1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// TODO: Can we split off and reuse the shuffle mask detection from 291 /// TargetTransformInfo::getInstructionThroughput? 292 static Optional<TargetTransformInfo::ShuffleKind> 293 isShuffle(ArrayRef<Value *> VL) { 294 auto *EI0 = cast<ExtractElementInst>(VL[0]); 295 unsigned Size = 296 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 297 Value *Vec1 = nullptr; 298 Value *Vec2 = nullptr; 299 enum ShuffleMode { Unknown, Select, Permute }; 300 ShuffleMode CommonShuffleMode = Unknown; 301 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 302 auto *EI = cast<ExtractElementInst>(VL[I]); 303 auto *Vec = EI->getVectorOperand(); 304 // All vector operands must have the same number of vector elements. 305 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 306 return None; 307 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 308 if (!Idx) 309 return None; 310 // Undefined behavior if Idx is negative or >= Size. 311 if (Idx->getValue().uge(Size)) 312 continue; 313 unsigned IntIdx = Idx->getValue().getZExtValue(); 314 // We can extractelement from undef or poison vector. 315 if (isa<UndefValue>(Vec)) 316 continue; 317 // For correct shuffling we have to have at most 2 different vector operands 318 // in all extractelement instructions. 319 if (!Vec1 || Vec1 == Vec) 320 Vec1 = Vec; 321 else if (!Vec2 || Vec2 == Vec) 322 Vec2 = Vec; 323 else 324 return None; 325 if (CommonShuffleMode == Permute) 326 continue; 327 // If the extract index is not the same as the operation number, it is a 328 // permutation. 329 if (IntIdx != I) { 330 CommonShuffleMode = Permute; 331 continue; 332 } 333 CommonShuffleMode = Select; 334 } 335 // If we're not crossing lanes in different vectors, consider it as blending. 336 if (CommonShuffleMode == Select && Vec2) 337 return TargetTransformInfo::SK_Select; 338 // If Vec2 was never used, we have a permutation of a single vector, otherwise 339 // we have permutation of 2 vectors. 340 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 341 : TargetTransformInfo::SK_PermuteSingleSrc; 342 } 343 344 namespace { 345 346 /// Main data required for vectorization of instructions. 347 struct InstructionsState { 348 /// The very first instruction in the list with the main opcode. 349 Value *OpValue = nullptr; 350 351 /// The main/alternate instruction. 352 Instruction *MainOp = nullptr; 353 Instruction *AltOp = nullptr; 354 355 /// The main/alternate opcodes for the list of instructions. 356 unsigned getOpcode() const { 357 return MainOp ? MainOp->getOpcode() : 0; 358 } 359 360 unsigned getAltOpcode() const { 361 return AltOp ? AltOp->getOpcode() : 0; 362 } 363 364 /// Some of the instructions in the list have alternate opcodes. 365 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 366 367 bool isOpcodeOrAlt(Instruction *I) const { 368 unsigned CheckedOpcode = I->getOpcode(); 369 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 370 } 371 372 InstructionsState() = delete; 373 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 374 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 375 }; 376 377 } // end anonymous namespace 378 379 /// Chooses the correct key for scheduling data. If \p Op has the same (or 380 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 381 /// OpValue. 382 static Value *isOneOf(const InstructionsState &S, Value *Op) { 383 auto *I = dyn_cast<Instruction>(Op); 384 if (I && S.isOpcodeOrAlt(I)) 385 return Op; 386 return S.OpValue; 387 } 388 389 /// \returns true if \p Opcode is allowed as part of of the main/alternate 390 /// instruction for SLP vectorization. 391 /// 392 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 393 /// "shuffled out" lane would result in division by zero. 394 static bool isValidForAlternation(unsigned Opcode) { 395 if (Instruction::isIntDivRem(Opcode)) 396 return false; 397 398 return true; 399 } 400 401 /// \returns analysis of the Instructions in \p VL described in 402 /// InstructionsState, the Opcode that we suppose the whole list 403 /// could be vectorized even if its structure is diverse. 404 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 405 unsigned BaseIndex = 0) { 406 // Make sure these are all Instructions. 407 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 408 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 409 410 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 411 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 412 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 413 unsigned AltOpcode = Opcode; 414 unsigned AltIndex = BaseIndex; 415 416 // Check for one alternate opcode from another BinaryOperator. 417 // TODO - generalize to support all operators (types, calls etc.). 418 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 419 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 420 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 421 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 422 continue; 423 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 424 isValidForAlternation(Opcode)) { 425 AltOpcode = InstOpcode; 426 AltIndex = Cnt; 427 continue; 428 } 429 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 430 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 431 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 432 if (Ty0 == Ty1) { 433 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 434 continue; 435 if (Opcode == AltOpcode) { 436 assert(isValidForAlternation(Opcode) && 437 isValidForAlternation(InstOpcode) && 438 "Cast isn't safe for alternation, logic needs to be updated!"); 439 AltOpcode = InstOpcode; 440 AltIndex = Cnt; 441 continue; 442 } 443 } 444 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 445 continue; 446 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 447 } 448 449 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 450 cast<Instruction>(VL[AltIndex])); 451 } 452 453 /// \returns true if all of the values in \p VL have the same type or false 454 /// otherwise. 455 static bool allSameType(ArrayRef<Value *> VL) { 456 Type *Ty = VL[0]->getType(); 457 for (int i = 1, e = VL.size(); i < e; i++) 458 if (VL[i]->getType() != Ty) 459 return false; 460 461 return true; 462 } 463 464 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 465 static Optional<unsigned> getExtractIndex(Instruction *E) { 466 unsigned Opcode = E->getOpcode(); 467 assert((Opcode == Instruction::ExtractElement || 468 Opcode == Instruction::ExtractValue) && 469 "Expected extractelement or extractvalue instruction."); 470 if (Opcode == Instruction::ExtractElement) { 471 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 472 if (!CI) 473 return None; 474 return CI->getZExtValue(); 475 } 476 ExtractValueInst *EI = cast<ExtractValueInst>(E); 477 if (EI->getNumIndices() != 1) 478 return None; 479 return *EI->idx_begin(); 480 } 481 482 /// \returns True if in-tree use also needs extract. This refers to 483 /// possible scalar operand in vectorized instruction. 484 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 485 TargetLibraryInfo *TLI) { 486 unsigned Opcode = UserInst->getOpcode(); 487 switch (Opcode) { 488 case Instruction::Load: { 489 LoadInst *LI = cast<LoadInst>(UserInst); 490 return (LI->getPointerOperand() == Scalar); 491 } 492 case Instruction::Store: { 493 StoreInst *SI = cast<StoreInst>(UserInst); 494 return (SI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Call: { 497 CallInst *CI = cast<CallInst>(UserInst); 498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 499 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 500 if (hasVectorInstrinsicScalarOpd(ID, i)) 501 return (CI->getArgOperand(i) == Scalar); 502 } 503 LLVM_FALLTHROUGH; 504 } 505 default: 506 return false; 507 } 508 } 509 510 /// \returns the AA location that is being access by the instruction. 511 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return MemoryLocation::get(SI); 514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 515 return MemoryLocation::get(LI); 516 return MemoryLocation(); 517 } 518 519 /// \returns True if the instruction is not a volatile or atomic load/store. 520 static bool isSimple(Instruction *I) { 521 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 522 return LI->isSimple(); 523 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 524 return SI->isSimple(); 525 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 526 return !MI->isVolatile(); 527 return true; 528 } 529 530 namespace llvm { 531 532 static void inversePermutation(ArrayRef<unsigned> Indices, 533 SmallVectorImpl<int> &Mask) { 534 Mask.clear(); 535 const unsigned E = Indices.size(); 536 Mask.resize(E, E + 1); 537 for (unsigned I = 0; I < E; ++I) 538 Mask[Indices[I]] = I; 539 } 540 541 namespace slpvectorizer { 542 543 /// Bottom Up SLP Vectorizer. 544 class BoUpSLP { 545 struct TreeEntry; 546 struct ScheduleData; 547 548 public: 549 using ValueList = SmallVector<Value *, 8>; 550 using InstrList = SmallVector<Instruction *, 16>; 551 using ValueSet = SmallPtrSet<Value *, 16>; 552 using StoreList = SmallVector<StoreInst *, 8>; 553 using ExtraValueToDebugLocsMap = 554 MapVector<Value *, SmallVector<Instruction *, 2>>; 555 using OrdersType = SmallVector<unsigned, 4>; 556 557 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 558 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 559 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 560 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 561 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 562 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 563 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 564 // Use the vector register size specified by the target unless overridden 565 // by a command-line option. 566 // TODO: It would be better to limit the vectorization factor based on 567 // data type rather than just register size. For example, x86 AVX has 568 // 256-bit registers, but it does not support integer operations 569 // at that width (that requires AVX2). 570 if (MaxVectorRegSizeOption.getNumOccurrences()) 571 MaxVecRegSize = MaxVectorRegSizeOption; 572 else 573 MaxVecRegSize = TTI->getRegisterBitWidth(true); 574 575 if (MinVectorRegSizeOption.getNumOccurrences()) 576 MinVecRegSize = MinVectorRegSizeOption; 577 else 578 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 579 } 580 581 /// Vectorize the tree that starts with the elements in \p VL. 582 /// Returns the vectorized root. 583 Value *vectorizeTree(); 584 585 /// Vectorize the tree but with the list of externally used values \p 586 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 587 /// generated extractvalue instructions. 588 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 589 590 /// \returns the cost incurred by unwanted spills and fills, caused by 591 /// holding live values over call sites. 592 InstructionCost getSpillCost() const; 593 594 /// \returns the vectorization cost of the subtree that starts at \p VL. 595 /// A negative number means that this is profitable. 596 InstructionCost getTreeCost(); 597 598 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 599 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 600 void buildTree(ArrayRef<Value *> Roots, 601 ArrayRef<Value *> UserIgnoreLst = None); 602 603 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 604 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 605 /// into account (and updating it, if required) list of externally used 606 /// values stored in \p ExternallyUsedValues. 607 void buildTree(ArrayRef<Value *> Roots, 608 ExtraValueToDebugLocsMap &ExternallyUsedValues, 609 ArrayRef<Value *> UserIgnoreLst = None); 610 611 /// Clear the internal data structures that are created by 'buildTree'. 612 void deleteTree() { 613 VectorizableTree.clear(); 614 ScalarToTreeEntry.clear(); 615 MustGather.clear(); 616 ExternalUses.clear(); 617 NumOpsWantToKeepOrder.clear(); 618 NumOpsWantToKeepOriginalOrder = 0; 619 for (auto &Iter : BlocksSchedules) { 620 BlockScheduling *BS = Iter.second.get(); 621 BS->clear(); 622 } 623 MinBWs.clear(); 624 } 625 626 unsigned getTreeSize() const { return VectorizableTree.size(); } 627 628 /// Perform LICM and CSE on the newly generated gather sequences. 629 void optimizeGatherSequence(); 630 631 /// \returns The best order of instructions for vectorization. 632 Optional<ArrayRef<unsigned>> bestOrder() const { 633 assert(llvm::all_of( 634 NumOpsWantToKeepOrder, 635 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 636 return D.getFirst().size() == 637 VectorizableTree[0]->Scalars.size(); 638 }) && 639 "All orders must have the same size as number of instructions in " 640 "tree node."); 641 auto I = std::max_element( 642 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 643 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 644 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 645 return D1.second < D2.second; 646 }); 647 if (I == NumOpsWantToKeepOrder.end() || 648 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 649 return None; 650 651 return makeArrayRef(I->getFirst()); 652 } 653 654 /// Builds the correct order for root instructions. 655 /// If some leaves have the same instructions to be vectorized, we may 656 /// incorrectly evaluate the best order for the root node (it is built for the 657 /// vector of instructions without repeated instructions and, thus, has less 658 /// elements than the root node). This function builds the correct order for 659 /// the root node. 660 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 661 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 662 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 663 /// be reordered, the best order will be \<1, 0\>. We need to extend this 664 /// order for the root node. For the root node this order should look like 665 /// \<3, 0, 1, 2\>. This function extends the order for the reused 666 /// instructions. 667 void findRootOrder(OrdersType &Order) { 668 // If the leaf has the same number of instructions to vectorize as the root 669 // - order must be set already. 670 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 671 if (Order.size() == RootSize) 672 return; 673 SmallVector<unsigned, 4> RealOrder(Order.size()); 674 std::swap(Order, RealOrder); 675 SmallVector<int, 4> Mask; 676 inversePermutation(RealOrder, Mask); 677 Order.assign(Mask.begin(), Mask.end()); 678 // The leaf has less number of instructions - need to find the true order of 679 // the root. 680 // Scan the nodes starting from the leaf back to the root. 681 const TreeEntry *PNode = VectorizableTree.back().get(); 682 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 683 SmallPtrSet<const TreeEntry *, 4> Visited; 684 while (!Nodes.empty() && Order.size() != RootSize) { 685 const TreeEntry *PNode = Nodes.pop_back_val(); 686 if (!Visited.insert(PNode).second) 687 continue; 688 const TreeEntry &Node = *PNode; 689 for (const EdgeInfo &EI : Node.UserTreeIndices) 690 if (EI.UserTE) 691 Nodes.push_back(EI.UserTE); 692 if (Node.ReuseShuffleIndices.empty()) 693 continue; 694 // Build the order for the parent node. 695 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 696 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 697 // The algorithm of the order extension is: 698 // 1. Calculate the number of the same instructions for the order. 699 // 2. Calculate the index of the new order: total number of instructions 700 // with order less than the order of the current instruction + reuse 701 // number of the current instruction. 702 // 3. The new order is just the index of the instruction in the original 703 // vector of the instructions. 704 for (unsigned I : Node.ReuseShuffleIndices) 705 ++OrderCounter[Order[I]]; 706 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 707 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 708 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 709 unsigned OrderIdx = Order[ReusedIdx]; 710 unsigned NewIdx = 0; 711 for (unsigned J = 0; J < OrderIdx; ++J) 712 NewIdx += OrderCounter[J]; 713 NewIdx += CurrentCounter[OrderIdx]; 714 ++CurrentCounter[OrderIdx]; 715 assert(NewOrder[NewIdx] == RootSize && 716 "The order index should not be written already."); 717 NewOrder[NewIdx] = I; 718 } 719 std::swap(Order, NewOrder); 720 } 721 assert(Order.size() == RootSize && 722 "Root node is expected or the size of the order must be the same as " 723 "the number of elements in the root node."); 724 assert(llvm::all_of(Order, 725 [RootSize](unsigned Val) { return Val != RootSize; }) && 726 "All indices must be initialized"); 727 } 728 729 /// \return The vector element size in bits to use when vectorizing the 730 /// expression tree ending at \p V. If V is a store, the size is the width of 731 /// the stored value. Otherwise, the size is the width of the largest loaded 732 /// value reaching V. This method is used by the vectorizer to calculate 733 /// vectorization factors. 734 unsigned getVectorElementSize(Value *V); 735 736 /// Compute the minimum type sizes required to represent the entries in a 737 /// vectorizable tree. 738 void computeMinimumValueSizes(); 739 740 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 741 unsigned getMaxVecRegSize() const { 742 return MaxVecRegSize; 743 } 744 745 // \returns minimum vector register size as set by cl::opt. 746 unsigned getMinVecRegSize() const { 747 return MinVecRegSize; 748 } 749 750 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 751 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 752 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 753 return MaxVF ? MaxVF : UINT_MAX; 754 } 755 756 /// Check if homogeneous aggregate is isomorphic to some VectorType. 757 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 758 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 759 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 760 /// 761 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 762 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 763 764 /// \returns True if the VectorizableTree is both tiny and not fully 765 /// vectorizable. We do not vectorize such trees. 766 bool isTreeTinyAndNotFullyVectorizable() const; 767 768 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 769 /// can be load combined in the backend. Load combining may not be allowed in 770 /// the IR optimizer, so we do not want to alter the pattern. For example, 771 /// partially transforming a scalar bswap() pattern into vector code is 772 /// effectively impossible for the backend to undo. 773 /// TODO: If load combining is allowed in the IR optimizer, this analysis 774 /// may not be necessary. 775 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 776 777 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 778 /// can be load combined in the backend. Load combining may not be allowed in 779 /// the IR optimizer, so we do not want to alter the pattern. For example, 780 /// partially transforming a scalar bswap() pattern into vector code is 781 /// effectively impossible for the backend to undo. 782 /// TODO: If load combining is allowed in the IR optimizer, this analysis 783 /// may not be necessary. 784 bool isLoadCombineCandidate() const; 785 786 OptimizationRemarkEmitter *getORE() { return ORE; } 787 788 /// This structure holds any data we need about the edges being traversed 789 /// during buildTree_rec(). We keep track of: 790 /// (i) the user TreeEntry index, and 791 /// (ii) the index of the edge. 792 struct EdgeInfo { 793 EdgeInfo() = default; 794 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 795 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 796 /// The user TreeEntry. 797 TreeEntry *UserTE = nullptr; 798 /// The operand index of the use. 799 unsigned EdgeIdx = UINT_MAX; 800 #ifndef NDEBUG 801 friend inline raw_ostream &operator<<(raw_ostream &OS, 802 const BoUpSLP::EdgeInfo &EI) { 803 EI.dump(OS); 804 return OS; 805 } 806 /// Debug print. 807 void dump(raw_ostream &OS) const { 808 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 809 << " EdgeIdx:" << EdgeIdx << "}"; 810 } 811 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 812 #endif 813 }; 814 815 /// A helper data structure to hold the operands of a vector of instructions. 816 /// This supports a fixed vector length for all operand vectors. 817 class VLOperands { 818 /// For each operand we need (i) the value, and (ii) the opcode that it 819 /// would be attached to if the expression was in a left-linearized form. 820 /// This is required to avoid illegal operand reordering. 821 /// For example: 822 /// \verbatim 823 /// 0 Op1 824 /// |/ 825 /// Op1 Op2 Linearized + Op2 826 /// \ / ----------> |/ 827 /// - - 828 /// 829 /// Op1 - Op2 (0 + Op1) - Op2 830 /// \endverbatim 831 /// 832 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 833 /// 834 /// Another way to think of this is to track all the operations across the 835 /// path from the operand all the way to the root of the tree and to 836 /// calculate the operation that corresponds to this path. For example, the 837 /// path from Op2 to the root crosses the RHS of the '-', therefore the 838 /// corresponding operation is a '-' (which matches the one in the 839 /// linearized tree, as shown above). 840 /// 841 /// For lack of a better term, we refer to this operation as Accumulated 842 /// Path Operation (APO). 843 struct OperandData { 844 OperandData() = default; 845 OperandData(Value *V, bool APO, bool IsUsed) 846 : V(V), APO(APO), IsUsed(IsUsed) {} 847 /// The operand value. 848 Value *V = nullptr; 849 /// TreeEntries only allow a single opcode, or an alternate sequence of 850 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 851 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 852 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 853 /// (e.g., Add/Mul) 854 bool APO = false; 855 /// Helper data for the reordering function. 856 bool IsUsed = false; 857 }; 858 859 /// During operand reordering, we are trying to select the operand at lane 860 /// that matches best with the operand at the neighboring lane. Our 861 /// selection is based on the type of value we are looking for. For example, 862 /// if the neighboring lane has a load, we need to look for a load that is 863 /// accessing a consecutive address. These strategies are summarized in the 864 /// 'ReorderingMode' enumerator. 865 enum class ReorderingMode { 866 Load, ///< Matching loads to consecutive memory addresses 867 Opcode, ///< Matching instructions based on opcode (same or alternate) 868 Constant, ///< Matching constants 869 Splat, ///< Matching the same instruction multiple times (broadcast) 870 Failed, ///< We failed to create a vectorizable group 871 }; 872 873 using OperandDataVec = SmallVector<OperandData, 2>; 874 875 /// A vector of operand vectors. 876 SmallVector<OperandDataVec, 4> OpsVec; 877 878 const DataLayout &DL; 879 ScalarEvolution &SE; 880 const BoUpSLP &R; 881 882 /// \returns the operand data at \p OpIdx and \p Lane. 883 OperandData &getData(unsigned OpIdx, unsigned Lane) { 884 return OpsVec[OpIdx][Lane]; 885 } 886 887 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 888 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 889 return OpsVec[OpIdx][Lane]; 890 } 891 892 /// Clears the used flag for all entries. 893 void clearUsed() { 894 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 895 OpIdx != NumOperands; ++OpIdx) 896 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 897 ++Lane) 898 OpsVec[OpIdx][Lane].IsUsed = false; 899 } 900 901 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 902 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 903 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 904 } 905 906 // The hard-coded scores listed here are not very important. When computing 907 // the scores of matching one sub-tree with another, we are basically 908 // counting the number of values that are matching. So even if all scores 909 // are set to 1, we would still get a decent matching result. 910 // However, sometimes we have to break ties. For example we may have to 911 // choose between matching loads vs matching opcodes. This is what these 912 // scores are helping us with: they provide the order of preference. 913 914 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 915 static const int ScoreConsecutiveLoads = 3; 916 /// ExtractElementInst from same vector and consecutive indexes. 917 static const int ScoreConsecutiveExtracts = 3; 918 /// Constants. 919 static const int ScoreConstants = 2; 920 /// Instructions with the same opcode. 921 static const int ScoreSameOpcode = 2; 922 /// Instructions with alt opcodes (e.g, add + sub). 923 static const int ScoreAltOpcodes = 1; 924 /// Identical instructions (a.k.a. splat or broadcast). 925 static const int ScoreSplat = 1; 926 /// Matching with an undef is preferable to failing. 927 static const int ScoreUndef = 1; 928 /// Score for failing to find a decent match. 929 static const int ScoreFail = 0; 930 /// User exteranl to the vectorized code. 931 static const int ExternalUseCost = 1; 932 /// The user is internal but in a different lane. 933 static const int UserInDiffLaneCost = ExternalUseCost; 934 935 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 936 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 937 ScalarEvolution &SE) { 938 auto *LI1 = dyn_cast<LoadInst>(V1); 939 auto *LI2 = dyn_cast<LoadInst>(V2); 940 if (LI1 && LI2) 941 return isConsecutiveAccess(LI1, LI2, DL, SE) 942 ? VLOperands::ScoreConsecutiveLoads 943 : VLOperands::ScoreFail; 944 945 auto *C1 = dyn_cast<Constant>(V1); 946 auto *C2 = dyn_cast<Constant>(V2); 947 if (C1 && C2) 948 return VLOperands::ScoreConstants; 949 950 // Extracts from consecutive indexes of the same vector better score as 951 // the extracts could be optimized away. 952 Value *EV; 953 ConstantInt *Ex1Idx, *Ex2Idx; 954 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 955 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 956 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 957 return VLOperands::ScoreConsecutiveExtracts; 958 959 auto *I1 = dyn_cast<Instruction>(V1); 960 auto *I2 = dyn_cast<Instruction>(V2); 961 if (I1 && I2) { 962 if (I1 == I2) 963 return VLOperands::ScoreSplat; 964 InstructionsState S = getSameOpcode({I1, I2}); 965 // Note: Only consider instructions with <= 2 operands to avoid 966 // complexity explosion. 967 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 968 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 969 : VLOperands::ScoreSameOpcode; 970 } 971 972 if (isa<UndefValue>(V2)) 973 return VLOperands::ScoreUndef; 974 975 return VLOperands::ScoreFail; 976 } 977 978 /// Holds the values and their lane that are taking part in the look-ahead 979 /// score calculation. This is used in the external uses cost calculation. 980 SmallDenseMap<Value *, int> InLookAheadValues; 981 982 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 983 /// either external to the vectorized code, or require shuffling. 984 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 985 const std::pair<Value *, int> &RHS) { 986 int Cost = 0; 987 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 988 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 989 Value *V = Values[Idx].first; 990 // Calculate the absolute lane, using the minimum relative lane of LHS 991 // and RHS as base and Idx as the offset. 992 int Ln = std::min(LHS.second, RHS.second) + Idx; 993 assert(Ln >= 0 && "Bad lane calculation"); 994 unsigned UsersBudget = LookAheadUsersBudget; 995 for (User *U : V->users()) { 996 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 997 // The user is in the VectorizableTree. Check if we need to insert. 998 auto It = llvm::find(UserTE->Scalars, U); 999 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1000 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1001 assert(UserLn >= 0 && "Bad lane"); 1002 if (UserLn != Ln) 1003 Cost += UserInDiffLaneCost; 1004 } else { 1005 // Check if the user is in the look-ahead code. 1006 auto It2 = InLookAheadValues.find(U); 1007 if (It2 != InLookAheadValues.end()) { 1008 // The user is in the look-ahead code. Check the lane. 1009 if (It2->second != Ln) 1010 Cost += UserInDiffLaneCost; 1011 } else { 1012 // The user is neither in SLP tree nor in the look-ahead code. 1013 Cost += ExternalUseCost; 1014 } 1015 } 1016 // Limit the number of visited uses to cap compilation time. 1017 if (--UsersBudget == 0) 1018 break; 1019 } 1020 } 1021 return Cost; 1022 } 1023 1024 /// Go through the operands of \p LHS and \p RHS recursively until \p 1025 /// MaxLevel, and return the cummulative score. For example: 1026 /// \verbatim 1027 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1028 /// \ / \ / \ / \ / 1029 /// + + + + 1030 /// G1 G2 G3 G4 1031 /// \endverbatim 1032 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1033 /// each level recursively, accumulating the score. It starts from matching 1034 /// the additions at level 0, then moves on to the loads (level 1). The 1035 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1036 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1037 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1038 /// Please note that the order of the operands does not matter, as we 1039 /// evaluate the score of all profitable combinations of operands. In 1040 /// other words the score of G1 and G4 is the same as G1 and G2. This 1041 /// heuristic is based on ideas described in: 1042 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1043 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1044 /// Luís F. W. Góes 1045 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1046 const std::pair<Value *, int> &RHS, int CurrLevel, 1047 int MaxLevel) { 1048 1049 Value *V1 = LHS.first; 1050 Value *V2 = RHS.first; 1051 // Get the shallow score of V1 and V2. 1052 int ShallowScoreAtThisLevel = 1053 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1054 getExternalUsesCost(LHS, RHS)); 1055 int Lane1 = LHS.second; 1056 int Lane2 = RHS.second; 1057 1058 // If reached MaxLevel, 1059 // or if V1 and V2 are not instructions, 1060 // or if they are SPLAT, 1061 // or if they are not consecutive, early return the current cost. 1062 auto *I1 = dyn_cast<Instruction>(V1); 1063 auto *I2 = dyn_cast<Instruction>(V2); 1064 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1065 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1066 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1067 return ShallowScoreAtThisLevel; 1068 assert(I1 && I2 && "Should have early exited."); 1069 1070 // Keep track of in-tree values for determining the external-use cost. 1071 InLookAheadValues[V1] = Lane1; 1072 InLookAheadValues[V2] = Lane2; 1073 1074 // Contains the I2 operand indexes that got matched with I1 operands. 1075 SmallSet<unsigned, 4> Op2Used; 1076 1077 // Recursion towards the operands of I1 and I2. We are trying all possbile 1078 // operand pairs, and keeping track of the best score. 1079 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1080 OpIdx1 != NumOperands1; ++OpIdx1) { 1081 // Try to pair op1I with the best operand of I2. 1082 int MaxTmpScore = 0; 1083 unsigned MaxOpIdx2 = 0; 1084 bool FoundBest = false; 1085 // If I2 is commutative try all combinations. 1086 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1087 unsigned ToIdx = isCommutative(I2) 1088 ? I2->getNumOperands() 1089 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1090 assert(FromIdx <= ToIdx && "Bad index"); 1091 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1092 // Skip operands already paired with OpIdx1. 1093 if (Op2Used.count(OpIdx2)) 1094 continue; 1095 // Recursively calculate the cost at each level 1096 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1097 {I2->getOperand(OpIdx2), Lane2}, 1098 CurrLevel + 1, MaxLevel); 1099 // Look for the best score. 1100 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1101 MaxTmpScore = TmpScore; 1102 MaxOpIdx2 = OpIdx2; 1103 FoundBest = true; 1104 } 1105 } 1106 if (FoundBest) { 1107 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1108 Op2Used.insert(MaxOpIdx2); 1109 ShallowScoreAtThisLevel += MaxTmpScore; 1110 } 1111 } 1112 return ShallowScoreAtThisLevel; 1113 } 1114 1115 /// \Returns the look-ahead score, which tells us how much the sub-trees 1116 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1117 /// score. This helps break ties in an informed way when we cannot decide on 1118 /// the order of the operands by just considering the immediate 1119 /// predecessors. 1120 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1121 const std::pair<Value *, int> &RHS) { 1122 InLookAheadValues.clear(); 1123 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1124 } 1125 1126 // Search all operands in Ops[*][Lane] for the one that matches best 1127 // Ops[OpIdx][LastLane] and return its opreand index. 1128 // If no good match can be found, return None. 1129 Optional<unsigned> 1130 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1131 ArrayRef<ReorderingMode> ReorderingModes) { 1132 unsigned NumOperands = getNumOperands(); 1133 1134 // The operand of the previous lane at OpIdx. 1135 Value *OpLastLane = getData(OpIdx, LastLane).V; 1136 1137 // Our strategy mode for OpIdx. 1138 ReorderingMode RMode = ReorderingModes[OpIdx]; 1139 1140 // The linearized opcode of the operand at OpIdx, Lane. 1141 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1142 1143 // The best operand index and its score. 1144 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1145 // are using the score to differentiate between the two. 1146 struct BestOpData { 1147 Optional<unsigned> Idx = None; 1148 unsigned Score = 0; 1149 } BestOp; 1150 1151 // Iterate through all unused operands and look for the best. 1152 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1153 // Get the operand at Idx and Lane. 1154 OperandData &OpData = getData(Idx, Lane); 1155 Value *Op = OpData.V; 1156 bool OpAPO = OpData.APO; 1157 1158 // Skip already selected operands. 1159 if (OpData.IsUsed) 1160 continue; 1161 1162 // Skip if we are trying to move the operand to a position with a 1163 // different opcode in the linearized tree form. This would break the 1164 // semantics. 1165 if (OpAPO != OpIdxAPO) 1166 continue; 1167 1168 // Look for an operand that matches the current mode. 1169 switch (RMode) { 1170 case ReorderingMode::Load: 1171 case ReorderingMode::Constant: 1172 case ReorderingMode::Opcode: { 1173 bool LeftToRight = Lane > LastLane; 1174 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1175 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1176 unsigned Score = 1177 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1178 if (Score > BestOp.Score) { 1179 BestOp.Idx = Idx; 1180 BestOp.Score = Score; 1181 } 1182 break; 1183 } 1184 case ReorderingMode::Splat: 1185 if (Op == OpLastLane) 1186 BestOp.Idx = Idx; 1187 break; 1188 case ReorderingMode::Failed: 1189 return None; 1190 } 1191 } 1192 1193 if (BestOp.Idx) { 1194 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1195 return BestOp.Idx; 1196 } 1197 // If we could not find a good match return None. 1198 return None; 1199 } 1200 1201 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1202 /// reordering from. This is the one which has the least number of operands 1203 /// that can freely move about. 1204 unsigned getBestLaneToStartReordering() const { 1205 unsigned BestLane = 0; 1206 unsigned Min = UINT_MAX; 1207 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1208 ++Lane) { 1209 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1210 if (NumFreeOps < Min) { 1211 Min = NumFreeOps; 1212 BestLane = Lane; 1213 } 1214 } 1215 return BestLane; 1216 } 1217 1218 /// \Returns the maximum number of operands that are allowed to be reordered 1219 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1220 /// start operand reordering. 1221 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1222 unsigned CntTrue = 0; 1223 unsigned NumOperands = getNumOperands(); 1224 // Operands with the same APO can be reordered. We therefore need to count 1225 // how many of them we have for each APO, like this: Cnt[APO] = x. 1226 // Since we only have two APOs, namely true and false, we can avoid using 1227 // a map. Instead we can simply count the number of operands that 1228 // correspond to one of them (in this case the 'true' APO), and calculate 1229 // the other by subtracting it from the total number of operands. 1230 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1231 if (getData(OpIdx, Lane).APO) 1232 ++CntTrue; 1233 unsigned CntFalse = NumOperands - CntTrue; 1234 return std::max(CntTrue, CntFalse); 1235 } 1236 1237 /// Go through the instructions in VL and append their operands. 1238 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1239 assert(!VL.empty() && "Bad VL"); 1240 assert((empty() || VL.size() == getNumLanes()) && 1241 "Expected same number of lanes"); 1242 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1243 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1244 OpsVec.resize(NumOperands); 1245 unsigned NumLanes = VL.size(); 1246 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1247 OpsVec[OpIdx].resize(NumLanes); 1248 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1249 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1250 // Our tree has just 3 nodes: the root and two operands. 1251 // It is therefore trivial to get the APO. We only need to check the 1252 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1253 // RHS operand. The LHS operand of both add and sub is never attached 1254 // to an inversese operation in the linearized form, therefore its APO 1255 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1256 1257 // Since operand reordering is performed on groups of commutative 1258 // operations or alternating sequences (e.g., +, -), we can safely 1259 // tell the inverse operations by checking commutativity. 1260 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1261 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1262 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1263 APO, false}; 1264 } 1265 } 1266 } 1267 1268 /// \returns the number of operands. 1269 unsigned getNumOperands() const { return OpsVec.size(); } 1270 1271 /// \returns the number of lanes. 1272 unsigned getNumLanes() const { return OpsVec[0].size(); } 1273 1274 /// \returns the operand value at \p OpIdx and \p Lane. 1275 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1276 return getData(OpIdx, Lane).V; 1277 } 1278 1279 /// \returns true if the data structure is empty. 1280 bool empty() const { return OpsVec.empty(); } 1281 1282 /// Clears the data. 1283 void clear() { OpsVec.clear(); } 1284 1285 /// \Returns true if there are enough operands identical to \p Op to fill 1286 /// the whole vector. 1287 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1288 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1289 bool OpAPO = getData(OpIdx, Lane).APO; 1290 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1291 if (Ln == Lane) 1292 continue; 1293 // This is set to true if we found a candidate for broadcast at Lane. 1294 bool FoundCandidate = false; 1295 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1296 OperandData &Data = getData(OpI, Ln); 1297 if (Data.APO != OpAPO || Data.IsUsed) 1298 continue; 1299 if (Data.V == Op) { 1300 FoundCandidate = true; 1301 Data.IsUsed = true; 1302 break; 1303 } 1304 } 1305 if (!FoundCandidate) 1306 return false; 1307 } 1308 return true; 1309 } 1310 1311 public: 1312 /// Initialize with all the operands of the instruction vector \p RootVL. 1313 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1314 ScalarEvolution &SE, const BoUpSLP &R) 1315 : DL(DL), SE(SE), R(R) { 1316 // Append all the operands of RootVL. 1317 appendOperandsOfVL(RootVL); 1318 } 1319 1320 /// \Returns a value vector with the operands across all lanes for the 1321 /// opearnd at \p OpIdx. 1322 ValueList getVL(unsigned OpIdx) const { 1323 ValueList OpVL(OpsVec[OpIdx].size()); 1324 assert(OpsVec[OpIdx].size() == getNumLanes() && 1325 "Expected same num of lanes across all operands"); 1326 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1327 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1328 return OpVL; 1329 } 1330 1331 // Performs operand reordering for 2 or more operands. 1332 // The original operands are in OrigOps[OpIdx][Lane]. 1333 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1334 void reorder() { 1335 unsigned NumOperands = getNumOperands(); 1336 unsigned NumLanes = getNumLanes(); 1337 // Each operand has its own mode. We are using this mode to help us select 1338 // the instructions for each lane, so that they match best with the ones 1339 // we have selected so far. 1340 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1341 1342 // This is a greedy single-pass algorithm. We are going over each lane 1343 // once and deciding on the best order right away with no back-tracking. 1344 // However, in order to increase its effectiveness, we start with the lane 1345 // that has operands that can move the least. For example, given the 1346 // following lanes: 1347 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1348 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1349 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1350 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1351 // we will start at Lane 1, since the operands of the subtraction cannot 1352 // be reordered. Then we will visit the rest of the lanes in a circular 1353 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1354 1355 // Find the first lane that we will start our search from. 1356 unsigned FirstLane = getBestLaneToStartReordering(); 1357 1358 // Initialize the modes. 1359 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1360 Value *OpLane0 = getValue(OpIdx, FirstLane); 1361 // Keep track if we have instructions with all the same opcode on one 1362 // side. 1363 if (isa<LoadInst>(OpLane0)) 1364 ReorderingModes[OpIdx] = ReorderingMode::Load; 1365 else if (isa<Instruction>(OpLane0)) { 1366 // Check if OpLane0 should be broadcast. 1367 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1368 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1369 else 1370 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1371 } 1372 else if (isa<Constant>(OpLane0)) 1373 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1374 else if (isa<Argument>(OpLane0)) 1375 // Our best hope is a Splat. It may save some cost in some cases. 1376 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1377 else 1378 // NOTE: This should be unreachable. 1379 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1380 } 1381 1382 // If the initial strategy fails for any of the operand indexes, then we 1383 // perform reordering again in a second pass. This helps avoid assigning 1384 // high priority to the failed strategy, and should improve reordering for 1385 // the non-failed operand indexes. 1386 for (int Pass = 0; Pass != 2; ++Pass) { 1387 // Skip the second pass if the first pass did not fail. 1388 bool StrategyFailed = false; 1389 // Mark all operand data as free to use. 1390 clearUsed(); 1391 // We keep the original operand order for the FirstLane, so reorder the 1392 // rest of the lanes. We are visiting the nodes in a circular fashion, 1393 // using FirstLane as the center point and increasing the radius 1394 // distance. 1395 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1396 // Visit the lane on the right and then the lane on the left. 1397 for (int Direction : {+1, -1}) { 1398 int Lane = FirstLane + Direction * Distance; 1399 if (Lane < 0 || Lane >= (int)NumLanes) 1400 continue; 1401 int LastLane = Lane - Direction; 1402 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1403 "Out of bounds"); 1404 // Look for a good match for each operand. 1405 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1406 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1407 Optional<unsigned> BestIdx = 1408 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1409 // By not selecting a value, we allow the operands that follow to 1410 // select a better matching value. We will get a non-null value in 1411 // the next run of getBestOperand(). 1412 if (BestIdx) { 1413 // Swap the current operand with the one returned by 1414 // getBestOperand(). 1415 swap(OpIdx, BestIdx.getValue(), Lane); 1416 } else { 1417 // We failed to find a best operand, set mode to 'Failed'. 1418 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1419 // Enable the second pass. 1420 StrategyFailed = true; 1421 } 1422 } 1423 } 1424 } 1425 // Skip second pass if the strategy did not fail. 1426 if (!StrategyFailed) 1427 break; 1428 } 1429 } 1430 1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1432 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1433 switch (RMode) { 1434 case ReorderingMode::Load: 1435 return "Load"; 1436 case ReorderingMode::Opcode: 1437 return "Opcode"; 1438 case ReorderingMode::Constant: 1439 return "Constant"; 1440 case ReorderingMode::Splat: 1441 return "Splat"; 1442 case ReorderingMode::Failed: 1443 return "Failed"; 1444 } 1445 llvm_unreachable("Unimplemented Reordering Type"); 1446 } 1447 1448 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1449 raw_ostream &OS) { 1450 return OS << getModeStr(RMode); 1451 } 1452 1453 /// Debug print. 1454 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1455 printMode(RMode, dbgs()); 1456 } 1457 1458 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1459 return printMode(RMode, OS); 1460 } 1461 1462 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1463 const unsigned Indent = 2; 1464 unsigned Cnt = 0; 1465 for (const OperandDataVec &OpDataVec : OpsVec) { 1466 OS << "Operand " << Cnt++ << "\n"; 1467 for (const OperandData &OpData : OpDataVec) { 1468 OS.indent(Indent) << "{"; 1469 if (Value *V = OpData.V) 1470 OS << *V; 1471 else 1472 OS << "null"; 1473 OS << ", APO:" << OpData.APO << "}\n"; 1474 } 1475 OS << "\n"; 1476 } 1477 return OS; 1478 } 1479 1480 /// Debug print. 1481 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1482 #endif 1483 }; 1484 1485 /// Checks if the instruction is marked for deletion. 1486 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1487 1488 /// Marks values operands for later deletion by replacing them with Undefs. 1489 void eraseInstructions(ArrayRef<Value *> AV); 1490 1491 ~BoUpSLP(); 1492 1493 private: 1494 /// Checks if all users of \p I are the part of the vectorization tree. 1495 bool areAllUsersVectorized(Instruction *I) const; 1496 1497 /// \returns the cost of the vectorizable entry. 1498 InstructionCost getEntryCost(TreeEntry *E); 1499 1500 /// This is the recursive part of buildTree. 1501 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1502 const EdgeInfo &EI); 1503 1504 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1505 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1506 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1507 /// returns false, setting \p CurrentOrder to either an empty vector or a 1508 /// non-identity permutation that allows to reuse extract instructions. 1509 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1510 SmallVectorImpl<unsigned> &CurrentOrder) const; 1511 1512 /// Vectorize a single entry in the tree. 1513 Value *vectorizeTree(TreeEntry *E); 1514 1515 /// Vectorize a single entry in the tree, starting in \p VL. 1516 Value *vectorizeTree(ArrayRef<Value *> VL); 1517 1518 /// \returns the scalarization cost for this type. Scalarization in this 1519 /// context means the creation of vectors from a group of scalars. 1520 InstructionCost 1521 getGatherCost(FixedVectorType *Ty, 1522 const DenseSet<unsigned> &ShuffledIndices) const; 1523 1524 /// \returns the scalarization cost for this list of values. Assuming that 1525 /// this subtree gets vectorized, we may need to extract the values from the 1526 /// roots. This method calculates the cost of extracting the values. 1527 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1528 1529 /// Set the Builder insert point to one after the last instruction in 1530 /// the bundle 1531 void setInsertPointAfterBundle(TreeEntry *E); 1532 1533 /// \returns a vector from a collection of scalars in \p VL. 1534 Value *gather(ArrayRef<Value *> VL); 1535 1536 /// \returns whether the VectorizableTree is fully vectorizable and will 1537 /// be beneficial even the tree height is tiny. 1538 bool isFullyVectorizableTinyTree() const; 1539 1540 /// Reorder commutative or alt operands to get better probability of 1541 /// generating vectorized code. 1542 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1543 SmallVectorImpl<Value *> &Left, 1544 SmallVectorImpl<Value *> &Right, 1545 const DataLayout &DL, 1546 ScalarEvolution &SE, 1547 const BoUpSLP &R); 1548 struct TreeEntry { 1549 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1550 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1551 1552 /// \returns true if the scalars in VL are equal to this entry. 1553 bool isSame(ArrayRef<Value *> VL) const { 1554 if (VL.size() == Scalars.size()) 1555 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1556 return VL.size() == ReuseShuffleIndices.size() && 1557 std::equal( 1558 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1559 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1560 } 1561 1562 /// A vector of scalars. 1563 ValueList Scalars; 1564 1565 /// The Scalars are vectorized into this value. It is initialized to Null. 1566 Value *VectorizedValue = nullptr; 1567 1568 /// Do we need to gather this sequence or vectorize it 1569 /// (either with vector instruction or with scatter/gather 1570 /// intrinsics for store/load)? 1571 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1572 EntryState State; 1573 1574 /// Does this sequence require some shuffling? 1575 SmallVector<int, 4> ReuseShuffleIndices; 1576 1577 /// Does this entry require reordering? 1578 SmallVector<unsigned, 4> ReorderIndices; 1579 1580 /// Points back to the VectorizableTree. 1581 /// 1582 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1583 /// to be a pointer and needs to be able to initialize the child iterator. 1584 /// Thus we need a reference back to the container to translate the indices 1585 /// to entries. 1586 VecTreeTy &Container; 1587 1588 /// The TreeEntry index containing the user of this entry. We can actually 1589 /// have multiple users so the data structure is not truly a tree. 1590 SmallVector<EdgeInfo, 1> UserTreeIndices; 1591 1592 /// The index of this treeEntry in VectorizableTree. 1593 int Idx = -1; 1594 1595 private: 1596 /// The operands of each instruction in each lane Operands[op_index][lane]. 1597 /// Note: This helps avoid the replication of the code that performs the 1598 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1599 SmallVector<ValueList, 2> Operands; 1600 1601 /// The main/alternate instruction. 1602 Instruction *MainOp = nullptr; 1603 Instruction *AltOp = nullptr; 1604 1605 public: 1606 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1607 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1608 if (Operands.size() < OpIdx + 1) 1609 Operands.resize(OpIdx + 1); 1610 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1611 Operands[OpIdx].resize(Scalars.size()); 1612 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1613 Operands[OpIdx][Lane] = OpVL[Lane]; 1614 } 1615 1616 /// Set the operands of this bundle in their original order. 1617 void setOperandsInOrder() { 1618 assert(Operands.empty() && "Already initialized?"); 1619 auto *I0 = cast<Instruction>(Scalars[0]); 1620 Operands.resize(I0->getNumOperands()); 1621 unsigned NumLanes = Scalars.size(); 1622 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1623 OpIdx != NumOperands; ++OpIdx) { 1624 Operands[OpIdx].resize(NumLanes); 1625 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1626 auto *I = cast<Instruction>(Scalars[Lane]); 1627 assert(I->getNumOperands() == NumOperands && 1628 "Expected same number of operands"); 1629 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1630 } 1631 } 1632 } 1633 1634 /// \returns the \p OpIdx operand of this TreeEntry. 1635 ValueList &getOperand(unsigned OpIdx) { 1636 assert(OpIdx < Operands.size() && "Off bounds"); 1637 return Operands[OpIdx]; 1638 } 1639 1640 /// \returns the number of operands. 1641 unsigned getNumOperands() const { return Operands.size(); } 1642 1643 /// \return the single \p OpIdx operand. 1644 Value *getSingleOperand(unsigned OpIdx) const { 1645 assert(OpIdx < Operands.size() && "Off bounds"); 1646 assert(!Operands[OpIdx].empty() && "No operand available"); 1647 return Operands[OpIdx][0]; 1648 } 1649 1650 /// Some of the instructions in the list have alternate opcodes. 1651 bool isAltShuffle() const { 1652 return getOpcode() != getAltOpcode(); 1653 } 1654 1655 bool isOpcodeOrAlt(Instruction *I) const { 1656 unsigned CheckedOpcode = I->getOpcode(); 1657 return (getOpcode() == CheckedOpcode || 1658 getAltOpcode() == CheckedOpcode); 1659 } 1660 1661 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1662 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1663 /// \p OpValue. 1664 Value *isOneOf(Value *Op) const { 1665 auto *I = dyn_cast<Instruction>(Op); 1666 if (I && isOpcodeOrAlt(I)) 1667 return Op; 1668 return MainOp; 1669 } 1670 1671 void setOperations(const InstructionsState &S) { 1672 MainOp = S.MainOp; 1673 AltOp = S.AltOp; 1674 } 1675 1676 Instruction *getMainOp() const { 1677 return MainOp; 1678 } 1679 1680 Instruction *getAltOp() const { 1681 return AltOp; 1682 } 1683 1684 /// The main/alternate opcodes for the list of instructions. 1685 unsigned getOpcode() const { 1686 return MainOp ? MainOp->getOpcode() : 0; 1687 } 1688 1689 unsigned getAltOpcode() const { 1690 return AltOp ? AltOp->getOpcode() : 0; 1691 } 1692 1693 /// Update operations state of this entry if reorder occurred. 1694 bool updateStateIfReorder() { 1695 if (ReorderIndices.empty()) 1696 return false; 1697 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1698 setOperations(S); 1699 return true; 1700 } 1701 1702 #ifndef NDEBUG 1703 /// Debug printer. 1704 LLVM_DUMP_METHOD void dump() const { 1705 dbgs() << Idx << ".\n"; 1706 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1707 dbgs() << "Operand " << OpI << ":\n"; 1708 for (const Value *V : Operands[OpI]) 1709 dbgs().indent(2) << *V << "\n"; 1710 } 1711 dbgs() << "Scalars: \n"; 1712 for (Value *V : Scalars) 1713 dbgs().indent(2) << *V << "\n"; 1714 dbgs() << "State: "; 1715 switch (State) { 1716 case Vectorize: 1717 dbgs() << "Vectorize\n"; 1718 break; 1719 case ScatterVectorize: 1720 dbgs() << "ScatterVectorize\n"; 1721 break; 1722 case NeedToGather: 1723 dbgs() << "NeedToGather\n"; 1724 break; 1725 } 1726 dbgs() << "MainOp: "; 1727 if (MainOp) 1728 dbgs() << *MainOp << "\n"; 1729 else 1730 dbgs() << "NULL\n"; 1731 dbgs() << "AltOp: "; 1732 if (AltOp) 1733 dbgs() << *AltOp << "\n"; 1734 else 1735 dbgs() << "NULL\n"; 1736 dbgs() << "VectorizedValue: "; 1737 if (VectorizedValue) 1738 dbgs() << *VectorizedValue << "\n"; 1739 else 1740 dbgs() << "NULL\n"; 1741 dbgs() << "ReuseShuffleIndices: "; 1742 if (ReuseShuffleIndices.empty()) 1743 dbgs() << "Empty"; 1744 else 1745 for (unsigned ReuseIdx : ReuseShuffleIndices) 1746 dbgs() << ReuseIdx << ", "; 1747 dbgs() << "\n"; 1748 dbgs() << "ReorderIndices: "; 1749 for (unsigned ReorderIdx : ReorderIndices) 1750 dbgs() << ReorderIdx << ", "; 1751 dbgs() << "\n"; 1752 dbgs() << "UserTreeIndices: "; 1753 for (const auto &EInfo : UserTreeIndices) 1754 dbgs() << EInfo << ", "; 1755 dbgs() << "\n"; 1756 } 1757 #endif 1758 }; 1759 1760 #ifndef NDEBUG 1761 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1762 InstructionCost VecCost, 1763 InstructionCost ScalarCost) const { 1764 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1765 dbgs() << "SLP: Costs:\n"; 1766 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1767 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1768 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1769 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1770 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1771 } 1772 #endif 1773 1774 /// Create a new VectorizableTree entry. 1775 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1776 const InstructionsState &S, 1777 const EdgeInfo &UserTreeIdx, 1778 ArrayRef<unsigned> ReuseShuffleIndices = None, 1779 ArrayRef<unsigned> ReorderIndices = None) { 1780 TreeEntry::EntryState EntryState = 1781 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1782 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1783 ReuseShuffleIndices, ReorderIndices); 1784 } 1785 1786 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1787 TreeEntry::EntryState EntryState, 1788 Optional<ScheduleData *> Bundle, 1789 const InstructionsState &S, 1790 const EdgeInfo &UserTreeIdx, 1791 ArrayRef<unsigned> ReuseShuffleIndices = None, 1792 ArrayRef<unsigned> ReorderIndices = None) { 1793 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1794 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1795 "Need to vectorize gather entry?"); 1796 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1797 TreeEntry *Last = VectorizableTree.back().get(); 1798 Last->Idx = VectorizableTree.size() - 1; 1799 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1800 Last->State = EntryState; 1801 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1802 ReuseShuffleIndices.end()); 1803 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1804 Last->setOperations(S); 1805 if (Last->State != TreeEntry::NeedToGather) { 1806 for (Value *V : VL) { 1807 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1808 ScalarToTreeEntry[V] = Last; 1809 } 1810 // Update the scheduler bundle to point to this TreeEntry. 1811 unsigned Lane = 0; 1812 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1813 BundleMember = BundleMember->NextInBundle) { 1814 BundleMember->TE = Last; 1815 BundleMember->Lane = Lane; 1816 ++Lane; 1817 } 1818 assert((!Bundle.getValue() || Lane == VL.size()) && 1819 "Bundle and VL out of sync"); 1820 } else { 1821 MustGather.insert(VL.begin(), VL.end()); 1822 } 1823 1824 if (UserTreeIdx.UserTE) 1825 Last->UserTreeIndices.push_back(UserTreeIdx); 1826 1827 return Last; 1828 } 1829 1830 /// -- Vectorization State -- 1831 /// Holds all of the tree entries. 1832 TreeEntry::VecTreeTy VectorizableTree; 1833 1834 #ifndef NDEBUG 1835 /// Debug printer. 1836 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1837 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1838 VectorizableTree[Id]->dump(); 1839 dbgs() << "\n"; 1840 } 1841 } 1842 #endif 1843 1844 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1845 1846 const TreeEntry *getTreeEntry(Value *V) const { 1847 return ScalarToTreeEntry.lookup(V); 1848 } 1849 1850 /// Maps a specific scalar to its tree entry. 1851 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1852 1853 /// Maps a value to the proposed vectorizable size. 1854 SmallDenseMap<Value *, unsigned> InstrElementSize; 1855 1856 /// A list of scalars that we found that we need to keep as scalars. 1857 ValueSet MustGather; 1858 1859 /// This POD struct describes one external user in the vectorized tree. 1860 struct ExternalUser { 1861 ExternalUser(Value *S, llvm::User *U, int L) 1862 : Scalar(S), User(U), Lane(L) {} 1863 1864 // Which scalar in our function. 1865 Value *Scalar; 1866 1867 // Which user that uses the scalar. 1868 llvm::User *User; 1869 1870 // Which lane does the scalar belong to. 1871 int Lane; 1872 }; 1873 using UserList = SmallVector<ExternalUser, 16>; 1874 1875 /// Checks if two instructions may access the same memory. 1876 /// 1877 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1878 /// is invariant in the calling loop. 1879 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1880 Instruction *Inst2) { 1881 // First check if the result is already in the cache. 1882 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1883 Optional<bool> &result = AliasCache[key]; 1884 if (result.hasValue()) { 1885 return result.getValue(); 1886 } 1887 MemoryLocation Loc2 = getLocation(Inst2, AA); 1888 bool aliased = true; 1889 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1890 // Do the alias check. 1891 aliased = AA->alias(Loc1, Loc2); 1892 } 1893 // Store the result in the cache. 1894 result = aliased; 1895 return aliased; 1896 } 1897 1898 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1899 1900 /// Cache for alias results. 1901 /// TODO: consider moving this to the AliasAnalysis itself. 1902 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1903 1904 /// Removes an instruction from its block and eventually deletes it. 1905 /// It's like Instruction::eraseFromParent() except that the actual deletion 1906 /// is delayed until BoUpSLP is destructed. 1907 /// This is required to ensure that there are no incorrect collisions in the 1908 /// AliasCache, which can happen if a new instruction is allocated at the 1909 /// same address as a previously deleted instruction. 1910 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1911 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1912 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1913 } 1914 1915 /// Temporary store for deleted instructions. Instructions will be deleted 1916 /// eventually when the BoUpSLP is destructed. 1917 DenseMap<Instruction *, bool> DeletedInstructions; 1918 1919 /// A list of values that need to extracted out of the tree. 1920 /// This list holds pairs of (Internal Scalar : External User). External User 1921 /// can be nullptr, it means that this Internal Scalar will be used later, 1922 /// after vectorization. 1923 UserList ExternalUses; 1924 1925 /// Values used only by @llvm.assume calls. 1926 SmallPtrSet<const Value *, 32> EphValues; 1927 1928 /// Holds all of the instructions that we gathered. 1929 SetVector<Instruction *> GatherSeq; 1930 1931 /// A list of blocks that we are going to CSE. 1932 SetVector<BasicBlock *> CSEBlocks; 1933 1934 /// Contains all scheduling relevant data for an instruction. 1935 /// A ScheduleData either represents a single instruction or a member of an 1936 /// instruction bundle (= a group of instructions which is combined into a 1937 /// vector instruction). 1938 struct ScheduleData { 1939 // The initial value for the dependency counters. It means that the 1940 // dependencies are not calculated yet. 1941 enum { InvalidDeps = -1 }; 1942 1943 ScheduleData() = default; 1944 1945 void init(int BlockSchedulingRegionID, Value *OpVal) { 1946 FirstInBundle = this; 1947 NextInBundle = nullptr; 1948 NextLoadStore = nullptr; 1949 IsScheduled = false; 1950 SchedulingRegionID = BlockSchedulingRegionID; 1951 UnscheduledDepsInBundle = UnscheduledDeps; 1952 clearDependencies(); 1953 OpValue = OpVal; 1954 TE = nullptr; 1955 Lane = -1; 1956 } 1957 1958 /// Returns true if the dependency information has been calculated. 1959 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1960 1961 /// Returns true for single instructions and for bundle representatives 1962 /// (= the head of a bundle). 1963 bool isSchedulingEntity() const { return FirstInBundle == this; } 1964 1965 /// Returns true if it represents an instruction bundle and not only a 1966 /// single instruction. 1967 bool isPartOfBundle() const { 1968 return NextInBundle != nullptr || FirstInBundle != this; 1969 } 1970 1971 /// Returns true if it is ready for scheduling, i.e. it has no more 1972 /// unscheduled depending instructions/bundles. 1973 bool isReady() const { 1974 assert(isSchedulingEntity() && 1975 "can't consider non-scheduling entity for ready list"); 1976 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1977 } 1978 1979 /// Modifies the number of unscheduled dependencies, also updating it for 1980 /// the whole bundle. 1981 int incrementUnscheduledDeps(int Incr) { 1982 UnscheduledDeps += Incr; 1983 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1984 } 1985 1986 /// Sets the number of unscheduled dependencies to the number of 1987 /// dependencies. 1988 void resetUnscheduledDeps() { 1989 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1990 } 1991 1992 /// Clears all dependency information. 1993 void clearDependencies() { 1994 Dependencies = InvalidDeps; 1995 resetUnscheduledDeps(); 1996 MemoryDependencies.clear(); 1997 } 1998 1999 void dump(raw_ostream &os) const { 2000 if (!isSchedulingEntity()) { 2001 os << "/ " << *Inst; 2002 } else if (NextInBundle) { 2003 os << '[' << *Inst; 2004 ScheduleData *SD = NextInBundle; 2005 while (SD) { 2006 os << ';' << *SD->Inst; 2007 SD = SD->NextInBundle; 2008 } 2009 os << ']'; 2010 } else { 2011 os << *Inst; 2012 } 2013 } 2014 2015 Instruction *Inst = nullptr; 2016 2017 /// Points to the head in an instruction bundle (and always to this for 2018 /// single instructions). 2019 ScheduleData *FirstInBundle = nullptr; 2020 2021 /// Single linked list of all instructions in a bundle. Null if it is a 2022 /// single instruction. 2023 ScheduleData *NextInBundle = nullptr; 2024 2025 /// Single linked list of all memory instructions (e.g. load, store, call) 2026 /// in the block - until the end of the scheduling region. 2027 ScheduleData *NextLoadStore = nullptr; 2028 2029 /// The dependent memory instructions. 2030 /// This list is derived on demand in calculateDependencies(). 2031 SmallVector<ScheduleData *, 4> MemoryDependencies; 2032 2033 /// This ScheduleData is in the current scheduling region if this matches 2034 /// the current SchedulingRegionID of BlockScheduling. 2035 int SchedulingRegionID = 0; 2036 2037 /// Used for getting a "good" final ordering of instructions. 2038 int SchedulingPriority = 0; 2039 2040 /// The number of dependencies. Constitutes of the number of users of the 2041 /// instruction plus the number of dependent memory instructions (if any). 2042 /// This value is calculated on demand. 2043 /// If InvalidDeps, the number of dependencies is not calculated yet. 2044 int Dependencies = InvalidDeps; 2045 2046 /// The number of dependencies minus the number of dependencies of scheduled 2047 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2048 /// for scheduling. 2049 /// Note that this is negative as long as Dependencies is not calculated. 2050 int UnscheduledDeps = InvalidDeps; 2051 2052 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2053 /// single instructions. 2054 int UnscheduledDepsInBundle = InvalidDeps; 2055 2056 /// True if this instruction is scheduled (or considered as scheduled in the 2057 /// dry-run). 2058 bool IsScheduled = false; 2059 2060 /// Opcode of the current instruction in the schedule data. 2061 Value *OpValue = nullptr; 2062 2063 /// The TreeEntry that this instruction corresponds to. 2064 TreeEntry *TE = nullptr; 2065 2066 /// The lane of this node in the TreeEntry. 2067 int Lane = -1; 2068 }; 2069 2070 #ifndef NDEBUG 2071 friend inline raw_ostream &operator<<(raw_ostream &os, 2072 const BoUpSLP::ScheduleData &SD) { 2073 SD.dump(os); 2074 return os; 2075 } 2076 #endif 2077 2078 friend struct GraphTraits<BoUpSLP *>; 2079 friend struct DOTGraphTraits<BoUpSLP *>; 2080 2081 /// Contains all scheduling data for a basic block. 2082 struct BlockScheduling { 2083 BlockScheduling(BasicBlock *BB) 2084 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2085 2086 void clear() { 2087 ReadyInsts.clear(); 2088 ScheduleStart = nullptr; 2089 ScheduleEnd = nullptr; 2090 FirstLoadStoreInRegion = nullptr; 2091 LastLoadStoreInRegion = nullptr; 2092 2093 // Reduce the maximum schedule region size by the size of the 2094 // previous scheduling run. 2095 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2096 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2097 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2098 ScheduleRegionSize = 0; 2099 2100 // Make a new scheduling region, i.e. all existing ScheduleData is not 2101 // in the new region yet. 2102 ++SchedulingRegionID; 2103 } 2104 2105 ScheduleData *getScheduleData(Value *V) { 2106 ScheduleData *SD = ScheduleDataMap[V]; 2107 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2108 return SD; 2109 return nullptr; 2110 } 2111 2112 ScheduleData *getScheduleData(Value *V, Value *Key) { 2113 if (V == Key) 2114 return getScheduleData(V); 2115 auto I = ExtraScheduleDataMap.find(V); 2116 if (I != ExtraScheduleDataMap.end()) { 2117 ScheduleData *SD = I->second[Key]; 2118 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2119 return SD; 2120 } 2121 return nullptr; 2122 } 2123 2124 bool isInSchedulingRegion(ScheduleData *SD) const { 2125 return SD->SchedulingRegionID == SchedulingRegionID; 2126 } 2127 2128 /// Marks an instruction as scheduled and puts all dependent ready 2129 /// instructions into the ready-list. 2130 template <typename ReadyListType> 2131 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2132 SD->IsScheduled = true; 2133 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2134 2135 ScheduleData *BundleMember = SD; 2136 while (BundleMember) { 2137 if (BundleMember->Inst != BundleMember->OpValue) { 2138 BundleMember = BundleMember->NextInBundle; 2139 continue; 2140 } 2141 // Handle the def-use chain dependencies. 2142 2143 // Decrement the unscheduled counter and insert to ready list if ready. 2144 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2145 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2146 if (OpDef && OpDef->hasValidDependencies() && 2147 OpDef->incrementUnscheduledDeps(-1) == 0) { 2148 // There are no more unscheduled dependencies after 2149 // decrementing, so we can put the dependent instruction 2150 // into the ready list. 2151 ScheduleData *DepBundle = OpDef->FirstInBundle; 2152 assert(!DepBundle->IsScheduled && 2153 "already scheduled bundle gets ready"); 2154 ReadyList.insert(DepBundle); 2155 LLVM_DEBUG(dbgs() 2156 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2157 } 2158 }); 2159 }; 2160 2161 // If BundleMember is a vector bundle, its operands may have been 2162 // reordered duiring buildTree(). We therefore need to get its operands 2163 // through the TreeEntry. 2164 if (TreeEntry *TE = BundleMember->TE) { 2165 int Lane = BundleMember->Lane; 2166 assert(Lane >= 0 && "Lane not set"); 2167 2168 // Since vectorization tree is being built recursively this assertion 2169 // ensures that the tree entry has all operands set before reaching 2170 // this code. Couple of exceptions known at the moment are extracts 2171 // where their second (immediate) operand is not added. Since 2172 // immediates do not affect scheduler behavior this is considered 2173 // okay. 2174 auto *In = TE->getMainOp(); 2175 assert(In && 2176 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2177 In->getNumOperands() == TE->getNumOperands()) && 2178 "Missed TreeEntry operands?"); 2179 (void)In; // fake use to avoid build failure when assertions disabled 2180 2181 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2182 OpIdx != NumOperands; ++OpIdx) 2183 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2184 DecrUnsched(I); 2185 } else { 2186 // If BundleMember is a stand-alone instruction, no operand reordering 2187 // has taken place, so we directly access its operands. 2188 for (Use &U : BundleMember->Inst->operands()) 2189 if (auto *I = dyn_cast<Instruction>(U.get())) 2190 DecrUnsched(I); 2191 } 2192 // Handle the memory dependencies. 2193 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2194 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2195 // There are no more unscheduled dependencies after decrementing, 2196 // so we can put the dependent instruction into the ready list. 2197 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2198 assert(!DepBundle->IsScheduled && 2199 "already scheduled bundle gets ready"); 2200 ReadyList.insert(DepBundle); 2201 LLVM_DEBUG(dbgs() 2202 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2203 } 2204 } 2205 BundleMember = BundleMember->NextInBundle; 2206 } 2207 } 2208 2209 void doForAllOpcodes(Value *V, 2210 function_ref<void(ScheduleData *SD)> Action) { 2211 if (ScheduleData *SD = getScheduleData(V)) 2212 Action(SD); 2213 auto I = ExtraScheduleDataMap.find(V); 2214 if (I != ExtraScheduleDataMap.end()) 2215 for (auto &P : I->second) 2216 if (P.second->SchedulingRegionID == SchedulingRegionID) 2217 Action(P.second); 2218 } 2219 2220 /// Put all instructions into the ReadyList which are ready for scheduling. 2221 template <typename ReadyListType> 2222 void initialFillReadyList(ReadyListType &ReadyList) { 2223 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2224 doForAllOpcodes(I, [&](ScheduleData *SD) { 2225 if (SD->isSchedulingEntity() && SD->isReady()) { 2226 ReadyList.insert(SD); 2227 LLVM_DEBUG(dbgs() 2228 << "SLP: initially in ready list: " << *I << "\n"); 2229 } 2230 }); 2231 } 2232 } 2233 2234 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2235 /// cyclic dependencies. This is only a dry-run, no instructions are 2236 /// actually moved at this stage. 2237 /// \returns the scheduling bundle. The returned Optional value is non-None 2238 /// if \p VL is allowed to be scheduled. 2239 Optional<ScheduleData *> 2240 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2241 const InstructionsState &S); 2242 2243 /// Un-bundles a group of instructions. 2244 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2245 2246 /// Allocates schedule data chunk. 2247 ScheduleData *allocateScheduleDataChunks(); 2248 2249 /// Extends the scheduling region so that V is inside the region. 2250 /// \returns true if the region size is within the limit. 2251 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2252 2253 /// Initialize the ScheduleData structures for new instructions in the 2254 /// scheduling region. 2255 void initScheduleData(Instruction *FromI, Instruction *ToI, 2256 ScheduleData *PrevLoadStore, 2257 ScheduleData *NextLoadStore); 2258 2259 /// Updates the dependency information of a bundle and of all instructions/ 2260 /// bundles which depend on the original bundle. 2261 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2262 BoUpSLP *SLP); 2263 2264 /// Sets all instruction in the scheduling region to un-scheduled. 2265 void resetSchedule(); 2266 2267 BasicBlock *BB; 2268 2269 /// Simple memory allocation for ScheduleData. 2270 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2271 2272 /// The size of a ScheduleData array in ScheduleDataChunks. 2273 int ChunkSize; 2274 2275 /// The allocator position in the current chunk, which is the last entry 2276 /// of ScheduleDataChunks. 2277 int ChunkPos; 2278 2279 /// Attaches ScheduleData to Instruction. 2280 /// Note that the mapping survives during all vectorization iterations, i.e. 2281 /// ScheduleData structures are recycled. 2282 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2283 2284 /// Attaches ScheduleData to Instruction with the leading key. 2285 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2286 ExtraScheduleDataMap; 2287 2288 struct ReadyList : SmallVector<ScheduleData *, 8> { 2289 void insert(ScheduleData *SD) { push_back(SD); } 2290 }; 2291 2292 /// The ready-list for scheduling (only used for the dry-run). 2293 ReadyList ReadyInsts; 2294 2295 /// The first instruction of the scheduling region. 2296 Instruction *ScheduleStart = nullptr; 2297 2298 /// The first instruction _after_ the scheduling region. 2299 Instruction *ScheduleEnd = nullptr; 2300 2301 /// The first memory accessing instruction in the scheduling region 2302 /// (can be null). 2303 ScheduleData *FirstLoadStoreInRegion = nullptr; 2304 2305 /// The last memory accessing instruction in the scheduling region 2306 /// (can be null). 2307 ScheduleData *LastLoadStoreInRegion = nullptr; 2308 2309 /// The current size of the scheduling region. 2310 int ScheduleRegionSize = 0; 2311 2312 /// The maximum size allowed for the scheduling region. 2313 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2314 2315 /// The ID of the scheduling region. For a new vectorization iteration this 2316 /// is incremented which "removes" all ScheduleData from the region. 2317 // Make sure that the initial SchedulingRegionID is greater than the 2318 // initial SchedulingRegionID in ScheduleData (which is 0). 2319 int SchedulingRegionID = 1; 2320 }; 2321 2322 /// Attaches the BlockScheduling structures to basic blocks. 2323 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2324 2325 /// Performs the "real" scheduling. Done before vectorization is actually 2326 /// performed in a basic block. 2327 void scheduleBlock(BlockScheduling *BS); 2328 2329 /// List of users to ignore during scheduling and that don't need extracting. 2330 ArrayRef<Value *> UserIgnoreList; 2331 2332 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2333 /// sorted SmallVectors of unsigned. 2334 struct OrdersTypeDenseMapInfo { 2335 static OrdersType getEmptyKey() { 2336 OrdersType V; 2337 V.push_back(~1U); 2338 return V; 2339 } 2340 2341 static OrdersType getTombstoneKey() { 2342 OrdersType V; 2343 V.push_back(~2U); 2344 return V; 2345 } 2346 2347 static unsigned getHashValue(const OrdersType &V) { 2348 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2349 } 2350 2351 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2352 return LHS == RHS; 2353 } 2354 }; 2355 2356 /// Contains orders of operations along with the number of bundles that have 2357 /// operations in this order. It stores only those orders that require 2358 /// reordering, if reordering is not required it is counted using \a 2359 /// NumOpsWantToKeepOriginalOrder. 2360 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2361 /// Number of bundles that do not require reordering. 2362 unsigned NumOpsWantToKeepOriginalOrder = 0; 2363 2364 // Analysis and block reference. 2365 Function *F; 2366 ScalarEvolution *SE; 2367 TargetTransformInfo *TTI; 2368 TargetLibraryInfo *TLI; 2369 AAResults *AA; 2370 LoopInfo *LI; 2371 DominatorTree *DT; 2372 AssumptionCache *AC; 2373 DemandedBits *DB; 2374 const DataLayout *DL; 2375 OptimizationRemarkEmitter *ORE; 2376 2377 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2378 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2379 2380 /// Instruction builder to construct the vectorized tree. 2381 IRBuilder<> Builder; 2382 2383 /// A map of scalar integer values to the smallest bit width with which they 2384 /// can legally be represented. The values map to (width, signed) pairs, 2385 /// where "width" indicates the minimum bit width and "signed" is True if the 2386 /// value must be signed-extended, rather than zero-extended, back to its 2387 /// original width. 2388 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2389 }; 2390 2391 } // end namespace slpvectorizer 2392 2393 template <> struct GraphTraits<BoUpSLP *> { 2394 using TreeEntry = BoUpSLP::TreeEntry; 2395 2396 /// NodeRef has to be a pointer per the GraphWriter. 2397 using NodeRef = TreeEntry *; 2398 2399 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2400 2401 /// Add the VectorizableTree to the index iterator to be able to return 2402 /// TreeEntry pointers. 2403 struct ChildIteratorType 2404 : public iterator_adaptor_base< 2405 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2406 ContainerTy &VectorizableTree; 2407 2408 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2409 ContainerTy &VT) 2410 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2411 2412 NodeRef operator*() { return I->UserTE; } 2413 }; 2414 2415 static NodeRef getEntryNode(BoUpSLP &R) { 2416 return R.VectorizableTree[0].get(); 2417 } 2418 2419 static ChildIteratorType child_begin(NodeRef N) { 2420 return {N->UserTreeIndices.begin(), N->Container}; 2421 } 2422 2423 static ChildIteratorType child_end(NodeRef N) { 2424 return {N->UserTreeIndices.end(), N->Container}; 2425 } 2426 2427 /// For the node iterator we just need to turn the TreeEntry iterator into a 2428 /// TreeEntry* iterator so that it dereferences to NodeRef. 2429 class nodes_iterator { 2430 using ItTy = ContainerTy::iterator; 2431 ItTy It; 2432 2433 public: 2434 nodes_iterator(const ItTy &It2) : It(It2) {} 2435 NodeRef operator*() { return It->get(); } 2436 nodes_iterator operator++() { 2437 ++It; 2438 return *this; 2439 } 2440 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2441 }; 2442 2443 static nodes_iterator nodes_begin(BoUpSLP *R) { 2444 return nodes_iterator(R->VectorizableTree.begin()); 2445 } 2446 2447 static nodes_iterator nodes_end(BoUpSLP *R) { 2448 return nodes_iterator(R->VectorizableTree.end()); 2449 } 2450 2451 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2452 }; 2453 2454 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2455 using TreeEntry = BoUpSLP::TreeEntry; 2456 2457 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2458 2459 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2460 std::string Str; 2461 raw_string_ostream OS(Str); 2462 if (isSplat(Entry->Scalars)) { 2463 OS << "<splat> " << *Entry->Scalars[0]; 2464 return Str; 2465 } 2466 for (auto V : Entry->Scalars) { 2467 OS << *V; 2468 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2469 return EU.Scalar == V; 2470 })) 2471 OS << " <extract>"; 2472 OS << "\n"; 2473 } 2474 return Str; 2475 } 2476 2477 static std::string getNodeAttributes(const TreeEntry *Entry, 2478 const BoUpSLP *) { 2479 if (Entry->State == TreeEntry::NeedToGather) 2480 return "color=red"; 2481 return ""; 2482 } 2483 }; 2484 2485 } // end namespace llvm 2486 2487 BoUpSLP::~BoUpSLP() { 2488 for (const auto &Pair : DeletedInstructions) { 2489 // Replace operands of ignored instructions with Undefs in case if they were 2490 // marked for deletion. 2491 if (Pair.getSecond()) { 2492 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2493 Pair.getFirst()->replaceAllUsesWith(Undef); 2494 } 2495 Pair.getFirst()->dropAllReferences(); 2496 } 2497 for (const auto &Pair : DeletedInstructions) { 2498 assert(Pair.getFirst()->use_empty() && 2499 "trying to erase instruction with users."); 2500 Pair.getFirst()->eraseFromParent(); 2501 } 2502 #ifdef EXPENSIVE_CHECKS 2503 // If we could guarantee that this call is not extremely slow, we could 2504 // remove the ifdef limitation (see PR47712). 2505 assert(!verifyFunction(*F, &dbgs())); 2506 #endif 2507 } 2508 2509 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2510 for (auto *V : AV) { 2511 if (auto *I = dyn_cast<Instruction>(V)) 2512 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2513 }; 2514 } 2515 2516 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2517 ArrayRef<Value *> UserIgnoreLst) { 2518 ExtraValueToDebugLocsMap ExternallyUsedValues; 2519 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2520 } 2521 2522 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2523 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2524 ArrayRef<Value *> UserIgnoreLst) { 2525 deleteTree(); 2526 UserIgnoreList = UserIgnoreLst; 2527 if (!allSameType(Roots)) 2528 return; 2529 buildTree_rec(Roots, 0, EdgeInfo()); 2530 2531 // Collect the values that we need to extract from the tree. 2532 for (auto &TEPtr : VectorizableTree) { 2533 TreeEntry *Entry = TEPtr.get(); 2534 2535 // No need to handle users of gathered values. 2536 if (Entry->State == TreeEntry::NeedToGather) 2537 continue; 2538 2539 // For each lane: 2540 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2541 Value *Scalar = Entry->Scalars[Lane]; 2542 int FoundLane = Lane; 2543 if (!Entry->ReuseShuffleIndices.empty()) { 2544 FoundLane = 2545 std::distance(Entry->ReuseShuffleIndices.begin(), 2546 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2547 } 2548 2549 // Check if the scalar is externally used as an extra arg. 2550 auto ExtI = ExternallyUsedValues.find(Scalar); 2551 if (ExtI != ExternallyUsedValues.end()) { 2552 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2553 << Lane << " from " << *Scalar << ".\n"); 2554 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2555 } 2556 for (User *U : Scalar->users()) { 2557 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2558 2559 Instruction *UserInst = dyn_cast<Instruction>(U); 2560 if (!UserInst) 2561 continue; 2562 2563 // Skip in-tree scalars that become vectors 2564 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2565 Value *UseScalar = UseEntry->Scalars[0]; 2566 // Some in-tree scalars will remain as scalar in vectorized 2567 // instructions. If that is the case, the one in Lane 0 will 2568 // be used. 2569 if (UseScalar != U || 2570 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2571 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2572 << ".\n"); 2573 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2574 continue; 2575 } 2576 } 2577 2578 // Ignore users in the user ignore list. 2579 if (is_contained(UserIgnoreList, UserInst)) 2580 continue; 2581 2582 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2583 << Lane << " from " << *Scalar << ".\n"); 2584 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2585 } 2586 } 2587 } 2588 } 2589 2590 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2591 const EdgeInfo &UserTreeIdx) { 2592 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2593 2594 InstructionsState S = getSameOpcode(VL); 2595 if (Depth == RecursionMaxDepth) { 2596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2598 return; 2599 } 2600 2601 // Don't handle vectors. 2602 if (S.OpValue->getType()->isVectorTy()) { 2603 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2604 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2605 return; 2606 } 2607 2608 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2609 if (SI->getValueOperand()->getType()->isVectorTy()) { 2610 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2611 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2612 return; 2613 } 2614 2615 // If all of the operands are identical or constant we have a simple solution. 2616 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2617 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2619 return; 2620 } 2621 2622 // We now know that this is a vector of instructions of the same type from 2623 // the same block. 2624 2625 // Don't vectorize ephemeral values. 2626 for (Value *V : VL) { 2627 if (EphValues.count(V)) { 2628 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2629 << ") is ephemeral.\n"); 2630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2631 return; 2632 } 2633 } 2634 2635 // Check if this is a duplicate of another entry. 2636 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2637 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2638 if (!E->isSame(VL)) { 2639 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2640 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2641 return; 2642 } 2643 // Record the reuse of the tree node. FIXME, currently this is only used to 2644 // properly draw the graph rather than for the actual vectorization. 2645 E->UserTreeIndices.push_back(UserTreeIdx); 2646 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2647 << ".\n"); 2648 return; 2649 } 2650 2651 // Check that none of the instructions in the bundle are already in the tree. 2652 for (Value *V : VL) { 2653 auto *I = dyn_cast<Instruction>(V); 2654 if (!I) 2655 continue; 2656 if (getTreeEntry(I)) { 2657 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2658 << ") is already in tree.\n"); 2659 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2660 return; 2661 } 2662 } 2663 2664 // If any of the scalars is marked as a value that needs to stay scalar, then 2665 // we need to gather the scalars. 2666 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2667 for (Value *V : VL) { 2668 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2669 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2671 return; 2672 } 2673 } 2674 2675 // Check that all of the users of the scalars that we want to vectorize are 2676 // schedulable. 2677 auto *VL0 = cast<Instruction>(S.OpValue); 2678 BasicBlock *BB = VL0->getParent(); 2679 2680 if (!DT->isReachableFromEntry(BB)) { 2681 // Don't go into unreachable blocks. They may contain instructions with 2682 // dependency cycles which confuse the final scheduling. 2683 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2685 return; 2686 } 2687 2688 // Check that every instruction appears once in this bundle. 2689 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2690 SmallVector<Value *, 4> UniqueValues; 2691 DenseMap<Value *, unsigned> UniquePositions; 2692 for (Value *V : VL) { 2693 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2694 ReuseShuffleIndicies.emplace_back(Res.first->second); 2695 if (Res.second) 2696 UniqueValues.emplace_back(V); 2697 } 2698 size_t NumUniqueScalarValues = UniqueValues.size(); 2699 if (NumUniqueScalarValues == VL.size()) { 2700 ReuseShuffleIndicies.clear(); 2701 } else { 2702 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2703 if (NumUniqueScalarValues <= 1 || 2704 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2705 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2707 return; 2708 } 2709 VL = UniqueValues; 2710 } 2711 2712 auto &BSRef = BlocksSchedules[BB]; 2713 if (!BSRef) 2714 BSRef = std::make_unique<BlockScheduling>(BB); 2715 2716 BlockScheduling &BS = *BSRef.get(); 2717 2718 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2719 if (!Bundle) { 2720 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2721 assert((!BS.getScheduleData(VL0) || 2722 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2723 "tryScheduleBundle should cancelScheduling on failure"); 2724 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2725 ReuseShuffleIndicies); 2726 return; 2727 } 2728 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2729 2730 unsigned ShuffleOrOp = S.isAltShuffle() ? 2731 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2732 switch (ShuffleOrOp) { 2733 case Instruction::PHI: { 2734 auto *PH = cast<PHINode>(VL0); 2735 2736 // Check for terminator values (e.g. invoke). 2737 for (Value *V : VL) 2738 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2739 Instruction *Term = dyn_cast<Instruction>( 2740 cast<PHINode>(V)->getIncomingValueForBlock( 2741 PH->getIncomingBlock(I))); 2742 if (Term && Term->isTerminator()) { 2743 LLVM_DEBUG(dbgs() 2744 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2745 BS.cancelScheduling(VL, VL0); 2746 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2747 ReuseShuffleIndicies); 2748 return; 2749 } 2750 } 2751 2752 TreeEntry *TE = 2753 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2754 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2755 2756 // Keeps the reordered operands to avoid code duplication. 2757 SmallVector<ValueList, 2> OperandsVec; 2758 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2759 ValueList Operands; 2760 // Prepare the operand vector. 2761 for (Value *V : VL) 2762 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2763 PH->getIncomingBlock(I))); 2764 TE->setOperand(I, Operands); 2765 OperandsVec.push_back(Operands); 2766 } 2767 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2768 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2769 return; 2770 } 2771 case Instruction::ExtractValue: 2772 case Instruction::ExtractElement: { 2773 OrdersType CurrentOrder; 2774 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2775 if (Reuse) { 2776 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2777 ++NumOpsWantToKeepOriginalOrder; 2778 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2779 ReuseShuffleIndicies); 2780 // This is a special case, as it does not gather, but at the same time 2781 // we are not extending buildTree_rec() towards the operands. 2782 ValueList Op0; 2783 Op0.assign(VL.size(), VL0->getOperand(0)); 2784 VectorizableTree.back()->setOperand(0, Op0); 2785 return; 2786 } 2787 if (!CurrentOrder.empty()) { 2788 LLVM_DEBUG({ 2789 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2790 "with order"; 2791 for (unsigned Idx : CurrentOrder) 2792 dbgs() << " " << Idx; 2793 dbgs() << "\n"; 2794 }); 2795 // Insert new order with initial value 0, if it does not exist, 2796 // otherwise return the iterator to the existing one. 2797 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2798 ReuseShuffleIndicies, CurrentOrder); 2799 findRootOrder(CurrentOrder); 2800 ++NumOpsWantToKeepOrder[CurrentOrder]; 2801 // This is a special case, as it does not gather, but at the same time 2802 // we are not extending buildTree_rec() towards the operands. 2803 ValueList Op0; 2804 Op0.assign(VL.size(), VL0->getOperand(0)); 2805 VectorizableTree.back()->setOperand(0, Op0); 2806 return; 2807 } 2808 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2809 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2810 ReuseShuffleIndicies); 2811 BS.cancelScheduling(VL, VL0); 2812 return; 2813 } 2814 case Instruction::Load: { 2815 // Check that a vectorized load would load the same memory as a scalar 2816 // load. For example, we don't want to vectorize loads that are smaller 2817 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2818 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2819 // from such a struct, we read/write packed bits disagreeing with the 2820 // unvectorized version. 2821 Type *ScalarTy = VL0->getType(); 2822 2823 if (DL->getTypeSizeInBits(ScalarTy) != 2824 DL->getTypeAllocSizeInBits(ScalarTy)) { 2825 BS.cancelScheduling(VL, VL0); 2826 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2827 ReuseShuffleIndicies); 2828 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2829 return; 2830 } 2831 2832 // Make sure all loads in the bundle are simple - we can't vectorize 2833 // atomic or volatile loads. 2834 SmallVector<Value *, 4> PointerOps(VL.size()); 2835 auto POIter = PointerOps.begin(); 2836 for (Value *V : VL) { 2837 auto *L = cast<LoadInst>(V); 2838 if (!L->isSimple()) { 2839 BS.cancelScheduling(VL, VL0); 2840 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2841 ReuseShuffleIndicies); 2842 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2843 return; 2844 } 2845 *POIter = L->getPointerOperand(); 2846 ++POIter; 2847 } 2848 2849 OrdersType CurrentOrder; 2850 // Check the order of pointer operands. 2851 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2852 Value *Ptr0; 2853 Value *PtrN; 2854 if (CurrentOrder.empty()) { 2855 Ptr0 = PointerOps.front(); 2856 PtrN = PointerOps.back(); 2857 } else { 2858 Ptr0 = PointerOps[CurrentOrder.front()]; 2859 PtrN = PointerOps[CurrentOrder.back()]; 2860 } 2861 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2862 const SCEV *ScevN = SE->getSCEV(PtrN); 2863 const auto *Diff = 2864 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2865 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2866 // Check that the sorted loads are consecutive. 2867 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2868 if (CurrentOrder.empty()) { 2869 // Original loads are consecutive and does not require reordering. 2870 ++NumOpsWantToKeepOriginalOrder; 2871 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2872 UserTreeIdx, ReuseShuffleIndicies); 2873 TE->setOperandsInOrder(); 2874 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2875 } else { 2876 // Need to reorder. 2877 TreeEntry *TE = 2878 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2879 ReuseShuffleIndicies, CurrentOrder); 2880 TE->setOperandsInOrder(); 2881 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2882 findRootOrder(CurrentOrder); 2883 ++NumOpsWantToKeepOrder[CurrentOrder]; 2884 } 2885 return; 2886 } 2887 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2888 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2889 UserTreeIdx, ReuseShuffleIndicies); 2890 TE->setOperandsInOrder(); 2891 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2892 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2893 return; 2894 } 2895 2896 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2897 BS.cancelScheduling(VL, VL0); 2898 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2899 ReuseShuffleIndicies); 2900 return; 2901 } 2902 case Instruction::ZExt: 2903 case Instruction::SExt: 2904 case Instruction::FPToUI: 2905 case Instruction::FPToSI: 2906 case Instruction::FPExt: 2907 case Instruction::PtrToInt: 2908 case Instruction::IntToPtr: 2909 case Instruction::SIToFP: 2910 case Instruction::UIToFP: 2911 case Instruction::Trunc: 2912 case Instruction::FPTrunc: 2913 case Instruction::BitCast: { 2914 Type *SrcTy = VL0->getOperand(0)->getType(); 2915 for (Value *V : VL) { 2916 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2917 if (Ty != SrcTy || !isValidElementType(Ty)) { 2918 BS.cancelScheduling(VL, VL0); 2919 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2920 ReuseShuffleIndicies); 2921 LLVM_DEBUG(dbgs() 2922 << "SLP: Gathering casts with different src types.\n"); 2923 return; 2924 } 2925 } 2926 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2927 ReuseShuffleIndicies); 2928 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2929 2930 TE->setOperandsInOrder(); 2931 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2932 ValueList Operands; 2933 // Prepare the operand vector. 2934 for (Value *V : VL) 2935 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2936 2937 buildTree_rec(Operands, Depth + 1, {TE, i}); 2938 } 2939 return; 2940 } 2941 case Instruction::ICmp: 2942 case Instruction::FCmp: { 2943 // Check that all of the compares have the same predicate. 2944 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2945 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2946 Type *ComparedTy = VL0->getOperand(0)->getType(); 2947 for (Value *V : VL) { 2948 CmpInst *Cmp = cast<CmpInst>(V); 2949 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2950 Cmp->getOperand(0)->getType() != ComparedTy) { 2951 BS.cancelScheduling(VL, VL0); 2952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2953 ReuseShuffleIndicies); 2954 LLVM_DEBUG(dbgs() 2955 << "SLP: Gathering cmp with different predicate.\n"); 2956 return; 2957 } 2958 } 2959 2960 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2961 ReuseShuffleIndicies); 2962 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2963 2964 ValueList Left, Right; 2965 if (cast<CmpInst>(VL0)->isCommutative()) { 2966 // Commutative predicate - collect + sort operands of the instructions 2967 // so that each side is more likely to have the same opcode. 2968 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2969 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2970 } else { 2971 // Collect operands - commute if it uses the swapped predicate. 2972 for (Value *V : VL) { 2973 auto *Cmp = cast<CmpInst>(V); 2974 Value *LHS = Cmp->getOperand(0); 2975 Value *RHS = Cmp->getOperand(1); 2976 if (Cmp->getPredicate() != P0) 2977 std::swap(LHS, RHS); 2978 Left.push_back(LHS); 2979 Right.push_back(RHS); 2980 } 2981 } 2982 TE->setOperand(0, Left); 2983 TE->setOperand(1, Right); 2984 buildTree_rec(Left, Depth + 1, {TE, 0}); 2985 buildTree_rec(Right, Depth + 1, {TE, 1}); 2986 return; 2987 } 2988 case Instruction::Select: 2989 case Instruction::FNeg: 2990 case Instruction::Add: 2991 case Instruction::FAdd: 2992 case Instruction::Sub: 2993 case Instruction::FSub: 2994 case Instruction::Mul: 2995 case Instruction::FMul: 2996 case Instruction::UDiv: 2997 case Instruction::SDiv: 2998 case Instruction::FDiv: 2999 case Instruction::URem: 3000 case Instruction::SRem: 3001 case Instruction::FRem: 3002 case Instruction::Shl: 3003 case Instruction::LShr: 3004 case Instruction::AShr: 3005 case Instruction::And: 3006 case Instruction::Or: 3007 case Instruction::Xor: { 3008 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3009 ReuseShuffleIndicies); 3010 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3011 3012 // Sort operands of the instructions so that each side is more likely to 3013 // have the same opcode. 3014 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3015 ValueList Left, Right; 3016 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3017 TE->setOperand(0, Left); 3018 TE->setOperand(1, Right); 3019 buildTree_rec(Left, Depth + 1, {TE, 0}); 3020 buildTree_rec(Right, Depth + 1, {TE, 1}); 3021 return; 3022 } 3023 3024 TE->setOperandsInOrder(); 3025 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3026 ValueList Operands; 3027 // Prepare the operand vector. 3028 for (Value *V : VL) 3029 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3030 3031 buildTree_rec(Operands, Depth + 1, {TE, i}); 3032 } 3033 return; 3034 } 3035 case Instruction::GetElementPtr: { 3036 // We don't combine GEPs with complicated (nested) indexing. 3037 for (Value *V : VL) { 3038 if (cast<Instruction>(V)->getNumOperands() != 2) { 3039 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3040 BS.cancelScheduling(VL, VL0); 3041 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3042 ReuseShuffleIndicies); 3043 return; 3044 } 3045 } 3046 3047 // We can't combine several GEPs into one vector if they operate on 3048 // different types. 3049 Type *Ty0 = VL0->getOperand(0)->getType(); 3050 for (Value *V : VL) { 3051 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3052 if (Ty0 != CurTy) { 3053 LLVM_DEBUG(dbgs() 3054 << "SLP: not-vectorizable GEP (different types).\n"); 3055 BS.cancelScheduling(VL, VL0); 3056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3057 ReuseShuffleIndicies); 3058 return; 3059 } 3060 } 3061 3062 // We don't combine GEPs with non-constant indexes. 3063 Type *Ty1 = VL0->getOperand(1)->getType(); 3064 for (Value *V : VL) { 3065 auto Op = cast<Instruction>(V)->getOperand(1); 3066 if (!isa<ConstantInt>(Op) || 3067 (Op->getType() != Ty1 && 3068 Op->getType()->getScalarSizeInBits() > 3069 DL->getIndexSizeInBits( 3070 V->getType()->getPointerAddressSpace()))) { 3071 LLVM_DEBUG(dbgs() 3072 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3073 BS.cancelScheduling(VL, VL0); 3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3075 ReuseShuffleIndicies); 3076 return; 3077 } 3078 } 3079 3080 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3081 ReuseShuffleIndicies); 3082 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3083 TE->setOperandsInOrder(); 3084 for (unsigned i = 0, e = 2; i < e; ++i) { 3085 ValueList Operands; 3086 // Prepare the operand vector. 3087 for (Value *V : VL) 3088 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3089 3090 buildTree_rec(Operands, Depth + 1, {TE, i}); 3091 } 3092 return; 3093 } 3094 case Instruction::Store: { 3095 // Check if the stores are consecutive or if we need to swizzle them. 3096 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3097 // Avoid types that are padded when being allocated as scalars, while 3098 // being packed together in a vector (such as i1). 3099 if (DL->getTypeSizeInBits(ScalarTy) != 3100 DL->getTypeAllocSizeInBits(ScalarTy)) { 3101 BS.cancelScheduling(VL, VL0); 3102 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3103 ReuseShuffleIndicies); 3104 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3105 return; 3106 } 3107 // Make sure all stores in the bundle are simple - we can't vectorize 3108 // atomic or volatile stores. 3109 SmallVector<Value *, 4> PointerOps(VL.size()); 3110 ValueList Operands(VL.size()); 3111 auto POIter = PointerOps.begin(); 3112 auto OIter = Operands.begin(); 3113 for (Value *V : VL) { 3114 auto *SI = cast<StoreInst>(V); 3115 if (!SI->isSimple()) { 3116 BS.cancelScheduling(VL, VL0); 3117 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3118 ReuseShuffleIndicies); 3119 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3120 return; 3121 } 3122 *POIter = SI->getPointerOperand(); 3123 *OIter = SI->getValueOperand(); 3124 ++POIter; 3125 ++OIter; 3126 } 3127 3128 OrdersType CurrentOrder; 3129 // Check the order of pointer operands. 3130 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3131 Value *Ptr0; 3132 Value *PtrN; 3133 if (CurrentOrder.empty()) { 3134 Ptr0 = PointerOps.front(); 3135 PtrN = PointerOps.back(); 3136 } else { 3137 Ptr0 = PointerOps[CurrentOrder.front()]; 3138 PtrN = PointerOps[CurrentOrder.back()]; 3139 } 3140 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3141 const SCEV *ScevN = SE->getSCEV(PtrN); 3142 const auto *Diff = 3143 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3144 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3145 // Check that the sorted pointer operands are consecutive. 3146 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3147 if (CurrentOrder.empty()) { 3148 // Original stores are consecutive and does not require reordering. 3149 ++NumOpsWantToKeepOriginalOrder; 3150 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3151 UserTreeIdx, ReuseShuffleIndicies); 3152 TE->setOperandsInOrder(); 3153 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3154 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3155 } else { 3156 TreeEntry *TE = 3157 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3158 ReuseShuffleIndicies, CurrentOrder); 3159 TE->setOperandsInOrder(); 3160 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3161 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3162 findRootOrder(CurrentOrder); 3163 ++NumOpsWantToKeepOrder[CurrentOrder]; 3164 } 3165 return; 3166 } 3167 } 3168 3169 BS.cancelScheduling(VL, VL0); 3170 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3171 ReuseShuffleIndicies); 3172 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3173 return; 3174 } 3175 case Instruction::Call: { 3176 // Check if the calls are all to the same vectorizable intrinsic or 3177 // library function. 3178 CallInst *CI = cast<CallInst>(VL0); 3179 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3180 3181 VFShape Shape = VFShape::get( 3182 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3183 false /*HasGlobalPred*/); 3184 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3185 3186 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3187 BS.cancelScheduling(VL, VL0); 3188 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3189 ReuseShuffleIndicies); 3190 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3191 return; 3192 } 3193 Function *F = CI->getCalledFunction(); 3194 unsigned NumArgs = CI->getNumArgOperands(); 3195 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3196 for (unsigned j = 0; j != NumArgs; ++j) 3197 if (hasVectorInstrinsicScalarOpd(ID, j)) 3198 ScalarArgs[j] = CI->getArgOperand(j); 3199 for (Value *V : VL) { 3200 CallInst *CI2 = dyn_cast<CallInst>(V); 3201 if (!CI2 || CI2->getCalledFunction() != F || 3202 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3203 (VecFunc && 3204 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3205 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3206 BS.cancelScheduling(VL, VL0); 3207 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3208 ReuseShuffleIndicies); 3209 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3210 << "\n"); 3211 return; 3212 } 3213 // Some intrinsics have scalar arguments and should be same in order for 3214 // them to be vectorized. 3215 for (unsigned j = 0; j != NumArgs; ++j) { 3216 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3217 Value *A1J = CI2->getArgOperand(j); 3218 if (ScalarArgs[j] != A1J) { 3219 BS.cancelScheduling(VL, VL0); 3220 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3221 ReuseShuffleIndicies); 3222 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3223 << " argument " << ScalarArgs[j] << "!=" << A1J 3224 << "\n"); 3225 return; 3226 } 3227 } 3228 } 3229 // Verify that the bundle operands are identical between the two calls. 3230 if (CI->hasOperandBundles() && 3231 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3232 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3233 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3234 BS.cancelScheduling(VL, VL0); 3235 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3236 ReuseShuffleIndicies); 3237 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3238 << *CI << "!=" << *V << '\n'); 3239 return; 3240 } 3241 } 3242 3243 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3244 ReuseShuffleIndicies); 3245 TE->setOperandsInOrder(); 3246 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3247 ValueList Operands; 3248 // Prepare the operand vector. 3249 for (Value *V : VL) { 3250 auto *CI2 = cast<CallInst>(V); 3251 Operands.push_back(CI2->getArgOperand(i)); 3252 } 3253 buildTree_rec(Operands, Depth + 1, {TE, i}); 3254 } 3255 return; 3256 } 3257 case Instruction::ShuffleVector: { 3258 // If this is not an alternate sequence of opcode like add-sub 3259 // then do not vectorize this instruction. 3260 if (!S.isAltShuffle()) { 3261 BS.cancelScheduling(VL, VL0); 3262 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3263 ReuseShuffleIndicies); 3264 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3265 return; 3266 } 3267 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3268 ReuseShuffleIndicies); 3269 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3270 3271 // Reorder operands if reordering would enable vectorization. 3272 if (isa<BinaryOperator>(VL0)) { 3273 ValueList Left, Right; 3274 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3275 TE->setOperand(0, Left); 3276 TE->setOperand(1, Right); 3277 buildTree_rec(Left, Depth + 1, {TE, 0}); 3278 buildTree_rec(Right, Depth + 1, {TE, 1}); 3279 return; 3280 } 3281 3282 TE->setOperandsInOrder(); 3283 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3284 ValueList Operands; 3285 // Prepare the operand vector. 3286 for (Value *V : VL) 3287 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3288 3289 buildTree_rec(Operands, Depth + 1, {TE, i}); 3290 } 3291 return; 3292 } 3293 default: 3294 BS.cancelScheduling(VL, VL0); 3295 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3296 ReuseShuffleIndicies); 3297 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3298 return; 3299 } 3300 } 3301 3302 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3303 unsigned N = 1; 3304 Type *EltTy = T; 3305 3306 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3307 isa<VectorType>(EltTy)) { 3308 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3309 // Check that struct is homogeneous. 3310 for (const auto *Ty : ST->elements()) 3311 if (Ty != *ST->element_begin()) 3312 return 0; 3313 N *= ST->getNumElements(); 3314 EltTy = *ST->element_begin(); 3315 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3316 N *= AT->getNumElements(); 3317 EltTy = AT->getElementType(); 3318 } else { 3319 auto *VT = cast<FixedVectorType>(EltTy); 3320 N *= VT->getNumElements(); 3321 EltTy = VT->getElementType(); 3322 } 3323 } 3324 3325 if (!isValidElementType(EltTy)) 3326 return 0; 3327 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3328 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3329 return 0; 3330 return N; 3331 } 3332 3333 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3334 SmallVectorImpl<unsigned> &CurrentOrder) const { 3335 Instruction *E0 = cast<Instruction>(OpValue); 3336 assert(E0->getOpcode() == Instruction::ExtractElement || 3337 E0->getOpcode() == Instruction::ExtractValue); 3338 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3339 // Check if all of the extracts come from the same vector and from the 3340 // correct offset. 3341 Value *Vec = E0->getOperand(0); 3342 3343 CurrentOrder.clear(); 3344 3345 // We have to extract from a vector/aggregate with the same number of elements. 3346 unsigned NElts; 3347 if (E0->getOpcode() == Instruction::ExtractValue) { 3348 const DataLayout &DL = E0->getModule()->getDataLayout(); 3349 NElts = canMapToVector(Vec->getType(), DL); 3350 if (!NElts) 3351 return false; 3352 // Check if load can be rewritten as load of vector. 3353 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3354 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3355 return false; 3356 } else { 3357 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3358 } 3359 3360 if (NElts != VL.size()) 3361 return false; 3362 3363 // Check that all of the indices extract from the correct offset. 3364 bool ShouldKeepOrder = true; 3365 unsigned E = VL.size(); 3366 // Assign to all items the initial value E + 1 so we can check if the extract 3367 // instruction index was used already. 3368 // Also, later we can check that all the indices are used and we have a 3369 // consecutive access in the extract instructions, by checking that no 3370 // element of CurrentOrder still has value E + 1. 3371 CurrentOrder.assign(E, E + 1); 3372 unsigned I = 0; 3373 for (; I < E; ++I) { 3374 auto *Inst = cast<Instruction>(VL[I]); 3375 if (Inst->getOperand(0) != Vec) 3376 break; 3377 Optional<unsigned> Idx = getExtractIndex(Inst); 3378 if (!Idx) 3379 break; 3380 const unsigned ExtIdx = *Idx; 3381 if (ExtIdx != I) { 3382 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3383 break; 3384 ShouldKeepOrder = false; 3385 CurrentOrder[ExtIdx] = I; 3386 } else { 3387 if (CurrentOrder[I] != E + 1) 3388 break; 3389 CurrentOrder[I] = I; 3390 } 3391 } 3392 if (I < E) { 3393 CurrentOrder.clear(); 3394 return false; 3395 } 3396 3397 return ShouldKeepOrder; 3398 } 3399 3400 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3401 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3402 return ScalarToTreeEntry.count(U) > 0; 3403 }); 3404 } 3405 3406 static std::pair<unsigned, unsigned> 3407 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3408 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3409 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3410 3411 // Calculate the cost of the scalar and vector calls. 3412 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3413 int IntrinsicCost = 3414 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3415 3416 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3417 VecTy->getNumElements())), 3418 false /*HasGlobalPred*/); 3419 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3420 int LibCost = IntrinsicCost; 3421 if (!CI->isNoBuiltin() && VecFunc) { 3422 // Calculate the cost of the vector library call. 3423 SmallVector<Type *, 4> VecTys; 3424 for (Use &Arg : CI->args()) 3425 VecTys.push_back( 3426 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3427 3428 // If the corresponding vector call is cheaper, return its cost. 3429 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3430 TTI::TCK_RecipThroughput); 3431 } 3432 return {IntrinsicCost, LibCost}; 3433 } 3434 3435 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3436 ArrayRef<Value*> VL = E->Scalars; 3437 3438 Type *ScalarTy = VL[0]->getType(); 3439 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3440 ScalarTy = SI->getValueOperand()->getType(); 3441 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3442 ScalarTy = CI->getOperand(0)->getType(); 3443 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3444 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3445 3446 // If we have computed a smaller type for the expression, update VecTy so 3447 // that the costs will be accurate. 3448 if (MinBWs.count(VL[0])) 3449 VecTy = FixedVectorType::get( 3450 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3451 3452 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3453 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3454 InstructionCost ReuseShuffleCost = 0; 3455 if (NeedToShuffleReuses) { 3456 ReuseShuffleCost = 3457 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3458 } 3459 if (E->State == TreeEntry::NeedToGather) { 3460 if (allConstant(VL)) 3461 return 0; 3462 if (isSplat(VL)) { 3463 return ReuseShuffleCost + 3464 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3465 } 3466 if (E->getOpcode() == Instruction::ExtractElement && 3467 allSameType(VL) && allSameBlock(VL)) { 3468 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3469 if (ShuffleKind.hasValue()) { 3470 InstructionCost Cost = 3471 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3472 for (auto *V : VL) { 3473 // If all users of instruction are going to be vectorized and this 3474 // instruction itself is not going to be vectorized, consider this 3475 // instruction as dead and remove its cost from the final cost of the 3476 // vectorized tree. 3477 if (areAllUsersVectorized(cast<Instruction>(V)) && 3478 !ScalarToTreeEntry.count(V)) { 3479 auto *IO = cast<ConstantInt>( 3480 cast<ExtractElementInst>(V)->getIndexOperand()); 3481 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3482 IO->getZExtValue()); 3483 } 3484 } 3485 return ReuseShuffleCost + Cost; 3486 } 3487 } 3488 return ReuseShuffleCost + getGatherCost(VL); 3489 } 3490 assert((E->State == TreeEntry::Vectorize || 3491 E->State == TreeEntry::ScatterVectorize) && 3492 "Unhandled state"); 3493 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3494 Instruction *VL0 = E->getMainOp(); 3495 unsigned ShuffleOrOp = 3496 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3497 switch (ShuffleOrOp) { 3498 case Instruction::PHI: 3499 return 0; 3500 3501 case Instruction::ExtractValue: 3502 case Instruction::ExtractElement: { 3503 InstructionCost DeadCost = 0; 3504 if (NeedToShuffleReuses) { 3505 unsigned Idx = 0; 3506 for (unsigned I : E->ReuseShuffleIndices) { 3507 if (ShuffleOrOp == Instruction::ExtractElement) { 3508 auto *IO = cast<ConstantInt>( 3509 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3510 Idx = IO->getZExtValue(); 3511 ReuseShuffleCost -= TTI->getVectorInstrCost( 3512 Instruction::ExtractElement, VecTy, Idx); 3513 } else { 3514 ReuseShuffleCost -= TTI->getVectorInstrCost( 3515 Instruction::ExtractElement, VecTy, Idx); 3516 ++Idx; 3517 } 3518 } 3519 Idx = ReuseShuffleNumbers; 3520 for (Value *V : VL) { 3521 if (ShuffleOrOp == Instruction::ExtractElement) { 3522 auto *IO = cast<ConstantInt>( 3523 cast<ExtractElementInst>(V)->getIndexOperand()); 3524 Idx = IO->getZExtValue(); 3525 } else { 3526 --Idx; 3527 } 3528 ReuseShuffleCost += 3529 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3530 } 3531 DeadCost = ReuseShuffleCost; 3532 } else if (!E->ReorderIndices.empty()) { 3533 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3534 VecTy); 3535 } 3536 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3537 Instruction *EI = cast<Instruction>(VL[I]); 3538 // If all users are going to be vectorized, instruction can be 3539 // considered as dead. 3540 // The same, if have only one user, it will be vectorized for sure. 3541 if (areAllUsersVectorized(EI)) { 3542 // Take credit for instruction that will become dead. 3543 if (EI->hasOneUse()) { 3544 Instruction *Ext = EI->user_back(); 3545 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3546 all_of(Ext->users(), 3547 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3548 // Use getExtractWithExtendCost() to calculate the cost of 3549 // extractelement/ext pair. 3550 DeadCost -= TTI->getExtractWithExtendCost( 3551 Ext->getOpcode(), Ext->getType(), VecTy, I); 3552 // Add back the cost of s|zext which is subtracted separately. 3553 DeadCost += TTI->getCastInstrCost( 3554 Ext->getOpcode(), Ext->getType(), EI->getType(), 3555 TTI::getCastContextHint(Ext), CostKind, Ext); 3556 continue; 3557 } 3558 } 3559 DeadCost -= 3560 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3561 } 3562 } 3563 return DeadCost; 3564 } 3565 case Instruction::ZExt: 3566 case Instruction::SExt: 3567 case Instruction::FPToUI: 3568 case Instruction::FPToSI: 3569 case Instruction::FPExt: 3570 case Instruction::PtrToInt: 3571 case Instruction::IntToPtr: 3572 case Instruction::SIToFP: 3573 case Instruction::UIToFP: 3574 case Instruction::Trunc: 3575 case Instruction::FPTrunc: 3576 case Instruction::BitCast: { 3577 Type *SrcTy = VL0->getOperand(0)->getType(); 3578 InstructionCost ScalarEltCost = 3579 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3580 TTI::getCastContextHint(VL0), CostKind, VL0); 3581 if (NeedToShuffleReuses) { 3582 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3583 } 3584 3585 // Calculate the cost of this instruction. 3586 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3587 3588 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3589 InstructionCost VecCost = 0; 3590 // Check if the values are candidates to demote. 3591 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3592 VecCost = 3593 ReuseShuffleCost + 3594 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3595 TTI::getCastContextHint(VL0), CostKind, VL0); 3596 } 3597 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3598 return VecCost - ScalarCost; 3599 } 3600 case Instruction::FCmp: 3601 case Instruction::ICmp: 3602 case Instruction::Select: { 3603 // Calculate the cost of this instruction. 3604 InstructionCost ScalarEltCost = 3605 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3606 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3607 if (NeedToShuffleReuses) { 3608 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3609 } 3610 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3611 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3612 3613 // Check if all entries in VL are either compares or selects with compares 3614 // as condition that have the same predicates. 3615 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3616 bool First = true; 3617 for (auto *V : VL) { 3618 CmpInst::Predicate CurrentPred; 3619 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3620 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3621 !match(V, MatchCmp)) || 3622 (!First && VecPred != CurrentPred)) { 3623 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3624 break; 3625 } 3626 First = false; 3627 VecPred = CurrentPred; 3628 } 3629 3630 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3631 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3632 // Check if it is possible and profitable to use min/max for selects in 3633 // VL. 3634 // 3635 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3636 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3637 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3638 {VecTy, VecTy}); 3639 InstructionCost IntrinsicCost = 3640 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3641 // If the selects are the only uses of the compares, they will be dead 3642 // and we can adjust the cost by removing their cost. 3643 if (IntrinsicAndUse.second) 3644 IntrinsicCost -= 3645 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3646 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3647 VecCost = std::min(VecCost, IntrinsicCost); 3648 } 3649 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3650 return ReuseShuffleCost + VecCost - ScalarCost; 3651 } 3652 case Instruction::FNeg: 3653 case Instruction::Add: 3654 case Instruction::FAdd: 3655 case Instruction::Sub: 3656 case Instruction::FSub: 3657 case Instruction::Mul: 3658 case Instruction::FMul: 3659 case Instruction::UDiv: 3660 case Instruction::SDiv: 3661 case Instruction::FDiv: 3662 case Instruction::URem: 3663 case Instruction::SRem: 3664 case Instruction::FRem: 3665 case Instruction::Shl: 3666 case Instruction::LShr: 3667 case Instruction::AShr: 3668 case Instruction::And: 3669 case Instruction::Or: 3670 case Instruction::Xor: { 3671 // Certain instructions can be cheaper to vectorize if they have a 3672 // constant second vector operand. 3673 TargetTransformInfo::OperandValueKind Op1VK = 3674 TargetTransformInfo::OK_AnyValue; 3675 TargetTransformInfo::OperandValueKind Op2VK = 3676 TargetTransformInfo::OK_UniformConstantValue; 3677 TargetTransformInfo::OperandValueProperties Op1VP = 3678 TargetTransformInfo::OP_None; 3679 TargetTransformInfo::OperandValueProperties Op2VP = 3680 TargetTransformInfo::OP_PowerOf2; 3681 3682 // If all operands are exactly the same ConstantInt then set the 3683 // operand kind to OK_UniformConstantValue. 3684 // If instead not all operands are constants, then set the operand kind 3685 // to OK_AnyValue. If all operands are constants but not the same, 3686 // then set the operand kind to OK_NonUniformConstantValue. 3687 ConstantInt *CInt0 = nullptr; 3688 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3689 const Instruction *I = cast<Instruction>(VL[i]); 3690 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3691 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3692 if (!CInt) { 3693 Op2VK = TargetTransformInfo::OK_AnyValue; 3694 Op2VP = TargetTransformInfo::OP_None; 3695 break; 3696 } 3697 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3698 !CInt->getValue().isPowerOf2()) 3699 Op2VP = TargetTransformInfo::OP_None; 3700 if (i == 0) { 3701 CInt0 = CInt; 3702 continue; 3703 } 3704 if (CInt0 != CInt) 3705 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3706 } 3707 3708 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3709 InstructionCost ScalarEltCost = 3710 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3711 Op2VK, Op1VP, Op2VP, Operands, VL0); 3712 if (NeedToShuffleReuses) { 3713 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3714 } 3715 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3716 InstructionCost VecCost = 3717 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3718 Op2VK, Op1VP, Op2VP, Operands, VL0); 3719 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3720 return ReuseShuffleCost + VecCost - ScalarCost; 3721 } 3722 case Instruction::GetElementPtr: { 3723 TargetTransformInfo::OperandValueKind Op1VK = 3724 TargetTransformInfo::OK_AnyValue; 3725 TargetTransformInfo::OperandValueKind Op2VK = 3726 TargetTransformInfo::OK_UniformConstantValue; 3727 3728 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3729 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3730 if (NeedToShuffleReuses) { 3731 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3732 } 3733 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3734 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3735 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3736 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3737 return ReuseShuffleCost + VecCost - ScalarCost; 3738 } 3739 case Instruction::Load: { 3740 // Cost of wide load - cost of scalar loads. 3741 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3742 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3743 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3744 if (NeedToShuffleReuses) { 3745 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3746 } 3747 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3748 InstructionCost VecLdCost; 3749 if (E->State == TreeEntry::Vectorize) { 3750 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3751 CostKind, VL0); 3752 } else { 3753 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3754 VecLdCost = TTI->getGatherScatterOpCost( 3755 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3756 /*VariableMask=*/false, alignment, CostKind, VL0); 3757 } 3758 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3759 VecLdCost += TTI->getShuffleCost( 3760 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3761 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3762 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3763 } 3764 case Instruction::Store: { 3765 // We know that we can merge the stores. Calculate the cost. 3766 bool IsReorder = !E->ReorderIndices.empty(); 3767 auto *SI = 3768 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3769 Align Alignment = SI->getAlign(); 3770 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3771 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3772 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3773 InstructionCost VecStCost = TTI->getMemoryOpCost( 3774 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3775 if (IsReorder) 3776 VecStCost += TTI->getShuffleCost( 3777 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3778 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3779 return VecStCost - ScalarStCost; 3780 } 3781 case Instruction::Call: { 3782 CallInst *CI = cast<CallInst>(VL0); 3783 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3784 3785 // Calculate the cost of the scalar and vector calls. 3786 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3787 InstructionCost ScalarEltCost = 3788 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3789 if (NeedToShuffleReuses) { 3790 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3791 } 3792 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3793 3794 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3795 InstructionCost VecCallCost = 3796 std::min(VecCallCosts.first, VecCallCosts.second); 3797 3798 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3799 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3800 << " for " << *CI << "\n"); 3801 3802 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3803 } 3804 case Instruction::ShuffleVector: { 3805 assert(E->isAltShuffle() && 3806 ((Instruction::isBinaryOp(E->getOpcode()) && 3807 Instruction::isBinaryOp(E->getAltOpcode())) || 3808 (Instruction::isCast(E->getOpcode()) && 3809 Instruction::isCast(E->getAltOpcode()))) && 3810 "Invalid Shuffle Vector Operand"); 3811 InstructionCost ScalarCost = 0; 3812 if (NeedToShuffleReuses) { 3813 for (unsigned Idx : E->ReuseShuffleIndices) { 3814 Instruction *I = cast<Instruction>(VL[Idx]); 3815 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3816 } 3817 for (Value *V : VL) { 3818 Instruction *I = cast<Instruction>(V); 3819 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3820 } 3821 } 3822 for (Value *V : VL) { 3823 Instruction *I = cast<Instruction>(V); 3824 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3825 ScalarCost += TTI->getInstructionCost(I, CostKind); 3826 } 3827 // VecCost is equal to sum of the cost of creating 2 vectors 3828 // and the cost of creating shuffle. 3829 InstructionCost VecCost = 0; 3830 if (Instruction::isBinaryOp(E->getOpcode())) { 3831 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3832 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3833 CostKind); 3834 } else { 3835 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3836 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3837 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3838 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3839 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3840 TTI::CastContextHint::None, CostKind); 3841 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3842 TTI::CastContextHint::None, CostKind); 3843 } 3844 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3845 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3846 return ReuseShuffleCost + VecCost - ScalarCost; 3847 } 3848 default: 3849 llvm_unreachable("Unknown instruction"); 3850 } 3851 } 3852 3853 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3854 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3855 << VectorizableTree.size() << " is fully vectorizable .\n"); 3856 3857 // We only handle trees of heights 1 and 2. 3858 if (VectorizableTree.size() == 1 && 3859 VectorizableTree[0]->State == TreeEntry::Vectorize) 3860 return true; 3861 3862 if (VectorizableTree.size() != 2) 3863 return false; 3864 3865 // Handle splat and all-constants stores. 3866 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3867 (allConstant(VectorizableTree[1]->Scalars) || 3868 isSplat(VectorizableTree[1]->Scalars))) 3869 return true; 3870 3871 // Gathering cost would be too much for tiny trees. 3872 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3873 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3874 return false; 3875 3876 return true; 3877 } 3878 3879 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3880 TargetTransformInfo *TTI) { 3881 // Look past the root to find a source value. Arbitrarily follow the 3882 // path through operand 0 of any 'or'. Also, peek through optional 3883 // shift-left-by-multiple-of-8-bits. 3884 Value *ZextLoad = Root; 3885 const APInt *ShAmtC; 3886 while (!isa<ConstantExpr>(ZextLoad) && 3887 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3888 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3889 ShAmtC->urem(8) == 0))) 3890 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3891 3892 // Check if the input is an extended load of the required or/shift expression. 3893 Value *LoadPtr; 3894 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3895 return false; 3896 3897 // Require that the total load bit width is a legal integer type. 3898 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3899 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3900 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3901 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3902 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3903 return false; 3904 3905 // Everything matched - assume that we can fold the whole sequence using 3906 // load combining. 3907 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3908 << *(cast<Instruction>(Root)) << "\n"); 3909 3910 return true; 3911 } 3912 3913 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 3914 if (RdxKind != RecurKind::Or) 3915 return false; 3916 3917 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3918 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3919 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3920 } 3921 3922 bool BoUpSLP::isLoadCombineCandidate() const { 3923 // Peek through a final sequence of stores and check if all operations are 3924 // likely to be load-combined. 3925 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3926 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3927 Value *X; 3928 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3929 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3930 return false; 3931 } 3932 return true; 3933 } 3934 3935 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3936 // We can vectorize the tree if its size is greater than or equal to the 3937 // minimum size specified by the MinTreeSize command line option. 3938 if (VectorizableTree.size() >= MinTreeSize) 3939 return false; 3940 3941 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3942 // can vectorize it if we can prove it fully vectorizable. 3943 if (isFullyVectorizableTinyTree()) 3944 return false; 3945 3946 assert(VectorizableTree.empty() 3947 ? ExternalUses.empty() 3948 : true && "We shouldn't have any external users"); 3949 3950 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3951 // vectorizable. 3952 return true; 3953 } 3954 3955 InstructionCost BoUpSLP::getSpillCost() const { 3956 // Walk from the bottom of the tree to the top, tracking which values are 3957 // live. When we see a call instruction that is not part of our tree, 3958 // query TTI to see if there is a cost to keeping values live over it 3959 // (for example, if spills and fills are required). 3960 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3961 InstructionCost Cost = 0; 3962 3963 SmallPtrSet<Instruction*, 4> LiveValues; 3964 Instruction *PrevInst = nullptr; 3965 3966 // The entries in VectorizableTree are not necessarily ordered by their 3967 // position in basic blocks. Collect them and order them by dominance so later 3968 // instructions are guaranteed to be visited first. For instructions in 3969 // different basic blocks, we only scan to the beginning of the block, so 3970 // their order does not matter, as long as all instructions in a basic block 3971 // are grouped together. Using dominance ensures a deterministic order. 3972 SmallVector<Instruction *, 16> OrderedScalars; 3973 for (const auto &TEPtr : VectorizableTree) { 3974 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3975 if (!Inst) 3976 continue; 3977 OrderedScalars.push_back(Inst); 3978 } 3979 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3980 return DT->dominates(B, A); 3981 }); 3982 3983 for (Instruction *Inst : OrderedScalars) { 3984 if (!PrevInst) { 3985 PrevInst = Inst; 3986 continue; 3987 } 3988 3989 // Update LiveValues. 3990 LiveValues.erase(PrevInst); 3991 for (auto &J : PrevInst->operands()) { 3992 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3993 LiveValues.insert(cast<Instruction>(&*J)); 3994 } 3995 3996 LLVM_DEBUG({ 3997 dbgs() << "SLP: #LV: " << LiveValues.size(); 3998 for (auto *X : LiveValues) 3999 dbgs() << " " << X->getName(); 4000 dbgs() << ", Looking at "; 4001 Inst->dump(); 4002 }); 4003 4004 // Now find the sequence of instructions between PrevInst and Inst. 4005 unsigned NumCalls = 0; 4006 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4007 PrevInstIt = 4008 PrevInst->getIterator().getReverse(); 4009 while (InstIt != PrevInstIt) { 4010 if (PrevInstIt == PrevInst->getParent()->rend()) { 4011 PrevInstIt = Inst->getParent()->rbegin(); 4012 continue; 4013 } 4014 4015 // Debug information does not impact spill cost. 4016 if ((isa<CallInst>(&*PrevInstIt) && 4017 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4018 &*PrevInstIt != PrevInst) 4019 NumCalls++; 4020 4021 ++PrevInstIt; 4022 } 4023 4024 if (NumCalls) { 4025 SmallVector<Type*, 4> V; 4026 for (auto *II : LiveValues) 4027 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4028 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4029 } 4030 4031 PrevInst = Inst; 4032 } 4033 4034 return Cost; 4035 } 4036 4037 InstructionCost BoUpSLP::getTreeCost() { 4038 InstructionCost Cost = 0; 4039 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4040 << VectorizableTree.size() << ".\n"); 4041 4042 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4043 4044 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4045 TreeEntry &TE = *VectorizableTree[I].get(); 4046 4047 // We create duplicate tree entries for gather sequences that have multiple 4048 // uses. However, we should not compute the cost of duplicate sequences. 4049 // For example, if we have a build vector (i.e., insertelement sequence) 4050 // that is used by more than one vector instruction, we only need to 4051 // compute the cost of the insertelement instructions once. The redundant 4052 // instructions will be eliminated by CSE. 4053 // 4054 // We should consider not creating duplicate tree entries for gather 4055 // sequences, and instead add additional edges to the tree representing 4056 // their uses. Since such an approach results in fewer total entries, 4057 // existing heuristics based on tree size may yield different results. 4058 // 4059 if (TE.State == TreeEntry::NeedToGather && 4060 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4061 VectorizableTree.end(), 4062 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4063 return EntryPtr->State == TreeEntry::NeedToGather && 4064 EntryPtr->isSame(TE.Scalars); 4065 })) 4066 continue; 4067 4068 InstructionCost C = getEntryCost(&TE); 4069 Cost += C; 4070 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4071 << " for bundle that starts with " << *TE.Scalars[0] 4072 << ".\n" 4073 << "SLP: Current total cost = " << Cost << "\n"); 4074 } 4075 4076 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4077 InstructionCost ExtractCost = 0; 4078 for (ExternalUser &EU : ExternalUses) { 4079 // We only add extract cost once for the same scalar. 4080 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4081 continue; 4082 4083 // Uses by ephemeral values are free (because the ephemeral value will be 4084 // removed prior to code generation, and so the extraction will be 4085 // removed as well). 4086 if (EphValues.count(EU.User)) 4087 continue; 4088 4089 // If we plan to rewrite the tree in a smaller type, we will need to sign 4090 // extend the extracted value back to the original type. Here, we account 4091 // for the extract and the added cost of the sign extend if needed. 4092 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4093 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4094 if (MinBWs.count(ScalarRoot)) { 4095 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4096 auto Extend = 4097 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4098 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4099 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4100 VecTy, EU.Lane); 4101 } else { 4102 ExtractCost += 4103 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4104 } 4105 } 4106 4107 InstructionCost SpillCost = getSpillCost(); 4108 Cost += SpillCost + ExtractCost; 4109 4110 #ifndef NDEBUG 4111 SmallString<256> Str; 4112 { 4113 raw_svector_ostream OS(Str); 4114 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4115 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4116 << "SLP: Total Cost = " << Cost << ".\n"; 4117 } 4118 LLVM_DEBUG(dbgs() << Str); 4119 if (ViewSLPTree) 4120 ViewGraph(this, "SLP" + F->getName(), false, Str); 4121 #endif 4122 4123 return Cost; 4124 } 4125 4126 InstructionCost 4127 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4128 const DenseSet<unsigned> &ShuffledIndices) const { 4129 unsigned NumElts = Ty->getNumElements(); 4130 APInt DemandedElts = APInt::getNullValue(NumElts); 4131 for (unsigned I = 0; I < NumElts; ++I) 4132 if (!ShuffledIndices.count(I)) 4133 DemandedElts.setBit(I); 4134 InstructionCost Cost = 4135 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4136 /*Extract*/ false); 4137 if (!ShuffledIndices.empty()) 4138 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4139 return Cost; 4140 } 4141 4142 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4143 // Find the type of the operands in VL. 4144 Type *ScalarTy = VL[0]->getType(); 4145 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4146 ScalarTy = SI->getValueOperand()->getType(); 4147 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4148 // Find the cost of inserting/extracting values from the vector. 4149 // Check if the same elements are inserted several times and count them as 4150 // shuffle candidates. 4151 DenseSet<unsigned> ShuffledElements; 4152 DenseSet<Value *> UniqueElements; 4153 // Iterate in reverse order to consider insert elements with the high cost. 4154 for (unsigned I = VL.size(); I > 0; --I) { 4155 unsigned Idx = I - 1; 4156 if (!UniqueElements.insert(VL[Idx]).second) 4157 ShuffledElements.insert(Idx); 4158 } 4159 return getGatherCost(VecTy, ShuffledElements); 4160 } 4161 4162 // Perform operand reordering on the instructions in VL and return the reordered 4163 // operands in Left and Right. 4164 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4165 SmallVectorImpl<Value *> &Left, 4166 SmallVectorImpl<Value *> &Right, 4167 const DataLayout &DL, 4168 ScalarEvolution &SE, 4169 const BoUpSLP &R) { 4170 if (VL.empty()) 4171 return; 4172 VLOperands Ops(VL, DL, SE, R); 4173 // Reorder the operands in place. 4174 Ops.reorder(); 4175 Left = Ops.getVL(0); 4176 Right = Ops.getVL(1); 4177 } 4178 4179 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4180 // Get the basic block this bundle is in. All instructions in the bundle 4181 // should be in this block. 4182 auto *Front = E->getMainOp(); 4183 auto *BB = Front->getParent(); 4184 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4185 auto *I = cast<Instruction>(V); 4186 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4187 })); 4188 4189 // The last instruction in the bundle in program order. 4190 Instruction *LastInst = nullptr; 4191 4192 // Find the last instruction. The common case should be that BB has been 4193 // scheduled, and the last instruction is VL.back(). So we start with 4194 // VL.back() and iterate over schedule data until we reach the end of the 4195 // bundle. The end of the bundle is marked by null ScheduleData. 4196 if (BlocksSchedules.count(BB)) { 4197 auto *Bundle = 4198 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4199 if (Bundle && Bundle->isPartOfBundle()) 4200 for (; Bundle; Bundle = Bundle->NextInBundle) 4201 if (Bundle->OpValue == Bundle->Inst) 4202 LastInst = Bundle->Inst; 4203 } 4204 4205 // LastInst can still be null at this point if there's either not an entry 4206 // for BB in BlocksSchedules or there's no ScheduleData available for 4207 // VL.back(). This can be the case if buildTree_rec aborts for various 4208 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4209 // size is reached, etc.). ScheduleData is initialized in the scheduling 4210 // "dry-run". 4211 // 4212 // If this happens, we can still find the last instruction by brute force. We 4213 // iterate forwards from Front (inclusive) until we either see all 4214 // instructions in the bundle or reach the end of the block. If Front is the 4215 // last instruction in program order, LastInst will be set to Front, and we 4216 // will visit all the remaining instructions in the block. 4217 // 4218 // One of the reasons we exit early from buildTree_rec is to place an upper 4219 // bound on compile-time. Thus, taking an additional compile-time hit here is 4220 // not ideal. However, this should be exceedingly rare since it requires that 4221 // we both exit early from buildTree_rec and that the bundle be out-of-order 4222 // (causing us to iterate all the way to the end of the block). 4223 if (!LastInst) { 4224 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4225 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4226 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4227 LastInst = &I; 4228 if (Bundle.empty()) 4229 break; 4230 } 4231 } 4232 assert(LastInst && "Failed to find last instruction in bundle"); 4233 4234 // Set the insertion point after the last instruction in the bundle. Set the 4235 // debug location to Front. 4236 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4237 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4238 } 4239 4240 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4241 Value *Val0 = 4242 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4243 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4244 Value *Vec = PoisonValue::get(VecTy); 4245 unsigned InsIndex = 0; 4246 for (Value *Val : VL) { 4247 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4248 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4249 if (!InsElt) 4250 continue; 4251 GatherSeq.insert(InsElt); 4252 CSEBlocks.insert(InsElt->getParent()); 4253 // Add to our 'need-to-extract' list. 4254 if (TreeEntry *Entry = getTreeEntry(Val)) { 4255 // Find which lane we need to extract. 4256 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4257 find(Entry->Scalars, Val)); 4258 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4259 if (!Entry->ReuseShuffleIndices.empty()) { 4260 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4261 find(Entry->ReuseShuffleIndices, FoundLane)); 4262 } 4263 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4264 } 4265 } 4266 4267 return Vec; 4268 } 4269 4270 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4271 InstructionsState S = getSameOpcode(VL); 4272 if (S.getOpcode()) { 4273 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4274 if (E->isSame(VL)) { 4275 Value *V = vectorizeTree(E); 4276 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4277 // We need to get the vectorized value but without shuffle. 4278 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4279 V = SV->getOperand(0); 4280 } else { 4281 // Reshuffle to get only unique values. 4282 SmallVector<int, 4> UniqueIdxs; 4283 SmallSet<int, 4> UsedIdxs; 4284 for (int Idx : E->ReuseShuffleIndices) 4285 if (UsedIdxs.insert(Idx).second) 4286 UniqueIdxs.emplace_back(Idx); 4287 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4288 } 4289 } 4290 return V; 4291 } 4292 } 4293 } 4294 4295 // Check that every instruction appears once in this bundle. 4296 SmallVector<int, 4> ReuseShuffleIndicies; 4297 SmallVector<Value *, 4> UniqueValues; 4298 if (VL.size() > 2) { 4299 DenseMap<Value *, unsigned> UniquePositions; 4300 for (Value *V : VL) { 4301 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4302 ReuseShuffleIndicies.emplace_back(Res.first->second); 4303 if (Res.second || isa<Constant>(V)) 4304 UniqueValues.emplace_back(V); 4305 } 4306 // Do not shuffle single element or if number of unique values is not power 4307 // of 2. 4308 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4309 !llvm::isPowerOf2_32(UniqueValues.size())) 4310 ReuseShuffleIndicies.clear(); 4311 else 4312 VL = UniqueValues; 4313 } 4314 4315 Value *Vec = gather(VL); 4316 if (!ReuseShuffleIndicies.empty()) { 4317 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4318 if (auto *I = dyn_cast<Instruction>(Vec)) { 4319 GatherSeq.insert(I); 4320 CSEBlocks.insert(I->getParent()); 4321 } 4322 } 4323 return Vec; 4324 } 4325 4326 namespace { 4327 /// Merges shuffle masks and emits final shuffle instruction, if required. 4328 class ShuffleInstructionBuilder { 4329 IRBuilderBase &Builder; 4330 bool IsFinalized = false; 4331 SmallVector<int, 4> Mask; 4332 4333 public: 4334 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4335 4336 /// Adds a mask, inverting it before applying. 4337 void addInversedMask(ArrayRef<unsigned> SubMask) { 4338 if (SubMask.empty()) 4339 return; 4340 SmallVector<int, 4> NewMask; 4341 inversePermutation(SubMask, NewMask); 4342 addMask(NewMask); 4343 } 4344 4345 /// Functions adds masks, merging them into single one. 4346 void addMask(ArrayRef<unsigned> SubMask) { 4347 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4348 addMask(NewMask); 4349 } 4350 4351 void addMask(ArrayRef<int> SubMask) { 4352 if (SubMask.empty()) 4353 return; 4354 if (Mask.empty()) { 4355 Mask.append(SubMask.begin(), SubMask.end()); 4356 return; 4357 } 4358 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4359 int TermValue = std::min(Mask.size(), SubMask.size()); 4360 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4361 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4362 NewMask[I] = E; 4363 continue; 4364 } 4365 NewMask[I] = Mask[SubMask[I]]; 4366 } 4367 Mask.swap(NewMask); 4368 } 4369 4370 Value *finalize(Value *V) { 4371 IsFinalized = true; 4372 if (Mask.empty()) 4373 return V; 4374 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4375 } 4376 4377 ~ShuffleInstructionBuilder() { 4378 assert((IsFinalized || Mask.empty()) && 4379 "Must be finalized construction of the shuffles."); 4380 } 4381 }; 4382 } // namespace 4383 4384 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4385 IRBuilder<>::InsertPointGuard Guard(Builder); 4386 4387 if (E->VectorizedValue) { 4388 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4389 return E->VectorizedValue; 4390 } 4391 4392 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4393 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4394 if (E->State == TreeEntry::NeedToGather) { 4395 setInsertPointAfterBundle(E); 4396 Value *Vec = gather(E->Scalars); 4397 if (NeedToShuffleReuses) { 4398 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4399 Vec = ShuffleBuilder.finalize(Vec); 4400 if (auto *I = dyn_cast<Instruction>(Vec)) { 4401 GatherSeq.insert(I); 4402 CSEBlocks.insert(I->getParent()); 4403 } 4404 } 4405 E->VectorizedValue = Vec; 4406 return Vec; 4407 } 4408 4409 assert((E->State == TreeEntry::Vectorize || 4410 E->State == TreeEntry::ScatterVectorize) && 4411 "Unhandled state"); 4412 unsigned ShuffleOrOp = 4413 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4414 Instruction *VL0 = E->getMainOp(); 4415 Type *ScalarTy = VL0->getType(); 4416 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4417 ScalarTy = Store->getValueOperand()->getType(); 4418 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4419 switch (ShuffleOrOp) { 4420 case Instruction::PHI: { 4421 auto *PH = cast<PHINode>(VL0); 4422 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4423 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4424 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4425 Value *V = NewPhi; 4426 if (NeedToShuffleReuses) 4427 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4428 4429 E->VectorizedValue = V; 4430 4431 // PHINodes may have multiple entries from the same block. We want to 4432 // visit every block once. 4433 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4434 4435 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4436 ValueList Operands; 4437 BasicBlock *IBB = PH->getIncomingBlock(i); 4438 4439 if (!VisitedBBs.insert(IBB).second) { 4440 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4441 continue; 4442 } 4443 4444 Builder.SetInsertPoint(IBB->getTerminator()); 4445 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4446 Value *Vec = vectorizeTree(E->getOperand(i)); 4447 NewPhi->addIncoming(Vec, IBB); 4448 } 4449 4450 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4451 "Invalid number of incoming values"); 4452 return V; 4453 } 4454 4455 case Instruction::ExtractElement: { 4456 Value *V = E->getSingleOperand(0); 4457 Builder.SetInsertPoint(VL0); 4458 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4459 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4460 V = ShuffleBuilder.finalize(V); 4461 E->VectorizedValue = V; 4462 return V; 4463 } 4464 case Instruction::ExtractValue: { 4465 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4466 Builder.SetInsertPoint(LI); 4467 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4468 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4469 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4470 Value *NewV = propagateMetadata(V, E->Scalars); 4471 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4472 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4473 NewV = ShuffleBuilder.finalize(NewV); 4474 E->VectorizedValue = NewV; 4475 return NewV; 4476 } 4477 case Instruction::ZExt: 4478 case Instruction::SExt: 4479 case Instruction::FPToUI: 4480 case Instruction::FPToSI: 4481 case Instruction::FPExt: 4482 case Instruction::PtrToInt: 4483 case Instruction::IntToPtr: 4484 case Instruction::SIToFP: 4485 case Instruction::UIToFP: 4486 case Instruction::Trunc: 4487 case Instruction::FPTrunc: 4488 case Instruction::BitCast: { 4489 setInsertPointAfterBundle(E); 4490 4491 Value *InVec = vectorizeTree(E->getOperand(0)); 4492 4493 if (E->VectorizedValue) { 4494 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4495 return E->VectorizedValue; 4496 } 4497 4498 auto *CI = cast<CastInst>(VL0); 4499 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4500 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4501 V = ShuffleBuilder.finalize(V); 4502 4503 E->VectorizedValue = V; 4504 ++NumVectorInstructions; 4505 return V; 4506 } 4507 case Instruction::FCmp: 4508 case Instruction::ICmp: { 4509 setInsertPointAfterBundle(E); 4510 4511 Value *L = vectorizeTree(E->getOperand(0)); 4512 Value *R = vectorizeTree(E->getOperand(1)); 4513 4514 if (E->VectorizedValue) { 4515 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4516 return E->VectorizedValue; 4517 } 4518 4519 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4520 Value *V = Builder.CreateCmp(P0, L, R); 4521 propagateIRFlags(V, E->Scalars, VL0); 4522 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4523 V = ShuffleBuilder.finalize(V); 4524 4525 E->VectorizedValue = V; 4526 ++NumVectorInstructions; 4527 return V; 4528 } 4529 case Instruction::Select: { 4530 setInsertPointAfterBundle(E); 4531 4532 Value *Cond = vectorizeTree(E->getOperand(0)); 4533 Value *True = vectorizeTree(E->getOperand(1)); 4534 Value *False = vectorizeTree(E->getOperand(2)); 4535 4536 if (E->VectorizedValue) { 4537 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4538 return E->VectorizedValue; 4539 } 4540 4541 Value *V = Builder.CreateSelect(Cond, True, False); 4542 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4543 V = ShuffleBuilder.finalize(V); 4544 4545 E->VectorizedValue = V; 4546 ++NumVectorInstructions; 4547 return V; 4548 } 4549 case Instruction::FNeg: { 4550 setInsertPointAfterBundle(E); 4551 4552 Value *Op = vectorizeTree(E->getOperand(0)); 4553 4554 if (E->VectorizedValue) { 4555 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4556 return E->VectorizedValue; 4557 } 4558 4559 Value *V = Builder.CreateUnOp( 4560 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4561 propagateIRFlags(V, E->Scalars, VL0); 4562 if (auto *I = dyn_cast<Instruction>(V)) 4563 V = propagateMetadata(I, E->Scalars); 4564 4565 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4566 V = ShuffleBuilder.finalize(V); 4567 4568 E->VectorizedValue = V; 4569 ++NumVectorInstructions; 4570 4571 return V; 4572 } 4573 case Instruction::Add: 4574 case Instruction::FAdd: 4575 case Instruction::Sub: 4576 case Instruction::FSub: 4577 case Instruction::Mul: 4578 case Instruction::FMul: 4579 case Instruction::UDiv: 4580 case Instruction::SDiv: 4581 case Instruction::FDiv: 4582 case Instruction::URem: 4583 case Instruction::SRem: 4584 case Instruction::FRem: 4585 case Instruction::Shl: 4586 case Instruction::LShr: 4587 case Instruction::AShr: 4588 case Instruction::And: 4589 case Instruction::Or: 4590 case Instruction::Xor: { 4591 setInsertPointAfterBundle(E); 4592 4593 Value *LHS = vectorizeTree(E->getOperand(0)); 4594 Value *RHS = vectorizeTree(E->getOperand(1)); 4595 4596 if (E->VectorizedValue) { 4597 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4598 return E->VectorizedValue; 4599 } 4600 4601 Value *V = Builder.CreateBinOp( 4602 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4603 RHS); 4604 propagateIRFlags(V, E->Scalars, VL0); 4605 if (auto *I = dyn_cast<Instruction>(V)) 4606 V = propagateMetadata(I, E->Scalars); 4607 4608 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4609 V = ShuffleBuilder.finalize(V); 4610 4611 E->VectorizedValue = V; 4612 ++NumVectorInstructions; 4613 4614 return V; 4615 } 4616 case Instruction::Load: { 4617 // Loads are inserted at the head of the tree because we don't want to 4618 // sink them all the way down past store instructions. 4619 bool IsReorder = E->updateStateIfReorder(); 4620 if (IsReorder) 4621 VL0 = E->getMainOp(); 4622 setInsertPointAfterBundle(E); 4623 4624 LoadInst *LI = cast<LoadInst>(VL0); 4625 Instruction *NewLI; 4626 unsigned AS = LI->getPointerAddressSpace(); 4627 Value *PO = LI->getPointerOperand(); 4628 if (E->State == TreeEntry::Vectorize) { 4629 4630 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4631 4632 // The pointer operand uses an in-tree scalar so we add the new BitCast 4633 // to ExternalUses list to make sure that an extract will be generated 4634 // in the future. 4635 if (getTreeEntry(PO)) 4636 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4637 4638 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4639 } else { 4640 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4641 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4642 // Use the minimum alignment of the gathered loads. 4643 Align CommonAlignment = LI->getAlign(); 4644 for (Value *V : E->Scalars) 4645 CommonAlignment = 4646 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4647 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4648 } 4649 Value *V = propagateMetadata(NewLI, E->Scalars); 4650 4651 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4652 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4653 V = ShuffleBuilder.finalize(V); 4654 E->VectorizedValue = V; 4655 ++NumVectorInstructions; 4656 return V; 4657 } 4658 case Instruction::Store: { 4659 bool IsReorder = !E->ReorderIndices.empty(); 4660 auto *SI = cast<StoreInst>( 4661 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4662 unsigned AS = SI->getPointerAddressSpace(); 4663 4664 setInsertPointAfterBundle(E); 4665 4666 Value *VecValue = vectorizeTree(E->getOperand(0)); 4667 ShuffleBuilder.addMask(E->ReorderIndices); 4668 VecValue = ShuffleBuilder.finalize(VecValue); 4669 4670 Value *ScalarPtr = SI->getPointerOperand(); 4671 Value *VecPtr = Builder.CreateBitCast( 4672 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4673 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4674 SI->getAlign()); 4675 4676 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4677 // ExternalUses to make sure that an extract will be generated in the 4678 // future. 4679 if (getTreeEntry(ScalarPtr)) 4680 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4681 4682 Value *V = propagateMetadata(ST, E->Scalars); 4683 4684 E->VectorizedValue = V; 4685 ++NumVectorInstructions; 4686 return V; 4687 } 4688 case Instruction::GetElementPtr: { 4689 setInsertPointAfterBundle(E); 4690 4691 Value *Op0 = vectorizeTree(E->getOperand(0)); 4692 4693 std::vector<Value *> OpVecs; 4694 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4695 ++j) { 4696 ValueList &VL = E->getOperand(j); 4697 // Need to cast all elements to the same type before vectorization to 4698 // avoid crash. 4699 Type *VL0Ty = VL0->getOperand(j)->getType(); 4700 Type *Ty = llvm::all_of( 4701 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4702 ? VL0Ty 4703 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4704 ->getPointerOperandType() 4705 ->getScalarType()); 4706 for (Value *&V : VL) { 4707 auto *CI = cast<ConstantInt>(V); 4708 V = ConstantExpr::getIntegerCast(CI, Ty, 4709 CI->getValue().isSignBitSet()); 4710 } 4711 Value *OpVec = vectorizeTree(VL); 4712 OpVecs.push_back(OpVec); 4713 } 4714 4715 Value *V = Builder.CreateGEP( 4716 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4717 if (Instruction *I = dyn_cast<Instruction>(V)) 4718 V = propagateMetadata(I, E->Scalars); 4719 4720 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4721 V = ShuffleBuilder.finalize(V); 4722 4723 E->VectorizedValue = V; 4724 ++NumVectorInstructions; 4725 4726 return V; 4727 } 4728 case Instruction::Call: { 4729 CallInst *CI = cast<CallInst>(VL0); 4730 setInsertPointAfterBundle(E); 4731 4732 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4733 if (Function *FI = CI->getCalledFunction()) 4734 IID = FI->getIntrinsicID(); 4735 4736 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4737 4738 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4739 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4740 VecCallCosts.first <= VecCallCosts.second; 4741 4742 Value *ScalarArg = nullptr; 4743 std::vector<Value *> OpVecs; 4744 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4745 ValueList OpVL; 4746 // Some intrinsics have scalar arguments. This argument should not be 4747 // vectorized. 4748 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4749 CallInst *CEI = cast<CallInst>(VL0); 4750 ScalarArg = CEI->getArgOperand(j); 4751 OpVecs.push_back(CEI->getArgOperand(j)); 4752 continue; 4753 } 4754 4755 Value *OpVec = vectorizeTree(E->getOperand(j)); 4756 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4757 OpVecs.push_back(OpVec); 4758 } 4759 4760 Function *CF; 4761 if (!UseIntrinsic) { 4762 VFShape Shape = 4763 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4764 VecTy->getNumElements())), 4765 false /*HasGlobalPred*/); 4766 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4767 } else { 4768 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4769 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4770 } 4771 4772 SmallVector<OperandBundleDef, 1> OpBundles; 4773 CI->getOperandBundlesAsDefs(OpBundles); 4774 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4775 4776 // The scalar argument uses an in-tree scalar so we add the new vectorized 4777 // call to ExternalUses list to make sure that an extract will be 4778 // generated in the future. 4779 if (ScalarArg && getTreeEntry(ScalarArg)) 4780 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4781 4782 propagateIRFlags(V, E->Scalars, VL0); 4783 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4784 V = ShuffleBuilder.finalize(V); 4785 4786 E->VectorizedValue = V; 4787 ++NumVectorInstructions; 4788 return V; 4789 } 4790 case Instruction::ShuffleVector: { 4791 assert(E->isAltShuffle() && 4792 ((Instruction::isBinaryOp(E->getOpcode()) && 4793 Instruction::isBinaryOp(E->getAltOpcode())) || 4794 (Instruction::isCast(E->getOpcode()) && 4795 Instruction::isCast(E->getAltOpcode()))) && 4796 "Invalid Shuffle Vector Operand"); 4797 4798 Value *LHS = nullptr, *RHS = nullptr; 4799 if (Instruction::isBinaryOp(E->getOpcode())) { 4800 setInsertPointAfterBundle(E); 4801 LHS = vectorizeTree(E->getOperand(0)); 4802 RHS = vectorizeTree(E->getOperand(1)); 4803 } else { 4804 setInsertPointAfterBundle(E); 4805 LHS = vectorizeTree(E->getOperand(0)); 4806 } 4807 4808 if (E->VectorizedValue) { 4809 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4810 return E->VectorizedValue; 4811 } 4812 4813 Value *V0, *V1; 4814 if (Instruction::isBinaryOp(E->getOpcode())) { 4815 V0 = Builder.CreateBinOp( 4816 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4817 V1 = Builder.CreateBinOp( 4818 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4819 } else { 4820 V0 = Builder.CreateCast( 4821 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4822 V1 = Builder.CreateCast( 4823 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4824 } 4825 4826 // Create shuffle to take alternate operations from the vector. 4827 // Also, gather up main and alt scalar ops to propagate IR flags to 4828 // each vector operation. 4829 ValueList OpScalars, AltScalars; 4830 unsigned e = E->Scalars.size(); 4831 SmallVector<int, 8> Mask(e); 4832 for (unsigned i = 0; i < e; ++i) { 4833 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4834 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4835 if (OpInst->getOpcode() == E->getAltOpcode()) { 4836 Mask[i] = e + i; 4837 AltScalars.push_back(E->Scalars[i]); 4838 } else { 4839 Mask[i] = i; 4840 OpScalars.push_back(E->Scalars[i]); 4841 } 4842 } 4843 4844 propagateIRFlags(V0, OpScalars); 4845 propagateIRFlags(V1, AltScalars); 4846 4847 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4848 if (Instruction *I = dyn_cast<Instruction>(V)) 4849 V = propagateMetadata(I, E->Scalars); 4850 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4851 V = ShuffleBuilder.finalize(V); 4852 4853 E->VectorizedValue = V; 4854 ++NumVectorInstructions; 4855 4856 return V; 4857 } 4858 default: 4859 llvm_unreachable("unknown inst"); 4860 } 4861 return nullptr; 4862 } 4863 4864 Value *BoUpSLP::vectorizeTree() { 4865 ExtraValueToDebugLocsMap ExternallyUsedValues; 4866 return vectorizeTree(ExternallyUsedValues); 4867 } 4868 4869 Value * 4870 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4871 // All blocks must be scheduled before any instructions are inserted. 4872 for (auto &BSIter : BlocksSchedules) { 4873 scheduleBlock(BSIter.second.get()); 4874 } 4875 4876 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4877 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4878 4879 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4880 // vectorized root. InstCombine will then rewrite the entire expression. We 4881 // sign extend the extracted values below. 4882 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4883 if (MinBWs.count(ScalarRoot)) { 4884 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4885 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4886 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4887 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4888 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4889 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4890 VectorizableTree[0]->VectorizedValue = Trunc; 4891 } 4892 4893 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4894 << " values .\n"); 4895 4896 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4897 // specified by ScalarType. 4898 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4899 if (!MinBWs.count(ScalarRoot)) 4900 return Ex; 4901 if (MinBWs[ScalarRoot].second) 4902 return Builder.CreateSExt(Ex, ScalarType); 4903 return Builder.CreateZExt(Ex, ScalarType); 4904 }; 4905 4906 // Extract all of the elements with the external uses. 4907 for (const auto &ExternalUse : ExternalUses) { 4908 Value *Scalar = ExternalUse.Scalar; 4909 llvm::User *User = ExternalUse.User; 4910 4911 // Skip users that we already RAUW. This happens when one instruction 4912 // has multiple uses of the same value. 4913 if (User && !is_contained(Scalar->users(), User)) 4914 continue; 4915 TreeEntry *E = getTreeEntry(Scalar); 4916 assert(E && "Invalid scalar"); 4917 assert(E->State != TreeEntry::NeedToGather && 4918 "Extracting from a gather list"); 4919 4920 Value *Vec = E->VectorizedValue; 4921 assert(Vec && "Can't find vectorizable value"); 4922 4923 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4924 // If User == nullptr, the Scalar is used as extra arg. Generate 4925 // ExtractElement instruction and update the record for this scalar in 4926 // ExternallyUsedValues. 4927 if (!User) { 4928 assert(ExternallyUsedValues.count(Scalar) && 4929 "Scalar with nullptr as an external user must be registered in " 4930 "ExternallyUsedValues map"); 4931 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4932 Builder.SetInsertPoint(VecI->getParent(), 4933 std::next(VecI->getIterator())); 4934 } else { 4935 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4936 } 4937 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4938 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4939 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4940 auto &Locs = ExternallyUsedValues[Scalar]; 4941 ExternallyUsedValues.insert({Ex, Locs}); 4942 ExternallyUsedValues.erase(Scalar); 4943 // Required to update internally referenced instructions. 4944 Scalar->replaceAllUsesWith(Ex); 4945 continue; 4946 } 4947 4948 // Generate extracts for out-of-tree users. 4949 // Find the insertion point for the extractelement lane. 4950 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4951 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4952 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4953 if (PH->getIncomingValue(i) == Scalar) { 4954 Instruction *IncomingTerminator = 4955 PH->getIncomingBlock(i)->getTerminator(); 4956 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4957 Builder.SetInsertPoint(VecI->getParent(), 4958 std::next(VecI->getIterator())); 4959 } else { 4960 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4961 } 4962 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4963 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4964 CSEBlocks.insert(PH->getIncomingBlock(i)); 4965 PH->setOperand(i, Ex); 4966 } 4967 } 4968 } else { 4969 Builder.SetInsertPoint(cast<Instruction>(User)); 4970 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4971 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4972 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4973 User->replaceUsesOfWith(Scalar, Ex); 4974 } 4975 } else { 4976 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4977 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4978 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4979 CSEBlocks.insert(&F->getEntryBlock()); 4980 User->replaceUsesOfWith(Scalar, Ex); 4981 } 4982 4983 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4984 } 4985 4986 // For each vectorized value: 4987 for (auto &TEPtr : VectorizableTree) { 4988 TreeEntry *Entry = TEPtr.get(); 4989 4990 // No need to handle users of gathered values. 4991 if (Entry->State == TreeEntry::NeedToGather) 4992 continue; 4993 4994 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4995 4996 // For each lane: 4997 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4998 Value *Scalar = Entry->Scalars[Lane]; 4999 5000 #ifndef NDEBUG 5001 Type *Ty = Scalar->getType(); 5002 if (!Ty->isVoidTy()) { 5003 for (User *U : Scalar->users()) { 5004 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5005 5006 // It is legal to delete users in the ignorelist. 5007 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5008 "Deleting out-of-tree value"); 5009 } 5010 } 5011 #endif 5012 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5013 eraseInstruction(cast<Instruction>(Scalar)); 5014 } 5015 } 5016 5017 Builder.ClearInsertionPoint(); 5018 InstrElementSize.clear(); 5019 5020 return VectorizableTree[0]->VectorizedValue; 5021 } 5022 5023 void BoUpSLP::optimizeGatherSequence() { 5024 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5025 << " gather sequences instructions.\n"); 5026 // LICM InsertElementInst sequences. 5027 for (Instruction *I : GatherSeq) { 5028 if (isDeleted(I)) 5029 continue; 5030 5031 // Check if this block is inside a loop. 5032 Loop *L = LI->getLoopFor(I->getParent()); 5033 if (!L) 5034 continue; 5035 5036 // Check if it has a preheader. 5037 BasicBlock *PreHeader = L->getLoopPreheader(); 5038 if (!PreHeader) 5039 continue; 5040 5041 // If the vector or the element that we insert into it are 5042 // instructions that are defined in this basic block then we can't 5043 // hoist this instruction. 5044 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5045 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5046 if (Op0 && L->contains(Op0)) 5047 continue; 5048 if (Op1 && L->contains(Op1)) 5049 continue; 5050 5051 // We can hoist this instruction. Move it to the pre-header. 5052 I->moveBefore(PreHeader->getTerminator()); 5053 } 5054 5055 // Make a list of all reachable blocks in our CSE queue. 5056 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5057 CSEWorkList.reserve(CSEBlocks.size()); 5058 for (BasicBlock *BB : CSEBlocks) 5059 if (DomTreeNode *N = DT->getNode(BB)) { 5060 assert(DT->isReachableFromEntry(N)); 5061 CSEWorkList.push_back(N); 5062 } 5063 5064 // Sort blocks by domination. This ensures we visit a block after all blocks 5065 // dominating it are visited. 5066 llvm::stable_sort(CSEWorkList, 5067 [this](const DomTreeNode *A, const DomTreeNode *B) { 5068 return DT->properlyDominates(A, B); 5069 }); 5070 5071 // Perform O(N^2) search over the gather sequences and merge identical 5072 // instructions. TODO: We can further optimize this scan if we split the 5073 // instructions into different buckets based on the insert lane. 5074 SmallVector<Instruction *, 16> Visited; 5075 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5076 assert(*I && 5077 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5078 "Worklist not sorted properly!"); 5079 BasicBlock *BB = (*I)->getBlock(); 5080 // For all instructions in blocks containing gather sequences: 5081 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5082 Instruction *In = &*it++; 5083 if (isDeleted(In)) 5084 continue; 5085 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5086 continue; 5087 5088 // Check if we can replace this instruction with any of the 5089 // visited instructions. 5090 for (Instruction *v : Visited) { 5091 if (In->isIdenticalTo(v) && 5092 DT->dominates(v->getParent(), In->getParent())) { 5093 In->replaceAllUsesWith(v); 5094 eraseInstruction(In); 5095 In = nullptr; 5096 break; 5097 } 5098 } 5099 if (In) { 5100 assert(!is_contained(Visited, In)); 5101 Visited.push_back(In); 5102 } 5103 } 5104 } 5105 CSEBlocks.clear(); 5106 GatherSeq.clear(); 5107 } 5108 5109 // Groups the instructions to a bundle (which is then a single scheduling entity) 5110 // and schedules instructions until the bundle gets ready. 5111 Optional<BoUpSLP::ScheduleData *> 5112 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5113 const InstructionsState &S) { 5114 if (isa<PHINode>(S.OpValue)) 5115 return nullptr; 5116 5117 // Initialize the instruction bundle. 5118 Instruction *OldScheduleEnd = ScheduleEnd; 5119 ScheduleData *PrevInBundle = nullptr; 5120 ScheduleData *Bundle = nullptr; 5121 bool ReSchedule = false; 5122 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5123 5124 // Make sure that the scheduling region contains all 5125 // instructions of the bundle. 5126 for (Value *V : VL) { 5127 if (!extendSchedulingRegion(V, S)) 5128 return None; 5129 } 5130 5131 for (Value *V : VL) { 5132 ScheduleData *BundleMember = getScheduleData(V); 5133 assert(BundleMember && 5134 "no ScheduleData for bundle member (maybe not in same basic block)"); 5135 if (BundleMember->IsScheduled) { 5136 // A bundle member was scheduled as single instruction before and now 5137 // needs to be scheduled as part of the bundle. We just get rid of the 5138 // existing schedule. 5139 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5140 << " was already scheduled\n"); 5141 ReSchedule = true; 5142 } 5143 assert(BundleMember->isSchedulingEntity() && 5144 "bundle member already part of other bundle"); 5145 if (PrevInBundle) { 5146 PrevInBundle->NextInBundle = BundleMember; 5147 } else { 5148 Bundle = BundleMember; 5149 } 5150 BundleMember->UnscheduledDepsInBundle = 0; 5151 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5152 5153 // Group the instructions to a bundle. 5154 BundleMember->FirstInBundle = Bundle; 5155 PrevInBundle = BundleMember; 5156 } 5157 if (ScheduleEnd != OldScheduleEnd) { 5158 // The scheduling region got new instructions at the lower end (or it is a 5159 // new region for the first bundle). This makes it necessary to 5160 // recalculate all dependencies. 5161 // It is seldom that this needs to be done a second time after adding the 5162 // initial bundle to the region. 5163 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5164 doForAllOpcodes(I, [](ScheduleData *SD) { 5165 SD->clearDependencies(); 5166 }); 5167 } 5168 ReSchedule = true; 5169 } 5170 if (ReSchedule) { 5171 resetSchedule(); 5172 initialFillReadyList(ReadyInsts); 5173 } 5174 assert(Bundle && "Failed to find schedule bundle"); 5175 5176 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5177 << BB->getName() << "\n"); 5178 5179 calculateDependencies(Bundle, true, SLP); 5180 5181 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5182 // means that there are no cyclic dependencies and we can schedule it. 5183 // Note that's important that we don't "schedule" the bundle yet (see 5184 // cancelScheduling). 5185 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5186 5187 ScheduleData *pickedSD = ReadyInsts.back(); 5188 ReadyInsts.pop_back(); 5189 5190 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5191 schedule(pickedSD, ReadyInsts); 5192 } 5193 } 5194 if (!Bundle->isReady()) { 5195 cancelScheduling(VL, S.OpValue); 5196 return None; 5197 } 5198 return Bundle; 5199 } 5200 5201 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5202 Value *OpValue) { 5203 if (isa<PHINode>(OpValue)) 5204 return; 5205 5206 ScheduleData *Bundle = getScheduleData(OpValue); 5207 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5208 assert(!Bundle->IsScheduled && 5209 "Can't cancel bundle which is already scheduled"); 5210 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5211 "tried to unbundle something which is not a bundle"); 5212 5213 // Un-bundle: make single instructions out of the bundle. 5214 ScheduleData *BundleMember = Bundle; 5215 while (BundleMember) { 5216 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5217 BundleMember->FirstInBundle = BundleMember; 5218 ScheduleData *Next = BundleMember->NextInBundle; 5219 BundleMember->NextInBundle = nullptr; 5220 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5221 if (BundleMember->UnscheduledDepsInBundle == 0) { 5222 ReadyInsts.insert(BundleMember); 5223 } 5224 BundleMember = Next; 5225 } 5226 } 5227 5228 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5229 // Allocate a new ScheduleData for the instruction. 5230 if (ChunkPos >= ChunkSize) { 5231 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5232 ChunkPos = 0; 5233 } 5234 return &(ScheduleDataChunks.back()[ChunkPos++]); 5235 } 5236 5237 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5238 const InstructionsState &S) { 5239 if (getScheduleData(V, isOneOf(S, V))) 5240 return true; 5241 Instruction *I = dyn_cast<Instruction>(V); 5242 assert(I && "bundle member must be an instruction"); 5243 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5244 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5245 ScheduleData *ISD = getScheduleData(I); 5246 if (!ISD) 5247 return false; 5248 assert(isInSchedulingRegion(ISD) && 5249 "ScheduleData not in scheduling region"); 5250 ScheduleData *SD = allocateScheduleDataChunks(); 5251 SD->Inst = I; 5252 SD->init(SchedulingRegionID, S.OpValue); 5253 ExtraScheduleDataMap[I][S.OpValue] = SD; 5254 return true; 5255 }; 5256 if (CheckSheduleForI(I)) 5257 return true; 5258 if (!ScheduleStart) { 5259 // It's the first instruction in the new region. 5260 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5261 ScheduleStart = I; 5262 ScheduleEnd = I->getNextNode(); 5263 if (isOneOf(S, I) != I) 5264 CheckSheduleForI(I); 5265 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5266 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5267 return true; 5268 } 5269 // Search up and down at the same time, because we don't know if the new 5270 // instruction is above or below the existing scheduling region. 5271 BasicBlock::reverse_iterator UpIter = 5272 ++ScheduleStart->getIterator().getReverse(); 5273 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5274 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5275 BasicBlock::iterator LowerEnd = BB->end(); 5276 while (true) { 5277 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5278 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5279 return false; 5280 } 5281 5282 if (UpIter != UpperEnd) { 5283 if (&*UpIter == I) { 5284 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5285 ScheduleStart = I; 5286 if (isOneOf(S, I) != I) 5287 CheckSheduleForI(I); 5288 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5289 << "\n"); 5290 return true; 5291 } 5292 ++UpIter; 5293 } 5294 if (DownIter != LowerEnd) { 5295 if (&*DownIter == I) { 5296 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5297 nullptr); 5298 ScheduleEnd = I->getNextNode(); 5299 if (isOneOf(S, I) != I) 5300 CheckSheduleForI(I); 5301 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5302 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5303 << "\n"); 5304 return true; 5305 } 5306 ++DownIter; 5307 } 5308 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5309 "instruction not found in block"); 5310 } 5311 return true; 5312 } 5313 5314 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5315 Instruction *ToI, 5316 ScheduleData *PrevLoadStore, 5317 ScheduleData *NextLoadStore) { 5318 ScheduleData *CurrentLoadStore = PrevLoadStore; 5319 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5320 ScheduleData *SD = ScheduleDataMap[I]; 5321 if (!SD) { 5322 SD = allocateScheduleDataChunks(); 5323 ScheduleDataMap[I] = SD; 5324 SD->Inst = I; 5325 } 5326 assert(!isInSchedulingRegion(SD) && 5327 "new ScheduleData already in scheduling region"); 5328 SD->init(SchedulingRegionID, I); 5329 5330 if (I->mayReadOrWriteMemory() && 5331 (!isa<IntrinsicInst>(I) || 5332 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5333 cast<IntrinsicInst>(I)->getIntrinsicID() != 5334 Intrinsic::pseudoprobe))) { 5335 // Update the linked list of memory accessing instructions. 5336 if (CurrentLoadStore) { 5337 CurrentLoadStore->NextLoadStore = SD; 5338 } else { 5339 FirstLoadStoreInRegion = SD; 5340 } 5341 CurrentLoadStore = SD; 5342 } 5343 } 5344 if (NextLoadStore) { 5345 if (CurrentLoadStore) 5346 CurrentLoadStore->NextLoadStore = NextLoadStore; 5347 } else { 5348 LastLoadStoreInRegion = CurrentLoadStore; 5349 } 5350 } 5351 5352 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5353 bool InsertInReadyList, 5354 BoUpSLP *SLP) { 5355 assert(SD->isSchedulingEntity()); 5356 5357 SmallVector<ScheduleData *, 10> WorkList; 5358 WorkList.push_back(SD); 5359 5360 while (!WorkList.empty()) { 5361 ScheduleData *SD = WorkList.back(); 5362 WorkList.pop_back(); 5363 5364 ScheduleData *BundleMember = SD; 5365 while (BundleMember) { 5366 assert(isInSchedulingRegion(BundleMember)); 5367 if (!BundleMember->hasValidDependencies()) { 5368 5369 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5370 << "\n"); 5371 BundleMember->Dependencies = 0; 5372 BundleMember->resetUnscheduledDeps(); 5373 5374 // Handle def-use chain dependencies. 5375 if (BundleMember->OpValue != BundleMember->Inst) { 5376 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5377 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5378 BundleMember->Dependencies++; 5379 ScheduleData *DestBundle = UseSD->FirstInBundle; 5380 if (!DestBundle->IsScheduled) 5381 BundleMember->incrementUnscheduledDeps(1); 5382 if (!DestBundle->hasValidDependencies()) 5383 WorkList.push_back(DestBundle); 5384 } 5385 } else { 5386 for (User *U : BundleMember->Inst->users()) { 5387 if (isa<Instruction>(U)) { 5388 ScheduleData *UseSD = getScheduleData(U); 5389 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5390 BundleMember->Dependencies++; 5391 ScheduleData *DestBundle = UseSD->FirstInBundle; 5392 if (!DestBundle->IsScheduled) 5393 BundleMember->incrementUnscheduledDeps(1); 5394 if (!DestBundle->hasValidDependencies()) 5395 WorkList.push_back(DestBundle); 5396 } 5397 } else { 5398 // I'm not sure if this can ever happen. But we need to be safe. 5399 // This lets the instruction/bundle never be scheduled and 5400 // eventually disable vectorization. 5401 BundleMember->Dependencies++; 5402 BundleMember->incrementUnscheduledDeps(1); 5403 } 5404 } 5405 } 5406 5407 // Handle the memory dependencies. 5408 ScheduleData *DepDest = BundleMember->NextLoadStore; 5409 if (DepDest) { 5410 Instruction *SrcInst = BundleMember->Inst; 5411 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5412 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5413 unsigned numAliased = 0; 5414 unsigned DistToSrc = 1; 5415 5416 while (DepDest) { 5417 assert(isInSchedulingRegion(DepDest)); 5418 5419 // We have two limits to reduce the complexity: 5420 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5421 // SLP->isAliased (which is the expensive part in this loop). 5422 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5423 // the whole loop (even if the loop is fast, it's quadratic). 5424 // It's important for the loop break condition (see below) to 5425 // check this limit even between two read-only instructions. 5426 if (DistToSrc >= MaxMemDepDistance || 5427 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5428 (numAliased >= AliasedCheckLimit || 5429 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5430 5431 // We increment the counter only if the locations are aliased 5432 // (instead of counting all alias checks). This gives a better 5433 // balance between reduced runtime and accurate dependencies. 5434 numAliased++; 5435 5436 DepDest->MemoryDependencies.push_back(BundleMember); 5437 BundleMember->Dependencies++; 5438 ScheduleData *DestBundle = DepDest->FirstInBundle; 5439 if (!DestBundle->IsScheduled) { 5440 BundleMember->incrementUnscheduledDeps(1); 5441 } 5442 if (!DestBundle->hasValidDependencies()) { 5443 WorkList.push_back(DestBundle); 5444 } 5445 } 5446 DepDest = DepDest->NextLoadStore; 5447 5448 // Example, explaining the loop break condition: Let's assume our 5449 // starting instruction is i0 and MaxMemDepDistance = 3. 5450 // 5451 // +--------v--v--v 5452 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5453 // +--------^--^--^ 5454 // 5455 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5456 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5457 // Previously we already added dependencies from i3 to i6,i7,i8 5458 // (because of MaxMemDepDistance). As we added a dependency from 5459 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5460 // and we can abort this loop at i6. 5461 if (DistToSrc >= 2 * MaxMemDepDistance) 5462 break; 5463 DistToSrc++; 5464 } 5465 } 5466 } 5467 BundleMember = BundleMember->NextInBundle; 5468 } 5469 if (InsertInReadyList && SD->isReady()) { 5470 ReadyInsts.push_back(SD); 5471 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5472 << "\n"); 5473 } 5474 } 5475 } 5476 5477 void BoUpSLP::BlockScheduling::resetSchedule() { 5478 assert(ScheduleStart && 5479 "tried to reset schedule on block which has not been scheduled"); 5480 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5481 doForAllOpcodes(I, [&](ScheduleData *SD) { 5482 assert(isInSchedulingRegion(SD) && 5483 "ScheduleData not in scheduling region"); 5484 SD->IsScheduled = false; 5485 SD->resetUnscheduledDeps(); 5486 }); 5487 } 5488 ReadyInsts.clear(); 5489 } 5490 5491 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5492 if (!BS->ScheduleStart) 5493 return; 5494 5495 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5496 5497 BS->resetSchedule(); 5498 5499 // For the real scheduling we use a more sophisticated ready-list: it is 5500 // sorted by the original instruction location. This lets the final schedule 5501 // be as close as possible to the original instruction order. 5502 struct ScheduleDataCompare { 5503 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5504 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5505 } 5506 }; 5507 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5508 5509 // Ensure that all dependency data is updated and fill the ready-list with 5510 // initial instructions. 5511 int Idx = 0; 5512 int NumToSchedule = 0; 5513 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5514 I = I->getNextNode()) { 5515 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5516 assert(SD->isPartOfBundle() == 5517 (getTreeEntry(SD->Inst) != nullptr) && 5518 "scheduler and vectorizer bundle mismatch"); 5519 SD->FirstInBundle->SchedulingPriority = Idx++; 5520 if (SD->isSchedulingEntity()) { 5521 BS->calculateDependencies(SD, false, this); 5522 NumToSchedule++; 5523 } 5524 }); 5525 } 5526 BS->initialFillReadyList(ReadyInsts); 5527 5528 Instruction *LastScheduledInst = BS->ScheduleEnd; 5529 5530 // Do the "real" scheduling. 5531 while (!ReadyInsts.empty()) { 5532 ScheduleData *picked = *ReadyInsts.begin(); 5533 ReadyInsts.erase(ReadyInsts.begin()); 5534 5535 // Move the scheduled instruction(s) to their dedicated places, if not 5536 // there yet. 5537 ScheduleData *BundleMember = picked; 5538 while (BundleMember) { 5539 Instruction *pickedInst = BundleMember->Inst; 5540 if (LastScheduledInst->getNextNode() != pickedInst) { 5541 BS->BB->getInstList().remove(pickedInst); 5542 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5543 pickedInst); 5544 } 5545 LastScheduledInst = pickedInst; 5546 BundleMember = BundleMember->NextInBundle; 5547 } 5548 5549 BS->schedule(picked, ReadyInsts); 5550 NumToSchedule--; 5551 } 5552 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5553 5554 // Avoid duplicate scheduling of the block. 5555 BS->ScheduleStart = nullptr; 5556 } 5557 5558 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5559 // If V is a store, just return the width of the stored value (or value 5560 // truncated just before storing) without traversing the expression tree. 5561 // This is the common case. 5562 if (auto *Store = dyn_cast<StoreInst>(V)) { 5563 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5564 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5565 else 5566 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5567 } 5568 5569 auto E = InstrElementSize.find(V); 5570 if (E != InstrElementSize.end()) 5571 return E->second; 5572 5573 // If V is not a store, we can traverse the expression tree to find loads 5574 // that feed it. The type of the loaded value may indicate a more suitable 5575 // width than V's type. We want to base the vector element size on the width 5576 // of memory operations where possible. 5577 SmallVector<Instruction *, 16> Worklist; 5578 SmallPtrSet<Instruction *, 16> Visited; 5579 if (auto *I = dyn_cast<Instruction>(V)) { 5580 Worklist.push_back(I); 5581 Visited.insert(I); 5582 } 5583 5584 // Traverse the expression tree in bottom-up order looking for loads. If we 5585 // encounter an instruction we don't yet handle, we give up. 5586 auto MaxWidth = 0u; 5587 auto FoundUnknownInst = false; 5588 while (!Worklist.empty() && !FoundUnknownInst) { 5589 auto *I = Worklist.pop_back_val(); 5590 5591 // We should only be looking at scalar instructions here. If the current 5592 // instruction has a vector type, give up. 5593 auto *Ty = I->getType(); 5594 if (isa<VectorType>(Ty)) 5595 FoundUnknownInst = true; 5596 5597 // If the current instruction is a load, update MaxWidth to reflect the 5598 // width of the loaded value. 5599 else if (isa<LoadInst>(I)) 5600 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5601 5602 // Otherwise, we need to visit the operands of the instruction. We only 5603 // handle the interesting cases from buildTree here. If an operand is an 5604 // instruction we haven't yet visited, we add it to the worklist. 5605 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5606 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5607 for (Use &U : I->operands()) 5608 if (auto *J = dyn_cast<Instruction>(U.get())) 5609 if (Visited.insert(J).second) 5610 Worklist.push_back(J); 5611 } 5612 5613 // If we don't yet handle the instruction, give up. 5614 else 5615 FoundUnknownInst = true; 5616 } 5617 5618 int Width = MaxWidth; 5619 // If we didn't encounter a memory access in the expression tree, or if we 5620 // gave up for some reason, just return the width of V. Otherwise, return the 5621 // maximum width we found. 5622 if (!MaxWidth || FoundUnknownInst) 5623 Width = DL->getTypeSizeInBits(V->getType()); 5624 5625 for (Instruction *I : Visited) 5626 InstrElementSize[I] = Width; 5627 5628 return Width; 5629 } 5630 5631 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5632 // smaller type with a truncation. We collect the values that will be demoted 5633 // in ToDemote and additional roots that require investigating in Roots. 5634 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5635 SmallVectorImpl<Value *> &ToDemote, 5636 SmallVectorImpl<Value *> &Roots) { 5637 // We can always demote constants. 5638 if (isa<Constant>(V)) { 5639 ToDemote.push_back(V); 5640 return true; 5641 } 5642 5643 // If the value is not an instruction in the expression with only one use, it 5644 // cannot be demoted. 5645 auto *I = dyn_cast<Instruction>(V); 5646 if (!I || !I->hasOneUse() || !Expr.count(I)) 5647 return false; 5648 5649 switch (I->getOpcode()) { 5650 5651 // We can always demote truncations and extensions. Since truncations can 5652 // seed additional demotion, we save the truncated value. 5653 case Instruction::Trunc: 5654 Roots.push_back(I->getOperand(0)); 5655 break; 5656 case Instruction::ZExt: 5657 case Instruction::SExt: 5658 break; 5659 5660 // We can demote certain binary operations if we can demote both of their 5661 // operands. 5662 case Instruction::Add: 5663 case Instruction::Sub: 5664 case Instruction::Mul: 5665 case Instruction::And: 5666 case Instruction::Or: 5667 case Instruction::Xor: 5668 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5669 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5670 return false; 5671 break; 5672 5673 // We can demote selects if we can demote their true and false values. 5674 case Instruction::Select: { 5675 SelectInst *SI = cast<SelectInst>(I); 5676 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5677 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5678 return false; 5679 break; 5680 } 5681 5682 // We can demote phis if we can demote all their incoming operands. Note that 5683 // we don't need to worry about cycles since we ensure single use above. 5684 case Instruction::PHI: { 5685 PHINode *PN = cast<PHINode>(I); 5686 for (Value *IncValue : PN->incoming_values()) 5687 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5688 return false; 5689 break; 5690 } 5691 5692 // Otherwise, conservatively give up. 5693 default: 5694 return false; 5695 } 5696 5697 // Record the value that we can demote. 5698 ToDemote.push_back(V); 5699 return true; 5700 } 5701 5702 void BoUpSLP::computeMinimumValueSizes() { 5703 // If there are no external uses, the expression tree must be rooted by a 5704 // store. We can't demote in-memory values, so there is nothing to do here. 5705 if (ExternalUses.empty()) 5706 return; 5707 5708 // We only attempt to truncate integer expressions. 5709 auto &TreeRoot = VectorizableTree[0]->Scalars; 5710 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5711 if (!TreeRootIT) 5712 return; 5713 5714 // If the expression is not rooted by a store, these roots should have 5715 // external uses. We will rely on InstCombine to rewrite the expression in 5716 // the narrower type. However, InstCombine only rewrites single-use values. 5717 // This means that if a tree entry other than a root is used externally, it 5718 // must have multiple uses and InstCombine will not rewrite it. The code 5719 // below ensures that only the roots are used externally. 5720 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5721 for (auto &EU : ExternalUses) 5722 if (!Expr.erase(EU.Scalar)) 5723 return; 5724 if (!Expr.empty()) 5725 return; 5726 5727 // Collect the scalar values of the vectorizable expression. We will use this 5728 // context to determine which values can be demoted. If we see a truncation, 5729 // we mark it as seeding another demotion. 5730 for (auto &EntryPtr : VectorizableTree) 5731 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5732 5733 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5734 // have a single external user that is not in the vectorizable tree. 5735 for (auto *Root : TreeRoot) 5736 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5737 return; 5738 5739 // Conservatively determine if we can actually truncate the roots of the 5740 // expression. Collect the values that can be demoted in ToDemote and 5741 // additional roots that require investigating in Roots. 5742 SmallVector<Value *, 32> ToDemote; 5743 SmallVector<Value *, 4> Roots; 5744 for (auto *Root : TreeRoot) 5745 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5746 return; 5747 5748 // The maximum bit width required to represent all the values that can be 5749 // demoted without loss of precision. It would be safe to truncate the roots 5750 // of the expression to this width. 5751 auto MaxBitWidth = 8u; 5752 5753 // We first check if all the bits of the roots are demanded. If they're not, 5754 // we can truncate the roots to this narrower type. 5755 for (auto *Root : TreeRoot) { 5756 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5757 MaxBitWidth = std::max<unsigned>( 5758 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5759 } 5760 5761 // True if the roots can be zero-extended back to their original type, rather 5762 // than sign-extended. We know that if the leading bits are not demanded, we 5763 // can safely zero-extend. So we initialize IsKnownPositive to True. 5764 bool IsKnownPositive = true; 5765 5766 // If all the bits of the roots are demanded, we can try a little harder to 5767 // compute a narrower type. This can happen, for example, if the roots are 5768 // getelementptr indices. InstCombine promotes these indices to the pointer 5769 // width. Thus, all their bits are technically demanded even though the 5770 // address computation might be vectorized in a smaller type. 5771 // 5772 // We start by looking at each entry that can be demoted. We compute the 5773 // maximum bit width required to store the scalar by using ValueTracking to 5774 // compute the number of high-order bits we can truncate. 5775 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5776 llvm::all_of(TreeRoot, [](Value *R) { 5777 assert(R->hasOneUse() && "Root should have only one use!"); 5778 return isa<GetElementPtrInst>(R->user_back()); 5779 })) { 5780 MaxBitWidth = 8u; 5781 5782 // Determine if the sign bit of all the roots is known to be zero. If not, 5783 // IsKnownPositive is set to False. 5784 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5785 KnownBits Known = computeKnownBits(R, *DL); 5786 return Known.isNonNegative(); 5787 }); 5788 5789 // Determine the maximum number of bits required to store the scalar 5790 // values. 5791 for (auto *Scalar : ToDemote) { 5792 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5793 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5794 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5795 } 5796 5797 // If we can't prove that the sign bit is zero, we must add one to the 5798 // maximum bit width to account for the unknown sign bit. This preserves 5799 // the existing sign bit so we can safely sign-extend the root back to the 5800 // original type. Otherwise, if we know the sign bit is zero, we will 5801 // zero-extend the root instead. 5802 // 5803 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5804 // one to the maximum bit width will yield a larger-than-necessary 5805 // type. In general, we need to add an extra bit only if we can't 5806 // prove that the upper bit of the original type is equal to the 5807 // upper bit of the proposed smaller type. If these two bits are the 5808 // same (either zero or one) we know that sign-extending from the 5809 // smaller type will result in the same value. Here, since we can't 5810 // yet prove this, we are just making the proposed smaller type 5811 // larger to ensure correctness. 5812 if (!IsKnownPositive) 5813 ++MaxBitWidth; 5814 } 5815 5816 // Round MaxBitWidth up to the next power-of-two. 5817 if (!isPowerOf2_64(MaxBitWidth)) 5818 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5819 5820 // If the maximum bit width we compute is less than the with of the roots' 5821 // type, we can proceed with the narrowing. Otherwise, do nothing. 5822 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5823 return; 5824 5825 // If we can truncate the root, we must collect additional values that might 5826 // be demoted as a result. That is, those seeded by truncations we will 5827 // modify. 5828 while (!Roots.empty()) 5829 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5830 5831 // Finally, map the values we can demote to the maximum bit with we computed. 5832 for (auto *Scalar : ToDemote) 5833 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5834 } 5835 5836 namespace { 5837 5838 /// The SLPVectorizer Pass. 5839 struct SLPVectorizer : public FunctionPass { 5840 SLPVectorizerPass Impl; 5841 5842 /// Pass identification, replacement for typeid 5843 static char ID; 5844 5845 explicit SLPVectorizer() : FunctionPass(ID) { 5846 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5847 } 5848 5849 bool doInitialization(Module &M) override { 5850 return false; 5851 } 5852 5853 bool runOnFunction(Function &F) override { 5854 if (skipFunction(F)) 5855 return false; 5856 5857 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5858 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5859 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5860 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5861 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5862 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5863 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5864 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5865 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5866 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5867 5868 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5869 } 5870 5871 void getAnalysisUsage(AnalysisUsage &AU) const override { 5872 FunctionPass::getAnalysisUsage(AU); 5873 AU.addRequired<AssumptionCacheTracker>(); 5874 AU.addRequired<ScalarEvolutionWrapperPass>(); 5875 AU.addRequired<AAResultsWrapperPass>(); 5876 AU.addRequired<TargetTransformInfoWrapperPass>(); 5877 AU.addRequired<LoopInfoWrapperPass>(); 5878 AU.addRequired<DominatorTreeWrapperPass>(); 5879 AU.addRequired<DemandedBitsWrapperPass>(); 5880 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5881 AU.addRequired<InjectTLIMappingsLegacy>(); 5882 AU.addPreserved<LoopInfoWrapperPass>(); 5883 AU.addPreserved<DominatorTreeWrapperPass>(); 5884 AU.addPreserved<AAResultsWrapperPass>(); 5885 AU.addPreserved<GlobalsAAWrapperPass>(); 5886 AU.setPreservesCFG(); 5887 } 5888 }; 5889 5890 } // end anonymous namespace 5891 5892 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5893 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5894 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5895 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5896 auto *AA = &AM.getResult<AAManager>(F); 5897 auto *LI = &AM.getResult<LoopAnalysis>(F); 5898 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5899 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5900 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5901 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5902 5903 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5904 if (!Changed) 5905 return PreservedAnalyses::all(); 5906 5907 PreservedAnalyses PA; 5908 PA.preserveSet<CFGAnalyses>(); 5909 PA.preserve<AAManager>(); 5910 PA.preserve<GlobalsAA>(); 5911 return PA; 5912 } 5913 5914 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5915 TargetTransformInfo *TTI_, 5916 TargetLibraryInfo *TLI_, AAResults *AA_, 5917 LoopInfo *LI_, DominatorTree *DT_, 5918 AssumptionCache *AC_, DemandedBits *DB_, 5919 OptimizationRemarkEmitter *ORE_) { 5920 if (!RunSLPVectorization) 5921 return false; 5922 SE = SE_; 5923 TTI = TTI_; 5924 TLI = TLI_; 5925 AA = AA_; 5926 LI = LI_; 5927 DT = DT_; 5928 AC = AC_; 5929 DB = DB_; 5930 DL = &F.getParent()->getDataLayout(); 5931 5932 Stores.clear(); 5933 GEPs.clear(); 5934 bool Changed = false; 5935 5936 // If the target claims to have no vector registers don't attempt 5937 // vectorization. 5938 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5939 return false; 5940 5941 // Don't vectorize when the attribute NoImplicitFloat is used. 5942 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5943 return false; 5944 5945 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5946 5947 // Use the bottom up slp vectorizer to construct chains that start with 5948 // store instructions. 5949 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5950 5951 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5952 // delete instructions. 5953 5954 // Scan the blocks in the function in post order. 5955 for (auto BB : post_order(&F.getEntryBlock())) { 5956 collectSeedInstructions(BB); 5957 5958 // Vectorize trees that end at stores. 5959 if (!Stores.empty()) { 5960 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5961 << " underlying objects.\n"); 5962 Changed |= vectorizeStoreChains(R); 5963 } 5964 5965 // Vectorize trees that end at reductions. 5966 Changed |= vectorizeChainsInBlock(BB, R); 5967 5968 // Vectorize the index computations of getelementptr instructions. This 5969 // is primarily intended to catch gather-like idioms ending at 5970 // non-consecutive loads. 5971 if (!GEPs.empty()) { 5972 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5973 << " underlying objects.\n"); 5974 Changed |= vectorizeGEPIndices(BB, R); 5975 } 5976 } 5977 5978 if (Changed) { 5979 R.optimizeGatherSequence(); 5980 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5981 } 5982 return Changed; 5983 } 5984 5985 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5986 unsigned Idx) { 5987 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5988 << "\n"); 5989 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5990 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5991 unsigned VF = Chain.size(); 5992 5993 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5994 return false; 5995 5996 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5997 << "\n"); 5998 5999 R.buildTree(Chain); 6000 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6001 // TODO: Handle orders of size less than number of elements in the vector. 6002 if (Order && Order->size() == Chain.size()) { 6003 // TODO: reorder tree nodes without tree rebuilding. 6004 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6005 llvm::transform(*Order, ReorderedOps.begin(), 6006 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6007 R.buildTree(ReorderedOps); 6008 } 6009 if (R.isTreeTinyAndNotFullyVectorizable()) 6010 return false; 6011 if (R.isLoadCombineCandidate()) 6012 return false; 6013 6014 R.computeMinimumValueSizes(); 6015 6016 InstructionCost Cost = R.getTreeCost(); 6017 6018 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6019 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6020 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6021 6022 using namespace ore; 6023 6024 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6025 cast<StoreInst>(Chain[0])) 6026 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6027 << " and with tree size " 6028 << NV("TreeSize", R.getTreeSize())); 6029 6030 R.vectorizeTree(); 6031 return true; 6032 } 6033 6034 return false; 6035 } 6036 6037 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6038 BoUpSLP &R) { 6039 // We may run into multiple chains that merge into a single chain. We mark the 6040 // stores that we vectorized so that we don't visit the same store twice. 6041 BoUpSLP::ValueSet VectorizedStores; 6042 bool Changed = false; 6043 6044 int E = Stores.size(); 6045 SmallBitVector Tails(E, false); 6046 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6047 int MaxIter = MaxStoreLookup.getValue(); 6048 int IterCnt; 6049 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6050 &ConsecutiveChain](int K, int Idx) { 6051 if (IterCnt >= MaxIter) 6052 return true; 6053 ++IterCnt; 6054 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6055 return false; 6056 6057 Tails.set(Idx); 6058 ConsecutiveChain[K] = Idx; 6059 return true; 6060 }; 6061 // Do a quadratic search on all of the given stores in reverse order and find 6062 // all of the pairs of stores that follow each other. 6063 for (int Idx = E - 1; Idx >= 0; --Idx) { 6064 // If a store has multiple consecutive store candidates, search according 6065 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6066 // This is because usually pairing with immediate succeeding or preceding 6067 // candidate create the best chance to find slp vectorization opportunity. 6068 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6069 IterCnt = 0; 6070 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6071 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6072 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6073 break; 6074 } 6075 6076 // For stores that start but don't end a link in the chain: 6077 for (int Cnt = E; Cnt > 0; --Cnt) { 6078 int I = Cnt - 1; 6079 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6080 continue; 6081 // We found a store instr that starts a chain. Now follow the chain and try 6082 // to vectorize it. 6083 BoUpSLP::ValueList Operands; 6084 // Collect the chain into a list. 6085 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6086 Operands.push_back(Stores[I]); 6087 // Move to the next value in the chain. 6088 I = ConsecutiveChain[I]; 6089 } 6090 6091 // If a vector register can't hold 1 element, we are done. 6092 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6093 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6094 if (MaxVecRegSize % EltSize != 0) 6095 continue; 6096 6097 unsigned MaxElts = MaxVecRegSize / EltSize; 6098 // FIXME: Is division-by-2 the correct step? Should we assert that the 6099 // register size is a power-of-2? 6100 unsigned StartIdx = 0; 6101 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6102 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6103 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6104 if (!VectorizedStores.count(Slice.front()) && 6105 !VectorizedStores.count(Slice.back()) && 6106 vectorizeStoreChain(Slice, R, Cnt)) { 6107 // Mark the vectorized stores so that we don't vectorize them again. 6108 VectorizedStores.insert(Slice.begin(), Slice.end()); 6109 Changed = true; 6110 // If we vectorized initial block, no need to try to vectorize it 6111 // again. 6112 if (Cnt == StartIdx) 6113 StartIdx += Size; 6114 Cnt += Size; 6115 continue; 6116 } 6117 ++Cnt; 6118 } 6119 // Check if the whole array was vectorized already - exit. 6120 if (StartIdx >= Operands.size()) 6121 break; 6122 } 6123 } 6124 6125 return Changed; 6126 } 6127 6128 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6129 // Initialize the collections. We will make a single pass over the block. 6130 Stores.clear(); 6131 GEPs.clear(); 6132 6133 // Visit the store and getelementptr instructions in BB and organize them in 6134 // Stores and GEPs according to the underlying objects of their pointer 6135 // operands. 6136 for (Instruction &I : *BB) { 6137 // Ignore store instructions that are volatile or have a pointer operand 6138 // that doesn't point to a scalar type. 6139 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6140 if (!SI->isSimple()) 6141 continue; 6142 if (!isValidElementType(SI->getValueOperand()->getType())) 6143 continue; 6144 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6145 } 6146 6147 // Ignore getelementptr instructions that have more than one index, a 6148 // constant index, or a pointer operand that doesn't point to a scalar 6149 // type. 6150 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6151 auto Idx = GEP->idx_begin()->get(); 6152 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6153 continue; 6154 if (!isValidElementType(Idx->getType())) 6155 continue; 6156 if (GEP->getType()->isVectorTy()) 6157 continue; 6158 GEPs[GEP->getPointerOperand()].push_back(GEP); 6159 } 6160 } 6161 } 6162 6163 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6164 if (!A || !B) 6165 return false; 6166 Value *VL[] = {A, B}; 6167 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6168 } 6169 6170 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6171 bool AllowReorder, 6172 ArrayRef<Value *> InsertUses) { 6173 if (VL.size() < 2) 6174 return false; 6175 6176 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6177 << VL.size() << ".\n"); 6178 6179 // Check that all of the parts are instructions of the same type, 6180 // we permit an alternate opcode via InstructionsState. 6181 InstructionsState S = getSameOpcode(VL); 6182 if (!S.getOpcode()) 6183 return false; 6184 6185 Instruction *I0 = cast<Instruction>(S.OpValue); 6186 // Make sure invalid types (including vector type) are rejected before 6187 // determining vectorization factor for scalar instructions. 6188 for (Value *V : VL) { 6189 Type *Ty = V->getType(); 6190 if (!isValidElementType(Ty)) { 6191 // NOTE: the following will give user internal llvm type name, which may 6192 // not be useful. 6193 R.getORE()->emit([&]() { 6194 std::string type_str; 6195 llvm::raw_string_ostream rso(type_str); 6196 Ty->print(rso); 6197 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6198 << "Cannot SLP vectorize list: type " 6199 << rso.str() + " is unsupported by vectorizer"; 6200 }); 6201 return false; 6202 } 6203 } 6204 6205 unsigned Sz = R.getVectorElementSize(I0); 6206 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6207 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6208 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6209 if (MaxVF < 2) { 6210 R.getORE()->emit([&]() { 6211 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6212 << "Cannot SLP vectorize list: vectorization factor " 6213 << "less than 2 is not supported"; 6214 }); 6215 return false; 6216 } 6217 6218 bool Changed = false; 6219 bool CandidateFound = false; 6220 InstructionCost MinCost = SLPCostThreshold.getValue(); 6221 6222 bool CompensateUseCost = 6223 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6224 return V && isa<InsertElementInst>(V); 6225 }); 6226 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6227 "Each scalar expected to have an associated InsertElement user."); 6228 6229 unsigned NextInst = 0, MaxInst = VL.size(); 6230 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6231 // No actual vectorization should happen, if number of parts is the same as 6232 // provided vectorization factor (i.e. the scalar type is used for vector 6233 // code during codegen). 6234 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6235 if (TTI->getNumberOfParts(VecTy) == VF) 6236 continue; 6237 for (unsigned I = NextInst; I < MaxInst; ++I) { 6238 unsigned OpsWidth = 0; 6239 6240 if (I + VF > MaxInst) 6241 OpsWidth = MaxInst - I; 6242 else 6243 OpsWidth = VF; 6244 6245 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6246 break; 6247 6248 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6249 // Check that a previous iteration of this loop did not delete the Value. 6250 if (llvm::any_of(Ops, [&R](Value *V) { 6251 auto *I = dyn_cast<Instruction>(V); 6252 return I && R.isDeleted(I); 6253 })) 6254 continue; 6255 6256 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6257 << "\n"); 6258 6259 R.buildTree(Ops); 6260 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6261 // TODO: check if we can allow reordering for more cases. 6262 if (AllowReorder && Order) { 6263 // TODO: reorder tree nodes without tree rebuilding. 6264 // Conceptually, there is nothing actually preventing us from trying to 6265 // reorder a larger list. In fact, we do exactly this when vectorizing 6266 // reductions. However, at this point, we only expect to get here when 6267 // there are exactly two operations. 6268 assert(Ops.size() == 2); 6269 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6270 R.buildTree(ReorderedOps, None); 6271 } 6272 if (R.isTreeTinyAndNotFullyVectorizable()) 6273 continue; 6274 6275 R.computeMinimumValueSizes(); 6276 InstructionCost Cost = R.getTreeCost(); 6277 CandidateFound = true; 6278 if (CompensateUseCost) { 6279 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6280 // rather than sum of single inserts as the latter may overestimate 6281 // cost. This work should imply improving cost estimation for extracts 6282 // that added in for external (for vectorization tree) users,i.e. that 6283 // part should also switch to same interface. 6284 // For example, the following case is projected code after SLP: 6285 // %4 = extractelement <4 x i64> %3, i32 0 6286 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6287 // %5 = extractelement <4 x i64> %3, i32 1 6288 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6289 // %6 = extractelement <4 x i64> %3, i32 2 6290 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6291 // %7 = extractelement <4 x i64> %3, i32 3 6292 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6293 // 6294 // Extracts here added by SLP in order to feed users (the inserts) of 6295 // original scalars and contribute to "ExtractCost" at cost evaluation. 6296 // The inserts in turn form sequence to build an aggregate that 6297 // detected by findBuildAggregate routine. 6298 // SLP makes an assumption that such sequence will be optimized away 6299 // later (instcombine) so it tries to compensate ExctractCost with 6300 // cost of insert sequence. 6301 // Current per element cost calculation approach is not quite accurate 6302 // and tends to create bias toward favoring vectorization. 6303 // Switching to the TTI interface might help a bit. 6304 // Alternative solution could be pattern-match to detect a no-op or 6305 // shuffle. 6306 InstructionCost UserCost = 0; 6307 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6308 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6309 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6310 UserCost += TTI->getVectorInstrCost( 6311 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6312 } 6313 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6314 << ".\n"); 6315 Cost -= UserCost; 6316 } 6317 6318 MinCost = std::min(MinCost, Cost); 6319 6320 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6321 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6322 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6323 cast<Instruction>(Ops[0])) 6324 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6325 << " and with tree size " 6326 << ore::NV("TreeSize", R.getTreeSize())); 6327 6328 R.vectorizeTree(); 6329 // Move to the next bundle. 6330 I += VF - 1; 6331 NextInst = I + 1; 6332 Changed = true; 6333 } 6334 } 6335 } 6336 6337 if (!Changed && CandidateFound) { 6338 R.getORE()->emit([&]() { 6339 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6340 << "List vectorization was possible but not beneficial with cost " 6341 << ore::NV("Cost", MinCost) << " >= " 6342 << ore::NV("Treshold", -SLPCostThreshold); 6343 }); 6344 } else if (!Changed) { 6345 R.getORE()->emit([&]() { 6346 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6347 << "Cannot SLP vectorize list: vectorization was impossible" 6348 << " with available vectorization factors"; 6349 }); 6350 } 6351 return Changed; 6352 } 6353 6354 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6355 if (!I) 6356 return false; 6357 6358 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6359 return false; 6360 6361 Value *P = I->getParent(); 6362 6363 // Vectorize in current basic block only. 6364 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6365 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6366 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6367 return false; 6368 6369 // Try to vectorize V. 6370 if (tryToVectorizePair(Op0, Op1, R)) 6371 return true; 6372 6373 auto *A = dyn_cast<BinaryOperator>(Op0); 6374 auto *B = dyn_cast<BinaryOperator>(Op1); 6375 // Try to skip B. 6376 if (B && B->hasOneUse()) { 6377 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6378 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6379 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6380 return true; 6381 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6382 return true; 6383 } 6384 6385 // Try to skip A. 6386 if (A && A->hasOneUse()) { 6387 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6388 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6389 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6390 return true; 6391 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6392 return true; 6393 } 6394 return false; 6395 } 6396 6397 namespace { 6398 6399 /// Model horizontal reductions. 6400 /// 6401 /// A horizontal reduction is a tree of reduction instructions that has values 6402 /// that can be put into a vector as its leaves. For example: 6403 /// 6404 /// mul mul mul mul 6405 /// \ / \ / 6406 /// + + 6407 /// \ / 6408 /// + 6409 /// This tree has "mul" as its leaf values and "+" as its reduction 6410 /// instructions. A reduction can feed into a store or a binary operation 6411 /// feeding a phi. 6412 /// ... 6413 /// \ / 6414 /// + 6415 /// | 6416 /// phi += 6417 /// 6418 /// Or: 6419 /// ... 6420 /// \ / 6421 /// + 6422 /// | 6423 /// *p = 6424 /// 6425 class HorizontalReduction { 6426 using ReductionOpsType = SmallVector<Value *, 16>; 6427 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6428 ReductionOpsListType ReductionOps; 6429 SmallVector<Value *, 32> ReducedVals; 6430 // Use map vector to make stable output. 6431 MapVector<Instruction *, Value *> ExtraArgs; 6432 6433 /// This wraps functionality around a RecurKind (reduction kind). 6434 /// TODO: Remove this class if callers can use the 'Kind' value directly? 6435 class OperationData { 6436 /// Kind of the reduction operation. 6437 RecurKind Kind = RecurKind::None; 6438 bool IsLeafValue = false; 6439 6440 /// Checks if the reduction operation can be vectorized. 6441 bool isVectorizable() const { return Kind != RecurKind::None; } 6442 6443 /// Creates reduction operation with the current opcode. 6444 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6445 const Twine &Name) const { 6446 assert(isVectorizable() && "Unhandled reduction operation."); 6447 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6448 switch (Kind) { 6449 case RecurKind::Add: 6450 case RecurKind::Mul: 6451 case RecurKind::Or: 6452 case RecurKind::And: 6453 case RecurKind::Xor: 6454 case RecurKind::FAdd: 6455 case RecurKind::FMul: 6456 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6457 Name); 6458 case RecurKind::FMax: 6459 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6460 case RecurKind::FMin: 6461 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6462 6463 case RecurKind::SMax: { 6464 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6465 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6466 } 6467 case RecurKind::SMin: { 6468 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6469 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6470 } 6471 case RecurKind::UMax: { 6472 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6473 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6474 } 6475 case RecurKind::UMin: { 6476 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6477 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6478 } 6479 default: 6480 llvm_unreachable("Unknown reduction operation."); 6481 } 6482 } 6483 6484 public: 6485 explicit OperationData() = default; 6486 6487 /// Constructor for reduced values. They are identified by the bool only. 6488 explicit OperationData(Instruction &I) { IsLeafValue = true; } 6489 6490 /// Constructor for reduction operations with opcode and type. 6491 OperationData(RecurKind RdxKind) : Kind(RdxKind) { 6492 assert(Kind != RecurKind::None && "Expected reduction operation."); 6493 } 6494 6495 explicit operator bool() const { 6496 return IsLeafValue || Kind != RecurKind::None; 6497 } 6498 6499 /// Return true if this operation is a cmp+select idiom. 6500 bool isCmpSel() const { 6501 assert(Kind != RecurKind::None && "Expected reduction operation."); 6502 return RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind); 6503 } 6504 6505 /// Get the index of the first operand. 6506 unsigned getFirstOperandIndex() const { 6507 assert(!!*this && "The opcode is not set."); 6508 // We allow calling this before 'Kind' is set, so handle that specially. 6509 if (Kind == RecurKind::None) 6510 return 0; 6511 return isCmpSel() ? 1 : 0; 6512 } 6513 6514 /// Total number of operands in the reduction operation. 6515 unsigned getNumberOfOperands() const { 6516 assert(Kind != RecurKind::None && !!*this && 6517 "Expected reduction operation."); 6518 return isCmpSel() ? 3 : 2; 6519 } 6520 6521 /// Checks if the instruction is in basic block \p BB. 6522 /// For a min/max reduction check that both compare and select are in \p BB. 6523 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6524 assert(Kind != RecurKind::None && !!*this && 6525 "Expected reduction operation."); 6526 if (IsRedOp && isCmpSel()) { 6527 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6528 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6529 } 6530 return I->getParent() == BB; 6531 } 6532 6533 /// Expected number of uses for reduction operations/reduced values. 6534 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6535 assert(Kind != RecurKind::None && !!*this && 6536 "Expected reduction operation."); 6537 // SelectInst must be used twice while the condition op must have single 6538 // use only. 6539 if (isCmpSel()) 6540 return I->hasNUses(2) && 6541 (!IsReductionOp || 6542 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6543 6544 // Arithmetic reduction operation must be used once only. 6545 return I->hasOneUse(); 6546 } 6547 6548 /// Initializes the list of reduction operations. 6549 void initReductionOps(ReductionOpsListType &ReductionOps) { 6550 assert(Kind != RecurKind::None && !!*this && 6551 "Expected reduction operation."); 6552 if (isCmpSel()) 6553 ReductionOps.assign(2, ReductionOpsType()); 6554 else 6555 ReductionOps.assign(1, ReductionOpsType()); 6556 } 6557 6558 /// Add all reduction operations for the reduction instruction \p I. 6559 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6560 assert(Kind != RecurKind::None && "Expected reduction operation."); 6561 if (isCmpSel()) { 6562 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6563 ReductionOps[1].emplace_back(I); 6564 } else { 6565 ReductionOps[0].emplace_back(I); 6566 } 6567 } 6568 6569 /// Checks if instruction is associative and can be vectorized. 6570 bool isAssociative(Instruction *I) const { 6571 assert(Kind != RecurKind::None && "Expected reduction operation."); 6572 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6573 return true; 6574 6575 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6576 // FP min/max are associative except for NaN and -0.0. We do not 6577 // have to rule out -0.0 here because the intrinsic semantics do not 6578 // specify a fixed result for it. 6579 // TODO: This is artificially restricted to fast because the code that 6580 // creates reductions assumes/produces fast ops. 6581 return I->getFastMathFlags().isFast(); 6582 } 6583 6584 return I->isAssociative(); 6585 } 6586 6587 /// Checks if the reduction operation can be vectorized. 6588 bool isVectorizable(Instruction *I) const { 6589 return isVectorizable() && isAssociative(I); 6590 } 6591 6592 /// Checks if two operation data are both a reduction op or both a reduced 6593 /// value. 6594 bool operator==(const OperationData &OD) const { 6595 return Kind == OD.Kind && IsLeafValue == OD.IsLeafValue; 6596 } 6597 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6598 6599 /// Get kind of reduction data. 6600 RecurKind getKind() const { return Kind; } 6601 Value *getLHS(Instruction *I) const { 6602 if (Kind == RecurKind::None) 6603 return nullptr; 6604 return I->getOperand(getFirstOperandIndex()); 6605 } 6606 Value *getRHS(Instruction *I) const { 6607 if (Kind == RecurKind::None) 6608 return nullptr; 6609 return I->getOperand(getFirstOperandIndex() + 1); 6610 } 6611 6612 /// Creates reduction operation with the current opcode with the IR flags 6613 /// from \p ReductionOps. 6614 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6615 const Twine &Name, 6616 const ReductionOpsListType &ReductionOps) const { 6617 assert(isVectorizable() && 6618 "Expected add|fadd or min/max reduction operation."); 6619 Value *Op = createOp(Builder, LHS, RHS, Name); 6620 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) { 6621 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6622 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6623 propagateIRFlags(Op, ReductionOps[1]); 6624 return Op; 6625 } 6626 propagateIRFlags(Op, ReductionOps[0]); 6627 return Op; 6628 } 6629 /// Creates reduction operation with the current opcode with the IR flags 6630 /// from \p I. 6631 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6632 const Twine &Name, Instruction *I) const { 6633 assert(isVectorizable() && 6634 "Expected add|fadd or min/max reduction operation."); 6635 Value *Op = createOp(Builder, LHS, RHS, Name); 6636 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) { 6637 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6638 propagateIRFlags(Sel->getCondition(), 6639 cast<SelectInst>(I)->getCondition()); 6640 } 6641 } 6642 propagateIRFlags(Op, I); 6643 return Op; 6644 } 6645 }; 6646 6647 WeakTrackingVH ReductionRoot; 6648 6649 /// The operation data of the reduction operation. 6650 OperationData RdxTreeInst; 6651 6652 /// Checks if the ParentStackElem.first should be marked as a reduction 6653 /// operation with an extra argument or as extra argument itself. 6654 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6655 Value *ExtraArg) { 6656 if (ExtraArgs.count(ParentStackElem.first)) { 6657 ExtraArgs[ParentStackElem.first] = nullptr; 6658 // We ran into something like: 6659 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6660 // The whole ParentStackElem.first should be considered as an extra value 6661 // in this case. 6662 // Do not perform analysis of remaining operands of ParentStackElem.first 6663 // instruction, this whole instruction is an extra argument. 6664 OperationData OpData = getOperationData(ParentStackElem.first); 6665 ParentStackElem.second = OpData.getNumberOfOperands(); 6666 } else { 6667 // We ran into something like: 6668 // ParentStackElem.first += ... + ExtraArg + ... 6669 ExtraArgs[ParentStackElem.first] = ExtraArg; 6670 } 6671 } 6672 6673 static OperationData getOperationData(Instruction *I) { 6674 if (!I) 6675 return OperationData(); 6676 6677 TargetTransformInfo::ReductionFlags RdxFlags; 6678 if (match(I, m_Add(m_Value(), m_Value()))) 6679 return OperationData(RecurKind::Add); 6680 if (match(I, m_Mul(m_Value(), m_Value()))) 6681 return OperationData(RecurKind::Mul); 6682 if (match(I, m_And(m_Value(), m_Value()))) 6683 return OperationData(RecurKind::And); 6684 if (match(I, m_Or(m_Value(), m_Value()))) 6685 return OperationData(RecurKind::Or); 6686 if (match(I, m_Xor(m_Value(), m_Value()))) 6687 return OperationData(RecurKind::Xor); 6688 if (match(I, m_FAdd(m_Value(), m_Value()))) 6689 return OperationData(RecurKind::FAdd); 6690 if (match(I, m_FMul(m_Value(), m_Value()))) 6691 return OperationData(RecurKind::FMul); 6692 6693 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6694 return OperationData(RecurKind::FMax); 6695 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6696 return OperationData(RecurKind::FMin); 6697 6698 if (match(I, m_SMax(m_Value(), m_Value()))) 6699 return OperationData(RecurKind::SMax); 6700 if (match(I, m_SMin(m_Value(), m_Value()))) 6701 return OperationData(RecurKind::SMin); 6702 if (match(I, m_UMax(m_Value(), m_Value()))) 6703 return OperationData(RecurKind::UMax); 6704 if (match(I, m_UMin(m_Value(), m_Value()))) 6705 return OperationData(RecurKind::UMin); 6706 6707 if (auto *Select = dyn_cast<SelectInst>(I)) { 6708 // Try harder: look for min/max pattern based on instructions producing 6709 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6710 // During the intermediate stages of SLP, it's very common to have 6711 // pattern like this (since optimizeGatherSequence is run only once 6712 // at the end): 6713 // %1 = extractelement <2 x i32> %a, i32 0 6714 // %2 = extractelement <2 x i32> %a, i32 1 6715 // %cond = icmp sgt i32 %1, %2 6716 // %3 = extractelement <2 x i32> %a, i32 0 6717 // %4 = extractelement <2 x i32> %a, i32 1 6718 // %select = select i1 %cond, i32 %3, i32 %4 6719 CmpInst::Predicate Pred; 6720 Instruction *L1; 6721 Instruction *L2; 6722 6723 Value *LHS = Select->getTrueValue(); 6724 Value *RHS = Select->getFalseValue(); 6725 Value *Cond = Select->getCondition(); 6726 6727 // TODO: Support inverse predicates. 6728 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6729 if (!isa<ExtractElementInst>(RHS) || 6730 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6731 return OperationData(*I); 6732 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6733 if (!isa<ExtractElementInst>(LHS) || 6734 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6735 return OperationData(*I); 6736 } else { 6737 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6738 return OperationData(*I); 6739 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6740 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6741 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6742 return OperationData(*I); 6743 } 6744 6745 TargetTransformInfo::ReductionFlags RdxFlags; 6746 switch (Pred) { 6747 default: 6748 return OperationData(*I); 6749 case CmpInst::ICMP_SGT: 6750 case CmpInst::ICMP_SGE: 6751 return OperationData(RecurKind::SMax); 6752 case CmpInst::ICMP_SLT: 6753 case CmpInst::ICMP_SLE: 6754 return OperationData(RecurKind::SMin); 6755 case CmpInst::ICMP_UGT: 6756 case CmpInst::ICMP_UGE: 6757 return OperationData(RecurKind::UMax); 6758 case CmpInst::ICMP_ULT: 6759 case CmpInst::ICMP_ULE: 6760 return OperationData(RecurKind::UMin); 6761 } 6762 } 6763 return OperationData(*I); 6764 } 6765 6766 public: 6767 HorizontalReduction() = default; 6768 6769 /// Try to find a reduction tree. 6770 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6771 assert((!Phi || is_contained(Phi->operands(), B)) && 6772 "Phi needs to use the binary operator"); 6773 6774 RdxTreeInst = getOperationData(B); 6775 6776 // We could have a initial reductions that is not an add. 6777 // r *= v1 + v2 + v3 + v4 6778 // In such a case start looking for a tree rooted in the first '+'. 6779 if (Phi) { 6780 if (RdxTreeInst.getLHS(B) == Phi) { 6781 Phi = nullptr; 6782 B = dyn_cast<Instruction>(RdxTreeInst.getRHS(B)); 6783 RdxTreeInst = getOperationData(B); 6784 } else if (RdxTreeInst.getRHS(B) == Phi) { 6785 Phi = nullptr; 6786 B = dyn_cast<Instruction>(RdxTreeInst.getLHS(B)); 6787 RdxTreeInst = getOperationData(B); 6788 } 6789 } 6790 6791 if (!RdxTreeInst.isVectorizable(B)) 6792 return false; 6793 6794 // Analyze "regular" integer/FP types for reductions - no target-specific 6795 // types or pointers. 6796 Type *Ty = B->getType(); 6797 if (!isValidElementType(Ty) || Ty->isPointerTy()) 6798 return false; 6799 6800 ReductionRoot = B; 6801 6802 // The opcode for leaf values that we perform a reduction on. 6803 // For example: load(x) + load(y) + load(z) + fptoui(w) 6804 // The leaf opcode for 'w' does not match, so we don't include it as a 6805 // potential candidate for the reduction. 6806 unsigned LeafOpcode = 0; 6807 6808 // Post order traverse the reduction tree starting at B. We only handle true 6809 // trees containing only binary operators. 6810 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6811 Stack.push_back(std::make_pair(B, RdxTreeInst.getFirstOperandIndex())); 6812 RdxTreeInst.initReductionOps(ReductionOps); 6813 while (!Stack.empty()) { 6814 Instruction *TreeN = Stack.back().first; 6815 unsigned EdgeToVisit = Stack.back().second++; 6816 const OperationData OpData = getOperationData(TreeN); 6817 bool IsReducedValue = OpData != RdxTreeInst; 6818 6819 // Postorder visit. 6820 if (IsReducedValue || EdgeToVisit == OpData.getNumberOfOperands()) { 6821 if (IsReducedValue) 6822 ReducedVals.push_back(TreeN); 6823 else { 6824 auto I = ExtraArgs.find(TreeN); 6825 if (I != ExtraArgs.end() && !I->second) { 6826 // Check if TreeN is an extra argument of its parent operation. 6827 if (Stack.size() <= 1) { 6828 // TreeN can't be an extra argument as it is a root reduction 6829 // operation. 6830 return false; 6831 } 6832 // Yes, TreeN is an extra argument, do not add it to a list of 6833 // reduction operations. 6834 // Stack[Stack.size() - 2] always points to the parent operation. 6835 markExtraArg(Stack[Stack.size() - 2], TreeN); 6836 ExtraArgs.erase(TreeN); 6837 } else 6838 RdxTreeInst.addReductionOps(TreeN, ReductionOps); 6839 } 6840 // Retract. 6841 Stack.pop_back(); 6842 continue; 6843 } 6844 6845 // Visit left or right. 6846 Value *NextV = TreeN->getOperand(EdgeToVisit); 6847 auto *I = dyn_cast<Instruction>(NextV); 6848 const OperationData EdgeOpData = getOperationData(I); 6849 // Continue analysis if the next operand is a reduction operation or 6850 // (possibly) a leaf value. If the leaf value opcode is not set, 6851 // the first met operation != reduction operation is considered as the 6852 // leaf opcode. 6853 // Only handle trees in the current basic block. 6854 // Each tree node needs to have minimal number of users except for the 6855 // ultimate reduction. 6856 const bool IsRdxInst = EdgeOpData == RdxTreeInst; 6857 if (I && I != Phi && I != B && 6858 RdxTreeInst.hasSameParent(I, B->getParent(), IsRdxInst) && 6859 RdxTreeInst.hasRequiredNumberOfUses(I, IsRdxInst) && 6860 (!LeafOpcode || LeafOpcode == I->getOpcode() || IsRdxInst)) { 6861 if (IsRdxInst) { 6862 // We need to be able to reassociate the reduction operations. 6863 if (!EdgeOpData.isAssociative(I)) { 6864 // I is an extra argument for TreeN (its parent operation). 6865 markExtraArg(Stack.back(), I); 6866 continue; 6867 } 6868 } else if (!LeafOpcode) { 6869 LeafOpcode = I->getOpcode(); 6870 } 6871 Stack.push_back(std::make_pair(I, EdgeOpData.getFirstOperandIndex())); 6872 continue; 6873 } 6874 // NextV is an extra argument for TreeN (its parent operation). 6875 markExtraArg(Stack.back(), NextV); 6876 } 6877 return true; 6878 } 6879 6880 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6881 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6882 // If there are a sufficient number of reduction values, reduce 6883 // to a nearby power-of-2. We can safely generate oversized 6884 // vectors and rely on the backend to split them to legal sizes. 6885 unsigned NumReducedVals = ReducedVals.size(); 6886 if (NumReducedVals < 4) 6887 return false; 6888 6889 // FIXME: Fast-math-flags should be set based on the instructions in the 6890 // reduction (not all of 'fast' are required). 6891 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6892 FastMathFlags Unsafe; 6893 Unsafe.setFast(); 6894 Builder.setFastMathFlags(Unsafe); 6895 6896 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6897 // The same extra argument may be used several times, so log each attempt 6898 // to use it. 6899 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6900 assert(Pair.first && "DebugLoc must be set."); 6901 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6902 } 6903 6904 // The compare instruction of a min/max is the insertion point for new 6905 // instructions and may be replaced with a new compare instruction. 6906 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6907 assert(isa<SelectInst>(RdxRootInst) && 6908 "Expected min/max reduction to have select root instruction"); 6909 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6910 assert(isa<Instruction>(ScalarCond) && 6911 "Expected min/max reduction to have compare condition"); 6912 return cast<Instruction>(ScalarCond); 6913 }; 6914 6915 // The reduction root is used as the insertion point for new instructions, 6916 // so set it as externally used to prevent it from being deleted. 6917 ExternallyUsedValues[ReductionRoot]; 6918 SmallVector<Value *, 16> IgnoreList; 6919 for (ReductionOpsType &RdxOp : ReductionOps) 6920 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6921 6922 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6923 if (NumReducedVals > ReduxWidth) { 6924 // In the loop below, we are building a tree based on a window of 6925 // 'ReduxWidth' values. 6926 // If the operands of those values have common traits (compare predicate, 6927 // constant operand, etc), then we want to group those together to 6928 // minimize the cost of the reduction. 6929 6930 // TODO: This should be extended to count common operands for 6931 // compares and binops. 6932 6933 // Step 1: Count the number of times each compare predicate occurs. 6934 SmallDenseMap<unsigned, unsigned> PredCountMap; 6935 for (Value *RdxVal : ReducedVals) { 6936 CmpInst::Predicate Pred; 6937 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6938 ++PredCountMap[Pred]; 6939 } 6940 // Step 2: Sort the values so the most common predicates come first. 6941 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6942 CmpInst::Predicate PredA, PredB; 6943 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6944 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6945 return PredCountMap[PredA] > PredCountMap[PredB]; 6946 } 6947 return false; 6948 }); 6949 } 6950 6951 Value *VectorizedTree = nullptr; 6952 unsigned i = 0; 6953 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6954 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6955 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6956 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6957 if (Order) { 6958 assert(Order->size() == VL.size() && 6959 "Order size must be the same as number of vectorized " 6960 "instructions."); 6961 // TODO: reorder tree nodes without tree rebuilding. 6962 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6963 llvm::transform(*Order, ReorderedOps.begin(), 6964 [VL](const unsigned Idx) { return VL[Idx]; }); 6965 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6966 } 6967 if (V.isTreeTinyAndNotFullyVectorizable()) 6968 break; 6969 if (V.isLoadCombineReductionCandidate(RdxTreeInst.getKind())) 6970 break; 6971 6972 V.computeMinimumValueSizes(); 6973 6974 // Estimate cost. 6975 InstructionCost TreeCost = V.getTreeCost(); 6976 InstructionCost ReductionCost = 6977 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6978 InstructionCost Cost = TreeCost + ReductionCost; 6979 if (!Cost.isValid()) { 6980 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 6981 return false; 6982 } 6983 if (Cost >= -SLPCostThreshold) { 6984 V.getORE()->emit([&]() { 6985 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 6986 cast<Instruction>(VL[0])) 6987 << "Vectorizing horizontal reduction is possible" 6988 << "but not beneficial with cost " << ore::NV("Cost", Cost) 6989 << " and threshold " 6990 << ore::NV("Threshold", -SLPCostThreshold); 6991 }); 6992 break; 6993 } 6994 6995 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6996 << Cost << ". (HorRdx)\n"); 6997 V.getORE()->emit([&]() { 6998 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 6999 cast<Instruction>(VL[0])) 7000 << "Vectorized horizontal reduction with cost " 7001 << ore::NV("Cost", Cost) << " and with tree size " 7002 << ore::NV("TreeSize", V.getTreeSize()); 7003 }); 7004 7005 // Vectorize a tree. 7006 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7007 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7008 7009 // Emit a reduction. If the root is a select (min/max idiom), the insert 7010 // point is the compare condition of that select. 7011 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7012 if (RdxTreeInst.isCmpSel()) 7013 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7014 else 7015 Builder.SetInsertPoint(RdxRootInst); 7016 7017 Value *ReducedSubTree = 7018 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7019 7020 if (!VectorizedTree) { 7021 // Initialize the final value in the reduction. 7022 VectorizedTree = ReducedSubTree; 7023 } else { 7024 // Update the final value in the reduction. 7025 Builder.SetCurrentDebugLocation(Loc); 7026 VectorizedTree = RdxTreeInst.createOp( 7027 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7028 } 7029 i += ReduxWidth; 7030 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7031 } 7032 7033 if (VectorizedTree) { 7034 // Finish the reduction. 7035 for (; i < NumReducedVals; ++i) { 7036 auto *I = cast<Instruction>(ReducedVals[i]); 7037 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7038 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, I, "", 7039 ReductionOps); 7040 } 7041 for (auto &Pair : ExternallyUsedValues) { 7042 // Add each externally used value to the final reduction. 7043 for (auto *I : Pair.second) { 7044 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7045 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, 7046 Pair.first, "op.extra", I); 7047 } 7048 } 7049 7050 // Update users. For a min/max reduction that ends with a compare and 7051 // select, we also have to RAUW for the compare instruction feeding the 7052 // reduction root. That's because the original compare may have extra uses 7053 // besides the final select of the reduction. 7054 if (RdxTreeInst.isCmpSel()) { 7055 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7056 Instruction *ScalarCmp = 7057 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7058 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7059 } 7060 } 7061 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7062 7063 // Mark all scalar reduction ops for deletion, they are replaced by the 7064 // vector reductions. 7065 V.eraseInstructions(IgnoreList); 7066 } 7067 return VectorizedTree != nullptr; 7068 } 7069 7070 unsigned numReductionValues() const { 7071 return ReducedVals.size(); 7072 } 7073 7074 private: 7075 /// Calculate the cost of a reduction. 7076 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7077 unsigned ReduxWidth) { 7078 Type *ScalarTy = FirstReducedVal->getType(); 7079 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7080 7081 RecurKind Kind = RdxTreeInst.getKind(); 7082 int VectorCost, ScalarCost; 7083 switch (Kind) { 7084 case RecurKind::Add: 7085 case RecurKind::Mul: 7086 case RecurKind::Or: 7087 case RecurKind::And: 7088 case RecurKind::Xor: 7089 case RecurKind::FAdd: 7090 case RecurKind::FMul: { 7091 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7092 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7093 /*IsPairwiseForm=*/false); 7094 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7095 break; 7096 } 7097 case RecurKind::FMax: 7098 case RecurKind::FMin: { 7099 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7100 VectorCost = 7101 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7102 /*pairwise=*/false, /*unsigned=*/false); 7103 ScalarCost = 7104 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7105 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7106 CmpInst::makeCmpResultType(ScalarTy)); 7107 break; 7108 } 7109 case RecurKind::SMax: 7110 case RecurKind::SMin: 7111 case RecurKind::UMax: 7112 case RecurKind::UMin: { 7113 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7114 bool IsUnsigned = Kind == RecurKind::UMax || Kind == RecurKind::UMin; 7115 VectorCost = 7116 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7117 /*IsPairwiseForm=*/false, IsUnsigned); 7118 ScalarCost = 7119 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7120 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7121 CmpInst::makeCmpResultType(ScalarTy)); 7122 break; 7123 } 7124 default: 7125 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7126 } 7127 7128 // Scalar cost is repeated for N-1 elements. 7129 ScalarCost *= (ReduxWidth - 1); 7130 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7131 << " for reduction that starts with " << *FirstReducedVal 7132 << " (It is a splitting reduction)\n"); 7133 return VectorCost - ScalarCost; 7134 } 7135 7136 /// Emit a horizontal reduction of the vectorized value. 7137 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7138 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7139 assert(VectorizedValue && "Need to have a vectorized tree node"); 7140 assert(isPowerOf2_32(ReduxWidth) && 7141 "We only handle power-of-two reductions for now"); 7142 7143 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7144 // to 'fast'. 7145 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7146 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, 7147 RdxTreeInst.getKind(), 7148 ReductionOps.back()); 7149 } 7150 }; 7151 7152 } // end anonymous namespace 7153 7154 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7155 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7156 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7157 7158 unsigned AggregateSize = 1; 7159 auto *IV = cast<InsertValueInst>(InsertInst); 7160 Type *CurrentType = IV->getType(); 7161 do { 7162 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7163 for (auto *Elt : ST->elements()) 7164 if (Elt != ST->getElementType(0)) // check homogeneity 7165 return None; 7166 AggregateSize *= ST->getNumElements(); 7167 CurrentType = ST->getElementType(0); 7168 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7169 AggregateSize *= AT->getNumElements(); 7170 CurrentType = AT->getElementType(); 7171 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7172 AggregateSize *= VT->getNumElements(); 7173 return AggregateSize; 7174 } else if (CurrentType->isSingleValueType()) { 7175 return AggregateSize; 7176 } else { 7177 return None; 7178 } 7179 } while (true); 7180 } 7181 7182 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7183 unsigned OperandOffset) { 7184 unsigned OperandIndex = OperandOffset; 7185 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7186 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7187 auto *VT = cast<FixedVectorType>(IE->getType()); 7188 OperandIndex *= VT->getNumElements(); 7189 OperandIndex += CI->getZExtValue(); 7190 return OperandIndex; 7191 } 7192 return None; 7193 } 7194 7195 auto *IV = cast<InsertValueInst>(InsertInst); 7196 Type *CurrentType = IV->getType(); 7197 for (unsigned int Index : IV->indices()) { 7198 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7199 OperandIndex *= ST->getNumElements(); 7200 CurrentType = ST->getElementType(Index); 7201 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7202 OperandIndex *= AT->getNumElements(); 7203 CurrentType = AT->getElementType(); 7204 } else { 7205 return None; 7206 } 7207 OperandIndex += Index; 7208 } 7209 return OperandIndex; 7210 } 7211 7212 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7213 TargetTransformInfo *TTI, 7214 SmallVectorImpl<Value *> &BuildVectorOpds, 7215 SmallVectorImpl<Value *> &InsertElts, 7216 unsigned OperandOffset) { 7217 do { 7218 Value *InsertedOperand = LastInsertInst->getOperand(1); 7219 Optional<unsigned> OperandIndex = 7220 getOperandIndex(LastInsertInst, OperandOffset); 7221 if (!OperandIndex) 7222 return false; 7223 if (isa<InsertElementInst>(InsertedOperand) || 7224 isa<InsertValueInst>(InsertedOperand)) { 7225 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7226 BuildVectorOpds, InsertElts, *OperandIndex)) 7227 return false; 7228 } else { 7229 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7230 InsertElts[*OperandIndex] = LastInsertInst; 7231 } 7232 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7233 return true; 7234 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7235 } while (LastInsertInst != nullptr && 7236 (isa<InsertValueInst>(LastInsertInst) || 7237 isa<InsertElementInst>(LastInsertInst)) && 7238 LastInsertInst->hasOneUse()); 7239 return false; 7240 } 7241 7242 /// Recognize construction of vectors like 7243 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7244 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7245 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7246 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7247 /// starting from the last insertelement or insertvalue instruction. 7248 /// 7249 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7250 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7251 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7252 /// 7253 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7254 /// 7255 /// \return true if it matches. 7256 static bool findBuildAggregate(Instruction *LastInsertInst, 7257 TargetTransformInfo *TTI, 7258 SmallVectorImpl<Value *> &BuildVectorOpds, 7259 SmallVectorImpl<Value *> &InsertElts) { 7260 7261 assert((isa<InsertElementInst>(LastInsertInst) || 7262 isa<InsertValueInst>(LastInsertInst)) && 7263 "Expected insertelement or insertvalue instruction!"); 7264 7265 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7266 "Expected empty result vectors!"); 7267 7268 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7269 if (!AggregateSize) 7270 return false; 7271 BuildVectorOpds.resize(*AggregateSize); 7272 InsertElts.resize(*AggregateSize); 7273 7274 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7275 0)) { 7276 llvm::erase_value(BuildVectorOpds, nullptr); 7277 llvm::erase_value(InsertElts, nullptr); 7278 if (BuildVectorOpds.size() >= 2) 7279 return true; 7280 } 7281 7282 return false; 7283 } 7284 7285 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7286 return V->getType() < V2->getType(); 7287 } 7288 7289 /// Try and get a reduction value from a phi node. 7290 /// 7291 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7292 /// if they come from either \p ParentBB or a containing loop latch. 7293 /// 7294 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7295 /// if not possible. 7296 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7297 BasicBlock *ParentBB, LoopInfo *LI) { 7298 // There are situations where the reduction value is not dominated by the 7299 // reduction phi. Vectorizing such cases has been reported to cause 7300 // miscompiles. See PR25787. 7301 auto DominatedReduxValue = [&](Value *R) { 7302 return isa<Instruction>(R) && 7303 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7304 }; 7305 7306 Value *Rdx = nullptr; 7307 7308 // Return the incoming value if it comes from the same BB as the phi node. 7309 if (P->getIncomingBlock(0) == ParentBB) { 7310 Rdx = P->getIncomingValue(0); 7311 } else if (P->getIncomingBlock(1) == ParentBB) { 7312 Rdx = P->getIncomingValue(1); 7313 } 7314 7315 if (Rdx && DominatedReduxValue(Rdx)) 7316 return Rdx; 7317 7318 // Otherwise, check whether we have a loop latch to look at. 7319 Loop *BBL = LI->getLoopFor(ParentBB); 7320 if (!BBL) 7321 return nullptr; 7322 BasicBlock *BBLatch = BBL->getLoopLatch(); 7323 if (!BBLatch) 7324 return nullptr; 7325 7326 // There is a loop latch, return the incoming value if it comes from 7327 // that. This reduction pattern occasionally turns up. 7328 if (P->getIncomingBlock(0) == BBLatch) { 7329 Rdx = P->getIncomingValue(0); 7330 } else if (P->getIncomingBlock(1) == BBLatch) { 7331 Rdx = P->getIncomingValue(1); 7332 } 7333 7334 if (Rdx && DominatedReduxValue(Rdx)) 7335 return Rdx; 7336 7337 return nullptr; 7338 } 7339 7340 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7341 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7342 return true; 7343 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7344 return true; 7345 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7346 return true; 7347 return false; 7348 } 7349 7350 /// Attempt to reduce a horizontal reduction. 7351 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7352 /// with reduction operators \a Root (or one of its operands) in a basic block 7353 /// \a BB, then check if it can be done. If horizontal reduction is not found 7354 /// and root instruction is a binary operation, vectorization of the operands is 7355 /// attempted. 7356 /// \returns true if a horizontal reduction was matched and reduced or operands 7357 /// of one of the binary instruction were vectorized. 7358 /// \returns false if a horizontal reduction was not matched (or not possible) 7359 /// or no vectorization of any binary operation feeding \a Root instruction was 7360 /// performed. 7361 static bool tryToVectorizeHorReductionOrInstOperands( 7362 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7363 TargetTransformInfo *TTI, 7364 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7365 if (!ShouldVectorizeHor) 7366 return false; 7367 7368 if (!Root) 7369 return false; 7370 7371 if (Root->getParent() != BB || isa<PHINode>(Root)) 7372 return false; 7373 // Start analysis starting from Root instruction. If horizontal reduction is 7374 // found, try to vectorize it. If it is not a horizontal reduction or 7375 // vectorization is not possible or not effective, and currently analyzed 7376 // instruction is a binary operation, try to vectorize the operands, using 7377 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7378 // the same procedure considering each operand as a possible root of the 7379 // horizontal reduction. 7380 // Interrupt the process if the Root instruction itself was vectorized or all 7381 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7382 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7383 SmallPtrSet<Value *, 8> VisitedInstrs; 7384 bool Res = false; 7385 while (!Stack.empty()) { 7386 Instruction *Inst; 7387 unsigned Level; 7388 std::tie(Inst, Level) = Stack.pop_back_val(); 7389 Value *B0, *B1; 7390 bool IsBinop = matchRdxBop(Inst, B0, B1); 7391 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7392 if (IsBinop || IsSelect) { 7393 HorizontalReduction HorRdx; 7394 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7395 if (HorRdx.tryToReduce(R, TTI)) { 7396 Res = true; 7397 // Set P to nullptr to avoid re-analysis of phi node in 7398 // matchAssociativeReduction function unless this is the root node. 7399 P = nullptr; 7400 continue; 7401 } 7402 } 7403 if (P && IsBinop) { 7404 Inst = dyn_cast<Instruction>(B0); 7405 if (Inst == P) 7406 Inst = dyn_cast<Instruction>(B1); 7407 if (!Inst) { 7408 // Set P to nullptr to avoid re-analysis of phi node in 7409 // matchAssociativeReduction function unless this is the root node. 7410 P = nullptr; 7411 continue; 7412 } 7413 } 7414 } 7415 // Set P to nullptr to avoid re-analysis of phi node in 7416 // matchAssociativeReduction function unless this is the root node. 7417 P = nullptr; 7418 if (Vectorize(Inst, R)) { 7419 Res = true; 7420 continue; 7421 } 7422 7423 // Try to vectorize operands. 7424 // Continue analysis for the instruction from the same basic block only to 7425 // save compile time. 7426 if (++Level < RecursionMaxDepth) 7427 for (auto *Op : Inst->operand_values()) 7428 if (VisitedInstrs.insert(Op).second) 7429 if (auto *I = dyn_cast<Instruction>(Op)) 7430 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7431 Stack.emplace_back(I, Level); 7432 } 7433 return Res; 7434 } 7435 7436 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7437 BasicBlock *BB, BoUpSLP &R, 7438 TargetTransformInfo *TTI) { 7439 auto *I = dyn_cast_or_null<Instruction>(V); 7440 if (!I) 7441 return false; 7442 7443 if (!isa<BinaryOperator>(I)) 7444 P = nullptr; 7445 // Try to match and vectorize a horizontal reduction. 7446 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7447 return tryToVectorize(I, R); 7448 }; 7449 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7450 ExtraVectorization); 7451 } 7452 7453 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7454 BasicBlock *BB, BoUpSLP &R) { 7455 const DataLayout &DL = BB->getModule()->getDataLayout(); 7456 if (!R.canMapToVector(IVI->getType(), DL)) 7457 return false; 7458 7459 SmallVector<Value *, 16> BuildVectorOpds; 7460 SmallVector<Value *, 16> BuildVectorInsts; 7461 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7462 return false; 7463 7464 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7465 // Aggregate value is unlikely to be processed in vector register, we need to 7466 // extract scalars into scalar registers, so NeedExtraction is set true. 7467 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7468 BuildVectorInsts); 7469 } 7470 7471 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7472 BasicBlock *BB, BoUpSLP &R) { 7473 SmallVector<Value *, 16> BuildVectorInsts; 7474 SmallVector<Value *, 16> BuildVectorOpds; 7475 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7476 (llvm::all_of(BuildVectorOpds, 7477 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7478 isShuffle(BuildVectorOpds))) 7479 return false; 7480 7481 // Vectorize starting with the build vector operands ignoring the BuildVector 7482 // instructions for the purpose of scheduling and user extraction. 7483 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7484 BuildVectorInsts); 7485 } 7486 7487 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7488 BoUpSLP &R) { 7489 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7490 return true; 7491 7492 bool OpsChanged = false; 7493 for (int Idx = 0; Idx < 2; ++Idx) { 7494 OpsChanged |= 7495 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7496 } 7497 return OpsChanged; 7498 } 7499 7500 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7501 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7502 bool OpsChanged = false; 7503 for (auto *I : reverse(Instructions)) { 7504 if (R.isDeleted(I)) 7505 continue; 7506 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7507 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7508 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7509 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7510 else if (auto *CI = dyn_cast<CmpInst>(I)) 7511 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7512 } 7513 Instructions.clear(); 7514 return OpsChanged; 7515 } 7516 7517 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7518 bool Changed = false; 7519 SmallVector<Value *, 4> Incoming; 7520 SmallPtrSet<Value *, 16> VisitedInstrs; 7521 7522 bool HaveVectorizedPhiNodes = true; 7523 while (HaveVectorizedPhiNodes) { 7524 HaveVectorizedPhiNodes = false; 7525 7526 // Collect the incoming values from the PHIs. 7527 Incoming.clear(); 7528 for (Instruction &I : *BB) { 7529 PHINode *P = dyn_cast<PHINode>(&I); 7530 if (!P) 7531 break; 7532 7533 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7534 Incoming.push_back(P); 7535 } 7536 7537 // Sort by type. 7538 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7539 7540 // Try to vectorize elements base on their type. 7541 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7542 E = Incoming.end(); 7543 IncIt != E;) { 7544 7545 // Look for the next elements with the same type. 7546 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7547 while (SameTypeIt != E && 7548 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7549 VisitedInstrs.insert(*SameTypeIt); 7550 ++SameTypeIt; 7551 } 7552 7553 // Try to vectorize them. 7554 unsigned NumElts = (SameTypeIt - IncIt); 7555 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7556 << NumElts << ")\n"); 7557 // The order in which the phi nodes appear in the program does not matter. 7558 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7559 // is done when there are exactly two elements since tryToVectorizeList 7560 // asserts that there are only two values when AllowReorder is true. 7561 bool AllowReorder = NumElts == 2; 7562 if (NumElts > 1 && 7563 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7564 // Success start over because instructions might have been changed. 7565 HaveVectorizedPhiNodes = true; 7566 Changed = true; 7567 break; 7568 } 7569 7570 // Start over at the next instruction of a different type (or the end). 7571 IncIt = SameTypeIt; 7572 } 7573 } 7574 7575 VisitedInstrs.clear(); 7576 7577 SmallVector<Instruction *, 8> PostProcessInstructions; 7578 SmallDenseSet<Instruction *, 4> KeyNodes; 7579 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7580 // Skip instructions with scalable type. The num of elements is unknown at 7581 // compile-time for scalable type. 7582 if (isa<ScalableVectorType>(it->getType())) 7583 continue; 7584 7585 // Skip instructions marked for the deletion. 7586 if (R.isDeleted(&*it)) 7587 continue; 7588 // We may go through BB multiple times so skip the one we have checked. 7589 if (!VisitedInstrs.insert(&*it).second) { 7590 if (it->use_empty() && KeyNodes.contains(&*it) && 7591 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7592 // We would like to start over since some instructions are deleted 7593 // and the iterator may become invalid value. 7594 Changed = true; 7595 it = BB->begin(); 7596 e = BB->end(); 7597 } 7598 continue; 7599 } 7600 7601 if (isa<DbgInfoIntrinsic>(it)) 7602 continue; 7603 7604 // Try to vectorize reductions that use PHINodes. 7605 if (PHINode *P = dyn_cast<PHINode>(it)) { 7606 // Check that the PHI is a reduction PHI. 7607 if (P->getNumIncomingValues() == 2) { 7608 // Try to match and vectorize a horizontal reduction. 7609 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7610 TTI)) { 7611 Changed = true; 7612 it = BB->begin(); 7613 e = BB->end(); 7614 continue; 7615 } 7616 } 7617 // Try to vectorize the incoming values of the PHI, to catch reductions 7618 // that feed into PHIs. 7619 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7620 // Skip if the incoming block is the current BB for now. Also, bypass 7621 // unreachable IR for efficiency and to avoid crashing. 7622 // TODO: Collect the skipped incoming values and try to vectorize them 7623 // after processing BB. 7624 if (BB == P->getIncomingBlock(I) || 7625 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7626 continue; 7627 7628 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7629 P->getIncomingBlock(I), R, TTI); 7630 } 7631 continue; 7632 } 7633 7634 // Ran into an instruction without users, like terminator, or function call 7635 // with ignored return value, store. Ignore unused instructions (basing on 7636 // instruction type, except for CallInst and InvokeInst). 7637 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7638 isa<InvokeInst>(it))) { 7639 KeyNodes.insert(&*it); 7640 bool OpsChanged = false; 7641 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7642 for (auto *V : it->operand_values()) { 7643 // Try to match and vectorize a horizontal reduction. 7644 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7645 } 7646 } 7647 // Start vectorization of post-process list of instructions from the 7648 // top-tree instructions to try to vectorize as many instructions as 7649 // possible. 7650 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7651 if (OpsChanged) { 7652 // We would like to start over since some instructions are deleted 7653 // and the iterator may become invalid value. 7654 Changed = true; 7655 it = BB->begin(); 7656 e = BB->end(); 7657 continue; 7658 } 7659 } 7660 7661 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7662 isa<InsertValueInst>(it)) 7663 PostProcessInstructions.push_back(&*it); 7664 } 7665 7666 return Changed; 7667 } 7668 7669 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7670 auto Changed = false; 7671 for (auto &Entry : GEPs) { 7672 // If the getelementptr list has fewer than two elements, there's nothing 7673 // to do. 7674 if (Entry.second.size() < 2) 7675 continue; 7676 7677 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7678 << Entry.second.size() << ".\n"); 7679 7680 // Process the GEP list in chunks suitable for the target's supported 7681 // vector size. If a vector register can't hold 1 element, we are done. We 7682 // are trying to vectorize the index computations, so the maximum number of 7683 // elements is based on the size of the index expression, rather than the 7684 // size of the GEP itself (the target's pointer size). 7685 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7686 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7687 if (MaxVecRegSize < EltSize) 7688 continue; 7689 7690 unsigned MaxElts = MaxVecRegSize / EltSize; 7691 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7692 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7693 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7694 7695 // Initialize a set a candidate getelementptrs. Note that we use a 7696 // SetVector here to preserve program order. If the index computations 7697 // are vectorizable and begin with loads, we want to minimize the chance 7698 // of having to reorder them later. 7699 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7700 7701 // Some of the candidates may have already been vectorized after we 7702 // initially collected them. If so, they are marked as deleted, so remove 7703 // them from the set of candidates. 7704 Candidates.remove_if( 7705 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7706 7707 // Remove from the set of candidates all pairs of getelementptrs with 7708 // constant differences. Such getelementptrs are likely not good 7709 // candidates for vectorization in a bottom-up phase since one can be 7710 // computed from the other. We also ensure all candidate getelementptr 7711 // indices are unique. 7712 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7713 auto *GEPI = GEPList[I]; 7714 if (!Candidates.count(GEPI)) 7715 continue; 7716 auto *SCEVI = SE->getSCEV(GEPList[I]); 7717 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7718 auto *GEPJ = GEPList[J]; 7719 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7720 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7721 Candidates.remove(GEPI); 7722 Candidates.remove(GEPJ); 7723 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7724 Candidates.remove(GEPJ); 7725 } 7726 } 7727 } 7728 7729 // We break out of the above computation as soon as we know there are 7730 // fewer than two candidates remaining. 7731 if (Candidates.size() < 2) 7732 continue; 7733 7734 // Add the single, non-constant index of each candidate to the bundle. We 7735 // ensured the indices met these constraints when we originally collected 7736 // the getelementptrs. 7737 SmallVector<Value *, 16> Bundle(Candidates.size()); 7738 auto BundleIndex = 0u; 7739 for (auto *V : Candidates) { 7740 auto *GEP = cast<GetElementPtrInst>(V); 7741 auto *GEPIdx = GEP->idx_begin()->get(); 7742 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7743 Bundle[BundleIndex++] = GEPIdx; 7744 } 7745 7746 // Try and vectorize the indices. We are currently only interested in 7747 // gather-like cases of the form: 7748 // 7749 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7750 // 7751 // where the loads of "a", the loads of "b", and the subtractions can be 7752 // performed in parallel. It's likely that detecting this pattern in a 7753 // bottom-up phase will be simpler and less costly than building a 7754 // full-blown top-down phase beginning at the consecutive loads. 7755 Changed |= tryToVectorizeList(Bundle, R); 7756 } 7757 } 7758 return Changed; 7759 } 7760 7761 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7762 bool Changed = false; 7763 // Attempt to sort and vectorize each of the store-groups. 7764 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7765 ++it) { 7766 if (it->second.size() < 2) 7767 continue; 7768 7769 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7770 << it->second.size() << ".\n"); 7771 7772 Changed |= vectorizeStores(it->second, R); 7773 } 7774 return Changed; 7775 } 7776 7777 char SLPVectorizer::ID = 0; 7778 7779 static const char lv_name[] = "SLP Vectorizer"; 7780 7781 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7782 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7783 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7784 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7785 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7786 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7787 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7788 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7789 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7790 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7791 7792 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7793