1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/VectorUtils.h" 44 #include <algorithm> 45 #include <map> 46 #include <memory> 47 48 using namespace llvm; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 namespace { 70 71 static const unsigned MinVecRegSize = 128; 72 73 static const unsigned RecursionMaxDepth = 12; 74 75 /// \returns the parent basic block if all of the instructions in \p VL 76 /// are in the same block or null otherwise. 77 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 78 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 79 if (!I0) 80 return nullptr; 81 BasicBlock *BB = I0->getParent(); 82 for (int i = 1, e = VL.size(); i < e; i++) { 83 Instruction *I = dyn_cast<Instruction>(VL[i]); 84 if (!I) 85 return nullptr; 86 87 if (BB != I->getParent()) 88 return nullptr; 89 } 90 return BB; 91 } 92 93 /// \returns True if all of the values in \p VL are constants. 94 static bool allConstant(ArrayRef<Value *> VL) { 95 for (unsigned i = 0, e = VL.size(); i < e; ++i) 96 if (!isa<Constant>(VL[i])) 97 return false; 98 return true; 99 } 100 101 /// \returns True if all of the values in \p VL are identical. 102 static bool isSplat(ArrayRef<Value *> VL) { 103 for (unsigned i = 1, e = VL.size(); i < e; ++i) 104 if (VL[i] != VL[0]) 105 return false; 106 return true; 107 } 108 109 ///\returns Opcode that can be clubbed with \p Op to create an alternate 110 /// sequence which can later be merged as a ShuffleVector instruction. 111 static unsigned getAltOpcode(unsigned Op) { 112 switch (Op) { 113 case Instruction::FAdd: 114 return Instruction::FSub; 115 case Instruction::FSub: 116 return Instruction::FAdd; 117 case Instruction::Add: 118 return Instruction::Sub; 119 case Instruction::Sub: 120 return Instruction::Add; 121 default: 122 return 0; 123 } 124 } 125 126 ///\returns bool representing if Opcode \p Op can be part 127 /// of an alternate sequence which can later be merged as 128 /// a ShuffleVector instruction. 129 static bool canCombineAsAltInst(unsigned Op) { 130 if (Op == Instruction::FAdd || Op == Instruction::FSub || 131 Op == Instruction::Sub || Op == Instruction::Add) 132 return true; 133 return false; 134 } 135 136 /// \returns ShuffleVector instruction if intructions in \p VL have 137 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 138 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 139 static unsigned isAltInst(ArrayRef<Value *> VL) { 140 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 141 unsigned Opcode = I0->getOpcode(); 142 unsigned AltOpcode = getAltOpcode(Opcode); 143 for (int i = 1, e = VL.size(); i < e; i++) { 144 Instruction *I = dyn_cast<Instruction>(VL[i]); 145 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 146 return 0; 147 } 148 return Instruction::ShuffleVector; 149 } 150 151 /// \returns The opcode if all of the Instructions in \p VL have the same 152 /// opcode, or zero. 153 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 154 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 155 if (!I0) 156 return 0; 157 unsigned Opcode = I0->getOpcode(); 158 for (int i = 1, e = VL.size(); i < e; i++) { 159 Instruction *I = dyn_cast<Instruction>(VL[i]); 160 if (!I || Opcode != I->getOpcode()) { 161 if (canCombineAsAltInst(Opcode) && i == 1) 162 return isAltInst(VL); 163 return 0; 164 } 165 } 166 return Opcode; 167 } 168 169 /// \returns \p I after propagating metadata from \p VL. 170 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 171 Instruction *I0 = cast<Instruction>(VL[0]); 172 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 173 I0->getAllMetadataOtherThanDebugLoc(Metadata); 174 175 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 176 unsigned Kind = Metadata[i].first; 177 MDNode *MD = Metadata[i].second; 178 179 for (int i = 1, e = VL.size(); MD && i != e; i++) { 180 Instruction *I = cast<Instruction>(VL[i]); 181 MDNode *IMD = I->getMetadata(Kind); 182 183 switch (Kind) { 184 default: 185 MD = nullptr; // Remove unknown metadata 186 break; 187 case LLVMContext::MD_tbaa: 188 MD = MDNode::getMostGenericTBAA(MD, IMD); 189 break; 190 case LLVMContext::MD_alias_scope: 191 case LLVMContext::MD_noalias: 192 MD = MDNode::intersect(MD, IMD); 193 break; 194 case LLVMContext::MD_fpmath: 195 MD = MDNode::getMostGenericFPMath(MD, IMD); 196 break; 197 } 198 } 199 I->setMetadata(Kind, MD); 200 } 201 return I; 202 } 203 204 /// \returns The type that all of the values in \p VL have or null if there 205 /// are different types. 206 static Type* getSameType(ArrayRef<Value *> VL) { 207 Type *Ty = VL[0]->getType(); 208 for (int i = 1, e = VL.size(); i < e; i++) 209 if (VL[i]->getType() != Ty) 210 return nullptr; 211 212 return Ty; 213 } 214 215 /// \returns True if the ExtractElement instructions in VL can be vectorized 216 /// to use the original vector. 217 static bool CanReuseExtract(ArrayRef<Value *> VL) { 218 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 219 // Check if all of the extracts come from the same vector and from the 220 // correct offset. 221 Value *VL0 = VL[0]; 222 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 223 Value *Vec = E0->getOperand(0); 224 225 // We have to extract from the same vector type. 226 unsigned NElts = Vec->getType()->getVectorNumElements(); 227 228 if (NElts != VL.size()) 229 return false; 230 231 // Check that all of the indices extract from the correct offset. 232 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 233 if (!CI || CI->getZExtValue()) 234 return false; 235 236 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 237 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 238 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 239 240 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 241 return false; 242 } 243 244 return true; 245 } 246 247 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 248 SmallVectorImpl<Value *> &Left, 249 SmallVectorImpl<Value *> &Right) { 250 251 SmallVector<Value *, 16> OrigLeft, OrigRight; 252 253 bool AllSameOpcodeLeft = true; 254 bool AllSameOpcodeRight = true; 255 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 256 Instruction *I = cast<Instruction>(VL[i]); 257 Value *V0 = I->getOperand(0); 258 Value *V1 = I->getOperand(1); 259 260 OrigLeft.push_back(V0); 261 OrigRight.push_back(V1); 262 263 Instruction *I0 = dyn_cast<Instruction>(V0); 264 Instruction *I1 = dyn_cast<Instruction>(V1); 265 266 // Check whether all operands on one side have the same opcode. In this case 267 // we want to preserve the original order and not make things worse by 268 // reordering. 269 AllSameOpcodeLeft = I0; 270 AllSameOpcodeRight = I1; 271 272 if (i && AllSameOpcodeLeft) { 273 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) { 274 if(P0->getOpcode() != I0->getOpcode()) 275 AllSameOpcodeLeft = false; 276 } else 277 AllSameOpcodeLeft = false; 278 } 279 if (i && AllSameOpcodeRight) { 280 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) { 281 if(P1->getOpcode() != I1->getOpcode()) 282 AllSameOpcodeRight = false; 283 } else 284 AllSameOpcodeRight = false; 285 } 286 287 // Sort two opcodes. In the code below we try to preserve the ability to use 288 // broadcast of values instead of individual inserts. 289 // vl1 = load 290 // vl2 = phi 291 // vr1 = load 292 // vr2 = vr2 293 // = vl1 x vr1 294 // = vl2 x vr2 295 // If we just sorted according to opcode we would leave the first line in 296 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 297 // = vl1 x vr1 298 // = vr2 x vl2 299 // Because vr2 and vr1 are from the same load we loose the opportunity of a 300 // broadcast for the packed right side in the backend: we have [vr1, vl2] 301 // instead of [vr1, vr2=vr1]. 302 if (I0 && I1) { 303 if(!i && I0->getOpcode() > I1->getOpcode()) { 304 Left.push_back(I1); 305 Right.push_back(I0); 306 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { 307 // Try not to destroy a broad cast for no apparent benefit. 308 Left.push_back(I1); 309 Right.push_back(I0); 310 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { 311 // Try preserve broadcasts. 312 Left.push_back(I1); 313 Right.push_back(I0); 314 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { 315 // Try preserve broadcasts. 316 Left.push_back(I1); 317 Right.push_back(I0); 318 } else { 319 Left.push_back(I0); 320 Right.push_back(I1); 321 } 322 continue; 323 } 324 // One opcode, put the instruction on the right. 325 if (I0) { 326 Left.push_back(V1); 327 Right.push_back(I0); 328 continue; 329 } 330 Left.push_back(V0); 331 Right.push_back(V1); 332 } 333 334 bool LeftBroadcast = isSplat(Left); 335 bool RightBroadcast = isSplat(Right); 336 337 // Don't reorder if the operands where good to begin with. 338 if (!(LeftBroadcast || RightBroadcast) && 339 (AllSameOpcodeRight || AllSameOpcodeLeft)) { 340 Left = OrigLeft; 341 Right = OrigRight; 342 } 343 } 344 345 /// Bottom Up SLP Vectorizer. 346 class BoUpSLP { 347 public: 348 typedef SmallVector<Value *, 8> ValueList; 349 typedef SmallVector<Instruction *, 16> InstrList; 350 typedef SmallPtrSet<Value *, 16> ValueSet; 351 typedef SmallVector<StoreInst *, 8> StoreList; 352 353 BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl, 354 TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, 355 LoopInfo *Li, DominatorTree *Dt) 356 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), 357 F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 358 Builder(Se->getContext()) {} 359 360 /// \brief Vectorize the tree that starts with the elements in \p VL. 361 /// Returns the vectorized root. 362 Value *vectorizeTree(); 363 364 /// \returns the cost incurred by unwanted spills and fills, caused by 365 /// holding live values over call sites. 366 int getSpillCost(); 367 368 /// \returns the vectorization cost of the subtree that starts at \p VL. 369 /// A negative number means that this is profitable. 370 int getTreeCost(); 371 372 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 373 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 374 void buildTree(ArrayRef<Value *> Roots, 375 ArrayRef<Value *> UserIgnoreLst = None); 376 377 /// Clear the internal data structures that are created by 'buildTree'. 378 void deleteTree() { 379 VectorizableTree.clear(); 380 ScalarToTreeEntry.clear(); 381 MustGather.clear(); 382 ExternalUses.clear(); 383 NumLoadsWantToKeepOrder = 0; 384 NumLoadsWantToChangeOrder = 0; 385 for (auto &Iter : BlocksSchedules) { 386 BlockScheduling *BS = Iter.second.get(); 387 BS->clear(); 388 } 389 } 390 391 /// \returns true if the memory operations A and B are consecutive. 392 bool isConsecutiveAccess(Value *A, Value *B); 393 394 /// \brief Perform LICM and CSE on the newly generated gather sequences. 395 void optimizeGatherSequence(); 396 397 /// \returns true if it is benefitial to reverse the vector order. 398 bool shouldReorder() const { 399 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 400 } 401 402 private: 403 struct TreeEntry; 404 405 /// \returns the cost of the vectorizable entry. 406 int getEntryCost(TreeEntry *E); 407 408 /// This is the recursive part of buildTree. 409 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 410 411 /// Vectorize a single entry in the tree. 412 Value *vectorizeTree(TreeEntry *E); 413 414 /// Vectorize a single entry in the tree, starting in \p VL. 415 Value *vectorizeTree(ArrayRef<Value *> VL); 416 417 /// \returns the pointer to the vectorized value if \p VL is already 418 /// vectorized, or NULL. They may happen in cycles. 419 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 420 421 /// \brief Take the pointer operand from the Load/Store instruction. 422 /// \returns NULL if this is not a valid Load/Store instruction. 423 static Value *getPointerOperand(Value *I); 424 425 /// \brief Take the address space operand from the Load/Store instruction. 426 /// \returns -1 if this is not a valid Load/Store instruction. 427 static unsigned getAddressSpaceOperand(Value *I); 428 429 /// \returns the scalarization cost for this type. Scalarization in this 430 /// context means the creation of vectors from a group of scalars. 431 int getGatherCost(Type *Ty); 432 433 /// \returns the scalarization cost for this list of values. Assuming that 434 /// this subtree gets vectorized, we may need to extract the values from the 435 /// roots. This method calculates the cost of extracting the values. 436 int getGatherCost(ArrayRef<Value *> VL); 437 438 /// \brief Set the Builder insert point to one after the last instruction in 439 /// the bundle 440 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 441 442 /// \returns a vector from a collection of scalars in \p VL. 443 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 444 445 /// \returns whether the VectorizableTree is fully vectoriable and will 446 /// be beneficial even the tree height is tiny. 447 bool isFullyVectorizableTinyTree(); 448 449 struct TreeEntry { 450 TreeEntry() : Scalars(), VectorizedValue(nullptr), 451 NeedToGather(0) {} 452 453 /// \returns true if the scalars in VL are equal to this entry. 454 bool isSame(ArrayRef<Value *> VL) const { 455 assert(VL.size() == Scalars.size() && "Invalid size"); 456 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 457 } 458 459 /// A vector of scalars. 460 ValueList Scalars; 461 462 /// The Scalars are vectorized into this value. It is initialized to Null. 463 Value *VectorizedValue; 464 465 /// Do we need to gather this sequence ? 466 bool NeedToGather; 467 }; 468 469 /// Create a new VectorizableTree entry. 470 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 471 VectorizableTree.push_back(TreeEntry()); 472 int idx = VectorizableTree.size() - 1; 473 TreeEntry *Last = &VectorizableTree[idx]; 474 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 475 Last->NeedToGather = !Vectorized; 476 if (Vectorized) { 477 for (int i = 0, e = VL.size(); i != e; ++i) { 478 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 479 ScalarToTreeEntry[VL[i]] = idx; 480 } 481 } else { 482 MustGather.insert(VL.begin(), VL.end()); 483 } 484 return Last; 485 } 486 487 /// -- Vectorization State -- 488 /// Holds all of the tree entries. 489 std::vector<TreeEntry> VectorizableTree; 490 491 /// Maps a specific scalar to its tree entry. 492 SmallDenseMap<Value*, int> ScalarToTreeEntry; 493 494 /// A list of scalars that we found that we need to keep as scalars. 495 ValueSet MustGather; 496 497 /// This POD struct describes one external user in the vectorized tree. 498 struct ExternalUser { 499 ExternalUser (Value *S, llvm::User *U, int L) : 500 Scalar(S), User(U), Lane(L){}; 501 // Which scalar in our function. 502 Value *Scalar; 503 // Which user that uses the scalar. 504 llvm::User *User; 505 // Which lane does the scalar belong to. 506 int Lane; 507 }; 508 typedef SmallVector<ExternalUser, 16> UserList; 509 510 /// A list of values that need to extracted out of the tree. 511 /// This list holds pairs of (Internal Scalar : External User). 512 UserList ExternalUses; 513 514 /// Holds all of the instructions that we gathered. 515 SetVector<Instruction *> GatherSeq; 516 /// A list of blocks that we are going to CSE. 517 SetVector<BasicBlock *> CSEBlocks; 518 519 /// Contains all scheduling relevant data for an instruction. 520 /// A ScheduleData either represents a single instruction or a member of an 521 /// instruction bundle (= a group of instructions which is combined into a 522 /// vector instruction). 523 struct ScheduleData { 524 525 // The initial value for the dependency counters. It means that the 526 // dependencies are not calculated yet. 527 enum { InvalidDeps = -1 }; 528 529 ScheduleData() 530 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 531 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 532 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 533 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 534 535 void init(int BlockSchedulingRegionID) { 536 FirstInBundle = this; 537 NextInBundle = nullptr; 538 NextLoadStore = nullptr; 539 IsScheduled = false; 540 SchedulingRegionID = BlockSchedulingRegionID; 541 UnscheduledDepsInBundle = UnscheduledDeps; 542 clearDependencies(); 543 } 544 545 /// Returns true if the dependency information has been calculated. 546 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 547 548 /// Returns true for single instructions and for bundle representatives 549 /// (= the head of a bundle). 550 bool isSchedulingEntity() const { return FirstInBundle == this; } 551 552 /// Returns true if it represents an instruction bundle and not only a 553 /// single instruction. 554 bool isPartOfBundle() const { 555 return NextInBundle != nullptr || FirstInBundle != this; 556 } 557 558 /// Returns true if it is ready for scheduling, i.e. it has no more 559 /// unscheduled depending instructions/bundles. 560 bool isReady() const { 561 assert(isSchedulingEntity() && 562 "can't consider non-scheduling entity for ready list"); 563 return UnscheduledDepsInBundle == 0 && !IsScheduled; 564 } 565 566 /// Modifies the number of unscheduled dependencies, also updating it for 567 /// the whole bundle. 568 int incrementUnscheduledDeps(int Incr) { 569 UnscheduledDeps += Incr; 570 return FirstInBundle->UnscheduledDepsInBundle += Incr; 571 } 572 573 /// Sets the number of unscheduled dependencies to the number of 574 /// dependencies. 575 void resetUnscheduledDeps() { 576 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 577 } 578 579 /// Clears all dependency information. 580 void clearDependencies() { 581 Dependencies = InvalidDeps; 582 resetUnscheduledDeps(); 583 MemoryDependencies.clear(); 584 } 585 586 void dump(raw_ostream &os) const { 587 if (!isSchedulingEntity()) { 588 os << "/ " << *Inst; 589 } else if (NextInBundle) { 590 os << '[' << *Inst; 591 ScheduleData *SD = NextInBundle; 592 while (SD) { 593 os << ';' << *SD->Inst; 594 SD = SD->NextInBundle; 595 } 596 os << ']'; 597 } else { 598 os << *Inst; 599 } 600 } 601 602 Instruction *Inst; 603 604 /// Points to the head in an instruction bundle (and always to this for 605 /// single instructions). 606 ScheduleData *FirstInBundle; 607 608 /// Single linked list of all instructions in a bundle. Null if it is a 609 /// single instruction. 610 ScheduleData *NextInBundle; 611 612 /// Single linked list of all memory instructions (e.g. load, store, call) 613 /// in the block - until the end of the scheduling region. 614 ScheduleData *NextLoadStore; 615 616 /// The dependent memory instructions. 617 /// This list is derived on demand in calculateDependencies(). 618 SmallVector<ScheduleData *, 4> MemoryDependencies; 619 620 /// This ScheduleData is in the current scheduling region if this matches 621 /// the current SchedulingRegionID of BlockScheduling. 622 int SchedulingRegionID; 623 624 /// Used for getting a "good" final ordering of instructions. 625 int SchedulingPriority; 626 627 /// The number of dependencies. Constitutes of the number of users of the 628 /// instruction plus the number of dependent memory instructions (if any). 629 /// This value is calculated on demand. 630 /// If InvalidDeps, the number of dependencies is not calculated yet. 631 /// 632 int Dependencies; 633 634 /// The number of dependencies minus the number of dependencies of scheduled 635 /// instructions. As soon as this is zero, the instruction/bundle gets ready 636 /// for scheduling. 637 /// Note that this is negative as long as Dependencies is not calculated. 638 int UnscheduledDeps; 639 640 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 641 /// single instructions. 642 int UnscheduledDepsInBundle; 643 644 /// True if this instruction is scheduled (or considered as scheduled in the 645 /// dry-run). 646 bool IsScheduled; 647 }; 648 649 #ifndef NDEBUG 650 friend raw_ostream &operator<<(raw_ostream &os, 651 const BoUpSLP::ScheduleData &SD); 652 #endif 653 654 /// Contains all scheduling data for a basic block. 655 /// 656 struct BlockScheduling { 657 658 BlockScheduling(BasicBlock *BB) 659 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 660 ScheduleStart(nullptr), ScheduleEnd(nullptr), 661 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 662 // Make sure that the initial SchedulingRegionID is greater than the 663 // initial SchedulingRegionID in ScheduleData (which is 0). 664 SchedulingRegionID(1) {} 665 666 void clear() { 667 ReadyInsts.clear(); 668 ScheduleStart = nullptr; 669 ScheduleEnd = nullptr; 670 FirstLoadStoreInRegion = nullptr; 671 LastLoadStoreInRegion = nullptr; 672 673 // Make a new scheduling region, i.e. all existing ScheduleData is not 674 // in the new region yet. 675 ++SchedulingRegionID; 676 } 677 678 ScheduleData *getScheduleData(Value *V) { 679 ScheduleData *SD = ScheduleDataMap[V]; 680 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 681 return SD; 682 return nullptr; 683 } 684 685 bool isInSchedulingRegion(ScheduleData *SD) { 686 return SD->SchedulingRegionID == SchedulingRegionID; 687 } 688 689 /// Marks an instruction as scheduled and puts all dependent ready 690 /// instructions into the ready-list. 691 template <typename ReadyListType> 692 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 693 SD->IsScheduled = true; 694 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 695 696 ScheduleData *BundleMember = SD; 697 while (BundleMember) { 698 // Handle the def-use chain dependencies. 699 for (Use &U : BundleMember->Inst->operands()) { 700 ScheduleData *OpDef = getScheduleData(U.get()); 701 if (OpDef && OpDef->hasValidDependencies() && 702 OpDef->incrementUnscheduledDeps(-1) == 0) { 703 // There are no more unscheduled dependencies after decrementing, 704 // so we can put the dependent instruction into the ready list. 705 ScheduleData *DepBundle = OpDef->FirstInBundle; 706 assert(!DepBundle->IsScheduled && 707 "already scheduled bundle gets ready"); 708 ReadyList.insert(DepBundle); 709 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 710 } 711 } 712 // Handle the memory dependencies. 713 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 714 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 715 // There are no more unscheduled dependencies after decrementing, 716 // so we can put the dependent instruction into the ready list. 717 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 718 assert(!DepBundle->IsScheduled && 719 "already scheduled bundle gets ready"); 720 ReadyList.insert(DepBundle); 721 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 722 } 723 } 724 BundleMember = BundleMember->NextInBundle; 725 } 726 } 727 728 /// Put all instructions into the ReadyList which are ready for scheduling. 729 template <typename ReadyListType> 730 void initialFillReadyList(ReadyListType &ReadyList) { 731 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 732 ScheduleData *SD = getScheduleData(I); 733 if (SD->isSchedulingEntity() && SD->isReady()) { 734 ReadyList.insert(SD); 735 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 736 } 737 } 738 } 739 740 /// Checks if a bundle of instructions can be scheduled, i.e. has no 741 /// cyclic dependencies. This is only a dry-run, no instructions are 742 /// actually moved at this stage. 743 bool tryScheduleBundle(ArrayRef<Value *> VL, AliasAnalysis *AA); 744 745 /// Un-bundles a group of instructions. 746 void cancelScheduling(ArrayRef<Value *> VL); 747 748 /// Extends the scheduling region so that V is inside the region. 749 void extendSchedulingRegion(Value *V); 750 751 /// Initialize the ScheduleData structures for new instructions in the 752 /// scheduling region. 753 void initScheduleData(Instruction *FromI, Instruction *ToI, 754 ScheduleData *PrevLoadStore, 755 ScheduleData *NextLoadStore); 756 757 /// Updates the dependency information of a bundle and of all instructions/ 758 /// bundles which depend on the original bundle. 759 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 760 AliasAnalysis *AA); 761 762 /// Sets all instruction in the scheduling region to un-scheduled. 763 void resetSchedule(); 764 765 BasicBlock *BB; 766 767 /// Simple memory allocation for ScheduleData. 768 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 769 770 /// The size of a ScheduleData array in ScheduleDataChunks. 771 int ChunkSize; 772 773 /// The allocator position in the current chunk, which is the last entry 774 /// of ScheduleDataChunks. 775 int ChunkPos; 776 777 /// Attaches ScheduleData to Instruction. 778 /// Note that the mapping survives during all vectorization iterations, i.e. 779 /// ScheduleData structures are recycled. 780 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 781 782 struct ReadyList : SmallVector<ScheduleData *, 8> { 783 void insert(ScheduleData *SD) { push_back(SD); } 784 }; 785 786 /// The ready-list for scheduling (only used for the dry-run). 787 ReadyList ReadyInsts; 788 789 /// The first instruction of the scheduling region. 790 Instruction *ScheduleStart; 791 792 /// The first instruction _after_ the scheduling region. 793 Instruction *ScheduleEnd; 794 795 /// The first memory accessing instruction in the scheduling region 796 /// (can be null). 797 ScheduleData *FirstLoadStoreInRegion; 798 799 /// The last memory accessing instruction in the scheduling region 800 /// (can be null). 801 ScheduleData *LastLoadStoreInRegion; 802 803 /// The ID of the scheduling region. For a new vectorization iteration this 804 /// is incremented which "removes" all ScheduleData from the region. 805 int SchedulingRegionID; 806 }; 807 808 /// Attaches the BlockScheduling structures to basic blocks. 809 DenseMap<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 810 811 /// Performs the "real" scheduling. Done before vectorization is actually 812 /// performed in a basic block. 813 void scheduleBlock(BlockScheduling *BS); 814 815 /// List of users to ignore during scheduling and that don't need extracting. 816 ArrayRef<Value *> UserIgnoreList; 817 818 // Number of load-bundles, which contain consecutive loads. 819 int NumLoadsWantToKeepOrder; 820 821 // Number of load-bundles of size 2, which are consecutive loads if reversed. 822 int NumLoadsWantToChangeOrder; 823 824 // Analysis and block reference. 825 Function *F; 826 ScalarEvolution *SE; 827 const DataLayout *DL; 828 TargetTransformInfo *TTI; 829 TargetLibraryInfo *TLI; 830 AliasAnalysis *AA; 831 LoopInfo *LI; 832 DominatorTree *DT; 833 /// Instruction builder to construct the vectorized tree. 834 IRBuilder<> Builder; 835 }; 836 837 #ifndef NDEBUG 838 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 839 SD.dump(os); 840 return os; 841 } 842 #endif 843 844 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 845 ArrayRef<Value *> UserIgnoreLst) { 846 deleteTree(); 847 UserIgnoreList = UserIgnoreLst; 848 if (!getSameType(Roots)) 849 return; 850 buildTree_rec(Roots, 0); 851 852 // Collect the values that we need to extract from the tree. 853 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 854 TreeEntry *Entry = &VectorizableTree[EIdx]; 855 856 // For each lane: 857 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 858 Value *Scalar = Entry->Scalars[Lane]; 859 860 // No need to handle users of gathered values. 861 if (Entry->NeedToGather) 862 continue; 863 864 for (User *U : Scalar->users()) { 865 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 866 867 // Skip in-tree scalars that become vectors. 868 if (ScalarToTreeEntry.count(U)) { 869 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << 870 *U << ".\n"); 871 int Idx = ScalarToTreeEntry[U]; (void) Idx; 872 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 873 continue; 874 } 875 Instruction *UserInst = dyn_cast<Instruction>(U); 876 if (!UserInst) 877 continue; 878 879 // Ignore users in the user ignore list. 880 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 881 UserIgnoreList.end()) 882 continue; 883 884 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 885 Lane << " from " << *Scalar << ".\n"); 886 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 887 } 888 } 889 } 890 } 891 892 893 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 894 bool SameTy = getSameType(VL); (void)SameTy; 895 bool isAltShuffle = false; 896 assert(SameTy && "Invalid types!"); 897 898 if (Depth == RecursionMaxDepth) { 899 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 900 newTreeEntry(VL, false); 901 return; 902 } 903 904 // Don't handle vectors. 905 if (VL[0]->getType()->isVectorTy()) { 906 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 907 newTreeEntry(VL, false); 908 return; 909 } 910 911 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 912 if (SI->getValueOperand()->getType()->isVectorTy()) { 913 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 914 newTreeEntry(VL, false); 915 return; 916 } 917 unsigned Opcode = getSameOpcode(VL); 918 919 // Check that this shuffle vector refers to the alternate 920 // sequence of opcodes. 921 if (Opcode == Instruction::ShuffleVector) { 922 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 923 unsigned Op = I0->getOpcode(); 924 if (Op != Instruction::ShuffleVector) 925 isAltShuffle = true; 926 } 927 928 // If all of the operands are identical or constant we have a simple solution. 929 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 930 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 931 newTreeEntry(VL, false); 932 return; 933 } 934 935 // We now know that this is a vector of instructions of the same type from 936 // the same block. 937 938 // Check if this is a duplicate of another entry. 939 if (ScalarToTreeEntry.count(VL[0])) { 940 int Idx = ScalarToTreeEntry[VL[0]]; 941 TreeEntry *E = &VectorizableTree[Idx]; 942 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 943 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 944 if (E->Scalars[i] != VL[i]) { 945 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 946 newTreeEntry(VL, false); 947 return; 948 } 949 } 950 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 951 return; 952 } 953 954 // Check that none of the instructions in the bundle are already in the tree. 955 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 956 if (ScalarToTreeEntry.count(VL[i])) { 957 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 958 ") is already in tree.\n"); 959 newTreeEntry(VL, false); 960 return; 961 } 962 } 963 964 // If any of the scalars appears in the table OR it is marked as a value that 965 // needs to stat scalar then we need to gather the scalars. 966 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 967 if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { 968 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); 969 newTreeEntry(VL, false); 970 return; 971 } 972 } 973 974 // Check that all of the users of the scalars that we want to vectorize are 975 // schedulable. 976 Instruction *VL0 = cast<Instruction>(VL[0]); 977 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 978 979 if (!DT->isReachableFromEntry(BB)) { 980 // Don't go into unreachable blocks. They may contain instructions with 981 // dependency cycles which confuse the final scheduling. 982 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 983 newTreeEntry(VL, false); 984 return; 985 } 986 987 // Check that every instructions appears once in this bundle. 988 for (unsigned i = 0, e = VL.size(); i < e; ++i) 989 for (unsigned j = i+1; j < e; ++j) 990 if (VL[i] == VL[j]) { 991 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 992 newTreeEntry(VL, false); 993 return; 994 } 995 996 auto &BSRef = BlocksSchedules[BB]; 997 if (!BSRef) { 998 BSRef = llvm::make_unique<BlockScheduling>(BB); 999 } 1000 BlockScheduling &BS = *BSRef.get(); 1001 1002 if (!BS.tryScheduleBundle(VL, AA)) { 1003 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1004 BS.cancelScheduling(VL); 1005 newTreeEntry(VL, false); 1006 return; 1007 } 1008 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1009 1010 switch (Opcode) { 1011 case Instruction::PHI: { 1012 PHINode *PH = dyn_cast<PHINode>(VL0); 1013 1014 // Check for terminator values (e.g. invoke). 1015 for (unsigned j = 0; j < VL.size(); ++j) 1016 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1017 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1018 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1019 if (Term) { 1020 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1021 BS.cancelScheduling(VL); 1022 newTreeEntry(VL, false); 1023 return; 1024 } 1025 } 1026 1027 newTreeEntry(VL, true); 1028 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1029 1030 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1031 ValueList Operands; 1032 // Prepare the operand vector. 1033 for (unsigned j = 0; j < VL.size(); ++j) 1034 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1035 PH->getIncomingBlock(i))); 1036 1037 buildTree_rec(Operands, Depth + 1); 1038 } 1039 return; 1040 } 1041 case Instruction::ExtractElement: { 1042 bool Reuse = CanReuseExtract(VL); 1043 if (Reuse) { 1044 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1045 } else { 1046 BS.cancelScheduling(VL); 1047 } 1048 newTreeEntry(VL, Reuse); 1049 return; 1050 } 1051 case Instruction::Load: { 1052 // Check if the loads are consecutive or of we need to swizzle them. 1053 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1054 LoadInst *L = cast<LoadInst>(VL[i]); 1055 if (!L->isSimple()) { 1056 BS.cancelScheduling(VL); 1057 newTreeEntry(VL, false); 1058 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1059 return; 1060 } 1061 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1062 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) { 1063 ++NumLoadsWantToChangeOrder; 1064 } 1065 BS.cancelScheduling(VL); 1066 newTreeEntry(VL, false); 1067 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1068 return; 1069 } 1070 } 1071 ++NumLoadsWantToKeepOrder; 1072 newTreeEntry(VL, true); 1073 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1074 return; 1075 } 1076 case Instruction::ZExt: 1077 case Instruction::SExt: 1078 case Instruction::FPToUI: 1079 case Instruction::FPToSI: 1080 case Instruction::FPExt: 1081 case Instruction::PtrToInt: 1082 case Instruction::IntToPtr: 1083 case Instruction::SIToFP: 1084 case Instruction::UIToFP: 1085 case Instruction::Trunc: 1086 case Instruction::FPTrunc: 1087 case Instruction::BitCast: { 1088 Type *SrcTy = VL0->getOperand(0)->getType(); 1089 for (unsigned i = 0; i < VL.size(); ++i) { 1090 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1091 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { 1092 BS.cancelScheduling(VL); 1093 newTreeEntry(VL, false); 1094 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1095 return; 1096 } 1097 } 1098 newTreeEntry(VL, true); 1099 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1100 1101 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1102 ValueList Operands; 1103 // Prepare the operand vector. 1104 for (unsigned j = 0; j < VL.size(); ++j) 1105 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1106 1107 buildTree_rec(Operands, Depth+1); 1108 } 1109 return; 1110 } 1111 case Instruction::ICmp: 1112 case Instruction::FCmp: { 1113 // Check that all of the compares have the same predicate. 1114 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1115 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1116 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1117 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1118 if (Cmp->getPredicate() != P0 || 1119 Cmp->getOperand(0)->getType() != ComparedTy) { 1120 BS.cancelScheduling(VL); 1121 newTreeEntry(VL, false); 1122 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1123 return; 1124 } 1125 } 1126 1127 newTreeEntry(VL, true); 1128 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1129 1130 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1131 ValueList Operands; 1132 // Prepare the operand vector. 1133 for (unsigned j = 0; j < VL.size(); ++j) 1134 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1135 1136 buildTree_rec(Operands, Depth+1); 1137 } 1138 return; 1139 } 1140 case Instruction::Select: 1141 case Instruction::Add: 1142 case Instruction::FAdd: 1143 case Instruction::Sub: 1144 case Instruction::FSub: 1145 case Instruction::Mul: 1146 case Instruction::FMul: 1147 case Instruction::UDiv: 1148 case Instruction::SDiv: 1149 case Instruction::FDiv: 1150 case Instruction::URem: 1151 case Instruction::SRem: 1152 case Instruction::FRem: 1153 case Instruction::Shl: 1154 case Instruction::LShr: 1155 case Instruction::AShr: 1156 case Instruction::And: 1157 case Instruction::Or: 1158 case Instruction::Xor: { 1159 newTreeEntry(VL, true); 1160 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1161 1162 // Sort operands of the instructions so that each side is more likely to 1163 // have the same opcode. 1164 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1165 ValueList Left, Right; 1166 reorderInputsAccordingToOpcode(VL, Left, Right); 1167 buildTree_rec(Left, Depth + 1); 1168 buildTree_rec(Right, Depth + 1); 1169 return; 1170 } 1171 1172 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1173 ValueList Operands; 1174 // Prepare the operand vector. 1175 for (unsigned j = 0; j < VL.size(); ++j) 1176 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1177 1178 buildTree_rec(Operands, Depth+1); 1179 } 1180 return; 1181 } 1182 case Instruction::GetElementPtr: { 1183 // We don't combine GEPs with complicated (nested) indexing. 1184 for (unsigned j = 0; j < VL.size(); ++j) { 1185 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1186 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1187 BS.cancelScheduling(VL); 1188 newTreeEntry(VL, false); 1189 return; 1190 } 1191 } 1192 1193 // We can't combine several GEPs into one vector if they operate on 1194 // different types. 1195 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1196 for (unsigned j = 0; j < VL.size(); ++j) { 1197 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1198 if (Ty0 != CurTy) { 1199 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1200 BS.cancelScheduling(VL); 1201 newTreeEntry(VL, false); 1202 return; 1203 } 1204 } 1205 1206 // We don't combine GEPs with non-constant indexes. 1207 for (unsigned j = 0; j < VL.size(); ++j) { 1208 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1209 if (!isa<ConstantInt>(Op)) { 1210 DEBUG( 1211 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1212 BS.cancelScheduling(VL); 1213 newTreeEntry(VL, false); 1214 return; 1215 } 1216 } 1217 1218 newTreeEntry(VL, true); 1219 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1220 for (unsigned i = 0, e = 2; i < e; ++i) { 1221 ValueList Operands; 1222 // Prepare the operand vector. 1223 for (unsigned j = 0; j < VL.size(); ++j) 1224 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1225 1226 buildTree_rec(Operands, Depth + 1); 1227 } 1228 return; 1229 } 1230 case Instruction::Store: { 1231 // Check if the stores are consecutive or of we need to swizzle them. 1232 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1233 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1234 BS.cancelScheduling(VL); 1235 newTreeEntry(VL, false); 1236 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1237 return; 1238 } 1239 1240 newTreeEntry(VL, true); 1241 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1242 1243 ValueList Operands; 1244 for (unsigned j = 0; j < VL.size(); ++j) 1245 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1246 1247 buildTree_rec(Operands, Depth + 1); 1248 return; 1249 } 1250 case Instruction::Call: { 1251 // Check if the calls are all to the same vectorizable intrinsic. 1252 CallInst *CI = cast<CallInst>(VL[0]); 1253 // Check if this is an Intrinsic call or something that can be 1254 // represented by an intrinsic call 1255 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1256 if (!isTriviallyVectorizable(ID)) { 1257 BS.cancelScheduling(VL); 1258 newTreeEntry(VL, false); 1259 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1260 return; 1261 } 1262 Function *Int = CI->getCalledFunction(); 1263 Value *A1I = nullptr; 1264 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1265 A1I = CI->getArgOperand(1); 1266 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1267 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1268 if (!CI2 || CI2->getCalledFunction() != Int || 1269 getIntrinsicIDForCall(CI2, TLI) != ID) { 1270 BS.cancelScheduling(VL); 1271 newTreeEntry(VL, false); 1272 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1273 << "\n"); 1274 return; 1275 } 1276 // ctlz,cttz and powi are special intrinsics whose second argument 1277 // should be same in order for them to be vectorized. 1278 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1279 Value *A1J = CI2->getArgOperand(1); 1280 if (A1I != A1J) { 1281 BS.cancelScheduling(VL); 1282 newTreeEntry(VL, false); 1283 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1284 << " argument "<< A1I<<"!=" << A1J 1285 << "\n"); 1286 return; 1287 } 1288 } 1289 } 1290 1291 newTreeEntry(VL, true); 1292 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1293 ValueList Operands; 1294 // Prepare the operand vector. 1295 for (unsigned j = 0; j < VL.size(); ++j) { 1296 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1297 Operands.push_back(CI2->getArgOperand(i)); 1298 } 1299 buildTree_rec(Operands, Depth + 1); 1300 } 1301 return; 1302 } 1303 case Instruction::ShuffleVector: { 1304 // If this is not an alternate sequence of opcode like add-sub 1305 // then do not vectorize this instruction. 1306 if (!isAltShuffle) { 1307 BS.cancelScheduling(VL); 1308 newTreeEntry(VL, false); 1309 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1310 return; 1311 } 1312 newTreeEntry(VL, true); 1313 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1314 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1315 ValueList Operands; 1316 // Prepare the operand vector. 1317 for (unsigned j = 0; j < VL.size(); ++j) 1318 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1319 1320 buildTree_rec(Operands, Depth + 1); 1321 } 1322 return; 1323 } 1324 default: 1325 BS.cancelScheduling(VL); 1326 newTreeEntry(VL, false); 1327 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1328 return; 1329 } 1330 } 1331 1332 int BoUpSLP::getEntryCost(TreeEntry *E) { 1333 ArrayRef<Value*> VL = E->Scalars; 1334 1335 Type *ScalarTy = VL[0]->getType(); 1336 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1337 ScalarTy = SI->getValueOperand()->getType(); 1338 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1339 1340 if (E->NeedToGather) { 1341 if (allConstant(VL)) 1342 return 0; 1343 if (isSplat(VL)) { 1344 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1345 } 1346 return getGatherCost(E->Scalars); 1347 } 1348 unsigned Opcode = getSameOpcode(VL); 1349 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1350 Instruction *VL0 = cast<Instruction>(VL[0]); 1351 switch (Opcode) { 1352 case Instruction::PHI: { 1353 return 0; 1354 } 1355 case Instruction::ExtractElement: { 1356 if (CanReuseExtract(VL)) { 1357 int DeadCost = 0; 1358 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1359 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1360 if (E->hasOneUse()) 1361 // Take credit for instruction that will become dead. 1362 DeadCost += 1363 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1364 } 1365 return -DeadCost; 1366 } 1367 return getGatherCost(VecTy); 1368 } 1369 case Instruction::ZExt: 1370 case Instruction::SExt: 1371 case Instruction::FPToUI: 1372 case Instruction::FPToSI: 1373 case Instruction::FPExt: 1374 case Instruction::PtrToInt: 1375 case Instruction::IntToPtr: 1376 case Instruction::SIToFP: 1377 case Instruction::UIToFP: 1378 case Instruction::Trunc: 1379 case Instruction::FPTrunc: 1380 case Instruction::BitCast: { 1381 Type *SrcTy = VL0->getOperand(0)->getType(); 1382 1383 // Calculate the cost of this instruction. 1384 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1385 VL0->getType(), SrcTy); 1386 1387 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1388 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1389 return VecCost - ScalarCost; 1390 } 1391 case Instruction::FCmp: 1392 case Instruction::ICmp: 1393 case Instruction::Select: 1394 case Instruction::Add: 1395 case Instruction::FAdd: 1396 case Instruction::Sub: 1397 case Instruction::FSub: 1398 case Instruction::Mul: 1399 case Instruction::FMul: 1400 case Instruction::UDiv: 1401 case Instruction::SDiv: 1402 case Instruction::FDiv: 1403 case Instruction::URem: 1404 case Instruction::SRem: 1405 case Instruction::FRem: 1406 case Instruction::Shl: 1407 case Instruction::LShr: 1408 case Instruction::AShr: 1409 case Instruction::And: 1410 case Instruction::Or: 1411 case Instruction::Xor: { 1412 // Calculate the cost of this instruction. 1413 int ScalarCost = 0; 1414 int VecCost = 0; 1415 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1416 Opcode == Instruction::Select) { 1417 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1418 ScalarCost = VecTy->getNumElements() * 1419 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1420 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1421 } else { 1422 // Certain instructions can be cheaper to vectorize if they have a 1423 // constant second vector operand. 1424 TargetTransformInfo::OperandValueKind Op1VK = 1425 TargetTransformInfo::OK_AnyValue; 1426 TargetTransformInfo::OperandValueKind Op2VK = 1427 TargetTransformInfo::OK_UniformConstantValue; 1428 1429 // If all operands are exactly the same ConstantInt then set the 1430 // operand kind to OK_UniformConstantValue. 1431 // If instead not all operands are constants, then set the operand kind 1432 // to OK_AnyValue. If all operands are constants but not the same, 1433 // then set the operand kind to OK_NonUniformConstantValue. 1434 ConstantInt *CInt = nullptr; 1435 for (unsigned i = 0; i < VL.size(); ++i) { 1436 const Instruction *I = cast<Instruction>(VL[i]); 1437 if (!isa<ConstantInt>(I->getOperand(1))) { 1438 Op2VK = TargetTransformInfo::OK_AnyValue; 1439 break; 1440 } 1441 if (i == 0) { 1442 CInt = cast<ConstantInt>(I->getOperand(1)); 1443 continue; 1444 } 1445 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1446 CInt != cast<ConstantInt>(I->getOperand(1))) 1447 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1448 } 1449 1450 ScalarCost = 1451 VecTy->getNumElements() * 1452 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK); 1453 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK); 1454 } 1455 return VecCost - ScalarCost; 1456 } 1457 case Instruction::GetElementPtr: { 1458 TargetTransformInfo::OperandValueKind Op1VK = 1459 TargetTransformInfo::OK_AnyValue; 1460 TargetTransformInfo::OperandValueKind Op2VK = 1461 TargetTransformInfo::OK_UniformConstantValue; 1462 1463 int ScalarCost = 1464 VecTy->getNumElements() * 1465 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1466 int VecCost = 1467 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1468 1469 return VecCost - ScalarCost; 1470 } 1471 case Instruction::Load: { 1472 // Cost of wide load - cost of scalar loads. 1473 int ScalarLdCost = VecTy->getNumElements() * 1474 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1475 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1476 return VecLdCost - ScalarLdCost; 1477 } 1478 case Instruction::Store: { 1479 // We know that we can merge the stores. Calculate the cost. 1480 int ScalarStCost = VecTy->getNumElements() * 1481 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1482 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1483 return VecStCost - ScalarStCost; 1484 } 1485 case Instruction::Call: { 1486 CallInst *CI = cast<CallInst>(VL0); 1487 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1488 1489 // Calculate the cost of the scalar and vector calls. 1490 SmallVector<Type*, 4> ScalarTys, VecTys; 1491 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1492 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1493 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1494 VecTy->getNumElements())); 1495 } 1496 1497 int ScalarCallCost = VecTy->getNumElements() * 1498 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1499 1500 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1501 1502 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1503 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1504 << " for " << *CI << "\n"); 1505 1506 return VecCallCost - ScalarCallCost; 1507 } 1508 case Instruction::ShuffleVector: { 1509 TargetTransformInfo::OperandValueKind Op1VK = 1510 TargetTransformInfo::OK_AnyValue; 1511 TargetTransformInfo::OperandValueKind Op2VK = 1512 TargetTransformInfo::OK_AnyValue; 1513 int ScalarCost = 0; 1514 int VecCost = 0; 1515 for (unsigned i = 0; i < VL.size(); ++i) { 1516 Instruction *I = cast<Instruction>(VL[i]); 1517 if (!I) 1518 break; 1519 ScalarCost += 1520 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1521 } 1522 // VecCost is equal to sum of the cost of creating 2 vectors 1523 // and the cost of creating shuffle. 1524 Instruction *I0 = cast<Instruction>(VL[0]); 1525 VecCost = 1526 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1527 Instruction *I1 = cast<Instruction>(VL[1]); 1528 VecCost += 1529 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1530 VecCost += 1531 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1532 return VecCost - ScalarCost; 1533 } 1534 default: 1535 llvm_unreachable("Unknown instruction"); 1536 } 1537 } 1538 1539 bool BoUpSLP::isFullyVectorizableTinyTree() { 1540 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1541 VectorizableTree.size() << " is fully vectorizable .\n"); 1542 1543 // We only handle trees of height 2. 1544 if (VectorizableTree.size() != 2) 1545 return false; 1546 1547 // Handle splat stores. 1548 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars)) 1549 return true; 1550 1551 // Gathering cost would be too much for tiny trees. 1552 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1553 return false; 1554 1555 return true; 1556 } 1557 1558 int BoUpSLP::getSpillCost() { 1559 // Walk from the bottom of the tree to the top, tracking which values are 1560 // live. When we see a call instruction that is not part of our tree, 1561 // query TTI to see if there is a cost to keeping values live over it 1562 // (for example, if spills and fills are required). 1563 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1564 int Cost = 0; 1565 1566 SmallPtrSet<Instruction*, 4> LiveValues; 1567 Instruction *PrevInst = nullptr; 1568 1569 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1570 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1571 if (!Inst) 1572 continue; 1573 1574 if (!PrevInst) { 1575 PrevInst = Inst; 1576 continue; 1577 } 1578 1579 DEBUG( 1580 dbgs() << "SLP: #LV: " << LiveValues.size(); 1581 for (auto *X : LiveValues) 1582 dbgs() << " " << X->getName(); 1583 dbgs() << ", Looking at "; 1584 Inst->dump(); 1585 ); 1586 1587 // Update LiveValues. 1588 LiveValues.erase(PrevInst); 1589 for (auto &J : PrevInst->operands()) { 1590 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1591 LiveValues.insert(cast<Instruction>(&*J)); 1592 } 1593 1594 // Now find the sequence of instructions between PrevInst and Inst. 1595 BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst); 1596 --PrevInstIt; 1597 while (InstIt != PrevInstIt) { 1598 if (PrevInstIt == PrevInst->getParent()->rend()) { 1599 PrevInstIt = Inst->getParent()->rbegin(); 1600 continue; 1601 } 1602 1603 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1604 SmallVector<Type*, 4> V; 1605 for (auto *II : LiveValues) 1606 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1607 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1608 } 1609 1610 ++PrevInstIt; 1611 } 1612 1613 PrevInst = Inst; 1614 } 1615 1616 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); 1617 return Cost; 1618 } 1619 1620 int BoUpSLP::getTreeCost() { 1621 int Cost = 0; 1622 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1623 VectorizableTree.size() << ".\n"); 1624 1625 // We only vectorize tiny trees if it is fully vectorizable. 1626 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1627 if (!VectorizableTree.size()) { 1628 assert(!ExternalUses.size() && "We should not have any external users"); 1629 } 1630 return INT_MAX; 1631 } 1632 1633 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1634 1635 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1636 int C = getEntryCost(&VectorizableTree[i]); 1637 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1638 << *VectorizableTree[i].Scalars[0] << " .\n"); 1639 Cost += C; 1640 } 1641 1642 SmallSet<Value *, 16> ExtractCostCalculated; 1643 int ExtractCost = 0; 1644 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1645 I != E; ++I) { 1646 // We only add extract cost once for the same scalar. 1647 if (!ExtractCostCalculated.insert(I->Scalar)) 1648 continue; 1649 1650 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1651 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1652 I->Lane); 1653 } 1654 1655 Cost += getSpillCost(); 1656 1657 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1658 return Cost + ExtractCost; 1659 } 1660 1661 int BoUpSLP::getGatherCost(Type *Ty) { 1662 int Cost = 0; 1663 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1664 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1665 return Cost; 1666 } 1667 1668 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1669 // Find the type of the operands in VL. 1670 Type *ScalarTy = VL[0]->getType(); 1671 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1672 ScalarTy = SI->getValueOperand()->getType(); 1673 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1674 // Find the cost of inserting/extracting values from the vector. 1675 return getGatherCost(VecTy); 1676 } 1677 1678 Value *BoUpSLP::getPointerOperand(Value *I) { 1679 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1680 return LI->getPointerOperand(); 1681 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1682 return SI->getPointerOperand(); 1683 return nullptr; 1684 } 1685 1686 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1687 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1688 return L->getPointerAddressSpace(); 1689 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1690 return S->getPointerAddressSpace(); 1691 return -1; 1692 } 1693 1694 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 1695 Value *PtrA = getPointerOperand(A); 1696 Value *PtrB = getPointerOperand(B); 1697 unsigned ASA = getAddressSpaceOperand(A); 1698 unsigned ASB = getAddressSpaceOperand(B); 1699 1700 // Check that the address spaces match and that the pointers are valid. 1701 if (!PtrA || !PtrB || (ASA != ASB)) 1702 return false; 1703 1704 // Make sure that A and B are different pointers of the same type. 1705 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1706 return false; 1707 1708 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); 1709 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1710 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); 1711 1712 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1713 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); 1714 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); 1715 1716 APInt OffsetDelta = OffsetB - OffsetA; 1717 1718 // Check if they are based on the same pointer. That makes the offsets 1719 // sufficient. 1720 if (PtrA == PtrB) 1721 return OffsetDelta == Size; 1722 1723 // Compute the necessary base pointer delta to have the necessary final delta 1724 // equal to the size. 1725 APInt BaseDelta = Size - OffsetDelta; 1726 1727 // Otherwise compute the distance with SCEV between the base pointers. 1728 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1729 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1730 const SCEV *C = SE->getConstant(BaseDelta); 1731 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1732 return X == PtrSCEVB; 1733 } 1734 1735 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 1736 Instruction *VL0 = cast<Instruction>(VL[0]); 1737 BasicBlock::iterator NextInst = VL0; 1738 ++NextInst; 1739 Builder.SetInsertPoint(VL0->getParent(), NextInst); 1740 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 1741 } 1742 1743 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1744 Value *Vec = UndefValue::get(Ty); 1745 // Generate the 'InsertElement' instruction. 1746 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1747 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1748 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1749 GatherSeq.insert(Insrt); 1750 CSEBlocks.insert(Insrt->getParent()); 1751 1752 // Add to our 'need-to-extract' list. 1753 if (ScalarToTreeEntry.count(VL[i])) { 1754 int Idx = ScalarToTreeEntry[VL[i]]; 1755 TreeEntry *E = &VectorizableTree[Idx]; 1756 // Find which lane we need to extract. 1757 int FoundLane = -1; 1758 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1759 // Is this the lane of the scalar that we are looking for ? 1760 if (E->Scalars[Lane] == VL[i]) { 1761 FoundLane = Lane; 1762 break; 1763 } 1764 } 1765 assert(FoundLane >= 0 && "Could not find the correct lane"); 1766 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1767 } 1768 } 1769 } 1770 1771 return Vec; 1772 } 1773 1774 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 1775 SmallDenseMap<Value*, int>::const_iterator Entry 1776 = ScalarToTreeEntry.find(VL[0]); 1777 if (Entry != ScalarToTreeEntry.end()) { 1778 int Idx = Entry->second; 1779 const TreeEntry *En = &VectorizableTree[Idx]; 1780 if (En->isSame(VL) && En->VectorizedValue) 1781 return En->VectorizedValue; 1782 } 1783 return nullptr; 1784 } 1785 1786 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1787 if (ScalarToTreeEntry.count(VL[0])) { 1788 int Idx = ScalarToTreeEntry[VL[0]]; 1789 TreeEntry *E = &VectorizableTree[Idx]; 1790 if (E->isSame(VL)) 1791 return vectorizeTree(E); 1792 } 1793 1794 Type *ScalarTy = VL[0]->getType(); 1795 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1796 ScalarTy = SI->getValueOperand()->getType(); 1797 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1798 1799 return Gather(VL, VecTy); 1800 } 1801 1802 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1803 IRBuilder<>::InsertPointGuard Guard(Builder); 1804 1805 if (E->VectorizedValue) { 1806 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1807 return E->VectorizedValue; 1808 } 1809 1810 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1811 Type *ScalarTy = VL0->getType(); 1812 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 1813 ScalarTy = SI->getValueOperand()->getType(); 1814 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1815 1816 if (E->NeedToGather) { 1817 setInsertPointAfterBundle(E->Scalars); 1818 return Gather(E->Scalars, VecTy); 1819 } 1820 1821 unsigned Opcode = getSameOpcode(E->Scalars); 1822 1823 switch (Opcode) { 1824 case Instruction::PHI: { 1825 PHINode *PH = dyn_cast<PHINode>(VL0); 1826 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 1827 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1828 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1829 E->VectorizedValue = NewPhi; 1830 1831 // PHINodes may have multiple entries from the same block. We want to 1832 // visit every block once. 1833 SmallSet<BasicBlock*, 4> VisitedBBs; 1834 1835 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1836 ValueList Operands; 1837 BasicBlock *IBB = PH->getIncomingBlock(i); 1838 1839 if (!VisitedBBs.insert(IBB)) { 1840 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 1841 continue; 1842 } 1843 1844 // Prepare the operand vector. 1845 for (unsigned j = 0; j < E->Scalars.size(); ++j) 1846 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 1847 getIncomingValueForBlock(IBB)); 1848 1849 Builder.SetInsertPoint(IBB->getTerminator()); 1850 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1851 Value *Vec = vectorizeTree(Operands); 1852 NewPhi->addIncoming(Vec, IBB); 1853 } 1854 1855 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 1856 "Invalid number of incoming values"); 1857 return NewPhi; 1858 } 1859 1860 case Instruction::ExtractElement: { 1861 if (CanReuseExtract(E->Scalars)) { 1862 Value *V = VL0->getOperand(0); 1863 E->VectorizedValue = V; 1864 return V; 1865 } 1866 return Gather(E->Scalars, VecTy); 1867 } 1868 case Instruction::ZExt: 1869 case Instruction::SExt: 1870 case Instruction::FPToUI: 1871 case Instruction::FPToSI: 1872 case Instruction::FPExt: 1873 case Instruction::PtrToInt: 1874 case Instruction::IntToPtr: 1875 case Instruction::SIToFP: 1876 case Instruction::UIToFP: 1877 case Instruction::Trunc: 1878 case Instruction::FPTrunc: 1879 case Instruction::BitCast: { 1880 ValueList INVL; 1881 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1882 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1883 1884 setInsertPointAfterBundle(E->Scalars); 1885 1886 Value *InVec = vectorizeTree(INVL); 1887 1888 if (Value *V = alreadyVectorized(E->Scalars)) 1889 return V; 1890 1891 CastInst *CI = dyn_cast<CastInst>(VL0); 1892 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 1893 E->VectorizedValue = V; 1894 ++NumVectorInstructions; 1895 return V; 1896 } 1897 case Instruction::FCmp: 1898 case Instruction::ICmp: { 1899 ValueList LHSV, RHSV; 1900 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1901 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1902 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1903 } 1904 1905 setInsertPointAfterBundle(E->Scalars); 1906 1907 Value *L = vectorizeTree(LHSV); 1908 Value *R = vectorizeTree(RHSV); 1909 1910 if (Value *V = alreadyVectorized(E->Scalars)) 1911 return V; 1912 1913 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1914 Value *V; 1915 if (Opcode == Instruction::FCmp) 1916 V = Builder.CreateFCmp(P0, L, R); 1917 else 1918 V = Builder.CreateICmp(P0, L, R); 1919 1920 E->VectorizedValue = V; 1921 ++NumVectorInstructions; 1922 return V; 1923 } 1924 case Instruction::Select: { 1925 ValueList TrueVec, FalseVec, CondVec; 1926 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1927 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1928 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1929 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 1930 } 1931 1932 setInsertPointAfterBundle(E->Scalars); 1933 1934 Value *Cond = vectorizeTree(CondVec); 1935 Value *True = vectorizeTree(TrueVec); 1936 Value *False = vectorizeTree(FalseVec); 1937 1938 if (Value *V = alreadyVectorized(E->Scalars)) 1939 return V; 1940 1941 Value *V = Builder.CreateSelect(Cond, True, False); 1942 E->VectorizedValue = V; 1943 ++NumVectorInstructions; 1944 return V; 1945 } 1946 case Instruction::Add: 1947 case Instruction::FAdd: 1948 case Instruction::Sub: 1949 case Instruction::FSub: 1950 case Instruction::Mul: 1951 case Instruction::FMul: 1952 case Instruction::UDiv: 1953 case Instruction::SDiv: 1954 case Instruction::FDiv: 1955 case Instruction::URem: 1956 case Instruction::SRem: 1957 case Instruction::FRem: 1958 case Instruction::Shl: 1959 case Instruction::LShr: 1960 case Instruction::AShr: 1961 case Instruction::And: 1962 case Instruction::Or: 1963 case Instruction::Xor: { 1964 ValueList LHSVL, RHSVL; 1965 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 1966 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 1967 else 1968 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1969 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1970 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1971 } 1972 1973 setInsertPointAfterBundle(E->Scalars); 1974 1975 Value *LHS = vectorizeTree(LHSVL); 1976 Value *RHS = vectorizeTree(RHSVL); 1977 1978 if (LHS == RHS && isa<Instruction>(LHS)) { 1979 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 1980 } 1981 1982 if (Value *V = alreadyVectorized(E->Scalars)) 1983 return V; 1984 1985 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 1986 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 1987 E->VectorizedValue = V; 1988 ++NumVectorInstructions; 1989 1990 if (Instruction *I = dyn_cast<Instruction>(V)) 1991 return propagateMetadata(I, E->Scalars); 1992 1993 return V; 1994 } 1995 case Instruction::Load: { 1996 // Loads are inserted at the head of the tree because we don't want to 1997 // sink them all the way down past store instructions. 1998 setInsertPointAfterBundle(E->Scalars); 1999 2000 LoadInst *LI = cast<LoadInst>(VL0); 2001 Type *ScalarLoadTy = LI->getType(); 2002 unsigned AS = LI->getPointerAddressSpace(); 2003 2004 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2005 VecTy->getPointerTo(AS)); 2006 unsigned Alignment = LI->getAlignment(); 2007 LI = Builder.CreateLoad(VecPtr); 2008 if (!Alignment) 2009 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2010 LI->setAlignment(Alignment); 2011 E->VectorizedValue = LI; 2012 ++NumVectorInstructions; 2013 return propagateMetadata(LI, E->Scalars); 2014 } 2015 case Instruction::Store: { 2016 StoreInst *SI = cast<StoreInst>(VL0); 2017 unsigned Alignment = SI->getAlignment(); 2018 unsigned AS = SI->getPointerAddressSpace(); 2019 2020 ValueList ValueOp; 2021 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2022 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 2023 2024 setInsertPointAfterBundle(E->Scalars); 2025 2026 Value *VecValue = vectorizeTree(ValueOp); 2027 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2028 VecTy->getPointerTo(AS)); 2029 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2030 if (!Alignment) 2031 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2032 S->setAlignment(Alignment); 2033 E->VectorizedValue = S; 2034 ++NumVectorInstructions; 2035 return propagateMetadata(S, E->Scalars); 2036 } 2037 case Instruction::GetElementPtr: { 2038 setInsertPointAfterBundle(E->Scalars); 2039 2040 ValueList Op0VL; 2041 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2042 Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0)); 2043 2044 Value *Op0 = vectorizeTree(Op0VL); 2045 2046 std::vector<Value *> OpVecs; 2047 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2048 ++j) { 2049 ValueList OpVL; 2050 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2051 OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j)); 2052 2053 Value *OpVec = vectorizeTree(OpVL); 2054 OpVecs.push_back(OpVec); 2055 } 2056 2057 Value *V = Builder.CreateGEP(Op0, OpVecs); 2058 E->VectorizedValue = V; 2059 ++NumVectorInstructions; 2060 2061 if (Instruction *I = dyn_cast<Instruction>(V)) 2062 return propagateMetadata(I, E->Scalars); 2063 2064 return V; 2065 } 2066 case Instruction::Call: { 2067 CallInst *CI = cast<CallInst>(VL0); 2068 setInsertPointAfterBundle(E->Scalars); 2069 Function *FI; 2070 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2071 if (CI && (FI = CI->getCalledFunction())) { 2072 IID = (Intrinsic::ID) FI->getIntrinsicID(); 2073 } 2074 std::vector<Value *> OpVecs; 2075 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2076 ValueList OpVL; 2077 // ctlz,cttz and powi are special intrinsics whose second argument is 2078 // a scalar. This argument should not be vectorized. 2079 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2080 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2081 OpVecs.push_back(CEI->getArgOperand(j)); 2082 continue; 2083 } 2084 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2085 CallInst *CEI = cast<CallInst>(E->Scalars[i]); 2086 OpVL.push_back(CEI->getArgOperand(j)); 2087 } 2088 2089 Value *OpVec = vectorizeTree(OpVL); 2090 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2091 OpVecs.push_back(OpVec); 2092 } 2093 2094 Module *M = F->getParent(); 2095 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2096 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2097 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2098 Value *V = Builder.CreateCall(CF, OpVecs); 2099 E->VectorizedValue = V; 2100 ++NumVectorInstructions; 2101 return V; 2102 } 2103 case Instruction::ShuffleVector: { 2104 ValueList LHSVL, RHSVL; 2105 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2106 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2107 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2108 } 2109 setInsertPointAfterBundle(E->Scalars); 2110 2111 Value *LHS = vectorizeTree(LHSVL); 2112 Value *RHS = vectorizeTree(RHSVL); 2113 2114 if (Value *V = alreadyVectorized(E->Scalars)) 2115 return V; 2116 2117 // Create a vector of LHS op1 RHS 2118 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2119 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2120 2121 // Create a vector of LHS op2 RHS 2122 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2123 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2124 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2125 2126 // Create appropriate shuffle to take alternative operations from 2127 // the vector. 2128 std::vector<Constant *> Mask(E->Scalars.size()); 2129 unsigned e = E->Scalars.size(); 2130 for (unsigned i = 0; i < e; ++i) { 2131 if (i & 1) 2132 Mask[i] = Builder.getInt32(e + i); 2133 else 2134 Mask[i] = Builder.getInt32(i); 2135 } 2136 2137 Value *ShuffleMask = ConstantVector::get(Mask); 2138 2139 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2140 E->VectorizedValue = V; 2141 ++NumVectorInstructions; 2142 if (Instruction *I = dyn_cast<Instruction>(V)) 2143 return propagateMetadata(I, E->Scalars); 2144 2145 return V; 2146 } 2147 default: 2148 llvm_unreachable("unknown inst"); 2149 } 2150 return nullptr; 2151 } 2152 2153 Value *BoUpSLP::vectorizeTree() { 2154 2155 // All blocks must be scheduled before any instructions are inserted. 2156 for (auto &BSIter : BlocksSchedules) { 2157 scheduleBlock(BSIter.second.get()); 2158 } 2159 2160 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2161 vectorizeTree(&VectorizableTree[0]); 2162 2163 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2164 2165 // Extract all of the elements with the external uses. 2166 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2167 it != e; ++it) { 2168 Value *Scalar = it->Scalar; 2169 llvm::User *User = it->User; 2170 2171 // Skip users that we already RAUW. This happens when one instruction 2172 // has multiple uses of the same value. 2173 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2174 Scalar->user_end()) 2175 continue; 2176 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2177 2178 int Idx = ScalarToTreeEntry[Scalar]; 2179 TreeEntry *E = &VectorizableTree[Idx]; 2180 assert(!E->NeedToGather && "Extracting from a gather list"); 2181 2182 Value *Vec = E->VectorizedValue; 2183 assert(Vec && "Can't find vectorizable value"); 2184 2185 Value *Lane = Builder.getInt32(it->Lane); 2186 // Generate extracts for out-of-tree users. 2187 // Find the insertion point for the extractelement lane. 2188 if (isa<Instruction>(Vec)){ 2189 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2190 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2191 if (PH->getIncomingValue(i) == Scalar) { 2192 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2193 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2194 CSEBlocks.insert(PH->getIncomingBlock(i)); 2195 PH->setOperand(i, Ex); 2196 } 2197 } 2198 } else { 2199 Builder.SetInsertPoint(cast<Instruction>(User)); 2200 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2201 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2202 User->replaceUsesOfWith(Scalar, Ex); 2203 } 2204 } else { 2205 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2206 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2207 CSEBlocks.insert(&F->getEntryBlock()); 2208 User->replaceUsesOfWith(Scalar, Ex); 2209 } 2210 2211 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2212 } 2213 2214 // For each vectorized value: 2215 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2216 TreeEntry *Entry = &VectorizableTree[EIdx]; 2217 2218 // For each lane: 2219 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2220 Value *Scalar = Entry->Scalars[Lane]; 2221 // No need to handle users of gathered values. 2222 if (Entry->NeedToGather) 2223 continue; 2224 2225 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2226 2227 Type *Ty = Scalar->getType(); 2228 if (!Ty->isVoidTy()) { 2229 #ifndef NDEBUG 2230 for (User *U : Scalar->users()) { 2231 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2232 2233 assert((ScalarToTreeEntry.count(U) || 2234 // It is legal to replace users in the ignorelist by undef. 2235 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2236 UserIgnoreList.end())) && 2237 "Replacing out-of-tree value with undef"); 2238 } 2239 #endif 2240 Value *Undef = UndefValue::get(Ty); 2241 Scalar->replaceAllUsesWith(Undef); 2242 } 2243 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2244 cast<Instruction>(Scalar)->eraseFromParent(); 2245 } 2246 } 2247 2248 Builder.ClearInsertionPoint(); 2249 2250 return VectorizableTree[0].VectorizedValue; 2251 } 2252 2253 void BoUpSLP::optimizeGatherSequence() { 2254 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2255 << " gather sequences instructions.\n"); 2256 // LICM InsertElementInst sequences. 2257 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2258 e = GatherSeq.end(); it != e; ++it) { 2259 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2260 2261 if (!Insert) 2262 continue; 2263 2264 // Check if this block is inside a loop. 2265 Loop *L = LI->getLoopFor(Insert->getParent()); 2266 if (!L) 2267 continue; 2268 2269 // Check if it has a preheader. 2270 BasicBlock *PreHeader = L->getLoopPreheader(); 2271 if (!PreHeader) 2272 continue; 2273 2274 // If the vector or the element that we insert into it are 2275 // instructions that are defined in this basic block then we can't 2276 // hoist this instruction. 2277 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2278 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2279 if (CurrVec && L->contains(CurrVec)) 2280 continue; 2281 if (NewElem && L->contains(NewElem)) 2282 continue; 2283 2284 // We can hoist this instruction. Move it to the pre-header. 2285 Insert->moveBefore(PreHeader->getTerminator()); 2286 } 2287 2288 // Make a list of all reachable blocks in our CSE queue. 2289 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2290 CSEWorkList.reserve(CSEBlocks.size()); 2291 for (BasicBlock *BB : CSEBlocks) 2292 if (DomTreeNode *N = DT->getNode(BB)) { 2293 assert(DT->isReachableFromEntry(N)); 2294 CSEWorkList.push_back(N); 2295 } 2296 2297 // Sort blocks by domination. This ensures we visit a block after all blocks 2298 // dominating it are visited. 2299 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2300 [this](const DomTreeNode *A, const DomTreeNode *B) { 2301 return DT->properlyDominates(A, B); 2302 }); 2303 2304 // Perform O(N^2) search over the gather sequences and merge identical 2305 // instructions. TODO: We can further optimize this scan if we split the 2306 // instructions into different buckets based on the insert lane. 2307 SmallVector<Instruction *, 16> Visited; 2308 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2309 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2310 "Worklist not sorted properly!"); 2311 BasicBlock *BB = (*I)->getBlock(); 2312 // For all instructions in blocks containing gather sequences: 2313 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2314 Instruction *In = it++; 2315 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2316 continue; 2317 2318 // Check if we can replace this instruction with any of the 2319 // visited instructions. 2320 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2321 ve = Visited.end(); 2322 v != ve; ++v) { 2323 if (In->isIdenticalTo(*v) && 2324 DT->dominates((*v)->getParent(), In->getParent())) { 2325 In->replaceAllUsesWith(*v); 2326 In->eraseFromParent(); 2327 In = nullptr; 2328 break; 2329 } 2330 } 2331 if (In) { 2332 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2333 Visited.push_back(In); 2334 } 2335 } 2336 } 2337 CSEBlocks.clear(); 2338 GatherSeq.clear(); 2339 } 2340 2341 // Groups the instructions to a bundle (which is then a single scheduling entity) 2342 // and schedules instructions until the bundle gets ready. 2343 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2344 AliasAnalysis *AA) { 2345 if (isa<PHINode>(VL[0])) 2346 return true; 2347 2348 // Initialize the instruction bundle. 2349 Instruction *OldScheduleEnd = ScheduleEnd; 2350 ScheduleData *PrevInBundle = nullptr; 2351 ScheduleData *Bundle = nullptr; 2352 bool ReSchedule = false; 2353 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2354 for (Value *V : VL) { 2355 extendSchedulingRegion(V); 2356 ScheduleData *BundleMember = getScheduleData(V); 2357 assert(BundleMember && 2358 "no ScheduleData for bundle member (maybe not in same basic block)"); 2359 if (BundleMember->IsScheduled) { 2360 // A bundle member was scheduled as single instruction before and now 2361 // needs to be scheduled as part of the bundle. We just get rid of the 2362 // existing schedule. 2363 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2364 << " was already scheduled\n"); 2365 ReSchedule = true; 2366 } 2367 assert(BundleMember->isSchedulingEntity() && 2368 "bundle member already part of other bundle"); 2369 if (PrevInBundle) { 2370 PrevInBundle->NextInBundle = BundleMember; 2371 } else { 2372 Bundle = BundleMember; 2373 } 2374 BundleMember->UnscheduledDepsInBundle = 0; 2375 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2376 2377 // Group the instructions to a bundle. 2378 BundleMember->FirstInBundle = Bundle; 2379 PrevInBundle = BundleMember; 2380 } 2381 if (ScheduleEnd != OldScheduleEnd) { 2382 // The scheduling region got new instructions at the lower end (or it is a 2383 // new region for the first bundle). This makes it necessary to 2384 // recalculate all dependencies. 2385 // It is seldom that this needs to be done a second time after adding the 2386 // initial bundle to the region. 2387 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2388 ScheduleData *SD = getScheduleData(I); 2389 SD->clearDependencies(); 2390 } 2391 ReSchedule = true; 2392 } 2393 if (ReSchedule) { 2394 resetSchedule(); 2395 initialFillReadyList(ReadyInsts); 2396 } 2397 2398 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2399 << BB->getName() << "\n"); 2400 2401 calculateDependencies(Bundle, true, AA); 2402 2403 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2404 // means that there are no cyclic dependencies and we can schedule it. 2405 // Note that's important that we don't "schedule" the bundle yet (see 2406 // cancelScheduling). 2407 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2408 2409 ScheduleData *pickedSD = ReadyInsts.back(); 2410 ReadyInsts.pop_back(); 2411 2412 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2413 schedule(pickedSD, ReadyInsts); 2414 } 2415 } 2416 return Bundle->isReady(); 2417 } 2418 2419 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2420 if (isa<PHINode>(VL[0])) 2421 return; 2422 2423 ScheduleData *Bundle = getScheduleData(VL[0]); 2424 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2425 assert(!Bundle->IsScheduled && 2426 "Can't cancel bundle which is already scheduled"); 2427 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2428 "tried to unbundle something which is not a bundle"); 2429 2430 // Un-bundle: make single instructions out of the bundle. 2431 ScheduleData *BundleMember = Bundle; 2432 while (BundleMember) { 2433 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2434 BundleMember->FirstInBundle = BundleMember; 2435 ScheduleData *Next = BundleMember->NextInBundle; 2436 BundleMember->NextInBundle = nullptr; 2437 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2438 if (BundleMember->UnscheduledDepsInBundle == 0) { 2439 ReadyInsts.insert(BundleMember); 2440 } 2441 BundleMember = Next; 2442 } 2443 } 2444 2445 void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2446 if (getScheduleData(V)) 2447 return; 2448 Instruction *I = dyn_cast<Instruction>(V); 2449 assert(I && "bundle member must be an instruction"); 2450 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2451 if (!ScheduleStart) { 2452 // It's the first instruction in the new region. 2453 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2454 ScheduleStart = I; 2455 ScheduleEnd = I->getNextNode(); 2456 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2457 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2458 return; 2459 } 2460 // Search up and down at the same time, because we don't know if the new 2461 // instruction is above or below the existing scheduling region. 2462 BasicBlock::reverse_iterator UpIter(ScheduleStart); 2463 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2464 BasicBlock::iterator DownIter(ScheduleEnd); 2465 BasicBlock::iterator LowerEnd = BB->end(); 2466 for (;;) { 2467 if (UpIter != UpperEnd) { 2468 if (&*UpIter == I) { 2469 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2470 ScheduleStart = I; 2471 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2472 return; 2473 } 2474 UpIter++; 2475 } 2476 if (DownIter != LowerEnd) { 2477 if (&*DownIter == I) { 2478 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2479 nullptr); 2480 ScheduleEnd = I->getNextNode(); 2481 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2482 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2483 return; 2484 } 2485 DownIter++; 2486 } 2487 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2488 "instruction not found in block"); 2489 } 2490 } 2491 2492 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2493 Instruction *ToI, 2494 ScheduleData *PrevLoadStore, 2495 ScheduleData *NextLoadStore) { 2496 ScheduleData *CurrentLoadStore = PrevLoadStore; 2497 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2498 ScheduleData *SD = ScheduleDataMap[I]; 2499 if (!SD) { 2500 // Allocate a new ScheduleData for the instruction. 2501 if (ChunkPos >= ChunkSize) { 2502 ScheduleDataChunks.push_back( 2503 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2504 ChunkPos = 0; 2505 } 2506 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2507 ScheduleDataMap[I] = SD; 2508 SD->Inst = I; 2509 } 2510 assert(!isInSchedulingRegion(SD) && 2511 "new ScheduleData already in scheduling region"); 2512 SD->init(SchedulingRegionID); 2513 2514 if (I->mayReadOrWriteMemory()) { 2515 // Update the linked list of memory accessing instructions. 2516 if (CurrentLoadStore) { 2517 CurrentLoadStore->NextLoadStore = SD; 2518 } else { 2519 FirstLoadStoreInRegion = SD; 2520 } 2521 CurrentLoadStore = SD; 2522 } 2523 } 2524 if (NextLoadStore) { 2525 if (CurrentLoadStore) 2526 CurrentLoadStore->NextLoadStore = NextLoadStore; 2527 } else { 2528 LastLoadStoreInRegion = CurrentLoadStore; 2529 } 2530 } 2531 2532 /// \returns the AA location that is being access by the instruction. 2533 static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) { 2534 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 2535 return AA->getLocation(SI); 2536 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 2537 return AA->getLocation(LI); 2538 return AliasAnalysis::Location(); 2539 } 2540 2541 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2542 bool InsertInReadyList, 2543 AliasAnalysis *AA) { 2544 assert(SD->isSchedulingEntity()); 2545 2546 SmallVector<ScheduleData *, 10> WorkList; 2547 WorkList.push_back(SD); 2548 2549 while (!WorkList.empty()) { 2550 ScheduleData *SD = WorkList.back(); 2551 WorkList.pop_back(); 2552 2553 ScheduleData *BundleMember = SD; 2554 while (BundleMember) { 2555 assert(isInSchedulingRegion(BundleMember)); 2556 if (!BundleMember->hasValidDependencies()) { 2557 2558 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2559 BundleMember->Dependencies = 0; 2560 BundleMember->resetUnscheduledDeps(); 2561 2562 // Handle def-use chain dependencies. 2563 for (User *U : BundleMember->Inst->users()) { 2564 if (isa<Instruction>(U)) { 2565 ScheduleData *UseSD = getScheduleData(U); 2566 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2567 BundleMember->Dependencies++; 2568 ScheduleData *DestBundle = UseSD->FirstInBundle; 2569 if (!DestBundle->IsScheduled) { 2570 BundleMember->incrementUnscheduledDeps(1); 2571 } 2572 if (!DestBundle->hasValidDependencies()) { 2573 WorkList.push_back(DestBundle); 2574 } 2575 } 2576 } else { 2577 // I'm not sure if this can ever happen. But we need to be safe. 2578 // This lets the instruction/bundle never be scheduled and eventally 2579 // disable vectorization. 2580 BundleMember->Dependencies++; 2581 BundleMember->incrementUnscheduledDeps(1); 2582 } 2583 } 2584 2585 // Handle the memory dependencies. 2586 ScheduleData *DepDest = BundleMember->NextLoadStore; 2587 if (DepDest) { 2588 AliasAnalysis::Location SrcLoc = getLocation(BundleMember->Inst, AA); 2589 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 2590 2591 while (DepDest) { 2592 assert(isInSchedulingRegion(DepDest)); 2593 if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) { 2594 AliasAnalysis::Location DstLoc = getLocation(DepDest->Inst, AA); 2595 if (!SrcLoc.Ptr || !DstLoc.Ptr || AA->alias(SrcLoc, DstLoc)) { 2596 DepDest->MemoryDependencies.push_back(BundleMember); 2597 BundleMember->Dependencies++; 2598 ScheduleData *DestBundle = DepDest->FirstInBundle; 2599 if (!DestBundle->IsScheduled) { 2600 BundleMember->incrementUnscheduledDeps(1); 2601 } 2602 if (!DestBundle->hasValidDependencies()) { 2603 WorkList.push_back(DestBundle); 2604 } 2605 } 2606 } 2607 DepDest = DepDest->NextLoadStore; 2608 } 2609 } 2610 } 2611 BundleMember = BundleMember->NextInBundle; 2612 } 2613 if (InsertInReadyList && SD->isReady()) { 2614 ReadyInsts.push_back(SD); 2615 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 2616 } 2617 } 2618 } 2619 2620 void BoUpSLP::BlockScheduling::resetSchedule() { 2621 assert(ScheduleStart && 2622 "tried to reset schedule on block which has not been scheduled"); 2623 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2624 ScheduleData *SD = getScheduleData(I); 2625 assert(isInSchedulingRegion(SD)); 2626 SD->IsScheduled = false; 2627 SD->resetUnscheduledDeps(); 2628 } 2629 ReadyInsts.clear(); 2630 } 2631 2632 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 2633 2634 if (!BS->ScheduleStart) 2635 return; 2636 2637 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 2638 2639 BS->resetSchedule(); 2640 2641 // For the real scheduling we use a more sophisticated ready-list: it is 2642 // sorted by the original instruction location. This lets the final schedule 2643 // be as close as possible to the original instruction order. 2644 struct ScheduleDataCompare { 2645 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 2646 return SD2->SchedulingPriority < SD1->SchedulingPriority; 2647 } 2648 }; 2649 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 2650 2651 // Ensure that all depencency data is updated and fill the ready-list with 2652 // initial instructions. 2653 int Idx = 0; 2654 int NumToSchedule = 0; 2655 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 2656 I = I->getNextNode()) { 2657 ScheduleData *SD = BS->getScheduleData(I); 2658 assert( 2659 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 2660 "scheduler and vectorizer have different opinion on what is a bundle"); 2661 SD->FirstInBundle->SchedulingPriority = Idx++; 2662 if (SD->isSchedulingEntity()) { 2663 BS->calculateDependencies(SD, false, AA); 2664 NumToSchedule++; 2665 } 2666 } 2667 BS->initialFillReadyList(ReadyInsts); 2668 2669 Instruction *LastScheduledInst = BS->ScheduleEnd; 2670 2671 // Do the "real" scheduling. 2672 while (!ReadyInsts.empty()) { 2673 ScheduleData *picked = *ReadyInsts.begin(); 2674 ReadyInsts.erase(ReadyInsts.begin()); 2675 2676 // Move the scheduled instruction(s) to their dedicated places, if not 2677 // there yet. 2678 ScheduleData *BundleMember = picked; 2679 while (BundleMember) { 2680 Instruction *pickedInst = BundleMember->Inst; 2681 if (LastScheduledInst->getNextNode() != pickedInst) { 2682 BS->BB->getInstList().remove(pickedInst); 2683 BS->BB->getInstList().insert(LastScheduledInst, pickedInst); 2684 } 2685 LastScheduledInst = pickedInst; 2686 BundleMember = BundleMember->NextInBundle; 2687 } 2688 2689 BS->schedule(picked, ReadyInsts); 2690 NumToSchedule--; 2691 } 2692 assert(NumToSchedule == 0 && "could not schedule all instructions"); 2693 2694 // Avoid duplicate scheduling of the block. 2695 BS->ScheduleStart = nullptr; 2696 } 2697 2698 /// The SLPVectorizer Pass. 2699 struct SLPVectorizer : public FunctionPass { 2700 typedef SmallVector<StoreInst *, 8> StoreList; 2701 typedef MapVector<Value *, StoreList> StoreListMap; 2702 2703 /// Pass identification, replacement for typeid 2704 static char ID; 2705 2706 explicit SLPVectorizer() : FunctionPass(ID) { 2707 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 2708 } 2709 2710 ScalarEvolution *SE; 2711 const DataLayout *DL; 2712 TargetTransformInfo *TTI; 2713 TargetLibraryInfo *TLI; 2714 AliasAnalysis *AA; 2715 LoopInfo *LI; 2716 DominatorTree *DT; 2717 2718 bool runOnFunction(Function &F) override { 2719 if (skipOptnoneFunction(F)) 2720 return false; 2721 2722 SE = &getAnalysis<ScalarEvolution>(); 2723 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 2724 DL = DLP ? &DLP->getDataLayout() : nullptr; 2725 TTI = &getAnalysis<TargetTransformInfo>(); 2726 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 2727 AA = &getAnalysis<AliasAnalysis>(); 2728 LI = &getAnalysis<LoopInfo>(); 2729 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2730 2731 StoreRefs.clear(); 2732 bool Changed = false; 2733 2734 // If the target claims to have no vector registers don't attempt 2735 // vectorization. 2736 if (!TTI->getNumberOfRegisters(true)) 2737 return false; 2738 2739 // Must have DataLayout. We can't require it because some tests run w/o 2740 // triple. 2741 if (!DL) 2742 return false; 2743 2744 // Don't vectorize when the attribute NoImplicitFloat is used. 2745 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 2746 return false; 2747 2748 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 2749 2750 // Use the bottom up slp vectorizer to construct chains that start with 2751 // store instructions. 2752 BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT); 2753 2754 // Scan the blocks in the function in post order. 2755 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 2756 e = po_end(&F.getEntryBlock()); it != e; ++it) { 2757 BasicBlock *BB = *it; 2758 // Vectorize trees that end at stores. 2759 if (unsigned count = collectStores(BB, R)) { 2760 (void)count; 2761 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 2762 Changed |= vectorizeStoreChains(R); 2763 } 2764 2765 // Vectorize trees that end at reductions. 2766 Changed |= vectorizeChainsInBlock(BB, R); 2767 } 2768 2769 if (Changed) { 2770 R.optimizeGatherSequence(); 2771 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 2772 DEBUG(verifyFunction(F)); 2773 } 2774 return Changed; 2775 } 2776 2777 void getAnalysisUsage(AnalysisUsage &AU) const override { 2778 FunctionPass::getAnalysisUsage(AU); 2779 AU.addRequired<ScalarEvolution>(); 2780 AU.addRequired<AliasAnalysis>(); 2781 AU.addRequired<TargetTransformInfo>(); 2782 AU.addRequired<LoopInfo>(); 2783 AU.addRequired<DominatorTreeWrapperPass>(); 2784 AU.addPreserved<LoopInfo>(); 2785 AU.addPreserved<DominatorTreeWrapperPass>(); 2786 AU.setPreservesCFG(); 2787 } 2788 2789 private: 2790 2791 /// \brief Collect memory references and sort them according to their base 2792 /// object. We sort the stores to their base objects to reduce the cost of the 2793 /// quadratic search on the stores. TODO: We can further reduce this cost 2794 /// if we flush the chain creation every time we run into a memory barrier. 2795 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 2796 2797 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 2798 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 2799 2800 /// \brief Try to vectorize a list of operands. 2801 /// \@param BuildVector A list of users to ignore for the purpose of 2802 /// scheduling and that don't need extracting. 2803 /// \returns true if a value was vectorized. 2804 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2805 ArrayRef<Value *> BuildVector = None, 2806 bool allowReorder = false); 2807 2808 /// \brief Try to vectorize a chain that may start at the operands of \V; 2809 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 2810 2811 /// \brief Vectorize the stores that were collected in StoreRefs. 2812 bool vectorizeStoreChains(BoUpSLP &R); 2813 2814 /// \brief Scan the basic block and look for patterns that are likely to start 2815 /// a vectorization chain. 2816 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 2817 2818 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 2819 BoUpSLP &R); 2820 2821 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 2822 BoUpSLP &R); 2823 private: 2824 StoreListMap StoreRefs; 2825 }; 2826 2827 /// \brief Check that the Values in the slice in VL array are still existent in 2828 /// the WeakVH array. 2829 /// Vectorization of part of the VL array may cause later values in the VL array 2830 /// to become invalid. We track when this has happened in the WeakVH array. 2831 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL, 2832 SmallVectorImpl<WeakVH> &VH, 2833 unsigned SliceBegin, 2834 unsigned SliceSize) { 2835 for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i) 2836 if (VH[i] != VL[i]) 2837 return true; 2838 2839 return false; 2840 } 2841 2842 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 2843 int CostThreshold, BoUpSLP &R) { 2844 unsigned ChainLen = Chain.size(); 2845 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 2846 << "\n"); 2847 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 2848 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 2849 unsigned VF = MinVecRegSize / Sz; 2850 2851 if (!isPowerOf2_32(Sz) || VF < 2) 2852 return false; 2853 2854 // Keep track of values that were deleted by vectorizing in the loop below. 2855 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 2856 2857 bool Changed = false; 2858 // Look for profitable vectorizable trees at all offsets, starting at zero. 2859 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 2860 if (i + VF > e) 2861 break; 2862 2863 // Check that a previous iteration of this loop did not delete the Value. 2864 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 2865 continue; 2866 2867 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 2868 << "\n"); 2869 ArrayRef<Value *> Operands = Chain.slice(i, VF); 2870 2871 R.buildTree(Operands); 2872 2873 int Cost = R.getTreeCost(); 2874 2875 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 2876 if (Cost < CostThreshold) { 2877 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 2878 R.vectorizeTree(); 2879 2880 // Move to the next bundle. 2881 i += VF - 1; 2882 Changed = true; 2883 } 2884 } 2885 2886 return Changed; 2887 } 2888 2889 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 2890 int costThreshold, BoUpSLP &R) { 2891 SetVector<Value *> Heads, Tails; 2892 SmallDenseMap<Value *, Value *> ConsecutiveChain; 2893 2894 // We may run into multiple chains that merge into a single chain. We mark the 2895 // stores that we vectorized so that we don't visit the same store twice. 2896 BoUpSLP::ValueSet VectorizedStores; 2897 bool Changed = false; 2898 2899 // Do a quadratic search on all of the given stores and find 2900 // all of the pairs of stores that follow each other. 2901 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 2902 for (unsigned j = 0; j < e; ++j) { 2903 if (i == j) 2904 continue; 2905 2906 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 2907 Tails.insert(Stores[j]); 2908 Heads.insert(Stores[i]); 2909 ConsecutiveChain[Stores[i]] = Stores[j]; 2910 } 2911 } 2912 } 2913 2914 // For stores that start but don't end a link in the chain: 2915 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 2916 it != e; ++it) { 2917 if (Tails.count(*it)) 2918 continue; 2919 2920 // We found a store instr that starts a chain. Now follow the chain and try 2921 // to vectorize it. 2922 BoUpSLP::ValueList Operands; 2923 Value *I = *it; 2924 // Collect the chain into a list. 2925 while (Tails.count(I) || Heads.count(I)) { 2926 if (VectorizedStores.count(I)) 2927 break; 2928 Operands.push_back(I); 2929 // Move to the next value in the chain. 2930 I = ConsecutiveChain[I]; 2931 } 2932 2933 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 2934 2935 // Mark the vectorized stores so that we don't vectorize them again. 2936 if (Vectorized) 2937 VectorizedStores.insert(Operands.begin(), Operands.end()); 2938 Changed |= Vectorized; 2939 } 2940 2941 return Changed; 2942 } 2943 2944 2945 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 2946 unsigned count = 0; 2947 StoreRefs.clear(); 2948 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2949 StoreInst *SI = dyn_cast<StoreInst>(it); 2950 if (!SI) 2951 continue; 2952 2953 // Don't touch volatile stores. 2954 if (!SI->isSimple()) 2955 continue; 2956 2957 // Check that the pointer points to scalars. 2958 Type *Ty = SI->getValueOperand()->getType(); 2959 if (Ty->isAggregateType() || Ty->isVectorTy()) 2960 continue; 2961 2962 // Find the base pointer. 2963 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 2964 2965 // Save the store locations. 2966 StoreRefs[Ptr].push_back(SI); 2967 count++; 2968 } 2969 return count; 2970 } 2971 2972 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 2973 if (!A || !B) 2974 return false; 2975 Value *VL[] = { A, B }; 2976 return tryToVectorizeList(VL, R, None, true); 2977 } 2978 2979 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2980 ArrayRef<Value *> BuildVector, 2981 bool allowReorder) { 2982 if (VL.size() < 2) 2983 return false; 2984 2985 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 2986 2987 // Check that all of the parts are scalar instructions of the same type. 2988 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 2989 if (!I0) 2990 return false; 2991 2992 unsigned Opcode0 = I0->getOpcode(); 2993 2994 Type *Ty0 = I0->getType(); 2995 unsigned Sz = DL->getTypeSizeInBits(Ty0); 2996 unsigned VF = MinVecRegSize / Sz; 2997 2998 for (int i = 0, e = VL.size(); i < e; ++i) { 2999 Type *Ty = VL[i]->getType(); 3000 if (Ty->isAggregateType() || Ty->isVectorTy()) 3001 return false; 3002 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 3003 if (!Inst || Inst->getOpcode() != Opcode0) 3004 return false; 3005 } 3006 3007 bool Changed = false; 3008 3009 // Keep track of values that were deleted by vectorizing in the loop below. 3010 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3011 3012 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3013 unsigned OpsWidth = 0; 3014 3015 if (i + VF > e) 3016 OpsWidth = e - i; 3017 else 3018 OpsWidth = VF; 3019 3020 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3021 break; 3022 3023 // Check that a previous iteration of this loop did not delete the Value. 3024 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3025 continue; 3026 3027 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3028 << "\n"); 3029 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3030 3031 ArrayRef<Value *> BuildVectorSlice; 3032 if (!BuildVector.empty()) 3033 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3034 3035 R.buildTree(Ops, BuildVectorSlice); 3036 // TODO: check if we can allow reordering also for other cases than 3037 // tryToVectorizePair() 3038 if (allowReorder && R.shouldReorder()) { 3039 assert(Ops.size() == 2); 3040 assert(BuildVectorSlice.empty()); 3041 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3042 R.buildTree(ReorderedOps, None); 3043 } 3044 int Cost = R.getTreeCost(); 3045 3046 if (Cost < -SLPCostThreshold) { 3047 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3048 Value *VectorizedRoot = R.vectorizeTree(); 3049 3050 // Reconstruct the build vector by extracting the vectorized root. This 3051 // way we handle the case where some elements of the vector are undefined. 3052 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3053 if (!BuildVectorSlice.empty()) { 3054 // The insert point is the last build vector instruction. The vectorized 3055 // root will precede it. This guarantees that we get an instruction. The 3056 // vectorized tree could have been constant folded. 3057 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3058 unsigned VecIdx = 0; 3059 for (auto &V : BuildVectorSlice) { 3060 IRBuilder<true, NoFolder> Builder( 3061 ++BasicBlock::iterator(InsertAfter)); 3062 InsertElementInst *IE = cast<InsertElementInst>(V); 3063 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3064 VectorizedRoot, Builder.getInt32(VecIdx++))); 3065 IE->setOperand(1, Extract); 3066 IE->removeFromParent(); 3067 IE->insertAfter(Extract); 3068 InsertAfter = IE; 3069 } 3070 } 3071 // Move to the next bundle. 3072 i += VF - 1; 3073 Changed = true; 3074 } 3075 } 3076 3077 return Changed; 3078 } 3079 3080 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3081 if (!V) 3082 return false; 3083 3084 // Try to vectorize V. 3085 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3086 return true; 3087 3088 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3089 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3090 // Try to skip B. 3091 if (B && B->hasOneUse()) { 3092 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3093 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3094 if (tryToVectorizePair(A, B0, R)) { 3095 B->moveBefore(V); 3096 return true; 3097 } 3098 if (tryToVectorizePair(A, B1, R)) { 3099 B->moveBefore(V); 3100 return true; 3101 } 3102 } 3103 3104 // Try to skip A. 3105 if (A && A->hasOneUse()) { 3106 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3107 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3108 if (tryToVectorizePair(A0, B, R)) { 3109 A->moveBefore(V); 3110 return true; 3111 } 3112 if (tryToVectorizePair(A1, B, R)) { 3113 A->moveBefore(V); 3114 return true; 3115 } 3116 } 3117 return 0; 3118 } 3119 3120 /// \brief Generate a shuffle mask to be used in a reduction tree. 3121 /// 3122 /// \param VecLen The length of the vector to be reduced. 3123 /// \param NumEltsToRdx The number of elements that should be reduced in the 3124 /// vector. 3125 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3126 /// reduction. A pairwise reduction will generate a mask of 3127 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3128 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3129 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3130 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3131 bool IsPairwise, bool IsLeft, 3132 IRBuilder<> &Builder) { 3133 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3134 3135 SmallVector<Constant *, 32> ShuffleMask( 3136 VecLen, UndefValue::get(Builder.getInt32Ty())); 3137 3138 if (IsPairwise) 3139 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3140 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3141 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3142 else 3143 // Move the upper half of the vector to the lower half. 3144 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3145 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3146 3147 return ConstantVector::get(ShuffleMask); 3148 } 3149 3150 3151 /// Model horizontal reductions. 3152 /// 3153 /// A horizontal reduction is a tree of reduction operations (currently add and 3154 /// fadd) that has operations that can be put into a vector as its leaf. 3155 /// For example, this tree: 3156 /// 3157 /// mul mul mul mul 3158 /// \ / \ / 3159 /// + + 3160 /// \ / 3161 /// + 3162 /// This tree has "mul" as its reduced values and "+" as its reduction 3163 /// operations. A reduction might be feeding into a store or a binary operation 3164 /// feeding a phi. 3165 /// ... 3166 /// \ / 3167 /// + 3168 /// | 3169 /// phi += 3170 /// 3171 /// Or: 3172 /// ... 3173 /// \ / 3174 /// + 3175 /// | 3176 /// *p = 3177 /// 3178 class HorizontalReduction { 3179 SmallVector<Value *, 16> ReductionOps; 3180 SmallVector<Value *, 32> ReducedVals; 3181 3182 BinaryOperator *ReductionRoot; 3183 PHINode *ReductionPHI; 3184 3185 /// The opcode of the reduction. 3186 unsigned ReductionOpcode; 3187 /// The opcode of the values we perform a reduction on. 3188 unsigned ReducedValueOpcode; 3189 /// The width of one full horizontal reduction operation. 3190 unsigned ReduxWidth; 3191 /// Should we model this reduction as a pairwise reduction tree or a tree that 3192 /// splits the vector in halves and adds those halves. 3193 bool IsPairwiseReduction; 3194 3195 public: 3196 HorizontalReduction() 3197 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3198 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 3199 3200 /// \brief Try to find a reduction tree. 3201 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, 3202 const DataLayout *DL) { 3203 assert((!Phi || 3204 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3205 "Thi phi needs to use the binary operator"); 3206 3207 // We could have a initial reductions that is not an add. 3208 // r *= v1 + v2 + v3 + v4 3209 // In such a case start looking for a tree rooted in the first '+'. 3210 if (Phi) { 3211 if (B->getOperand(0) == Phi) { 3212 Phi = nullptr; 3213 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3214 } else if (B->getOperand(1) == Phi) { 3215 Phi = nullptr; 3216 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3217 } 3218 } 3219 3220 if (!B) 3221 return false; 3222 3223 Type *Ty = B->getType(); 3224 if (Ty->isVectorTy()) 3225 return false; 3226 3227 ReductionOpcode = B->getOpcode(); 3228 ReducedValueOpcode = 0; 3229 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); 3230 ReductionRoot = B; 3231 ReductionPHI = Phi; 3232 3233 if (ReduxWidth < 4) 3234 return false; 3235 3236 // We currently only support adds. 3237 if (ReductionOpcode != Instruction::Add && 3238 ReductionOpcode != Instruction::FAdd) 3239 return false; 3240 3241 // Post order traverse the reduction tree starting at B. We only handle true 3242 // trees containing only binary operators. 3243 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 3244 Stack.push_back(std::make_pair(B, 0)); 3245 while (!Stack.empty()) { 3246 BinaryOperator *TreeN = Stack.back().first; 3247 unsigned EdgeToVist = Stack.back().second++; 3248 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3249 3250 // Only handle trees in the current basic block. 3251 if (TreeN->getParent() != B->getParent()) 3252 return false; 3253 3254 // Each tree node needs to have one user except for the ultimate 3255 // reduction. 3256 if (!TreeN->hasOneUse() && TreeN != B) 3257 return false; 3258 3259 // Postorder vist. 3260 if (EdgeToVist == 2 || IsReducedValue) { 3261 if (IsReducedValue) { 3262 // Make sure that the opcodes of the operations that we are going to 3263 // reduce match. 3264 if (!ReducedValueOpcode) 3265 ReducedValueOpcode = TreeN->getOpcode(); 3266 else if (ReducedValueOpcode != TreeN->getOpcode()) 3267 return false; 3268 ReducedVals.push_back(TreeN); 3269 } else { 3270 // We need to be able to reassociate the adds. 3271 if (!TreeN->isAssociative()) 3272 return false; 3273 ReductionOps.push_back(TreeN); 3274 } 3275 // Retract. 3276 Stack.pop_back(); 3277 continue; 3278 } 3279 3280 // Visit left or right. 3281 Value *NextV = TreeN->getOperand(EdgeToVist); 3282 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 3283 if (Next) 3284 Stack.push_back(std::make_pair(Next, 0)); 3285 else if (NextV != Phi) 3286 return false; 3287 } 3288 return true; 3289 } 3290 3291 /// \brief Attempt to vectorize the tree found by 3292 /// matchAssociativeReduction. 3293 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 3294 if (ReducedVals.empty()) 3295 return false; 3296 3297 unsigned NumReducedVals = ReducedVals.size(); 3298 if (NumReducedVals < ReduxWidth) 3299 return false; 3300 3301 Value *VectorizedTree = nullptr; 3302 IRBuilder<> Builder(ReductionRoot); 3303 FastMathFlags Unsafe; 3304 Unsafe.setUnsafeAlgebra(); 3305 Builder.SetFastMathFlags(Unsafe); 3306 unsigned i = 0; 3307 3308 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 3309 ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth); 3310 V.buildTree(ValsToReduce, ReductionOps); 3311 3312 // Estimate cost. 3313 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 3314 if (Cost >= -SLPCostThreshold) 3315 break; 3316 3317 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 3318 << ". (HorRdx)\n"); 3319 3320 // Vectorize a tree. 3321 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 3322 Value *VectorizedRoot = V.vectorizeTree(); 3323 3324 // Emit a reduction. 3325 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 3326 if (VectorizedTree) { 3327 Builder.SetCurrentDebugLocation(Loc); 3328 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3329 ReducedSubTree, "bin.rdx"); 3330 } else 3331 VectorizedTree = ReducedSubTree; 3332 } 3333 3334 if (VectorizedTree) { 3335 // Finish the reduction. 3336 for (; i < NumReducedVals; ++i) { 3337 Builder.SetCurrentDebugLocation( 3338 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 3339 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3340 ReducedVals[i]); 3341 } 3342 // Update users. 3343 if (ReductionPHI) { 3344 assert(ReductionRoot && "Need a reduction operation"); 3345 ReductionRoot->setOperand(0, VectorizedTree); 3346 ReductionRoot->setOperand(1, ReductionPHI); 3347 } else 3348 ReductionRoot->replaceAllUsesWith(VectorizedTree); 3349 } 3350 return VectorizedTree != nullptr; 3351 } 3352 3353 private: 3354 3355 /// \brief Calcuate the cost of a reduction. 3356 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 3357 Type *ScalarTy = FirstReducedVal->getType(); 3358 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 3359 3360 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 3361 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 3362 3363 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 3364 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 3365 3366 int ScalarReduxCost = 3367 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 3368 3369 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 3370 << " for reduction that starts with " << *FirstReducedVal 3371 << " (It is a " 3372 << (IsPairwiseReduction ? "pairwise" : "splitting") 3373 << " reduction)\n"); 3374 3375 return VecReduxCost - ScalarReduxCost; 3376 } 3377 3378 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 3379 Value *R, const Twine &Name = "") { 3380 if (Opcode == Instruction::FAdd) 3381 return Builder.CreateFAdd(L, R, Name); 3382 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 3383 } 3384 3385 /// \brief Emit a horizontal reduction of the vectorized value. 3386 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 3387 assert(VectorizedValue && "Need to have a vectorized tree node"); 3388 Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue); 3389 assert(isPowerOf2_32(ReduxWidth) && 3390 "We only handle power-of-two reductions for now"); 3391 3392 Value *TmpVec = ValToReduce; 3393 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 3394 if (IsPairwiseReduction) { 3395 Value *LeftMask = 3396 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 3397 Value *RightMask = 3398 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 3399 3400 Value *LeftShuf = Builder.CreateShuffleVector( 3401 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 3402 Value *RightShuf = Builder.CreateShuffleVector( 3403 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 3404 "rdx.shuf.r"); 3405 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 3406 "bin.rdx"); 3407 } else { 3408 Value *UpperHalf = 3409 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 3410 Value *Shuf = Builder.CreateShuffleVector( 3411 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 3412 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 3413 } 3414 } 3415 3416 // The result is in the first element of the vector. 3417 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3418 } 3419 }; 3420 3421 /// \brief Recognize construction of vectors like 3422 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 3423 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 3424 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 3425 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 3426 /// 3427 /// Returns true if it matches 3428 /// 3429 static bool findBuildVector(InsertElementInst *FirstInsertElem, 3430 SmallVectorImpl<Value *> &BuildVector, 3431 SmallVectorImpl<Value *> &BuildVectorOpds) { 3432 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 3433 return false; 3434 3435 InsertElementInst *IE = FirstInsertElem; 3436 while (true) { 3437 BuildVector.push_back(IE); 3438 BuildVectorOpds.push_back(IE->getOperand(1)); 3439 3440 if (IE->use_empty()) 3441 return false; 3442 3443 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 3444 if (!NextUse) 3445 return true; 3446 3447 // If this isn't the final use, make sure the next insertelement is the only 3448 // use. It's OK if the final constructed vector is used multiple times 3449 if (!IE->hasOneUse()) 3450 return false; 3451 3452 IE = NextUse; 3453 } 3454 3455 return false; 3456 } 3457 3458 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 3459 return V->getType() < V2->getType(); 3460 } 3461 3462 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 3463 bool Changed = false; 3464 SmallVector<Value *, 4> Incoming; 3465 SmallSet<Value *, 16> VisitedInstrs; 3466 3467 bool HaveVectorizedPhiNodes = true; 3468 while (HaveVectorizedPhiNodes) { 3469 HaveVectorizedPhiNodes = false; 3470 3471 // Collect the incoming values from the PHIs. 3472 Incoming.clear(); 3473 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 3474 ++instr) { 3475 PHINode *P = dyn_cast<PHINode>(instr); 3476 if (!P) 3477 break; 3478 3479 if (!VisitedInstrs.count(P)) 3480 Incoming.push_back(P); 3481 } 3482 3483 // Sort by type. 3484 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 3485 3486 // Try to vectorize elements base on their type. 3487 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 3488 E = Incoming.end(); 3489 IncIt != E;) { 3490 3491 // Look for the next elements with the same type. 3492 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 3493 while (SameTypeIt != E && 3494 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 3495 VisitedInstrs.insert(*SameTypeIt); 3496 ++SameTypeIt; 3497 } 3498 3499 // Try to vectorize them. 3500 unsigned NumElts = (SameTypeIt - IncIt); 3501 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 3502 if (NumElts > 1 && 3503 tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) { 3504 // Success start over because instructions might have been changed. 3505 HaveVectorizedPhiNodes = true; 3506 Changed = true; 3507 break; 3508 } 3509 3510 // Start over at the next instruction of a different type (or the end). 3511 IncIt = SameTypeIt; 3512 } 3513 } 3514 3515 VisitedInstrs.clear(); 3516 3517 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 3518 // We may go through BB multiple times so skip the one we have checked. 3519 if (!VisitedInstrs.insert(it)) 3520 continue; 3521 3522 if (isa<DbgInfoIntrinsic>(it)) 3523 continue; 3524 3525 // Try to vectorize reductions that use PHINodes. 3526 if (PHINode *P = dyn_cast<PHINode>(it)) { 3527 // Check that the PHI is a reduction PHI. 3528 if (P->getNumIncomingValues() != 2) 3529 return Changed; 3530 Value *Rdx = 3531 (P->getIncomingBlock(0) == BB 3532 ? (P->getIncomingValue(0)) 3533 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 3534 : nullptr)); 3535 // Check if this is a Binary Operator. 3536 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 3537 if (!BI) 3538 continue; 3539 3540 // Try to match and vectorize a horizontal reduction. 3541 HorizontalReduction HorRdx; 3542 if (ShouldVectorizeHor && 3543 HorRdx.matchAssociativeReduction(P, BI, DL) && 3544 HorRdx.tryToReduce(R, TTI)) { 3545 Changed = true; 3546 it = BB->begin(); 3547 e = BB->end(); 3548 continue; 3549 } 3550 3551 Value *Inst = BI->getOperand(0); 3552 if (Inst == P) 3553 Inst = BI->getOperand(1); 3554 3555 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 3556 // We would like to start over since some instructions are deleted 3557 // and the iterator may become invalid value. 3558 Changed = true; 3559 it = BB->begin(); 3560 e = BB->end(); 3561 continue; 3562 } 3563 3564 continue; 3565 } 3566 3567 // Try to vectorize horizontal reductions feeding into a store. 3568 if (ShouldStartVectorizeHorAtStore) 3569 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 3570 if (BinaryOperator *BinOp = 3571 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 3572 HorizontalReduction HorRdx; 3573 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) && 3574 HorRdx.tryToReduce(R, TTI)) || 3575 tryToVectorize(BinOp, R))) { 3576 Changed = true; 3577 it = BB->begin(); 3578 e = BB->end(); 3579 continue; 3580 } 3581 } 3582 3583 // Try to vectorize trees that start at compare instructions. 3584 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 3585 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 3586 Changed = true; 3587 // We would like to start over since some instructions are deleted 3588 // and the iterator may become invalid value. 3589 it = BB->begin(); 3590 e = BB->end(); 3591 continue; 3592 } 3593 3594 for (int i = 0; i < 2; ++i) { 3595 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 3596 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 3597 Changed = true; 3598 // We would like to start over since some instructions are deleted 3599 // and the iterator may become invalid value. 3600 it = BB->begin(); 3601 e = BB->end(); 3602 } 3603 } 3604 } 3605 continue; 3606 } 3607 3608 // Try to vectorize trees that start at insertelement instructions. 3609 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 3610 SmallVector<Value *, 16> BuildVector; 3611 SmallVector<Value *, 16> BuildVectorOpds; 3612 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 3613 continue; 3614 3615 // Vectorize starting with the build vector operands ignoring the 3616 // BuildVector instructions for the purpose of scheduling and user 3617 // extraction. 3618 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 3619 Changed = true; 3620 it = BB->begin(); 3621 e = BB->end(); 3622 } 3623 3624 continue; 3625 } 3626 } 3627 3628 return Changed; 3629 } 3630 3631 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 3632 bool Changed = false; 3633 // Attempt to sort and vectorize each of the store-groups. 3634 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 3635 it != e; ++it) { 3636 if (it->second.size() < 2) 3637 continue; 3638 3639 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 3640 << it->second.size() << ".\n"); 3641 3642 // Process the stores in chunks of 16. 3643 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 3644 unsigned Len = std::min<unsigned>(CE - CI, 16); 3645 ArrayRef<StoreInst *> Chunk(&it->second[CI], Len); 3646 Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); 3647 } 3648 } 3649 return Changed; 3650 } 3651 3652 } // end anonymous namespace 3653 3654 char SLPVectorizer::ID = 0; 3655 static const char lv_name[] = "SLP Vectorizer"; 3656 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 3657 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 3658 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 3659 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3660 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3661 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 3662 3663 namespace llvm { 3664 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 3665 } 3666