1, Inst2); 893 Optional<bool> &result = AliasCache[key]; 894 if (result.hasValue()) { 895 return result.getValue(); 896 } 897 MemoryLocation Loc2 = getLocation(Inst2, AA); 898 bool aliased = true; 899 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 900 // Do the alias check. 901 aliased = AA->alias(Loc1, Loc2); 902 } 903 // Store the result in the cache. 904 result = aliased; 905 return aliased; 906 } 907 908 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 909 910 /// Cache for alias results. 911 /// TODO: consider moving this to the AliasAnalysis itself. 912 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 913 914 /// Removes an instruction from its block and eventually deletes it. 915 /// It's like Instruction::eraseFromParent() except that the actual deletion 916 /// is delayed until BoUpSLP is destructed. 917 /// This is required to ensure that there are no incorrect collisions in the 918 /// AliasCache, which can happen if a new instruction is allocated at the 919 /// same address as a previously deleted instruction. 920 void eraseInstruction(Instruction *I) { 921 I->removeFromParent(); 922 I->dropAllReferences(); 923 DeletedInstructions.emplace_back(I); 924 } 925 926 /// Temporary store for deleted instructions. Instructions will be deleted 927 /// eventually when the BoUpSLP is destructed. 928 SmallVector<unique_value, 8> DeletedInstructions; 929 930 /// A list of values that need to extracted out of the tree. 931 /// This list holds pairs of (Internal Scalar : External User). External User 932 /// can be nullptr, it means that this Internal Scalar will be used later, 933 /// after vectorization. 934 UserList ExternalUses; 935 936 /// Values used only by @llvm.assume calls. 937 SmallPtrSet<const Value *, 32> EphValues; 938 939 /// Holds all of the instructions that we gathered. 940 SetVector<Instruction *> GatherSeq; 941 942 /// A list of blocks that we are going to CSE. 943 SetVector<BasicBlock *> CSEBlocks; 944 945 /// Contains all scheduling relevant data for an instruction. 946 /// A ScheduleData either represents a single instruction or a member of an 947 /// instruction bundle (= a group of instructions which is combined into a 948 /// vector instruction). 949 struct ScheduleData { 950 // The initial value for the dependency counters. It means that the 951 // dependencies are not calculated yet. 952 enum { InvalidDeps = -1 }; 953 954 ScheduleData() = default; 955 956 void init(int BlockSchedulingRegionID, Value *OpVal) { 957 FirstInBundle = this; 958 NextInBundle = nullptr; 959 NextLoadStore = nullptr; 960 IsScheduled = false; 961 SchedulingRegionID = BlockSchedulingRegionID; 962 UnscheduledDepsInBundle = UnscheduledDeps; 963 clearDependencies(); 964 OpValue = OpVal; 965 } 966 967 /// Returns true if the dependency information has been calculated. 968 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 969 970 /// Returns true for single instructions and for bundle representatives 971 /// (= the head of a bundle). 972 bool isSchedulingEntity() const { return FirstInBundle == this; } 973 974 /// Returns true if it represents an instruction bundle and not only a 975 /// single instruction. 976 bool isPartOfBundle() const { 977 return NextInBundle != nullptr || FirstInBundle != this; 978 } 979 980 /// Returns true if it is ready for scheduling, i.e. it has no more 981 /// unscheduled depending instructions/bundles. 982 bool isReady() const { 983 assert(isSchedulingEntity() && 984 "can't consider non-scheduling entity for ready list"); 985 return UnscheduledDepsInBundle == 0 && !IsScheduled; 986 } 987 988 /// Modifies the number of unscheduled dependencies, also updating it for 989 /// the whole bundle. 990 int incrementUnscheduledDeps(int Incr) { 991 UnscheduledDeps += Incr; 992 return FirstInBundle->UnscheduledDepsInBundle += Incr; 993 } 994 995 /// Sets the number of unscheduled dependencies to the number of 996 /// dependencies. 997 void resetUnscheduledDeps() { 998 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 999 } 1000 1001 /// Clears all dependency information. 1002 void clearDependencies() { 1003 Dependencies = InvalidDeps; 1004 resetUnscheduledDeps(); 1005 MemoryDependencies.clear(); 1006 } 1007 1008 void dump(raw_ostream &os) const { 1009 if (!isSchedulingEntity()) { 1010 os << "/ " << *Inst; 1011 } else if (NextInBundle) { 1012 os << '[' << *Inst; 1013 ScheduleData *SD = NextInBundle; 1014 while (SD) { 1015 os << ';' << *SD->Inst; 1016 SD = SD->NextInBundle; 1017 } 1018 os << ']'; 1019 } else { 1020 os << *Inst; 1021 } 1022 } 1023 1024 Instruction *Inst = nullptr; 1025 1026 /// Points to the head in an instruction bundle (and always to this for 1027 /// single instructions). 1028 ScheduleData *FirstInBundle = nullptr; 1029 1030 /// Single linked list of all instructions in a bundle. Null if it is a 1031 /// single instruction. 1032 ScheduleData *NextInBundle = nullptr; 1033 1034 /// Single linked list of all memory instructions (e.g. load, store, call) 1035 /// in the block - until the end of the scheduling region. 1036 ScheduleData *NextLoadStore = nullptr; 1037 1038 /// The dependent memory instructions. 1039 /// This list is derived on demand in calculateDependencies(). 1040 SmallVector<ScheduleData *, 4> MemoryDependencies; 1041 1042 /// This ScheduleData is in the current scheduling region if this matches 1043 /// the current SchedulingRegionID of BlockScheduling. 1044 int SchedulingRegionID = 0; 1045 1046 /// Used for getting a "good" final ordering of instructions. 1047 int SchedulingPriority = 0; 1048 1049 /// The number of dependencies. Constitutes of the number of users of the 1050 /// instruction plus the number of dependent memory instructions (if any). 1051 /// This value is calculated on demand. 1052 /// If InvalidDeps, the number of dependencies is not calculated yet. 1053 int Dependencies = InvalidDeps; 1054 1055 /// The number of dependencies minus the number of dependencies of scheduled 1056 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1057 /// for scheduling. 1058 /// Note that this is negative as long as Dependencies is not calculated. 1059 int UnscheduledDeps = InvalidDeps; 1060 1061 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1062 /// single instructions. 1063 int UnscheduledDepsInBundle = InvalidDeps; 1064 1065 /// True if this instruction is scheduled (or considered as scheduled in the 1066 /// dry-run). 1067 bool IsScheduled = false; 1068 1069 /// Opcode of the current instruction in the schedule data. 1070 Value *OpValue = nullptr; 1071 }; 1072 1073 #ifndef NDEBUG 1074 friend inline raw_ostream &operator<<(raw_ostream &os, 1075 const BoUpSLP::ScheduleData &SD) { 1076 SD.dump(os); 1077 return os; 1078 } 1079 #endif 1080 1081 friend struct GraphTraits<BoUpSLP *>; 1082 friend struct DOTGraphTraits<BoUpSLP *>; 1083 1084 /// Contains all scheduling data for a basic block. 1085 struct BlockScheduling { 1086 BlockScheduling(BasicBlock *BB) 1087 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1088 1089 void clear() { 1090 ReadyInsts.clear(); 1091 ScheduleStart = nullptr; 1092 ScheduleEnd = nullptr; 1093 FirstLoadStoreInRegion = nullptr; 1094 LastLoadStoreInRegion = nullptr; 1095 1096 // Reduce the maximum schedule region size by the size of the 1097 // previous scheduling run. 1098 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1099 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1100 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1101 ScheduleRegionSize = 0; 1102 1103 // Make a new scheduling region, i.e. all existing ScheduleData is not 1104 // in the new region yet. 1105 ++SchedulingRegionID; 1106 } 1107 1108 ScheduleData *getScheduleData(Value *V) { 1109 ScheduleData *SD = ScheduleDataMap[V]; 1110 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1111 return SD; 1112 return nullptr; 1113 } 1114 1115 ScheduleData *getScheduleData(Value *V, Value *Key) { 1116 if (V == Key) 1117 return getScheduleData(V); 1118 auto I = ExtraScheduleDataMap.find(V); 1119 if (I != ExtraScheduleDataMap.end()) { 1120 ScheduleData *SD = I->second[Key]; 1121 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1122 return SD; 1123 } 1124 return nullptr; 1125 } 1126 1127 bool isInSchedulingRegion(ScheduleData *SD) { 1128 return SD->SchedulingRegionID == SchedulingRegionID; 1129 } 1130 1131 /// Marks an instruction as scheduled and puts all dependent ready 1132 /// instructions into the ready-list. 1133 template <typename ReadyListType> 1134 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1135 SD->IsScheduled = true; 1136 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1137 1138 ScheduleData *BundleMember = SD; 1139 while (BundleMember) { 1140 if (BundleMember->Inst != BundleMember->OpValue) { 1141 BundleMember = BundleMember->NextInBundle; 1142 continue; 1143 } 1144 // Handle the def-use chain dependencies. 1145 for (Use &U : BundleMember->Inst->operands()) { 1146 auto *I = dyn_cast<Instruction>(U.get()); 1147 if (!I) 1148 continue; 1149 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1150 if (OpDef && OpDef->hasValidDependencies() && 1151 OpDef->incrementUnscheduledDeps(-1) == 0) { 1152 // There are no more unscheduled dependencies after 1153 // decrementing, so we can put the dependent instruction 1154 // into the ready list. 1155 ScheduleData *DepBundle = OpDef->FirstInBundle; 1156 assert(!DepBundle->IsScheduled && 1157 "already scheduled bundle gets ready"); 1158 ReadyList.insert(DepBundle); 1159 LLVM_DEBUG(dbgs() 1160 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1161 } 1162 }); 1163 } 1164 // Handle the memory dependencies. 1165 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1166 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1167 // There are no more unscheduled dependencies after decrementing, 1168 // so we can put the dependent instruction into the ready list. 1169 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1170 assert(!DepBundle->IsScheduled && 1171 "already scheduled bundle gets ready"); 1172 ReadyList.insert(DepBundle); 1173 LLVM_DEBUG(dbgs() 1174 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1175 } 1176 } 1177 BundleMember = BundleMember->NextInBundle; 1178 } 1179 } 1180 1181 void doForAllOpcodes(Value *V, 1182 function_ref<void(ScheduleData *SD)> Action) { 1183 if (ScheduleData *SD = getScheduleData(V)) 1184 Action(SD); 1185 auto I = ExtraScheduleDataMap.find(V); 1186 if (I != ExtraScheduleDataMap.end()) 1187 for (auto &P : I->second) 1188 if (P.second->SchedulingRegionID == SchedulingRegionID) 1189 Action(P.second); 1190 } 1191 1192 /// Put all instructions into the ReadyList which are ready for scheduling. 1193 template <typename ReadyListType> 1194 void initialFillReadyList(ReadyListType &ReadyList) { 1195 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1196 doForAllOpcodes(I, [&](ScheduleData *SD) { 1197 if (SD->isSchedulingEntity() && SD->isReady()) { 1198 ReadyList.insert(SD); 1199 LLVM_DEBUG(dbgs() 1200 << "SLP: initially in ready list: " << *I << "\n"); 1201 } 1202 }); 1203 } 1204 } 1205 1206 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1207 /// cyclic dependencies. This is only a dry-run, no instructions are 1208 /// actually moved at this stage. 1209 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1210 const InstructionsState &S); 1211 1212 /// Un-bundles a group of instructions. 1213 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1214 1215 /// Allocates schedule data chunk. 1216 ScheduleData *allocateScheduleDataChunks(); 1217 1218 /// Extends the scheduling region so that V is inside the region. 1219 /// \returns true if the region size is within the limit. 1220 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1221 1222 /// Initialize the ScheduleData structures for new instructions in the 1223 /// scheduling region. 1224 void initScheduleData(Instruction *FromI, Instruction *ToI, 1225 ScheduleData *PrevLoadStore, 1226 ScheduleData *NextLoadStore); 1227 1228 /// Updates the dependency information of a bundle and of all instructions/ 1229 /// bundles which depend on the original bundle. 1230 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1231 BoUpSLP *SLP); 1232 1233 /// Sets all instruction in the scheduling region to un-scheduled. 1234 void resetSchedule(); 1235 1236 BasicBlock *BB; 1237 1238 /// Simple memory allocation for ScheduleData. 1239 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1240 1241 /// The size of a ScheduleData array in ScheduleDataChunks. 1242 int ChunkSize; 1243 1244 /// The allocator position in the current chunk, which is the last entry 1245 /// of ScheduleDataChunks. 1246 int ChunkPos; 1247 1248 /// Attaches ScheduleData to Instruction. 1249 /// Note that the mapping survives during all vectorization iterations, i.e. 1250 /// ScheduleData structures are recycled. 1251 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1252 1253 /// Attaches ScheduleData to Instruction with the leading key. 1254 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1255 ExtraScheduleDataMap; 1256 1257 struct ReadyList : SmallVector<ScheduleData *, 8> { 1258 void insert(ScheduleData *SD) { push_back(SD); } 1259 }; 1260 1261 /// The ready-list for scheduling (only used for the dry-run). 1262 ReadyList ReadyInsts; 1263 1264 /// The first instruction of the scheduling region. 1265 Instruction *ScheduleStart = nullptr; 1266 1267 /// The first instruction _after_ the scheduling region. 1268 Instruction *ScheduleEnd = nullptr; 1269 1270 /// The first memory accessing instruction in the scheduling region 1271 /// (can be null). 1272 ScheduleData *FirstLoadStoreInRegion = nullptr; 1273 1274 /// The last memory accessing instruction in the scheduling region 1275 /// (can be null). 1276 ScheduleData *LastLoadStoreInRegion = nullptr; 1277 1278 /// The current size of the scheduling region. 1279 int ScheduleRegionSize = 0; 1280 1281 /// The maximum size allowed for the scheduling region. 1282 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1283 1284 /// The ID of the scheduling region. For a new vectorization iteration this 1285 /// is incremented which "removes" all ScheduleData from the region. 1286 // Make sure that the initial SchedulingRegionID is greater than the 1287 // initial SchedulingRegionID in ScheduleData (which is 0). 1288 int SchedulingRegionID = 1; 1289 }; 1290 1291 /// Attaches the BlockScheduling structures to basic blocks. 1292 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1293 1294 /// Performs the "real" scheduling. Done before vectorization is actually 1295 /// performed in a basic block. 1296 void scheduleBlock(BlockScheduling *BS); 1297 1298 /// List of users to ignore during scheduling and that don't need extracting. 1299 ArrayRef<Value *> UserIgnoreList; 1300 1301 using OrdersType = SmallVector<unsigned, 4>; 1302 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1303 /// sorted SmallVectors of unsigned. 1304 struct OrdersTypeDenseMapInfo { 1305 static OrdersType getEmptyKey() { 1306 OrdersType V; 1307 V.push_back(~1U); 1308 return V; 1309 } 1310 1311 static OrdersType getTombstoneKey() { 1312 OrdersType V; 1313 V.push_back(~2U); 1314 return V; 1315 } 1316 1317 static unsigned getHashValue(const OrdersType &V) { 1318 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1319 } 1320 1321 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1322 return LHS == RHS; 1323 } 1324 }; 1325 1326 /// Contains orders of operations along with the number of bundles that have 1327 /// operations in this order. It stores only those orders that require 1328 /// reordering, if reordering is not required it is counted using \a 1329 /// NumOpsWantToKeepOriginalOrder. 1330 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1331 /// Number of bundles that do not require reordering. 1332 unsigned NumOpsWantToKeepOriginalOrder = 0; 1333 1334 // Analysis and block reference. 1335 Function *F; 1336 ScalarEvolution *SE; 1337 TargetTransformInfo *TTI; 1338 TargetLibraryInfo *TLI; 1339 AliasAnalysis *AA; 1340 LoopInfo *LI; 1341 DominatorTree *DT; 1342 AssumptionCache *AC; 1343 DemandedBits *DB; 1344 const DataLayout *DL; 1345 OptimizationRemarkEmitter *ORE; 1346 1347 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1348 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1349 1350 /// Instruction builder to construct the vectorized tree. 1351 IRBuilder<> Builder; 1352 1353 /// A map of scalar integer values to the smallest bit width with which they 1354 /// can legally be represented. The values map to (width, signed) pairs, 1355 /// where "width" indicates the minimum bit width and "signed" is True if the 1356 /// value must be signed-extended, rather than zero-extended, back to its 1357 /// original width. 1358 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1359 }; 1360 1361 } // end namespace slpvectorizer 1362 1363 template <> struct GraphTraits<BoUpSLP *> { 1364 using TreeEntry = BoUpSLP::TreeEntry; 1365 1366 /// NodeRef has to be a pointer per the GraphWriter. 1367 using NodeRef = TreeEntry *; 1368 1369 /// Add the VectorizableTree to the index iterator to be able to return 1370 /// TreeEntry pointers. 1371 struct ChildIteratorType 1372 : public iterator_adaptor_base< 1373 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1374 std::vector<TreeEntry> &VectorizableTree; 1375 1376 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1377 std::vector<TreeEntry> &VT) 1378 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1379 1380 NodeRef operator*() { return &VectorizableTree[I->Idx]; } 1381 }; 1382 1383 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1384 1385 static ChildIteratorType child_begin(NodeRef N) { 1386 return {N->UserTreeIndices.begin(), N->Container}; 1387 } 1388 1389 static ChildIteratorType child_end(NodeRef N) { 1390 return {N->UserTreeIndices.end(), N->Container}; 1391 } 1392 1393 /// For the node iterator we just need to turn the TreeEntry iterator into a 1394 /// TreeEntry* iterator so that it dereferences to NodeRef. 1395 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1396 1397 static nodes_iterator nodes_begin(BoUpSLP *R) { 1398 return nodes_iterator(R->VectorizableTree.begin()); 1399 } 1400 1401 static nodes_iterator nodes_end(BoUpSLP *R) { 1402 return nodes_iterator(R->VectorizableTree.end()); 1403 } 1404 1405 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1406 }; 1407 1408 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1409 using TreeEntry = BoUpSLP::TreeEntry; 1410 1411 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1412 1413 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1414 std::string Str; 1415 raw_string_ostream OS(Str); 1416 if (isSplat(Entry->Scalars)) { 1417 OS << "<splat> " << *Entry->Scalars[0]; 1418 return Str; 1419 } 1420 for (auto V : Entry->Scalars) { 1421 OS << *V; 1422 if (std::any_of( 1423 R->ExternalUses.begin(), R->ExternalUses.end(), 1424 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1425 OS << " <extract>"; 1426 OS << "\n"; 1427 } 1428 return Str; 1429 } 1430 1431 static std::string getNodeAttributes(const TreeEntry *Entry, 1432 const BoUpSLP *) { 1433 if (Entry->NeedToGather) 1434 return "color=red"; 1435 return ""; 1436 } 1437 }; 1438 1439 } // end namespace llvm 1440 1441 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1442 ArrayRef<Value *> UserIgnoreLst) { 1443 ExtraValueToDebugLocsMap ExternallyUsedValues; 1444 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1445 } 1446 1447 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1448 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1449 ArrayRef<Value *> UserIgnoreLst) { 1450 deleteTree(); 1451 UserIgnoreList = UserIgnoreLst; 1452 if (!allSameType(Roots)) 1453 return; 1454 buildTree_rec(Roots, 0, EdgeInfo()); 1455 1456 // Collect the values that we need to extract from the tree. 1457 for (TreeEntry &EIdx : VectorizableTree) { 1458 TreeEntry *Entry = &EIdx; 1459 1460 // No need to handle users of gathered values. 1461 if (Entry->NeedToGather) 1462 continue; 1463 1464 // For each lane: 1465 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1466 Value *Scalar = Entry->Scalars[Lane]; 1467 int FoundLane = Lane; 1468 if (!Entry->ReuseShuffleIndices.empty()) { 1469 FoundLane = 1470 std::distance(Entry->ReuseShuffleIndices.begin(), 1471 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1472 } 1473 1474 // Check if the scalar is externally used as an extra arg. 1475 auto ExtI = ExternallyUsedValues.find(Scalar); 1476 if (ExtI != ExternallyUsedValues.end()) { 1477 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1478 << Lane << " from " << *Scalar << ".\n"); 1479 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1480 } 1481 for (User *U : Scalar->users()) { 1482 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1483 1484 Instruction *UserInst = dyn_cast<Instruction>(U); 1485 if (!UserInst) 1486 continue; 1487 1488 // Skip in-tree scalars that become vectors 1489 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1490 Value *UseScalar = UseEntry->Scalars[0]; 1491 // Some in-tree scalars will remain as scalar in vectorized 1492 // instructions. If that is the case, the one in Lane 0 will 1493 // be used. 1494 if (UseScalar != U || 1495 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1496 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1497 << ".\n"); 1498 assert(!UseEntry->NeedToGather && "Bad state"); 1499 continue; 1500 } 1501 } 1502 1503 // Ignore users in the user ignore list. 1504 if (is_contained(UserIgnoreList, UserInst)) 1505 continue; 1506 1507 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1508 << Lane << " from " << *Scalar << ".\n"); 1509 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1510 } 1511 } 1512 } 1513 } 1514 1515 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1516 EdgeInfo UserTreeIdx) { 1517 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1518 1519 InstructionsState S = getSameOpcode(VL); 1520 if (Depth == RecursionMaxDepth) { 1521 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1522 newTreeEntry(VL, false, UserTreeIdx); 1523 return; 1524 } 1525 1526 // Don't handle vectors. 1527 if (S.OpValue->getType()->isVectorTy()) { 1528 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1529 newTreeEntry(VL, false, UserTreeIdx); 1530 return; 1531 } 1532 1533 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1534 if (SI->getValueOperand()->getType()->isVectorTy()) { 1535 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1536 newTreeEntry(VL, false, UserTreeIdx); 1537 return; 1538 } 1539 1540 // If all of the operands are identical or constant we have a simple solution. 1541 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1542 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1543 newTreeEntry(VL, false, UserTreeIdx); 1544 return; 1545 } 1546 1547 // We now know that this is a vector of instructions of the same type from 1548 // the same block. 1549 1550 // Don't vectorize ephemeral values. 1551 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1552 if (EphValues.count(VL[i])) { 1553 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1554 << ") is ephemeral.\n"); 1555 newTreeEntry(VL, false, UserTreeIdx); 1556 return; 1557 } 1558 } 1559 1560 // Check if this is a duplicate of another entry. 1561 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1562 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1563 if (!E->isSame(VL)) { 1564 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1565 newTreeEntry(VL, false, UserTreeIdx); 1566 return; 1567 } 1568 // Record the reuse of the tree node. FIXME, currently this is only used to 1569 // properly draw the graph rather than for the actual vectorization. 1570 E->UserTreeIndices.push_back(UserTreeIdx); 1571 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1572 << ".\n"); 1573 E->trySetUserTEOperand(UserTreeIdx, VL, None); 1574 return; 1575 } 1576 1577 // Check that none of the instructions in the bundle are already in the tree. 1578 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1579 auto *I = dyn_cast<Instruction>(VL[i]); 1580 if (!I) 1581 continue; 1582 if (getTreeEntry(I)) { 1583 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1584 << ") is already in tree.\n"); 1585 newTreeEntry(VL, false, UserTreeIdx); 1586 return; 1587 } 1588 } 1589 1590 // If any of the scalars is marked as a value that needs to stay scalar, then 1591 // we need to gather the scalars. 1592 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 1593 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1594 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 1595 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1596 newTreeEntry(VL, false, UserTreeIdx); 1597 return; 1598 } 1599 } 1600 1601 // Check that all of the users of the scalars that we want to vectorize are 1602 // schedulable. 1603 auto *VL0 = cast<Instruction>(S.OpValue); 1604 BasicBlock *BB = VL0->getParent(); 1605 1606 if (!DT->isReachableFromEntry(BB)) { 1607 // Don't go into unreachable blocks. They may contain instructions with 1608 // dependency cycles which confuse the final scheduling. 1609 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1610 newTreeEntry(VL, false, UserTreeIdx); 1611 return; 1612 } 1613 1614 // Check that every instruction appears once in this bundle. 1615 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1616 SmallVector<Value *, 4> UniqueValues; 1617 DenseMap<Value *, unsigned> UniquePositions; 1618 for (Value *V : VL) { 1619 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1620 ReuseShuffleIndicies.emplace_back(Res.first->second); 1621 if (Res.second) 1622 UniqueValues.emplace_back(V); 1623 } 1624 if (UniqueValues.size() == VL.size()) { 1625 ReuseShuffleIndicies.clear(); 1626 } else { 1627 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1628 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1629 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1630 newTreeEntry(VL, false, UserTreeIdx); 1631 return; 1632 } 1633 VL = UniqueValues; 1634 } 1635 1636 auto &BSRef = BlocksSchedules[BB]; 1637 if (!BSRef) 1638 BSRef = llvm::make_unique<BlockScheduling>(BB); 1639 1640 BlockScheduling &BS = *BSRef.get(); 1641 1642 if (!BS.tryScheduleBundle(VL, this, S)) { 1643 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1644 assert((!BS.getScheduleData(VL0) || 1645 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1646 "tryScheduleBundle should cancelScheduling on failure"); 1647 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1648 return; 1649 } 1650 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1651 1652 unsigned ShuffleOrOp = S.isAltShuffle() ? 1653 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 1654 switch (ShuffleOrOp) { 1655 case Instruction::PHI: { 1656 PHINode *PH = dyn_cast<PHINode>(VL0); 1657 1658 // Check for terminator values (e.g. invoke). 1659 for (unsigned j = 0; j < VL.size(); ++j) 1660 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1661 Instruction *Term = dyn_cast<Instruction>( 1662 cast<PHINode>(VL[j])->getIncomingValueForBlock( 1663 PH->getIncomingBlock(i))); 1664 if (Term && Term->isTerminator()) { 1665 LLVM_DEBUG(dbgs() 1666 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 1667 BS.cancelScheduling(VL, VL0); 1668 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1669 return; 1670 } 1671 } 1672 1673 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1674 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1675 1676 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1677 ValueList Operands; 1678 // Prepare the operand vector. 1679 for (Value *j : VL) 1680 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1681 PH->getIncomingBlock(i))); 1682 1683 UserTreeIdx.EdgeIdx = i; 1684 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1685 } 1686 return; 1687 } 1688 case Instruction::ExtractValue: 1689 case Instruction::ExtractElement: { 1690 OrdersType CurrentOrder; 1691 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1692 if (Reuse) { 1693 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1694 ++NumOpsWantToKeepOriginalOrder; 1695 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1696 ReuseShuffleIndicies); 1697 // This is a special case, as it does not gather, but at the same time 1698 // we are not extending buildTree_rec() towards the operands. 1699 ValueList Op0; 1700 Op0.assign(VL.size(), VL0->getOperand(0)); 1701 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 1702 return; 1703 } 1704 if (!CurrentOrder.empty()) { 1705 LLVM_DEBUG({ 1706 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1707 "with order"; 1708 for (unsigned Idx : CurrentOrder) 1709 dbgs() << " " << Idx; 1710 dbgs() << "\n"; 1711 }); 1712 // Insert new order with initial value 0, if it does not exist, 1713 // otherwise return the iterator to the existing one. 1714 auto StoredCurrentOrderAndNum = 1715 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1716 ++StoredCurrentOrderAndNum->getSecond(); 1717 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1718 StoredCurrentOrderAndNum->getFirst()); 1719 // This is a special case, as it does not gather, but at the same time 1720 // we are not extending buildTree_rec() towards the operands. 1721 ValueList Op0; 1722 Op0.assign(VL.size(), VL0->getOperand(0)); 1723 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 1724 return; 1725 } 1726 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1727 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1728 BS.cancelScheduling(VL, VL0); 1729 return; 1730 } 1731 case Instruction::Load: { 1732 // Check that a vectorized load would load the same memory as a scalar 1733 // load. For example, we don't want to vectorize loads that are smaller 1734 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1735 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1736 // from such a struct, we read/write packed bits disagreeing with the 1737 // unvectorized version. 1738 Type *ScalarTy = VL0->getType(); 1739 1740 if (DL->getTypeSizeInBits(ScalarTy) != 1741 DL->getTypeAllocSizeInBits(ScalarTy)) { 1742 BS.cancelScheduling(VL, VL0); 1743 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1744 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1745 return; 1746 } 1747 1748 // Make sure all loads in the bundle are simple - we can't vectorize 1749 // atomic or volatile loads. 1750 SmallVector<Value *, 4> PointerOps(VL.size()); 1751 auto POIter = PointerOps.begin(); 1752 for (Value *V : VL) { 1753 auto *L = cast<LoadInst>(V); 1754 if (!L->isSimple()) { 1755 BS.cancelScheduling(VL, VL0); 1756 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1757 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1758 return; 1759 } 1760 *POIter = L->getPointerOperand(); 1761 ++POIter; 1762 } 1763 1764 OrdersType CurrentOrder; 1765 // Check the order of pointer operands. 1766 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1767 Value *Ptr0; 1768 Value *PtrN; 1769 if (CurrentOrder.empty()) { 1770 Ptr0 = PointerOps.front(); 1771 PtrN = PointerOps.back(); 1772 } else { 1773 Ptr0 = PointerOps[CurrentOrder.front()]; 1774 PtrN = PointerOps[CurrentOrder.back()]; 1775 } 1776 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1777 const SCEV *ScevN = SE->getSCEV(PtrN); 1778 const auto *Diff = 1779 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1780 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1781 // Check that the sorted loads are consecutive. 1782 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1783 if (CurrentOrder.empty()) { 1784 // Original loads are consecutive and does not require reordering. 1785 ++NumOpsWantToKeepOriginalOrder; 1786 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1787 ReuseShuffleIndicies); 1788 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1789 } else { 1790 // Need to reorder. 1791 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1792 ++I->getSecond(); 1793 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1794 ReuseShuffleIndicies, I->getFirst()); 1795 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1796 } 1797 return; 1798 } 1799 } 1800 1801 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1802 BS.cancelScheduling(VL, VL0); 1803 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1804 return; 1805 } 1806 case Instruction::ZExt: 1807 case Instruction::SExt: 1808 case Instruction::FPToUI: 1809 case Instruction::FPToSI: 1810 case Instruction::FPExt: 1811 case Instruction::PtrToInt: 1812 case Instruction::IntToPtr: 1813 case Instruction::SIToFP: 1814 case Instruction::UIToFP: 1815 case Instruction::Trunc: 1816 case Instruction::FPTrunc: 1817 case Instruction::BitCast: { 1818 Type *SrcTy = VL0->getOperand(0)->getType(); 1819 for (unsigned i = 0; i < VL.size(); ++i) { 1820 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1821 if (Ty != SrcTy || !isValidElementType(Ty)) { 1822 BS.cancelScheduling(VL, VL0); 1823 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1824 LLVM_DEBUG(dbgs() 1825 << "SLP: Gathering casts with different src types.\n"); 1826 return; 1827 } 1828 } 1829 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1830 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1831 1832 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1833 ValueList Operands; 1834 // Prepare the operand vector. 1835 for (Value *j : VL) 1836 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1837 1838 UserTreeIdx.EdgeIdx = i; 1839 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1840 } 1841 return; 1842 } 1843 case Instruction::ICmp: 1844 case Instruction::FCmp: { 1845 // Check that all of the compares have the same predicate. 1846 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1847 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 1848 Type *ComparedTy = VL0->getOperand(0)->getType(); 1849 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1850 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1851 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 1852 Cmp->getOperand(0)->getType() != ComparedTy) { 1853 BS.cancelScheduling(VL, VL0); 1854 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1855 LLVM_DEBUG(dbgs() 1856 << "SLP: Gathering cmp with different predicate.\n"); 1857 return; 1858 } 1859 } 1860 1861 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1862 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1863 1864 ValueList Left, Right; 1865 if (cast<CmpInst>(VL0)->isCommutative()) { 1866 // Commutative predicate - collect + sort operands of the instructions 1867 // so that each side is more likely to have the same opcode. 1868 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 1869 reorderInputsAccordingToOpcode(S, VL, Left, Right); 1870 } else { 1871 // Collect operands - commute if it uses the swapped predicate. 1872 for (Value *V : VL) { 1873 auto *Cmp = cast<CmpInst>(V); 1874 Value *LHS = Cmp->getOperand(0); 1875 Value *RHS = Cmp->getOperand(1); 1876 if (Cmp->getPredicate() != P0) 1877 std::swap(LHS, RHS); 1878 Left.push_back(LHS); 1879 Right.push_back(RHS); 1880 } 1881 } 1882 1883 UserTreeIdx.EdgeIdx = 0; 1884 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1885 UserTreeIdx.EdgeIdx = 1; 1886 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1887 return; 1888 } 1889 case Instruction::Select: 1890 case Instruction::Add: 1891 case Instruction::FAdd: 1892 case Instruction::Sub: 1893 case Instruction::FSub: 1894 case Instruction::Mul: 1895 case Instruction::FMul: 1896 case Instruction::UDiv: 1897 case Instruction::SDiv: 1898 case Instruction::FDiv: 1899 case Instruction::URem: 1900 case Instruction::SRem: 1901 case Instruction::FRem: 1902 case Instruction::Shl: 1903 case Instruction::LShr: 1904 case Instruction::AShr: 1905 case Instruction::And: 1906 case Instruction::Or: 1907 case Instruction::Xor: 1908 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1909 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1910 1911 // Sort operands of the instructions so that each side is more likely to 1912 // have the same opcode. 1913 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1914 ValueList Left, Right; 1915 reorderInputsAccordingToOpcode(S, VL, Left, Right); 1916 UserTreeIdx.EdgeIdx = 0; 1917 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1918 UserTreeIdx.EdgeIdx = 1; 1919 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1920 return; 1921 } 1922 1923 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1924 ValueList Operands; 1925 // Prepare the operand vector. 1926 for (Value *j : VL) 1927 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1928 1929 UserTreeIdx.EdgeIdx = i; 1930 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1931 } 1932 return; 1933 1934 case Instruction::GetElementPtr: { 1935 // We don't combine GEPs with complicated (nested) indexing. 1936 for (unsigned j = 0; j < VL.size(); ++j) { 1937 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1938 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1939 BS.cancelScheduling(VL, VL0); 1940 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1941 return; 1942 } 1943 } 1944 1945 // We can't combine several GEPs into one vector if they operate on 1946 // different types. 1947 Type *Ty0 = VL0->getOperand(0)->getType(); 1948 for (unsigned j = 0; j < VL.size(); ++j) { 1949 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1950 if (Ty0 != CurTy) { 1951 LLVM_DEBUG(dbgs() 1952 << "SLP: not-vectorizable GEP (different types).\n"); 1953 BS.cancelScheduling(VL, VL0); 1954 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1955 return; 1956 } 1957 } 1958 1959 // We don't combine GEPs with non-constant indexes. 1960 for (unsigned j = 0; j < VL.size(); ++j) { 1961 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1962 if (!isa<ConstantInt>(Op)) { 1963 LLVM_DEBUG(dbgs() 1964 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1965 BS.cancelScheduling(VL, VL0); 1966 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1967 return; 1968 } 1969 } 1970 1971 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1972 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1973 for (unsigned i = 0, e = 2; i < e; ++i) { 1974 ValueList Operands; 1975 // Prepare the operand vector. 1976 for (Value *j : VL) 1977 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1978 1979 UserTreeIdx.EdgeIdx = i; 1980 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1981 } 1982 return; 1983 } 1984 case Instruction::Store: { 1985 // Check if the stores are consecutive or of we need to swizzle them. 1986 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1987 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1988 BS.cancelScheduling(VL, VL0); 1989 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1990 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1991 return; 1992 } 1993 1994 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1995 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1996 1997 ValueList Operands; 1998 for (Value *j : VL) 1999 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2000 2001 UserTreeIdx.EdgeIdx = 0; 2002 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2003 return; 2004 } 2005 case Instruction::Call: { 2006 // Check if the calls are all to the same vectorizable intrinsic. 2007 CallInst *CI = cast<CallInst>(VL0); 2008 // Check if this is an Intrinsic call or something that can be 2009 // represented by an intrinsic call 2010 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2011 if (!isTriviallyVectorizable(ID)) { 2012 BS.cancelScheduling(VL, VL0); 2013 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2014 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2015 return; 2016 } 2017 Function *Int = CI->getCalledFunction(); 2018 unsigned NumArgs = CI->getNumArgOperands(); 2019 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2020 for (unsigned j = 0; j != NumArgs; ++j) 2021 if (hasVectorInstrinsicScalarOpd(ID, j)) 2022 ScalarArgs[j] = CI->getArgOperand(j); 2023 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2024 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2025 if (!CI2 || CI2->getCalledFunction() != Int || 2026 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2027 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2028 BS.cancelScheduling(VL, VL0); 2029 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2030 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2031 << "\n"); 2032 return; 2033 } 2034 // Some intrinsics have scalar arguments and should be same in order for 2035 // them to be vectorized. 2036 for (unsigned j = 0; j != NumArgs; ++j) { 2037 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2038 Value *A1J = CI2->getArgOperand(j); 2039 if (ScalarArgs[j] != A1J) { 2040 BS.cancelScheduling(VL, VL0); 2041 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2042 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2043 << " argument " << ScalarArgs[j] << "!=" << A1J 2044 << "\n"); 2045 return; 2046 } 2047 } 2048 } 2049 // Verify that the bundle operands are identical between the two calls. 2050 if (CI->hasOperandBundles() && 2051 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2052 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2053 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2054 BS.cancelScheduling(VL, VL0); 2055 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2056 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2057 << *CI << "!=" << *VL[i] << '\n'); 2058 return; 2059 } 2060 } 2061 2062 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2063 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2064 ValueList Operands; 2065 // Prepare the operand vector. 2066 for (Value *j : VL) { 2067 CallInst *CI2 = dyn_cast<CallInst>(j); 2068 Operands.push_back(CI2->getArgOperand(i)); 2069 } 2070 UserTreeIdx.EdgeIdx = i; 2071 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2072 } 2073 return; 2074 } 2075 case Instruction::ShuffleVector: 2076 // If this is not an alternate sequence of opcode like add-sub 2077 // then do not vectorize this instruction. 2078 if (!S.isAltShuffle()) { 2079 BS.cancelScheduling(VL, VL0); 2080 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2081 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2082 return; 2083 } 2084 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2085 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2086 2087 // Reorder operands if reordering would enable vectorization. 2088 if (isa<BinaryOperator>(VL0)) { 2089 ValueList Left, Right; 2090 reorderInputsAccordingToOpcode(S, VL, Left, Right); 2091 UserTreeIdx.EdgeIdx = 0; 2092 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2093 UserTreeIdx.EdgeIdx = 1; 2094 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2095 return; 2096 } 2097 2098 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2099 ValueList Operands; 2100 // Prepare the operand vector. 2101 for (Value *j : VL) 2102 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2103 2104 UserTreeIdx.EdgeIdx = i; 2105 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2106 } 2107 return; 2108 2109 default: 2110 BS.cancelScheduling(VL, VL0); 2111 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2112 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2113 return; 2114 } 2115 } 2116 2117 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2118 unsigned N; 2119 Type *EltTy; 2120 auto *ST = dyn_cast<StructType>(T); 2121 if (ST) { 2122 N = ST->getNumElements(); 2123 EltTy = *ST->element_begin(); 2124 } else { 2125 N = cast<ArrayType>(T)->getNumElements(); 2126 EltTy = cast<ArrayType>(T)->getElementType(); 2127 } 2128 if (!isValidElementType(EltTy)) 2129 return 0; 2130 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2131 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2132 return 0; 2133 if (ST) { 2134 // Check that struct is homogeneous. 2135 for (const auto *Ty : ST->elements()) 2136 if (Ty != EltTy) 2137 return 0; 2138 } 2139 return N; 2140 } 2141 2142 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2143 SmallVectorImpl<unsigned> &CurrentOrder) const { 2144 Instruction *E0 = cast<Instruction>(OpValue); 2145 assert(E0->getOpcode() == Instruction::ExtractElement || 2146 E0->getOpcode() == Instruction::ExtractValue); 2147 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2148 // Check if all of the extracts come from the same vector and from the 2149 // correct offset. 2150 Value *Vec = E0->getOperand(0); 2151 2152 CurrentOrder.clear(); 2153 2154 // We have to extract from a vector/aggregate with the same number of elements. 2155 unsigned NElts; 2156 if (E0->getOpcode() == Instruction::ExtractValue) { 2157 const DataLayout &DL = E0->getModule()->getDataLayout(); 2158 NElts = canMapToVector(Vec->getType(), DL); 2159 if (!NElts) 2160 return false; 2161 // Check if load can be rewritten as load of vector. 2162 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2163 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2164 return false; 2165 } else { 2166 NElts = Vec->getType()->getVectorNumElements(); 2167 } 2168 2169 if (NElts != VL.size()) 2170 return false; 2171 2172 // Check that all of the indices extract from the correct offset. 2173 bool ShouldKeepOrder = true; 2174 unsigned E = VL.size(); 2175 // Assign to all items the initial value E + 1 so we can check if the extract 2176 // instruction index was used already. 2177 // Also, later we can check that all the indices are used and we have a 2178 // consecutive access in the extract instructions, by checking that no 2179 // element of CurrentOrder still has value E + 1. 2180 CurrentOrder.assign(E, E + 1); 2181 unsigned I = 0; 2182 for (; I < E; ++I) { 2183 auto *Inst = cast<Instruction>(VL[I]); 2184 if (Inst->getOperand(0) != Vec) 2185 break; 2186 Optional<unsigned> Idx = getExtractIndex(Inst); 2187 if (!Idx) 2188 break; 2189 const unsigned ExtIdx = *Idx; 2190 if (ExtIdx != I) { 2191 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2192 break; 2193 ShouldKeepOrder = false; 2194 CurrentOrder[ExtIdx] = I; 2195 } else { 2196 if (CurrentOrder[I] != E + 1) 2197 break; 2198 CurrentOrder[I] = I; 2199 } 2200 } 2201 if (I < E) { 2202 CurrentOrder.clear(); 2203 return false; 2204 } 2205 2206 return ShouldKeepOrder; 2207 } 2208 2209 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2210 return I->hasOneUse() || 2211 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2212 return ScalarToTreeEntry.count(U) > 0; 2213 }); 2214 } 2215 2216 int BoUpSLP::getEntryCost(TreeEntry *E) { 2217 ArrayRef<Value*> VL = E->Scalars; 2218 2219 Type *ScalarTy = VL[0]->getType(); 2220 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2221 ScalarTy = SI->getValueOperand()->getType(); 2222 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2223 ScalarTy = CI->getOperand(0)->getType(); 2224 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2225 2226 // If we have computed a smaller type for the expression, update VecTy so 2227 // that the costs will be accurate. 2228 if (MinBWs.count(VL[0])) 2229 VecTy = VectorType::get( 2230 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2231 2232 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2233 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2234 int ReuseShuffleCost = 0; 2235 if (NeedToShuffleReuses) { 2236 ReuseShuffleCost = 2237 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2238 } 2239 if (E->NeedToGather) { 2240 if (allConstant(VL)) 2241 return 0; 2242 if (isSplat(VL)) { 2243 return ReuseShuffleCost + 2244 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2245 } 2246 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2247 allSameType(VL) && allSameBlock(VL)) { 2248 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2249 if (ShuffleKind.hasValue()) { 2250 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2251 for (auto *V : VL) { 2252 // If all users of instruction are going to be vectorized and this 2253 // instruction itself is not going to be vectorized, consider this 2254 // instruction as dead and remove its cost from the final cost of the 2255 // vectorized tree. 2256 if (areAllUsersVectorized(cast<Instruction>(V)) && 2257 !ScalarToTreeEntry.count(V)) { 2258 auto *IO = cast<ConstantInt>( 2259 cast<ExtractElementInst>(V)->getIndexOperand()); 2260 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2261 IO->getZExtValue()); 2262 } 2263 } 2264 return ReuseShuffleCost + Cost; 2265 } 2266 } 2267 return ReuseShuffleCost + getGatherCost(VL); 2268 } 2269 InstructionsState S = getSameOpcode(VL); 2270 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2271 Instruction *VL0 = cast<Instruction>(S.OpValue); 2272 unsigned ShuffleOrOp = S.isAltShuffle() ? 2273 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2274 switch (ShuffleOrOp) { 2275 case Instruction::PHI: 2276 return 0; 2277 2278 case Instruction::ExtractValue: 2279 case Instruction::ExtractElement: 2280 if (NeedToShuffleReuses) { 2281 unsigned Idx = 0; 2282 for (unsigned I : E->ReuseShuffleIndices) { 2283 if (ShuffleOrOp == Instruction::ExtractElement) { 2284 auto *IO = cast<ConstantInt>( 2285 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2286 Idx = IO->getZExtValue(); 2287 ReuseShuffleCost -= TTI->getVectorInstrCost( 2288 Instruction::ExtractElement, VecTy, Idx); 2289 } else { 2290 ReuseShuffleCost -= TTI->getVectorInstrCost( 2291 Instruction::ExtractElement, VecTy, Idx); 2292 ++Idx; 2293 } 2294 } 2295 Idx = ReuseShuffleNumbers; 2296 for (Value *V : VL) { 2297 if (ShuffleOrOp == Instruction::ExtractElement) { 2298 auto *IO = cast<ConstantInt>( 2299 cast<ExtractElementInst>(V)->getIndexOperand()); 2300 Idx = IO->getZExtValue(); 2301 } else { 2302 --Idx; 2303 } 2304 ReuseShuffleCost += 2305 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2306 } 2307 } 2308 if (!E->NeedToGather) { 2309 int DeadCost = ReuseShuffleCost; 2310 if (!E->ReorderIndices.empty()) { 2311 // TODO: Merge this shuffle with the ReuseShuffleCost. 2312 DeadCost += TTI->getShuffleCost( 2313 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2314 } 2315 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2316 Instruction *E = cast<Instruction>(VL[i]); 2317 // If all users are going to be vectorized, instruction can be 2318 // considered as dead. 2319 // The same, if have only one user, it will be vectorized for sure. 2320 if (areAllUsersVectorized(E)) { 2321 // Take credit for instruction that will become dead. 2322 if (E->hasOneUse()) { 2323 Instruction *Ext = E->user_back(); 2324 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2325 all_of(Ext->users(), 2326 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2327 // Use getExtractWithExtendCost() to calculate the cost of 2328 // extractelement/ext pair. 2329 DeadCost -= TTI->getExtractWithExtendCost( 2330 Ext->getOpcode(), Ext->getType(), VecTy, i); 2331 // Add back the cost of s|zext which is subtracted separately. 2332 DeadCost += TTI->getCastInstrCost( 2333 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2334 continue; 2335 } 2336 } 2337 DeadCost -= 2338 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2339 } 2340 } 2341 return DeadCost; 2342 } 2343 return ReuseShuffleCost + getGatherCost(VL); 2344 2345 case Instruction::ZExt: 2346 case Instruction::SExt: 2347 case Instruction::FPToUI: 2348 case Instruction::FPToSI: 2349 case Instruction::FPExt: 2350 case Instruction::PtrToInt: 2351 case Instruction::IntToPtr: 2352 case Instruction::SIToFP: 2353 case Instruction::UIToFP: 2354 case Instruction::Trunc: 2355 case Instruction::FPTrunc: 2356 case Instruction::BitCast: { 2357 Type *SrcTy = VL0->getOperand(0)->getType(); 2358 int ScalarEltCost = 2359 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2360 if (NeedToShuffleReuses) { 2361 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2362 } 2363 2364 // Calculate the cost of this instruction. 2365 int ScalarCost = VL.size() * ScalarEltCost; 2366 2367 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2368 int VecCost = 0; 2369 // Check if the values are candidates to demote. 2370 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2371 VecCost = ReuseShuffleCost + 2372 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2373 } 2374 return VecCost - ScalarCost; 2375 } 2376 case Instruction::FCmp: 2377 case Instruction::ICmp: 2378 case Instruction::Select: { 2379 // Calculate the cost of this instruction. 2380 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2381 Builder.getInt1Ty(), VL0); 2382 if (NeedToShuffleReuses) { 2383 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2384 } 2385 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2386 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2387 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2388 return ReuseShuffleCost + VecCost - ScalarCost; 2389 } 2390 case Instruction::Add: 2391 case Instruction::FAdd: 2392 case Instruction::Sub: 2393 case Instruction::FSub: 2394 case Instruction::Mul: 2395 case Instruction::FMul: 2396 case Instruction::UDiv: 2397 case Instruction::SDiv: 2398 case Instruction::FDiv: 2399 case Instruction::URem: 2400 case Instruction::SRem: 2401 case Instruction::FRem: 2402 case Instruction::Shl: 2403 case Instruction::LShr: 2404 case Instruction::AShr: 2405 case Instruction::And: 2406 case Instruction::Or: 2407 case Instruction::Xor: { 2408 // Certain instructions can be cheaper to vectorize if they have a 2409 // constant second vector operand. 2410 TargetTransformInfo::OperandValueKind Op1VK = 2411 TargetTransformInfo::OK_AnyValue; 2412 TargetTransformInfo::OperandValueKind Op2VK = 2413 TargetTransformInfo::OK_UniformConstantValue; 2414 TargetTransformInfo::OperandValueProperties Op1VP = 2415 TargetTransformInfo::OP_None; 2416 TargetTransformInfo::OperandValueProperties Op2VP = 2417 TargetTransformInfo::OP_PowerOf2; 2418 2419 // If all operands are exactly the same ConstantInt then set the 2420 // operand kind to OK_UniformConstantValue. 2421 // If instead not all operands are constants, then set the operand kind 2422 // to OK_AnyValue. If all operands are constants but not the same, 2423 // then set the operand kind to OK_NonUniformConstantValue. 2424 ConstantInt *CInt0 = nullptr; 2425 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2426 const Instruction *I = cast<Instruction>(VL[i]); 2427 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2428 if (!CInt) { 2429 Op2VK = TargetTransformInfo::OK_AnyValue; 2430 Op2VP = TargetTransformInfo::OP_None; 2431 break; 2432 } 2433 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2434 !CInt->getValue().isPowerOf2()) 2435 Op2VP = TargetTransformInfo::OP_None; 2436 if (i == 0) { 2437 CInt0 = CInt; 2438 continue; 2439 } 2440 if (CInt0 != CInt) 2441 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2442 } 2443 2444 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2445 int ScalarEltCost = TTI->getArithmeticInstrCost( 2446 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2447 if (NeedToShuffleReuses) { 2448 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2449 } 2450 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2451 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2452 Op2VK, Op1VP, Op2VP, Operands); 2453 return ReuseShuffleCost + VecCost - ScalarCost; 2454 } 2455 case Instruction::GetElementPtr: { 2456 TargetTransformInfo::OperandValueKind Op1VK = 2457 TargetTransformInfo::OK_AnyValue; 2458 TargetTransformInfo::OperandValueKind Op2VK = 2459 TargetTransformInfo::OK_UniformConstantValue; 2460 2461 int ScalarEltCost = 2462 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2463 if (NeedToShuffleReuses) { 2464 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2465 } 2466 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2467 int VecCost = 2468 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2469 return ReuseShuffleCost + VecCost - ScalarCost; 2470 } 2471 case Instruction::Load: { 2472 // Cost of wide load - cost of scalar loads. 2473 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2474 int ScalarEltCost = 2475 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2476 if (NeedToShuffleReuses) { 2477 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2478 } 2479 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2480 int VecLdCost = 2481 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2482 if (!E->ReorderIndices.empty()) { 2483 // TODO: Merge this shuffle with the ReuseShuffleCost. 2484 VecLdCost += TTI->getShuffleCost( 2485 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2486 } 2487 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2488 } 2489 case Instruction::Store: { 2490 // We know that we can merge the stores. Calculate the cost. 2491 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2492 int ScalarEltCost = 2493 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2494 if (NeedToShuffleReuses) { 2495 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2496 } 2497 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2498 int VecStCost = 2499 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2500 return ReuseShuffleCost + VecStCost - ScalarStCost; 2501 } 2502 case Instruction::Call: { 2503 CallInst *CI = cast<CallInst>(VL0); 2504 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2505 2506 // Calculate the cost of the scalar and vector calls. 2507 SmallVector<Type *, 4> ScalarTys; 2508 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2509 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2510 2511 FastMathFlags FMF; 2512 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2513 FMF = FPMO->getFastMathFlags(); 2514 2515 int ScalarEltCost = 2516 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2517 if (NeedToShuffleReuses) { 2518 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2519 } 2520 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2521 2522 SmallVector<Value *, 4> Args(CI->arg_operands()); 2523 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2524 VecTy->getNumElements()); 2525 2526 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2527 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2528 << " for " << *CI << "\n"); 2529 2530 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2531 } 2532 case Instruction::ShuffleVector: { 2533 assert(S.isAltShuffle() && 2534 ((Instruction::isBinaryOp(S.getOpcode()) && 2535 Instruction::isBinaryOp(S.getAltOpcode())) || 2536 (Instruction::isCast(S.getOpcode()) && 2537 Instruction::isCast(S.getAltOpcode()))) && 2538 "Invalid Shuffle Vector Operand"); 2539 int ScalarCost = 0; 2540 if (NeedToShuffleReuses) { 2541 for (unsigned Idx : E->ReuseShuffleIndices) { 2542 Instruction *I = cast<Instruction>(VL[Idx]); 2543 ReuseShuffleCost -= TTI->getInstructionCost( 2544 I, TargetTransformInfo::TCK_RecipThroughput); 2545 } 2546 for (Value *V : VL) { 2547 Instruction *I = cast<Instruction>(V); 2548 ReuseShuffleCost += TTI->getInstructionCost( 2549 I, TargetTransformInfo::TCK_RecipThroughput); 2550 } 2551 } 2552 for (Value *i : VL) { 2553 Instruction *I = cast<Instruction>(i); 2554 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2555 ScalarCost += TTI->getInstructionCost( 2556 I, TargetTransformInfo::TCK_RecipThroughput); 2557 } 2558 // VecCost is equal to sum of the cost of creating 2 vectors 2559 // and the cost of creating shuffle. 2560 int VecCost = 0; 2561 if (Instruction::isBinaryOp(S.getOpcode())) { 2562 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 2563 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 2564 } else { 2565 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 2566 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 2567 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 2568 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 2569 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 2570 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 2571 } 2572 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2573 return ReuseShuffleCost + VecCost - ScalarCost; 2574 } 2575 default: 2576 llvm_unreachable("Unknown instruction"); 2577 } 2578 } 2579 2580 bool BoUpSLP::isFullyVectorizableTinyTree() const { 2581 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2582 << VectorizableTree.size() << " is fully vectorizable .\n"); 2583 2584 // We only handle trees of heights 1 and 2. 2585 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2586 return true; 2587 2588 if (VectorizableTree.size() != 2) 2589 return false; 2590 2591 // Handle splat and all-constants stores. 2592 if (!VectorizableTree[0].NeedToGather && 2593 (allConstant(VectorizableTree[1].Scalars) || 2594 isSplat(VectorizableTree[1].Scalars))) 2595 return true; 2596 2597 // Gathering cost would be too much for tiny trees. 2598 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2599 return false; 2600 2601 return true; 2602 } 2603 2604 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 2605 // We can vectorize the tree if its size is greater than or equal to the 2606 // minimum size specified by the MinTreeSize command line option. 2607 if (VectorizableTree.size() >= MinTreeSize) 2608 return false; 2609 2610 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2611 // can vectorize it if we can prove it fully vectorizable. 2612 if (isFullyVectorizableTinyTree()) 2613 return false; 2614 2615 assert(VectorizableTree.empty() 2616 ? ExternalUses.empty() 2617 : true && "We shouldn't have any external users"); 2618 2619 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2620 // vectorizable. 2621 return true; 2622 } 2623 2624 int BoUpSLP::getSpillCost() { 2625 // Walk from the bottom of the tree to the top, tracking which values are 2626 // live. When we see a call instruction that is not part of our tree, 2627 // query TTI to see if there is a cost to keeping values live over it 2628 // (for example, if spills and fills are required). 2629 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2630 int Cost = 0; 2631 2632 SmallPtrSet<Instruction*, 4> LiveValues; 2633 Instruction *PrevInst = nullptr; 2634 2635 for (const auto &N : VectorizableTree) { 2636 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2637 if (!Inst) 2638 continue; 2639 2640 if (!PrevInst) { 2641 PrevInst = Inst; 2642 continue; 2643 } 2644 2645 // Update LiveValues. 2646 LiveValues.erase(PrevInst); 2647 for (auto &J : PrevInst->operands()) { 2648 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2649 LiveValues.insert(cast<Instruction>(&*J)); 2650 } 2651 2652 LLVM_DEBUG({ 2653 dbgs() << "SLP: #LV: " << LiveValues.size(); 2654 for (auto *X : LiveValues) 2655 dbgs() << " " << X->getName(); 2656 dbgs() << ", Looking at "; 2657 Inst->dump(); 2658 }); 2659 2660 // Now find the sequence of instructions between PrevInst and Inst. 2661 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2662 PrevInstIt = 2663 PrevInst->getIterator().getReverse(); 2664 while (InstIt != PrevInstIt) { 2665 if (PrevInstIt == PrevInst->getParent()->rend()) { 2666 PrevInstIt = Inst->getParent()->rbegin(); 2667 continue; 2668 } 2669 2670 // Debug informations don't impact spill cost. 2671 if ((isa<CallInst>(&*PrevInstIt) && 2672 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2673 &*PrevInstIt != PrevInst) { 2674 SmallVector<Type*, 4> V; 2675 for (auto *II : LiveValues) 2676 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2677 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2678 } 2679 2680 ++PrevInstIt; 2681 } 2682 2683 PrevInst = Inst; 2684 } 2685 2686 return Cost; 2687 } 2688 2689 int BoUpSLP::getTreeCost() { 2690 int Cost = 0; 2691 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2692 << VectorizableTree.size() << ".\n"); 2693 2694 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2695 2696 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2697 TreeEntry &TE = VectorizableTree[I]; 2698 2699 // We create duplicate tree entries for gather sequences that have multiple 2700 // uses. However, we should not compute the cost of duplicate sequences. 2701 // For example, if we have a build vector (i.e., insertelement sequence) 2702 // that is used by more than one vector instruction, we only need to 2703 // compute the cost of the insertelement instructions once. The redundant 2704 // instructions will be eliminated by CSE. 2705 // 2706 // We should consider not creating duplicate tree entries for gather 2707 // sequences, and instead add additional edges to the tree representing 2708 // their uses. Since such an approach results in fewer total entries, 2709 // existing heuristics based on tree size may yield different results. 2710 // 2711 if (TE.NeedToGather && 2712 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2713 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2714 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2715 })) 2716 continue; 2717 2718 int C = getEntryCost(&TE); 2719 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2720 << " for bundle that starts with " << *TE.Scalars[0] 2721 << ".\n"); 2722 Cost += C; 2723 } 2724 2725 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2726 int ExtractCost = 0; 2727 for (ExternalUser &EU : ExternalUses) { 2728 // We only add extract cost once for the same scalar. 2729 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2730 continue; 2731 2732 // Uses by ephemeral values are free (because the ephemeral value will be 2733 // removed prior to code generation, and so the extraction will be 2734 // removed as well). 2735 if (EphValues.count(EU.User)) 2736 continue; 2737 2738 // If we plan to rewrite the tree in a smaller type, we will need to sign 2739 // extend the extracted value back to the original type. Here, we account 2740 // for the extract and the added cost of the sign extend if needed. 2741 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2742 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2743 if (MinBWs.count(ScalarRoot)) { 2744 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2745 auto Extend = 2746 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2747 VecTy = VectorType::get(MinTy, BundleWidth); 2748 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2749 VecTy, EU.Lane); 2750 } else { 2751 ExtractCost += 2752 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2753 } 2754 } 2755 2756 int SpillCost = getSpillCost(); 2757 Cost += SpillCost + ExtractCost; 2758 2759 std::string Str; 2760 { 2761 raw_string_ostream OS(Str); 2762 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2763 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2764 << "SLP: Total Cost = " << Cost << ".\n"; 2765 } 2766 LLVM_DEBUG(dbgs() << Str); 2767 2768 if (ViewSLPTree) 2769 ViewGraph(this, "SLP" + F->getName(), false, Str); 2770 2771 return Cost; 2772 } 2773 2774 int BoUpSLP::getGatherCost(Type *Ty, 2775 const DenseSet<unsigned> &ShuffledIndices) const { 2776 int Cost = 0; 2777 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2778 if (!ShuffledIndices.count(i)) 2779 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2780 if (!ShuffledIndices.empty()) 2781 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2782 return Cost; 2783 } 2784 2785 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 2786 // Find the type of the operands in VL. 2787 Type *ScalarTy = VL[0]->getType(); 2788 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2789 ScalarTy = SI->getValueOperand()->getType(); 2790 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2791 // Find the cost of inserting/extracting values from the vector. 2792 // Check if the same elements are inserted several times and count them as 2793 // shuffle candidates. 2794 DenseSet<unsigned> ShuffledElements; 2795 DenseSet<Value *> UniqueElements; 2796 // Iterate in reverse order to consider insert elements with the high cost. 2797 for (unsigned I = VL.size(); I > 0; --I) { 2798 unsigned Idx = I - 1; 2799 if (!UniqueElements.insert(VL[Idx]).second) 2800 ShuffledElements.insert(Idx); 2801 } 2802 return getGatherCost(VecTy, ShuffledElements); 2803 } 2804 2805 // Return true if the i'th left and right operands can be commuted. 2806 // 2807 // The vectorizer is trying to either have all elements one side being 2808 // instruction with the same opcode to enable further vectorization, or having 2809 // a splat to lower the vectorizing cost. 2810 static bool shouldReorderOperands(int i, ArrayRef<Value *> Left, 2811 ArrayRef<Value *> Right, 2812 bool AllSameOpcodeLeft, 2813 bool AllSameOpcodeRight, bool SplatLeft, 2814 bool SplatRight) { 2815 Value *PrevLeft = Left[i - 1]; 2816 Value *PrevRight = Right[i - 1]; 2817 Value *CurrLeft = Left[i]; 2818 Value *CurrRight = Right[i]; 2819 2820 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2821 if (SplatRight) { 2822 if (CurrRight == PrevRight) 2823 // Preserve SplatRight 2824 return false; 2825 if (CurrLeft == PrevRight) { 2826 // Commuting would preserve SplatRight, but we don't want to break 2827 // SplatLeft either, i.e. preserve the original order if possible. 2828 // (FIXME: why do we care?) 2829 if (SplatLeft && CurrLeft == PrevLeft) 2830 return false; 2831 return true; 2832 } 2833 } 2834 // Symmetrically handle Right side. 2835 if (SplatLeft) { 2836 if (CurrLeft == PrevLeft) 2837 // Preserve SplatLeft 2838 return false; 2839 if (CurrRight == PrevLeft) 2840 return true; 2841 } 2842 2843 Instruction *ILeft = dyn_cast<Instruction>(CurrLeft); 2844 Instruction *IRight = dyn_cast<Instruction>(CurrRight); 2845 2846 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2847 // it and not the right, in this case we want to commute. 2848 if (AllSameOpcodeRight) { 2849 unsigned RightPrevOpcode = cast<Instruction>(PrevRight)->getOpcode(); 2850 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2851 // Do not commute, a match on the right preserves AllSameOpcodeRight 2852 return false; 2853 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2854 // We have a match and may want to commute, but first check if there is 2855 // not also a match on the existing operands on the Left to preserve 2856 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2857 // (FIXME: why do we care?) 2858 if (AllSameOpcodeLeft && ILeft && 2859 cast<Instruction>(PrevLeft)->getOpcode() == ILeft->getOpcode()) 2860 return false; 2861 return true; 2862 } 2863 } 2864 // Symmetrically handle Left side. 2865 if (AllSameOpcodeLeft) { 2866 unsigned LeftPrevOpcode = cast<Instruction>(PrevLeft)->getOpcode(); 2867 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2868 return false; 2869 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2870 return true; 2871 } 2872 return false; 2873 } 2874 2875 void BoUpSLP::reorderInputsAccordingToOpcode( 2876 const InstructionsState &S, ArrayRef<Value *> VL, 2877 SmallVectorImpl<Value *> &Left, SmallVectorImpl<Value *> &Right) const { 2878 assert(!VL.empty() && Left.empty() && Right.empty() && 2879 "Unexpected instruction/operand lists"); 2880 2881 // Push left and right operands of binary operation into Left and Right 2882 for (Value *V : VL) { 2883 auto *I = cast<Instruction>(V); 2884 assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); 2885 Left.push_back(I->getOperand(0)); 2886 Right.push_back(I->getOperand(1)); 2887 } 2888 2889 // Keep track if we have instructions with all the same opcode on one side. 2890 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2891 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2892 // Keep track if we have one side with all the same value (broadcast). 2893 bool SplatLeft = true; 2894 bool SplatRight = true; 2895 2896 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2897 Instruction *I = cast<Instruction>(VL[i]); 2898 // Commute to favor either a splat or maximizing having the same opcodes on 2899 // one side. 2900 if (isCommutative(I) && 2901 shouldReorderOperands(i, Left, Right, AllSameOpcodeLeft, 2902 AllSameOpcodeRight, SplatLeft, SplatRight)) 2903 std::swap(Left[i], Right[i]); 2904 2905 // Update Splat* and AllSameOpcode* after the insertion. 2906 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2907 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2908 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2909 (cast<Instruction>(Left[i - 1])->getOpcode() == 2910 cast<Instruction>(Left[i])->getOpcode()); 2911 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2912 (cast<Instruction>(Right[i - 1])->getOpcode() == 2913 cast<Instruction>(Right[i])->getOpcode()); 2914 } 2915 2916 // If one operand end up being broadcast, return this operand order. 2917 if (SplatRight || SplatLeft) 2918 return; 2919 2920 // Finally check if we can get longer vectorizable chain by reordering 2921 // without breaking the good operand order detected above. 2922 // E.g. If we have something like- 2923 // load a[0] - load b[0] 2924 // load b[1] + load a[1] 2925 // load a[2] - load b[2] 2926 // load a[3] + load b[3] 2927 // Reordering the second load b[1] + load a[1] would allow us to vectorize 2928 // this code and we still retain AllSameOpcode property. 2929 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2930 // such as- 2931 // add a[0],c[0] load b[0] 2932 // add a[1],c[2] load b[1] 2933 // b[2] load b[2] 2934 // add a[3],c[3] load b[3] 2935 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2936 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2937 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2938 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2939 auto *VL1 = cast<Instruction>(VL[j]); 2940 auto *VL2 = cast<Instruction>(VL[j + 1]); 2941 if (isCommutative(VL2)) { 2942 std::swap(Left[j + 1], Right[j + 1]); 2943 continue; 2944 } 2945 if (isCommutative(VL1)) { 2946 std::swap(Left[j], Right[j]); 2947 continue; 2948 } 2949 } 2950 } 2951 } 2952 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2953 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2954 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2955 auto *VL1 = cast<Instruction>(VL[j]); 2956 auto *VL2 = cast<Instruction>(VL[j + 1]); 2957 if (isCommutative(VL2)) { 2958 std::swap(Left[j + 1], Right[j + 1]); 2959 continue; 2960 } 2961 if (isCommutative(VL1)) { 2962 std::swap(Left[j], Right[j]); 2963 continue; 2964 } 2965 } 2966 } 2967 } 2968 // else unchanged 2969 } 2970 } 2971 2972 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2973 const InstructionsState &S) { 2974 // Get the basic block this bundle is in. All instructions in the bundle 2975 // should be in this block. 2976 auto *Front = cast<Instruction>(S.OpValue); 2977 auto *BB = Front->getParent(); 2978 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2979 auto *I = cast<Instruction>(V); 2980 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 2981 })); 2982 2983 // The last instruction in the bundle in program order. 2984 Instruction *LastInst = nullptr; 2985 2986 // Find the last instruction. The common case should be that BB has been 2987 // scheduled, and the last instruction is VL.back(). So we start with 2988 // VL.back() and iterate over schedule data until we reach the end of the 2989 // bundle. The end of the bundle is marked by null ScheduleData. 2990 if (BlocksSchedules.count(BB)) { 2991 auto *Bundle = 2992 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2993 if (Bundle && Bundle->isPartOfBundle()) 2994 for (; Bundle; Bundle = Bundle->NextInBundle) 2995 if (Bundle->OpValue == Bundle->Inst) 2996 LastInst = Bundle->Inst; 2997 } 2998 2999 // LastInst can still be null at this point if there's either not an entry 3000 // for BB in BlocksSchedules or there's no ScheduleData available for 3001 // VL.back(). This can be the case if buildTree_rec aborts for various 3002 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3003 // size is reached, etc.). ScheduleData is initialized in the scheduling 3004 // "dry-run". 3005 // 3006 // If this happens, we can still find the last instruction by brute force. We 3007 // iterate forwards from Front (inclusive) until we either see all 3008 // instructions in the bundle or reach the end of the block. If Front is the 3009 // last instruction in program order, LastInst will be set to Front, and we 3010 // will visit all the remaining instructions in the block. 3011 // 3012 // One of the reasons we exit early from buildTree_rec is to place an upper 3013 // bound on compile-time. Thus, taking an additional compile-time hit here is 3014 // not ideal. However, this should be exceedingly rare since it requires that 3015 // we both exit early from buildTree_rec and that the bundle be out-of-order 3016 // (causing us to iterate all the way to the end of the block). 3017 if (!LastInst) { 3018 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 3019 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3020 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3021 LastInst = &I; 3022 if (Bundle.empty()) 3023 break; 3024 } 3025 } 3026 3027 // Set the insertion point after the last instruction in the bundle. Set the 3028 // debug location to Front. 3029 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3030 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3031 } 3032 3033 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3034 Value *Vec = UndefValue::get(Ty); 3035 // Generate the 'InsertElement' instruction. 3036 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3037 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3038 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3039 GatherSeq.insert(Insrt); 3040 CSEBlocks.insert(Insrt->getParent()); 3041 3042 // Add to our 'need-to-extract' list. 3043 if (TreeEntry *E = getTreeEntry(VL[i])) { 3044 // Find which lane we need to extract. 3045 int FoundLane = -1; 3046 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3047 // Is this the lane of the scalar that we are looking for ? 3048 if (E->Scalars[Lane] == VL[i]) { 3049 FoundLane = Lane; 3050 break; 3051 } 3052 } 3053 assert(FoundLane >= 0 && "Could not find the correct lane"); 3054 if (!E->ReuseShuffleIndices.empty()) { 3055 FoundLane = 3056 std::distance(E->ReuseShuffleIndices.begin(), 3057 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3058 } 3059 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3060 } 3061 } 3062 } 3063 3064 return Vec; 3065 } 3066 3067 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3068 InstructionsState S = getSameOpcode(VL); 3069 if (S.getOpcode()) { 3070 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3071 if (E->isSame(VL)) { 3072 Value *V = vectorizeTree(E); 3073 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3074 // We need to get the vectorized value but without shuffle. 3075 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3076 V = SV->getOperand(0); 3077 } else { 3078 // Reshuffle to get only unique values. 3079 SmallVector<unsigned, 4> UniqueIdxs; 3080 SmallSet<unsigned, 4> UsedIdxs; 3081 for(unsigned Idx : E->ReuseShuffleIndices) 3082 if (UsedIdxs.insert(Idx).second) 3083 UniqueIdxs.emplace_back(Idx); 3084 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3085 UniqueIdxs); 3086 } 3087 } 3088 return V; 3089 } 3090 } 3091 } 3092 3093 Type *ScalarTy = S.OpValue->getType(); 3094 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3095 ScalarTy = SI->getValueOperand()->getType(); 3096 3097 // Check that every instruction appears once in this bundle. 3098 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3099 SmallVector<Value *, 4> UniqueValues; 3100 if (VL.size() > 2) { 3101 DenseMap<Value *, unsigned> UniquePositions; 3102 for (Value *V : VL) { 3103 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3104 ReuseShuffleIndicies.emplace_back(Res.first->second); 3105 if (Res.second || isa<Constant>(V)) 3106 UniqueValues.emplace_back(V); 3107 } 3108 // Do not shuffle single element or if number of unique values is not power 3109 // of 2. 3110 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3111 !llvm::isPowerOf2_32(UniqueValues.size())) 3112 ReuseShuffleIndicies.clear(); 3113 else 3114 VL = UniqueValues; 3115 } 3116 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3117 3118 Value *V = Gather(VL, VecTy); 3119 if (!ReuseShuffleIndicies.empty()) { 3120 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3121 ReuseShuffleIndicies, "shuffle"); 3122 if (auto *I = dyn_cast<Instruction>(V)) { 3123 GatherSeq.insert(I); 3124 CSEBlocks.insert(I->getParent()); 3125 } 3126 } 3127 return V; 3128 } 3129 3130 static void inversePermutation(ArrayRef<unsigned> Indices, 3131 SmallVectorImpl<unsigned> &Mask) { 3132 Mask.clear(); 3133 const unsigned E = Indices.size(); 3134 Mask.resize(E); 3135 for (unsigned I = 0; I < E; ++I) 3136 Mask[Indices[I]] = I; 3137 } 3138 3139 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3140 IRBuilder<>::InsertPointGuard Guard(Builder); 3141 3142 if (E->VectorizedValue) { 3143 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3144 return E->VectorizedValue; 3145 } 3146 3147 InstructionsState S = getSameOpcode(E->Scalars); 3148 Instruction *VL0 = cast<Instruction>(S.OpValue); 3149 Type *ScalarTy = VL0->getType(); 3150 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3151 ScalarTy = SI->getValueOperand()->getType(); 3152 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3153 3154 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3155 3156 if (E->NeedToGather) { 3157 setInsertPointAfterBundle(E->Scalars, S); 3158 auto *V = Gather(E->Scalars, VecTy); 3159 if (NeedToShuffleReuses) { 3160 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3161 E->ReuseShuffleIndices, "shuffle"); 3162 if (auto *I = dyn_cast<Instruction>(V)) { 3163 GatherSeq.insert(I); 3164 CSEBlocks.insert(I->getParent()); 3165 } 3166 } 3167 E->VectorizedValue = V; 3168 return V; 3169 } 3170 3171 unsigned ShuffleOrOp = S.isAltShuffle() ? 3172 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3173 switch (ShuffleOrOp) { 3174 case Instruction::PHI: { 3175 PHINode *PH = dyn_cast<PHINode>(VL0); 3176 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3177 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3178 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3179 Value *V = NewPhi; 3180 if (NeedToShuffleReuses) { 3181 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3182 E->ReuseShuffleIndices, "shuffle"); 3183 } 3184 E->VectorizedValue = V; 3185 3186 // PHINodes may have multiple entries from the same block. We want to 3187 // visit every block once. 3188 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3189 3190 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3191 ValueList Operands; 3192 BasicBlock *IBB = PH->getIncomingBlock(i); 3193 3194 if (!VisitedBBs.insert(IBB).second) { 3195 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3196 continue; 3197 } 3198 3199 Builder.SetInsertPoint(IBB->getTerminator()); 3200 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3201 Value *Vec = vectorizeTree(E->getOperand(i)); 3202 NewPhi->addIncoming(Vec, IBB); 3203 } 3204 3205 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3206 "Invalid number of incoming values"); 3207 return V; 3208 } 3209 3210 case Instruction::ExtractElement: { 3211 if (!E->NeedToGather) { 3212 Value *V = E->getSingleOperand(0); 3213 if (!E->ReorderIndices.empty()) { 3214 OrdersType Mask; 3215 inversePermutation(E->ReorderIndices, Mask); 3216 Builder.SetInsertPoint(VL0); 3217 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3218 "reorder_shuffle"); 3219 } 3220 if (NeedToShuffleReuses) { 3221 // TODO: Merge this shuffle with the ReorderShuffleMask. 3222 if (E->ReorderIndices.empty()) 3223 Builder.SetInsertPoint(VL0); 3224 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3225 E->ReuseShuffleIndices, "shuffle"); 3226 } 3227 E->VectorizedValue = V; 3228 return V; 3229 } 3230 setInsertPointAfterBundle(E->Scalars, S); 3231 auto *V = Gather(E->Scalars, VecTy); 3232 if (NeedToShuffleReuses) { 3233 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3234 E->ReuseShuffleIndices, "shuffle"); 3235 if (auto *I = dyn_cast<Instruction>(V)) { 3236 GatherSeq.insert(I); 3237 CSEBlocks.insert(I->getParent()); 3238 } 3239 } 3240 E->VectorizedValue = V; 3241 return V; 3242 } 3243 case Instruction::ExtractValue: { 3244 if (!E->NeedToGather) { 3245 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3246 Builder.SetInsertPoint(LI); 3247 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3248 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3249 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3250 Value *NewV = propagateMetadata(V, E->Scalars); 3251 if (!E->ReorderIndices.empty()) { 3252 OrdersType Mask; 3253 inversePermutation(E->ReorderIndices, Mask); 3254 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3255 "reorder_shuffle"); 3256 } 3257 if (NeedToShuffleReuses) { 3258 // TODO: Merge this shuffle with the ReorderShuffleMask. 3259 NewV = Builder.CreateShuffleVector( 3260 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3261 } 3262 E->VectorizedValue = NewV; 3263 return NewV; 3264 } 3265 setInsertPointAfterBundle(E->Scalars, S); 3266 auto *V = Gather(E->Scalars, VecTy); 3267 if (NeedToShuffleReuses) { 3268 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3269 E->ReuseShuffleIndices, "shuffle"); 3270 if (auto *I = dyn_cast<Instruction>(V)) { 3271 GatherSeq.insert(I); 3272 CSEBlocks.insert(I->getParent()); 3273 } 3274 } 3275 E->VectorizedValue = V; 3276 return V; 3277 } 3278 case Instruction::ZExt: 3279 case Instruction::SExt: 3280 case Instruction::FPToUI: 3281 case Instruction::FPToSI: 3282 case Instruction::FPExt: 3283 case Instruction::PtrToInt: 3284 case Instruction::IntToPtr: 3285 case Instruction::SIToFP: 3286 case Instruction::UIToFP: 3287 case Instruction::Trunc: 3288 case Instruction::FPTrunc: 3289 case Instruction::BitCast: { 3290 setInsertPointAfterBundle(E->Scalars, S); 3291 3292 Value *InVec = vectorizeTree(E->getOperand(0)); 3293 3294 if (E->VectorizedValue) { 3295 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3296 return E->VectorizedValue; 3297 } 3298 3299 CastInst *CI = dyn_cast<CastInst>(VL0); 3300 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3301 if (NeedToShuffleReuses) { 3302 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3303 E->ReuseShuffleIndices, "shuffle"); 3304 } 3305 E->VectorizedValue = V; 3306 ++NumVectorInstructions; 3307 return V; 3308 } 3309 case Instruction::FCmp: 3310 case Instruction::ICmp: { 3311 setInsertPointAfterBundle(E->Scalars, S); 3312 3313 Value *L = vectorizeTree(E->getOperand(0)); 3314 Value *R = vectorizeTree(E->getOperand(1)); 3315 3316 if (E->VectorizedValue) { 3317 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3318 return E->VectorizedValue; 3319 } 3320 3321 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3322 Value *V; 3323 if (S.getOpcode() == Instruction::FCmp) 3324 V = Builder.CreateFCmp(P0, L, R); 3325 else 3326 V = Builder.CreateICmp(P0, L, R); 3327 3328 propagateIRFlags(V, E->Scalars, VL0); 3329 if (NeedToShuffleReuses) { 3330 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3331 E->ReuseShuffleIndices, "shuffle"); 3332 } 3333 E->VectorizedValue = V; 3334 ++NumVectorInstructions; 3335 return V; 3336 } 3337 case Instruction::Select: { 3338 setInsertPointAfterBundle(E->Scalars, S); 3339 3340 Value *Cond = vectorizeTree(E->getOperand(0)); 3341 Value *True = vectorizeTree(E->getOperand(1)); 3342 Value *False = vectorizeTree(E->getOperand(2)); 3343 3344 if (E->VectorizedValue) { 3345 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3346 return E->VectorizedValue; 3347 } 3348 3349 Value *V = Builder.CreateSelect(Cond, True, False); 3350 if (NeedToShuffleReuses) { 3351 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3352 E->ReuseShuffleIndices, "shuffle"); 3353 } 3354 E->VectorizedValue = V; 3355 ++NumVectorInstructions; 3356 return V; 3357 } 3358 case Instruction::Add: 3359 case Instruction::FAdd: 3360 case Instruction::Sub: 3361 case Instruction::FSub: 3362 case Instruction::Mul: 3363 case Instruction::FMul: 3364 case Instruction::UDiv: 3365 case Instruction::SDiv: 3366 case Instruction::FDiv: 3367 case Instruction::URem: 3368 case Instruction::SRem: 3369 case Instruction::FRem: 3370 case Instruction::Shl: 3371 case Instruction::LShr: 3372 case Instruction::AShr: 3373 case Instruction::And: 3374 case Instruction::Or: 3375 case Instruction::Xor: { 3376 setInsertPointAfterBundle(E->Scalars, S); 3377 3378 Value *LHS = vectorizeTree(E->getOperand(0)); 3379 Value *RHS = vectorizeTree(E->getOperand(1)); 3380 3381 if (E->VectorizedValue) { 3382 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3383 return E->VectorizedValue; 3384 } 3385 3386 Value *V = Builder.CreateBinOp( 3387 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3388 propagateIRFlags(V, E->Scalars, VL0); 3389 if (auto *I = dyn_cast<Instruction>(V)) 3390 V = propagateMetadata(I, E->Scalars); 3391 3392 if (NeedToShuffleReuses) { 3393 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3394 E->ReuseShuffleIndices, "shuffle"); 3395 } 3396 E->VectorizedValue = V; 3397 ++NumVectorInstructions; 3398 3399 return V; 3400 } 3401 case Instruction::Load: { 3402 // Loads are inserted at the head of the tree because we don't want to 3403 // sink them all the way down past store instructions. 3404 bool IsReorder = !E->ReorderIndices.empty(); 3405 if (IsReorder) { 3406 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3407 VL0 = cast<Instruction>(S.OpValue); 3408 } 3409 setInsertPointAfterBundle(E->Scalars, S); 3410 3411 LoadInst *LI = cast<LoadInst>(VL0); 3412 Type *ScalarLoadTy = LI->getType(); 3413 unsigned AS = LI->getPointerAddressSpace(); 3414 3415 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3416 VecTy->getPointerTo(AS)); 3417 3418 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3419 // ExternalUses list to make sure that an extract will be generated in the 3420 // future. 3421 Value *PO = LI->getPointerOperand(); 3422 if (getTreeEntry(PO)) 3423 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3424 3425 unsigned Alignment = LI->getAlignment(); 3426 LI = Builder.CreateLoad(VecTy, VecPtr); 3427 if (!Alignment) { 3428 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3429 } 3430 LI->setAlignment(Alignment); 3431 Value *V = propagateMetadata(LI, E->Scalars); 3432 if (IsReorder) { 3433 OrdersType Mask; 3434 inversePermutation(E->ReorderIndices, Mask); 3435 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3436 Mask, "reorder_shuffle"); 3437 } 3438 if (NeedToShuffleReuses) { 3439 // TODO: Merge this shuffle with the ReorderShuffleMask. 3440 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3441 E->ReuseShuffleIndices, "shuffle"); 3442 } 3443 E->VectorizedValue = V; 3444 ++NumVectorInstructions; 3445 return V; 3446 } 3447 case Instruction::Store: { 3448 StoreInst *SI = cast<StoreInst>(VL0); 3449 unsigned Alignment = SI->getAlignment(); 3450 unsigned AS = SI->getPointerAddressSpace(); 3451 3452 setInsertPointAfterBundle(E->Scalars, S); 3453 3454 Value *VecValue = vectorizeTree(E->getOperand(0)); 3455 Value *ScalarPtr = SI->getPointerOperand(); 3456 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3457 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3458 3459 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3460 // ExternalUses to make sure that an extract will be generated in the 3461 // future. 3462 if (getTreeEntry(ScalarPtr)) 3463 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3464 3465 if (!Alignment) 3466 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3467 3468 ST->setAlignment(Alignment); 3469 Value *V = propagateMetadata(ST, E->Scalars); 3470 if (NeedToShuffleReuses) { 3471 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3472 E->ReuseShuffleIndices, "shuffle"); 3473 } 3474 E->VectorizedValue = V; 3475 ++NumVectorInstructions; 3476 return V; 3477 } 3478 case Instruction::GetElementPtr: { 3479 setInsertPointAfterBundle(E->Scalars, S); 3480 3481 Value *Op0 = vectorizeTree(E->getOperand(0)); 3482 3483 std::vector<Value *> OpVecs; 3484 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3485 ++j) { 3486 Value *OpVec = vectorizeTree(E->getOperand(j)); 3487 OpVecs.push_back(OpVec); 3488 } 3489 3490 Value *V = Builder.CreateGEP( 3491 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3492 if (Instruction *I = dyn_cast<Instruction>(V)) 3493 V = propagateMetadata(I, E->Scalars); 3494 3495 if (NeedToShuffleReuses) { 3496 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3497 E->ReuseShuffleIndices, "shuffle"); 3498 } 3499 E->VectorizedValue = V; 3500 ++NumVectorInstructions; 3501 3502 return V; 3503 } 3504 case Instruction::Call: { 3505 CallInst *CI = cast<CallInst>(VL0); 3506 setInsertPointAfterBundle(E->Scalars, S); 3507 Function *FI; 3508 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3509 Value *ScalarArg = nullptr; 3510 if (CI && (FI = CI->getCalledFunction())) { 3511 IID = FI->getIntrinsicID(); 3512 } 3513 std::vector<Value *> OpVecs; 3514 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3515 ValueList OpVL; 3516 // Some intrinsics have scalar arguments. This argument should not be 3517 // vectorized. 3518 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3519 CallInst *CEI = cast<CallInst>(VL0); 3520 ScalarArg = CEI->getArgOperand(j); 3521 OpVecs.push_back(CEI->getArgOperand(j)); 3522 continue; 3523 } 3524 3525 Value *OpVec = vectorizeTree(E->getOperand(j)); 3526 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3527 OpVecs.push_back(OpVec); 3528 } 3529 3530 Module *M = F->getParent(); 3531 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3532 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3533 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3534 SmallVector<OperandBundleDef, 1> OpBundles; 3535 CI->getOperandBundlesAsDefs(OpBundles); 3536 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3537 3538 // The scalar argument uses an in-tree scalar so we add the new vectorized 3539 // call to ExternalUses list to make sure that an extract will be 3540 // generated in the future. 3541 if (ScalarArg && getTreeEntry(ScalarArg)) 3542 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3543 3544 propagateIRFlags(V, E->Scalars, VL0); 3545 if (NeedToShuffleReuses) { 3546 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3547 E->ReuseShuffleIndices, "shuffle"); 3548 } 3549 E->VectorizedValue = V; 3550 ++NumVectorInstructions; 3551 return V; 3552 } 3553 case Instruction::ShuffleVector: { 3554 assert(S.isAltShuffle() && 3555 ((Instruction::isBinaryOp(S.getOpcode()) && 3556 Instruction::isBinaryOp(S.getAltOpcode())) || 3557 (Instruction::isCast(S.getOpcode()) && 3558 Instruction::isCast(S.getAltOpcode()))) && 3559 "Invalid Shuffle Vector Operand"); 3560 3561 Value *LHS, *RHS; 3562 if (Instruction::isBinaryOp(S.getOpcode())) { 3563 setInsertPointAfterBundle(E->Scalars, S); 3564 LHS = vectorizeTree(E->getOperand(0)); 3565 RHS = vectorizeTree(E->getOperand(1)); 3566 } else { 3567 setInsertPointAfterBundle(E->Scalars, S); 3568 LHS = vectorizeTree(E->getOperand(0)); 3569 } 3570 3571 if (E->VectorizedValue) { 3572 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3573 return E->VectorizedValue; 3574 } 3575 3576 Value *V0, *V1; 3577 if (Instruction::isBinaryOp(S.getOpcode())) { 3578 V0 = Builder.CreateBinOp( 3579 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3580 V1 = Builder.CreateBinOp( 3581 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3582 } else { 3583 V0 = Builder.CreateCast( 3584 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3585 V1 = Builder.CreateCast( 3586 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3587 } 3588 3589 // Create shuffle to take alternate operations from the vector. 3590 // Also, gather up main and alt scalar ops to propagate IR flags to 3591 // each vector operation. 3592 ValueList OpScalars, AltScalars; 3593 unsigned e = E->Scalars.size(); 3594 SmallVector<Constant *, 8> Mask(e); 3595 for (unsigned i = 0; i < e; ++i) { 3596 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3597 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3598 if (OpInst->getOpcode() == S.getAltOpcode()) { 3599 Mask[i] = Builder.getInt32(e + i); 3600 AltScalars.push_back(E->Scalars[i]); 3601 } else { 3602 Mask[i] = Builder.getInt32(i); 3603 OpScalars.push_back(E->Scalars[i]); 3604 } 3605 } 3606 3607 Value *ShuffleMask = ConstantVector::get(Mask); 3608 propagateIRFlags(V0, OpScalars); 3609 propagateIRFlags(V1, AltScalars); 3610 3611 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3612 if (Instruction *I = dyn_cast<Instruction>(V)) 3613 V = propagateMetadata(I, E->Scalars); 3614 if (NeedToShuffleReuses) { 3615 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3616 E->ReuseShuffleIndices, "shuffle"); 3617 } 3618 E->VectorizedValue = V; 3619 ++NumVectorInstructions; 3620 3621 return V; 3622 } 3623 default: 3624 llvm_unreachable("unknown inst"); 3625 } 3626 return nullptr; 3627 } 3628 3629 Value *BoUpSLP::vectorizeTree() { 3630 ExtraValueToDebugLocsMap ExternallyUsedValues; 3631 return vectorizeTree(ExternallyUsedValues); 3632 } 3633 3634 Value * 3635 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3636 // All blocks must be scheduled before any instructions are inserted. 3637 for (auto &BSIter : BlocksSchedules) { 3638 scheduleBlock(BSIter.second.get()); 3639 } 3640 3641 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3642 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3643 3644 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3645 // vectorized root. InstCombine will then rewrite the entire expression. We 3646 // sign extend the extracted values below. 3647 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3648 if (MinBWs.count(ScalarRoot)) { 3649 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3650 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3651 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3652 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3653 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3654 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3655 VectorizableTree[0].VectorizedValue = Trunc; 3656 } 3657 3658 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3659 << " values .\n"); 3660 3661 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3662 // specified by ScalarType. 3663 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3664 if (!MinBWs.count(ScalarRoot)) 3665 return Ex; 3666 if (MinBWs[ScalarRoot].second) 3667 return Builder.CreateSExt(Ex, ScalarType); 3668 return Builder.CreateZExt(Ex, ScalarType); 3669 }; 3670 3671 // Extract all of the elements with the external uses. 3672 for (const auto &ExternalUse : ExternalUses) { 3673 Value *Scalar = ExternalUse.Scalar; 3674 llvm::User *User = ExternalUse.User; 3675 3676 // Skip users that we already RAUW. This happens when one instruction 3677 // has multiple uses of the same value. 3678 if (User && !is_contained(Scalar->users(), User)) 3679 continue; 3680 TreeEntry *E = getTreeEntry(Scalar); 3681 assert(E && "Invalid scalar"); 3682 assert(!E->NeedToGather && "Extracting from a gather list"); 3683 3684 Value *Vec = E->VectorizedValue; 3685 assert(Vec && "Can't find vectorizable value"); 3686 3687 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3688 // If User == nullptr, the Scalar is used as extra arg. Generate 3689 // ExtractElement instruction and update the record for this scalar in 3690 // ExternallyUsedValues. 3691 if (!User) { 3692 assert(ExternallyUsedValues.count(Scalar) && 3693 "Scalar with nullptr as an external user must be registered in " 3694 "ExternallyUsedValues map"); 3695 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3696 Builder.SetInsertPoint(VecI->getParent(), 3697 std::next(VecI->getIterator())); 3698 } else { 3699 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3700 } 3701 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3702 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3703 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3704 auto &Locs = ExternallyUsedValues[Scalar]; 3705 ExternallyUsedValues.insert({Ex, Locs}); 3706 ExternallyUsedValues.erase(Scalar); 3707 // Required to update internally referenced instructions. 3708 Scalar->replaceAllUsesWith(Ex); 3709 continue; 3710 } 3711 3712 // Generate extracts for out-of-tree users. 3713 // Find the insertion point for the extractelement lane. 3714 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3715 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3716 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3717 if (PH->getIncomingValue(i) == Scalar) { 3718 Instruction *IncomingTerminator = 3719 PH->getIncomingBlock(i)->getTerminator(); 3720 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3721 Builder.SetInsertPoint(VecI->getParent(), 3722 std::next(VecI->getIterator())); 3723 } else { 3724 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3725 } 3726 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3727 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3728 CSEBlocks.insert(PH->getIncomingBlock(i)); 3729 PH->setOperand(i, Ex); 3730 } 3731 } 3732 } else { 3733 Builder.SetInsertPoint(cast<Instruction>(User)); 3734 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3735 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3736 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3737 User->replaceUsesOfWith(Scalar, Ex); 3738 } 3739 } else { 3740 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3741 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3742 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3743 CSEBlocks.insert(&F->getEntryBlock()); 3744 User->replaceUsesOfWith(Scalar, Ex); 3745 } 3746 3747 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3748 } 3749 3750 // For each vectorized value: 3751 for (TreeEntry &EIdx : VectorizableTree) { 3752 TreeEntry *Entry = &EIdx; 3753 3754 // No need to handle users of gathered values. 3755 if (Entry->NeedToGather) 3756 continue; 3757 3758 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3759 3760 // For each lane: 3761 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3762 Value *Scalar = Entry->Scalars[Lane]; 3763 3764 Type *Ty = Scalar->getType(); 3765 if (!Ty->isVoidTy()) { 3766 #ifndef NDEBUG 3767 for (User *U : Scalar->users()) { 3768 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3769 3770 // It is legal to replace users in the ignorelist by undef. 3771 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3772 "Replacing out-of-tree value with undef"); 3773 } 3774 #endif 3775 Value *Undef = UndefValue::get(Ty); 3776 Scalar->replaceAllUsesWith(Undef); 3777 } 3778 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3779 eraseInstruction(cast<Instruction>(Scalar)); 3780 } 3781 } 3782 3783 Builder.ClearInsertionPoint(); 3784 3785 return VectorizableTree[0].VectorizedValue; 3786 } 3787 3788 void BoUpSLP::optimizeGatherSequence() { 3789 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3790 << " gather sequences instructions.\n"); 3791 // LICM InsertElementInst sequences. 3792 for (Instruction *I : GatherSeq) { 3793 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3794 continue; 3795 3796 // Check if this block is inside a loop. 3797 Loop *L = LI->getLoopFor(I->getParent()); 3798 if (!L) 3799 continue; 3800 3801 // Check if it has a preheader. 3802 BasicBlock *PreHeader = L->getLoopPreheader(); 3803 if (!PreHeader) 3804 continue; 3805 3806 // If the vector or the element that we insert into it are 3807 // instructions that are defined in this basic block then we can't 3808 // hoist this instruction. 3809 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3810 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3811 if (Op0 && L->contains(Op0)) 3812 continue; 3813 if (Op1 && L->contains(Op1)) 3814 continue; 3815 3816 // We can hoist this instruction. Move it to the pre-header. 3817 I->moveBefore(PreHeader->getTerminator()); 3818 } 3819 3820 // Make a list of all reachable blocks in our CSE queue. 3821 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3822 CSEWorkList.reserve(CSEBlocks.size()); 3823 for (BasicBlock *BB : CSEBlocks) 3824 if (DomTreeNode *N = DT->getNode(BB)) { 3825 assert(DT->isReachableFromEntry(N)); 3826 CSEWorkList.push_back(N); 3827 } 3828 3829 // Sort blocks by domination. This ensures we visit a block after all blocks 3830 // dominating it are visited. 3831 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3832 [this](const DomTreeNode *A, const DomTreeNode *B) { 3833 return DT->properlyDominates(A, B); 3834 }); 3835 3836 // Perform O(N^2) search over the gather sequences and merge identical 3837 // instructions. TODO: We can further optimize this scan if we split the 3838 // instructions into different buckets based on the insert lane. 3839 SmallVector<Instruction *, 16> Visited; 3840 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3841 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3842 "Worklist not sorted properly!"); 3843 BasicBlock *BB = (*I)->getBlock(); 3844 // For all instructions in blocks containing gather sequences: 3845 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3846 Instruction *In = &*it++; 3847 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3848 continue; 3849 3850 // Check if we can replace this instruction with any of the 3851 // visited instructions. 3852 for (Instruction *v : Visited) { 3853 if (In->isIdenticalTo(v) && 3854 DT->dominates(v->getParent(), In->getParent())) { 3855 In->replaceAllUsesWith(v); 3856 eraseInstruction(In); 3857 In = nullptr; 3858 break; 3859 } 3860 } 3861 if (In) { 3862 assert(!is_contained(Visited, In)); 3863 Visited.push_back(In); 3864 } 3865 } 3866 } 3867 CSEBlocks.clear(); 3868 GatherSeq.clear(); 3869 } 3870 3871 // Groups the instructions to a bundle (which is then a single scheduling entity) 3872 // and schedules instructions until the bundle gets ready. 3873 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3874 BoUpSLP *SLP, 3875 const InstructionsState &S) { 3876 if (isa<PHINode>(S.OpValue)) 3877 return true; 3878 3879 // Initialize the instruction bundle. 3880 Instruction *OldScheduleEnd = ScheduleEnd; 3881 ScheduleData *PrevInBundle = nullptr; 3882 ScheduleData *Bundle = nullptr; 3883 bool ReSchedule = false; 3884 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3885 3886 // Make sure that the scheduling region contains all 3887 // instructions of the bundle. 3888 for (Value *V : VL) { 3889 if (!extendSchedulingRegion(V, S)) 3890 return false; 3891 } 3892 3893 for (Value *V : VL) { 3894 ScheduleData *BundleMember = getScheduleData(V); 3895 assert(BundleMember && 3896 "no ScheduleData for bundle member (maybe not in same basic block)"); 3897 if (BundleMember->IsScheduled) { 3898 // A bundle member was scheduled as single instruction before and now 3899 // needs to be scheduled as part of the bundle. We just get rid of the 3900 // existing schedule. 3901 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3902 << " was already scheduled\n"); 3903 ReSchedule = true; 3904 } 3905 assert(BundleMember->isSchedulingEntity() && 3906 "bundle member already part of other bundle"); 3907 if (PrevInBundle) { 3908 PrevInBundle->NextInBundle = BundleMember; 3909 } else { 3910 Bundle = BundleMember; 3911 } 3912 BundleMember->UnscheduledDepsInBundle = 0; 3913 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3914 3915 // Group the instructions to a bundle. 3916 BundleMember->FirstInBundle = Bundle; 3917 PrevInBundle = BundleMember; 3918 } 3919 if (ScheduleEnd != OldScheduleEnd) { 3920 // The scheduling region got new instructions at the lower end (or it is a 3921 // new region for the first bundle). This makes it necessary to 3922 // recalculate all dependencies. 3923 // It is seldom that this needs to be done a second time after adding the 3924 // initial bundle to the region. 3925 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3926 doForAllOpcodes(I, [](ScheduleData *SD) { 3927 SD->clearDependencies(); 3928 }); 3929 } 3930 ReSchedule = true; 3931 } 3932 if (ReSchedule) { 3933 resetSchedule(); 3934 initialFillReadyList(ReadyInsts); 3935 } 3936 3937 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3938 << BB->getName() << "\n"); 3939 3940 calculateDependencies(Bundle, true, SLP); 3941 3942 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3943 // means that there are no cyclic dependencies and we can schedule it. 3944 // Note that's important that we don't "schedule" the bundle yet (see 3945 // cancelScheduling). 3946 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3947 3948 ScheduleData *pickedSD = ReadyInsts.back(); 3949 ReadyInsts.pop_back(); 3950 3951 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3952 schedule(pickedSD, ReadyInsts); 3953 } 3954 } 3955 if (!Bundle->isReady()) { 3956 cancelScheduling(VL, S.OpValue); 3957 return false; 3958 } 3959 return true; 3960 } 3961 3962 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3963 Value *OpValue) { 3964 if (isa<PHINode>(OpValue)) 3965 return; 3966 3967 ScheduleData *Bundle = getScheduleData(OpValue); 3968 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3969 assert(!Bundle->IsScheduled && 3970 "Can't cancel bundle which is already scheduled"); 3971 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3972 "tried to unbundle something which is not a bundle"); 3973 3974 // Un-bundle: make single instructions out of the bundle. 3975 ScheduleData *BundleMember = Bundle; 3976 while (BundleMember) { 3977 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3978 BundleMember->FirstInBundle = BundleMember; 3979 ScheduleData *Next = BundleMember->NextInBundle; 3980 BundleMember->NextInBundle = nullptr; 3981 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3982 if (BundleMember->UnscheduledDepsInBundle == 0) { 3983 ReadyInsts.insert(BundleMember); 3984 } 3985 BundleMember = Next; 3986 } 3987 } 3988 3989 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3990 // Allocate a new ScheduleData for the instruction. 3991 if (ChunkPos >= ChunkSize) { 3992 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3993 ChunkPos = 0; 3994 } 3995 return &(ScheduleDataChunks.back()[ChunkPos++]); 3996 } 3997 3998 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3999 const InstructionsState &S) { 4000 if (getScheduleData(V, isOneOf(S, V))) 4001 return true; 4002 Instruction *I = dyn_cast<Instruction>(V); 4003 assert(I && "bundle member must be an instruction"); 4004 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4005 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4006 ScheduleData *ISD = getScheduleData(I); 4007 if (!ISD) 4008 return false; 4009 assert(isInSchedulingRegion(ISD) && 4010 "ScheduleData not in scheduling region"); 4011 ScheduleData *SD = allocateScheduleDataChunks(); 4012 SD->Inst = I; 4013 SD->init(SchedulingRegionID, S.OpValue); 4014 ExtraScheduleDataMap[I][S.OpValue] = SD; 4015 return true; 4016 }; 4017 if (CheckSheduleForI(I)) 4018 return true; 4019 if (!ScheduleStart) { 4020 // It's the first instruction in the new region. 4021 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4022 ScheduleStart = I; 4023 ScheduleEnd = I->getNextNode(); 4024 if (isOneOf(S, I) != I) 4025 CheckSheduleForI(I); 4026 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4027 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4028 return true; 4029 } 4030 // Search up and down at the same time, because we don't know if the new 4031 // instruction is above or below the existing scheduling region. 4032 BasicBlock::reverse_iterator UpIter = 4033 ++ScheduleStart->getIterator().getReverse(); 4034 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4035 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4036 BasicBlock::iterator LowerEnd = BB->end(); 4037 while (true) { 4038 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4039 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4040 return false; 4041 } 4042 4043 if (UpIter != UpperEnd) { 4044 if (&*UpIter == I) { 4045 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4046 ScheduleStart = I; 4047 if (isOneOf(S, I) != I) 4048 CheckSheduleForI(I); 4049 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4050 << "\n"); 4051 return true; 4052 } 4053 UpIter++; 4054 } 4055 if (DownIter != LowerEnd) { 4056 if (&*DownIter == I) { 4057 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4058 nullptr); 4059 ScheduleEnd = I->getNextNode(); 4060 if (isOneOf(S, I) != I) 4061 CheckSheduleForI(I); 4062 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4063 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4064 << "\n"); 4065 return true; 4066 } 4067 DownIter++; 4068 } 4069 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4070 "instruction not found in block"); 4071 } 4072 return true; 4073 } 4074 4075 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4076 Instruction *ToI, 4077 ScheduleData *PrevLoadStore, 4078 ScheduleData *NextLoadStore) { 4079 ScheduleData *CurrentLoadStore = PrevLoadStore; 4080 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4081 ScheduleData *SD = ScheduleDataMap[I]; 4082 if (!SD) { 4083 SD = allocateScheduleDataChunks(); 4084 ScheduleDataMap[I] = SD; 4085 SD->Inst = I; 4086 } 4087 assert(!isInSchedulingRegion(SD) && 4088 "new ScheduleData already in scheduling region"); 4089 SD->init(SchedulingRegionID, I); 4090 4091 if (I->mayReadOrWriteMemory() && 4092 (!isa<IntrinsicInst>(I) || 4093 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4094 // Update the linked list of memory accessing instructions. 4095 if (CurrentLoadStore) { 4096 CurrentLoadStore->NextLoadStore = SD; 4097 } else { 4098 FirstLoadStoreInRegion = SD; 4099 } 4100 CurrentLoadStore = SD; 4101 } 4102 } 4103 if (NextLoadStore) { 4104 if (CurrentLoadStore) 4105 CurrentLoadStore->NextLoadStore = NextLoadStore; 4106 } else { 4107 LastLoadStoreInRegion = CurrentLoadStore; 4108 } 4109 } 4110 4111 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4112 bool InsertInReadyList, 4113 BoUpSLP *SLP) { 4114 assert(SD->isSchedulingEntity()); 4115 4116 SmallVector<ScheduleData *, 10> WorkList; 4117 WorkList.push_back(SD); 4118 4119 while (!WorkList.empty()) { 4120 ScheduleData *SD = WorkList.back(); 4121 WorkList.pop_back(); 4122 4123 ScheduleData *BundleMember = SD; 4124 while (BundleMember) { 4125 assert(isInSchedulingRegion(BundleMember)); 4126 if (!BundleMember->hasValidDependencies()) { 4127 4128 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4129 << "\n"); 4130 BundleMember->Dependencies = 0; 4131 BundleMember->resetUnscheduledDeps(); 4132 4133 // Handle def-use chain dependencies. 4134 if (BundleMember->OpValue != BundleMember->Inst) { 4135 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4136 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4137 BundleMember->Dependencies++; 4138 ScheduleData *DestBundle = UseSD->FirstInBundle; 4139 if (!DestBundle->IsScheduled) 4140 BundleMember->incrementUnscheduledDeps(1); 4141 if (!DestBundle->hasValidDependencies()) 4142 WorkList.push_back(DestBundle); 4143 } 4144 } else { 4145 for (User *U : BundleMember->Inst->users()) { 4146 if (isa<Instruction>(U)) { 4147 ScheduleData *UseSD = getScheduleData(U); 4148 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4149 BundleMember->Dependencies++; 4150 ScheduleData *DestBundle = UseSD->FirstInBundle; 4151 if (!DestBundle->IsScheduled) 4152 BundleMember->incrementUnscheduledDeps(1); 4153 if (!DestBundle->hasValidDependencies()) 4154 WorkList.push_back(DestBundle); 4155 } 4156 } else { 4157 // I'm not sure if this can ever happen. But we need to be safe. 4158 // This lets the instruction/bundle never be scheduled and 4159 // eventually disable vectorization. 4160 BundleMember->Dependencies++; 4161 BundleMember->incrementUnscheduledDeps(1); 4162 } 4163 } 4164 } 4165 4166 // Handle the memory dependencies. 4167 ScheduleData *DepDest = BundleMember->NextLoadStore; 4168 if (DepDest) { 4169 Instruction *SrcInst = BundleMember->Inst; 4170 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4171 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4172 unsigned numAliased = 0; 4173 unsigned DistToSrc = 1; 4174 4175 while (DepDest) { 4176 assert(isInSchedulingRegion(DepDest)); 4177 4178 // We have two limits to reduce the complexity: 4179 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4180 // SLP->isAliased (which is the expensive part in this loop). 4181 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4182 // the whole loop (even if the loop is fast, it's quadratic). 4183 // It's important for the loop break condition (see below) to 4184 // check this limit even between two read-only instructions. 4185 if (DistToSrc >= MaxMemDepDistance || 4186 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4187 (numAliased >= AliasedCheckLimit || 4188 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4189 4190 // We increment the counter only if the locations are aliased 4191 // (instead of counting all alias checks). This gives a better 4192 // balance between reduced runtime and accurate dependencies. 4193 numAliased++; 4194 4195 DepDest->MemoryDependencies.push_back(BundleMember); 4196 BundleMember->Dependencies++; 4197 ScheduleData *DestBundle = DepDest->FirstInBundle; 4198 if (!DestBundle->IsScheduled) { 4199 BundleMember->incrementUnscheduledDeps(1); 4200 } 4201 if (!DestBundle->hasValidDependencies()) { 4202 WorkList.push_back(DestBundle); 4203 } 4204 } 4205 DepDest = DepDest->NextLoadStore; 4206 4207 // Example, explaining the loop break condition: Let's assume our 4208 // starting instruction is i0 and MaxMemDepDistance = 3. 4209 // 4210 // +--------v--v--v 4211 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4212 // +--------^--^--^ 4213 // 4214 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4215 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4216 // Previously we already added dependencies from i3 to i6,i7,i8 4217 // (because of MaxMemDepDistance). As we added a dependency from 4218 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4219 // and we can abort this loop at i6. 4220 if (DistToSrc >= 2 * MaxMemDepDistance) 4221 break; 4222 DistToSrc++; 4223 } 4224 } 4225 } 4226 BundleMember = BundleMember->NextInBundle; 4227 } 4228 if (InsertInReadyList && SD->isReady()) { 4229 ReadyInsts.push_back(SD); 4230 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4231 << "\n"); 4232 } 4233 } 4234 } 4235 4236 void BoUpSLP::BlockScheduling::resetSchedule() { 4237 assert(ScheduleStart && 4238 "tried to reset schedule on block which has not been scheduled"); 4239 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4240 doForAllOpcodes(I, [&](ScheduleData *SD) { 4241 assert(isInSchedulingRegion(SD) && 4242 "ScheduleData not in scheduling region"); 4243 SD->IsScheduled = false; 4244 SD->resetUnscheduledDeps(); 4245 }); 4246 } 4247 ReadyInsts.clear(); 4248 } 4249 4250 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4251 if (!BS->ScheduleStart) 4252 return; 4253 4254 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4255 4256 BS->resetSchedule(); 4257 4258 // For the real scheduling we use a more sophisticated ready-list: it is 4259 // sorted by the original instruction location. This lets the final schedule 4260 // be as close as possible to the original instruction order. 4261 struct ScheduleDataCompare { 4262 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4263 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4264 } 4265 }; 4266 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4267 4268 // Ensure that all dependency data is updated and fill the ready-list with 4269 // initial instructions. 4270 int Idx = 0; 4271 int NumToSchedule = 0; 4272 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4273 I = I->getNextNode()) { 4274 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4275 assert(SD->isPartOfBundle() == 4276 (getTreeEntry(SD->Inst) != nullptr) && 4277 "scheduler and vectorizer bundle mismatch"); 4278 SD->FirstInBundle->SchedulingPriority = Idx++; 4279 if (SD->isSchedulingEntity()) { 4280 BS->calculateDependencies(SD, false, this); 4281 NumToSchedule++; 4282 } 4283 }); 4284 } 4285 BS->initialFillReadyList(ReadyInsts); 4286 4287 Instruction *LastScheduledInst = BS->ScheduleEnd; 4288 4289 // Do the "real" scheduling. 4290 while (!ReadyInsts.empty()) { 4291 ScheduleData *picked = *ReadyInsts.begin(); 4292 ReadyInsts.erase(ReadyInsts.begin()); 4293 4294 // Move the scheduled instruction(s) to their dedicated places, if not 4295 // there yet. 4296 ScheduleData *BundleMember = picked; 4297 while (BundleMember) { 4298 Instruction *pickedInst = BundleMember->Inst; 4299 if (LastScheduledInst->getNextNode() != pickedInst) { 4300 BS->BB->getInstList().remove(pickedInst); 4301 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4302 pickedInst); 4303 } 4304 LastScheduledInst = pickedInst; 4305 BundleMember = BundleMember->NextInBundle; 4306 } 4307 4308 BS->schedule(picked, ReadyInsts); 4309 NumToSchedule--; 4310 } 4311 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4312 4313 // Avoid duplicate scheduling of the block. 4314 BS->ScheduleStart = nullptr; 4315 } 4316 4317 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4318 // If V is a store, just return the width of the stored value without 4319 // traversing the expression tree. This is the common case. 4320 if (auto *Store = dyn_cast<StoreInst>(V)) 4321 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4322 4323 // If V is not a store, we can traverse the expression tree to find loads 4324 // that feed it. The type of the loaded value may indicate a more suitable 4325 // width than V's type. We want to base the vector element size on the width 4326 // of memory operations where possible. 4327 SmallVector<Instruction *, 16> Worklist; 4328 SmallPtrSet<Instruction *, 16> Visited; 4329 if (auto *I = dyn_cast<Instruction>(V)) 4330 Worklist.push_back(I); 4331 4332 // Traverse the expression tree in bottom-up order looking for loads. If we 4333 // encounter an instruction we don't yet handle, we give up. 4334 auto MaxWidth = 0u; 4335 auto FoundUnknownInst = false; 4336 while (!Worklist.empty() && !FoundUnknownInst) { 4337 auto *I = Worklist.pop_back_val(); 4338 Visited.insert(I); 4339 4340 // We should only be looking at scalar instructions here. If the current 4341 // instruction has a vector type, give up. 4342 auto *Ty = I->getType(); 4343 if (isa<VectorType>(Ty)) 4344 FoundUnknownInst = true; 4345 4346 // If the current instruction is a load, update MaxWidth to reflect the 4347 // width of the loaded value. 4348 else if (isa<LoadInst>(I)) 4349 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4350 4351 // Otherwise, we need to visit the operands of the instruction. We only 4352 // handle the interesting cases from buildTree here. If an operand is an 4353 // instruction we haven't yet visited, we add it to the worklist. 4354 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4355 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4356 for (Use &U : I->operands()) 4357 if (auto *J = dyn_cast<Instruction>(U.get())) 4358 if (!Visited.count(J)) 4359 Worklist.push_back(J); 4360 } 4361 4362 // If we don't yet handle the instruction, give up. 4363 else 4364 FoundUnknownInst = true; 4365 } 4366 4367 // If we didn't encounter a memory access in the expression tree, or if we 4368 // gave up for some reason, just return the width of V. 4369 if (!MaxWidth || FoundUnknownInst) 4370 return DL->getTypeSizeInBits(V->getType()); 4371 4372 // Otherwise, return the maximum width we found. 4373 return MaxWidth; 4374 } 4375 4376 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4377 // smaller type with a truncation. We collect the values that will be demoted 4378 // in ToDemote and additional roots that require investigating in Roots. 4379 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4380 SmallVectorImpl<Value *> &ToDemote, 4381 SmallVectorImpl<Value *> &Roots) { 4382 // We can always demote constants. 4383 if (isa<Constant>(V)) { 4384 ToDemote.push_back(V); 4385 return true; 4386 } 4387 4388 // If the value is not an instruction in the expression with only one use, it 4389 // cannot be demoted. 4390 auto *I = dyn_cast<Instruction>(V); 4391 if (!I || !I->hasOneUse() || !Expr.count(I)) 4392 return false; 4393 4394 switch (I->getOpcode()) { 4395 4396 // We can always demote truncations and extensions. Since truncations can 4397 // seed additional demotion, we save the truncated value. 4398 case Instruction::Trunc: 4399 Roots.push_back(I->getOperand(0)); 4400 break; 4401 case Instruction::ZExt: 4402 case Instruction::SExt: 4403 break; 4404 4405 // We can demote certain binary operations if we can demote both of their 4406 // operands. 4407 case Instruction::Add: 4408 case Instruction::Sub: 4409 case Instruction::Mul: 4410 case Instruction::And: 4411 case Instruction::Or: 4412 case Instruction::Xor: 4413 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4414 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4415 return false; 4416 break; 4417 4418 // We can demote selects if we can demote their true and false values. 4419 case Instruction::Select: { 4420 SelectInst *SI = cast<SelectInst>(I); 4421 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4422 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4423 return false; 4424 break; 4425 } 4426 4427 // We can demote phis if we can demote all their incoming operands. Note that 4428 // we don't need to worry about cycles since we ensure single use above. 4429 case Instruction::PHI: { 4430 PHINode *PN = cast<PHINode>(I); 4431 for (Value *IncValue : PN->incoming_values()) 4432 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4433 return false; 4434 break; 4435 } 4436 4437 // Otherwise, conservatively give up. 4438 default: 4439 return false; 4440 } 4441 4442 // Record the value that we can demote. 4443 ToDemote.push_back(V); 4444 return true; 4445 } 4446 4447 void BoUpSLP::computeMinimumValueSizes() { 4448 // If there are no external uses, the expression tree must be rooted by a 4449 // store. We can't demote in-memory values, so there is nothing to do here. 4450 if (ExternalUses.empty()) 4451 return; 4452 4453 // We only attempt to truncate integer expressions. 4454 auto &TreeRoot = VectorizableTree[0].Scalars; 4455 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4456 if (!TreeRootIT) 4457 return; 4458 4459 // If the expression is not rooted by a store, these roots should have 4460 // external uses. We will rely on InstCombine to rewrite the expression in 4461 // the narrower type. However, InstCombine only rewrites single-use values. 4462 // This means that if a tree entry other than a root is used externally, it 4463 // must have multiple uses and InstCombine will not rewrite it. The code 4464 // below ensures that only the roots are used externally. 4465 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4466 for (auto &EU : ExternalUses) 4467 if (!Expr.erase(EU.Scalar)) 4468 return; 4469 if (!Expr.empty()) 4470 return; 4471 4472 // Collect the scalar values of the vectorizable expression. We will use this 4473 // context to determine which values can be demoted. If we see a truncation, 4474 // we mark it as seeding another demotion. 4475 for (auto &Entry : VectorizableTree) 4476 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4477 4478 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4479 // have a single external user that is not in the vectorizable tree. 4480 for (auto *Root : TreeRoot) 4481 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4482 return; 4483 4484 // Conservatively determine if we can actually truncate the roots of the 4485 // expression. Collect the values that can be demoted in ToDemote and 4486 // additional roots that require investigating in Roots. 4487 SmallVector<Value *, 32> ToDemote; 4488 SmallVector<Value *, 4> Roots; 4489 for (auto *Root : TreeRoot) 4490 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4491 return; 4492 4493 // The maximum bit width required to represent all the values that can be 4494 // demoted without loss of precision. It would be safe to truncate the roots 4495 // of the expression to this width. 4496 auto MaxBitWidth = 8u; 4497 4498 // We first check if all the bits of the roots are demanded. If they're not, 4499 // we can truncate the roots to this narrower type. 4500 for (auto *Root : TreeRoot) { 4501 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4502 MaxBitWidth = std::max<unsigned>( 4503 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4504 } 4505 4506 // True if the roots can be zero-extended back to their original type, rather 4507 // than sign-extended. We know that if the leading bits are not demanded, we 4508 // can safely zero-extend. So we initialize IsKnownPositive to True. 4509 bool IsKnownPositive = true; 4510 4511 // If all the bits of the roots are demanded, we can try a little harder to 4512 // compute a narrower type. This can happen, for example, if the roots are 4513 // getelementptr indices. InstCombine promotes these indices to the pointer 4514 // width. Thus, all their bits are technically demanded even though the 4515 // address computation might be vectorized in a smaller type. 4516 // 4517 // We start by looking at each entry that can be demoted. We compute the 4518 // maximum bit width required to store the scalar by using ValueTracking to 4519 // compute the number of high-order bits we can truncate. 4520 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4521 llvm::all_of(TreeRoot, [](Value *R) { 4522 assert(R->hasOneUse() && "Root should have only one use!"); 4523 return isa<GetElementPtrInst>(R->user_back()); 4524 })) { 4525 MaxBitWidth = 8u; 4526 4527 // Determine if the sign bit of all the roots is known to be zero. If not, 4528 // IsKnownPositive is set to False. 4529 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4530 KnownBits Known = computeKnownBits(R, *DL); 4531 return Known.isNonNegative(); 4532 }); 4533 4534 // Determine the maximum number of bits required to store the scalar 4535 // values. 4536 for (auto *Scalar : ToDemote) { 4537 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4538 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4539 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4540 } 4541 4542 // If we can't prove that the sign bit is zero, we must add one to the 4543 // maximum bit width to account for the unknown sign bit. This preserves 4544 // the existing sign bit so we can safely sign-extend the root back to the 4545 // original type. Otherwise, if we know the sign bit is zero, we will 4546 // zero-extend the root instead. 4547 // 4548 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4549 // one to the maximum bit width will yield a larger-than-necessary 4550 // type. In general, we need to add an extra bit only if we can't 4551 // prove that the upper bit of the original type is equal to the 4552 // upper bit of the proposed smaller type. If these two bits are the 4553 // same (either zero or one) we know that sign-extending from the 4554 // smaller type will result in the same value. Here, since we can't 4555 // yet prove this, we are just making the proposed smaller type 4556 // larger to ensure correctness. 4557 if (!IsKnownPositive) 4558 ++MaxBitWidth; 4559 } 4560 4561 // Round MaxBitWidth up to the next power-of-two. 4562 if (!isPowerOf2_64(MaxBitWidth)) 4563 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4564 4565 // If the maximum bit width we compute is less than the with of the roots' 4566 // type, we can proceed with the narrowing. Otherwise, do nothing. 4567 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4568 return; 4569 4570 // If we can truncate the root, we must collect additional values that might 4571 // be demoted as a result. That is, those seeded by truncations we will 4572 // modify. 4573 while (!Roots.empty()) 4574 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4575 4576 // Finally, map the values we can demote to the maximum bit with we computed. 4577 for (auto *Scalar : ToDemote) 4578 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4579 } 4580 4581 namespace { 4582 4583 /// The SLPVectorizer Pass. 4584 struct SLPVectorizer : public FunctionPass { 4585 SLPVectorizerPass Impl; 4586 4587 /// Pass identification, replacement for typeid 4588 static char ID; 4589 4590 explicit SLPVectorizer() : FunctionPass(ID) { 4591 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4592 } 4593 4594 bool doInitialization(Module &M) override { 4595 return false; 4596 } 4597 4598 bool runOnFunction(Function &F) override { 4599 if (skipFunction(F)) 4600 return false; 4601 4602 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4603 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4604 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4605 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4606 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4607 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4608 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4609 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4610 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4611 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4612 4613 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4614 } 4615 4616 void getAnalysisUsage(AnalysisUsage &AU) const override { 4617 FunctionPass::getAnalysisUsage(AU); 4618 AU.addRequired<AssumptionCacheTracker>(); 4619 AU.addRequired<ScalarEvolutionWrapperPass>(); 4620 AU.addRequired<AAResultsWrapperPass>(); 4621 AU.addRequired<TargetTransformInfoWrapperPass>(); 4622 AU.addRequired<LoopInfoWrapperPass>(); 4623 AU.addRequired<DominatorTreeWrapperPass>(); 4624 AU.addRequired<DemandedBitsWrapperPass>(); 4625 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4626 AU.addPreserved<LoopInfoWrapperPass>(); 4627 AU.addPreserved<DominatorTreeWrapperPass>(); 4628 AU.addPreserved<AAResultsWrapperPass>(); 4629 AU.addPreserved<GlobalsAAWrapperPass>(); 4630 AU.setPreservesCFG(); 4631 } 4632 }; 4633 4634 } // end anonymous namespace 4635 4636 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4637 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4638 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4639 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4640 auto *AA = &AM.getResult<AAManager>(F); 4641 auto *LI = &AM.getResult<LoopAnalysis>(F); 4642 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4643 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4644 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4645 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4646 4647 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4648 if (!Changed) 4649 return PreservedAnalyses::all(); 4650 4651 PreservedAnalyses PA; 4652 PA.preserveSet<CFGAnalyses>(); 4653 PA.preserve<AAManager>(); 4654 PA.preserve<GlobalsAA>(); 4655 return PA; 4656 } 4657 4658 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4659 TargetTransformInfo *TTI_, 4660 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4661 LoopInfo *LI_, DominatorTree *DT_, 4662 AssumptionCache *AC_, DemandedBits *DB_, 4663 OptimizationRemarkEmitter *ORE_) { 4664 SE = SE_; 4665 TTI = TTI_; 4666 TLI = TLI_; 4667 AA = AA_; 4668 LI = LI_; 4669 DT = DT_; 4670 AC = AC_; 4671 DB = DB_; 4672 DL = &F.getParent()->getDataLayout(); 4673 4674 Stores.clear(); 4675 GEPs.clear(); 4676 bool Changed = false; 4677 4678 // If the target claims to have no vector registers don't attempt 4679 // vectorization. 4680 if (!TTI->getNumberOfRegisters(true)) 4681 return false; 4682 4683 // Don't vectorize when the attribute NoImplicitFloat is used. 4684 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4685 return false; 4686 4687 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4688 4689 // Use the bottom up slp vectorizer to construct chains that start with 4690 // store instructions. 4691 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4692 4693 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4694 // delete instructions. 4695 4696 // Scan the blocks in the function in post order. 4697 for (auto BB : post_order(&F.getEntryBlock())) { 4698 collectSeedInstructions(BB); 4699 4700 // Vectorize trees that end at stores. 4701 if (!Stores.empty()) { 4702 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4703 << " underlying objects.\n"); 4704 Changed |= vectorizeStoreChains(R); 4705 } 4706 4707 // Vectorize trees that end at reductions. 4708 Changed |= vectorizeChainsInBlock(BB, R); 4709 4710 // Vectorize the index computations of getelementptr instructions. This 4711 // is primarily intended to catch gather-like idioms ending at 4712 // non-consecutive loads. 4713 if (!GEPs.empty()) { 4714 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4715 << " underlying objects.\n"); 4716 Changed |= vectorizeGEPIndices(BB, R); 4717 } 4718 } 4719 4720 if (Changed) { 4721 R.optimizeGatherSequence(); 4722 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4723 LLVM_DEBUG(verifyFunction(F)); 4724 } 4725 return Changed; 4726 } 4727 4728 /// Check that the Values in the slice in VL array are still existent in 4729 /// the WeakTrackingVH array. 4730 /// Vectorization of part of the VL array may cause later values in the VL array 4731 /// to become invalid. We track when this has happened in the WeakTrackingVH 4732 /// array. 4733 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4734 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4735 unsigned SliceSize) { 4736 VL = VL.slice(SliceBegin, SliceSize); 4737 VH = VH.slice(SliceBegin, SliceSize); 4738 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4739 } 4740 4741 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4742 unsigned VecRegSize) { 4743 const unsigned ChainLen = Chain.size(); 4744 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4745 << "\n"); 4746 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4747 const unsigned VF = VecRegSize / Sz; 4748 4749 if (!isPowerOf2_32(Sz) || VF < 2) 4750 return false; 4751 4752 // Keep track of values that were deleted by vectorizing in the loop below. 4753 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4754 4755 bool Changed = false; 4756 // Look for profitable vectorizable trees at all offsets, starting at zero. 4757 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4758 4759 // Check that a previous iteration of this loop did not delete the Value. 4760 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4761 continue; 4762 4763 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4764 << "\n"); 4765 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4766 4767 R.buildTree(Operands); 4768 if (R.isTreeTinyAndNotFullyVectorizable()) 4769 continue; 4770 4771 R.computeMinimumValueSizes(); 4772 4773 int Cost = R.getTreeCost(); 4774 4775 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4776 << "\n"); 4777 if (Cost < -SLPCostThreshold) { 4778 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4779 4780 using namespace ore; 4781 4782 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4783 cast<StoreInst>(Chain[i])) 4784 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4785 << " and with tree size " 4786 << NV("TreeSize", R.getTreeSize())); 4787 4788 R.vectorizeTree(); 4789 4790 // Move to the next bundle. 4791 i += VF - 1; 4792 Changed = true; 4793 } 4794 } 4795 4796 return Changed; 4797 } 4798 4799 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4800 BoUpSLP &R) { 4801 SetVector<StoreInst *> Heads; 4802 SmallDenseSet<StoreInst *> Tails; 4803 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4804 4805 // We may run into multiple chains that merge into a single chain. We mark the 4806 // stores that we vectorized so that we don't visit the same store twice. 4807 BoUpSLP::ValueSet VectorizedStores; 4808 bool Changed = false; 4809 4810 auto &&FindConsecutiveAccess = 4811 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 4812 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 4813 return false; 4814 4815 Tails.insert(Stores[Idx]); 4816 Heads.insert(Stores[K]); 4817 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4818 return true; 4819 }; 4820 4821 // Do a quadratic search on all of the given stores in reverse order and find 4822 // all of the pairs of stores that follow each other. 4823 int E = Stores.size(); 4824 for (int Idx = E - 1; Idx >= 0; --Idx) { 4825 // If a store has multiple consecutive store candidates, search according 4826 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4827 // This is because usually pairing with immediate succeeding or preceding 4828 // candidate create the best chance to find slp vectorization opportunity. 4829 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 4830 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 4831 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 4832 break; 4833 } 4834 4835 // For stores that start but don't end a link in the chain: 4836 for (auto *SI : llvm::reverse(Heads)) { 4837 if (Tails.count(SI)) 4838 continue; 4839 4840 // We found a store instr that starts a chain. Now follow the chain and try 4841 // to vectorize it. 4842 BoUpSLP::ValueList Operands; 4843 StoreInst *I = SI; 4844 // Collect the chain into a list. 4845 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4846 Operands.push_back(I); 4847 // Move to the next value in the chain. 4848 I = ConsecutiveChain[I]; 4849 } 4850 4851 // FIXME: Is division-by-2 the correct step? Should we assert that the 4852 // register size is a power-of-2? 4853 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4854 Size /= 2) { 4855 if (vectorizeStoreChain(Operands, R, Size)) { 4856 // Mark the vectorized stores so that we don't vectorize them again. 4857 VectorizedStores.insert(Operands.begin(), Operands.end()); 4858 Changed = true; 4859 break; 4860 } 4861 } 4862 } 4863 4864 return Changed; 4865 } 4866 4867 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4868 // Initialize the collections. We will make a single pass over the block. 4869 Stores.clear(); 4870 GEPs.clear(); 4871 4872 // Visit the store and getelementptr instructions in BB and organize them in 4873 // Stores and GEPs according to the underlying objects of their pointer 4874 // operands. 4875 for (Instruction &I : *BB) { 4876 // Ignore store instructions that are volatile or have a pointer operand 4877 // that doesn't point to a scalar type. 4878 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4879 if (!SI->isSimple()) 4880 continue; 4881 if (!isValidElementType(SI->getValueOperand()->getType())) 4882 continue; 4883 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4884 } 4885 4886 // Ignore getelementptr instructions that have more than one index, a 4887 // constant index, or a pointer operand that doesn't point to a scalar 4888 // type. 4889 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4890 auto Idx = GEP->idx_begin()->get(); 4891 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4892 continue; 4893 if (!isValidElementType(Idx->getType())) 4894 continue; 4895 if (GEP->getType()->isVectorTy()) 4896 continue; 4897 GEPs[GEP->getPointerOperand()].push_back(GEP); 4898 } 4899 } 4900 } 4901 4902 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4903 if (!A || !B) 4904 return false; 4905 Value *VL[] = { A, B }; 4906 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4907 } 4908 4909 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4910 int UserCost, bool AllowReorder) { 4911 if (VL.size() < 2) 4912 return false; 4913 4914 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4915 << VL.size() << ".\n"); 4916 4917 // Check that all of the parts are scalar instructions of the same type, 4918 // we permit an alternate opcode via InstructionsState. 4919 InstructionsState S = getSameOpcode(VL); 4920 if (!S.getOpcode()) 4921 return false; 4922 4923 Instruction *I0 = cast<Instruction>(S.OpValue); 4924 unsigned Sz = R.getVectorElementSize(I0); 4925 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4926 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4927 if (MaxVF < 2) { 4928 R.getORE()->emit([&]() { 4929 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 4930 << "Cannot SLP vectorize list: vectorization factor " 4931 << "less than 2 is not supported"; 4932 }); 4933 return false; 4934 } 4935 4936 for (Value *V : VL) { 4937 Type *Ty = V->getType(); 4938 if (!isValidElementType(Ty)) { 4939 // NOTE: the following will give user internal llvm type name, which may 4940 // not be useful. 4941 R.getORE()->emit([&]() { 4942 std::string type_str; 4943 llvm::raw_string_ostream rso(type_str); 4944 Ty->print(rso); 4945 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4946 << "Cannot SLP vectorize list: type " 4947 << rso.str() + " is unsupported by vectorizer"; 4948 }); 4949 return false; 4950 } 4951 } 4952 4953 bool Changed = false; 4954 bool CandidateFound = false; 4955 int MinCost = SLPCostThreshold; 4956 4957 // Keep track of values that were deleted by vectorizing in the loop below. 4958 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4959 4960 unsigned NextInst = 0, MaxInst = VL.size(); 4961 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4962 VF /= 2) { 4963 // No actual vectorization should happen, if number of parts is the same as 4964 // provided vectorization factor (i.e. the scalar type is used for vector 4965 // code during codegen). 4966 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4967 if (TTI->getNumberOfParts(VecTy) == VF) 4968 continue; 4969 for (unsigned I = NextInst; I < MaxInst; ++I) { 4970 unsigned OpsWidth = 0; 4971 4972 if (I + VF > MaxInst) 4973 OpsWidth = MaxInst - I; 4974 else 4975 OpsWidth = VF; 4976 4977 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4978 break; 4979 4980 // Check that a previous iteration of this loop did not delete the Value. 4981 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4982 continue; 4983 4984 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4985 << "\n"); 4986 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4987 4988 R.buildTree(Ops); 4989 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4990 // TODO: check if we can allow reordering for more cases. 4991 if (AllowReorder && Order) { 4992 // TODO: reorder tree nodes without tree rebuilding. 4993 // Conceptually, there is nothing actually preventing us from trying to 4994 // reorder a larger list. In fact, we do exactly this when vectorizing 4995 // reductions. However, at this point, we only expect to get here when 4996 // there are exactly two operations. 4997 assert(Ops.size() == 2); 4998 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4999 R.buildTree(ReorderedOps, None); 5000 } 5001 if (R.isTreeTinyAndNotFullyVectorizable()) 5002 continue; 5003 5004 R.computeMinimumValueSizes(); 5005 int Cost = R.getTreeCost() - UserCost; 5006 CandidateFound = true; 5007 MinCost = std::min(MinCost, Cost); 5008 5009 if (Cost < -SLPCostThreshold) { 5010 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5011 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5012 cast<Instruction>(Ops[0])) 5013 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5014 << " and with tree size " 5015 << ore::NV("TreeSize", R.getTreeSize())); 5016 5017 R.vectorizeTree(); 5018 // Move to the next bundle. 5019 I += VF - 1; 5020 NextInst = I + 1; 5021 Changed = true; 5022 } 5023 } 5024 } 5025 5026 if (!Changed && CandidateFound) { 5027 R.getORE()->emit([&]() { 5028 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5029 << "List vectorization was possible but not beneficial with cost " 5030 << ore::NV("Cost", MinCost) << " >= " 5031 << ore::NV("Treshold", -SLPCostThreshold); 5032 }); 5033 } else if (!Changed) { 5034 R.getORE()->emit([&]() { 5035 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5036 << "Cannot SLP vectorize list: vectorization was impossible" 5037 << " with available vectorization factors"; 5038 }); 5039 } 5040 return Changed; 5041 } 5042 5043 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5044 if (!I) 5045 return false; 5046 5047 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5048 return false; 5049 5050 Value *P = I->getParent(); 5051 5052 // Vectorize in current basic block only. 5053 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5054 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5055 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5056 return false; 5057 5058 // Try to vectorize V. 5059 if (tryToVectorizePair(Op0, Op1, R)) 5060 return true; 5061 5062 auto *A = dyn_cast<BinaryOperator>(Op0); 5063 auto *B = dyn_cast<BinaryOperator>(Op1); 5064 // Try to skip B. 5065 if (B && B->hasOneUse()) { 5066 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5067 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5068 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5069 return true; 5070 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5071 return true; 5072 } 5073 5074 // Try to skip A. 5075 if (A && A->hasOneUse()) { 5076 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5077 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5078 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5079 return true; 5080 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5081 return true; 5082 } 5083 return false; 5084 } 5085 5086 /// Generate a shuffle mask to be used in a reduction tree. 5087 /// 5088 /// \param VecLen The length of the vector to be reduced. 5089 /// \param NumEltsToRdx The number of elements that should be reduced in the 5090 /// vector. 5091 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5092 /// reduction. A pairwise reduction will generate a mask of 5093 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5094 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5095 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5096 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5097 bool IsPairwise, bool IsLeft, 5098 IRBuilder<> &Builder) { 5099 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5100 5101 SmallVector<Constant *, 32> ShuffleMask( 5102 VecLen, UndefValue::get(Builder.getInt32Ty())); 5103 5104 if (IsPairwise) 5105 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5106 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5107 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5108 else 5109 // Move the upper half of the vector to the lower half. 5110 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5111 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5112 5113 return ConstantVector::get(ShuffleMask); 5114 } 5115 5116 namespace { 5117 5118 /// Model horizontal reductions. 5119 /// 5120 /// A horizontal reduction is a tree of reduction operations (currently add and 5121 /// fadd) that has operations that can be put into a vector as its leaf. 5122 /// For example, this tree: 5123 /// 5124 /// mul mul mul mul 5125 /// \ / \ / 5126 /// + + 5127 /// \ / 5128 /// + 5129 /// This tree has "mul" as its reduced values and "+" as its reduction 5130 /// operations. A reduction might be feeding into a store or a binary operation 5131 /// feeding a phi. 5132 /// ... 5133 /// \ / 5134 /// + 5135 /// | 5136 /// phi += 5137 /// 5138 /// Or: 5139 /// ... 5140 /// \ / 5141 /// + 5142 /// | 5143 /// *p = 5144 /// 5145 class HorizontalReduction { 5146 using ReductionOpsType = SmallVector<Value *, 16>; 5147 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5148 ReductionOpsListType ReductionOps; 5149 SmallVector<Value *, 32> ReducedVals; 5150 // Use map vector to make stable output. 5151 MapVector<Instruction *, Value *> ExtraArgs; 5152 5153 /// Kind of the reduction data. 5154 enum ReductionKind { 5155 RK_None, /// Not a reduction. 5156 RK_Arithmetic, /// Binary reduction data. 5157 RK_Min, /// Minimum reduction data. 5158 RK_UMin, /// Unsigned minimum reduction data. 5159 RK_Max, /// Maximum reduction data. 5160 RK_UMax, /// Unsigned maximum reduction data. 5161 }; 5162 5163 /// Contains info about operation, like its opcode, left and right operands. 5164 class OperationData { 5165 /// Opcode of the instruction. 5166 unsigned Opcode = 0; 5167 5168 /// Left operand of the reduction operation. 5169 Value *LHS = nullptr; 5170 5171 /// Right operand of the reduction operation. 5172 Value *RHS = nullptr; 5173 5174 /// Kind of the reduction operation. 5175 ReductionKind Kind = RK_None; 5176 5177 /// True if float point min/max reduction has no NaNs. 5178 bool NoNaN = false; 5179 5180 /// Checks if the reduction operation can be vectorized. 5181 bool isVectorizable() const { 5182 return LHS && RHS && 5183 // We currently only support add/mul/logical && min/max reductions. 5184 ((Kind == RK_Arithmetic && 5185 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5186 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5187 Opcode == Instruction::And || Opcode == Instruction::Or || 5188 Opcode == Instruction::Xor)) || 5189 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5190 (Kind == RK_Min || Kind == RK_Max)) || 5191 (Opcode == Instruction::ICmp && 5192 (Kind == RK_UMin || Kind == RK_UMax))); 5193 } 5194 5195 /// Creates reduction operation with the current opcode. 5196 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5197 assert(isVectorizable() && 5198 "Expected add|fadd or min/max reduction operation."); 5199 Value *Cmp; 5200 switch (Kind) { 5201 case RK_Arithmetic: 5202 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5203 Name); 5204 case RK_Min: 5205 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5206 : Builder.CreateFCmpOLT(LHS, RHS); 5207 break; 5208 case RK_Max: 5209 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5210 : Builder.CreateFCmpOGT(LHS, RHS); 5211 break; 5212 case RK_UMin: 5213 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5214 Cmp = Builder.CreateICmpULT(LHS, RHS); 5215 break; 5216 case RK_UMax: 5217 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5218 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5219 break; 5220 case RK_None: 5221 llvm_unreachable("Unknown reduction operation."); 5222 } 5223 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5224 } 5225 5226 public: 5227 explicit OperationData() = default; 5228 5229 /// Construction for reduced values. They are identified by opcode only and 5230 /// don't have associated LHS/RHS values. 5231 explicit OperationData(Value *V) { 5232 if (auto *I = dyn_cast<Instruction>(V)) 5233 Opcode = I->getOpcode(); 5234 } 5235 5236 /// Constructor for reduction operations with opcode and its left and 5237 /// right operands. 5238 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5239 bool NoNaN = false) 5240 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5241 assert(Kind != RK_None && "One of the reduction operations is expected."); 5242 } 5243 5244 explicit operator bool() const { return Opcode; } 5245 5246 /// Get the index of the first operand. 5247 unsigned getFirstOperandIndex() const { 5248 assert(!!*this && "The opcode is not set."); 5249 switch (Kind) { 5250 case RK_Min: 5251 case RK_UMin: 5252 case RK_Max: 5253 case RK_UMax: 5254 return 1; 5255 case RK_Arithmetic: 5256 case RK_None: 5257 break; 5258 } 5259 return 0; 5260 } 5261 5262 /// Total number of operands in the reduction operation. 5263 unsigned getNumberOfOperands() const { 5264 assert(Kind != RK_None && !!*this && LHS && RHS && 5265 "Expected reduction operation."); 5266 switch (Kind) { 5267 case RK_Arithmetic: 5268 return 2; 5269 case RK_Min: 5270 case RK_UMin: 5271 case RK_Max: 5272 case RK_UMax: 5273 return 3; 5274 case RK_None: 5275 break; 5276 } 5277 llvm_unreachable("Reduction kind is not set"); 5278 } 5279 5280 /// Checks if the operation has the same parent as \p P. 5281 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5282 assert(Kind != RK_None && !!*this && LHS && RHS && 5283 "Expected reduction operation."); 5284 if (!IsRedOp) 5285 return I->getParent() == P; 5286 switch (Kind) { 5287 case RK_Arithmetic: 5288 // Arithmetic reduction operation must be used once only. 5289 return I->getParent() == P; 5290 case RK_Min: 5291 case RK_UMin: 5292 case RK_Max: 5293 case RK_UMax: { 5294 // SelectInst must be used twice while the condition op must have single 5295 // use only. 5296 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5297 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5298 } 5299 case RK_None: 5300 break; 5301 } 5302 llvm_unreachable("Reduction kind is not set"); 5303 } 5304 /// Expected number of uses for reduction operations/reduced values. 5305 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5306 assert(Kind != RK_None && !!*this && LHS && RHS && 5307 "Expected reduction operation."); 5308 switch (Kind) { 5309 case RK_Arithmetic: 5310 return I->hasOneUse(); 5311 case RK_Min: 5312 case RK_UMin: 5313 case RK_Max: 5314 case RK_UMax: 5315 return I->hasNUses(2) && 5316 (!IsReductionOp || 5317 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5318 case RK_None: 5319 break; 5320 } 5321 llvm_unreachable("Reduction kind is not set"); 5322 } 5323 5324 /// Initializes the list of reduction operations. 5325 void initReductionOps(ReductionOpsListType &ReductionOps) { 5326 assert(Kind != RK_None && !!*this && LHS && RHS && 5327 "Expected reduction operation."); 5328 switch (Kind) { 5329 case RK_Arithmetic: 5330 ReductionOps.assign(1, ReductionOpsType()); 5331 break; 5332 case RK_Min: 5333 case RK_UMin: 5334 case RK_Max: 5335 case RK_UMax: 5336 ReductionOps.assign(2, ReductionOpsType()); 5337 break; 5338 case RK_None: 5339 llvm_unreachable("Reduction kind is not set"); 5340 } 5341 } 5342 /// Add all reduction operations for the reduction instruction \p I. 5343 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5344 assert(Kind != RK_None && !!*this && LHS && RHS && 5345 "Expected reduction operation."); 5346 switch (Kind) { 5347 case RK_Arithmetic: 5348 ReductionOps[0].emplace_back(I); 5349 break; 5350 case RK_Min: 5351 case RK_UMin: 5352 case RK_Max: 5353 case RK_UMax: 5354 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5355 ReductionOps[1].emplace_back(I); 5356 break; 5357 case RK_None: 5358 llvm_unreachable("Reduction kind is not set"); 5359 } 5360 } 5361 5362 /// Checks if instruction is associative and can be vectorized. 5363 bool isAssociative(Instruction *I) const { 5364 assert(Kind != RK_None && *this && LHS && RHS && 5365 "Expected reduction operation."); 5366 switch (Kind) { 5367 case RK_Arithmetic: 5368 return I->isAssociative(); 5369 case RK_Min: 5370 case RK_Max: 5371 return Opcode == Instruction::ICmp || 5372 cast<Instruction>(I->getOperand(0))->isFast(); 5373 case RK_UMin: 5374 case RK_UMax: 5375 assert(Opcode == Instruction::ICmp && 5376 "Only integer compare operation is expected."); 5377 return true; 5378 case RK_None: 5379 break; 5380 } 5381 llvm_unreachable("Reduction kind is not set"); 5382 } 5383 5384 /// Checks if the reduction operation can be vectorized. 5385 bool isVectorizable(Instruction *I) const { 5386 return isVectorizable() && isAssociative(I); 5387 } 5388 5389 /// Checks if two operation data are both a reduction op or both a reduced 5390 /// value. 5391 bool operator==(const OperationData &OD) { 5392 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5393 "One of the comparing operations is incorrect."); 5394 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5395 } 5396 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5397 void clear() { 5398 Opcode = 0; 5399 LHS = nullptr; 5400 RHS = nullptr; 5401 Kind = RK_None; 5402 NoNaN = false; 5403 } 5404 5405 /// Get the opcode of the reduction operation. 5406 unsigned getOpcode() const { 5407 assert(isVectorizable() && "Expected vectorizable operation."); 5408 return Opcode; 5409 } 5410 5411 /// Get kind of reduction data. 5412 ReductionKind getKind() const { return Kind; } 5413 Value *getLHS() const { return LHS; } 5414 Value *getRHS() const { return RHS; } 5415 Type *getConditionType() const { 5416 switch (Kind) { 5417 case RK_Arithmetic: 5418 return nullptr; 5419 case RK_Min: 5420 case RK_Max: 5421 case RK_UMin: 5422 case RK_UMax: 5423 return CmpInst::makeCmpResultType(LHS->getType()); 5424 case RK_None: 5425 break; 5426 } 5427 llvm_unreachable("Reduction kind is not set"); 5428 } 5429 5430 /// Creates reduction operation with the current opcode with the IR flags 5431 /// from \p ReductionOps. 5432 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5433 const ReductionOpsListType &ReductionOps) const { 5434 assert(isVectorizable() && 5435 "Expected add|fadd or min/max reduction operation."); 5436 auto *Op = createOp(Builder, Name); 5437 switch (Kind) { 5438 case RK_Arithmetic: 5439 propagateIRFlags(Op, ReductionOps[0]); 5440 return Op; 5441 case RK_Min: 5442 case RK_Max: 5443 case RK_UMin: 5444 case RK_UMax: 5445 if (auto *SI = dyn_cast<SelectInst>(Op)) 5446 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5447 propagateIRFlags(Op, ReductionOps[1]); 5448 return Op; 5449 case RK_None: 5450 break; 5451 } 5452 llvm_unreachable("Unknown reduction operation."); 5453 } 5454 /// Creates reduction operation with the current opcode with the IR flags 5455 /// from \p I. 5456 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5457 Instruction *I) const { 5458 assert(isVectorizable() && 5459 "Expected add|fadd or min/max reduction operation."); 5460 auto *Op = createOp(Builder, Name); 5461 switch (Kind) { 5462 case RK_Arithmetic: 5463 propagateIRFlags(Op, I); 5464 return Op; 5465 case RK_Min: 5466 case RK_Max: 5467 case RK_UMin: 5468 case RK_UMax: 5469 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5470 propagateIRFlags(SI->getCondition(), 5471 cast<SelectInst>(I)->getCondition()); 5472 } 5473 propagateIRFlags(Op, I); 5474 return Op; 5475 case RK_None: 5476 break; 5477 } 5478 llvm_unreachable("Unknown reduction operation."); 5479 } 5480 5481 TargetTransformInfo::ReductionFlags getFlags() const { 5482 TargetTransformInfo::ReductionFlags Flags; 5483 Flags.NoNaN = NoNaN; 5484 switch (Kind) { 5485 case RK_Arithmetic: 5486 break; 5487 case RK_Min: 5488 Flags.IsSigned = Opcode == Instruction::ICmp; 5489 Flags.IsMaxOp = false; 5490 break; 5491 case RK_Max: 5492 Flags.IsSigned = Opcode == Instruction::ICmp; 5493 Flags.IsMaxOp = true; 5494 break; 5495 case RK_UMin: 5496 Flags.IsSigned = false; 5497 Flags.IsMaxOp = false; 5498 break; 5499 case RK_UMax: 5500 Flags.IsSigned = false; 5501 Flags.IsMaxOp = true; 5502 break; 5503 case RK_None: 5504 llvm_unreachable("Reduction kind is not set"); 5505 } 5506 return Flags; 5507 } 5508 }; 5509 5510 WeakTrackingVH ReductionRoot; 5511 5512 /// The operation data of the reduction operation. 5513 OperationData ReductionData; 5514 5515 /// The operation data of the values we perform a reduction on. 5516 OperationData ReducedValueData; 5517 5518 /// Should we model this reduction as a pairwise reduction tree or a tree that 5519 /// splits the vector in halves and adds those halves. 5520 bool IsPairwiseReduction = false; 5521 5522 /// Checks if the ParentStackElem.first should be marked as a reduction 5523 /// operation with an extra argument or as extra argument itself. 5524 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5525 Value *ExtraArg) { 5526 if (ExtraArgs.count(ParentStackElem.first)) { 5527 ExtraArgs[ParentStackElem.first] = nullptr; 5528 // We ran into something like: 5529 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5530 // The whole ParentStackElem.first should be considered as an extra value 5531 // in this case. 5532 // Do not perform analysis of remaining operands of ParentStackElem.first 5533 // instruction, this whole instruction is an extra argument. 5534 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5535 } else { 5536 // We ran into something like: 5537 // ParentStackElem.first += ... + ExtraArg + ... 5538 ExtraArgs[ParentStackElem.first] = ExtraArg; 5539 } 5540 } 5541 5542 static OperationData getOperationData(Value *V) { 5543 if (!V) 5544 return OperationData(); 5545 5546 Value *LHS; 5547 Value *RHS; 5548 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5549 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5550 RK_Arithmetic); 5551 } 5552 if (auto *Select = dyn_cast<SelectInst>(V)) { 5553 // Look for a min/max pattern. 5554 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5555 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5556 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5557 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5558 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5559 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5560 return OperationData( 5561 Instruction::FCmp, LHS, RHS, RK_Min, 5562 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5563 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5564 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5565 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5566 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5567 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5568 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5569 return OperationData( 5570 Instruction::FCmp, LHS, RHS, RK_Max, 5571 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5572 } else { 5573 // Try harder: look for min/max pattern based on instructions producing 5574 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5575 // During the intermediate stages of SLP, it's very common to have 5576 // pattern like this (since optimizeGatherSequence is run only once 5577 // at the end): 5578 // %1 = extractelement <2 x i32> %a, i32 0 5579 // %2 = extractelement <2 x i32> %a, i32 1 5580 // %cond = icmp sgt i32 %1, %2 5581 // %3 = extractelement <2 x i32> %a, i32 0 5582 // %4 = extractelement <2 x i32> %a, i32 1 5583 // %select = select i1 %cond, i32 %3, i32 %4 5584 CmpInst::Predicate Pred; 5585 Instruction *L1; 5586 Instruction *L2; 5587 5588 LHS = Select->getTrueValue(); 5589 RHS = Select->getFalseValue(); 5590 Value *Cond = Select->getCondition(); 5591 5592 // TODO: Support inverse predicates. 5593 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5594 if (!isa<ExtractElementInst>(RHS) || 5595 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5596 return OperationData(V); 5597 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5598 if (!isa<ExtractElementInst>(LHS) || 5599 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5600 return OperationData(V); 5601 } else { 5602 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5603 return OperationData(V); 5604 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5605 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5606 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5607 return OperationData(V); 5608 } 5609 switch (Pred) { 5610 default: 5611 return OperationData(V); 5612 5613 case CmpInst::ICMP_ULT: 5614 case CmpInst::ICMP_ULE: 5615 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5616 5617 case CmpInst::ICMP_SLT: 5618 case CmpInst::ICMP_SLE: 5619 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5620 5621 case CmpInst::FCMP_OLT: 5622 case CmpInst::FCMP_OLE: 5623 case CmpInst::FCMP_ULT: 5624 case CmpInst::FCMP_ULE: 5625 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5626 cast<Instruction>(Cond)->hasNoNaNs()); 5627 5628 case CmpInst::ICMP_UGT: 5629 case CmpInst::ICMP_UGE: 5630 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5631 5632 case CmpInst::ICMP_SGT: 5633 case CmpInst::ICMP_SGE: 5634 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5635 5636 case CmpInst::FCMP_OGT: 5637 case CmpInst::FCMP_OGE: 5638 case CmpInst::FCMP_UGT: 5639 case CmpInst::FCMP_UGE: 5640 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5641 cast<Instruction>(Cond)->hasNoNaNs()); 5642 } 5643 } 5644 } 5645 return OperationData(V); 5646 } 5647 5648 public: 5649 HorizontalReduction() = default; 5650 5651 /// Try to find a reduction tree. 5652 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5653 assert((!Phi || is_contained(Phi->operands(), B)) && 5654 "Thi phi needs to use the binary operator"); 5655 5656 ReductionData = getOperationData(B); 5657 5658 // We could have a initial reductions that is not an add. 5659 // r *= v1 + v2 + v3 + v4 5660 // In such a case start looking for a tree rooted in the first '+'. 5661 if (Phi) { 5662 if (ReductionData.getLHS() == Phi) { 5663 Phi = nullptr; 5664 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5665 ReductionData = getOperationData(B); 5666 } else if (ReductionData.getRHS() == Phi) { 5667 Phi = nullptr; 5668 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5669 ReductionData = getOperationData(B); 5670 } 5671 } 5672 5673 if (!ReductionData.isVectorizable(B)) 5674 return false; 5675 5676 Type *Ty = B->getType(); 5677 if (!isValidElementType(Ty)) 5678 return false; 5679 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5680 return false; 5681 5682 ReducedValueData.clear(); 5683 ReductionRoot = B; 5684 5685 // Post order traverse the reduction tree starting at B. We only handle true 5686 // trees containing only binary operators. 5687 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5688 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5689 ReductionData.initReductionOps(ReductionOps); 5690 while (!Stack.empty()) { 5691 Instruction *TreeN = Stack.back().first; 5692 unsigned EdgeToVist = Stack.back().second++; 5693 OperationData OpData = getOperationData(TreeN); 5694 bool IsReducedValue = OpData != ReductionData; 5695 5696 // Postorder vist. 5697 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5698 if (IsReducedValue) 5699 ReducedVals.push_back(TreeN); 5700 else { 5701 auto I = ExtraArgs.find(TreeN); 5702 if (I != ExtraArgs.end() && !I->second) { 5703 // Check if TreeN is an extra argument of its parent operation. 5704 if (Stack.size() <= 1) { 5705 // TreeN can't be an extra argument as it is a root reduction 5706 // operation. 5707 return false; 5708 } 5709 // Yes, TreeN is an extra argument, do not add it to a list of 5710 // reduction operations. 5711 // Stack[Stack.size() - 2] always points to the parent operation. 5712 markExtraArg(Stack[Stack.size() - 2], TreeN); 5713 ExtraArgs.erase(TreeN); 5714 } else 5715 ReductionData.addReductionOps(TreeN, ReductionOps); 5716 } 5717 // Retract. 5718 Stack.pop_back(); 5719 continue; 5720 } 5721 5722 // Visit left or right. 5723 Value *NextV = TreeN->getOperand(EdgeToVist); 5724 if (NextV != Phi) { 5725 auto *I = dyn_cast<Instruction>(NextV); 5726 OpData = getOperationData(I); 5727 // Continue analysis if the next operand is a reduction operation or 5728 // (possibly) a reduced value. If the reduced value opcode is not set, 5729 // the first met operation != reduction operation is considered as the 5730 // reduced value class. 5731 if (I && (!ReducedValueData || OpData == ReducedValueData || 5732 OpData == ReductionData)) { 5733 const bool IsReductionOperation = OpData == ReductionData; 5734 // Only handle trees in the current basic block. 5735 if (!ReductionData.hasSameParent(I, B->getParent(), 5736 IsReductionOperation)) { 5737 // I is an extra argument for TreeN (its parent operation). 5738 markExtraArg(Stack.back(), I); 5739 continue; 5740 } 5741 5742 // Each tree node needs to have minimal number of users except for the 5743 // ultimate reduction. 5744 if (!ReductionData.hasRequiredNumberOfUses(I, 5745 OpData == ReductionData) && 5746 I != B) { 5747 // I is an extra argument for TreeN (its parent operation). 5748 markExtraArg(Stack.back(), I); 5749 continue; 5750 } 5751 5752 if (IsReductionOperation) { 5753 // We need to be able to reassociate the reduction operations. 5754 if (!OpData.isAssociative(I)) { 5755 // I is an extra argument for TreeN (its parent operation). 5756 markExtraArg(Stack.back(), I); 5757 continue; 5758 } 5759 } else if (ReducedValueData && 5760 ReducedValueData != OpData) { 5761 // Make sure that the opcodes of the operations that we are going to 5762 // reduce match. 5763 // I is an extra argument for TreeN (its parent operation). 5764 markExtraArg(Stack.back(), I); 5765 continue; 5766 } else if (!ReducedValueData) 5767 ReducedValueData = OpData; 5768 5769 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5770 continue; 5771 } 5772 } 5773 // NextV is an extra argument for TreeN (its parent operation). 5774 markExtraArg(Stack.back(), NextV); 5775 } 5776 return true; 5777 } 5778 5779 /// Attempt to vectorize the tree found by 5780 /// matchAssociativeReduction. 5781 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5782 if (ReducedVals.empty()) 5783 return false; 5784 5785 // If there is a sufficient number of reduction values, reduce 5786 // to a nearby power-of-2. Can safely generate oversized 5787 // vectors and rely on the backend to split them to legal sizes. 5788 unsigned NumReducedVals = ReducedVals.size(); 5789 if (NumReducedVals < 4) 5790 return false; 5791 5792 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5793 5794 Value *VectorizedTree = nullptr; 5795 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 5796 FastMathFlags Unsafe; 5797 Unsafe.setFast(); 5798 Builder.setFastMathFlags(Unsafe); 5799 unsigned i = 0; 5800 5801 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5802 // The same extra argument may be used several time, so log each attempt 5803 // to use it. 5804 for (auto &Pair : ExtraArgs) { 5805 assert(Pair.first && "DebugLoc must be set."); 5806 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5807 } 5808 // The reduction root is used as the insertion point for new instructions, 5809 // so set it as externally used to prevent it from being deleted. 5810 ExternallyUsedValues[ReductionRoot]; 5811 SmallVector<Value *, 16> IgnoreList; 5812 for (auto &V : ReductionOps) 5813 IgnoreList.append(V.begin(), V.end()); 5814 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5815 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5816 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5817 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5818 // TODO: Handle orders of size less than number of elements in the vector. 5819 if (Order && Order->size() == VL.size()) { 5820 // TODO: reorder tree nodes without tree rebuilding. 5821 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5822 llvm::transform(*Order, ReorderedOps.begin(), 5823 [VL](const unsigned Idx) { return VL[Idx]; }); 5824 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5825 } 5826 if (V.isTreeTinyAndNotFullyVectorizable()) 5827 break; 5828 5829 V.computeMinimumValueSizes(); 5830 5831 // Estimate cost. 5832 int TreeCost = V.getTreeCost(); 5833 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5834 int Cost = TreeCost + ReductionCost; 5835 if (Cost >= -SLPCostThreshold) { 5836 V.getORE()->emit([&]() { 5837 return OptimizationRemarkMissed( 5838 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5839 << "Vectorizing horizontal reduction is possible" 5840 << "but not beneficial with cost " 5841 << ore::NV("Cost", Cost) << " and threshold " 5842 << ore::NV("Threshold", -SLPCostThreshold); 5843 }); 5844 break; 5845 } 5846 5847 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5848 << Cost << ". (HorRdx)\n"); 5849 V.getORE()->emit([&]() { 5850 return OptimizationRemark( 5851 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5852 << "Vectorized horizontal reduction with cost " 5853 << ore::NV("Cost", Cost) << " and with tree size " 5854 << ore::NV("TreeSize", V.getTreeSize()); 5855 }); 5856 5857 // Vectorize a tree. 5858 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5859 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5860 5861 // Emit a reduction. 5862 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 5863 Value *ReducedSubTree = 5864 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5865 if (VectorizedTree) { 5866 Builder.SetCurrentDebugLocation(Loc); 5867 OperationData VectReductionData(ReductionData.getOpcode(), 5868 VectorizedTree, ReducedSubTree, 5869 ReductionData.getKind()); 5870 VectorizedTree = 5871 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5872 } else 5873 VectorizedTree = ReducedSubTree; 5874 i += ReduxWidth; 5875 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5876 } 5877 5878 if (VectorizedTree) { 5879 // Finish the reduction. 5880 for (; i < NumReducedVals; ++i) { 5881 auto *I = cast<Instruction>(ReducedVals[i]); 5882 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5883 OperationData VectReductionData(ReductionData.getOpcode(), 5884 VectorizedTree, I, 5885 ReductionData.getKind()); 5886 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5887 } 5888 for (auto &Pair : ExternallyUsedValues) { 5889 // Add each externally used value to the final reduction. 5890 for (auto *I : Pair.second) { 5891 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5892 OperationData VectReductionData(ReductionData.getOpcode(), 5893 VectorizedTree, Pair.first, 5894 ReductionData.getKind()); 5895 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5896 } 5897 } 5898 // Update users. 5899 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5900 } 5901 return VectorizedTree != nullptr; 5902 } 5903 5904 unsigned numReductionValues() const { 5905 return ReducedVals.size(); 5906 } 5907 5908 private: 5909 /// Calculate the cost of a reduction. 5910 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5911 unsigned ReduxWidth) { 5912 Type *ScalarTy = FirstReducedVal->getType(); 5913 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5914 5915 int PairwiseRdxCost; 5916 int SplittingRdxCost; 5917 switch (ReductionData.getKind()) { 5918 case RK_Arithmetic: 5919 PairwiseRdxCost = 5920 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5921 /*IsPairwiseForm=*/true); 5922 SplittingRdxCost = 5923 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5924 /*IsPairwiseForm=*/false); 5925 break; 5926 case RK_Min: 5927 case RK_Max: 5928 case RK_UMin: 5929 case RK_UMax: { 5930 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5931 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5932 ReductionData.getKind() == RK_UMax; 5933 PairwiseRdxCost = 5934 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5935 /*IsPairwiseForm=*/true, IsUnsigned); 5936 SplittingRdxCost = 5937 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5938 /*IsPairwiseForm=*/false, IsUnsigned); 5939 break; 5940 } 5941 case RK_None: 5942 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5943 } 5944 5945 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5946 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5947 5948 int ScalarReduxCost; 5949 switch (ReductionData.getKind()) { 5950 case RK_Arithmetic: 5951 ScalarReduxCost = 5952 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5953 break; 5954 case RK_Min: 5955 case RK_Max: 5956 case RK_UMin: 5957 case RK_UMax: 5958 ScalarReduxCost = 5959 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5960 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5961 CmpInst::makeCmpResultType(ScalarTy)); 5962 break; 5963 case RK_None: 5964 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5965 } 5966 ScalarReduxCost *= (ReduxWidth - 1); 5967 5968 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5969 << " for reduction that starts with " << *FirstReducedVal 5970 << " (It is a " 5971 << (IsPairwiseReduction ? "pairwise" : "splitting") 5972 << " reduction)\n"); 5973 5974 return VecReduxCost - ScalarReduxCost; 5975 } 5976 5977 /// Emit a horizontal reduction of the vectorized value. 5978 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5979 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5980 assert(VectorizedValue && "Need to have a vectorized tree node"); 5981 assert(isPowerOf2_32(ReduxWidth) && 5982 "We only handle power-of-two reductions for now"); 5983 5984 if (!IsPairwiseReduction) 5985 return createSimpleTargetReduction( 5986 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5987 ReductionData.getFlags(), FastMathFlags::getFast(), 5988 ReductionOps.back()); 5989 5990 Value *TmpVec = VectorizedValue; 5991 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5992 Value *LeftMask = 5993 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5994 Value *RightMask = 5995 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5996 5997 Value *LeftShuf = Builder.CreateShuffleVector( 5998 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5999 Value *RightShuf = Builder.CreateShuffleVector( 6000 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6001 "rdx.shuf.r"); 6002 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6003 RightShuf, ReductionData.getKind()); 6004 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6005 } 6006 6007 // The result is in the first element of the vector. 6008 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6009 } 6010 }; 6011 6012 } // end anonymous namespace 6013 6014 /// Recognize construction of vectors like 6015 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6016 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6017 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6018 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6019 /// starting from the last insertelement instruction. 6020 /// 6021 /// Returns true if it matches 6022 static bool findBuildVector(InsertElementInst *LastInsertElem, 6023 TargetTransformInfo *TTI, 6024 SmallVectorImpl<Value *> &BuildVectorOpds, 6025 int &UserCost) { 6026 UserCost = 0; 6027 Value *V = nullptr; 6028 do { 6029 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6030 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6031 LastInsertElem->getType(), 6032 CI->getZExtValue()); 6033 } 6034 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6035 V = LastInsertElem->getOperand(0); 6036 if (isa<UndefValue>(V)) 6037 break; 6038 LastInsertElem = dyn_cast<InsertElementInst>(V); 6039 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6040 return false; 6041 } while (true); 6042 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6043 return true; 6044 } 6045 6046 /// Like findBuildVector, but looks for construction of aggregate. 6047 /// 6048 /// \return true if it matches. 6049 static bool findBuildAggregate(InsertValueInst *IV, 6050 SmallVectorImpl<Value *> &BuildVectorOpds) { 6051 Value *V; 6052 do { 6053 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6054 V = IV->getAggregateOperand(); 6055 if (isa<UndefValue>(V)) 6056 break; 6057 IV = dyn_cast<InsertValueInst>(V); 6058 if (!IV || !IV->hasOneUse()) 6059 return false; 6060 } while (true); 6061 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6062 return true; 6063 } 6064 6065 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6066 return V->getType() < V2->getType(); 6067 } 6068 6069 /// Try and get a reduction value from a phi node. 6070 /// 6071 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6072 /// if they come from either \p ParentBB or a containing loop latch. 6073 /// 6074 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6075 /// if not possible. 6076 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6077 BasicBlock *ParentBB, LoopInfo *LI) { 6078 // There are situations where the reduction value is not dominated by the 6079 // reduction phi. Vectorizing such cases has been reported to cause 6080 // miscompiles. See PR25787. 6081 auto DominatedReduxValue = [&](Value *R) { 6082 return isa<Instruction>(R) && 6083 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6084 }; 6085 6086 Value *Rdx = nullptr; 6087 6088 // Return the incoming value if it comes from the same BB as the phi node. 6089 if (P->getIncomingBlock(0) == ParentBB) { 6090 Rdx = P->getIncomingValue(0); 6091 } else if (P->getIncomingBlock(1) == ParentBB) { 6092 Rdx = P->getIncomingValue(1); 6093 } 6094 6095 if (Rdx && DominatedReduxValue(Rdx)) 6096 return Rdx; 6097 6098 // Otherwise, check whether we have a loop latch to look at. 6099 Loop *BBL = LI->getLoopFor(ParentBB); 6100 if (!BBL) 6101 return nullptr; 6102 BasicBlock *BBLatch = BBL->getLoopLatch(); 6103 if (!BBLatch) 6104 return nullptr; 6105 6106 // There is a loop latch, return the incoming value if it comes from 6107 // that. This reduction pattern occasionally turns up. 6108 if (P->getIncomingBlock(0) == BBLatch) { 6109 Rdx = P->getIncomingValue(0); 6110 } else if (P->getIncomingBlock(1) == BBLatch) { 6111 Rdx = P->getIncomingValue(1); 6112 } 6113 6114 if (Rdx && DominatedReduxValue(Rdx)) 6115 return Rdx; 6116 6117 return nullptr; 6118 } 6119 6120 /// Attempt to reduce a horizontal reduction. 6121 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6122 /// with reduction operators \a Root (or one of its operands) in a basic block 6123 /// \a BB, then check if it can be done. If horizontal reduction is not found 6124 /// and root instruction is a binary operation, vectorization of the operands is 6125 /// attempted. 6126 /// \returns true if a horizontal reduction was matched and reduced or operands 6127 /// of one of the binary instruction were vectorized. 6128 /// \returns false if a horizontal reduction was not matched (or not possible) 6129 /// or no vectorization of any binary operation feeding \a Root instruction was 6130 /// performed. 6131 static bool tryToVectorizeHorReductionOrInstOperands( 6132 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6133 TargetTransformInfo *TTI, 6134 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6135 if (!ShouldVectorizeHor) 6136 return false; 6137 6138 if (!Root) 6139 return false; 6140 6141 if (Root->getParent() != BB || isa<PHINode>(Root)) 6142 return false; 6143 // Start analysis starting from Root instruction. If horizontal reduction is 6144 // found, try to vectorize it. If it is not a horizontal reduction or 6145 // vectorization is not possible or not effective, and currently analyzed 6146 // instruction is a binary operation, try to vectorize the operands, using 6147 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6148 // the same procedure considering each operand as a possible root of the 6149 // horizontal reduction. 6150 // Interrupt the process if the Root instruction itself was vectorized or all 6151 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6152 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6153 SmallPtrSet<Value *, 8> VisitedInstrs; 6154 bool Res = false; 6155 while (!Stack.empty()) { 6156 Value *V; 6157 unsigned Level; 6158 std::tie(V, Level) = Stack.pop_back_val(); 6159 if (!V) 6160 continue; 6161 auto *Inst = dyn_cast<Instruction>(V); 6162 if (!Inst) 6163 continue; 6164 auto *BI = dyn_cast<BinaryOperator>(Inst); 6165 auto *SI = dyn_cast<SelectInst>(Inst); 6166 if (BI || SI) { 6167 HorizontalReduction HorRdx; 6168 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6169 if (HorRdx.tryToReduce(R, TTI)) { 6170 Res = true; 6171 // Set P to nullptr to avoid re-analysis of phi node in 6172 // matchAssociativeReduction function unless this is the root node. 6173 P = nullptr; 6174 continue; 6175 } 6176 } 6177 if (P && BI) { 6178 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6179 if (Inst == P) 6180 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6181 if (!Inst) { 6182 // Set P to nullptr to avoid re-analysis of phi node in 6183 // matchAssociativeReduction function unless this is the root node. 6184 P = nullptr; 6185 continue; 6186 } 6187 } 6188 } 6189 // Set P to nullptr to avoid re-analysis of phi node in 6190 // matchAssociativeReduction function unless this is the root node. 6191 P = nullptr; 6192 if (Vectorize(Inst, R)) { 6193 Res = true; 6194 continue; 6195 } 6196 6197 // Try to vectorize operands. 6198 // Continue analysis for the instruction from the same basic block only to 6199 // save compile time. 6200 if (++Level < RecursionMaxDepth) 6201 for (auto *Op : Inst->operand_values()) 6202 if (VisitedInstrs.insert(Op).second) 6203 if (auto *I = dyn_cast<Instruction>(Op)) 6204 if (!isa<PHINode>(I) && I->getParent() == BB) 6205 Stack.emplace_back(Op, Level); 6206 } 6207 return Res; 6208 } 6209 6210 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6211 BasicBlock *BB, BoUpSLP &R, 6212 TargetTransformInfo *TTI) { 6213 if (!V) 6214 return false; 6215 auto *I = dyn_cast<Instruction>(V); 6216 if (!I) 6217 return false; 6218 6219 if (!isa<BinaryOperator>(I)) 6220 P = nullptr; 6221 // Try to match and vectorize a horizontal reduction. 6222 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6223 return tryToVectorize(I, R); 6224 }; 6225 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6226 ExtraVectorization); 6227 } 6228 6229 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6230 BasicBlock *BB, BoUpSLP &R) { 6231 const DataLayout &DL = BB->getModule()->getDataLayout(); 6232 if (!R.canMapToVector(IVI->getType(), DL)) 6233 return false; 6234 6235 SmallVector<Value *, 16> BuildVectorOpds; 6236 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6237 return false; 6238 6239 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6240 // Aggregate value is unlikely to be processed in vector register, we need to 6241 // extract scalars into scalar registers, so NeedExtraction is set true. 6242 return tryToVectorizeList(BuildVectorOpds, R); 6243 } 6244 6245 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6246 BasicBlock *BB, BoUpSLP &R) { 6247 int UserCost; 6248 SmallVector<Value *, 16> BuildVectorOpds; 6249 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6250 (llvm::all_of(BuildVectorOpds, 6251 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6252 isShuffle(BuildVectorOpds))) 6253 return false; 6254 6255 // Vectorize starting with the build vector operands ignoring the BuildVector 6256 // instructions for the purpose of scheduling and user extraction. 6257 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6258 } 6259 6260 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6261 BoUpSLP &R) { 6262 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6263 return true; 6264 6265 bool OpsChanged = false; 6266 for (int Idx = 0; Idx < 2; ++Idx) { 6267 OpsChanged |= 6268 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6269 } 6270 return OpsChanged; 6271 } 6272 6273 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6274 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6275 bool OpsChanged = false; 6276 for (auto &VH : reverse(Instructions)) { 6277 auto *I = dyn_cast_or_null<Instruction>(VH); 6278 if (!I) 6279 continue; 6280 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6281 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6282 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6283 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6284 else if (auto *CI = dyn_cast<CmpInst>(I)) 6285 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6286 } 6287 Instructions.clear(); 6288 return OpsChanged; 6289 } 6290 6291 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6292 bool Changed = false; 6293 SmallVector<Value *, 4> Incoming; 6294 SmallPtrSet<Value *, 16> VisitedInstrs; 6295 6296 bool HaveVectorizedPhiNodes = true; 6297 while (HaveVectorizedPhiNodes) { 6298 HaveVectorizedPhiNodes = false; 6299 6300 // Collect the incoming values from the PHIs. 6301 Incoming.clear(); 6302 for (Instruction &I : *BB) { 6303 PHINode *P = dyn_cast<PHINode>(&I); 6304 if (!P) 6305 break; 6306 6307 if (!VisitedInstrs.count(P)) 6308 Incoming.push_back(P); 6309 } 6310 6311 // Sort by type. 6312 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6313 6314 // Try to vectorize elements base on their type. 6315 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6316 E = Incoming.end(); 6317 IncIt != E;) { 6318 6319 // Look for the next elements with the same type. 6320 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6321 while (SameTypeIt != E && 6322 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6323 VisitedInstrs.insert(*SameTypeIt); 6324 ++SameTypeIt; 6325 } 6326 6327 // Try to vectorize them. 6328 unsigned NumElts = (SameTypeIt - IncIt); 6329 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6330 << NumElts << ")\n"); 6331 // The order in which the phi nodes appear in the program does not matter. 6332 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6333 // is done when there are exactly two elements since tryToVectorizeList 6334 // asserts that there are only two values when AllowReorder is true. 6335 bool AllowReorder = NumElts == 2; 6336 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6337 /*UserCost=*/0, AllowReorder)) { 6338 // Success start over because instructions might have been changed. 6339 HaveVectorizedPhiNodes = true; 6340 Changed = true; 6341 break; 6342 } 6343 6344 // Start over at the next instruction of a different type (or the end). 6345 IncIt = SameTypeIt; 6346 } 6347 } 6348 6349 VisitedInstrs.clear(); 6350 6351 SmallVector<WeakVH, 8> PostProcessInstructions; 6352 SmallDenseSet<Instruction *, 4> KeyNodes; 6353 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6354 // We may go through BB multiple times so skip the one we have checked. 6355 if (!VisitedInstrs.insert(&*it).second) { 6356 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6357 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6358 // We would like to start over since some instructions are deleted 6359 // and the iterator may become invalid value. 6360 Changed = true; 6361 it = BB->begin(); 6362 e = BB->end(); 6363 } 6364 continue; 6365 } 6366 6367 if (isa<DbgInfoIntrinsic>(it)) 6368 continue; 6369 6370 // Try to vectorize reductions that use PHINodes. 6371 if (PHINode *P = dyn_cast<PHINode>(it)) { 6372 // Check that the PHI is a reduction PHI. 6373 if (P->getNumIncomingValues() != 2) 6374 return Changed; 6375 6376 // Try to match and vectorize a horizontal reduction. 6377 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6378 TTI)) { 6379 Changed = true; 6380 it = BB->begin(); 6381 e = BB->end(); 6382 continue; 6383 } 6384 continue; 6385 } 6386 6387 // Ran into an instruction without users, like terminator, or function call 6388 // with ignored return value, store. Ignore unused instructions (basing on 6389 // instruction type, except for CallInst and InvokeInst). 6390 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6391 isa<InvokeInst>(it))) { 6392 KeyNodes.insert(&*it); 6393 bool OpsChanged = false; 6394 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6395 for (auto *V : it->operand_values()) { 6396 // Try to match and vectorize a horizontal reduction. 6397 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6398 } 6399 } 6400 // Start vectorization of post-process list of instructions from the 6401 // top-tree instructions to try to vectorize as many instructions as 6402 // possible. 6403 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6404 if (OpsChanged) { 6405 // We would like to start over since some instructions are deleted 6406 // and the iterator may become invalid value. 6407 Changed = true; 6408 it = BB->begin(); 6409 e = BB->end(); 6410 continue; 6411 } 6412 } 6413 6414 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6415 isa<InsertValueInst>(it)) 6416 PostProcessInstructions.push_back(&*it); 6417 } 6418 6419 return Changed; 6420 } 6421 6422 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6423 auto Changed = false; 6424 for (auto &Entry : GEPs) { 6425 // If the getelementptr list has fewer than two elements, there's nothing 6426 // to do. 6427 if (Entry.second.size() < 2) 6428 continue; 6429 6430 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6431 << Entry.second.size() << ".\n"); 6432 6433 // We process the getelementptr list in chunks of 16 (like we do for 6434 // stores) to minimize compile-time. 6435 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6436 auto Len = std::min<unsigned>(BE - BI, 16); 6437 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6438 6439 // Initialize a set a candidate getelementptrs. Note that we use a 6440 // SetVector here to preserve program order. If the index computations 6441 // are vectorizable and begin with loads, we want to minimize the chance 6442 // of having to reorder them later. 6443 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6444 6445 // Some of the candidates may have already been vectorized after we 6446 // initially collected them. If so, the WeakTrackingVHs will have 6447 // nullified the 6448 // values, so remove them from the set of candidates. 6449 Candidates.remove(nullptr); 6450 6451 // Remove from the set of candidates all pairs of getelementptrs with 6452 // constant differences. Such getelementptrs are likely not good 6453 // candidates for vectorization in a bottom-up phase since one can be 6454 // computed from the other. We also ensure all candidate getelementptr 6455 // indices are unique. 6456 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6457 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6458 if (!Candidates.count(GEPI)) 6459 continue; 6460 auto *SCEVI = SE->getSCEV(GEPList[I]); 6461 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6462 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6463 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6464 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6465 Candidates.remove(GEPList[I]); 6466 Candidates.remove(GEPList[J]); 6467 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6468 Candidates.remove(GEPList[J]); 6469 } 6470 } 6471 } 6472 6473 // We break out of the above computation as soon as we know there are 6474 // fewer than two candidates remaining. 6475 if (Candidates.size() < 2) 6476 continue; 6477 6478 // Add the single, non-constant index of each candidate to the bundle. We 6479 // ensured the indices met these constraints when we originally collected 6480 // the getelementptrs. 6481 SmallVector<Value *, 16> Bundle(Candidates.size()); 6482 auto BundleIndex = 0u; 6483 for (auto *V : Candidates) { 6484 auto *GEP = cast<GetElementPtrInst>(V); 6485 auto *GEPIdx = GEP->idx_begin()->get(); 6486 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6487 Bundle[BundleIndex++] = GEPIdx; 6488 } 6489 6490 // Try and vectorize the indices. We are currently only interested in 6491 // gather-like cases of the form: 6492 // 6493 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6494 // 6495 // where the loads of "a", the loads of "b", and the subtractions can be 6496 // performed in parallel. It's likely that detecting this pattern in a 6497 // bottom-up phase will be simpler and less costly than building a 6498 // full-blown top-down phase beginning at the consecutive loads. 6499 Changed |= tryToVectorizeList(Bundle, R); 6500 } 6501 } 6502 return Changed; 6503 } 6504 6505 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6506 bool Changed = false; 6507 // Attempt to sort and vectorize each of the store-groups. 6508 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6509 ++it) { 6510 if (it->second.size() < 2) 6511 continue; 6512 6513 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6514 << it->second.size() << ".\n"); 6515 6516 // Process the stores in chunks of 16. 6517 // TODO: The limit of 16 inhibits greater vectorization factors. 6518 // For example, AVX2 supports v32i8. Increasing this limit, however, 6519 // may cause a significant compile-time increase. 6520 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6521 unsigned Len = std::min<unsigned>(CE - CI, 16); 6522 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6523 } 6524 } 6525 return Changed; 6526 } 6527 6528 char SLPVectorizer::ID = 0; 6529 6530 static const char lv_name[] = "SLP Vectorizer"; 6531 6532 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6533 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6534 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6535 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6536 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6537 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6538 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6539 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6540 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6541 6542 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6543